

CHAPMAN & HALL/CRC COMPUTER and INFORMATION SCIENCE SERIES

Handbook of
Computational

Molecular Biology

PUBLISHED TITLES

HANDBOOK OF SCHEDULING: ALGORITHMS, MODELS, AND PERFORMANCE ANALYSIS
Joseph Y.-T. Leung

THE PRACTICAL HANDBOOK OF INTERNET COMPUTING
Munindar P. Singh

HANDBOOK OF DATA STRUCTURES AND APPLICATIONS
Dinesh P. Mehta and Sartaj Sahni

DISTRIBUTED SENSOR NETWORKS
S. Sitharama Iyengar and Richard R. Brooks

SPECULATIVE EXECUTION IN HIGH PERFORMANCE COMPUTER ARCHITECTURES
David Kaeli and Pen-Chung Yew

SCALABLE AND SECURE INTERNET SERVICES AND ARCHITECTURE
Cheng-Zhong Xu

HANDBOOK OF BIOINSPIRED ALGORITHMS AND APPLICATIONS
Stephan Olariu and Albert Y. Zomaya

HANDBOOK OF ALGORITHMS FOR WIRELESS NETWORKING AND MOBILE COMPUTING
Azzedine Boukerche

HANDBOOK OF COMPUTATIONAL MOLECULAR BIOLOGY
Srinivas Aluru

CHAPMAN & HALL/CRC

COMPUTER and INFORMATION SCIENCE SERIES

Series Editor: Sartaj Sahni

Boca Raton London New York

CHAPMAN & HALL/CRC COMPUTER and INFORMATION SCIENCE SERIES

Edited by

Srinivas Aluru
Iowa State University

Ames, Iowa, USA

Handbook of
Computational

Molecular Biology

Published in 2006 by
Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2006 by Taylor & Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-10: 1-58488-406-1 (Hardcover)
International Standard Book Number-13: 978-1-58488-406-4 (Hardcover)
Library of Congress Card Number 2005054821

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with
permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish
reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials
or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or
other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Handbook of computational molecular biology / [edited by] Srinivas Aluru.
p. cm. -- (Chapman & Hall/CRC computer information science ; 9)

Includes bibliographical references and index.
ISBN 1-58488-406-1
1. Computational biology--Handbooks, manuals, etc. 2. Molecular biology--Handbooks, manuals, etc.

I. Aluru, Srinivas. II. Chapman & Hall/CRC computer and information sciences series ; 9.

QH324.2.H357 2005
572.8--dc22 2005054821

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Taylor & Francis Group
is the Academic Division of Informa plc.

C061_Discl.fm Page 1 Wednesday, November 9, 2005 9:51 AM

Dedication

To my wife,

Maneesha

Preface

Computational Molecular Biology is an exciting and rapidly expanding interdisciplinary
research field that is attracting significant attention from both academia and industry. The
dynamic and rapidly expanding nature of this young field creates a particular need for
appropriate educational material, but also makes it challenging to meet this need. New
researchers are routinely attracted to this area and need appropriate training material to
learn quickly and begin contributing to the field. Practitioners need access to the latest
developments in modeling, analysis, and computational methods. Researchers who are at
the forefront of research in one subfield need to become familiar with advancements being
made in other subfields to understand how they impact the overall field and to pursue new
research directions. There is significant demand for a well trained workforce in this area.
The burgeoning of bioinformatics and computational biology graduate programs and faculty
hiring in many academic institutions is leading to an explosion in the number of graduate
students pursuing computational biology. Yet, the fast pace of discoveries makes it difficult
for a single individual to write a textbook providing comprehensive coverage. A number
of excellent textbooks and handbooks targeting individual subfields of computational biol-
ogy — such as sequence analysis, microarrays and phylogenetics — are available. While
some textbooks covering multiple areas, or presenting computational biology from unique
perspectives such as machine learning or algorithmic paradigms have also been developed,
there is no single book that provides a systematic coverage of the breadth of knowledge
accumulated in computational biology.

This handbook is designed to serve as a comprehensive introduction to computational
molecular biology. The handbook is appropriate for readers with a technical background
in computer science — some degree of familiarity with design and analysis of algorithms is
required to fully understand the material in the handbook. It is designed to serve as a ref-
erence book for researchers and practitioners, a compendium of introductory and advanced
material to aid the entry of new researchers into the field, and a resource for classroom
instruction of graduate and senior level undergraduate students. The book is divided into
eight parts, each part devoted to a particular subfield or a group of related topics. Within
most parts, the chapters are designed to reflect the progression from introductory material
to advanced material exploring more complex topics or actively pursued research topics of
current relevance. The only exception is when a group of relatively independent chapters
but with a common theme are grouped into a part. The parts themselves are arranged
so that elementary topics and topics which are necessary for understanding other topics
precede in the handbook. In this respect, the handbook is designed to be like a textbook —
a reader unfamiliar with a subfield covered in a part can read the chapters in a sequence,
gain a fairly comprehensive understanding of the subject, and find reference material for
further study.

This handbook is truly a community effort, with the chapters authored by leading re-
searchers widely recognized for their research contributions and expertise. Thanks to their
contributions, the handbook provides a thorough and researcher’s perspective of each topic
that would be difficult to achieve in a single author book due to the rapidly growing nature
of computational biology. In many cases, the authors went beyond the normal expectations
of contributing their individual chapters. Some have offered contributions and provided
valuable advice on reorganization of material on some topics. Related chapters have been
shared between authors to help interconnect the chapters and better integrate them into

the book. While this had lengthened the time for producing the handbook somewhat, it
has tremendously helped in improving the quality of the handbook.

Even though the handbook provides a broad coverage of computational molecular biology,
it is by no means complete. It is not possible to provide a complete coverage of the subject
even in a large handbook such as this. Difficult choices were made to exclude certain topics,
limit the coverage of others, and in a few cases a topic is missed because of difficulty in
finding a suitable contributor. As a testament to the rapidly growing nature of the field,
new and important directions have come up while the handbook was under development.
Some of these shortcomings and emerging research topics can be addressed in a revision,
and the editor appreciates feedback from readers and experts in this regard.

Organization of the Material

The handbook is organized into eight parts. Part I deals with the fundamental topic of
alignments to discover evolutionary relationships between biological sequences. Chapters 1
and 3 deal with the topic of alignments between a pair of sequences, and multiple sequences,
respectively. Chapter 2 deals with spliced alignments and their use in gene recognition. The
last chapter in this part, Chapter 4, addresses the sensitivity of optimal alignment to changes
in the underlying parameter space.

Part II of the book, which can be independently studied from Part I, is devoted to
string data structures and their applications in computational biology. Chapter 5 is an
introduction to the three widely used string data structures in biology — lookup tables,
suffix trees and suffix arrays. Chapter 6 catalogues a number of interesting uses of suffix trees
motivated by applications in biology. Finally, Chapter 7 describes enhanced suffix arrays,
which are a space-economical way to implement many of the suffix tree based applications.

Part III deals with computational problems arising from genome assembly and expressed
sequence tag (EST) clustering. These are important biological applications where funda-
mental techniques from the first two parts are useful. At a minimum, an understanding of
the material in Chapters 1 and 5 is necessary to delve into this part. Chapter 8 presents
an overview of the issues involved in shotgun genome assembly and a brief introduction
to many programs developed for this purpose. Chapter 9 chronicles the process by which
assembly for the public human genome project was carried out, along with the ensuing
computational challenges and how they were addressed. Chapter 10 addresses the problem
of reducing genome sequencing cost by using known genomes as a guide to assemble the
genomes of related organisms. Chapter 11 deals with the construction of physical maps for
entire chromosomes. Chapter 12 provides an introduction to expressed sequence tags (EST-
s), and methods for EST analysis. Finally, Chapter 13 addresses unifying methodologies for
EST clustering and genome assembly with special emphasis on algorithms for addressing
large-scale data.

A sampling of computational methods that arise in understanding of genomes, relation-
ships between genomes of various organisms, and the mechanism of genetic inheritance are
the subject of Part IV of the handbook. Chapters 14 and 15 are devoted to comparative
genomics, a subject of growing importance given the increasing availability of genomes.
Chapter 16 addresses computational analysis of alternative splicing, the process by which a
single gene codes for multiple mRNAs. Linkage analysis to identify approximate chromoso-
mal locations of genes associated with genetically inherited diseases is the topic of Chapter
17. Chapter 18 explores hyplotype inference, a topic of significant current research interest.

Phylogenetics, or inferring of evolutionary relationships among species and sequences, is
the focus of Part V of the handbook. The first chapter, Chapter 19 provides an overview of
phylogeny reconstruction and is a gateway for studying the remaining chapters. Chapter 20

deals with the construction of supertrees from trees representing phylogenetic relationships
between subsets of species. Recent trends in large-scale phylogenetic analysis are the topic
of Chapter 21. Finally, Chapter 22 explores the use of parallel computers for phylogeny
reconstruction, in view of the compute-intensive nature of these methods.

Part VI of the handbook is devoted to the study of microarrays and analysis of gene ex-
pression to gain insight in gene regulation and inferring gene networks. Chapter 23 presents
an overview of the microarray technology and issues in storing, retrieving and annotating
microarray data. Chapter 24 is devoted to computational problems arising in designing mi-
croarrays. An overview of clustering algorithms for gene expression analysis are presented
in Chapter 25. Chapter 26 covers recent advances in the same topic that allow clustering
based on subsets of genes and experimental conditions. The last two chapters are on mod-
eling and inferring gene networks. Chapter 27 surveys popular modeling frameworks and
explores computational methods for inferring gene networks from large-scale gene expres-
sion data. The application of control theory to modeling and analysis of gene networks is
the subject of Chapter 28.

Given the central role of proteins in most biological processes and the dependence of their
function on structural properties, computational methods related to protein structures con-
stitutes a large subfield of computational biology. Part VII of the handbook presents many
approaches for inference and applications of structural information including combinatorial
methods, experimental methods and simulation methods. Chapter 29 provides a brief intro-
duction to protein structure and contains an in-depth coverage of prediction of secondary
and supersecondary structures. Chapter 30 chronicles early work on protein structure pre-
diction using lattice models which proved useful in understanding the complexity of protein
structure prediction. Chapter 31 is devoted to protein structure prediction using nuclear
magnetic resonance (NMR) spectroscopy. This subject is continued in Chapter 32 which
covers geometric processing methods for reconstructing three dimensional structures from
NMR and other experimental approaches. Chapter 33 revisits the problem of homology de-
tection, which is covered at the rudimentary level of sequence alignments in Part I, though
what is most often sought is structural homology. This chapter presents the important
problem of remote homolog detection and structural homologies using sequence, profile and
structure data. Modeling of biomolecular structures through molecular dynamics simula-
tions of atomic level interactions is the subject of Chapter 34.

The last part of the handbook is devoted to algorithmic issues in designing bioinformatic
databases and the application of mining techniques to biological data. Chapters 35 and
36 explore the design of storage structures for biological sequence data that support exact
matching and approximate matching queries, respectively. Chapter 37 is devoted to the
topic of searching for common motifs in sets of biological sequences. Chapter 38 provides
an overview of the application of data mining techniques in computational biology with
emphasis on mining gene expression data and protein structural data.

Teaching from the Handbook

The handbook can be used as a text to support a variety of courses in computational
molecular biology. Most of the handbook can be covered in a two semester course sequence.
The sequence can be designed by partitioning the topics, or by covering the introductory
material from most parts in the first course followed by coverage of the advanced topics
in the second. For example, Chapters 1 and 3 covering pairwise and multiple sequence
alignments can be taught as part of the introductory course, while Chapter 2 on spliced
alignments and chapter 4 on parametric alignments can be deferred to the advanced course.
Such an approach is useful if there are students who will be taking just one course and

not follow through with the second. If both courses are expected to be taken by all the
students, such as when the course sequence is designed to be part of core curriculum, any
appropriate choice for partitioning the topics can be exercised.

The handbook can also support courses in targeted areas related to computational biology.
A course in computational genomics can be designed to cover Parts I, III and V of the
handbook along with portions of chapters from Part II and selected chapters from Part IV.
Part IV can be completely covered by omitting from Parts I, III and V chapters covering
advanced material (such as chapters 4 and 10) or those covering specialized topics (such as
11, 13 and 22). Topics in functional genomics can be added by choosing selected chapters
from Part VI, perhaps Chapters 22, 24 and 26. A course on string algorithms and their
applications to computational biology can be taught by starting with the material in Part
II, then covering Chapters 34 and 35, portions of Part I, and supplementing this material
with appropriate research papers. Parts VI and VII can be used to support instruction in
a course designed around functional genomics and structural biology.

The above suggestions are neither meant to be prescriptive nor are they exhaustive. The
editor is interested in feedback on instructional usage of the handbook, and suggestions on
improving the contents from that perspective.

I learnt tremendously from the wisdom of authors contributing to the handbook and hope
the reader has a similar experience.

Srinivas Aluru
Iowa State University

Acknowledgments

I am most indebted to the authors who contributed their valuable time and expertise in
creating the handbook. I was pleasantly surprised by how many of my contacts were met
with favorable responses. I am grateful to the contributors for sharing my vision for the
handbook, agreeing to my insistence that they write on specific topics I requested, suggesting
improvements, and interacting with other contributors as needed. Those wishing to join
this exciting field of research have a truly wonderful community to look forward to. If the
handbook proves useful to many, the credit squarely belongs to the contributors.

I am grateful to my team of graduate students for their active participation in this project,
in particular for reading and presenting the individual chapters to the group as they arrived.
The handbook provided wonderful material for our group seminar series. In this regard, I
would like to thank Scott Emrich, Benjamin Jackson, Anantharaman Kalyanaraman, Pang
Ko, Srikanth Komarina, Mahesh Narayanan, Sarah Orley, and Sudip Seal. I also appreciate
their patience in gracefully handling loss of my attention while I focused on the book.
My sincere gratitude to Ashraf I. Hamad who helped with initial formatting and Bashar
M. Gharaibeh for helping with formatting in later stages, and in working to bring some
consistency in listing of references across chapters.

The staff at CRC press have been a pleasure to work with. Bob Stern has been a
constant presence in this project from its inception to publication. I appreciate his patience
in working with me as I stretched the limits of many deadlines and for allowing me the time
to finish the project to my satisfaction. I am grateful to Jessica Vakili who served as the
Project Coordinator, and Glenon C. Butler, Jr. for serving as Project Editor and handling
proofreading and actual publication of the handbook. Keven Craig and Jonathan Pennell
worked on designing the cover for the handbook.

I am greatly indebted to Sartaj Sahni, who is the editor-in-chief of the Chapman & Hal-
l/CRC Computer and Information Science series, of which this handbook is one publication.
It was he who initiated this project and I am grateful to him for reposing faith in me to
carry out the project, and for his valuable suggestions and help in enlisting some of the
authors.

On the personal side, I would like to thank my wife, my two sons, and visiting parents
for their love, support, and cheerfully allowing me to spend the time needed in composing
the book. I especially appreciate my young son Chaitanya, and Pranav born during this
book project, for their understanding and patience at such an early age.

About the Editor

Srinivas Aluru is a Professor and Associate Chair for Research in the Department of Elec-
trical and Computer Engineering at Iowa State University. He serves as the chair of Bioin-
formatics and Computational Biology graduate program, and is a member of the Laurence
H. Baker Center for Bioinformatics and Biological Statistics, and the Center for Plant Ge-
nomics at Iowa State. Earlier, he held faculty positions at New Mexico State University
and Syracuse University. He received his B. Tech degree in Computer Science from the
Indian Institute of Technology, Chennai, India in 1989, and his M.S. and Ph.D. degrees in
Computer Science from Iowa State University in 1991 and 1994, respectively.

Dr. Aluru is a recipient of the NSF Career award in 1997, an IBM faculty award in
2002, Iowa State University Young Engineering Faculty Research Award in 2002, and the
Warren B. Boast Undergraduate Teaching Award in 2005. He is an IEEE Computer So-
ciety Distinguished Visitor from 2004 to 2006. His research interests include parallel al-
gorithms and applications, bioinformatics and computational biology, and combinatorial
scientific computing. His contributions to computational biology are in computational ge-
nomics, string algorithms, and parallel methods for solving large-scale problems arising in
biology. He co-chairs an annual workshop in High Performance Computational Biology
(http://www.hicomb.org) and has served as a Guest Editor of the Journal of Parallel and
Distributed Computing and the IEEE Transactions on Parallel and Distributed Systems for
special issues on this topic. Dr. Aluru served on the program committees of several con-
ference and workshops, and NSF and NIH panels, in the areas of computational biology,
parallel processing and scientific computing.

Contributors

Mohamed Ibrahim
Abouelhoda
University of Ulm, Germany

Richa Agarwala
National Institutes of Health,
USA

Srinivas Aluru
Iowa State University, USA

Jonathan Arnold
The University of Georgia, USA

David Fernández-Baca
Iowa State University, USA

David A. Bader
Georgia Institute of Technology,
USA

Chandrajit Bajaj
University of Texas at Austin,
USA

Pierre Baldi
University of California, Irvine,
USA

Catherine Ball
Stanford University, USA

Suchendra Bhandarkar
University of Georgia, USA

Michael Brudno
University of Toronto, Canada

Hui-Hsien Chou
Iowa State University, USA

Inna Dubchak
Lawrence Berkeley National
Laboratory, Joint Genome
Institute, USA

Ognen Duzlevski
University of
Missouri-Columbia, USA

Scott J. Emrich
Iowa State University, USA

Oliver Eulenstein
Iowa State University, USA

Paolo Ferragina
University of Pisa, Italy

Vladimir Filkov
University of California, Davis,
USA

Li M. Fu
University of Florida, USA

Mikhail S. Gelfand
Russian Academy of Sciences,
Russia

Osamu Gotoh
Kyoto University, Japan

Daniel Gusfield
University of California, Davis,
USA

William Hart
Sandia National Laboratories,
USA

G. Wesley Hatfield
University of California, Irvine,
USA

Jinling Huang
The University of Georgia, USA

Xiaoqiu Huang
Iowa State University, USA

Benjamin N. Jackson
Iowa State University, USA

Tamer Kahveci
University of Florida, USA

Anantharaman
Kalyanaraman
Iowa State University, USA

Laxmikant Kale
University of Illinois at
Urbana-champaign, USA

Mustafa Khammash
University of California, Santa
Barbara, USA

Pang Ko
Iowa State University, USA

Sameer Kumar
University of Illinois at
Urbana-champaign, USA

Stefan Kurtz
University of Hamburg,
Germany

Guohui Lin
University of Alberta, Canada

C. Randal Linder
The University of Texas at
Austin, USA

Glenn Martyna
IBM TJ Watson, USA

Andrei A. Mironov
Russian Academy of Sciences,
and Moscow State University,
Russia

Alexei D. Neverov
Russian Academy of Sciences,
Russia

Alantha Newman
Massachusetts Institute of
Technology, USA

Enno Ohlebusch
University of Ulm, Germany

Steven Hecht Orzack
Fresh Pond Research institute,
USA

James C. Phillips
University of Illinois at
Urbana-champaign, USA

Sanguthevar
Rajasekaran
University of Connecticut, USA

Hana El Samad
University of California, Santa
Barbara, USA

Alejandro A. Schäffer
National Institutes of Health,
USA

Klaus Schulten
University of Illinois at
Urbana-champaign, USA

Karlton Sequeira
Rensselaer Polytechnic
Institute, USA

Ron Shamir
University of Tel Aviv, Israel

Roded Sharan
University of Tel Aviv, Israel

Gavin Sherlock
Stanford University, USA

Ambuj Singh
University of California, Santa
Barbara, USA

Mona Singh
Princeton University, USA

Robert D. Skeel
Purdue University, USA

Steven Skiena
State University of New York at
Stony Brook, USA

Amos Tanay
University of Tel Aviv, Israel

Xin Tu
University of Alberta, Canada

Mark Tuckerman
New York University, USA

Vamsi Veeramachaneni
Strand Genomics Corporation,
India

Balaji Venkatachalam
Iowa State University, USA

Xiang Wan
University of Alberta, Canada

Xiu-Feng Wan
University of
Missouri-Columbia, USA

Tandy Warnow
University of Texas at Austin,
USA

Dong Xu
University of
Missouri-Columbia, USA

Tetsushi Yada
Kyoto University, Japan

Mi Yan
University of New Mexico, USA

Zeyun Yu
The University of Texas at
Austin, USA

ShinsukeYamada
Waseda University, Japan

Mohammed Zaki
Rensselaer Polytechnic
Institute, USA

Gengbin Zheng
University of Illinois at
Urbana-champaign, USA

Contents

Part I: Sequence Alignments

1 Pairwise Sequence Alignment Benjamin N. Jackson and Srinivas Aluru 1-1
2 Spliced Alignment and Similarity-based Gene Recognition Alexei D. N-

everov, Andrei A. Mironov, and Mikhail S. Gelfand 2-1
3 Multiple Sequence Alignment Osamu Gotoh, Shinsuke Yamada, and Tet-

sushi Yada . 3-1
4 Parametric Sequence Alignment David Fernández-Baca and Balaji Venkat-

achalam . 4-1

Part II: String Data Structures

5 Lookup Tables, Suffix Trees and Suffix Arrays Srinivas Aluru and Pang
Ko . 5-1

6 Suffix Tree Applications in Computational Biology Pang Ko and Srinivas
Aluru . 6-1

7 Enhanced Suffix Arrays and Applications Mohamed I. Abouelhoda, Ste-
fan Kurtz, and Enno Ohlebusch . 7-1

Part III: Genome Assembly and EST Clustering

8 Computational Methods for Genome Assembly Xiaoqiu Huang . . . 8-1
9 Assembling the Human Genome Richa Agarwala 9-1
10 Comparative Methods for Sequence Assembly Vamsi Veeramachaneni 10-1
11 Information Theoretic Approach to Genome Reconstruction Suchendra

Bhandarkar, Jinling Huang, and Jonathan Arnold 11-1
12 Expressed Sequence Tags: Clustering and Applications Anantharaman

Kalyanaraman and Srinivas Aluru . 12-1
13 Algorithms for Large-Scale Clustering and Assembly of Biological Se-

quence Data Scott J. Emrich, Anantharaman Kalyanaraman, and Srini-
vas Aluru . 13-1

Part IV: Genome-Scale Computational Methods

14 Comparisons of Long Genomic Sequences: Algorithms and Applications
Michael Brudno and Inna Dubchak . 14-1

15 Chaining Algorithms and Applications in Comparative Genomics Enno
Ohlebusch and Mohamed I. Abouelhoda 15-1

16 Computational Analysis of Alternative Splicing Mikhail S. Gelfand . 16-1
17 Human Genetic Linkage Analysis Alejandro A. Schäffer 17-1
18 Haplotype Inference Dan Gusfield and Steven Hecht Orzack 18-1

Part V: Phylogenetics

19 An Overview of Phylogeny Reconstruction C. Randal Linder and Tandy
Warnow . 19-1

20 Consensus Trees and Supertrees Oliver Eulenstein 20-1
21 Large-scale Phylogenetic Analysis Tandy Warnow 21-1
22 High-Performance Phylogeny Reconstruction David A. Bader and Mi

Yan . 22-1

Part VI: Microarrays and Gene Expression Analysis

23 Microarray Data: Annotation, Storage, Retrieval and Communication
Catherine A. Ball and Gavin Sherlock . 23-1

24 Computational Methods for Microarray Design Hui-Hsien Chou . . . 24-1
25 Clustering Algorithms for Gene Expression Analysis Pierre Baldi, G.

Wesley Hatfield, and Li M. Fu . 25-1
26 Biclustering Algorithms: A Survey Amos Tanay, Roded Sharan, and

Ron Shamir . 26-1
27 Identifying Gene Regulatory Networks from Gene Expression Data Vladimir

Filkov . 27-1
28 Modeling and Analysis of Gene Networks Using Feedback Control Theory

Hana El Samad and Mustang Rammish 28-1

Part VII: Computational Structural Biology

29 Predicting Protein Secondary and Supersecondary Structure Mona S-
ingh . 29-1

30 Protein Structure Prediction with Lattice Models William E. Hart and
Alantha Newman . 30-1

31 Protein Structure Determination via NMR Spectral Data Guohui Lin,
Xin Tu, and Xiang Wan . 31-1

32 Geometric and Signal Processing of Reconstructed 3D Maps of Molecular
Complexes Chandrajit Bajaj and Zeyun Yu 32-1

33 In Search of Remote Homolog Dong Xu, Ognen Duzlevski, and Xii-Fend
Wan . 33-1

34 Biomolecular Modeling using Parallel Supercomputers Laxmikant V. Kalé,
Klaus Schulten, Robert D. Skeel, Glenn Martyna, Mark Tuckerman, James
C. Phillips, Sameer Kumar, and Gengbin Zheng 34-1

Part VIII: Bioinformatic Databases and Data Min-
ing

35 String Search in External Memory: Data Structures and Algorithms Pao-
lo Ferragina . 35-1

36 Index Structures for Approximate Matching in Sequence Databases Tamer
Kahveci and Ambuj K. Singh . 36-1

37 Algorithms for Motif Search Sanguthevar Rajasekaran 37-1

38 Data Mining in Computational Biology Mohammed J. Zaki and Karlton
Sequeira . 38-1

Index . A-1

1
Pairwise Sequence Alignment

Benjamin N. Jackson
Iowa State University

Srinivas Aluru
Iowa State University

1.1 Introduction . 1-1
1.2 Global Alignment . 1-3
1.3 Dynamic Programming Solution 1-4
1.4 Semiglobal and Local Alignment 1-6

Semiglobal Alignment • Local Alignment
1.5 Space Saving Techniques . 1-7

Preliminaries • Using Hirschberg’s Recursion
1.6 Banded Alignment . 1-11
1.7 Other Gap Penalty Functions . 1-12

General Gap Penalties • Affine Gap Penalties
1.8 Substitution Matrices . 1-15

PAM Matrices • BLOSUM Matrices
1.9 Local Alignment Database Search 1-17
1.10 Similarity and Distance Measures 1-19
1.11 Normalized Local Alignment . 1-20
1.12 Asymptotic Improvements . 1-22

LZ Parsing of Strings • Decomposing the Problem •

The SMAWK algorithm • String Alignment in
Subquadratic Time • Space Requirements

1.13 Summary . 1-29

1.1 Introduction

The discovery of biomolecular sequences and exploring their roles, interplay, and common
evolutionary history is fundamental to the study of molecular biology. Three types of se-
quences fill complementary roles in the cell: DNA sequences, RNA sequences, and protein
sequences. DNA sequences are the basis of genetic material and act as the hereditary mech-
anism, providing the recipe for life. RNA sequences are derived from DNA sequences and
play many roles in protein synthesis. Protein sequences carry out most essential processes
such as tissue building, catalysis, oxygen transport, signaling, antibody defense, and tran-
scription regulation. The first part of this book will describe the alignment algorithms used
to compare these sequences.

For the benefit of the reader unfamiliar with molecular biology, we provide a more detailed
introduction to biological sequences. A DNA molecule is composed of simpler molecules
known as nucleotides. The nucleotides are differentiated by the differences in their bases
— Adenine, Cytosine, Guanine and Thymine, represented by A, C, G, and T, respectively.
DNA naturally occurs as a double-stranded helix-shaped molecule, with each nucleotide
in one strand pairing with a corresponding nucleotide in the other strand, with A pairing
with T and G pairing with C and vice versa. Each strand has a direction, with the two

1-1

1-2 Handbook of Computational Molecular Biology

strands having opposite directions. The DNA molecule is represented by the sequence of
nucleotides of one strand in that strand’s direction. Given one strand, the sequence of the
other strand is obtained by reversing the known strand and substituting A for T, C for
G, etc. This process is called generating the reverse complement and is important when
comparing DNA sequences as either strand might be given for the DNA being compared.

Several different terms are used to describe DNA sequences. Each cell in an organism
contains the same set of chromosomes, which are long DNA sequences. The set of chro-
mosomes in an organism constitutes its genome. A gene is a contiguous stretch of DNA
along a chromosome that codes for a protein or RNA. Genes consist of one or more coding
regions called exons separated by non-coding regions called introns. The terms promoter,
enhancer, and silencer are used to describe DNA sequences involved in regulating gene ex-
pression through protein interactions and are often located upstream of the gene. Genes and
regulatory regions are often conserved (show high similarity or homology) across species.

An important function of DNA sequences is to code for protein sequences. Like DNA
sequences, proteins are also sequences of simpler molecules, in this case amino acids. Amino
acids are differentiated by their side chains. There are twenty possible side chains that
distinguish the twenty different amino acids found in protein sequences. As with DNA,
each of the twenty amino acids is represented by a unique character.

A protein is derived from a gene through an RNA intermediary. Similar to DNA, RNA
is a sequence of nucleotides with the base Thymine replaced by Uracil. First, an RNA
called pre-mRNA containing both exons and introns is copied from the DNA in a process
called transcription. The introns are excised and the exons are spliced to form an mRNA.
The mRNA is then translated into an amino acid sequence. A codon is three consecutive
nucleotides in the mRNA that is translated to an amino acid in the corresponding protein.
The mRNA is used as a template to generate an amino acid sequence of one third the length
of the coding region. The code mapping the 64 possible codons to the 20 possible amino
acids is common to almost all of life. The two step process of transcribing DNA to RNA and
translating RNA to protein is popularly known as the central dogma of molecular biology.

Multiple forms of the same gene, known as alleles, cause genetic differences between
individuals and are responsible for the genetic diversity of a species. Sometimes, variations
in alleles lead to undesirable outcomes such as genetic diseases or increased susceptibility to
diseases. The differences between alleles are often quite small. Sometimes a single nucleotide
change can have a large effect on the resulting protein. DNA sequences are typically modified
through insertions, deletions or substitutions. These underlying evolutionary mechanisms
provide a starting point for sequence alignment algorithms.

Sequence alignments are intended to discover and illustrate the similarities, differences, or
evolutionary relationships between sequences. The algorithms used for sequence comparison
vary depending on the types of sequences being compared and the question being asked,
giving rise to a variety of sequence alignment algorithms. In this chapter, we will present the
basic sequence alignment algorithms, broadly characterized as global alignment, semiglobal
alignment, and local alignment. Global alignment can be used to compare two protein
sequences from a closely related gene family, two homologous genes, or two gene alleles.
Semiglobal alignment can be used to piece together fragments of DNA from shotgun DNA
reads and create a longer inferred sequence, useful in genome assembly. Local alignment
can be used as a part of multiple local alignment, presented in Chapter 3, to find a common
motif among protein sequences or conserved promoter sites in gene sequences. Chapter 2
presents spliced alignments, which are important when aligning DNA with RNA transcripts.
Finally, Chapter 4 addresses the characteristics of the problem space, and how changing
parameters affect alignment results.

Pairwise Sequence Alignment 1-3

1.2 Global Alignment

The global sequence alignment problem for two sequences is defined as follows. We call
the set of unique characters in the input sequences an alphabet Σ. In the case of DNA
sequences, that alphabet is Σ = {a, g, c, t}. A stringX of length n is a sequence of characters
〈x1, x2, ..., xn〉 such that xi ∈ Σ. A prefix of X is a string of the form 〈x1, x2, ..., xi〉, 1 ≤
i ≤ n. A substring of X is a string of the form 〈xi, xi+1, ..., xj−1, xj〉, 1 ≤ i ≤ j ≤ n.
For example ‘aggctga’ is a string with substrings ‘aggc’ and ‘gctg’, with ‘aggc’ also being a
prefix of ‘aggctga’.

A string of characters is the term traditionally used in computer science literature, and
it is equivalent to the concept of a sequence in biology. We will use the term string almost
exclusively in this chapter. However, it is important to adapt the string algorithms to the
specific biological sequences of interest. For example, when comparing DNA sequences, it
is important to compare the two input sequences, as well as the reverse complement of one
sequence with the other input sequence.

Consider two strings A = 〈a1, a2, ..., an〉 and B = 〈b1, b2, ..., bm〉. Conceptually we wish
to create an alignment between the two strings, matching similar regions by aligning each
character in string A with a character in string B. Additionally, we can insert gaps in each
string (allowing for the possibility of deletions or insertions of sequences of characters).
More formally, an alignment between A and B is the production of two new strings of
equal length, AL derived from A and BL derived from B through insertions of a special gap
character ‘-’. AL = 〈a1, a2, ..., al〉 and BL = 〈b1, b2, ..., bl〉, where l is the alignment length,
max(n,m) ≤ l ≤ n +m. Both ai and bi may not be gap characters. ai and bi are said to
be aligned with each other. If ai is a gap, then bi is said to be aligned with a gap in A,
and vice versa. An example alignment between two strings ‘aggctga’ and ‘agcttg’ is shown
below.

aggct-ga
ag-cttg-

The quality of the alignment is measured by its score, which can be thought of as a
measure of how similar the two strings are. The score is the summation of the score of
each pair of characters ai and bi. We will choose a simple scoring function that has roots
in our evolutionary model. A character aligned with the same character, a match, is given
a score α. This corresponds to a conserved character. A character aligned with any other
character, a mismatch, is given a score β, and corresponds to a substitution. Finally,
a character aligned with a gap, a gap, is given a score γ, and corresponds to either an
insertion or a deletion in one of the strings.

score(L) =
l∑

i=1

score(ai, bi)

score(x, y) =

α x = y

β x �= y

γ x = ‘−′ or y = ‘−′

Typically α is positive and γ and β are negative. We will consider the values α = 2, β =
−1, γ = −1. Given these values, the example alignment has a total score of 7.

We wish to find an alignment between the two strings that results in the highest score,
called an optimal alignment between the two strings. A simplistic solution would be to

1-4 Handbook of Computational Molecular Biology

score all possible alignments and chose (from) the highest scoring, but the number of such
possibilities is exponential.

1.3 Dynamic Programming Solution

The solution can be sped up using dynamic programming. We see that the problem exhibits
an optimal substructure. Consider an optimal alignment L between A and B. If we look
at some part of that optimal alignment L′ that aligns a substring A′ of A with a substring
B′ of B, we wish to say, for optimal substructure, that L′ is an optimal alignment between
A′ and B′. The proof is simple, using contradiction. If the alignment L′ is not optimal,
then there exists an alignment Lnew between A′ and B′, with score(Lnew) > score(L′).
However, Lnew can be substituted for L′ in L, increasing the score of L. Therefore L is not
optimal, a contradiction.

We can use the optimal substructure property to solve the problem more efficiently using
the following formulation. In order to find the optimal alignment between the two strings,
we find the optimal alignment between each prefix Ai of A and each prefix Bj of B, where
Ai is the prefix of length i of A and Bj is the prefix of length j of B. Let ai be the last
character in Ai and bj be the last character in Bj . There are three possibilities that can
produce the optimal score.

1. Align ai with bj and optimally align Ai−1 with Bj−1.
2. Align ai with a gap and optimally align Ai−1 with Bj .
3. Align bj with a gap and optimally align Ai with Bj−1.

We will denote the optimal score of aligning Ai with Bj as S[i, j]. Think of a table
that records the maximum score of aligning all possible pairs of Ai and Bi. The following
recurrence describes how to fill the table using the ideas presented above.

S[i, j] = max

S[i− 1, j − 1] + δ(ai, bj)
S[i, j − 1] + γ

S[i− 1, j] + γ

δ(x, y) =

{
α x = y

β x �= y

All that remains is to specify the starting conditions. The score of aligning some prefix of
A with none of B is the length of that prefix times the gap penalty. Formally, S[0, j] = γj
and S[i, 0] = γi.

A sample table is shown in Figure 1.1. Rows in S correspond to characters in A with the
first row corresponding to the empty string. Columns in S correspond to characters in B
with the first column corresponding to the empty string. We can initialize the first row and
first column of the table as described in the previous paragraph.

Notice that to fill a cell of the table using the recursive definition above, we need to know
the value of three other cells — the cell to the north, the cell to the west, and the cell to
the northwest. Therefore, if we start to fill the table row by row, from top to bottom and
left to right, we will have already filled in these three cells before reaching the current cell.

The amount of time to fill in each cell is constant, so the total time to fill out the table
is equal to the number of cells, or O(nm). The space requirement is the same. When the
algorithm is finished, the best alignment score is recorded in S[n,m].

Pairwise Sequence Alignment 1-5

FIGURE 1.1: a) The score table for strings “agcttg” and “aggctga” with α = 2, β = −1, γ = −1.
The optimal alignment is found by starting at the southeast cell in the table and
tracing the path back to the northwest cell. For these strings, more than one
alignment produces the score, resulting in more than one possible path. (b) The
score table for strings “aggcgg” and “gggctggcga” showing a local alignment. The
alignment path through the table is shown with arrows. The optimal alignment is
found by searching the table for the maximum value and then tracing a path until
reaching a cell with score 0.

The table shown in Figure 1.1 aligns our two sample strings using the parameters α =
2, β = −1, γ = −1. As indicated in the southeast corner cell, the best alignment has a score
of 7.

We also wish to construct an alignment corresponding to this score, as it provides infor-
mation about how the two strings are similar and different, or equivalently it illustrates the
homology between the two sequences. We can think of the score in each cell as having a
corresponding move, indicating which neighboring cell — north, northwest, or west — was
used in producing that cell’s score. If we trace these moves from S[n,m] to S[0, 0], called
traceback, we can construct the alignment. Let’s consider cell S[i, j].

1. A diagonal move to S[i, j] corresponds to aligning ai and bj.
2. A horizontal move to S[i, j] corresponds to inserting a gap in A after ai.
3. A vertical move to S[i, j] corresponds to inserting a gap in B after bj.

One possible way to complete the traceback is to store the moves made for each cell in
addition to the score. However, this is unnecessary as the possible moves can be deduced
from the score table by considering three cases for each cell.

1. If S[i, j] − δ(ai, bj) = S[i − 1, j − 1], a diagonal move could have been used to
reach S[i, j].

2. If S[i, j]−γ = S[i, j−1], a horizontal move could have been used to reach S[i, j].
3. If S[i, j]− γ = S[i− 1, j], a vertical move could have been used to reach S[i, j].

Multiple move possibilities imply that there are multiple alignments that produce the op-
timal score. Figure 1.1 shows that the example strings have more than one alignment that
produce a score of 7.

1-6 Handbook of Computational Molecular Biology

1.4 Semiglobal and Local Alignment

Our dynamic programming solution to the sequence alignment problem resulted in aligning
all of A with all of B. This is called a global alignment, and was first applied in computa-
tional biology by Needleman and Wunsch [34]. However, in some cases, a global alignment
is not that interesting. Consider the two strings ‘agctgctatgataccgacgat’ and ‘atcata’. An
optimal global alignment matches each character perfectly:

agctgctatgataccgacgat
a--t-c-at-a----------

But a more interesting alignment produces a mismatch and therefore a lower global score,
but is much more biologically meaningful. Variations on the global alignment algorithm
address this intuition, and were first presented in the context of biological sequences by
Smith and Waterman [39].

agctgctatgataccgacgat
-------atcata--------

1.4.1 Semiglobal Alignment

The first variation is called a semiglobal, or end gaps free alignment. In this type of align-
ment, all gaps inserted before or after the string do not affect the score of the alignment. In
other words, we are allowed to ignore a prefix of A or a prefix of B but not both. We are also
allowed to ignore a suffix of A or a suffix of B but not both. This type of alignment might
be interesting if we were assembling a genome from shotgun reads. We would expect high
similarity between overlapping ends of two reads, but would not want to incur a penalty for
ignoring the non-overlapping ends. Genome assembly is covered more thoroughly in Part
III.

In the following discussion, we will use the term exhausted to describe the way in which
the algorithm uses up characters from A and B. After calculating S[i, j], the algorithm is
said to have exhausted the first i characters from A and the first j characters from B.

The semiglobal alignment is achieved through two small modifications to the global align-
ment algorithm. The first modification addresses inserting gaps at the beginning of a string,
or ignoring either a prefix of A or a prefix of B. In a global alignment, we started with an
alignment score of 0 only when we had exhausted no characters from both A and B. This
corresponded to initializing S[0, 0] to 0. Now we wish to be able to start with a score of 0
after ignoring either a prefix of A or a prefix of B. This condition holds as long as we have
not exhausted any characters from either A or B, which corresponds to the first row or first
column of the table. Therefore we can achieve the result by initializing the first row and
column of the table to 0.

The second modification addresses inserting gaps at the end of a string, or ignoring either
a suffix of A or a suffix of B. Because we can only ignore a suffix of either A or B, the
alignment must exhaust all the characters of either A or B. In terms of the table, this is
the case in the last row or column. In a global alignment, we were required to exhaust the
characters from both A and B, so the score appeared in the southeast corner of the table.
In semiglobal alignment, the score is the maximum over the last row and column of the
table.

The traceback of the alignment path through the table proceeds as in global alignment,
however the traceback starts at the found maximum and ends at any cell in the first row or
column.

Pairwise Sequence Alignment 1-7

1.4.2 Local Alignment

The second variation to global alignment allows even more flexibility than semiglobal align-
ment. In a local alignment, we wish to choose some substring A′ of A and some substring
B′ of B such that A′ aligned with B′ produces the maximum score. In other words, while
for semiglobal alignment we could ignore a prefix of either A or B and a suffix of either A
or B, for local alignment we can ignore a prefix and suffix of both A and B.

Possible uses of local alignment include identifying a conserved exon in two genomic
sequences and identification of a conserved regulatory region upstream of two genes. We are
highly interested in the similar region shared between the two sequences, but are indifferent
to remainder of the sequences. In this case, a local alignment would allow us to ignore the
parts of the sequence that do not align well, while focusing on the region with the best local
similarity.

We create a local alignment by extending the ideas used in semiglobal alignment. Instead
of only starting our score at zero in the first row or column (allowing A or B to ignore
prefix), we now have the possibility of starting our alignment score at zero in any cell in the
table, allowing both A and B to ignore a prefix. This is done by modifying the equation
presented in section 1.3.

S[i, j] = max

S[i− 1, j − 1] + δ(ai, bj)
S[i, j − 1] + γ

S[i− 1, j] + γ

0

We do not allow any cell in the table to take on a negative value. Setting the score of
S[i, j] to zero when it would have been negative corresponds to ignoring the prefixes Ai and
Bj .

We can deal with ignoring suffixes as an extension of semiglobal alignment as well. Instead
of looking for the maximum value over the last row and column, which restricts us to ignoring
a suffix of either A or B, we search for the maximum value over the entire table, equivalent
to ignoring a suffix of both A and B.

To do a traceback of the local alignment, start at the cell containing the maximum value
and traceback until reaching a cell with value 0. An example local alignment with traceback
is shown in Figure 1.1. The differences between global, semiglobal, and local alignments
are summarized in Table 1.1.

Global Semiglobal Local
Ignore Suffix no A or B A and B
Ignore Prefix no A or B A and B
Reset to Zero S[0, 0] S[i, 0], S[0, j] S[i, j]
Maximum In S[n, m] S[i, m], S[n, j] S[i, j]

TABLE 1.1 Differences between global, semiglobal, and local alignments

1.5 Space Saving Techniques

We have finished introducing the concept of string alignment. With the basics covered,
the rest of the chapter will cover two classes of modifications on this initial concept. The
first class are algorithmic improvements, modifications that improve the runtime or space
complexity of the algorithms. Space saving techniques, the k-band formulation, and sub-

1-8 Handbook of Computational Molecular Biology

quadractic alignments fall into this class. We will also cover qualitative modifications such
as substitution matrices, normalized alignment, and different gap penalty functions. These
modifications often introduce complexities that result in the algorithms taking more time
or space, but have the benefit of producing more biologically valid results.

The first modification we discuss is quite important. As mentioned above, the dynamic
programming solution described takes O(nm) time and O(nm) space, where n and m are
the sizes of the strings. While the O(nm) runtime is quite fast on any reasonably modern
computer for string sizes up to a few hundred thousand characters, the space will become
a factor before that. Two strings of size 20,000 will require around 1.6 GB of RAM for the
dynamic programming table if each cell is a 4 byte integer. For this reason we are interested
in reducing the space required to run the algorithm.

We will discuss a technique introduced by Hirschberg [21] that reduces the space require-
ment from O(nm) to O(n + m) while maintaining the runtime. Obviously, achieving a
reduction in space required to hold the table to 160 KB from 1.6 GB is a useful improve-
ment. The space requirement is the theoretical minimum because at the very least the input
and output require O(n+m) space to hold the strings themselves. We will first discuss the
technique within the context of global alignment.

1.5.1 Preliminaries

If we are looking for the alignment score without producing the alignment, it is easy to
reduce the space requirement to O(n+m). Consider filling the table row by row, from top
to bottom. To fill any row, we need access to values from the previous and current rows
only. It is easy to envision an algorithm which uses two arrays of size m, corresponding
to the previous and current rows. When the current row is complete, the two arrays swap
roles and the algorithm continues.

If we store only two rows of the table, we cannot proceed with path traceback, because
we have lost most of the information needed for this step. While the entire path cannot be
found, there is a way to discover a small part of the path; there is enough information in
the last two rows to construct the last bit of the path. This observation will serve as the
basis for the first naive space optimal algorithm.

As shown in Figure 1.2, the path of the alignment can be described as a list of n intervals,
one for each row of the table. Each interval can be defined by its endpoints. Notice that the
endpoints of each subsequent interval either overlap or touch through the diagonal. This
is because alignment path must move on either a diagonal or a vertical path from row i
to row i − 1. We will call the left endpoint of row i and the right endpoint of row i − 1
the path intersection for row i. We can define the alignment path as n − 1 intersections,
if we consider that the northwest corner and southwest corner of the matrix will always be
endpoints in the interval list.

Each intersection can be discovered using data from only two rows. To construct the
entire path, we will build the interval list intersection by intersection. A naive approach
finds one intersection per iteration, starting at the bottom of the table and working up to
the top. For each iteration, the algorithm calculates the last two rows of the submatrix for
Ai and Bj . It uses this information to discover the intersection for row i. This algorithm
uses O(n+m) space but runs in O(n2m) time.

1.5.2 Using Hirschberg’s Recursion

The naive space saving algorithm has a harsh runtime penalty. Hirschberg introduced a
divide and conquer approach that was first applied to the biological sequence alignment

Pairwise Sequence Alignment 1-9

FIGURE 1.2: (a) The alignment path through the table S can be represented as a list of intervals,
one per row. (b) Hirschberg’s recursion allows us to construct the list in O(nm)
time using only O(n + m) space. The black arrows represent the direction the DP
algorithm is run on each sub matrix. The gray boxes represent the cells in memory
at the end of each step. Partially known intervals are deduced from these cells, as
shown by gray dots. In the last stage of the recursion, alignment is run forward in
all sub matrices to complete the alignment path.

1-10 Handbook of Computational Molecular Biology

problem by Myers and Miller [33]. Instead of finding the intersections from bottom to top,
we find the intersection in the center of the table first. This will allow us to eliminate more
of the table for the next iteration. Refer to Figure 1.2 during the discussion.

To find the intersection for the center row, divide the table in half, with the centerline of
the table t = �n

2 �+ 1. The top half of the table is S[0...t− 1, 0...m] and the bottom half of
the table is S[t...n, 0...m]. On the top half of the table, run the space-saving algorithm to
find the scores along the bottom row of the top half of the table, row t− 1.

On the bottom half of the table, run the algorithm backwards. In other words, initialize
the bottom row and right column and run the algorithm from right to left and bottom to
top. This is the same as reversing the strings and running the algorithm forwards. The
table cell formula is defined as:

S[i, j] = max

S[i+ 1, j + 1] + δ(ai, bj)
S[i, j + 1] + γ

S[i+ 1, j] + γ

When we finish running the algorithm backwards in the bottom half of the table, we will
have scores for the top row of the bottom half of the table, which has index t. Now we will
find the move between rows t− 1 and t (the intersection for t) that produces the maximum
score.

More formally, the intersection for t is defined by indexes i in t−1 and j in t, i ≤ j ≤ i+1,
that maximize the function:

max
i

{
S[t− 1, i] + S[t, i] + γ j=i
S[t− 1, i] + S[t, i+ 1] + δ(at, bi+1) j=i+1

Next divide the table into four quadrants. The northeast and southwest quadrants can
be ignored, as the optimal path does not travel through them. We must recursively run
the algorithm on the northwest and southeast quadrants, defined as S[0...t − 1, 0...i] and
S[t...n, j...m]. The recursion will continue until the number of rows is 1 or 2, at which point
the DP algorithm will be run forwards and the optimal path completed.

The problem approximately halves each iteration, because if one splits a rectangle into
four quadrants and selects two, the area of the two selected quadrants is half of the original
rectangle. The details are left out of this discussion but are easily solved. Because the sum∑∞

i=0
1
2i = 2, the total runtime remains O(mn). The algorithm remembers only n+ 1 cells

for each half of the table during each iteration, and as a result the space requirement has
been reduced to O(m+ n).

The ideas in this algorithm can be extended to both semiglobal and local alignments, as
shown by Huang et al. [22]. We will consider the case of local alignments, as semiglobal
alignments can be handled similarly. Consider the case in which there is exactly one maxi-
mum scoring path through the table. The idea can be extended to work with multiple such
paths, which we will not consider here.

To solve the problem, we will first find each endpoint of an optimal alignment path, and
then run a global alignment on the induced subtable. First run the algorithm forward using
the local alignment recursion. As it proceeds, keep track the cell that contains the maximum
score. This is the southeast corner of the subtable. Next run the algorithm backwards while
keeping track of the cell that gives the maximum score from this direction (the maximum
value will be the same). This cell is the northwest corner of the subtable. Run the linear
space global alignment algorithm on the subtable defined by these two cells to produce the
optimal local alignment.

Pairwise Sequence Alignment 1-11

1.6 Banded Alignment

Imagine that we are studying two orthologous DNA sequences, that is two DNA sequences
that are thought to have evolved from the same ancestral sequence. Our two genes code for
the same function and the species are evolutionarily close. Therefore, the two sequences are
highly similar and are of similar length. Because of this the alignment path between the two
sequences will remain close to the main diagonal. A banded alignment makes use of this
observation to achieve faster runtime. The idea of a banded alignment was first proposed
by Fickett [16].

Consider the subset of inputs in which A and B are highly similar and of the same length
n. The k-band algorithms runs in time proportional to the difference between A and B. If
A and B are similar enough, then the algorithm’s runtime is O(nk) for some small constant
k. In the worst case, the runtime is still O(n2) with an additional constant multiplier of
approximately 2.

The k-band algorithm ignores the part of the array distant from the main diagonal during
its calculation. Let the value k denote a region of the table called the k-band, such that the
following is true for the table.

S[i, j] ∈ k-band⇔ |i− j| ≤ k

For the purpose of the algorithm, all cells outside of the k-band are considered to have
a score of −∞, which will cause them to be ignored in the maximum calculation. The
algorithm runs as normal, but will only consider those cells within the k-band. Figure 1.3
shows the k-band initialization for k = 3. In practice the cells marked −∞ are not actually
initialized and do not exist in memory, for this would defeat the purpose of the algorithm.
They are shown for clarity.

The end of the algorithm’s run will result in an alignment with some score sk that rep-
resents the best alignment under the restriction that the alignment path does not travel

FIGURE 1.3: (a) The k-band initialization for k = 3. The k-band is shown in gray. The cells
that conceptually take on −∞ do not actually exist in memory. Two hypothetical
best paths that travel outside of the k-band are shown. To achieve the best score,
all diagonals must represent matches. Hence, the score of these two paths is
2(k+1)γ +(n− (k+1))α. (b) The k-band initialization for global alignment when
k = 3 and m > n. The cost of the hypothetical best path traveling outside of the
k-band is (2(k + 1) + m− n) γ + (n− (k + 1))α.

1-12 Handbook of Computational Molecular Biology

outside of the k-band. To show that this alignment is optimal, we consider possible align-
ments that have paths that travel outside of the k-band. In other words, for some cell on
the alignment path, we have |i − j| > k. The highest scoring such alignment would have
exactly k + 1 characters from A aligned with gaps, k + 1 characters from B aligned with
gaps, and all other n− (k + 1) characters as matches. The score for this alignment would
be

bestk+1 = 2(k + 1)γ + (n− (k + 1))α

If sk >= bestk+1, then the alignment sk is known to be an optimal alignment, because it
beats the best score of any possible alignment that travels outside of the k-band region.

However, if sk < best, then we cannot be sure that sk is optimal. To solve this problem
and maintain our worst case runtime, we double k and rerun the algorithm. In the worst
case we keep doubling k until k ≥ n, at which point all elements in the table are in the
k-band. The runtime in the worst case is the sum of all iterations, which is still O(n2),
because the number of elements considered increases exponentially until the number of
entries considered constitutes the entire table.

While repeatedly doubling k produces an algorithm that remains asymptotically optimal,
it may increase the runtime unnecessarily for some applications. In practice we may wish to
only find an alignment if the similarity between two strings is high. If the score of the best
alignment is below some minimum threshold, T , then the strings are considered dissimilar
and we are no longer interested in finding the alignment. If this is the case, we can choose k
such that bestk+1 ≤ T and never have to run the k-band algorithm more than one iteration;
if sk < bestk+1, then sk < T and we can report no good alignment. Solving k in terms of
T , we have

k ≥ T − (n− 1)α
2γ − α

The k-band as described for two strings of exactly the same length is very limiting, so we
will briefly look at the implications of |A| = m �= |B| = n. For ease of discussion, assume
that m > n. Now the k-band is redefined.

S[i, j] ∈ k-band⇔ n−m− k ≤ i− j ≤ k

This can be thought of as inserting a parallelogram of width m − n at the center of the
k-band defined for n = m, as shown in Figure 1.3.

In addition the score bestk+1 — used as the termination decision and in calculating the
k based on the threshold parameter T — is calculated using a more general form of the
equation presented for n = m.

bestk+1 = (2(k + 1) +m− n)γ + (n− (k + 1))α

1.7 Other Gap Penalty Functions

In the algorithms presented thus far, the penalty for aligning a character with a gap has been
γ. However, in most biological applications, it does not make sense to penalize gaps in this
manner. For example, a single insertion (or deletion) in a DNA sequence typically results
in inserting (or deleting, respectively) a string of nucleotides, making multiple consecutive
gap characters much more likely than isolated gap characters. The penalty function chosen
should reflect this reality.

Pairwise Sequence Alignment 1-13

For this reason, researchers use gap penalties that do not increase linearly with the
number of gap characters. In particular, researchers have studied general gap penalty
functions [30], affine gap penalty functions [14, 17], and concave and convex gap penalty
functions [31, 13, 15].

In terms of computational cost, alignments based on general gap functions cost the most
to compute, and in practice they are hardly ever used. We shall discuss them here as
motivation for choosing from among simpler functions. Alignments based on convex and
concave gap penalty functions can be calculated in O(nm log(n+m)) time. However, affine
gap penalty functions offer enough flexibility and can be calculated almost as quickly as
linear gap penalty functions. Therefore, these gap penalty functions are almost always used
in practice.

1.7.1 General Gap Penalties

Envision a general gap penalty function ω(i) which is the penalty for inserting a gap of
length i. If we allow for this arbitrary gap penalty function, then the runtime increases
considerably. An O(n2m+ nm2) algorithm can be constructed by modifying the recursive
definition presented for a linear gap penalty function.

Now, instead of considering a constant number of cells when calculating S[i, j], we must
consider O(i + j) cells. This is because, when aligning two suffixes Ai and Bj , one must
consider the possibility of aligning ai with any character bk 1 < k ≤ j. One must also
consider aligning all of Ai with the empty string. Extending this idea to both strings we
end up with four possibilities.

1. Align ai with bk, 1 < k ≤ j and Ai−1 with Bk−1.
2. Align bj with ak, 1 < k ≤ i and Ak−1 with Bj−1.
3. Align Ai with a gap
4. Align Bi with a gap

The equation for S[i, j] becomes

S[i, j] = max

maxj
k=1 S[i− 1, k − 1] + δ(ai, bk) + ω(j − k)

maxi
k=1 S[k − 1, j − 1] + δ(ak, bj) + ω(i− k)

ω(i)
ω(j)

Finally, for global alignment, we initialize the first row and column of the table based on
the gap penalty function.

S[i, 0] = ω(i)

S[0, j] = ω(j)

As O(n+m) possibilities are considered for each cell, and there are O(nm) cells, the total
runtime of the algorithm is O(n2m+ nm2).

1.7.2 Affine Gap Penalties

The runtime penalty to allow the flexibility of a general gap penalty function is harsh. It
would be nice to find a function with a more complex shape that incurs less of a runtime
cost. Using affine gap penalty functions allows us to maintain an O(nm) runtime.

1-14 Handbook of Computational Molecular Biology

An affine gap penalty function has two values. A gap opening penalty g is the cost of
starting a new gap. A gap extension penalty h is the cost of extending a gap. The first
gap character in an affine gap has a score of g + h. Each subsequent gap character in the
affine gap has a score of h. Affine gap penalties are widely preferred by biologists because
consecutive gap characters likely correspond to a single insertion/deletion event, while an
equal number of scattered gaps correspond to as many insertion/deletion events, which is
much less probable. For this reason h is often much smaller than g.

To solve the problem in quadratic time, we augment table S with two additional tables,
GA and GB . GA[i, j] is the best score of aligning Ai with Bj under the restriction that ai

is aligned with a gap. GB[i, j] is the best score of aligning Ai and Bj under the restriction
that bj is aligned with a gap. As before, S[i, j] holds the optimal score of aligning Ai and
Bj under no restrictions.

There are three possible ways in which the maximum score can arise, with two of the
cases consisting of two parts each.

1. ai is aligned with bj and Ai is aligned with Bj .
2. ai is aligned with a gap. In this case, we must consider two sub-cases.

(a) Ai−1 is aligned with Bj such that ai−1 is not aligned with a gap, and we
start a gap.

(b) Ai−1 is aligned with Bj such that ai−1 is aligned with a gap, and we extend
the gap.

3. bi is aligned with a gap. In this case we must consider two sub-cases.

(a) Ai is aligned with Bj−1 such that bj−1 is not aligned with a gap, and we
start a gap.

(b) Ai is aligned with Bj−1 such that bj−1 is aligned with a gap, and we extend
the gap.

These possibilities are captured and scored in the following equations:

S[i, j] = max

S[i− 1, j − 1] + δ(ai, bj)
GA[i, j]
GB [i, j]

GA[i, j] = max

{
S[i− 1, j] + g + h

GA[i− 1, j] + h

GB [i, j] = max

{
S[i, j − 1] + g + h

GB [i, j − 1] + h

The number of cells considered in each cell calculation is constant for all tables. Because
there are O(nm) number of cells per table, the total runtime of the algorithm is O(nm).

Consider global alignment. We initialize the first row and column of each table such that
S[i, 0] = g + hi, S[0, j] = g + hj, and S[0, 0] = 0. S[n,m] contains the optimal alignment
score after the algorithm finishes. We can construct the alignment by tracing back the path,
starting at position S[n,m]. With an extension of the ideas presented for global alignment
with linear gap penalties, the traceback can be accomplished without storing any pointers.
The details are omitted.

Pairwise Sequence Alignment 1-15

Semiglobal alignment can be handled in a straightforward way. Initialize the first row
and column of each table to 0. The maximum value in the last row and column of S is the
optimal alignment score. Starting at this position, trace the alignment path back through
the table until reaching the first row or column.

Assume that matches are scored positive, while mismatches and gaps are scored negative.
Now local alignment with affine gaps is easy, as seen by the observation that every local
alignment starts with some character ak aligned with some bl and ends with some ak′ aligned
with some bl′ . The proof is by contradiction. Assume that an optimal local alignment L
starts with a character aligned with a gap. Then there exists a new alignment with higher
score constructed removing the first character from L. Therefore, L is not optimal, a
contradiction. The same reasoning holds for a gap character at the end of an alignment.
As a result of this observation, we can handle local alignment by modifying the equation
for S[i, j]

S[i, j] = max

S[i− 1, j − 1] + δ(ai, bj)
GA[i, j]
GB [i, j]
0

The alignment is found by searching for the maximum score in S, corresponding to
aligning ak′ and bl′ by the observation above. The traceback continues until reaching some
0 in S, corresponding to the initial alignment of ak and bl.

1.8 Substitution Matrices

In this section we will consider the specific problem of aligning two amino acid sequences and
the additional considerations needed in order to produce a biologically meaningful result.

Proteins are sequences of amino acids that fold into an energetically stable shape. The
surface of a protein interacts with other proteins and molecules through its shape and
chemical properties. It can be the case that proteins with rather different sequences can
fold into molecules with similar shapes and properties — and consequently perform the
same function. Moreover, a mutation occurring within the DNA sequence corresponding to
the protein can result in an amino acid substitution, insertion, or deletion, having varying
affects on the protein by affecting the protein’s properties.

Some amino acid substitutions might be more acceptable than others. For example, six of
the twenty amino acids are hydrophobic, which prefer to face the interior to avoid interacting
with water. A substitution within this class of amino acids is more acceptable than a
substitution with an amino outside of the class. For this reason, matching a hydrophobic
amino acid with another hydrophobic amino acid should be scored higher than matching a
hydrophobic amino acid with a hydrophilic one (an amino acid attracted to water).

In section 1.2, we presented a delta function for scoring the alignment of two characters:

δ(x, y) =

{
α x = y

β x �= y

Now we wish to use a more complex function δ : D×D → �, where D is the set of 20 amino
acids. In practice this function is stored in a 20× 20 matrix for use during the execution of
an alignment algorithm. Two classes of such matrices called PAM and BLOSUM matrices
are used, and we shall look at the origins of both.

1-16 Handbook of Computational Molecular Biology

1.8.1 PAM Matrices

A biologically valid scoring function δ arises from a complex process that is hard to model
analytically. For this reason experimental data has been used to discover appropriate values.
Dayhoff et al. [10, 11] described an evolutionary model used to interpret experimental data
and derive the scoring function δ.

As an organism evolves, mutations will cause changes in the proteins. Those changes that
are allowed to remain by an organism are said to be accepted or retained mutations. When
comparing two proteins from divergent organisms, one would expect to observe some of these
mutations as differences in the amino acid chains for the proteins of the two organisms.

Dayhoff et al. built a phylogenetic tree of closely related proteins in an attempt to discover
accepted mutations. They accumulated the number of times amino acid i was substituted
by amino acid j as one traveled up the phylogenetic tree. This data was stored in a 20× 20
matrix, symmetric along the main diagonal, as a transition from i to j was considered a
substitution from both i to j and j to i.

Using this data, they calculated the conditional probability of seeing an amino acid j
given an amino acid i for all amino acid pairs (i, j). From this the PAM matrix was born.
The PAM matrix stands for Point Accepted Mutation. From the experimental data, they
calculated the probability matrix M . M [i, j] contains the probability that amino acid i will
be substituted for amino acid j in one evolutionary unit of time. The PAM evolutionary
unit of time is the amount of time it takes for one amino acid in every hundred to undergo
an accepted mutation.

Given the M matrix, the matrix Mk is the probability of substituting amino acids in k
units of time. The PAMk scoring matrices are derived from the Mk probability matrices
using the following equation, where pj is the probability of a random occurrence of amino
acid j.

PAMk[i, j] = 10 log
Mk[i, j]
pj

1.8.2 BLOSUM Matrices

When considering protein sequences that are highly diverged, PAM matrices are not well
suited as they were constructed based on closely related proteins with less than 15% differ-
ence. The BLOSUM matrices, introduced by Heinikoff and Heinikoff [20] are constructed
using an approach that allows comparison of more highly diverged proteins. They are con-
structed using conserved regions of proteins. These regions, called blocks, give rise to the
name BLOSUM, which stands for BLock SUbstitution Matrix.

The blocks are found by aligning multiple proteins in protein families (see Chapter 3 for
a discussion of multiple alignments). As mentioned before, blocks are regions with a high
degree of similarity. Within these regions, it could be the case that certain proteins are
nearly identical. For this reason, in calculating the BLOSUMX matrix, multiple proteins
that are X percent identical are weighted as one protein. Varying X gives rise to different
scoring matrices, labeled BLOSUM30, BLOSUM50, BLOSOM62 and so forth.

The substitution frequencies are calculated based on the enumeration of all pairs of amino
acids appearing in each column of the multiple alignment blocks. A value pij is calculated
for amino acids i and j based on this multiple alignment. The details of this score are
not easily described without a greater understanding of multiple alignment. If pi is the
probability of seeing amino acid i at random and pj the probability of seeing amino acid j
at random, then the BLOSUM matrix is calculated using the following equation:

Pairwise Sequence Alignment 1-17

A R N D C Q E G H I L K M F P S T W Y V
A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0
R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3
N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3
C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1
Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3
H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4

TABLE 1.2 The BLOSUM62 matrix.

BLOSUM[i, j] =
1
λ

log
pij

pipj

λ is a scaling factor used to generate scores that can be converted into integers. The
BLOSUM62 matrix, the default matrix used for BLAST [3], is shown as Table 1.2.

1.9 Local Alignment Database Search

The dynamic programming algorithm finds the highest scoring alignment between two
strings. However, performing a full alignment is often prohibitively slow. For example,
if we were to compile a database of protein sequences, we could represent the database as
a string D constructed by concatenating each string in the database. If we then attempted
to find the optimal local alignment between some query Q and D, the runtime would likely
be prohibitive, as the total cost would be the total length of all sequences in the database
times the length of the query sequence.

Various approximations for local alignment have been proposed to speed up this basic
problem of database search. The first of these was Fasta [25, 26], which we will not discuss
here. In 1990, Altschul et al. presented the basic local alignment search tool [3] as a method
to search protein databases quickly. We will present the second version of their algorithm,
published in [27].

The basic idea behind BLAST is that good local alignments contain good ungapped align-
ments. An ungapped alignment is an alignment not allowing gaps. We wish to find these
good ungapped alignments quickly and then extend them to find good local alignments.

Consider a window of size ω. As we move this window along the string, we can see ω
characters of the string at a time. The number of unique strings, called ω-mers, of length
ω is Σω. If the strings are protein sequences, then the alphabet size is 20 and the number
of strings we can make of length 3 is 203 = 8000. We will create an index into the database
showing all the locations of each ω-mer.

Additionally, we can calculate the score of aligning any ω-mer with any other ω-mer
without gaps. Now, for a given word a, there is a set of words S for which s ∈ S if and only
if the score of aligning a with s is above some threshold T .

Now given a query string Q and a database D, we wish to find good local alignments

1-18 Handbook of Computational Molecular Biology

FIGURE 1.4: The BLAST program runs in phases. (a) In one phase pairs of hits are found
that lie on the same diagonal of a conceptual dynamic programming table. (b)
The region between these hits is aligned without gaps. (c) Finally, the alignment
is completed by extending the ends of the alignment for those seed alignments
scoring above some threshold.

between Q and D. The BLAST algorithm performs the following steps (see Figure 1.4).

1. The first step is to find hits between Q and the database. Each hit corresponds
to some word a in Q matching to some word d in the database such that the
score of aligning a and d is above the threshold.

2. From the hits discovered in step one, find those pairs of hits (hi, hj) that can be
part of the same gapless alignment. That is, they would lie on one diagonal on
the dynamic programming table.

3. Perform a gapless extension between these two hits by aligning each character
in the query string with the corresponding character in the database. This will
produce some alignment score.

4. For those gapless alignments with a score deemed significant, perform a gapped
alignment extension from each end of the gapless alignment, such that the total
score of the alignment does not drop below some threshold.

BLAST is a popular program for protein database searches, but recently researchers
have revisited the problem. An algorithm called DASH (for Diagonal Aggregating Search
Heuristic) reports runtimes ten times faster than BLAST with similar sensitivity [18]. Their
heuristic extends the idea of BLAST. First they find all words occurring in the same diagonal
region. Next, global alignments connect these gapless regions. Finally, they extend the end
of the alignments using a global alignment on some part of the dynamic programming table.
In addition to the diagonal region heuristic, a key technique they use to improve runtime
is to mask those words that occur with high frequency in each sector of the database. This
reduces the number of initial database hits.

Pairwise Sequence Alignment 1-19

1.10 Similarity and Distance Measures

This section details some alternate characterizations of the problem found in the bioin-
formatics field. We have described the solution to the alignment problem as finding the
maximum score of an alignment between two strings. This score was the summation of the
pairwise scores of each pair of characters involved in the alignment.

score(L) =
l∑

i=1

score(ai, bi)

The score is considered a measure of the similarity of the two strings, and it easily allows
for the extensions into semiglobal and local alignment. However, one interesting result of
these extensions is that the scoring system can fail to follow the triangle inequality.

score(A,B) + score(B,C) ≤ score(A,C)

An alternate way of looking at the problem is to define a sequence of elementary operations
on a string — insertions, deletions, and substitutions. One can transform A into B through
a sequence of these operations T = 〈t1, t2, ...tn〉. We now assign a cost function cost(t) to
the set of operations such that three conditions hold for any strings A, B, C.

1. dist(A,A) = 0
2. dist(A,B) = dist(B,A) (symmetry)
3. dist(A,B) + dist(B,C) ≤ dist(A,C) (triangle inequality)

Where the dist(A,B), called the edit distance, is the minimum sum of the cost of a
sequence of operations that transforms A into B.

dist = min
T

∑

i

cost(ti)

These requirements impose restrictions on our cost function. For symmetry, we require

1. cost(insertion) = cost(deletion)
2. cost(substitute(a, b)) = cost(substitute(b, a))

To satisfy the triangle inequality, we require

1. cost(insertion), cost(deletion), cost(substitute(a, b)) ≥ 0

Distance measures have their uses, as the triangle inequality allows for certain reasoning
and analysis that would otherwise be impossible. For example, performance guarantee
proofs on approximation algorithms for the computationally expensive problem of multiple
alignment are only valid using distance metrics. Multiple alignments are covered in Chapter
3.

An important result in the study of distance and similarity is that for any distance metric
used in the alignment problem, one can construct a corresponding similarity metric. That is,
finding the minimum distance for some cost function will simultaneously find the maximum
score for some similarity function. Smith and Waterman [40] presented a theorem and proof
of this assertion, and the idea is fully developed in [38]. The key observation is that for
each alignment between two strings A and B, containing a matches, b mismatches, and g
gaps, the following equation, known as the alignment invariant, is true:

1-20 Handbook of Computational Molecular Biology

n+m = 2(a+ b) + g

In practice, we construct some scoring scheme based on the cost scheme using an arbitrary
constant P .

δ(a, b) = P − cost(sub(a, b))

γ =
P

2
− cost(insertion)

The maximum score and the distance under these valuation schemes are related by the
equation:

score(A,B) + dist(A,B) =
P (m+ n)

2
Therefore, distances can be quickly calculated from similarity scores.

1.11 Normalized Local Alignment

Assume that we have two DNA sequences that we wish to compare using an alignment
algorithm. Importantly, we wish to find regions of high similarity. Local alignment is
somewhat suitable for this task, as it will return an alignment between substrings A′ and
B′ that gives the highest scoring alignment.

However, there is a basic problem in the presentation of local alignment, in that the
lengths of A′ and B′ are not taken into account when calculating the score. Therefore an
alignment of length 100 and score 51 is considered better than an alignment of length 50
and score 50, although the second alignment has a much higher average score per base.
Alexander and Solovyev [2] argued that the local alignment algorithm did not always find
the most biologically relevant alignment because it did not consider alignment length.

One can think of post processing local alignments, but the highest scoring local alignment
might mask some lower scoring alignment with higher normalized score. Instead, one could
individually look at each pair of cells in the global alignment score matrix and compute the
normalized alignment score.

max
i,j,k,l

S[i, j]− S[k, l]
(i− k − 1) + (j − l − 1)

, 0 ≤ i ≤ k ≤ n, 0 ≤ j ≤ l ≤ m

However, the number of such combinations is Θ(n2m2), which is expensive.
The problem was explored in [41, 35, 4]. Pevzner et al. [5] were the first to provide an

O(nm(log n)) algorithm to compute the normalized alignment of some minimum length,
and we will present their ideas here. For the sake of brevity, we will discuss the algorithm
within the context of linear gap penalties, but the ideas extend easily to affine gap penalties,
as shown by Pevzner et al.

The score of a best local alignment between two substringsA′ andB′ is aα+bβ+gγ, where
a, b, and g are the number of matches, mismatches, and gaps. According to the alignment
invariant first presented in Section 1.10, we have n + m = 2a + 2b + g, where n and m
are the lengths of A′ and B′. Pevzner proposed to measure the length of the alignment as
n+m+L where L is some positive constant. Then the length of some alignment with the
score aα+ bβ + gγ is 2a+ 2b+ g + L.

The best local alignment is found as:

LA(A,B) = max
(A′,B′)

aα+ bβ + gγ

Pairwise Sequence Alignment 1-21

The best normalized local alignment is:

NLA(A,B) = max
(A′,B′)

aα+ bβ + gγ

2a+ 2b+ g + L

The ideas used in solving the normalized local alignment quickly were introduced by
Dinkelbach [12], who developed a general scheme for maximization problems which displayed
the following properties:

1. The optimization involves a ratio g
h , where g and h are functions

2. The domain of g is equal to the domain of h
3. h is always positive

For our normalized local alignment, we have,

max
domain

g(a, b, g)
h(a, b, g)

Without going into details, we will illustrate some of the main ideas underlying this
approach. First, we introduce an alignment called a parametric local alignment for some
parameter λ.

PA(A,B, λ) = max
domain

g(a, b, g)− λh(a, b, g)

PA(A,B, λ) = max
(A′,B′)

aα+ bβ + gγ − λ(2a+ 2b+ g + L)

Dinkelbach’s interesting result is that the following equation holds:

λ = NLA(A,B) ⇔ PA(A,B, λ) = 0

That is, λ is the score of the best normalized local alignment if and only if the parametric
local alignment for λ has a score of zero.

Dinkelbach proposed an iterative search method to find the zero of PA(A,B, λ) that
has no provable run time but runs well in practice. His ideas are used in the following
algorithm. First, initialize lambda by finding the local alignment LA(A,B) and selecting
λ = aα+bβ+gγ

2a+2b+g+L . Next, repeat two steps until lambda stops changing.

1. Find the parametric local alignment PA(A,B, λ).
2. Set λ′ to aα+bβ+gγ

2a+2b+g+L , and then set λ to λ′.

This method is faster in practice than the provably optimal alternative. However, if one
restricts the values α, β, and γ to rational numbers, one can find the proper λ in O(log n)
time using Megiddo’s technique [29], the details of which are omitted here but can be found
in [4].

The key to completing the algorithm is to effectively find PA(A,B, λ). With some manip-
ulation we see that parametric local alignment can be rewritten in terms of local alignment.

PA(A,B, λ) =
(

max
(A′,B′)

a(α− 2λ) + b(β − 2λ) + g(γ − λ)
)
− Lλ

To solve the parametric local alignment, we can first solve local alignment with α′ =
α− 2λ, β′ = β − 2λ, and γ′ = γ − λ, and then subtract a constant to find the score of the
parametric local alignment.

1-22 Handbook of Computational Molecular Biology

Using this method of solving the parametric local alignment takes the same time and
space as local alignment, O(nm) time and O(n+m) space. Therefore, if the scoring scheme
is restricted to rational numbers then the time required to complete the normalized local
alignment is O(nm log n). In practice, the Dinkelbach search is known to work equally well.

1.12 Asymptotic Improvements

Normalized local alignment is used to produce a more valid biological result. In the final
section of this chapter, we explore some interesting techniques that can be used to reduce
the asymptotic runtime complexity of the algorithm. For ease of presentation, assume
Θ(m) = Θ(n). It might seem at first glance that an O(n2) solution is as fast as the problem
can be solved; however, this is not true. Masek and Paterson [28] were the first to introduce
an O

(
n2

log n

)
solution. However, their solution was limited in that it did not provide an

answer to local alignment problem and required that the scoring method consist of rational
numbers only.

Crochemore and Landau presented an algorithm [8] that answered these limitations.
Their algorithm makes use of the periodic nature of strings to achieve a runtime of O

(
hn2

log n

)
,

where h is the entropy [9] measure of the strings, varying between 0 and 1. Obviously even
when the strings are random, with an entropy of 1, the algorithm shows an asymptotic
improvement over O(nm), but strings that are highly repetitive gain a larger improvement.

1.12.1 LZ Parsing of Strings

The algorithm uses a version of Lempel-Ziv parsing [24, 43, 44], which compresses a string
by exploiting its repeat structure. The basic idea behind LZ compression is that one can
divide a string S into a set of blocks. The blocks are formed in a greedy way, from left to
right, using the following formulation. Suppose that we have divided the string into blocks
up to position j and block i. In the Lempel-Zip parsing scheme, we will define block i+ 1
using a substring of S[1...j] and a character c. More specifically, we look for the maximal
substring M = S[s...e] (s ≤ e ≤ j) that matches S[j + 1...k]. The new block is represented
by the triple, 〈s, l, c〉, where s is the starting index of the substring M , l is the length of the
substring M , and c is the character S[k + 1], S[k + 1] �= S[e+ 1].

It has been shown that the number of such blocks for a string of length n is O
(

hn
log n

)

[23], where again h is the entropy of the string. An example is given in Figure 1.5.
This is the most general version of LZ parsing. The alignment algorithm uses a slightly

more restricted version known as LZ78. LZ78 parsing only allows the reuse of complete

LZ Parsing
a|g|gg|ga|ac|aacc|
(0,0,a) (0,0,g) (1,1,g) (1,1,a) (0,1,c) (4,3,c)

LZ78 Parsing
a|g|gg|ga|ac|aa|c|c|
(0,a) (0,g) (2,g) (2,a) (1,c) (1,a) (0,c) (1,$)

FIGURE 1.5: Example LZ parsings of the string “agggaacacc”.

Pairwise Sequence Alignment 1-23

FIGURE 1.6: The dynamic programming table is decomposed into blocks based on each string’s
LZ78 block decomposition. In addition, two trie indexes are created that capture
the structure of this decomposition. For each block (xa, yb), the blocks (x, yb),
(xa, y), and (x, y) exist in the submatrix to the left and above block (xa, yb); the
block indexes for substrings x and y can be found using the tries.

blocks rather than some arbitrary substring. One nice implication is that each block can be
encoded using only two values 〈i, c〉, where i is the block index and c is the next character.
Obviously, this method produces more blocks than the general scheme, but the total number
of blocks is the same asymptotically, and the storage per block is less.

1.12.2 Decomposing the Problem

We will create a trie representation of the LZ78 parsing. For more information on tries and
specifically suffix trees, refer to Chapter 5. The nodes of the trie correspond to each block
in the parsing, and a node’s parent corresponds to the block used as the prefix block. Edges
point from children to the parents, and correspond to the extending character. The LZ78
parsing of the strings and the construction of the tries takes O(n) time using suffix trees.

Using the block boundaries, as Figure 1.6 shows, we can conceptually divide the table
into subtables, which we will also call blocks, as confusion can be avoided through context.
Each block G defined for substrings xa of A and yb of B, written as (xa, yb), where x and
y are strings and a and b are characters.

The intuition behind the algorithm is that the path information for all cells except for
the bottom right cell should have been previously calculated. This is because blocks cor-
responding to (xa, y), (x, yb), and (x, y) exist in the submatrix above and to the left of the
current block. We want to use this observation to do work proportional to the number of
cells on block boundaries, which is O

(
hn2

log n

)
, our goal.

First, consider viewing the alignment problem at the block level, as shown in Figure 1.7.

1-24 Handbook of Computational Molecular Biology

FIGURE 1.7: This figure shows an expanded view of each block in the dynamic programming
table (a). The left column and top row are considered input cells for the block
(b). The right column and bottom row are considered output cells (c). The total
number of input cells or output cells is called p. One can consider every highest
scoring path connecting each input cell with each output cell (d), and think of a
p×p square matrix representing the score of each path through the block (e). This
path matrix is incomplete as some input and output cells have no paths connecting
them (gray). For this block, we only calculate and store one row of this matrix
(f), which takes O(p) time and space.

Pairwise Sequence Alignment 1-25

Let G be a block of width w and height h. We define the perimeter size of G as p = w+h−1.
Note that this is not the same as the classical perimeter of G (2(w + h)). We call the left
column and the top row the input cells of G and the right column and bottom row the
output cells of G. The optimal path between some input cell in and some output cell out
has a score path[in, out]. We create a p × p matrix called the path matrix, with the rows
corresponding to the input cells and the columns the output cells. This matrix stores all
optimal path scores for pairs of input cells and output cells.

For a block G defined as G = B(xa, yb) where x and y are substrings and a and b are
characters, we have the following information:

1. The score of all paths from input to output cells except for the bottom right cell,
br. There are two reasons why this is the case. First, all paths must move down
and to the right. Second, as stated previously, the blocks B(x, yb), B(xa, y), and
B(x, y) have already been calculated.

2. The score of a best alignment path from the origin cell to each input cell, inputi.

We wish to calculate two things:

1. Scores of optimal paths from each input cell to the bottom right cell, br. This
corresponds to one column in the path matrix as shown in figure 1.7. For each
input cell in, the score is the maximum of three values:

path[ini, br] = max

path[ini, northwest[br]] + δ(ai, bj)
path[ini, west[br]] + γ

path[ini, north[br]] + γ

Assuming that the three previously calculated path scores can be accessed in
constant time, calculating the new path takes constant time for each input cell.

2. The input cell scores for the blocks neighboring our output blocks. This is ac-
complished by first calculating the output scores for each output cell, outputj,
the score of the optimal path from the origin cell to the output cell.

outputj = max
i

(path[ini, outj] + inputi)

The input cell scores can be calculated as the maximum of three values, using
the bordering output cell scores.

It appears as if we have not reached our runtime goal. We wish to spend time proportional
to the number of perimeter cells p in G. Certainly this is the case in step one, as we use
a constant number of operations per input cell. However in step two it appears as if we
break this requirement by searching for a max over all input cells for each output cell, which
naively appears to take O(p2) time.

1.12.3 The SMAWK algorithm

It has been shown [1, 37] that the path matrix is Monge [32] by showing that score[a, c] +
score[b, d] ≤ score[a, b] for all a < b, c < d, which is the concave requirement. In turn,
the matrix is totally monotone because any Monge matrix is also totally monotone. Again
our matrix meets the concave condition of total monotonicity: score[a, c] ≤ score[b, c] ⇒
score[a, d] ≤ score[b, d].

Aggarwal and Park [1] gave a recursive algorithm, called SMAWK, that solves the problem
of finding all row and column maxima in an n×n totally monotone, full, rectangular matrix

1-26 Handbook of Computational Molecular Biology

in O(n) time. The idea it uses is very simple: as one travels down the matrix from top to
bottom, the row maxima must move left to right. Equivalently, the column maxima move
top to bottom as one moves between columns left to right.

With this in mind, assume that we know the column maxima for all even columns. We
can find the column maxima for all odd columns in O(n) time by searching only the rows
between column maxima in adjacent even columns. This alone does not produce the desired
runtime; a simple recursion would produce an O(n log n) bound.

However, given any irregular matrix with more rows R than columns C, it is obvious that
only C rows can actually produce column maxima. Using the total monotonicity property,
we can find the set of rows producing maxima in O(R) time by eliminating all rows not
producing maxima.

We construct a stack s of size |s| that contains the set of rows producing maxima. The
top row on the stack will be represented as st and the next row down st−1, and row at
position n is denoted as sn. The stack is initially empty. We will consider the rows from
top to bottom. We will place a row r on s only if r[|s|] < st[|s|]. If this is not the case
then we will pop st off the stack, because it can contain no maxima. The test is repeatedly
applied to r and the top of the stack until the condition is met or the stack becomes empty.

Why can we pop st off the stack when r[|s|] ≥ st[|s|]? By total monotonicity, r[c] ≥ st[c]
for all columns c ≥ |s|. It is also the case that st−1[c] ≥ st[c] for all columns c < |s|. This can
be proved as follows: Assume, for a contradiction, that st−1[c] < st[c] for some c < |s|. Then,
by total monotonicity, st−1[c′] < st[c′] for all c′ > c. Therefore, st−1[|s − 1|] < st[|s − 1|].
However, by construction, st−1[s− 1] ≥ st[s− 1], a contradiction. Therefore, it must be the
case that st−1[c] ≥ st[c] for all columns c < |s|. Therefore, unless st meets the condition, it
can be discarded as containing no maxima.

It follows from the proof that row sn may only contain column maxima for columns
c >= n. This property is desirable because it bounds the stack size to C, as any rows
placed on a stack of size C would not be able to contain any column maxima and can be
thrown away. Therefore, when the algorithm is complete the stack contains at most C rows
that will contain all column maxima. This set of rows will be fed into the recursion. The
runtime of this algorithm is O(R), as each row is pushed and popped off the stack at most
once.

Thus we can halve both the row and column size for each recursive step in linear time,
and the runtime is given by O(n+ n

2 + n
4 + ...) = O(n). Therefore, the total runtime of the

algorithm is linear.

1.12.4 String Alignment in Subquadratic Time

Returning to our problem, we wish to use the SMAWK algorithm to find all column maxima
in our path matrix. The algorithm can be adapted for this purpose only after we complete
the matrix. The matrix is incomplete because paths must move down and to the right.
Therefore some input and output cells cannot be connected by paths. Consequently, the
highest scoring path between these cells is undefined. However, we can choose values for
the corresponding positions in the matrix that will not result in row or column maximum
while maintaining the totally monotone property.

1. For each cell in the upper right triangle, assign the value −∞.
2. For each cell in the lower left triangle, assign the value −(n + i + j)k, where k

is the maximum possible theoretical score of some path through the block, or
k = |w − |w − h||α+ |w − h|γ.

Pairwise Sequence Alignment 1-27

FIGURE 1.8: From the block decomposition of the dynamic programming table (a), we create
an index (b) of size O((hn

log n
)2) that points to the score column stored for each

block (c). Each block (d) points to its corresponding node in the two trie indexes
(e). Travelling up the path of these two trees, we can create a temporary array
(f) that collects the rows needed to access the path matrix for this block (g) in
constant time. Refer to Figure 1.7 for a description of the path matrix.

Now, let’s say that for each row i corresponding to some input cell, we conceptually
add inputi to each cell in that row. After this operation, the totally monotone property is
maintained as we change all values in each row by the same amount. After the addition,
the result for each output cell is found by searching for each column maxima.

While we cannot spend the time to do the addition before running the SMAWK algorithm,
we can do the addition for only those cells encountered during the run of the SMAWK
algorithm and achieve the same affect. Therefore, we can find the needed maxima for all
columns in time proportional to the number of rows and columns, which is the desired
result.

Finally, we need to be able to find the path matrix values in constant time. However, we
only have direct access to one column of the path matrix, the one that we constructed for
this block. We need an indexing scheme that allows us to find the rows for all other output
cells in constant time per cell. As shown in Figure 1.8, we will create a two dimensional

1-28 Handbook of Computational Molecular Biology

array of size O
((

hn
log n

)2
)

of pointers to the column stored for each block. This matrix in

indexed by the tries we constructed for each string corresponding to the LZ decomposition
of the string.

On the trie of each string, there is a path from the node for our current block to the root.
Using the block IDs stored on the trie along this path as indexes into the two dimensional
array, we can find the columns for the blocks used as prefixes of the current block in O(1)
time per block. There are p blocks of interest, each pointing to one column of our path
matrix. To allow access to the path matrix values in constant time during the execution
of the SMAWK algorithm, we create a temporary array of pointers to each column of the
path matrix.

This is the last detail needed to finish the algorithm. In summary, the following steps are
done for each block G with perimeter size p:

1. The column of the path matrix corresponding to connecting all input cells to the
bottom right cell is constructed in O(p) time using the columns for the blocks
(x, yb), (x, y), and (xa, y), which can be found in constant time using the tries.

2. The path matrix for the block is constructed by constructing a temporary array
of size p pointing to the columns of the matrix. This can be done in O(p) time.

3. The output scores for this matrix are compiled using the SMAWK algorithm to
find the column maxima. This also takes O(p) time.

4. The input scores for the next block are calculated using the output scores from
surrounding blocks, taking O(p) time.

Therefore the total time for the algorithm is proportional to the number of perimeter
cells, which as stated previously is O

(
hn2

log n

)
.

1.12.5 Space Requirements

Using Hirschberg’s technique, we used O(n + m) space and O(nm) time to produce the
alignment. In this section, we have described how to reduce the time required by the algo-
rithm, but there is some expense. There is no known way in which to achieve subquadratic
time and linear space in the same algorithm.

There is no published way to reduce the space bound without sacrificing flexibility, and
we can find the space bound through a direct list of those data structures needed to solve
the problem.

1. Two trie indexes corresponding to the block decomposition of our strings and
two linear indexes into these trees, one for each row and column, as shown in
Figure 1.6. This takes O(hn

log n) space.
2. The block index structure corresponding to the block decomposition of S, as

shown in Figure 1.8 (b). This takes O
((

hn
log n

)2
)

space.

3. Input and output scores for each block, as shown in Figure 1.7 (b) and (c), taking
p space per block, for a total of O

(
hn2

log n

)
space.

4. One path matrix column for each block, as shown in Figure 1.8 (c), which takes
p space per block, for a total of O

(
hn2

log n

)
space.

Therefore, the total space complexity is the same as the runtime complexity, O
(

hn2

log n

)
.

References 1-29

1.13 Summary

In this chapter, we have provided a thorough presentation of fundamental techniques used to
find the homology between a pair of DNA or protein sequences. While the basic alignment
technique is simple to understand, the diversity of related problems quickly leads to new
problem formulations and the resulting semiglobal, local, and banded alignments. We
covered many advanced topics, including space saving techniques, normalized alignment,
and subquadratic time alignment. Still, this chapter only represents an introduction to the
field of alignments. The upcoming chapters in this part will expand on the ideas presented
here and introduce a breadth of new formulations and solutions.

References

[1] A. Aggarwal and J. Park. Notes on searching in multidimensional monotone arrays. In
Proceedings of the 29th Annual Symposium on Foundations of Computer Science,
pages 497–512, 1988.

[2] N.N. Alexander and V.V. Solovyev. Statistical significance of ungapped alignments.
In Proceedings of the Pacific Symposium on Biocomputing, pages 463–472, 1998.

[3] S.F. Altschul, W. Gish, W. Miller, and M. Myers et al. Basic local alignment search
tool. Journal of Molecular Biology, 215(3):403–410, 1990.

[4] A.N. Arslan and O. Egecioglu. Efficient algorithms for normalized edit distance. Jour-
nal of Discrete Algorithms, 1(1):3–20, 2000.

[5] A.N. Arslan, O. Egecioglu, and P.A. Pevzner. A new approach to sequence comparison:
normalized sequence alignment. Bioinformatics, 17(4):327–337, 2001.

[6] C. Branden and J. Tooze. Introduction to Protein Structure. Garland Publishing,
1991.

[7] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, 2001.

[8] M. Crochemore, G.M. Landau, and Z. Ziv-Ukelson. A sub-quadratic sequence align-
ment algorithm for unrestricted cost matrices. In Proceedings of the 13th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 679–688, 2002.

[9] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.
[10] M.O. Dayhoff and R.M. Schwartz. Matrices for detecting distant relationships. In

M.O. Dayhoff, editor, Atlas of Protein Structure, pages 353–358. National Biomedical
Reasearch Foundataion, 1979.

[11] M.O. Dayhoff, R.M. Schwartz, and B.C. Orcutt. A model of evolutionary change in
proteins. In M.O. Dayhoff, editor, Atlas of Protein Structure, pages 345–352. National
Biomedical Research Foundation, 1979.

[12] W. Dinkelbach. On nonlinear fractional programming. Management Science, 13:492–
498, 1967.

[13] D. Eppstein. Sequence comparison with mixed convex and concave costs. Journal of
Algorithms, 11(1):85–101, 1990.

[14] D. Eppstein, Z. Galil, R. Giancarlo, and I. Italiano. Sparse dynamic programming I:
linear cost functions. Journal of the ACM, 39(3):519–545, 1992.

[15] D. Eppstein, Z. Galil, R. Giancarlo, and I. Italiano. Sparse dynamic programming II:
convex and concave cost functions. Journal of the ACM, 39(3):546–567, 1992.

[16] J. Fickett. Fast optimal alignment. Nucleic Acids Research, 12(1):175–179, 1984.
[17] Z. Galil and R. Giancarlo. Speeding up dynamic programming with applications to

1-30 References

molecular biology. Technical Report 110–87, Columbia University Department of Com-
puter Science, 1987.

[18] P. Gardner-Stephen and G. Knowles. DASH: localising dynamic programming for
order of magnitude faster, accurate sequence alignment. In Proceedings of the 2004
IEEE Computational Systems Bioinformatics Conference, pages 732–733, 2004.

[19] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

[20] S. Henikoff and J.G. Henikoff. Amino acid substitution matrices from protein blocks.
Proceedings of the National Acadamy of Sciences of the U.S.A, 89(22):10915–10919,
1992.

[21] D.S. Hirschberg. A linear space algorithm for computing maximal common subse-
quences. Communications of the ACM, 18(6):341–343, 1975.

[22] X. Huang, R.C. Hardison, and W. Miller. A space-efficient algorithm for local similar-
ities. Computer Applications in Biosciences, 6(4):373–381, 1990.

[23] J. Kärkkäinen and E. Ukkonen. Lempel-Ziv parsing and sublinear-size index structures
for string matching. In Proceedings of the 3rd South American Workshop on String
Processing, pages 141–155, 1996.

[24] A. Lempel and J. Ziv. On the complexity of finite sequences. IEEE Transactions on
Information Theory, 22(1):783–795, 1976.

[25] D.J. Lipman and W.R. Pearson. Rapid and sensitive protein similarity searches. Sci-
ence, 227(4693):1435–1441, 1985.

[26] D.J. Lipman and W.J. Wilbur. Rapid similarity searches of nucleic acid and pro-
tein data banks. Proceedings of the National Academy of Sciences of the U.S.A.,
80(3):726–730, 1983.

[27] D.J. Lipman, J. Zhang, R.A. Schffer, and S.F. Altschul et al. Gapped BLAST and
PSI-BLAST: a new generation of protein database search programs. Nucleic Acids
Research, 25:3389–3402, 1997.

[28] W.J. Masek and M.S. Paterson. A faster algorithm for computing string edit distances.
Journal of Computer and System Sciences, 20(1):18–31, 1980.

[29] N. Megiddo. Combinatorial optimization with rational objective functions. Mathe-
matics of Operations Research, 4(4):414–424, 1979.

[30] J. Meidanis. Distance and similarity in the presence of nonincreasing gap-weighting
functions. In Proceedings of the 2nd South American Workshop on String Process-
ing, pages 27–37, 1995.

[31] W. Miller and E.W. Myers. Sequence comparison with concave weighting functions.
Bulletin of Mathematical Biology, 50(2):97–120, 1988.

[32] G. Monge, Deblai, and Rembai. Memoires del l’Academie des Sciences, 1781.
[33] E.W. Myers and W. Miller. Optimal alignments in linear space. Computer Applica-

tions in the Biosciences, 4(1):11–17, 1988.
[34] S.B. Needleman and C.D. Wunsch. A general method applicable to the search for

similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48:443–453, 1970.

[35] B.J. Oommen and K. Zhang. The normalized string editing problem revisited. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 18(6):669–672, 1996.

[36] D. Sankoff and J.B. Kruskal. Time Warps, String Edits and Macromolecules: the
Theory and Practice of Sequence Comparison. Addison Wesley, 1983.

[37] J.P. Schmidt. All highest scoring paths in weighted grid graphs and their application to
finding all approximate repeats in strings. SIAM Journal on Computing, 27(4):972–
992, 1998.

[38] C. Setubal and J Meidanis. Introduction to Computational Biology, chapter 3, pages

References 1-31

47–104. PWS Publishing, 1997.
[39] T.F. Smith and M.S. Waterman. Identification of common molecular subsequences.

Journal of Molecular Biology, 147:195–197, 1981.
[40] T.F. Smith, M.S. Waterman, and W.M. Fitch. Comparative biosequence metrics.

Journal of Molecular Evolution, 18:38–46, 1981.
[41] E. Vidal, A. Marzal, and P. Aibar. Fast computation of normalized edit distances.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(9):899–902,
1995.

[42] M.S. Waterman. Mathematical methods for DNA sequences. CRC Press, 1991.
[43] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory, 23(3):337–343, 1977.
[44] J. Ziv and A. Lempel. Compression of individual sequences via variable rate coding.

IEEE Transactions on Information Theory, 24(5):530–536, 1978.

2
Spliced Alignment and

Similarity-based Gene Recognition

Alexei D. Neverov
State Scientific Center GosNIIGenetika

Andrei A. Mironov
State Scientific Center GosNIIGenetika and

Moscow State University

Mikhail S. Gelfand
State Scientific Center GosNIIGenetika and

Russian Academy of Sciences

2.1 Introduction . 2-1
Representation of Alignments by Hidden Markov
Models • Generalized Hidden Markov Models

2.2 Spliced Alignment of DNA with ESTs and
cDNA . 2-3
Statement of the Spliced Alignment Problem • The
Use of HMM to Set the Intron Penalty •

Determination of the Exon-Introns Structure of a
Gene by Spliced Alignment with ESTs from Another,
Related Gene • Determination of the Exon-Introns
Structure of a Gene by Spliced Alignment with EST
Clusters • Clustering of cDNA (mRNA) • Heuristic
Algorithms of EST-DNA Spliced Alignment

2.3 Protein-DNA Spliced Alignment 2-8
Block Problem • Using Distant Homologs

2.4 Using Local Similarity Identified by BLAST 2-10
Gene Recognition by Comparison of Genomic
Sequences Containing Homologous Genes •

DNA-DNA Spliced Alignment • Pairwise Generalized
Hidden Markov Chains • Prediction of Alternative
Splicing by HMM Sampling • Gene Recognition in
Several Sequences by a Gibbs Sampler

2.5 Conclusions . 2-16

2.1 Introduction

Algorithms for gene recognition can be divided into two major groups: statistical algorithms
that use differing features of protein-coding and non-coding DNA, and algorithms utilizing
similarity to ESTs or homologous genes and proteins. For a long time this distinction was
almost absolute, although recently the boundary becomes blurred. As shown in [14], sta-
tistical programs show reasonable sensitivity, but their specificity strongly depends on the
length of intergenic regions. False exons predicted in long spacers considerably decrease the
specificity of predictions. One of the main reasons for that is the lack of good statistical
models for gene boundaries.

Similarity-based gene recognition algorithms solve the reverse problem: reconstruction of
the exon-intron structure of a gene given a spliced product of this gene (in the simplest case)
or a homologous gene. These algorithms are highly specific, and their performance depends
mainly on the level of similarity between the gene and the homolog. A serious drawback of

2-1

2-2 Handbook of Computational Molecular Biology

FIGURE 2.1: State transition diagram for a hidden Markov model for alignment of two se-
quences. X and Y denote the sequence being aligned. The HMM states are:
match (M), insertion in sequence X, (Ix), and insertion in sequence Y ,
(Iy). State M emits a pair of matched symbols in X and Y ; states Ix and Iy emit
pairs deletion–symbol.

such algorithms is that they cannot be applied to genes that have no known homologs. A
special case is identification of genes by spliced alignment of genomic sequences containing
homologous genes. It is based on the observation that protein-coding regions generally
evolve at a slower rate than non-coding regions, and the pattern of mutations is different
(e.g. single nucleotide insertions and deletions that would disrupt the reading frame are
avoided). This approach is limited only by its inability to predict genes specific to genomes
or very narrow taxons.

The BLAST family of programs [2] allows one to find regions of local similarity between
two sequences, e.g. protein and DNA. Such regions often correspond to exons, but in
the general case it is difficult to determine the exon boundaries exactly using BLAST
alone. There exist several algorithms for fast identification of homologous sequences using
BLAST with subsequent accurate mapping of exon-intron boundaries [10], [17], [28]. A
clear advantage of such programs is the speed, as they are based on fast search over indexed
databases. A serious drawback is that they do not guarantee finding the optimal structure.
The latter is overcome by the spliced alignment technique that uses variations of the dynamic
programming algorithm. The spliced alignment problem was stated in [11], [25].

2.1.1 Representation of Alignments by Hidden Markov Models

This section contains a brief introduction to Hidden Markov Models (HMMs) and their
application to sequence alignment. It is necessary, as the HMM language is used in many
spliced alignment algorithms, and, in particular, serves as a base for combining statistical
and similarity-based approaches.

As it has been noted above, the problem of finding the optimal spliced alignment of two
sequences is solved by dynamic programming algorithms. These algorithms are generalized
by the Viterbi algorithm for finding the optimal hidden Markov chain [9]. An HMM is
defined by an ordinary Markov matrix, or a diagram of transitions between states. In a
hidden chain, the sequences of states cannot be observed directly. For instance, in the
alignment problem, the observable variables are these sequences, whereas the hidden states
are match, insertion in the first sequence, and insertion in the second sequence

(Figure 2.1). Each sequence of hidden states corresponds to an alignment. Beside transition
probabilities, each state is characterized by probabilities of emission of the observed symbols.

Spliced Alignment and Similarity-based Gene Recognition 2-3

In the alignment problem, the state match generates a pair of symbols in both sequences,
whereas the insertion states generate symbols in only one sequence. We will deal with
the problem of finding the optimal sequence of hidden states that would maximize the
probability of the observed sequences. The Viterbi algorithm is an algorithm for finding the
optimal path in an oriented acyclic graph representing all variants of chains of the hidden
states.

A more complicated hidden Markov model allowed for merging alignment and statistical
gene recognition [6, 29, 20].

2.1.2 Generalized Hidden Markov Models

A standard hidden Markov model generates in each state a single symbol of the observed
sequence. In the alignment case, at most one symbol per sequence is generated. If some
state allows for transitions into itself, the duration of this state is described by a geometric
distribution. Consider the model of exon-intron structure. The tail of the intron length
distribution can be well approximated by the geometric distribution, but the latter does not
describe well the distribution of the exon lengths. The generalized Markov models allow one
to model states with arbitrary durations. Such generalized HMM was successfully applied
for statistical gene recognition in the GENSCAN program [6].

2.2 Spliced Alignment of DNA with ESTs and cDNA

2.2.1 Statement of the Spliced Alignment Problem

Accumulation of the data about expressed genes in the form of protein, mRNA and EST
sequences allowed for development of similarity-based approaches to gene recognition. Since
formation of mature mRNA in eukaryotes is preceded by splicing of introns, identification
of genes by similarity to processed products of gene expression should take into account
existence of introns in the genomic sequences: unlike exons, introns cannot be aligned with
the processed product. There exist two statements of the spliced alignment problem. The
so-called block problem was suggested in [11].

Consider the genomic sequence as a string in the alphabet {A, C, G, T}, and the product
of gene expression as a string in the same (in the case of mRNA or EST) or a different
(in the case of protein) alphabet. The correspondence between the DNA and product
alphabets is defined by a substitution matrix. The given DNA string is supplied by a set of
(overlapping) subwords, that is, candidate exons. The goal is to find the set of subwords,
whose concatenation is most similar to the expression product according to the substitution
matrix. In the most general case, candidate exons correspond to any substring between AG
and GT dinucleotides. Then the spliced alignment problem can be formulated as the so-
called site problem, that is a generalization of the global spliced alignment [26] with introns
treated as deletion of a specific type [25].

The EST GENOME algorithm [25] allows one to align EST to a genomic sequence. The
algorithm considers two types of introns in the genomic sequence: proper introns bounded
by AG–GT dinucleotides (CT–AC if the complementary strand is considered), and splices,
that is, deletions in the genomic sequence that do not require fixed dinucleotides at the
termini, and have a smaller penalty than introns. Two types of intron-like deletions are
needed for additional flexibility that allows the algorithm to recover short exons.

Let W (m,n) be the weight of the alignment of the EST segment (1, . . . ,m) and DNA
segment (1, . . . , n), and let Wbest(m) be the weight of the best alignment of the EST segment
(1, . . . ,m) with K(m) being the corresponding genomic position. Then

2-4 Handbook of Computational Molecular Biology

Wm,n = max

W (m− 1, n)−D
W (m− 1, n− 1) +M(m,n)
W (m,n− 1)−D
Wbest(m)−�
0

where D denotes the “standard” deletion penalty in the genomic and EST sequences,
M(m,n) is the weight of matching symbols at positions m and n, and

� =
{
�splice

�intron

where � = �intron is the intron penalty if (K(m), n) is a pair of splicing sites, and
� = �splice is the splice penalty otherwise; we set

(Wbest(m),K(m)) = (W (m,n), n))ifWbest(m) < W (m,n)

Despite the drawbacks caused by using fixed intron penalty, the approach of this algorithm
became quite popular. The running time of the algorithm is O(MN), where M and N are
the lengths of the EST and genomic sequences respectively.

2.2.2 The Use of HMM to Set the Intron Penalty

Probabilistic interpretation of the spliced alignment algorithm created a convenient way
to combine the statistical gene recognition and sequence alignment. Use of the statistical
models was necessary when the similarity between the aligned sequences was low and in-
sufficient to exactly define the exon boundaries from alignment alone. Initially the problem
was solved by filtering the candidate splicing sites and candidate exons. In the block vari-
ant of the spliced alignment problem, implemented in Procrustes [11], a set of candidate
exons is filtered at a preliminary statistics-based step [24]. Other possibilities are filtering
of candidate splicing sites, as in Pro-EST [22] and Pro-Gene [27]. One more algorithm of
this family, Pro-Frame uses the fact that the similarity between the genomic and protein
sequence exists at only one side of a true splicing site [23]. Finally, in a probabilistic set-
ting of GeneSeqer [33], the intron probability depends on the probability of corresponding
candidate sites determined by a specific statistics-based module SplicePredictor.

2.2.3 Determination of the Exon-Introns Structure of a Gene by Spliced
Alignment with ESTs from Another, Related Gene

GeneSeqer aligns a DNA sequence with EST from a related gene, e.g., an orthologous
gene from a different species [33]. It is intended for the annotation of plant genomes, where
the number of ETSs for a genome might be rather low, as EST and genome sequencing
projects do not always cover same organisms.

The HMM formalism is used for the alignment, and as the similarity between the aligned
sequences may be rather low, additional information is needed to precisely map splicing
sites. As mentioned above, initially site probabilities were set by a statistics-based model.
In a subsequent study [5] sites were scored using the generalized Bayesian likelihood. Each

Spliced Alignment and Similarity-based Gene Recognition 2-5

en

in+1 in

en+1

P∆G
(1-P∆G)(1-PDn+1)

(1-P∆G)PDn+1

PAn(1-P∆G)

PAnP∆G

1-PAn

FIGURE 2.2: State transition diagram for a hidden Markov model implementing spliced align-
ment of EST and genomic sequence [33]. The transition probabilities τ are shown
above the arrows. Each position n in the genomic sequence is ascribed exon (en)
or intron (in) state. Notation: P�G is the deletion probability, PDn and PAn are
the probabilities that n-th nucleotide in the DNA sequence is, respectively, first or
last position in an intron.

candidate sites is classified to one of the following seven categories: true site in the reading
frame 0, 1, 2; false site in the reading frame 0, 1, 2; and false site in non-coding region.

Consider a genomic sequence G of length N and a EST sequence C of length M . Rep-
resent the spliced alignment by an HMM with two states, exon en and intron in, where
n = 1, . . . , N − 1 a position in the genomic sequence. The transition diagram is shown
in Figure 2.2. The transition probabilities at the arcs are denoted by τ , for instance,
τen−1,en is the probability to remain in the exon state moving to the next genomic posi-
tion. Probabilities of transitions between the exon and intron states are estimated via
the candidate site probabilities computed by SplicePredictor. Denote by n and m cur-
rent genomic and EST positions respectively, let S(n,m) be an alignment of sequences
G1G2 . . .Gn and C1C2 . . . Cm, and let Z = z1z2z3 . . . zk be the sequence of hidden states;
maxm,n ≤ l ≤ m+ n. The maximum probability is computed using a standard formula

P = max[En
m, I

n
m]

En
m = maxP (Z = z1z2 . . . zl, zl = en, S(m,n))

In
m = maxP (Z = z1z2 . . . zl, zl = in, S(m,n))
En

0 = I0 = 1
E0

m = 1
I0
m = 0
n = 0, 1, . . . , N
m = 0, 1, . . . ,M

where the recursions for computing the probabilities of the sequence of states to end at
position n of an exon En

m or an intron In
m are as follows:

2-6 Handbook of Computational Molecular Biology

En
m = max

max[En−1
m τen−1,en , I

n−1
m τin−1,en]Pen

(
Gn

−

)
,

max[En−1
m−1τen−1,en , I

n−1
m−1τin−1,en]Pen

(
Gn

Cm

)
,

max[En
m−1τenen , I

n
m−1τinen]Pen

(
−
Cm

)

In
m = max{En−1

m τen−1,in , I
n−1
m τin−1,in}

Since the transition probabilities depend on the site probabilities, the probability of the
intron-type deletion implicitly depends on its sites.

2.2.4 Determination of the Exon-Introns Structure of a Gene by Spliced
Alignment with EST Clusters

Spliced alignment with multiple ESTs is useful for determining the complete gene struc-
ture, finding alternatively spliced isoforms, and mapping gene termini. In early programs,
e.g Pro-EST [22], it was done by spliced alignment of genomic sequences with pre-computed
EST contigs. However, this approach is limited by assumptions used in construction of these
contigs.

A more robust way to use the EST information is spliced alignment with individual ESTs
with simultaneous construction of complete, alternative exon-intron structures. GeneSeqer
[5] uses a decision tree to merge fragments of the exon-intron structure from individual
spliced alignments. Another program, TAP, aligns EST to the genome using an empirical
fast algorithm sim4 [10] described in more detail below, and uses the following procedure
for construction of alternative exon-intron structures.

ESTs aligned with identity exceeding 92% are ascribed to the DNA chain using database
annotation and additional verification by analysis of invariant dinucleotides at the intron
termini. 3′-ESTs are used to find the polyadenylation sites: such a site is defined either
by a cluster of at least three ESTs or by a polyadenylated EST if the alignment contains
a canonical site AATAAA or ATTAAA, whereas the genomic sequence does not contain a
polyA-run. Pairs of splicing sites corresponding to introns can be in one of three possible
relationships: continuous (belong to one alignment), transitive (belong to alignments over-
lapping in an exon), or conflicting. The algorithm constructs a matrix of such relationships
between site pairs; an element of this matrix is the number of ESTs confirming the given
relationships. This matrix is used to construct the path of the highest total weight, the
next one, etc. The highest scoring path corresponds to the most represented isoform.

2.2.5 Clustering of cDNA (mRNA)

Two main approaches for clustering of full-length cDNAs are pairwise comparison of cD-
NA sequences and comparison with the genomic sequences. The former approach is applied
when the genomic sequence is not available. In both cases the dynamic programming algo-
rithm is too slow for mass comparisons: in the former case, too many pairwise comparisons
are needed, whereas in the latter case, the genome sequence is too large.

The following filtering procedure was used in [31]. The local filter identifies an exactly
coinciding fragment in two cDNAs whose length exceeds a given threshold. The global
filter finds an ordered set of coinciding fragments whose total length exceeds a threshold.
The program uses the EST GENOME algorithm [25] modified so as to allow for pairwise
comparison of cDNAs. This is achieved by using zero weights of matched nucleotides,
penalties for external and internal deletions, and fixed penalties for deletions longer than

Spliced Alignment and Similarity-based Gene Recognition 2-7

40 nucletoides, the latter corresponding to retained introns and other differences caused by
alternative splicing.

The score of the optimal alignment of a cDNA pair assumed to be generated by alternative
splicing of one pre-mRNA transcript, should be below some fixed threshold. The thresholds
for the local and global filters are determined dependent on the alignment parameters. The
local filter is implemented using a hash table. Construction of the hash table requires
time proportional to the database size, whereas the search time for all cDNAs having a
common word is proportional to the word length. The global filter uses a modification of
the algorithm for construction of the maximal chain of common words in two sequences,
whose complexity is O(MN), where M and N are the lengths of the compared sequences
[16], [15]. The authors suggested a modification whose run time is O(N + KM), where
M −K is the minimum allowed word length.

2.2.6 Heuristic Algorithms of EST-DNA Spliced Alignment

The complexity of the spliced alignment algorithms is proportional to the product of
the sequence lengths. Such algorithms guarantee finding the optimal alignment, but they
are too slow for database search. A family of BLAST -like algorithms were developed for
the latter purpose: sim4 [10], Spidey [35], BLAT [17], Squall [28]. Such algorithms
start with sensitive database similarity search aimed at decrease of the number of sequences
requiring exact alignment. The database can be a genomic sequence and the query can
be a EST or a protein, or vice versa, the database can be a set of ESTs and the query
can be a fragment of the genomic sequence. Fast current algorithms do total alignment of
human ESTs (3.73 × 106 fragments of total length 1.75 × 109) against the human genome
(2.88× 109 nucleotides). Heuristic spliced ailgnent algorithms do not guarantee finding the
optimal alignment, but they are sufficiently specific and sensitive. The reason for that is
that very similar sequences are aligned (more than 90% identity). If the similarity level is
lower, the quality of predictions drops dramatically.

sim4 [10] aligns EST to DNA using the following strategy. Pairs of segments with
maximum similarity are determined using a BLAST -like procedure: coinciding words of
length 12 are found and then extended to form local similarity segments. A set of aligned
segment pairs that could represent a gene is formed. The start and end positions of these
segments should form increasing sequences in the EST and genomic DNA, and the offset
of diagonals representing the segments in the alignment matrix should be either almost
coinciding or sufficient to accommodate an intron. To determine the exon boundaries, pairs
from almost coinciding diagonals are merged and their projections to the genomic sequence
form exon cores. If projections of the exon cores to the EST sequence overlap, the common
part of the cores is cut so as to form an intron with canonical GT–AG dinucleotides at the
intron boundaries (or CT–AC if the EST is complementary to the gene strand). If the exon
cores do not overlap, they are extended until the EST projections of the corresponding
diagonals overlap. The intersection point is adjusted so as to define an intron with the
canonical dinucleotides. If this procedure fails, a search for shorter matching segments is
performed in the area between the cores.

BLAT [17] is intended for identification and fast alignment of very similar sequences, in
particular, human ESTs with the human genome, and the human and mouse genomes.

Again, a search for highly similar fragments is performed first. Several variants of local
similarity regions are defined: exact match of the length exceeding the threshold, an inexact
match with at most one mismatching position, a chain of shorter exact matches within a
given interval off one diagonal in the alignment matrix. The parameters are selected by
considering the probability of a match in two sequences of the given identity so that to

2-8 Handbook of Computational Molecular Biology

maximize the specificity at a fixed sensitivity level of 99%. The alignment procedure differs
for EST-genome and protein-genome comparisons.

To construct the EST-genome alignments the obtained alignment segments are extended
as in sim4 ; to fill the remaining gaps the procedure of the previous paragraph is applied
iteratively with more liberal thresholds. The exon boundaries are selected so as to satisfy
the GT–AG rule whenever possible. To construct a protein-DNA alignment, the initial
fragments are extended without deletions, and then an oriented graph is constructed, whose
vertices are alignment fragments, and the arcs connect vertices if the end of the fragment
corresponding to the out-vertex is upstream of the start of the fragment corresponding to
the in-vertex in both sequences.

Squall [28] also is intended for the EST alignment with complete genomes. Like the
previous two programs, a fast search using a hash table of the large genome sequence is
used to identify initial exact alignments. They are then extended and the remaining gaps are
filled using the dynamic programming algorithm [12], if the lengths of the unaligned region
are similar in the EST and genomic sequence. Otherwise it is assumed that the genomic
sequence contains an intron. Otherwise hanging EST end is aligned to DNA fragments of
the same length at both termini of the unaligned region, and the intron position is selected
so as to satisfy the GT–AG rule whenever possible.

It should be noted that all algorithms of this type have a number of common problems,
the most important of which is the possibility of missing short exons.

2.3 Protein-DNA Spliced Alignment

2.3.1 Block Problem

The block variant of the spliced alignment problem is solved by the Procrustes algorithm
[11]. Consider a set of blocks (candidate exons) in the DNA sequence. The aim is to find a
chain of exons with the highest similarity to a given protein. Denote by Wm,n,b the weight
of the optimal alignment ending in position n of block b in the genomic sequence and m of
the protein sequence, and let Wm,n,best be the weight in position m of the best block that
has ended upstream of n.

The following recursions are used to find the optimal alignment:

Wm,n,best = max(Wm,n−1,best,Wm,n,b) if n is the last position of block b;
Wm,n,b = Wm,n,best if n is the first position of block b;

Wm,n,b = max

Wm−1,n,b −D,
Wn,n−1,b −D,
Wm−1,n−1,b −M(am, bn)

if n is the first position of block b

Here D denotes the deletion penalty. Consider blocks having the same left end (blocks A
and B in Figure 2.3), and call the largest of such blocks a covering block. For such blocks the
alignment matrix lines in the intersection region are filled with the Wm,n,b values only once,
and thus the complexity of the algorithm linearly depends on the number of covering blocks
K0. The average covering block length is at worst proportional to the genomic sequence
length N . At the end of each block it is necessary to update the values Wm,n,best. If K be
the number of all blocks, this procedure requires KM steps. Thus the overall complexity
of the algorithm is O(NMK0 +MK).

The quality of predictions depends on the degree of similarity between the gene and the
related protein and on the number of candidate exons [24]. There exist extensions of the
basic algorithm that take into account splicing statistics (see above) and thus allow one to

Spliced Alignment and Similarity-based Gene Recognition 2-9

 Spliced sequence (EST or protein)

G
en

om
ic

 s
eq

u
en

ce

C
an

d
id

at
e

ex
o

ns
 (

bl
o

ck
s)

Blocks have the same first coordinate

Intron

Alignment inside block

Common alignment inside blocks A and B A
B

FIGURE 2.3: Dynamic programming graph for the block algorithm of spliced alignment Pro-
crustes [11].

use low-similarity homologous proteins [34], [33]. Another problem is the necessity to filter
candidate exons, as true exons might be lost. Moreover, statistical filtering of candidate
exons becomes impossible when the genomic DNA has been sequenced with errors, especially
single nucleotide indels leading to frameshifts. This problem is addressed by introduction
of a special type of indels in the genomic sequence, as, e.g., in Pro-Frame [23].

The site variant of the spliced alignment problem is used. The transition graph is shown
in Figure 2.4. The frameshift transitions are used only if the previous vertex has not
resulted from a frameshift. The intron transitions are allowed only if the corresponding
genomic position contains an acceptor splicing site.

The algorithm allows for correction of errors corrupting splicing sites. This situation
is likely if the alignment contains large indels in the region adjacent to an intron. The
correction procedure identifies a corrupted site in the neighborhood of the indel. It is based
on the analysis of short words via the conjecture that a correct donor site has the following
property: sequences are similar upstream of a correct donor site, but not similar downstream
of such a site. Thus a site is tentatively accepted, despite the lack of the GT dinucleotide, if
there are much more conciding words upstream of it, compared to the downstream region.
A similar procedure is used for acceptor sites.

2.3.2 Using Distant Homologs

Intuitively it is clear that the quality of homology-based gene predictions depends on the
similarity level. Such dependence was considered in [24]. The structure of a human gene
was predicted using a set of proteins from mammals, vertebrates, animals, plants, and even
prokaryotes. If the similarity level between the predicted and homologous proteins exceeded
60%, it could be guaranteed that the prediction quality measured as the correlation between
the predicted and true genes was at least 80%, and the average correlation was 97%. The

2-10 Handbook of Computational Molecular Biology

Del in Prot

Intron (If in pos. acceptor site)

Wm+1,n+kWm+1,n Wm+1,n+1 Wm+1,n+2

Best Donor site
Wm,n

Frameshifts

Wm+1,n+3

Match
Del in DNA

P
ro

tein
 S

eq
u

en
ce

Nucleotide Sequence

FIGURE 2.4: Dynamic programming graph for spliced alignment tolerant to errors in the ge-
nomic sequence Pro-Frame[23]. Wm,n denotes the optimal weights in the graph
vertices.

average correlation in the case of 30% identity exceeded 93%, so such predictions could still
be considered as reliable. Using more distant homologs requires additional information,
e.g. about the splicing sites, as in [34], see above. Another possibility is to use statistics of
protein-coding regions.

Using distant homologous proteins makes it necessary to account for a possibility of long
indels. Their length (in nucleotides) should be divisible by three, and thus they are different
from indels of one and two nucleotides, as in Pro-Frame [23]. A spliced alignment algorithm
from [12] accounts for long indels by a bounded affine penalty represented by an affine
function of the indel length until the latter exceeds some threshold, and a constant for longer
indels. Indels whose length is not divisible by three are additionally penalized. The intron
penalty linearly depends on the site scores. Additionally, coding potential of candidate
exons is taken into account. Although no explicit probabilistic model is introduced, this is
the first step towards combining similarity-based and statistical algorithms.

GeneWise uses a hidden Markov model for protein-genome alignment (www.sanger.ac.
uc/\\Software/Wise2). It combines site probabilities, a model of the intronic polypyrim-
idine run, accounts for sequencing errors (frameshifts) and codons interrupted by introns.

2.4 Using Local Similarity Identified by BLAST

Hidden Markov Models that Take into Account Protein Homologs

GenomeScan [37] is a modification of a well-known statistical HMM-based program
GENSCAN [6]. It uses information about local similarity between a genomic fragment and
proteins from a database to increase scores of candidate exon-intron structures that agree
with these data and to penalize disagreements.

One of the main problems of statistics-based programs such as GENSCAN is low speci-
ficity in long genomic fragments containing large intergenic regions. The reason for that is
the lack of statistical models suitable for recognition of gene boundaries. Existence of pro-
tein homologs identified, e.g. by blastX, allows one to change probabilities of hidden states,
increasing probabilities of exons containing local similarities. Moreover, if the similarity

Spliced Alignment and Similarity-based Gene Recognition 2-11

extends to the protein termini, gene boundaries also can be identified.
Exon-intron structure conforms to blastX results if an aligned segment lies within an

exon. As in general aligned segments do not have well-defined termini, an exon should
cover only the point of maximum local similarity (central point). Let Ω be the structure
summarizing all similarity data for a genomic sequence G (co-ordinate of the central point,
its reading frame and p-value). Denote by ZΩ the set of exon-intron structures conforming
to Ω. As not all local similarities reflect homology, denote artificial local similarity by
AΩ, and denote real homology by HΩ. Clearly, the probability of artificial similarity P (A)
should depend on p-value, and the following heuristics is used: P (A) = (p− value) 1

r , where
r is a small integer. Let PΩ = P (HΩ) be the probability that the observed similarity is due
to homology; then P (A) = 1− PΩ. Now, probability of an exon-intron structure zi is

P (zi, G | Ω) =
{

(PΩ
P (ZΩ) + (1− PΩ))P (zi, G) if (zi ∈ ZΩ)

(1− PΩ)P (zi, G) if (zi /∈ ZΩ)

where P (z,G) is the GENSCAN probability (that is, disregarding the similarity data).
Note that in all cases

(
PΩ

P (ZΩ)
+ (1 − PΩ)) ≥ and(1− PΩ) ≤ 1.

Thus probabilities of exon-intron structures conforming to the similarity data increase,
whereas the contradicting structures are penalized.

2.4.1 Gene Recognition by Comparison of Genomic Sequences Con-
taining Homologous Genes

In general, protein-coding exons are more conserved that non-coding DNA, and there
exists a large group of algorithms using this fact: CEM [3], ROSETTA [4], TWINSCAN [18],
SGP-1 [36], SGP-2 [30].
SGP-2 [30] uses TblastX to identify genomic fragments containing homologous genes.

Statistics-based scores of exons covered by similar segments are increased, and then the
optimal chain of exons is found using GENEID [13].
TWINSCAN [18] uses local alignment constructed by WU-BLAST [19], [blast.wustl.edu].

The alignment results for each nucleotide are recoded as a sequence of special symbols:
match, mismatch, unaligned. Hidden states of the GENSCAN HMM are modified so
that both the genomic sequence and the conservation sequence are modeled. Let z be
a hidden state, e.g. exon, Gi,j be a genomic subsequence, 1 ≤ i < j ≤ N (N is the
subsequence length), and let Ci,j be the corresponding conservation subsequence. Then,
assuming independence,

P (Gi,j , Ci,j |z) = P (Gi,j |z)P (Ci,j |z).

The first term, the DNA sequence probability, is computed as in GENSCAN. The second
term, the conservation sequence probability is described by a Markov chain of the fifth
order.
SGP-1 [36] uses similarity data to identify conserved splicing sites. Genomic sequences

are aligned using a local similarity search algorithm, TblastX or simply blastN. Candidate
exons are defined as aligned fragments with matching sites at both boundaries and used for
construction of exon-intron structures.

2-12 Handbook of Computational Molecular Biology

A similar scheme is used in CEM [3]. In some neighborhood of local similarities identified
by TblastX all possible pairs of candidate donor and acceptor splicing sites are considered.
An acyclic graph is constructed, whose vertices are these sites, and arcs are exons and
introns. Each exon arc should satisfy the reading frame given by the local alignment. The
predicted exon-intron structure corresponds to the path of the maximal weight constructed
by dynamic programming.

2.4.2 DNA-DNA Spliced Alignment

The algorithms considered in the previous paragraph use local similarity to identify can-
didate exons. They assume conservation of the exon-intron structure of the aligned genes,
and, like all heuristic algorithms, do not guarantee finding the optimal solution. Here we
consider programs that use more technically rigorous algorithms.

Spliced alignment of genomic sequences was implemented in Pro-Gene [27]. Denote the
genomic sequences containing homologous genes by X and Y . Candidate splicing sites,
start and stop codons are identified by standard profile search. Denote the weight of the
optimal alignment of subsequences X1,m and Y1,n by W (m,n). Let µm(n), νn(m) and λmn

be the weights of the optimal alignment ending, respectively, at a donor site in position m
in X , at a donor site in position n in Y , and in a pair of donor sites in both sequences (resp.
formulas (a), (b), (c) below).

µm(n) = max{W (i, n)|i < m, i is a donor position in X}, (a)
νn(m) = max{W (m, j)|j < n, j is a donor position in Y }, (b)
λ(mn) = max{W (i, j)|i < m, i is a donor position in X ,j < n, j is a donor

position in Y }. (c)

The recursion for computing the weight W (m,n) of the optimal alignment is

W (m,n) =

max

W (m-3, n-3)+M(xm, yn) (matching codons [xmxm+1xm+2] and [ynyn+1yn+2])
W (m,n-3)-D (deletion in X against codon [ynyn+1yn+2] in Y)
W (m-3, n)-D (deletion in Y against codon [xmxm+1xm+2] in X)
µm(n-3)-� if m is an acceptor position (intron in X)
µm(n)-�-D if m is an acc. pos. (intron in X , deletion in Y)
νn(m-3)-� if n is an acceptor position (intron in Y)
νn(m)-�-D if n is an acc. pos. (intron in Y , deletion in X)
λmn-2� if m, n are acceptor positions (introns in X and Y)

The notation in the above recursion is as follows: D = Dgap (the deletion opening penalty)
or D = Ddel (deletion extension penalty); � is the fixed intron penalty, M(A,B) is the
score for matching codons A and B. Note that there is no need to compute the values of
λ, µ, ν for each acceptor site, as they change only at donor sites. The dynamic programming
graph is shown in Figure 2.5.

2.4.3 Pairwise Generalized Hidden Markov Chains

Further development leads to the creation of algorithms that combine similarity and
statistics in a single procedure. A pairwise generalized hidden Markov model suggested in
a theoretical study [29] aligns two genomic sequences or a genomic sequence with a spliced
product, EST or protein. This model was implemented in DOUBLESCAN [20] and SLAM [1].

Spliced Alignment and Similarity-based Gene Recognition 2-13

FIGURE 2.5: Dynamic programming graph for spliced alignment of two genomic sequences
Pro-Gene [27]. Axes: positions in sequences X and Y . All possible incoming
arcs for vertex (m, n) are shown. The region of constancy of λ, µ, ν is shadowed.

DOUBLESCAN [20] predicts exon-intron structures of homologous genes that may differ
by intron insertion/loss. A genomic sequence may contain incomplete genes or several
genes. The HMM states classify nucleotides in both genomic sequences as aligned exonic,
inserted (exonic non-aligned), intronic and intergenic (Figure 2.6). A simplified state
diagram is shown in Figure 2.7. The HMM does not have generalized states with a given
distribution of length. Splicing sites are described by hidden states whose probabilities are
ascribed by statistical models implemented in an external procedure. A similar approach
was used also in GeneSeqer [33], see above Figure 2.2. Modeling of splicing sites is used
to identify 5′- and 3′-untranslated exons and thus to improve mapping of gene termini.
It is easy to incorporate statistical modeling of exons and introns, although the original
algorithm does not do that. Reconstruction of the exon-intron structure is done using the
classical Viterbi algorithm and a heuristic blastN-based algorithm that divides the original
alignment matrix into intersecting subspaces between regions of local similarity and thus to
a much faster procedure.

Exon-intron structure of orthologous human and mouse genes is conserved in 86% cases,
and most differences are caused by single

intron insertions or deletions [21]. This fact is used in Projector that maps an annotated
exon-intron structure to a genomic fragment containing an orthologous gene from another
genome.

2.4.4 Prediction of Alternative Splicing by HMM Sampling

Current estimates of the prevalence of alternative splicing in the human genome range
from 30% through 60%. The Viterbi algorithm allows one to determine the optimal sequence
of hidden states in an HMM, whereas suboptimal exon-intron structures also might be
biologically relevant. The crucial resource in HMM algorithms is memory. A fast and
memory-efficient non-deterministic algorithm for finding suboptimal solution in HMMs was
suggested in [7]. It is based on a procedure that allows one to select a path with the

2-14 Handbook of Computational Molecular Biology

M
atch in exon

Insertion
in

exon

M
atch in exon

M
atch in intron

M
atch in intron

Insertion in intron

M
atch in exon

M
atch in intron

M
atch in exon

M
atch in exon

Inserted intron

M
atching intergenic

region

M
atching intergenic

interval

FIGURE 2.6: An example of alignment of homologous genes by DOUBLESCAN [20]. Horizontal lines
with arrows denote two genomic sequences containing homologous genes. Exons
are shown by empty rectangles. States of the hidden Markov chain are shown
below in vertical rectangles.

probability proportional to its weight by the time O(L), where L is the path length (the
number of arcs).

The algorithm for finding k paths has the time complexity O(NT + kT) and the memory
complexity O(NT), where T is the sequence length, and N is the number of hidden states in
the model. Another variant has lower memory complexityO(N), but higher time complexity
O(kNT log(T)). For a pairwise HMM applied to sequences of lengths T and U , the time
complexity O(kNTU) is prohibitively large. An algorithm with time complexity O(NTU +
kN(T + U)) and memory complexity O(N(T + U)), developed in [7], was implemented
as a separate module in SLAM. Most of generated k paths coincide with the optimal exon-
intron structure, but there is a probability to observe a suboptimal path. An example
of identification of conserved alternative splicing in the human and mouse genome was
described, but no systematic application was presented.

2.4.5 Gene Recognition in Several Sequences by a Gibbs Sampler

Two problems in combining statistical and similarity-based approaches are: slow perfor-
mance (compared to ordinary spliced alignment algorithms), the need for a priori setting
of alignment and recognition parameters, difficulties in distinguishing coding and conserved
regulatory regions, and sensitivity to genome rearrangements changing the order of genes
and their strand location. These problems are addressed by the Gibbs sampler approach
where multiple genomic sequences y1, . . . , yn containing orthologous genes are considered
as realizations of one HMM [8]. The algorithm maximizes the log-likelihood

max
θ

[logP (y1, . . . , yn|θ)] = max
θ

[
n∑

j=1

logP (yj |θ)]

over all sets of parameters θ and all sequences of hidden states z1, . . . , zn. The main
technical trick is the separation of steps sampling the hidden states from the distribution
p(zi|z1, . . . , zi−1, zi+1, . . . , zn; θ; y1, . . . , yn), (1 ≤ i ≤ n) and the parameters, from the dis-
tribution p(θ|z1, . . . , zn; y1, . . . , yn) instead of sampling from the joint posterior distribution

Spliced Alignment and Similarity-based Gene Recognition 2-15

FIGURE 2.7: Simplified diagram of states and transitions for the hidden Markov model of
DOUBLESCAN [20]. X and Y are the aligned sequences. M and I are the match

and indel states, respectively.

2-16 References

p(z1, . . . , zn; θ|y1, . . . , yn).
Gene recognition is performed as follows: genes are predicted separately in each sequence,

then candidate genes identified in each sequence are compared to each other. Weight of
an exon is defined as the sum of scores of candidate genes to which this exon belongs.
Parameters such as oligonucleotide frequencies in exons and introns, distribution of exon
lengths etc. are determined simultaneously with mapping of exons. This approach was
applied in the frame of the NISC project aimed at sequencing of some genome regions
in multiple mammalian genomes [32]. The method developed in [8] proved to be highly
sensitive (89%) and specific (90%).

2.5 Conclusions

It is clear that the similarity-based algorithms are a powerful tool of gene recognition.
Various approaches have been developed, applicable in different experimental situations.
The most recent developments are (i) algorithms combining statistical and similarity-based
approaches, that use similarity data when available, but rely on statistics when predicting
the exon-intron structure of orphan, genome-specific genes having no or only distant ho-
mologs; (ii) EST-based algorithms that use multiple, alternatively spliced ESTs or ESTs
from other species; (iii) algorithms based on spliced alignment of genomic sequences, and
specifically, multiple spliced alignment. The most promising directions of research seem
to be using multiple genomes at different level of taxonomic relatedness, and prediction of
alternative splicing.

Acknowledgements

We are grateful to Alexander Favorov and Vsevolod Makeev for many useful discussions.
This study was supported by grants from the Ludwig Institute of Cancer Research (CRDF
RB0-1268), the Howard Hughes Medical Institute (55000309), the Russian Fund of Basic
Research (04−04−49440), and programs “Molecular and Cellular Biolog” and “Origin and
Evolution of the Biosphere” of the Russian Academy of Sciences.

References

[1] M. Alexandersson, S. Cawley, and L. Pachter. SLAM: cross-species gene finding and
alignment with a generalized pair hidden markov model. Genome Research, 13:495–
502, 2003.

[2] S.F. Altschul, T.L. Madden, A.A. Schaffer, and J. Zhang et al. Gapped BLAST and
PSI-BLAST: a new generation of protein database search programs. Nucleic Acids
Research, 1997:3389–3402, 1997.

[3] V. Bafna and D.H. Huson. The conserved exon method for gene finding. Proc Int
Conf Intell Syst Mol Biol, 8:3–12, 2000.

[4] S. Batzoglou, L. Pachter, J.P. Mesirov, and B. Berger et al. Human and mouse gene
structure: comparative analysis and application to exon prediction. Genome Research,
10:950–958, 2000.

[5] V. Brendel, L. Xing, and W. Zhu. Gene structure prediction from consensus s-
pliced alignment of multiple ESTs matching the same genomic locus. Bioinformatics,
20:1157–1169, 2004.

References 2-17

[6] C. Burge and S. Karlin. Prediction of complete gene structures in human genomic
DNA. Journal of Molecular Biology, 268:78–94, 1997.

[7] S.L. Cawley and L. Pachter. HMM sampling and applications to gene finding and
alternative splicing. Bioinformatics, 19:36–41, 2003.

[8] S. Chatterji and L. Pachter. Multiple organism gene finding by collapsed gibbs sam-
pling. Proceedings of the Eighth Annual International Conference on Computa-
tional Molecular Biology (RECOMB 2004), pages 187–193, 2004.

[9] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis. Cam-
bridge University Press, Cambridge, UK, 1998.

[10] L. Florea, G. Hartzell, Z. Zhang, and G.M. Rubin et al. A computer program for
aligning a cDNA sequence with a genomic DNA sequence. Genome Research, 8:967–
974, 1998.

[11] M.S. Gelfand, A.A. Mironov, and P.A. Pevzner. Gene recognition via spliced sequence
alignment. Proceedings of the National Academy of Sciences USA, 93:9061–9066,
1996.

[12] O. Gotoh. Homology-based gene structure prediction: simplified matching algorithm
using a translated codon (tron) and improved accuracy by allowing for long gaps.
Bioinformatics, 16:190–202, 2000.

[13] R. Guigo. Assembling genes from predicted exons in linear time with dynamic pro-
gramming. Journal of Computational Biology, 5:681–702, 1998.

[14] R. Guigo, P. Agarwal, J.F. Abril, and M. Burset et al. An assessment of gene prediction
accuracy in large DNA sequences. Genome Research, 10:1631–1642, 2000.

[15] D. Gusfield. Algorithms on strings, trees, and sequences: Computer science and com-
putational biology. Cambridge University Press, Cambridge, UK., 1997.

[16] D.S. Hirschberg. A linear space algorithm for computing maximal common subse-
quences. Communications of the ACM, 18:341–343, 1975.

[17] W.J. Kent. BLAT–the BLAST-like alignment tool. Genome Research, 12:656–664,
2002.

[18] I. Korf, P. Flicek, D. Duan, and M.R. Brent. Integrating genomic homology into gene
structure prediction. Bioinformatics, 17:140–148, 2001.

[19] R. Lopez, V. Silventoinen, S. Robinson, and A. Kibria et al. WU-Blast2 server at the
european bioinformatics institute. Nucleic Acids Research, 31:3795–3798, 2003.

[20] I.M. Meyer and R. Durbin. Comparative ab initio prediction of gene structures using
pair HMMs. Bioinformatics, 18:1309–1318, 2002.

[21] I.M. Meyer and R. Durbin. Gene structure conservation aids similarity based gene
prediction. Nucleic Acids Research, 32:776–783, 2004.

[22] A.A. Mironov, J.W. Fickett, and M.S. Gelfand. Frequent alternative splicing of human
genes. Genome Research, 9:1288–1293, 1999.

[23] A.A. Mironov, P.S. Novichkov, and M.S. Gelfand. Pro-Frame: similarity-based gene
recognition in eukaryotic DNA sequences with errors. Bioinformatics, 17:13–15, 2001.

[24] A.A. Mironov, M.A. Roytberg, P.A. Pevzner, and M.S. Gelfand. Performance-
guarantee gene predictions via spliced alignment. Genomics, 51:332–339, 1998.

[25] R. Mott. EST GENOME: a program to align spliced DNA sequences to unspliced
genomic DNA. Comput. Appl. Biosci., 13:477–478, 1997.

[26] S.B. Needleman and C.D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48:443–453, 1970.

[27] P.S. Novichkov, M.S. Gelfand, and A.A. Mironov. Gene recognition in eukaryotic DNA
by comparison of genomic sequences. Bioinformatics, 17:1011–1018, 2001.

[28] J. Ogasawara and S. Morishita. A fast and sensitive algorithm for aligning ESTs to

2-18 References

the human genome. J. Bioinform. Comput. Biol., 1:363–386, 2003.
[29] L. Pachter, M. Alexandersson, and S. Cawley. Applications of generalized pair hidden

markov models to alignment and gene finding problems. Journal Comput. Biol.,
9:369–399, 2002.

[30] G. Parra, P. Agarwal, J.F. Abril, and T. Wiehe et al. Comparative gene prediction in
human and mouse. Genome Research, 13:108–117, 2003.

[31] T. Shibuya, H. Kashima, and A. Konagaya. Efficient filtering methods for clustering
cDNAs with spliced sequence alignment. Bioinformatics, 20:29–39, 2004.

[32] J.W. Thomas, J.W. Touchman, R.W. Blakesley, and G.G. Bouffard et al. Comparative
analyses of multi-species sequences from targeted genomic regions. Nature, 424:788–
793, 2003.

[33] J. Usuka and V. Brendel. Gene structure prediction by spliced alignment of genomic
DNA with protein sequences: increased accuracy by differential splice site scoring.
Journal of Molecular Biology, 297:1075–1085, 2000.

[34] J. Usuka, W. Zhu, and V. Brendel. Optimal spliced alignment of homologous cDNA
to a genomic DNA template. Bioinformatics, 16:200–211, 2000.

[35] S.J. Wheelan, D.M. Church, and J.M. Ostell. Spidey: a tool for mRNA-to-genomic
alignments. Genome Research, 11:1952–1957, 2001.

[36] T. Wiehe, S. Gebauer-Jung, T. Mitchell-Olds, and R. Guigo. SGP-1: prediction and
validation of homologous genes based on sequence alignments. Genome Research,
11:1574–1583, 2001.

[37] R.-F. Yeh, L.P. Lim, and C.B. Burge. Computational inference of homologous gene
structures in the human genome. Genome Research, 11:803–816, 2001.

3
Multiple Sequence Alignment

Osamu Gotoh
Kyoto University

Shinsuke Yamada
Waseda University

Tetsushi Yada
Kyoto University

3.1 Biological Background . 3-1
3.2 Definitions and Properties . 3-2

Definition • Representation • Objective Functions
3.3 Algorithms . 3-7

Exact Methods • Progressive Methods •

Consistency-based Methods • Iterative Methods •

Stochastic Methods • Hidden Markov Models
3.4 Methods for Assessment . 3-29
3.5 Summary . 3-30

3.1 Biological Background

All genes in contemporary organisms on earth have relatives that originated in a common
ancestor. The genes or gene products (proteins and RNAs) derived from a common ancestor
are said to be homologous to one another, and comprise a family or a superfamily. The
homologous relationships may also apply to individual nucleotides or amino acids (collec-
tively called residues) in a family of genes or proteins. Multiple sequence alignment (MSA)
is aimed at reproducing these homologous relationships among individual residues in a set
of gene or protein sequences. Mutations (substitutions, deletions, or insertions) that have
occurred during the evolutionary process make the inter-residue homologous relationships
obscure and sometimes barely detectable. Hence, it is vital to obtain a reliable MSA from
a set of remotely related sequences. On the other hand, the sequence data to be analyzed
are accumulating at an increasing rate, and therefore, fast and reliable MSA methods are
earnestly desired. The main purpose of this chapter is to introduce a variety of compu-
tational methods to tackle this difficult problem. We tried to cover both theoretical and
practical approaches. However, because the relevant area is too wide to be entirely covered
in this chapter, we concentrate most of our attention on the global alignment of protein
sequences. Some recent reviews and book chapters on these topics, the reader is referred to
[9, 16, 17, 34, 76, 72].

Before we discuss the methodological parts, the interconnected relationships among MSA
and various fields of molecular and computational biology will be discussed briefly. Today,
the most frequently used tool in the field of molecular computational biology is certainly
(approximate) pairwise sequence alignment (PSA), which drives routine homology search
[5, 80]. Although the usefulness of PSA is obvious, MSA has several advantages over PSA.

(1) In general, the quality of alignment is improved when multiple related sequences are
aligned simultaneously compared with the case when only two members are aligned. This is
particularly true when the members have diverged considerably. The high quality of align-
ment is a prerequisite for homology modeling [93, 113], which is currently the sole practical

3-1

3-2 Handbook of Computational Molecular Biology

method for predicting reliable protein tertiary structures from sequences. Moreover, most
modern methods for detecting subtle resemblance in protein sequences/structures rely on
profile-to-sequence or profile-to-profile comparison, where MSA provides the most informa-
tive resources for the construction of sensitive profiles [82, 117].

(2) MSA also significantly improves the accuracy of the de novo prediction of higher-
order structures of proteins and RNAs. For example, all the current sensible methods
for predicting protein secondary structures rely on MSA to gain 5% or higher accurate
prediction compared to their single-sequence counterparts [58, 89, 25, 90, 92].

(3) The conservation/variation pattern along an MSA indicates functionally importan-
t sites common to a family or those specific to a subset of sequences within that family.
Information about conservation/variation becomes more relevant when coupled with infor-
mation about the protein tertiary structure. The evolutionary trace method is a successful
realization along this strategy [67, 121]. Phylogenetic footprint is another example of a
promising approach to decipher signals hidden in genomic sequences [104, 24].

(4) MSA is an indispensable step for the reliable reconstruction of a phylogenetic tree
from contemporary protein or nucleotide sequences. There are two major methods for tree
reconstruction, i.e. the distance-matrix methods and the character-based methods [23, 75].
The former include the unweighted pair group with arithmetic mean (UPGMA) method
[100] and the neighbor-joining (NJ) method [91]. Although evolutionary distances may be
calculated by other means, e.g., by PSA, the most reliable estimates are obtained from an
MSA. On the other hand, the latter include the maximum parsimony (MP) method [18]
and maximum likelihood (ML) method [22], both of which are designed to use an MSA as
the input. Further details on use of MSA in phylogenetics can be found in Chapter 19 of
the handbook.

(5) Although not extensively discussed here, MSA makes a central contribution to the
shotgun sequencing procedure to obtain a consensus from error-prone individual reads and
to assemble fragments into contigs [11, 46] (see also Chapter 8). MSA is also useful in
the design of probes or PCR primers of desired specificity and sensitivity. In summary,
MSA plays a central role in the investigation of the so-called FESS relationships, i.e., the
relationships among function, evolution, sequence, and structure of a family of genes or
proteins, as emphasized in [34].

3.2 Definitions and Properties

3.2.1 Definition

An alignment of a set of sequences (s̄1, s̄2, . . . , s̄N) represents correspondence among ele-
ments, s′nis, one taken from each sequence, allowing for the absence of correspondents but
keeping the order within each sequence. (The upper bar indicates a row vector.) When s̄n

is a DNA sequence, s̄n is a string over the alphabet Σ = {A, C, G, T}. Likewise, when s̄n

is a protein sequence, sni ∈ Σ = {the 20 amino acids}. We call an alignment a pairwise
sequence alignment (PSA) when N = 2, and a multiple sequence alignment (MSA) when
N ≥ 3. Alignment may also refer to the process for obtaining an object. In this context,
pairwise alignment may involve more than two sequences that are originally present in two
separate groups of sequences. An alignment is usually represented by a rectangular charac-
ter matrix A = {anl}(1 ≤ n ≤ N, 1 ≤ l ≤ L) over Σ′ = Σ ∪ {−}, where a dash ‘-’ denotes
a null implying the absence of the correspondent. A run of one or more contiguous nulls
in a row is called a gap or an indel (insertion-deletion). As a long gap may be produced
by a single evolutionary event, gaps and nulls refer to related yet distinct entities and are
clearly discriminated in this chapter. An alignment matrix A must satisfy the following two

Multiple Sequence Alignment 3-3

conditions.
A) When all nulls are removed, a row of A, ān, is reduced to s̄n.
B) There must not be a column consisting of only nulls. Because of these conditions, the

following inequality holds,

max
1≤n≤N

| s̄n |≤ L ≤
∑

1≤n≤N

| s̄n |, (3.1)

where |̄sn| indicates the length of the sequence s̄n. The relationship between the elements of
s̄′ns and ā′ns is conveniently expressed by an ‘index matrix’R = {rnl}(1 ≤ n ≤ N, 1 ≤ l ≤ L)
of the same size as that of A, where anl = ‘-’ if rnl = 0, or otherwise, anl = snrnl

.
Complementarily to R, we may introduce the ‘gap state matrix’ Q = {qnl}(1 ≤ n ≤ N, 1 ≤
l ≤ L), where qnl = 0 if anl �= ‘-’ or otherwise, qnl denotes the number of contiguous nulls
counted from the left up to the position (n, l). Table 3.1 columns a-c show examples of
matrices A,R, and Q, respectively.

3.2.2 Representation

Within a computer program, the R and Q matrices may be stored in a more compact
format than those shown in Table 3.1b and c. Table 3.1d and e show two alternative ways.
In the format of Table 3.1d, the position, l− 1, preceding a gap and its length are recorded
in a pair. In the last format, the lengths of a run of non-null residues and a gap are shown
alternately, where gap lengths are represented by negative values for clarity [20]. These
representations contain essentially the same information and are easily inter-convertible.
The merit of using these compact representations is two-fold. First, we can save space to
store alternative MSAs constructed from the same set of sequences. Second, we can easily
insert or remove gaps without massive memory operations during a progressive procedure
or an iterative one (see below).

(a) (b) (c) (d) (e)
Carp: MAYPMQL-FQ 1234567089 0000000100 (7,1;10,0) (7,-1,2)
Hawk: MAH--QLGF- 1230045670 0001200001 (3,2;9,1) (3,-2,4,-1)
Lion: MAN-SQLGFQ 1230456789 0001000000 (3,1;10,0) (3,-1,6)
hline

TABLE 3.1 Various ways to represent an MSA. (a) Ordinary alignment matrix. (b) Index matrix. (c)
Gap state matrix. (d) Gap position and length. (e) Numbers of contiguous non-null (positive)and null
characters (negative).

For a human interface, the format of an MSA shown in Table 3.1a is accessible only when
its length is less than the width of a conventional terminal or printer. To display longer
alignments, two types of formats are in use. The first is ‘sequential,’ in which sequences are
written one after another and delineated by a special character or a line. Null characters
are embedded accordingly so that the MSA is reproduced upon reloading. The most widely
used sequential format is the FASTA format, in which a line starting with a ‘greater than’
symbol ‘>’ delineates sequences. Although computers can easily recognize the sequential
format, human eyes cannot. Hence, the most current MSA programs output the results in
an ‘interleaved’ format, in which blocks of alignment, such as Table 3.1a with a fixed width,
are arranged one after another until the entire alignment is exhausted. Table 3.2 shows
an example of the MSF format that is most widely used in the community for exchanging

3-4 Handbook of Computational Molecular Biology

MSF: 177 Type: P Check: 7844 ..

Name: ggewa3 ◦◦ Len: 177 Check: 4939 Weight: 0.5375
Name: ggwn2c ◦◦ Len: 177 Check: 9604 Weight: 0.5375
Name: ggicea ◦◦ Len: 177 Check: 1667 Weight: 0.2897
Name: ggice7 ◦◦ Len: 177 Check: 3998 Weight: 0.2897
Name: gggaa ◦◦ Len: 177 Check: 7028 Weight: 0.2795
Name: gglmf ◦◦ Len: 177 Check: 608 Weight: 0.2795

//

ggewa3 K.......KQ CGVLEGLKVK SEWGRAYG.. SGHDREAFS. QAIWRATFAQ
ggwn2c D.......TC CSIEDRREVQ ALWRSIWSA. EDTGRRTLIG RLLFEELFEI
ggicea VA..TPAMPS MTDAQVAAVK GDWEKI.... KGSGVEILY.FFLNK
ggice7AP LSADQASLVK STWAQV.... RNSEVEILA.AVFTA
gggaaS LSAAEADLAG KSWAPVFANK NANGADFLV.ALFEK
gglmf PIVDSGSVAP LSAAEKTKIR SAWAPVYSNY ETSGVDILV.KFFTS

ggewa3 VPESRSLFKR VHGDHTSD.. ...PAFIAHA ERVLGGLDIA ISTLD...QP
ggwn2c DGATKGLFKR VNVDDTHS.. ...PEEFAHV LRVVNGLDTL IGVLG...DS
ggicea FPGNFPMFKK L.GNDLAA.A KGTAEFKDQA DKIIAFLQGV IEKLG..SDM
ggice7 YPDIQARFPQ FAGKDVAS.I KDTGAFATHA GRIVGFVSEI IALIGNESNA
gggaa FPDSANFFAD FKGKSVAD.I KASPKLRDVS SRIFTRLNEF VNDAA...NA
gglmf TPAAQEFFPK FKGMTSADQL KKSADVRWHA ERIINAVNDA VASMD...DT

ggewa3 ATLKEELDHL QVQH.EGR.K IPDNYFDAFK TAILHVVAAQ LGERCYSNNE
ggwn2c DTLNSLIDHL AEQH.KARAG FKTVYFKEFG KALNHVLPEV AS..CFNPEA
ggicea GGAKALLNQL GTSH.KAM.G ITKDQFDQFR QALTELLGNL GF..GGNIGA
ggice7 PAVQTLVGQL AASH.KAR.G ISQAQFNEFR AGLVSYVSSN VAWNAAAESA
gggaa GKMSAMLSQF AKEH.VGF.G VGSAQFENVR SMFPGFVASV A.....APPA
gglmf EKMSMKLRDL SGKHAKSF.Q VDPQYFKVLA AVIADTVA..A

ggewa3 EIHDAIACDG FARVLPQVLE RGIKGHH
ggwn2c WNH...CFDG LVDVISHRID G......
ggicea WNA...TVDL MFHVIFNALD GTPV...
ggice7 WTA...GLDN IFGLLFAAL.
gggaa GAD...AWTK LFGLIIDALK AAGK...
gglmf GDA...GFEK LMSMICILLR SAY....
hline

TABLE 3.2 An example of MSA represented in the MSF format.

MSA data.

3.2.3 Objective Functions

In PSA, an alignment score is defined as the sum of similarity values S2(a1l, a2l) given to
all matched pairs, a1l and a2l(1 ≤ l ≤ L), and penalty values, g(k), assigned to gaps of
length k. This scoring system well accords with the underlying evolutionary process, and
has been almost invariably adopted in current PSA tools with minor variations in terms of
the choice of similarity values and gap penalty functions. The situation becomes much more
complicated when we wish to design an objective function that evaluates the goodness of
an MSA. Given an MSA of N sequences, A, the objective function HN (A) generally takes
the form:

HN (A) =
∑

1≤l≤L

{SN(al)−GN (∗l)}, (3.2)

where SN (al) indicates the similarity score assigned to the column vector al, GN (∗l) in-
dicates the gap penalty given to column l, and the subscript N indicates the number of
sequences involved. Several scoring systems for evaluating HN (A) are summarized below.
Note that the term concerning GN (∗l) is not defined in some systems.

(1) Maximum parsimony (MP). Historically, MP was the first scoring system introduced
in MSA algorithms [94]. Given an evolutionary tree of input sequences, SN (al) is defined
as the minimum possible number of mutations (substitutions, and single-letter insertions
and deletions) for realizing al. More generally, each mutation may be weighted according

Multiple Sequence Alignment 3-5

to its type, and SN (al) is defined as the minimum sum of the weights. In either case, a
dynamic programming algorithm calculates SN(al) in O(N · | Σ′ |) [95]. Hein [40, 41] pro-
posed a method that simultaneously performs the alignment and reconstruction of ancestral
sequences under a given tree. An MSA obtained with this scoring system is called a tree
alignment. The procedures for tree alignment are reviewed in [84].

(2) Maximum likelihood (ML). Similar to MP, ML is a major principle of phylogenetic
tree reconstruction from sequence data [22, 57]. Of all the objective functions considered
here, the ML score is probably the soundest from a biological point of view. Unfortunately,
however, the computational costs are too high, and no practical MSA program based on
this principle has been developed so far. Most objective functions considered here may
be regarded as (extensively) simplified approximations of ML devised to circumvent this
computational difficulty.

(3) Sum-of-pairs (SP) score. The SP scoring system [73, 13] is the most popular in
MSA programs. Let ām and ān be two distinct row vectors extracted from alignment A.
Let H2(ām, ān) be the alignment score calculated in the same way as ordinary pairwise
alignment with S2(aml, anl)(1 ≤ l ≤ L) and g(k = |qml − qnl|), where matching nulls are
ignored. For S2(aml, anl), amino acid substitution matrices, such as PAMn [15], BLOSUMn
[42], PET [50], and Gonnet [27], are commonly used directly or after normalization. For
gap penalties, any functional forms may be acceptable, although affine functions of the form
g(k) = uk + v (u and v are non-negative constants) are the most popular. Then, the SP
score is defined as:

HSP(A) =
∑

1≤m<n≤N

H2(ām, ān). (3.3)

Although this row-wise definition suggests O(LN2) calculation steps, there exists a virtually
O(LN) algorithm if an affine gap penalty is adopted [31].

(4) Weighted sum-of-pairs (WSP) score. WSP [4] is an extension of the SP score where
pairs of sequences are weighted so that they contribute differently to the overall alignment
score such that:

HWSP(A) =
∑

1≤m<n≤N

wm,nH2(ām, ān). (3.4)

The weights {wm,n} play two superficially conflicting roles. First, closer pairs are giv-
en larger weights, because these pairs are expected to be aligned more reliably. Second,
pairs between “dense” members with many close relatives are down-weighted, because they
represent redundant information. The rationale-2 weights proposed by Altschul et al. [4]
are ideal in these respects. The weights obtained by the three-way method [32] closely
approximate the rationale-2 weights, and facilitate the profile-based efficient calculation of
HWSP(A). Wheras these ‘pair-weights’ are specifically assigned to sequence pairs, most
other weights proposed so far [21, 43, 99, 108, 115] (reviewed in [16]) are assigned to indi-
vidual sequences. With a set of these ‘sequence weights’ {wm}, a pair weight is expressed
as wm,n = wmwn. Weighting sequences or sequence pairs are certainly beneficial [33, 112],
and WSP scoring systems are widely adopted in recently developed high-performance MSA
programs (see below). However, the relative performance of various weighting systems for
MSA has not been extensively examined.

(5) Star alignment (SA) score. SA is a special case of tree alignment in which the tree
topology is star-like. At the center of the tree, one of the input sequences or an inferred
consensus sequence is placed. Denoting this center sequence by c̄, we obtain the SA score
by:

3-6 Handbook of Computational Molecular Biology

HSA(A) =
∑

1≤n≤N

H2(c̄, ān), (3.5)

whereH2(c̄, ān) is the alignment score between c̄ and ān, similarly computed asH2(ām, ān)
in SP. For convenience, we define H2(c̄, ān) = 0 when H2(c̄ = ān). The SA scoring system
has been used in the context of MSA with a guaranteed error bound [39, 83]. Besides this
theoretical interest, however, SA scores are rarely used in practice because they are less
informative than (W)SP (SP or WSP) scores.

(6) Maximum entropy difference (MED) or maximum relative entropy (MRE). If we
ignore the evolutionary relatedness among sequences to be aligned, we can assume that
residues within a column al are independent. Then, it is possible to evaluate SN(al) by the
extent to which the residue frequencies of al deviate from random expectations [97]. The
MED score is defined as [26]:

HMED(A) =
∑

1≤l≤L

{
∑

c∈Σ

pl(c) ln(pl(c)) −
∑

c∈Σ

q(c) ln(q(c))

}
, (3.6)

where pl(c) and q(c) are the relative frequencies of residue c observed in al and in the
background, respectively. The MRE score is defined analogously as:

HMRE(A) =
∑

1≤l≤L

{
∑

c∈Σ

pl(c) ln(pl(c)/q(c))

}
. (3.7)

Entropy-based scores are often used for locating conserved columns within an MSA [96].
MED or MRE loses too much information as regards evolutionary relatedness and similarity
among amino acid residues, and is not widely accepted as an objective function of global
MSA.

(7) Maximum consistency (MC). This scoring scheme is indirect in the sense that an
evolutionary process is not explicitly modeled, but implicitly incorporated in the pairwise
alignments whose mutual consistency is maximized in the MSA procedure. We will discuss
this scoring system in more detail in subsection 3.3.3 below.

Compared to the similarity score SN (al), less attention has been paid to the gap penal-
ty function GN (∗l). In many theoretical formulations, the contiguity of nulls in a row is
ignored, which enables the GN (∗l) term to be absorbed into SN (al) by taking a null char-
acter as an element of the extended alphabet set Σ′. For PSA, this is equivalent to using
a ‘proportional’ gap penalty function of the form g(k) = uk, where k denotes the length of
the gap and u is a positive constant known as the ‘gap-extension penalty.’ In reality, affine
gap penalty functions of the form g(k) = uk + v for k > 0 [28] are almost invariably used
as noted above, where the constant term v denotes the so-called ‘gap-open penalty.’ An
affine gap penalty function can be naturally incorporated into the SP, WSP or SA scoring
system, in which GN (∗l) is explicitly formulated as a function of ql−1 and al,G(ql−1, al)
[30]. On the other hand, no established method has been reported for evaluating GN (∗l)
in other MSA scoring schemes. The easy incorporation of affine gap penalties is one of the
reasons why the SP or WSP scoring system has been most widely used in practice, and has
proven to yield satisfactory results.

Multiple Sequence Alignment 3-7

3.3 Algorithms

3.3.1 Exact Methods

N -dimensional Dynamic Programming

To evaluate the relative goodness of each alignment, A, we have introduced an objective
function, HN (A). The optimal alignment A∗ is then defined as the one that has the best
score among all the possible alternatives, i.e., A∗ = argmaxallpossibleA{HN (A)}. Given N

sequences of a geometric average length of L̄, a rough estimate of the number of possible
distinct alignments among these sequences is (NL̄)!/(L̄!)N ≈ NNL̄, which is tremendous
even for a small N and a moderate L̄, say L̄ ≈ 100.

For PSA, the computational explosion can be avoided by using the well-known dynamic
programming (DP) algorithm, which can rigorously and efficiently find the alignment(s)
with the optimal score among all the possible alternatives by fulfilling the following recursion
for 1 ≤ i ≤ I and 1 ≤ j ≤ J [120], where I =| s̄1 | and J =| s̄2 |:

Hi,j = max
{
H1

i,j , H
2
i,j , H

3
i,j

}
(3.8)

H1
i,j = Hi−1,j−1 + S2(s1i, s2j) (3.9)

H2
i,j = max

1≤k≤i
{Hi−k,j − g(k)} (3.10)

H3
i,j = max

1≤k≤j
{Hi,j−k − g(k)} . (3.11)

It is natural to extend the above algorithm to N dimensions. Let x = {xn}(1 ≤ n ≤
N, 0 ≤ xn ≤ |̄sn|) be a coordinate indicating a node in the DP graph, and b = {bn}(bn ∈
{0, 1}) be a bit vector indicating an edge that joins adjacent nodes. Temporally, we will use
a proportional gap penalty for simplicity. Then, the DP recursive relation is written as:

HN (x) = max
b

{
HN (x− b) + SN (a)

}
, (3.12)

where a = {an}, an = sxn if bn = 1, an = ‘-’ if bn = 0, and the elements of b take all
possible combinations of 0 and 1 except for b = (0, 0, . . . , 0)T. Most objective functions
discussed in the previous section take O(N) computational steps to evaluate a score for each
column. There are

∏
1≤n≤N (| s̄n | +1) ≈ L̄N nodes in the DP graph, and we must examine

2N − 1 configurations (partial alignments) at each node to find the optimal path through
the graph. Thus, the overall computation takes O(N(2L̄)N) steps using O(L̄N) memory. In
fact, it is known that MSA problems with reasonable objective functions are all NP-hard
[118, 119, 51, 49]. If we use an affine or a more general gap penalty function, computational
complexity is further increased. For the simplest case of an SP scoring system with N = 3
and an affine gap penalty function, we must consider 13 different configurations and seven
types of state transitions, as shown in Tables 3.3 (a) and (b). Table 3.3 (c) shows the state
transitions together with the number of gaps that open in association with the transition.
For a large N , we would have to consider ∼ [N/(e ln 2)]N

√
N configurations and 2N − 1

types of transition [2]. Without additional speeding up techniques discussed in the following
sub-subsections, N = 3 is the upper limit of applicability of straightforward DP algorithms.

3-8 Handbook of Computational Molecular Biology

(a)
Configuration 1 2 3 4 5 6 7 8 9 10 11 12 13

Seq1 * * * * .* .* - - * - - * - - - - -
Seq2 * * - - *- - - * * .* - - - .* *-
Seq3 * - * - - - *- * - - - * .* *- .*

(b)
Transition 1 2 3 4 5 6 7

Seq1 * * * * - - -
Seq2 * * - - * * -
Seq3 * - * - * - *

(c)
t\c 1 2 3 4 5 6 7 8 9 10 11 12 13
1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
2 2,2 2,0 2,2 2,1 2,0 2,1 2,2 2,1 2,0 2,2 2,2 2,1 2,2
3 3,2 3,2 3,0 3,1 3,1 3,0 3,2 3,2 3,2 3,1 3,0 3,2 3,1
4 4,2 5,1 6,1 4,0 5,0 6,0 4,2 5,2 5,1 6,2 6,1 5,2 6,2
5 7,2 7,2 7,2 7,2 7,2 7,2 7,0 7,1 7,1 7,1 7,1 7,0 7,0
6 8,2 9,1 8,2 9,2 9,1 9,2 12,1 8,0 9,0 12,2 12,2 12,0 12,1
7 10,2 10,2 11,1 11,2 11,2 11,1 13,1 13,2 13,2 10,0 11,0 13,1 13,0

TABLE 3.3 Thirteen states (a) and seven transitions (b) used in a three-way DP algorithm. An asterisk,
a dash, and a dot indicate (runs of) non-null, null, and either character, respectively. (c) Transition table
used for counting gap-opening penalty in the three-way DP alignment. The configuration and the transition
type are encoded by a number, as shown in (a) and (b), respectively. The first number in each cell indicates
the resulting configuration induced by the transition type of the row from the original configuration of the
column. The second number indicates the number of gaps that open in association with the transition. For
example, transition type 7 converts state 3 into state 11 whereby one new gap opens.

MSA

MSA is an implementation of an N -dimensional dynamic programming algorithm with a
restricted search space, called the Carrillo-Lipman algorithm [13, 38, 68]. It reduces the
search space by using upper bounds estimated from the information of a provisional MSA
A# and optimal pairwise sequence alignments. Note that MSA optimizes an objective
function by not maximizing a similarity score but minimizing a transformation cost.

The objective function of MSA is the WSP score:

C(A) =
∑

1≤m<n≤N

wm,nC(Am,n).

The pair-weights are calculated using the rationale-1 method of Altschul et al. [4].
C(Am,n) is the cost of the induced pairwise alignment between ām and ān. Obviously,

L(S) ≤ C(A∗) ≤ C(A#),

where A∗ is the optimal alignment of S = {s̄n}. L(S) is the sum of the cost of optimal
pairwise alignments, that is,

L(S) =
∑

1≤m<n≤N

wm,nC
∗(̄sm, s̄n),

where C∗(̄sm, s̄n) is the minimum cost between s̄m and s̄n. For any S and 1 ≤ p < q ≤ N ,

C(A∗)− L(S) =
∑

1≤m<n≤N

wm,n

{
C(A∗m,n)− C∗ (̄sm, s̄n)

}
(3.13)

≥ wp,q

{
C(A∗p,q)− C∗ (̄sp, s̄q)

}
. (3.14)

Multiple Sequence Alignment 3-9

Hence,

wp,qC(A∗p,q) ≤ C(A#)− L(S) + wp,qC
∗(̄sp, s̄q), (3.15)

because C(A∗) ≤ C(A#). C(A#) is calculated using a simple progressive method.
In order to calculate C(A∗), the right-hand side of (3.15) is performed as an upper bound

for (p, q)-plane to reduce the search space. The upper bound, however, is usually large,
because O(N2) terms are discarded to obtain (3.15). Although MSA can use this upper
bound, it uses by default a cost of an induced pairwise alignment from A# as a heuristic
upper bound for a plane. This heuristic upper bound is able to align more sequences than
the upper bound by (3.15), although optimality of an alignment cannot be guaranteed any
longer.

To determine the search space, MSA first determines the admissible points on
(
N
2

)
planes.

An admissible point (i, j) satisfies Cm,n(i, j) ≤ Um,n, where Um,n is an upper bound for
(m,n)-plane, that is, a cost of an induced pairwise alignment between ā#

m and ā#
n . Cm,n(i, j)

is the minimum cost between s̄m and s̄n via (i, j), which is the sum of the minimum costs
from (0, 0) to (i, j) and from (| s̄m |, | s̄n |) to (i + 1, j + 1). Because only the admissible
points are candidates for those contributing to an optimal alignment, the search space is
the intersection of the admissible points on every plane.

Before describing the algorithm for finding an optimal alignment, we address two data
structures (an open list and a cell) and a gap cost of MSA. The open list Q stores a pointer
to a cell that is going to be visited. A cell consists of a previous node prev, a current node
curr and a cost from the start node to curr, cost. The open list is implemented as a priority
queue. Since MSA uses the well-known Dijkstra’s algorithm, all costs including substitution
matrix elements are converted to non-negative.

MSA uses a quasi-natural gap cost, which is an approximate affine gap cost. The use of the
affine gap cost (or the so-called natural gap cost) is impractical, because large memory and
much computation are required, as mentioned above. The quasi-natural gap cost penalizes
gap opens based on the two adjacent edges u = x → y and v = y → z on a path,
where x,y and z indicate nodes. Let vm be the mth element of z − y. If vm = 0, vm

means a null; otherwise, vm denotes the zmth residue of s̄m. Table 3.4 shows the rule for
penalizing gap opens. This rule penalizes no less than the actual number of gap opens.
When (um, un) = (0, 0) and (vm, vn) is either (0, 1) or (1, 0), an existing gap may extend at
z. However, this rule always assigns a gap open penalty in such cases, i.e., the quasi-natural
gap cost adopts the pessimistic view. Let C(u,v) be the transformation cost associated with
the move from node x to z along edges u and v. Then,

C(u,v) =
∑

1≤m<n≤N

wm,n{c(tm, tn) + g(um, un, vm, vn)}, (3.16)

where tk = zk ·vk. c(a, b) is the transformation cost between a and b. If either a or b is null,
c(a, b) is the gap-extension penalty. If both a and b are null, c(a, b) = 0. g(um, un, vm, vn)
is the gap-open penalty based on Table 3.4.

Using the upper bound U =
∑

1≤m<n≤N Um,n,MSA tries to find an optimal alignment
within the reduced search space. It first extracts and removes a cell u with the minimum
cost from the open list. Then, each admissible node (say z) adjacent to u.curr is examined.
If Q does not have cell v such that v.prev = u.curr and v.curr = z, such cell v with cost
U + 1 is inserted into Q. If u.cost+C(u, v) < v.cost, v.cost is replaced by u.cost+C(u, v).
After every admissible node adjacent to u.curr is checked, another cell is extracted from
the open list, and these procedures are repeated until curr of the extracted cell is the end
node (| s̄1 |, . . . , | s̄N |)T.

3-10 Handbook of Computational Molecular Biology

(
um
un

)
(

vm
vn

) (−
−
) (−

∗
) (∗

−
) (∗

∗
)

(−
−
)

0 1 1 0(−
∗
)

0 0 1 0(∗
−
)

0 1 0 0(∗
∗
)

0 1 1 0

TABLE 3.4 The rule for penalizing gap opens. An element of an edge is expressed by a symbol, − for
a null and ∗ for a residue. A gap open penalty is imposed on a cell with the value of unity.

Note that MSA does not always find an optimal alignment subject to the constraints; it
may obtain an alignment whose WSP is greater than U . If this happens, the user must
manually increase the upper bounds to find an optimal alignment. In addition, the number
of sequences to be aligned is limited to single figures even when the heuristic upper bounds
are used. Therefore, MSA cannot be used for aligning many sequences.

Several methods [47, 66, 98] use the A∗ algorithm for aligning more sequences than MSA
can. These A∗-based methods adopt essentially the same strategy as MSA. The major
difference lies in the way of calculating the cost assigned to a move from node y to z. Let
C(y, z) be the cost from y to z. The modified cost C′(y, z) is defined as

C′(y, z) = C(y, z) + L(y→ t)− L(z→ t), (3.17)

where t = (| s̄1 |, . . . , | s̄N |)T is the end node and L(y → t) denotes the lower bound
of the alignment costs for subsequences smym , . . . , sm|̄sm|. L(z → t) is defined in a similar
manner. The use of C′(y, z) decreases more the number of admissible nodes than MSA
does, and hence speeds up the computation. GSA [66] achieves further performance im-
provements. It uses better lower bounds estimated from three-way alignments instead of
pairwise alignemnts, and dynamically updates an upper bound during the alignment pro-
cess. However, it is still difficult to align many sequences within a reasonable time. Reinert
et al. [88] have improved the scalability of their A∗-based algorithm by combining it with
the divide and conquer algorithm (DCA) [111, 102], a heuristics for finding anchor points
for global MSA from a set of PSAs.

COSA

COSA is an implementation of the integer linear programming (ILP) method instead of
N -dimensional dynamic programming [1]. ILP maximizes an objective function

∑
wx · x

subject to some constraints, where x is an integer variable to be optimized and wx is a weight
associated with x. An important feature of COSA is that it can accept any gap costs, such
as affine, convex or position-specific gap cost. We briefly describe the algorithm of COSA.
Note that COSA maximizes the similarity score rather than minimizes a transformation
cost.

To represent an alignment, two types of variables are used: alignment and gap variables.
Both variables take a value of either 0 or 1. An alignment variable denotes whether or not
a pair of residues is aligned, whereas a gap variable represents whether or not a segment
of a sequence is aligned with a gap of another sequence. Let a(smi, snj) be an alignment
variable for a residue pair of smi and snj, and gq(spi, spj) be a gap variable for a segment
spi, . . . , spj and a sequence s̄q. a(smi, snj) = 1 means that residues smi and snj are aligned,
and gq(spi, spj) = 1 means that a segment spi, . . . , spj is aligned with a gap inserted in s̄q.
The total number of these variables is

∑
1≤m<n≤N |̄sm||̄sn|+N(N − 1)

∑
1≤n≤N

(|̄sn|+1
2

)
.

Multiple Sequence Alignment 3-11

Four constraints are required to calculate an optimal alignment by ILP. First, each residue
of a sequence must either correspond to a residue of another one, or be within a region
represented by a gap variable. Second, there should not be any incompatibly aligned residue
pairs. For example, if a(spi, sqj) = a(spl, sqk) = 1 with (i < l and k < j), then the
corresponding residue pairs are incompatible. Third, the regions of two gap variables should
not overlap and there must be at least one aligned residue pair between these regions.
When a convex gap cost is used, this constraint is satisfied automatically. Fourth, the
transitivity of three alignment variables has to be satisfied. Specifically, if a(spi, sqj) = 1
and a(spi, srk) = 1, then a(sqj , srk) must be 1.

Alignment and gap variables can be thinned out in advance, as most of them are unlikely
to take the value of 1. The idea of reducing the number of variables is essentially the same
as that of the search space determination of MSA. A heuristic alignment is first constructed
to obtain a lower bound L. Then, an upper bound Uv is calculated for every variable v. If
Uv ≤ L, v is set to 0 and therefore removed. Assuming that v is associated with sequences
s̄m and s̄n, Uv = C∗v (̄sm, s̄n) +

∑
(p,q) �=(m,n) C

∗(̄sp, s̄q), where C∗v (̄sm, s̄n) is the score of the
optimal alignment between s̄m and s̄n such that v = 1, and C∗(̄sp, s̄q) is the score of the
optimal PSA between s̄p and s̄q.

Because solving an ILP is NP-complete, COSA adopts a cutting plane algorithm. This
algorithm solves a linear programming (LP), called a relaxation of an ILP, which is obtained
by omitting integer constrains of the ILP. Each variable of the relaxation then takes a value
between 0 and 1. If a solution of the relaxation is integral, it is also the solution of the
ILP. Otherwise, a cutting plane is calculated from the solution of the relaxation and added
to the constraints of the relaxation. A cutting plane is a linear constraint that does not
exclude an optimal solution of the ILP. This procedure is repeated until an integer solution
is obtained. COSA provides another way to construct alignments in an exact way. Similar
to MSA, however, it cannot align many sequences.

3.3.2 Progressive Methods

Strategy

Progressive methods heuristically construct alignments using a two-dimensional dynamic
programming method that aligns two groups of sequences (that is, two alignments) to
obtain a single alignment. The outline of the progressive methods is as follows.

1. Calculate all possible
(
N
2

)
pairwise alignments to obtain a distance matrix.

2. Construct a guide tree from the matrix.
3. Progressively align groups of sequences following the branching order in the tree.

Because we usually assume that the sequences to be aligned are phylogenetically related,
a guide tree is calculated and then an alignment is constructed according to the branch
order in the tree. The guide tree is usually constructed by a distance matrix method,
such as UPGMA [100] or the NJ method [91]. Progressive methods begin by aligning the
most similar pair of sequences. Then, they align the two sequences (or a sequence and
an alignment, or two alignments) that are the second most similar. These procedures are
repeated until all sequences are aligned into a single alignment. Note that once constructed,
intermediate alignments remain unchanged; once alignment errors occur, they cannot be
corrected. Therefore, the alignment order directly affects the quality of the final result.
Although progressive methods can rapidly calculate large alignments, their accuracies tend
to be inferior to those obtained by more elaborate methods.

3-12 Handbook of Computational Molecular Biology

ClustalW

ClustalW [107] is the most widely used program of the progressive methods. It features the
use of position-specific gap penalties. In this subsection, we provide the detailed algorithm
of ClustalW along the outline presented above.

The distance between sequences s̄m and s̄n, Dm,n, is defined as Dm,n = 1− Im,n, where
Im,n is the degree of sequence identity between s̄m and s̄n. ClustalW calculates Im,n

using the dynamic programming algorithm of Myers and Miller [74]. These Dm,n are not
corrected for multiple substitutions. In this phase, ClustalW uses the Gonnet250 amino-acid
substitution matrix [27]. After obtaining the distance matrix, a guide tree is constructed
by the NJ method [91].

Next, ClustalW calculates sequence weights. To this end, ClustalW places the root in
the guide tree, because the weights [108] are set proportional to the average sum of branch
lengths from each sequence (leaf) to the root. The root is placed where the average sum
of branch lengths of both sides of the root should be equal. Using the guide tree and the
sequence weights, ClustalW constructs a multiple alignment along with the branching order
of the tree. However, if there are divergent sequences such that the sequence identities are
less than 30%, these sequences are not aligned until the other sequences have been aligned.

To align group A of length I with group B of length J , ClustalW conducts four step-
s as shown below. First, a substitution matrix is chosen depending on the average se-
quence identity between A and B, which is defined as

∑M
m=1

∑N
n=1 Im,n/MN. The ranges

of distances and substitution matrices used are 35-100%, Gonnet80; 25-35%, Gonnet120 (if
min(M,N) < 100, Gonnet250); and 0-25%, Gonnet160 (if min(M,N) < 100, Gonnet350).
The minimal element of the raw matrix is subtracted from each matrix element to convert
all the elements into non-negative.

Second, ClustalW calculates an initial gap open penalty.∗ The initial gap open penalty
vAB between A and B is given by vAB = v · µ̄sλl(I, J), where v is the default gap open
penalty. µ̄s and λ are an average score of the substitution matrix other than the diagonal
elements and a constant specific to the matrix, respectively. µ̄s and λ reflect the concept
that an optimum gap penalty depends on a substitution matrix and sequence similarities.
l(I, J) is a factor adjusting for the unequal lengths between I and J .

Third, position-specific gap penalties are calculated. The basic idea of position-specific
gap penalties is to decrease gap penalties on gap-containing regions but to increase them
near such regions. The algorithm for calculating position-specific gap penalties consists of
three steps:

1. If cl includes nulls, uCl ← u/2 and vCl ← vAB · Gl/N , and the calculation is
terminated.

2. If cl has residues on hydrophilic stretches, vCl ← vAB/2.
Otherwise, vCl ←

∑N
n=1 r(cnl)/N .

3. If cl is within T columns from a gap-containing region, vCl ← vCl ·(2 + 2× (T − d)/T) .

uCl and vCl are the gap-extension penalty and the open penalty at column cl. vAB is the
initial gap open penalty between groups A and B and u is the gap extension-penalty. Gl

is the number of nulls on cl. r(cnl) is a residue-specific gap factor of cnl. T is set to 4. A
hydrophilic stretch consists of five or more consecutive hydrophilic residues. If a column
having no gap is on a hydrophilic stretch, the gap open penalty of this column is decreased,

∗As of ClustalW version 1.83, the default gap extension penalty is not modified.

Multiple Sequence Alignment 3-13

because hydrophilic stretches indicate loop regions. If there is neither null nor a residue on
a hydrophilic stretch at the column, residue-specific gap factors are used for the calculation.
A residue-specific gap factor of residue r indicates how likely a gap occurs adjacent to r.

After that, ClustalW aligns A with B based on the substitution matrix and position-
specific gap penalties. For calculation of the score, ClustalW employs the modified algo-
rithm of Myers and Miller so that it can deal with position-specific gap penalties [106].

Although the basic idea for calculating position-specific gap penalties is simple, its algo-
rithm is somewhat complicated and requires much computation, compared with the usual
affine gap penalty. As a result, iterative refinement methods, such as MAFFT [52] and
MUSCLE [20], are even faster than ClustalW. These iterative methods are generally more
accurate than ClustalW.

POA

FIGURE 3.1: An example of partially ordered alignment (POA).

ClustalW and most of the iterative refinement methods discussed below convert a column
of MSA into a profile vector before two MSAs are subjected to group-to-group alignment.
This conversion is irreversible and inevitably leads to loss of information. A directed acyclic
graph (DAG) , on the other hand, can reversibly represent an MSA in a form as compact
as a profile (Figure 3.1). The nodes (residues) in a DAG are partially ordered, implying
that a node in a branch (insertion or mismatch) is not necessarily defined to be located
before or after the nodes in another branch. If the underlying evolutionary process involves
recombination, alternative splicing, or domain shuffling, a DAG is a more realistic repre-
sentation than the profile representation of an MSA. The partial order alignment (POA)
method proposed by Lee and coworkers [65, 35] takes advantage of this feature of the DAG.
Pairwise alignment between a DAG and a usual sequence or between DAGs is performed
with a network alignment algorithm [61], an ordinary DP algorithm extended to a branch-
and-merge structure in an additional dimension. Hein [40] was the first to use this data

3-14 Handbook of Computational Molecular Biology

structure in an MSA procedure, i.e., tree alignment based on the MP principle. Instead of
MP or SP, POA adopts a surprisingly simple scoring system; at a meeting point of several
branches, the path that gives the best score at that point is adopted. For example, since
different kinds of residues are represented by multi-furcating branches, the matching score
between gapless columns ai and bj in the original MSAs under comparison is evaluated as:
S2(ai,bj) = maxa∈ai,b∈bj S2(a, b),where a and b denote residue type included in ai and bj ,
respectively, and S2(a, b) is the corresponding substitution matrix element (Blosum80 by
default). Thus, although the DAG structure may hold full information about the original
MSA, the alignment procedure of POA actually utilizes only part of the information. POA
can be run with either of the two types of progressive procedures, sequential (sequences
are processed in consecutive order) or tree-based. A few performance tests have indicated
that the tree-based POA with this ‘cheap’ scoring scheme well competes with more sophis-
ticated MSA programs, such as ClustalW. This finding is instructive because it urges us to
reconsider the best balance between the complexity of the theoretical model and the actual
performance of MSA programs.

The jumping alignment algorithm [101] shares a property with POA in the process of
MSA vs. sequence alignment, i.e., only one of the sequences within the input MSA con-
tributes to the pairwise alignment score. This ‘representative’ sequence may vary column by
column, although such a transition is penalized. The penalty signifies horizontal continuity
of sequence conservation, whereas such horizontal information is lost in profile or DAG rep-
resentations. The jumping alignment algorithm does not seem to have been applied to the
construction of MSAs, but may be useful not only for recognizing potential recombinations
but also for reducing noise associated with conventional profiles.

3.3.3 Consistency-based Methods

General Concepts

The concept of consistency among a set of pairwise alignments was introduced by Gotoh [29]
to look for ‘anchor points,’ i.e., local MSAs plausibly embedded in an optimal global MSA.
Consider three sequences, s̄1, s̄2, s̄3, and three PSAs between them, A2 (̄s1, s̄2),A2(̄s1, s̄3)
and A2 (̄s2, s̄3). Each PSA can be represented by an undirected bipartite graph (V, E),
where a vertex corresponds to a residue and an edge, e(smi, snj), corresponds to a matched
pair (m �= n ∈ [1, 2, 3], smi ∈ s̄m, snj ∈ s̄n). The set of edges, E(̄sm, s̄n), is called trace [60].
In this trace formulation, the degree of each vertex is either 0 or 1 depending on whether
it matches a null or a residue. In Gotoh’s formulation [29], on the other hand, a vertex
corresponds not to a residue itself but to a joint between them or either end of a sequence,
and every vertex belongs to one or more edge (Figure 3.2 c). The latter formulation can
take care of gapped alignments more precisely than the trace formulation. For the sake of
cohesion with other methods, however, we consider here that each vertex corresponds to a
residue (Figure 3.2 b). If there exist three edges e(s1i, s2j) ∈ E(̄s1, s̄2), e(s2j , s3k) ∈ E(̄s1, s̄3)
and e(s1j , s3k) ∈ E(̄s1, s̄3), the triple edges and vertices are said to be consistent (Figure 3.2
d, thick bars). A set of residues belonging to contiguous consistent edges form a consistently
aligned region (Figure 3.2 e). Essentially the same formulation is used for finding weakly
conserved regions among a set of local MSAs (blocks) [62]. For N > 3, the above argument
applies to every combination of three sequences in {s̄n} (1 ≤ n ≤ N). When consistency
holds for any combination of three vertices from {sni}, the vertex set is considered to be
consistent. Alternatively, {sni} may be considered consistent if every sni participates in
at least one consistent triple vertex. The computational complexity is O(N3L̄) with either
definition. Vingron and Pevzner [114] considered intermediate cases in which each edge

Multiple Sequence Alignment 3-15

FIGURE 3.2: Consistency of pairwise alignments between three sequences ā, b, and c̄. (a) Align-
ments. (b) Traces. (c) Edges of bipartite graphs representing the alignments of
(a). (d) Trace edges realized (solid bars) and unrealized (dotted bar) in an MSA.
Consistent edges are shown by thick bars. (e) Another formalization of the con-
sistently aligned regions (shaded areas). In (d) and (e), sequence ā is shown in
duplicate to enhance viewing.

e(smi, snj) belongs to at least K(1 ≤ K ≤ N − 2) consistent triplets, although the vertexes
are derived not from PSAs but from dot-matrix plots between every pair of sequences.

Maximum Weight Trace Problem

The maximum weight trace problem was formulated by Kececioglu based on a motivation
similar to that discussed above [54], namely, given a set of PSAs, find an MSA that is closest
to all PSAs in the set. The input to the maximum weight trace problem is a set of edges,
that are obtained from a set of pairwise optimal sequence alignments in a special case. The
algorithm finds an MSA in which the maximum number of input edges (or more generally,
maximum sum of weights associated with the edges) is realized (Figure 3.2 d). Because the
MSA must satisfy the two conditions A and B mentioned in subsection 3.2.1, the maximum
weight trace problem is not trivial, and in fact proven to be NP-hard [54]. Kececioglu
proposed a branch-and-bound algorithm somewhat similar to the MSA program described
above [54]. Recently, Kececioglu et al. [53] reformulated the problem, and proposed an
ILP algorithm to solve it with a branch-and-cut technique (3.3.1). Because of the intrinsic
difficulty, the applicability of even this new approach does not seem to much exceed that of
the MSA.

3-16 Handbook of Computational Molecular Biology

T-Coffee

The T-Coffee algorithm developed by Notredame et al. [78] is based on a more practical use
of consistency information derived from a set of PSAs, compared to the strategies discussed
above. Assume that we are given N sequences s̄n(1 ≤ n ≤ N) and KN(N − 1)/2 PSAs be-
tween them, Ak

2(sm, sn)(1 ≤ k ≤ K), in the form of a bipartite graph, where K denotes the
total number of PSAs obtained with different PSA methods (e.g., global and local) for each
pair of sequences. The primary library consists of residue pairs (smi, sni) ∈ Ek (̄sm, s̄n), with
associated weights. The weight assigned to such a residue pair, wk(smi, sni) = wk (̄sm, s̄n),
is the percent sequence identity of Ak

2 (̄sm, s̄n). If (smi, sni) /∈ Ek (̄sm, s̄n), wk(smi, sni) is
0. When the same residue pair appears in the set of PSAs more than once, the associated
weights are summed up to yield the primary weight Wp(smi, snj) =

∑
1≤k≤K wk(smi, snj).

Note that Wp(smi, sni) = 0, if (smi, sni) is absent in any Ek(sm, sn). The primary library
is nearly equivalent to the input edges used in the special case of the maximum weight trace
problem mentioned above. The edges in a primary library occupy only a sparse subset of all
the edges to be examined by a complete MSA procedure. T-Coffee extends the library by
adding residue pairs that are ‘indirectly’ matched. For example, if (smi, spk) ∈ Ek (̄sm, s̄p)
and (snj , spk) ∈ Ek (̄sn, s̄p) for a triplet (m,n, p; 1 ≤ m,n, p ≤ N), the residue pair (smi, snj)
is said to be indirectly matched, and added to the ’extended library’ even if (smi, snj) /∈
Ek (̄sm, s̄n). The weight to an indirectly matched pair (smi, snj) mediated by spk in a third
sequence s̄p is defined as wk(smi, snj ; spk) = min{wk(smi, spk), wk(snj , spk)}. Now, the
total weight given to a residue pair (smi, snj) is obtained by

W (smi, snj) =
∑

1≤k≤K

{
wk(smi, snj) +

∑

p�=m,p�=n

wk(smi, snj ; spk)
}
. (3.18)

T-Coffee uses these weights in place of an ordinary score matrix, such as PAMn or Blosumn,
in the DP-based pairwise alignment of single or pre-aligned groups of sequences without
imposing any gap penalties. Otherwise, T-Coffee adopts the typical progressive alignment
strategy. The distance matrix and the guide tree are constructed in the same manner as
those of ClustalW. The major advantage of T-Coffee over ClustalW and other ordinary
progressive methods is that information about alignments between all pairs of sequences
is condensed in the weights W (smi, snj), which are utilized even at the very beginning of
the progressive procedure. Another advantage of T-Coffee is that several different sources
of alignment information, e.g., that obtained from global and local PSAs, are mixed to
compute a residue-pair weight. The computational complexity is O(N2L̄2) for pairwise
alignment, O(N3L̄) for library construction, and O(NL̄2) for the progressive alignment.

DIALIGN

The notion of ‘consistency’ implied in the DIALIGN algorithm [71, 70] differs from that
mentioned above, but simply means that two ungapped segment pairs (diagonals or frag-
ments), f = A2(aiai+1 · · · ai+k−1, bjbj+1 · · · bj+k−1) and f ′ = A2(ai′ai′+1 · · · ai′+k−1, bj′

bj′+1 · · · bj′+k−1), are arranged in the order of f ≤ f ′ or f ′ ≤ f , where f ≤ f ′ holds if
i + k ≤ i′ and j + k ≤ j′, and vice versa. To avoid confusion, we will use the term ‘com-
patible’ instead of ‘consistent’ here to refer to such situations. The idea of the DIALIGN
algorithm is somewhat related to that of the maximum weight trace problem, although unit-
s used in an alignment process are fragments with positive weights (significant fragments)
rather than individual matched pairs. The objective function is the sum of weights of the
fragments that are involved in the final alignment, where no penalty is imposed on the gaps.
The residues that are not included in these fragments remain unaligned. Hence, DIALIGN

Multiple Sequence Alignment 3-17

tends to produce global to more local alignments with a decrease in similarity of sequences
under comparison.

For PSA, DIALIGN, as well as most standard procedures, uses a DP algorithm. At each
node (i, j) of recursion, DIALIGN examines min(i, j) possible segment pairs that end at
(i, j), indicating O(L̄3) overall computational steps. By restricting the fragment sizes below
a fixed value K (= 40 by default), the computational complexity is reduced to O(KL̄2),
although it is still considerably greater than that of simpler DP algorithms that leave highly
divergent parts unaligned [3, 45]. The most crucial step of the DIALIGN algorithm is the
evaluation of the weight for a fragment f , w(f). When a fragment of length k has an
alignment score of s(f) =

∑
0≤l≤k S2(ai+l, bj+l), w(f) is defined as w(f) = − logP (k, s(f)),

where P (k, s(f)) denotes the probability of observing by chance one with an alignment score
≥ s(f) among (|ā| − k + 1)(|b̄| − k + 1) pairs of segments of length k each having random
sequences. Since the expected value for P (k, s(f)) is close to 1, a majority of the fragments
have negative weights and are excluded from the list of candidates.

For MSA, DIALIGN adopts a greedy strategy. First, all combinations of input sequences
are aligned as described above to yield the initial list of significant fragments. The weight
for each fragment is recalculated in a similar fashion to that used in the construction of
the extended library in the T-Coffee program, except that the supplementary weights are
derived from indirectly aligned segment pairs. The fragments in the initial list are exam-
ined in the order of their weight values, and moved to the second list as long as they are
compatible with all the fragments already present in the second list. After all the fragments
are examined, the process is repeated again from the first member remaining in the initial
list until no member in the initial list is compatible with those in the second list.

As the above procedure suggests, DIALIGN is most effective for detecting local align-
ments among distantly related sequences or sequences composed of several domains [63].
The local nature is favorable for searching exons or regulatory elements in genomic se-
quences [105]. On the other hand, DIALIGN is too expensive to align many, say N > 100,
sequences, because the theoretical computational complexity is O(N4L̄2), which is spent
for recalculating weight values. It might be wise to introduce a hierarchical structure so
that the DIALIGN algorithm is applied to a set of prealigned groups of sequences [81].

3.3.4 Iterative Methods

It is commonly recognized that the major drawback of progressive methods rests on the lack
of an appropriate procedure to correct earlier errors when more sequences are added later
on. Many ideas have been proposed to overcome this drawback, and most of the proposed
methods have adopted some kind of iterative procedure [10, 12, 14, 103]. An extensive
review of these methods has been published [34]; thus, we discuss only relatively recent
results here. MSA methods based on a hidden Markov model (HMM) may be considered as
a variant of this strategy, but will be discussed separately in subsection 3.3.6, since HMM
methods have their own mathematical background.

General Strategy

The basic strategy of iterative refinement methods is summarized as follows. Given a
preliminary MSA, the alignment is divided into a few (usually two) groups. Columns
consisting of null characters only are depleted from each group so that the condition B in
subsection 3.2.1 is satisfied. After the two groups are optimally aligned, the total score
must never be lower than that of the original alignment. By repeating the process for
various ways of division, the overall alignment is gradually improved and ultimately reaches

3-18 Handbook of Computational Molecular Biology

convergence. Several variations exist in the way and the order of division, as reviewed by
Hirosawa et al. [44]. Recent methods that show good performance adopt similar strategies.
(1) The initial alignment is obtained by a progressive method. (2) Division into two groups is
guided by a tree that is constructed by a distance matrix method from the initial alignment.
The order of division is either random or predetermined. (3) Sequences or sequence pairs
are weighted. (4) Some heuristics are used for locating anchor points to accelerate overall
calculation. Three representative methods are introduced below.

Prrn

The heart of iterative refinement methods is group-to-group pairwise alignment, with which
the overall alignment score is improved. When we use a proportional gap penalty function, a
DP algorithm solves the problem straightforwardly. However, the worst-case computational
complexity is dramatically increased when we use an affine gap penalty under the (W)SP
scoring system, as Kececioglu and Starrett have recently proven the problem to be NP-
complete with respect to the total number, M + N , of sequences in the two groups [55].
In practice, Gotoh has devised very efficient algorithms that solve the problem in time
complexity nearly independent of M +N [30, 31]. Two key ideas have made the algorithm
feasible. First, the so-called candidate list paradigm [69] extends the usual DP procedures
without loss of rigor but with only a moderate increase in time and space complexity.
Second, the data structure of ‘generalized profiles’ facilitates exact and efficient calculation
of affine gap penalties. Note that the natural gap penalties are imposed rather than the
quasi-natural gap costs [2] used in MSA [68].

Let Ai = a1a2 · · ·ai and Bj = b1b2 · · ·bj be the prefixes of the groups of sequences, A
and B, to be aligned. A set of candidates at each node (i, j) of the DP procedure correspond
to distinct configurations of alignment between Ai and Bj . By mutual competition, only
those candidates that have the possibility to contribute to the final optimal alignment
are retained. In the earlier versions of Prrn/Prrp, four criteria, which Kececioglu and
Starrett call extremal pruning, were used to prune candidates. Since Ver. 3.0 [34], a single
criterion, the dominance pruning [55], has been adopted. The efficiencies of the extremal and
dominance pruning are virtually equivalent, whereas the dominance pruning can be coded
significantly more compactly. Incidentally, from this version, Prrp for protein sequences
was merged into a single program Prrn that had been used to align nucleotide sequences
only.

Another unique feature of Prrn is the use of a doubly nested randomized iterative strat-
egy. In the inner loop of this strategy, the tree-partitioned iterative refinement of MSA
is performed with a set of weights given to all pairs of sequences. These pair-weights are
calculated from an unrooted tree by the ‘three-way’ method [32]. The tree used for par-
titioning and calculation of weights is obtained by a distance matrix method, UPGMA or
the NJ method. The distance matrix is, in turn, obtained from an MSA. Thus, MSA, tree,
and pair-weights are mutually interdependent. Prrn repeats the iteration until this triad
becomes mutually consistent [33, 34].

From a practical point of view, the Prrn algorithm is somewhat over-luxuriant. For
example, the rigorous group-to-group pairwise alignment algorithm (Algorithm D in [30])
may be replaced by a cheaper one (Algorithm B or C in [30]) without significant loss
of accuracy, as assessed with a method discussed in section 3.4. MAFFT and MUSCLE
discussed below follow this idea.

Multiple Sequence Alignment 3-19

MAFFT

The features of MAFFT [52] are rapid construction of the guide tree and fast search for
anchor points by means of the fast Fourier transform (FFT) method [87]. MAFFT can
construct accurate alignments even faster than ClustalW. MAFFT differs from Prrn in
three major respects: (1) preparation of the initial alignment, (2) the method for detecting
anchor points, and (3) treatment of the gap-open penalty. These differences are described
in detail below.

MAFFT constructs an initial alignment using a progressive method twice. The first phase
aligns sequences based on a roughly estimated guide tree. A modified method of Jones et
al. [50] is used for calculating distance. The distance between s̄m and s̄n, Dm,n, is obtained
by:

Dm,n = 1− Tm,n

min(Tm,n, Tm,n)
, (3.19)

where Tm,n is the number of K-mer segments (K = 6 in MAFFT) shared by s̄m and s̄n.
In the calculation of Tm,n, the 20 amino acids are grouped into six categories depending on
their physico-chemical properties. This method requires only O(L̄) computational steps for
each sequence pair provided that the 6-mer frequencies are precomputed for all sequences,
which requires O(NL̄). Hence, the total computation requires O(N2L̄). By contrast, the
dynamic programming method requires O(L̄2) for each pair, and O(N2L̄2) in total. Thus,
much computation time can be saved by the K-mer method. MAFFT uses a slightly
modified version of the UPGMA method [100] for the construction of the guide tree.

The second phase uses the progressive method again. The second phase differs from the
first phase in the guide tree, which is reconstructed from the distance matrix estimated from
the MSA obtained by the first phase. The distance Dm,n is defined as Dm,n = − log Im,n,
where Im,n is the degree of sequence identity between ām and ān. The second phase
alignment is likely to be more accurate than that of the first phase, since the new guide tree
is expected to be more reliable.

Next, we explain the methods of FFT preprocessing and the group-to-group sequence
alignment algorithm used in MAFFT. The FFT preprocessing method finds anchor points
that vertically divide a group into several disjoint sections. In this procedure, correlations
between two groups are rapidly calculated with the FFT algorithm, and 20 positional lags
(diagonals) with the highest correlation scores are identified. These diagonals are then
searched for high-scoring segment pairs with average matching scores per column exceeding
a threshold.

The correlation between groups A and B with positional lag k, ρ(k), is defined as

ρ(k) = ρv(k) + ρp(k), (3.20)

where
ρv(k) =

∑

1≤i≤min(I,J−k)

{vA(i)vB(i+ k)}. (3.21)

ρv(k) denotes the correlation of the volume component. The correlation of the polarity
component ρp(k) is defined in a similar way. vC(j) and pC(j) are the weighted sum of the
volume values and the polarity values for the j-th column of C ∈ {A,B}. MAFFT obtains
the weights in the same way as ClustalW in the progressive phase, and by the three-way
method [32] in the iterative phase. The calculation of ρ(k) requires O(L̄ log L̄) computation
used in the FFT procedure to obtain ρv(k) and ρp(k).

To determine the positions of high-scoring segment pairs in each diagonal, MAFFT uses a
sliding window method with the window size of 30. If successive high-scoring segment pairs

3-20 Handbook of Computational Molecular Biology

FIGURE 3.3: FFT preprocessing. Open squares with thin lines denote high-scoring segment
pairs detected. In this example, four of the five high-scoring segment pairs are
included in the optimal compatible assembly. Both groups are cut into five sections
at the midpoint of each high-scoring segment pair indicated by a filled circle. After
division, each pair of GA

i and GB
i is aligned. Since only the shaded regions are

examined, MAFFT attains significantly rapid calculation.

overlap, they are merged. Potential noises are removed by a sparse DP algorithm that finds
the optimal combination of compatible high-scoring segment pairs. The midpoints of the
high-scoring segments in this optimal combination serve as the boundaries by which each
group is divided into several sections (Figure 3.3). Then, each pair of sections is aligned by
the group-to-group sequence alignment algorithm described below.

MAFFT uses the WSP-type objective function for group-to-group sequence alignment,
but the gap-opening penalty differs from that of the natural WSP scoring system. The gap-
opening penalty assigned to a gap that opens or closes opposite to two successive columns
cp and cq is defined as:

v
[
{1− gCs (p)}+ {1− gCe (q)}

]
/2, (3.22)

where v is the basic gap-opening penalty. gCs (p) is the number of gaps starting at cp in C
and gCe (q) is the number of gaps ending at cq. MAFFT also uses a normalized substitution
matrix. A score of substitution matrix S2(a, b) is normalized as

S̄2(a, b) =
S2(a, b)− µ2

µ1 − µ2
+ u, (3.23)

where µ1 =
∑

a∈Σ faS2(a, a) and µ2 =
∑

a,b∈Σ fafbS2(a, b). u is a parameter with u� 1,
corresponding to a gap extension penalty. fa is the stationary composition of amino acid
a derived from the substitution matrix. An average score per position between segments
satisfies u ≤ µs̄ ≤ 1 + u. MAFFT uses an ordinary two-dimensional DP for aligning two
groups.

Note that MAFFT is not always faster than MAFFT without FFT preprocessing; since
FFT preprocessing may not identify high-scoring segment pairs among highly divergent
sequences, the search space may not be sufficiently reduced to compensate for the cost of

Multiple Sequence Alignment 3-21

the preprocessing. In addition, the alignment accuracies of MAFFT are slightly decreased
because FFT preprocessing reduces the search space without guaranteeing optimality.

MUSCLE

Recently, a new program called MUSCLE [20] has been reported. MUSCLE uses nearly
the same strategy as MAFFT. MUSCLE differs from MAFFT in that it adopts an oligomer
counting [19] method instead of FFT preprocessing for the detection of anchor points, which
requires O(L̄) computation. Moreover, instead of the classical profiles [37] used in Prnn or
MAFFT, MUSCLE adopts a log expectation scoring scheme to evaluate the S2(a,b) term
for group-to-group alignment. The log expectation score between profile columns a and b
is defined as

(1− a[−])(1− b[−])
∑

x,y∈Σ

log
(
a[x]b[y]

px,y

pxpy

)
, (3.24)

where a[−] and a[x] (b[−] and b[y]) are frequencies of null and residue x (y) of profile
column a (b), respectively. px,y is a joint probability between residues x and y, and pz is
a background probability of residue z. Both px,y and pz are derived from the probabilistic
substitution matrix of amino acids.

The gap penalty of MUSCLE is basically the same as that of MAFFT, but MUSCLE,
like ClustalW, adjusts gap penalties according to the hydrophobicity of the surrounding
residues.

3.3.5 Stochastic Methods

Simulated Annealing

A class of strategies, known as stochastic algorithms, have often been used for solving such
complex combinatorial optimization problems as MSA. Two representative methods in this
class are simulated annealing (SA) and genetic algorithm (GA). The process of SA consists
of a series of two kinds of operations: (i) change in the current state and (ii) acceptance or
rejection of the change. Not only locally favorable changes but also unfavorable changes are
accepted at a certain probability. The probability is controlled by the “temperature” and
the energy gap between the old and new states. In MSA, each state change is realized by
a move of a gap or a segment of gaps [48, 56]. The energy is calculated in the same way as
an SP score (the sign is inverted), although any other scoring systems may be appropriate.
The intensive computational power required by SA is often shared by distributed CPUs,
each of which takes charge of distinct temperatures. Gibbs sampling algorithm for local
MSA [64] is based on essentially the same principle as that of the SA for global MSA, except
that each state corresponds to an ungapped local MSA of a fixed length.

Genetic Algorithm

Several instances of the application of GA to the MSA problem are found in the literature
[77, 79, 122]. Although the general strategy of these methods is common, the fitness function
and the actual procedures of mutation and crossover considerably differ from one another.
The most orthodox settings are those of Notredame and Higgins, in which a mutation corre-
sponds to a move of a gap, a crossover corresponds to a recombination between alignments
at a consistent cut site, and fitness corresponds to a WSP score. As a tool for standard M-
SA, GA is not as efficient as progressive or iterative strategies. However, stochastic methods
including GA and SA are more flexible in terms of the scoring scheme. One promising ap-

3-22 Handbook of Computational Molecular Biology

plication is the alignment of RNA sequences considering conserved features in both primary
and secondary structure levels. Another possible application is protein structure-sequence
alignment under some constraints, such as experimentally determined distances between a
subset of residue pairs.

3.3.6 Hidden Markov Models

A hidden Markov model (HMM)[85] is a probabilistic model that is well suited for many
tasks in bioinformatics, although it has been mostly developed for speech recognition since
the early 1970s. One of the most popular uses of the HMM in bioinformatics is as a
‘probabilistic profile’ of an MSA of a protein/DNA family, which is called a profile HMM[59,
8]. A profile HMM resembles a profile [36], but is a full probabilistic model, whereas a
profile has a non-probabilistic structure. The main contribution of the profile HMM is that
it treats gaps in a probabilistic manner. A profile HMM can be constructed from a set of
aligned/unaligned sequences of a protein/DNA family and is used for searching a database
for other members of the family. Further, a profile HMM is capable of producing an MSA
of a sequence family.

Profile HMMs

Figure 3.4 shows an example of the basic type of a profile HMM. The edges not shown have
zero transition probability. In profile HMMs, a set of match (Mi), insert (Ii) and delete (Di)
states stretches from left to right. The number of stretches is called the ‘length’ of a profile
HMM, and i is called the ‘position’ in a profile HMM. State B is the begin state, so that
the two-step process, namely a repetitive series of transition and emission, always starts
here. A transition never moves to the left, so that with time, the current state gradually
moves to the right, eventually ending at the end state E. When this state is reached, the
two-step process ends. A match or delete state is never visited more than once. A set of
emission symbols of the profile HMM consists of the twenty amino acids or four nucleotides
with one null symbol denoted by δ. Delete states emit δ with a probability of one. Each
match and insert state has its own emission distribution over the twenty amino acids or
four nucleotides, but cannot emit δ, that is, only a delete state can emit δ, and each delete
state emits only δ.

The profile HMM is capable of producing various sets of sequences by changing the
distributions of transition and emission probabilities. Let us consider two extreme cases. If
the emission probabilities for the match and insert states are uniform over all symbols, the
profile HMM will produce random sequences that do not have much in common except their
lengths. At the other extreme, if each state emits one specific symbol with a probability
of one, and if the transitions from Mi to Mi+1 have a probability of one, then the profile

FIGURE 3.4: The structure of a profile HMM.

Multiple Sequence Alignment 3-23

HMM will always produce the same sequence. Somewhere in between these two cases,
the parameters of the profile HMM can be set so that it produces sequences that are
similar, thus producing what can be thought of as a ‘family’ of sequences. Each choice of
parameters produces a different family. It is also possible that the similarity is high in some
positions of the sequences produced and low in others. This will happen if the emission
distributions of some match states are concentrated on a few symbols, whereas those of the
others are approximately uniform over all the symbols. It is frequently observed that a set
of protein/DNA sequences of a family has some regions of higher conservation and other
regions of lower conservation. These indicate that a profile HMM can describe the sequence
features of a protein/DNA family.

If we adopt a gap symbol ‘-’ instead of δ, the profile HMM is capable of producing a set of
sequences that looks like an MSA. Let us follow the two-step process for producing MSA-like
sequences. A gap always opens when the transition from a match/insert state to a delete
state occurs, and a gap always extends when the transition from one delete state to another
delete state occurs. Each transition has its own probability. This indicates that the profile
HMM involves a framework of the affine gap. The difference from the standard affine gap is
that the gap extension penalty of the profile HMM can vary with position, whereas that of
the standard affine gap is always constant. The transitions concerned with an insert state
completely correspond to the standard affine gap. The transition from a match state to an
insert state corresponds to the gap open penalty, and the transition from an insert state
to itself corresponds to the gap extension penalty. As the latter transition always moves
to itself, it is guaranteed to have the same penalty. In the profile HMM, the transition
probabilities and the emission distribution can differ along the entire positions, because
each transition has its own probability and each state has its own distribution. On the
other hand, an MSA of a protein/DNA family generally has a mosaic structure consisting
of well-conserved and less-conserved regions. Gaps are rarely observed in the former and
frequently observed in the latter. This indicates that the profile HMM is sufficiently flexible
to describe the varying features observed in an MSA of a protein/DNA family.

This is, however, a drawback of the profile HMM as well, because the flexibility largely
depends on the number of parameters. In the case of a protein family, the profile HMM
shown in Figure 3.3.6 has approximately 49L parameters (9L transition probabilities and
40L emission probabilities) in total, where L is the length of the profile HMM. L is on
the order of a few hundred, resulting immediately in the profile HMMs with more than
10,000 free parameters. This can be a problem when only a few sequences are available
in a family, which is not an uncommon situation in the early stages of genome projects,
and overestimation of the parameters easily occurs. Therefore, careful estimation of the
parameters by introducing pseudocounts and sequence weights is essential (see below for
details).

Deriving profile HMMs from MSAs

We discuss here how to construct a profile HMM when an MSA is given. Suppose that
well-conserved columns are shown in the MSA. The choice of length of the profile HMM
corresponds to the decision of which MSA columns to assign to the match and delete states,
and on which MSA columns to assign to the insert states. In many cases, the profile HMM,
whose length is the same as the number of the conserved columns, is prepared, and the
i-th conserved column is assigned to the i-th match and delete states (Mi and Di) in the
profile HMM. The successive non-conserved columns after the i-th conserved column are
assigned to the i-th insert state (Ii). These assignments lead us to a simple procedure for
estimating the parameters of the profile HMM, because these imply that we identify the

3-24 Handbook of Computational Molecular Biology

two-step processes through the profile HMM for producing each MSA sequence, that is, we
just count up the number of times each transition or emission occurs during the processes,
and assign probabilities according to

akl =
Akl∑
l′ Akl′

and bk(c) =
Bk(c)∑
c′ Bk(c′)

where k and l are indices over states, akl is the transition probability from k to l, and
bk(c) is the emission probability that the symbol c is emitted from k. Akl and Bk(c)
are the corresponding frequencies. This procedure corresponds to the ML estimation of
the parameters, that is, the estimated parameters maximize the joint probability that the
profile HMM produces the given MSA. To avoid overestimation of the parameters, the
emission distributions of the insert states are often set to be the average composition of the
residues over the MSA, because the significant biases of the corresponding distributions are
not observed in many cases. In the case that well-conserved columns in the MSA are not
shown, we will use a heuristic rule for deciding which columns should be assigned to which
states. A simple rule that works well is that columns that are more than half gap symbols
should be assigned to insert states.

A clear problem with the ML estimation is that if there are only a few sequences then
some transitions or emissions may not be observed in the MSA. This will frequently occur.
However, it is quite likely that if there are more sequences then the corresponding transitions
or emissions will be observed in the MSA. We should estimate the parameters with con-
sideration of such a situation. A method to deal with this problem is to add pseudocounts
to the observed counts. Pseudocounts are some fake imagined data based on our prior
knowledge of protein/DNA sequences to represent all the other things that might happen.
A very simple and much-used pseudocount method is to add a constant to all the counts.
When the constant is one, this is called ‘Laplace’s rule’. A slightly sophisticated method
is to add a quantity proportional to the background probability, e.g. the average residue
composition over the MSA. These methods have the appealing feature, that is, the effect of
pseudocount becomes significant and the estimated parameter values approximate our prior
knowledge if very little data is available. At the other extreme, the effect of pseudocount
becomes insignificant and the parameter estimation approximates the ML estimation if a
large amount of data is available. See [16] for detailed information of pseudocount methods.

There are often some sequences that are very closely related to each other in the given
MSA. Since some of the information from these sequences is shared, we should not give them
each the same weight in the parameter estimation as a single sequence that is more highly
diverged from all the others. Many weighting methods are based on building a tree relating
the sequences. Since sequences in a family are related by an evolutionary tree, it is very
natural to try to construct this tree and use it when estimating the independent contribution
of each of the given sequences, down-weighting sequences that have only recently diverged.
See [16] for detailed information of tree construction and weight computation.

Deriving profile HMMs from unaligned sequences

We show here how to construct a profile HMM when only one set of protein/DNA sequences
is given. A method for constructing the profile HMM is summarized as follows. First, we
choose the length of the profile HMM and initialize the parameters. Then, we estimate the
profile HMM parameters with the Baum-Welch algorithm or other alternatives.

Since a profile HMM has a repeating linear structure of match/insert/delete states, the
only decision that must be made in choosing an initial architecture for the Baum-Welch

Multiple Sequence Alignment 3-25

estimation is the length of a profile HMM. A commonly used rule is to set the length to
be the average length of the given sequences (or to set it based on prior knowledge of an
expected MSA).

It is important to initialize the parameters of a profile HMM carefully, because the Baum-
Welch estimation finds local optima and not global optima. The profile HMM should be
encouraged to use sensible transitions; for example, transitions into match states should
be large compared to other transition probabilities. Moreover, we should start the Baum-
Welch estimation from several different sets of the initial parameters to check whether all
converge to approximately the same optimum. We have to introduce some randomness in
the choice of the initial parameters. A more sophisticated method is to sample the initial
parameters from the Bayesian Dirichlet prior distributions [16, 7] over parameters. An
alternative method is as follows: we can initialize the profile HMM with frequencies derived
from the prior, use this profile HMM to produce a small number of random sequences, and
then use these counts as data to estimate an initial profile HMM. It is known that the
natural probabilistic priors on HMM parameters are Dirichlet distributions.

In the case that only one set of protein/DNA sequences is given, we cannot directly per-
form the ML estimation of the parameters, because there are many two-step processes for
producing each given sequence. The Baum-Welch algorithm solves this problem by intro-
ducing a framework of expectation-maximization (EM) algorithm. Let us consider a simple
case that a sequence s = (s1, . . . , s|s|) is given. First, the Baum-Welch algorithm computes
the forward and backward variables on the basis of the initial parameters. The forward
variable αi(k) is the joint probability that the HMM produces the subsequence s1, . . . , sk

(1 ≤ k ≤ |s|) ending at state i. The backward variable βi(k) is the joint probability that
the HMM produces the subsequence sk+1, . . . , s|s| beginning from state i. The forward and
backward variables are computed for all i and k recursively, and we obtain

∑
i αi(|s|) and∑

i βi(0) which are the joint probabilities that the HMM produces the sequence. The algo-
rithms computing the forward and backward variables are called the forward and backward
algorithms, respectively. The structure of these algorithms is similar to that of dynamic pro-
gramming. Next, the algorithm computes the expected counts of transitions and emissions
from sequence s on the basis of the forward and backward variables. Finally, the algorithm
re-estimates the parameters from the expected counts, and the parameters are overwritten
by the re-estimated ones. The algorithm repeats the above steps until the parameter values
converge. We can easily extend the algorithm in order to treat a set of sequences. See [85]
for a detailed description of the algorithm.

The parameter estimation of a profile HMM is done by a straightforward application of
the standard Baum-Welch algorithm described above. There are, however, major differ-
ences: each state in the profile HMM has at most three entering transitions (see Figure
3.3.6), and the delete states cannot emit any symbols. Let M0 and ML+1 denote the begin
and end states, respectively. Below we give the algorithms for profile HMMs.

Forward algorithm for profile HMMs

Initialization:

αM0(0) = 1

Recursion:

αMi(k) = bMi(sk)[αMi−1(k − 1)aMi−1Mi + αIi−1(k − 1)aIi−1Mi + αDi−1(k − 1)aDi−1Mi]
αIi(k) = bIi(sk)[αMi(k − 1)aMiIi + αIi(k − 1)aIiIi + αDi(k − 1)aDiIi]
αDi(k) = αMi−1(k)aMi−1Di + αIi−1(k)aIi−1Di + αDi−1(k)aDi−1Di

3-26 Handbook of Computational Molecular Biology

Termination:

αML+1(|s|+ 1) = αML(|s|)aMLML+1 + αIL(|s|)aILML+1 + αDL(|s|)aDLML+1

Backward algorithm for profile HMMs

Initialization:

βend(|s|+ 1) = 1
βML(|s|) = aMLML+1

βIL(|s|) = aILML+1

βDL(|s|) = aDLML+1

Recursion:

βMi(k) = βMi+1(k + 1)aMiMi+1bMi+1(sk+1)
+βIi(k + 1)aMiIibIi(sk+1) + βDi+1(k)aMiDi+1

βIi(k) = βMi+1(k + 1)aIiMi+1bMi+1(sk+1)
+βIi(k + 1)aIiIibIi(sk+1) + bDi+1(k)aIiDi+1

βDi(k) = βMi+1(k + 1)aDiMi+1bMi+1(sk+1)
+βIi(k + 1)aDiIibIi(sk+1) + βDi+1(k)aDiDi+1

where L is the length of the profile HMM.

The forward and backward variables can then be combined to re-estimate the transition
and emission probability parameters as follows:

Re-estimation equations for profile HMMs

Expected transition counts from sequence s:

ASiMk+1 =
1

P (s)

∑

k

αSi(k)aSiMi+1bMi+1(sk+1)βMi+1(k + 1)

ASiIi =
1

P (s)

∑

k

αSi(k)aSiIibIi(sk+1)βIi(k + 1)

ASiDi+1 =
1

P (s)

∑

k

αSi(k)aSiDi+1βDi+1(k)

Expected emission counts from sequence s:

BMi(c) =
1

P (s)

∑

k|sk=c

αMi(k)βMi(k)

BIi(c) =
1

P (s)

∑

k|sk=c

αIi(k)βIi(k)

Multiple Sequence Alignment 3-27

where Si ∈ {Mi, Ii,Di} and P (s) = αML+1(|s|+ 1).
A framework of stochastic search algorithm is introduced into the Baum-Welch algorithm

to avoid converging local optima. The most common stochastic algorithm is SA. The
important point of SA is that it can escape local optima because of the stochastic choice
of temporal solution. A similar effect can be obtained by adding noise to the expected
counts computed in the Baum-Welch algorithm. See [16] for a detailed description of the
algorithm. The expected counts become an index to the length adaptation of the profile
HMM [59]. We can see how much a certain transition is used by the given sequences from
the expected counts. The usage of a state is the sum of counts for all symbols in the state.
If a certain match state is rarely used, we should remove the match state together with the
corresponding insert and delete states, because the match state is redundant and should
be absorbed in an insert state. Similarly, if a certain insert state is frequently used, we
should create a new match state at the corresponding position together with corresponding
new insert and delete states, because the insert state absorbs much sequence and should be
expanded. Although this approach is ad hoc, it works well in practice.

MSAs with given profile HMMs

Once a profile HMM is prepared according to the methods described above, it enables us to
produce an MSA in a systematic manner. Suppose that a set of sequences of a protein/DNA
family and a profile HMM for the family are given. A method for producing an MSA of
the sequences is summarized as follows: for each sequence, we use the Viterbi algorithm
for determining a two-step process (a path) through the profile HMM that is most likely to
produce that sequence, and then we build an MSA from the paths.

The Viterbi algorithm finds the most likely path through a profile HMM by introducing
a framework of dynamic programming. Let us consider a simple case that a sequence
s = (s1, . . . , s|s|) is given. The Viterbi algorithm computes for the Viterbi variable vi(k),
which is the joint probability of the most likely path that the profile HMM produces the
subsequence s1, . . . , sk (1 ≤ k ≤ |s|) ending at state i. The Viterbi algorithm also computes
the traceback variable ψi(k), that stores an entering transition of state i for computing
vi(k). The Viterbi and traceback variables are computed for all i and k recursively. Then,∑

i vi(|s|), which is the joint probability that the HMM produces the sequence from the
most likely path, is obtained, and the algorithm backtracks the traceback variables from
ψî(|s|), where î = argmaxiψi(|s|), to find the most likely path through the HMM. See [85]
for a detailed description of the Viterbi algorithm.

Finding the most likely path through a profile HMM is done by a straightforward ap-
plication of the standard Viterbi algorithm described above. There are, however, major
differences: each state in the profile HMM has at most three entering transitions (see Fig-
ure 3.3.6), and the delete states cannot emit any symbols. Moreover, the log-odds score is
adopted as the Viterbi variable, and all the products in the algorithm are converted into
sums by the log transformation. Let M0 and ML+1 denote the begin and end states, re-
spectively. Below we give the algorithm for profile HMMs.

Viterbi algorithm for profile HMMs

Initialization:

vM0(0) = 0

3-28 Handbook of Computational Molecular Biology

Recursion:

vMi(k) = log
bMi(sk)
qsk

+ max

vMi−1(k − 1) + log aMi−1Mi

vIi−1(k − 1) + log aIi−1Mi

vDi−1(k − 1) + log aDi−1Mi

vIi(k) = log
bIi(sk)
qsk

+ max

vMj (k − 1) + log aMiIi

vIj (k − 1) + log aIiIi

vDj (k − 1) + log aDiIi

vDi(k) = max

vMi−1(k) + log aMi−1Di

vIi−1(k) + log aIi−1Di

vDi−1(k) + log aDi−1Di

Termination:

vML+1(|s|+ 1) = max

vML(|s|) + log aMLML+1

vIL(|s|) + log aILML+1

vDL(|s|) + log aDLML+1

where qc is the average composition of residue c over the given sequences. The equations
relevant to the traceback variables are not shown.

The Viterbi algorithm finds a path through a profile HMM that is most likely to pro-
duce a sequence, and this corresponds to aligning the sequence to the profile HMM. The
construction of an MSA requires computing such a Viterbi alignment for each sequence.
Residues aligned to the same match state are aligned in columns. Indels are then inserted
appropriately for insertions and deletions. This implies an important difference between
profile HMM induced MSAs and conventional MSAs, which will be more clearly shown by
an example. Consider the protein sequences NTPFS, NCYDFLS and NKYLS. Suppose that the
profile HMM has length 4 and the most likely paths of the sequences are M1 I1 I1 M2 D3 M4,
M1 I1 I1 I1 M2 M3 M4 and M1 I1 M2 M3 M4, respectively (the begin and end states are
not shown). Then, we can obtain the alignment of these paths by aligning positions that
were generated by the same match state.

M1 I1 I1 M2 D3 M4

M1 I1 I1 I1 M2 M3 M4

M1 I1 M2 M3 M4

This leads to the following MSA.

N T P F − S
N C Y D F L S
N K Y L S

This method can give ambiguous results in some cases. In the above example, it is not
clear how to align the TP from the first sequence to the CYD from the second sequence
and the K from the third sequence, whereas the other residues are obviously aligned. Such
ambiguous residues are emitted from the insert states. A profile HMM does not attempt to
align these residues, because the insert state residues usually represent parts of the sequences
that are atypical, unconserved, and not meaningfully alignable. In contrast, many other
MSA algorithms align the whole sequences, regardless of which parts of the sequence are
meaningfully alignable or not. Another advantage of this method is that it allows the
sequences themselves to guide the MSA, rather than having a precomputed substitution
matrix and gap penalties. Thus, less bias is introduced.

Multiple Sequence Alignment 3-29

no. of alignments characteristics of alignments
Reference 1 82 phylogenetically equi-distant
Reference 2 23 including orphan sequences
Reference 3 12 equi-distant families
Reference 4 12 long terminal insertions
Reference 5 12 long internal insertions
Reference 6 13 repeats
Reference 7 8 transmembrane
Reference 8 10 circular permutations
hline

TABLE 3.5 BAliBASE version 2 contents [6]. References 6-8 were added upon the release of version 2.

3.4 Methods for Assessment

To assess alignment accuracies of programs, we must prepare a reference data set and
evaluate the accuracies using the data set. The best-known reference data set is BAliBASE
[6, 109]. In the latest version (BAliBASE2), references are divided into eight categories
depending on the nature of the structural alignments (Table.3.5). In addition, BAliBASE
defines the core segments for each alignment. The core segments of an alignment represent
explicitly the alignable regions within it. Recently published data sets, such as OXBench
[86], PREFAB [20] and SABmark [116], contain more references than BAliBASE.

The most widely used measures for evaluating MSAs are sum-of-pairs and column scores
[110]. The sum-of-pairs score (SPS) is defined as the proportion of correctly aligned pairs:

SPS =
∑I

i=1 SP
t
i∑J

j=1 SP
r
j

, (3.25)

where I and J are the numbers of columns of test and reference alignment, respectively.
SP t

i is defined as:
SP t

i =
∑

1≤m<n≤N

pi(m,n).

If aligned residue pair ami and ani of the test alignment also exists in the reference align-
ment, pi(m,n) = 1; otherwise, pi(m,n) = 0. SP r

j is the total number of aligned pairs in
the reference MSA. The column score (CS) represents the proportion of correctly aligned
columns:

CS =
∑I

i=1 Ci

J
. (3.26)

If the column of the test alignment is identical to the ith column of the reference, Ci = 1;
otherwise, Ci = 0. Both SPS and CS consider not the magnitude of alignment error
but the correctness of an alignment. The measure recently proposed by Raghava et al.
[86] takes the magnitude of error into consideration. In any case, the quality of reference
alignments critically affects the evaluation results. A measure without reference alignments,
called APDB [86], has also been proposed. The idea of APDB is to evaluate the goodness
of structural superposition induced by the test alignment.

The performance of a program may be represented by the mean or median of the distribu-
tion of scores. These values, however, should be assessed with care, because the distributions
are possibly asymmetric. Instead of means or medians, non-parametric statistical tests, such
as the Wilcoxon matched pair signed rank test and the Friedman test, are often used for
assessing the relative performance of programs. The Wilcoxon matched pair signed rank
test asks whether there is a significant difference in accuracy between the MSAs produced
by two programs. By contrast, the Friedman test examines whether all programs achieve

3-30 References

equivalent performance. If there is a significant difference among the programs, the Fried-
man test can also be used for assessing the difference between two methods. The Wilcoxon
matched pair signed rank test is generally more discriminative than the Friedman test, be-
cause the latter assesses relative relationships whereas the former considers the absolute
score differences.

3.5 Summary

MSA is an old yet highly active area in computational molecular biology. With the rapid
progress in genome projects, a huge amount of sequence data have been accumulated and
MSA is undoubtedly one of the most powerful computational tools for drawing the functional
implicationsngwerful computational tools tocussed above from these data. For a long time,
progressive methods (subsection 3.3.2) were the sole practical approach to solving large MSA
problems. This situation has been changed by the recent progress in iterative refinement
strategies (subsection 3.3.4). If only moderate evolutionary changes, such as substitutions
and short indels, are involved, current iterative methods may produce good alignments of
the order of 103 protein sequences within reasonable time. On the other hand, more drastic
evolutionary changes, such as the insertion or deletion of long segments, recombination,
and domain shuffling, are not well modeled by the current objective functions, as discussed
in subsection 3.2.3. The adequate combination of local and global similarities must be
incorporated in the alignment procedure. The methods discussed in subsection 3.3.3 steer
toward this direction, although much remains to be studies. The MSA of nucleic acid
sequences is another area that requires in-depth investigations. The three most important
problems are the MSA of structural RNAs, the MSA of regulatory elements on genomic
sequences, and the MSA of whole genome sequences. The various ideas discussed in this
chapter may be applied to these problems by appropriate adaptations.

References

[1] E. Althaus, A. Caprara, H.P. Lenhof, and K. Reinert. Multiple sequence alignment
with arbitrary gap costs: Computing an optimal solution using polyhedral combina-
torics. Bioinformatics, Vol. 18, Suppl. 2:S4–S16, 2002.

[2] S.F. Altschul. Gap costs for multiple sequence alignment. J. Theor. Biol., 138:297–
309, 1989.

[3] S.F. Altschul. Generalized affine gap costs for protein sequence alignment. Proteins,
32:88–96, 1998.

[4] S.F. Altschul, R.J. Carroll, and D.J. Lipman. Weights for data related by a tree. J.
Mol. Biol., 207:647–653, 1989.

[5] S.F. Altschul, T.L. Madden, A.A. Schaffer, and J. Zhang et al. Gapped BLAST and
PSI-BLAST: a new generation of protein database search programs. Nucleic Acids
Res., 25:3389–3402, 1997.

[6] A. Bahr, J.D. Thompson, J.C. Thierry, and O. Poch. BAliBASE (Benchmark Align-
ment dataBASE): enhancements for repeats, transmembrane sequences and circular
permutations. Nucleic Acids Res., 29:323–326, 2001.

[7] P. Baldi and S. Brunak. Bioinformatics: The Machine Learning Approach. The
MIT Press, second edition, 2001.

[8] P. Baldi, Y. Chauvin, T. Hunkapiller, and M.A. McClure. Hidden markov models of

References 3-31

biological primary sequence information. Proc. Natl. Acad. Sci. USA, 91:1059–1063,
1994.

[9] G.J. Barton. Protein sequence alignment techniques. Acta Crystallogr. D Biol.
Crystallogr., 54:1139–1146, 1998.

[10] G.J. Barton and M.J.E. Sternberg. A strategy for the rapid multiple alignment of
protein sequences. confidence levels from tertiary structure comparisons. J. Mol.
Biol., 198:327–337, 1987.

[11] S. Batzoglou, D.B. Jaffe, K. Stanley, and J. Butler et al. ARACHNE: a whole-genome
shotgun assembler. Genome Res., 12:177–189, 2002.

[12] M.P. Berger and P.J. Munson. A novel randomized iterative strategy for aligning
multiple protein sequences. Comput. Appl. Biosci., 7:479–484, 1991.

[13] H. Carrillo and D. Lipman. The multiple sequence alignment problem in biology.
SIAM J. Appl. Math., 48:1073–1082, 1988.

[14] F. Corpet. Multiple sequence alignment with hierarchical clustering. Nucleic Acids
Res., 16:10881–10890, 1988.

[15] M.O. Dayhoff, R.M. Schwartz, and B.C. Orcutt. A model of evolutionary change in
proteins. In Atlas of protein sequence and structure, volume Vol. 5, Suppl. 3, pages
345–352. National Biomedical Research Foundation, Silver Spring, ML, 1978.

[16] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis:
Probabilistic models of proteins and nucleic acids. Cambridge University Press,
Cambridge, 1998.

[17] L. Duret and S. Abdeddaim. Multiple alignments for structural, functional, or phylo-
genetic analyses of homologous sequences. In Bioinformatics: Sequence, structure
and databanks, pages 51–76. Oxford University Press, Oxford, 2000.

[18] R.V. Eck and M.O. Dayhoff. Atlas of protein sequence and structure. National
Biomedical Research Foundation, Springs, MD, 1966.

[19] R.C. Edgar. Local homology recognition and distance measures in linear time using
compressed amino acid alphabets. Nucleic Acids Res., 32:380–385, 2004.

[20] R.C. Edgar. MUSCLE: a multiple sequence alignment method with reduced time and
space complexity. BMC Bioinformatics, 5:113, 2004.

[21] J. Felsenstein. Maximum-likelihood estimation of evolutionary trees from continuous
characters. Am. J. Hum. Genet., 25:471–492, 1973.

[22] J. Felsenstein. Evolutionary trees from DNA sequences: a maximum likelihood ap-
proach. J. Mol. Evol., 17:368–376, 1981.

[23] J. Felsenstein. Inferring phylogenies from protein sequences by parsimony, distance,
and likelihood methods. Methods Enzymol., 266:418–427, 1996.

[24] J.W. Fickett and W.W. Wasserman. Discovery and modeling of transcriptional reg-
ulatory regions. Curr. Opin. Biotechnol., 11:19–24, 2000.

[25] D. Frishman and P. Argos. Seventy-five percent accuracy in protein secondary struc-
ture prediction. Proteins, 27:329–335, 1997.

[26] M. Gerstein and R.B. Altman. Average core structures and variability measures for
protein families: application to the immunoglobulins. J. Mol. Biol., 251:161–175,
1995.

[27] G.H. Gonnet, M.A. Cohen, and S.A. Benner. Exhaustive matching of the entire
protein sequence database. Science, 256:1443–1445, 1992.

[28] O. Gotoh. An improved algorithm for matching biological sequences. J. Mol. Biol.,
162:705–708, 1982.

[29] O. Gotoh. Consistency of optimal sequence alignments. Bull. Math. Biol., 52:509–
525, 1990.

[30] O. Gotoh. Optimal alignment between groups of sequences and its application to

3-32 References

multiple sequence alignment. Comput. Appl. Biosci., 9:361–370, 1993.
[31] O. Gotoh. Further improvement in methods of group-to-group sequence alignment

with generalized profile operations. Comput. Appl. Biosci., 10:379–387, 1994.
[32] O. Gotoh. A weighting system and algorithm for aligning many phylogenetically

related sequences. Comput. Appl. Biosci., 11:543–551, 1995.
[33] O. Gotoh. Significant improvement in accuracy of multiple protein sequence align-

ments by iterative refinement as assessed by reference to structural alignments. J.
Mol. Biol., 264:823–838, 1996.

[34] O. Gotoh. Multiple sequence alignment: algorithms and applications. Adv. Biophys.,
36:159–206, 1999.

[35] C. Grasso and C. Lee. Combining partial order alignment and progressive multiple
sequence alignment increases alignment speed and scalability to very large alignment
problems. Bioinformatics, 20:1546–1556, 2004.

[36] M. Gribskov, R. Lüthy, and D. Eisenberg. Profile analysis. Methods Enzymol.,
183:146–159, 1990.

[37] M. Gribskov, A.D. McLachlan, and D. Eisenberg. Profile analysis: detection of dis-
tantly related proteins. Proc. Natl. Acad. Sci. USA, 84:4355–4358, 1987.

[38] S.K. Gupta, J.D. Kececioglu, and A.A. Schaffer. Improving the practical space and
time efficiency of the shortest-paths approach to sum-of-pairs multiple sequence align-
ment. J. Comput. Biol., 2:459–472, 1995.

[39] D. Gusfield. Efficient methods for multiple sequence alignment with guaranteed error
bounds. Bull. Math. Biol., 55:141–154, 1993.

[40] J. Hein. A new method that simultaneously aligns and reconstructs ancestral se-
quences for any number of homologous sequences, when the phylogeny is given. Mol.
Biol. Evol., 6:649–668, 1989.

[41] J. Hein. Unified approach to alignment and phylogenies. Methods Enzymol., 183:626–
645, 1990.

[42] S. Henikoff and J.G. Henikoff. Amino acid substitution matrices from protein blocks.
Proc. Natl. Acad. Sci. USA, 89:10915–10919, 1992.

[43] S. Henikoff and J.G. Henikoff. Position-based sequence weights. J. Mol. Biol.,
243:574–578, 1994.

[44] M. Hirosawa, Y. Totoki, M. Hoshida, and M. Ishikawa. Comprehensive study on
iterative algorithms of multiple sequence alignment. Comput. Appl. Biosci., 11:13–
18, 1995.

[45] X. Huang and K.M. Chao. A generalized global alignment algorithm. Bioinformatics,
19:228–233, 2003.

[46] X. Huang and A. Madan. CAP3: A DNA sequence assembly program. Genome
Res., 9:868–877, 1999.

[47] T. Ikeda and H. Imai. Enhanced A* algorithms for multiple alignments: optimal
alignments for several sequences and k-opt approximate alignments for large cases.
Theor. Comp. Sci., 210:341–374, 1999.

[48] M. Ishikawa, T. Toya, M. Hoshida, and K. Nitta et al. Multiple sequence alignment
by parallel simulated annealing. Comput. Appl. Biosci., 9:267–273, 1993.

[49] T. Jiang and L. Wang. Algorithmic methods for multiple sequence alignment. In Cur-
rent topics in computational molecular biology, Computational molecular biology,
pages 71–110. The MIT Press, Cambridge, 2002.

[50] D.T. Jones, W.R. Taylor, and J.M. Thornton. The rapid generation of mutation data
matrices from protein sequences. Comput. Appl. Biosci., 8:275–282, 1992.

[51] W. Just. Computational complexity of multiple sequence alignment with SP-score.
J. Comput. Biol., 8:615–623, 2001.

References 3-33

[52] K. Katoh, K. Misawa, K. Kuma, and T. Miyata. MAFFT: a novel method for rapid
multiple sequence alignment based on fast fourier transform. Nucleic Acids Res.,
30:3059–3066, 2002.

[53] J. Kececioglu, H.-P. Lenhof, K. Mehlhorn, and P. Mutzel et al. A polyhedral approach
to sequence alignment problems. Disc. Appl. Math., 104:143–186, 2000.

[54] J.D. Kececioglu. The maximum weight trace problem in multiple sequence alignment.
Lecture Notes Comp. Sci., 684:106–119, 1993.

[55] J.D. Kececioglu and D. Starrett. Aligning alignments exactly. In Proceedings of the
8th ACM Conference on Computational Molecular Biology, 85-96, 2004, 2004.

[56] J. Kim, S. Pramanik, and M.J. Chung. Multiple sequence alignment using simulated
annealing. Comput. Appl. Biosci., 10:419–426, 1994.

[57] H. Kishino, T. Miyata, and M. Hasegawa. Maximum likelihood inference of protein
phylogeny and the origin of chloroplasts. J. Mol. Evol., 31:151–160, 1990.

[58] A. Kloczkowski, K.L. Ting, R.L. Jernigan, and J. Garnier. Combining the GOR V
algorithm with evolutionary information for protein secondary structure prediction
from amino acid sequence. Proteins, 49:154–166, 2002.

[59] A. Krogh, M. Brown, I. S. Mian, and K. Sjölander et al. Hidden markov models in
computational biology: Applications to protein modeling. J. Mol. Biol., 235:1501–
1531, 1994.

[60] J.B. Kruskal. An overview of sequence comparison. In Time warps, string edits,
and macromolecules: The theory and practice of sequence comparison, pages 1–44.
Addison-Wesley, Reading, MA, 1983.

[61] J.B. Kruskal and D. Sankoff. An anthology of algorithms and concepts for sequence
comparison. In Time warps, string edits, and macromolecules: The theory and
practice of sequence comparison, pages 265–310. Addison-Wesley, Reading, MA,
1983.

[62] V. Kunin, B. Chan, E. Sitbon, and G. Lithwick et al. Consistency analysis of simi-
larity between multiple alignments: prediction of protein function and fold structure
from analysis of local sequence motifs. J. Mol. Biol., 307:939–949, 2001.

[63] T. Lassmann and E.L. Sonnhammer. Quality assessment of multiple alignment pro-
grams. FEBS Lett., 529:126–130, 2002.

[64] C.E. Lawrence, S.F. Altschul, M.S. Boguski, and J.S. Liu et al. Detecting sub-
tle sequence signals: A Gibbs sampling strategy for multiple alignment. Science,
262:208–214, 1993.

[65] C. Lee, C. Grasso, and M.F. Sharlow. Multiple sequence alignment using partial
order graphs. Bioinformatics, 18:452–464, 2002.

[66] M. Lermen and K. Reinert. The practical use of the A* algorithm for exact multiple
sequence alignment. J. Comput. Biol., 7:655–671, 2000.

[67] O. Lichtarge, H.R. Bourne, and F.E. Cohen. An evolutionary trace method defines
binding surfaces common to protein families. J. Mol. Biol., 257:342–358, 1996.

[68] D.J. Lipman, S.F. Altschul, and J.D. Kececioglu. A tool for multiple sequence align-
ment. Proc. Natl. Acad. Sci. USA, 86:4412–4415, 1989.

[69] W. Miller and E.W. Myers. Sequence comparison with concave weighting functions.
Bull. Math. Biol., 50:97–120, 1988.

[70] B. Morgenstern. DIALIGN 2: improvement of the segment-to-segment approach to
multiple sequence alignment. Bioinformatics, 15:211–218, 1999.

[71] B. Morgenstern, K. Frech, A. Dress, and T. Werner. DIALIGN: finding local similar-
ities by multiple sequence alignment. Bioinformatics, 14:290–294, 1998.

[72] D.W. Mount. Multiple sequence alignment. In Bioinformatics: Sequence and
genome analysis, pages 163–225. Cold Spring Harbor Laboratory Press, Cold Spring

3-34 References

Harbor, New York, second edition, 2004.
[73] M. Murata, J.S. Richardson, and J.L. Sussman. Simultaneous comparison of three

protein sequences. Proc. Natl. Acad. Sci. USA, 82:3073–3077, 1985.
[74] E.W. Myers and W. Miller. Optimal alignments in linear space. Comput. Appl.

Biosci., 4:11–17, 1988.
[75] M. Nei and S. Kumar. Molecular evolution and phylogenetics. Oxford University

Press, Oxford, 2000.
[76] C. Notredame. Recent progress in multiple sequence alignment: a survey. Pharma-

cogenomics, 3:131–144, 2002.
[77] C. Notredame and D.G. Higgins. SAGA: sequence alignment by genetic algorithm.

Nucleic Acids Res., 24:1515–1524, 1996.
[78] C. Notredame, D.G. Higgins, and J. Heringa. T-Coffee: A novel method for fast and

accurate multiple sequence alignment. J. Mol. Biol., 302:205–217, 2000.
[79] C. Notredame, L. Holm, and D.G. Higgins. COFFEE: an objective function for

multiple sequence alignments. Bioinformatics, 14:407–422, 1998.
[80] W.R. Pearson. Comparison of methods for searching protein sequence databases.

Protein Sci., 4:1145–1160, 1995.
[81] J. Pei, R. Sadreyev, and N.V. Grishin. PCMA: fast and accurate multiple sequence

alignment based on profile consistency. Bioinformatics, 19:427–428, 2003.
[82] D. Petrey, Z. Xiang, C.L. Tang, and L. Xie et al. Using multiple structure alignments,

fast model building, and energetic analysis in fold recognition and homology modeling.
Proteins, Vol. 53, Suppl. 6:430–435, 2003.

[83] P. Pevzner. Computational molecular biology: An algorithmic approach. Compu-
tational molecular biology. The MIT Press, Cambridge, MA, 2000.

[84] A. Phillips, D. Janies, and W. Wheeler. Multiple sequence alignment in phylogenetic
analysis. Mol. Phylogenet. Evol., 16:317–330, 2000.

[85] L.R. Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition. Proc. IEEE, 77:257–286, 1989.

[86] G.P. Raghava, S.M. Searle, P.C. Audley, and J.D. Barber et al. OXBench: a bench-
mark for evaluation of protein multiple sequence alignment accuracy. BMC Bioin-
formatics, 4:47, 2003.

[87] S. Rajasekaran, X. Jin, and J.L. Spouge. The efficient computation of position-specific
match scores with the fast fourier transform. J. Comput. Biol., 9:23–33, 2002.

[88] K. Reinert, J. Stoye, and T. Will. An iterative method for faster sum-of-pairs multiple
sequence alignment. Bioinformatics, 16:808–814, 2000.

[89] S.K. Riis and A. Krogh. Improving prediction of protein secondary structure using
structured neural networks and multiple sequence alignments. J. Comput. Biol.,
3:163–183, 1996.

[90] B. Rost and C. Sander. Progress of 1D protein structure prediction at last. Proteins,
23:295–300, 1995.

[91] N. Saitou and M. Nei. The neighbor-joining method: A new method for reconstructing
phylogenetic trees. Mol. Biol. Evol., 4:406–425, 1987.

[92] A.A. Salamov and V.V. Solovyev. Prediction of protein secondary structure by com-
bining nearest-neighbor algorithms and multiple sequence alignments. J. Mol. Biol.,
247:11–15, 1995.

[93] A. Sali, J.P. Overington, M.S. Johnson, and T.L. Blundell. From comparisons of
protein sequences and structures to protein modelling and design. Trends Biochem.
Sci., 15:235–240, 1990.

[94] D. Sankoff. Minimal mutation trees of sequences. SIAM J. Appl. Math., 78:35–42,
1975.

References 3-35

[95] D. Sankoff and R. Cedergren. Simultaneous comparison of three or more sequences
related by a tree. In Time warps, string edits, and macromolecules: The theory
and practice of sequence comparison. Addison-Wesley, Reading, MA, 1983.

[96] T.D. Schneider and R.M. Stephens. Sequence logos: a new way to display consensus
sequences. Nucleic Acids Res., 18:6097–6100, 1990.

[97] T.D. Schneider, G.D. Stormo, L. Gold, and A. Ehrenfeucht. Information content of
binding sites on nucleotide sequences. J. Mol. Biol., 188:415–431, 1986.

[98] T. Shibuya and H. Imai. New flexible approaches for multiple sequence alignment.
J. Comput. Biol., 4:385–413, 1997.

[99] P.R. Sibbald and P. Argos. Weighting aligned protein or nucleic acid sequences to
correct for unequal representation. J. Mol. Biol., 216:813–818, 1990.

[100] P.H.A. Sneath and R.P. Sokal. Numerical taxonomy. Freeman, San Francisco, CA,
1973.

[101] R. Spang, M. Rehmsmeier, and J. Stoye. A novel approach to remote homology
detection: jumping alignments. J. Comput. Biol., 9:747–760, 2002.

[102] J. Stoye, V. Moulton, and A.W. Dress. DCA: an efficient implementation of the
divide-and-conquer approach to simultaneous multiple sequence alignment. Comput.
Appl. Biosci., 13:625–626, 1997.

[103] S. Subbiah and S.C. Harrison. A method for multiple sequence alignment with gaps.
J. Mol. Biol., 209:539–548, 1989.

[104] D.A. Tagle, B.F. Koop, M. Goodman, and J.L. Slightom et al. Embryonic epsilon
and gamma globin genes of a prosimian primate (galago crassicaudatus). nucleotide
and amino acid sequences, developmental regulation and phylogenetic footprints. J.
Mol. Biol., 203:439–455, 1988.

[105] L. Taher, O. Rinner, S. Garg, and A. Sczyrba et al. AGenDA: homology-based gene
prediction. Bioinformatics, 19:1575–1577, 2003.

[106] J.D. Thompson. Introducing variable gap penalties to sequence alignment in linear
space. Comput. Appl. Biosci., 11:181–186, 1995.

[107] J.D. Thompson, D.G. Higgins, and T.J. Gibson. CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence weight-
ing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.,
22:4673–4680, 1994.

[108] J.D. Thompson, D.G. Higgins, and T.J. Gibson. Improved sensitivity of profile search-
es through the use of sequence weights and gap excision. Comput. Appl. Biosci.,
10:19–29, 1994.

[109] J.D. Thompson, F. Plewniak, and O. Poch. BAliBASE: a benchmark alignment
database for the evaluation of multiple alignment programs. Bioinformatics, 15:87–
88, 1999.

[110] J.D. Thompson, F. Plewniak, and O. Poch. A comprehensive comparison of multiple
sequence alignment programs. Nucleic Acids Res., 27:2682–2690, 1999.

[111] U. Tönges, S.W. Perrey, J. Stoye, and A.W. Dress. A general method for fast multiple
sequence alignment. Gene, 172:GC33–41, 1996.

[112] W.S. Valdar. Scoring residue conservation. Proteins, 48:227–241, 2002.
[113] C. Venclovas. Comparative modeling in CASP5: progress is evident, but alignment

errors remain a significant hindrance. Proteins, Vol. 53, Suppl. 6:380–388, 2003.
[114] M. Vingron and P.A. Pevzner. Multiple sequence comparison and consistency on

multipartite graphs. Adv. Appl. Math., 16:1–22, 1995.
[115] M. Vingron and P.R. Sibbald. Weighting in sequence space: A comparison of methods

in terms of generalized sequences. Proc. Natl. Acad. Sci. USA, 90:8777–8781, 1993.
[116] I.V. Walle, I. Lasters, and L. Wyns. SABmark - a benchmark for sequence alignment

3-36 References

that covers the entire known fold space. Bioinformatics, 2004.
[117] G. Wang and Jr. Dunbrack, R.L. Scoring profile-to-profile sequence alignments. Pro-

tein Sci., 13:1612–1626, 2004.
[118] L. Wang and T. Jiang. On the complexity of multiple sequence alignment. J. Comput.

Biol., 1:337–348, 1994.
[119] H.T. Wareham. A simplified proof of the NP- and MAX SNP-hardness of multiple

sequence tree alignment. J. Comput. Biol., 2:509–514, 1995.
[120] M.S. Waterman, T.F. Smith, and W.A. Beyer. Some biological sequence metrics.

Adv. Math., 20:367–387, 1976.
[121] H. Yao, D.M. Kristensen, I. Mihalek, and M.E. Sowa et al. An accurate, sensitive,

and scalable method to identify functional sites in protein structures. J. Mol. Biol.,
326:255–261, 2003.

[122] C. Zhang and A.K. Wong. A genetic algorithm for multiple molecular sequence
alignment. Comput. Appl. Biosci., 13:565–581, 1997.

4
Parametric Sequence Alignment

David Fernández-Baca
Iowa State University

Balaji Venkatachalam
Iowa State University

4.1 Introduction . 4-1
4.2 Preliminaries . 4-2

Geometric Notions • Scoring Schemes • Parametric
Sequence Alignment • Some Basic Parametric
Problems

4.3 Combinatorial Complexity . 4-9
Global Alignment • Local Alignment • Multiple
Sequence Alignment

4.4 Parametric Search . 4-11
Bisection Search • Megiddo’s Method • Newton’s
Method • Gradient Descent • Parametric Search and
Inverse Sequence Alignment • Ray Shooting and
Sensitivity Analysis

4.5 Constructing the Parameter Space
Decomposition . 4-19
The One-Parameter Case • Generalization to Higher
Dimensions

4.6 Parametric Problems in Hidden Markov Models of
Sequence Alignment . 4-22
Hidden Markov Models • The Pair HMM •

Parametric Problems in HMMs
4.7 Notes and Comments . 4-27

4.1 Introduction

The optimum solution to any sequence alignment problem depends on the choice of a number
of parameters, such as the penalties for mismatches and gaps. Even slight changes in the
parameter values can result in a complete structural change in the optimum alignment.
Parametric sequence alignment explores the effect of parameter variation on the optimum
alignment over a range of parameter values, to assist in making the right choice for the
given circumstances. Several specific problems are of interest. For instance, in sensitivity
analysis, the goal is to assess the robustness of an optimum alignment by determining
the amount by which the current parameter values can be perturbed without altering the
optimality of the alignment. The goal in inverse alignment is to locate the parameter values
for which the optimum alignment exhibits certain desired features, for example, a certain
number of matches or gaps. These and other questions are the subject of this chapter, which
is organized around four interrelated topics: combinatorial complexity, parametric search,
construction, and parametric problems in hidden Markov models of sequence alignment.
We now give an overview of these issues; more precise definitions can be found in the next
section.

4-1

4-2 Handbook of Computational Molecular Biology

Under the linear scoring schemes used in practice, the parameter space decomposes into a
finite set of convex and polyhedral optimality regions , each of which is a maximal connect-
ed subset of parameters within which essentially one alignment is optimum. The number
of regions of the decomposition is the combinatorial complexity of the decomposition; de-
termining this quantity is one of the basic problems in parametric analysis. Because of
the shared properties of commonly-used scoring schemes, it is possible to establish general
bounds on the combinatorial complexity. These bounds and their applications are presented
in 4.3.

Parametric search problems ask to find parameter settings satisfying certain specified
conditions. The inverse alignment problem described above falls in this category. Ray
shooting is a parametric search problem that arises as a subtask in sensitivity analysis:
Given a point in the parameter space, an alignment optimal at that point, and a ray
emanating from the point, the question is to find the point along the ray at which the
alignment ceases to be optimal. Techniques for parametric search are reviewed in 4.4.

The construction problem is to build the parameter space decomposition induced by the
alignment of two strings. As discussed in 4.2, this is equivalent to building the upper
envelope of a set of linear score functions. The time needed to build the decomposition
clearly depends on the combinatorial complexity of the output produced. Approaches for
construction are reviewed in 4.5.

Hidden Markov models offer an alternative view of sequence alignment scoring schemes.
Here, the evolution of two sequences from a common ancestor is viewed as a stochastic pro-
cess where unobservable mutations, insertions, and deletions take place according to certain
probabilities, which are the parameters of the model. The goal is to infer the most likely
evolutionary process for the given sequences. Parametric problems arise naturally in this
context, since the models depend highly on the underlying probabilities. The relationship
between these questions and the parametric problems of 4.3 – 4.5 is studied in 4.6.

The chapter closes in 4.7 with some historical notes, comments, and additional references.

4.2 Preliminaries

The study of parametric sequence alignment relies on certain basic geometric notions, to-
gether with the properties of scoring schemes. We review both of these next, after which we
formally define parametric sequence alignment and introduce some of the basic problems in
parametric analysis.

4.2.1 Geometric Notions

DEFINITION 4.1 Let H be a set of d-variate real-valued functions. The upper envelope
of H is the function defined as:

UH(λ) = max
h∈H

h(λ). (4.1)

That is, UH is the point-wise maximum of the functions in H (see Figure 4.1). The lower
envelope of H is defined as

LH(λ) = min
h∈H

h(λ). (4.2)

That is, LH is the point-wise minimum of the functions in H .

Parametric Sequence Alignment 4-3

FIGURE 4.1: A collection of linear functions, with their upper envelope shown in bold.

PROPOSITION 4.1 Let H be a collection of d-variate linear functions. Then, UH (LH)
is a piecewise-linear convex (concave) function.

In the one-dimensional case, the upper envelope of a collection of linear functions takes
on a particularly simple form: it is a chain of line segments of successively larger slopes.
The parameter values at which the slope changes are called breakpoints. (See Figure 4.1.)

DEFINITION 4.2 Let H be a set of d-variate real-valued functions. The maximization
diagram (minimization diagram) of H is a data structure that consists of two parts:

(i) The subdivision of R
d induced by UH (LH); that is, the projection of the faces

of dimensions 0 through d of UH (LH) onto R
d.

(ii) For each d-face f of the subdivision, the unique function h ∈ H such that UH(λ)
(LH(λ)) equals h(λ) for all λ ∈ f . Face f is the optimality region for function h.

PROPOSITION 4.2 Let H be a collection of d-variate linear functions. Then, the
maximization (minimization) diagram of H is a decomposition of R

d into convex polyhedral
regions.

Observe that in the one-dimensional case, the maximization diagram yields a subdivision
of the real line into a sequence of intervals. The boundary between each successive pair of
intervals is a breakpoint of the upper envelope.

4.2.2 Scoring Schemes

Every sequence alignment method is based on some scheme that assigns numeric scores
to alignments. The score of an alignment A is a function of A itself and a user-specified
parameter vector λ = (λ1, . . . , λd) ∈ R

d, which gives the weights of the various features of

4-4 Handbook of Computational Molecular Biology

an alignment (for example, the cost of mismatches and gaps).

DEFINITION 4.3 The optimum alignment problem is to compute

Z(λ) = max
A

score(A, λ) (4.3)

for some fixed λ, where score is the scoring function and A ranges over all alignments of the
input sequences. The alignment A∗ that maximizes (4.3) is called the optimum alignment
at λ. Function Z is the optimum score function.

Throughout the rest of this chapter the input sequences are denoted by S1 and S2; their
lengths are n and m, respectively, with n ≤ m. The value of the maximum score of
an alignment between S1 and S2 is sometimes called the similarity score (or simply the
similarity) of S1 and S2. Intuitively, the higher the similarity between S1 and S2, the
closer the two sequences are. Note that there are cases where the objective is to find an
alignment of minimum score. These are sometimes called minimum edit distance problems
and the value of the minimum score is called the distance between the sequences [28]. In
this chapter, all results are for similarity scoring; however, these results can be translated
to minimization problems. Indeed, it is often possible to establish correspondences between
similarity- and distance-based scoring schemes [28].

DEFINITION 4.4 An evaluator is a procedure that given a pair of input strings and a
parameter vector λ(0), computes an optimum alignment A(0) at λ(0).

Note that an evaluator also allows us to compute the value of Z(λ(0)), which equals
score(A(0), λ(0)).

DEFINITION 4.5 A scoring scheme is linear if, for every alignment A, score(A, λ) is a
linear function of the parameter vector λ.

Essentially all scoring schemes used in sequence alignment are linear. For example, in
global alphabet-independent scoring, the score is a linear function of four parameters,

score(A, α, β, γ, δ) = αw − βx− γy − δz, (4.4)

where w, x, y, z are the number of matches, mismatches, indels, and gaps in A, and
α, β, γ, δ are the respective weights. An evaluator for this problem is any optimum global
alignment algorithm, such as the standard O(nm) dynamic programming procedure [28].

In global alphabet-dependent scoring, we are given a |Σ| × |Σ| matrix M = [µab], where
Σ is the alphabet and µab is the score for aligning characters a and b. Then,

score(A,M, γ, δ) =
∑

a,b∈Σ

µabwab − γy − δz, (4.5)

where wab denotes the number of times characters a and b are aligned in A, and y, z, γ, δ
are as in Equation (4.4). As in the alphabet-independent case, an optimum alignment can
be found in O(nm) time for any fixed parameter vector.

The next definition captures some of the characteristics of commonly used scoring schemes.

DEFINITION 4.6 A scoring scheme is feature-based if there exists a (many to one)
mapping f from alignments to a subset F of Z

d and the score of any alignment A as a

Parametric Sequence Alignment 4-5

function of the parameters depends only on f(A). Set F is the feature set of the problem;
p = f(A) is the feature vector of A and each coordinate of p is called a feature. A feature-
based scoring scheme is simple if for any alignment A, the score of A can be expressed
as

score(A, λ) = p · λ, (4.6)

where p ∈ Z
d is the feature vector of A and λ ∈ R

d is the parameter vector.

In all applications considered in this chapter, the size of the feature set is bounded as a
function of the sequence lengths. This is explored in greater depth in 4.3.

The feature vector of an alignment A represents discrete characteristics of A. To illustrate
this, observe that the alphabet-independent scheme of Equation (4.4) is feature-based and
simple. The feature vector of an alignment in this case is p = (w, x, y, z). Each of p’s features
is bounded by the total number of characters in the input strings, and the parameter vector
λ = (α, β, γ, δ) assigns a weight to each feature. The alphabet-dependent scoring scheme
of Equation (4.5) is also feature-based and simple. In this case, there are |Σ|2 + 2 features,
given by the vector

p = (wa1a1 , . . . , wa1a|Σ| , . . . , wa|Σ|a1 , . . . , wa|Σ|a|Σ| , y, z). (4.7)

Each feature is at most equal to the total number of characters in the input strings.
The following is an example of an alphabet-dependent scoring scheme that is feature-

based but not simple [31]. Let the scoring matrix M = [µab] be fixed, but assign different
weights to matches and mismatches as shown below.

score(A, α, β, γ, δ) = α
∑

a∈Σ

µawaa + β
∑

a,b∈Σ

µabwab − γy − δz (4.8)

The feature vector in this case is given by Equation (4.7), but there are now only four
parameters — α, β, γ, and δ — instead of |Σ|2 + 2.

Definition 4.6 does not capture all scoring schemes used in practice. For example, the
definition does not cover schemes where the cost of a gap is some constant (the gap penalty)
times the logarithm of the gap length [28]. Even though this method does not fit within our
framework, it nevertheless still exhibits some of the characteristics of feature-based scoring,
since, for fixed sequence lengths, the number of gaps and their various lengths can only
assume a finite set of integer values. Note also that while the dependence on the gap length
is non-linear, the scoring scheme is itself linear in the weight given to gaps.

4.2.3 Parametric Sequence Alignment

Parametric sequence alignment studies the effect of varying the parameter vector on the
optimum alignment. Its central object of study is Z, the optimum score function of Defini-
tion 4.3. Under linear similarity scoring, Z is the upper envelope of a set of linear functions

H = {score(A, λ) : A is optimal at some λ(0) ∈ R
d}.

(For minimum edit distance problems, Z is a lower envelope.) For brevity, we refer to the
maximization diagram of H as the maximization diagram of Z. By Propositions 4.1 and
4.2, the maximization diagram of Z decomposes the parameter space, R

d, into convex poly-
hedral optimality regions. This is illustrated in Figure 4.2, which shows the maximization
diagram of the optimum score function for global alphabet-independent alignment between
two sequences as the mismatch penalty β and the indel penalty γ are varied across the

4-6 Handbook of Computational Molecular Biology

β

I

III

IV

II
γ

FIGURE 4.2: Decomposition of the parameter space induced by sequences S1 = BAABBB

and S2 = ABBAAA. The corresponding optimum alignments are AI =
(BAABBB−−−,−− A− BBAAA), AII = (BAABB−−B,−− ABBAAA), AIII =
(BAAB− BB,−ABBAAA), AIV = (BAABBB, ABBAAA).

positive quadrant, while each match gets a (constant) reward of one and the gap penalty is
zero. There are exactly four optimality regions, whose corresponding alignments are shown.
Note that in general, each optimality region may have several co-optimal alignments.

The structure of the maximization diagram of Figure 4.2 is particularly simple: any
vertical cross section encounters the same series of alignments when going from bottom to
top. A representative slice is shown in Figure 4.3, which displays the optimal score function
Z(γ) for the alignment problem of Figure 4.2, when β is fixed at one. The picture shows
how, indeed, Z(γ) is the upper envelope of the score functions of various alignments.

The simplicity of Figure 4.2 is due to the scoring scheme, and is analyzed in more detail
in 4.3. Other scoring schemes yield more intricate structures, as shown in Figure 4.4, taken
from [31]. The figure gives the maximization diagram for the score of the optimum global
alignment of immunoglobulins FABVL and FABVH, as a function of indel and gap penalties.
The scoring here is alphabet-dependent, using the PAM250 matrix [15] with a constant of
8 added to each entry; gaps at the end of an alignment are assigned a score of zero.

4.2.4 Some Basic Parametric Problems

We now list five basic problems encountered in parametric sequence analysis, regardless of
the scoring system used. The first of these is central to many parametric analysis problems:

PROBLEM 1 (Ray shooting) Given a parameter vector λ(0) ∈ R
d, an optimum align-

ment A(0) at λ(0) and a ray ρ originating at λ(0), find the last point on ρ at which A(0) is
optimal.

Parametric Sequence Alignment 4-7

−4

42

2

4

−6

−2

0

I III

IV

II

Z(γ)

γ

FIGURE 4.3: The optimum score function for the two sequences of Figure 4.2, when the mis-
match penalty is fixed at one. Each line segment is the score of one optimum
alignment (labeled I–IV to correspond to Figure 4.2); the Z function is shown in
bold.

By suitable re-parametrization Problem 1 can be converted to a one-parameter problem:
find the largest λ∗ > λ(0) such that A(0) is optimal at λ∗ (thus, λ∗ is a breakpoint of the
optimum score function or infinity).

The next problem is a multidirectional version of the preceding one. It addresses the
robustness of alignments to changes in parameter settings.

PROBLEM 2 (Sensitivity analysis) Given a parameter vector λ(0) ∈ R
d and an opti-

mum alignment A(0) at λ(0), find the largest subset F of R
d such that A(0) is optimal for

all λ ∈ F .

Problem 2 is equivalent to computing a complete description of the optimality region
containing a given parameter vector. The next problem asks to find all the optimality
regions.

PROBLEM 3 (Parameter space decomposition) Construct the maximization diagram
of Z(λ).

In applications, the maximization diagram is only constructed for a subset of R
d. For

instance, in two-parameter problems, this subset may be the positive quadrant. In other

4-8 Handbook of Computational Molecular Biology

γ

β

FIGURE 4.4: Decomposition of the parameter space induced by two protein sequences.

cases, we may only be interested in constructing the maximization diagram within a (hyper-)
rectangle in R

d.
The time needed to construct the maximization diagram of the optimum score function

depends heavily on the number of regions in the diagram. Thus, closely related to Problem
3 is the following question.

PROBLEM 4 (Combinatorial complexity) Establish bounds on the number of optimality
regions in the maximization diagram of Z as a function of the lengths of the sequences.

One way to determine parameter settings that are likely to produce biologically mean-
ingful results is to use a set of sample alignments (produced, perhaps, by manually editing
computer-generated alignments [38]) as a training set. This motivates our final problem.

PROBLEM 5 (Inverse optimization) Given a reference alignment A(0), find a parameter
vector λ∗ ∈ R

d that minimizes Z(λ)− score(A(0), λ).

Problem 4 is, in a sense, the most basic of the five and is thus studied first, in 4.3.
Problems 1 and 5 are parametric search problems, which are discussed in 4.4. Problem 2 is
also treated in 4.4, where it is shown that it can be solved through ray shooting. Problem 3
is discussed in 4.5. The relationship between Problems 1–5 and hidden Markov models of
sequence alignment is examined in 4.6.

Parametric Sequence Alignment 4-9

4.3 Combinatorial Complexity

The combinatorial complexity of the optimum score function is the number of optimality
regions in its maximization diagram. This quantity impacts the time needed to solve various
parametric alignment problems. The most obvious example is the construction problem,
since the work needed to build the maximization diagram clearly depends directly on the
number of regions in the decomposition (see Section 4.5). The combinatorial complexity
also affects the time needed for parametric search (see Section 4.4).

For feature-based scoring schemes, the number of distinct score functions is trivially
bounded by the product of the sizes of the ranges of the features. We summarize this as
follows.

THEOREM 4.1 Let P be a d-parameter alignment problem with feature-based scoring,
such that for every i ∈ [d], feature i can assume one of ni distinct values. Then, the maxi-
mization diagram of the optimum score function of P has O(

∏d
i=1 ni) optimality regions.

The above result can give quick estimates on the number of optimality regions, since
individual features — such as the number of matches, mismatches, gaps, or indels — are
typically linear in the lengths of the input strings (see 4.3.1).

For small d and simple feature-based scoring, the combinatorial properties of lattice
polytopes can be used to improve the bound of Theorem 4.1 as follows [21, 42].

THEOREM 4.2 Let P be a d-parameter alignment problem with simple feature-based
scoring, such that for every i ∈ [d], feature i can assume integer values in an interval
of length ni. Then, the maximization diagram of the optimum score function of P has

O

((∏d
i=1 ni

)(d−1)/(d+1)
)

optimality regions.

In the remainder of this section, we present some applications of these results. Our goal
is not to be exhaustive, but to give the reader an idea of how the theorems can be used.

4.3.1 Global Alignment

We begin with alphabet-independent scoring. The score of a global alignment of two strings,
Equation (4.4) of 4.2.2, is a linear function of four parameters, α, β, γ, δ. The feature vector
is (w, x, y, z) and each feature is bounded by the length of the strings as follows [29]:

0 ≤ w, x ≤ n, m− n ≤ y ≤ m+ n, 0 ≤ z ≤ 2n+ 1. (4.9)

That is, the range of values for each feature is O(n). Therefore, applying Theorem 4.1,
we obtain an upper bound of O(n4) on the number of optimality regions. This is reduced
to O(n12/5) by applying Theorem 4.2. In this case as in others, it is possible to improve
on these estimates significantly by exploiting dependencies between features. We give the
details below.

The reward for matches, α, is always assumed to be positive. Thus, we can divide through
by α and re-parameterize appropriately, to obtain the following equivalent score function

score(A, β, γ, δ) = w − βx− γy − δz (4.10)

The number of matches can be eliminated from the score function through the following
observation. Since every match and every mismatch involves exactly two characters from

4-10 Handbook of Computational Molecular Biology

each of the input strings and every indel involves exactly one character from one of the
strings, we have that [29]

2w + 2x+ y = m+ n. (4.11)

Solving for w and substituting in Equation (4.10), we obtain [29, 19]

score(A, α, β, γ, δ) =
n+m

2
− (β + 1)x−

(
γ +

1
2

)
y − δz. (4.12)

Observe that since the term (n+m)/2 is common to all score functions, it can be elimi-
nated, allowing us to redefine the score, after suitable re-parametrization [29, 19], as

score(A, β, γ, δ) = −βx− γy − δz. (4.13)

We consider two cases. First, suppose the gap penalty δ is zero, and thus score(A, β, γ, δ) =
−βx − γy. The feature vector is therefore (x, y). Using Equation (4.9) and Theorem 4.2
yields a bound of O(n2/3) on the number of optimality regions.

For the problem of global alignment with varying gap penalty δ > 0, there are three
parameters and the feature vector is (x, y, z). Using Equation (4.9) and Theorem 4.2 yields
a bound of O(n3/2) on the number of optimality regions.

REMARK 4.1 Equation (4.13) implies that global alphabet-independent alignment with
zero gap penalty is effectively a one parameter problem in γ, in the sense that the optimal
alignments encountered as γ is varied are exactly the same regardless of the value of β, as
long as it is positive. Thus, the simple structure of the maximization diagram in Figure 4.2
is not accidental. By a similar reasoning, for β > 0 global alphabet-independent alignment
with non-zero gap penalty is effectively a two parameter problem in γ and δ.

We now turn to alphabet-dependent scoring, where the score function is given by E-
quation (4.5). The number of parameters d = |Σ|2 + 2 and the feature vector is given by
Equation (4.7). The values of y and z in this vector obey the bounds of expression (4.9). For
every a, b ∈ Σ, 0 ≤ wab ≤ n, since the number of times any two characters in the alphabet
can be paired in an alignment cannot exceed the number of characters in the shorter string.
Thus, Theorem 4.2 gives a bound of nO(|Σ|2) optimality regions, which is polynomial if the
alphabet size is fixed.

Consider now the four-parameter alphabet-dependent scoring scheme of Equation (4.8)
of 4.2.2. Since the scheme is not simple, we use Theorem 4.1 to bound the number of
optimality regions. The feature vector in this case has Θ(|Σ|2) coordinates (the same as in
the previous example), each of which is at most n. This yields a bound of nO(|Σ|2) on the
combinatorial complexity of Z.

4.3.2 Local Alignment

A local alignment of two strings S1, S2 is a global alignment between two substrings S′1, S
′
2,

of S1, S2, respectively [28]. Thus, in the alphabet-independent case, the score function takes
on the same form as Equation (4.10). The bounds of inequalities (4.9) on the ranges of w,
x, y, and z still hold. However, since local alignments involve substrings of S1 and S2,
Equation (4.11) becomes an inequality, preventing us from eliminating w [29].

When the gap penalty is zero, there are three parameters, with feature vector (w, x, y).
Hence, Theorem 4.2 gives a bound of O(n3/2) on the number of optimality regions. When
the gap penalty is allowed to vary, we have four parameters and feature vector (w, x, y, z),

Parametric Sequence Alignment 4-11

giving a bound of O(n12/5). For alphabet-dependent scoring, the same arguments as in the
preceding subsection give an upper bound of nO(|Σ|2) on the number of optimality regions.

4.3.3 Multiple Sequence Alignment

Since Theorem 4.1 and 4.2 depend only on the form of the scoring scheme, they can be
applied to problems beyond pairwise alignment, including a variety of multiple alignment
problems. The key idea is to aggregate the features of the induced pairwise alignments
into a feature vector for the multiple alignment as a whole. As an example, we consider
sum-of-pairs scoring; further applications are given in [21, 19].

A multiple alignment A of the set of sequences S1, . . . , Sk, k ≥ 2, is obtained by inserting
spaces in each string to obtain k strings S′1, . . . , S

′
k of the same length. For every pair

i, j ∈ [k], i �= j, alignment A induces a pairwise alignment Aij between strings Si and Sj,
obtained by taking S′i and S′j and striking out any column containing two spaces. Assume
that we have chosen some scoring mechanism for pairwise alignments that depends on a
parameter vector λ. Then, the sum-of-pairs (SP) score of A is given by

score(A, λ) =
∑

i<j

score(Aij , λ). (4.14)

We now examine in some detail the case where global alphabet-independent scoring is used
to score pairwise alignments; we then summarize the results for other pairwise scoring
schemes.

Let w, x, y, z be, respectively, the total number of matches, mismatches, indels, and gaps
in all pairwise alignments induced by A; for example, w =

∑
i<j wij , where wij is the number

of matches in the induced pairwise alignment Aij . The score can be again expressed as in
Equation (4.4), and the feature vector is (w, x, y, z). Assuming for simplicity that all strings
are of the same length n, and using the fact that the features of the pairwise alignments
obey Equation (4.9), each aggregate feature is within a range of size O(k2n). Furthermore,
we can eliminate w as we did for pairwise alignment, leaving us with two parameters for
the case where gaps have zero weight and three for the case where the weight is positive
[19]. Therefore, Theorem 4.2 gives an upper bound of O(n2/3k4/3) for the first case, and a
bound of O(n3/2k3) for the second.

For local alignment under alphabet-independent scoring, we obtain, combining the argu-
ments above with those of the previous subsection, bounds of O(n3/2k3) and O(n12/5k24/5)
regions with zero and variable gap penalties, respectively. Under alphabet-dependent scor-
ing, for either the global or local alignment, we obtain bounds of (nk)O(|Σ|2).

4.4 Parametric Search

The term parametric search refers to any question that involves finding a parameter vector
λ∗ that satisfies some specified property. Problems 1 and 5 of 4.2.4 fall in this category.
In both cases, λ∗ is a vertex of the maximization diagram of Z: For ray shooting, after
re-parametrization, the λ∗ we seek is a breakpoint of Z. For inverse optimum alignment,
the point λ∗ that minimizes the difference between Z(λ) and score(A(0), λ) can always be
chosen to be a vertex of the maximization diagram of Z.

We review four methods of parametric search: bisection search, Newton’s method, gra-
dient descent, and Megiddo’s method. All of these operate by generating a set of candidate
values for λ∗, using them to narrow down the search by invoking either an evaluator (Defi-
nition 4.4) or an oracle.

4-12 Handbook of Computational Molecular Biology

DEFINITION 4.7 An oracle for a one-dimensional parametric search problem is a pro-
cedure that, given a parameter value λ̂ determines whether or not λ̂ is less than or equal to
the parameter value being sought.

Oracles and evaluators are often related. To illustrate this, consider the following ray-
shooting problem that is used as a sample application of three of the methods presented
here.

Indel penalty sensitivity analysis in global alignment. Let A(0) be an
optimum global alignment for some given indel penalty γ(0). Assuming that the
gap penalty is zero and that the reward for matches and the mismatch penalty
are each one, find the largest indel penalty γ∗ ≥ γ(0) such that A(0) is optimal
for every γ ∈ [γ(0), γ∗].

Note that, by Remark 4.1, no generality is lost by the above choices for the weights of
matches and mismatches. As seen in 4.2.2, an evaluator for this problem is the standard
dynamic programming algorithm for optimum global alignment. An oracle for the problem
must determine whether a given γ̂ ≥ γ(0) is less than or equal to γ∗. To test this, first
use the evaluator to find an optimum alignment Â when the indel penalty equals γ̂. Next,
compare score(A(0), γ̂) and score(Â, γ̂). If they are equal, then γ̂ ≤ γ∗. Otherwise (since Â

is optimum at γ̂), the only possibility is that score(A(0), γ̂) < score(Â, γ̂), and thus γ̂ > γ∗.
The rest of this section is organized as follows. In 4.4.1–4.4.4, we give an overview

of bisection search, Megiddo’s method, Newton’s method, and gradient descent. This is
followed by applications of parametric search to inverse alignment (4.4.5) and sensitivity
analysis (4.4.6).

4.4.1 Bisection Search

Bisection search for one-parameter problems is easy to describe. Suppose λ∗ (which, by
assumption, is a breakpoint) is known to lie in some interval I on the real line. Repeatedly
halve I, taking the left or right half depending on the outcome of an oracle call at the
midpoint. The search stops when I is too small to contain more than one breakpoint; the
sole breakpoint that remains in I must be λ∗. We use the indel penalty sensitivity analysis
problem to illustrate this technique. We show that the properties of the scoring function
imply a logarithmic bound on the number of halving steps (and, therefore, the number of
oracle calls) required. Similar ideas can be used to prove the efficiency of the bisection
search in other applications.

The goal is to locate the first breakpoint γ∗ of Z that follows γ(0). For this, we

(i) choose a sufficiently large search interval I,
(ii) repeatedly bisect I until it has at most one breakpoint of Z, but still contains

γ∗, and
(iii) locate γ∗ within I.

The oracle for the problem has already been described. Its running time is O(nm) (the work
to compute an optimum alignment using dynamic programming). It remains to explain the
implementation of steps (i)–(iii). As usual, let n and m be the lengths of the sequences,
n ≤ m.

Consider step (i). Let A(1),A(2), . . . denote the series of optimal alignments along the
interval I. Let wi, xi, yi denote the number of matches, mismatches, and indels in A(i). Let
∆wi = wi+1 − wi, ∆xi = xi+1 − xi, ∆yi = yi+1 − yi and let γ(i) be the breakpoint where

Parametric Sequence Alignment 4-13

A(i) and A(i+1) are co-optimal. Then,

γ(i) =
∆wi −∆xi

∆yi
. (4.15)

By integrality, ∆yi ≥ 1 and, by inequalities (4.9), wi ≤ n. Hence, γ(i) ≤ n for all i. Thus,
our search can be restricted to the interval I = (γ(0), n].

Consider step (ii). For any two successive breakpoints γ(i), γ(i+1) of Z,

γ(i+1) − γ(i) =
(∆wi+1 −∆xi+1)∆yi − (∆wi −∆xi)∆yi+1

∆yi+1∆yi
. (4.16)

By (4.9), ∆yi ≤ 2n. Since the left-hand side of Equation (4.16) must be positive and the
various ∆ terms are integers, the numerator must be at least 1. Thus, γ(i+1)−γ(i) ≥ 1/(4n2).
Therefore, in step (ii) we stop as soon as the length of the search interval drops below
1/(4n2).

After step (ii) is complete, we know that γ∗ must lie in the interval I = (γ(0), γ(1)], within
which Z has at most one breakpoint. To locate γ∗ within I (step (iii)), do as follows. First,
compute the optimal alignment A(1) at γ(1). There are two cases:

Case 1: There is no breakpoint inside I, and therefore there are no breakpoints beyond
γ(0). This is true if either score(A(0), γ(0)) = score(A(1), γ(0)) or score(A(0), γ(1)) =
score(A(1), γ(1)). In this case, return γ∗ = +∞.

Case 2: There is exactly one breakpoint inside I, which must be the value λ∗ be-
ing sought. In this case, return the value γ∗ such that score(A(0), γ∗) =
score(A(1), γ∗).

The number of bisection steps is O(log n), each requiring O(nm) time. The final step
requires computing one optimum alignment plus O(1) additional work. The total time is
therefore O(nm logn).

While the details above are specific to sensitivity analysis, similar ideas can be used for
other search problems, such as inverse optimal alignment (see 4.4.5 and [50]). Extensions
to two-parameter problems are possible. In this case, instead of maintaining an interval,
we maintain a polygonal region and, instead of splitting an interval through the middle, we
split the current polygonal region by a line through its centroid (see [50]).

4.4.2 Megiddo’s Method

Megiddo’s method [36, 37] provides a precise relationship between the complexity of solving
a parametric problem and the complexity of the problem’s fixed-parameter version. Here
we discuss the one-parameter version of Megiddo’s method; generalizations to any fixed
number of parameters are explained elsewhere [9, 3].

In what follows λ denotes a scalar parameter. Let the value being sought be denoted by
λ∗, which is known to to be greater than or equal to some value λ(0). Like bisection search,
Megiddo’s method generates a sequence of test values that are used to reduce the search
interval with the aid of the oracle. The key difference is that the test values are generated
by simulating the execution of an algorithm for the underlying fixed-parameter problem.
This algorithm must be of a certain kind.

DEFINITION 4.8 An algorithm is piecewise linear if each value it computes is a linear
combination of the input parameters.

4-14 Handbook of Computational Molecular Biology

Any reasonable dynamic programming algorithm is piecewise linear. For example, con-
sider the standard (table-based) dynamic programming algorithm for global alignment with
zero gap penalty. We argue that each entry of the dynamic programming table is a linear
combination of α, β and γ. This claim is trivially true for the first row and column of the
table. Now assume the claim is true for every entry (i′, j′) such that (i′, j′) is lexicographi-
cally smaller than (i, j). Entry (i, j) is the maximum of three entries of the table, each with
index (i′, j′) lexicographically smaller than (i, j), plus α, minus β, or minus γ. Therefore,
entry (i, j) is itself a linear combination of α, β and γ.

Megiddo’s method simulates the execution of a piecewise linear algorithm B for the un-
derlying fixed-parameter problem in order to find B’s execution path at λ∗. Instead of
manipulating numbers, the simulation manipulates linear functions of λ. This is possible
because every value v manipulated by B can be represented symbolically as v(λ) = pv +qvλ.
Megiddo’s method maintains an interval I = [λ(0), λ(1)) that is updated so that the following
invariant holds after i steps of B have been simulated:

λ∗ ∈ I and the first i steps of B’s execution path are the same for every λ ∈ I. (4.17)

Initially, λ(1) = +∞. Suppose a certain number of B’s steps have been simulated. To
simulate the next step, proceed as follows.

• If the step is an arithmetic operation, execute it symbolically to obtain a new
linear function of λ. We make the mild assumption that symbolic execution of
an operation only increases its running time by a constant factor.

• If the step is a comparison between two numbers u(λ) = pu + quλ and v(λ) =
pv +qvλ, compute λ̂ such that u(λ̂) = v(λ̂). If no such λ̂ exists, u and v are either
identical or one is larger than the other for all λ. In either case, the outcome
of the comparison can easily be determined and the step can be executed. If
λ̂ exists, invoke the oracle to determine the position of λ̂ relative to λ∗. The
outcome of the call determines the outcome of the comparison between u and v
at λ∗. If λ̂ ≤ λ∗, set λ(0) = max(λ(0), λ̂). Otherwise, set λ(1) = min(λ(1), λ̂)

At the end of the simulation, we have an interval I such that for any λ ∈ I, algorithm B
always executes the same way. Therefore Z has no breakpoints in I and, hence, λ∗ = λ(0).

THEOREM 4.3 Let P be a parametric search problem that has an oracle that runs in
worst-case time b. Suppose that there exists a piecewise linear algorithm to evaluate Z(λ)
that executes t steps in the worst case. Then, P can be solved in time O(t · b).

For example, in the indel penalty sensitivity problem, t and b are both O(nm). Thus,
by Theorem 4.3, Megiddo’s method yields a O(n2m2) algorithm for the problem, which
is considerably slower than bisection search. This can be improved to O(nm polylogn)
by simulating a parallel alignment algorithm instead of a sequential one (see [37, 29] for
details), but this is at the expense of a considerably more involved procedure.

4.4.3 Newton’s Method

Newton’s classic zero-finding method can be adapted for ray shooting (Problem 1). Recall
that the question is as follows: Given a parameter vector λ(0) ∈ R

d, an optimum alignment
A(0) at λ(0), and a ray ρ originating at λ(0), find the last point λ∗ on the ray such that
A(0) is optimal at λ∗. Without loss of generality, assume that the problem has been re-
parameterized so that λ is a scalar. Furthermore, we restrict the search for λ∗ to a finite

Parametric Sequence Alignment 4-15

interval I = (λ(0), λ(1)]. This is not a limitation in practice, since λ(1) can always be chosen
to be large enough (an example of this is, in fact, given in 4.4.1).

The key observation is that if λ∗ < λ(1), then A(0) is co-optimal with some other align-
ment at λ∗. This leads to the following version of Newton’s method, adapted for piecewise
linear functions.

Algorithm Newton

Input: An interval I = (λ(0), λ(1)], an optimum alignment A(0) at λ(0), and an eval-
uator for Z.

Output: The largest value λ∗ ∈ I such that A(0) is optimal at λ∗.
1. Compute an optimal alignment A(1) at λ(1).

2. Set i = 1.
3. While score(A(0), λ(i)) < score(A(i), λ(i)), do the following steps:

(a) Let λ(i+1) be λ-value such that score(A(0), λ) = score(A(i), λ).
(b) Set i = i+ 1.

4. Return λ∗ = λ(i).

The execution of Newton is illustrated in Figure 4.5. The convexity and piecewise
linearity of Z imply that the λ(i) values form a decreasing sequence and that at all times
λ(i) ≥ λ∗. At termination, we must have score(A(0), λ(i)) = score(A(i), λ(i)), which implies
that λ(i) = λ∗. Also, the successive alignments computed by the algorithm must have
distinct score functions. This leads to the following result.

THEOREM 4.4 Algorithm Newton correctly solves the ray shooting problem. The
number of evaluations it requires is at most equal to the number of optimality regions of the
maximization diagram.

For feature-based scoring schemes we can invoke Theorem 4.2: If each feature is in the
same integer range of size N , then the number of evaluations of Z required by the algorithm
is O(Nd(d−1)/(d+1)), where d is the number of features. For example, in the indel penalty
sensitivity analysis problem, the O(n2/3) bound on the number of regions (see 4.3.1) implies
that only that many evaluations are needed in the worst case, resulting in a O(n5/3m) bound
on the search time.

4.4.4 Gradient Descent

Gradient descent (also called steepest descent) is a numerical method to obtain the minimum
of a function within a given interval [40, 44]. The method is iterative, generating a sequence
of points that converges to a minimum. If the current point is not minimum, the algorithm
chooses the next point by moving some distance in the direction opposite to the direction
of the gradient. The intuition is that advancing in that direction should reduce the value
of the function. More formally, assume that the function F : R

d → R to be minimized
is continuously differentiable and that λ(t) is the current (non-optimum) point. The next
point in the sequence is given by

λ(t+1) = λ(t) − θ∇F (λ(t)),

where θ is a scalar, which denotes the step distance, and ∇F (λ(t)), the gradient of F at
λ(t), is the vector whose elements are partial derivatives with respect to the d dimensions.

4-16 Handbook of Computational Molecular Biology

A(0)

λ(0) λ(1)λ(2)

A(2)

λ(3)λ∗

A(1)

A(3)

FIGURE 4.5: Newton’s method for ray shooting.

That is,

∇F =
(
∂F

∂λ1
, . . . ,

∂F

∂λd

)
.

To apply this approach to piecewise linear functions, which are not everywhere differen-
tiable, we need a new concept.

DEFINITION 4.9 Let F be a function F : R
d → R. A vector s ∈ R

d is a subgradient of
F at λ(0) ∈ R

d if for all λ ∈ R
d

F (λ) ≥ F (λ(0)) + s · (λ− λ(0)).

The collection of subgradients at λ(0) is called the sub-differential at λ(0), and is denoted
by ∂F (λ(0)).

It can be shown that ∂F (λ(0)) �= ∅ at all points λ(0) [40]. Subgradients play the role of
gradients in searching for the minimizer of functions that are not everywhere differentiable.
In particular, it can be shown that λ(0) is optimal if and only if 0 ∈ ∂F (λ(0)) [40].

The subgradient algorithm is as follows:

Algorithm Subgradient

Input: A point λ(0) ∈ R
d, a sequence θ(0), θ(1), . . . of real numbers, and a procedure

for computing a sub-gradient of function F at any point.
Output: A value λ∗ at which F (λ) is minimum.

Parametric Sequence Alignment 4-17

1. Compute a subgradient s(0) ∈ ∂F (λ(0)).
2. Set t = 0.
3. While s(t) �= 0, do the following steps:

(a) Let λ(t+1) = λ(t) − θ(t)s(t)

(b) Choose a subgradient s(t+1) ∈ ∂F (λ(t+1)).

(c) Set t = t+ 1

4. Return λ∗ = λ(t).

The procedure to compute a subgradient depends on the given problem; we explain how
to find a subgradient for inverse alignment in the next subsection. In practice it may be
difficult to determine if 0 ∈ ∂F (λ(t)), since only one subgradient is computed at any point.
One way to handle this is by terminating the algorithm if the function has not decreased by a
certain amount after some number of iterations. We note that the convergence and running
time of algorithm Subgradient depend on the choice of the θ(i) sequence [40]. Although
the algorithm is fast in practice, it is not in general possible to establish combinatorial
bounds on its running time.

4.4.5 Parametric Search and Inverse Sequence Alignment

As defined in 4.2.4, the inverse optimal alignment (Problem 5) is a parametric search prob-
lem whose goal is to find a parameter vector λ∗ that minimizes the function F (λ) defined
as

F (λ) = Z(λ)− score(A(0), λ),

where A(0) is a reference alignment and, as usual, Z(λ) is the optimal score function. Since
Z is piecewise linear and convex and score(A(0), λ) is a linear function, F is also piecewise
linear and convex. In fact, the decomposition of the parameter space induced by F is
identical to that induced by Z. By convexity, the solution λ∗ to the problem can always
be chosen to be a vertex of the maximization diagram of Z. We discuss how to solve
the inverse optimal alignment problem through bisection search, Megiddo’s method and
gradient descent. Newton’s method can also be adapted to solve this problem [46].

For bisection search and Megiddo’s method, the key is to implement the oracle. In the
one-parameter case, we can determine if a given λ̂ is greater than λ∗ by computing the
optimum alignment Â at λ̂. Then λ̂ > λ∗ if and only if score(Â, λ) − score(A(0), λ) has a
positive slope. Generalizations to more parameters are discussed in [3, 50].

To apply gradient descent, we need a means to compute a sub-gradient in ∂F (λ(t)).
This can be done as follows. Let A(t) be an optimum alignment at λ(t). The function
score(A(t), λ)− score(A(0), λ) has the form a0 +

∑d
i=1 aiλi. Then, the vector (a1, . . . , ad) is

a sub-gradient at λ(t). Algorithm Subgradient of the previous section can now be used
to obtain the inverse optimal value.

4.4.6 Ray Shooting and Sensitivity Analysis

The sensitivity analysis problem (4.2.4, Problem 2) can be solved by repeated ray shooting.
Using the notation of 4.2.4, let λ(0) be a given point in the parameter space and let A(0) be
an optimal alignment at that point. The problem is to find the maximal region around λ(0)

where A(0) is optimal. In the one-parameter case, this translates into finding an interval
around λ(0), which can be done by shooting two rays from λ(0). The first, in the negative
direction, yields a point λ(1); the other, in the positive direction, yields a point λ(2). The

4-18 Handbook of Computational Molecular Biology

(0)

λ
(3)

ρ(1)

λ
(2)

ρ(2)

λ
(1) ρ(0)

λ

l

FIGURE 4.6: Ray shooting to determine an edge of the region of optimality of alignment A(0).

interval [λ(1), λ(2)] is the maximal region of R
1 within which alignment A(0) is optimal. We

describe how to extend the idea to two-parameter problems, where the optimality regions
are polygons. Extensions to higher dimensions are possible (see the notes in 4.7).

Let F be the region of optimality of A(0). The first step is to choose an arbitrary ray
ρ(0) emanating from λ(0) and shoot a ray to find the point λ(1) along ρ(0) that intersects
the boundary of F . Ray shooting is assumed to be adapted to yield an alignment A(1)

that is co-optimal at λ(1). Let l be the line defined by the intersection of score(A(0), λ)
and score(A(1), λ). Then l contributes a segment e to the boundary of F . From λ(1) shoot
two rays ρ(1) and ρ(2) in opposite directions along l, to find the end points of edge e. The
process is illustrated in Figure 4.6.

To find the remaining edges, repeat the above steps with other rays emanating from λ(0).
Each new ray must be in a direction away from any previously discovered edges of the
boundary of F . To ensure of this, one can use the data structure depicted in Figure 4.7.
The solid lines there represent the edges already discovered. Edges with common endpoints
are joined as these endpoints are identified. Chains of known edges are linked to each other
by dashed lines, indicating unknown regions of the boundary. Each successive ray generated
by the algorithm goes between the endpoints of such a region. The discovery of a new edge
fills in part of the missing information for that portion of the boundary.

There are two special cases. One occurs when A(0) remains optimal along the entire
length of the current ray. To handle this, it is convenient to assume that the parameter
space is enclosed within a large rectangular interval. We can then use one of the boundary
edges of the interval as a boundary of the region. The other case is when the ray ρ(t) goes
through a vertex of the optimality region. Then A remains optimal only along at most one
the two rays along the boundary line, allowing us to recognize the vertex.

We need three ray searches to find each edge of F . This gives us a bound of O(e) ray
searches to determine a polygon of e edges.

Parametric Sequence Alignment 4-19

ρ
(0)λ

FIGURE 4.7: Ray shooting data structure.

4.5 Constructing the Parameter Space Decomposition

Constructing the maximization diagram of the optimum score function requires producing
all faces of dimensions zero through d of the maximization diagram, along with the inci-
dence relationships between faces, and the optimum alignments associated with all faces of
dimension d. The construction problem can be solved repeatedly applying the ray-shooting
idea used for sensitivity analysis (4.4.6) to generate all regions in some order [31]. For two-
parameter problems this method runs in O(t · f + f2) time, where t and f are, respectively,
the time to do a single evaluation of Z and the number of faces in the maximization diagram
[31]. Another approach is to lift the execution of a dynamic programming optimum align-
ment algorithm so that instead of computing an alignment for a single parameter value,
it computes alignments for all values simultaneously [41]. To do so, the lifted algorithm
takes advantage of the piecewise linearity of dynamic programming algorithms, operating
on linear functions instead of real numbers. In particular, sums of real values become sums
of piecewise linear functions and the max operator on numbers is replaced by the upper
envelope operator on piecewise linear functions [41].

In the remainder of this section, we present a simple and intuitive algorithm that con-
structs Z through a series of evaluations of the optimum solution at various points in the
parameter space [16, 21, 20]. In effect, the algorithm generates a sequence of score func-
tions whose upper envelope converges to Z. For two parameters, the method has the same
running time as above-mentioned procedures, and naturally generalizes to any number of
parameters.

4.5.1 The One-Parameter Case

The one-parameter case gives much of the intuition behind the higher-dimensional gen-
eralization. The method presented here constructs the maximization diagram of a one-
parameter problem within a given interval I = [λ(r), λ(l)]. Throughout its execution, the
algorithm updates a function W , which is an increasingly closer approximation to Z, while
maintaining the following invariant:

W is the upper envelope of a subset of {score(A, λ) : A is optimal at some λ ∈ I} (4.18)

4-20 Handbook of Computational Molecular Biology

Thus, W is a piecewise linear convex function such that W (λ) ≤ Z(λ) for all λ ∈ I; W is
represented by its maximization diagram. A breakpoint λ(0) of W is said to be verified if
it is known to also be a breakpoint of Z and W (λ(0)) = Z(λ(0)); otherwise, the breakpoint
is unverified. At termination, all breakpoints are verified and W = Z.

Algorithm 1ParamConstruct

Input: An interval I = [λ(l), λ(r)] and an evaluator for Z.
Output: The maximization diagram of Z.

1. Compute optimal alignments A(l) and A(r) at λ(l) and λ(r).
2. Let W be the upper envelope of score(A(l), λ) and score(A(r), λ).
3. If W has no breakpoints inside I, then return W and stop.
4. Otherwise, declare the intersection point λ(m) of score(A(l), λ) and score(A(r), λ)

to be unverified.
5. Iterate the following steps until W has no unverified breakpoints.

(a) Choose any unverified breakpoint λ(0) of W .

(b) Evaluate Z at λ(0); let A(0) be the alignment returned.

(c) If Z(λ(0)) = W (λ(0)), declare λ(0) to be verified.

(d) Otherwise, the newW is the upper envelope of currentW and score(A(0), λ).
Any new breakpoints created in the process are declared to be unverified.

6. Return W

The execution of this algorithm is illustrated in Figure 4.8. At termination, all breakpoints
of W are also breakpoints of Z; thus, since invariant (4.18) holds throughout the execution,
we must have W (λ) = Z(λ) for all λ ∈ I. To count the number of evaluations, observe that
there can be at most one evaluation at any λ that is not a breakpoint of Z and at most two
evaluations at any λ that is a breakpoint of Z. Each update to W in step (5d) takes O(1)
time. We summarize the analysis as follows [16, 26].

THEOREM 4.5 Algorithm 1ParamConstruct correctly computes the maximization
diagram of Z within interval I in time O(t(b+ 1)), where b is the number of breakpoints of
Z that lie within I and t is the time for an evaluation of Z.

For example, consider the global alignment problem with zero gap penalty. A single e-
valuation in this case takes time t = O(nm). By Remark 4.1, 4.3, while there are formally
three parameters, α, β, and γ, there is effectively only one, γ. Thus, we can use 1Param-

Construct to build the maximization diagram of Z, which in this case has O(n2/3) regions
(see 4.3.1), for a total bound of O(n5/3m).

4.5.2 Generalization to Higher Dimensions

Algorithm 1ParamConstruct can be extended to two parameters in a natural way [20].
The two-parameter algorithm constructs the maximization diagram within a rectangular
interval I = [λ(0)

1 , λ
(1)
1]× [λ(0)

2 , λ
(1)
2] by repeatedly invoking an evaluator to obtain optimal

alignments at various points within I. Throughout its execution, the algorithm maintains
a function W satisfying invariant (4.18). W is represented by its maximization diagram
— in this case a subdivision of the plane into convex polyhedral regions — whose vertices
are classified as either verified or unverified, depending on whether or not W (λ) = Z(λ)

Parametric Sequence Alignment 4-21

*

(c)(a) (b)

(d) (e)

*

*

FIGURE 4.8: Executing 1ParamConstruct: (a) Initial configuration. The solid curve is the
upper envelope of score(A(l), λ) and score(A(r), λ); the dotted curve is Z(λ). (b–d)
A series of evaluations and updates. An asterisk is shown next to the breakpoint
being verified; the corresponding score function is shown as a dashed line. (e) The
final result. Not shown is the verification of the three intermediate breakpoints of
W .

at those points. The two-parameter algorithm is similar to 1ParamConstruct, the main
difference being that wherever that procedure refers to a breakpoint, the new procedure
deals with a vertex. As in 1ParamConstruct, any new vertices created during an update
of W are initialized as unverified. To initialize the procedure, we evaluate Z at the four
corners of I and take the upper envelope of the resulting functions as the original value of
W .

Essentially the same arguments used for 1ParamConstruct can be used to justify the
correctness of the two-parameter algorithm. There are at most two evaluations of Z for
each vertex of the maximization diagram and at most one evaluation for each edge and
face. Since the total number of vertices and edges is linearly related to the number f of
faces of the maximization diagram, the number of evaluations required is O(f). The only
significant complication in handling two parameters instead of one arises when updating
W in the analogue of step (5d): In the two-parameter case, replacing W by the upper
envelope of W and score(A(0), λ1, λ2) requires time proportional to the number of faces of
the maximization diagram of W , not constant time (see [20]). Indeed, by geometric duality
[34], the question is equivalent to updating the lower convex hull of a set of points after
adding a new point [11]. We summarize the analysis below.

THEOREM 4.6 For two-parameter problems, the maximization diagram of Z restricted
to a rectangular interval I can be computed in time O(t · f + f2), where f is the number of

4-22 Handbook of Computational Molecular Biology

faces of Z that lie within I and t is the time for an evaluation of Z.

For example, consider the global alignment problem with non-zero gap penalties. By
Remark 4.1, 4.3, this is effectively a two-parameter problem in γ, the indel penalty, and δ,
the gap extension penalty and the number of optimality regions is f = O(n3/2) (see 4.3.1).
Using the standard O(nm) dynamic programming algorithm for evaluating Z, Theorem 4.6
implies a construction time of O(n5/2m).

Going beyond two parameters requires essentially no new concepts. The maximization
diagram of Z can again be built by successive evaluations at the vertices of the maximization
diagram of a function W that represents the approximation to Z built so far. As a result,
the algorithm produces a sequence of hyperplanes, each of which is the score function of an
alignment that is optimum at some point in the region of interest. Each new hyperplane is
used to incrementally update the current estimate of Z. The technique is reminiscent of the
methods used to determine the shape of a convex polyhedron through a series of hyperplane
probes [13, 14]. Indeed, these results can be used to prove the following.

THEOREM 4.7 Let d denote the number of parameters, let f and v be, respectively, the
number of facets (d-dimensional faces) and vertices (0-dimensional faces) of the maximiza-
tion diagram of Z within a hyperrectangle I of interest, and let t be the time needed for
a single evaluation. Then, the maximization diagram of Z within I can be computed in
O(t · (f + dv)) time, plus the time needed to construct the upper envelope of all the score
functions generated during the computation.

The last part of the statement of the above theorem requires elaboration. As for one
and two parameters, the problem of incrementally building the upper envelope of a set of
d-variate linear functions is dual to constructing the lower convex hull of a set of points
in R

d+1, a problem for which an extensive literature exists (see [49]). In particular, this
body of research addresses many of the subtle implementation issues encountered in such
computations, such as representation and numerical stability [5, 25].

The time needed to construct an upper envelope depends heavily on the complexity of
the output produced, as measured by its total number of faces of dimensions 0 through d.
This number increases exponentially with the dimension. The Upper Bound Theorem [35]
states that the total complexity is Θ(N �(d+1)/2), where N is the number of actual hull
vertices. Duality therefore implies an upper bound of Θ(f �(d+1)/2) for the complexity of
the maximization diagram of Z, where f is the number of regions. This limits the number
of parameters that can be handled in practice.

4.6 Parametric Problems in Hidden Markov Models of Se-
quence Alignment

Hidden Markov models (HMMs) provide a rigorous mathematical framework for the scoring
schemes used in sequence alignment. An HMM represents a system that undergoes a series
of unobservable state transitions, during which a sequence of observable values is generated.
One of the main questions in HMMs is to infer the state sequence, based on the observations.
Given to us are the allowed state transitions, represented by a directed graph, together with
the respective transition probabilities, which are the parameters of the model. The values
of these probabilities have a profound effect on the model’s accuracy.

Our goal is to show the close connection between parametric sequence analysis and param-

Parametric Sequence Alignment 4-23

eter choice in HMMs of sequence evolution. To this end, the rest of this section is organized
as follows. We first provide an overview of Markov and hidden Markov models. Next, we in-
troduce the pair HMM, which models the evolutionary relationship between two sequences.
We then present the basic parametric problems in HMMs and show that, through the log
transform, many of these reduce to the linear problems of 4.2.4. For concreteness, we focus
on the pair HMM for global alignment. HMMs for local alignment, multiple alignment, and
other sequence analysis problems also exist [15]; analogous parametric issues arise for these
models [41].

4.6.1 Hidden Markov Models

A Markov model is a system that can be in one of a finite number of distinct states,
numbered 1 through N . The relationship between states is represented by a directed graph
whose nodes are the states and where there is an edge from state i to state j if and only
if a transition from i to j is allowed. The state of the system changes at discrete instants
of time t = 1, 2, . . . ; the state of the system at time i is denoted by xi. A key property of
Markov models is that xi depends only on xi−1. That is,

Pr(xi|xi−1, . . . , x1) = Pr(xi|xi−1).

The value of Pr(xi = l|xi−1 = k) is called the transition probability from state k to state l
and is denoted slk. Note that the transition probabilities must satisfy

sij ≥ 0 and
N∑

j=1

sij = 1.

A two-state Markov model, along with its transition probabilities, is shown in Figure 4.9.

0.99

F
0.01

0.2

L

0.8

FIGURE 4.9: State transition diagram for a simple Markov model.

In a hidden Markov model, each state of the system emits a symbol, chosen from some
finite alphabet Σ. The emission probability of symbol b at state i is denoted by ei(b). The
sequence of symbols emitted by the system is called the observed sequence; the corresponding
sequence of states is called the emission path or path for short. Such a model is called
“hidden,” because an observer can see the emitted sequence, but not the emission path.
The joint probability of state sequence x = x1 . . . xn and the emitted sequence b = b1 . . . bn
is given by

Pr(b, x) =
n∏

i=1

sxi−1xiexi(bi), (4.19)

where sx0x1 gives the probability distribution of the initial state. A given observed sequence
may have been generated by different paths, each of which has a probability given by
Equation (4.19). One of the fundamental problems in HMMs is the inference problem:

4-24 Handbook of Computational Molecular Biology

given an observed sequence, find the path that is most likely to have generated it. This
path depends on the values of the transition probabilities, which are the parameters of the
system.

As an example, consider again the Markov model depicted in Figure 4.9. The system can
be used to model the behavior of an occasionally dishonest casino, where, unbeknownst to
the players, a loaded die is occasionally used. There are two hidden states in the system, F
and L, indicating whether a fair or a loaded die is being tossed. Each state emits symbols
from the same set Σ = {1, 2, 3, 4, 5, 6} (the result of tossing the die), but the emission
probabilities are different: eF(i) = 1/6 for i ∈ Σ; while eL(i) = 1/10 for i ∈ Σ − {6}
and eL(6) = 1/2. While players do not know the state of the system, they can observe
the sequence of numbers produced. The inference problem for this model is to determine
the sequence of dice (fair or loaded) that were tossed, based on the sequence of numbers
produced.

It is often convenient to allow some states of an HMM to be silent ; that is, to emit no
symbol. For instance, in the previous example, it can be useful to define an additional silent
“begin” state, from which the system can go to the F or L state.

4.6.2 The Pair HMM

The pair HMM [15] is a probabilistic model of the evolution of two sequences from a
common ancestor through a series of mutations, insertions and deletions. The transition
diagram of the model is illustrated in Figure 4.10. There are five states: B and E are the
begin state and end state respectively, M is the match/mismatch state, I and D are the
insertion and deletion states, respectively. The first two states are silent. For the remaining
states, the single-symbol emission strategy of ordinary HMMs is extended to allow for the
generation of two sequences S1 and S2 instead of one. A D state emits a single symbol to
be put in S1, an I state emits a symbol to be put in S2, and an M state emits two symbols,
one for S1, the other for S2.

EB M

I

D

FIGURE 4.10: The pair HMM

There is a one-to-one correspondence between global alignments of two sequences S1 and
S2 and emission paths that generate the sequences in the pair HMM. Consider any path
that emits S1, S2. The path begins at state B and ends at state E. In between, successive
columns in the alignment correspond to successive nodes on the path: a node is an M if

Parametric Sequence Alignment 4-25

the column aligns two characters (equal or not); it is an I if the first row is a space and the
second a character from S2; it is a D if the first row is a character and the second a space.
For example, for sequences S1 = AGCT and S2 = ACTC, the path corresponding to alignment

A G − C T
A C T C − (4.20)

is BMMIMDE. Similarly, given any alignment A between S1 and S2, once can construct a
path where each successive state between B and E corresponds to one column of A. Because
of this bijection between alignments and paths, the two terms are used interchangeably in
what follows.

Note that the diagram of Figure 4.10 has no transitions between states I and D. While
there is no mathematical reason to disallow these transitions, their absence prevents the
generation of alignments where insertions are immediately followed by deletions, which are
typically considered undesirable.

To fully specify the pair HMM, in addition to the state transition diagram, one must
also specify 13 state transition probabilities (for the edges of Figure 4.10), and |Σ|2 + 2|Σ|
emission probabilities, where Σ is the emission alphabet; these numeric values are the
parameters of the system. The emission probabilities for state D are given by a function
eD(a), a ∈ Σ. Similarly, the emission probabilities for I are given by eI(a), where a ∈ Σ. For
state M, the probabilities are given by eM(a, b), a, b ∈ Σ. The bound of |Σ|2 + 2|Σ|+ 13 on
the total number of parameters is in general an overestimate. For example, it is common
to assume that eI(a) = eD(a) for all a ∈ Σ or even that eI(a) = eI(b) for all a, b.

Given the various probability values, it is straightforward to obtain the probability of
an alignment through Equation (4.19). For example, the probability of alignment (4.20) is
given by

sBM · eM(A, A) · sMM · eM(G, C) · sMI · eI(T) · sIM · eM(C, C) · sMD · eD(T) · sDE.

4.6.3 Parametric Problems in HMMs

We now examine some of the parametric problems that arise in the pair HMM and then
show their connection to the issues presented in 4.2.4.

Perhaps the most basic question in the pair HMM is the following fixed parameter prob-
lem.

PROBLEM 6 (Maximum likelihood alignment) Given fixed transition and emission
probabilities and sequences S1, S2, find the path A∗ in the pair HMM that is most likely to
have emitted S1, S2. That is, compute

A∗ = argmax
A

Pr(S1, S2,A), (4.21)

where A ranges over all paths that generate S1, S2.

The next two questions address the robustness of the model, an issue that arises when
there is uncertainty about the correct parameter choices.

PROBLEM 7 (Sensitivity analysis) Let A(0) be a most likely alignment for S1 and S2

for some parameter vector λ(0). Find the set of all parameter values such that A(0) is the
most likely alignment for S1 and S2.

4-26 Handbook of Computational Molecular Biology

PROBLEM 8 (Parametric inference) Find the most likely alignment between two given
sequences S1 and S2 for every possible choice of transition and emission probabilities.

A different problem arises when trying to train the alignment algorithm to produce a
desired result.

PROBLEM 9 (Inverse optimization) Given strings S1 and S2 and an alignment A for
them, find transition and emission probabilities for which A is the most likely alignment.

The pair HMM can generate any pair of sequences over alphabet Σ; each pair can be
generated in a variety of ways. Motivated by this observation, our final problem is as follows.

PROBLEM 10 (Full probability estimation) Given sequences S1, S2, compute the prob-
ability that the sequences are generated by the pair HMM. That is, compute

Pr(S1, S2) =
∑

A

Pr(S1, S2,A), (4.22)

where A ranges over all paths that emit S1, S2.

Problems 6–9 are related to the basic parametric analysis problems of 4.2.4 through the
log transform. To explain this, we examine Problem 6.

The Viterbi algorithm finds the most likely alignment A∗. We now describe its main
ideas (see [15] for details). For p ∈ {1, 2}, let Sp1, . . . , Spni be the characters in sequence
Sp. For q ∈ {M, I,D}, let Cq(i, j) be the probability of the most likely alignment between
subsequences S11 . . . S1i and S21 . . . S2j beginning at state B and ending at state q. Assume
for simplicity that sBq = sqE = τ for all q ∈ {M, I,D}. Then, the Cq(i, j)’s can be calculated
using the following recurrences.

CM(i, j) = eM(S1i, S2j)max

sMM · CM(i− 1, j − 1)·
sIM · CI(i− 1, j − 1)
sDM · CD(i− 1, j − 1)

(4.23)

CD(i, j) = eD(S1i)max
{
sMD · CM(i− 1, j)
sDD · CD(i− 1, j) (4.24)

CI(i, j) = eI(S2j)max
{
sMI · CM(i, j − 1)
sII · CI(i, j − 1) (4.25)

The probability of the most likely alignment between S1 and S2 is given by

τ2 max{CM(n1, n2), CD(n1, n2), CI(n1, n2)}. (4.26)

Viterbi’s algorithm solves the recurrences by a method that is structurally identical to the
well-known dynamic programming algorithm for sequence alignment, except that multipli-
cation is used instead of addition. In fact, we can make the two algorithms identical through
the log transform, which replaces probabilities by their logarithms, thus enabling us to deal
with sums, instead of products. Define u.. = log s.. and v.. = log e... In the log domain, the
probability of alignment (4.20) above is

uBM + vM(A, A) + uMM + vM(G, C) + uMI + vI(T) + uIM + vM(C, C) + uMD + vD(T) + uDE.

Parametric Sequence Alignment 4-27

Problem 6 is equivalent to solving

A∗ = arg max
A

log Pr(S1, S2,A). (4.27)

In the log domain, recurrences (4.23)–(4.25) become identical to those of the dynamic
programming algorithm for computing optimum alignments. Therefore, the algorithms for
finding a maximum likelihood alignment and for finding a maximum score alignment are
essentially the same.

The log transform can be used parametrically, yielding expressions that are linear in
the parameters (which are logs of probabilities). Thus, the parametric inference problem
(Problem 8) is equivalent to the construction problem (Problem 3). Similarly, Problems 7
and 9 are equivalent to Problems 2 and 5, respectively. Thus, all the techniques described
in the previous sections apply to these HMM problems as well.

Problem 10 is the one problem in our list that does not benefit from the log transform.
Nevertheless, it can be solved by the standard forward algorithm for the HMMs, which is
essentially the Viterbi method, except that we add probabilities instead of taking maximums
[15]. The full probability for a pair of sequences is a polynomial in the probability values
and thus it is itself a parametric expression.

4.7 Notes and Comments

Parametric issues in optimization, especially linear programming, have been studied since
the 1950s. Parametric linear programming, where the coefficients of the objective function
are variable, was initially formulated by Gass and Saaty [24]. In the terminology of this
chapter, Gass and Saaty presented a simplex-based algorithm for one-dimensional sensitivity
analysis of parametric linear programs. The method can be used for construction and search
as well. The combinatorial complexity of parametric linear programming was studied by
Murty [39], who showed that there exists a parametric linear program with n variables
and 2n constraints where there are 2n basic feasible solutions, each of which is a unique
optimal solution for some suitably chosen value of the parameter. Parametric versions of
various optimization problems have been studied and bounds for various problems have
been established. A sampling of the parametric optimization problems considered in the
literature includes network flows [23], stable marriage [30], matroid optimization [12], and
scheduling [32].

Many of the approaches discussed in this chapter are specializations of more general
techniques to sequence comparison. The geometric definitions and results of Section 4.2.1
are adapted from Agarwal and Sharir’s text [2]. Megiddo’s method of parametric search
technique originally appeared in [36] as a method for solving optimization problems with ra-
tional objective functions. An improvement based on simulating parallel algorithms instead
of sequential ones is also due to Megiddo [37]. The application of Megiddo’s method to
sensitivity analysis was first investigated by Gusfield [26, 27]. Ray shooting is an important
problem in computer graphics, where it is used to detect and remove hidden surfaces and in
computing the intersection of polyhedra; Agarwal and Matoušek describe these and other
geometric applications of parametric search in [1] (see also Salowe’s survey [48]). Newton’s
zero-finding algorithm and the gradient descent method are classical algorithms that can
be traced back to Newton and Cauchy respectively. Radzik [47] describes the application
of Newton’s method to solve fractional combinatorial optimization problems. The gradient
descent method for optimization is well known and discussed in many textbooks [44, 40].
Polyak [43] was among the first to study the subgradient method’s theoretical aspects. Held
and Karp [33] were the first to apply the method to mathematical programming problems.

4-28 Handbook of Computational Molecular Biology

Parametric sequence comparison was first considered by Fitch and Smith [22], who studied
the effect of varying the gap penalty on the optimum alignment of two sample sequences. By
careful analysis, they showed that there are 7 and 11 different optimal alignments (optimal-
ity regions) for their sample pair when end gaps are weighted and unweighted, respectively.
Waterman et al. [52] proposed a systematic way of finding the optimality regions. Vin-
gron and Waterman [51] studied the implications of parameter choice through a series of
case studies. Independently of Waterman et al.’s work, Gusfield et al. [29] formally defined
parametric alignment and gave the first bounds on the number of regions. Among their
results is the O(n2/3) on the number of optimality regions for global alignment with zero
gap penalty presented in 4.3.1. Fernández-Baca et al. [18] prove that this bound is tight
when the alphabet size is unbounded [18]; in fact, it is the only combinatorial complexity
bound for parametric sequence comparison known to be exact. The best known lower bound
when the alphabet size is bounded is Ω(

√
n) [18]. The properties of parametric alignment

problems with feature-based scoring schemes were first investigated by Fernández-Baca et
al. [19], who obtained combinatorial bounds for several problems, such as multiple sequence
alignment and phylogeny construction, by observing that they all have a similar integer
parametric nature. Tighter bounds (Theorem 4.2) are due to Pachter and Sturmfels [42]
and Fernández-Baca and Venkatachalam [21].

Gusfield [26] attributes the one-parameter construction algorithm of 4.5.1 to Eisner and
Severance [16]. The two-parameter construction algorithm presented in 4.5.2 is due to
Fernández-Baca and Srinivasan [20]. Zimmer and Lengauer [53] used this algorithm in
their parametric sequence alignment software. The techniques for reconstructing multi-
dimensional convex geometric objects through probing, upon which Theorem 4.7 is based,
were developed by Dobkin et al. [13, 14], who extended the work on two-dimensional probing
by Cole and Yap [10].

Gusfield and Stelling’s publicly-available XPARAL system [31] implements the ray-shooting
approach (using Newton’s method) for two-parameter sensitivity analysis described in 4.4.6
and applies it to construct the maximization diagram for two-parameter alignment prob-
lems under a wide variety of scoring functions. While, in principle, ray shooting can be
used for sensitivity analysis (and, hence, construction) for any number of parameters, there
appears to be no reference to this in the literature. One way to achieve this generalization is
to use the probing idea mentioned above; the probes here are ray-shooting queries, instead
of evaluations. Each probe returns a supporting hyperplane of the region being generated.
The results of [13, 14] imply a number of queries proportional to the number of vertices and
facets of the region.

Pachter and Sturmfels [42, 41] describe an implementation of the lifting algorithm for the
construction problem mentioned at the beginning of 4.5. Their software relies on Gawrilow
and Joswig’s polymake tool [25].

XPARAL solves the inverse alignment problem using the gradient descent method de-
scribed in 4.4.4. Sun et al. [50] give efficient algorithms for inverse sequence alignment
with and without gaps that exploit the properties of feature-based scoring. Other inverse
parametric optimization problems are studied by Eppstein [17].

For general background on hidden Markov models, a good starting point is Rabiner’s
survey article [45]. HMMs were first used for sequence alignment by Borodovsky et al. [6, 7,
8]. Durbin et al. [15] and Baldi and Brunak [4] give good introductions to the application
of HMMs to sequence alignment and bioinformatics in general. Pachter and Sturmfels
[42, 41] build a mathematical theory of statistical models for biological applications and
show connections between parametric analysis and statistical models.

References 4-29

References

[1] P. Agarwal and J. Matoušek. Ray shooting and parametric search. SIAM Journal on
Computing, 22:794–806, 1993.

[2] P. K. Agarwal and M. Sharir. Davenport-Schinzel Sequences and their Geometric
Applications. Cambridge University Press, Cambridge–New York–Melbourne, 1995.

[3] R. Agarwala and D. Fernández-Baca. Weighted multidimensional search and its ap-
plication to convex optimization. SIAM Journal on Computing, 25:83–99, 1996.

[4] P. Baldi and S. Brunak. Bioinformatics: The machine learning approach. Adaptive
Computation and Machine Learning. MIT Press, Cambridge, MA, 2nd edition, 2001.

[5] C.B. Barber, D.P. Dobkin, and H. Huhdanpaa. The quickhull algorithm for convex
hulls. ACM Transactions on Mathematical Software, 22(4):469–483, 1996.

[6] M. Borodovsky, Yu. Sprizhitsky, E. Golovanov, and A. Alexandrov. Statistical patterns
in primary structures of functional regions in the E. coli genome: I. Oligonucleotide
frequencies analysis. Molecular Biology, 20:826–833, 1986.

[7] M. Borodovsky, Yu. Sprizhitsky, E. Golovanov, and A. Alexandrov. Statistical patterns
in primary structures of functional regions in the E. coli genome: II. Non-homogeneous
markov models. Molecular Biology, 20:833–840, 1986.

[8] M. Borodovsky, Yu. Sprizhitsky, E. Golovanov, and A. Alexandrov. Statistical pat-
terns in primary structures of functional regions in the E. coli genome: III. Computer
recognition of coding regions. Molecular Biology, 20:1145–1150, 1986.

[9] E. Cohen and N. Megiddo. Maximizing concave functions in fixed dimension. In
P. M. Pardalos, editor, Complexity in Numerical Optimization, pages 74–87. World
Scientific, Singapore, 1993.

[10] R. Cole and C. Yap. Shape from probing. Journal of Algorithms, 8:19–38, 1987.
[11] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational

Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 2nd edition, 2000.
[12] T. Dey. Improved bounds on planar k-sets and related problems. Discrete and Com-

putational Geometry, 19(3):373–382, 1998.
[13] D. Dobkin, H. Edelsbrunner, and C.K. Yap. Probing convex polytopes. In Proceedings

of the 18th Annual ACM Symposium on Theory of Computing, pages 424–432, 1986.
[14] D. Dobkin, H. Edelsbrunner, and C.K. Yap. Probing convex polytopes. In Cox and

Wilfong, editors, Autonomous Robot Vehicles, pages 328–341. Springer-Verlag, 1990.
[15] R. Durbin, S.R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis:

Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
1998.

[16] M.J. Eisner and D.G. Severance. Mathematical techniques for efficient record seg-
mentation in large shared databases. Journal of the Association for Computing
Machinery, 23:619–635, 1976.

[17] D. Eppstein. Setting parameters by example. SIAM J. Computing, 32(3):643–653,
2003.

[18] D. Fernández-Baca, T. Seppäläinen, and G. . Bounds for parametric sequence com-
parison. Discrete Applied Mathematics, 118:181–198, 2002.

[19] D. Fernández-Baca, T. Seppäläinen, and G. Slutzki. Parametric multiple sequence
alignment and phylogeny construction. Journal of Discrete Algorithms, 2:271–287,
2004. Special issue on Combinatorial Pattern Matching, R. Giancarlo and D. Sankoff,
eds.

[20] D. Fernández-Baca and S. Srinivasan. Constructing the minimization diagram of a
two-parameter problem. Operations Research Letters, 10:87–93, 1991.

4-30 References

[21] D. Fernández-Baca and B. Venkatachalam. Parametric analysis, duality, and lattice
polytopes. unpublished manuscript, May 2004.

[22] W.M. Fitch and T.F. Smith. Optimal sequence alignments. Proceedings of the Na-
tional Academy of Sciences USA, 80:1382–1386, 1983.

[23] G. Gallo, M.D. Grigoriades, and R.E. Tarjan. A fast parametric maximum flow algo-
rithm and applications. SIAM Journal on Computing, 18:30–55, 1989.

[24] S.I. Gass and T. Saaty. The computational algorithm for the parametric objective
function. Naval Research and Logistics Quarterly, 2:39–45, 1955.

[25] E. Gawrilow and M. Joswig. polymake: an approach to modular software design in
computational geometry. In Proceedings of the 17th Annual Symposium on Com-
putational Geometry, pages 222–231. ACM Press, 2001.

[26] D. Gusfield. Sensitivity analysis for combinatorial optimization. Technical Report
UCB/ERL M80/22, University of California, Berkeley, May 1980.

[27] D. Gusfield. Parametric combinatorial computing and a problem in program module
allocation. Journal of the Association for Computing Machinery, 30(3):551–563,
1983.

[28] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology. Cambridge University Press, Cambridge–New York–
Melbourne, 1997.

[29] D. Gusfield, K. Balasubramanian, and D. Naor. Parametric optimization of sequence
alignment. Algorithmica, 12:312–326, 1994.

[30] D. Gusfield and R.W. Irving. Parametric stable marriage and minimum cuts. Infor-
mation Processing Letters, 30:255–259, 1989.

[31] D. Gusfield and P. Stelling. Parametric and inverse-parametric sequence alignment
with XPARAL. In Russell F. Doolittle, editor, Computer methods for macromolec-
ular sequence analysis, volume 266 of Methods in Enzymology, pages 481–494. Aca-
demic Press, 1996.

[32] N.G. Hall and M.E. Posner. Sensitivity analysis for scheduling problems. J. of Schedul-
ing, 7(1):49–83, 2004.

[33] M. Held and R.M. Karp. The traveling salesman problem and minimum spanning
trees: part II. Mathematical Programming, 6:6–25, 1971.

[34] E. Herbert. Algorithms in Combinatorial Geometry. Springer-Verlag, Heidelberg,
1987.

[35] P. McMullen. The maximum number of faces of a convex polytope. Mathematika,
17:179–184, 1970.

[36] N. Megiddo. Combinatorial optimization with rational objective functions. Math.
Oper. Res., 4:414–424, 1979.

[37] N. Megiddo. Applying parallel computation algorithms in the design of serial algo-
rithms. Journal of the Association for Computing Machinery, 30(4):852–865, 1983.

[38] D. Mount. Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor
Press, Cold Spring Harbor, New York, 2001.

[39] K. Murty. Computational complexity of parametric linear programming. Math. Pro-
gramming, 19:213–219, 1980.

[40] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley-
Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons,
1988.

[41] L. Pachter and B. Sturmfels. Parametric inference for biological sequence analysis.
Proceedings of the National Academy of Sciences USA, 101(46):16138–16143, 2004.

[42] L. Pachter and B. Sturmfels. Tropical geometry of statistical models. Proceedings of
the National Academy of Sciences USA, 101(46):16132–16137, 2004.

References 4-31

[43] B.T. Polyak. A general method for solving extremal problems. Soviet. Math. Dokl.,
8:593–597, 1967.

[44] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes:
The Art of Scientific Computing. Cambridge University Press, Cambridge (UK) and
New York, 2nd edition, 1992.

[45] L.R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[46] T. Radzik. Algorithms for some linear and fractional combinatorial optimization
problems. Department of Computer Science, Stanford University, Stanford, CA 94305,
August 1992.

[47] T. Radzik. Newton’s method for fractional combinatorial optimization. In 33rd Annual
Symposium on Foundations of Computer Science, pages 659–669, Pittsburgh, PA,
October 1992. IEEE.

[48] J. Salowe. Parametric search. In J.E. Goodman and J. O’Rourke, editors, Handbook
of Discrete and Computational Geometry, chapter 37, pages 683–696. CRC Press
LLC, Boca Raton, FL, 1997.

[49] R. Seidel. Convex hull computations. In J.E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, chapter 19, pages 361–376.
CRC Press LLC, Boca Raton, FL, 1997.

[50] F. Sun, D. Fernández-Baca, and W. Yu. Inverse parametric sequence alignment. Jour-
nal of Algorithms, 53(1):36–54, 2004.

[51] M. Vingron and M.S. Waterman. Sequence alignment and penalty choice: Review of
concepts, case studies, and implications. J. Mol. Biol., 235:1–12, 1994.

[52] Michael S. Waterman, M. Eggert, and E. Lander. Parametric sequence comparisons.
Proceedings of the National Academy of Sciences USA, 89:6090–6093, 1992.

[53] R. Zimmer and Th. Lengauer. Fast and numerically stable parametric alignment of
biosequences. In Proceedings of RECOMB 97, Santa Fe, NM, pages 344–353. ACM
Press, 1997.

5
Lookup Tables, Suffix Trees and

Suffix Arrays

Srinivas Aluru
Iowa State University

Pang Ko
Iowa State University

5.1 Introduction . 5-1
5.2 Lookup Tables . 5-2
5.3 Suffix Trees and Suffix Arrays . 5-3

Basic Definitions and Properties • Suffix Trees vs.
Suffix Arrays

5.4 Linear Time Construction of Suffix Trees 5-9
McCreight’s Algorithm • Ukkonen’s Algorithm •

Generalized Suffix Trees
5.5 Linear Time Construction of Suffix Arrays 5-14

Kärkkäinen and Sanders’ Algorithm • Ko and Aluru’s
Algorithm

5.6 Space Issues . 5-20
5.7 Lowest Common Ancestors . 5-21

Bender and Farach’s lca algorithm • Suffix Links from
Lowest Common Ancestors

5.8 Conclusions . 5-23

5.1 Introduction

Fundamental string data structures, and their myriad applications in computational molec-
ular biology are the focus of this part of the handbook. Sequence alignments and string
data structures form the twin foundations for many applications in computational genomics.
The utility of string data structures stems from the fact that at a basic level, various types
of DNA and RNA sequences, and protein sequences can be modeled as strings — DNA as
strings over the alphabet {A,C,G,T}, RNA as strings over the alphabet {A,C,G,U}, and
proteins as strings over an alphabet of size 20 corresponding to the 20 amino acid residues.
While simplistic, modeling of biological sequences as mere strings serves as a sufficient level
of abstraction for a plethora of applications.

Given the large volume of sequence data that many computational biology applications
must deal with, proper organization of the data to facilitate fast access is important to
achieve desirable run-times. From this perspective, string data structures serve the same
purpose for biological sequence data as binary search trees serve for ordered numeric data,
and quadtrees serve for spatial data.

String data structures are ideal for uncovering exact matching patterns in sequences.
Due to evolutionary mechanisms which alter biomolecular sequences, errors introduced by
experimental processes, and many other factors that permit variations — such as the degen-

5-1

5-2 Handbook of Computational Molecular Biology

eracy of genetic code, protein sequences with some sequence similarity showing significant
structural similarity — one is rarely interested in exact matches as an end in itself. Despite
this, exact matches play a role because they are typically fast — requiring linear time as
opposed to the quadratic time of alignment algorithms. As an example, consider the task of
finding good local alignments between a query sequence and a database consisting of tens to
hundreds of millions of sequences. It is computationally expensive to do as many pairwise
local alignments. If we are interested in a pairwise alignment only if it exhibits significant
homology, such an alignment should also contain regions of exact matches. For instance, if
an aligning region of 100bp length contains at most 4 positions of difference, there should
be an exact match of length at least 20 in this region. Exact matches can be used as a filter
to eliminate large number of pairs that would not yield a good local alignment by perform-
ing alignments only on pairs that have an exact matching region larger than a determined
threshold. It is in this spirit that many problems related to exact matches find applica-
tions in computational biology. String data structures are also useful when performing
approximate matches where only a small number of differences are permitted.

In this chapter, we provide a detailed introduction to the three most frequently used
string data structures in computational molecular biology — lookup tables, suffix trees
and suffix arrays. The focus of this chapter will be on algorithms for constructing these
data structures, which tend to be somewhat complex in the case of suffix trees and suffix
arrays. We will also explore the relationships between these data structures. Chapter 6
provides several illustrations of biological applications where suffix trees play a central role.
A number of new research results on solving biological applications using the more space
efficient suffix array data structure, and its augmented variants, are presented in Chapter
7.

5.2 Lookup Tables

Lookup table is a simple data structure that records the positions of occurrences of sub-
strings of a prespecified length in one or more strings. Lookup tables are used in a number
of important bioinformatic tools including such popular programs as BLAST [1, 2] for
database searches, and CAP3 [15] for genome assembly.

We use the following notation throughout the chapter: Let s be a string over the alphabet
Σ. |s| denotes the size of s, s[i] denotes the ith character of s, and s[i..j] denotes the substring
s[i]s[i + 1] . . . s[j]. Let w denote a prespecified length, sometimes referred to as window-
size. The lookup table is an array LT of size |Σ|w, corresponding to the |Σ|w possible
substrings of length w. Let f : Σ → {0, 1, . . . |Σ| − 1} be the one-to-one function such
that f(c) = j − 1 if c is the jth lexicographically smallest character. For the purpose of
the lookup table, any arbitrary ordering of the characters can be taken as lexicographic
ordering. Using f , a substring of length w can be treated as a w digit number in a base |Σ|
system, and converted to its decimal equivalent. We use the notation F (α) to denote the
decimal number corresponding to a w-long substring α.

Each entry in the lookup table LT points to a linked list of specific locations within the
input set of strings where the substring corresponding to the index for the entry occurs. The
lookup table for the DNA sequence CATTATTAGGA with w = 2 is shown in Figure 5.1.
It is constructed by using the mapping A→ 0, C→ 1, G→ 2 and T→ 3. The substring TA
corresponds to the index (30)4 = 12. The entry at index 12 indicates that the substring TA
occurs in the string starting at positions 4 and 7.

Let s be a string of length n. It is easy to construct the lookup table for s in O(|Σ|w +n)
time. First, create and initialize each entry to a null list in O(|Σ|w) time. Then, insert

Lookup Tables, Suffix Trees and Suffix Arrays 5-3

12 3

6

4

75

8 910

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIGURE 5.1: Lookup table for the DNA sequence CATTATTAGGA with w = 2. The table
contains 16 entries, corresponding to the 16 different nucleotide sequences of length
2.

substrings one at a time. First compute index = F (s[1..w]) in O(w) time. Insert position
1 in the linked list corresponding to LT [index]. Using the identity

F (s[k + 1..k + w + 1]) =
(
F (s[k..k + w]− f(s[k])|Σ|w−1

)
× |Σ|+ f(s[k + w + 1])

F (s[k+ 1..k+w+ 1]) can be computed from F (s[k..k+w]) in O(1) time. As each starting
position 1 . . . n−w+1 occurs in a linked list, the total size of all linked lists is O(n) (typically
n >> w). Thus, the size of the lookup table data structure is O(|Σ|w + n). The lookup
table can be easily generalized to a set of strings. Let S = {s1, s2, . . . , sk} be a set of k
strings of total length N . To create the corresponding lookup table, substrings from each of
the strings are inserted in turn. A location in a linked list now consists of a pair giving the
string number and the position of the substring within the string. The space and run-time
required for constructing the lookup table is O(|Σ|w +N).

The size of the lookup table depends exponentially on the window-size w. To achieve
space usage that is linear in the input data size, the value of w should be no greater than
log|Σ|N . A window-size of 10 for DNA sequences assuming a 4-letter alphabet results in a
lookup table with 220 > 1 million entries.

Lookup table is conceptually a very simple data structure to understand and implement.
Once the lookup table for a database of strings is available, given a query string of length
w, all occurrences of it in the database can be retrieved in O(w + k) time, where k is the
number of occurrences. The main problem with this data structure is its dependence on an
arbitrary predefined substring length w. If the query string is of length l > w, the lookup
table does not provide an efficient way of retrieving all occurrences of the query string in
the database. Nevertheless, lookup tables are widely used in many bioinformatic programs
due to their simplicity and ease of use.

5.3 Suffix Trees and Suffix Arrays

5.3.1 Basic Definitions and Properties

Suffix trees and suffix arrays are versatile data structures fundamental to string processing
applications. Let s′ denote a string over the alphabet Σ. Let $ /∈ Σ be a unique termination

5-4 Handbook of Computational Molecular Biology

character, and s = s′$ be the string resulting from appending $ to s′. Let suffi = s[i]s[i+
1] . . . s[|s|] be the suffix of s starting at ith position. The suffix tree of s, denoted ST (s) or
simply ST , is a compacted trie of all suffixes of string s. Let |s| = n. It has the following
properties:

1. The tree has n leaves, labeled 1 . . . n, one corresponding to each suffix of s.
2. Each internal node has at least 2 children.
3. Each edge in the tree is labeled with a substring of s.
4. The concatenation of edge labels from the root to the leaf labeled i is suffi.
5. The labels of the edges connecting a node with its children start with different

characters.

The paths from root to the leaves corresponding to the suffixes suffi and suffj coincide
up to their longest common prefix, at which point they bifurcate. If a suffix of the string
is a prefix of another longer suffix, the shorter suffix must end in an internal node instead
of a leaf, as desired. It is to avoid this possibility that the unique termination character is
added to the end of the string. Keeping this in mind, we use the notation ST (s′) to denote
the suffix tree of the string obtained by appending $ to s′. Throughout this chapter, ‘$’ is
taken to be the lexicographically smallest character.

As each internal node has at least 2 children, an n-leaf suffix tree has at most n−1 internal
nodes. Because of property (5), the maximum number of children per node is bounded by
|Σ|+1. Except for the edge labels, the size of the tree isO(n). In order to allow a linear space
representation of the tree, each edge label is represented by a pair of integers denoting the
starting and ending positions, respectively, of the substring describing the edge label. If the
edge label corresponds to a repeat substring, the indices corresponding to any occurrence
of the substring may be used. The suffix tree of the string CATTATTAGGA is shown in
Figure 5.2. For convenience of understanding, we show the actual edge labels.

The suffix array of s = s′$, denoted SA(s) or simply SA, is a lexicographically sorted
array of all suffixes of s. Each suffix is represented by its starting position in s. SA[i] = j
iff suffj is the ith lexicographically smallest suffix of s. The suffix array is often used in
conjunction with an array termed Lcp array, containing the lengths of the longest common
prefixes between every consecutive pair of suffixes in SA. We use lcp(α, β) to denote the
longest common prefix between strings α and β. We also use the term lcp as an abbreviation
for the term longest common prefix. Lcp[i] contains the length of the lcp between suffSA[i]

and suffSA[i+1], i.e., Lcp[i] = |lcp(suffSA[i], suffSA[i+1])|. As with suffix trees, we use the
notation SA(s′) to denote the suffix array of the string obtained by appending $ to s′. The
suffix and Lcp arrays of the string CATTATTAGGA are shown in Figure 5.2.

Let v be a node in the suffix tree. Let path-label(v) denote the concatenation of edge
labels along the path from root to node v. Let string-depth(v) denote the length of path-
label(v). To differentiate this with the usual notion of depth, we use the term tree-depth of
a node to denote the number of edges on the path from root to the node. Note that the
length of the longest common prefix between two suffixes is the string depth of the lowest
common ancestor of the leaf nodes corresponding to the suffixes. A repeat substring of
string S is right-maximal if there are two occurrences of the substring that are succeeded
by different characters in the string. The path label of each internal node in the suffix tree
corresponds to a right-maximal repeat substring and vice versa.

Let v be an internal node in the suffix tree with path-label cα where c is a character and
α is a (possibly empty) string. Therefore, cα is a right-maximal repeat, which implies that
α is also a right maximal repeat. Let u be the internal node with path label α. A pointer
from node v to node u is called a suffix link; we denote this by SL(v) = u. Each suffix suffi

Lookup Tables, Suffix Trees and Suffix Arrays 5-5

12 11 8 5 2 1 10 9 7 4 6 3

0 1 1 4 0 0 1 0 2 1 3

$

$

$

$

$

$

$

$

$

8

12

11

2

1

7

4
6

3

$

5

10
9

A

G
G

A
$

T

T

A

G
G

A
$

A
G
G
A
T
T A

G
G
A
T
T
A
T
T
A
C G

T

A G

A

A T

A

G
G

A

T
T
A
G
G
A

G
G
A

A
G

G
A

T
T

SA

Lcp

w

r

v

z

x

y

u

FIGURE 5.2: Suffix tree, suffix array and Lcp array of the string CATTATTAGGA. The suffix
links in the tree are given by x→ z → y → u→ r, v → r, and w→ r.

in the subtree of v shares the common prefix cα. The corresponding suffix suffi+1 with
prefix α will be present in the subtree of u. The concatenation of edge labels along the path
from v to leaf labeled i, and along the path from u to leaf labeled i + 1 will be the same.
Similarly, each internal node in the subtree of v will have a corresponding internal node in
the subtree of u. In this sense, the entire subtree under v is contained in the subtree under
u.

Every internal node in the suffix tree other than the root has a suffix link from it. Let v
be an internal node with SL(v) = u. Let v′ be an ancestor of v other than the root and let
u′ = SL(v′). As path-label(v′) is a prefix of path-label(v), path-label(u′) is also a prefix of
path-label(u). Thus, u′ is an ancestor of u. Each proper ancestor of v except the root will
have a suffix link to a distinct proper ancestor of u. It follows that tree-depth(u) ≥ tree-
depth(v)− 1.

Suffix trees and suffix arrays can be generalized to multiple strings. The generalized suffix
tree of a set of strings S = {s1, s2, . . . , sk}, denoted GST (S) or simply GST , is a compacted
trie of all suffixes of each string in S. We assume that the unique termination character
$ is appended to the end of each string. A leaf label now consists of a pair of integers
(i, j), where i denotes the suffix is from string si and j denotes the starting position of the
suffix in si. Similarly, an edge label in a GST is a substring of one of the strings. An edge
label is represented by a triplet of integers (i, j, l), where i denotes the string number, and
j and l denote the starting and ending positions of the substring in si. For convenience of

5-6 Handbook of Computational Molecular Biology

C

T
T
C
G

G

A

T

C

G

$

T

C

GG

$ $
$

$

T

C

G

$

$

T
A

CG$

GSA (s1, 6)(s1, 2)(s1, 4)(s2, 4)(s2, 1)(s1, 1)(s1, 5)(s2, 5)(s1, 3)(s2, 3)(s2, 2)

(s1, 6)
(s2, 6)

(s1, 2)

(s1, 4)
(s2, 4)

(s2, 1)
(s1, 1)

(s1, 5)
(s2, 5) (s1, 3)

(s2, 3) (s2, 2)

FIGURE 5.3: Generalized suffix tree and generalized suffix array of strings GATCG and CTTCG.

understanding, we will continue to show the actual edge labels. Note that two strings may
have identical suffixes. This is compensated by allowing leaves in the tree to have multiple
labels. If a leaf is multiply labeled, each suffix should come from a different string. If N
is the total number of characters (including the $ in each string) of all strings in S, the
GST has at most N leaf nodes and takes up O(N) space. The generalized suffix array of
S, denoted GSA(S) or simply GSA, is a lexicographically sorted array of all suffixes of
each string in S. Each suffix is represented by an integer pair (i, j) denoting suffix starting
from position j in si. If suffixes from different strings are identical, they occupy consecutive
positions in the GSA. For convenience, we make an exception for the suffix $ by listing
it only once, though it occurs in each string. The GST and GSA of strings GATCG and
CTTCG are shown in Figure 5.3.

Suffix trees and suffix arrays can be constructed in time linear to the size of the input.
Suffix trees are very useful in solving a plethora of string problems in optimal run-time
bounds. Moreover, in many cases, the algorithms are very simple to design and understand.
For example, consider the classic pattern matching problem of determining if a pattern P
occurs in text T over a constant sized alphabet. Note that P occurs starting from position
i in T iff P is a prefix of suffi in T . Thus, whether P occurs in T or not can be determined
by checking if P matches an initial part of a path from root to a leaf in ST (T). Traversing
from the root matching characters in P , this can be determined in O(|P |) time, independent
of the size of T . As another application, consider the problem of finding a longest common
substring of a pair of strings. Once the GST of the two strings is constructed, all that is
needed is to identify an internal node with the largest string depth that contains at least one
leaf from each string. Applications of suffix trees in computational molecular biology are
explored in great detail in the next chapter. Suffix arrays are of interest because they require
much less space than suffix trees, and can be used to solve many of the same problems.
Such methods are explored in Chapter 7. In this chapter, we concentrate on linear time
construction algorithms for suffix trees and suffix arrays.

Lookup Tables, Suffix Trees and Suffix Arrays 5-7

5.3.2 Suffix Trees vs. Suffix Arrays

In this section, we explore linear time construction algorithms for suffix trees and suffix
arrays. We also show how suffix trees and suffix arrays can be derived from each other in
linear time. We first show that the suffix array and Lcp array of a string can be obtained
from its suffix tree in linear time. Define lexicographic ordering of the children of a node
to be the order based on the first character of the edge labels connecting the node to its
children. Define lexicographic depth first search to be a depth first search of the tree where
the children of each node are visited in lexicographic order. The order in which the leaves
of a suffix tree are visited in a lexicographic depth first search gives the suffix array of the
corresponding string. In order to obtain lcp information, the string-depth of the current
node during the search is remembered. This can be easily updated in O(1) time per edge
as the search progresses. The length of the lcp between two consecutive suffixes is given
by the smallest string-depth of a node visited between the leaves corresponding to the two
suffixes.

Given the suffix array and the Lcp array of a string s (|s$| = n), its suffix tree can
be constructed in O(n) time. This is done by starting with a partial suffix tree for the
lexicographically smallest suffix, and repeatedly inserting subsequent suffixes from the suffix
array into the tree until the suffix tree is complete. Let Ti denote the compacted trie of
the first i suffixes in lexicographic order. The first tree T1 consists of a single leaf labeled
SA[1] = n connected to the root with an edge labeled suffSA[1] = $.

To insert SA[i+ 1] into Ti, start with the most recently inserted leaf SA[i] and walk up
(|suffSA[i]| − |lcp(suffSA[i], suffSA[i+1])|) = ((n − SA[i] + 1) − Lcp[i]) characters along the
path to the root. This walk can be done in O(1) time per edge by calculating the lengths of
the respective edge labels. If the walk does not end at an internal node, create an internal
node. Create a new leaf labeled SA[i + 1] and connect it to this internal node with an
edge. Set the label on this edge to s[SA[i+ 1] + Lcp[i]..n]. This creates the tree Ti+1. The
procedure is illustrated in Figure 5.4. It works because no other suffix inserted so far shares
a longer prefix with suffSA[i+1] than suffSA[i] does. To see that the entire algorithm runs in
O(n) time, note that inserting a new suffix into Ti requires walking up the rightmost path in
Ti. Each edge that is traversed ceases to be on the rightmost path in Ti+1, and thus is never
traversed again. An edge in an intermediate tree Ti corresponds to a path in the suffix tree
ST . When a new internal node is created along an edge in an intermediate tree, the edge
is split into two edges, and the edge below the newly created internal node corresponds to
an edge in the suffix tree. Once again, this edge ceases to be on the rightmost path and is
never traversed again. The cost of creating an edge in an intermediate tree can be charged
to the lowest edge on the corresponding path in the suffix tree. As each edge is charged
once for creating and once for traversing, the total run-time of this procedure is O(n).

Finally, the Lcp array itself can be constructed from the suffix array and the string in
linear time [20]. Let R be an array of size n such that R[i] contains the position in SA of
suffi. R can be constructed by a linear scan of SA in O(n) time. The Lcp array is computed
in n iterations. In iteration i of the algorithm, the longest common prefix between suffi

and its respective right neighbor in the suffix array is computed. The array R facilitates
locating an arbitrary suffix suffi and finding its right neighbor in the suffix array in constant
time. Initially, the length of the longest common prefix between suff1 and its suffix array
neighbor is computed directly and recorded. Let suffj be the right neighbor of suffi in SA.
Let l be the length of the longest common prefix between them. Suppose l ≥ 1. As suffj is
lexicographically greater than suffi and s[i] = s[j], suffj+1 is lexicographically greater than
suffi+1. The length of the longest common prefix between them is l − 1. It follows that
the length of the longest common prefix between suffi+1 and its right neighbor in the suffix

5-8 Handbook of Computational Molecular Biology

5

5
12 11 8 5 2 1 10 9 7 4 6 3

0 1 1 4 0 0 1 0 2 1 3

$ A

G

G

A

$

$
T
T
A

8

11

12

G
G

A
$

$ A

G

G

A

$

$
T
T
A
G
G
A
$8

11

12

T
T
A
G
G
A
$

2

SA

Lcp

FIGURE 5.4: The construction of a suffix tree from the corresponding suffix and Lcp arrays.
The example illustrates the insertion of suff2 in the partial tree resulting from
previously inserting the first four suffixes in the suffix array. The length of the lcp
between the last inserted suffix and the new suffix gives the number of characters
under the root and along the rightmost path at which the new leaf is inserted.

array is ≥ l− 1. To determine its correct length, the comparisons need only start from the
lth characters of the suffixes.

To prove that the run time of the above algorithm is linear, charge a comparison between
the rth character in suffix suffi and the corresponding character in its right neighbor suffix in
SA to the position in the string of the rth character of suffi, i.e., i+r−1. A comparison made
in an iteration is termed successful if the characters compared are identical, contributing to
the longest common prefix being computed. Because there is one failed comparison in each
iteration, the total number of failed comparisons is O(n). As for successful comparisons,
each position in the string is charged only once for a successful comparison. Thus, the total
number of comparisons over all iterations is linear in n.

In light of the above discussion, a suffix tree and a suffix array can be constructed from
each other in linear time. Thus, a linear time construction algorithm for one can be used
to construct the other in linear time. In the following sections, we explore such algorithms.
Each algorithm is interesting in its own right, and exploits interesting properties that could
be useful in designing algorithms using suffix trees and suffix arrays.

In suffix tree and suffix array construction algorithms, three different types of alpha-
bets are considered — a constant or fixed size alphabet (|Σ|(1)), integer alphabet (Σ =
{1, 2, . . . , n}), and arbitrary alphabet. Suffix trees and suffix arrays can be constructed in
linear time for both constant size and integer alphabets. The constant alphabet size case

Lookup Tables, Suffix Trees and Suffix Arrays 5-9

covers DNA and protein sequences in molecular biology. The integer alphabet case is in-
teresting because a string of length n can have at most n distinct characters. Furthermore,
some algorithms use a recursive technique that would generate and require operating on
strings over integer alphabet, even when applied to strings over a fixed alphabet.

5.4 Linear Time Construction of Suffix Trees

Let s be a string of length n including the termination character $. Suffix tree construction
algorithms start with an empty tree and iteratively insert suffixes while maintaining the
property that each intermediate tree represents a compacted trie of the suffixes inserted so
far. When all the suffixes are inserted, the resulting tree will be the suffix tree. Suffix links
are typically used to speedup the insertion of suffixes. While the algorithms are identified by
the names of their respective inventors, the exposition presented does not necessarily follow
the original algorithms and we take the liberty to comprehensively present the material in
a way we feel contributes to ease of understanding.

5.4.1 McCreight’s Algorithm

McCreight’s algorithm inserts suffixes in the order suff1, suff2, . . . , suffn. Let Ti denote the
compacted trie after suffi is inserted. T1 is the tree consisting of a single leaf labeled 1 that
is connected to the root by an edge with label s[1..n]. In iteration i of the algorithm, suffi is
inserted into tree Ti−1 to form tree Ti. An easy way to do this is by starting from the root
and following the unique path matching characters in suffi one by one until no more matches
are possible. If the traversal does not end at an internal node, create an internal node there.
Then, attach a leaf labeled i to this internal node and use the unmatched portion of suffi

for the edge label. The run-time for inserting suffi is proportional to |suffi| = n − i + 1.
The total run-time of the algorithm is Σn

i=1(n− i+ 1) = O(n2).
In order to achieve an O(n) run-time, suffix links are used to significantly speedup the

insertion of a new suffix. Suffix links are useful in the following way — Suppose we are
inserting suffi in Ti−1 and let v be an internal node in Ti−1 on the path from root to leaf
labeled (i− 1). Then, path-label(v) = cα is a prefix of suffi−1. Since v is an internal node,
there must be another suffix suffj (j < i− 1) that also has cα as prefix. Because suffj+1 is
previously inserted, there is already a path from the root in Ti−1 labeled α. To insert suffi

faster, if the end of path labeled α is quickly found, comparison of characters in suffi can
start beyond the prefix α. This is where suffix links will be useful. The algorithm must also
construct suffix links prior to using them.

LEMMA 5.1 Let v be an internal node in ST (s) that is created in iteration i− 1. Let
path-label(v) = cα, where c is a character and α is a (possibly empty) string. Then, either
there exists an internal node u with path-label(u) = α or it will be created in iteration i.

Proof As v is created when inserting suffi−1 in Ti−2, there exists another suffix suffj

(j < i − 1) such that lcp(suffi−1, suffj) = cα. It follows that lcp(suffi, suffj+1) = α. The
tree Ti already contains suffj+1. When suffi is inserted during iteration i, internal node u
with path-label α is created if it does not already exist.

The above lemma establishes that the suffix link of a newly created internal node can be
established in the next iteration.

5-10 Handbook of Computational Molecular Biology

2 1

4

62 1

4

3

T

A

T

T

A

G

G

A

$

A
T
T
A
G
G
A
$

A
T

T
A

G

G

A

$

T

5

C
A
T
T
A
T
T
A
G
G
A
$

T
A
G
G
A
$

T

A
T
T
A
G
G
A
$

G

G

A

$

T

A

G

G

$

3

T

T
A

Go to parent

A
T

T
A

G

G

A

$

T

5

C
A
T
T
A
T
T
A
G
G
A
$

T
A
G
G
A
$

T Skip down

r

u

v

r

u

v

w

FIGURE 5.5: Illustration of suffix tree construction using McCreight’s algorithm on the string
CATTATTAGGA. The tree to the left is the compacted trie of suffixes 1 through
5. The process of inserting the next suffix suff6 is shown in the figure.

The following procedure is used when inserting suffi in Ti−1. Let v be the internal node to
which suffi−1 is attached as a leaf. If v is the root, insert suffi using character comparisons
starting with the first character of suffi. Otherwise, let path-label(v) = cα. If v has a
suffix link from it, follow it to internal node u with path-label α. This allows skipping the
comparison of the first |α| characters of suffi. If v is newly created in iteration i − 1, it
would not have a suffix link yet. In that case, walk up to parent v′ of v. Let β denote the
label of the edge connecting v′ and v. Let u′ = SL(v′) unless v′ is the root, in which case
let u′ be the root itself. It follows that path-label(u′) is a prefix of suffi. Furthermore, it
is guaranteed that there is a path below u′ that matches the next |β| characters of suffi.
Traverse |β| characters along this path and either find an internal node u or insert an
internal node u if one does not already exist. In either case, set SL(v) = u. Continue by
starting character comparisons skipping the first |α| characters of suffi.

This procedure is illustrated in Figure 5.5 for the string CATTATTAGGA. The tree to
the left is the compacted trie after suff1, suff2, suff3, suff4 and suff5 are inserted. To insert
suff6, consider the internal node u under which it is inserted as a leaf. Since u did not exist
previously but was created during the insertion of suff5, it does not have a suffix link yet.
Therefore, walk up the 4 character edge to the parent of u to take a suffix link. However, the
parent is the root r itself, and no suffix link is taken. To insert suff6, walk down 4− 1 = 3
characters by only comparing one character per edge label and skipping edges at the rate of
constant time per edge. At this position, create a new internal node w and set SL(u) = w.
Continue to insert suff6 below w.

The above procedure requires two different types of traversals — one in which it is known
that there exists a path below that matches the next |β| characters of suffi (type I), and the

Lookup Tables, Suffix Trees and Suffix Arrays 5-11

other in which it is unknown how many subsequent characters of suffi match a path below
(type II). In the latter case, the comparison must proceed character by character until a
mismatch occurs. In the former case, however, the traversal can be done by spending only
O(1) time per edge irrespective of the length of the edge label. At an internal node during
such a traversal, the decision of which edge to follow next is made by comparing the next
character of suffi with the first characters of the edge labels connecting the node to its
children. However, once the edge is selected, the entire label or the remaining length of β
must match, whichever is shorter. Thus, the traversal can be done in constant time per
edge, and if the traversal stops within an edge label, the stopping position can also be
determined in constant time.

The insertion procedure during iteration i can now be described as follows: Start with
the internal node v to which suffi−1 is attached as a leaf. If v has a suffix link, follow it and
perform a type II traversal to insert suffi. Otherwise, walk up to v’s parent, take the suffix
link from it unless it is the root, and perform a type I traversal to either find or create the
node u which will be linked from v by a suffix link. Continue with a type II traversal below
u to insert suffi.

LEMMA 5.2 The total time spent in type I traversals over all iterations is O(n).

Proof A type I traversal is performed by walking down along a path from root to a leaf
in O(1) time per edge. Each iteration consists of walking up at most one edge, following
a suffix link, and then performing downward traversals (either type II or both type I and
type II). Recall that if SL(v) = u, then tree-depth(u) ≥ tree-depth(v)− 1. Thus, following
a suffix link may reduce the depth in the tree by at most one. It follows that the operations
that may cause moving to a higher level in the tree cause a decrease in depth of at most 2
per iteration. As both type I and type II traversals increase the depth in the tree and there
are at most n levels in ST , the total number of edges traversed by type I traversals over all
the iterations is bounded by 3n.

LEMMA 5.3 The total time spent in type II traversals over all iterations is O(n).

Proof In a type II traversal, a suffix of the string suffi is matched along a path in Ti−1

until there is a mismatch. When a mismatch occurs, an internal node is created if there does
not exist one already. Then, the remaining part of suffi becomes the edge label connecting
leaf labeled i to the internal node. Charge each successful comparison of a character in
suffi to the corresponding character in the original string s. Note that a character that is
charged with a successful comparison is never charged again as part of a type II traversal.
Thus, the total time spent in type II traversals is O(n).

The above lemmas prove that the total run-time of McCreight’s algorithm is O(n).

5.4.2 Ukkonen’s Algorithm

Ukkonen’s suffix tree construction algorithm is also a linear time algorithm but with an
important on-line property: The algorithm reads the input string one character at a time
and maintains a suffix tree of the prefix of the string seen so far. As before, let s be a string
of length n including the terminal ‘$’ character. The algorithm constructs a series of trees
T1, T2, . . . , Tn, where Ti is the suffix tree of s[1..i]. After constructing Ti, the algorithm

5-12 Handbook of Computational Molecular Biology

reads s[i + 1] and updates Ti to create Ti+1. The total run-time spent by the time the
algorithm constructs Ti is O(i), even though the time spent in transitioning from one tree
to the next is not necessarily constant.

When considering the string s[1..i], a suffix of it may be repeated elsewhere in it because
the unique terminal symbol is only at s[n]. Hence, a compacted trie of all suffixes of s[1..i]
may not have each suffix represented by a path that ends in a leaf. Therefore, we relax the
definition of suffix trees by requiring that a downward path from the root corresponding to
each suffix exist but not necessarily end in a leaf node. Such a tree is called implicit suffix
tree. This would not pose any problem as the implicit suffix tree for s[1..n] is the same as
ST (s) due to the terminal symbol s[n] = $.

Ukkonen’s algorithm employs a few additional ideas in conjunction with those already
illustrated under McCreight’s algorithm. Consider the prefix s[1..i]. We now use the nota-
tion suffk to denote the suffix starting from position k in the current string, i.e., s[k..i]. Let
j be the position such that suffj = s[j..i] is the longest suffix of s[1..i] that occurs elsewhere
in it. Observe that the compacted trie of just suffixes suff1, suff2, . . . , suffj−1 is the same
as the compacted trie of all suffixes suff1, suff2, . . . , suffi of s[1..i]. In the implicit suffix
tree of s[1..i], the paths corresponding to first j − 1 suffixes end in leaves and the paths
corresponding to the remaining suffixes end otherwise.

Consider building Ti+1 from Ti. Viewed naively, this requires extending all suffixes in Ti

with the newly added character s[i+ 1], and finally inserting a new suffix corresponding to
the last character. Let j′ be the position such that s[j′..i+1] is the longest suffix of s[1..i+1]
that occurs elsewhere in it. Clearly, j′ ≥ j, where s[j..i] is the longest suffix of s[1..i] that
occurs elsewhere in it. In creating Ti+1, the suffixes of s[1..i+ 1] can be considered in three
categories:

1. Suffixes suffi . . . suffj−1: The corresponding suffixes in Ti already end in a leaf
and they all need to be extended by the newly read character s[i+1]. Instead of
explicitly doing this, this is implicitly achieved by assuming that all leaf labels
(the labels of edges incident to leaves) end at the current end of the string.

2. Suffixes suffj . . . suffj′−1: These suffixes are inserted in turn using ideas presented
in McCreight’s algorithm. This will be dealt in more detail later.

3. Suffixes suffj′ . . . suffi+1: We need not bother about these suffixes as the com-
pacted trie of the suffixes in the two categories above automatically accounts for
these suffixes also.

Observe that work is required only for inserting suffixes in category 2 above. The suffixes
that are processed under category 2 in creating Ti+1 from Ti, will become category 1 suffixes
in subsequent tree constructions and are never worked on again. As the trees T1 . . . Tn are
constructed in Ukkonen’s algorithm, each suffix is inserted as a category 2 suffix exactly
once. Taken together, these suffix insertions can be thought of as similar to McCreight’s
suffix insertions. Essentially the same techniques will give linear run-time for these suffix
insertions.

Consider Ti and let s[j..i] be the longest suffix of s[1..i] that is repeated elsewhere in it.
This is actually realized while attempting to insert s[j..i] while transitioning to Ti. The
entire suffix s[j..i] would be found within an already existing root to leaf path. This is a
signal that Ti is already constructed. As we transition to Ti+1, the first suffix to insert
is s[j..i + 1]. Note that we are already at the end of the downward path from the root
corresponding to s[j..i]. If the path can continue with s[i + 1], there are no category 2
insertions that need to be made. Otherwise, an internal node v is created at the end of
s[j..i] unless such a node v already exists, and a leaf attached to it using the edge label that

Lookup Tables, Suffix Trees and Suffix Arrays 5-13

start at s[i+ 1] and ends at the current end of the string. Then, the next suffix is inserted
as in McCreight’s algorithm by taking suffix link from v if v was present beforehand, or by
walking up to v’s parent and taking suffix link from it if v was newly created and hence
missing a suffix link from it. This process of inserting consecutive suffixes is carried out
until one finds a suffix s[j′..i+1] that is already represented, or the last suffix of the current
string s[i+ 1] is inserted.

The mechanism for moving from one suffix to the next is identical to the process described
in McCreight’s algorithm. Simply walk up from the current insertion point until the first
node with a suffix link is reached, take the suffix link, walk down using type I traversal for
the guaranteed portion of the match, and continue with type II traversal from that point
on. Suffix links are also created during the execution of the algorithm as in McCreight’s.
Another way to view this algorithm is in terms of two shifting pointers j and i. The first
pointer points to a suffix being inserted and the second pointer points to the current end of
the string. If the suffix needs to be inserted, j is incremented by 1 to insert the next suffix.
If the suffix is already found, i is incremented by 1 to switch to the next larger prefix of
the string. As we advanced one of the pointers by 1 and the total length of the string is n,
the number of steps before the two pointers sweep all the indices is at most 2n. All of the
suffix insertions together take O(n) time, giving the algorithm a linear run-time.

McCreight’s algorithm and Ukkonen’s algorithm are suitable for constant sized alphabets.
The dependence of the run-time and space for storing suffix trees on the size of the alphabet
|Σ| is as follows: A simple way to allocate space for internal nodes in a suffix tree is to allocate
|Σ|+ 1 pointers for children, one for each distinct character with which an edge label may
begin. With this approach, the edge label beginning with a given character, or whether an
edge label exists with a given character, can be determined in O(1) time. However, as all
|Σ| + 1 pointers are kept irrespective of how many children actually exist, the total space
is O(|Σ|n). If the tree is stored such that each internal node points only to its leftmost
child and each node also points to its next sibling, if any, the space can be reduced to O(n),
irrespective of |Σ|. With this, searching for a child connected by an edge label with the
appropriate character takes O(|Σ|) time. Thus, McCreight’s algorithm can be run in O(n)
time using O(n|Σ|) space, or in O(n|Σ|) time using O(n) space. It is possible to obtain
O(n log |Σ|) time with O(n) space using an ordered list of pointers at each internal node.
However, this is unlikely to be faster in practice, especially for small alphabet sizes such as
for DNA and proteins.

5.4.3 Generalized Suffix Trees

The above linear time algorithms can be easily adapted to build the generalized suffix
tree for a set S = {s1, s2, . . . , sk} of strings of total length N in O(N) time. A simple
way to do this is to construct the string S = s1$1s2$2 . . . sk$k, where each $i is a unique
string termination character that does not occur in any string in S. Using a linear time
algorithm, ST (S) can be computed in O(N) time. This differs from GST (S) in the following
way: Consider a suffix suffj of string si in GST (S). The corresponding suffix in ST (S) is
si[j..|si|]$isi+1$i+1 . . . sk$k. Let v be the parent of the leaf representing this suffix in ST (S).
As each $i is unique and path-label(v) must be a common prefix of at least two suffixes in S,
path-label(v) must be a prefix of si[j..|si|]. Thus, by simply shortening the edge label below
v to terminate at the end of the string si and attaching a common termination character $
to it, the corresponding suffix in GST (S) can be generated in O(1) time. Additionally, all
suffixes in ST (S) that start with some $i should be removed and replaced by a single suffix
$ in GST (S). Note that the suffixes to be removed are all directly connected to the root
in ST (S), allowing easy O(1) time removal per suffix. Thus, GST (S) can be derived from

5-14 Handbook of Computational Molecular Biology

ST (S) in O(N) time.
Instead of first constructing ST (S) and shortening edge labels of edges connecting to

leaves to construct GST (S), the process can be integrated into the tree construction itself
to directly compute GST (S). We will explain this in the context of using McCreight’s
algorithm. When inserting the suffix of a string, directly set the edge label connecting to
the newly created leaf to terminate at the end of the string, appended by $. As each suffix
that begins with $i in ST (S) is directly attached to the root, execution of McCreight’s
algorithm on S will always result in a downward traversal starting from the root when a
suffix starting from the first character of a string is being inserted. Thus, we can simply
start with an empty tree, insert all the suffixes of one string using McCreight’s algorithm,
insert all the suffixes of the next string, and continue this procedure until all strings are
inserted. To insert the first suffix of a string, start by matching the unique path in the
current tree that matches with a prefix of the string until no more matches are possible,
and insert the suffix by branching at this point. To insert the remaining suffixes, continue
as described in constructing the tree for one string.

This procedure immediately gives an algorithm to maintain the generalized suffix tree
of a set of strings in the presence of insertions and deletions of strings. Insertion of a
string is the same as executing McCreight’s algorithm on the current tree, and takes time
proportional to the length of the string being inserted. To delete a string, we must locate the
leaves corresponding to all the suffixes of the string. By mimicking the process of inserting
the string in GST using McCreight’s algorithm, all the corresponding leaf nodes can be
reached in time linear in the size of the string to be deleted. To delete a suffix, examine the
corresponding leaf. If it is multiply labeled, it is enough to remove the label corresponding
to the suffix. It it has only one label, the leaf and edge leading to it must be deleted. If the
parent of the leaf is left with only one child after deletion, the parent and its two incident
edges are deleted by connecting the surviving child directly to its grandparent with an edge
labeled with the concatenation of the labels of the two edges deleted. As the adjustment at
each leaf takes O(1) time, the string can be deleted in time proportional to its length.

Suffix trees were invented by Weiner [29], who also presented the first linear time algo-
rithm to construct them for a constant sized alphabet. McCreight’s algorithm is a more
space-economical linear time construction algorithm [26]. A linear time on-line construction
algorithm for suffix trees was invented by Ukkonen [28]. In fact, our presentation of Mc-
Creight’s algorithm also draws from ideas developed by Ukkonen. A unified view of these
three suffix tree construction algorithms is studied by Giegerich and Kurtz [10]. Farach [6]
presented the first linear time algorithm for strings over integer alphabets. The algorithm
recursively constructs suffix trees for all odd and all even suffixes, respectively, and uses a
clever strategy for merging them. The complexity of suffix tree construction algorithms for
various types of alphabets is explored in [7].

5.5 Linear Time Construction of Suffix Arrays

Suffix arrays were proposed by Manber and Myers [25] as a space-efficient alternative to
suffix trees. While suffix arrays can be deduced from suffix trees, which immediately implies
any of the linear time suffix tree construction algorithms can be used for suffix arrays, it
would not achieve the purpose of economy of space. Until recently, the fastest known direct
construction algorithms for suffix arrays all required O(n log n) time, leaving a frustrating
gap between asymptotically faster construction algorithms for suffix trees, and asymptot-
ically slower construction algorithms for suffix arrays, despite the fact that suffix trees
contain all the information in suffix arrays. This gap is successfully closed by a number of

Lookup Tables, Suffix Trees and Suffix Arrays 5-15

researchers in 2003, including Kärkkäinen and Sanders [19], Kim et al. [21], and Ko and
Aluru [22, 23]. All three algorithms work for the case of integer alphabet. Given the sim-
plicity and/or space efficiency of some of these algorithms, it is now preferable to construct
suffix trees via the construction of suffix arrays.

5.5.1 Kärkkäinen and Sanders’ Algorithm

Kärkkäinen and Sanders’ algorithm is the simplest and most elegant algorithm to date to
construct suffix arrays, and by implication suffix trees, in linear time. The algorithm also
works for the case of an integer alphabet. Let s be a string of length n over the alphabet
Σ = {1, 2, . . . , n}. For convenience, assume n is a multiple of three and s[n+1] = s[n+2] = 0.
The algorithm has the following steps:

1. Recursively sort the 2
3n suffixes suffi with i mod 3 �= 0.

2. Sort the 1
3n suffixes suffi with i mod 3 = 0 using the result of step (1).

3. Merge the two sorted arrays.

To execute step (1), first perform a radix sort of the 2
3n triples (s[i], s[i + 1], s[i + 2])

for each i mod 3 �= 0 and associate with each distinct triple its rank ∈ {1, 2, . . . , 2
3n} in

sorted order. If all triples are distinct, the suffixes are already sorted. Otherwise, let suff′i
denote the string obtained by taking suffi and replacing each consecutive triplet with its
corresponding rank. Create a new string s′ by concatenating suff′1 with suff′2. Note that all
suff′i with i mod 3 = 1 (i mod 3 = 2, respectively) are suffixes of suff′1 (suff′2, respectively).
A lexicographic comparison of two suffixes in s′ never crosses the boundary between suff′1
and suff′2 because the corresponding suffixes in the original string can be lexicographically
distinguished. Thus, sorting s′ recursively gives the sorted order of suffi with i mod 3 �= 0.

Step (2) can be accomplished by performing a radix sort on tuples (s[i], rank(suffi+1)) for
all i mod 3 = 0, where rank(suffi+1) denotes the rank of suffi+1 in sorted order obtained
in step (1).

Merging of the sorted arrays created in steps (1) and (2) is done in linear time, aided
by the fact that the lexicographic order of a pair of suffixes, one from each array, can be
determined in constant time. To compare suffi (i mod 3 = 1) with suffj (i mod 3 = 0),
compare s[i] with s[j]. If they are unequal, the answer is clear. If they are identical, the
ranks of suffi+1 and suffj+1 in the sorted order obtained in step (1) determines the answer.
To compare suffi (i mod 3 = 2) with suffj (i mod 3 = 0), compare the first two characters
of the two suffixes. If they are both identical, the ranks of suffi+2 and suffj+2 in the sorted
order obtained in step (1) determines the answer.

The run-time of this algorithm is given by the recurrence T (n) = T
(
� 2n

3 �
)
+O(n), which

results in O(n) run-time. Note that the 2
3 : 1

3 split is designed to make the merging step
easy. A 1

2 : 1
2 split does not allow easy merging because when comparing two suffixes for

merging, no matter how many characters are compared, the remaining suffixes will not
fall in the same sorted array, where ranking determines the result without need for further
comparisons. Kim et al.’s linear time suffix array construction algorithm is based on a 1

2 : 1
2

split, and the merging phase is handled in a clever way so as to run in linear time. This is
much like Farach’s algorithm for constructing suffix trees [6] by constructing suffix trees for
even and odd positions separately and merging them. Both the above linear time suffix array
construction algorithms partition the suffixes based on their starting positions in the string.
A more detailed account of Kärkkäinen and Sanders’ Algorithm including pseudocode and
an example suffix array construction, along with application of this algorithm to construct
suffix arrays on disks can be found in Chapter 35.

5-16 Handbook of Computational Molecular Biology

S L L S SL L L L L L/SLType

2 3 4 5 6 7 8 91 121110Pos

I S S I S S I P P I $Ms

FIGURE 5.6: The string CATTATTAGGA$ and the types of its suffixes.

5.5.2 Ko and Aluru’s Algorithm

A completely different way of partitioning suffixes based on the lexicographic ordering of a
suffix with its right neighboring suffix in the string is used by Ko and Aluru to derive a linear
time algorithm [22, 23]. Consider a string s of size n over the alphabet Σ = {1 . . . n}. As
before, we use ‘$’ to denote the last character of s, considered unique and lexicographically
the smallest. For strings α and β, we use α ≺ β to denote that α is lexicographically smaller
than β.

A high level overview of the algorithm is as follows: The suffixes are classified into two
types, S and L. Suffix suffi is of type S if suffi ≺ suffi+1, and is of type L if suffi+1 ≺ suffi.
The last suffix suffn is classified as both type S and type L. The positions of the type S
suffixes partition the string into a set of substrings. We substitute each of these substrings
by its rank among all the substrings and produce a new string s′. The suffixes of the new
string are then recursively sorted. The suffix array of s′ gives the lexicographic order of all
type S suffixes. The lexicographic order of all suffixes can be deduced from this order.

The first step of the algorithm is to classify suffixes into types S and L. Consider suffi

(i < n).

• If s[i] < s[i+ 1], suffi is of type S.
• If s[i] > s[i+ 1], suffi is of type L.
• If s[i] = s[i+ 1], find the smallest j > i such that s[j] �= s[i]. If s[j] > s[i], then
suffi, suffi+1, . . . , suffj−1 are of type S. Otherwise, they are all of type L.

Thus, all suffixes can be classified using a left to right scan of s in O(n) time. The type
of each suffix of the string CATTATTAGGA$ is shown in Figure 5.6.

LEMMA 5.4 A type S suffix is lexicographically greater than a type L suffix that begins
with the same first character.

Proof Let suffi be type S and suffj be type L such that s[i] = s[j] = c. We can write
suffi = ckc1α and suffj = clc2β, where ck and cl denote the character c repeated for k, l > 0
times, respectively, c1 > c, c2 < c, and α and β are (possibly empty) strings.

Case 1: If k < l, c1 is compared to a character c in cl. Then c1 > c⇒ suffj ≺ suffi.

Case 2: If k > l, c2 is compared to a character c in ck. Then c > c2 ⇒ suffj ≺ suffi.
Case 3: If k = l then c1 is compared to c2. Since c1 > c and c > c2, then c1 > c2 ⇒

suffj ≺ suffi.

It follows that in the suffix array of s, among all suffixes that start with the same character,
the type S suffixes appear after the type L suffixes.

Let A be an array containing all suffixes of s, not necessarily in sorted order. Let B be
an array of all suffixes of type S, sorted in lexicographic order. Using B, the lexicographic

Lookup Tables, Suffix Trees and Suffix Arrays 5-17

8 5 212

12

12 8 5 211 1 9 10 3 4 6 7

11 8 5 2 1 10 9 7 4 6 3

s

1 2 3 4 5 6 7 8 9

M I S S I S S I P P I

10 11

S SType

Pos

S

Bucket

Order Of Type S suffixes

Sorted Order

After Step 2

$

S

12

$ I M P S

FIGURE 5.7: Illustration of how to obtain the sorted order of all suffixes, from the sorted order
of type S suffixes of the string CATTATTAGGA$.

sorted order of all suffixes of s can be computed as follows:

1. Bucket all suffixes of s according to their first character in array A in O(n) time.
2. Scan B from right to left. For each suffix encountered in the scan, move the suffix

to the current end of its bucket in A, and advance the current end by one position
to the left. More specifically, the move of a suffix in array A to a new position
should be taken as swapping the suffix with the suffix currently occupying the
new position. After completion of the scan, all type S suffixes are in their correct
positions in A. The time taken is O(|B|), which is bounded by O(n).

3. Scan A from left to right. For each entry A[i], if suffA[i]−1 is a type L suffix, move
it to the current front of its bucket in A, and advance the front of the bucket by
one. This takes O(n) time. At the end of this step, A contains all suffixes of s in
sorted order.

In Figure 5.7, the suffix pointed by the arrow is moved to the current front of its bucket
when the scan reaches the suffix at the origin of the arrow. The following lemma proves the
correctness of the procedure in Step 3.

LEMMA 5.5 In step 3, when the scan reaches A[i], suffix suffA[i] is already in its sorted
position in A.

Proof By induction on i. To begin with, the smallest suffix in s must be of type S and
hence in its correct position A[1]. By inductive hypothesis, assume that A[1], A[2], . . . , A[i]
are the first i suffixes in sorted order. We now show that when the scan reaches A[i + 1],
then the suffix in it, i.e., suffA[i+1] is already in its sorted position. Suppose not. Then there
exists a suffix referenced by A[k] (k > i+ 1) that should be in A[i+ 1] in sorted order, i.e.,
suffA[k] ≺ suffA[i+1]. As all type S suffixes are already in correct positions, both suffA[k]

and suffA[i+1] must be of type L. Because A is bucketed by the first character of the suffixes

5-18 Handbook of Computational Molecular Biology

prior to step 3, and a suffix is never moved out of its bucket, suffA[k] and suffA[i+1] must
begin with the same character, say c. Let suffA[i+1] = cα and suffA[k] = cβ. Since suffA[k]

is type L, β ≺ suffA[k]. From suffA[k] ≺ suffA[i+1], β ≺ α. Since β ≺ suffA[k], and the
correct sorted position of suffA[k] is A[i+ 1], β must occur in A[1] . . . A[i]. Because β ≺ α,
suffA[k] should have been moved to the current front of its bucket before suffA[i+1]. Thus,
suffA[k] can not occur to the right of suffA[i+1], a contradiction.

So far, we showed that if all type S suffixes are sorted, then the sorted position of all
suffixes of s can be deduced in O(n) time. A similar result can also be obtained by sorting
all suffixes of type L: First bucket all suffixes of s based on their first characters into an
array A. Scan the sorted order of type L suffixes from left to right and determine their
correct positions in A by moving them to the current front of their respective buckets.
Subsequently, scan A from right to left and when A[i] is encountered, if suffA[i]−1 is of type
S, move it to the current end of its bucket. Since the suffix array of s can be deduced either
from sorting all type S suffixes, or from sorting all type L suffixes, it is advantageous to
choose the type which has fewer suffixes. Without loss of generality, assume there are fewer
type S suffixes. We now show how to recursively sort these suffixes.

Define position i of s to be a type S position if suffi is of type S, and similarly to be
a type L position if suffi is of type L. The substring s[i..j] is called a type S substring if
both i and j are type S positions, and every position in between is a type L position.

Our goal is to sort all type S suffixes in s. To do this we first sort all the type S substrings.
The sorting generates buckets where all the substrings in a bucket are identical. The buckets
are numbered using consecutive integers starting from 1. We then generate a new string
s′ as follows: Scan s from left to right and for each type S position in s, write the bucket
number of the type S substring starting from that position. This string of bucket numbers
forms s′. Observe that each type S suffix in s naturally corresponds to a suffix in the new
string s′. In Lemma 5.6, we prove that sorting all type S suffixes of s is equivalent to sorting
all suffixes of s′. We sort s′ recursively.

We first show how to sort all the type S substrings in O(n) time. Consider the array A,
consisting of all suffixes of s bucketed according to their first characters. For each suffix
suffi, define its S-distance to be the distance from its starting position i to the nearest
type S position to its left (excluding position i). If no type S position exists to the left,
the S-distance is defined to be 0. Thus, for each suffix starting on or before the first type
S position in s, its S-distance is 0. The type S substrings are sorted as follows (illustrated
in Figure 5.8):

1. For each suffix in A, determine its S-distance. This is done by scanning s from
left to right, keeping track of the distance from the current position to the nearest
type S position to the left. While at position i, the S-distance of suffi is known
and this distance is recorded in array Dist. The S-distance of suffi is stored in
Dist[i]. Hence, the S-distances for all suffixes can be recorded in linear time.

2. Let m be the largest S-distance. Create m lists such that list j (1 ≤ j ≤ m)
contains all the suffixes with an S-distance of j, listed in the order in which they
appear in array A. This can be done by scanning A from left to right in linear
time, referring to Dist[A[i]] to put suffA[i] in the correct list.

3. We now sort the type S substrings using the lists created above. The sorting is
done by repeated bucketing using one character at a time. To begin with, the
bucketing based on first character is determined by the order in which type S
suffixes appear in array A. Suppose the type S substrings are bucketed according
to their first j − 1 characters. To extend this to j characters, we scan list j. For

Lookup Tables, Suffix Trees and Suffix Arrays 5-19

Type S S S S

12 2 5 8
2 5 8 11 1 9 10 3 76412
2 3 4 5 6 7 8 9 1211101Pos

Dist 0 0 1 2 3 1 2 3 1 2 3 4
Pos 2 3 4 5 6 7 8 9 121 10 11

9 3 61

10 4 72

5 1183

4 12

Step 2. Construct S−distance Lists

12 8 2 5

12 8 2 5

12 8 2 5

12 8 2 5

I S S I S S I P P I $M Step 3. Sort all type S substring
Original

Sort according to list 1

Sort according to list 2

A

Step 1. Record the S−distances

Sort according to list 3

Sort according to list 4

s

FIGURE 5.8: Illustration of the sorting of type S substrings of the string CATTATTAGGA$.

each suffix suffi encountered in the scan of a bucket of list j, move the type S
substring starting at s[i − j] to the current front of its bucket, then move the
current front to the right by one. After a bucket of list j is scanned, new bucket
boundaries need to be drawn between all the type S substrings that have been
moved, and the type S substrings that have not been moved. Because the total
size of all the lists is O(n), the sorting of type S substrings only takes O(n) time.

The sorting of type S substrings using the above algorithm respects lexicographic ordering
of type S substrings, with the following important exception: If a type S substring is the
prefix of another type S substring, the bucket number assigned to the shorter substring
will be larger than the bucket number assigned to the larger substring. This anomaly is
designed on purpose, and is exploited later in Lemma 5.6.

As mentioned before, we now construct a new string s′ corresponding to all type S
substrings in s. Each type S substring is replaced by its bucket number and s′ is the sequence
of bucket numbers in the order in which the type S substrings appear in s. Because every
type S suffix in s starts with a type S substring, there is a natural one-to-one correspondence
between type S suffixes of s and all suffixes of s′. Let suffi be a suffix of s and suff′i′ be its
corresponding suffix in s′. Note that suff′i′ can be obtained from suffi by replacing every
type S substring in suffi with its corresponding bucket number. Similarly, suffi can be
obtained from suff′i′ by replacing each bucket number with the corresponding substring and
removing the duplicate instance of the common character shared by two consecutive type S
substrings. This is because the last character of a type S substring is also the first character
of the next type S substring along s.

LEMMA 5.6 Let suffi and suffj be two suffixes of s and let suff′i′ and suff′j′ be the
corresponding suffixes of s′. Then, suffi ≺ suffj ⇔ suff′i′ ≺ suff′j′ .

Proof We first show that suff′i′ ≺ suff′j′ ⇒ suffi ≺ suffj . The prefixes of suffi and suffj

5-20 Handbook of Computational Molecular Biology

corresponding to the longest common prefix of suff′i′ and suff′j′ must be identical. This is
because if two bucket numbers are the same, then the corresponding substrings must be
the same. Consider the leftmost position in which suff′i′ and suff′j′ differ. Such a position
exists and the characters (bucket numbers) of suff′i′ and suff′j′ in that position determine
which of suff′i′ and suff′j′ is lexicographically smaller. Let k be the bucket number in suff′i′
and l be the bucket number in suff′j′ at that position. Since suff′i′ ≺ suff′i′ , it is clear that
k < l. Let α be the substring corresponding to k and β be the substring corresponding to
l. Note that α and β can be of different lengths, but α cannot be a proper prefix of β. This
is because the bucket number corresponding to the prefix must be larger, but we know that
k < l.

Case 1: β is not a prefix of α. In this case, k < l⇒ α ≺ β, which implies suffi ≺ suffj .
Case 2: β is a proper prefix of α. Let the last character of β be c. The corresponding

position in s is a type S position. The position of the corresponding c in α must
be a type L position. Since the two suffixes that begin at these positions start
with the same character, the type L suffix must be lexicographically smaller then
the type S suffix. Thus, suffi ≺ suffj .

From the one-to-one correspondence between the suffixes of s′ and the type S suffixes of s,
it also follows that suffi ≺ suffj ⇒ suff′i′ ≺ suff′j′ .

From the above lemma, the sorted order of the suffixes of s′ determines the sorted order
of the type S suffixes of s. Hence, the problem of sorting the type S suffixes of s reduces
to the problem of sorting all suffixes of s′. Note that the characters of s′ are consecutive
integers starting from 1. Hence the suffix sorting algorithm can be recursively applied to s′.

If s has fewer type L suffixes than type S suffixes, the type L suffixes are sorted using
a similar procedure − Call s[i..j] a type L substring if both i and j are type L positions,
and every position in between is a type S position. Now sort all the type L substrings and
construct the corresponding string s′ obtained by replacing each type L substring with its
bucket number. Sorting s′ gives the sorted order of type L suffixes.

Thus, the problem of sorting the suffixes of a string s of length n can be reduced to the
problem of sorting the suffixes of a string s′ of size at most �n

2 �, and O(n) additional work.
This leads to the recurrence T (n) = T

(⌈
n
2

⌉)
+ O(n), resulting in O(n) run time. The

algorithm can be made to run in only 2n words plus 1.25n bits for strings over constant
alphabet [23]. Algorithmically, Kärkkäinen and Sanders’ algorithm is akin to mergesort and
Ko and Aluru’s algorithm is akin to quicksort.

It may be more space efficient to construct a suffix tree by first constructing the corre-
sponding suffix array, deriving the Lcp array from it, and using both to construct the suffix
tree. For example, while all direct linear time suffix tree construction algorithms depend on
constructing and using suffix links, these are completely avoided in the indirect approach.
Furthermore, the resulting algorithms have an alphabet independent run-time of O(n) while
using only the O(n) space representation of suffix trees. This should be contrasted with the
O(|Σ|n) run-time of either McCreight’s or Ukkonen’s algorithms.

5.6 Space Issues

Suffix trees and suffix arrays are space efficient in an asymptotic sense because the memory
required grows linearly with input size. However, the actual space usage is of significant
concern, especially for very large strings. For example, the human genome can be repre-
sented as a large string over the alphabet Σ = {A,C,G,T} of length over 3×109. Because of

Lookup Tables, Suffix Trees and Suffix Arrays 5-21

linear dependence of space on the length of the string, the exact space requirement is easily
characterized by specifying it in terms of the number of bytes per character. Depending
on the number of bytes per character required, a data structure for the human genome
may fit in main memory, may need a moderate sized disk, or might need a large amount
of secondary storage. This has significant influence on the run-time of an application as
access to secondary storage is considerably slower. It may also become impossible to run
an application for large data sizes unless careful attention is paid to space efficiency.

Consider a naive implementation of suffix trees. For a string of length n, the tree has n
leaves, at most n − 1 internal nodes, and at most 2n − 2 edges. For simplicity, count the
space required for each integer or a pointer to be one word, equal to 4 bytes on most current
computers. For each leaf node, we may store a pointer to its parent, and store the starting
index of the suffix represented by the leaf, for 2n words of storage. Storage for each internal
node may consist of 4 pointers, one each for parent, leftmost child, right sibling and suffix
link, respectively. This will require approximately 4n words of storage. Each edge label
consists of a pair of integers, for a total of at most 4n words of storage. Putting this all
together, a naive implementation of suffix trees takes 10n words or 40n bytes of storage.

Several techniques can be used to considerably reduce the naive space requirement of 40
bytes per character. Many applications of interest do not need to use suffix links. Similarly,
a pointer to the parent may not be required for applications that use traversals down from
the root. Even otherwise, note that a depth first search traversal of the suffix tree starting
from the root can be conducted even in the absence of parent links, and this can be utilized
in applications where a bottom-up traversal is needed. Another technique is to store the
internal nodes of the tree in an array in the order of their first occurrence in a depth first
search traversal. With this, the leftmost child of an internal node is found right next to it
in the array, which removes the need to store a child pointer. Instead of storing the starting
and ending positions of a substring corresponding to an edge label, an edge label can be
stored with the starting position and length of the substring. The advantage of doing so is
that the length of the edge label is likely to be small. Hence, one byte can be used to store
edge labels with lengths < 255 and the number 255 can be used to denote edge labels with
length at least 255. The actual values of such labels can be stored in an exceptions list,
which is expected to be fairly small. Using several such techniques, the space required per
character can be roughly cut in half to about 20 bytes [24].

A suffix array can be stored in just one word per character, or 4 bytes. Most applications
using suffix arrays also need the Lcp array. Similar to the technique employed in storing
edge labels on suffix trees, the entries in Lcp array can also be stored using one byte, with
exceptions handled using an ordered exceptions list. Provided most of the lcp values fit
in a byte, we only need 5 bytes per character, significantly smaller than what is required
for suffix trees. Further space reduction can be achieved by the use of compressed suffix
trees and suffix arrays and other data structures [8, 11]. However, this often comes at the
expense of increased run-time complexity.

5.7 Lowest Common Ancestors

Consider a string s and two of its suffixes suffi and suffj . The longest common prefix of the
two suffixes is given by the path label of their lowest common ancestor. If the string-depth of
each node is recorded in it, the length of the longest common prefix can be retrieved from the
lowest common ancestor. Thus, an algorithm to find the lowest common ancestors quickly
can be used to determine longest common prefixes without a single character comparison.
In this section, we describe how to preprocess the suffix tree in linear time and be able to

5-22 Handbook of Computational Molecular Biology

answer lowest common ancestor queries in constant time [4].

5.7.1 Bender and Farach’s lca algorithm

Let T be a tree of n nodes. Without loss of generality, assume the nodes are numbered
1 . . . n. Let lca(i, j) denote the lowest common ancestor of nodes i and j. Bender and
Farach’s algorithm performs a linear time preprocessing of the tree and can answer lca
queries in constant time.

Let E be an Euler tour of the tree obtained by listing the nodes visited in a depth first
search of T starting from the root. Let L be an array of level numbers such that L[i]
contains the tree-depth of the node E[i]. Both E and L contain 2n− 1 elements and can
be constructed by a depth first search of T in linear time. Let R be an array of size n such
that R[i] contains the index of the first occurrence of node i in E. Let RMQA(i, j) denote
the position of an occurrence of the smallest element in array A between indices i and j
(inclusive). For nodes i and j, their lowest common ancestor is the node at the smallest
tree-depth that is visited between an occurrence of i and an occurrence of j in the Euler
tour. It follows that

lca(i, j) = E[RMQL(R[i], R[j])]

Thus, the problem of answering lca queries transforms into answering range minimum
queries in arrays. Without loss of generality, we henceforth restrict our attention to an-
swering range minimum queries in an array A of size n.

To answer range minimum queries in A, do the following preprocessing: Create �logn�+1
arrays B0, B1, . . . , B�log n	 such that Bj [i] contains RMQA(i, i + 2j), provided i + 2j ≤ n.
B0 can be computed directly from A in linear time. To compute Bl[i], use Bl−1[i] and
Bl−1[i + 2l−1] to find RMQA(i, i + 2l−1) and RMQA(i + 2l−1, i + 2l), respectively. By
comparing the elements in A at these locations, the smallest element in the range A[i..i+2l]
can be determined in constant time. Using this method, all the �logn� + 1 arrays are
computed in O(n logn) time.

Given an arbitrary range minimum query RMQA(i, j), let k be the largest integer such
that 2k ≤ (j− i). Split the range [i..j] into two overlapping ranges [i..i+2k] and [j− 2k..j].
Using Bk[i] and Bk[j − 2k], a smallest element in each of these overlapping ranges can be
located in constant time. This will allow determination of RMQA(i, j) in constant time.
To avoid a direct computation of k, the largest power of 2 that is smaller than or equal to
each integer in the range [1..n] can be precomputed and stored in O(n) time. Putting all of
this together, range minimum queries can be answered with O(n log n) preprocessing time
and O(1) query time.

The preprocessing time is reduced to O(n) as follows: Divide the array A into 2n
log n blocks

of size 1
2 logn each. Preprocess each block such that for every pair (i, j) that falls within a

block, RMQA(i, j) can be answered directly. Form an array B of size 2n
log n that contains

the minimum element from each of the blocks in A, in the order of the blocks in A, and
record the locations of the minimum in each block in another array C. An arbitrary query
RMQA(i, j) where i and j do not fall in the same block is answered as follows: Directly
find the location of the minimum in the range from i to the end of the block containing
it, and also in the range from the beginning of the block containing j to index j. All that
remains is to find the location of the minimum in the range of blocks completely contained
between i and j. This is done by the corresponding range minimum query in B and using
C to find the location in A of the resulting smallest element. To answer range queries in B,
B is preprocessed as outlined before. Because the size of B is only O

(
n

log n

)
, preprocessing

Lookup Tables, Suffix Trees and Suffix Arrays 5-23

B takes O
(

n
log n × log n

log n

)
= O(n) time and space.

It remains to be described how each of the blocks in A is preprocessed to answer range
minimum queries that fall within a block. For each pair (i, j) of indices that fall in a
block, the corresponding range minimum query is precomputed and stored. This requires
computing O(log2 n) values per block and can be done in O(log2 n) time per block. The
total run-time over all blocks is 2n

log n ×O(log2 n) = O(n log n), which is unacceptable. The
run-time can be reduced for the special case where the array A contains level numbers of
nodes visited in an Euler Tour, by exploiting its special properties. Note that the level
numbers of consecutive entries differ by +1 or −1. Consider the 2n

log n blocks of size 1
2 logn.

Normalize each block by subtracting the first element of the block from each element of
the block. This does not affect the range minimum query. As the first element of each
block is 0 and any other element differs from the previous one by +1 or −1, the number
of distinct blocks is 2

1
2 log n−1 = 1

2

√
n. Direct preprocessing of the distinct blocks takes

1
2

√
n × O(log2 n) = o(n) time. The mapping of each block to its corresponding distinct

normalized block can be done in time proportional to the length of the block, taking O(n)
time over all blocks.

Putting it all together, a tree T of n nodes can be preprocessed in O(n) time such that
lca queries for any two nodes can be answered in constant time. We are interested in an
application of this general algorithm to suffix trees. Consider a suffix tree for a string of
length n. After linear time preprocessing, lca queries on the tree can be answered in constant
time. For a given pair of suffixes in the string, the string-depth of their lowest common
ancestor gives the length of their longest common prefix. Thus, the longest common prefix
can be determined in constant time, without resorting to a single character comparison!
This feature is exploited in many suffix tree algorithms.

5.7.2 Suffix Links from Lowest Common Ancestors

Suppose we are given a suffix tree and it is required to establish suffix links for each internal
node. This may become necessary if the suffix tree creation algorithm does not construct
suffix links but they are needed for an application of interest. For example, the suffix tree
may be constructed via suffix arrays, completely avoiding the construction and use of suffix
links for building the tree. The links can be easily established if the tree is preprocessed for
lca queries.

Mark each internal node v of the suffix tree with a pair of leaves (i, j) such that leaves
labeled i and j are in the subtrees of different children of v. The marking can be done in
linear time by a bottom-up traversal of the tree. To find the suffix link from an internal node
v (other than the root) marked with (i, j), note that v = lca(i, j) and lcp(suffi, suffj) =
path-label(v). Let path-label(v) = cα, where c is the first character and α is a string. To
establish a suffix link from v, node u with path label α is needed. As lcp(suffi+1, suffj+1) =
α, node u is given by lca(i+ 1, j + 1), which can be determined in constant time. Thus, all
suffix links can be determined in O(n) time. This method trivially extends to the case of a
generalized suffix tree.

5.8 Conclusions

In this chapter, we focused on linear time construction algorithms for the three most im-
portant data structures used in computational biology — lookup tables, suffix trees, and
suffix arrays. Some references for further study on this topic are provided in the References
section. Compressed suffix arrays, which are briefly mentioned in Section 5.6 can be stored

5-24 References

in O(n) bits; Hon et al. provided the first linear time construction algorithm [14] for this
data structure. In recent years, the size of biological databases has grown rapidly. This
generated considerable interest in constructing and maintaining suffix trees and suffix ar-
rays in secondary storage [3, 17, 27]. For a more detailed study of string data structures on
secondary storage, the reader is referred to Chapter 35 of the handbook. Some biological
applications are data and compute intensive, e.g. genome assembly of complex eukaryotic
organisms and clustering large scale expressed sequence tag data. Parallelism is increasingly
being used to solve such problems effectively (for example, see [16, 18]). Farach et al. [7],
Futamura et al. [9] and Hariharan [13] have all studied the construction of suffix arrays or
suffix trees in parallel environments.

The next two chapters explore in detail how suffix trees and suffix arrays are being used
to support applications in computational biology. A comprehensive treatise of suffix trees,
suffix arrays and string algorithms can be found in the textbooks by Gusfield [12], and
Crochemore and Rytter [5].

Acknowledgements

This work was supported in part by the U.S. National Science Foundation under IIS-
0430853.

References

[1] S.F. Altschul, W. Gish, W. Miller, and E.W. Myers et al. Basic local alignment search
tool. Journal of Molecular Biology, 215(3):403–410, 1990.

[2] S.F. Altschul, T.L. Madden, A.A. Schäffer, and J. Zhang et al. Gapped BLAST and
PSI-BLAST: A new generation of protein database search programs. Nucleic Acids
Research, 25:3389–3402, 1997.

[3] S.J. Bedathur and J.R. Haritsa. Engineering a fast online persistent suffix tree con-
struction. In Proc. 20th International Conference on Data Engineering, pages 720–
731, 2004.

[4] M.A. Bender and M. Farach-Colton. The LCA problem revisited. In Proc. 4th Latin
American Theoretical Informatics Symposium, pages 88–94, 2000.

[5] M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific Publishing
Company, Singapore, 2002.

[6] M. Farach. Optimal suffix tree construction with large alphabets. In Proc. 38th
Annual Symposium on Foundations of Computer Science, pages 137–143. IEEE,
1997.

[7] M. Farach-Colton, P. Ferragina, and S. Muthukrishnan. On the sorting-complexity of
suffix tree construction. Journal of the ACM, 47(6):987–1011, 2000.

[8] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
Proc. 41th Annual Symposium on Foundations of Computer Science, pages 390–
398. IEEE, 2000.

[9] N. Futamura, S. Aluru, and S. Kurtz. Parallel suffix sorting. In Proc. 9th International
Conference on Advanced Computing and Communications, pages 76–81, 2001.

[10] R. Giegerich and S. Kurtz. From Ukkonen to McCreight and Weiner: A unifying view
of linear-time suffix tree construction. Algorithmica, 19:331–353, 1997.

[11] R. Grossi and J.S. Vitter. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. In Proc. 32nd annual ACM symposium on

References 5-25

Theory of computing, pages 397–406. ACM, 2000.
[12] D. Gusfield. Algorithms on Strings Trees and Sequences. Cambridge University

Press, New York, New York, 1997.
[13] R. Hariharan. Optimal parallel suffix tree construction. Journal of Computer and

System Sciences, 55(1):44–69, 1997.
[14] W.K. Hon, K. Sadakane, and W.K. Sung. Breaking a time-and-space barrier in con-

structing full-text indices. In Proc. 44th Annual IEEE Symposium on Foundations
of Computer Science, pages 251–260, 2003.

[15] X. Huang and A. Madan. CAP3: A DNA sequence assembly program. Genome
Research, 9(9):868–877, 1999.

[16] X. Huang, J Wang, S Aluru, and S.P. Yang et al. Pcap: a whole-genome assembly
program. Genome Research, 13(9):2164–2170, 2003.

[17] E. Hunt, M.P. Atkinson, and R.W. Irving. Database indexing for large DNA and
protein sequence collections. The VLDB Journal, 11(3):256–271, 2002.

[18] A. Kalyanaraman, S. Aluru, V. Brendel, and S. Kothari. Space and time efficient
parallel algorithms and software for EST clustering. IEEE Transactions on Parallel
and Distributed Systems, 14(12):1209–1221, 2003.

[19] J. Kärkkäinen and P. Sanders. Simpler linear work suffix array construction. In Proc.
30th International Colloquium on Automata, Languages and Programming, pages
943–955, 2003.

[20] T. Kasai, G. Lee, H. Arimura, and S. Arikawa et al. Linear-time longest-common-prefix
computation in suffix arrays and its applications. In Proc. 12th Annual Symposium,
Combinatorial Pattern Matching, pages 181–192, 2001.

[21] D.K. Kim, J.S. Sim, H. Park, and K. Park. Linear-time construction of suffix arrays.
In Proc. 14th Annual Symposium, Combinatorial Pattern Matching, pages 186–199,
2003.

[22] P. Ko and S. Aluru. Space-efficient linear-time construction of suffix arrays. In Proc.
14th Annual Symposium, Combinatorial Pattern Matching, pages 200–210, 2003.

[23] P. Ko and S. Aluru. Space efficient linear time construction of suffix arrays. Journal
of Discrete Algorithms, 3:143–156, 2005.

[24] S. Kurtz. Reducing the space requirement of suffix trees. Software - Practice and
Experience, 29(13):1149–1171, 1999.

[25] U. Manber and G. Myers. Suffix arrays: a new method for on-line search. SIAM
Journal on Computing, 22:935–948, 1993.

[26] E.M. McCreight. A space-economical suffix tree construction algorithm. Journal of
the ACM, 23:262–272, 1976.

[27] S. Tata, R.A. Hankins, and J.M. Patel. Practical suffix tree construction. In Proc.
13th International Conference on Very Large Data Bases, pages 36–47, 2004.

[28] E. Ukkonen. On-line construction of suffix-trees. Algorithmica, 14:249–60, 1995.
[29] P. Weiner. Linear pattern matching algorithms. In Proc. 14th Symposium on Switch-

ing and Automata Theory, pages 1–11. IEEE, 1973.

6
Suffix Tree Applications in

Computational Biology

Pang Ko
Iowa State University

Srinivas Aluru
Iowa State University

6.1 Introduction . 6-1
6.2 Basic Applications . 6-2

Pattern Matching • Approximate Pattern Matching
6.3 Restriction Enzyme Recognition Sites 6-3
6.4 Detection of RNAi Elements . 6-4
6.5 Sequence Clustering and Assembly 6-6

Sequence Containment • Suffix-Prefix Overlaps
6.6 Whole Genome Alignments . 6-8
6.7 Tandem Repeats. 6-10

Stoye and Gusfield’s O(n log n) Algorithm • Stoye and
Gusfield’s O(n) Algorithm

6.8 Identification of Promoters and Regulatory
Sequences . 6-17

6.9 Oligonucleotide Selection . 6-19
Maximal k-mismatch repeat • Oligonucleotide design

6.10 Protein Database Classification and Peptide
Inference . 6-21
Protein sequence database classification •

Experimental Interpretation
6.11 Conclusions . 6-25

6.1 Introduction

In recent years the volume of biological data has increased exponentially. Concomitantly, the
speed with which such data is generated has increased as well. It is now possible to sequence
a bacterial genome in a single day. Thus efficient data structures are needed to archive and
retrieve biological data. Furthermore, this explosion of data has increased the need to
analyze a large amount of data in a reasonable time. With the availability of complete
genomes, researchers have begun to compare whole genomes [4, 11, 26, 27]. This further
increases the scale of problems addressed, and algorithms that worked well for smaller
scale problems are either insufficient or inappropriate. For example, dynamic programming
techniques worked well to identify the matching regions between two genes. However,
heuristics must be applied when we try to identify highly conserved regions between two
genomes in reasonable time and space. Suffix trees can serve as an efficient data structure
to analyze DNA and protein sequences. They can also be used to provide exact matches
efficiently, which many heuristics depend on.

6-1

6-2 Handbook of Computational Molecular Biology

Computationally, both DNA and protein sequences can be modeled as strings of char-
acters. But unlike natural languages where there are well-defined sentence structures and
word boundaries, DNA and protein sequences have no such properties. This makes the
traditional approaches of using inverted tables and hash tables less appealing. Suffix trees
and generalized suffix trees, the multiple string variant of suffix trees, can be used to solve
a number of computational biology related problems in optimal space and time. In this
chapter we examine several applications of suffix trees in computational biology. For the
most part, our focus will be on solving problems motivated by real applications in molecu-
lar biology. In many cases, the algorithms presented here are part of actual bioinformatic
software programs developed, illustrating the practical role of suffix trees in computational
biology research. We use the same terminology as in the previous chapter where suffix trees
and suffix arrays are introduced.

6.2 Basic Applications

In this section, we provide a brief introduction to the pattern matching capabilities of
suffix trees. Although pattern matching by itself may not directly correspond to many
computational biology applications, it is a basic building block upon which many suffix tree
algorithms are founded. Besides, the underlying ideas are frequently used as components
within more complicated algorithms, and in some cases they are modified and used in
software with vastly different objectives.

6.2.1 Pattern Matching

Given a pattern P and a text T , the pattern matching problem is to find all occurrences of
P in T . Let |P | = m and |T | = n. Typically, n >> m. Moreover, T remains fixed in many
applications and the query is repeated for many different patterns. For example, T could
be an entire database of DNA sequences and P denotes a substring of a query sequence for
homology (similarity) search. Thus, it is beneficial to preprocess the text T so that queries
can be answered as efficiently as possible.

The pattern matching problem can be solved in optimal O(m + k) time using ST (T),
where k is the number of occurrences of P in T . Suppose P occurs in T starting from
position i. Then, P is a prefix of suffi in T . It follows that P matches the path from root
to leaf labeled i in ST . This property results in the following simple algorithm: Start from
the root of ST and follow the path matching characters in P , until P is completely matched
or a mismatch occurs. If P is not fully matched, it does not occur in T . Otherwise, each
leaf in the subtree below the matching position gives an occurrence of P . The positions can
be enumerated by traversing the subtree in time proportional to the size of the subtree. As
the number of leaves in the subtree is k, this takes O(k) time. If only one occurrence is
of interest, the suffix tree can be preprocessed in O(n) time such that each internal node
contains the label of one of the leaves in its subtree. Thus, the problem of whether P occurs
in T or the problem of finding one occurrence can be answered in O(m) time.

6.2.2 Approximate Pattern Matching

The simpler version of approximate pattern matching problem is as follows: Given a pattern
P (|P | = m) and a text T (|T | = n), find all substrings of length |P | in T that match P
with at most k mismatches. To solve this problem, first construct the GST of P and T .
Preprocess the GST to record the string-depth of each node, and to answer lca queries in

Suffix Tree Applications in Computational Biology 6-3

constant time. For each position i in T , we will determine if T [i..i+m− 1] matches P with
at most k mismatches. First, use an lca query lca((P, 1), (T, i)) to find the largest substring
from position i of T that matches a substring from position 1 of P . Suppose the length of
this longest exact match is l. Thus, P [1..l] = T [i..i+ l − 1], and P [l+ 1] �= T [i+ l]. Count
this as a mismatch and continue by finding lca((P, l + 2), (T, i+ l + 1)). This procedure is
continued until either the end of P is reached or the number of mismatches crosses k. As
each lca query takes constant time, the entire procedures takes O(k) time. This is repeated
for each position i in T for a total run-time of O(kn).

Now, consider the more general problem of finding the substrings of T that can be derived
from P by using at most k character insertions, deletions or substitutions. To solve this
problem, we proceed as before by determining the possibility of such a match for every
starting position i in T . Let l = string-depth(lca((P, 1), (T, i))). At this stage, we consider
three possibilities:

1. Substitution − P [l + 1] and T [i + l] are considered a mismatch. Continue by
finding lca((P, l + 2), (T, i+ l + 1)).

2. Insertion − T [i+ l] is considered an insertion in P after P [l]. Continue by finding
lca((P, l + 1), (T, i+ l + 1)).

3. Deletion − P [l + 1] is considered a deletion. Continue by finding lca((P, l +
2), (T, i+ l)).

After each lca computation, we have three possibilities corresponding to substitution, inser-
tion and deletion, respectively. All possibilities are enumerated to find if there is a sequence
of k or less operations that will transform P into a substring starting from position i in
T . This takes O(3k) time. Repeating this algorithm for each position i in T takes O(3kn)
time.

The above algorithm always uses the longest exact match possible from a given pair
of positions in P and T before considering the possibility of an insertion or deletion. To
prove the correctness of this algorithm, we show that if there is an approximate match
of P starting from position i in T that does not use such a longest exact match, then
there exists another approximate match that uses only longest exact matches. Consider
an approximate match that does not use longest exact matches. Consider the leftmost
position j in P and the corresponding position i + l′ in T where the longest exact match
is violated. i.e., P [j] = T [i + l′] but this is not used as part of an exact match. Instead,
an insertion or deletion is used. Suppose that an exact match of length r is used after the
insertion or deletion. We can come up with a corresponding approximate match where the
longest match is used and the insertion/deletion is taken after that. This will either keep
the number of insertions/deletions the same or reduce the count. Thus, if the value of k is
small, the above algorithms provide a quick and easy way to solve the approximate pattern
matching problem. For sophisticated algorithms with better run-times, see [9, 30].

6.3 Restriction Enzyme Recognition Sites

Restriction endonucleases are enzymes that recognize a particular pattern in a DNA se-
quence and cleave the DNA at or near the recognition site. The enzyme typically cuts both
strands of double stranded DNA and the recognition sequence is often a short sequence that
is identical on both the strands. Recall that due to opposite directionality of the two strand-
s, the sequences are read in opposite directions relative to each other. Thus, the recognition
sequence is what is called a complemented palindrome; by reversing the sequence and using
complementary substitutions A ↔ T, and C ↔ G, one would obtain the sequence itself. As

6-4 Handbook of Computational Molecular Biology

an example, the restriction enzyme SwaI recognizes the site ATTTAAAT and cleaves it in
the center of the pattern. The restriction enzyme BamHI detects the sequence GGATCC
and cleaves it after the first base (and similarly after the first base in the complementary
strand sequence; the first base in the complementary strand is paired with the last base
in the original strand). Most restriction enzymes are derived from bacteria and are named
after the organism in which they are first discovered. Restriction enzymes play a defense
role by cleaving foreign DNA. The DNA of the host organism is protected by mythelation
of its own recognition sites, which makes it immune to restriction enzyme activity.

Consider the problem of finding all complemented palindromic sequences in a given long
DNA sequence. We focus on the problem of identifying all maximal complemented palin-
dromes, as all other palindromes are contained in them. Formally, a substring s[i..j] of a
string s of length n is called a maximal complemented palindrome of s, if s[i..j] is a com-
plemented palindrome and s[i − 1] and s[j + 1] are not complementary bases, or i = 1, or
j = n. Note that a maximal complemented palindrome must necessarily be of even length.
For a palindrome of length 2k, define the center to be the position between characters k and
k+1 of the palindrome. The palindrome is said to be of radius k. Starting from the center,
a complemented palindrome is a string that reads the same in both directions subject to
complementarity. Observe that each maximal palindrome in a string must have a distinct
center. As the number of possible centers for a string of length n is n− 1, the total number
of maximal palindromes of a string is n−1. All such palindromes can be identified in linear
time using the following algorithm.

Let sr denote the reverse complement of string s. Construct a GST of the strings s and
sr and preprocess the GST to record string depths of internal nodes and for answering lca
queries. The maximal even length palindrome centered between s[i] and s[i + 1] is given
by the length of the longest common prefix between suffi+1 of s and suffn−i+1 of sr. This
is computed as the string-depth of lca((s, i + 1), (sr, n − i + 1)) in constant time. Thus
all maximal complemented palindromes can be recognized in O(n) time. An example to
illustrate this algorithm is presented in Figure 6.1. The figure shows the generalized suffix
tree of the DNA sequence TAGAGCTCA and its reverse complement TGAGCTCTA.

6.4 Detection of RNAi Elements

RNA interference (RNAi) is a process that utilizes a double stranded RNA (dsRNA)
molecule to inhibit the expression of a particular gene by binding to its mRNA. This process
was first discovered by Fire et al. [14]. Since then, RNAi has been used as an alternative
to gene knockout experiments. Unlike traditional experiments where a gene is permanently
removed from the genome, researchers can choose when and where to introduce the dsR-
NA. This gives biologists greater flexibility in experimental design. It has been shown that
RNAi is also used in cells as a way to regulate gene expression, and as a defense mechanism
against viruses.

Unlike DNA molecules which are double stranded helixes, RNA molecules are usually sin-
gle stranded and have a secondary structure that sometimes has important functions. Like
all RNA molecules, naturally occurring RNAi elements are also produced by transcription
from a corresponding genomic sequence. The transcription produces an RNA molecule that
contains a sequence and its reverse complement separated by a short sequence. The reverse
complementarity causes the sequences to bind to each other with the short sequence in
the middle forming a stem-loop-stem structure. Cleaving of this structure results in dsRNA
(see Figure 6.2). The resulting dsRNA will then interact with target messenger RNAs (mR-
NAs) to prevent them from being translated into proteins, thus controlling gene expression.

Suffix Tree Applications in Computational Biology 6-5

G

A

C
G

T
C

A
$

C
T
C

A
$

T

$
A

T

$
A C

A
$

A T
A

$
$

A
G
C
T
C

C
T

C

A T
A

$
$

G
A

C
G

T
C
A
$

A T
A

$
$

A
C G

T

$

A T
A

$
$

G
A

G
C

T
C

T
A

$

A

$

C

v

s9

sr
9

sr
3

sr
7

s8

s6

sr
5

s3

sr
2

s5

sr
4

sr
8

s1

s7

sr
6

s2
s4

sr
1

FIGURE 6.1: The generalized suffix tree of the DNA sequence s = TAGAGCTCA and its reverse
complement sr = TGAGCTCTA. For i = 5, v = lca((s, 6), (sr, 5)), revealing the
maximal complemented palindrome GAGCTC.

. . .

. . .

U A G G G

A U C C C

CU

A G

20-25 nucleotides

Cleavage sites

FIGURE 6.2: An example of RNAi element — the stem-loop-stem structure forming a double
stranded RNA (dsRNA) that is usually about 20 nucleotides in length.

Horesh et al. [19] present a suffix tree based algorithm to detect RNAi elements from a
genomic sequence. Here we present how suffix trees can be used to detect such patterns,
while avoiding the more complex details necessary for accurate biological modeling.

We can identify RNAi elements in a genome by identifying substrings s1 and s2 of the
same length (about 20 to 25 nucleotides) that are reverse complements of each other, and
separated by a substring s3 of length l ≤ k. The parameter k is used to avoid detecting
substring and reverse complement pairs separated by great distances. To do this, first a gen-
eralized suffix tree is built for the input genomic sequence, and its reverse complement. Let

6-6 Handbook of Computational Molecular Biology

s1s3s2 be a substring in the genomic sequence such that s1 and s2 are reverse complements
of each other, and s3 is the loop. Then in the generalized suffix tree we just constructed,
there is an internal node v that contains two leaves in its subtree corresponding to suffi

and suffn−i−l of the reverse complement sequence, where l ≤ k is the length of s3 (k is a
pre-selected threshold); and v is the lowest common ancestor of the two leaves.

The straightforward solution in this case is to traverse the entire tree; for each internal
node at a string depth of about 20 to 25, find pairs of leaves that satisfy the criterion men-
tioned above. However for each leaf representing some suffix suffi in the original sequence,
checking whether there is a leaf corresponding to suffix suffn−i−l of the reverse complement
sequence is not easy. Done naively, this could take O(n2) time, because for each leaf we
need to scan all the leaves in the subtree to check whether a suitable counterpart exists.

Here we make the observation that a post-order traversal of the suffix tree induces a
complete ordering of all the suffixes. Each suffix in the original sequence and the reverse
complement sequence can be associated with a rank, which can be easily obtained by a
traversal of the suffix tree. For each internal node v two values v and v are calculated.
The value v is the number of leaves in the subtree rooted at v. The value v is the number
of leaves in the entire tree to the left of v, i.e., the number of leaves visited in a post-order
traversal before visiting v. The values for all internal nodes can be calculated using post-
order traversal as follows: When internal node v is visited, add up u of all the nodes u,
such that u is a child of v. If a node w is a leaf node then w = 1. To calculate the
values, define root = 0. Then for each internal node v, v = u +

∑
w w, where u is the

parent of v and w ranges over all the siblings to the left of v. In other words, the number of
leaves to the left of a node v is the number of leaves to the left of its parent plus the total
number of leaves in all the subtrees rooted at its siblings to the left. The values can be
calculated using a pre-order traversal of the tree.

Consider an internal node v whose string depth is in the target range, say 20 to 25, and
a suffix suffi in the subtree rooted at v. To check whether there is a leaf corresponding to
suffix suffn−i−l of the reverse complement sequence in the same subtree, one can scan the
ranks of suffix suffn−i−1 to suffix suffn−i−k of the reverse complement sequence. Suppose
the rank of suffix suffn−i−j is between v and v + v, then we know that this suffix is in
the subtree rooted by v. If the ith suffix of the original sequence and the (n− i− j)th suffix
of the reverse complement sequence appear in the subtrees of two different children of v,
then v is the lowest common ancestor of the two leaves. The path label of v is a potential
dsRNA sequence.

This algorithm takes O(nk) time, where n is the length of the genomic sequence, and
k is the maximum length allowed for the stem-loop-stem structure. A more biologically
sensible model can be used to take into account the fact that the two strands need not be
identical, either because it is enough to have high sequence similarity, or due to potential
sequencing errors. An algorithm allowing mismatches on the two strands can also be found
in [19]. However, due to the complexity of the model, the algorithm is close to a brute force
algorithm.

6.5 Sequence Clustering and Assembly

DNA sequence clustering and assembling overlapping DNA sequences are vital to knowledge
discovery in molecular biology. Part III of this handbook is devoted to assembly and
clustering applications, and the reader will once again find that suffix trees are used in some
of the algorithms presented in that part. In this section, we discuss two suffix tree related
problems that are motivated by applications in clustering and assembly. The problems

Suffix Tree Applications in Computational Biology 6-7

presented in this section are rather artificial, as they are applicable only in the case input
data does not contain any errors or genetic variations. Nevertheless, these problems will
serve to develop a basic understanding of some of these applications, and suffix tree based
algorithms for real clustering and assembly applications can be found in Part III.

6.5.1 Sequence Containment

One problem that is encountered in sequence clustering and assembly applications is redun-
dancy in the input data. Consider a set S = {s1, s2, . . . , sk} of DNA sequences. We wish
to identify sequences that are completely contained in other sequences and remove them.
In the absence of sequencing errors and other types of variations (such as the DNA se-
quences being derived from different individuals who may have natural genetic variations),
this can be abstracted as the string containment problem. Given a set S = {s1, s2, . . . , sk}
of strings of total length N , the string containment problem is to identify each string that
is a substring of some other string. This problem can be easily solved using suffix trees in
O(N) time. First, construct the GST (S) in O(N) time. To find if a string si is contained
in another, locate the leaf labeled (si, 1). If the label of the edge connecting the leaf to its
parent is labeled with the string ’$’, si is contained in another string. Otherwise, it is not.
This can be determined in O(1) time per string.

6.5.2 Suffix-Prefix Overlaps

The suffix-prefix overlap problem arises in genome assembly problems. At the risk of over-
simplification, the problem of genome assembly is to construct a long, target DNA sequence
from a large sampling of much shorter fragments of it. This procedure is carried out to ex-
tend the reach of DNA sequencing, which can be directly carried only for DNA sequences
hundreds of nucleotides long. The first step in assembling the many fragments is to detect
pairs of fragments that show suffix-prefix overlaps; i.e., identify pairs of fragments such
that the suffix of one fragment in the pair overlaps the prefix of the other fragment in the
pair. The suffix-prefix overlaps are then used to assemble the fragments into longer DNA
sequences.

Suppose we are given a set of strings S = {s1, s2, . . . , sk} of total length N . In the absence
of sequencing errors, the suffix-prefix overlap problem is to identify, for each pair of strings
(si, sj), the longest suffix of si that is a prefix of sj . This problem can be solved using
GST (S) in optimal O(N + k2) time. Consider the longest suffix α of si that is a prefix of
sj . In GST (S), α is an initial part of the path from the root to leaf labeled (sj , 1) that
culminates in an internal node. A leaf that corresponds to a suffix from si should be a child
of the internal node, with the edge label ’$’. Moreover, it must be the deepest internal node
on the path from root to leaf (sj , 1) that has a suffix from si attached in this way. The
length of the corresponding suffix-prefix overlap is given by the string depth of the internal
node.

Let M be a k × k output matrix such that M [i, j] should contain the length of the
longest suffix of si that overlaps a prefix of sj . The matrix is computed using a depth first
search (DFS) traversal of GST (S). During the DFS traversal, k stacks A1, A2, . . . , Ak are
maintained, one for each string. The top of the stack Ai contains the string depth of the
deepest node along the current DFS path that is connected with edge label ’$’ to a leaf
corresponding to a suffix from si. If no such node exists, the top of the stack contains zero.
Each stack Ai is initialized by pushing zero onto an empty stack, and is maintained during
the DFS as follows: When the DFS traversal visits a node v from its parent, check to see if
v is attached to a leaf with edge label ’$’. If so, for each i such that string si contributes a

6-8 Handbook of Computational Molecular Biology

suffix labeling the leaf, push string-depth(v) on to stack Ai. The string depth of the current
node can be easily maintained during the DFS traversal. When the DFS traversal leaves
the node v to return back to its parent, again identify each i that has the above property
and pop the top element from the corresponding stack Ai.

The output matrix M is built one column at a time. When the DFS traversal reaches a
leaf labeled (j, 1), the top of stack Ai contains the longest suffix of si that matches a prefix
of sj . Thus, column j of matrix M is obtained by setting M [i, j] to the top element of
stack Si. To analyze the run-time of the algorithm, note that each push (similarly, pop)
operation on a stack corresponds to a distinct suffix of one of the input strings. Thus, the
total number of push and pop operations is bounded by O(N). The matrix M is filled in
O(1) time per element, taking O(k2) time. Hence, all suffix-prefix overlaps can be identified
in optimal O(N + k2) time.

The above solutions for sequence containment and suffix-prefix overlap problems are not
useful in practice because they assume a perfect input free of errors and genetic variations.
In practice, one is interested in detecting strong homologies rather than exact matches. The
reader interested in how suffix trees can be used for such applications is referred to Chapter
13.

6.6 Whole Genome Alignments

With the availability of multiple genomes, the field of comparative genomics is gaining
increasing attention. By comparing the genomic sequences of two closely related species,
one can identify potential genes, coding regions, and other genetic information preserved
during evolution. On the other hand, by comparing the genomic sequences of distantly
related species, one might be able to identify genes that are most likely vital to life. Several
programs have been developed to identify such “local” regions of interest [1, 4, 7, 28]. An
important problem in comparative genomics is whole genome comparison, i.e., a global or
semi-global alignment of two genomes. This allows researchers to understand the genomic
differences between the two species. This is particularly useful in comparing two strains of
the same virus or bacteria, or even two versions of the assembly of the genome of the same
species. We describe a suffix tree based approach for whole genome alignments, as utilized
in the popular whole genome alignment tool MUMmer, developed by Delcher et al. [11, 12].
A suffix array based solution for the same problem is presented in the next chapter.

The MUMmer program is based on the identification of maximal unique matches (MUM-
s). A maximal match between strings s1 and s2 is a pair of matching substrings s1[i..i+k] =
s2[i′..i′ + k] = α, that cannot be extended in either direction, i.e. s1[i− 1] �= s2[i′ − 1] and
s1[i + k + 1] �= s2[i′ + k + 1]. A maximal unique match implies that the pair of matching
substrings is not only maximal, but also unique; i.e., the substring α is maximal, and occurs
exactly once in each s1 and s2. A long MUM is very likely to be in the optimal alignment
of two sequences. The program has the following stages:

1. Find all MUMs between the two sequences.
2. Find the longest sequence of MUMs, that occur in the same order in either

sequence.
3. Align the regions between the MUMs.

To illustrate the use of suffix trees in whole genome alignment, we focus on identification
of MUMs, a step that utilizes suffix trees. Given two strings s1 and s2, assume the last
characters of s1 and s2 are $1 and $2, respectively, characters that do not occur anywhere
else in both strings. First build the GST ({s1, s2}) of the two strings. Let suffj

i denote

Suffix Tree Applications in Computational Biology 6-9

ATCG
C

T
T
C
G

G

G

A

T

C

G

T

C

G

T

C

G

$1

$2

$2

$2
(s2, 5)

(s2, 3)

$2

v

(s1, 2)

(s1, 4) (s2, 4) (s2, 1)
(s1, 1)

(s1, 5)

(s1, 3)

(s2, 2)

$1

$1

$1
$1 $2

FIGURE 6.3: The generalized suffix tree of sequences GATCG$1 and CTTCG$2 . Each leaf
label is a tuple identifying the string number, followed by the position of the
corresponding suffix within the string. In this example, the path-label of node v,
is the MUM TCG.

the suffix of string sj starting at position i. Lcp(suff1i , suff
2
i′) is a MUM if and only if it

is unique in both sequences and s1[i − 1] �= s2[i′ − 1]. Let u be the internal node with
path label lcp(suff1i , suff

2
i′). Then the uniqueness part implies u must have exactly two

children, the leaves corresponding to suffixes suff1i and suff2i′ . To ensure left maximality, we
need to compare the left characters of the two suffixes under u to make sure that they are
unequal. Thus all internal nodes corresponding to MUMs can be identified in a traversal of
the GST ({s1, s2}). An example of MUM identification is shown in Figure 6.3.

The space required for the algorithm can be considerably reduced by building the suffix
tree of only one string, say s1, and streaming the other string s2 to identify MUMs [12].
The algorithm works by considering all suffixes of s2 starting from suff21.

• Find the longest possible match in the suffix tree for suff21, the first suffix of
string s2. This is done by traversing from the root of the suffix tree and matching
consecutive characters of suff21 until no further matches are possible.

• If the match ends inside the edge label between an internal node and a leaf node,
then check the left character in s1 of the suffix corresponding to the leaf and the
left character of the suffix from s2. If they are not the same, then the match is
reported.

• After finishing with the first suffix, the same method can be repeated with the
second suffix suff22. But instead of starting from the root and matching the
suffix, suffix links are used to shortcut the process. Let u be the last internal
node encountered while matching the previous suffix. Then, take the suffix link
from u to, say, u′. Suppose the previous suffix match ended l characters away
from node u. It is guaranteed that these l characters will match a path below u′.
Therefore, these characters can be matched at the rate of constant time per edge
using the same technique as employed in McCreight’s suffix tree construction
algorithm (Chapter 5). Once the end of these l characters is reached, further
matching will continue by examining the subsequent characters of suff22 one by
one.

6-10 Handbook of Computational Molecular Biology

• Repeat the process for all suffixes of the second string.

The above algorithm correctly reports all the maximal matches between the two strings.
However uniqueness is not preserved for the second string, because we do not actually
insert the suffixes of the second string. For example, if we build the suffix tree for the string
ATGACGGTCCT$1, and subsequently stream the second string ATGATGAG$2, then the
substring ATGA will be reported twice. This streaming algorithm also runs in O(n) time,
because building the suffix tree for the first string takes O(|s1|) time, and streaming of the
second string is equivalent to inserting all suffixes of it using McCreight’s algorithm, which
takes O(|s2|) time.

6.7 Tandem Repeats

Tandem repeats — segments of short DNA repeated multiple times consecutively — are
believed to play a role in regulating gene expression. Tandem repeats also have a much
higher rate of variation then the rest of the genome (in terms of the number of copies), and
this makes them ideal markers to distinguish one individual from another.

A tandem repeat can consist of anywhere from two to hundreds of repetitions. If we have
the ability to detect a 2-repeat tandem sequence, it can be used to deduce tandem sequences
with more repeats. Therefore, the problem is modeled by defining a tandem repeat to be
a string β = αα, i.e., a consecutive occurrence of two copies of the same string α. Tandem
repeats are further divided into two sub-categories, primitive and non-primitive. String
β is called a primitive tandem repeat if it does not contain another tandem repeat. For
example, strings aa and abab are primitive tandem repeats, while aaaa is not a primitive
tandem repeat. A 2-repeat tandem sequence is sometimes referred to as a square. When a
substring α repeats more than twice consecutively, it is sometimes referred to as a tandem
array. A tandem repeat/array in string s given by β = αk = s[i..i+ k|α| − 1], where |α| is
the length of the substring α, is represented as a triple (i, α, k). We can also represent a
tandem repeat β = αα as a tuple (i, 2|α|). We use the notation that best suits the situation
we are describing.

Detection of tandem repeats is a well-studied problem in computational biology. Crochemore
presented an algorithm that computes all occurrences of primitive tandem repeats inO(n log n)
time [3, 10]. On the other hand, all occurrences of tandem repeats (both primitive and non-
primitive) can be found in O(n log n+ occ) [24, 29], where occ is the number of occurrences
of tandem repeats in the string. We first present a simple O(n log n + occ) algorithm due
to Stoye and Gusfield [29].

6.7.1 Stoye and Gusfield’s O(n log n) Algorithm

Consider a tandem repeat in string s starting at position i of the form s[i..2|α|+i−1] = αα,
and α = aγ, where a is the first character of α and γ is the remainder of α. If character
s[2|α|+ i] = x �= a, then in the suffix tree there is an internal node v at string depth |α|, and
suffix suffi and suffix suff|α|+i−1 will be in the subtrees of two different children of v. Since
the two suffixes branch, the tandem repeat is referred to as a branching tandem repeat. An
example is shown in Figure 6.4.

If a tandem repeat (i, aγ, 2) is not a branching tandem repeat, then (i+1, γa, 2) is also a
tandem repeat. However, (i+ 1, γa, 2) may not be a branching tandem repeat either. This
property of non-branching tandem repeats is easy to see; if s[i..2|α| + i − 1] = aγaγ is a
non-branching tandem repeat, then s[i + 1..2|α| + i] = γaγa is a tandem repeat. We say
that (i, aγ, 2) is on the left of (i+ 1, γa, 2), while (i+ 1, γa, 2) is on the right of (i, aγ, 2). In

Suffix Tree Applications in Computational Biology 6-11

v

.

.
.

g

γ

γ
a

g
.

.
.

a

i

i + |α| − 1

FIGURE 6.4: An example of a branching tandem repeat. (i, α, 2) is a branching tandem repeat,
node v is at string depth |aγ|, and suffixes suffi and suff|α|+i−1 branch from node
v.

Figure 6.5, both tandem repeats starting at positions i and i+ 1 are non-branching, while
the tandem repeat starting at position i + 2 is a branching tandem repeat. We refer to
tandem repeat (i, aγ, 2) as a left rotation of tandem repeat (i + 1, γa, 2); right rotation is
similarly defined.

G T A G T A TG C

i i + 1 i + 2

· · · · · ·

FIGURE 6.5: An example of a non-branching tandem repeat. Tandem repeats starting at po-
sitions i and i + 1 are both non-branching, while the tandem repeat starting at
position i +2 is branching. It is easy to see from this example each non-branching
tandem repeat is to the left of another tandem repeat.

The non-branching tandem repeats that are next to each other can be considered a chain,
with a branching tandem repeat at the end of the chain. Therefore, by locating all branching
tandem repeats, and detecting the non-branching tandem repeats to their left, all tandem
repeats can be identified. Hence, we focus on identifying all the branching tandem repeats.

A naive algorithm to identify branching tandem repeats is as follows:

1. For each internal node v, collect all the leaves in the subtree rooted by v in a list
(v).

2. Let α be the path label of v. Each leaf represents a suffix suffi, and for each
suffix suffi in ll(v) check if suff|α|+i is in (v).

3. If so check if character s[i] is the same as character s[2|α|+ i]. If so, (i, α, 2) is a
branching tandem repeat.

If we can identify whether a suffix suffj is in (v) in constant time, then the algorithm runs
in O(n2) time. If we number all leaf nodes according to the order they are encountered in

6-12 Handbook of Computational Molecular Biology

a post-order traversal, then leaves in the subtree under any internal node are consecutive.
We can mark this range for each internal node v by storing the number of the first leaf,
i.e., the leftmost leaf in the subtree; and the last leaf, i.e., the rightmost leaf. Suppose the
leaf that represents suffi is the jth leaf we encounter in the post-order traversal, then in a
separate array R we store j in R[i]. Therefore, we can identify whether a suffix suffi is in
(v) by checking if the value stored in R[i] lies in the range of node v.

Since for each suffix suffi there can be O(n) internal nodes on the path from the root
to the leaf, the naive algorithm runs in O(n2) time. However, we can reduce this runtime
to O(n logn) using the knowledge that the two suffixes in a branching tandem repeat are
under different children of the node whose path label is the tandem repeat. So we can check
the leaves under all but one child, and all branching tandem repeats can be identified. This
is because if a branching tandem repeat has a leaf under the child we did not check, then
the other leaf must be in a child we did check.

Let node v′ be a child of node v that has the most leaves of all of node v’s children. We
define ′(v) = (v)−(v′), and modify the naive algorithm by checking all leaves in ′(v)
instead of (v). Suppose a suffix suffi is in both ′(v) and ′(u), where u is a child of v.
Then |′(u)| ≤ |Σ|−1

|Σ|
′(v) where |Σ| is the size of the alphabet; i.e., the number of leaves

in |′(u)| is at most |Σ|−1
|Σ| times the number of leaves in ′(v). So a suffix can be in at

most log|Σ|/(|Σ|−1) n number of lists, resulting in an O(n log n) time algorithm.
After locating all branching tandem repeats we can find all the non-branching tandem

repeats. Suppose that (i, α, 2) is a branching tandem repeat. If s[i − 1] = s[i + 2|α| − 1]
then (i− 1, δ, 2) is a non-branching tandem repeat, where δ = s[i− 1..i+ 2|α| − 2]. So for
each branching tandem repeat (i, α, 2), we check if its left rotation is a tandem repeat, if so
we check the left rotation of this new tandem repeat until it is no longer true. This yields
an O(n log n+ occ) runtime algorithm, where occ is the total number of tandem repeats.

6.7.2 Stoye and Gusfield’s O(n) Algorithm

In 1998, Fraenkel and Simpson [15] proved that for a string |s| = n there are at most O(n)
different types of tandem repeats. Tandem repeats β = αα and γ = δδ are of different
types if and only if α �= δ. Since all occurrences of tandem repeats can be found from the
knowledge of all the types of tandem repeats, it is of interest to find the latter. The set of
all types of tandem repeats of a string s is also referred to as the vocabulary of s. Gusfield
and Stoye designed a linear time algorithm to identify these [18].

String decomposition

The linear time tandem repeat identification algorithm uses Lempel-Ziv string decompo-
sition, illustrated in Figure 6.6. At some stage during the execution of the algorithm, let
i be the first position that is not in any block. Find a position j < i that maximizes
|lcp(suffi, suffj)|. Then mark the next block to be of length max{1, |lcp(suffi, suffj)|} start-
ing from the ith position. This procedure is continued until the whole string is decomposed
into blocks. An example of the Lempel-Ziv decomposition is shown in Figure 6.7.

This decomposition can be easily obtained using a suffix tree. Given a string s first build
its suffix tree ST (s). Then in a postorder traversal of the tree, mark each internal node
u with the index of the smallest suffix in its subtree. As the postorder traversal visits all
children of an internal node u before visiting u itself, node u is marked with the smallest of
the numbers marking its children.

To create the decomposition, start by traversing along the path from root to leaf labeled

Suffix Tree Applications in Computational Biology 6-13

FIGURE 6.6: Lempel-Ziv Decomposition
Procedure Lemple Ziv Decomposition(S)

blocks← ∅
block start← 1
block end← 1
While block end < |s| do

Let block len = max{1,maxblock start−1
k=1 |lcp(suffk, suffblock start)|}

block end← block start+ block len− 1
blocks← blocks ∪ (block start, block end)
block start← block end+ 1

end while
end procedure

TA A AT T T A A T A A A T A A A T $A

1 2 3 4 5 6 7 8

FIGURE 6.7: An example of the Lempel-Ziv decomposition of a string, each number under the
block corresponds to the block number.

suff1 in ST (s). The traversal will continue only if the next node along the path is marked
with a number smaller than the current position in the string. Continue the traversal until
we cannot go any further, and this is the end of the block. Repeat this process by starting
at the next position in the string and the root of ST (s).

Using the string given in Figure 6.7 as an example, there is a node u with edge label a
from the root of the suffix tree. This node is marked with 1, because suff1 is in its subtree.
When we start at position 1, we cannot go to node u because while its edge label is a, its
marker is not less than 1. So the end of the block starting at position 1 is 1. The procedure
is continued starting at position 2. It is easy to see that this algorithm produces the correct
result, and its run time is O(n).

Leftmost-covering set

Since we are only interested in discovering the vocabulary of tandem repeats, and not all
their occurrences, it suffices to discover the leftmost occurrence of each type of tandem
repeat. Recall that a non-branching tandem repeat is on the left of another tandem repeat
with equal length, and this series of consecutive equal length tandem repeats forms a chain.
Let (i, l) and (j, l) be two tandem repeats in such a chain. We say that (i, l) covers (j, l)
if and only if i < j. A set of tandem repeats is a leftmost-covering set if and only if the
leftmost occurrence of each type of tandem repeat is covered by a tandem repeat in the set.

Figure 6.8 shows an example of the leftmost-covering set. Tandem repeats (1, 8), (2, 2),
(2, 8), (3, 8), (4, 2), (7, 6), (11, 8) are the leftmost tandem repeats of their types. But tandem
repeats (2, 8) and (3, 8) are covered by (1, 8), so the leftmost-covering set is {(1, 8), (2, 2),
(4, 2), (7, 6), (11, 8)}. Also note that this is the minimal leftmost-covering set, i.e., no other
leftmost-covering set has fewer elements. However, in general a leftmost-covering set need
not be minimal.

LEMMA 6.1 The leftmost occurrence of any tandem repeat type must span at least two

6-14 Handbook of Computational Molecular Biology

TA A AT T T A A T A A A T A A A T $A

(2,2)
(4,2)

(7,6)
(11,8)

(1,8)

FIGURE 6.8: An example of leftmost-covering set. The leftmost occurrence of each tandem
repeat is marked. The leftmost-covering set is {(1, 8), (2, 2), (4, 2), (7, 6), (11, 8)}

blocks of the Lempel-Ziv decomposition.

Proof Let β = αα = S[i..2|α| + i − 1] be the leftmost occurrence of a type of tandem
repeat. If β spans only one block in the Lempel-Ziv decomposition, then by definition of the
Lemple-Ziv decomposition, there must exist suffj , j < i, such that lcp(suffj , suffi) ≥ 2|α|.
Then, s[j..2|α|+ j − 1] = β must be an earlier occurrence of that type of tandem repeat.

LEMMA 6.2 The second half of any tandem repeat must not span more than two blocks
of the Lempel-Ziv decomposition.

Proof If the second half of a tandem repeat spans more than two blocks of the Lempel-
Ziv decomposition, then one block of the decomposition must lie completely inside the
second half of the tandem repeat. But by the definition of Lempel-Ziv decomposition, this
is impossible. If a block starts at position k of the second half of a tandem repeat, then the
suffix starting at position k of the first half of the tandem repeat is sufficient to propel the
block to the end of the tandem repeat.

COROLLARY 6.1 By Lemma 6.2, if a block of the Lemple-Ziv decomposition starts at
a character that is part of the second half of a tandem repeat, then this block will last until
at least the end of the second half of the tandem repeat.

From Lemmas 6.1 and 6.2, one of the following situations must occur for the leftmost
occurrence of any tandem repeat type.

• There is a block starting at the same position as the start of the second half of
a leftmost tandem repeat.

• There is a block starting after the start of the second half of a leftmost tandem
repeat.

• There is no block starting on or after the first character of the second half of a
leftmost tandem repeat.

Each of the three cases described above can be split into two sub-cases, based on whether
there is another block contained in the left half of the tandem repeat or not. Figure 6.9
illustrates these six cases. Stoye and Gusfield presented two algorithms that will detect all
tandem repeats with structures illustrated in Figure 6.9. The two algorithms are run for
each block B of the Lempel-Ziv decomposition. Let h be the starting position of the current

Suffix Tree Applications in Computational Biology 6-15

(a)

(c) (d)

(e) (f)

(b)

αα

B + 1B

αα

αα

B + 1

αα

αααα

B

B

B + 1B

B B + 1

B B + 1

B + 1

FIGURE 6.9: An enumeration of the possible cases

block, and h1 be the starting position of the next block. Let lcp r(suffi, suffj) denote the
lcp in the reverse direction starting at positions i and j, i.e., the longest common suffix of
prefixes ending at i and j. This can be easily calculated by reversing the string and building
the suffix tree for it, along with the usual lcp algorithm.

To see how the first algorithm (Figure 6.10) works, suppose that block B starts at the
ith character in the first half of the tandem repeat. Then k will eventually reach the ith
character in the second half of the tandem repeat. At this point both k1 and k2 will be
non-zero, and the length of the tandem repeat is 2k. This corresponds to cases (b), (d), (e),
and (f). On the other hand, the algorithm in Figure 6.11 starts from the ith character in
the second half of the tandem repeat, and tries to detect the ith character in the first half;
this detects cases (a), and (c).

The above two algorithms take O(n) time because each block is processed once by
Backward Detection (see Figure 6.11), and twice by Forward Detection (see Figure 6.10).
Each position of the block takes constant time to process by each algorithm. Therefore,
the total time is O(n) so far. Also note that since the algorithm runs in O(n) time, the

FIGURE 6.10: Forward Detection
Procedure Forward Detection()

for k ← 1, |B|+ |B + 1|
q ← h+ k
k1 ← lcp(Sq, Sh)
k2 ← lcp r(Sq−1, Sh−1)
if k1 + k2 ≥ k and k1, k2 > 0

if max(h− k2, h− k + 1) + k < h1

Output (max(h− k2, h− k + 1), 2k)
end if

end if
end for

end procedure

6-16 Handbook of Computational Molecular Biology

FIGURE 6.11: Backward Detection
Backward Detection()

for k ← 1, |B|
q ← h1 − k
k1 ← lcp(Sq, Sh1)
k2 ← lcp r(Sq−1, Sh1−1)
If k1 + k2 ≥ k and k1 > 0

if max(q − k2, q − k + 1) + k < h1

Output (max(q − k2, q − k + 1), 2k)
end if

end if
end for

end procedure

number of tandem repeats reported is also O(n). However the result may not be a minimal
leftmost-covering set, i.e., some of the tandem repeats reported are either not the leftmost
occurrence of its type, or are covered by other tandem repeats in the set, or both.

We have successfully computed a leftmost-covering set, and would now like to mark the
tandem repeats in this set in the suffix tree. We begin by first sorting all the tandem repeats
by their beginning position, and then by their length (from longest to shortest). This way
all the tandem repeats starting from position i are next to each other and ranked according
to their length. All such tandem repeats that start form position i are associated with the
leaf node v, representing suffi. We call this list of tandem repeats p(v).

Let u be the parent of v, and let k be the string depth of node u. For each tandem repeat
(i, l) ∈ p(v), if l ≥ k then mark the position on the edge from u to v or on node u itself, and
continue until l < k. Since p(v) is sorted the amount of work is proportional to the number
of tandem repeats processed. After all the children of node u are processed, then we need
to calculate the list p(u). It is not possible to merge all the lists of the children, because
this will take O(n) time for each node, and O(n2) total time.

Each node is labeled with the number of the suffix that has the smallest index in its
subtree, i.e., we label node v with i if and only if j > i for each suffix suffj in v’s subtree.
To compute p(u), we simply adopt p(v) where v is the child with the smallest label.

LEMMA 6.3 By adopting the list of the child with the smallest label, all the tandem
repeats in the leftmost-covering set will be marked.

Proof By induction, assume that all the tandem repeats in the leftmost-covering set
under a node u are marked correctly. This is true for internal nodes whose children are all
leaf nodes, which serves as the base case. Now we show that the edge e between u and its
parent v is marked correctly. Suppose that (i, l) is a part of the leftmost-covering set, and
that a position on e should be marked as a result. Then (i, l) must be the first occurrence
of that type of tandem repeat. Thus suffi is the first suffix with that type of tandem repeat
as a prefix. Therefore (i, l) is an entry in p(w), where w is the child with the smallest label.

Once the leftmost-covering set is marked in the suffix tree, any tandem repeat is covered
by one of the tandem repeats in this set. Let β = αα = aγ, where a is a character. If there
is a tandem repeat to its right with the same length, then this tandem repeat must be of

Suffix Tree Applications in Computational Biology 6-17

the form γa. To mark this tandem repeat, if an internal node v has the path label aγ, one
can travel from aγ to γ in the suffix tree by using the suffix link from v. Otherwise, let u
be the parent of v, and aγ lies inside the edge label of the edge between u and v. Then,
first go up to node u and travel to node u′ using the suffix link from u. Then, travel down
in the suffix tree. Note that for each edge encountered, every character of the edge label
need not be compared. One can simply compare the first character, and move down by the
length of the edge label. This marks all types of tandem repeats.

Although this compare-and-skip method allows us to traverse each edge in constant time,
the number of the edges in the traversal could be large, and result in a non-linear time
algorithm. In order to calculate how many times an edge is traversed in the algorithm, we
first state the theorem presented in Fraenkel and Simpson [15].

THEOREM 6.1 Each position i in string s can be the starting position of at most two
rightmost occurrences of tandem repeats.

From the above theorem we can deduce the following.

LEMMA 6.4 For each edge e between node u and node v, there can be at most two
marked positions each being the endpoint of some tandem repeat.

Proof Suppose that an edge e between node u and its child node v has more than two
marked positions. Let suffix suffi be the rightmost suffix in string s under node v, i.e., for
all suffk in the subtree rooted at node v, k < i. Then position i is the starting position of
the rightmost occurrence of more than two types of tandem repeats, a contradiction.

LEMMA 6.5 Each edge is traversed no more than O(|Σ|) times in marking all the tandem
repeat types.

Proof Let node u be the parent of node v, let u′ be the internal node reachable from u
using the suffix link labeled c, let v′ be the internal node reachable from v using the suffix
link labeled c. Since there is an edge between u and v, then there is a path between u′ and
v′; we call this a suffix link induced path. Let edge e be an edge on this suffix link induced
path. By Lemma 6.4 there are only two marked positions between nodes u and v. As a
result e will be traversed at most twice in order to mark the tandem repeats that are right
rotations of the two tandem repeats ending between nodes u and v. Furthermore, any edge
e can only be on |Σ| number of suffix link induced paths. Thus each edge e is traversed
O(|Σ|) times.

By Lemma 6.5 each edge is traversed at most O(|Σ|) times. Since there are O(n) edges,
the total runtime of the algorithm is O(|Σ|n). For constant size alphabet, the runtime is
O(n).

6.8 Identification of Promoters and Regulatory Sequences

Gene expression, the process by which a gene is transcribed into corresponding mRNA se-
quences, is aided by promoters and other regulatory sequences usually located upstream of
the transcribed portion of the gene. The upstream region typically consists of several im-

6-18 Handbook of Computational Molecular Biology

portant short subsequences, usually 4-10 nucleotides long, that play a role as binding sites
for transcription factors. It is known that these sequences are often conserved between sim-
ilar genes, and also genes that are similarly expressed. The problem of identifying multiple
unknown patterns with flexible distance constraints between them is in general known as
structured motif identification problem. By extracting potential motifs of regulatory sites in
gene upstream regions, biologists can gain valuable insight into gene expression regulation.
It is natural to use a suffix tree to identify motifs in DNA sequences, because of its suit-
ability to find common substrings in multiple sequences. Marsan and Sagot [25] proposed
algorithms to solve the sequence motif identification problem. We present a simplified ver-
sion by focusing on identification of two patterns. For a more detailed treatment of motif
identification problems the reader is referred to [25] and to Chapter 37 of this handbook.

Given a set of m DNA sequences each corresponding to the upstream region of a gene, if
a nucleotide sequence of length k is found upstream in all the sequences, then this sequence
is a possible motif. This is a simplified view of sequence motifs, because of the following:
1) Not all the m genes may have similar function, so that they might have different motifs.
2) Not all the upstream regions will have an identically common sequence due to evolution,
and random mutations. 3) All the motifs should be a similar distance away from the gene.
For example, if a sequence occurs 20 base pairs upstream from a gene, while the exact
sequence occurs 1000 base pairs upstream from another gene, then it is more likely to be a
coincidence than an actual motif. 4) It is possible that the set of m DNA sequence have the
same subsequence upstream by chance, therefore we should restrict the motif to be more
complicated than one short exact match.

We consider the two pattern motif problem: ((β1, β2), (dmin, dmax)) is a motif if there is
a subset of q sequences out of all the m input sequences that have substring matches β1 and
β2, and the two substrings are at least dmin away from each other, and at most dmax away
from each other. This definition can be relaxed, such that we do not need exact matches to
β1 and β2, but allow a few mismatches. We can restrict the definition by setting a length
k for β1 and β2.

Build a generalized suffix tree for all the m input sequences. Augment each internal node
v of the suffix tree with a boolean array sequencesv of size m, such that sequencesv[i] is
set to 1 if and only if a suffix from sequence i is a leaf in the subtree rooted at node v. We
also augment each internal node v with a counter countv, such that countv is the number
of 1’s in sequencesv. Then all the motifs can be identified by a tree traversal. Let p be a
position inside the edge label of the edge (u, v) where node u is the parent of node v. If the
string depth from the root of the suffix tree to p is between 2k + dmin and 2k + dmax and
countv ≥ q, then the concatenation of all edge labels from the root to p is a potential motif.
All potential motifs can be generated in O(mn) time, where m is the number of sequences
and n is the total length of all the sequences.

Suppose we would like to consider substrings with e number of mismatches as well. Then
we can generate all strings of length k and test if a particular string si can be β1 of the motif.
Then we consider all paths beginning at the root of the suffix tree that are e mismatches
away from si. To find the number of sequences similar to si, combine all sequencesv arrays
with a logical OR and count the number of 1’s in the array. Figure 6.12 shows a generalized
suffix tree of AGTACG$1 and ACGTCA$2. Suppose the pattern is AGT, and one mismatch
is allowed, then the path AGT and CGT will be found. After β1 is found, find downward
paths below the position corresponding to the end of β1, with lengths between dmin and
dmax, and search for β2. In the case of the example in Figure 6.12, assume dmin = 0,
dmax = 1 and allow m2 to be length 2. Then we can identify the motif ((AGT,CA),(0,1))
in strings AGTACG$1 and ACGTCA$2.

Suffix Tree Applications in Computational Biology 6-19

T

A

C

G

C

A

$2

$1

$1
GA

$1

T

C

A

$2

$2

A

C

G

$1

C

A

$2

A T
GC

Pattern = AGT

Skip 0 to 1 nucleotides

G

T

A

C

G

$2 C

G

C
A

T $1

$2

$1

FIGURE 6.12: The generalized suffix tree of AGTACG$1 and ACGTCA$2. The search for the
pattern AGT, allowing one mismatch yields the paths AGT and CGT. Then we
skip 0 or 1 nucleotides and try to identify the other part of the motif. We then
find ((AGT,CA),(0,1)) as a motif common to the strings.

6.9 Oligonucleotide Selection

Microarrays are useful in measuring the concentration levels of a target set of DNA se-
quences. They are based on the concept that two DNA sequences exhibiting complemen-
tarity hybridize to each other. If the sequences of the target DNA molecules are known, we
can choose a unique oligonucleotide (a short DNA sequence) called a probe for each target
DNA molecule and attach the probes to the microarray. It is important that the probe be
unique in the sense that it hybridizes to only its intended target DNA. To measure the con-
centration of the target DNA molecules in a solution, they are separated into single stranded
molecules, colored with a fluorescent dye, and allowed to hybridize with the fixed probes
on the microarray. By using a laser to detect the fluorescence at each microarray spot,
the intensity can be used to estimate the concentration of the target DNA molecule. DNA
microarrays are commonly used to simultaneously measure the expression levels of tens of
thousands of genes of an organism. They have also been used to detect the concentration
levels of microorganisms by designing unique probes based on their genomic sequences.

The design of oligonucleotides is challenging because the probes must each be unique
to a target sequence. Furthermore, a DNA sequence can hybridize to a probe that it
does not match exactly. To account for this, we must select a set of probes such that

6-20 Handbook of Computational Molecular Biology

each probe is unique up to k differences. Because of the hybridization process, if the two
probes differ in the first or last k nucleotides and the remaining nucleotides are same,
unintended hybridizations are still likely because hybridization can happen to the common
part. Therefore, it is best to have the differing positions distributed evenly throughout
the probe. Kurtz et al. [21] developed an algorithm to design probes as one of the many
applications of their repeat finding software REPuter [22]. Subsequently, Kaderali and
Schliep [20] have proposed a more complex model for probe design by further screening
the unique sequences using their hybridization temperature. In this section we present the
approach by Kurtz et al. to illustrate how suffix trees can be used in probe design. For a
thorough treatment of probe design, the reader is referred to Chapter 24 of the handbook.

For ease of understanding, we restrict ourselves to the problem of designing probes for
two target sequences S1 and S2. If the probes are too short, the sequences cannot be
distinguished from each other; longer probes are harder to manufacture. To model this, let
min and max be the minimum and maximum allowable length of the probes, respectively.
As mentioned above, the probes should also include at least k mismatches, distributed as
evenly as possible throughout the probes.

6.9.1 Maximal k-mismatch repeat

In order to design the probes we first look at the maximal k-mismatch repeat problem.
Two substrings s1[i1..j1] and s2[i2..j2] are said to be a k-mismatch repeat if we can obtain
one from the other by exactly k character replacements, i.e., they mismatch at exactly k
positions. A k-mismatch repeat is said to be maximal if we cannot extend it at either end
without incurring an extra mismatch.

To identify maximal k-mismatch repeats, first a generalized suffix tree is built for the two
target sequences s1 and s2. Traverse the tree and mark each internal node u as mixed, if
and only if u is the lca(w1, w2) where w1 and w2 are leaves from s1 and s2 respectively.
All the mixed internal nodes can be found in O(n) time, where n = |s1| + |s2|. For each
node u we maintain two Boolean values m1 and m2; m1 is set to true if and only if there
is a leaf corresponding to a suffix of s1 in the subtree rooted at u, or u is a leaf node and
corresponding to a suffix of s1; m2 is similarly defined. This can be done in O(n) time with
one post-order traversal of the tree. Then an internal node u is mixed if and only if m1 at
v1 is true and m2 at v2 is true, where v1 and v2 are two of u’s children. The mixed nodes
can be identified with another post-order traversal in O(n) time. In fact the two post-order
traversals can be combined into one without changing the asymptotic run-time.

Suppose we are interested in maximal k-mismatch repeats of length at least l. This
implies that the maximal k-mismatch repeat has a maximal exact match of length at least

l
k+1 . For each internal node v of string depth at least l

k+1 and marked mixed, identify a
pair of leaves w1 and w2 such that lca(w1, w2) = v, where w1 corresponds to a suffix of s1,
and w2 corresponds to a suffix of s2. This can be done by a bottom up traversal of the tree.
For each node maintain a list of all the leaves of s1 — call this list1, and another list of all
the leaves of s2 — call this list2. For a leaf node one of the lists is empty and the other has
exactly one element. For an internal node v, all distinct pairs of leaves can be generated by
choosing an element from list1 of one of the children and an element from list2 of another
child. After all pairs of leaves are generated, list1 for v can be constructed by joining all
the list1’s children, and list2 for v can be constructed in the same manner. This step can
be done in O(n) space and O(n + occ) time, where occ is the number of pairs generated.
The space for the suffix tree is O(n) and the total size of the lists is also O(n). While the
bottom up traversal takes only O(n) time, the number of pairs generated can be Θ(n2) in
the worst case.

Suffix Tree Applications in Computational Biology 6-21

For each pair of leaves w1 and w2 generated, find the length of lcp(w1, w2). Let s1[i1..j1]
and s2[i2..j2] be the two substrings in s1 and s2, respectively, corresponding to lcp(w1, w2).
It is clear that s1[j1 + 1] �= s2[j2 + 1], because the lcp would be longer otherwise. Let
suff1j1+2 be the (j1 + 2)th suffix of S1, and suff2j2+2 be the (j2 + 2)th suffix of S2. If
lcp(suff1j1+2, suff

2
j2+2) is of length r, then substrings s1[i1..j1 + 1 + r] and s2[i2..j2 + 1 + r]

are a maximal 1-mismatch repeat. We can repeat this procedure to find the maximal k-
mismatch repeat by extending to the right and/or to the left. Given a pair of leaves as seed,
we can identify a maximal k-mismatch repeat in O(k) time, because finding each required
lcp takes only constant time with preprocessing for lca. We can then check if the maximal
k-mismatch repeat is within the specified length constraints.

6.9.2 Oligonucleotide design

From the algorithm presented above, we can generate all the maximal k-mismatch repeats
and check if their length l is within lmin and lmax in O(n + occ · k) time, where occ is
the number of pairs generated. Note that a maximal k-mismatch cannot be extended on
either side without incurring an extra mismatch. However, the maximal k-mismatch can
be shortened on either side if necessary by deleting nucleotides at either end without going
as far as the the first mismatch position. This flexibility can be used to increase the chance
of finding a k-mismatch probe within the specified length constraints. The probe selection
algorithm for two sequences that is presented here can be extended to more than two
sequences, with the same run-time of O(n + occ · k), where n is the total length of all the
sequences. In the worst case, the number of pairs generated is

∑k
i=1

∑
i<j ni · nj , where ni

and nj are the length of sequence i and j, respectively.

6.10 Protein Database Classification and Peptide Inference

6.10.1 Protein sequence database classification

As previously mentioned, the volume of biological sequence data has increased exponentially
in recent years. To better facilitate the analysis of this data, efficient indexing is needed.
Also due to high throughput sequencing, it is no longer efficient or even feasible to have
researchers manually process the large number of data generated each day, and update
sequence databases. With these two goals in mind, an automated process was designed and
implemented by Gracy and Argos [16, 17] to classify an entire protein sequence database.
In this section we present their process, and the role played by suffix trees.

Since our knowledge of the protein structure and their function is limited, data mining
methods are used to discover similarities between individual proteins in a protein family
or cluster. However, in order to apply these data mining methods, the protein sequences
in the database must first be classified into homologous families. In order to achieve this
goal, very similar protein sequences are first classified together by a composition similarity
search, where a compositional vector is calculated for each protein sequence based on the
number of amino acids and dipeptides. Then a pairwise composition distance is calculated
by finding the L1 distance of the compositional vectors associated with each pair of protein
sequences. Only pairs with distances smaller than a threshold are selected into a family.

The composition distance gives a good starting point for further, more sensitive compar-
isons. From each family identified in the previous step, one protein sequence is selected
as a representative. The goal of this step is to further reduce the number of families by
grouping together representative sequences. To accomplish this goal efficiently, regions of

6-22 Handbook of Computational Molecular Biology

local similarity need to be identified and used as an anchor. The local similarities in this
case are equal length subsequences that share comparable prefixes. To identify these equal
length comparable prefixes a generalized suffix tree is built for all the selected sequences.
Then the nodes of the suffix tree are visited by a depth-first traversal. For each node v
encountered, all the nodes u of equal depth are found and a similarity score is calculated
for the path labels of each pair of nodes uv. The identified anchors are then extended to
both ends. If the resulting match exceeds a cut-off point then the two protein families are
potentially similar, and further checks are performed.

6.10.2 Experimental Interpretation

Background

Tandem mass spectrometry can be used to identify protein sequences. When a large num-
ber of experiments are conducted, it is impractical to interpret each experimental output
manually. This tedious and repetitive process can be done by sequence database searches.
Due to the large data size, an efficient database is needed to effectively identify potential
candidates.

In protein studies, the first step is usually the identification of the protein sequence.
A protein sequence is first digested with an enzyme to produce short peptides. A mass
spectrometry (MS) is then used to measure the mass-to-charge (m/z) ratios of the resulting
peptides and these ratios are used in further selecting peptides of interest. The selected
peptides are fragmented by a pass through a collision cell, in a step referred to as collision-
induced dissociation (CID). At this point the peptide is broken into shorter peptides and
individual amino acids. Another mass spectrometry (MS) measures the m/z ratio of the
resulting amino acids. This procedure allows us to deduce the mass of the amino acids in
the peptide if the charges are known.

However, this does not directly tell us the sequence of the peptide. In order to find the
sequence of the peptide, a database of possible peptides must be searched to produce the
best answer. Further complicating this process, we may not know which enzyme is used
to produce the initial peptides, so the leading/trailing amino acid is not known. Post-
translational modification could change the mass of a peptide, which will also have to be
taken into consideration during the construction or the search of the index. So clearly the
goal is to build an indexing structure and a search routine so that the best interpretation
of a tandem mass spectrometry experiment can be found quickly in the database. In this
section we will study the indexing and searching method proposed by Lu and Chen [23].

NC-spectrum graph

Given a mass spectrograph as an input, a NC-spectrum graph is constructed using the
algorithm by Chen et al. [8]. Suppose there are k peaks in the mass spectrograph, then the
peptide is broken into k fragments I1, . . . , Ik with masses denoted by w1, . . . , wk, respec-
tively. Figure 6.13(a) shows an example mass spectrograph with four peaks.

The NC-spectrum graph with 2k + 2 vertices is created on the real number line. Let
m = 2k + 1, vertex z0 and zm correspond to zero mass, and the total mass of the peptide
W , respectively. For each peak Ij , two vertices zj and zm−j are added to the graph, one at
position wj , and the other at position W − wj , respectively. This is the same as assuming
a fragment is either a prefix or a suffix of the peptide. Obviously, a fragment could be a
substring in the middle of the original peptide. However, since we do not always know which
enzyme was used to digest the protein, we lack the start and end points. Thus assuming
a fragment is a substring in the middle of a peptide does not help us deduce the actual

Suffix Tree Applications in Computational Biology 6-23

A
b
u
n
d
an

ce

233.6

335.2

464.8

634.4

Mass/Charge Ratio

(a) Mass spectrograph of a hypothetical peptide.

zm

464.8233.6165.6 566.4 634.4335.2

T+D/N

H+G
z0

G F

(b) The NC-spectrum graph of (a)

FIGURE 6.13: The total mass of the peptide is 800 amu, and the bolded edges forms a possi-
ble peptide. The symbol ‘+’ means ‘concatenation’, and the symbol ‘/’ means
‘disjunction’. For example, the express ‘T+D/N’ means ‘TD’ or ‘TN’.

sequence, and it will complicate the search effort because we do not know where to place it
on the line. After the vertices are fixed on the line, edges are added to the graph. Suppose
zi < zj are two vertices in the graph. If the difference between zi and zj corresponds to the
mass of some amino acid, an edge is drawn from zi to zj and is labeled with that amino
acid.

Figure 6.13(b) shows an example of the NC-spectrum graph corresponding to the mass
spectrograph of Figure 6.13(a). This NC-spectrum graph has only eight vertices instead of
the ten vertices. This is because the peaks corresponding to molecular weights 335.2 and
464.8 map to the same two vertices on the line. It is easy to see that the concatenation of
all the edge labels of a path from vertex z0 to zm in the NC-spectrum graph corresponds
to a peptide. This peptide is one of the many peptides that could have produced the mass
spectrograph.

The Peptide Inference Algorithm

Given a database of proteins, the goal is to identify a set of good candidate peptides from the
database for a particular mass spectrograph. First a generalized suffix tree is constructed,
consisting of all the proteins in the database. Then a depth first traversal is done on the

6-24 Handbook of Computational Molecular Biology

D
T

G
G

H

F

(a)

T

D
T

G
H

G
F

(b)

FIGURE 6.14: Suppose the NC-spectrum graph in Figure 6.13 (b) is used in our search. (a) A
path that matches the peptide TDHGGF completely, when F is encountered in
the search. The peptide TDHGGF is returned as a candidate peptide. (b) A
path with an insertion T in the middle (between the two G’s), the peptide is also
returned as a candidate.

suffix tree by referring to the NC-spectrum graph. Start at the root of the suffix tree r, and
vertex z0 of the NC-spectrum graph. Let (r, u) be an edge in the suffix tree with edge label
lru. We can map this edge onto the NC-spectrum graph by starting from z0 and following
the appropriate edge on the graph. Continue this until a position in the suffix tree is
reached such that the corresponding path in the NC-spectrum graph reaches the last vertex
zm, or the path in the NC-spectrum graph can no longer be extended. In the first case the
concatenation of the edge labels of the suffix tree from the root r to the current position is
a candidate peptide. In the second case the current position in the suffix tree cannot yield
a possible match. In this case, backtrack in the suffix tree and the NC-spectrum graph by
taking a different edge in the suffix tree and continue; see Figure 6.14(a).

In order to account for experimental errors, the search can be relaxed by allowing errors.
If the search is at node u in the suffix tree and vertex zj in the NC-spectrum graph, but
there is no outgoing edge from u in the suffix tree that has the same label as the edge from
zj we are interested in, we could skip one character from u and check if the edge label is
available. For example, in Figure 6.14(b), we are searching for the peptide TDHGGF in
the suffix tree. The prefix TDHG is located, however the next amino acid is T instead of
G. This T is skipped and the search routine tries to locate the remaining sequence GF,
which comes after T. So the peptide TDHGTGF is returned as a candidate. If a match
cannot be found by skipping one character in the suffix tree, more characters can be skipped
depending on the quality of the spectrograph.

This algorithm allows searching for all possible candidates in a protein database using
O(n + |G|) space, where n is the size of the protein database, and |G| is the size of the
NC-spectrum graph. Since we would like to return all the possible candidates in the protein
database, a complete traversal of the suffix tree may be necessary. This takes O(n) time. As
the entire suffix tree may need to be traversed in the worst case, it is advantageous to use
the linked list implementation of children of internal nodes to save space without increasing
the worst case run-time.

After all the candidate peptides are located, a probability can be associated with each pep-

Suffix Tree Applications in Computational Biology 6-25

H
G

G

E
G
G

F F

H
G

G

E
G
G

F F

T

D I

FIGURE 6.15: Post-translational modifications. Consider D can be modified to be I, H can be
modified to E, and all other amino acids have no allowed modifications.

tide, and the peptide with the highest matching probability is output. Careful readers may
notice we have not yet addressed the problem of post-translational modification. This can
be done by modifying the search algorithm. Keep a table of all possible post-translational
modifications such that for each amino acid ai, a list of all its possible modifications are
stored. During the depth first traversal of the suffix tree, instead of simply referring to the
NC-spectrum graph to decide whether a path in the suffix tree is a candidate, each amino
acid in the edge label of the NC-spectrum graph is also substituted with all its possible
modifications to check if a path in the suffix tree can be a possible candidate. For exam-
ple, in Figure 6.15, the only two modifications are from D to I and H to E. Suppose the
path label in the NC-spectrum graph is TDHGGF, then the path TDHGGF will generate
a match, and because of the modifications the paths TDEGGF, TIHGGF, and TIEGGF
will also be considered as matches.

6.11 Conclusions

Suffix trees and its variants are used in many applications in computational biology. This
chapter provides a diverse, but by no means exhaustive, sample of the many applications
in which suffix trees have been used. Variants of suffix trees have also been developed for
use in Markov models. These include prediction suffix trees [6] and probabilistic suffix trees
[2, 5, 13].

Acknowledgements

This work was supported in part by the U.S. National Science Foundation under IIS-
0430853.

6-26 References

References

[1] S.F. Altschul, T.L. Madden, A.A. Schäffer1, and J. Zhang et al. Gapped blast and psi-
blast: a new generation of protein database search programs. Nucleic Acids Research,
25(17):3389–3402, 1997.

[2] A. Apostolico and G. Bejerano. Optimal amnesic probabilistic automata or how to
learn and classify proteins in linear time and space. Journal of Computational Biol-
ogy, 7(3):381–393, 2000.

[3] A. Apostolico and F.P. Preparata. Optimal off-line detection of repetitions in a string.
Theoretical Computer Science, 22:297–315, 1983.

[4] S. Batzoglou, L. Pachter, J.P. Mesirov, and B. Berger et al. Human and mouse
gene structure: Comparative analysis and application to exon prediction. Genome
Research, 10(7):950–958, 2000.

[5] G. Bejerano, Y. Seldin, H. Margalit, and N. Tishby. Markovian domain fingerprinting:
Statistical segmentation of protein sequences. Bioinformatics, 17(10):927–934, 2001.

[6] G. Bejerano and G. Yona. Variations on probabilistic suffix trees: Statistical modeling
and prediction of protein families. Bioinformatics, 17(1):23–43, 2001.

[7] N. Bray, I. Dubchak, and L. Pachter. Avid: A global alignment program. Genome
Research, 13(1):97–102, 2003.

[8] T. Chen, M.Y. Kao, M. Tepel, and J. Rush et al. A dynamic programming approach
to de novo peptide sequencing via tandem mass spectrometry. In Proc. 11th annual
ACM-SIAM symposium on Discrete algorithms, pages 389–398, 2000.

[9] R. Cole and R. Hariharan. Approximate string matching: A simpler faster algorithm.
SIAM Journal on Computing, 31, 2002.

[10] M. Crochemore. An optimal algorithm for computing the repetitions in a word. In-
formation Processing Letters, 12(5):244–250, 1981.

[11] A.L. Delcher, S. Kasif, R.D. Fleischmann, and J. Peterson et al. Alignment of whole
genomes. Nucleic Acids Research, 27(11):2369–2376, 1999.

[12] A.L. Delcher, A. Phillippy, J. Carlton, and S.L. Salzberg. Fast algorithms for large-
scale genome alignment and comparison. Nucleic Acids Research, 30(11):2478–2483,
2002.

[13] E. Eskin, W.S. Noble, and Y. Singer. Protein family classification using sparse markov
transducers. Journal of Computational Biology, 10(2):187–213, 2003.

[14] A. Fire, S. Xu, M.K. Montgomery, and S.A. Kostas et al. Potent and specific genetic
interference by double-stranded rna in caenorhabditis elegans. Nature, 391(6669):806–
811, 1998.

[15] A.S. Fraenkel and J. Simpson. How many squares can a string contain? Journal of
Combinatorial Theory, Series A, 82(1):112–120, 1998.

[16] J. Gracy and P. Argos. Automated protein sequence database classification. i. integra-
tion of compositional similarity search, local similarity search, and multiple sequence
alignment. Bioinformatics, 14(2):164–173, 1998.

[17] J. Gracy and P. Argos. Automated protein sequence database classification. ii. delin-
eation of domain boundaries from sequence similarities. Bioinformatics, 14(2):174–
187, 1998.

[18] D. Gusfield and J. Stoye. Linear-time algorithms for finding and representing all
tandem repeats in a string. Journal of Computer and System Sciences, 69(4):525–

References 6-27

546.
[19] Y. Horesh, A. Amir, S. Michaeli, and R. Unger. A rapid method for detection of

putative rnai target genes in genomic data. Bioinformatics, 19(Suppl. 2):73ii–80ii,
September 2003.

[20] L. Kaderali and A. Schliep. Selecting signature oligonucleotides to identify organisms
using DNA arrays. Bioinformatics, 18(10):1340–1349, 2002.

[21] S. Kurtz, J.V. Choudhuri, E. Ohlebusch, and C. Schleiermacher et al. REPuter: the
manifold applications of repeat analysis on a genomic scale. Nucleic Acids Research,
29(22):4633–3642, 2001.

[22] S. Kurtz and C. Schleimermacher. REPuter: fast computation of maximal repeats in
complete genomes. Bioinformatics, 15(5):426–427, 1999.

[23] B. Lu and T. Chen. A suffix tree approach to the interpretation of tandem mass spectra:
applications to peptides of non-specific digestion and post-translational modifications.
Bioinformatics, 19(Suppl. 2):ii 113–ii 121, 2003.

[24] M.G. Main and R.J. Lorentz. An O(n log n) algorithm for finding all repetitions in a
string. Journal of Algorithms, 5(3):422–432, 1984.

[25] L. Marsan and M.F. Sagot. Algorithms for extracting structured motifs using a suf-
fix tree with an application to promoter and regulatory site consensus identification.
Journal of Computational Biology, 7(3):345–362, 2000.

[26] B. Morgenstern. DIALIGN2: Improvement of the segement-to-segment approach to
mulitple sequence alignment. Bioinformatics, 15(3):211–218, 1999.

[27] B. Morgenstern, O. Rinner, S. Abdeddäim, and D. Haase et al. Exon discovery by
genomic sequence alignment. Bioinformatics, 18(6):777–787, 2002.

[28] S. Schwartz, Z. Zhang, K.A. Frazer, and A. Smit et al. Pipmaker – a web server for
aligning two genomic dna sequences. Genome Research, 10(4):577–586, 2000.

[29] J. Stoye and D. Gusfield. Simple and flexible detection of contiguous repeats using
a suffix tree. In Proc. 9th Annual Symposium, Combinatorial Pattern Matching,
pages 140–152, 1998.

[30] E. Ukkonen. Approximate string-matching over suffix trees. In Proc 4th Annual
Symposium, Combinatorial Pattern Matching, pages 228–242, 1993.

7
Enhanced Suffix Arrays and

Applications

Mohamed I. Abouelhoda
University of Ulm

Stefan Kurtz
University of Hamburg

Enno Ohlebusch
University of Ulm

7.1 Introduction . 7-1
7.2 Basic Notions . 7-3
7.3 Computation of Supermaximal Repeats and Maximal

Unique Matches . 7-4
7.4 Computation of Maximal Repeats and Maximal

(Multiple) Exact Matches . 7-8
7.5 Exact Pattern Matching . 7-14
7.6 Computation of Tandem Repeats 7-20
7.7 Space Efficient Computation of Maximal Exact

Matches . 7-22

7.1 Introduction

The suffix tree is undoubtedly one of the most important data structures in string processing.
This is particularly true if the sequences to be analyzed are very large and do not change.
An example of prime importance from the field of bioinformatics is genome analysis, where
the sequences under consideration are whole genomes (the human genome, for example,
contains more than 3 · 109 base pairs).

The suffix tree of a sequence S is an index structure that can be computed and stored in
O(n) time and space [34], where n = |S|. Once constructed, it can be used to efficiently solve
a “myriad” of string processing problems [3]. Table 7.1 shows the applications discussed in
this chapter. These applications can be classified into the following kinds of tree traversals:

• a bottom-up traversal of the complete suffix tree
• a top-down traversal of a subtree of the suffix tree
• a traversal of the suffix tree using suffix links

Therefore, Table 7.1 also shows which kind of traversal is used for the respective application.
While suffix trees play a prominent role in algorithmics, they are not as widespread in

actual implementations of software tools as one should expect. There are two major reasons
for this:

(i) Although being asymptotically linear, the space consumption of a suffix tree is
quite large; even recently improved implementations of linear time constructions
still require 20 bytes per input character in the worst case; see, e.g., [22].

7-1

7-2 Handbook of Computational Molecular Biology

Type of tree traversal
Application bottom-up top-down suffix-links

supermaximal repeats
√

maximal repeats
√

maximal unique matches
√

maximal multiple exact matches
√

tandem repeats
√

tandem repeats (brute force)
√

exact pattern matching
√

maximal exact matches (space efficient)
√ √

TABLE 7.1 The suffix tree applications discussed here and the kinds of traversals they require.

(ii) In most applications, the suffix tree suffers from a poor locality of memory ref-
erence, which causes a significant loss of efficiency on cached processor architec-
tures, and renders it difficult to store in secondary memory.

These problems have been identified in several large scale applications like the repeat
analysis of whole genomes [23] and the comparison of complete genomes [11, 16].

More space efficient data structures than the suffix tree exist. The most prominent one
is the suffix array, which was introduced by Manber and Myers [27] and independently by
Gonnet et al. [12] under the name PAT array. The suffix array requires only 4n bytes in its
basic form and it can be constructed in O(n) time in the worst case by first constructing
the suffix tree of S; see [14]. Recently, it was shown independently and contemporaneously
in [17, 19, 20] that a direct linear time construction of the suffix array is possible. However,
the suffix array has less structure than the suffix tree, so that it is not clear that (and how)
an algorithm using a suffix tree can be replaced with an algorithm based on a suffix array.
In this chapter, we will show that the problems listed in Table 7.1 can also be solved with
suffix arrays plus additional information. The algorithms presented here are not only more
space efficient than previous ones, but they are also faster and easier to implement. In many
applications the above-mentioned “additional information” consists of the longest common
prefix (lcp) information. Kasai et al. [18] coined the name virtual suffix tree for a suffix
array enhanced with the lcp information. However, there are also other applications that
cannot be solved with this virtual suffix tree data structure. Thus, we will use the generic
name enhanced suffix array for data structures consisting of the suffix array and additional
tables representing the required information.

In Section 7.3, we treat applications (computation of supermaximal repeats and maximal
unique matches) that are solely based on the properties of the enhanced suffix array.

In Section 7.4, we will introduce the concept of lcp-interval tree. The lcp-interval tree
of an enhanced suffix array is only conceptual (i.e., it is not really built) but it allows us
to simulate all kinds of suffix tree traversals very efficiently. As examples of a bottom-up
traversal, we will show how to compute all maximal repeated pairs of a string as well as all
maximal multiple exact matches of a set of strings. These applications use the suffix array
and the lcp-table, both of which can be stored in 4n bytes. In order to compute tandem
repeats efficiently, one further needs the inverse suffix array; see Section 7.6.

In Section 7.5, we consider the exact pattern matching problem, which consists of finding
all occurrences of a pattern P of length m in a string S of length n. We suppose that the
enhanced suffix array of S has been constructed. It is well-known that the exact pattern
matching problem can be solved by a binary search in the suffix array: A decision query
“Is P a substring of S?” can be answered in O(m logn) time. Manber and Myers [27]
showed how this can be improved to O(m + logn) running time using an additional table.
This result is, however, only of theoretical interest, and therefore we only describe the

Enhanced Suffix Arrays and Applications 7-3

t
$

..

t
$

..

c..
$

a..
$

$

2

a..

$

$

a ta
c

a
c

a

a..
$

a..
$

a..
$

t $

7 9

3 0 4 6 8

1 5

10

FIGURE 7.1: The suffix tree for S = acaaacatat.

O(m log n)-method. Furthermore, we will show how to answer decision queries in optimal
O(m) time and how to find all z occurrences of a pattern P in optimal O(m + z) time.
These results are achieved by using the basic suffix array enhanced with the lcp-table and
an additional table, called the child-table, that requires 4n bytes.

A space efficient algorithm for computing maximal exact matches of two strings (genomes)
is presented in Section 7.7. Because it uses suffix links — a well-known feature of suffix
trees — we will show how to incorporate the concept of suffix links into enhanced suffix
arrays. To this end, we further enhance the suffix array with an additional table, called the
suffix link table, that stores the left and right boundaries of suffix link intervals. This table
can be stored in 8n bytes.

We would like to point out that in practice both the lcp-table and the child-table can be
stored in n bytes, whereas the suffix link table requires 2n bytes; see [2] for implementation
details. Experiments revealed that this space reduction entails no loss of performance; see
[2].

7.2 Basic Notions

Let Σ be a finite ordered alphabet. Σ∗ is the set of all strings over Σ. We use Σ+ to denote
the set Σ∗\{ε} of non-empty strings. Let S be a string of length |S| = n over Σ. To simplify
analysis, we suppose that the size of the alphabet is a constant, and that n < 232. The
latter implies that an integer in the range [0, n] can be stored in 4 bytes. We assume that
the special sentinel symbol $ is an element of Σ (which is larger then all other elements)
but does not occur in S. S[i] denotes the character at position i in S, for 0 ≤ i < n. For
i ≤ j, S[i . . . j] denotes the substring of S starting with the character at position i and
ending with the character at position j. The substring S[i . . . j] is also denoted by the pair
(i, j) of positions.

A suffix tree for the string S is a rooted directed tree with exactly n+ 1 leaves numbered
0 to n. Each internal node, other than the root, has at least two children and each edge is
labeled with a nonempty substring of S$. No two edges out of a node can have edge-labels
beginning with the same character. The key feature of the suffix tree is that for any leaf i,
the concatenation of the edge-labels on the path from the root to leaf i exactly spells out
the string Si, where Si = S[i . . . n− 1]$ denotes the i-th nonempty suffix of the string S$,
0 ≤ i ≤ n. Figure 7.1 shows the suffix tree for the string S = acaaacatat.

The suffix array suftab of the string S is an array of integers in the range 0 to n,

7-4 Handbook of Computational Molecular Biology

childtab suflink

i suftab lcptab 1. 2. 3. l r suftab−1 bwttab Ssuftab[i]

0 2 0 2 6 2 c aaacatat$
1 3 2 0 5 6 a aacatat$
2 0 1 1 3 4 0 10 0 acaaacatat$
3 4 3 6 7 1 a acatat$
4 6 1 3 5 3 c atat$
5 8 2 8 9 7 t at$
6 1 0 2 7 8 4 a caaacatat$
7 5 2 0 5 8 a catat$
8 7 0 7 9 10 5 a tat$
9 9 1 0 10 9 a t$

10 10 0 9 10 t $

FIGURE 7.2: Suffix array of the string S = acaaacatat enhanced with the lcp-table, the child-
table, the suffix link table, the inverse suffix array, and the Burrows and Wheeler
table bwttab. The child-table and the suffix link table will be explained later.

specifying the lexicographic ordering of the n + 1 suffixes of the string S$. That is,
Ssuftab[0], Ssuftab[1], . . . , Ssuftab[n] is the sequence of suffixes of S$ in ascending lexicograph-
ic order; see Figure 7.2. The suffix array requires 4n bytes.

The lcp-table lcptab is an array of integers in the range 0 to n. We define lcptab[0] = 0
and lcptab[i] to be the length of the longest common prefix of Ssuftab[i−1] and Ssuftab[i], for
1 ≤ i ≤ n. Since Ssuftab[n] = $, we always have lcptab[n] = 0. The lcp-table can be computed
as a by-product during the construction of the suffix array (see,e.g., [17]), or alternatively,
in linear time from the suffix array [18]. The lcp-table requires 4n bytes in the worst case.

The inverse suffix array suftab−1 is a table of size n+1 such that suftab−1[suftab[q]] = q
for any 0 ≤ q ≤ n. suftab−1 can be computed in linear time from the suffix array and needs
4n bytes.

The table bwttab contains the Burrows and Wheeler transformation [8] known from data
compression. It is a table of size n + 1 such that for every i, 0 ≤ i ≤ n, bwttab[i] =
S[suftab[i] − 1] if suftab[i] �= 0. bwttab[i] is undefined if suftab[i] = 0. The table bwttab is
stored in n bytes and constructed in one scan over the suffix array in O(n) time.

7.3 Computation of Supermaximal Repeats and Maximal
Unique Matches

Motivation: Repeat Analysis

Repeat analysis plays a key role in the study, analysis, and comparison of complete genomes.
In the analysis of a single genome, a basic task is to characterize and locate the repetitive
elements of the genome. In the comparison of two or more genomes, a basic task is to
find similar subsequences of the genomes. As we shall see later, this problem can also be
reduced to the computation of certain types of repeats of the string that consists of the
concatenated genomes.

The repetitive elements of the human genome can be classified into two large groups: dis-
persed repetitive DNA and tandemly repeated DNA. Dispersed repetitions vary in size and
content and fall into two basic categories: transposable elements and segmental duplications

Enhanced Suffix Arrays and Applications 7-5

[25]. Transposable elements belong to one of the following four classes: SINEs (short inter-
spersed nuclear elements), LINEs (long interspersed nuclear elements), LTRs (long terminal
repeats), and transposons. Segmental duplications, which might contain complete genes,
have been divided into two classes: chromosome-specific and trans-chromosome duplications
[30]. Tandemly repeated DNA can also be classified into two categories: simple sequence
repetitions (relatively short k-mers such as micro and minisatellites) and larger ones, which
are called blocks of tandemly repeated segments. While bacterial genomes usually do
not contain large parts of redundant DNA, a considerable portion of the genomes of higher
organisms is composed of repeats. For example, 50% of the 3 billion basepairs of the human
genome consist of repeats. Repeats also comprise 11% of the mustard weed genome, 7%
of the worm genome and 3% of the fly genome [25]. Clearly, one needs extensive algorith-
mic support for a systematic study of repetitive DNA on a genomic scale. The algorithms
for this task usually use the suffix tree to locate repetitive structures such as maximal or
supermaximal repeats; see [14]. In this section we show how to locate all supermaximal
repeats, while Section 7.4 treats maximal repeated pairs. Let us recall the definitions of
these notions.

A pair of substrings R = ((i1, j1), (i2, j2)) is a repeated pair if and only if (i1, j1) �= (i2, j2)
and S[i1 . . . j1] = S[i2 . . . j2]. The length of R is j1− i1+1. A repeated pair ((i1, j1), (i2, j2))
is called left maximal if S[i1 − 1] �= S[i2 − 1]1 and right maximal if S[j1 + 1] �= S[j2 + 1].
A repeated pair is called maximal if it is left and right maximal. A substring ω of S is
a (maximal) repeat if there is a (maximal) repeated pair ((i1, j1), (i2, j2)) such that ω =
S[i1 . . . j1]. A supermaximal repeat is a maximal repeat that does not occur as a substring
of any other maximal repeat.

The lcp-Intervals of an Enhanced Suffix Array

We start this subsection with the introduction of the first essential concept of this chapter,
namely lcp-intervals. Then we will derive two new algorithms that solely exploit the prop-
erties of lcp-intervals. The algorithms are much simpler than the corresponding ones based
on suffix trees.

DEFINITION 7.1 An interval [i..j], 0 ≤ i < j ≤ n, is an lcp-interval of lcp-value if

1. lcptab[i] < ,
2. lcptab[k] ≥ for all k with i+ 1 ≤ k ≤ j,
3. lcptab[k] = for at least one k with i+ 1 ≤ k ≤ j,
4. lcptab[j + 1] < .

We will also use the shorthand -interval (or even -[i..j]) for an lcp-interval [i..j] of lcp-
value . Every index k, i + 1 ≤ k ≤ j, with lcptab[k] = is called -index. The set of all
-indices of an -interval [i..j] will be denoted by Indices(i, j). If [i..j] is an -interval such
that ω = S[suftab[i] . . . suftab[i]+ −1] is the longest common prefix of the suffixes Ssuftab[i],
Ssuftab[i+1], . . . , Ssuftab[j], then [i..j] is called the ω-interval. The size of an interval [i..j] is
j − i+ 1.

1This definition has to be extended to the cases i1 = 0 or i2 = 0, but throughout the chapter we do not
explicitly state boundary cases like these.

7-6 Handbook of Computational Molecular Biology

As an example, consider the table in Figure 7.2. [0..5] is a 1-interval because lcptab[0] =
0 < 1, lcptab[5 + 1] = 0 < 1, lcptab[k] ≥ 1 for all k with 1 ≤ k ≤ 5, and lcptab[2] = 1.
Furthermore, 1-[0..5] is the a-interval and Indices(0, 5) = {2, 4}. We shall see later that
lcp-intervals correspond to internal nodes of the suffix tree.

Computation of Supermaximal Repeats

Next, we present an algorithm that computes all supermaximal repeats of a string. The
reader is invited to compare our simple algorithm with the suffix-tree based algorithm of
[14, page 146].

DEFINITION 7.2 An -interval [i..j] is called a local maximum in the lcp-table if
lcptab[k] = for all i+ 1 ≤ k ≤ j.

For instance, in the lcp-table of Figure 7.2, the local maxima are the intervals [0..1], [2..3],
[4..5], [6..7], and [8..9].

LEMMA 7.1 A string ω is a supermaximal repeat if and only if there is an -interval
[i..j] such that

• [i..j] is a local maximum in the lcp-table and [i..j] is the ω-interval.
• the characters bwttab[i], bwttab[i+ 1], . . . , bwttab[j] are pairwise distinct.

Proof “if”: Since ω is a common prefix of the suffixes Ssuftab[i], . . . , Ssuftab[j] and i < j, it
is certainly a repeat. The characters S[suftab[i] +], S[suftab[i+ 1] +], . . . , S[suftab[j] +]
are pairwise distinct because [i..j] is a local maximum in the lcp-table. By the second
condition, the characters bwttab[i], bwttab[i+ 1], . . . , bwttab[j] are also pairwise distinct. It
follows that ω is a maximal repeat and that there is no repeat in S which contains ω. In
other words, ω is a supermaximal repeat.

“only if”: Let ω be a supermaximal repeat of length |ω| = . Furthermore, suppose that
suftab[i], suftab[i+ 1], . . . , suftab[j], 0 ≤ i < j ≤ n, are the consecutive entries in suftab such
that ω is a common prefix of Ssuftab[i], Ssuftab[i+1], . . . , Ssuftab[j] but neither of Ssuftab[i−1] nor
of Ssuftab[j+1]. Because ω is supermaximal, the characters S[suftab[i] +], S[suftab[i + 1] +
], . . . , S[suftab[j] +] are pairwise distinct. Hence lcptab[k] = for all k with i+ 1 ≤ k ≤ j.
Furthermore, lcptab[i] < and lcptab[j + 1] < hold because otherwise ω would also be a
prefix of Ssuftab[i−1] or Ssuftab[j+1]. All in all, [i..j] is a local maximum of the array lcptab
and [i..j] is the ω-interval. Finally, the characters bwttab[i], bwttab[i+ 1], . . . , bwttab[j] are
pairwise distinct because ω is supermaximal.

The preceding lemma does not only imply that the number of supermaximal repeats is
smaller than n, but it also suggests a simple linear time algorithm to compute all super-
maximal repeats of a string S.

Motivation: Comparison of Whole Genomes

To date (September 2005), Genbank contains “complete” genomes for more than 1,000
viruses, over 250 microbes, and 36 eukaryota. This abundance of complete genomic DNA-
sequences has boosted the field of comparative genomics. Comparative studies are emerging

Enhanced Suffix Arrays and Applications 7-7

FIGURE 7.3: Computation of the supermaximal repeats of string S
find all local maxima in the lcp-table of S
for each local maximum [i..j] in the lcp-table of S do

if bwttab[i], bwttab[i+ 1], . . . , bwttab[j] are pairwise distinct characters
then report the string S[suftab[i] . . . suftab[i] + lcptab[i]− 1] as supermaximal repeat

as a powerful tool for the identification of genes and regulatory elements. Comparing the
genomes of related species gives us new insights into the complex structure of organisms at
the DNA-level and protein-level.

The first step in the comparison of genomes is to produce an alignment, i.e., a colinear
arrangement of sequence similarities. Alignment of nucleic or amino acid sequences has been
one of the most important methods in sequence analysis. Nowadays, many sophisticated
algorithms are available for aligning sequences with similar regions. These require to score
all possible alignments (typically, the score is the sum of the similarity/identity values for
the aligned symbols, minus a penalty for the introduction of gaps), in conjunction with
a dynamic programming method to find optimal or near-optimal alignments according to
this scoring scheme (see, e.g., [29]). The dynamic programming algorithms run in time
proportional to the product of the lengths of the sequences. Hence they are not suitable for
aligning entire genomes. Recently, several genome alignment programs have been developed,
all using an anchor-based method to compute an alignment (for an overview see [9]). The
anchor-based methods are composed of the following three phases:

(1) Computation of all potential anchors (exact or approximate matches).
(2) Computation of an optimal colinear sequence of non-overlapping potential an-

chors: these are the anchors that form the basis of the alignment.
(3) Closure of the gaps in between the anchors by applying the same method recur-

sively — yielding a divide and conquer method — or, e.g., by a standard dynamic
programming method.

In this chapter, we will focus on phase (1) and explain several algorithms to compute exact
matches. The first one is used in the software tool MUMmer [11]. It is based on a maximal
unique match (MUM) decomposition of two genomes S1 and S2. The implementation of
MUMmer uses the suffix tree of S1#S2 to compute MUMs in O(n) time and space, where
n = |S1#S2| and # is a symbol neither occurring in S1 nor in S2.

Computation of Maximal Unique Matches

The space consumption of the suffix tree has been identified to be a major problem in the
computation of the maximal unique match decomposition of two large genomes; see [11].
We will solve this problem by using the suffix array enhanced with the lcp-table.

DEFINITION 7.3 Given two strings S1 and S2, a MUM is a string that occurs exactly
once in S1 and once in S2, and is not contained in any longer such string.

LEMMA 7.2 Let # be a unique separator symbol not occurring in S1 and S2 and let
S = S1#S2. The string u is a MUM of S1 and S2 if and only if u is a supermaximal repeat
in S such that

7-8 Handbook of Computational Molecular Biology

1. there is only one maximal repeated pair ((i1, j1), (i2, j2)) with u = S[i1 . . . j1] =
S[i2 . . . j2],

2. j1 < p < i2, where p = |S1| is the position of # in S.

Proof “if”: It is a consequence of conditions (1) and (2) that u occurs exactly once in S1

and once in S2. Because the repeated pair ((i1, j1), (i2, j2)) is maximal, u is a MUM .
“only if”: If u is a MUM of the sequences S1 and S2, then it occurs exactly once in

S1 (say, u = S1[i1 . . . j1]) and once in S2 (say, u = S2[i2 . . . j2]), and is not contained in
any longer such sequence. Clearly, ((i1, j1), (p + 1 + i2, p + 1 + j2)) is a repeated pair in
S = S1#S2, where p = |S1|. Because u occurs exactly once in S1 and once in S2, and is
not contained in any longer such sequence, it follows that u is a supermaximal repeat in S
satisfying conditions (1) and (2).

The first version of MUMmer [11] computed MUMs with the help of the suffix tree of
S = S1#S2. Using an enhanced suffix array, this task can be done more time and space
economically as follows.

FIGURE 7.4: Computation of maximal unique matches of two strings S1 and S2

find all local maxima in the lcp-table of S = S1#S2

for each local maximum [i..j] in the lcp-table of S do
if i+ 1 = j and bwttab[i] �= bwttab[j] and suftab[i] < p < suftab[j]
then report the string S[suftab[i] . . . suftab[i] + lcptab[i]− 1] as MUM

The algorithms that compute supermaximal repeats and MUMs require tables suftab,
lcptab, and bwttab, but do not access the input sequence. More precisely, instead of the
input string, we use table bwttab without increasing the total space requirement. This
is because the tables suftab, lcptab, and bwttab can be accessed in sequential order, thus
leading to an improved cache coherence and in turn considerably reduced running time; see
[2] for details and experimental results.

7.4 Computation of Maximal Repeats and Maximal (Mul-
tiple) Exact Matches

Next, we introduce the second essential concept of this chapter — the lcp-interval tree.

DEFINITION 7.4 An m-interval [l..r] is said to be embedded in an -interval [i..j] if it
is a subinterval of [i..j] (i.e., i ≤ l < r ≤ j) and m > .2 The -interval [i..j] is then called
the interval enclosing [l..r]. If [i..j] encloses [l..r] and there is no interval embedded in [i..j]
that also encloses [l..r], then [l..r] is called a child interval of [i..j].

2Note that we cannot have both i = l and r = j because m > �.

Enhanced Suffix Arrays and Applications 7-9

0-[0..10]

1-[0..5] 2-[6..7] 1-[8..9]

2-[4..5] 3-[2..3] 2-[0..1]

FIGURE 7.5: The lcp-interval tree of the string S = acaaacatat.

This parent-child relationship constitutes a conceptual (or virtual) tree which we call
the lcp-interval tree of the suffix array. The root of this tree is the 0-interval [0..n]; see
Figure 7.5. The lcp-interval tree is basically the suffix tree without leaves (more precisely,
there is a one-to-one correspondence between the nodes of the lcp-interval tree and the
internal nodes of the suffix tree). These leaves are left implicit in our framework, but every
leaf in the suffix tree, which corresponds to the suffix Ssuftab[l], can be represented by a
singleton interval [l..l]. The parent interval of such a singleton interval is the smallest lcp-
interval [i..j] with l ∈ [i..j]. For instance, continuing the example of Figure 7.2, the child
intervals of [0..5] are [0..1], [2..3], and [4..5].

In Figure 7.6, the lcp-interval tree is traversed in a bottom-up fashion by a linear scan
of the lcp-table, while storing needed information on a stack. We stress that the lcp-
interval tree is not really built: whenever an -interval is processed by the generic function
process, only its child intervals have to be known. These are determined solely from the lcp-
information, i.e., there are no explicit parent-child pointers in our framework. In Figure 7.6,
the elements on the stack are lcp-intervals represented by quadruples 〈lcp, lb, rb, childList〉,
where lcp is the lcp-value of the interval, lb is its left boundary, rb is its right boundary,
and childList is a list of its child intervals. Furthermore, add([c1, . . . , ck], c) appends the
element c to the list [c1, . . . , ck] and returns the result.

In this chapter, several problems will be solved merely by specifying the function process
called in line 8 of Figure 7.6.

Computation of Maximal Repeated Pairs

The computation of maximal repeated pairs plays an important role in the analysis of a
genome. The algorithm of Gusfield [14, page 147] computes maximal repeated pairs of a
sequence S of length n in O(|Σ|n + z) time, where z is the number of maximal repeated
pairs. This running time is optimal. To the best of our knowledge, Gusfield’s algorithm
was first implemented in the REPuter -program [23], based on space efficient suffix trees
described in [22]. The software tool REPuter uses maximal repeated pairs as seeds for
finding degenerate (or approximate) repeats. In this section, we show how to implement
Gusfield’s algorithm using enhanced suffix arrays. This considerably reduces the space
requirements, thus removing a bottle neck in the algorithm. As a consequence, much larger
genomes can be searched for repetitive elements. As in the algorithms in Section 7.3, the
implementation requires tables suftab, lcptab, and bwttab, but does not access the input
sequence. The accesses to the three tables are in sequential order, thus leading to an
improved cache coherence and in turn to a considerably reduced running time; see [2].

We begin by introducing some notation: Let ⊥ stand for the undefined character. We

7-10 Handbook of Computational Molecular Biology

FIGURE 7.6: Traverse and process the lcp-interval tree
lastInterval := ⊥
push(〈0, 0,⊥, []〉)
for i := 1 to n do
lb := i− 1
while lcptab[i] < top.lcp
top.rb := i− 1
lastInterval := pop
process(lastInterval)
lb := lastInterval.lb
if lcptab[i] ≤ top.lcp then
top.childList := add(top.childList, lastInterval)
lastInterval := ⊥

if lcptab[i] > top.lcp then
if lastInterval �= ⊥ then
push(〈lcptab[i], lb,⊥, [lastInterval]〉)
lastInterval := ⊥

else push(〈lcptab[i], lb,⊥, []〉)

assume that it is different from all characters in Σ. Let [i..j] be an -interval and u =
S[suftab[i] . . . suftab[i] + − 1]. Define P[i..j] to be the set of positions p such that u is a
prefix of Sp, i.e., P[i..j] = {suftab[r] | i ≤ r ≤ j}. We divide P[i..j] into disjoint and possibly
empty sets according to the characters to the left of each position: For any a ∈ Σ ∪ {⊥}
define

P[i..j](a) =
{
{0 | 0 ∈ P[i..j]} if a = ⊥
{p | p ∈ P[i..j], p > 0, and S[p− 1] = a} otherwise

The algorithm computes position sets in a bottom-up traversal. In terms of an lcp-interval
tree, this means that the lcp-interval [i..j] is processed only after all child intervals of [i..j]
have been processed.

Suppose [i..j] is a singleton interval, i.e., i = j. Let p = suftab[i]. Then P[i..j] = {p} and

P[i..j](a) =
{
{p} if p > 0 and S[p− 1] = a or p = 0 and a = ⊥
∅ otherwise

Now suppose that i < j. For each a ∈ Σ ∪ {⊥}, P[i..j](a) is computed step by step while
processing the child intervals of [i..j]. These are processed from left to right. Suppose that
they are numbered, and that we have already processed q child intervals of [i..j]. By Pq

[i..j](a)
we denote the subset of P[i..j](a) obtained after processing the q-th child interval of [i..j].
Let [i′..j′] be the (q+1)-th child interval of [i..j]. Due to the bottom-up strategy, [i′..j′] has
been processed and hence the position sets P[i′..j′](b) are available for any b ∈ Σ ∪ {⊥}.

The interval [i′..j′] is processed in the following way: First, maximal repeated pairs are
output by combining the position set Pq

[i..j](a), a ∈ Σ ∪ {⊥}, with position sets P[i′..j′](b),
b ∈ Σ ∪ {⊥}. In particular, ((p, p + − 1), (p′, p′ + − 1)), p < p′, are output for all
p ∈ Pq

[i..j](a) and p′ ∈ P[i′..j′](b), a, b ∈ Σ ∪ {⊥} and a �= b.
It is clear that u occurs at positions p and p′. Hence ((p, p + − 1), (p′, p′ + − 1)) is a

repeated pair. By construction, only those positions p and p′ are combined for which the
characters immediately to the left, i.e., at positions p − 1 and p′ − 1 (if they exist), are
different. This guarantees left-maximality of the output repeated pairs.

Enhanced Suffix Arrays and Applications 7-11

The position sets Pq
[i..j](a) were inherited from child intervals of [i..j] that are different

from [i′..j′]. Hence the characters immediately to the right of u at positions p+ and p′+
(if they exist) are different. As a consequence, the output repeated pairs are maximal.

Once the maximal repeated pairs for the current child interval [i′..j′] have been output,
the union Pq+1

[i..j](e) := Pq
[i..j](e) ∪ P[i′..j′](e) is computed for all e ∈ Σ ∪ {⊥}. That is, the

position sets are inherited from [i′..j′] to [i..j].
In Figure 7.6, if the function process is applied to an lcp-interval, then all its child

intervals are available. Hence the maximal repeated pair algorithm can be implemented by
a bottom-up traversal of the lcp-interval tree. To this end, the function process in Figure 7.6
outputs maximal repeated pairs and further maintains position sets on the stack (which are
added as a fifth component to the quadruples). The bottom-up traversal requires O(n)
time.

There are two operations performed when processing an lcp-interval [i..j]. Output of
maximal repeated pairs by combining position sets and union of position sets. Each com-
bination of position sets means to compute their Cartesian product. This delivers a list of
position pairs, i.e., maximal repeated pairs. Each repeated pair is computed in constant
time from the position lists. Altogether, the combinations can be computed in O(z) time,
where z is the number of repeats. The union operation for the position sets can be imple-
mented in constant time, if we use linked lists. For each lcp-interval, we have O(|Σ|) union
operations. Since O(n) lcp-intervals have to be processed, the union and add operations
require O(|Σ|n) time. Altogether, the algorithm runs in O(|Σ|n+ z) time.

Let us analyze the space consumption of the algorithm. A position set P[i..j](a) is the
union of position sets of the child intervals of [i..j]. If the child intervals of [i..j] have been
processed, the corresponding position sets are obsolete. Hence it is not required to copy
position sets. Moreover, we only have to store the position sets for those lcp-intervals which
are on the stack used for the bottom-up traversal of the lcp-interval tree. So it is natural to
store references to the position sets on the stack together with other information about the
lcp-interval. Thus the space required for the position sets is determined by the maximal
size of the stack. Since this is O(n), the space requirement is O(|Σ|n). In practice, however,
the stack size is much smaller. Altogether the algorithm is optimal, since its space and time
requirement is linear in the size of the input plus the output.

Computation of Maximal (Multiple) Exact Matches

In this section, we come back to the problem of aligning genomic sized sequences. In Section
7.3, we have seen that the software tool MUMmer uses MUMs as potential anchors in the
first phase of its anchor-based method. Delcher et al. [11] wrote: “The crucial principle
behind this step is the following: if a long, perfectly matching sequence occurs exactly once
in each genome, it is almost certain to be part of the global alignment.” It has been argued
in [16] that the restriction to MUMs as anchors seems unnecessary because exact matches
occurring more than once in a genome may also be meaningful. This consideration lead to
the notion of maximal exact matches.

DEFINITION 7.5 An exact match between two strings S1 and S2 is a triple (l, p1, p2)
such that p1 ∈ [0, |S1|− l], p2 ∈ [0, |S2|− l], and S1[p1 . . . p1 + l−1] = S2[p2 . . . p2 + l−1]. An
exact match is left maximal if S[p1−1] �= S[p2−1] and right maximal if S[p1+ l] �= S[p2+ l].
A maximal exact match (MEM) is a left and right maximal exact match.

Of course, computing maximal exact matches between two strings S1 and S2 boils down

7-12 Handbook of Computational Molecular Biology

3−[2 . . 10]

S2

S1

S2

S1

S2

S1 p
9

p
2

p
3

p
8

p
6

5−[2 . . 4] 6−[5 . . 7] 4−[8 . . 10]

A C G T A AC CG GT T

p
4

p
7

p p
10

5

FIGURE 7.7: The position sets of a part of an lcp-interval tree. pi denotes the position suftab[i].

to computing maximal repeated pairs of the string S = S1#S2. This is made precise in the
following lemma.

LEMMA 7.3 Let # be a unique separator symbol not occurring in the strings S1 and
S2 and let S = S1#S2. (l, p1, p2) is a MEM if and only if ((p1, p1 + l − 1), (p2, p2 + l − 1))
is a maximal repeated pair of the string S such that p1 + l − 1 < p < p2, where p = |S1| is
the position of # in S.

Therefore, one can use the maximal repeated pair algorithm with the following modifi-
cation to compute maximal exact matches. The position sets are divided into two disjoint
and possibly empty subsets: One subsets contains all positions that correspond to S1 (these
are smaller than |S1|). Another subset contains all positions that correspond to S2 (these
are greater than |S1|). Let P[i..j](S1, a) denote the set of all positions p ∈ P[i..j] such that p
corresponds to a position in S1 and S[p− 1] = a ∈ Σ ∪ {⊥}. P[i..j](S2, a) is defined analo-
gously. (Figure 7.7 shows an example.) To compute maximal exact matches, the Cartesian
product is build from each position set P[i..j](S1, a), a ∈ Σ ∪ {⊥} and the position sets
P[i..j](S2, b), where a �= b ∈ Σ ∪ {⊥}. It is not difficult to see that this modification does
not affect the time and space complexity of the algorithm.

However, if one uses MEMs instead of MUMs in a global alignment tool, then one is
faced with the problem that the number of MEMs can be very large. (This is because
the number of MEMs is determined by a Cartesian product of position sets.) Needless to
say that this phenomenon occurs especially in the comparison of highly repetitive genomes.
Clearly, MEMs that occur too many times should be excluded from the set of potential
anchors. In our opinion, the exact definition of “too many times” should be left to the user
of the global alignment tool. In other words, it should be a parameter of the program. The
next definition makes this precise.

DEFINITION 7.6 Suppose (l, p1, p2) is a MEM and let u = S1[p1 . . . p1 + l − 1] be the
corresponding sequence. Define the set

MPu = {(p′1, p′2) | (l, p′1, p′2) is a MEM and u = S1[p′1 . . . p
′
1 + l − 1]}

of position pairs where the MEMs with sequence u start. Given a threshold t ∈ N, the

Enhanced Suffix Arrays and Applications 7-13

MEM (l, p1, p2) is called

• infrequent in S1 if r1 := |{p′1 | (p′1, p′2) ∈ MPu}| satisfies r1 ≤ t,
• infrequent in S2 if r2 := |{p′2 | (p′1, p′2) ∈ MPu}| satisfies r2 ≤ t,
• infrequent if r := |MPu| satisfies r ≤ t.

It is our next goal to calculate the values r, r1, and r2. To this end, the following
notation will be useful. For a position set P, let CP(S1, a) = |P(S1, a)| and CP(S1) =∑

a∈Σ∪{⊥}CP (S1, a) (the values CP(S2, a) and CP(S2) are defined similarly). The value
CP(S1) represents the number of repeats in S1 from which the MEMs are derived. One can
also impose constraints on this value.

For any lcp-interval [i..j] that contains k child intervals, the value r can be calculated
according to the following formula, where q, q′ ∈ [1, k]:

r =
1
2

∑

a∈Σ∪{⊥}

∑

q �=q′
CPq

[i..j]
(S1, a) · (CPq′

[i..j]
(S2)− CPq′

[i..j]
(S2, a))

In the example of Figure 7.7, the calculation of the value r for the interval [2..10] yields
r = (0 ∗ 1 + 0 ∗ 1) + (2 ∗ 2 + 2 ∗ 1) + (1 ∗ 2 + 1 ∗ 1) + (1 ∗ 0 + 1 ∗ 0) + (1 ∗ 2 + 1 ∗ 1) = 12.

For any lcp-interval [i..j] that contains k child intervals, the value r1 can be calculated
by the formula:

r1 =
∑

a∈Σ∪{⊥}

∑

q∈[1,k]

C′Pq

[i..j]
(S1, a)

where

C′Pq

[i..j]
(S1, a) =

{
0, if ∀q′ ∈ [1, k], q′ �= q : CPq′

[i..j]
(S2) = CPq′

[i..j]
(S2, a)

CPq

[i..j]
(S1, a) otherwise

In the example of Figure 7.7, we have r1 = 0 + 2 + 1 + 0 + 1 = 4. It is obvious how
the algorithm for the computation of MEMs has to be modified to compute infrequent
MEMs . Choosing an appropriate threshold on r (or a threshold on the combination of r1,
r2, CP(S1), and CP (S2)), the user can fine tune the computation of infrequent MEMs .
Thus the concept of infrequent MEMs provides a reasonable compromise between MUMs
and MEMs .

We would also like to comment on methods for multiple genome comparisons. As already
mentioned, the DNA sequences of entire genomes are being determined at a rapid rate.
Nowadays, it is quite common for a project to sequence the genome of an organism that
is very closely related to another completed genome. For example, the genomes of several
strains of the bacteria E. coli and S. aureus have already been completely sequenced. A
global alignment of the genomes may help, for example, in understanding why a strain of
a bacterium is pathogenic or resistant to antibiotics while another is not. Current software
tools for multiple alignment of genomic sized sequences build a multiple alignment from
pairwise alignments; see [28, 6, 7, 32]. However, if the organisms under consideration are
closely related, then it makes sense to build a multiple alignment directly from exact matches
that occur in each genome. The software tool MGA [16] is capable of aligning three or more
closely related genomes. In the first phase of its anchor-based method, all maximal multiple
exact matches (multiMEMs) longer than a specified minimum length are computed. The
notion of a multiMEM is the natural extension of maximal exact matches to more than two
genomes. Roughly speaking, a multiMEM is a sequence that occurs in all genomes to be
aligned and cannot simultaneously be extended to the left or right in every genome. The

7-14 Handbook of Computational Molecular Biology

maximal repeated pair algorithm can also be modified such that it computes (infrequent)
multiMEMs . A detailed description of the resulting algorithm can be found in [24].

7.5 Exact Pattern Matching

In this section we consider the exact pattern matching problem. We suppose that the suffix
array for S is available. We consider two methods: A practical method based on binary
searches in the suffix array (running in O(m log n) time), and an optimal method requiring
only O(m) time.

A Method Based on Binary Searches in the Suffix Array

Consider a pattern P of length m. To find all occurrences of P in S, we need to find all
the suffixes of S that have P as a prefix. Since the suffix array for S stores the suffixes
of S$ in lexicographic order, all these suffixes are consecutive in the suffix array. Using a
binary search, one can therefore compute the leftmost (i.e., smallest) position l, 0 ≤ l ≤ n,
in the suffix array such that P is a prefix of Ssuftab[l]. If such an l does not exist, then P
does not occur as a substring of S. Otherwise, one computes the rightmost (i.e., largest)
position r, 0 ≤ r ≤ n, in the suffix array such that P is a prefix of Ssuftab[r]. Given l and
r, all occurrences of P in S are computed as follows: Output suftab[j] for all j, l ≤ j ≤ r.
This obviously requires O(r − l) time.

Figure 7.8 presents a pseudo-code implementation for this method. In particular, the
function findleftmost delivers the leftmost position l and the function findrightmost delivers
the rightmost position r, given some boundaries l0 and r0 in the suffix array and some value
h0, such that all suffixes in the range l0 to r0 have a common prefix of length at least h0. To
reduce the number of character comparisons, the length of the longest common prefix of all
suffixes between the current boundaries is computed from hl and hr. These two values are
the lengths of the longest common prefix of P with Ssuftab[l] and Ssuftab[r], respectively. Hence
Ssuftab[mid] and P have a common prefix of length min{hl, hr}, where mid = �(l + r)/2� is
the midpoint between the current boundaries l and r. The longest common prefix can be
skipped when comparing Ssuftab[mid] and P using the function compare; see Figure 7.8.

The function compare performs the comparison of a suffix of S$ with some string w of
length m. More precisely, let 0 ≤ i ≤ n and v = Ssuftab[i] and suppose that w and v have
a common prefix of length q. Then compare(w,m, i, q) delivers a pair (c, fc) such that the
following holds:

• c is the length of the longest common prefix of w and v. (Note that c ≥ q.)
• If w is a prefix of v, i.e., c = m holds, then fc = 0.
• Otherwise, if w is not a prefix of v, then w[c] �= v[c]. There are two cases

– If w[c] < v[c], then fc = −1.

– If w[c] > v[c], then fc = 1.

The function sasearch calls findleftmost and findrightmost . If the left boundary l is
smaller than or equal to the right boundary r, then all start positions of the suffixes between
these boundaries are reported. If (h0, l0, r0) is set to (0, 0, n), then both searches take
O(m log2 n) time. That is, the running time of sasearch is O(m log2 n + z) where z is the
number of occurrences of P in S.

Note that we do not always have to start the binary searches with the boundaries 0 and
n. One can divide the suffix array into buckets such that each bucket contains all suffixes

Enhanced Suffix Arrays and Applications 7-15

FIGURE 7.8: Search all occurrences of P in S using the suffix array for S.

function findleftmost(P,m, h, l, r)
(hl, fl) := compare(P,m, l, h)
if fl ≤ 0 then

return l
(hr, fr) := compare(P,m, r, h)
if fr > 0 then

return r + 1
while r > l + 1 do

mid := �(l + r)/2�
(c, fc) := compare(P,m,mid,min{hl, hr})
if fc ≤ 0 then

(hr, r) := (c,mid)
else

(hl, l) := (c,mid)
return r

function findrightmost(P,m, h, l, r)
(hl, fl) := compare(P,m, l, h)
if fl < 0 then

return − 1
(hr, fr) := compare(P,m, r, h)
if fr ≥ 0 then

return r
while r > l + 1 do

mid := �(l + r)/2�
(c, fc) := compare(P,m,mid,min{hl, hr})
if fc ≥ 0 then

(hl, l) := (c,mid)
else

(hr, r) := (c,mid)
return l

function compare(w,m, i, q)
v := Ssuftab[i]

c := q
while c < min{m, |v|} do

if w[c] < v[c] then
return (c,−1)

else
if w[c] > v[c] then

return (c, 1)
else

c := c+ 1
if c = m then

return (c, 0)
else

return (c,−1)

function sasearch(P,m, h0, l0, r0)
l := findleftmost(P,m, h0, l0, r0)
r := findrightmost(P,m, h0, l0, r0)
if l ≤ r then

for j := l to r do
print "match at pos" suftab[j]

having the same prefix of length d, where d is a given parameter. Formally, one precomputes
a table bcktabd storing for each string u ∈ Σ∗ of length d a pair bcktabd(u) := (ld, rd) of
integer values. ld and rd are the leftmost and rightmost positions of all suffixes in the suffix
array having prefix u. Table bcktabd can be precomputed in O(n) time in one scan over
tables suftab and lcptab. Given a string u of length d, the pair bcktabd(u) can easily be
accessed by computing a unique integer code for u in the range 0 to |Σ|d − 1. This requires
O(d) time.

Now suppose m ≥ d and let (ld, rd) := bcktabd(P [0 . . . d − 1]). If ld > rd, then P does
not occur in S. Otherwise, all suffixes of S having prefix P [0 . . . d − 1] occur between the
boundaries ld and rd. Moreover, all suffixes between these boundaries have a common prefix
of length d. Hence one can start the binary search with these boundaries and with prefix
length d to search for the remaining suffix P [d . . .m−1] of P . In this way, the overall search
time for P using sasearch becomes O(d+(m−d) log2(rd− ld +1)) with an additional space
consumption of O(|Σ|d) for table bcktabd. In practice one chooses d such that bcktabd can

7-16 Handbook of Computational Molecular Biology

be stored in n bytes, so that the space requirement only increases by 25%.
The algorithm presented here can be improved to O(m + logn) by employing an extra

table containing the length of the longest common prefix for each pair of suffix array bound-
aries which may occur in a binary search; for details, see [27]. However, the asymptotic
improvement does not lead to an improved running time in practice.

An Optimal Method with Additional Tables

In this subsection we will demonstrate how to answer decision queries “Is P a substring
of S?” in optimal O(m) time. The same method allows one to find all z occurrences of a
pattern P in optimal O(m+ z) time. To achieve this time complexity, one must be able to
determine, for any -interval [i..j], all its child intervals in constant time. We achieve this
goal by enhancing the suffix array with the lcp-table and an additional table: the child-table
childtab; see Figure 7.2. The child-table is a table of size n + 1 indexed from 0 to n and
each entry contains three values: up, down, and nextIndex. Each of these three values
requires 4 bytes in the worst case, but it is possible to store the same information in only
one byte; see [2] for details. Formally, the values of each childtab-entry are defined as follows
(we assume that min ∅ = max ∅ = ⊥):

childtab[i].up = min{q ∈ [0..i− 1] | lcptab[q] > lcptab[i] and
∀k ∈ [q + 1..i− 1] : lcptab[k] ≥ lcptab[q]}

childtab[i].down = max{q ∈ [i+ 1..n] | lcptab[q] > lcptab[i] and
∀k ∈ [i+ 1..q − 1] : lcptab[k] > lcptab[q]}

childtab[i].nextIndex = min{q ∈ [i+ 1..n] | lcptab[q] = lcptab[i] and
∀k ∈ [i+ 1..q − 1] : lcptab[k] > lcptab[i]}

In essence, the child-table stores the parent-child relationship of lcp-intervals. Roughly
speaking, for an -interval [i..j] whose -indices are i1 < i2 < · · · < ik, the childtab[i].down or
childtab[j+1].up value is used to determine the first -index i1. The other -indices i2, . . . ik
can be obtained from childtab[i1].nextIndex, . . . childtab[ik−1].nextIndex, respectively.
Once these -indices are known, one can determine all the child intervals of [i..j] according
to the following lemma.

LEMMA 7.4 Let [i..j] be an -interval. If i1 < i2 < · · · < ik are the -indices in ascending
order, then the child intervals of [i..j] are [i..i1 − 1], [i1..i2 − 1], . . . , [ik..j] (note that some
of them may be singleton intervals).

Proof Let [l..r] be one of the intervals [i..i1 − 1], [i1..i2 − 1], . . . , [ik..j]. If [l..r] is a
singleton interval, then it is a child interval of [i..j]. Suppose that [l..r] is an m-interval.
Since [l..r] does not contain an -index, it follows that [l..r] is embedded in [i..j]. Because
lcptab[i1] = lcptab[i2] = · · · = lcptab[ik] = , there is no interval embedded in [i..j] that
encloses [l..r]. That is, [l..r] is a child interval of [i..j]. Finally, it is not difficult to see that
[i..i1 − 1], [i1..i2 − 1], . . . , [ik..j] are all the child intervals of [i..j], i.e., there cannot be any
other child interval.

As an example, consider the enhanced suffix array in Figure 7.2. The 1-[0..5] interval has
the 1-indices 2 and 4. The first 1-index 2 is stored in childtab[0].down and childtab[6].up.
The second 1-index is stored in childtab[2].nextIndex. Thus, the child intervals of [0..5]
are [0..1], [2..3], and [4..5]. Before we show in detail how the child-table can be used to

Enhanced Suffix Arrays and Applications 7-17

determine the child intervals of an lcp-interval in constant time, we address the problem of
building the child-table efficiently.

Construction of the Child-Table

The childtab can be computed in linear time by a bottom-up traversal of the lcp-interval
tree (Figure 7.6) as follows. At any stage, when the function process is applied to an -
interval [i..j], all its child intervals are known and have already been processed (note that
[i..j] �= [0..n] must hold). Let [l1..r1], [l2..r2], . . . , [lk..rk] be the k child intervals of [i..j],
stored in its childList. If k = 0, then [i..j] is a leaf in the lcp-interval tree. In this case, the
-indices of [i..j] are the indices i+ 1, i+ 2, . . . , j. Otherwise, if k > 0, then the -indices of
[i..j] are the indices l2, . . . , lk plus all those indices from [i..j] that are not contained in any
of the child intervals (these indices correspond to singleton intervals). In our example from
Figure 7.5, when the function process is applied to the 1-interval [0..5], its child intervals
are [0..1], [2..3], and [4..5]; hence 2 and 4 are the 1-indices of [0..5]. Let i1, . . . , ip be the
-indices of [i..j], in ascending order. The first -index i1 is assigned to childtab[j + 1].up
and childtab[i].down. The other -indices i2, . . . , ip are stored in the nextIndex field of
childtab[i1], childtab[i2], . . . , childtab[ip−1], respectively. Finally, one has to determine the
0-indices j1, . . . , jq (in ascending order) of the interval [0..n] (which remained on the stack)
and store them in the nextIndex field of childtab[j1], childtab[j2], . . . , childtab[jq−1]. The
resulting child-table is shown in Figure 7.2, where the fields 1, 2, and 3 of the childtab denote
the up, down, and nextIndex field. However, the space requirement of the child-table can
be reduced in two steps. First, the three fields up, down, and nextIndex of the childtab
can be stored in one field of 4 bytes. Second, only one byte is used in practice; see [2] for
details.

Determining Child Intervals in Constant Time

Given the child-table, the first step to locate the child intervals of an -interval [i..j] in
constant time is to find the first -index in [i..j], i.e., the minimum of the set Indices(i, j).
This is possible with the help of the up and down fields of the child-table:

LEMMA 7.5 For every -interval [i..j], the following statements hold:

1. i < childtab[j + 1].up ≤ j or i < childtab[i].down ≤ j.
2. childtab[j + 1].up stores the first -index in [i..j] if i < childtab[j + 1].up ≤ j.
3. childtab[i].down stores the first -index in [i..j] if i < childtab[i].down ≤ j.

Proof (1) First, consider index j + 1. Suppose lcptab[j + 1] = ′ and let I ′ be the
corresponding ′-interval. If [i..j] is a child interval of I ′, then lcptab[i] = ′ and there is
no -index in [i+ 1..j]. Therefore, childtab[j + 1].up = min Indices(i, j), and consequently
i < childtab[j + 1].up ≤ j. If [i..j] is not a child interval of I ′, then we consider index i.
Suppose lcptab[i] = ′′ and let I ′′ be the corresponding ′′-interval. Because lcptab[j + 1] =
′ < ′′ < , it follows that [i..j] is a child interval of I ′′. We conclude that childtab[i].down =
min Indices(i, j). Hence, i < childtab[i].down ≤ j.
(2) If i < childtab[j + 1].up ≤ j, then the claim follows from childtab[j + 1].up = min{q ∈
[i+ 1..j] | lcptab[q] > lcptab[j+ 1], lcptab[k] ≥ lcptab[q] ∀k ∈ [q+ 1..j]} = min{q ∈ [i+ 1..j] |
lcptab[k] ≥ lcptab[q] ∀k ∈ [q + 1..j]} = min Indices(i, j).
(3) Let i1 be the first -index of [i..j]. Then lcptab[i1] = > lcptab[i] and for all k ∈

7-18 Handbook of Computational Molecular Biology

[i+ 1..i1 − 1] the inequality lcptab[k] > = lcptab[i1] holds. Moreover, for any other index
q ∈ [i+ 1..j], we have lcptab[q] ≥ > lcptab[i] but not lcptab[i1] > lcptab[q].

Once the first -index i1 of an -interval [i..j] is found, the remaining -indices i2 < i3 <
· · · < ik in [i..j], where 1 ≤ k ≤ |Σ|, are obtained successively from the nextIndex field of
childtab[i1], childtab[i2], . . . , childtab[ik−1]. It follows that the child intervals of [i..j] are the
intervals [i..i1− 1], [i1..i2− 1], . . . , [ik..j]; see Lemma 7.4. The pseudo-code implementation
of the following function getChildIntervals takes a pair (i, j) representing an -interval [i..j]
as input and returns a list containing the pairs (i, i1 − 1), (i1, i2 − 1), . . . , (ik, j).

FIGURE 7.9: getChildIntervals, applied to an lcp-interval [i..j] �= [0..n].

intervalList = []
if i < childtab[j + 1].up ≤ j then
i1 := childtab[j + 1].up

else i1 := childtab[i].down
add(intervalList, (i, i1 − 1))
while childtab[i1].nextIndex �= ⊥ do
i2 := childtab[i1].nextIndex
add(intervalList, (i1, i2 − 1))
i1 := i2

add(intervalList, (i1, j))

The function getChildIntervals runs in time O(|Σ|). Since we assume that |Σ| is a con-
stant, getChildIntervals runs in constant time. Using getChildIntervals one can simulate
every top-down traversal of a suffix tree on an enhanced suffix array. To this end, one
can easily modify the function getChildIntervals to a function getInterval which takes an
-interval [i..j] and a character a ∈ Σ as input and returns the child interval [l..r] of [i..j]
(which may be a singleton interval) whose suffixes have the character a at position . Note
that all the suffixes in [l..r] share the same -character prefix because [l..r] is a subinterval
of [i..j]. If such an interval [l..r] does not exist, getInterval returns ⊥. Clearly, getInterval
has the same time complexity as getChildIntervals.

With the help of Lemma 7.5, it is also easy to implement a function getlcp(i, j) that
determines the lcp-value of an lcp-interval [i..j] in constant time as follows.

FIGURE 7.10: Function getlcp(i, j)

if i < childtab[j + 1].up ≤ j
then return lcptab[childtab[j + 1].up]
else return lcptab[childtab[i].down]

Enhanced Suffix Arrays and Applications 7-19

Answering Queries in Optimal Time

Now we are in a position to show how enhanced suffix arrays can be used to answer decision
queries of the type “Is P a substring of S?” in optimal O(m) time. Moreover, enumeration
queries of the type “Where are all z occurrences of P in S?” can be answered in optimal
O(m+ z) time, totally independent of the size of S.

FIGURE 7.11: Answering decision queries.
c := 0
queryFound := True
(i, j) := getInterval(0, n, P [c])
while (i, j) �= ⊥ and c < m and queryFound = True

if i �= j then
 := getlcp(i, j)
min := min{,m}
queryFound := S[suftab[i] + c . . . suftab[i] +min− 1] = P [c . . .min− 1]
c := min
(i, j) := getInterval(i, j, P [c])

else queryFound := S[suftab[i] + c . . . suftab[i] +m− 1] = P [c . . .m− 1]
if queryFound then
report(i, j) /* the P -interval */

else print “pattern P not found”

The algorithm starts by determining with getInterval(0, n, P [0]) the lcp or singleton
interval [i..j] whose suffixes start with the character P [0]. If [i..j] is a singleton interval,
then pattern P occurs in S if and only if S[suftab[i] . . . suftab[i] +m− 1] = P . Otherwise,
if [i..j] is an lcp-interval, then we determine its lcp-value by the function getlcp. Let
ω = S[suftab[i] . . . suftab[i] + − 1] be the longest common prefix of the suffixes Ssuftab[i],
Ssuftab[i+1], . . . , Ssuftab[j]. If ≥ m, then pattern P occurs in S if and only if ω[0 . . .m−1] = P .
Otherwise, if < m, then we test whether ω = P [0 . . . − 1]. If not, then P does not occur
in S. If so, we search with getInterval(i, j, P []) for the ′- or singleton interval [i′..j′] whose
suffixes start with the prefix P [0 . . .] (note that the suffixes of [i′..j′] have P [0 . . . −1] as a
common prefix because [i′..j′] is a subinterval of [i..j]). If [i′..j′] is a singleton interval, then
pattern P occurs in S if and only if S[suftab[i′] + . . . suftab[i′] +m − 1] = P [. . .m − 1].
Otherwise, if [i′..j′] is an ′-interval, let ω′ = S[suftab[i′] . . . suftab[i′] + ′− 1] be the longest
common prefix of the suffixes Ssuftab[i′], Ssuftab[i′+1], . . . , Ssuftab[j′]. If ′ ≥ m, then pattern P
occurs in S if and only if ω′[. . .m−1] = P [. . .m−1] (or equivalently, ω[0 . . .m−1] = P).
Otherwise, if ′ < m, then we test whether ω[. . . ′ − 1] = P [. . . ′ − 1]. If not, then P
does not occur in S. If so, we search with getInterval(i′, j′, P [′]) for the next interval, and
so on.

Enumerative queries can be answered in optimal O(m + z) time as follows. Given a
pattern P of length m, we search for the P -interval [l..r] using the preceding algorithm.
This takes O(m) time. Then we can report the start position of every occurrence of P in
S by enumerating suftab[l], . . . , suftab[r]. In other words, if P occurs z times in S, then
reporting the start position of every occurrence requires O(z) time in addition.

We would like to mention that the very recent results concerning RMQs [19, 5, 31] can

7-20 Handbook of Computational Molecular Biology

ac b ac bac bx...... yx

FIGURE 7.12: Chain of non-branching tandem repeats axcb, baxc, and cbax, derived by suc-
cessively shifting a window one character to the left, starting from a branching
tandem repeat xcba.

be used to obtain a different method to simulate top-down traversals of a suffix tree.

7.6 Computation of Tandem Repeats

As already mentioned at the beginning of Section 7.3, repeats play an important role in
molecular biology. If the repeated segments are occurring adjacent to each other, then we
speak of tandem repeats. Large tandem repeats can span hundreds of thousands of base
pairs. There are two types of large tandem repeats: Those that contain genes and those
that do not. If a large tandem repeat contains a gene, then it also contains a second copy
of that gene. These genes are called paralogous genes. (By contrast, orthologous genes
result from speciation rather than duplication.) An example of such tandemly duplicated
genes is the human TRGV Locus, which is a region that contains nine repeated genes [26].
Examples of large tandem repeats that do not contain genes are those that are located in
or near the centromeres and telomeres of the chromosomes, the so-called (macro) satellites.

Let us recall the mathematical definition of tandem repeats. A substring of S is a tandem
repeat if it can be written as ωω for some nonempty string ω. An occurrence of a tandem
repeat ωω = S[p . . . p + 2|ω| − 1] is represented by the pair (p, |ω|). Such an occurrence
(p, |ω|) is branching if S[p+ |ω|] �= S[p+ 2|ω|].

There is an abundance of papers dealing with the efficient computation of tandem repeats;
see, e.g., [33] for references. It is known that tandem repeats of a string S can be computed
in O(n) time in the worst case; see [15, 21]. Because these algorithms are quite complicated,
we will present simpler algorithms, albeit with non-optimal worst case time complexities.

Stoye and Gusfield [33] described how all tandem repeats can be derived from branching
tandem repeats by successively shifting a window to the left; see Figure 7.12. For this
reason, we restrict ourselves to the computation of all branching tandem repeats.

A Brute Force Method

The simplest method to find branching tandem repeats is to process all lcp-intervals by
top-down traversals of the lcp-interval tree. For a given ω-interval [i..j] one checks whether
there is a child interval [l..r] (which may be a singleton interval) of [i..j] such that ωω is a
prefix of S[suftab[q]] for each q ∈ [l..r]. Using the child-table, such a child interval can be
detected in O(|ω|) time (if it exists) with the algorithm of the previous section. Without
the child-table, such a child interval can be found in O(|ω| log(j− i)) time by the algorithm
of Manber and Myers [27] described in Section 7.5. This algorithm searches for ω in [i..j].
It turns out that the running time of the brute force algorithm is O(n2) (take, e.g., S = an).
However, the expected length of the longest repeated subword is O(log n) according to [4].
As a consequence, in practice the brute force method is faster and more space efficient than
other methods; see the experimental results in [1].

Enhanced Suffix Arrays and Applications 7-21

The Optimized Basic Algorithm

The optimized basic algorithm of [33] computes all branching tandem repeats in O(n logn)
time. It is based on a traversal of the suffix tree, in which each branching node is annotated
by its leaf list, i.e., by the set of leaves in the subtree below it. The leaf list of a branching
node corresponds to an lcp-interval in the lcp-interval tree. As a consequence, it is not
difficult to implement the optimized basic algorithm via a traversal of the lcp-interval tree.
For didactic reasons, we start with the basic algorithm of [33], which is justified by the
following lemma.

LEMMA 7.6 Let ω = S[p . . . p+ −1], where = |ω| > 0, and let [i..j] be the ω-interval.
The following statements are equivalent.

1. (p,) is an occurrence of a branching tandem repeat.
2. i ≤ suftab−1[p] ≤ j and i ≤ suftab−1[p+] ≤ j and S[p+] �= S[p+ 2].

Proof (1)⇒ (2): If (p,) is an occurrence of the tandem repeat ω, then ω = S[p . . . p+−
1] = S[p+ . . . p+ 2− 1]. Since ω is the longest common prefix of Ssuftab[i], . . . , Ssuftab[j], it
follows that i ≤ suftab−1[p] ≤ j and i ≤ suftab−1[p+] ≤ j. Furthermore, S[p+] �= S[p+2]
because (p,) is branching.
(2) ⇒ (1): If i ≤ suftab−1[p] ≤ j and i ≤ suftab−1[p +] ≤ j, then the longest common
prefix of Sp and Sp+� has length at least . Thus (p,) is an occurrence of a tandem repeat.
Since S[p+] �= S[p+ 2], this occurrence is branching.

FIGURE 7.13: Basic algorithm for the computation of tandem repeats
for each -interval [i..j] with > 0 do

for q := i to j do
p := suftab[q]
if i ≤ suftab−1[p+] ≤ j and S[p+] �= S[p+ 2]
then report (p,) as an occurrence of a branching tandem repeat

The basic algorithm finds all occurrences of branching tandem repeats in time propor-
tional to the sum of the sizes of all -intervals, which is O(n2) (take, e.g., S = an). A
simple modification of the basic algorithm yields the optimized basic algorithm of [33] as
follows. We saw that if (p,) is an occurrence of the tandem repeat ω, then suftab−1[p] and
suftab−1[p+] are elements of the ω-interval [i..j]. The modification relies on the following
observation: If the occurrence is branching, then suftab−1[p] and suftab−1[p +] belong to
different child intervals of [i..j]. Thus, we can omit all indices of one child [l..r] of [i..j] in
the second for-loop of the basic algorithm, provided that for each q ∈ [i..j] \ [l..r] we do not
only look forward from p := suftab[q] (i.e., consider p+) but we also look backward from
it (i.e., we must also consider p−). This is made precise in the next algorithm.

Figure 7.6 can be implemented by a bottom-up traversal of the lcp-interval tree. Then,
for each -interval, a child interval of maximum size can be determined in constant time.
Since the largest child interval is always excluded in the second for-loop of Figure 7.6, the

7-22 Handbook of Computational Molecular Biology

FIGURE 7.14: Optimized basic algorithm for the computation of tandem repeats
for each -interval [i..j] do

determine the child interval [l..r] of maximum size among all children of [i..j]
for q ∈ [i..j] \ [l..r] do
p := suftab[q]
if i ≤ suftab−1[p+] ≤ j and S[p+] �= S[p+ 2]
then report (p,) as an occurrence of a branching tandem repeat
if i ≤ suftab−1[p−] ≤ j and S[p−] �= S[p+]
then report (p− ,) as an occurrence of a branching tandem repeat

algorithm runs in O(n log n) time; see [33]. Figure 7.6 requires the tables lcptab, suftab,
and suftab−1 plus some space for the stack used during the bottom-up traversal of the
lcp-interval tree.

It is possible to further improve Figure 7.6 by exploiting the fact that S[p] = S[p+ |ω|]
for an occurrence (p, |ω|) of a branching tandem repeat ωω. Namely, if p + |ω| = suftab[q]
for some q in the ω-interval [i..j], then p must occur in the child interval [la..ra] storing the
suffixes of S which have ωa as a prefix, where a = S[suftab[i]] = S[p]. The interested reader
is referred to [1] for details and for experimental results.

7.7 Space Efficient Computation of Maximal Exact Matches

It is our next goal to compute the maximal exact matches of two genomes in a very space
efficient manner. Because the algorithm is based on suffix links, we show how to incorporate
them into our framework. Let us first recall the definition of suffix links. In the following,
we denote a node u in the suffix tree by ω if and only if the concatenation of the edge-labels
on the path from the root to u spells out the string ω. It is a property of suffix trees that
for any internal node aω, there is also an internal node ω. A pointer from aω to ω is called
a suffix link.

DEFINITION 7.7 Let Ssuftab[i] = aω. If index j, 0 ≤ j < n, satisfies Ssuftab[j] = ω, then
we denote j by link[i] and call it the suffix link (index) of i.

The suffix link of i can be computed with the help of the inverse suffix array as follows.

LEMMA 7.7 If suftab[i] < n, then link[i] = suftab−1[suftab[i] + 1].

Proof Let Ssuftab[i] = aω. Since ω = Ssuftab[i]+1, link[i] must satisfy suftab[link[i]] =
suftab[i] + 1. This immediately proves the lemma.

Under a different name, the function link appeared already in [13].

DEFINITION 7.8 Given -interval [i..j], the smallest lcp-interval [l..r] satisfying the
inequality l ≤ link[i] < link[j] ≤ r is called the suffix link interval of [i..j].

Enhanced Suffix Arrays and Applications 7-23

Suppose that the -interval [i..j] corresponds to an internal node aω in the suffix tree.
Then there is a suffix link from node aω to the internal node ω. The following lemma states
that node ω corresponds to the suffix link interval of [i..j].

LEMMA 7.8 Given the aω-interval -[i..j], its suffix link interval is the ω-interval, which
has lcp-value − 1.

Proof Let [l..r] be the suffix link interval of [i..j]. Because the lcp-interval [i..j] is the
aω-interval, aω is the longest common prefix of Ssuftab[i], . . . , Ssuftab[j]. Consequently, ω is
the longest common prefix of Ssuftab[link[i]], . . . , Ssuftab[link[j]]. It follows that ω is the longest
common prefix of Ssuftab[l], . . . , Ssuftab[r], because [l..r] is the smallest lcp-interval satisfying
l ≤ link[i] < link[j] ≤ r. That is, [l..r] is the ω-interval and thus it has lcp-value − 1.

Construction of the Suffix Link Table

In order to incorporate suffix links into the enhanced suffix array, we proceed as follows. In
a preprocessing step, we compute for every -interval [i..j] its suffix link interval [l..r] and
store the left and right boundaries l and r at the first -index of [i..j]. The corresponding
table, indexed from 0 to n is called suffix link table and denoted by suflink; see Figure 7.2
for an example. Note that the lcp-value of [l..r] need not be stored because it is known
to be − 1. Thus, the space requirement for suflink is 2 · 4n bytes in the worst case. To
compute the suffix link table suflink, the lcp-interval tree is traversed in a breadth first
left-to-right manner. For every lcp-value encountered, we hold a list of intervals of that
lcp-value, which is initially empty. Whenever an -interval is computed, it is appended to
the list of -intervals; this list is called -list in what follows. In the example of Figure 7.5,
this gives

0-list: [0..10]
1-list: [0..5], [8..9]
2-list: [0..1], [4..5], [6..7]
3-list: [2..3]

Note that the -lists are automatically sorted in increasing order of the left-boundary of
the intervals and that the total number of -intervals in the -lists is at most n. For every
lcp-value > 0 and every -interval [i..j] in the -list, we proceed as follows. We first
compute link[i] according to Lemma 7.7. Then, by a binary search in the (− 1)-list, we
search in O(log n) time for the interval [l..r] such that l is the largest left boundary of all
(− 1)-intervals with l ≤ link[i]. This interval is the suffix link interval of [i..j]. Finally, we
determine in constant time the first -index of [i..j] according to Lemma 7.5 and store l and
r there. Because there are less than n lcp-intervals and for each interval the binary search
takes O(log n) time, the preprocessing phase requires O(n log n) time. Table suftab−1 and
the -lists require O(n) space, but they are only used in the preprocessing phase and can
be deleted after the computation of the suffix link table.

Theoretically, it is possible to compute the suffix link intervals in time O(n) via the
construction of the suffix tree. By avoiding the binary search over the -lists and reducing the
problem of computing the suffix link intervals to the problem of answering range minimum
queries, it is also possible to give a linear time algorithm without intermediate construction
of the suffix tree; see [2] for details.

7-24 Handbook of Computational Molecular Biology

Space Efficient Computation of MEMs for two Genomes

In a previous section we have described an algorithm that uses the enhanced suffix array
of the concatenation of S1 and S2 to compute MEMs . The following algorithm only needs
the enhanced suffix array of S1. It computes all MEMs of length at least by matching
S2 against the enhanced suffix array of S1. The matching process delivers substrings of
S2 represented by locations in the enhanced suffix array. This notion is defined as follows:
Suppose that u occurs as a substring of S1 and consider the enhanced suffix array of S1.
Let ω be the maximal prefix of u such that there is an ω-interval [l..r] and u = ωt for some
string t. We distinguish between two cases:

• If t = ε, then u = ω and [l..r] is defined to be the location of u.
• If t �= ε, then ([l..r], t) is defined to be the location of u.

The location of u is denoted by loc(u).
The enhanced suffix array represents all suffixes S1[i . . . |S1| − 1]$ of S1$. The algorithm

processes S2 suffix by suffix from longest to shortest. In the jth step, for 0 ≤ j ≤ |S2| − 1,
the algorithm processes suffix Rj = S2[j . . . |S2| − 1] and computes the locations of two
prefixes minpj and maxpj of Rj defined as follows:

• maxpj is the longest prefix of Rj that is a substring of S1.
• minpj is the prefix of maxpj of length min{, |maxpj |}.

If |minpj | < , then less than of the first characters of Rj match a substring of S1. If
|minpj | = , then at least the first characters of Rj match a substring of S1. Now determine
an lcp-interval [l′..r′] as follows: If the location of minpj is the lcp-interval [l..r] then let
[l′..r′] := [l..r]. If the location of minpj is of the form ([l..r], at) for some lcp-interval [l..r],
some character a, and some string t, then let [l′..r′] := getInterval([l..r], a). By construction,
at least one suffix in the lcp-interval [l′..r′] matches at least the first characters of Rj .
To extract the MEMs , [l′..r′] is traversed in a depth first order. The depth first traversal
maintains for each ω-interval encountered the length of the longest common prefix of ω and
Rj . Each time a leaf-interval [l′′..l′′] is visited, one first checks whether S1[i−1] �= S2[j−1],
where i = suftab[l′′]. If this is the case, then (⊥, i, j) is a left maximal exact match and one
determines the length c of the longest common prefix of Ssuftab[i] and Rj . By construction,
c ≥ and S1[i+ c] �= S2[j + c]. Hence (c, i, j) is a MEM . Now consider the different steps
of the algorithm in more detail:

Computation of loc(minpj): For j = 0, one computes loc(minpj) by greedily matching
S2[0 . . . −1] against the suffix array, using the algorithms described in Section 7.5. For each
j, 1 ≤ j ≤ |S2|− 1, one considers two cases: (a) follow the suffix link of loc(minpj−1), if this
is an lcp-interval. (b) follow the suffix link of [l..r] if loc(minpj−1) is of the form ([l..r], w).
This shortcut via the suffix link leads to an lcp-interval on the path from the root of the
lcp-interval tree to loc(minpj). Starting from this location, one matches the next characters
of Rj . The method is similar to the matching-statistics computation of [10], and one can
show that its overall running time for the computation of all loc(minpj), 0 ≤ j ≤ |S2| − 1,
is O(|S2|).

Computation of loc(maxpj): Starting from loc(minpj) one computes loc(maxpj) by greed-
ily matching S2[|minpj | . . . |S2| − 1] against the enhanced suffix array of S1. To facilitate
the computation of longest common prefixes, one keeps track of the list of lcp interval-
s on the path from loc(minpj) to loc(maxpj). This list is called the match path. Since
|maxpj−1| ≥ 1 implies |maxpj| ≥ |maxpj−1| − 1, we do not always have to match the edges
of the lcp-interval tree completely against the corresponding substring of S2. Instead, to
reach loc(maxpj), one rescans most of the edges by only looking at the first character of the

References 7-25

edge label to determine the appropriate edge to follow. Thus the total time for this step
is O(|S2| + α) where α is the total length of all match paths. α is upper bounded by the
total size β of the subtrees below loc(minpj), 0 ≤ j ≤ |S2| − 1. β is upper bounded by the
number zr of right maximal exact matches between S1 and S2. Hence the running time for
this step of the algorithm is O(|S2|+ zr).

Depth first traversal : This maintains an lcp-stack which stores for each visited lcp-
interval, say the ω-interval [l..r], a pair of values (onmatchpath , lcpvalue), where the boolean
value onmatchpath is true if and only if [l..r] is on the match path, and lcpvalue stores the
length of the longest common prefix of ω and Rj . Given the match path, the lcp-stack
can be maintained in constant time for each branching node visited. For each leaf-interval
[l..l] visited during the depth first traversal, the lcp-stack allows to determine in constant
time the length of the longest common prefix of Ssuftab[l] and Rj . As a consequence, the
depth first traversal requires time proportional to the size of the traversed subtree. As
exploited above, this is bounded by the number of right maximal matches in the traversed
subtree. Thus the total time for all depth first traversals of the subtrees below loc(minpj),
0 ≤ j ≤ |S2| − 1, is O(zr).

Altogether, the algorithm described here runs in O(|S1|+|S2|+zr) time and O(|S1|) space,
where zr is the number of right maximal matches. Table 7.2 shows the values computed
when running the algorithm for two concrete sequences.

Acknowledgements

M.I.A. and E.O. were supported by DFG-grant Oh 53/4-1. S.K. was supported in part by
DFG-grant Ku 1257/3-1.

References

[1] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch. The Enhanced Suffix Array and its
Applications to Genome Analysis. In Proceedings of the Second Workshop on Algo-
rithms in Bioinformatics, pages 449–463. Lecture Notes in Computer Science 2452,
Springer-Verlag, 2002.

[2] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing Suffix Trees with Enhanced
Suffix Arrays. Journal of Discrete Algorithms, 2:53–86, 2004.

[3] A. Apostolico. The Myriad Virtues of Subword Trees. In Combinatorial Algorithms
on Words, Springer Verlag, pages 85–96, 1985.

[4] A. Apostolico and W. Szpankowski. Self-Alignments in Words and Their Applications.
Journal of Algorithms, 13:446–467, 1992.

[5] M.A. Bender and M. Farach-Colton. The LCA Problem Revisited. In Latin American
Theoretical Informatics, pages 88–94, 2000.

[6] N. Bray, I. Dubchak, and L. Pachter. AVID: A global alignment program. Genome
Research, 13:97–102, 2003.

[7] M. Brudno, C.B. Do, G.M. Cooper, and M.F. Kim et al. LAGAN and Multi-LAGAN:
Efficient Tools for large-scale Multiple Alignment of Genomic DNA. Genome Re-
search, 13:721–731, 2003.

[8] M. Burrows and D.J. Wheeler. A Block-Sorting Lossless Data Compression Algorithm.
Research Report 124, Digital Systems Research Center, 1994.

[9] P. Chain, S. Kurtz, E. Ohlebusch, and T.R. Slezak. An Applications-Focused Review

7-26 References

j minpj :loc(minpj) remainder of matchpath depth first traversal linking locations
0 ac:([0..5],c) S(0) C(0,0) M(2)

S(4) C(4,0) M(2) ac:([0..5],c)→c:([0..10],c)
1 c:([0..10],c) c:([0..10],c)→:[0..10]
2 t:[8..9] t:[8..9]→:[0..10]
3 ta:([8..9],a) S(7) C(7,3) M(2) ta:([8..9],a)→a:[0..5]
4 aa:[0..1] aaaca:([0..1],aca) S(2) C(2,4) M(5)

S(3) C(3,4) M(2) aa:[0..1]→a:[0..5]
5 aa:[0..1] aaca:([0..1],ca) S(2) C(2,5) M(2)

S(3) C(3,5) aa:[0..1]→a:[0..5]
6 ac:([0..5],c) [2..3] acaaac:([2..3],aac) S(0) C(0,6) M(6)

S(4) C(4,6) ac:([0..5],c)→c:([0..10],c)
7 ca:[6..7] caaac:([6..7],aac) S(1) C(1,7)

S(5) C(5,7) ca:[6..7]→a:[0..5]
8 aa:[0..1] aaac:([0..1],ac) S(2) C(2,8)

S(3) C(3,8) M(2) aa:[0..1]→a:[0..5]
9 aa:[0..1] aac:([0..1],c) S(2) C(2,9) M(2)

S(3) C(3,9) aa:[0..1]→a:[0..5]
10 ac:([0..5],c) S(0) C(0,10) M(2)

S(4) C(4,10) ac:([0..5],c)→c:([0..10],c)
11 c:([0..10],c)

TABLE 7.2 Computation of MEMs of length ≥ = 2 between S1 = acaaacatat and S2 =
acttaaacaaact, using the enhanced suffix array of S1 (see Figure 7.2). For each j ∈ [0, |S2|−], we show
the values minpj and loc(minpj) separated by a colon. Furthermore, for the case that |minpj | ≥ , we
show the remainder of the matchpath, i.e., all elements, except for loc(minpj). The fourth column shows
the actions performed during the depth first traversal of the subtree below minpj . S(i) means that the
suffix S1[i . . . n − 1]$ of S1 is visited, where n = |S1|. C(i, j) means that S1[i . . . n − 1]$ and Rj

are checked for left maximality. If this is the case, then M(q) means that a MEM of length q is output.
The final column shows the link which is followed to obtain a location representing a prefix of minpj+1.
Consider the situation for j = 6. Then minpj = ac is obtained by scanning Rj = acaaact starting at
the location [0..5] of a. Further scanning aaact starting at location loc(ac) = ([0..5], c) visits the inter-
mediate lcp-interval [2..3] end ends at loc(acaaac) = ([2..3], aac) = maxpj . The depth first traversal
of subtree below the lcp-interval [2..3] visits the suffixes of S1 starting position 0 and 4, respectively. For
both suffixes, it is checked whether their left context is different than the left context of Rj . This is the
case for S1[0 . . . n − 1]$, but not for S1[4 . . . n − 1]$. The length 6 of the longest common prefix of
S1[0 . . . n− 1]$ is determined from the depth of maxpj .

of Comparative Genomics Tools: Capabilities, Limitations and Future Challenges.
Briefings in Bioinformatics, 4(2):105–123, 2003.

[10] W.I. Chang and E.L. Lawler. Sublinear Approximate String Matching and Biological
Applications. Algorithmica, 12(4/5):327–344, 1994.

[11] A.L. Delcher, S. Kasif, R.D. Fleischmann, and J. Peterson et al. Alignment of Whole
Genomes. Nucleic acids research, 27:2369–2376, 1999.

[12] G. Gonnet, R. Baeza-Yates, and T. Snider. New Indices for Text: PAT trees and
PAT arrays. In W. Frakes and R. A. Baeza-Yates, editors, Information Retrieval:
Algorithms and Data Structures, pages 66–82. Prentice-Hall, Englewood Cliffs, NJ,
1992.

[13] R. Grossi and J.S. Vitter. Compressed Suffix Arrays and Suffix Trees with Applica-
tions to Text Indexing and String Matching. In ACM Symposium on the Theory of
Computing, pages 397–406. ACM Press, 2000.

[14] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, New York, 1997.

[15] D. Gusfield and J. Stoye. Linear Time Algorithms for Finding and Representing all the
Tandem Repeats in a String. Report CSE-98-4, Computer Science Division, University
of California, Davis, 1998.

References 7-27

[16] M. Höhl, S. Kurtz, and E. Ohlebusch. Efficient Multiple Genome Alignment. Bioin-
formatics, 18(Suppl. 1):S312–S320, 2002.

[17] J. Kärkkäinen and P. Sanders. Simple Linear Work Suffix Array Construction. In
Proceedings of theInternational Colloquium on Automata, Languages and Pro-
gramming, pages 943–955. Lecture Notes in Computer Science 2719, Springer Verlag,
2003.

[18] T. Kasai, G. Lee, H. Arimura, and S. Arikawa et al. Linear-Time Longest-Common-
Prefix Computation in Suffix Arrays and its Applications. In Proceedings of the 12th
Annual Symposium on Combinatorial Pattern Matching, pages 181–192. Lecture
Notes in Computer Science 2089, Springer-Verlag, 2001.

[19] D.K. Kim, J.S. Sim, H. Park, and K. Park. Linear-Time Construction of Suffix Arrays.
In Proceedings of the 14th Annual Symposium on Combinatorial Pattern Matching
(CPM), volume 2676 of LNCS, pages 186–199. Springer-Verlag, 2003.

[20] P. Ko and S. Aluru. Space Efficient Linear Time Construction of Suffix Arrays. In
Proceedings of the 14th Annual Symposium on Combinatorial Pattern Matching
(CPM), volume 2676 of LNCS, pages 200–210. Springer-Verlag, 2003.

[21] R. Kolpakov and G. Kucherov. Finding Maximal Repetitions in a Word in Linear
Time. In Symposium on Foundations of Computer Science, pages 596–604. IEEE
Computer Society, 1999.

[22] S. Kurtz. Reducing the Space Requirement of Suffix Trees. Software—Practice and
Experience, 29(13):1149–1171, 1999.

[23] S. Kurtz, J.V. Choudhuri, E. Ohlebusch, and C. Schleiermacher et al. REPuter: The
Manifold Applications of Repeat Analysis on a Genomic Scale. Nucleic acids research,
29(22):4633–4642, 2001.

[24] S. Kurtz and S. Lonardi. Computational Biology. In D.P. Mehta and S. Sahni, editor,
Handbook on Data Structures and Applications. CRC Press, 2004.

[25] E.S. Lander, L.M. Linton, B. Birren, and C. Nusbaum et al. Initial Sequencing and
Analysis of the Human Genome. Nature, 409:860–921, 2001.

[26] M.P. LeFranc, A. Forster, and T.H. Rabbitts. Rearrangement of two distinct T-cell
Gamma-Chain Variable-Region genes in human DNA. Nature, 319(6052):420–422,
1986.

[27] U. Manber and E.W. Myers. Suffix Arrays: A New Method for On-Line String Search-
es. SIAM Journal on Computing, 22(5):935–948, 1993.

[28] B. Morgenstern. A Space Efficient Algorithm for Aligning Large Genomic Sequences.
Bioinformatics, 16:948–949, 2000.

[29] S.B. Needleman and C.D. Wunsch. A General Method Applicable to the Search for
Similarities in the Amino-Acid Sequence of Two Proteins. Journal of Molecular Bi-
ology, 48:443–453, 1970.

[30] C. O’Keefe and E. Eichler. The Pathological Consequences and Evolutionary Impli-
cations of Recent Human Genomic Duplications. In Comparative Genomics, pages
29–46. Kluwer Press, 2000.

[31] K. Sadakane. Succinct Representations of lcp Information and Improvements in the
Compressed Suffix Arrays. In Proceedings of ACM-SIAM SODA, pages 225–232,
2002.

[32] S. Schwartz, Z. Zhang, K.A. Frazer, and A. Smit et al. PipMaker–a web server for
aligning two genomic DNA sequences. Genome Research, 10(4):577–586, 2000.

[33] J. Stoye and D. Gusfield. Simple and Flexible Detection of Contiguous Repeats Using
a Suffix Tree. Theoretical Computer Science, 270(1-2):843–856, 2002.

[34] P. Weiner. Linear Pattern Matching Algorithms. In Proceedings of the 14th IEEE
Annual Symposium on Switching and Automata Theory, pages 1–11, 1973.

8
Computational Methods for Genome

Assembly

Xiaoqiu Huang
Iowa State University

8.1 Introduction . 8-1
8.2 A General Whole-Genome Assembly Algorithm . 8-3

Overlap computation and repeat identification •

Construction of contigs and scaffolds • Generation of
consensus sequences

8.3 Existing Whole-Genome Assembly Programs 8-8
Atlas • ARACHNE • Celera Assembler • JAZZ •

PCAP • Phusion • PaCE • RePS
8.4 Efficiency and Accuracy of Existing Programs . . . 8-13

8.1 Introduction

Advances in genomics are driven by genome sequencing projects. The goal of a genome
sequencing project for an organism is to determine the genome sequence of the organism.
Only short sequences of up to 1000 base pairs (bp) can be directly produced by sequencing
machines. However, genomes are huge; bacterial genomes are a few million base pairs (Mb)
in size, animal genomes can be a few billion base pairs (Gb) in size, and plant genomes
can be tens of Gb in size. Thus long genome sequences have to be constructed from short
sequences, which is called fragment assembly or genome assembly.

Whole-genome shotgun sequencing (WGS) is an efficient strategy for producing a draft
genome sequence of an organism. In this strategy, multiple copies of the genome are broken
into pieces. Both ends of every piece are read by automated sequencing machines to produce
two short sequences called reads, one from each strand of the piece. The size of the piece
is measured, which is the distance between the two reads on the genome. The two reads
along with their distance and orientation information are referred to as a read pair. Figure
8.1 illustrates an application of the shotgun sequencing procedure in determination of the
sequence of a small DNA segment. Because of space restriction, the example in Figure 8.1
is not realistic. An example involving real sequences is available at (http://genome.cs.
mtu.edu/cap/data/).

A read is a word of length up to 1000 over the alphabet {A,C,G, T,N}, where N rep-
resents an ambiguous base. Each letter at a position of the read is called a base. The
left and right ends of a read are called the 5′ and 3′ ends of the read. Errors of missing a
base, adding a base, and misreading a base are occasionally made by sequencing machines
in generation of bases. More errors occur at the 3′ end of a read. The accuracy of a read
is represented by a sequence of numbers called quality values, one quality value per base.
The quality value of a base is q = −10 logp, where p is the estimated error probability for

8-1

8-2 Handbook of Computational Molecular Biology

A

5’ AGCTTTGTGGGGGAGAAAGTGGATGAGGAGGGGCTGAAGAAGCTGATGGG 3’
3’ TCGAAACACCCCCTCTTTCACCTACTCCTCCCCGACTTCTTCGACTACCC 5’

B

 s1.b s2.b
5’ agctttgtgggGGAGAAAGTGGAT|gaggaggggctgAAGAAGCTGATGGG 3’
3’ TCGAAACACCCCctctttcaccta|CTCCTCCCCGACttcttcgactaccc 5’
 s1.g s2.g

 s3.b s4.b
5’ AGCTT|tgtgggggagaAAGTGGATGAGG|aggggctgaagaAGCTGATGGG 3’
3’ TCGAA|ACACCCCCTCTTtcacctactcc|TCCCCGACTTCTTcgactaccc 5’
 s3.g s4.g

C

s1.b: 5’ agctttgtggg 3’ s1.g: 5’ atccactttctc 3’
s2.b: 5’ gaggaggggctg 3’ s2.g: 5’ cccatcagcttctt 3’
s3.b: 5’ tgtgggggaga 3’ s3.g: 5’ cctcatccact 3’
s4.b: 5’ aggggctgaaga 3’ s4.g: 5’ cccatcagc 3’

D

s1.b+ agctttgtggg
s3.b+ tgtgggggaga
s1.g- gagaaagtggat
s3.g- agtggatgagg
s2.b+ gaggaggggctg
s4.b+ aggggctgaaga
s2.g- aagaagctgatggg
s4.g- gctgatggg
 --
c 5’ AGCTTTGTGGGGGAGAAAGTGGATGAGGAGGGGCTGAAGAAGCTGATGGG 3’

FIGURE 8.1: An application of the shotgun DNA sequencing procedure in determination of
a small DNA segment. (A) A DNA segment of complementary strands. (B)
Generation of reads. Two copies of the DNA segment are cut, at positions indicated
by vertical lines, into pieces. Two reads, shown in lower case letters, are produced
from a piece, with one read from the 5′ end of each strand of the piece. (C) A list
of reads in given orientation. Each read is conventionally written with its 5′ end on
the left and its 3′ end on the right. (D) A contig of reads. The contig is represented
by an alignment of reads. The reads in the contig are ordered and oriented with
respect to one strand of the DNA segment. The names of the reads are shown
on the left, where the ‘+’ sign indicates that the read is in given orientation and
the ‘-’ sign indicates that the read is in reverse orientation, that is, the read is the
reverse complement of the read in given orientation. The consensus sequence of
the contig is shown on the bottom.

Computational Methods for Genome Assembly 8-3

the base. For example, a quality value of 30 corresponds to an error probability of 1 in
1000. For each read, its base sequence and its quality value sequence are produced by a
base-calling program from traces of digital signals from a sequencing machine [8, 7]. The
input to an assembly program consists of a file of base sequences, a corresponding file of
quality value sequences, and a file of read pairs.

In addition to sequencing errors, reads occasionally have two other types of errors. First,
a read may contain a contaminant at its ends, where the contaminant is a short sequence
of bases from sources other than the genome of the organism. Most of the contaminants
can be found and removed by comparing the sequences of reads with known contaminant
sequences. However, the remaining contaminants have to be addressed by the assembly
program. Second, a read may be a concatenation of two regions that are far apart on
the genome, which is called a chimeric read. Chimeric reads have to be addressed by the
assembly program.

The most critical issue in assembly is how to deal with repetitive regions of the genome,
which are highly similar in sequence. Most of the major errors in assembly are due to
repetitive regions. This issue must be addressed by the assembly program.

A number of whole-genome assembly programs have recently been developed: Celera
Assembler [22], ARACHNE [3, 17], RePS [28], JAZZ [2], Phusion [21], PCAP [16], and
Atlas [12]. The PaCE program was originally developed for clustering and assembly of EST
sequences [18] and was later adapted for assembly of the maize genome [6]. Those programs
are based on the experiences of previous sequence assembly programs [26, 23, 13, 10, 19,
27, 15, 20, 5, 24].

In this book chapter, we first describe a general whole-genome assembly algorithm. Then
we present special features of existing whole-genome assembly programs. We conclude with
comments on the efficiency and accuracy of existing assembly programs, and on future
developments in this area.

8.2 A General Whole-Genome Assembly Algorithm

We start with definitions of a few terms used in an assembly algorithm. An overlap between
two reads is an overlapping alignment of two reads with the maximum score. An overlapping
alignment of two reads consists of base matches, base mismatches, and gaps. Note that every
base of the two reads is on the overlapping alignment. A gap involving an end of a read
is called terminal. Base matches are given a positive score, whereas base mismatches and
internal gaps are given negative scores. Terminal gaps are given a score of 0. The score
of an overlapping alignment is the sum of scores of each match, each mismatch, and each
gap. A contig is a list of overlapping reads that are ordered and oriented with respect to a
region of the target genome. A contig is represented by a multiple alignment of reads and a
consensus sequence. A scaffold is a list of contigs that are ordered and oriented with respect
to the target genome. A scaffold is represented by an ordered and oriented list of contig
consensus sequences. Figure 8.2 provides examples of overlaps, contigs, and scaffolds.

A general whole-genome assembly algorithm works in three major phases. In the first
phase, overlaps between reads are computed and highly repetitive regions of reads are
identified. The overlap computation step and the repeat identification step are performed
alternately. A region of a read is identified to be highly repetitive if it occurs in many
overlaps. Once a highly repetitive region of a read is found, no overlap involving the region
is computed. A non-highly repetitive region is called a unique region. In the second phase,
the 5′ and 3′ clipping positions of reads are determined based on unique overlaps. Poor
end regions of each read are removed. Unique overlaps are ranked in a decreasing order

8-4 Handbook of Computational Molecular Biology

A

5’ AGCTTTGTGGGGGAGAAAGTGGATGAGGAGGGGCTGAAGAAGCTGATGGG 3’
3’ TCGAAACACCCCCTCTTTCACCTACTCCTCCCCGACTTCTTCGACTACCC 5’

B

 t1.b
5’ AGCTTT|gtgggggagaaagtggatGAGGAGGGGCTGAAGAAG|CTGATGGG 3’
3’ TCGAAA|CACCCCCTCTTTCACCTACTCctccccgacttcttc|GACTACCC 5’
 t1.g

 t2.b
5’ AGCTTTGTGGGGGAGA|aagtggatgaGGAGGGGCTGAAGAAGCTGATG|GG 3’
3’ TCGAAACACCCCCTCT|TTCACCTACTCCTCCCCgacttcttcgactac|CC 5’
 t2.g

C

t1.b+ gtgggggagaaagtggat
t2.b+ aagtggatga
t1.g- gaggggctgaagaag
t2.g- ctgaagaagctgatg
 -------------------- ---------------------
c1+ 5’ GTGGGGGAGAAAGTGGATGA 3’
c2- 5’ GAGGGGCTGAAGAAGCTGATG 3’

D

t2.g+ catcagcttcttcag
t1.g+ cttcttcagcccctc
t2.b- tcatccactt
t1.b- atccactttctcccccac
 --------------------- --------------------
c2+ 5’ CATCAGCTTCTTCAGCCCCTC 3’
c1- 5’ TCATCCACTTTCTCCCCCAC 3’

FIGURE 8.2: Examples of overlaps, contigs, and scaffolds. (A) A double stranded DNA segment.
(B) Generation of reads. Two copies of the DNA segment are cut into pieces. Two
reads are produced from a piece. (C) A scaffold of two contigs. Each contig
consists of two reads with an overlap. The two contigs are ordered and oriented
with respect to the top strand of the DNA segment. (D) The reverse complement
of the scaffold in part C. The two contigs are ordered and oriented with respect to
the bottom strand of the DNA segment.

of overlap strengths. Reads are assembled into contigs by processing the unique overlaps
in the decreasing order. Corrections to contigs are made based on read pairs. Corrections
include breaking a contig in the middle and joining broken contig pieces. Contigs are linked
into scaffolds with read pairs. Corrections to scaffolds are made based on read pairs. In the
third phase, a multiple alignment is constructed for each contig and a consensus sequence

Computational Methods for Genome Assembly 8-5

is generated from the alignment. The alignments and consensus sequences are reported.
Below we describe each phase in detail, as designed and implemented for our whole genome
assembler PCAP, to provide a concrete illustration.

8.2.1 Overlap computation and repeat identification

The whole set of reads is partitioned into subsets of similar sizes. The subsets are compared
with the whole set in parallel with each comparison of a subset with the whole set performed
on a different processor. The goal of each comparison is to compute overlaps between reads
in the subset and reads in the whole set and to find repetitive regions of reads in the subset.

The whole set S is stored only on a hard disk accessible by all processors. Every subset
and its data structures are stored in the main memory of a processor. To compare S with
the subset, the reads in S are considered one at a time, where the current read in S is
brought into the main memory and compared with the subset.

The set S is compared with the subset twice. In the first comparison, repetitive regions
of reads in the subset are identified. In the second comparison, overlaps between unique
regions of reads in the subset and any regions of reads in S are computed. Consider the
first comparison. A region of a read is repetitive if it is highly similar to regions of many
reads. Repetitive regions of reads in the subset are identified by computing the coverage
arrays of reads in the subset. The coverage array of a read is an integer array of the same
length, where the value at a position of the array is the number of overlaps between the
read and other reads that cover the position. A region of a read is repetitive if the values at
every position of the corresponding region of the coverage array are greater than a repeat
coverage cutoff.

Identification of repetitive regions of reads depends on computation of overlaps involving
the reads. However, it may not be computationally feasible to compute all overlaps because
there are a huge number of overlaps between repetitive regions. Our strategy is to alternate
computation of overlaps and identification of repetitive regions. Initially, some overlaps
are computed. Then repetitive regions are identified based on the overlaps. The repetitive
regions are processed so that no overlap involving any of the repetitive regions is computed
again. The two-step procedure is performed many times until all repetitive regions are
identified.

A lookup table for a word length w is constructed for the subset [14]. Given any word
of length w, the lookup table is used to locate each occurrence of the word in reads of the
subset. The reads in S are compared, one at a time, with the subset through the lookup
table. Let f be the current read in S. The lookup table is used to find each read g in the
subset such that the reads f and g have two close word matches. For each pair of close word
matches, the left word match is extended into a high-scoring segment pair (HSP). HSPs
from the same read in the subset are combined into high-scoring chains. For each read g in
the subset with a chain of score greater than a cutoff, an overlap between the reads f and
g is computed by a banded Smith-Waterman algorithm. The coverage array of the read g
is updated over the corresponding region of g in the overlap.

After every ns reads from S are compared, where ns is the number of reads in the subset,
the coverage arrays of reads in the subset are used to find new repetitive regions of reads
in the subset. The current lookup table is replaced by a new lookup table, where all known
repetitive regions are excluded in the construction of the new lookup table. After all reads
from S are compared with the subset, the repetitive regions of reads in the subset are
reported in a file. A final lookup table is constructed for the unique regions of reads in the
subset.

In the second comparison, the reads in S are compared with the subset through the final

8-6 Handbook of Computational Molecular Biology

lookup table. Overlaps between reads in S and reads in the subset are computed. The
overlaps are reported in a file. Because the final lookup table covers only the unique regions
of reads in the subset, all overlaps computed in the second comparison involve unique regions
of reads in the subset.

8.2.2 Construction of contigs and scaffolds

The second phase consists of three major steps. First, each overlap is evaluated based on
the depths of coverage of the two regions in the overlap. Second, poor ends of every read
are identified and trimmed. Chimeric reads are identified and removed. Third, reads are
assembled into contigs based on unique overlaps. Contigs are corrected and linked into
scaffolds based on read pairs. Scaffolds are also corrected based on read pairs. Those steps
are described in detail below.

For each read, the depths of coverage by overlaps for each position of the read are com-
puted, where the depth of coverage of a position of the read is the number of times the
position occurs in an overlap. The score of each overlap is adjusted based on the depths of
coverage of the regions in the overlap such that an overlap with a larger adjusted score is
more likely to be true. The adjustment is performed by multiplying the overlap score by the
smaller of the average coverage scores of the two regions in the overlap. Let repcocut denote
the repeat coverage cutoff. The coverage score of a position of a read is the logarithm of
the ratio of repcocut to the depth of coverage of the position. The average coverage score
of a region of fx is the sum of coverage scores of each position in the region divided by the
length of the region.

Poor ends of each read f are located and removed by computing the 5′ and 3′ clipping
positions of f . The quality values of f and overlaps involving f are used in the computation.
The quality values of f are used to determine 5′ and 3′ ranges for potential 5′ and 3′ clipping
positions of f , whereas overlaps are used to select the 5′ and 3′ clipping positions of f in
the 5′ and 3′ ranges.

Chimeric reads are identified based on their chimeric character. A chimeric read consists
of two pieces from different parts of the genome. A pair of similar regions between two
reads ends (starts) with an overhang if the regions of the reads after (before) the similar
regions are sufficiently long and different. A pair of similar regions between a chimeric read
and a real read often ends or starts with an overhang. A read is identified as a chimeric
read if it has an internal position such that all the overlaps involving the read start or end
around the position with an overhang. Chimeric reads are not considered in construction
of contigs.

Contigs are constructed by processing overlaps with adjusted scores greater than a cutoff.
Initially, each read is a contig by itself. The overlaps are ranked in a decreasing order of their
adjusted scores. Then the overlaps are considered one by one in the order for construction
of contigs. The overlap being considered is called the current overlap. For the current
overlap between two reads, if the reads are in different contigs and the two contigs have an
overlap consistent with the current overlap, then the two contigs are merged into a larger
contig. Otherwise, no action is performed for the current overlap. This process is repeated
until all the overlaps are considered. The computation is performed on one processor with
enough memory to hold the overlaps and contigs.

Read pairs are used to find and break misjoins in contigs, and to make additional joins
for contigs. A read pair is satisfied if the two reads are in a contig, the upstream read is in
forward orientation, the downstream read is in reverse orientation, and the distance between
the reads is within the given range. Otherwise, the read pair is unsatisfied. An overlap is
unused if the overlap is not consistent with any contig. A group of unsatisfied read pairs

Computational Methods for Genome Assembly 8-7

support an unused overlap if, after corrections are made to the current set of contigs, all
the read pairs in the group are satisfied with respect to the resulting set of contigs.

There are three steps for making corrections to contigs. In step 1, each read pair is
evaluated with respect to the current set of contigs. Unsatisfied read pairs are partitioned
into groups such that all read pairs in a group support an unused overlap. In step 2, an
unused overlap supported by the largest number of unsatisfied read pairs is selected for
consideration. If the number of unsatisfied read pairs supporting the unused overlap is
sufficiently larger than the number of satisfied read pairs against the unused overlap, then
corrections are made to the set of contigs so that the overlap is used in the resulting set of
contigs. If no correction is made for the selected overlap, then other unused overlaps are
considered until corrections are made or no more overlap is available for selection. In step
3, if no correction is made in step 2, then the process terminates. Otherwise, steps 1 and 2
are repeated.

Read pairs are used to order and orient contigs into scaffolds as follows. Initially, each
contig is a scaffold by itself. Unsatisfied read pairs are partitioned into groups such that
all read pairs in a group link a pair of scaffolds. The groups of unsatisfied read pairs are
considered in a decreasing order of their sizes. For the current group of unsatisfied read
pairs, if the number of read pairs in the group is sufficiently large, the read pairs link two
scaffolds, and the two scaffolds can be combined by using the read pairs in the group, then
the two scaffolds are combined into a larger scaffold. Otherwise, no action is performed for
the current group.

Read pairs are also used to make corrections to scaffolds. The algorithm for making
corrections to contigs based on read pairs can be extended into an algorithm for making
corrections to scaffolds. After corrections are made to scaffolds, the scaffolds are arranged
in a decreasing order of sizes, which are referred to as scaffold 0, scaffold 1, scaffold 2, etc.
Then the scaffolds are partitioned into m groups, where for 0 ≤ k < m, group k consists
of scaffolds q with k = q mod m. This partition ensures that the groups are balanced in
scaffold sizes.

8.2.3 Generation of consensus sequences

From now on, the m groups of scaffolds are processed in parallel, with each group of scaffolds
on a separate processor. For each scaffold, a set of repetitive reads that are linked by read
pairs to unique reads in the scaffold is identified. For each gap in the scaffold, a subset of
repetitive reads that may fall into the gap are selected from the set for the scaffold. An
attempt is made to close the gap with the subset of repetitive reads. After all gaps in the
group of scaffolds are considered for closure, a consensus sequence is generated for each
contig and a list of ordered and oriented contig consensus sequences is reported for each
scaffold.

Generation of a consensus sequence for a contig is based on a multiple alignment of
reads in the contig, which is constructed as follows. The reads in the contig are sorted in
an increasing order of their positions in the contig. A multiple alignment is constructed
by repeatedly aligning the current read with the current alignment, with the resulting
alignment as the current alignment for the next iteration. The reads in the contig are
considered one by one in the order. In iteration 1, the current alignment is empty and
the current read becomes the current alignment for iteration 2. For each column of the
final multiple alignment, a weighted sum of quality values is calculated for each base type.
The base type with the largest sum of quality values is taken as the consensus base for the
column.

Consider aligning one read with the current alignment of reads. Only a 3′ portion of

8-8 Handbook of Computational Molecular Biology

the alignment that gets changed is used for alignment. The 3′ portion, called a block, is
replaced by the resulting alignment. A profile of average quality values is constructed for
the block. For each column of the block, there are seven average quality values: five for
substitution, one for deletion, and one for insertion. Of the five values for substitution,
four are for the four regular base types, and one for the ambiguous base type. The average
quality value for a base type is the signed sum of quality values of each base in the column
divided by the number of bases in the column. The average quality values of the block
and the quality values of the read are used to weight match and difference scores. A global
alignment of the block and the read with the maximum score is computed in linear space,
where 3′ gaps are not penalized.

8.3 Existing Whole-Genome Assembly Programs

We are aware of eight existing programs for assembly of large genomes: Atlas, ARACHNE,
Celera Assembler, JAZZ, PCAP, Phusion, PaCE, and RePS. The programs are based on
two similar paradigms: overlap-layout-consensus and overlap-clustering-assembly. In the
overlap-layout-consensus paradigm, the layouts of contigs are constructed by processing all
available overlaps. In the overlap-clustering-assembly paradigm, the reads are clustered
by processing all available overlaps, and the clusters are individually assembled with a
small-genome assembly program. The small-genome assembly program is based on the
overlap-layout-consensus paradigm. The ARACHNE, Celera Assembler, JAZZ, and PCAP
programs are in the overlap-layout-consensus group, while Atlas, Phusion, PaCE, and RePS
are in the overlap-clustering-assembly group. Below we comment on the special features of
the methods used in the eight assembly programs.

8.3.1 Atlas

The Atlas genome assembly system is a suite of programs for processing sequence read-
s from both clone-by-clone (CBC) and WGS libraries. It follows the overlap-clustering-
assembly paradigm, where the clustering step is aided by CBC sequence reads. Initially,
reads are trimmed to remove low quality ends and to remove vector sequences and other
contaminants.

In the overlap step, a fast method is used to find pairs of reads with a potential overlap.
Any pair of reads sharing a rare word of length 32 is considered to have a potential overlap.
To find rare words of length 32 in efficient space, a small table is constructed to record all
words of length 32 that occurs at least R times in the trimmed WGS reads. Note that all
words of length 32 that are not in the table are rare words. The fast method is controlled
by two word frequency parameters R′ and Y with R ≤ R′ ≤ Y . If a pair of reads share
a word of length 32 with frequency less than or equal to Y , then an overlap between the
reads is computed by a banded alignment algorithm [4]. The banded alignment algorithm
is seeded by a rarest word of length 32 between the reads, where words of length 32 with
frequency less than R′ are considered to be of the equal frequency. All WGS-WGS and
BAC-WGS overlaps are computed. Overlaps with an adjusted score less than a cutoff are
rejected.

In the clustering step, WGS reads are distributed to BAC clusters as follows. Initially,
each BAC cluster consists only of BAC reads. For each BAC read, best N BAC-WGS
overlaps at each end of the read are selected and the WGS reads involved in the overlaps
are added to the BAC cluster. Additional WGS reads are added to BAC clusters based on
the best N WGS-WGS overlaps of each WGS read in the BAC cluster. WGS reads that

Computational Methods for Genome Assembly 8-9

are linked by read pairs to WGS reads in BAC clusters are added to the BAC clusters.
In the assembly step, each enriched BAC (eBAC) cluster is assembled with Phrap [10],

where full-length reads are provided to Phrap. Misjoins in contigs are detected and split
through use of read pairs. Then for each BAC cluster, contigs are linked into scaffolds by
using read pairs. Next contigs of BAC clones called bactigs are constructed and checked
based on BAC mapping information, BAC scaffolds, and comparison with the human and
mouse genomes as follows. Pairs of eBACs with a potential overlap are found based on
WGS reads, read pairs, and BAC mapping data. The eBAC scaffolds of overlapping BAC
clones usually share WGS reads or are linked by read pairs. Overlapping BAC clones
usually have similar fingerprint contig (FPC) patterns. For each pair of eBACs with a
potential overlap, an overlap between the eBACs is computed by aligning the consensus
sequences of the eBAC scaffolds with BLASTZ [25]. The alignment must be end to end.
BAC overlaps that are inconsistent with read pairs or mapping data are rejected. BAC
clones with consistent overlaps are merged into bactigs. Misjoins in bactigs are found and
corrected by comparison with independently generated maps, and the human and mouse
genomes. Finally, a consensus sequence for each bactig is produced with Phrap in a piece-
by-piece manner.

The Atlas system is special in that it supports the combined approach to a genome
sequencing project. It uses BAC reads and BAC maps extensively to produce an accurate
genome assembly. It uses a small table to remember the unique words of length 32 by
keeping a count only for each repetitive word. The Atlas package has been used to produce
a rat genome assembly at Baylor College of Medicine.

8.3.2 ARACHNE

The ARACHNE program follows the overlap-layout-consensus paradigm. Initially, reads are
trimmed to remove low quality ends and to remove vector sequences and other contaminants.
In the overlap computation phase, highly repetitive regions of reads are identified based on
high coverage of word matches of length k, where k is set to 24. A word of length k is highly
repetitive if the number of its occurrences in reads is greater than a cutoff. Otherwise, the
word is unique. A region of a read is highly repetitive if every position in the region is
covered by a highly repetitive word. For each pair of reads with one or more unique word
matches, an overlap between the reads is first computed by a BLAST-like method and then
refined by a banded alignment algorithm. Sequencing errors in a read are identified and
corrected based on quality values of the read and a multiple alignment of the read with
other reads. An overlap is rejected if there are a sufficient number of differences at bases of
high quality values.

In the contig and scaffold construction phase, reads with consistent overlaps are assembled
into contigs. If a read f has overlaps with reads g and h, but reads g and h do not have
an implied overlap, then the reads have inconsistent overlaps. Contigs with a high depth of
coverage are identified as repetitive and not used in construction of scaffolds. Scaffolds are
constructed by an iterative procedure. In each iteration, scaffolds are merged by processing
read pair links in a decreasing order of scores. Then corrections are made to scaffolds based
on read pairs.

In the consensus generation phase, a consensus sequence for a contig is constructed based
on a multiple alignment of reads and the quality values of reads in the contig. The generation
starts with the leftmost read in the contig, which is the current read, and proceeds base
by base to the right end of the contig. If the current base of the current read is of high
quality value and is confirmed by bases of other reads on the multiple alignment, then the
current base becomes the consensus base. Otherwise, another read with high quality values

8-10 Handbook of Computational Molecular Biology

in the neighborhood and with bases confirmed by other reads on the multiple alignment is
selected as the current read.

Most of the assembly tasks in ARACHNE are performed on one processor, whereas an
initial processing of input files is multithreaded. The ARACHNE algorithm has two special
features. First, sequencing errors in reads are identified and corrected. Second, an iterative
method is used to construct scaffolds, which allows the algorithm to correct errors made in
previous steps. The ARACHNE program has been used in mouse, chimpanzee, dog, and
fungal genome projects.

8.3.3 Celera Assembler

Celera Assembler is the first whole-genome assembly program to handle genomes of at least
100 Mb. The program is based on the overlap-layout-consensus paradigm. Initially, reads
are trimmed to remove low quality ends and to remove vector sequences and other contam-
inants. Ribosomal and heterochromatic regions of reads are masked through a comparison
with a database of ribosomal and heterochromatic sequences. Highly repetitive regions of
reads are identified through a comparison with a database of repetitive sequences.

Overlaps between reads are computed by the seed-and-extend technique of the BLAST
program [1]. The computation is performed in parallel on many processors. Then reads
with consistent overlaps are merged into contigs. Contigs that are consistently linked by
read pairs are ordered and oriented into scaffolds. Gaps in scaffolds are filled by placing
lonely contigs into the gaps in three increasingly more aggressive steps. Step 1 places into a
gap every lonely contig that is linked to contigs around the gap by at least two read pairs.
Step 2 places into a gap every lonely contig that is linked to a contig on one side of the
gap by one read pair. In addition, it is required that the gap be completely covered by
a list of overlapping contigs including the lonely contig. Step 3 fills each gap with a list
of overlapping contigs, where each overlap between adjacent contigs on the list is of high
quality. Finally, a multiple alignment of reads is constructed for each contig and a consensus
sequence is generated from the alignment.

Celera Assembler is the first program to demonstrate that whole-genome shotgun se-
quencing is efficient. There are two innovations in the program. First, the regions of reads
are classified into unique and repetitive regions, and unique regions are assembled into
contigs called unitigs. Second, read pairs are used to link unitigs into scaffolds. The two in-
novations are fundamental to the success of the whole-genome assembler. Celera Assembler
has been used in fly, human, mouse, and dog genome projects.

8.3.4 JAZZ

The JAZZ program follows the overlap-layout-consensus paradigm. Initially, reads are
trimmed to remove low quality ends and to remove vector sequences and other contaminants.
In the overlap step, pairs of reads with at least 10 unique word matches are identified.
For each pair of reads, an overlap between the reads is computed by the banded Smith-
Waterman algorithm. Overlaps with a percent identity below a cutoff are rejected. In the
layout step, unique reads with consistent overlaps are merged into contigs. Layout errors in
contigs are identified and corrected in an iterative process. Contigs are linked into scaffolds
through use of read pairs. In the consensus step, for each contig, a subset of reads that
spans the entire contig is selected. Then a reference sequence for the contig is constructed by
concatenating high-quality regions of the reads in the subset. Next the reads in the contig
are aligned to the reference sequence. A consensus sequence for the contig is generated from
the alignment by quality-weighted voting.

Computational Methods for Genome Assembly 8-11

The use of 10 short word matches, instead of one long word match, as a condition for
finding pairs of reads with a potential overlap, is unique to JAZZ. The consensus method
in JAZZ is similar to the method in Phrap [10]. The JAZZ program has been used in fish,
tree, and frog genome projects at Joint Genome Institute.

8.3.5 PCAP

The PCAP program is based on the general whole-genome assembly algorithm in the last
section. The algorithm has three special features. First, an extension of a word match into
an HSP is triggered by two close word matches, instead of one longer word match. This
feature allows the algorithm to find overlaps with more sequencing errors. Second, repetitive
regions of reads are identified based on high coverage by chains of HSPs, instead of words.
A chain is an ordered list of HSPs, where an HSP comes from a word match. Third, poor
ends of reads are clipped during the assembly. This feature allows the algorithm to use
those reads whose contaminants are not detected in a preassembly processing.

The PCAP program takes as input a number of compressed files of base sequences and
an equal number of compressed files of quality value sequences, along with a file of read
pairs. The input files are in a common file system accessible by all processors. The overlap
and consensus steps are performed in parallel by multiple jobs with each job on a separate
processor. Every job running on a processor copies each compressed file to a local disk of
the processor, uncompresses the file on the local disk, and reads the uncompressed file on
the local disk. This feature significantly reduces the I/O load on the common file system
as there can be over 100 jobs running on different processors simultaneously. The PCAP
program produces assembly results in the .ace format, which can be viewed in the Consed
autofinishing package [9].

The PCAP program was initially developed and evaluated on a mouse whole-genome
data set of 30 million reads and a human chromosome 20 data set of 1.7 million reads. The
PCAP program has been used by Washington University Genome Sequencing Center in St.
Louis in chimpanzee, chicken, fruit fly, and fungal genome projects. The program has been
used on a maize data set of 1.6 million reads.

8.3.6 Phusion

The Phusion program partitions the entire set of reads into clusters such that each cluster
can be handled by the existing assembly program Phrap [10]. Initially, reads are trimmed
to remove low quality ends and to remove vector sequences and other contaminants. The
clustering step is performed through a histogram analysis. For every word of length k,
where k is set to 17, the histogram shows the number of occurrences of the word in the
reads. A word is repetitive if the number of its occurrences in the reads is greater than a
cutoff D and is unique otherwise. Two reads are related if they share at least M unique
words. Two reads are transitively related if they are related, or if there is another read
such that it is transitively related to each of the two reads. The reads are partitioned into
clusters such that all reads in a cluster are transitively related. Values for the parameters
D and M are selected such that each cluster can be handled by Phrap.

The initial family of clusters are refined by repeatedly performing assembly of clusters
by Phrap and making changes to clusters based on assembly results. In each iteration,
each cluster of reads along with the reads linked to the cluster by read pairs are assembled
independently by Phrap. Note that adding the reads that are linked to the cluster results
in inclusion of reads in multiple contigs. Read pairs are used to make corrections to contigs.
A new family of clusters are constructed based on contigs. This process ends with a final

8-12 Handbook of Computational Molecular Biology

set of contigs.
In the final set of contigs, different contigs contain common reads. Additional corrections,

based on the following rule, are made to contigs to remove common reads. If two contigs
share a read, but are different over other regions, then the read is removed from the smaller
of the two contigs. After removal of all common reads, overlapping contigs that are linked
by read pairs are merged.

Contigs are linked into scaffolds in an increasing order of gap sizes. Pairs of contigs linked
by at least two read pairs are sorted in an increasing order of their gap sizes. Initially, each
contig is a scaffold by itself. Then scaffolds are combined into longer scaffolds by processing
pairs of contigs one at a time.

The Phusion algorithm has two special features. First, clusters are constructed in an
iterative process. The iterative process allows the algorithm to correct errors made in
previous steps. Second, scaffolds are constructed in an increasing order of contig gap sizes,
instead of read pair strengths. This feature can add into scaffolds more small contigs that
are located in gaps between large contigs. The Phusion program has been used at Sanger
Institute in mouse, worm, and zebrafish genome projects.

8.3.7 PaCE

The PaCE assembly program is based on the overlap-clustering-assembly paradigm. The
PaCE program runs on a parallel computer with multiple processors. Initially, reads are
trimmed to remove low quality ends and to remove vector sequences and other contaminants.
Repetitive regions of reads are masked by comparison with a repeat database.

In the clustering phase, a generalized suffix tree of masked reads [11] is constructed in
parallel on multiple processors, with each processor saving part of the tree in its local
memory. The tree is used to generate maximal word matches between reads in a decreasing
order of word match lengths. Initially, each read is a cluster by itself. The maximal word
matches of lengths greater than a cutoff are processed one at a time in the decreasing order.
For the current word match between reads f and g, if the reads are already in the same
cluster, then no action is performed. Otherwise, an overlap between the reads is computed.
If the percent identify of the overlap is greater than a cutoff, then the cluster containing
read f and the cluster containing read g are combined into one cluster.

In the assembly phase, each cluster of unmasked reads is assembled by CAP3 [15]. Con-
sensus sequences are linked into scaffolds based on matches to protein and cDNA sequences.

The PaCE program has a special feature. A generalized suffix tree is constructed for
finding pairs of reads with potential overlaps. The suffix tree data structure allows the
algorithm to produce overlaps in order of their strengths with a strongest overlap first. The
PaCE program has been used on a maize data set of about one million reads.

8.3.8 RePS

The RePS program appears to be a simplified version of the Phusion program. A word of
length 20 is repetitive if the number of its occurrences in the reads is greater than a cutoff.
All repetitive words in the reads are masked. Then the reads are clustered with BLAST
[1]. Next the clusters are distributed among the processors. The clusters are independently
assembled with Phrap on each processor. Gaps between contigs that are due to repeat
masking are closed by placing fully masked reads that are linked by read pairs to reads in
the contigs. Finally contigs are linked into scaffolds by using read pairs. The RePS program
has been used in a rice genome project.

Computational Methods for Genome Assembly 8-13

8.4 Efficiency and Accuracy of Existing Programs

It is difficult to compare the efficiency and accuracy of the whole-genome assembly programs
discussed above for three reasons. First, the assembly programs require different powerful
computational facilities for a genome of a few Gb in size. It is difficult to find the com-
putational facilities that can accommodate all the assembly programs. Each program was
developed on a powerful platform that was available to the program developers. Second,
the assembly programs require different types of input data sets and have unique features to
deal with their input data sets. For example, some programs require that all contaminants
in reads be removed, whereas other programs can take full-length reads because of their
ability to clip poor read ends. As another example, some programs can use a complete
genome sequence to aid in assembly of a closely related genome. It is difficult to produce
standard input data sets for comparison. Third, the assembly programs are continuously
improved to meet the needs of whole-genome sequencing projects. It is difficult to select
the latest version of each assembly program for comparison.

We provide information on the efficiency and accuracy of PCAP as an example. An
input data set for a genome of a few Gb in size consists of 20 to 40 million reads. Both base
and quality value sequences are required for each read. It is recommended that clearly low
quality ends of reads, such as ends consisting mostly of bases of quality values at most 9,
be trimmed for efficiency. It is desirable to remove contaminants in reads. An input set of
clone and subclone read pairs is necessary for construction of scaffolds. A draft assembly
on the input data sets can be produced with PCAP in a week on 75 processors with 30
Gb of main memory for one processor and 4 Gb of main memory for each of the other
processors. The draft assembly may contain a few global misassemblies, where a global
assembly involves the joining of two regions that are far away on the genome. The draft
assembly covers unique regions of the genome as well as highly repetitive regions that are
shorter than the lengths of reads.

Genome assembly projects are so difficult that no one existing assembly program is able
to handle all situations perfectly. Currently each major genome center is supported by a
different team of assembly program developers to address effectively and quickly the needs
of the center in genome projects. Multiple assembly programs will continue to be improved
in the near future.

Continued improvements to the existing programs are necessary in several directions.
First, the existing programs lack an ability to assemble highly repetitive regions of the
genome when those regions are longer than sequence reads. This problem is especially
serious for plant genomes with a very high percentage of repeats. Second, the number of
global and local misassemblies need to be reduced through the generation and use of read
pairs with different distances. Third, errors in contig consensus sequences at the base level
need to be reduced by developing improved algorithms. Fourth, the existing programs lack
an ability to address problems caused by polymorphism. True overlaps between polymorphic
reads have a sufficient number of differences at bases of high-quality values and are therefore
rejected as false overlaps. Polymorphic reads end up in separate contigs and scaffolds. Thus
a genome assembly is fragmented for regions with a high rate of polymorphism.

A modular open-source (AMOS) assembler is currently under development by the AMOS
consortium (http://www.cs.jhu.edu/~genomics/AMOS). The open-source and modular
features of this project make it easy for any person to make contributions to the devel-
opment of the AMOS assembler. When computers in ordinary labs are powerful enough
to process tens of millions of reads, many labs will be able to participate in the AMOS
project by making improvements to the assembler and testing the improved assembler on
their computers.

8-14 References

Acknowledgements

I am grateful to Srinivas Aluru for inviting me to write this book chapter. I thank Shiaw-
Pyng Yang, LaDeana Hillier, and Asif Chinwalla for suggestions on improvements to PCAP.
X.H. is supported by NIH grants R01 HG01502 and R01 HG01676.

References

[1] S.F. Altschul, W. Gish, W. Miller, and E.W. Myers et al. Basic local alignment search
tool. Journal of Molecular Biology, 215(3):403–410, 1990.

[2] S. Aparicio, J. Chapman, E. Stupka, and N. Putnam et al. Whole-genome shotgun
assembly and analysis of the genome of fugu rubripes. Science, 297(5585):1301–1310,
2002.

[3] S. Batzoglou, D. Jaffe, K. Stanley, and J. Butler et al. ARACHNE: A whole-genome
shotgun assembler. Genome Research, 12(1):177–189, 2002.

[4] K. M. Chao, W.R. Pearson, and W. Miller. Aligning two sequences within a specified
diagonal band. Computer Applications in the Biosciences, 8(5):481–487, 1992.

[5] T. Chen and S.S. Skiena. A case study in genome-level fragment assembly. Bioinfor-
matics, 16(6):494–500, 2000.

[6] S.J. Emrich, S. Aluru, Y. Fu, and T.J. Wen et al. A strategy for assembling the maize
(zea mays l.) genome. Bioinformatics, 20(2):140–147, 2004.

[7] B. Ewing and P. Green. Base-calling of automated sequencer traces using phred. II.
error probabilities. Genome Research, 8(3):186–194, 1998.

[8] B. Ewing, L. Hillier, M.C. Wendl, and P. Green. Base-calling of automated sequencer
traces using phred. I. accuracy assessment. Genome Research, 8(3):175–185, 1998.

[9] D. Gordon, C. Abajian, and P. Green. Consed: A graphical tool for sequence finishing.
Genome Research, 8(3):195–202, 1998.

[10] P. Green. Technical report. http://www.phrap.org.
[11] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and

Computational Biology. Cambridge University Press, New York, 1997.
[12] P. Havlak, R. Chen, K.J. Durbin, and A. Egan et al. The atlas genome assembly

system. Genome Research, 14(4):721–732, 2004.
[13] X. Huang. A contig assembly program based on sensitive detection of fragment over-

laps. Genomics, 14(1):18–25, 1992.
[14] X. Huang. Bio-sequence comparison and applications, pages 45–69. Current Topics

in Computational Molecular Biology. MIT Press, Cambridge, 2002.
[15] X. Huang and A. Madan. CAP3: A DNA sequence assembly program. Genome

Research, 9(9):868–877, 1999.
[16] X. Huang, J. Wang, S. Aluru, and S.P. Yang et al. PCAP: A whole-genome assembly

program. Genome Research, 13(9):2164–2170, 2003.
[17] D.B. Jaffe, J. Butler, S. Gnerre, and E. Mauceli et al. Whole-genome sequence assembly

for mammalian genomes: ARACHNE 2. Genome Research, 13(1):91–96, 2003.
[18] A. Kalyanaraman, S. Aluru, S. Kothari, and V. Brendel. Efficient clustering of large

EST data sets on parallel computers. Nucleic Acids Research, 31(11):2963–2974,
2003.

[19] J.D. Kececioglu and E.W. Myers. Combinatorial algorithms for DNA sequence assem-
bly. Algorithmica, 13(1):7–51, 1995.

[20] S. Kim and A.M. Segre. AMASS: A structured pattern matching approach to shotgun

References 8-15

sequence assembly. Journal of Computational Biology, 6(2):163–186, 1999.
[21] J.C. Mullikin and Z. Ning. The phusion assembler. Genome Research, 13(1):81–90,

2003.
[22] E.W. Myers, G.G. Sutton, A.L. Delcher, and I.M. Dew et al. A whole-genome assembly

of drosophila. Science, 287(5461):2196–2204, 2000.
[23] H. Peltola, H. Soderlund, and E. Ukkonen. SEQAID: A DNA sequence assembling

program based on a mathematical model. Nucleic Acids Research, 12(1):307–321,
1984.

[24] P.A. Pevzner, H. Tang, and M.S. Waterman. An eulerian path approach to DNA frag-
ment assembly. Proceedings of the National Academy of Sciences USA, 98(17):9748–
9753, 2001.

[25] S. Schwartz, W.J. Kent, A. Smit, and Z. Zhang et al. Human-mouse alignments with
BLASTZ. Genome Research, 13(1):103–107, 2003.

[26] R. Staden. A new computer method for the storage and manipulation of DNA gel
reading data. Nucleic Acids Research, 8(16):3673–3694, 1980.

[27] G.G. Sutton, O. White, M.D. Adams, and A.R. Kerlavage. TIGR assembler: A new
tool for assembling large shotgun sequencing projects. Genome Science and Tech-
nology, 1(1):9–19, 1995.

[28] J. Wang, G.K. Wong, P. Ni, and Y. Han et al. RePS: A sequence assembler that
masks exact repeats identified from the shotgun data. Genome Research, 12(5):824–
831, 2002.

9
Assembling the Human Genome

Richa Agarwala
National Institutes of Health

9.1 Introduction . 9-1
9.2 Biological Data . 9-5

Chromosome maps • Plasmids • BACs • WGS
sequences and mate pairs • Transcripts

9.3 Computer Science Terms and Techniques 9-8
Maximum interval subgraph • LBFS and LBFS∗ •

Directed acyclic subgraph and a greedy heuristic
9.4 BAC Data and Assembly . 9-12

A few finished regions • Balance of draft and finished
regions: Fraction of genome represented • Explosive
growth in draft genome • Balance of draft and finished
regions: Full genome represented

9.5 WGS Data and Assembly . 9-22
9.6 Conclusion . 9-23

9.1 Introduction

The sequence of the human genome is over 3 billion basepairs (bp) long. Current sequenc-
ing technology can only identify sequence of 500 – 700 bp templates generated from pieces
of the genome. The process of deciphering the sequence of a genome from the sequence of
its orders of magnitude smaller pieces and any other additional information we may have
about the genome is called assembling the genome. For a genome with genetic variation
between individuals (e.g. the human genome where the genome of even monozygotic twins
differs after somatic and/or epigenetic DNA changes) and DNA for sequencing taken from
usually a very small number of individuals, an assembled sequence for a genome can only
represent some of the variation present in the population. However, as most of the genome
is common between two individuals in a population (e.g. ≈ 99% between two humans), the
assembled genome does serve as a reference for the population.

For the human genome, there were two major sequencing initiatives undertaken, name-
ly, publicly funded Human Genome Project (HGP) and privately funded effort at Celera
Genomics. HGP used DNA from a few individuals (with exact number not mentioned by
HGP but put at 13 by popular press [15]) and Celera used DNA from 5 individuals: two
white men, one black woman, one Asian woman, and one Hispanic woman. This chapter
reviews various challenges faced by the human genome assemblers as we progressed from
the days when there were a handful of well understood regions on the human genome to
the day we have finished sequence for essentially the entire genome. We show how the
balance of techniques used for assembling data generated by HGP shifted from biology to
computer science to computational science as properties of the data available for assembly
changed. We also summarize significantly different techniques used by the effort at Celera

9-1

9-2 Handbook of Computational Molecular Biology

Genomics for producing and assembling the human genome. Discussions comparing and
contrasting efforts of HGP to Celera Genomics by the principals of these two efforts can
be found in [120, 89, 36, 121, 4, 66]. The National Center for Biotechnology Information’s
(NCBI) role in assembling the human genome using the data produced by HGP and our
perspective on assemblies we produced in context of the assemblies discussed in the two
landmark publications by HGP [33] and by Celera Genomics [115] is also presented in this
chapter. Publication [33] also included an article [1] comparing the Celera assembly with
the assembly produced by NCBI for the data available at the time.

This chapter is not a discussion on the scope, achievements, or implications of HGP.
However, to understand the changes in underlying data for assembly and various assemblies
that were made available, we present the basic timeline of main events relevant for human
genome assemblies from the inception of HGP in 1990 to the delivery of an essentially
finished human genome in April 2003.

The initial goals for HGP were stated in 1990 [39] by the U.S. Department of Energy
and the National Institutes of Health, building upon the work done by the Committee on
Mapping and Sequencing the Human Genome [6, 122, 22]. The main components of the
project were:

• to build physical and genetic maps (defined later) for human and smaller sized
model organisms,

• to enhance available technology for sequencing [67, 84, 102, 104, 87, 108, 98,
83, 28, 113] and mapping [125, 85, 16, 20, 43, 92, 124, 81] and to develop new
technology,

• to sequence human genome and model organisms,
• to develop informatics infrastructure, and
• to be answerable to the ethical, legal, and social issues arising from HGP.

Not as a part of HGP but appropriately enough, software for finding whether two sequences
are significantly similar, namely, BLAST was also developed in 1990 [7, 8].

Physical locations on a chromosome that can be uniquely identified by some mechanism
are called markers. If the mechanism of identification is through inheritance, the marker is
more specifically called a genetic marker. Some other methods of identification include re-
striction enzyme cutting sites, expressed regions of DNA, tags around marker that identify
it uniquely (referred to as sequence tag sites), etc. A map places markers relative to each
other on a chromosome. Two types of maps, namely, physical maps and genetic maps are
defined in the next section. The first set of physical maps covering an entire human chromo-
some, namely the Y chromosome [118, 50], and a genetic map for the human genome [126]
were published in 1992. In the decade that followed, significant increase in mapping activ-
ity provided much better coverage of chromosomes by physical maps [29, 64, 27, 99, 17],
generated markers using radiation hybrids [111, 91], and produced more genetic markers
and maps [19, 23, 114, 40, 18, 76]. Efforts were also made to integrate different types of
maps [42, 37, 110, 74, 5]. Some physical maps were made by cloning pieces of genome
sequence in Yeast Artificial Chromosomes (YAC) where a YAC is a vector that can be used
for generating replicated copies of DNA fragments. Just like a YAC, a Bacterial Artificial
Chromosome (BAC) is also a vector. We will give some details for how a BAC is created
and used in the next section.

On the sequencing front, it became clear that while YACs were useful for large scale
continuity in map construction, they were poor substrates for DNA sequencing, with the
situation made worse by YAC libraries tending to have high rates of chimerism and dele-
tions [56, 105]. Pieces of genome that can be cloned using BACs have average size of only

Assembling the Human Genome 9-3

about 120 to 250 kilobases (Kb) compared to 350 to > 1000 Kb for YACs but they were
found to be more stable, have reduced cloning biases, and could be easily purified into DNA
suitable for DNA sequencing [107, 73, 93]. Sequencing of human genome for HGP was done
using BACs.

The initial goals for HGP were revised in 1993 [31]. This revision made explicit that one
of the goals of HGP is to identify genes within maps and sequences. A strategy to find
expressed genes by expressed sequence tags (EST) had been proposed earlier in 1991 [3].
Complementary DNA (cDNA) microarrays were added to the arsenal of biologists studying
gene expression patterns in 1995 [103]. EST, cDNA, and mRNA are different types of
transcripts that are subsequences from portion of the genome having a gene. We will show
in this chapter that transcripts, BAC ends, plasmids, and mapping information are not only
of use to biologists for their studies, they are also useful in assembling the genome.

In Feb 1996, members of the International Human Genome Sequencing Consortium (I-
HGSC), a group of 20 international centers (http://www.genome.gov/11006939) doing
sequencing for HGP, met for the first time in Bermuda to discuss the sequencing process.
Six major groups were funded to start large-scale sequencing of the human genome and six
pilot projects were initiated to sequence the ends of BAC clones. IHGSC also decided to
release, within 24 hours [12], any sequence data that met minimum standards to members of
the International Nucleotide Sequence Database Collaboration, namely the DNA Database
of Japan (DDBJ), the European Molecular Biology Laboratory (EMBL), and Genbank at
NCBI. With data getting updated daily, NCBI started semi-automatic assembly and manu-
al curation of finished regions using the sequence overlap information included in GenBank
submission for BACs, if any.

New goals following up on five year report of 1993 were published in 1998 [32]. In
the same year, Celera Genomics was formed with the goal of sequencing human genome
in 3 years [116] using a whole genome shotgun approach [117] that would first be used for
sequencing an organism with much smaller genome, namely Drosophila [88], in collaboration
with Drosophila genome project [2]. Shortly thereafter, HGP changed their strategy of
carefully selecting and completely sequencing each BAC from a tiling path (TPF) of BACs
for each chromosome that cover the genome in a minimal fashion to one where more (possibly
redundant) BACs are sequenced to a lower coverage, known as BAC in draft stage [30],
without necessarily knowing the place where BAC fits on current TPF. The change in
strategy was partly in response to concerns that a human genome sequence might not be
in the public domain at about the same time it was expected to be in private domain, but
mostly because of the realization that producing a draft genome is good enough to answer
many scientific questions and can speed up the process of finishing the genome. This resulted
in a drastic acceleration in number of draft BACs being submitted to GenBank without an
up-to-date accompanying TPF for the genome. In a truly international fashion, TPFs were
maintained at EMBL and available to all members of IHGSC at all times but it was clear to
everyone that the concern expressed in [30] that sequencing can outpace mapping of clones
on TPF was a valid concern. Note that the term TPF is usually overloaded to mean both
the TPF for a chromosome as well as the set of TPF’s for all chromosomes in the genome.

The mission of NCBI is not only to be the central national repository of biological data
but is also to develop new information technologies to aid in the understanding of data.
With the drastic increase in number of draft BACs in GenBank without an up-to-date
accompanying TPF, simply presenting draft BACs to users without an attempt to assemble
them together to the best of our ability would have been insufficient. Therefore, NCBI
embarked on the project of developing software to assemble BACs that did not depend on
presence of a TPF. Each assembly published by NCBI is associated with a “data freeze”
referred to by a Build number. A data freeze takes a snapshot at a particular time of the

9-4 Handbook of Computational Molecular Biology

information in GenBank needed for assembly and by other steps of the genome pipeline [75].
Assembly for a build only utilizes BACs, transcripts, maps, etc. present in the corresponding
freeze. TPF available from HGP at the time of freeze was also included in the freeze. UCSC
developed GigAssembler [72] that is dependent on a TPF and used data freezes carried out
at NCBI. Groups at NCBI and UCSC using data for their pipeline from the same data
freeze aided in:

• both groups being involved in evaluating assemblies produced by the other,
• pointing out problems present in the TPF, and
• filling gaps in the TPF for which BACs were present in GenBank.

We will show later that the assembly software at NCBI utilized maximum transcript infor-
mation available that did not contradict sequence overlap information of BACs. The TPF
being produced by HGP and utilized by UCSC was based on published maps as well as the
map data that was being generated by HGP. Maps have granularity that is coarser than
that of a gene but they give a long range correct placement of BACs including BACs in
regions of duplication. Hence, it was not surprising that NCBI had a better assembly for
some regions around a gene and UCSC had a better assembly for some regions with du-
plication. Some independent comparisons of assemblies of the human genome produced at
NCBI, UCSC, and Celera Genomics at various stages can be found in [1, 106, 101, 26, 79].

Joint statement announcing first draft genome at the White House on June 26, 2000
and publications by HGP [33] and Celera Genomics [115] was a major milestone. The
assembly discussed in the publication by HGP utilized GigAssembler. Finished sequence
for chromosome 21 [60] and chromosome 22 [44] was available and it was clear that in a
matter of another couple of years, that will be the case for all chromosomes. With focus
shifting on finishing the draft BACs and no major discrepancies left between the BAC
order generated by NCBI during assembly and TPF produced by HGP, NCBI adapted
their assembly software to directly utilize TPFs as a source of reliable information. This
removed the main difference between assemblies produced by NCBI and UCSC and made
the two assemblies very similar. UCSC stopped doing human genome assembly after August
2001 (http://genome.ucsc.edu/FAQ/FAQreleases\#release2) but continued to serve as
evaluators of assemblies produced at NCBI.

The announcement of essentially finished human genome sequence by HGP was made
on the 50th anniversary of the discovery of the double helical structure of DNA [123] and
before the 60th anniversary of the paper [9] demonstrating that genetic material is DNA.
The stitches to be made for getting assembled finished genome from BACs are specified
by the sequencing centers; similar to the overlap information provided in the initial stage
when a handful of finished BACs were available. The sequence following the provided
recipe is generated at NCBI as part of the NCBI genome pipeline. Other notable efforts at
assembling (not necessarily human) genome sequences include [95, 57, 71, 112, 62, 24, 65,
97, 96, 11, 119, 68, 86, 25, 63].

In Section 9.2, biological information useful for assembling genomes is presented. Readers
who are familiar with meaning of terms BACs, shotgun, transcripts, plasmids, Bacends, and
physical maps can skip this section. In Section 9.3, computer science terms and techniques
necessary for describing the assembly process are presented. Readers who are familiar with
meaning of terms interval graph, clique tree, lexicographic breadth first search, and greedy
algorithm can skip this section. In Section 9.4, four major stages of evolution for data
produced by HGP alluded to earlier in this section and changes needed in NCBI’s assembly
process as a result are discussed. We briefly mention our current role in the process that
yields finished assembly for the human genome available at our web site, among others.

Assembling the Human Genome 9-5

Section 9.5 presents an overview of the whole genome shotgun assembly process and a brief
summary of the data and techniques utilized by Celera Genomics to assemble the human
genome. We conclude by presenting a brief discussion of what we may expect to change in
human genome assemblies in near future.

9.2 Biological Data

In this section the relationship of the human genome to various pieces of biological data
that can be used as hints for assembly is presented. The primer on molecular genetics [41]
published by DOE human genome program is an excellent introduction to biological terms
we assume readers are familiar with, so are not covered in this chapter. For a fun and easy to
read introduction to genetic engineering, the author personally likes [109] but for someone
interested in more details, we recommend [78] and Part IV of [58]. A primer for more
global overview of bioinformatics and description of terms and techniques in non-technical
language can be found at (http://www.ncbi.nlm.nih.gov/About/primer/index.html).

9.2.1 Chromosome maps

Chromosome maps give the order of markers along a chromosome. There are two types of
chromosome maps: physical and genetic.

Physical maps decipher order of markers along a chromosome using techniques that are
based on the actual nucleotide base pair distance between the markers. If we have finished
sequence for a genome, then distance between markers and their order can be computed
precisely. However, if we don’t have finished genome sequence, then techniques like fluo-
rescence in situ hybridization (FISH) mapping, mapping of sequence tagged sites (STS) on
YAC clones, and radiation hybrid (RH) mapping are used for creating physical maps.

Genetic maps decipher order of markers along a chromosome using techniques that are
based on the relationship of their genetic linkage where markers closer to each other segre-
gate together through meiosis in a family more so than markers that are farther apart. For
segregation to be observed, markers need to have more than one allele. Different types of
markers used for constructing genetic maps are: restriction fragment length polymorphism-
s (RFLP), variable number tandem repeats (VNTR), microsatellites with alleles coming
from length variation of simple di-, tri-, and tetra- nucleotide repeats, and single nucleotide
polymorphisms (SNP).

The order of markers produced by genetic linkage is same as the order in physical maps,
except in the unusual situation where there is a polymorphism involving inversion, but there
is no constant scale factor that relates the physical and genetic distances. Genetic distances
vary between males and females but physical distances do not.

9.2.2 Plasmids

Plasmids are circular double stranded DNA molecules that are separate from the chromo-
somal DNA but have the ability to replicate independently from the chromosomal DNA.
Plasmids that contain one or more genes capable of providing antibiotic resistance and a
pair of promoters sandwiching the site where a sequence of interest, called insert, can be
added are used as cloning vectors for replicating inserts as follows: (i) ligate insert into plas-
mid, (ii) insert modified plasmid into bacteria using a transformation process that creates
pores in the bacterial cell wall membrane through which the plasmid can enter the cell, (iii)
provide medium for bacteria to replicate, (iv) apply antibiotic to replicated bacteria to kill

9-6 Handbook of Computational Molecular Biology

Abbr. Library name Cloning vector Source Enzyme
RP11 RPCI human BAC library 11 (segments 1 to 4) pBACe3.6 blood EcoRI
RP11 RPCI human BAC library 11 (segment 5) pTARBAC1 blood MboI
RP13 RPCI human BAC library 13 pBACe3.6 blood EcoRI/MboI/DpnII
CH14 CHORI 14 human male BAC library pTARBAC2 blood EcoRI
CH15 CHORI 15 human female BAC library pTARBAC1.3 blood MboI
CTA CalTech human BAC library A pBeloBACII 987 SK cells HindIII
CTB CalTech human BAC library B pBeloBACII 987 SK cells HindIII
CTC CalTech human BAC library C pBeloBACII sperm HindIII
CTD CalTech human BAC library D pBeloBACII sperm HindIII/EcoRI

TABLE 9.1 Cloning vector, source of human DNA, and fragmentation mechanism used for some BAC
libraries

all bacteria that do not contain the plasmid, (v) isolate plasmid, and (vi) extract insert for
sequencing. In principle, the final insert extracted is identical to the insert injected, but
mutations do occur during DNA replication.

Length of plasmids is from 1 to 250 Kb and maximum amount of insert sequence that a
plasmid can take in practice is ≈ 15 Kb although there is no theoretical limit on insert size.
Paired plasmid reads are sequence reads of about 500 bp from both ends of insert. Directed
sequencing of just the insert ends is feasible because of the presence of promoter on each
side of the insertion site.

9.2.3 BACs

A Bacterial Artificial Chromosome (BAC) is a synthetic oligonucleotide (as against naturally
occurring plasmids) that can (i) hold up to 350 Kb of insert sequence, (ii) serve as a vector
that is incorporated into a bacterial cell, and (iii) multiply when bacteria replicates [107].
That is, the molecule is constructed to function like a plasmid but can take much bigger
inserts than a plasmid can. A bacterial colony produced by replication contains clones of
the insert sequence. The term BAC clone refers to the copy of insert sequence present in the
replicated bacteria. However, the term BAC is overloaded to mean sequence of the insert
and not the vector.

A collection of BAC clones generated as part of one experiment or project is called a BAC
library. Libraries may be for the whole genome or may be chromosome specific. To produce
a BAC library, the genome (or chromosome) is cleaved by restriction enzymes or sheared
into smaller segments up to 350 kilobases long. Segments are separated by size using gel
electrophoresis and BAC clones made for each segment. Different BAC libraries use different
cloning vector and/or different restriction enzymes. See Table 9.1 for information on some
human BAC libraries.

BACs are sequenced by (i) cleaving or shearing clones into smaller fragments, (ii) sequenc-
ing fragments, and (iii) assembling the sequence of fragments into a sequence for the BAC.
The process of splitting big segments into smaller pieces is called shotgun. The number of
times the DNA in a region of genome is sequenced is called the depth of coverage for that
region. Depending on the depth of coverage for a BAC, fragments sequenced so far, and
complexity of the BAC leading to problems in assembling the fragments, a BAC can be in
one of the following four phases:

Phase 3: BACs in phase 3 are finished and they have a single contiguous sequence
for the whole BAC. A finished BAC is guaranteed to be 99.99% accurate and
typically has 9 or 10 as the depth of coverage.

Phase 2: BACs in phase 2 are draft and the sequence of such a BAC is in a few
fragments but all fragments are ordered and oriented with respect to each other.

Assembling the Human Genome 9-7

That is, we have the sequence for the BAC from one end to the other but sequence
for some portions is missing. Draft BACs in phase 2 have 8 or 9 as the depth of
coverage.

Phase 1: BACs in phase 1 are draft BACs where the sequence of the BAC is in several
fragments and relative order and orientation for all fragments is not known. That
is, we only have fragments that we know belong to a BAC but have little idea
about how the sequence of BAC relates to the fragments. Draft BACs in phase
1 have only 4 or 5 as the depth of coverage. Hence, they are often referred to as
“working” draft BACs.

Phase 0: BACs in phase 0 are sequenced to a very small depth of coverage of about
0.5 to 1 for the purpose of low pass screening, say, to determine whether the
BAC looks redundant with respect to a BAC that has already been sequenced
to a better coverage or not.

HGP created a minimal tiling path of BACs for each chromosome by mapping BACs to
chromosomes. A BAC sequenced by HGP may not be present on the tiling path of any
chromosome if there was not enough mapping information available to map the BAC to a
single location on the genome or if the BAC was found to be redundant with a BAC already
present at the location where it was mapped.

9.2.4 WGS sequences and mate pairs

When the whole genome is sheared into segments of a set of pre-defined length, typically 1
Kb to 10 Kb, and cloned into a plasmid vector for sequencing, the fragments so produced
are called whole genome shotgun sequences. A pair of sequence reads from both ends of
a segment of known size is called a mate pair. It is critical for whole genome shotgun
libraries to have uniform size, to be nonchimeric, to represent the genome uniformly, and
for mate pairing to be accurate as whole genome shotgun assembly software needs to make
these assumptions. The whole genome shotgun sequencing and assembly process does not
necessarily require creation of chromosome maps but does require assembly software that
can assemble millions of sequence fragments in an acceptable amount of time, say, a few
weeks for the human genome assembly. The strategy also requires high-throughput DNA
sequencers that enable the sequencing of hundreds of thousands of bases per day.

For the human genome, sequencing was not considered a hurdle but much of the concern
and skepticism among scientists of the whole genome shotgun strategy for sequencing hu-
man genome was for the assembly. Many considered that it was impossible to expect whole
genome shotgun assembly software to correctly assemble the sequence of the human genome,
because it contains millions of repetitive DNA sequences. The best known whole genome
shotgun assembly software at the time was developed at The Institute for Genome Research
(TIGR) [112] for the assembly of Haemophilus influenza genome [49] that is much smaller
and less repetitive than the human genome. Scientists at Celera Genomics were able to de-
velop software [88] that assembled the human genome sequenced by whole genome shotgun.
The software for assembling the sequence of the human genome was engineered from the
software they developed for Drosophila.

9.2.5 Transcripts

Messenger RNA (mRNA) is a single stranded nucleotide sequence generated by transcribing
a portion of genomic DNA corresponding to a gene that is later translated into a protein.
As mRNA is unstable outside the cell, enzymes called reverse transcriptases are used to

9-8 Handbook of Computational Molecular Biology

Complementary
Strand of genome

Genome

Exons

Transcript

EE E

I I 1

1

2

2 3

L

L1

1

321E’ E’ E’

FIGURE 9.1: Relationship between genome and transcripts

convert it into complementary DNA (cDNA) that is stable. Expressed sequence tags (EST)
are sequence of a few hundred nucleotides (usually 200 to 500 bp) generated by sequencing
portions of cDNA.

Eukaryotic genes are often not contiguous stretches of genome but have some subsequences
removed. Portions of the genome that are removed are called introns, portions that are
retained in a gene are called exons, and the process that removes introns is called splicing.
For example, figure 9.1 shows a transcript that has three exons E1, E2, E3, two introns

I1, I2, and the relationship between sequence of the transcript and the genome. Note that
both the order of exons as well as the orientation of exons is same in the transcript as
on one strand of the genome. That is, each exon is a subsequence from one strand of the
genome sequence and the order and orientation of subsequences corresponding to exons of a
transcript is same in a transcript as it is on that strand of the genome. Relationship between
the transcript and the complementary strand of the genome reverses both the order and
the orientation of exons, as shown by E′3 followed by E′2 followed by E′1 where E′i is reverse
complement of Ei.

Chromosome maps, mate pairs, plasmid pair reads, and transcripts place restrictions on
what constitutes a correct assembly and can, therefore, be used while doing assembly for
restricting the search space. Transcripts with more than one exon (and similarly plasmid
pair reads and mate pairs) can be used to order and orient two different fragments (or cluster
of overlapping fragments) if both fragments happen to overlap with the same transcript
because the order and orientation of exons gives the order and orientation of the fragments
with respect to the genome.

9.3 Computer Science Terms and Techniques

Algorithms and graph theory terms used in this chapter, but not covered in this section can
be found in [48, 34]. Very briefly, a graph is a mathematical representation for objects and
a relationship between pairs of objects. The set of objects represented in a graph are called
its nodes or vertices. If two objects are related, they are joined by an edge. The degree of a
node is the number of edges joining it to other nodes in the graph. A node is singleton if it
has no edges. A graph is a directed graph if its edges are directed edges; otherwise, it is an
undirected graph. A path from node u to node v in graph G is an alternating sequence of
nodes and edges of G, beginning with u and ending with v, such that no node is repeated

Assembling the Human Genome 9-9

and every edge joins the nodes immediately preceding it and following it. The length of a
path is the number of edges in the sequence defining the path. A cycle is a path that begins
and ends at the same node. If a graph has no cycles, it is called acyclic. If G and H are
graphs then H is a subgraph of G if and only if the set of nodes and edges in H is a subset
of the set of nodes and edges in G. A graph is connected if there is a path, ignoring the
direction of edges if graph is directed, between every pair of nodes in the graph; otherwise
the graph is said to be have more than one connected component.

Assembling a genome such that the sequence produced agrees with what is already known
about the genome can be reformulated as a few optimization problems [94, 128] as presented
in next section. The general structure of an optimization problem is to determine the values
of n problem variables x1, · · · , xn, so as to minimize an objective function F (x1, x2, · · · , xn)
subject to lying within a region G which includes any constraints on the variables. The
constraints define all feasible solutions, and the problem is normally expressed as the de-
termination of values (x1, x2, · · · , xn)

to minimize or maximize F (x1, x2, · · · , xn)
subject to (x1, x2, · · · , xn) ∈ G.

An assignment of values that minimizes or maximizes the function over the whole of the
feasible region is called an optimal solution. Strictly speaking, it is a global optimum, but
there are usually a number of local optimum. A local optimum minimizes the function with-
in a local region which is a subset of the feasible region defined with respect to a candidate
solution.

There are a variety of available search procedures for solving optimization problems. How-
ever, if the problem is NP-complete [52], which (simply stated) means that it is extremely
unlikely to have an algorithm for the problem that grows polynomially with the size of
input and guarantees a global optimal solution, one looks for approximation algorithms or
heuristics. Approximation algorithms guarantee that solution reported by the algorithm is
no worse than a certain factor compared to optimal. Even if an approximation algorithm
is known, a heuristic that does not give any guarantee on the solution can be faster or may
empirically “tend” to produce better results than an approximation algorithm. Heuristics
typically find a local optimum but can get “lucky” and produce global optima, which is also
why heuristics work well for problems that do not have many local optimums.

We now present some information about an optimization problem known as maximum
interval subgraph, a technique called lexicographic breadth first search (LBFS) for navigating
graphs and its extension LBFS∗ that detects interval graphs, and a greedy heuristic for
finding directed acyclic subgraph of a directed graph. These tools and techniques will be
used in the next section.

9.3.1 Maximum interval subgraph

A graph G is called an interval graph if it is possible to assign an interval on real line to
each node such that two nodes are connected in the graph by an edge if and only if their
corresponding intervals overlap. It has been shown that an interval graph can not have
following two obstructions present in it:

1. Chordless cycle: A cycle with more than three nodes without a chord where a
chord is an edge that connects two nodes in the cycle that are not adjacent in
the cycle. A graph without any chordless cycles is called a chordal graph.

2. Asteroidal triple: An independent set of three vertices such that each pair is
joined by a path that avoids the neighborhood of the third.

9-10 Handbook of Computational Molecular Biology

In other words, the class of interval graphs is the subset of the class of chordal graphs that
do not have an asteroidal triple.

The problem of finding a maximum interval subgraph is to find a subgraph of the input
graph that is an interval graph and has the maximum number of edges. In the weighted
version of maximum interval subgraph, we look for a subgraph where sum of weights of all
edges in the solution is maximum. Verifying whether a graph is an interval graph or not has
very efficient solutions [14, 77, 35, 61], but finding maximum interval subgraph of a given
graph is an NP-complete problem [55].

A couple of different characterizations of interval graphs that we will use later are as
follows:

Node ordering [90]: A graph is an interval graph if and only if there exists a linear
order < on the nodes such that for every choice of u, v, w with u < v and v < w,
if there is an edge between u and w, then there exists an edge between u and v.

Maximal clique ordering [54]: A graph is an interval graph if and only if its max-
imal cliques can be linearly ordered in such a way that for every vertex in the
graph the maximal cliques to which it belongs occur consecutively in the linear
order.

A few more definitions needed to state the facts used later in the chapter are given next.

Minimal separator: A set of nodes S is a separator for a pair of vertices a and b
if removal of all nodes in S separates a and b into two distinct components. If
no proper subset of S is a separator for a and b, then S is called a minimal a, b
separator.

Clique graph: A clique graph for a chordal graph represents each maximal clique of
the chordal graph by a node, has an edge joining node for clique A and node for
clique B if and only if A ∩ B is a minimal separator for each node a ∈ A − B
and b ∈ B − A. The weight of the edge joining the node for clique A and the
node for clique B is the size of A ∩B. Number of maximal cliques in a chordal
graph is linear in the size of the graph and clique graph for a chordal graph can
be constructed in polynomial time [51].

Clique tree: A clique tree for a chordal graph G is a subgraph of clique graph C for
G such that it is a tree and for each node a in G, the set of nodes in C that have
a as an element induce a subtree. It was shown in [51] that a spanning tree of a
clique graph for a chordal graph is a clique tree if and only if it is a maximum
weight spanning tree. Figure 9.6 illustrates the transformation of a chordal graph
in a clique graph and two maximum weight spanning trees with different leafage.

Note that the linear ordering of maximal cliques as described in the maximal clique
ordering characterization of interval graphs above admits that there exists a clique tree for
interval graphs which is a Hamiltonian path in the clique graph. We will use this observation
for developing a heuristic for the maximum interval subgraph problem.

9.3.2 LBFS and LBFS∗

LBFS [100] is a breadth first search procedure that breaks ties lexicographically using labels
where a label for a node is the set of neighbors already visited. In the beginning, all nodes
have an empty set as label and no number. If there are N nodes in the graph, the algorithm

Assembling the Human Genome 9-11

for finding LBFS has N iterations for assigning a node number and updating labels. In the
ith iteration, an unnumbered node with highest label is chosen to receive number N − i+ 1
and all its unnumbered neighbors get N − i + 1 added to their label. LBFS was designed
to find a special ordering of nodes in chordal graphs called a perfect elimination ordering.
Note that in LBFS, there may be nodes tied at each iteration; any such ties are broken
arbitrarily.

LBFS∗ is a four sweep LBFS strategy for interval graph recognition proposed by Corneil
et. al. [35] that utilizes the characterization of interval graphs in terms of a linear order
of nodes and breaks ties intelligently based on previous sweeps. The first sweep is the
original LBFS algorithm in which there is an arbitrary choice made when nodes are tied.
The next two sweeps decide ties by the highest index in the previous sweep. The last sweep
decides among tied vertices by choosing two candidates based on the previous two sweeps
and then deciding between them depending on their and their neighbor’s edge relationships
with nodes that come after the set of tied vertices. Corneil et. al. showed that the ordering
produced by the final sweep is a node ordering (as defined in the previous subsection) if
and only if the graph is an interval graph.

Both LBFS and LBFS∗ are linear time algorithms.

9.3.3 Directed acyclic subgraph and a greedy heuristic

A directed acyclic subgraph can be recognized in linear time by using topological sort. How-
ever, if the given directed graph has cycles and we wish to find a directed acyclic subgraph
by removing minimum number of edges, the problem is called feedback edge set problem and
is known to be NP-complete [70, 52] even on directed graphs with total vertex in-degree
and out-degree smaller than 3 [53] but is polynomially solvable on planar directed graph-
s [82] and on undirected graphs (by using maximum weight spanning tree algorithms as
the resulting graph will have to be a tree). The problem is APX-hard [69]. The best ap-
proximation algorithm known makes the set approximable within O(log |V | log log |V |) [47]
and requires solving a linear program. Although the complementary problem of finding a
maximum acyclic subgraph can be approximated by a ratio even smaller than 2 [13, 59],
the constant factor is with respect to the size of the input graph and not with respect to
the “problem spots” giving us the cycles.

Heuristic methods do not guarantee to find optimal solutions, but they do find what one
hopes are ‘near-optimal’ solutions. Some heuristics for feedback edge set problem can be
found in [46, 45]. In the weighted version of the feedback edge set problem with weights
on edges, most heuristics try to either find a light edge to remove from each cycle or find
edges that are in a large number of cycles even if the weight of some of those edges is high.
A heuristic that mixes the two approaches was presented by Finocchi et. al. [38] using the
local-ratio principle [10].

The weighted directed graph for which we are interested in finding a maximal directed
acyclic subgraph has

• nodes that represent sequence of fragments or sequence of clusters of overlapping
fragments or their reverse complements,

• edges that connect a pair of nodes when the sequence represented by two nodes
overlap

– different fragments of a phase 2 BAC, or

– different exons of a transcript T , or

– different ends of a paired plasmid

9-12 Handbook of Computational Molecular Biology

• direction on edge as deduced from the order of fragments/exons/ends, and
• weight on edges that gives preference to phase 2 BAC orientation over mRNA,

mRNA over EST, and EST over paired plasmid reads.

For example, if we have three fragments A,B,C and a transcript with three exons as shown
in figure 9.1 such that A overlaps with E1, B overlaps with E′2 and C overlaps with E3,
then the graph can have nodes NA, N

′
B, NC where Ni represents node for sequence i and

N ′i represents node for sequence of reverse complement of i, a directed edge from NA to
N ′B and another directed edge from N ′B to NC or, equivalently, the graph can have nodes
N ′A, NB, N

′
C , a directed edge from N ′C to NB and another directed edge from NB to N ′A. We

chose to use the heuristic of removing light edges as the weight reflects quality of information
in the directed graph we produced. The heuristic was implemented as a greedy heuristic
where edges were sorted by weight and added from maximum weight to the minimum as long
as adding the next edge did not create a cycle in the current partial solution or attempted
to add a node whose sequence is reverse complement of the sequence of a node already
present in the current partial solution.

9.4 BAC Data and Assembly

Sequence data produced by IHGSC evolved in four main stages (Figure 9.2), with each stage
requiring data driven changes in algorithms for assembling the data. BACs meeting the
minimum requirements for HGP were submitted to the high throughput genomic sequence
(HTGS) section of GenBank. BACs used for human genome assembly were the phase 1,
phase 2, and phase 3 present in HTGS. That is, phase 0 BACs were ignored for assembly.
Four stages of sequence data were as follows:

Till July 1999: As per the original plan of HGP, BACs submitted to HTGS in early
stages were almost all finished BACs carefully selected to cover the region being
sequenced. The center submitting a BAC would sometimes also submit instruc-
tions on how to join the BAC with its predecessor/successor. NCBI would verify
the joins and either make the join if supporting data agreed or report back if
there were problems.

July 1999 to January 2000: In this stage, we saw that GenBank had a balance
between amount of finished and draft sequence with total amount of sequence
being only a fraction of the genome size. The primary responsibility for genome
assembly from this stage onwards for genome pipeline at NCBI was shouldered by
the author, with upstream and downstream processing done by other members of
the genome pipeline group at NCBI. The software for assembly, described later
in this section, came up with a tiling path for BACs and decided on joins to make
while preserving the finished regions that were curated following the process of
the previous stage.

January 2000 to October 2001: Following the change in strategy adopted by HGP
in October 1999, this stage saw an explosive growth in sequence coverage of the
human genome by draft BACs. The software developed in the previous stage to
come up with a tiling path order for BACs and make joins that minimize the
conflicts in all supporting data was modified to handle a high number of draft
BACs.

October 2001 to April 2003: The final stage of assemblies at NCBI saw a balance
between amount of finished and draft sequence with HGP proposing a tiling path
order for BACs. NCBI continued with the approach of defining an overall tiling

Assembling the Human Genome 9-13

FIGURE 9.2: Growth of draft and finished sequence in High Throughput Genome Sequencing
section of GenBank

path order but took the tiling path order proposed by HGP unless it had some
evidence that suggested otherwise.

The recipe for joining BACs to produce the essentially finished human genome sequence
in April 2003 was given by IHGSC. Ongoing finishing efforts of IHGSC are aimed at closing
gaps present in this sequence. Revisions to the assembly are also expected to come with
complete instructions on how to join BACs. The sequence following the given recipe is
generated at NCBI as part of the NCBI genome pipeline.

The strategy employed by NCBI to assemble the human genome in all four stages was
what is typically called “overlap–layout–assemble”. Specifically, the steps involved were as
follows:

9-14 Handbook of Computational Molecular Biology

Containment Dovetail

tail

FIGURE 9.3: Consistent overlaps showing containment or dovetail

Overlap generation: Starting from the BLAST hits between fragments of pairs of
BACs, merge hits and find consistent overlaps between them where a hit is con-
sistent if it either has one fragment contained in the other fragment or has a
dovetail with the other fragment (Figure 9.3). Different parameters determined
the consistency depending on the phase of BACs in the overlap. For two finished
BACs to be considered consistent, they were allowed to have a tail of at most
50 bp whereas draft BACs were allowed a tail of 1 Kb. Among the set of con-
sistent overlaps, only those that satisfied a minimum length and average percent
identity criteria were considered for assembly. The criteria used were that for
two finished BACs, it was sufficient to have overlap length of ≥ 95 bp at ≥ 99%
whereas overlap involving a draft BAC needed at least one fragment to have ≥
2500 bp at ≥ 98%. BACs that could be assigned to a chromosome based on the
mapping information available were marked as such while rest were marked as
unassigned. Overlaps between BACs being placed on different chromosomes by
map information were removed.

BAC layout: Reformulate the problem of assembling a genome as “given a set of
BACs and overlap information between BACs, subdivide BACs into disjoint sets
and order the BACs in each set such that all the BACs in a set are unassigned or
assigned to the same chromosome and subdivison and ordering is most truthful to
the maximum amount of good quality overlap information.” This reformulation
makes a basic assumption that the false negative rate in overlap information is
negligible and can be ignored. The order of BACs in a set is the tiling path
for that set. Note that if we have BACs for all regions of the genome, we have
one tiling path for each chromosome. Otherwise, regions of the genome not
represented in any BAC create a gap in the sequence that can be assembled
for the genome and split the tiling path for the chromosome into smaller tilings
paths. Placement of all tiling paths on chromosomes with appropriate orientation
for each tiling path is the BAC layout for the genome.
For producing BAC layout, a graph is created where BACs are represented as
nodes, overlaps as edges, a weight is given to each edge depending on the phase of
BACs, overlap length, and percent identity of the overlap. The solution desired
is the maximum weight interval subgraph. Each connected component in the
subgraph has the set of BACs and overlaps to produce a tiling path. Each tiling
path results in making one contiguous sequence (contig) so we sometimes use the
term contig to mean the tiling path for the set of BACs that make that contig.

Create melds: For each pair of fragments joined by overlaps kept in contig, a break-
point is chosen and sequences joined. This results in one contiguous sequence
for a contig if all BACs in the contig are finished but may result in a set of
contiguous sequences, called melds, if there is a draft BAC such that some of its
fragments do not become part of same meld by the overlaps with fragments from
other BACs in the contig.

Assembling the Human Genome 9-15

A

B

C

FIGURE 9.4: Pairwise consistent overlaps that have inconsistent multiple overlap

Order and orient melds: After sequence joins are made, if a contig has more than
one meld, it is sometimes possible to order and orient melds using information
provided by HGP for phase 2 BACs, transcripts, and paired plasmid reads. This
is achieved by making a directed graph as described in the previous section with
each meld or its reverse complement being represented by a node and directed
edges being derived from the orientation information available. Desired solution
is a directed acyclic graph that maximizes weight of edges kept in the solution.
The translation of directed acyclic graph into a linear order of melds aims to
minimize the difference between expected length of BACs and the length of their
extents on contig. The linear order of melds is made into a contig by putting a
100 bp gap between consecutive melds.

As three pairwise consistent overlaps for three BACs may not necessarily result in a
single multiple alignment for all three BACs (see figure 9.4), it is not necessarily true that
the layout step is completed before the melding step but can instead be interleaved. The
decision to have BAC layout stage completely precede melding stage or to interleave the
two steps depends on the quality of BACs that in turn dictates the quality of overlaps for
pairs of BACs we observe. The contigs produced were oriented and placed on chromosome
by using map information. We now present how above steps were carried out for each stage.

9.4.1 A few finished regions

Each BAC has a clone name that identifies its microtitre plate address (plate number, row,
and column) prefixed by a library abbreviation. For example, the BAC with clone name
RP4-740C4 is from RP4 library, plate number 740, row C and column 4. When a sequence
for a BAC is submitted to GenBank, it is assigned an accession and version number 1. Re-
vised submission of a clone already present in GenBank receives a new version number but
the same accession. The NCBI Clone Registry (http://www.ncbi.nlm.nih.gov/genome/
clone/) provides links between clones and their accession numbers. It integrates informa-
tion about genomic clones and libraries, sequence data, genomic position, and distributor
information. It was also a place for genome sequencing groups to register their intent to
sequence specific clones and advise the database of changes in their sequencing status.

When BACs were submitted and overlap with the predecessor and/or successor clone
was known, the submittor sometimes also submitted this information to GenBank. The
following steps were sufficient to do the assembly when GenBank had mostly finished BACs
covering relatively small portion of the genome:

1. Relate clone names and accessions using clone registry. This was needed because
information in GenBank entries was in terms of clone names but sequences were
assigned an accession and version number in GenBank.

9-16 Handbook of Computational Molecular Biology

2. Verify overlaps specified in GenBank entries using sequence alignment tools like
BLAST. The verification was to find out if the overlap was present and if it was,
then to verify that the overlap is a consistent overlap.

3. Make a join if a consistent overlap is found by deciding breakpoint at which to
switch from one BAC to next. A breakpoint could be one of the two endpoints
of the consistent overlap.

For example, GenBank entry for AL513531.15 (clone RP11-361M21) says,

“The true left end of clone RP4-740C4 is at 1997 in this sequence. The
true right end of clone RP3-395M20 is at 2000 in this sequence.”

We find that clones RP4-740C4 and RP3-395M20 have accessions AL513477 and AL139246,
respectively. BLAST between AL513531.15 and AL513477.21 does indeed show a consistent
overlap starting at first basepair of AL513477.21 to region starting at basepair 1997 of
AL513531.15. BLAST between AL513531.15 and AL139246.20 gives a consistent overlap
ending at basepair 2000 of AL513531.15. However, the portion of AL139246.20 that is
overlapping is the first 2 Kb on reverse strand. Hence, the instructions in GenBank entry
for AL513531.15 are correct but the sequence submitted for AL139246.20 is the reverse
complement of what was expected by submitter of AL513531.15. As the overlaps could
be verified, above instruction in GenBank results in making an assembly of the region
that includes AL139246.20 from 2001 bp to 154736 bp reverse complemented followed by
AL513531.15 from 1 bp to 1996 bp followed by AL513477.21 from 1 bp to 106323 bp.

Factors other than sequence submitted in reverse complement that complicate the pro-
cess described above include discrepant information submitted within a clone or between
two clones that are supposedly adjacent. For example, the entry for AL139246.20 (clone
RP3-395M20) says,

“The true left end of clone RP4-755G5 is at 90075 in this sequence. The
true right end of clone RP4-755G5 is at 90078 in this sequence. The true
right end of clone RP11-361M21 is at 135438 in this sequence.”

Clearly, a clone cannot have its left end and right end in the same clone without it being re-
dundant! Furthermore, as shown in the previous example, the overlap between AL513531.15
and AL139246.20 is first 2 Kb of both sequences; not one where overlap starts at 135438 bp
of AL513531.15. It is likely that sequence of clones were revised without the information
being synchronized with other clones that referred to them resulting in information getting
out-of-sync.

This stage did not need the order and orient step as all BACs were finished. Also,
information specified by submittor overrode parameters we had for keeping an overlap.
An example of a situation where overriding parameters was necessary is when a submittor
specified that the only overlap for 2 BACs is a 6 bp restriction site, as in case of last 6 bp
of AC002088.2 (clone CTB-13P7) overlapping with first 6 bp of AC002124.2 (clone CTB-
180O1) in GenBank entry for AC002088.2. Hence, the assembly in this stage was driven
more by biology than by computational methods.

It should be noted that the algorithm used in this first stage for finding contigs that
assembles finished BACs as per submittors direction continued to produce contigs for all
the remaining stages as well and provided a set of contigs, referred to as ngtable contigs,
to keep “as is” in any solution produced by the software in subsequent stages but could be
extended at either end by other BACs.

Assembling the Human Genome 9-17

9.4.2 Balance of draft and finished regions: Fraction of genome repre-
sented

A natural advantage of finished BACs over draft BACs is that the false positive rate in
consistent overlaps with some modest minimum requirements is negligible. Hence, in the
second stage, where number of BACs were still rather modest with almost half of all BACs
being finished, it was plausible to attempt using computer science techniques to try and
produce a solution to instances of the NP-complete maximum interval subgraph problem
before melds were created. The heuristic used for finding a solution to maximum interval
subgraph was not provably optimal but probably achieved solutions that were pretty close
to optimal as measured by the total number of edges in the solution kept at high level where
the level of an edge is high for a consistent overlap between a pair of finished BACs, medium
for a consistent overlap between a finished BAC and a draft BAC, and low for a consistent
overlap between a pair of draft BACs. Having a curated set of overlaps to keep from the
previous stage also simplified the problem.

The heuristic used for producing a solution to the layout problem was as follows:

Step 1: Create a graph with each BAC represented by a node and each consistent
overlap represented by an edge where an overlap between a pair of BACs A and
B results in an edge between nodes that represent A and B. We use the length,
percent identity, and level of an edge to mean the length, percent identity, and
level of the overlap it represents.

Step 2: Remove all edges for any node with degree more than 20. The number of
nodes made singletons by removing all its edges due to high degree was typically
less than 100. In the data set illustrated in tables 9.2 and 9.3, the graph has
9219 nodes. The maximum degree of any node in this graph was 102 and there
was only one such node, there were 36 nodes with degree in range 51 to 100, 59
nodes with degree 21 to 50, and remaining 9123 nodes had degree at most 20.
Do remaining steps for each connected component of the graph.

Step 3: Using LBFS*, find whether the graph is an interval graph. If the graph is
not an interval graph, it has at least one chordless cycle and/or an asteroidal
triple. Repeat steps 4 to 6 while any obstruction exists. Steps 4 to 6 need to
be done repeatedly because deleting a chordless cycle can result in creation of
an asteroidal triple while deleting an asteroidal triple can result in creation of
a chordless cycle. For example, in figure 9.5, we initially have chordless cycle
A,B,C,D but no asteroidal triple. Deleting edge (A,B) breaks the chordless
cycle but creates asteroidal triple A,B, F (also A,B,G). Deleting edge (C,E)
removes asteroidal triple A,B, F (but not A,B,G) and creates a chordless cycle
C,D,E, F .

Step 4: While a chordless cycle exists in the graph, delete the worst edge from every
chordless cycle where the goodness of an edge is determined by first its level,
then its percent identity, and last by its overlap length. Cycles were not chosen
in any special order. Use LBFS∗ to see if any asteroidal triples are present in the
graph. If they are, do steps 5 and 6; otherwise, go to step 7.

Step 5: Since there is no chordless cycle in the graph, we have a chordal graph. Find
the clique graph of the chordal graph [51] and a maximum weight spanning tree
for the clique graph with low leafage. Note that the problem of finding the
maximum weight spanning tree with minimum leafage is NP-complete (as one
can easily reduce finding Hamiltonian path to it). Some results on upper and
lower bounds on leafage of a chordal graph can be found in [80]. We find a

9-18 Handbook of Computational Molecular Biology

A

B

D

C

E

F

G

A

B

D

C

E

F

G

FIGURE 9.5: Deleting an edge from a chordless cycle resulting in an asteroidal triple and vice
versa

maximum weight spanning tree using Prim’s algorithm [34] and reduce leafage
by iteratively finding a pair of edges new and old such that new is currently
not in the solution, old is in the solution, and swapping old by new results in
a maximal weight spanning tree with lower leafage. Since reduction in leafage
is a requirement, it is sufficient to consider only those edges as candidates for
new that are connected to a node that is a leaf in the current solution and to
restrict finding candidates for old to the edges that are part of the cycle that is
created if new is added to the current solution. Intuitively, finding a maximum
weight spanning tree with low leafage for the clique graph approximates finding
a Hamiltonian path and any node in the solution with degree more than 2 is
“near” an asteroidal triple.

Step 6: Find the set of nodes S in the clique tree found in the previous step that
have degree more than 2. For each node A ∈ S, find a neighbor B of A such
that the weight of edge (which is same as the size of separator) connecting A to
B is minimum. We developed three different heuristics for removing asteroidal
triples. Delete clique, represented as -clique, deletes edges in original graph to
remove neighbor from separator. That is, all edges connecting B − (A ∩ B) to
A∩B are deleted for every pair of A and B found above. Delete edge, represented
as -edge, finds the worst edge in all the ones that are candidates for deletion in
-clique and only deletes that single edge. Delete middle, represented as -middle,
deletes single worst edge for each pair A and B.

Step 7: Translate each clique path into a tiling path for a contig using LBFS∗. Since
not every BAC is assigned to a chromosome, it is possible to have connected
components in the solution that has BACs from more than one chromosome.
Check overall solution and break components into smaller components so that
each component has BACs from at most one chromosome.

It is easy to see that among the three heuristics described in Step 6, -clique is fastest but
creates more contigs, -edge is slow as it attempts to preserve as many good edges as possible
but may delete more bad edges than -clique, and -middle tries to take advantage of both
-clique and -edge by deleting worst edge of “likely” independent triples in each iteration.
Results in Table 9.2 show that all three variations keep a very high percentage of edges at
high levels. Results in Table 9.3 show that while -clique kept more total number of edges
than -edge, it has those edges divided in higher number of contigs as was expected. We used
-edge heuristic for all our processing. We present the results of -clique and -middle that are
much more aggressive than -edge in deleting edges to show that graphs in this stage had a

Assembling the Human Genome 9-19

a
b

c

d

f g h

e

a b
 c

 c
 d

 d e
 g

e g
 h

d g
 f

2

1

1

1

1

2

a b
 c

 c
 d

 d e
 g

e g
 h

d g
 f

2

1

1

2

a b
 c

 c
 d

 d e
 g

e g
 h

d g
 f

2

1

1 2

Chordal graph Clique graph

Maximum weight spanning tree with weight
6 and 3 leaves

Maximum weight spanning tree with
weight 6 and 2 leaves

FIGURE 9.6: Transformation of chordal graph to clique graph and two maximum weight span-
ning trees of clique graph

phase consistent > 20 removed -edge -middle -clique
Finished-Finished 2425 2424 2345 2327 2318

Finished-Draft 3249 1994 1439 1433 1549
Draft-Draft 4843 1702 1060 1048 1277

Total 10517 6120 4844 4808 5144

TABLE 9.2 Count of overlaps between finished and draft BACs at different stages of the algorithm and
different heuristics

few “problem spots” while most of the graph was preserved by all reasonable heuristics.

9.4.3 Explosive growth in draft genome

With explosive growth in number of draft BACs, maximum interval subgraph was no longer
necessarily a good representation of contig layout because the chances of multiple pairwise
consistent overlaps resulting in a single multiple alignment for all BACs was much lower
(see figure 9.4). In other words, it was no longer practical to have layout step separate from

9-20 Handbook of Computational Molecular Biology

Size > 20 removed -edge -middle -clique
1384, 117, 90, 88, 47 1 each

113 1 1
79, 44 1 each

73, 43, 26 1 each
71, 67, 49, 48, 36, 24 1 each

42 1 1 1 2
40 2 1
35 1 2 1
33 1 2
30 1 1
27 1 1
25 1 2 2
23 1 1
22 1 2 2
21 2
20 1 2
19 3 1 1
18 2 4 4 4
17 3 3
16 2 1 4
15 3 3 3
14 4 7 4 8
13 4 7 8 6
12 7 7 6 18
11 7 12 12 12
10 7 16 15 12
9 10 19 17 19
8 20 31 27 30
7 18 30 32 30
6 29 45 45 39
5 57 72 68 70
4 99 119 122 111
3 223 245 253 239
2 600 659 662 653
1 3951 4061 4071 4109

Total 5045 5358 5372 5384

TABLE 9.3 Distribution of connected component sizes with different heuristics

the melding step. This stage as well as the next one did not have an explicit layout step
but did the layout in conjunction with melding. Steps taken were as follows:

Step 1: Create a contig for each ngtable contig and for every BAC not in ngtable
contigs. A contig representing a draft BAC had a meld for each fragment and a
gap of 100 bp between melds.

Step 2: Using map information for BACs in a contig, assign a lower and upper map
index to the contig for each map. Maps used were Généthon and Marshfield
linkage maps, and Whitehead, Stanford G3, Genemap99 GB4 , and Genemap99
G3 radiation hybrid maps. Maps were scaled such that one scaled unit rep-
resented approximately one million basepairs. This allowed us to apply same
threshold to all maps for determining whether two contigs are close to each oth-
er or not. Conditions for saying that contig A is close to contig B based on a
map were (i) low(A) ≤ high(B) + 1.25 and (ii) high(A) ≥ low(B)− 1.25, where
low(X)[high(X)] is the minimum [maximum] scaled unit for any BAC in contig
X .

Step 3: Map overlaps in BAC coordinates to contig coordinates. Retain overlaps
between two contigs only if it is consistent with map information where an overlap
was considered consistent with map information if (i) at least two maps put the
contigs near each other, or (ii) no map placed the two contigs apart, or (iii) there
was at most one map placing contigs apart and one map placing them together.

Step 4: Assign weight to overlaps by using the formula:
weight = (pid− PF)× (min(len, LF)/100)

Assembling the Human Genome 9-21

where pid is the percent identity of the overlap, PF is the percent factor set at 96,
len is overlap length in bp, and LF is length factor set at 1 Kb. Minimum percent
identity for any overlap used for making contigs was 97%. Sort the overlaps first
by level and then by weight from highest to lowest.

Step 5: Starting from the sorted list of overlaps generated in Step 4, find the first
overlap that can merge a pair of contigs and merge them. An overlap between
two contigs may not result in a merge if one contig is phase 2, other contig is
finished or phase 2, and adding the overlap will result in expanding a contig
beyond 1.4 times average length of a BAC taken to be 250 Kb. If no contigs can
be merged, go to Step 7.

Step 6: Remove overlap between contigs A and B that were merged in Step 5 to all
other contigs X in the current solution. Remap all overlaps between contig X
and A and X and B to and overlap between X and contig resulting from merging
A and B. If there are any consistent overlaps, go back to step 4.

Step 7: Compute the warping of each BAC by dividing the length of BAC on contig
by the length of sequence for BAC. If there are warped BACs with factor more
than 1.4, then attempt to reduce their warping by removing melds consisting of
a single fragment of size at most 2500 bp and by removing melds that are at least
80% contained in another meld in same contig when removing such melds results
in reducing warping for the BAC.

Step 8: Order and orient melds in a contig using the directed cyclic subgraph greedy
heuristic described in previous section.

9.4.4 Balance of draft and finished regions: Full genome represented

The assembly for the final stage again had the situation where we had a balance of draft
and finished regions but the number of draft sequences was high enough that it was not
practical to have separate layout and melding steps. Additional changes in data at this
stage to be incorporated by the assembly software were as follows:

• We had a TPF that could be used as a reliable source of information for finding
pairs of BACs that are close to each other on the genome.

• We had BACs that were marked as having sequence for some variations (referred
to as haplotype) being studied in some small portions of the genome that were
different from what was to be present in the assembly for the whole genome.

• Some chromosomes were finished and recipe for assembling these chromosomes
was provided by IHGSC.

The following four modifications to the algorithm of previous stage were sufficient to incor-
porate all the data changes:

1. Create an instance of the assembly problem that is haplotype specific. This is
achieved by partitioning set of BACs such that each partition has BACs with
same haplotype. Assemble each haplotype separately.

2. Add TPF as a map with scaling factor of 4 as average size of a BAC is 250,000 bp
and one scaled unit should represent 1 million basepairs. With scaling factor 4
and conditions for consistency with respect to a map being low(A) ≤ high(B) +
1.25 and high(A) ≥ low(B) − 1.25, a BAC at index N on TPF is considered
consistent with respect to TPF map with only those BACs that are present on
TPF and have indices N − 5 . . .N + 5.

9-22 Handbook of Computational Molecular Biology

3. Upgrade the level of an overlap by 6 if the overlap is consistent with TPF map.
This ensures that all overlaps consistent with TPF map are considered before
considering an overlap involving a contig with no BACs on TPF.

4. Delete assembly for finished chromosomes and replace by the recipe given by
HGP for that chromosome.

Above changes were designed to reflect that TPF is reliable but the assembly software can
fill gaps in TPF if it finds BACs that can do so.

Running time for the assembly software in all stages after the data freeze was less than an
hour on a single processor workstation. Data freeze includes generation of ngtable contigs
and running BLAST for all BACs against all other BACs and transcripts. However, these
are done incrementally every day and simply frozen when we wish to have a new Build and
hence not counted towards the time taken for assembly.

9.5 WGS Data and Assembly

This section outlines the whole genome shotgun data assembly process and presents a brief
summary of data and assembly specifics for the Celera Genomics human genome assembly.
Details for the Celera Genomics human genome assembly are clearly presented in [115].

In WGS sequencing, each nucleotide of DNA in the genome is covered numerous times in
fragments of about 500 bp corresponding to a shotgun read. Mate pairs made from libraries
of different lengths are generated to provide order and orientation at different interval sizes.
As in the case of sequencing a single BAC, repeats and missing sequence lead to several
clusters instead of one cluster. These clusters are called contigs in case of WGS assembly
and are called fragments in case of a BAC. Using overlaps to mate pairs and the length of
library to which the mate pair belongs gives relative placement and distance information
between two contigs in WGS assembly, thus, creating a scaffold consisting of more than one
contig with an educated guess for the distance between consecutive contigs in the scaffold.
Scaffolds are placed on chromosome using map information. An important design decision
for a whole genome shotgun assembler is how it manipulates regions of repeats. Masking
repeats before computing fragment overlaps results in missing true overlaps but allowing
repeats to be present for overlap computation results in overcollapsing of regions.

A major advantage of WGS sequencing is that there is no need to produce BAC libraries
and mapping BACs to the chromosome (although we showed in previous section that BAC
based assembly can also be done if BACs are not mapped to chromosomes) making it much
faster than BAC based sequencing. Disadvantages of WGS sequencing are that sequence
coverage needs to be high, quality of data needs to be very good, and the assembly process
is harder and time consuming with major problem being collapse of repeats. Different w-
hole genome programs usually differ in how they process repeats, overcome repeat induced
overcollapse, and reduce running time. For example, PCAP uses BLASTs 2-hit model for
deciding whether to compute an overlap between a pair of fragments or not while Celer-
a Genomics assembler relies on its high performance computational facility and software
engineering techniques to deliver assembly in a few weeks.

For the human genome, Celera Genomics made plasmid libraries with insert size 2, 10,
and 50 Kb and had 5.11 fold genome coverage from reads they generated from these plasmid
libraries. An additional 2.9 fold coverage was achieved by shredding of data produced by
HGP into 550 bp segments and 104,018 BAC end-sequence pairs [115]. Celera Genomics’
state of the art sequencing facility with ABI 3700 fully automated capillary array sequencer
and a high performance computational facility produced almost 14.9 billion bases corre-

References 9-23

sponding to 5.11 fold coverage for a 2.9 Gb human genome in less than a year. They were
able to carry out one run of their assembler in about 6 weeks real time and about 20,000
CPU hours with the largest machine having 64 Gb RAM. The design decision for repeat-
s in Celera Genomics assembler was to introduce repeat regions slowly by first creating
overlaps between unique sequence and detecting if any of the clusters so produced are over-
collapsed by computing log-odds ratio of the probability that the distribution of fragment
start points in the cluster is representative of a correct versus an overcollapsed cluster of
two repeat copies.

9.6 Conclusion

This chapter presents how human genome assembly has progressed from inception of the
Human Genome Project, its acceleration during the middle stages at the same time it met
a companion in Celera Genomics, to the day we have a finished sequence for the human
genome. We presented that different methods are appropriate for assembling different types
of data and what those methods are.

In the future, NCBI expects to get revisions from HGP for the essentially finished assem-
bly that reduces amount of gaps remaining. Celera Genomics has employed their updated
software to produce a new assembly [66] that they have recently submitted to GenBank but
with the change of direction in business plans of Celera Genomics, it looks unlikely that
they will do any more updates in future. Ideally, we would like to see one assembly that can
take advantage of clone based assembly for repeat regions that are hard to handle by the
WGS approach and WGS assembly for regions that are hard to clone and therefore missing
from the clone based assembly. Lessons learned with the dual approach that can take cost
advantage of shotgun approach and control of clone by clone approach are likely to yield
new approaches for sequencing large genomes [127, 21] in the future.

Acknowledgement

Thanks to Dr. David Lipman and Dr. James Ostell for providing clear direction and mo-
tivation needed over the years especially when the role of NCBI in HGP beyond GenBank
became unclear to the author. The user support group at NCBI deserves praise for answer-
ing most questions from users coping with different assemblies.

References

[1] J. Aach, M.L. Bulyk, G.M. Church, and J. Comander et al. Computational com-
parison of two draft sequences of the human genome. Nature, 409(6822):856–859,
2001.

[2] M.D. Adams, S.E. Celniker, R.A. Holt, and C.A. Evans et al. The genome sequence
of drosophila melanogaster. Science, 287(5461):2185–2195, 2000.

[3] M.D. Adams, J.M. Kelley, J.D. Gocayne, and M. Dubnick et al. Complementary
DNA sequencing: expressed sequence tags and human genome project. Science,
252(5013):1651–1656, 1991.

[4] M.D. Adams, G.G. Sutton, H.O. Smith, and E.W. Myers et al. The independence
of our genome assemblies. Proceedings of the National Academy of Sciences USA,
100(6):3025–3026, 2003.

9-24 References

[5] R. Agarwala, D.L. Applegate, D. Maglott, and G.D. Schuler et al. A fast and scal-
able radiation hybrid map construction and integration strategy. Genome Research,
10(3):350–364, 2000.

[6] B.M. Alberts, D. Botstein, and S. Brenner et al. Report of the committee on mapping
and sequencing the human genome. Technical report, National Academy of Science,
Washington D.C., 1988.

[7] S.F. Altschul, W. Gish, W. Miller, and E.W. Myers et al. Basic local alignment search
tool. Journal Molecular Biology, 215(3):403–410, 1990.

[8] S.F. Altschul, T.L. Madden, A.A. Schäffer, and J. Zhang et al. Gapped BLAST and
PSI-BLAST: a new generation of protein database search programs. Nucleic Acids
Research, 25(17):3389–3402, 1997.

[9] O.T. Avery, C.M. MacLeod, and M. McCarty. Studies on the chemical nature of the
substance inducing transformation of pneumococcal types. induction of transforma-
tion by a desoxyribonucleic acid fraction isolated from pneumococcus type III. The
Journal of experimental medicine, 79(1):137–158, 1944.

[10] R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted
vertex cover problem. Annals of Discrete Mathematics, 25:27–46, 1985.

[11] S. Batzoglou, D.B. Jaffe, K. Stanley, and J. Butler et al. Arachne: A whole-genome
shotgun assembler. Genome Research, 12(1):177–189, 2002.

[12] D.R. Bentley. Genomic sequence information should be released immediately and
freely in the public domain. Science, 274(5287):533–534, 1996.

[13] B. Berger and P.W. Shor. Approximation algorithms for the maximum acyclic sub-
graph problem. In Proc. First Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 236–243, 1990.

[14] K.S. Booth and G.S. Lueker. Testing for the consecutive ones property, interval
graphs and graph planarity using PQ-tree algorithms. Journal of Computer and
System Sciences, 13(3):335–379, 1976.

[15] S. Borenstein. The human genome project. Technical report, 2000.
http://www.freep.com/news/nw/gene27 20000627.htm.

[16] D. Botstein, R.L. White, M. Skolnick, and R.W. Davis et al. Construction of a genetic
linkage map in man using restriction fragment length polymorphisms. American
Journal of Human Genetics, 32(3):314–331, 1980.

[17] G.G. Bouffard, J.R. Idol, V.V. Braden, and L.M. Iyer et al. A physical map of human
chromosome 7: An integrated YAC contig map with average STS spacing of 79 kb.
Genome Research, 7(7):673–692, 1997.

[18] K.W. Broman, J.C. Murray, V.C. Sheffield, and R.L. White et al. Comprehensive hu-
man genetic maps: individual and sex-specific variation in recombination. American
Journal of Human Genetics, 63(3):861–869, 1998.

[19] K.H. Buetow, J.L. Weber, S. Ludwigsen, and T. Scherpbier et al. Integrated human
genome-wide maps constructed using the CEPH reference panel. Nature Genetics,
6(4):391–393, 1994.

[20] D.T. Burke, G.F. Carle, and M.V. Olson. Cloning of large segments of exogenous
DNA into yeast by means of artificial chromosome vectors. Science, 236(4803):806–
812, 1987.

[21] W.-W. Cai, R. Chen, R.A. Gibbs, and A. Bradley et al. A clone-array pooled shotgun
strategy for sequencing large genomes. Genome Research, 11(10):1619–1623, 2001.

[22] C.R. Cantor. Orchestrating the human genome project. Science, 248(4951):49–51,
1990.

[23] Cooperative Human Linkage Center. A comprehensive human linkage map with
centimorgan density. Science, 265(5181):2049–2054, 1994.

References 9-25

[24] T. Chen and S.S. Skiena. A case study in genome-level fragment assembly. Bioin-
formatics, 16(6):494–500, 2000.

[25] V. Choi and M. Farach-Colton. Barnacle: an assembly algorithm for clone-based
sequences of whole genomes. Gene, 320:165–176, 2003.

[26] S.L. Christian, J. McDonough, C.-Y. Liu, and S. Shaikh et al. An evaluation of the
assembly of an approximately 15-mb region on human chromosome 13q32-q33 linked
to bipolar disorder and schizophrenia. Genomics, 79(5):635–658, 2002.

[27] I.M. Chumakov, P. Rigault, E.S. Lander, and C. Bellanne et al. A YAC contig map
of the human genome. Nature, 377(6547 Suppl):175–297, 1995.

[28] A.S. Cohen, D.R. Najarian, and B.L. Karger. Separation and analysis of DNA se-
quence reaction products by capillary gel electrophoresis. Journal of Chromatogra-
phy, 516(1):49–60, 1990.

[29] D. Cohen, I. Chumakov, and J. Weissenbach. A first-generation physical map of the
human genome. Nature, 366(6456):698–701, 1993.

[30] F.S. Collins. Contemplating the end of the beginning. Genome Research, 11(5):641–
643, 2001.

[31] F.S. Collins and D. Galas. A new five-year plan for the u.s. human genome project.
Science, 262(5130):43–46, 1993.

[32] F.S. Collins, A. Patrinos, E. Jordan, and A. Chakravarti et al. New goals for the U.S.
human genome project: 1998-2003. Science, 282(5389):682–689, 1998.

[33] International Human Genome Sequencing Consortium. Initial sequencing and analysis
of the human genome. Nature, 409(6822):860–921, 2001.

[34] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein et al. Introduction to Algo-
rithms. MIT Press and McGraw-Hill, second edition, 2001.

[35] D.G. Corneil, S. Olariu, and L. Stewart. The ultimate interval graph recognition al-
gorithm? In Proc. Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 175–180, 1998.

[36] N.R. Cozzarelli. Revisiting the independence of the publicly and privately funded
drafts of the human genome. Proceedings of the National Academy of Sciences
USA, 100(6):3021, 2003.

[37] P. Deloukas, G.D. Schuler, and G. Gyapay et al. A physical map of 30,000 human
genes. Science, 282(5389):744–746, 1998.

[38] C. Demetrescu and I. Finocchi. Combinatorial algorithms for feedback problems in
directed graphs. Information Processing Letters, 86(3):129–136, 2003.

[39] U.S. Department of Energy and National Institutes of Health. Understanding our
genetic inheritance: The U.S. human genome project, the first five years: Fiscal years
1991-1995. Technical report, 1990. DOE/ER-0452P, NIH Publication No. 90-1590,
http://www.ornl.gov/sci/techresources/Human Genome/project/5yrplan.

[40] C. Dib, S. Faure, C. Fizames, and D. Samson et al. A comprehensive genetic map of
the human genome based on 5,264 microsatellites. Nature, 380(6570):152–154, 1996.

[41] DOE human genome program. Primer on molecular genetics. Technical report, U.S.
Department of Energy, Office of energy research, Washington DC, 1992.

[42] N.A. Doggett, L.A. Goodwin, J.G. Tesmer, and L.J. Meincke et al. An integrated
physical map of human chromosome 16. Nature, 377(6547 Suppl):335–365, 1995.

[43] H. Donis-Keller, P. Green, C. Helms, and S. Cartinhour et al. A genetic linkage map
of the human genome. Cell, 51(2):319–337, 1987.

[44] I. Dunham, N. Shimizu, B.A. Roe, and S. Chissoe et al. The DNA sequence of human
chromosome 22. Nature, 402(6761):489–495, 1999.

[45] P. Eades and X. Lin. A new heuristic for the feedback arc set problem. Australian
Journal of Combinatorics, 12:15–26, 1995.

9-26 References

[46] P. Eades, X. Lin, and W.F. Smyth. A fast and effective heuristic for the feedback arc
set problem. Information Processing Letters, 47(6):319–323, 1993.

[47] G. Even, J. Naor, B. Schieber, and M. Sudan et al. Approximating minimum feedback
sets and multi-cuts in directed graphs. In Proceedings of the 4th International IPCO
Conference on Integer Programming and Combinatorial Optimization, Lecture
Notes In Computer Science, pages 14–28, London, UK, 1995. Springer Verlag.

[48] S. Even. Graph Algorithms. Computer Science Press, Rockville, Maryland, 1979.
[49] R.D. Fleischmann, M.D. Adams, O. White, and R.A. Clayton et al. Whole-

genome random sequencing and assembly of Haemophilus influenzae Rd. Science,
269(5223):496–512, 1995.

[50] S. Foote, D. Vollrath, A. Hilton, and D.C. Page et al. The human Y chromosome:
overlapping DNA clones spanning the euchromatic region. Science, 258(5079):60–66,
1992.

[51] P. Galinier, M. Habib, and C. Paul. Chordal graphs and their clique graphs. In
Workshop on Graph-Theoretic Concepts in Computer Science, 1995.

[52] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and co., San Francisco, California,
1979.

[53] F. Gavril. Some NP-complete problems on graphs. In Proceedings of the 11th
conference on Information Sciences and Systems, pages 91–95, 1977.

[54] P.C. Gilmore and A.J. Hoffman. A characterization of comparability graphs and of
interval graphs. Canadian Journal of Mathematics, 16(99):539–548, 1964.

[55] P.W. Goldberg, M.C. Golumbic, H. Kaplan, and R. Shamir et al. Four strikes against
physical mapping of DNA. Journal of Computational Biology, 2(1):139–152, 1995.

[56] E.D. Green, H.C. Riethman, J.E. Dutchik, and M.V. Olson et al. Detection and
characterization of chimeric yeast artificial-chromosome clones. Genomics, 11(3):658–
669, 1991.

[57] P. Green. PHRAP and cross match. http://www.phrap.org.
[58] C.M. Grisham and R.H. Garrett. Biochemistry. Brooks Cole, second edition, 1998.
[59] R. Hassin and S. Rubinstein. Approximations for the maximum acyclic subgraph

problem. Information Processing Letters, 51(3):133–140, 1994.
[60] M. Hattori, A. Fujiyama, T.D. Taylor, and H. Watanabe et al. The DNA sequence

of human chromosome 21. Nature, 405(6784):311–319, 2000.
[61] W.-L. Hsu and T.-H. Ma. Fast and simple algorithms for recognizing chordal compa-

rability graphs and interval graphs. SIAM Journal on Computing, 28(3):1004–1020,
1999.

[62] X. Huang and A. Madan. CAP3: A DNA sequence assembly program. Genome
Research, 9(9):868–877, 1999.

[63] X. Huang, J. Wang, S. Aluru, and S.P. Yang et al. Pcap: A whole-genome assembly
program. Genome Research, 13(9):2164–2170, 2003.

[64] T.J. Hudson, L.D. Stein, S.S. Gerety, and J. Ma et al. An STS-based map of the
human genome. Science, 270(5244):1945–1954, 1995.

[65] D.H. Huson, K. Reinert, S.A. Kravitz, and K.A. Remington et al. Design of a com-
partmentalized shotgun assembler for the human genome. Bioinformatics, 17 Suppl
1:S132–139, 2001.

[66] S. Istrail, G.G. Sutton, L. Florea, and A.L. Halpern et al. Whole-genome shotgun
assembly and comparison of human genome assemblies. PNAS, 101(7):1916–1921,
2004.

[67] D.A. Jackson, R.H. Symons, and P. Berg. Biochemical method for inserting new
genetic information into DNA of simian virus 40: circular sv40 DNA molecules con-

References 9-27

taining lambda phage genes and the galactose operon of escherichia coli. Proceedings
of the National Academy of Sciences USA, 69(10):2904–2909, 1972.

[68] D.B. Jaffe, J. Butler, S. Gnerre, and E. Mauceli et al. Whole-genome sequence
assembly for mammalian genomes: Arachne 2. Genome Research, 13(1):91–96, 2003.

[69] V. Kann. On the Approximability of NP-complete Optimization Problems. PhD
dissertation, Royal Institute of Technology, Stockholm, Department of Numerical
Analysis and Computing Science, 1992.

[70] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and J.W.
Thatcher, editors, Complexity of computer computations, pages 85–103. Plenum
Press, 1972.

[71] J.D. Kececioglu and E.W. Myers. Combinatorial algorithms for DNA sequence as-
sembly. Algorithmica, 13:7–51, 1995.

[72] W.J. Kent and D. Haussler. Assembly of the working draft of the human genome
with GigAssembler. Genome Research, 11(9):1541–1548, 2001.

[73] U.-J. Kim, B.W. Birren, T. Slepak, and V. Mancino et al. Construction and character-
ization of a human bacterial artificial chromosome library. Genomics, 34(2):213–218,
1996.

[74] I.R. Kirsch and T. Ried. Integration of cytogenetic data with genome maps and avail-
able probes: present status and future promise. Seminars in hematology, 37(4):420–
428, 2000.

[75] P. Kitts. Genome Assembly and Annotation Process, chapter 14 in The NCBI
handbook, http://www.ncbi.nlm.nih.gov/books/bookres.fcgi/handbook/ch14d1.pdf.
2002.

[76] A. Kong, D.F. Gudbjartsson, J. Sainz, and G.M. Jonsdottir et al. A high-resolution
recombination map of the human genome. Nature Genetics, 31(3):241–247, 2002.

[77] N. Korte and R.H. Möhring. An incremental linear time algorithm for recognizing
interval graphs. SIAM Journal on Computing, 18(1):68–81, 1989.

[78] B. Lewin. Genes VIII. Prentice Hall, first edition, 2003.
[79] S. Li, G. Cutler, J.J. Liu, and T. Hoey et al. A comparative analysis of hgsc and

celera human genome assemblies and gene sets. Bioinformatics, 19(13):1597–1605,
2003.

[80] I.-J. Lin, T.A. McKee, and D.B. West. Leafage of chordal graphs. Discussiones
Mathematicae Graph Theory, 18(1):23–48, 1998.

[81] M. Litt and J.A. Luty. A hypervariable microsatellite revealed by in vitro amplifica-
tion of a dinucleotide repeat within the cardiac muscle actin gene. American Journal
of Human Genetics, 44(3):397–401, 1989.

[82] C.L. Lucchesi. A minimax equality for directed graphs. PhD dissertation, University
of Waterloo, Department of Numerical Analysis and Computing Science, 1966.

[83] J.A. Luckey, H. Drossman, A.J. Kostichka, and D.A. Mead et al. High speed DNA
sequencing by capillary electrophoresis. Nucleic Acids Research, 18(15):4417–4421,
1990.

[84] A.M. Maxam and W. Gilbert. A new method for sequencing DNA. Proceedings of
the National Academy of Sciences USA, 74(2):560–564, 1977.

[85] V.A. McKusick and F.H. Ruddle. The status of the gene map of the human chromo-
somes. Science, 196(4288):390–405, 1977.

[86] J.C. Mullikin and Z. Ning. The phusion assembler. Genome Research, 13(1):81–90,
2003.

[87] K. Mullis, F. Faloona, S. Scharf, and R. Saiki et al. Specific enzymatic amplification
of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor symposia on
quantitative biology, 51(Part 1):263–273, 1986.

9-28 References

[88] E.W. Myers, G.G. Sutton, A.L. Delcher, and I.M. Dew et al. A whole-genome as-
sembly of Drosophila. Science, 287(5461):2196–2204, 2000.

[89] E.W. Myers, G.G. Sutton, H.O. Smith, and M.D. Adams et al. On the sequencing and
assembly of the human genome. Proceedings of the National Academy of Sciences
USA, 99(7):4145–4146, 2002.

[90] S. Olariu. An optimal greedy heuristic to color interval graphs. Information pro-
cessing letters, 37(1):21–25, 1991.

[91] M. Olivier, A. Aggarwal, J. Allen, and A.A. Almendras et al. A high-resolution
radiation hybrid map of the human genome draft sequence. Science, 291(5507):1298–
1302, 2001.

[92] M. Olson, L. Hood, C. Cantor, and D. Botstein et al. A common language for physical
mapping of the human genome. Science, 245(4925):1434–1435, 1989.

[93] K. Osoegawa, P.Y. Woon, B. Zhao, and E. Frengen et al. An improved approach for
construction of bacterial artificial chromosome libraries. Genomics, 52(1):1–8, 1998.

[94] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

[95] H. Peltola, H. Soderlund, and E. Ukkonen. SEQAID: a DNA sequence assembling
program based on a mathematical model. Nucleic Acids Research, 12(1):307–321,
1984.

[96] P.A. Pevzner and H. Tang. Fragment assembly with double-barreled data. Bioinfor-
matics, 17(Suppl. 1):S225–S233, 2001.

[97] P.A. Pevzner, H. Tang, and M.S. Waterman. An eulerian path approach to D-
NA fragment assembly. Proceedings of the National Academy of Sciences USA,
98(17):9748–9753, 2001.

[98] J.M. Prober, G.L. Trainor, R.J. Dam, and F.W. Hobbs et al. A system for rapid
DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science,
238(4825):336–341, 1987.

[99] S. Qin, N.J. Nowak, J. Zhang, and S.N. Sait et al. A high-resolution physical map
of human chromosome 11. Proceedings of the National Academy of Sciences USA,
93(7):3149–3154, 1996.

[100] D.J. Rose, R.E. Tarjan, and G.S. Leuker. Algorithmic aspects of vertex elimination
on graphs. SIAM Journal on Computing, 5(2):266–283, 1976.

[101] E.C. Rouchka, W. Gish, and D.J. States. Comparison of whole genome assemblies of
the human genome. Nucleic Acids Research, 30(22):5004–5014, 2002.

[102] F. Sanger, S. Nicklen, and A.R. Coulson. DNA sequencing with chain-terminating
inhibitors. Proceedings of the National Academy of Sciences USA, 74(12):5463–
5467, 1977.

[103] M. Schena, D. Shalon, R.W. Davis, and P.O. Brown et al. Quantitative monitor-
ing of gene expression patterns with a complementary DNA microarray. Science,
270(5235):467–470, 1995.

[104] D.C. Schwartz and C.R. Cantor. Separation of yeast chromosome-sized DNAs by
pulsed field gradient gel electrophoresis. Cell, 37(1):67–75, 1984.

[105] L. Selleri, J.H. Eubanks, M. Giovannini, and G.G. Hermanson et al. Detection and
characterization of chimeric yeast artificial chromosome clones by fluorescent in situ
suppression hybridization. Genomics, 14(2):536–541, 1992.

[106] C.A.M. Semple, S. W. Morris, D.J. Porteous, and K.L. Evans et al. Computational
comparison of human genomic sequence assemblies for a region of chromosome 4.
Genome Research, 12(3):424–429, 2002.

[107] H. Shizuya, B. Birren, U.-J. Kim, and V. Mancino et al. Cloning and stable main-
tenance of 300-kilobase-pair fragments of human DNA in escherichia coli using an

References 9-29

f-factor-based vector. Proceedings of the National Academy of Sciences USA,
89(18):8794–8797, 1992.

[108] L.M. Smith, J.Z. Sanders, R.J. Kaiser, and P. Hughes et al. Fluorescence detection
in automated DNA sequence analysis. Nature, 321(6071):674–679, 1986.

[109] W.H. Sofer. Introduction to Genetic Engineering. Butterworth-Heinemann, 1991.
[110] H.H. Stassen and C. Scharfetter. Integration of genetic maps by polynomial trans-

formations. American Journal of Medical Genetics, 96(1):108–113, 2000.
[111] E.A. Stewart, K.B. McKusick, A. Aggarwal, and E. Bajorek et al. An STS-based

radiation hybrid map of the human genome. Genome Research, 7(5):422–433, 1997.
[112] G.G. Sutton, O. White, M.D. Adams, and A. Kerlavage et al. TIGR assembler: A

new tool for assembling large shotgun sequencing projects. Genome science and
technology, 1:9–19, 1995.

[113] H. Swerdlow, S.L. Wu, H. Harke, and N.J. Dovichi et al. Capillary gel electrophore-
sis for DNA sequencing. laser-induced fluorescence detection with the sheath flow
cuvette. Journal of Chromatography, 516(1):61–67, 1990.

[114] The Utah Marker Development Group. A collection of ordered tetranucleotide-repeat
markers from the human genome. American Journal of Human Genetics, 57(3):619–
628, 1995.

[115] J.C. Venter, M.D. Adams, E.W. Myers, and P.W. Li et al. The sequence of the
human genome. Science, 291(5507):1304–1351, 2001.

[116] J.C. Venter, M.D. Adams, G.G. Sutton, and A.R. Kerlavage et al. Genomics: Shotgun
sequencing of the human genome. Science, 280(5369):1540–1542, 1998.

[117] J.C. Venter, H.O. Smith, and L. Hood. A new strategy for genome sequencing.
Nature, 381(6581):364–366, 1996.

[118] D. Vollrath, S. Foote, A. Hilton, and L.G. Brown et al. The human Y chromosome:
a 43-interval map based on naturally occurring deletions. Science, 258(5079):52–59,
1992.

[119] J. Wang, G. K.-S. Wong, P. Ni, and Y. Han et al. Reps: A sequence assembler that
masks exact repeats identified from the shotgun data. Genome Research, 12(5):824–
831, 2002.

[120] R.H. Waterston, E.S. Lander, and J.E. Sulston. On the sequencing of the human
genome. Proceedings of the National Academy of Sciences USA, 99(6):3712–3716,
2002.

[121] R.H. Waterston, E.S. Lander, and J.E. Sulston. More on the sequencing of the human
genome. Proceedings of the National Academy of Sciences USA, 100(6):3022–3024,
2003.

[122] J.D. Watson. The human genome project: past, present, and future. Science,
248(4951):44–49, 1990.

[123] J.D. Watson and F.H. Crick. Molecular structure of nucleic acids; a structure for
deoxyribose nucleic acid. Nature, 171(4356):737–738, 1953.

[124] J.L. Weber and P.E. May. Abundant class of human DNA polymorphisms which
can be typed using the polymerase chain reaction. American Journal of Human
Genetics, 44(3):388–396, 1989.

[125] M.C. Weiss and H. Green. Human-mouse hybrid cell lines containing partial com-
plements of human chromosomes and functioning human genes. Proceedings of the
National Academy of Sciences USA, 58(3):1104–1111, 1967.

[126] J. Weissenbach, G. Gyapay, C. Dib, and A. Vignal et al. A second-generation linkage
map of the human genome. Nature, 359(6398):794–801, 1992.

[127] M.C. Wendl, M.A. Marra, L.W. Hillier, and A.T. Chinwalla et al. Theories and
applications for sequencing randomly selected clones. Genome Research, 11(2):274–

9-30 References

280, 2001.
[128] L.A. Wolsey and G.L. Nemhauser. Integer and Combinatorial Optimization. Wiley-

Interscience, New York, New York, first edition, 1999.

10
Comparative Methods for Sequence

Assembly

Vamsi Veeramachaneni
Strand Genomics Corporation

10.1 Introduction . 10-1
10.2 Conserved Segments in Chromosomes 10-2
10.3 Hierarchical Sequencing . 10-3

Physical mapping • Shotgun sequencing
10.4 Comparative Methods in Sequencing 10-5

Construction of physical maps • Ordering and
orienting contigs

10.5 Consensus Sequence Reconstruction (CSR)
problem . 10-8

10.6 The 1-CSR Problem . 10-10
Problem Statement • Approximation algorithm •

Upper and lower bounds • Exact algorithm • Heuristic
• Results • Discussion

10.7 Conclusions . 10-20

10.1 Introduction

The past few years have seen remarkable progress in the field of DNA sequencing. Some
of the landmark achievements are the sequencing of several key experimental organisms
including a yeast (Saccharomyces cerevisiae) [16], the multicellular organism Caenorhabditis
elegans [44], the plant Arabidopsis thaliana [15], the fruitfly Drosophila melanogaster [1,
32] and the completion of the draft sequence of the human genome [52, 27]. At present,
the complete genome sequences of over 200 species (mostly bacteria) are available in the
Genomes section of GenBank.

The GenBank sequence database [4], a repository of all publicly available DNA sequences,
continues to grow at an exponential rate, doubling in size approximately every 14 months.
As of release 146, February 2005, GenBank contained over 46.8 billion nucleotide bases
from 42.7 million different sequences. Complete genomes represent a growing portion of the
database, with over 70 of the 229 complete microbial genomes available in April, 2005 in
GenBank deposited over the past year.

However, current costs associated with large-scale sequencing remain a limiting factor for
genome sequencing efforts [17]. For example, establishing approximately one-fold sequence
coverage of a mammalian genome requires the generation of roughly 6 million sequence
reads and at present costs about US $10–20 million (and so, a working draft sequence with
approximately five-fold coverage would cost US $50–100 million). As a result, even though
more than 140,000 different organisms are represented in GenBank, it is clear that only a

10-1

10-2 Handbook of Computational Molecular Biology

handful of different genomes can realistically be sequenced in a comprehensive fashion, at
least by the available methods.

In this chapter, we describe methods that use existing genomic sequences as a guide to
assembling the genomic sequences of related organisms. The underlying assumption in all
these methods is that genomic organization tends to be evolutionarily conserved between
species — an idea that was first postulated in the early 1900s [7, 19]. Recent studies that
characterize the nature and extent of sequence conservation, and some comparative ge-
nomics methods that exploit the presence of conserved segments are summarized in Section
10.2. Section 10.3 outlines the main computational problems encountered in hierarchical
sequencing — physical mapping and contig ordering. Comparative approaches that have
been used to solve the mapping problem are summarized in 10.4.1. In section 10.4.2, we
introduce the main idea behind the comparative methods for contig ordering presented in
greater detail in the rest of the chapter.

10.2 Conserved Segments in Chromosomes

During evolution, inter- and intra- chromosomal rearrangements such as fission, fusion,
reciprocal translocation, transposition and inversion disrupt the order of genes along the
chromosome, as depicted in Figure 10.1. However, gene order remains fixed in the segment
between any two neighboring breakpoints resulting from the rearrangements. These seg-
ments with conserved gene order (conserved segments) tend to become shorter with time as
they are disrupted by new events.

Comparative mapping studies have shown that closely related organisms share large con-
served chromosome segments while more distantly related species exhibit shorter conserved
segments [37, 11]. Many studies have shown that large stretches of DNA are conserved in
mammalian species as divergent as human and fin whales [33, 41, 42, 55] and that gene
order is also conserved to a significant extent [35, 46]. For instance, the cat genome can
be reorganized into the human genome by as few as 13 translocation steps [36]. However,
exceptions to the slow rate of rearrangements occur in several mammalian orders. Rodent
species, particularly mouse and rat, show rapid pattern of change, with some 180-280 con-
served segments shared between human and mouse [18, 27] and 60 shared between mouse
and rat [34].

The availability of genome sequences of multiple organisms has allowed researchers to
compute the extent of sequence conservation in homologous regions more precisely. One
rather surprising discovery was that a large number of actively conserved regions are un-
likely to be genes [9]. Overall it is estimated that 5% of the mammalian genome is under
purifying selection [53]. This is a much higher proportion than can be explained by protein
coding sequence alone. To better describe unique conserved regions, Mural et al. [31] use
the term syntenic anchor to refer to short stretches of DNA in different species that show
significant sequence match to each other but to no other region in either genome1. While
some of the anchors correspond to conserved exons, the majority do not. In a comparison of
the human and mouse genomes, an analysis of the distribution of syntenic anchors mapped
to chromosome 16 of mouse revealed that only 56% are within gene boundaries (34% cor-
respond to exons) and that the density of anchors along the chromosome was unaffected

1The terms orthologous landmark [53] and clusters of orthologous bases (COBS) [10] have also been
used in similar contexts.

Comparative Methods for Sequence Assembly 10-3

FIGURE 10.1: Chromosomal rearrangements. Colors are used to highlight the changes in gene
order. Assuming that the rearrangements take place in the order shown, the
final chromosomal segment contains 4 conserved segments — (C D), (Z Y), (U V

W) and (E F) — from the initial chromosomes.

by gene density. Over 50% of the syntenic anchors occurred in runs of at least 128 in a
row with the same order and orientation in both the genomes with no interleaving anchors.
Similar results based on a three-way comparison between human, mouse and dog [10], and
a 12 species comparison of regions orthologous to a 1.8 MB section of human chromosome
7 confirm the wide-spread presence of syntenic anchors [49].

Comparative genomics methods have been used to discover regulatory elements [20, 29],
construct comparative gene maps [48, 26], refine annotation [5], predict gene structure
based on sequence conservation at corresponding locations in two sequences [25, 12, 30],
and identify orthologs based on conserved gene order [45]. In this chapter we focus on how
comparative sequencing approaches can take advantage of the presence of the large number
of syntenic anchors distributed across genomes.

10.3 Hierarchical Sequencing

Hierarchical (map based) sequencing and whole genome shotgun (WGS) sequencing [54] are
the two most common strategies for the sequencing of large, complex genomes. The relative
merits of these approaches have been summarized in [17]. The initial large scale sequencing

10-4 Handbook of Computational Molecular Biology

projects (including those for the S. cerevisiae, C. elegans and A. thaliana genomes) were
guided by carefully constructed clone maps which are an integral part of the hierarchical
approach. While mapped BAC clones continue to play a fundamental role in obtaining a
finished sequence, the fast and relatively less expensive WGS sequencing method has come
to be an important component of many genome-scale sequencing projects. Mixed strategies
are being used in the sequencing of the mouse and rat genomes. In this chapter, we discuss
only the hierarchical approach since it is more amenable to comparative methods. The
two phases in this approach and the computational problems involved are described in this
section. The next section describes comparative methods that tackle the same problems.

10.3.1 Physical mapping

The process of physical mapping starts with the breaking of the DNA molecule into small
pieces (e.g., with restriction enzymes). Multiple copies of each fragment are created by
incorporating the fragment into a self-replicating host. The self-replication process then
creates large number of copies (clones) of the fragment.

Over the past several years, the bacterial artificial chromosome (BAC) has emerged as
the vector system of choice for cloning. The BAC cloning system allows the isolation of
genomic DNA fragments that are reasonably large (80 to >200 kilobases [kb]). At the same
time, BAC clones are less prone to artifacts than other available vector systems for large-
fragment cloning, e.g., cosmids and yeast artificial chromosomes (YACs). In the rest of the
chapter, we often refer to clones as BAC clones. However, the methods discussed are often
applicable to other types as well.

As a result of the cloning process, biologists obtain a clone library consisting of thousands
of clones (each representing a short DNA fragment) from the same DNA molecule. After a
clone library is constructed biologists want to order the clones since information regarding
the location of clones is lost in the construction of the clone library. The problem of
determining placement of clones along the DNA molecule to construct a clone map is also
called the physical mapping problem.

The main idea in physical mapping is to describe each clone using an easily determined fin-
gerprint, which can be thought of as a set of “key words” for the clone. In addition to being
inexpensive to determine, a good clone fingerprinting scheme should satisfy two criteria —
clones with substantial overlap should have similar fingerprints and non-overlapping clones
should have distinct fingerprints with high probability. Two commonly used fingerprints
are

• the sizes of the fragments created when a clone is cut by a particular restriction
enzyme

• the list of probes that hybridize to a clone

The computational problems underlying the construction of a clone map based on these
fingerprints are NP-hard [38]. However, in practice, these fingerprints allow biologists to
distinguish between overlapping and non-overlapping clones and to reconstruct the order of
the clones (physical map).

10.3.2 Shotgun sequencing

Minimally overlapping clones that form a tiling path across the target DNA fragment are
selected from the clone map to form a sequence ready clone map. Individual clones from
this map are sequenced using shotgun sequencing — a method that has been the mainstay
of all large scale sequencing techniques since the 1980s. In this method, multiple copies of

Comparative Methods for Sequence Assembly 10-5

5′ → AAAAGCTTCTAGAACCACTGTAGGAGGTACAAGATGCTCCTGAGAACTCAGTAGAGGTGG → 3′

3′ ← TTTTCGAAGATCTTGGTGACATCCTCCATGTTCTACGAGGACTCTTGAGTCATCTCCACC ← 5′

ATGCf1 f2 f3ATGC
5′ → AAAAGCTTCTAGAACCACTGTAGGAGGTACAAGATGCTCCTGAGAACTCAGTAGAGGTGG → 3′

3′ ← TTTTCGAAGATCTTGGTGACATCCTCCATGTTCTACGAGGACTCTTGAGTCATCTCCACC ← 5′
TTTTCGAAGATCTTGGT f4 f5 TCTTGAGTCATCTCCACC

FIGURE 10.2: A sample order/orient problem instance. Sequencing the DNA fragment shown
in the upper half of the figure results in five contigs f1, . . . , f5 with unknown order
and orientation. The figure in the lower half shows the locations of the contigs
in the original fragment.

the DNA fragment to be sequenced are created by cloning and then randomly partitioned
into smaller fragments. Approximately 500-700 consecutive basepairs from the ends of these
fragments can be determined using variations of the Sanger method [40]. These sequences
are called reads. Overlapping reads are assembled into contigs, i.e., presumably contiguous
sections of the genomic sequence. The ideal outcome of this step is a single contig that
represents the entire sequence of the original DNA fragment. More commonly, the result is
a set of contigs with unknown order and orientation (strand information).

For example, consider the double stranded DNA fragment shown in Figure 10.2. Since
strands are read in the 5′ → 3′ direction, the fragment is represented by the sequence
s = AAAAG· · ·GTGG or its reverse complement sR = CCAC· · ·CTTTT. If the result of shotgun
sequencing is the set of contigs {f1, f2, f3, f4, f5}, we would like to order the contigs along
one of the strands. We call this the contig order/orient problem. In this instance there
are two solutions depending on the strand along which we choose to place the contigs –
〈f1, fR

4 , f2, f
R
5 , f3〉 and 〈fR

3 , f5, f
R
2 , f4, f

R
1 〉.

In the case of hierarchical sequencing, the clone map imposes a partial order on the sets of
all contigs obtained i.e., if C1C2 . . . Cn is the sequence ready clone map for a DNA fragment
X , then it follows that when the resulting contigs are correctly ordered along X , all contigs
from clone Ci will appear to the left of all contigs from clone Cj for any i < j. Thus, the
problem reduces to that of ordering and orienting contigs from individual clones separately.
This can usually be accomplished by consulting a detailed list of markers.

However, since the physical mapping process is not present in the whole genome shotgun
(WGS) sequencing strategy, an alternative method is used. Pairs of reads, called mates,
are sequenced from the ends of long inserts randomly sampled from the genome. Since the
lengths of these long inserts can be measured accurately, the presence of mates in different
contigs serves to order and orient the contigs and give the approximate distance between
them. The result of this assembly process is, therefore, a collection of scaffolds, where each
scaffold is a set of contigs that are ordered, oriented and positioned with respect to each
other.

10.4 Comparative Methods in Sequencing

10.4.1 Construction of physical maps

A few hundred thousand clones are needed to make a library that provides an adequate rep-
resentation of a mammalian-sized genome. This makes both the fingerprinting techniques

10-6 Handbook of Computational Molecular Biology

discussed in the previous section relatively expensive to implement for the complete charac-
terization of an entire library. BAC end sequencing, in which probes are created based on
the sequence obtained by reading the ends of BACs, is presently nearly three times more
expensive than sequencing other substrates because of the difficulty in obtaining good yields
of BAC DNA for sequencing etc. Furthermore, appropriate DNA preparation is difficult
and automated preparation systems have not been developed.

As for restriction enzyme-based fingerprinting, only in the last few years has the method-
ology become reliable enough at high throughput levels to generate the amount of high
quality data needed to build maps that are accurate enough and of high enough resolution
to guide the choice of clones for sequencing. The costs of constructing a fingerprint-based
map have decreased somewhat recently, but remain high. For example, for 200,000 clones,
end sequencing currently costs at least $1.5 million, while fingerprinting costs more than $2
million.

The availability of a draft human genome sequence [52, 27] has radically improved the
ability to perform comparative mapping with related species. Specifically, the locations
and sequences of genes in the human genome can be used to guide map construction in
other species through the computational detection of orthologous sequences. Some recent
methods that use the finished genomic sequence of one species, S1, to assemble a physical
map of clones of a second related species S2 are described below:

• Required: Locations and sequences of genes in species S1.
Method: The gene sequences of S1 are used to query databases containing DNA
sequences of species S2. Orthologous S2 sequences found by the search are used
to design S2 specific hybridization probes. The probes are used to screen a S2

clone library. The resulting hybridization data is used to infer overlaps among
clones and to construct a clone map. This approach is well suited to produce
sequence ready maps that are known to contain a gene(s) and are homologous to
a specific section of the S1 genome. Note that the designed probes can also be
used in assembling clone maps of any species S3 that is very close to species S2.
This is especially helpful if very little sequence data is available for S3 compared
to S2.
More than 3,800 mouse BACs representing approximately 40% of the mouse
genome that is homologous to human chromosome 7 were assembled in this man-
ner by this method [48]. In addition, the same probes were used to isolate clones
from a rat clone library [47]. A map spanning 90% of mouse genomic sequence
homologous to human chromosome 19 was also created in a similar manner [24].
The main limitation of the above comparative mapping approach is the require-
ment for an extensive DNA sequence resource for the second species S2, such
as large collections of expressed-sequence tags (ESTs), BAC-end sequences, or
whole-genome shotgun sequences.

• Required: Genomic sequence of species S1.
Method: S2 BAC end sequences (BESs) are determined by sequencing the ends
of clones from a S2 BAC clone library. If possible, BESs that comprise mainly of
repetitive elements are discarded. Matches between the BESs and the S1 genomic
sequence are identified using standard sequence comparison programs and BESs
with non-unique matches or no matches are eliminated. A clone for which both
BESs have high quality matches is mapped onto the location on S1 bounded by
the BESs match sites if the distance between the match sites is proportional to

Comparative Methods for Sequence Assembly 10-7

the length of the cloned fragment 2. Clone overlaps are inferred in a natural
manner when clones are mapped to overlapping locations on the S1 genomic
sequence. Clones, whose paired BESs match sites on different chromosomes or
sites separated by intervals disproportional to the clone length, probably straddle
genomic rearrangement breakpoints and cannot be mapped easily.
The main problem with this method is that the presence of repetitive sequences
reduces the effective amount of DNA available for BESs similarity search by
nearly half in the case of mammalian BAC clones. Species-specific sequence and
highly diverged sequence further reduce the number of usable BESs. This means
that when this method is applied to distantly related species only a small fraction
of BACs in the library might be successfully positioned. To obtain a sequence
ready clone map covering an entire chromosome(s), it may be necessary to start
with a high coverage clone library.
In a recent application of this method [14], chimp BESs were compared with the
human genome RefSeq contigs. 67% of the BESs which aligned with high sim-
ilarity were used to map 24,580 (out of 64,116) BAC clones creating a physical
map that covered 48.6% of the human genome. In more distantly related species,
the numbers are a bit lower. In the construction of a human-cattle comparative
map that covers 32% of the human genome [28], only 1,242 (5%) out of 24,855
clones had both ends matching human sequence with significant similarity. This
approach has also been used in conjunction with the traditional restriction en-
zyme finger-printing method for assembling the human-mouse homology clone
map [18]. Pooled Genomic Indexing (PGI), a variation of this method that uses
shotgun sequence reads (instead of BESs) and a pooled array of clones to min-
imize the number of distinct sequencing operations is currently being used to
create a clone map for Rhesus macaque [21].

• Required: Genomic sequences for two species S1, S2.
Method: Orthologous genomic sequences from the two species are masked for
repetitive elements and then aligned. Regions with high sequence conservation
are identified and a short candidate probe sequence is selected from the con-
served region. Unique sequences from this set which are separated by 30-40kb
are selected to serve as hybridization probes. These probes can be used to screen
libraries from different species and the hybridization data can be used for the
parallel construction of sequence-ready clone maps in multiple species.
Note that these probe sequences are not necessarily from genic regions – many
studies have shown a significant fraction of conserved regions is present in in-
tergenic and intronic regions [8, 13]. By choosing probe sequences based only
on the extent of cross-species conservation and distribution along the genome,
this approach maximizes the chance of generating a tiling map that spans gene
poor regions. This approach was used to create sequence-ready clone maps for
multiple mammalian species (chimpanzee, baboon, cat, dog, cow, and pig) [23].

2Spacing between adjacent syntenic anchors varies from species to species. Syntenic anchors are more
closely spaced in mouse than in human, reflecting the 14% smaller overall genome size [53].

10-8 Handbook of Computational Molecular Biology

10.4.2 Ordering and orienting contigs

In the absence of high resolution marker maps or mate pair information, we can still infer
some order/orient relationships by comparing the conserved regions present in contigs of
two organisms that are close in evolutionary terms. This process was performed manually
by Pletcher et al. [39] to order and orient mouse contigs derived from low-pass (2.2x)
sequencing. Figure 10.3 illustrates the sort of inference that is possible.

a b a b a b

c d c dR

h

m1

h

m2

h

m1 mR
2

+ =⇒

FIGURE 10.3: Use of sequence comparison to orient/order contigs. Contig h (say, of human)
includes region a, which aligns with region c in contig m1 (say, of mouse). Also,
another region of h, denoted b, aligns with dR, the reverse complement of region d
of mouse contig m2. We infer that m1 precedes mR

2 , relative to the orientation in
which h is given. Note that the distance between m1 and mR

2 cannot be inferred
from such comparisons.

In Section 10.5 we formulate a general version of the order-orient problem as an optimiza-
tion problem and summarize the complexity results shown in [50]. Algorithms for simpler
versions of the problem which are more frequently encountered in practice are discussed in
Section 10.6.

10.5 Consensus Sequence Reconstruction (CSR) problem

We model the problem of determining order/orient relationships from alignments between
contigs as follows. Data consists of a set of “h-contigs” and a set of “m-contigs”, where each
contig is simply an ordered list of conserved regions. We use σ(a, b) to denote the score of
the alignment between a and b, where a or aR is a conserved region of an h-contig and b
or bR is a conserved region of an m-contig. An example of a permissible data set consists
of contigs h1 : 〈a, b, c〉, h2 : 〈d〉, m1 : 〈s, t〉, m2 : 〈u, v〉 and the alignment scores σ(a, s) = 4,
σ(a, t) = 1, σ(b, tR) = 3, σ(c, u) = 5, σ(d, t) = σ(d, vR) = 2. See Fig. 10.4.

h1

m1

h2

m2

a b c

s t u

v

d

FIGURE 10.4: Picture of a sample set of data, discussed in the text.

Comparative Methods for Sequence Assembly 10-9

Alignments involving conserved regions in contig h1 may serve to orient and order several
m-contigs relative to each other. Some of these m-contigs may in turn orient and order h1

relative to additional h-contigs, and so on. This leads to an “island”3 of contigs that are
oriented and ordered relative to one another. With ideal data, this process would partition
the set of contigs into islands, such that inter-island order/orient relationships cannot be
determined from the alignments. In reality, the set of given alignments is frequently in-
consistent with any proposed orientation and ordering of the contigs. Simple examples are
shown in Fig. 10.5. More complex examples arise in practice when regions have been shuf-
fled by evolutionary processes, when incorrect alignments are computed, and when contigs
are incorrectly assembled from reads.

h h

m m

a ab b

c cd d

FIGURE 10.5: Two potential inconsistencies among alignments between contigs. In the first
example, contig h contains regions a and b, where a aligns with region c of contig
m, and b aligns with dR, where d is another region of m. The a − c alignment
supports the current orientation, while the b − d alignment calls for reversal of
m. The second example violates our requirement that aligning regions be in the
same order in the two sequences.

Our goal is to determine orientations and an order for each of the two sets of contigs that,
possibly together with deletions of some of the conserved regions, gives two equal-length
and consistently ordered lists of conserved regions showing high overall similarity. Ideally,
this would mean maximizing the sum of the scores σ. For a simple example, consider the
dataset given several paragraphs above. We can delete (i.e., ignore) b and t, reverse h2

and place it after h1 (giving 〈a, c, dR〉), then place m1 before m2 in their given orientation
(giving 〈s, u, v〉), which yields the score σ(a, s) + σ(c, u) + σ(dR, v) = 4 + 5 + 2 = 11. See
Fig. 10.6 for a picture of the solution.

h1

m1 m2

a b c

s t u v

dR

hR
2

FIGURE 10.6: Solution to the orient/order problem of Fig. 10.4. All alignments pictured in Fig.
10.4 that are inconsistent with this layout have been discarded.

3While similar to scaffolds [54], islands present a different combinatorial problem because they involve
fragments of different species, do not imply any distance information and cannot overlap with other
islands.

10-10 Handbook of Computational Molecular Biology

Note that once orientations and an order of the contigs are chosen, it is easy to decide how
sites should be deleted to maximize the score—this is simply the classic problem of aligning
two lists of symbols. (Here, however, each symbol of the “sequence” denotes a conserved
region, rather than an individual nucleotide.) The difficulty lies with determining an optimal
set of orient/order operations.

In results described elsewhere ([50]) we have shown that no polynomial-time algorithm
can be guaranteed to orient and order the contigs so as to always maximize the resulting
score. In fact, even if we make a number of simplifying assumptions, such as

• each conserved region is involved in precisely one alignment (e.g., for each a,
σ(a, b) > 0 for just one b),

• there is only one h-contig and
• each m-contig has only two conserved regions,

the problem of computing an optimal set of orient/order operations is MAX-SNP hard.
In particular, this result implies that for any existing heuristic one can generate data such

that the heuristic result will be far from the correct one. This poses a challenge that can
be addressed in two ways -

• Characterize the types of data that would “fool” the heuristic. Any time the
heuristic is used, show that the input does not contain data with these “bad”
properties.

• Find an algorithm that is designed on different principles and compare the two
outcomes.

While the first option is preferable, it is difficult to formalize. Approximation algorithms
offer alternative design principles to greedy heuristics and have been described in detail in
[50]. In the next section, we show three different ways for tackling a simpler version of the
CSR problem.

10.6 The 1-CSR Problem

In this section, we assume that one of the genomes is assembled i.e., we have a set of
m-contigs and a single h-contig, h. We consider the problem of ordering and orienting the
m-contigs based on their alignments with h. Our formulation, described in Section 10.6.1, is
well suited to handle real data sets generated by local alignment tools in a natural manner.
We describe a 2-approximation algorithm in Section 10.6.2 and the exact branch-and-bound
algorithm by Veeramachaneni et al. [51] in Section 10.6.4. Finally, we describe a heuristic
that uses both the approximation algorithm and the exact algorithm as subroutines in
Section 10.6.5. Guidelines for the effective use of the heuristic are summarized at the end
of the section.

10.6.1 Problem Statement

One can use a local alignment tool such as BLAST to compare all the m-contigs with h.
We assume that each local alignment that is found by the comparison program identifies a
region of a m-contig, mi (or its reverse complement mR

i), a region of h, and the alignment
score. We model these alignments as hits. More formally,

Definition 10.1 A hit, p, aligns interval [bm, em] of some contig md
l (where d is blank or

R) with interval [bh, eh] of contig h with score s (see Figure 10.7). We use the notation

Comparative Methods for Sequence Assembly 10-11

(a) Hits

p4

�

�
�

�
�

p1

p2

p3

p5

(b) Precedence graph

FIGURE 10.7: The hit precedence graph restricted to hits owned by ml is shown on the right.
Hit p4 is inconsistent with all other hits and appears as an isolated vertex.

• owner (p) = ml

• dir (p) = d

• m-interval (p) = [bm(p), em(p)] = [bm, em]
• h-interval(p) = [bh(p), eh(p)] = [bh, eh]
• σ(p) = s

We view the input to our problem as a set of hits D. Our solution, a subset of D, will
represent a collection of “consistent alignments”. The definitions that follow formalize this
notion.

Definition 10.2 We say that hit p precedes hit q (p ≺ q) if

• owner (p) = owner(q)
• dir (p) = dir (q)
• em(p) < bm(q) and eh(p) < bh(q)

Also, p � q if p ≺ q or p = q.

Definition 10.3 The hit precedence graph is the weighted directed acyclic graph G =
(D,E,w) where

• ∀p, q ∈ D, (p, q) ∈ E iff p ≺ q

• ∀p ∈ D,w(p) = σ(p)

Definition 10.4 In the hit precedence graph G = (D,E,w)

• a path, P, is a sequence of vertices 〈p1, . . . , pn〉 s.t. ∀i < n, (pi, pi+1) ∈ E.
• the weight of P , w(P), is the sum of the weights of the vertices in P

• maxpath(p, q) is the maximum weight path that starts at p and ends at q

Using dynamic programming we can easily compute maxpath(p, q), for every pair of hits
p, q which satisfy p ≺ q.

Definition 10.5 If p � q, we define match p = match(p, q) with the following attributes:

• owner (p) = owner (p)
• dir (p) = dir(p)

10-12 Handbook of Computational Molecular Biology

(a) Hit based representation

m1

p1 p2

p12

m2

q1 q2

q12

(b) Match based representation

FIGURE 10.8: The match based representation shown on the right displays owners of matches (as
circles) and the h-intervals of matches as horizontal lines. p1 = match(p1),p12 =
match(p1, p2) etc.

• h-interval(p) = [bh(p), eh(q)]
• m-interval (p) = [bm(p), em(q)]
• σ(p) = w(maxpath(p, q))

For a set of matches A, we can extend the above notation in a straight forward manner
— using addition for numerical values, union otherwise. In particular,

• owner (A) = {owner(p) | p ∈ A}
• h-interval(A) = {h-interval(p) | p ∈ A}
• σ(A) =

∑
p∈A σ(p)

Definition 10.6 Two matches p, q are compatible if

• owner (p) �= owner (q)
• h-interval(p) ∩ h-interval(q) = φ

A set of matches is compatible if the matches are pairwise compatible.

Intuitively, adding a match p to a solution represents the anchoring of the m-contig
owner(p) to the location h-interval (p) on h. The compatibility definition given above
ensures that each m-contig is placed at atmost one location along h and that no two m-
contigs are placed at the same location.

Our problem is the following: given D, find a compatible set of matches with maximum
score. It follows from Definition 10.5 that we can compute in polynomial time the set of
all matches defined by D. So we can reduce our problem to a simpler one: given a set of
matchesM find the compatible subset with maximum score. Following the notation used in
the previous section, we call this the 1-CSR problem. Note that once we define the problem
in terms of matches, we no longer need to consider the orientation of a m-contig nor the
m-intervals of its hits. We, therefore, use the simpler representation shown in Figure 10.8
for 1-CSR problem instances.

10.6.2 Approximation algorithm

We can reduce 1-CSR to a more abstract Interval Selection Problem, ISP for short, where we
are given set A of integer intervals and a non-negative profit function p : [1, k]×A → R+.

Comparative Methods for Sequence Assembly 10-13

The task is to select at most one interval of A for each i ∈ [1, k], so that the selected
intervals are disjoint and the sum of profits is maximal. ISP was studied in the context of
scheduling4 by Bar-Noy et al. [2], who described an algorithm with ratio 2. Later Berman
and DasGupta [6] described a Two Phase Algorithm (TPA) that obtains ratio 2. A version
of the TPA suitable for the 1-CSR problem is shown in Figure 10.9.

THEOREM 10.1 TPA is a 2-approximation algorithm for the 1-CSR problem that runs
in time O(n logn), where n = |M |.

FIGURE 10.9: Two-phase algorithm for 1-CSR.
(* definitions *)

M is sorted so that eh(p)s are non-decreasing
S is an initially empty stack that stores (value, match) pairs;
RegionTotal(b, e) is the sum of values of those (v,p) pairs on S

that have eh(p) ∈ [b, e];
OwnerTotal(ml, c) is the sum of values of those (v,p) pairs on S

that have eh(p) ∈ [1, c] and owner(p) = ml;
DONE ← n+ 1;
for (each ml) InSoln[ml] ← false;

(* evaluation phase *)

for (each p from M)
{ v ←σ(p)− RegionTotal(h-interval(p))−OwnerTotal(owner (p), bh(p)− 1);

if (v > 0)
push((v,p), S);

}

(* selection phase *)

while (S is not empty)
{ (v,p) ← pop(S);

if (not InSoln[owner(p)] and eh(p) < DONE)
insert p into the solution,
InSoln[owner(p)] ← true, DONE ← bh(p);

}

4More general versions of ISP are considered with different Ai for each i ∈ [1, k].

10-14 Handbook of Computational Molecular Biology

10.6.3 Upper and lower bounds

Every pair of matches in a valid solution satisfies two properties — different owners and
disjoint h-interval s. If we relax the first property, the problem reduces to that of computing
the weighted maximum independent set in the interval graph G = (V,E,w), where

• V = h-interval (M)
• E = {(v1, v2) ∈ V × V | v1 ∩ v2 �= φ}
• ∀p ∈M, w(h-interval(p)) = σ(p)

The weighted maximum independent set problem in intervals graphs can be solved in
O(n log n) time [22]. We let MIS (M) denote the optimal solution to this relaxed version of
the 1-CSR problem.

REMARK 10.1 Let M be a 1-CSR instance, TPA(M) the solution returned by the
Two Phase Algorithm (TPA) and Opt(M) the optimal solution.

1. σ(TPA(M)) ≤ σ(Opt(M)) ≤ σ(MIS (M))
2. If each contig participates in exactly one match then σ(MIS (M)) = σ(Opt(M))

It follows from the previous remark that lb(M), ub(M) defined as σ(TPA(M)), σ(MIS (M))
respectively are valid lower and upper bounds on σ(Opt(M)).

10.6.4 Exact algorithm

We can solve a 1-CSR problem instance by examining all compatible sets of matches and
selecting the set with highest score. However, explicitly enumerating all elements of the
search space of feasible solutions could take exponential time. We use the classic branch-
and-bound method to eliminate from consideration parts of the search space where no
optimal solution can exist.

To apply the branch-and-bound method we

• divide the search space of the problem to create smaller sub-problems
• compute upper and lower bounds for each sub-problem and if possible eliminate

it from further consideration

The method starts by considering the original problem with the complete search space –
this is the root problem. The search space is then divided into two parts. The problems
aimed at finding the optimal solution for each part become the children of the root search
node. Applying the division procedure recursively, we generate a tree of subproblems.

Given a 1-CSR problem instance, M, we can represent a node, u, of the tree as a pair
(S,C), where

• S,C ⊆M, S ∩ C = φ

• S is a compatible set of matches
• each match of C is individually compatible with S i.e. ∀a ∈ C , S ∪ {a} is a

feasible solution

Let U represent the set of all feasible solutions. The node u represents the subset Ru of
solutions that satisfy

Ru = {S′ ∈ U | S ⊆ S′ ⊆ S ∪C}

For a node u = (S,C) our division procedure create subproblems v, w as follows:

Comparative Methods for Sequence Assembly 10-15

1. let a be the match in C with maximum score
2. let incompat(a) = {b ∈ M | a is incompatible with b}
3. v = (S ∪ {a},C − incompat(a)), w = (S,C − {a})

Note that Rv = {S′ ∈ Ru | a ∈ S′} while Rw = {S′ ∈ Ru | a �∈ S′}. Since Ru = Rv ∪ Rw

this division procedure ensures that we do not overlook any feasible solutions.
To generate all feasible solutions, we can start with a root node (φ,M) and apply the

recursive procedure until all leaf nodes are of the form (S, φ). The key to avoid generating
some subtrees whose leaves contain only sub-optimal solutions is the following observation: if
(S′, φ) is a leaf in a subtree rooted at (S,C) then σ(S′) ≤ σ(S)+ub(C). So, if σ(S)+ub(C) ≤
σ(B) where B is some known feasible solution, we can prune the entire subtree rooted at
(S,C).

The actual implementation uses a queue data structure to carry out a breadth first
traversal of the search tree and is described in Figure 10.10. The queue Q can become
exponentially long if few sub-problems are pruned. Therefore, in an implementation of the
algorithm one might want to abort the computation if the queue length exceeds a certain
threshold.

FIGURE 10.10: Pseudo-code for the branch-and-bound algorithm.
function Exact(M)

B ← TPA(M) is a feasible solution
Initialize queue Q with the root node (φ,M)
while (Q is not empty)
{ let u = (S,C) be the first element of Q;

if (σ(S) + lb(C) > σ(B))
B ← S ∪ TPA(C);

if (σ(S) + ub(C) > σ(B))
compute v, w the children of u;
add v, w to the queue Q;

}
return B

}

10.6.5 Heuristic

In practice, it may be infeasible to apply the exact algorithm to large problem instances.
In this section we describe criteria to

1. eliminate matches that cannot be in any optimal solution
2. select matches that are guaranteed to be in some optimal solution

These techniques can be used till saturation (no more progress can be made) and the
remaining problem can be solved by using TPA or by greedily selecting compatible matches.
In our tests, we found that the majority of the solution is obtained using the above criteria.
We, therefore, obtain a better result than that obtained by using TPA alone.

10-16 Handbook of Computational Molecular Biology

Removing dominated matches

Definition 10.7 A contig is considered single if it is the owner of exactly one match of
M5. Let singles(M) denote the matches of M that are owned by singles.

Because we keep eliminating matches, M will stand for the set of matches that are not
yet eliminated. Definitions based on M are thus dynamic and need to be recomputed when
M changes.

Definition 10.8 A match p is dominated by a compatible set of matches A if

• ∀q ∈ A, owner(q) is either a single or the same as owner (p)
• ∀q ∈ A, h-interval (q) ⊆ h-interval(p)
• σ(p) < σ(A)

A match is dominated if there exists a compatible set of matches that dominates it.

LEMMA 10.1 The optimal solution does not contain any dominated matches.

Proof. Let S be any optimal solution. Suppose p ∈ S is dominated by a compatible set
of matches A. Then it is easy to verify that S − {p} ∪ A is a compatible set of matches
with score greater than σ(S). ❑

Definition 10.9 Let A be any set of matches. Then A restricted to (b, e) is defined as
A(b, e) = {p ∈ A | h-interval(p) ⊆ [b, e]}.

Let S = Opt(singles(M)) = MIS (singles(M)). Then it is easy to see that a match
p ∈M is dominated if

• σ(p) < σ(S(bh(p), eh(p))) or
• ∃q ∈M that satisfies

1. owner(q) = owner (p),
2. h-interval(q) ⊆ h-interval(p), and
3. σ(p) < σ(S(bh(p), bh(q) − 1)) + σ(q) + σ(S(eh(q) + 1, eh(p)))

Since the number of matches can be quadratic in the number of hits, say n, the method
of removing dominated matches suggested by the second condition above has O(n4) time
complexity. In practice, few contigs have more than 10 hits and the time taken is almost
linear in n. In later stages of the heuristic, whenever the set of singles changes, one can use
the simpler check for dominated matches stated in the first condition.

Checking for local solutions

Here we formulate a sufficient condition for recognizing that a solution to a sub-problem is
contained in an optimal solution for the full problem.

Definition 10.10 The overlap components of M are the connected components of the
graph G = (M, E) where

(p,q) ∈ E iff h-interval(p) ∩ h-interval(q) �= φ

5As we remove matches from consideration, an increasing number of contigs will become single.

Comparative Methods for Sequence Assembly 10-17

m1

p1

5

m2

p2

10 5

p3

m3

p4

10 5

p5

m4

p6

10

FIGURE 10.11: A 1-CSR problem instance with 3 overlap components C1 = {p1,p2}, C2 =
{p3,p4} and C3 = {p5,p6}.

An overlap-closed set is the union of one or more overlap components.

Definition 10.11 Contig mk is local to a set of matches A if

∀p ∈M, owner(p) = mk =⇒ p ∈ A

Also, we say that A has a local solution if all matches in Opt(A) have owners that are local
to A.

LEMMA 10.2 If an overlap-closed set C has a local solution then

Opt(M) = Opt(C) ∪Opt(M− C) (10.1)

Proof. Clearly σ(Opt(M)) ≤ σ(Opt(C)) + σ(Opt(M− C)). To prove equality it suffices
to show that Opt(C)∪Opt (M−C) is a feasible solution. Let p ∈ Opt(C),q ∈ Opt(M−C)
be any two matches. Then,

• owner (p) �= owner (q) because owner (p) is local to C
• h-interval(p)∩h-interval(q) = φ because the overlap component containing p is

a subset of C

By Definition 10.6, p is compatible with q. Since p, q were chosen arbitrarily from Opt(C),
Opt(M− C) it follows that Opt(C) ∪Opt(M− C) is a compatible set of matches. ❑

Lemma 10.2 suggests that we can solve a 1-CSR instance by repeatedly identifying
overlap-closed sets with local solutions and solving them using the Exact algorithm de-
scribed earlier in Section 10.6.4. For example, consider the 1-CSR problem instance M =
{p1, . . . ,p6} shown in Figure 10.11. The optimal solutions to the overlap components are
Opt(C1) = {p2}, Opt(C2) = {p4} and Opt(C3) = {p6}. C3 is the only overlap component
with a local solution. But once this sub-problem is solved and the matches of C3 are re-
moved, M reduces to C1 ∪ C2. Now, C2 has a local solution and Opt(C2) can be added
to the optimal solution. Finally, we are left only with C1 and then Opt(C1) can also be
added to the optimal solution. Function LocalSolutions shown in Figure 10.12 generalizes
this approach.

We first call the function LocalSolutions with the set of overlap components. When the
function terminates, none of the remaining overlap components has a local solution. At this
point, we can try to form larger overlap-closed sets and check if these larger sets have local
solutions. In our implementation, we simply collapse connected components of the graph
into large overlap-closed sets, and use the LocalSolution procedure again. However, this

10-18 Handbook of Computational Molecular Biology

FIGURE 10.12: Procedure for identifying overlap-closed sets with local solutions and
solving them separately. S is the optimal solution computed and V (G) consists of
overlap-closed sets whose matches form the residual problem.
function LocalSolutions(C)
{ C is a collection of disjoint overlap-closed sets;

Compute the directed graph G where
V (G) ← C;
for (each C ∈ V (G))
{ if (Opt(C) cannot be computed by algorithm Exact)

(C,C) ∈ E(G);
else

∀C′ �= C, (C,C′) ∈ E(G) iff owner (Opt(C)) ∩ owner(C′) �= φ;
}

while (some C ∈ C has out-degree 0)
{ S ← S ∪Opt(C);

remove C with all incident edges from G;
}
return (S, V (G))

}

m1

p1

10 10

p2

m2

p3

5 5

p4

m3

p5

10 10

p6

FIGURE 10.13: A 1-CSR instance with overlap components C1 = {p1}, C2 = {p2,p3}, C3 =
{p4,p5} and C4 = {p6}.

method does not guarantee that we will make any progress. For instance, consider the 1-
CSR instance of Figure 10.13. None of the overlap components have a local solution, and the
graph G at the end of the procedure has 4 edges – (C1 → C2), (C2 → C1), (C3 → C4), (C4 →
C3). But once we collapse the connected components, we still do not have any vertices with
out-degree 0: we now have a graph with edges ((C1 ∪ C2) → (C3 ∪ C4)), ((C3 ∪ C4) →
(C1 ∪ C2)).

We interrupt the merging process when the optimal solutions to the overlap-closed sets
can no longer be computed by the branch-and-bound algorithm. At this point, we can
choose compatible matches greedily or use TPA to find an approximate solution to the
residual problem.

Comparative Methods for Sequence Assembly 10-19

Measuring solution quality

Let M be the problem instance and M′ ⊆ M be some overlap-closed set with a local
solution S′. Then it follows from Equation 10.1 that

σ(Opt(M)) = σ(Opt(M′)) + σ(Opt(M−M′))
≤ σ(S′) + ub(M−M′)

Since σ(S′) + ub(M−M′) is an upper bound on σ(Opt(M)), the quality of any solution
S relative to this upper bound is given by

q =
σ(S)

σ(S′) + ub(M−M′)
× 100

A high quality score indicates that a solution may be hard to improve. On the other hand,
near-optimal solutions may sometimes have low quality scores if the sub-problem M−M′

is large.

10.6.6 Results

A data set consisting of the sequence of human chromosome 22 (hsa22) and 700,000 mouse
contigs from the arachne.3 [3] assembly was used to test the performance of the heuristic.
45,115 contigs with high scoring blastz [43] hits to hsa22 sequence were selected and the
hits were used to generate 112,554 matches. After discarding 40,200 (35%) dominated
matches, the remaining matches formed 14,000 overlap components. A substantial portion
of the problem was solved by using the LocalSolutions procedure along with our merging
method for forming larger overlap-closed sets. The residual problem consisting of 1,416
overlap components was solved using TPA. The overall solution quality was 95%. By
contrast, the solution generated by an alternate greedy algorithm that orders contigs based
on their highest hit score had quality 84%, and the solution obtained by simply using TPA
had quality 90%. By comparing with the assembled mouse genome sequences, we were able
to verify that solutions with higher quality imposed an ordering on the contigs that was
closer to that found in the assembled sequence.

The brief results presented here are only to give an indication of how effective the different
steps of the heuristic are at reducing the size of the problem and solving sub-problems.
The different parameters that can affect the final ordering generated by the heuristic are
discussed in the next section.

10.6.7 Discussion

The actual performance of our heuristic is influenced by several parameters — the degree
of sequence conservation between the two species, the quality and size of the contigs, the
presence of duplicated regions and gene families, the choice of an alignment tool etc. Some
issues that need to be considered before using the heuristic are described below.

Organisms are closely related

In the case of closely related species such as human and chimp, even a greedy algorithm
will find solutions with high score. In such cases, one can still use the heuristic to estimate
the upper bound and, thus, gauge the quality of the greedy solution. A solution with score
within 98-99% of the optimum should be expected for these data sets.

10-20 References

Filtering hits

Large overlap components may occur when multiple hits share the same h-interval . By
examining the genomic sequence corresponding to such an h-interval and, if possible, any
associated annotation, one can determine if the region contains a member of a gene-family
or an unmasked repetitive element. Based on such analysis we may choose to discard all or
some of the participating hits. Eliminating such hits may increase the number of overlap
components and this in turn allows a larger fraction of the solution to be computed in an
optimal manner.

Note that even if the only hits remaining in the problem instance correspond to syntenic
anchors, the problem remains NP-hard (see Section 10.5). In other words, elimination of hits
does not change the complexity of the underlying problem but simply makes the problem
more tractable.

Assembled reference genome has multiple chromosomes

A simplistic (but wrong) way out is to solve multiple 1-CSR problem instances — one for
each chromosome. Unfortunately, this may result in a m-contig appearing in more than
one 1-CSR solution. Such ambiguous mappings of m-contigs are likely because mammalian
genomes consist of several gene families some of which are spread across multiple chromo-
somes. Contigs with high scoring alignments to one member of the gene family are likely
to also align with other members of the family.

A second method, which preserves the underlying assumption of the heuristic viz. all
the m-contigs belong to regions homologous to the h-contig, is to create a single artificial
h-contig which represents the concatenation of all the chromosomes in some arbitrary order.
Filtering methods discussed above could be used to restrict the size of the resulting problem
instance.

Accommodating external information

To extend an existing partial solution, we can simply discard all matches in the problem
instance that are incompatible with the partial solution and then run the heuristic on the
residual problem.

10.7 Conclusions

The number of species with publicly available sequence data is expected to grow rapidly in
the next few years. However, it is clear that not all species genomes will be fully sequenced.
In most cases, sequence data will remain in the form of numerous contigs. In this chapter, we
described some methods for ordering and orienting contigs based on alignments with contigs
of a related species. While the underlying problem is NP-hard, the heuristic described in
the previous section is expected to perform well on real data sets.

References

[1] M.D. Adams, S.E. Celniker, R.A. Holt, and C.A. Evans et al. The genome sequence
of drosophila melanogaster. Science, 287(5461):2185–95, 2000.

[2] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber. Approximating the throughput of
multiple machines in real-time scheduling. Proc. 31st ACM STOC, pages 622–631,

References 10-21

1999.
[3] S. Batzoglou, D.B. Jaffe, K. Stanley, and J. Butler et al. ARACHNE: a whole-genome

shotgun assembler. Genome Res, 12(1):177–89, 2002.
[4] D.A. Benson, I. Karsch-Mizrachi, D.J. Lipman, and J. Ostell et al. GenBank: update.

Nucleic Acids Res, 32 Database issue:D23–6, 2004.
[5] C.M. Bergman, B.D. Pfeiffer, D.E. Rincon-Limas, and R.A. Hoskins et al. Assessing

the impact of comparative genomic sequence data on the functional annotation of the
drosophila genome. Genome Biol, 3(12):RESEARCH0086, 2002.

[6] P. Berman and B. DasGupta. Multi-phase algorithms for throughput maximization
for real-time scheduling. Journal Combinatorial Optimization, 4(3):307–323, 2000.

[7] W. Castle and W. Wachter. Variation of linkage in rats and mice. Genetics, 9:1–12,
1924.

[8] P. Dehal, P. Predki, A.S. Olsen, and A. Kobayashi et al. Human chromosome 19
and related regions in mouse: conservative and lineage-specific evolution. Science,
293(5527):104–11, 2001.

[9] E.T. Dermitzakis, A. Reymond, R. Lyle, and N. Scamuffa et al. Numerous potentially
functional but non-genic conserved sequences on human chromosome 21. Nature,
420(6915):578–82, 2002.

[10] Kirkness E.F., V. Bafna, A.L. Halpern, and S. Levy et al. The dog genome: survey
sequencing and comparative analysis. Science, 301(5641):1898–903, 2003.

[11] J. Ehrlich, D. Sankoff, and J.H. Nadeau. Synteny conservation and chromosome rear-
rangements during mammalian evolution. Genetics, 147(1):289–96, 1997.

[12] P. Flicek, E. Keibler, P. Hu, and I. Korf et al. Leveraging the mouse genome for
gene prediction in human: from whole-genome shotgun reads to a global synteny map.
Genome Res, 13(1):46–54, 2003.

[13] K.A. Frazer, J.B. Sheehan, R.P. Stokowski, and X. Chen et al. Evolutionarily conserved
sequences on human chromosome 21. Genome Res, 11(10):1651–9, 2001.

[14] A. Fujiyama, H. Watanabe, A. Toyoda, and T.D. Taylor et al. Construction and
analysis of a human-chimpanzee comparative clone map. Science, 295(5552):131–4,
2002.

[15] The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering
plant arabidopsis thaliana. Nature, 408:796–815, 2000.

[16] A. Goffeau, R. Aert, M.L. Agostini-Carbone, and A. Ahmed et al. The yeast genome
directory. Nature, 387:S1–S105, May 1997.

[17] E.D. Green. Strategies for the systematic sequencing of complex genomes. Nature
Reviews Genetics, 2(8):573–83, 2001.

[18] S.G. Gregory, M. Sekhon, J. Schein, and S. Zhao et al. A physical map of the mouse
genome. Nature, 418(6899):743–50, 2002.

[19] J. Haldane. The comparative genetics of color in rodents and carnivora. Biol. Rev.
Camb. Philos. Soc, 2:199–212, 1927.

[20] R.C. Hardison, J. Oeltjen, and W. Miller. Long human-mouse sequence alignments
reveal novel regulatory elements: a reason to sequence the mouse genome. Genome
Res, 7(10):959–66, 1997.

[21] A.R. Jackson, M. Csûrös, E. Sodergren, and A. Milosavljevic. Pooled genomic indexing
of Rhesus macaque (macaca mulatta) BACs. In preparation.

[22] Y. H. Ju and Y. T. Chuan. An efficient algorithm for finding a maximum weight 2-
independent set on interval graphs. Information Processing Letters, 43(5):229–235,
1992.

[23] Thomas. J.W., A. B. Prasad, T.J. Summers, and S.Q. Lee-Lin et al. Parallel construc-
tion of orthologous sequence-ready clone contig maps in multiple species. Genome

10-22 References

Res, 12(8):1277–85, 2002.
[24] J. Kim, L. Gordon, P. Dehal, and H. Badri et al. Homology-driven assembly of a

sequence-ready mouse BAC contig map spanning regions related to the 46-Mb gene-
rich euchromatic segments of human chromosome 19. Genomics, 74(2):129–41, 2001.

[25] I. Korf, P. Flicek, D. Duan, and M.R. Brent. Integrating genomic homology into gene
structure prediction. Bioinformatics, 17 Suppl 1:S140–8, 2001.

[26] A.E. Kwitek, P.J. Tonellato, D. Chen, and J. Gullings-Handley et al. Automated con-
struction of high-density comparative maps between rat, human, and mouse. Genome
Res, 11(11):1935–43, 2001.

[27] E.S. Lander, L.M. Linton, B. Birren, and C. Nusbaum et al. Initial sequencing and
analysis of the human genome. Nature, 409(6822):860–921, 2001.

[28] D.M. Larkin, A. Everts-van der Wind, M. Rebeiz, and P. A. Schweitzer et al. A cattle-
human comparative map built with cattle BAC-ends and human genome sequence.
Genome Res, 13(8):1966–72, 2003.

[29] Y. Liu, X.S. Liu, L. Wei, and R.B. Altman et al. Eukaryotic regulatory element con-
servation analysis and identification using comparative genomics. Genome Research,
14(3):451–458, 2004.

[30] J.E. Moore and J.A. Lake. Gene structure prediction in syntenic DNA segments.
Nucleic Acids Res, 31(24):7271–9, 2003.

[31] R.J. Mural, M.D. Adams, E.W. Myers, and H.O. Smith et al. A comparison of whole-
genome shotgun-derived mouse chromosome 16 and the human genome. Science,
296(5573):1661–71, 2002.

[32] E.W. Myers, G.G. Sutton, A.L. Delcher, and I.M. Dew et al. A whole-genome assembly
of drosophila. Science, 287(5461):2196–204, 2000.

[33] W.G. Nash and S.J. O’Brien. Conserved regions of homologous G-banded chromosomes
between orders in mammalian evolution: carnivores and primates. Proceedings of the
National Academy of Sciences USA, 79(21):6631–5, 1982.

[34] S. Nilsson, K. Helou, A. Walentinsson, and C. Szpirer et al. Rat-mouse and rat-human
comparative maps based on gene homology and high-resolution zoo-FISH. Genomics,
74(3):287–98, 2001.

[35] R.J. Oakley, M.L. Watson, and M.F. Seldin. Construction of a physical map on mouse
and human chromosome 1: Comparison of 13 Mb of mouse and 11 Mb of human DNA.
Human Molecular Genetics, 1:616–620, 1992.

[36] S.J. O’Brien, M. Menotti-Raymond, W.J. Murphy, and W.G. Nash et al. The promise
of comparative genomics in mammals. Science, 286(5439):458–62, 479–81, 1999.

[37] A.H. Paterson, T.H. Lan, K.P. Reischmann, and C. Chang et al. Toward a unified
genetic map of higher plants, transcending the monocot-dicot divergence. Nat Genet,
14(4):380–2, 1996.

[38] P. Pevzner. Computational Molecular Biology. The MIT Press, Cambridge, Mas-
suchusetts, 2000.

[39] M.T. Pletcher, T. Wiltshire, D.E. Cabin, and M. Villanueva et al. Use of compar-
ative physical and sequence mapping to annotate mouse chromosome 16 and human
chromosome 21. Genomics, 74(1):45–54, 2001.

[40] F. Sanger, S. Nicklen, and A.R. Coulson. DNA sequencing with chain-terminating
inhibitors. Proc Natl Acad Sci U S A, 74(12):5463–7, 1977.

[41] J.R. Sawyer and J.C. Hozier. High resolution of mouse chromosomes: banding conser-
vation between man and mouse. Science, 232(4758):1632–5, 1986.

[42] H. Scherthan, T. Cremer, U. Arnason, and H.U. Weier et al. Comparative chromo-
some painting discloses homologous segments in distantly related mammals. Nature
Genetics, 6(4):342–7, 1994.

References 10-23

[43] S. Schwartz, Z. Zhang, K.A. Frazer, and A. Smit et al. PipMaker–a web server for
aligning two genomic DNA sequences. Genome Res, 10(4):577–86, 2000.

[44] The C. elegans Sequencing Consortium. Genome sequence of the nematode c. elegans:
a platform for investigating biology. Science, 282(5396):2012–2018, December 1998.

[45] L. D. Stein, Z. Bao, D. Blasiar, and T. Blumenthal et al. The genome sequence of
caenorhabditis briggsae: A platform for comparative genomics. PLoS Biol, 1(2):E45,
2003.

[46] L. Stubbs, E.M. Rinchik, E. Goldberg, and B. Rudy et al. Clustering of six human
11p15 gene homologs within a 500-kb interval of proximal mouse chromosome 7. Ge-
nomics, 24(2):324–32, 1994.

[47] T.J. Summers, J.W. Thomas, S.Q. Lee-Lin, and V.V. Maduro et al. Comparative
physical mapping of targeted regions of the rat genome. Mamm Genome, 12(7):508–
12, 2001.

[48] J.W. Thomas, T.J. Summers, S.Q. Lee-Lin, and V.V. Maduro et al. Comparative
genome mapping in the sequence-based era: early experience with human chromosome
7. Genome Res, 10(5):624–33, 2000.

[49] J.W. Thomas, J.W. Touchman, R.W. Blakesley, and G.G. Bouffard et al. Com-
parative analyses of multi-species sequences from targeted genomic regions. Nature,
424(6950):788–93, 2003.

[50] V. Veeramachaneni, P. Berman, and W. Miller. Aligning two fragmented sequences.
Disc. Appl. Mathematics, 127(1), 2003.

[51] V. Veeramachaneni, Z. Zhang, P. Berman, and W. Miller. Comparative assembly of
genome shotgun data. In preparation.

[52] J.C. Venter, M.D. Adams, E.W. Myers, and P.W. Li et al. The sequence of the human
genome. Science, 291(5507):1304–51, 2001.

[53] R.H. Waterston, K. Lindblad-Toh, E. Birney, and J. Rogers et al. Initial sequencing
and comparative analysis of the mouse genome. Nature, 420(6915):520–62, 2002.

[54] J. L. Weber and E. W. Myers. Human whole-genome shotgun sequencing. Genome
Res, 7(5):401–9, 1997.

[55] J. Weinberg and R. Stanyon. Chromosome painting in mammals as an approach to
comparative genomics. Current Opinion in Genetics and Development, 5:792–797,
1995.

11
Information Theoretic Approach to

Genome Reconstruction

Suchendra Bhandarkar
The University of Georgia

Jinling Huang
The University of Georgia

Jonathan Arnold
The University of Georgia

11.1 Introduction . 11-1
The Physical Mapping Protocol • Computation of a
Physical Map

11.2 The Maximum Likelihood Reconstruction of a
Physical Map . 11-4
Mathematical Notation

11.3 Computation of the Maximum Likelihood
Estimate . 11-6
Computation of Π̂

11.4 Parallel Computation of the Maximum Likelihood
Estimate . 11-13
Parallel SA and LSMC Algorithms • Parallel Genetic
Algorithm • Parallel Gradient Descent Search • A
Two-tier Approach for Parallel Computation of the
ML Estimator

11.5 Experimental Results . 11-17
11.6 Conclusions and Future Directions 11-23

11.1 Introduction

Creating maps of entire chromosomes, which could then be used to reconstruct the chromo-
some’s DNA sequence, has been one of the fundamental problems in genetics right from its
very inception [47]. These maps are central to the understanding of the structure of genes,
their function, their transmission and their evolution. Chromosomal maps fall into two
broad categories — genetic maps and physical maps. Genetic maps represent an ordering
of genetic markers along a chromosome where the distance between two genetic markers is
related to their recombination frequency. Genetic maps are typically of low resolution i.e.,
1 to 10 million base pairs (Mb). Lander and Green [32] pioneered the use of computational
techniques for the assembly of genetic maps with many markers. While genetic maps enable
a scientist to narrow the search for genes to a particular chromosomal region, it is a physical
map that ultimately allows the recovery and molecular manipulation of genes of interest.

A physical map is defined as an ordering of distinguishable (i.e., sequenced) DNA frag-
ments called clones or contigs by their position along the entire chromosome where the clones
may or may not contain genetic markers. The physical mapping problem is therefore one
of reconstructing the order of clones and determining their position along the chromosome.
A physical map has a much higher resolution than a genetic map of the same chromosome
i.e., 10 to 100 thousand base pairs (Kb). Physical maps have provided fundamental insights

11-1

11-2 Handbook of Computational Molecular Biology

into gene development, gene organization, chromosome structure, recombination and the
role of sex in evolution and have also provided a means for the recovery and molecular
manipulation of genes of interest.

11.1.1 The Physical Mapping Protocol

The physical mapping protocol essentially determines the nature of clonal data and the
probe selection procedure. The physical mapping protocol used in our work is the one based
on sampling without replacement [19]. This protocol is simple, adaptable and relatively
inexpensive, and has been used successfully in physical mapping projects of several fungal
genomes under the Fungal Genome Initiative at the University of Georgia [3].

The protocol that generates the probe set P and the clone set C is an iterative procedure
which can be described as follows. Let Ci and P i be the clone set and the probe set
respectively at the ith iteration. The initial clone set C0 consists of all the clones in the
library whereas the initial probe set P0 = φ. The clones in C0 are designed to be of the same
length and to be overlapping so that each clone samples a fragment of the chromosome and
coverage of the entire chromosome is made possible. At the ith iteration a clone c is chosen
at random from Ci and added to P i. Clone c is hybridized to all the clones in Ci. The subset
of clones Cc that hybridize to clone c are removed from Ci so that Ci+1 = Ci−Cc. Note that
c ∈ Cc since a clone hybridizes to itself. The hybridization experiment entails extracting
complementary DNA from both ends of a probe, washing the DNA over the arrayed plate
and recording all clones in the library to which the DNA attaches (i.e., hybridizes). The
above procedure is halted at the kth iteration when Ck = φ. The final probe set is given
by P = Pk and the clone set by C = C0 − Pk. In the absence of errors, the probe set
P represents a maximal nonoverlapping subset of C0 that covers the entire length of the
chromosome.

The clone-probe overlap pattern is represented in the form of a binary hybridization
matrix H where Hij denotes the hybridization of the ith clone ∈ C to the jth probe ∈ P .
Hij = 1 if the ith clone ∈ C hybridizes to the jth probe ∈ P and Hij = 0 otherwise. If
the probes in P were ordered with respect to their position along a chromosome, then by
selecting fromH a common overlapping clone for each pair of adjacent probes in P a minimal
set of clones and probes that covers the entire chromosome (i.e., a minimal tiling) could
be obtained. Note that a common overlapping clone between two adjacent probes would
hybridize to both probes. The minimal tiling in conjunction with the sequencing of each
individual clone/probe in the tiling and a sequence assembly procedure that determines the
overlaps between successive sequenced clones/probes in the tiling [29] could then be used
to reconstruct the DNA sequence of the entire chromosome.

In reality, the hybridization experiments are rarely error-free. The hybridization matrix
H could be expected to contain false positives and false negatives. Hij would be a false
positive if Hij = 1 (denoting hybridization of the ith clone with the jth probe) when in fact
Hij = 0. Conversely, Hij would be a false negative if Hij = 0 when in fact Hij = 1. Other
sources of error include chimerism where a single clone samples two or more distinct regions
of a chromosome, deletions where certain regions of the chromosome are not sampled during
the cloning process and repeats where a clone samples a region of the chromosome with
repetitive DNA structure. In this chapter, we confine ourselves to errors in the form of
false positives and false negatives. Since the clones (and probes) in the mapping projects at
the University of Georgia that use the aforementioned protocol are generated using cosmids
which makes them sufficiently small (around 40 Kb), chimerism and deletions do not pose
a serious problem. However, repeats do pose a problem but are not explicitly addressed
here; rather they are treated as multiple isolated incidences of false positives.

Information Theoretic Approach to Genome Reconstruction 11-3

11.1.2 Computation of a Physical Map

Several techniques exist for computation of physical maps from contig libraries. These
techniques are specific to an experimental protocol and the type of data collected, for ex-
ample, mapping by nonunique probes [17], mapping by unique probes [16, 22, 25], mapping
by unique endprobes [11], mapping using restriction fragments [18, 26], mapping using
radiation-hybrid data [6, 46] and optical mapping [28, 34, 40]. Likewise, several compu-
tation techniques based on deterministic optimization and stochastic optimization in the
context of physical mapping have been reported. Examples of stochastic optimization al-
gorithms include simulated annealing [16, 17, 13, 39], and the random cost algorithm [48]
whereas those of deterministic optimization algorithms include linear programming [25], in-
teger programming [11], integer linear programming with polyhedral combinatorics [12] and
semidefinite programming [10]. Various statistical analyses of the aforementioned physical
mapping techniques have also been reported in the literature [4, 5, 33, 41, 14, 49, 50].

In this chapter we describe a physical mapping approach based on the information theo-
retic concept of maximum likelihood reconstruction of signals that have been corrupted by
noise when transmitted through a communications channel. We model the chromosome as
the original signal, the hybridization experiments as the process of transmission through a
communications channel, the hybridization errors as the noise introduced by the communi-
cations channel, the hybridization matrix as the observed corrupted signal at the receiving
end of the communications channel and the desired physical map as the reconstructed sig-
nal. In particular, we describe the maximum likelihood (ML) estimation-based approach
to physical map construction proposed in [7, 30] which determines the probe ordering and
inter-probe spacings that maximize the probability of occurrence of the experimentally ob-
served hybridization matrix H under a probabilistic model of hybridization errors consisting
of false positives and false negatives. The estimation procedure involves a combination of
discrete and continuous optimization where determining the probe ordering entails discrete
(i.e., combinatorial) optimization whereas determining the inter-probe spacings for a par-
ticular probe ordering entails continuous optimization. The problem of determining the
optimal probe ordering is intractable and can be shown to be isomorphic to the classical
NP-hard Traveling Salesman Problem (TSP) [20]. Moreover, the ML objective function is
non-linear in the probe ordering thus rendering the classical linear programming or integer
linear programming techniques inapplicable. However, for a given probe ordering, deter-
mining the optimal inter-probe spacings is shown to be a tractable problem that is solvable
using gradient descent-based search techniques.

In this chapter we present three stochastic combinatorial optimization algorithms for
computation of the optimal probe ordering based on simulated annealing (SA), large step
Markov chains (LSMC) and the genetic algorithm (GA). The computation of the optimal
inter-probe spacings for a specified probe ordering is shown to be best achieved by the
conjugate gradient descent algorithm. We propose a two-tier parallelization strategy for ef-
ficient implementation of the ML estimation-based physical mapping algorithm. The upper
level represents parallel discrete optimization using the aforementioned stochastic combi-
natorial optimization algorithms whereas the lower level comprises of parallel conjugate
gradient descent search. The resulting parallel algorithms are implemented on a cluster of
shared-memory symmetric multiprocessors (SMPs). The conjugate gradient descent search
algorithm is parallelized using shared-memory multithreaded programming on a single SMP
whereas the stochastic combinatorial optimization algorithm is implemented on the SMP
cluster using the distributed-memory Message Passing Interface (MPI) environment [42].
Convergence, speedup and scalability characteristics of the parallel algorithms are com-
pared, analyzed and discussed.

11-4 Handbook of Computational Molecular Biology

11.2 The Maximum Likelihood Reconstruction of a Physical
Map

The probe ordering problem can be formally stated as follows. Given a set P = {P1, P2, . . . , Pn}
of n probes and a set C = {C1, C2, . . . , Ck} of k clones generated using the protocol de-
scribed in Section 11.1.1, and the k×n clone-probe hybridization matrix H containing both
false positives and false negatives with predefined probabilities, reconstruct the correct or-
dering Π = (π1, π2, . . . , πn) of the probes and also the correct spacings Y = (Y1, Y2, . . . , Yn)
between the probes. The ordering Π is a permutation of (1, . . . , n) that gives the labels
(indices) of the probes in left-to-right order across the chromosome. In the inter-probe
spacings vector Y , Y1 denotes the space between the left end of the first probe Pπ1 and the
left end of the chromosome, and Yi the spacing between the right end of probe Pπi−1 and
the left end of probe Pπi (where 2 ≤ i ≤ n). The spacing between the right end of probe
Pπn and the right end of the chromosome is given by Yn+1 = N −nM −

∑n
i=1 Yi where N is

length of the chromosome and M is the length of each clone/probe. Note that the protocol
described in Section 11.1.1 requires that all probes and clones be of the same length.

The problem as stated above is ill-posed as defined by Hadamard [23] since the underlying
constraints do not imply a unique solution. In the absence of errors, any probe ordering
(π1, π2, . . . , πn) with inter-probe spacings Y = (Y1, Y2, . . . , Yn) that satisfies the constraint
N ≥ nM+

∑n
i=1 Yi is a feasible solution. In the presence of errors the problem is formulated

as one of determining a probe ordering and an inter-probe spacings vector that maximize
the likelihood of the observed hybridization matrix H given predefined probabilities for false
positives and false negatives.

11.2.1 Mathematical Notation

The mathematical notation used in the formulation of the maximum likelihood estimator
is given below:
N : length of the chromosome (in base pairs),
M : length of a clone/probe (in base pairs),
n : number of probes,
k : number of clones,
ρ : probability of false positive,
η : probability of false negative,
H = ((hi,j))1≤i≤k, 1≤j≤n: clone-probe hybridization matrix,
where

hi,j =
{

1 if clone Ci hybridizes with probe Pj

0 otherwise,
Hi : ith row of the hybridization matrix (also termed as the binary hybridzation signature
of the ith clone)
Π = (π1, . . . , πn): permutation of {1, 2, . . . , n} which denotes the probe labels in the ordering
when scanned from left to right along the chromosome,
pi =

∑n
j=1 hi,j : number of 1’s in Hi,

P =
∑k

i=1 pi: total number of 1’s in H ,
Y = (Y1, Y2, . . . , Yn): vector of inter-probe spacings where Yi is the spacing between the
right end of Pπi−1 and the left end of Pπi (2 ≤ i ≤ n), and Y1 is the spacing between the
left end of Pπ1 and the left end of the chromosome, and
F ⊆ Rn: set of feasible inter-probe spacings Y = {Y1, . . . , Yn} such that Yi ≥ 0, 1 ≤ i ≤ n
and N − nM −

∑n
i=1 Yi ≥ 0.

Information Theoretic Approach to Genome Reconstruction 11-5

Under the assumptions that (i) the false positive and false negative errors at different
positions along the clonal hybridization signature Hi are independent of each other, and
(ii) the clones ∈ C are independently distributed along the chromosome i.e., each row of H
is independent of the other rows, the probability of observing a hybridization matrix H for
a given probe ordering Π and inter-probe spacing vector Y is given by:

P (H | Π, Y) =
k∏

i=1

Ci

Ri −
n+1∑

j=1

(ai,πj − 1)(ai,πj−1 − 1)min(Yj ,M)

 (11.1)

where

ai,j =

η
(1−ρ) if hi,j = 0 and j = 1, . . . , n
(1−η)

ρ if hi,j = 1 and j = 1, . . . , n
0 otherwise,

Ci =
ρpi(1− ρ)(n−pi)

N −M , (11.2)

and

Ri = N − nM +M

n−1∑

j=1

ai,πjai,πj+1 . (11.3)

The detailed derivation of equation (11.1) can be found in [7].
The goal therefore is to determine Π and Y that maximize P (H | Π, Y) as given in

equation (11.1), that is determine (Π̂, Ŷ) where

(Π̂, Ŷ) = arg max
(Π,Y)

P (H | Π, Y) (11.4)

Alternatively we could consider the negative log-likelihood (NLL) function f(Π, Y) given
by

f(Π, Y) = − lnP (H | Π, Y)

= C −
k∑

i=1

ln

Ri −
n+1∑

j=1

(ai,πj − 1)(ai,πj−1 − 1)min(Yj ,M)

 (11.5)

where C is a constant given by

C = k ln(N −M)− P ln
ρ

(1− ρ) − nk ln(1 − ρ) (11.6)

and π0 = πn+1 = 0. Since lnx is a monotonically increasing function of x for all x > 0, it
follows that

(Π̂, Ŷ) = arg max
(Π,Y)

P (H | Π, Y) = arg min
(Π,Y)

f(Π, Y) (11.7)

Let ΠR = (πn, . . . , π1). It is easy to verify that

P (H | Π, Y) = P (H | ΠR, Y) (11.8)

This means that the likelihood as a function of Π is unique up to reversals which implies
that it is possible to recover the ordering of the probes uniquely only up to reversals.

11-6 Handbook of Computational Molecular Biology

11.3 Computation of the Maximum Likelihood Estimate

Computing the values of Π̂ and Ŷ (equation (11.7)) involves a two stage procedure:

Stage 1: We first determine the optimal spacing ŶΠ for a given probe ordering Π
i.e., determine ŶΠ = (Ŷ1, . . . , Ŷn) such that for a given Π,

f(Π, ŶΠ) = min
Y

f(Π, Y) = min
Y

fΠ(Y) (11.9)

Here the minimum is taken over all feasible solutions Y that satisfy the constraints
Yi ≥ 0; i = 1, . . . , n and

∑n
i=1 Yi ≤ N − nM .

Stage 2: We determine Π̂ for which,

f(Π̂, ŶΠ̂) = min
Π
f(Π, ŶΠ) = min

Π
fŶΠ

(Π) (11.10)

Here the minimum is taken over all Π where Π is a permutation of {1, . . . , n}.
A region D ⊆ Rn is deemed to be convex if for any pair of points p, q ∈ D, all points

along the line segment αp + (1 − α)q ∈ D where 0 ≤ α ≤ 1. A function h : D "→ R
defined on a convex set D is deemed convex if for all points αp + (1 − α)q ∈ D where
0 ≤ α ≤ 1, h (αp+ (1− α)q) ≤ αh(p) + (1 − α)h(q). Furthermore, a region D ⊆ F is
considered good if for all Y ∈ D, Yi �= M , 1 ≤ i ≤ n + 1. The significance of a good
region is that fΠ(Y) is differentiable within it. It can be shown that fΠ(Y) is convex in
every good convex region D and therefore possesses a unique local minimum which is also a
global minimum [7, 30]. Consequently this minimum can be reached using continuous local
search-based techniques such as gradient descent (i.e., steepest descent) search or conjugate
gradient descent search [15].

Consider the four disjoint subregions F+1,+1, F+1,−1, F−1,+1 and F−1,−1 within F where

Fa,b
∆= {Y ∈ F : aY1 ≤ aM ;Yi ≤M, 2 ≤ i ≤ N ; bYn+1 ≤ bM} (11.11)

Each of these regions is convex since they result from the intersection of half spaces. Also, it
can be shown that since the derivative of fΠ(Y) is defined in the interior of each subregion,
each subregion is good [7]. Note that we can define the derivative on the boundary of
each subregion Fa,b, a, b ∈ {−1,+1}, based on the direction in which the boundary point
is approached. Thus, by selecting a starting point in each of the subregions (or as many
subregions as possible without violating any feasibility constraints), one can compute a local
minimum for fΠ(Y) in each of the subregions and select the minimum of these local minima
to be the global minimum of fΠ(Y) [30].

Gradient Descent Search

We illustrate the computation of ŶΠ in each of the subregions Fa,b using the steepest
descent (SD) search technique. The SD search technique is a simple iterative procedure
which consists of three steps: (i) determine the initial value of Y , (ii) compute the downhill
gradient at Y and (iii) update the current value of Y using the computed value of the
downhill gradient. Steps (ii) and (iii) are repeated until the gradient vanishes. The point at
which the gradient vanishes is considered to be the desired local minimum. In practice, the
SD search procedure is halted when the magnitude of the gradient is less than a prespecified
threshold.

The initial value of Y = (Y1, . . . , Yn) in each of the subregions Fa,b can be determined
by assigning N−nM

n+1 to each of Yi’s, i.e., distributing the spacings equally. Having obtained

Information Theoretic Approach to Genome Reconstruction 11-7

the starting value for Ŷ , we compute the gradient of the negative log likelihood function.
The negative of the local gradient (i.e., the downhill gradient) represents the direction along
which the function decreases the most rapidly. The local downhill gradient of fΠ(Y) is given
by

−∇f(Π, Ŷ) = −(
∂f(Π, Y)
∂Y1

, . . . ,
∂ f(Π, Y)
∂Yn

) |Y =Ŷ

= (U1, . . . , Un) |Y =Ŷ , (11.12)

The current value of Ŷ = Ŷold is updated by moving along the downhill gradient direction
U = −∇f(Π, Ŷ)|Ŷ =Ŷold

. The new value of Ŷ = Ŷnew is given by

Ŷnew = Ŷold + sU. (11.13)

We attempt to find an optimal value of s, say s∗ such that

f(Π, Ŷ + s∗U) = min
s
f(Π, Ŷ + sU). (11.14)

Having obtained the value of s∗, then the new inter-probe spacings are given by

Ŷnew = Ŷold + s∗U. (11.15)

Our specific problem is that of constrained minimization of fΠ(Y) in a good convex
region Fa,b, a, b ∈ {−1,+1}. The downhill gradient U at a given point Y on the boundary
of Fa,b may be outside the region. In this case, we need to proceed along a direction U ′

that is directed inside Fa,b along which fΠ(Y) decreases, albeit at a slower rate. Since the
boundaries of Fa,b where a, b ∈ {−1,+1} are hyperplanes, we determine, at the boundary
point Y , all the boundary constraints (hyperplanes) Γ1,Γ2, . . . ,Γr that are violated by the
downhill gradient U . Let Ti(U) denote the projection of U on Γi. Then the resulting
direction U ′ is given by successively projecting U on each of the violating hyperplanes as
follows

U ′ = Tr(Tr−1(. . . (T1(U)) . . .) (11.16)

If U ′ = 0 then the current point Y is the local minimum of fΠ(Y) in Fa,b, a, b ∈ {−1,+1}.
If U ′ �= 0 then the non-violating hyperplanes are used to determine upper and lower bounds
on the value of s denoted by [slow, shigh]. Since the function fΠ(Y) is convex with respect
to s in Fa,b where a, b ∈ {−1,+1}, the bisection method [44] can be used to determine s∗.
The SD search procedure is terminated when either U or U ′ vanishes depending on which
situation is encountered first.

One of the problems with the SD search is that its convergence rate is sensitive to the
starting point and the shape of the solution landscape [15]. The SD search typically takes
several small steps while descending a narrow valley in the solution landscape thus resulting
in a slow convergence rate [43]. The conjugate gradient descent (CGD) search, on the
other hand, is known to be one of the fastest in the class of gradient descent search-based
optimization methods [24]. The CGD search procedure is very similar to the SD procedure
except that different directions are followed while minimizing the objective function. Instead
of consistently following the local downhill gradient direction (i.e., the direction of steepest
descent), a set of n mutually orthonormal (i.e., conjugate) direction vectors are generated
from the downhill gradient vector where n is the dimensionality of the solution space.
The orthonormality condition ensures that the minimization can proceed along any given
direction vector independently of the other direction vectors. The CGD search procedure

11-8 Handbook of Computational Molecular Biology

FIGURE 11.1: Serial CGD search algorithm
Conjugate Gradient Descent Algorithm:

Phase 1: Initialization
Start with an initial guess of Y = Yi;
Calculate gradient G = ∇f(Π, Yi);
G = G1 = G2 = −G;

Phase 2: Iterative Refinement
while (1)
beginwhile

Project G ;

if (|G| < ε) break;

Bracket the minimum along the direction G;

Minimize along the direction G:
Find the optimal s∗ such that f(Π, Yi + s∗G) = mins f(Π, Yi + sG);

Yi+1 = Yi + s∗G; ∆f = f(Π, Yi)− f(Π, Yi+1); Yi = Yi+1;

if (∆f < ε) break;

Compute gradient G = ∇f(Π, Yi); g1 = (G + G2) ·G; g2 = G2 ·G2; g3 = g1/g2; G2 = −G;
G = G1 = G2 + g3G1;

endwhile

Phase 3: Output Result
Y = Yi;

guarantees convergence to a local minimum of a quadratic function within n steps [15]
making it one of the fastest in the class of gradient descent search-based optimization
methods [24]. The CGD search algorithm depicted in Figure 11.1 is based on the one
presented in [44] with suitable adaptations (similar to the ones for the SD search algorithm
described above) to take into account the fact that the solution space of the inter-probe
spacings is constrained.

11.3.1 Computation of Π̂

Determining the optimal clone ordering Π̂, is an intractable problem that entails a combi-
natorial search through the discrete space of all possible permutations of {1, . . . , n}. We
present three stochastic discrete optimization algorithms for this purpose, Simulated An-
nealing (SA), Large Step Markov Chain (LSMC) and the Genetic Algorithm (GA). In par-
ticular, we chose to augment the classical GA with the stochastic hill climbing capability
of the LSMC algorithm. We provide a brief description of these three algorithms.

Simulated Annealing

A single iteration of the SA algorithm consists of three basic phases: (i) perturb, (ii) evalu-
ate, and (iii) decide. In the perturb phase, the current probe ordering Πi is systematically
perturbed to yield another candidate probe ordering Πj by reversing the ordering within a
block of probes where the endpoints of the block are chosen at random. This perturbation
is referred to as a 2-opt heuristic in the context of the TSP [35]. In the evaluate phase,
the function f(Πj , ŶΠj) (equation (11.9)) is computed. In the decide phase, the new can-

Information Theoretic Approach to Genome Reconstruction 11-9

FIGURE 11.2: SA algorithm for computing the probe ordering and inter-probe spacings
Simulated Annealing Algorithm:

1. Choose a random order of probes, Π and a sufficiently high value of the temperature T .
Compute f(Π, ŶΠ).

2. Choose a random block within the ordering Π.

3. Perform a block reversal and call the new ordering Π′.

4. Compute f(Π′, ŶΠ′).

5. If f(Π′, ŶΠ′) < f(Π, ŶΠ), then replace the existing solution (Π, ŶΠ) by the new solution
(Π′, ŶΠ′),
Else if f(Π′, ŶΠ′) ≥ f(Π, ŶΠ), then

Generate a random number x that is uniformly distributed in the interval [0, 1].

If x < exp(−(f(Π′, ŶΠ′) − f(Π, ŶΠ)/T) then, replace the existing solution (Π, ŶΠ) by the
new solution (Π′, ŶΠ′),

Else retain the existing solution (Π, ŶΠ).

6. Repeat steps 2-5 for a given value of T until D reorderings have been attempted or S
successful reorderings have been recorded, whichever comes first. An ordering is deemed
successful if it lowers the objective function f(Π, ŶΠ).

7. Check if the convergence criterion has been met. If yes, stop; if not, reduce T using the
annealing schedule and go to step 2.

didate solution Πj is accepted with probability p which is computed using the Metropolis
function [37]:

p =

1 if f(Πj , ŶΠj) < f(Πi, ŶΠi)

exp
(
− f(Πj,ŶΠj

)−f(Πi,ŶΠi
)

T

)
if f(Πj , ŶΠj) ≥ f(Πi, ŶΠi)

(11.17)

or using the Boltzmann function B(T) [1]:

p = B(T) =
1

1 + exp
(

f(Πj ,ŶΠj
)−f(Πi,ŶΠi

)

T

) (11.18)

at a given value of temperature T , whereas Πi is retained with probability (1− p).
Both, the Metropolis function and the Boltzmann function, ensure that SA generates an

asymptotically ergodic Markov chain of solution states at a given temperature value. Geman
and Geman [21] have shown that logarithmic annealing schedules of the form Tk = R/ log k
for some value of R > 0 ensure asymptotic convergence to a global minimum with unit
probability in the limit k →∞. The convergence criterion in our case was the fact that the
value of the objective function had not changed for the past k successive annealing steps.
However, we used a geometric annealing schedule of the form Tk+1 = αTk where α is a value
less than but close to 1. We used a value of α = 0.95 in all of our experiments. Although the
aforementioned geometric annealing schedule does not ensure strict asymptotic convergence
to a global optimum as the logarithmic annealing schedule does, it is much faster and has
been found to yield very good solutions in practice [45]. Figure 11.2 gives the outline of the
serial SA algorithm.

11-10 Handbook of Computational Molecular Biology

C

I

N

2-opt
DB

C: Current locally optimal solution

I: Intermediate Solution

N: New locally optimal solution
DB: double bridge perturbation
2-opt: exhaustive 2-opt search

FIGURE 11.3: Exploration of the solution space by the LSMC algorithm.

Large Step Markov Chain Algorithm

A single iteration of the LSMC algorithm (like the SA algorithm) also consists of the per-
turb, evaluate, and decide phases. The major difference between the SA and the LSMC
algorithms arises from the fact that the classical SA algorithm performs a strictly local per-
turbation in the perturb phase whereas the LSMC algorithm performs a non-local perturba-
tion followed by an exhaustive local search. The LSMC algorithm combines the stochastic
decision function with an exhaustive local search using the 2-opt heuristic. The current
solution at every stage is guaranteed to be locally optimal under the 2-opt heuristic. In
the perturb phase, the current solution (which is locally optimal) is subject to a non-local
perturbation termed as a double-bridge kick [36] which results in a transition to a non-local
point in the search space. An exhaustive local 2-opt search is performed starting from this
new point yielding a new local optimum. The choice between the new local optimum and
the current solution is then made using the Metropolis decision function or the Boltzmann
decision function as in the case of the SA algorithm. Figure 11.3 depicts the search strategy
employed by the LSMC algorithm.

The exhaustive local search using the 2-opt heuristic would, strictly speaking, entail the
evaluation of the objective function f(Π, Y) after each 2-opt perturbation. This would
cause the LSMC algorithm to be computationally extremely intensive. As an effective com-
promise, the exhaustive local search is performed using a modified objective function. The
column in the hybridization matrix H corresponding to a given probe could be considered
as a binary hybridization signature of that probe. The modified objective function fD(Π)
computes the sum of the Hamming distances between the binary hybridization signatures
of successive probes in a given probe ordering Π. The local minimum of fD(Π) is sought
using the 2-opt heuristic. Since the modified objective function fD(Π) is much easier to
compute than the original objective function f(Π, Y), the exhaustive local search is very
fast. Note, that whereas the SA algorithm samples the entire search space, the LSMC
algorithm samples only the space of locally optimal solutions. The Metropolis decision
function or the Boltzmann decision function in the case of the LSMC algorithm is annealed

Information Theoretic Approach to Genome Reconstruction 11-11

FIGURE 11.4: LSMC algorithm for computing the probe ordering and inter-probe spacings
Large Step Markov Chain (LSMC) Algorithm:

1. Choose a random order of probes, Π and a sufficiently high value of the temperature T .

2. Perform an exhaustive local search using the 2-opt heuristic and the Hamming distance
objective function on Π to yield new probe order Π′. Compute f(Π′, ŶΠ′)

3. Perform a non-local double-bridge perturbation on Π′ to yield a new probe order Π′′.

4. Perform an exhaustive local search using the 2-opt heuristic and the Hamming distance
objective function on Π′′ to yield new probe order Π′′′. Compute f(Π′′′, ŶΠ′′′).

5. If f(Π′′′, ŶΠ′′′) < f(Π′, ŶΠ′), then replace the existing solution (Π′, ŶΠ′) by the new solution
(Π′′′, ŶΠ′′′),
Else if f(Π′′′, ŶΠ′′′) ≥ f(Π′, ŶΠ′), then

Generate a random number x that is uniformly distributed in the interval [0, 1].

If x < exp(−(f(Π′′′, ŶΠ′′′) − f(Π′, ŶΠ′)/T) then, replace the existing solution (Π′, ŶΠ′) by
the new solution (Π′′′, ŶΠ′′′),

Else retain the existing solution (Π′, ŶΠ′).

6. Repeat steps 2-5 for a given value of T until D reorderings have been attempted or S
successful reorderings have been recorded, whichever comes first. An ordering is deemed
successful if it lowers the objective function f(Π, ŶΠ).

7. Check if the convergence criterion has been met. If yes, stop; if not, reduce T using the
annealing schedule and go to step 2.

in a manner similar to the SA algorithm. Figure 11.4 gives the outline of the serial LSMC
algorithm. The LSMC algorithm starting from an initial solution, also generates, in the
limit, an ergodic Markov chain of solution states which asymptotically converges to a sta-
tionary Boltzmann distribution [1]. The Boltzmann distribution asymptotically converges
to a globally optimal solution when subject to the annealing process [21].

The Genetic Algorithm

The Genetic Algorithm (GA) [38] begins with an initial ensemble or population of candidate
solutions (typically represented by bit strings) and iterates through a number of generations
before reaching a locally optimal solution. In each iteration or generation, the solutions in
the current population are subject to the genetic operators of selection, crossover and mu-
tation. The selection operator selects two candidate solutions from the current population
with probability in direct proportion to their fitness values using a roulette-wheel procedure.
The fitness function is the negative of the NLL objective function in equation (11.5) so that
solutions with lower objective function values have higher fitness values and conversely.
During the crossover operation, the solutions selected by the roulette-wheel procedure are
treated as parental chromosomes and child chromosomes are generated by exchanges of
parental chromosomal segments. This mimics the phenomenon of recombination in biologi-
cal chromosomes. The purpose of crossover is to enable large-scale exploration of the search
space [38]. The child chromosomes resulting from the crossover operator are then subject
to the mutation operator which represents a random local (i.e., 2-opt) perturbation in the
solution space. The new generation of chromosomes, thus created using the aforementioned
genetic operators, replaces the existing population. The population replacement is repeat-
ed for several generations of the GA until the fitness value of the best chromosome in the

11-12 Handbook of Computational Molecular Biology

population has not changed over the past k generations.
In our implementation of the GA, the heuristic crossover operator proposed by Jog et

al. [27] for the TSP was improvised and incorporated. The probes in the ordering are treated
as nodes in an undirected graph. The edges between the nodes in the graph are weighted by
the Hamming distances between the binary hybridization signatures of the corresponding
probes. The heuristic crossover can be described as follows:

1. Choose a start node from one of the selected chromosomes for crossover.
2. Compare two edges leaving from the start node between the two parents and

choose the shorter edge; if the shorter edge leads to an illegal sequence, choose
the other edge; if both edges introduce illegal sequences, choose an edge from the
remaining nodes that has the shortest Hamming distance from the start node.

3. Choose the new node as the start node and repeat step 2 until a complete sequence
is generated.

The heuristic crossover described above was slightly improvised in the context of our prob-
lem. If the start node is close to the end of the sequence, the crossover will not be effective in
most cases where the two parental chromosomes are similar. For example, if the start node
is selected at a point after which sequences of both parental chromosomes are the same, no
actual exchange of parental chromosomal segments will result from the application of the
heuristic crossover operator. To avoid this situation, we start from the beginning of the
sequence whenever a node close to the end of the sequence is selected as the start node.
This often leads to a much improved child in a single crossover operation.

In the absence of a hill climbing mechanism, the GA exhibits a slow convergence rate [38].
The incorporation of deterministic hill climbing into the GA typically results in premature
convergence to a local optimum [8]. Our previous experience with the GA has shown
that incorporation of a stochastic hill climbing mechanism greatly improves the asymptotic
convergence of the GA to a near-globally optimal solution [8]. As a consequence, the GA
was enhanced with the incorporation of a stochastic hill climbing search similar to that of
the LSMC algorithm resulting in a GA-LSMC hybrid algorithm.

In the case of the GA-LSMC hybrid algorithm, the mutation operator is implemented
using the non-local double-bridge perturbation followed by an exhaustive local 2-opt search.
The mutation rate is set dynamically based on the genetic variation present in the current
population. During the early stages of the GA, since genetic variations in the population
are relatively high, application of the heuristic crossover operator usually creates better
offspring. Therefore the mutation rate is kept relatively low. During the later stages of
the GA, when the genetic variation is depleted due to repeated selection and crossover, the
mutation rate is increased to introduce more variation in the population.

Two slightly different versions of the GA-LSMC hybrid algorithm were designed and
implemented. In the first version, the population replacement strategy is deterministic,
i.e., the less fit parent is replaced by the child chromosome if the child chromosome has a
lower NLL objective function (i.e., higher fitness function) value. In the second version, the
population replacement strategy is stochastic, i.e., the the less fit parent is replaced by the
child chromosome with probability pr computed using the Boltzmann function:

pr = B(T) =
1

1 + exp
(

f(xc)−f(xp)
T

) (11.19)

where f(xc) and f(xp) are the NLL objective function values associated with the child
chromosome and parent chromosome, respectively. Note that both versions of the GA

Information Theoretic Approach to Genome Reconstruction 11-13

FIGURE 11.5: Outline of the GA-LSMC hybrid algorithm with stochastic replacement
The GA-LSMC Hybrid Algorithm with Stochastic Replacement:

1. Create an initial population of locally optimal solutions using the double-bridge perturba-
tion and an exhaustive local 2-opt search; (This ensures that all the members in the initial
population are locally optimal solutions)

2. While not converged do

(a) Select two parents using the roulette wheel selection procedure;

(b) Apply the heuristic crossover to the selected parents to create an offspring S;

(c) Perform exhaustive local 2-opt search on S to yield a new locally optimum solution S′;

(d) With probability pm perform a mutation on S′ using a double-bridge perturbation
followed by exhaustive local 2-opt search to yield a new locally optimum solution S∗;

(e) Evaluate the NLL objective function at S∗ (if mutation is performed) or at S′ (if
mutation is not performed) using conjugate gradient descent search;

(f) Compute ∆f = f(S∗) − f(P) (if mutation is performed) or ∆f = f(S′) − f(P) (if
mutation is not performed) where P is the less fit of the two parents;

(g) In the case of stochastic replacement: Replace P with S∗ (if mutation is performed) or
S′ (if mutation is not performed) with probability pr computed using the Boltzmann
function pr = 1

1+exp
(

∆f
T

) ;

In the case of deterministic replacement: If ∆f < 0 replace P with S∗ (if mutation is
performed) or S′ (if mutation is not performed);

(h) Update pm;

(i) In the case of stochastic replacement, update the temperature using the annealing
function T = A(T);

(j) Check for convergence;

3. Output the best solution in the population as the final solution;

incorporate the hill climbing mechanism of the LSMC algorithm. Figure 11.5 depicts the
GA-LSMC hybrid algorithm.

After a sufficient number of generations, the solutions in the population represent locally
optimal solutions to the problem. The final solution to the optimization problem is chosen
from the ensemble of locally optimal solutions. Since a larger solution space is sampled,
the final solution from the GA-LSMC algorithm is potentially better than the one obtained
from randomized local neighborhood search algorithms such as SA or the LSMC algorithm.
However, since an ensemble of solutions has to be analyzed in each generation or iteration,
the execution time per iteration is higher.

11.4 Parallel Computation of the Maximum Likelihood Es-
timate

Computation of the ML estimate entails two levels of parallelism corresponding to the two
stages of optimization discussed in the previous section:

Level 1: Parallel computation of the optimal inter-probe spacing ŶΠ for a given
probe ordering Π (equation (11.9)). This entails parallelization of the gradient

11-14 Handbook of Computational Molecular Biology

descent search procedure for constrained optimization in the continuous domain.
Level 2: Parallel computation of the optimal probe ordering (equation (11.10)). This

entails parallelization of SA, LSMC or the GA for optimization in the discrete
domain.

The two levels of parallel computation were implemented on a cluster of of SMPs which
constitutes a hybrid platform comprising of both, shared memory and distributed memory.
Each SMP is a shared-memory multiprocessor whereas the cluster of SMPs constitutes a
distributed-memory computing resource. The parallel computation of the optimal inter-
probe spacing ŶΠ for a given probe ordering Π was deemed to be well suited for data
parallelism using shared-memory multithreaded programming [2]. The distributed-memory
message-passing paradigm using the Message Passing Interface (MPI) software environmen-
t [42] was deemed to be better suited for parallelization of SA, the LSMC algorithm and
the GA.

11.4.1 Parallel SA and LSMC Algorithms

Since a candidate solution in the serial SA or LSMC algorithm can be considered to be
an element of an asymptotically ergodic first-order Markov chain of solution states, we
formulated and implemented two models of parallel SA (pSA) and parallel LSMC (pLSMC)
algorithms based on the distribution of the Markov chain of solution states on the individual
processors as described below:

• The Non-Interacting Local Markov chain (NILM) pSA and pLSMC algorithms.
• The Periodically Interacting Local Markov chain (PILM) pSA and pLSMC algo-

rithms.

In the NILM pSA and NILM pLSMC algorithms, each SMP or node in a distributed-
memory multiprocessor system runs an independent and asynchronous version of the serial
SA or LSMC algorithm. In essence, there are as many Markov chains of solution states
as there are physical SMPs within the system. At each temperature value, each SMP
iterates through the perturb-evaluate-accept cycle concurrently (but asynchronously) with
all the other SMPs. The perturbation function uses a parallel random number generator
to generate the Markov chains of solution states. By assigning a distinct seed to each
SMP at the start of execution, the independence of the Markov chains in different SMPs is
ensured. The evaluation and decision functions are executed concurrently on the solution
state within each SMP. On termination, the best solution is selected from among all the
solutions available on the individual SMPs. The NILM model is essentially that of multiple
independent searches.

The PILM pSA and PILM pLSMC algorithms are similar to their NILM counterparts
except that just before the parameter T is updated, the best candidate solution from among
those in all the processors is selected and duplicated on all the other processors. The goal
of this synchronization procedure is to focus the search in the more promising regions of
the solution space. The PILM model is essentially that of multiple periodically interacting
searches as described in B(iii) above.

In the case of all the four algorithms, NILM pSA, NILM pLSMC, PILM pSA and PILM
pLSMC, a master process acts as the overall controlling process and runs on one of the SMPs
within the MPI cluster. The master process spawns child processes on each of the other
SMPs within the MPI cluster, broadcasts the data subsets needed by each child process,
collects the final results from each of the child processes and terminates the child processes.
The master process, in addition to the above mentioned functions, also runs its own version

Information Theoretic Approach to Genome Reconstruction 11-15

of the SA or LSMC algorithm just as any of its child processes. In the case of the PILM
pSA/pLSMC algorithms, before the parameter T is updated, the master process collects
the results from each child process along with its own result, broadcasts the best result to
all the child processes and also replaces its own result with the best result. The master
process updates its temperature using the annealing schedule and proceeds with its local
version of the SA or LSMC algorithm. On convergence, the master process collects the final
results from each of the child processes along with its own, selects the best result as the
final solution and terminates the child processes.

Each of the child processes in the PILM pSA/pLSMC algorithms receives the initial
parameters from the master process and runs its local version of the SA or LSMC algorithm.
At the end of each annealing step, each child process conveys its result to the master process,
receives the best result thus far from the master process and replaces its result with the
best result thus far before proceeding with the next annealing step. Upon convergence each
child process conveys its result to the master process.

11.4.2 Parallel Genetic Algorithm

The approach to parallelizing the GA is based on partitioning the population amongst the
available processors [9]. Each processor is responsible for searching for the best solution
within its subpopulation. This is tantamount to performing multiple concurrent searches
within the search space [9]. The parallel GA (pGA) was also implemented using the master-
slave model with MPI on a distributed-memory platform comprising of a network of SMPs.
The master process runs on one of the SMPs within the SMP cluster. The master process
reads in the problem data, creates the initial population, spawns slave processes on all the
SMPs (including its own) and divides the initial population amongst the slave processes.
Each slave process runs a serial version of the GA on its subpopulation concurrently with
the other slave processes. The slave processes periodically send the solutions within their
subpopulation to the master process. The master process on receipt of the solutions from all
the slave processes, checks for convergence, mixes the solutions at random and redistributes
the population amongst the slave processes. This periodic mixing and redistribution of the
population prevents a slave process from premature convergence to a local optimum after
having exhausted all the genetic variation within its subpopulation. The master process
deems the pGA to have converged if the best solution in the overall population has not
changed over a certain number of successive generations.

11.4.3 Parallel Gradient Descent Search

Due to its inherent sequential nature, we deemed data parallelism to be the appropriate
parallelization scheme for the CGD search algorithm. Our previous experience showed that
the speedup of a data parallel implementation of the CGD search procedure on a distributed-
memory multiprocessor did not scale well with an increasing number of processors [7]. This
was attributed to the high inter-processor communication overhead in a distributed-memory
environment. Consequently, a data parallel implementation of the CGD search algorithm
on a shared-memory multiprocessor using multithreaded programming was deemed more
suitable.

In our current implementation, the Y and G vectors are distributed amongst the pro-
cessors within a single SMP. Each processor performs the required operations on its local
Yloc and Gloc subvectors concurrently with the other processors. Here, |Yloc| = |Y |/Np and
|Gloc| = |G|/Np where Np is the number of processors within a single SMP. Implementation
of the parallel algorithm follows the Master/Slave model, where both the master and slaves

11-16 Handbook of Computational Molecular Biology

are implemented using IEEE POSIX threads [2]. The slave threads are responsible for most
of the computation. Coordination and synchronization among the slave threads are carried
out by the master thread.

Inter-thread synchronization is realized using data types mutex and semaphore from the
POSIX thread (Pthread) library [2] and the barrier function implemented by us. Mutex is
used to ensure that a critical section is executed atomically. Semaphore is used to coordinate
the order of execution between the master thread and slave threads. Barrier is employed so
that no thread can proceed any further until all the threads have reached the same point
in their execution. This would prevent certain threads from updating the global variables
when some other threads are still using them. Two types of barriers have been used in our
implementation. One of the barrier types is used for coordinating the execution of the slave
threads. This is useful when the computation is conducted entirely by the slave threads
without any need for coordination by the master thread. The other barrier type is used in
the computation by slave threads when the coordination and synchronization by the master
thread are necessary. Each slave thread is bound to a processor so that the time spent
on switching threads between processors is reduced to a minimum. The master thread is
not bound to any processor since the time used by the master thread for coordination and
synchronization is insignificant compared to the slave threads.

In the case of the pLSMC algorithm, the exhaustive local search using the 2-opt heuristic
was also parallelized on a shared-memory SMP using multithreaded programming. However,
instead of a data parallel implementation as in the case of the CGD search procedure, a
control parallel scheme for the exhaustive local search was designed. The control parallel
scheme entails multiple independent searches performed by multiple threads each bound to
a distinct processor. For a given ordering of n clones, an exhaustive local search using the 2-
opt heuristic would result in generation and evaluation of O(n2) distinct perturbations [35].
In the control parallel scheme, the generation and evaluation of distinct perturbations in
carried out concurrently by multiple threads, each thread bound to a distinct processor
within an SMP. The control parallel scheme follows the master-slave model wherein the
master thread spawns multiple slave threads, binds each slave thread to a distinct processor
within the SMP, assigns each slave thread a distinct partition of the search space (i.e., space
of O(n2) distinct perturbations), collects the final result from each of the slave threads and
designates the best result as the locally optimal solution under the 2-opt heuristic.

11.4.4 A Two-tier Approach for Parallel Computation of the ML Esti-
mator

In order to ensure a modular, flexible and scalable implementation, two tiers of parallelism
were incorporated in the computation of the ML estimator. The finer or lower level of
parallelism pertains to the computation of Ŷ for a given probe ordering Π using the parallel
multithreaded CGD search algorithm. The coarser or upper level of parallelization pertains
to the computation of Π̂ using SA, the LSMC algorithm or the GA.

At the coarser level, the user has a choice of using either the parallel SA (pSA), parallel
LSMC (pLSMC) or the parallel GA (pGA). The parallelization of the CGD search algorithm
at the finer level is transparent to pSA, pLSMC or the pGA at the coarser level, i.e., the
communication and control scheme for the parallel evolutionary methods is independent of
that of the parallel multithreaded CGD search algorithm. For example, one could use the
serial or parallel version of the CGD search algorithm (or, for that matter, any other serial
or parallel algorithm for continuous optimization at the finer level) without having to make
any changes to pSA, pLSMC or the pGA at the coarser level and vice versa.

A parallel multithreaded CGD search process is embedded within each of the pSA, pLSMC

Information Theoretic Approach to Genome Reconstruction 11-17

TABLE 11.1 Specifications of the simulated
clone-probe hybridization data

Data Set n k N M ρ η
1 50 300 180 3 2% 2%
2 100 650 850 7 2% 2%
3 200 1300 1480 7 2% 2%
4 500 3250 3700 7 2% 2%

and pGA processes. When the parallel multithreaded CGD search procedure is invoked
from within the master or slave pSA, pLSMC or pGA process, a new set of CGD threads is
spawned on the available processors within an SMP. The master CGD thread runs on the
same processor as the parent pSA, pLSMC or pGA process (master or child). The master
and slave CGD threads cooperate to evaluate and optimize the objective function fΠ(Y).
Having optimized fΠ(Y), the master and slave CGD threads are terminated by the parent
pGA process and the corresponding processors are available for future computation.

The two-tier approach to parallelization of the ML estimator can be seen to induce a
logical tree-shaped interconnection network on the available processors within the SMP
cluster. The first level is the collection of SMPs that comprise the cluster. These SMPs run
the (master and slave) pSA, pLSMC or pGA processes. The second level is the collection
of processors within each SMP that run the master and slave CGD threads spawned by
the pSA, pLSMC or pGA process running on that SMP. The processors that run the CGD
threads are logically connected to the processor running the parent pSA, pLSMC or pGA
process but are independent of the processors running other pSA, pLSMC or pGA processes.

11.5 Experimental Results

The parallel algorithms were implemented on a dedicated cluster comprising 8 nodes where
each node is a shared-memory symmetric multiprocessor (SMP) running SUN Solaris-x86.
Each SMP comprises four 700MHz Pentium III Xeon processors with 1 MB cache per
processor and 1GB of shared memory. The programs were tested with simulated clone-
probe hybridization data [7] as well as real data from cosmid2 (n = 109, k = 2046) and
cosmid3 (n = 111, k = 1937) of the fungal genome Neurospora crassa made available by
the Fungal Genome Resource, Department of Genetics, The University of Georgia. The
simulated data used had the specifications outlined in Table 11.1. The simulated data were
generated using a program described in [7] which generates clonal data of a given length
with the left endpoints of the clones and probes uniformly distributed along the length of
a simulated chromosome.

The pGA was implemented with the following parameters: the population size Npop was
chosen to be 40 for all the tests, the initial temperature Tinit was chosen to be 1 for the
pGA with stochastic replacement, the annealing factor α in the geometric annealing schedule
Tnext = α · Tprev was chosen to be 0.95, the maximum number of trials max trials before
the population was mixed was chosen to be the population size Npop and the convergence
criterion used was the fact that no member in the population was replaced for two successive
generations (i.e., the population remained the same for two successive generations). Note
that this a stricter convergence criterion than the one that requires only the best solution
in the population to be unchanged over a certain number of successive generations. The
mutation probability pm was set dynamically as follows: for a population replacement rate
greater than 70% of Npop, pm was set to 0, for a population replacement rate between
30% and 70% of Npop, the pm was set to 0.1, and for a population replacement rate less

11-18 Handbook of Computational Molecular Biology

than 70% of Npop, pm was set to 0.2. Thus, the mutation probability is kept low when
the population replacement rate is sufficiently high. The crossover operation is the primary
mechanism for exploration of the search space and for maintaining genetic variation in the
population in this case. When the genetic variation in the population has depleted after
repeated selection and crossover operations, resulting in a low population replacement rate,
the mutation probability is gradually raised to introduce more genetic variation into the
population.

The pSA and pLSMC algorithms were implemented with following parameters: the initial
value for the temperature was chosen to be 1.0, the maximum number of iterations D for
each annealing step was chosen to be 100 · n. The current annealing step was terminated
when the maximum number of iterations was reached or when the number of successful
perturbations equaled 10 · n (i.e., 10% of the maximum number of iterations) whichever
was encountered first. The annealing factor α in the geometric annealing function was
chosen to be 0.95. The algorithm was terminated (and deemed to have reached a global
optimum) when the number of successful perturbations in any annealing step equaled 0.
When comparing the various parallel versions of the SA and LSMC algorithms, the product
of the number of SMPs i.e., NSMP and the maximum number of iterations D performed
by a processor in a single annealing step was kept constant i.e., D = (100 · n)/NSMP . This
ensured that the overall workload remained constant as the number of SMPs was varied
thus enabling one to examine the scalability of the speedup and efficiency of the algorithms
for a given problem size with increasing number of processors. In the NILM pSA and
NILM pLSMC algorithms, each process was independently terminated when the number of
successful perturbations in any annealing step for that process equaled 0. In the PILM pSA
and PILM pLSMC algorithms, each process was terminated when the number of successful
perturbations in an annealing step equaled 0 for all the processes i.e., the master process
and all the child processes. This condition was checked during the synchronization phase
at the end of each annealing step.

The parallel multithreaded CGD (MTCGD) search algorithm was tested on the simulated
data set in Table 11.1 and on real data derived from cosmid2 (n = 109, k = 2046) of the
fungal genome Neurospora crassa. Figure 11.6 shows the speedup of the MTCGD search
algorithm for varying Np (i.e., number of processors within an SMP). As can be seen, the
payoff in the parallelization of the CGD search algorithm is better realized for larger values
of n (i.e., larger problem sizes). For n = 200 and n = 500, the best efficiency figures were
seen to be in the range 93%–95% whereas for n = 50 the best efficiency figure were about
85%. For a given problem size, the efficiency was seen to decrease with an increasing number
of processors Np within the SMP. This is expected since the overhead imposed by barrier
synchronization, mutex locks and semaphores increasingly dominates the overall execution
time as Np is increased for a given problem size.

The parallel multithreaded exhaustive local search algorithm was also tested on the simu-
lated data set in Table 11.1. Figure 11.7 shows the speedup of the multithreaded exhaustive
local search algorithm for varying Np (i.e., number of processors within an SMP). For a giv-
en problem size, the efficiency was seen to decrease with an increasing number of processors
Np within the SMP, but not appreciably. This can be attributed to the fact that although
there is a certain amount of overhead involved in creation of multiple slave threads and
binding them to distinct processors, there is no frequent synchronization amongst the slave
threads or between the master thread and the slave threads. Since each slave thread per-
forms an independent search of the space of 2-opt perturbations, the only synchronization
needed is at the beginning and end of the search process. This is in contrast to the parallel
multithreaded CGD search algorithm where the synchronization amongst the slave threads
or between the master thread and the slave threads is more frequent.

Information Theoretic Approach to Genome Reconstruction 11-19

1

1.5

2

2.5

3

3.5

1 1.5 2 2.5 3 3.5 4

S
pe

ed
up

Number of processors

Speedup Curves: Multithreaded CGD algorithm

No. of probes=50 (simulated data)
No. of probes=100 (simulated data)
No. of probes=200 (simulated data)
No. of probes=500 (simulated data)

cosmid2 (real data)
cosmid3 (real data)

FIGURE 11.6: Speedup curves for the MTCGD algorithm on a single SMP.

1

1.5

2

2.5

3

3.5

1 1.5 2 2.5 3 3.5 4

S
pe

ed
up

Number of processors

Speedup Curves: Parallel Exhaustive 2-opt Local Search Algorithm

No. of probes=50 (simulated data)
No. of probes=100 (simulated data)
No. of probes=200 (simulated data)
No. of probes=500 (simulated data)

cosmid2 (real data)
cosmid3 (real data)

FIGURE 11.7: Speedup curves for the multithreaded exhaustive local search algorithm on a
single SMP.

11-20 Handbook of Computational Molecular Biology

0

5

10

15

20

25

0 5 10 15 20 25 30 35

S
pe

ed
up

Number of processors

Speedup Curves: pSA algorithm

No. of probes=50 (simulated data)
No. of probes=100 (simulated data)
No. of probes=200 (simulated data)

cosmid2 (real data)
cosmid3 (real data)

FIGURE 11.8: Speedup curves for the PILM pSA algorithm on an SMP cluster.

Figure 11.8 shows the speedup of the PILM pSA algorithm on the simulated and real
data sets. Likewise, Figure 11.9 shows the speedup of the PILM pLSMC algorithm on
the simulated and real data sets. The PILM versions of the pSA and pLSMC algorithms
were observed to exhibit superior performance when compared to their NILM counterparts.
This was expected since the PILM pSA and PILM pLSMC algorithms focus on the more
promising regions of the search space via periodic synchronization. As can be observed,
the pSA and pLSMC algorithms exhibit consistent and scalable speedup with an increasing
total number of processors Nproc = Np · NSMP . As expected, the speedup scales better
with increasing number of processors for larger values of the number of probes n (i.e., larger
problem sizes). Overall, the pSA algorithm was seen to scale better than the PLSMC
algorithm. The reason for this is that the serial LSMC algorithm is much faster than the
serial SA algorithm [7]. This implies that the pLSMC algorithm is better suited for larger
problem instances than the pSA algorithm.

Figure 11.10 shows the speedup of the parallel GA-LSMC (pGA-LSMC) algorithm with
stochastic replacement. The performance of the pGA-LSMC algorithm with stochastic re-
placement was observed to be superior to the pGA-LSMC algorithm with deterministic
replacement in that the former was observed to yield better solutions with a smaller con-
vergence time in most cases. This is in conformity with the results from our earlier work [8]
which showed that the incorporation of a stochastic hill climbing mechanism (which, in the
case of the pGA, is manifested in the form of stochastic replacement using the Boltzmann
function), does improve the convergence rate and the ability of the pGA to explore more
promising regions of the search space, thus resulting in a better final solution. As in the
case of the pSA and pLSMC algorithms, the speedup of the pGA-LSMC algorithm was
seen to scale better with increasing number of processors for larger values of n (i.e., larger
problem sizes).

Information Theoretic Approach to Genome Reconstruction 11-21

0

5

10

15

20

25

0 5 10 15 20 25 30 35

S
pe

ed
up

Number of processors

Speedup Curves: pLSMC algorithm

No. of probes=50 (simulated data)
No. of probes=100 (simulated data)
No. of probes=200 (simulated data)

cosmid2 (real data)
cosmid3 (real data)

FIGURE 11.9: Speedup curves for the PILM pLSMC algorithm on an SMP cluster.

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

S
pe

ed
up

Number of processors

Speedup Curves: pGA algorithm

No. of probes=50 (simulated data)
No. of probes=100 (simulated data)
No. of probes=200 (simulated data)

cosmid2 (real data)
cosmid3 (real data)

FIGURE 11.10: Speedup curves for the pGA-LSMC algorithm on an SMP cluster.

11-22 Handbook of Computational Molecular Biology

TABLE 11.2 Comparison of the serial SA, LSMC and GA-LSMC algorithms

Data Set GA-LSMC LSMC SA
T (sec) NLL C T (sec) NLL C T (sec) NLL C

n = 50, k = 300 3325 1548.39 4 10746 1624.09 12 15076 1665.37 12
n = 100, k = 650 10919 4262.8 9 7459 4297.5 14 6265 4288.64 13
n = 200, k = 1300 181311 11159.48 9 105893 11515.13 24 31013 11574.75 27

cosmid2 27962 12731.37 - 34704 12757.55 - 108499 12949.99 -
cosmid3 14922 12584.62 - 30183 12501.88 - 45533 13212.85 -

T: Execution time, NLL: NLL fuction value, C: Number of contigs recovered

The pGA-LSMC algorithm was also observed to exhibit superlinear speedup in some
instances. This can be attributed to two causes, population caching and the stochastic
nature of the search process in the serial and parallel GA. Population caching is due to
the fact that with a larger number of processors, the population per processor decreases to
the point where it can reside entirely in cache. When the number of processors is small,
the caching effect can overcome the inter-processor communication and synchronization
overhead resulting in superlinear speedup. Also, due to the inherently stochastic nature of
the selection, crossover and mutation operations in the GA, the manner in which the search
space is traversed by the serial GA and the parallel GA could be entirely different. The
difference in the manner of the search tree traversal has been known to cause instances of
superlinear speedup in the case of other well known combinatorial search algorithms (both,
stochastic and deterministic) such as SA, LSMC and branch-and-bound [31].

The efficiency values for all versions of all the three parallel algorithms (PSA, pLSMC
and pGA-LSMC) are observed to be higher for larger problem instances (larger values of n
and k) for a given value of Nproc. The efficiency values also show an overall declining trend
for increasing values of Nproc for a given problem instance for all versions of all the three
parallel algorithms. These observations are in conformity with the general expectations
regarding the performance of these parallel stochastic optimization algorithms.

The results of the serial GA-LSMC hybrid algorithm with stochastic replacement were
compared with those of the serial SA and serial LSMC algorithms (Table 11.2). The serial
GA-LSMC hybrid algorithm was seen to consistently yield lower NLL values compared to
the SA and LSMC algorithms on both, artificial and real data. The only exception is the
real data set cosmid3 where the GA-LSMC hybrid algorithm yielded a slightly higher NLL
function value (less than 1% difference) than the LSMC algorithm but with much shorter
execution time (less than half). Table 11.2 also shows the number of probe suborderings
(i.e., contigs) recovered by the GA-LSMC, SA and LSMC algorithms on the synthetic data
sets. In an ideal case, one should be able to recover the true probe ordering as a single
contig. In reality, this is unlikely due to the presence of hybridization errors. In a realistic
scenario, the physical mapping algorithm would be expected to recover probe suborderings
that could then be manually manipulated (via translation and probe order reversal) to yield
the final probe order. The fewer and longer these probe suborderings or contigs, the less
intensive the subsequent manual editing to recover the desired probe ordering. The GA-
LSMC algorithm was seen to consistently yield a physical map with fewer and longer contigs
(i.e., fewer contig breaks) than the SA and LSMC algorithms suggesting that the GA-LSMC
algorithm is capable of yielding solutions of higher quality. This clearly showed that the
heuristic crossover in conjunction with population sampling is a powerful mechanism for
exploration of the search space in the case of the GA. Note that whereas the SA and LSMC
algorithms possess stochastic hill climbing capabilities, they do not possess the capability
for large-scale exploration of the search space via population sampling and the crossover
operator as does the GA.

Information Theoretic Approach to Genome Reconstruction 11-23

11.6 Conclusions and Future Directions

In this chapter we presented an information theoretic approach to genome reconstruction.
Information theoretic reconstruction approaches based on the maximum likelihood (ML)
model or the Bayesian maximum a posteriori (MAP) model have been used extensively in
image and signal reconstruction. In this chapter, we described a maximum likelihood (ML)
estimation-based approach to physical map reconstruction under a probabilistic model of
hybridization errors consisting of false positives and false negatives. The ML estimator
optimizes a likelihood function defined over the spacings and orderings of probes under an
experimental protocol wherein clones of equal length are hybridized to a maximal subset of
non-overlapping equal-length clones termed as probes. The estimation procedure was shown
to involve a combination of continuous and discrete optimization; the former to determine a
set of optimal inter-probe spacings for a given probe ordering and the latter to determine the
optimal probe ordering. The conjugate gradient descent (CGD) search procedure was used
to determine the optimal spacings between probes for a given probe ordering. The optimal
probe ordering was determined using stochastic combinatorial optimization procedures such
as Simulated Annealing (SA), the Large Step Markov Chain (LSMC) algorithm and the
Genetic Algorithm (GA). In particular, the incorporation of stochastic hill climbing into
the traditional GA was shown to result in a GA-LSMC hybrid algorithm with convergence
behavior superior to the traditional GA.

The problem of ML estimation-based physical map reconstruction in the presence of
errors is a problem of high computational complexity thus providing the motivation for
parallel computing. A two-level parallelization strategy was proposed wherein the CGD
search procedure was parallelized at the lower level and SA, the LSMC algorithm or the
GA was simultaneously parallelized at the higher level. The parallel algorithms were im-
plemented on a networked cluster of shared-memory symmetric multiprocessors (SMPs)
running the Message Passing Interface (MPI) environment. The cluster of SMPs offered a
hybrid of shared-memory (within a single SMP) and distributed-memory (across the SMP
cluster) parallel computing. A shared-memory data parallel approach where the compo-
nents of the gradient vector are distributed amongst the individual processors within an
SMP was deemed more suitable for the parallelization of the CGD search procedure. A
distributed-memory control parallel scheme where individual SMPs perform noninteracting
or periodically interacting searches was deemed more suitable for the parallelization of SA,
the LSMC algorithm and the GA.

Our experimental results on simulated clone-probe data showed that the payoff in data
parallelization of the CGD procedure was better realized for large problem sizes (i.e., large
values of n and k). A similar trend was observed in the case of the parallel versions of
SA, the LSMC algorithm and the GA. In the case of the parallel GA, superlinear speedup
was observed in some instances which could be attributed to population caching effects.
The parallel exhaustive local 2-opt search algorithm was observed to be the the most s-
calable in terms of speedup. This was expected since the parallel exhaustive local 2-opt
search algorithm entails minimal interprocessor communication and synchronization over-
head. Overall, the experimental results were found to be in conformity with expectations
based on formal analysis.

Future research will investigate extensions of the ML function that encapsulate errors
due to repeat DNA sequences in addition to false positives and false negatives. The current
MPI implementation of the ML estimator is targeted towards a homogeneous distributed
processing platform such as a network of identical SMPs. Future research will explore and
address issues that deal with the parallelization of the ML estimator on a heterogeneous
distributed processing platform such as a network of SMPs that differ in processing speeds,

11-24 References

a scenario that is more likely to be encountered in the real world. Other combinatorial
optimization techniques such as those based on Lagrangian-based global search and tabu
search will also be investigated. Extensions of the ML estimation-based approach to a
Bayesian MAP estimation-based approach, where the ordering of clones/probes containing
genetic markers, as inferred from a genetic map, are used as a prior distribution, will also
be investigated.

Acknowledgments

This research was supported in part by an NRICGP grant by the US Department of A-
griculture (Grant Award No. USDA GEO-2002-03590) and by a Research Instrumentation
grant by the National Science Foundation (Grant Award No. NSF EIA-9986032).

References

[1] E.H.L. Aarts and K. Korst. Simulated Annealing and Boltzman Machines: A S-
tochastic Approach to Combinatorial Optimization and Neural Computing. Wiley,
New York, NY, 1989.

[2] G. Andrews. Foundations of Multithreaded, Parallel, and Distributed Programming.
Addison Wesley Pub. Co., Reading, MA, 2000.

[3] J. Arnold. Editorial. Fungal Genetics and Biology, 21:254–257, 1997.
[4] R. Arratia, E.S. Lander, S. Tavare, and M.S. Waterman. Genomic mapping by an-

choring random probes: a mathematical analysis. Genomics, 11:806–827, 1991.
[5] D.J. Balding. Design and analysis of chromosome physical mapping experiments.

Philos. Trans. Roy. Soc. London Ser. B., 334:329–335, 1994.
[6] A. Ben-Dor and B. Chor. On constructing radiation hybrid maps. In Proc. ACM

Conf. Computational Molecular Biology, pages 17–26, 1997.
[7] S.M. Bhandarkar, S.A. Machaka, S.S. Shete, and R.N. Kota. Parallel computation

of a maximum likelihood estimator of a physical map. Genetics, special issue on
Computational Biology, 157(3):1021–1043, March 2001.

[8] S.M. Bhandarkar and H. Zhang. Image segmentation using evolutionary computation.
IEEE Trans. Evolutionary Computation, 3(1):1–21, April 1999.

[9] E. Cantu-Paz. Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic
Publishers, Boston, MA, November 2000.

[10] B. Chor and M. Sudan. A geometric approach to betweenness. In Proc. European Sym-
p. Algorithms, volume 979, pages 227–237. Springer–Verlag Lecture Notes in Comput-
er Science, 1995.

[11] T. Christof, M. Jünger, J.D. Kececioglu, and P. Mutzel et al. A branch–and–cut
approach to physical mapping of chromosomes by unique end probes. Journal of
Computational Biology, 4(4):433–447, 1997.

[12] T. Christof and J.D. Kececioglu. Computing physical maps of chromosomes with
non-overlapping probes by branch–and–cut. In Proc. ACM Conf. Computational
Molecular Biology, pages 115–123, Lyon, France, April 1999.

[13] A. J. Cuticchia, J. Arnold, and W. E. Timberlake. The use of simulated annealing in
chromosome reconstruction experiments based on binary scoring. Genetics, 132:591–
601, 1992.

[14] D.S. Greenberg D.B. Wilson and C.A. Phillips. Beyond islands: runs in clone–probe
matrices. In Proc. ACM Conf. Computational Molecular Biology, pages 320–329,

References 11-25

1997.
[15] C.N. Dorny. A Vector Space Approach to Models and Optimization. R.E. Krieger

Publishing Company, Huntington, NY, 1980.
[16] D.K. Weisser F. Alizadeh, R.M. Karp and G. Zweig. Physical mapping of chromosomes

using unique probes. In Proc. ACM–SIAM Conf. Discrete Algorithms, pages 489–
500, 1994.

[17] L.A. Newberg F. Alizadeh, R.M. Karp and D.K. Weisser. Physical mapping of chro-
mosomes: a combinatorial problem in molecular biology. Algorithmica, 13(1/2):52–76,
1995.

[18] D.P. Fasulo, T. Jiang, R.M. Karp, and R. Settergren et al. An algorithmic approach to
multiple complete digest mapping. In Proc. ACM Conf. Computational Molecular
Biology, pages 118–127, 1997.

[19] Y.X. Fu, W.E. Timberlake, and J. Arnold. On the design of genome mapping experi-
ments using short synthetic oligonucleotides. Biometrics, 48:337–359, 1992.

[20] M.S. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP–Completeness. W.H. Freeman, New York, NY, 1979.

[21] S. Geman and D. Geman. Stochastic relaxation, gibbs distribution and the bayesian
restoration of images. IEEE Trans. Pattern Analysis and Machine Intelligence,
6(6):721–741, 1984.

[22] D.S. Greenberg and S. Istrail. Physical mapping by STS hybridization: algorithmic
strategies and the challenge of software evaluation. Journal Computational Biology,
2(2):219–273, 1995.

[23] H. Hadamard. Lectures on the Cauchy Problem in Linear Partial Differential E-
quations. Yale University Press, New Haven, CT, 1923.

[24] M. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.
Journal Research of National Bureau of Standards, 49:409–436, 1954.

[25] M. Jain and E.W. Myers. Algorithms for computing and integrating physical maps
using unique probes. Journal Computational Biology, 4(4):449–466, 1997.

[26] T. Jiang and R.M. Karp. Mapping clones with a given ordering or interleaving. In
Proc. ACM–SIAM Conf. Discrete Algorithms, pages 400–409, 1997.

[27] P. Jog, J.Y. Suh, and D. Van Gucht. The effects of population size heuristic crossover
and local improvement on a genetic algorithm for the traveling salesman problem. In
Proc. Intl. Conf. Genetic Algorithms, pages 110–115, Fairfax, VA, June 1989.

[28] R.M. Karp and R. Shamir. Algorithms for optical mapping. In Proc. ACM Conf.
Computational Molecular Biology, pages 117–124, 1998.

[29] J.D. Kececioglu and E.W. Myers. Combinatorial algorithms for DNA sequence assem-
bly. Algorithmica, 13:7–51, 1995.

[30] J.D. Kececioglu, S.S. Shete, and J. Arnold. Reconstructing distances in physical maps
of chromosomes with nonoverlapping probes. In Proc. ACM Conf. Computational
Molecular Biology, pages 183–192, Tokyo, Japan, April 2000.

[31] T.H. Lai and S. Sahni. Anomalies in parallel branch and bound algorithms. Commu-
nications of the ACM, 27(6):594–602, June 1984.

[32] E.S. Lander and P. Green. Construction of multi-locus genetic linkage maps in humans.
Proceedings of the National Academy of Sciences, 84:2363–2367, 1987.

[33] E.S. Lander and M.S. Waterman. Genomic mapping by fingerprinting random clones:
a mathematical analysis. Genomics, 2:231–239, 1988.

[34] J.K. Lee, V. Dancik, and M.S. Waterman. Estimation for restriction sites observed
by optical mapping using reversible-jump Markov chain Monte Carlo. In Proc. ACM
Conf. Computational Molecular Biology, pages 147–152, 1998.

[35] S. Lin and B. Kernighan. An effective heuristic search algorithm for the traveling

11-26 References

salesman problem. Operations Research, 21:498–516, 1973.
[36] O. Martin, S.W. Otto, and E.W. Felten. Large-step Markov chains for the traveling

salesman problem. Complex Systems, 5(3):299–326, 1991.
[37] N. Metropolis, A. Rosenbluth, M. Rosenbluth, and A. Teller et al. Equation of state

calculations by fast computing machines. Journal Chemical Physics, 21:1087–1092,
1953.

[38] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA,
1996.

[39] R. Mott, A.V. Grigoriev, E. Maier, and J.D. Hoheisel et al. Algorithms and software
tools for ordering clone libraries: application to the mapping of the genome s. pombe.
Nucleic Acids Research, 21(8):1965–1974, 1993.

[40] S. Muthukrishnan and L. Parida. Towards constructing physical maps by optical
mapping: an effective, simple, combinatorial approach. In Proc. ACM Conf. Com-
putational Molecular Biology, pages 209–219, 1997.

[41] D.O. Nelson and T.P. Speed. Statistical issues in constructing high resolution physical
maps. Statistical Science, pages 334–354, 1994.

[42] P. Pacheco. Parallel Programming with MPI. Morgan Kaufmann Publishers, San
Francisco, CA, 1996.

[43] E. Polak. Optimization: Algorithms and consistent approximations. Applied Mathe-
matical Sciences, 124, 1997.

[44] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes
in C. Cambridge University Press, New York, NY, 1988.

[45] F. Romeo and A. Sangiovanni-Vincentelli. A theoretical framework for simulated an-
nealing. Algorithmica, 6:302–345, 1991.

[46] D. Slonim, L. Kruglyak, L. Stein, and E. Lander. Building human genome maps with
radiation hybrids. In Proc. ACM Conf. Computational Molecular Biology, pages
277–286, 1997.

[47] A.H. Sturtevant. The linear arrangement of six sex-linked factors in it Drosophila as
shown by their mode of association. The Journal of experimental zoology, 14:43–49,
1913.

[48] Y. Wang, R.A. Prade, J. Griffith, and W.E. Timberlake et al. A fast random cost
algorithm for physical mapping. Proceedings of the National Academy of Sciences,
91:11094–11098, 1994.

[49] M. Xiong, H.J. Chen, R.A. Prade, and Y. Wang et al. On the consistency of a physical
mapping method to reconstruct a chromosome in vitro. Genetics, 142(1):267–284,
1996.

[50] M.Q. Zhang and T.G. Marr. Genome mapping by nonrandom anchoring: a discrete
theoretical analysis. In Proc. ACM Conf. Computational Molecular Biology, vol-
ume 90, pages 600–604, 1993.

12
Expressed Sequence Tags: Clustering

and Applications

Anantharaman Kalyanaraman
Iowa State University

Srinivas Aluru
Iowa State University

12.1 Introduction . 12-1
12.2 Sequencing ESTs . 12-2
12.3 Applications of ESTs . 12-4

Transcriptome and Gene Discovery • Gene
Annotation and Alternative Splicing • Alternative
Polyadenylation • Estimating Gene Counts • Gene
Expression Studies • Single Nucleotide Polymorphisms
• Physical Mapping

12.4 EST Databases . 12-8
12.5 EST Clustering . 12-9

The Problem and Challenges • Algorithms, Software
and Clustering Projects

12.6 Conclusions . 12-17

12.1 Introduction

When committees advising on the sequencing of complex genomes met in the late 80s,
they estimated a wait of 12 to 15 years before the entire human genome sequence could
be made available. While the size of the genome to be sequenced was estimated around 3
billion bp, rough estimates placed the number of genes to be about a few tens of thousands
spanning only about 3% of the entire genome [1]. The fact that the gene space is relatively
small spawned a new drive in seeking alternative sequencing methods to quickly discover
the gene space without having to wait for the completion of the entire genome project.
Invented in early 1990s [1], high throughput cDNA sequencing is one such technique in
which double stranded DNA molecules called complementary DNA (or cDNA) molecules
are synthesized from messenger RNA (or mRNA) libraries collected from the cells of living
tissues. Later, these cDNA clones are read in a single-pass from either end, resulting in a
subsequence of the original clone called an Expressed Sequence Tag or simply EST. As with
any other sequencing technologies, this sequencing procedure is also vulnerable to errors.
Nevertheless, the simplicity of the procedure has proved instrumental in its proliferation and
has provided a cost-effective means to support high-throughput sequencing of transcribed
portions of the genome.

EST projects were originally undertaken to provide a head start in the gene discovery
process much earlier to genome sequencing efforts. Their scope, however, broadened as
more applications of EST data were discovered. They remain a chief source of information
for discovering genes even after a genome is sequenced. EST based techniques form one of

12-1

12-2 Handbook of Computational Molecular Biology

the most popular classes of gene discovery methods (alongside ab initio and comparative
techniques). EST data represent the set of all genes transcribed in a living cell under
the experimental conditions provided and are so used to decipher the transcriptome of an
organism, i.e., a catalog of all transcribed genes. Grouping ESTs based on their putative
gene sources and counting the resulting number of non-redundant “clusters” is still one
of the primary techniques to estimate the number of genes in an organism. ESTs are
used in gene-expression studies based on the following main idea: genes showing varying
levels of expression under different experimental conditions generate proportionately varying
concentrations of ESTs in the sequenced data pools. ESTs are also applied in designing
oligos for microarray chips and as sequence tags in physical mapping projects.

Ever since the development of high throughput cDNA sequencing technologies, EST
databases have dominated the publicly available sequence repositories, and are continuing
to grow at an unprecedented rate. The GenBank repository hosted by the National Cen-
ter for Biotechnology Information (NCBI) has a database called dbEST for storing ESTs
and making them widely accessible [7]. Formed in 1992, this division now has the largest
collection of publicly available ESTs, with over 12 billion base pairs sequenced from more
than 740 organisms; this occupies about 8% of the entire GenBank database. As more new
ESTs continue to populate these databases at a rapid rate, there have been many persistent
efforts in the development and application of automated utilities that analyze these data
sets and extract useful information from them. Since EST databases have a mixed com-
position, i.e., with ESTs from numerous genes and their transcripts, the first and primary
challenge that these analysis utilities face is to “intelligently” partition the ESTs by their
putative sources. This problem is particularly hard because the desired source information
is almost never available directly from the sequence databases, and needs to be deduced
through alternative means.

The purpose of this chapter is to introduce the readers to ESTs, their abundant presence
in sequence databases and their multifarious uses, and to develop an appreciation of both the
computational challenges and biological relevance typical of the clustering utilities developed
for the purpose of mining desired useful information from the EST data. To this effect, we
present a detailed description of ESTs, their generation (in Section 12.2), availability (in
Section 12.4) and their numerous applications (in Section 12.3), and a compendium of
various clustering techniques that have been developed and applied for drawing biological
inferences from various EST data sets (in Section 12.5). One of the main challenges that
often surfaces while dealing with EST data is the computational capability to handle very
large sequence data sets, and we defer our discussion on such challenges and algorithmic
solutions for large scale data to Chapter 13.

12.2 Sequencing ESTs

Expressed sequence tags are single pass sequences obtained from mRNA libraries in the
following manner (see Figure 12.1 for an illustration): Cells of living tissues are subjected
to certain biological conditions of interest and the mRNAs that result from the transcribed
genes within are extracted through experimental procedures such as those described in [18].
The isolated mRNAs are then subjected to reaction with reverse transcriptase, an enzyme
that converts a single stranded mRNA molecule to a double stranded cDNA molecule.
Due to underlying experimental limitations, however, this procedure may not complete on
the entire mRNA thereby resulting in partial length cDNAs. In order to provide sufficient
coverage over the entire mRNA, multiple and possibly redundant such partial length cDNAs
are generated and each is cloned using a cloning vector. Using primers targeted for known

Expressed Sequence Tags: Clustering and Applications 12-3

AAAAAAA

(Reverse transcriptase action)

(polyA tail)

cDNAs

Partial length

Bacterial cloning vector

cDNA insert

Single pass sequencing using end−primers

mRNA
5′

3′ EST

3′

5′ EST

FIGURE 12.1: Illustration of the EST sequencing procedure. An mRNA library when subjected
to reaction with the reverse transcriptase enzyme generates partial length cDNAs,
which are then cloned using bacterial vectors and sequenced from ends to result
in ESTs.

vector sequences near the ends of the inserts, the nucleotide sequence of each inserted
clone is then read over a single pass from either end, resulting in fragments called ESTs
that are about 500 bp long. Because this procedure may oversample the end regions of a
cDNA clone, the untranslated regions at the ends of the corresponding mRNA may also get
proportionately over-represented. If it is desirable to avoid such bias, sequencing is started
from random locations on the cDNA insert using randomly located sequences as primers,
or through application of restriction enzymes, breaking the cDNA insert before its shreds
are sequenced from their ends.

Cost-effective high throughput sequencing of ESTs has largely been facilitated by the
simplicity of the single pass sequencing technology. Nevertheless, the technology does not
always generate accurate sequences. Bases are sometimes misread or ambiguously inter-
preted resulting in low-quality sequences. It is also possible, although rare, that two cDNA
sequences representing two distinct mRNA sequences are spliced together resulting in an
artifact known as a chimeric cDNA. When cloned and sequenced, the resulting ESTs could
contain portions from either cDNA, potentially confounding their subsequent analysis. Se-
quencing error rates are typically in the range of 1-2% with present technology and dealing
with these errors is generally deferred to later stages of sequence analysis. We will dis-
cuss techniques to deal with these errors and on the capacity to distinguish them from
naturally-occurring variations in Section 12.5 in the context of clustering methods.

During sequencing, the two ESTs that originate from the ends of a cDNA insert are
sometimes tagged with the clone identifier and stored in the header of the EST sequences

12-4 Handbook of Computational Molecular Biology

in the database. This auxiliary information proves valuable in later stages of the sequence
analysis – pairs of ESTs having the same clone identifier are labeled “mate pairs” (or “clone
pairs”) and are immediately associated with a common source transcript, obviating the need
to compute additional evidence to establish their relationship. Mate pair information is not
unique to EST sequencing; it is also common in genomic sequencing techniques that involve
sequencing from a clone insert. Also available sometimes with EST sequence data are “trace
data” that contain the quality values for each base position of the ESTs. Such trace data
are measures of sequence quality and are valuable during analysis.

Genes express differentially depending on the tissue they reside and the subjected exper-
imental conditions. Consequently, EST data generated by conventional sequencing tech-
niques have ESTs from overly expressed genes in a proportionately higher concentration
than from sparsely expressed genes. Such non-uniformity may be desirable if the ESTs are
used in gene expression related studies; otherwise, not only is the effort spent in sequencing
multiple ESTs covering the same regions unnecessary, but also such non-uniformity may
add significant challenges to the computational methods for EST analysis. For example,
one unique EST per gene is sufficient for estimating the number of genes in an organism,
while oversampling may significantly increase the computation as a function of the number
of ESTs represented per gene. To alleviate this problem, many variations to the origi-
nal sequencing technique have been invented and these methods can be classified into two
groups: normalization and subtractive hybridization. Normalization achieves a balance in
the cDNA population within a cDNA library [63, 80], while subtractive hybridization re-
duces overly represented cDNA population by selectively removing sequences shared across
cDNA libraries [24, 27, 74, 75, 87]. For a survey of these two methods see [4].

12.3 Applications of ESTs

12.3.1 Transcriptome and Gene Discovery

One of the earliest identified merits of EST data is in discovering genes with expression
evidence [1, 8]. A sequencing experiment can trigger the expression of multiple genes in
a target cell/tissue, and so the resulting EST data is a segmented representation of the
transcribed portions of all these expressed genes. Thus, if we could “meaningfully” partition
an EST collection into “bins” or “clusters” such that the ESTs derived from the same
transcript or gene are clustered together, then we would have reverse-engineered the process
that sequenced the ESTs in the first place, and the set of clusters would correspond to the
portion of the transcriptome represented in the underlying sequence data. However, such
EST-to-source mapping is not a readily available information and one of the main challenges
in clustering is its inference from other information contained within the sequence data:

• Pairwise overlaps: Any two ESTs that cover a common segment within their
gene source are expected to show a significant sequence overlap in the corre-
sponding region(s). Therefore, by partitioning ESTs obtained from an organism
using pairwise overlap information is expected to “cluster” the ESTs that were
originally derived from the same gene source. Furthermore, if it is possible to
assemble the ESTs in each cluster consistent with the pairwise assembly, then
the resulting supersequence is likely to correspond to the mRNA transcript that
gave rise to the set of ESTs in that cluster. The UniGene project undertaken by
NCBI is a typical example of clustering ESTs by gene source [68]; and the Gene
Index project undertaken by The Institute of Genome Research (TIGR) clusters
by transcript source [69].

Expressed Sequence Tags: Clustering and Applications 12-5

EST

Genome GT GT AGAG
exon1 exon2 exon3 exon4

FIGURE 12.2: Spliced alignment of an EST with the corresponding genomic sequence. Appli-
cations include gene discovery and gene structure prediction.

• Protein evidence: ESTs sequenced from an organism can be “compared” against
a database of known protein sequences, and those that significantly overlap with
a common protein are likely to have originated from the same protein-coding
transcript. This method of aligning ESTs with a protein database could be used
to quickly discover protein-coding genes within an organism that have known
protein products. An example application of this approach can be found in [93].

• Alignment with genomic DNA: Aligning ESTs with genomic DNA using a tech-
nique called spliced alignment identifies the coding regions represented by the
ESTs along the genomic DNA. If the genomic sequence is a gene, and if an EST
exhibits a “good” spliced alignment with it, then it is highly likely that the ES-
T originated from this gene. The spliced alignment technique can also be used
to discover new genes in long genomic sequences — by aligning each EST along
the genomic stretches (potentially the whole genome if available), and identifying
those regions that align well and unambiguously with ESTs. The same procedure
can also be applied to identify the structure of a known gene. The boundaries of
the aligning regions can be used as a good starting point for locating intronic and
exonic boundaries within a gene, as shown in Figure 12.2. The spliced alignment
technique and its applications are described in detail in Chapter 2.

Given the high costs associated with whole genome projects, the genomes of many organ-
isms of interest are unlikely to be sequenced. In many cases, biologists still depend on EST
data to help them with building transcriptomes and gene lists. Numerous transcriptome
projects have benefited from EST databases in the past [6, 13, 14, 15, 60]. EST based gene
discovery and transcriptome construction projects, however, are not guaranteed to cover the
gene space entirely — i.e., genes that are not transcribed during sequencing will be missed
subsequently by an EST based discovery process. For example, in Berkeley Drosophila
Genome Project, only about 70% of the genes were covered by the cDNA/EST based gene
discovery [82].

12.3.2 Gene Annotation and Alternative Splicing

ESTs can be used to annotate the structure of a gene through spliced alignment techniques
[32, 73, 90]. Exonic and intronic boundaries within expressed genes can be marked using
the alignment pattern of a gene sequence with an EST derived from it. EST based gene
annotation has been a vibrant research area [3, 9, 36, 38, 60, 77, 95, 100].

Alternative splicing is the characteristic by which the transcriptional process alternatively
selects or excludes exons and introns along a gene. This combinatorial process provides
the biological means for a gene to transcribe for multiple mRNAs. Alternative splicing
is a well-studied concept and is the subject of Chapter 16. As ESTs are derived from

12-6 Handbook of Computational Molecular Biology

ex1 ex2 ex3 in3 ex4

e1

e2

e2

e3 e3

e1

e1

e2

e3

s1 s2

s4

s5

s3
s1 s2s4 s5 s3

(d)

(c)

(b)

ex1 ex2 ex3 ex4in3in2in1

mRNA1 mRNA2 mRNA3

e1 e3e2

Gene

(a)

ex1 ex3 ex4 ex1 ex2 ex3 ex1 ex3 ex4in3

FIGURE 12.3: Deducing alternative splicing events of a gene through pairwise alignments be-
tween ESTs derived from it. (a) The unknown truth: A gene, represented as
a series of exons (ex) and introns (in), transcribes for three different mRNAs.
A subsequent sequencing generates three ESTs, e1, e2 and e3, one from each
mRNA, (b) The three ESTs are aligned pairwise allowing for insertion gaps in
both sequences, (c) A layout of overlapping ESTs induced by the pairwise align-
ments (each unique shared segment is marked from s1 to s5), and (d) The shared
segments are ordered to reflect their relative ordering along their putative gene
source.

mRNAs, they provide a means to discover alternative splicing events of the underlying
genes [12, 41, 54, 55, 56]. Figure 12.3 illustrates an example case, where an inference that
the depicted gene transcribes for three different spliced variants (mRNAs) can be drawn
through EST vs. EST alignments. The figure shows a rather optimistic scenario where
the ESTs contain all information required to deduce the total order of the shared segments
among them (Figure 12.3(d)). In practice, such information may be insufficient and as a
result only a partial order can be inferred. For example, if only two mRNAs were available
to start with, such that they can be represented as ex1.ex2.ex4 and ex1.ex3.ex4 respectively,
then it is impossible to deduce the relative ordering between the segments ex2 and ex3 along
the gene, regardless of the number of ESTs sequenced from the mRNAs. For a detailed
discussion of algorithms and applications in alternative splicing studies, see Chapter 16.

12.3.3 Alternative Polyadenylation

Polyadenylation occurs during transcription and is the process by which an mRNA sequence
is terminated at its 3′ end. At the terminated end, the transcription process appends a re-
peat sequence of the nucleotide adenine (termed as a “polyA tail”), which plays important

Expressed Sequence Tags: Clustering and Applications 12-7

roles in the mRNA’s stability and translation initiation. Alternate choice of polyadeny-
lation sites results in corresponding variations at the mRNA ends and is considered an
important post-transcriptional regulatory mechanism. ESTs sequenced from the 3′ ends of
the mRNAs are used to determine alternate polyadenylation sites in genes [31]. ESTs are
first clustered and assembled into sequences representing the underlying mRNA transcript.
While assembling, polyA discrepancies are detected in positions having additional evidence
of conserved motifs for polyadenylation sites such as the hexamer AAUAAA, which are then
recorded as possible sites of alternate polyadenylation.

12.3.4 Estimating Gene Counts

What is the number of genes in the human genome? Many research efforts have been in
pursuit of an answer for this famous question for more than a decade now [20, 22, 25, 28,
46, 65, 83], and yet no consensus! Of the many techniques used to assess the number, one of
the oldest is to approximate the answer to the count of unique human EST “clusters”. EST
based estimates ran up to over 100,000 genes only a few years ago [46]. However, around
the same time another EST based estimate placed it around only 35,000 [25]. Most recently,
the International Human Genome Sequencing Consortium announced a surprisingly smaller
number between 20,000 and 25,000 [22]. While this is believed to be the most reliable
estimate on the number of protein-coding genes [83], the discrepancies in various estimates
have been a cause of concern over both EST based and other counting approaches [65].

EST based counting could result in an underestimate because not all genes in an organism
may provide expression evidence. However, the gene count could also be inflated if ESTs
from different alternatively spliced variants of the same gene or alternative polyadenylations
of the same transcript are misplaced in different clusters. According to a study by Jean-
Michel Claverie [20] on 82,000 UniGene clusters, alternative splicing and polyadenylation
reduces the number of unique “genes” but still there are about 46,000 clusters that do not
have protein-coding evidence. Comparing this with the most recent estimation of 20,000-
25,000 protein-coding genes, this suggests that a majority of the EST based gene clusters
represent non-protein (or just mRNA) coding genes.

12.3.5 Gene Expression Studies

Before the advent of the microarray technology, gene expression and co-regulation related
studies were primarily dependent on EST data. During a sequencing experiment, the num-
ber of ESTs derived from an expressed gene is correlated to its expression level under the
experimental conditions. In 1995, a technique called Serial Analysis of Gene Expression
(SAGE) was developed based on the above philosophy [92]. For examples of EST based
gene expression studies, see [26, 50]. For a review on different approaches to differential
gene expression studies including EST based analysis, see [17]. In addition to expression
profiling, ESTs are also used to design oligos for microarray chips [42, 99].

12.3.6 Single Nucleotide Polymorphisms

Single Nucleotide Polymorphisms (SNPs) are the most abundant class of genetic variation
occurring almost every 1,200 bp along the human genome. SNPs are studied for mapping
complex genetic traits. SNPs that occur in coding and regulatory sequences could alter
the expression pattern or even the transcriptional behavior of the gene. SNPs have also
been identified as causes for various diseases [21]. Such SNPs can be identified as nucleotide
variations in assembled ESTs [30, 51, 67, 96]. However, these variations need to be dis-

12-8 Handbook of Computational Molecular Biology

tinguished from those variations seen among ESTs from paralogous genes, or occurring in
ESTs due to sequencing errors; otherwise the SNP identification process may result in false
predictions. This is usually accomplished by observing a probabilistic distribution that also
takes into account the quality values of nucleotides in question. A large database of all
identified SNPs is maintained by the NCBI (http://www.ncbi.nlm.nih.gov/projects/SNP/)
and is called dbSNP [78]. Although a majority of the SNPs in this database are that of
human and mouse, the database is open to SNPs from any species and occurring anywhere
within its genome.

12.3.7 Physical Mapping

Sequence-Tagged Sites (STSs) are sequences that map to unique locations on a genome
and are therefore used for physical mapping [61]. As ESTs are derived from coding regions
along the genome, they can also serve the purpose of STSs as long as the underlying coding
sequences themselves map to unique genomic locations. ESTs also have the added advantage
of directly mapping to gene-rich regions [1, 10, 29, 52].

12.4 EST Databases

The sizes of publicly available EST databases continue to grow explosively. The dbEST
portion (http://www.ncbi.nlm.nih.gov/dbEST/index.html) of the NCBI GenBank is used
as a public repository for storing ESTs and full-length cDNAs generated by numerous
sequencing efforts. The GenBank team, in its latest release (release 143) [5], reports that
the dbEST database contains over 23.4 million ESTs spanning over 12 billion nucleotides,
making it the largest public EST data repository. Also, the number of ESTs increased about
29% over the past year (2004) . About 740 organisms are represented in this database, and as
of August 2005, human ESTs dominate the pool with about 6.1 million sequences, followed
by mouse ESTs with 4.3 million sequences. Among plants, Triticum aestivum (wheat) has
about 600,000 ESTs, and Zea mays (maize) has over 550,000 ESTs.

Besides dbEST, there are other EST databases that are smaller in size and have se-
quences generated for special purposes. The rat EST project at University of Iowa is one
such project that has about 300,000 ESTs available (http://ratest.eng.uiowa.edu). RIKEN
(http://www.riken.jp/engn/) hosts full-length cDNAs of many species. Its Mouse Gene En-
cyclopedia Project that aims at sequencing full-length enriched cDNA clones from various
mouse tissues and inferring their chromosomal locations sequenced about 21,000 full-length
mouse cDNAs [9]. Full-length cDNAs are also available for Arabidopsis [76] and human
[62] catering towards functional annotation projects. The Prostate Expression Database
(http://www.pedb.org/) [59], designed for the study of prostate gene expression in normal
and disease states, contains ESTs and full-length cDNAs from over 40 human prostate cD-
NA libraries. The Cancer Genome Anatomy Project (http://cgap.nci.nih.gov/), an ongoing
initiative by the National Cancer Institute to understand the anatomy and the functional
genomics behind cancerous growths also sequences large collections of ESTs and full-length
cDNAs from cancerous tissues, and uses them for gene expression profiling. ESTs are al-
so sequenced as part of genome projects in order to catalog and annotate the genes of the
species. For example, the Berkeley Drosophila Genome Project [71, 81] obtained a collection
of about 370,000 Drosophila ESTs and full-length cDNAs from various tissues and life stages
of the species for subsequent use in the project. For a larger but hardly comprehensive list
of on-going EST projects, see Table 12.1.

Expressed Sequence Tags: Clustering and Applications 12-9

Organism Institution and Website Information

Arabidopsis The Institute of Genomic Research
www.tigr.org/tdb/e2k1/ath1

Barley Clemson University Genomics Institute
www.genome.clemson.edu/projects/barley

Cotton Clemson University
www.genome.clemson.edu/projects/cotton

Chicken University of Manchester
www.chick.umist.ac.uk

Drosophila Drosophila Genome Center
www.fruitfly.org/EST

Honeybee University of Illinois, Urbana-Champaign
titan.biotec.uiuc.edu/bee/honeybee project.htm

Human Washington University & Merck
genomeold.wustl.edu/est/index.php?human merck=1

Maize Iowa State University
www.maizegdb.org/documentation/mgdp/est/index.php
schnablelab.plantgenomics.iastate.edu/research/genomics/htp est

Mouse Washington University
genomeold.wustl.edu/est/index.php?mouse=1

Phaseolus coccineus University of California, Los Angeles
estdb.biology.ucla.edu/PcEST

Pig Iowa State University
pigest.genome.iastate.edu

Protist University of Montreal
megasun.bch.umontreal.ca/pepdb/pep.html

Rat University of Iowa
ratest.eng.uiowa.edu

Trypanosoma cruzi Uppsala University
www.genpat.uu.se/tryp/tryp.html

Xenopus tropicalis Sanger Institute
www.sanger.ac.uk/Projects/X tropicalis

Zebrafish Washington University
zfish.wustl.edu

TABLE 12.1 A partial list of active EST projects with their URLs as of August 2005.

12.5 EST Clustering

EST clustering algorithms are at the core of most EST analysis projects and have been
under continued research and development for improving both their quality and efficiency.
Almost all applications described in Section 12.3 engage a clustering mechanism prior to
extracting any useful information from EST data. In this section, we describe the EST
clustering problem, algorithmic solutions, and ongoing efforts that apply these clustering
utilities for maintaining cluster databases for ESTs derived from many organisms.

12.5.1 The Problem and Challenges

The main goal of clustering ESTs is to group ESTs based on their gene or transcript source.
Clustering algorithms rely on several “patterns” expected of ESTs originating from the same
source to identify those patterns in input set, and deduce relationships before arriving at
the final clustering. These patterns include pairwise overlaps, and homology to a common
protein or a common region in the genome.

Overlap Detection

Pairwise overlaps can be detected by computing alignments and other related measures.
Many algorithms and techniques exist for computing alignments (see Chapter 1): BLAST
[2] and its numerous variants (http://www.ncbi.nlm.nih.gov/BLAST/) or dynamic pro-
gramming techniques [32, 33, 57, 79, 97]. The choice of an appropriate overlap detection
scheme is dictated by the goal of clustering. If the goal is to cluster ESTs based on mRNA

12-10 Handbook of Computational Molecular Biology

source, then a global or a semi-global alignment computation is sought because it detects
suffix-prefix overlap expected out of two ESTs derived from an overlapping region on the
mRNA transcript. However, if clustering by gene source is desired, then in addition to a
suffix-prefix type of alignment there is a need to detect overlaps between ESTs derived from
different alternatively spliced transcripts of the same gene. This is modeled as finding good
local alignments corresponding to the regions containing shared exons. Similar dynamic pro-
gramming techniques have been developed for detecting homology of ESTs with other types
of biological sequences — homology between an EST and a protein/amino acid sequence is
computed using cDNA-protein alignment techniques such as in [97], while homology with
genomic regions can be computed as spliced alignments (described in Chapter 2). Overlaps
can also be detected without computing alignments, as measures that compute word fre-
quencies [11, 89]. While computing these measures may not model the problem accurately
for sequence errors and expected patterns in overlaps, these techniques are usually sought
as quicker alternatives to alignment based methods.

A fairly straightforward approach to clustering is to first choose the overlap detection
scheme, run it on each pair of input sequences, and in the process form the clusters using
only those pairs with a significant overlap. The main issue with this naive approach is
that its scalability is limited by the quadratic increase in the number of pairs. This can be
further aggravated by the high computation cost associated with detecting each overlap. For
instance, the run-time complexity for aligning two sequences through a standard dynamic
programming approach is proportional to the product of their lengths. Thus, a prime
challenge in devising clustering algorithms is to be able to significantly reduce the run-time
spent in detecting overlaps, and still obtain correct clustering that would have resulted had
all pairs been considered. There are two independent ways of achieving this reduction: (i)
reduce the cost of each pair computation by opting for a less rigorous and/or approximate
method instead of aligning two sequences, and (ii) device faster methods to detect sequence
pairs in advance that exhibit significant promise for a good alignment and then perform
rigorous alignment only on those selected “promising pairs”.

The nature of sampling inherent in EST data can add significantly to the computational
complexity of the clustering process. Even if one were to devise a scheme that intelligent-
ly discards all non-overlapping pairs from overlap computation, the number of genuinely
overlapping ESTs may still be overwhelming in practice. This is because the sequencing
procedure may oversample the ends of the mRNA transcripts (giving them a deep cover-
age) while undersampling their mid-regions. The result is what we see in Figure 12.4, i.e.,
a vertical tiling of ESTs on a source mRNA transcript. Thus the number of genuinely over-
lapping pairs could grow at a quadratic rate as a function of the number of ESTs covering
each transcript, which could be very high for transcripts arising from over-expressed genes.
This raises a critical issue when dealing with large inputs containing hundreds of thousands
to millions of ESTs, especially limiting the applicability of those software packages designed
to handle only uniformly sampled sequence data (e.g., fragment assemblers).

Sequencing Errors and Artifacts

With current technology, even though the error rates are as low as 1-2%, it is important for a
clustering algorithm to handle such errors in order to guarantee a high prediction accuracy.
Handling errors such as an incorrectly interpreted, or included, or excluded nucleotide in
a sequence is typically deferred to the overlap detection phase — by modeling such errors
as mismatches, insertions and deletions in alignments. There are other types of errors and
artifacts that can be detected at an earlier stage and such errors are typically handled in a
“preprocessing” step prior to overlap detection:

Expressed Sequence Tags: Clustering and Applications 12-11

cDNA

5′ ESTs 3′ ESTs

FIGURE 12.4: Non-uniform sampling of mRNA resulting from the EST sequencing procedure.

• During sequencing, the ESTs may get contaminated with the vector sequences
adjoining the cDNA clones. These sequences are easy to detect because they are
part of the known vector DNA sequence and are expected to occur at ends of
ESTs. During preprocessing, such sequences are detected and removed.

• The sequencing procedure may also have ambiguously read some bases and may
have marked such bases with low quality values. In the resulting ESTs, these
bases are marked with special characters such as ‘N’ or ‘X’, so that they can be
treated accordingly by a subsequent overlap detection scheme.

• ESTs derived from 3′ ends of an mRNA usually retain portions of the mRNA’s
polyA tail. The presence of such polyA tails in ESTs may be of interest only
to alternative polyadenylation related studies. In other studies, such regions are
uninformative and if retained may only result in false overlaps. Thus as part of
preprocessing, these polyA tails are trimmed off the ends of the ESTs.

• ESTs can also sometimes contain portions of chimeric cDNA clones and accurate-
ly detecting such sequencing artifacts is typically hard and deferred until later
stages of analysis. If the genome sequence of the organism in question is avail-
able, then the results of aligning ESTs against the genome using spliced alignment
techniques can reveal such artifacts as ESTs that have their segments aligning
to two or more entirely distant locations along the genome. Their detection be-
comes much harder in the absence of the genome sequence. A common method
is to flag those ESTs that “bridge” two otherwise distinct non-overlapping sets
of ESTs. The problem with this approach is, however, that there could also be
ESTs that genuinely bridge two ends of an mRNA transcript, and therefore this
scheme may result in false labeling of such ESTs as with chimeric origins. The
number of ESTs in the two distinct sets being bridged can also be taken into
account to reduce the chance of a false prediction.

Natural Variations

If a pair of sequences overlap significantly but with a few mismatches and/or indels in their
underlying best alignment(s), then there are two ways to explain such disagreements: (i) the
underlying sequencing procedure incorrectly read the bases on one of the sequences, or (ii)
the two ESTs being compared are from alleles or paralogous genes that have these natural
variations because of mutations or single nucleotide polymorphisms. The choice between
these two possibilities is made by looking at more than one overlapping pair at a time. For
example, of the 10 overlapping sequences shown in Figure 12.5a, only one has a nucleotide
that is different from the corresponding nucleotides in the other 9 sequences, indicating the
high likelihood of a sequencing error that caused the variation in the singled out sequence.
Figure 12.5b shows a different case where such a disagreement is equally distributed among

12-12 Handbook of Computational Molecular Biology

A
A
A

C
C
C
C

A
A
A
A

A
A
A
C

A

(a) (b)

FIGURE 12.5: Overlap layout suggesting a case of a (a) sequencing error, and (b) natural
variation.

the 10 sequences indicating that it is likely the result of a natural variation i.e., that the
sequences were extracted from two different gene paralogues or polymorphic genes. The
underlying assumption is that the probability of such a variation occurring at the same
position evenly across multiple overlapping ESTs is too low to have occurred. If available,
base quality values can also be used to enrich the quality of the detection mechanism.

12.5.2 Algorithms, Software and Clustering Projects

For more than a decade now, numerous software programs have been used for clustering
ESTs. However, some of these programs were originally developed for solving the related
problem of genome assembly. Both genome assembly and EST clustering rely on detecting
overlapping pairs of sequences. While clustering only requires computing a partition based
on significant overlaps, assemblers go one step further to build representative sequences
called “contigs” for each resulting cluster. Nevertheless, the problem of clustering ESTs
have other unique complications caused by alternatively spliced or polyadenylated variants,
non-uniformly sampled multiple gene sources, etc. For example, it may not be appropriate
to generate one contig sequence for a cluster that has ESTs from different alternatively
spliced variants of the same gene. For these reasons, considerable effort has been spent
in recent years on developing algorithms and software directed towards the EST clustering
problem. The use of fragment assemblers is restricted to projects that cluster ESTs by their
source transcripts.

In this section, we present an overview of algorithms in both classes. Among the as-
sembler class of algorithms, we will discuss three programs, CAP3 [37], Phrap [34] and
TIGR Assembler [84], which are popular among EST clustering community [47]; although
in principle, any fragment assembly software can be used for clustering ESTs to the same
effect. (For a survey on fragment assembly algorithms and software, see Chapter 8.) A-
mong the algorithms designed specifically for EST clustering, we will discuss UniGene [68],
STACK [19, 53], UIcluster [64], TGICL [66], PaCE [39] and xsact [48]. All EST clustering
algorithms have three main phases: preprocessing, overlap detection, and cluster forma-
tion. The preprocessing step involves removing and/or masking uninformative portions of
the ESTs as discussed in Section 12.5.1. It is the techniques used in overlap detection and
cluster formation phases that differentiates one clustering algorithm from another.

Expressed Sequence Tags: Clustering and Applications 12-13

TIGR Assembler

The TIGR Assembler [84] is one of the oldest fragment assembler programs and has been
used in various EST clustering projects [58, 70, 72, 85]. The algorithm is as follows: Given
an input of n ESTs, the overlap detection phase “evaluates” all

(
n
2

)
pairs — for each pair,

the algorithm identifies all fixed-length (∼ 10 bp) exact matches and then considers only
those “promising pairs” that have convincingly long stretches of such matches for further
alignment computations. From the aligned pairs, the algorithm selects only those pairs
with a satisfactory sequence similarity over the overlapping regions. The clusters are then
formed by initially assigning one unique cluster for every sequence (“or seeds”) that has
“very small number” of overlaps and then iteratively merging clusters by considering the
pairs in the decreasing order of their overlap quality. Storing and sorting overlaps implies an
O(n2) space complexity. The run-time is dominated by the cost to align all the promising
pairs identified by the algorithm.

Phrap

Phrap [34] starts its overlap detection phase by building a list of sequence pairs with fixed-
length matches and then sorting the list such that all matches of the same pair are consec-
utively placed. For each such “promising pair”, it computes an alignment band centered
around the diagonal containing all matches and then computes a best alignment using a
banded version of the Smith-Waterman technique [79]. If there are many matches, then
the band of diagonals is made wider to include all the word matches. Using only those
pairs with a band score above a certain desired threshold, a layout of overlaps is then con-
structed and subsequently a contig is constructed from the layout using only the portions
of ESTs that have a high sequence quality (or “quality value”). Because of storing and
sorting pairs with fixed-length matching substrings, this algorithm has a space complexity
of O(n2). Even though this is the worst-case complexity, the likelihood of such a quadratic
requirement is high for EST data because of the underlying non-uniformity in sampling, as
shown in Figure 12.4. The run-time complexity is dominated by the cost to align all the
promising pairs identified by the algorithm.

One of the unique features of Phrap is its strong dependence on quality values, as the
contigs are not built on consensus but using the quality values of the bases in each position
of the layout. As ESTs are typically not accompanied with quality values, the use of Phrap
is known to generate inaccurate assemblies of ESTs (i.e., ESTs from different genes falsely
collapsed to form one contig) [47]. The Phrap software is typically used in conjunction with
two other helper packages — Phred for reading in quality trace files along with sequence
files and assigning quality values for each input base, and Consed for viewing, editing, and
finishing sequence assemblies created using Phrap.

CAP3

In the overlap detection phase, the CAP3 [37] algorithm detects pairs that show “promis-
ing” characteristics for good alignment, without having to enumerate all pairs, as follows:
concatenate all input ESTs into one long string using a special delimiter character and
then quickly identify high scoring chains of “segment pairs” within each sequence against
the concatenated string. This is implemented through a lookup table approach, similar to
the method in BLAST [2]. A “segment pair” is an alignment without gaps and is initially
computed by looking at all exact matches of a specified fixed-length and extending these
matches as far as possible in either direction. Only those pairs that have a chain score
greater than a specified threshold value are later considered for global alignment computa-

12-14 Handbook of Computational Molecular Biology

tion [57]. The alignments are then considered in the decreasing order of their scores and
an “overlap-layout” is constructed using the order and orientation of each aligning pair.
In this greedy process, inconsistencies due to violating alignments can be resolved in favor
of the higher scoring alignments. Such inconsistencies may arise from overlapping ESTs
derived from different spliced variants of the same gene. The final step is to compute a
multiple sequence alignment from each overlap-layout component, thereby resulting in a
consensus “contig” corresponding to a putative cDNA transcript from which the compos-
ite ESTs were originally derived. The space complexity is worst-case quadratic because of
storing and sorting all the promising pairs. The dominant run-time cost is that of aligning
all the promising pairs.

An independent study conducted by researchers at TIGR [47] rated CAP3 better than
Phrap and TIGR Assembler in the accuracy of the predicted EST clusters, in the absence
of any base quality information. CAP3 has been applied in many EST clustering projects
including the TIGR Gene Indices project [69].

UniGene

The UniGene project [68] undertaken by the NCBI is an initiative towards clustering all
GenBank ESTs by organisms and by individual gene sources, i.e., ESTs from different
spliced variants of the same gene are also clustered together. The UniGene clustering scheme
performs incremental daily processing of ESTs submitted to the dbEST database, computed
as BLAST alignments of each new EST with the contents of all individual clusters. Care is
taken that each cluster contains at least one EST derived from the 3′ terminus of the source
mRNA transcript. This is ascertained by the presence of a polyA tail in the corresponding
EST(s) (which is not removed as part of its preprocessing step). Even though the run-
time of the UniGene method is worst-case quadratic in the number of ESTs, incremental
processing in batches allows for quick updating of clusters as new sequences are added to
the database.

The entire UniGene cluster database is accessible online at the URL http://www.ncbi.
nlm.nih.gov/UniGene/. As of September 2005, the database contains over 700,000 gene-
oriented sequence clusters representing over 50 organisms, with the human and mouse col-
lections leading the chart with 53,100 and 42,555 UniGene clusters respectively [94].

STACK

STACK (Sequence Tag Alignment and Consensus Knowledgebase) [19, 53] is one of the first
EST clustering programs and was developed to achieve tissue-specific clustering that groups
ESTs by transcript source. The underlying algorithm performs simple all-versus-all pair-
wise comparisons with the overlap between each pair detected through a word-multiplicity
measure called d2, a distance measure to assess sequence dissimilarities. Subsequently, the
pairs with significantly small distances are used to form the clusters by an agglomerative
approach called d2 cluster [86], as follows: initially, each input EST occupies a cluster of
its own, and as the program progresses each significant overlap merges the corresponding
clusters forming a supercluster. This mechanism achieves what is called a transitive clo-
sure clustering, in which two entirely different sequences are brought together because of
a common third sequence with which each share a good overlap. This implies that the
clustering procedure results in grouping ESTs by their putative gene sources. Each cluster
is post-processed by the Phrap assembler to build transcript assemblies. During clustering,
additional information such as clone pairs and tissue-specific information specified by the
user are incorporated into the clusters. The STACK algorithm has a run-time complexity
that is proportional to the product of

(
n
2

)
and the time taken to compute d2 measure.

Expressed Sequence Tags: Clustering and Applications 12-15

Because of its simplicity, the STACK algorithm is also easily parallelized [16]. The all-
pairs work is distributed evenly across processors, and the clustering results are collected
and recorded serially by one processor. For an example of STACK’s application, see [91].

TGICL

The TGICL clustering software [66] was developed by TIGR. The algorithm achieves clus-
tering by performing an all-versus-all pairwise alignment but using a greedy alignment
algorithm called megablast [98]. The advantage of using megablast is that it provides a
significant speedup (∼ 10 times) while aligning two “similar” sequences over its dynamic
programming counterparts, although the run-time increases as the similarity decreases. For
large clusters of ESTs, this approach is expected to be beneficial when compared to dynamic
programming techniques, because of the high source coverage expected of EST data. Be-
cause of its simplicity, this algorithm can also be easily parallelized. Post-clustering, CAP3
is used for assembling the sequences of each cluster into putative transcript(s).

TIGR maintains a large database of clustered ESTs called the “TIGR Gene Indices”.
The initiative is towards maintaining a compendium of transcriptomes of several organisms.
The database has clusters built for ESTs collected from over 32 animal species including
the human and mouse, and over 33 plant species including wheat and maize.

UIcluster

The UIcluster method [64] was originally developed for clustering 3′ generated ESTs into 3′

transcripts. The algorithm is based on the following incremental approach: Initially, each
EST is in its own cluster. At any point of execution, a list of “representative ESTs” is main-
tained for each cluster (typically its longest EST(s)). A global hash table is constructed
by preprocessing all input ESTs, such that it indexes all fixed-length (<16 bp) substrings
within all ESTs. The ESTs are then considered one at a time. For a given EST, all clusters
with at least one representative EST that has at least a specified number of fixed-length
matches are identified. Alignment computations are then performed between the input ES-
T and each of the representative ESTs identified in each cluster. The input EST (and its
cluster) is then merged into one of the clusters containing the best overlapping representa-
tive, provided that best alignment(s) pass the specified similarity threshold; otherwise the
clusters are left intact. The space complexity is proportional to the size of input plus the
size of the global hash table. The worst case run-time complexity is proportional to O(n2)
multiplied by the average cost to align two sequences; for large clusters, the run-time is
likely to be close to the worst-case behavior, as all potential cluster merges are evaluated
through alignments with ESTs considered one at a time.

A parallel version of the UIcluster algorithm has also been developed [88]. The input ESTs
and the initial set of clusters are evenly partitioned across processors, and each processor
constructs the hash table for its local portion of the ESTs. The algorithm then performs
one parallel step for each input EST, in which the sequential algorithm is run locally on
each processor and the cluster to which the EST has to be merged with is decided through
a collective communication at the end of the step. There are two main issues with this
parallel approach: (i) the number of parallel steps is proportional to the number of input
ESTs, independent of the number of processors used, and (ii) the speedup achieved in each
step is determined by the processor with the most number of alignments to compute. The
program is extensively used on clustering rat ESTs (http://ratest.eng.uiowa.edu).

12-16 Handbook of Computational Molecular Biology

PaCE

The PaCE (for “Parallel Clustering of ESTs”) algorithm [39, 40] was primarily developed to
cluster large-scale EST data using parallel processing. The salient features of the algorithm
are as follows: 1) Promising pairs are detected based on “maximal matches”, i.e., variable-
length matches that cannot be extended on either side to result in a longer match. The
advantage over algorithms based on fixed-length (say w bp) matches is that this algorithm
can detect a long match of length l directly instead of detecting it as a chain of l − w + 1
shorter matches. The generalized suffix tree data structure [35] is used for pair generation.
2) The clustering scheme is agglomerative, i.e., each EST is initially in a cluster of its
own, and as promising pairs are evaluated for alignments the clusters are updated. 3)
The promising pairs are generated on-demand in decreasing order of their maximal match
lengths without requiring to sort or store these pairs, and the clustering algorithm selects
only those pairs for alignment evaluation that have not been clustered together. This greedy
heuristic provides an effective means to significantly reduce the number of pairs considered
for alignment work. For example, studies with 168,200 Arabidopsis ESTs show that of the
∼7 million pairs generated as promising pairs only under 1.5 million were aligned, achieving
about 80% reduction in the workload. The worst case space complexity is linear in the input
size, while the run-time is dominated by the cost of aligning those promising pairs selected
by the heuristic. Parallelization studies have demonstrated a linear speedup with processor
size.

More details of this algorithm and its applications are presented in Chapter 13. The
PaCE software is used to cluster and maintain over 41 plant EST collections (largest being
that of about 590,000 wheat ESTs) in the PlantGDB database [23, 73] (www.plantgdb.org).

xsact

Concurrent to the development of PaCE, Malde et al. [48] developed xsact, which is a serial
program for EST clustering that also generates promising pairs based on maximal matches.
The xsact algorithm first constructs a generalized suffix array on the input ESTs. This is
achieved by recursively sorting prefixes, similar to the approach in [49] — this algorithm
was developed prior to the development of linear time algorithms for directly constructing
suffix arrays [43, 44, 45]. The algorithm then detects each pair with a maximal match
of length l bp, multiple (∼ l) times, but reports only one instance of it to the alignment
module. The pairs are generated in no particular order, and all reported pairs are aligned.
Only those alignments which satisfy a specified similarity threshold are stored. The pairs
are then sorted in decreasing order of their alignment scores and considered in that order
for cluster merges. The space complexity of the algorithm is dominated by the number of
pairs that have satisfactory alignments, which within each generated EST cluster is worst
case quadratic in its number of ESTs. The run-time is dominated by the cost to align all
promising pairs reported.

Given the complexities of EST data, ensuring both high quality and high efficiency in a
clustering method is the primary challenge faced by an algorithm designer. Even though
run-time intensive, alignment based modeling provides the most accurate means to ac-
count for sequencing errors, mutations, SNPs, chimeras, alternatively spliced variants, etc.
An approach that performs an all-versus-all alignment comparisons, therefore, has enough
information to generate an accurate clustering based on overlap information. However,
computing alignments for all pairs of ESTs is not a scalable solution. One way to overcome
this problem is to resort to faster methods of detecting overlaps. A more efficient approach
is to reduce the alignment work without sacrificing quality. In order to reduce the number

References 12-17

of pairs to be considered for alignment, the most popular technique used is to preprocess
the ESTs such that the algorithm can identify those pairs that show significant promise for
a potential good overlap. If two sequences have a good overlap, then they are also expected
to contain correspondingly “long” exact matches. Thus, there are algorithms that identify
pairs with fixed-length or variable-length exact matches. While both schemes reduce the
number of aligned pairs, the variable-length schemes can provide a quicker route to gener-
ate these pairs. For example, after a linear time preprocessing, it is possible to generate a
pair with a long maximal match in amortized constant time rather than generating it as a
chain of many smaller fixed-length matches. Further savings in run-time can be achieved by
taking advantage of current clustering at any stage of the algorithm and discarding those
promising pairs that have both sequences clustered.

12.6 Conclusions

EST data is highly resourceful and valuable in the advancement of molecular and function-
al genomics. Numerous genome projects have directly benefited by analyzing EST data
towards gene discovery, gene annotation and structure prediction, SNP identification, phys-
ical mapping, and gene counting studies. ESTs are also used extensively in gene expression
studies and alternative splicing and polyadenylation studies. Clustering methods play a key
role in analyzing EST data. While the purpose of these methods is to extract interesting
biological inferences from the EST data, there is a growing emphasis on devising compu-
tationally efficient methods. EST databases have been growing at alarming rates because
of cost-effective high-throughput sequencing strategies. In addition, clustering methods
face other difficulties imposed by characteristics that are inherent in EST collections such
as non-uniform sampling, alternatively spliced variants, differential gene expression, ESTs
from paralogous gene sources, etc. Considerable effort is therefore being spent on developing
clever algorithmic techniques that use high-performance computing resources for efficiently
analyzing large EST data, and such methods are the subject of the next chapter.

Acknowledgements

This work was supported in part by the U.S. National Science Foundation under ACR-
0203782.

References

[1] M.D. Adams, J.M. Kelley, J.D. Gocayne, and M. Dubnick et al. Complementary
DNA sequencing: expressed sequence tags and human genome project. Science,
252(5013):1651–1656, 1991.

[2] S.F. Altschul, W. Gish, W. Miller, and E.W. Myers et al. Basic local alignment search
tool. Journal of Molecular Biology, 215:403–410, 1990.

[3] L.C. Bailey, D.B. Searls, and G.C. Overton. Analysis of EST-Driven Gene Annotation
in Human Genomic Sequence. Genome Research, 8(4):362–376, 1998.

[4] M.F. Baldo, G. Lennon, and M.B. Soares. Normalization and subtraction: Two
approaches to facilitate gene discovery. Genome Research, 6:791–806, 1996.

[5] D.A. Benson, I. Karsch-Mizrachi, D.J. Lipman, and J. Ostell et al. GenBank. Nucleic
Acids Research, 3:D34–D38, 2005.

12-18 References

[6] M. Boguski and G. Schuler. ESTablishing a human transcript map. Nature Genetics,
10(11):369–371, 1995.

[7] M.S. Boguski, T.M. Lowe, and C.M. Tolstoshev. dbEST - database for “expressed
sequence tags”. Nature Genetics, 4(4):332–333, 1993.

[8] M.S. Boguski, C.M. Tolstoshev, and D.E. Bassett Jr. Gene discovery in dbEST.
Science, 265(5181):1993–1994, 1994.

[9] H. Bono, T. Kasukawa, M. Furuno, and Y. Hayashizaki et al. FANTOM DB: database
of Functional Annotation of RIKEN Mouse cDNA Clones. Nucleic Acids Research,
30(1):116–118, 2002.

[10] K.P. Brady, L.B. Rowe, H. Her, and T.J. Stevens et al. Genetic mapping of 262 loci
derived from expressed sequences in a murine interspecific cross using single-strand
conformational polymorphism analysis. Genome Research, 7(11):1085–1093, 1997.

[11] J. Burke, D. Davison, and W.A. Hide. d2 cluster: A validated method for clustering
EST and full-length cDNA sequences. Genome Research, 9(11):1135–1142, 1999.

[12] J. Burke, H. Wang, W. Hide, and D.B. Davison. Alternative gene form discovery and
candidate gene selection from gene indexing projects. Genome Research, 8(3):276–
290, 1998.

[13] A.A. Camargo, H.P.B. Samaia, E. Dias-Neto, and D.F. Simao et al. From the Cover:
The contribution of 700,000 ORF sequence tags to the definition of the human tran-
scriptome. Proceedings of the National Academy of Sciences USA, 98(21):12103–
12108, 2001.

[14] P. Carninci, K. Waki, T. Shiraki, and H. Konno et al. Targeting a Complex Tran-
scriptome: The Construction of the Mouse Full-Length cDNA Encyclopedia. Genome
Research, 13(6):1273–1289, 2003.

[15] H. Caron, B. Schaik, M. Mee, and F. Baas et al. The human transcriptome map: Clus-
tering of highly expressed genes in chromosomal domains. Science, 291(5507):1289–
1292, 2001.

[16] J.E. Carpenter, A. Christoffels, Y. Weinbach, and W.A. Hide. Assessment of the par-
allelization approach of d2 cluster for High Performance Sequence Clustering. Journal
of Computational Chemistry, 23(7):755–757, 2002.

[17] J.P. Carulli, M. Artinger, P.M. Swain, and C.D. Root et al. High throughput analysis
of differential gene expression. Journal of Cellular Biochemistry, 72(S30-31):286–
296, 1999.

[18] P. Chomczynski and N. Sacchi. Single-step method of RNA isolation by acid
guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry,
162(1):156–159, 1987.

[19] A. Christoffels, A.V. Gelder, G. Greyling, and R. Miller et al. STACK Sequence Tag
Alignment and Consensus Knowledgebase. Nucleic Acids Research, 29(1):234–238,
2001.

[20] J. Claverie. What if there are only 30,000 human genes? Science, 291(5507):1255–
1257, 2001.

[21] F.S. Collins, M.S. Guyer, and A. Chakravarti. Variations on a theme: cataloging
human DNA sequence variation. Science, 278(5343):1580–1581, 1997.

[22] International Human Genome Sequencing Consortium. Finishing the euchromatic
sequence of the human genome. Nature, 431:931–945, 2004.

[23] Q. Dong, S.D. Schlueter, and V. Brendel. PlantGDB, plant genome database and
analysis tools. Nucleic Acids Research, 32:D354–D359, 2004.

[24] J.R. Duguid and M.C. Dinauer. Library subtraction of in vitro cDNA libraries to
identify differentially expressed genes in scrapie infection. Nucleic Acids Research,
18(9):2789–2792, 1990.

References 12-19

[25] B. Ewing and P. Green. Analysis of expressed sequence tags indicates 35,000 human
genes. Nature Genetics, 25:232–234, 2000.

[26] R.M. Ewing, A.B. Kahla, O. Poirot, and F. Lopez et al. Large-Scale Statistical
Analyses of Rice ESTs Reveal Correlated Patterns of Gene Expression. Genome
Research, 9(10):950–959, 1999.

[27] J. Fargnoli, N.J. Holbrook, and A.J. Fornace Jr. Low-ratio hybridization subtraction.
Analytical Biochemistry, 187(2):364–373, 1990.

[28] C. Fields, M.D. Adams, O. White, and J.C. Venter. How many genes in the human
genome? Nature Genetics, 7:345–346, 1994.

[29] A.K. Fridolfsson, T. Hori, A.K. Winter, and M. Fredholm et al. Expansion of the pig
comparative map by expressed sequence tags (EST) mapping. Mammalian Genome,
8(12):907–912, 1997.

[30] K. Garg, P. Green, and D.A. Nickerson. Identification of candidate coding region
single nucleotide polymorphisms in 165 human genes using assembled expressed se-
quence tags. Genome Research, 9(11):1087–1092, 1999.

[31] D. Gautheret, O. Poirot, F. Lopez, and S. Audic et al. Alternate Polyadenylation
in Human mRNAs: A Large-Scale Analysis by EST Clustering. Genome Research,
8(5):524–530, 1998.

[32] M S. Gelfand, A. Mironov, and P.A. Pevzner. Gene recognition via spliced alignment.
Proceedings of the National Academy of Sciences USA, 93(17):9061–9066, 1996.

[33] O. Gotoh. An improved algorithm for matching biological sequences. Journal of
Molecular Biology, 162(3):705–708, 1982.

[34] P. Green. Phrap - the assembler. http//www.phrap.org, 1994, (Accessed Oct 2005).
[35] D. Gusfield. Algorithms on strings, trees and sequences Computer Science and

Computational Biology. Cambridge University Press, Cambridge, London, 1997.
[36] X. Huang, M.D. Adams, H. Zhou, and A.R. Kerlavage. A tool for analyzing and

annotating genomic sequences. Genomics, 46:37–45, 1997.
[37] X. Huang and A. Madan. CAP3: A DNA sequence assembly program. Genome

Research, 9(9):868–877, 1999.
[38] J. Jiang and H.J. Jacob. EbEST: An Automated Tool Using Expressed Sequence

Tags to Delineate Gene Structure. Genome Research, 8(3):268–275, 1998.
[39] A. Kalyanaraman, S. Aluru, V. Brendel, and S. Kothari. Space and time efficient

parallel algorithms and software for EST clustering. IEEE Transactions on Parallel
and Distributed Systems, 14(12):1209–1221, 2003.

[40] A. Kalyanaraman, S. Aluru, S. Kothari, and V. Brendel. Efficient clustering of large
EST data sets on parallel computers. Nucleic Acids Research, 31(11):2963–2974,
2003.

[41] Z. Kan, E.C. Rouchka, W.R. Gish, and D.J. States. Gene Structure Prediction and
Alternative Splicing Analysis Using Genomically Aligned ESTs. Genome Research,
11(5):889–900, 2001.

[42] T. Kapros, A.J. Robertson, and J.H. Waterborg. A simple method to make better
probes for short DNA fragments. Molecular Biotechnology, 2(1):95–98, 1994.

[43] J. Karkkainen and P. Sanders. Simple linear work suffix array construction. Lecture
Notes in Computer Science, 2719:943–955, 2003.

[44] D.K. Kim, J.S. Sim, H. Park, and K. Park. Linear-time construction of suffix arrays.
Lecture Notes in Computer Science, 2676:186–199, 2003.

[45] P. Ko and S. Aluru. Space efficient linear time construction of suffix arrays. Lecture
Notes in Computer Science, 2676:200–210, 2003.

[46] F. Liang, I. Holt, G. Pertea, and S. Karamycheva et al. Gene index analysis of the
human genome estimates approximately 120,000 genes. Nature Genetics, 25:239–240,

12-20 References

2000.
[47] F. Liang, I. Holt, G. Pertea, and S. Karamycheva et al. An optimized protocol for

analysis of EST sequences. Nucleic Acids Research, 28(18):3657–3665, 2000.
[48] K. Malde, E. Coward, and I. Joassen. Fast sequence clustering using a suffix array

algorithm. Bioinformatics, 19(10):1221–1226, 2003.
[49] U. Manber and E. Myers. Suffix arrays a new method for on-line string searches.

SIAM Journal on Computing, 22(5):935–948, 1993.
[50] M. Mao, G. Fu, J.S. Wu, and Q.H. Zhang et al. Identification of genes expressed

in human CD34+ hematopoietic stem/progenitor cells by expressed sequence tags
and efficient full-length cDNA cloning. Proceedings of the National Academy of
Sciences USA, 95(14):8175–8180, 1998.

[51] G.T. Marth, I. Korf, M.D. Yandell, and R.T. Yeh et al. A general approach to
single-nucleotide polymorphism discovery. Nature Genetics, 23:452–456, 1999.

[52] L.C. McCarthy, J. Terrett, M.E. Davis, and C.J. Knights et al. A first-generation
whole genome-radiation hybrid map spanning the mouse genome. Genome Research,
7(12):1153–1161, 1997.

[53] R.T. Miller, A.G. Christoffels, C. Gopalakrishnan, and J. Burke et al. A Compre-
hensive Approach to Clustering of Expressed Human Gene Sequence: The Sequence
Tag Alignment and Consensus Knowledge Base. Genome Research, 9(11):1143–1155,
1999.

[54] A.A. Mironov, J.W. Fickett, and M.S. Gelfand. Frequent alternative splicing of human
genes. Genome Research, 9(12):1288–1293, 1999.

[55] B. Modrek and C. Lee. A genomic view of alternative splicing. Nature genetics,
30:13–19, 2002.

[56] B. Modrek, A. Resch, C. Grasso, and C. Lee. Genome-wide detection of alternative
splicing in expressed sequences of human genes. Nucleic Acid Research, 29(13):2850–
2859, 2001.

[57] S.B. Needleman and C.D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48:443–453, 1970.

[58] M.A Nelson, S. Kang, E.L. Braun, and M.E. Crawford et al. Expressed sequences
from conidial, mycelial, and sexual stages of Neurospora crassa. Fungal Genetics
and Biology, 21:348–363, 1997.

[59] P.S. Nelson, C. Pritchard, D. Abbott, and N. Clegg. The human (PEDB) and mouse
(mPEDB) Prostate Expression Databases. Nucleic Acids Research, 30(1):218–220,
2002.

[60] Y. Okazaki, M. Furuno, T. Kasukawa, and J. Adachi et al. Analysis of the mouse
transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature,
420:563–573, 2002.

[61] M. Olson, L. Hood, C. Cantor, and D. Botstein. A common language for physical
mapping of the human genome. Science, 245(4925):1434–1435, 1989.

[62] T. Ota, Y. Suzuki, T. Nishikawa, and T. Otsuki et al. Complete sequencing and
characterization of 21,243 full-length human cDNAs. Nature Genetics, 36:40–45,
2004.

[63] S.R. Patanjali, S. Parimoo, and S.M. Weissman. Construction of a uniform-abundance
(normalized) cDNA library. Proceedings of the National Academy of Sciences USA,
88(5):1943–1947, 1991.

[64] K. Pedretti. Accurate, parallel clustering of EST (gene) sequences. Masterś Thesis,
University of Iowa, 2001.

[65] E. Pennisi. Gene counters struggle to get the right answer. Science, 301(5636):1040–

References 12-21

1041, 2003.
[66] G. Pertea, X. Huang, F. Liang, and V. Antonescu et al. TIGR Gene Indices clustering

tool (TGICL) a software system for fast clustering of large EST datasets. Bioinfor-
matics, 19(5):651–652, 2003.

[67] L. Picoult-Newberg, T.E. Ideker, M.G. Pohl, and S.L. Taylor et al. Mining SNPs
From EST Databases. Genome Research, 9(2):167–174, 1999.

[68] J.U. Pontius, L. Wagner, and G.D. Schuler. UniGene a unified view of the transcrip-
tome. The NCBI Handbook, 2003.

[69] J. Quackenbush, F. Liang, I. Holt, and G. Pertea et al. The TIGR gene indices recon-
struction and representation of expressed gene sequences. Nucleic Acids Research,
28(1):141–145, 2000.

[70] S.D. Rounsley, A. Glodek, G. Sutton, and M.D. Adams et al. The construction of
Arabidopsis expressed sequence tag assemblies. Plant Physiology, 112:1177–1183,
1996.

[71] G.M. Rubin, L. Hong, P. Brokstein, and M. Evans-Holm et al. A Drosophila Com-
plementary DNA Resource. Science, 287(5461):2222–2224, 2000.

[72] Y. Satou, L. Yamada, Y. Mochizuki, and N. Takatori et al. A cDNA resource from
the Basal Chordate Ciona intestinalis. Genesis, 33:153–154, 2002.

[73] S.D. Schlueter, Q. Dong, and V. Brendel. GeneSeqer@PlantGDB: gene structure
prediction in plant genomes. Nucleic Acids Research, 31(13):3597–3600, 2003.

[74] D.W. Schmid and C. Girou. Cloning of cDNA derived from mRNA of the electric
lobe of Torpedo marmorata and selection of putative cholinergic-specific sequences.
Journal of Neurochemistry, 48(1):307–312, 1987.

[75] C.W. Schweinfest, K.W. Henderson, J.R. Gu, and S.D. Kottaridis et al. Subtraction
hybridization cDNA libraries from colon carcinoma and hepatic cancer. Genetic
Analysis : Techniques and Applications, 7(3):64–70, 1990.

[76] M. Seki, P. Carninci, Y. Nishiyama, and Y. Hayashizaki et al. High-efficiency cloning
of Arabidopsis full-length cDNA by biotinylated CAP trapper. Plant Journal,
15(5):707–720, 1998.

[77] M. Seki, M. Narusaka, A. Kamiya, and J. Ishida et al. Functional annotation of a
full-length Arabidopsis cDNA collection. Science, 296(5565):141–145, 2002.

[78] S.T. Sherry, M.H. Ward, M. Kholodov, and J. Baker et al. dbSNP: the NCBI database
of genetic variation. Nucleic Acids Research, 29(1):308–311, 2001.

[79] T.F. Smith and M.S. Waterman. Identification of common molecular subsequences.
Journal of Molecular Biology, 147:195–197, 1981.

[80] M.B. Soares, M.F. Bonaldo, P. Jelene, and L. Su et al. Construction and charac-
terization of a normalized cDNA library. Proceedings of the National Academy of
Sciences USA, 91(20):9228–9232, 1994.

[81] M. Stapleton, J. Carlson, P. Brokstein, and C. Yu et al. A Drosophila full-length
cDNA resource. Genome Biology, 3(12):research0080.1–0080.8, 2002.

[82] M. Stapleton, G. Liao, P. Brokstein, and L. Hong et al. The Drosophila Gene Col-
lection: Identification of Putative Full-Length cDNAs for 70% of D. melanogaster
Genes. Genome Research, 12(8):1294–1300, 2002.

[83] L.D. Stein. Human genome: End of the beginning. Nature, 431:915–916, 2004.
[84] G. Sutton, O. White, M. Adams, and A. Kerlavage. TIGR assembler: A new tool

for assembling large shotgun sequencing projects. Genome Science and Technology,
1:9–19, 1995.

[85] C. Ton, D.M. Hwang, A.A. Dempsey, and H. Tang et al. Identification, characteri-
zation, and mapping of expressed sequence tags from an embryonic zebrafish heart
cdna library. Genome Research, 10(12):1915–1927, 2000.

12-22 References

[86] D.C. Torney, C. Burks, D. Davison, and K.M. Sirotkin. Computers and DNA.
Addison-Wesley, New York, 1990.

[87] G.H. Travis and J.G. Sutcliffe. Phenol emulsion-enhanced DNA-driven subtractive
cDNA cloning: isolation of low-abundance monkey cortex-specific mRNAs. Proceed-
ings of the National Academy of Sciences USA, 85(5):1696–1700, 1988.

[88] N. Trivedi, J. Bischof, S. Davis, and K. Pedretti et al. Parallel creation of non-
redundant gene indices from partial mRNA transcripts. Future Generation Com-
puter Systems, 18:863–870, 2002.

[89] E. Ukkonen. Approximate string-matching with q-grams and maximal matches. The-
oretical Computer Science, 92(1):191–211, 1992.

[90] J. Usuka, W. Zhu, and V. Brendel. Optimal spliced alignment of homologous cDNA
to a genome database ZmDB. Bioinformatics, 16(3):203–211, 2000.

[91] V. VanBuren, Y. Piao, D.B. Dudekula, and Y. Qian et al. Assembly, verification,
and initial annotation of the NIA mouse 7.4K cDNA clone set. Genome Research,
12(12):1999–2003, 2002.

[92] V.E. Velculescu, L. Zhang, B. Vogelstein, and K.W. Kinzler. Serial analysis of gene
expression. Science, 270(5235):484–487, 1995.

[93] R.E. Verdun, N.D. Paolo, T.P. Urmenyi, and E. Rondinelli et al. Gene Discovery
through Expressed Sequence Tag Sequencing in Trypanosoma cruzi. Infection and
Immunity, 66(11):5393–5398, 1998.

[94] D.L. Wheeler, T. Barrett, D.A. Benson, and S.H. Bryant et al. Database resources of
the National Center for Biotechnology Information. Nucleic Acids Research, 33:D39–
D45, 2005.

[95] C.W. Whitfield, M.R. Band, M.F. Bonaldo, and C.G. Kumar et al. Annotated ex-
pressed sequence tags and cDNA microarrays for studies of brain and behavior in the
honey bee. Genome Research, 12(4):555–566, 2002.

[96] Z. Ye and J.M. Parry. The discovery and confirmation of single nucleotide polymor-
phisms in the human p53R2 gene by EST database analysis. Mutagenesis, 17(5):361–
364, 2002.

[97] Z. Zhang, W.R. Pearson, and W. Miller. Aligning a DNA sequence with a protein
sequence. Journal of Computational Biology, 4(3):339–349, 1997.

[98] Z. Zhang, S. Shwartz, L. Wagner, and W. Miller. A greedy algorithm for aligning
DNA sequences. Journal of Computational Biology, 7(1-2):203–214, 2000.

[99] T. Zhu and X. Wang. Large-Scale Profiling of the Arabidopsis Transcriptome. Plant
Physiology, 124:1472–1476, 2000.

[100] W. Zhu, S.D. Schlueter, and V. Brendel. Refined annotation of the Arabidopsis
thaliana genome by complete Expressed Sequence Tag mapping. Plant Physiology,
132:469–484, 2003.

13
Algorithms for Large-Scale
Clustering and Assembly of

Biological Sequence Data

Scott J. Emrich
Iowa State University

Anantharaman Kalyanaraman
Iowa State University

Srinivas Aluru
Iowa State University

13.1 Introduction . 13-1
13.2 A Unified Approach to Clustering and Assembly 13-3
13.3 Clustering . 13-5

Promising Pairs
13.4 A Space-optimal Heuristic-based Method for

Clustering . 13-6
On-Demand Promising Pair Generation • The
Clustering Algorithm

13.5 Parallel Clustering . 13-13
Parallel Construction of GST • Parallel Clustering
Phase

13.6 Applications . 13-15
Maize Genome Assembly • EST Clustering

13.7 Towards a Generic Platform for Large-scale Sequence
Analysis. 13-24
A Rule-Based Approach

13.8 Conclusions . 13-27

13.1 Introduction

Each living cell contains its own “cookbook” called a genome that contains recipes
called genes required for biological processes and phenotypic characteristics. In the past,
advancements in molecular biology largely focused on the study of individual genes. For
example, unusual phenotypes have been used to isolate corresponding genomic regions using
classical genetic mapping techniques. When applied to traditional genetics, this experiment
is called a forward screen. Genome projects have since led to a paradigm shift in this field —
after a complete book is obtained, recipes are deciphered using reverse screens. Under this
paradigm unusual phenotypes can be generated by disabling a predicted gene and observing
possible effects. Because the availability of a complete genome also accelerates the design
and analysis of high-throughput experiments, such as those involving microarrays, data
about large collections of genes are also now more quickly available.

The challenging aspect of genome projects, however, is their cost in both financial and
computational resources. This is a consequence of current experimental limitations; bio-
chemical procedures collectively known as sequencing are capable of accurately reading only

13-1

13-2 Handbook of Computational Molecular Biology

hundreds of bases from a DNA molecule (≈ 500−1000 bp). To extend the reach of sequenc-
ing to entire genomes, numerous short fragments are sequenced from randomly distributed
locations of a larger sequence. These fragments are then combined to form the original
sequence through the computational process of assembly.

Note that if the larger sequence is the original genome, this fragmentation process is
called whole-genome shotgun (WGS) sequencing, which was used to complete the earli-
est genome sequence of bacteria phage λ [26] and smaller genomes such as the bacterial
sequences completed in the mid to late 1990s. Concurrent advances in high-throughput
sequencing technology and assembly algorithms over the past decade have led to the as-
sembly of increasingly larger and more complex genomes. Nearly twenty years after the
completion of the first genome sequence, drafts of the much larger human genome — over
sixty-two thousand times larger than λ — were reported by both public [6] and private [30]
consortiums and is the subject of Chapter 9. Many genomes are under consideration for
large-scale sequencing in the near future, and we now have genome projects either complet-
ed or in-progress for Arabidopsis, chimpanzee, dog, fruit fly, mosquito, mouse, nematode,
pig, rat, rice, sea urchin, and zebrafish among others. Many of these eukaryotic projects,
along with almost every bacterial genome sequenced, either used shotgun sequencing alone
or in tandem with other methods.

Despite rapid advances in hardware speeds and memory capacities over the same period,
assembling the tens of millions of fragments typical of such large genome projects places
enormous demands on computational resources. For example, Celera Genomics estimated
that it would take tens of thousands of CPU hours and approximately 600 GB of RAM to
assemble the ∼3,000 million base human genome sequence based on their previous fruit fly
assembly [30]. To reduce these computational requirements, Celera used ten 4-processor
SMP clusters with 4 GB memory each along side a 16-processor NUMA machine with
64 GB shared memory, and engineered an incremental method that reduced the memory
required to 28 GB before using 20,000 total CPU hours to assemble their 27.27 million
shotgun fragments. Other large assembly projects have also been carried out in a similar
fashion — by specialized teams running software developed for serial assembly on high-end
workstations with tens of gigabytes of main memory while using rudimentary means to
partition the workload for carrying out the assembly incrementally and/or concurrently.

A primary contributor to the high memory and run-time requirements of these conven-
tional assembly techniques is the approach taken. As if assembling a massive jigsaw puzzle,
fragments are pieced together using the information preserved between overlapping frag-
ments derived from neighboring regions. In the case of human genome assembly above, a
dominant part of the computation time was attributed to identifying such overlaps, which
was parallelized to complete in 4-5 days (10,000 total CPU hours). While overlap compu-
tation poses run-time concerns, it also dictates the memory requirements of conventional
assembly techniques because overlaps are stored before generating the final assembly.

Under the uniform sampling that is used for genomes sequenced by WGS, the number of
overlaps is expected to be proportional to the number of sequenced fragments; therefore,
the memory utilized scales linearly even though it might be on the order of hundreds of
gigabytes for large genome sequences such as human. This scenario is changing, however,
since alternative strategies [24, 32] were used to selectively sequence gene-rich regions of the
maize genome. The non-uniform sampling involved in these approaches imposes a much
higher memory requirement because it scales quadratically; on the other hand, the ability to
efficiently handle such data will be important in sequencing other important plants including
crops such as wheat and barley.

Although the invention of gene-enriched genome sequencing is a relatively new develop-
ment, biologists have been selectively sequencing genes since the early 1990s by isolating

Algorithms for Large-Scale Clustering and Assembly of Biological Sequence Data 13-3

messenger RNA (mRNA) within cells, which corresponds to a subset of the expressed por-
tion of the genome. One popular technique, called Expressed Sequence Tag (EST) sequenc-
ing, generates single-pass sequences that typically correspond to either the start or the end
of mRNA molecules. Because these data are transcribed by the natural gene-processing
mechanisms within cells, they encapsulate valuable information for studies related to gene
expression, gene identification and alternative splicing. Processing EST data also depends
on overlap information preserved between sequences originating from the same gene source,
which is similar to genome assembly. Unlike conventional genome sequence data, howev-
er, non-uniform sampling is especially rampant in ESTs because of differential expression
behavior exhibited by the underlying cells, posing even greater computational challenges.

To scale up to larger EST collections, most users typically preprocess these data using
a clustering algorithm that partitions these sequences according to gene source. Each re-
sulting cluster can then be further analyzed to serve the desired objectives, as discussed in
Chapter 12. For example, the TGICL program [22] was able to preprocess 1.7 million ESTs
of an unspecified species for assembly using 1 hour on a PVM cluster with 20 Pentium III
nodes (20 total CPU hours) using a fast alignment scheme. Subsequent assembly completed
the next day based on these less accurate clusters. For most clustering applications, howev-
er, the compromise in quality for efficiency could either generate incorrect results or require
a longer assembly post-processing step, but these can be offset by more accurate alignment
based clustering performed on larger distributed memory machines. For example, our own
experiments with 726,988 rat ESTs using the PaCE software [14] required 108 CPU hours;
however, this result was obtained in only 2 hours using 54 processors of a commodity clus-
ter. Given this result, we can estimate that processing the largest human EST collection
that contains over 6 million ESTs would require nearly 900 CPU hours if we assume a linear
increase in run-time. A quadratic increase, on the other hand, would require an estimated
7,350 CPU hours, or 5.7 days on the same commodity cluster.

This chapter focuses on methods developed for performing large-scale clustering and
assembly that adequately address the computational challenges posed by both uniformly and
non-uniformly sampled sequence data. By taking a unified approach to solving the problems
of clustering and assembly (in Section 13.2), we describe a clustering algorithm with a space
complexity that scales linearly with input size along with parallel processing capabilities
(in Sections 13.3 through 13.5) that provide the memory required for generating large-scale
assemblies. We demonstrate the effectiveness of this approach in the context of on-going
maize genome assembly efforts, and then discuss its application in large-scale EST clustering
(in Section 13.6). Finally, we lay foundations for developing a generalized framework that
broadens the scope of these ideas toward performing other types of important sequence
analyses in parallel.

13.2 A Unified Approach to Clustering and Assembly

Many assemblers follow the overlap-layout-consensus paradigm, in which pairs of overlap-
ping fragments are used to build long contiguous stretches of the genome called contigs.
Although a jigsaw puzzle is not a perfect analogy, we will use it to illustrate the computa-
tional difficulties associated with the overlap computation modules of traditional sequence
assemblers. Under uniform random sampling it is expected that each region of the genome
is sampled a constant number of times, which is called the coverage of the genome. Using
the analogy of a jigsaw puzzle, this means that for every piece there will be a fixed num-
ber of neighboring pieces. For example, imagine a puzzle of an eclectic town with many
uniquely colored houses; each of these houses could yield a single group, one per color, of

13-4 Handbook of Computational Molecular Biology

related pieces. If these houses are uniformly sized, it can be expected that these groups
have approximately the same number of pieces. Now suppose that we can no longer assume
a uniform sample. In this case we may have to test all pairs of pieces because we cannot
ignore the possibility the same region is oversampled. Relating this to the analogy, this is
equivalent to trying to assemble a jigsaw puzzle consisting of an ocean; this task will be
very time-intensive due to the substantial number of potentially valid combinations of any
two “blue” pieces.

Just like assembly, clustering algorithms determine sequence relatives based upon over-
laps. The difference between these two problems is illustrated in the following example.
During clustering, if A overlaps with B, and B overlaps with C, we can deduce that A
is related to C without having to compare A and C. Assemblers, however, must directly
determine if A overlaps with C because of the need to determine that all relationships are
consistent to accurately reconstruct the original genome sequence. Intuitively, it follows
that a solution to clustering is easier to compute than its assembly counterpart — as it is
typically easier to group pieces together than it is to fit them together correctly.

With this distinction in mind, we now provide a unified view of the two problems using
clustering as the initial step. This approach capitalizes on the following observation: most
sampling approaches either directly or indirectly miss certain regions of the original se-
quence. Sequence clustering provides a method for reducing a large assembly problem into
many, but smaller, assembly problems [7, 20]. For example, gene enrichment should result
in a large number of genomic “islands” that contain most of the genic regions interspersed
by non-sampled repetitive regions. A cluster-then-assemble approach would therefore first
partition the input sequences into corresponding genomic islands and then assemble the
individual islands using a serial assembler of choice. This approach shifts the burden of
addressing the memory and run-time needs of large-scale sequence analysis to the cluster-
ing phase, while benefiting from and not duplicating the painstakingly built-in biological
expertise present in conventional assemblers.

There are two additional advantages of this paradigm. First, clustering limits the sub-
sequent peak memory usage to the memory required to assemble the largest subproblem.
Second, breaking the problem into clusters allows trivial parallelization; each cluster can
be individually processed on a different processor. Both of these properties facilitate the
generation of assemblies that are consistent with what would have been generated by any
conventional assembly program, except that the maximum solvable problem size is larger
and speed is significantly enhanced. In order for this statement to be true, however, we
must require that any overlap considered significant by the assembler is also considered
acceptable by the clustering algorithm; therefore, in practice the overlap criteria are less
stringent than those used during assembly to ensure that the result is the same as if we ran
the assembler on the entire dataset.

This strategy is also applicable in conventional genome assembly projects, the rationale
for which is as follows. The sampling redundancy — typically between five and seven — can
be plugged into the Lander-Waterman equation [17] to determine the expected number of
clusters that result from random sampling. A real-life example is the Celera human genome
assembly that resulted in 221,036 contigs each spanning ∼11.7 Kbp on an average and the
longest contig spanning ∼1.2 million bp (i.e., only 0.48% of the longest chromosome). Even
assembling a small genome like that of N. meningitis (∼2.18 Mbp) generated 149 contigs
with an average length of 14 Kbp [23]. This happens because gaps invariably occur while
sequencing, both because of sample size as well as the reality that certain genomic regions
are difficult to sample for a variety of reasons.

Algorithms for Large-Scale Clustering and Assembly of Biological Sequence Data 13-5

13.3 Clustering

In this section, we describe sequence clustering methods with special emphasis on their
relevance to large-scale sequence data. For generality, we will not assume anything specific
about the type of sequence data being clustered — they can be ESTs, cDNAs, genomic
sequences, protein sequences, or other types of biological sequences that can be computa-
tionally represented as strings over a fixed alphabet. Overlaps are considered to be the only
computable information for clustering purposes. Although there may be other auxiliary
information available to supplement the clustering decision process, we will defer discussion
of such details until the end of this section.

Overlaps can be modeled in two different ways: alignment based and exact match based.
Alignment-based modeling of overlaps provides a high degree of flexibility in accounting for
sequencing errors and natural variations (e.g., Single Nucleotide Polymorphisms or SNPs).
This benefit, however, comes at a high price — computing an optimal alignment between
two sequences through standard dynamic programming techniques requires run-time pro-
portional to the product of their lengths. Exact match based modeling, on the other hand,
allows for quicker albeit less accurate means to compute overlaps. For example, counting
the number of fixed-length matches between two sequences could be used to measure their
overlap. While this can be computed in linear run-time, the number itself does not pro-
vide much information besides providing a lower bound for the edit distance between the
sequences. For this reason, alignment based modeling is generally biologically more mean-
ingful, and we therefore restrict our discussion to clustering methods that model overlaps
by computing alignments.

The Sequence Clustering Problem: Let S = {s1, s2, . . . , sn} denote the set of n input
sequences over an alphabet Σ. Two sequences si, sj ∈ S are said to be related if either si

and sj show a “significant overlap”, or ∃sk ∈ S to which both si and sj are related. The
problem of sequence clustering is to partition S such that ∀si, sj ∈ S, si and sj are in the
same subset (or “cluster”) if and only if si and sj are related.

The above formulation is generic enough to accommodate any preferred alignment method.
For instance, in the context of genome assembly, two sequences can be considered to have
a significant overlap if there is a good suffix-prefix alignment between them. In the context
of EST clustering, if the underlying objective is to cluster together sequences derived from
the same gene, then overlaps can be detected as a chain of local alignments.

The above formulation of clustering is also sometimes referred to as transitive closure
clustering because the defined relationship between sequences is transitive in nature. Thus
it is possible to have two entirely distinct sequences in the same cluster simply because
there is a third sequence to which both are related. An example in the context of genome
assembly is shown in Figure 13.1a. This formulation, however, does not guarantee that the
sequences in the same cluster conform to a consistent overlap layout. An example of such an
inconsistent layout is illustrated in Figure 13.1b. The task of resolving such inconsistencies
is typically deferred to later stages post-clustering.

13.3.1 Promising Pairs

A simple clustering approach involves evaluating all pairs of sequences for significant over-
laps, and using the results to generate clusters. Such an approach is expensive for large n
because it requires the computation of Θ(n2) alignments.

One way to reduce overall computation is to use quicker methods of computing align-

13-6 Handbook of Computational Molecular Biology

AGATCACAG

CAGGAGATAAACGAGA GGACCAGATATAT

TCTCTGGACCA

CAGGAGGACCAG

AACGAGATCACAGGAGATA ????????GGACCAGATATAT

Consensus Sequence(a) (b)

f1 f3f2
f4

f5

f6

FIGURE 13.1: Examples to show the effect of transitive closure clustering in the context of
genome assembly. Part (a) shows a case where three fragments that are clus-
tered together based on suffix-prefix alignments have a consistent overlap layout
despite the fact that two of the fragments, f1 and f3, have no significant suffix-
prefix alignment. Part (b) shows a complementary case where transitive closure
clustering produces an inconsistent overlap layout.

ments, such as megablast [34] (as used in TGICL [22]) or computing a d2 measure [29] (as
discussed in Chapter 12). A more effective strategy is to reduce the number of alignments
computed without affecting the clustering result. Given the low frequency of disagreements
resulting from modern sequencing errors and minimal natural variations, sequences with
significant aligning regions will contain long exact matches, while the converse is not nec-
essarily true. This observation can be exploited by restricting alignment computation to
only pairs containing exact matches of length at least w. Such pairs are termed promising
pairs and can be identified by constructing a lookup table that indexes substrings of length
w (see Chapter 5). In practice, the value of w is usually less than 12 because the size of
the lookup table is exponential in w, even though the low error rates may allow higher
values. For example, using a value of 12 implies 412 = 16 million entries to store (assuming
the DNA alphabet); while an expected error rate of 2% over a 100 bp long aligning region
allows a value up to 33. Another downside of this approach is that a long exact match of
length l reveals itself as (l − w + 1) matches of length w.

The PaCE clustering method [14] uses a different mechanism that indexes and identi-
fies promising pairs based on variable-length exact matches. This mechanism is used in
conjunction with a greedy heuristic to more effectively reduce the number of alignments
computed without sacrificing clustering quality. Furthermore, this method has a worst-case
space complexity that is linear in input size, irrespective of the nature of the underlying
sequence data. The PaCE clustering method was originally developed for clustering ESTs
in parallel, but is also being applied to cluster large-scale genomic data. This clustering
method is described below.

13.4 A Space-optimal Heuristic-based Method for Cluster-
ing

Consider the following approach to clustering : Initially, each sequence is considered to be
in a cluster of its own. As the algorithm progresses, all promising pairs are generated but
aligned only if they currently do not belong to the same cluster. If two sequences from
two different clusters show a significant overlap, the corresponding clusters are combined.
Otherwise, the clusters are left intact, and so the alignment effort is considered wasted.
The process of merging is continued until there are no more promising pairs remaining,

Algorithms for Large-Scale Clustering and Assembly of Biological Sequence Data 13-7

resulting in the final set of clusters. Because the clustering process can be viewed as a
forest of subtrees with a total of n leaves and an internal node for every merge, the overall
number of merges is limited by n− 1 in the worst-case. This also indicates that there is a
linear number of alignments that could lead to the final solution. While such pairs cannot
be predicted in advance, their early identification causes clusters to merge sooner, which in
turn significantly reduces the number of future alignments because pairs that are already
part of the same cluster are never aligned. This hypothesis forms the basis of the following
heuristic method.

A “maximal match” between a pair of sequences is an exact match that cannot be ex-
tended on either side to result in a longer match. The greedy heuristic generates promising
pairs on-demand in non-increasing (henceforth, “decreasing” for ease of exposition) or-
der of the maximal match lengths, and considers them for alignment computation in the
same order as dictated by the above clustering scheme. The maximal match length pro-
vides an effective mechanism to differentiate among promising pairs — longer the maximal
match, higher the likelihood the overlap between the pair is significant. Therefore, evaluat-
ing pairs in decreasing order of their maximal match lengths is expected to result in early
cluster merges, subsequently reducing the number of alignments required. Furthermore,
an on-demand generation of pairs allows them to be considered for alignment as they are
generated, obviating the need to store them. Thus the space complexity of the algorithm
is determined by the space requirement of the pair generation algorithm.

13.4.1 On-Demand Promising Pair Generation

Ideally, each promising pair should be generated only once. A given pair of strings, however,
may have multiple distinct maximal matches, or a given match could be maximal in multiple
pairs of locations between the same two strings. See Figure 13.2 for an illustration. One
way to avoid generating multiple copies of the same pair in such cases is to record a pair
the first time it gets generated and ignore any future reoccurrence of the pair. This simple
scheme, however, requires storing all generated pairs, potentially requiring Θ(n2) memory.
As a compromise, the following algorithm operates in linear space and generates each pair
at least once and at most as many times as the number of distinct maximal matches in it.
For example, in Figure 13.2 the algorithm will generate (s1, s2) exactly once, while (s3, s4)
is generated at least once and at most twice.

s1

s2

C

A G α T

iA

G j k

s4

γ A A TC k l

s3

α G γ TG i j

α

α

α

A

(a) (b)

FIGURE 13.2: Examples showing two cases of maximal matches. (a) A match α is maximal
in two pairs of locations (i,j) and (i,k) between s1 and s2. (b) Two maximal
matches α and γ exist between s3 and s4.

13-8 Handbook of Computational Molecular Biology

u

α

uluk

..
. G. . .

C

leaf(β1) leaf(β2)

A α

T α G

s1

s2

β2

C β1

(a) (b)

root

FIGURE 13.3: An example showing a maximal match between two strings and its representation
in the corresponding GST. (a) A maximal match α between s1 and s2; (b) An
internal node u with path-label α in the GST. The child nodes u1 and u2 are
roots to subtrees where the leaf nodes corresponding to the suffixes β1 and β2

are located respectively.

Notation

Without loss of generality, assume that S is a set of DNA sequences over the alphabet Σ =
{A,C,G, T }. Henceforth, the words “sequence” and “string” are used interchangeably. Let
|s| denote the length of string s, andN =

∑n
i=1 |si|. A prefix of a string is said to preceded by

λ, a null character. A match α between two strings is said to be left-maximal (alternatively,
right-maximal) if the characters that immediately precede (alternatively, follow) α in the
two strings are different or if α is a prefix (alternatively, a suffix) of either string. Thus α
is a maximal match if it is both left- and right-maximal.

Let G denote the Generalized Suffix Tree (GST) constructed over all suffixes of all strings
in S. A special terminal character ‘$’ is appended to each input string in S to ensure there
exists a leaf node for every suffix of each string. Let u denote a node in G and subtree(u)
denote the set of all nodes in u’s subtree (including u). Let path-label of u be the string
obtained by concatenating all edge labels from the root to u; if u is a leaf node, the terminal
character ‘$’ is excluded in its path-label. Let string-depth of a node u denote the length
of its path-label. Let β be an input string’s suffix and leaf(β) denote the leaf node with
path-label β. Let leaf -set(u) ⊆ S represent the set of input strings that have path-label(u)
as a substring. The leaf -set(u) of a node u can be partitioned into |Σ| + 1 sets called
lsets of u: A(u), C(u), G(u), T (u) and λ(u). By definition, if a string is in c(u) (for
c ∈ Σ ∪ {λ}), then it has a suffix β such that leaf(β) ∈ subtree(u) and β is preceded by c.
Observe that such a partition need not be unique. For instance, a string s could have two
suffixes β and β′ such that leaf(β) and leaf(β′) both are in subtree(u) while β and β′ are
preceded by two different characters, say C and G in s. Then s could be either in C(u) or
G(u), and either choice will work for the algorithm.

Algorithms for Large-Scale Clustering and Assembly of Biological Sequence Data 13-9

The Algorithm

If two strings s1 and s2 share a right-maximal match α that starts at positions i and j in
s1 and s2 respectively, then the GST built over the two strings contains an internal node u
with path-label α. Also the leaf nodes corresponding to the suffixes starting at i of s1 and
j of s2 are in subtrees of two different children of u. Therefore, (s1, s2) can be generated
at u provided the suffixes are also left-maximal. An illustration is provided in Figure 13.3.
The lsets are useful in checking for left-maximality. The algorithm is as follows.

FIGURE 13.4: Algorithm for generating promising pairs. The operator “<” when
applied to characters, denotes lexicographic order.
Pair Generation based on Maximal Matches
GeneratePairsFromLeaf(Leaf Node: u)

1. Compute the lsets at u by scanning its labels.
2. Compute:

Pu =
⋃

(ci,cj)
ci(u)× cj(u), ∀(ci, cj) s.t., ci < cj or ci = cj = λ

GeneratePairsFromInternalNode(Internal Node: u)
1. Traverse all lsets of all children u1, u2, . . . , uq of u.

If a string is present in more than one lset then
all but one occurrence of it are removed.

2. Compute:
Pu =

⋃
(uk,ul)

⋃
(ci,cj)

ci(uk)× cj (ul), ∀(uk, ul), ∀(ci, cj) s.t.,
1 ≤ k < l ≤ q, ci �= cj or ci = cj = λ

3. Create all lsets at u by computing :
for each ci ∈ Σ ∪ {λ}

ci(u) =
⋃

uk
ci(uk), 1 ≤ k ≤ q

The GST G for S is first constructed using a linear time algorithm (see Chapter 5).
The nodes in G with string-depth ≥ w are then sorted in decreasing order of string-depth.
Because string-depth of any node in a GST is bounded by the length of the longest string
in S, radix sorting is used to run in linear time. Once sorted, the nodes are processed for
pair generation in that order.

The algorithms for generating pairs from leaf and internal nodes are given in Figure 13.4.
Let Pu denote the set of pairs generated at node u. If u is a leaf node, the lsets are computed
directly from its labels: For every pair of different characters in Σ∪{λ}, a Cartesian product
of the corresponding lsets is computed. In addition, a Cartesian product of λ(u) with itself
is also computed. Pu is the union of these Cartesian products.

If u is an internal node, the lsets of the children of u are traversed to first eliminate
multiple occurrences of the same string in lsets of different children. The purpose of this
elimination is to avoid generating the same pair multiple times under a given node. Note
that the resulting lsets at a child of u may no longer represent a partition. Next, for
every pair of lsets corresponding to different characters under every pair of child nodes, a
Cartesian product of their lsets is computed. In addition, a Cartesian product of λ under
each child node with λ under every other child node is computed. Pu is the union of these
Cartesian products. After pairs are generated, the lsets at u are computed from the lsets of

13-10 Handbook of Computational Molecular Biology

its children — by taking a union of all lsets corresponding to the same character. Because
multiple occurrences of the same string were eliminated before, the lsets at u will constitute
a partition of leaf-set(u).

Traversing lsets of all child nodes to eliminate multiple occurrences of a string can be
implemented to run in time proportional to the sum of the cardinalities of those lsets. A
global array M [1 . . . n], one entry for each input string, is maintained. Let u be an internal
node currently being processed. The first time a string si is encountered, M [i] is marked
with u’s identifier. Any future occurrence of si under any of u’s child nodes is detected as
a duplicate occurrence by directly checking M [i]. A linked list implementation of the lsets
allows the union in Step 3 of GeneratePairsFromInternalNode to be computed using
O(|Σ|2) concatenation operations. This restricts the overall space required to store lsets to
O(N). The assumed arbitrary orderings of the characters in Σ ∪ {λ} and the child nodes
are to avoid generating a pair at u in both of its forms: (s, s′) and (s′, s).
In summary, if v is a leaf,

Pu = {(s, s′) | s ∈ ci(u), s′ ∈ cj(u), ci, cj ∈ Σ ∪ {λ}, ((ci < cj) ∨ (ci = cj = λ))}

and if u is an internal node,

Pu = {(s, s′) | s ∈ ci(uk), s′ ∈ cj (ul), ci, cj ∈ Σ ∪ {λ}, k < l, ((ci �= cj) ∨ (ci = cj = λ))}

The following lemmas prove the correctness and run-time characteristics of the algorith-
m:

LEMMA 13.1 Let u be a node with path-label α. A pair (s, s′) is generated at u only
if α is a maximal match between s and s′.

Proof At a leaf node u, all pairs of strings represented in its lsets are automatically
right-maximal by definition. If the algorithm generates a pair (s, s′) at u, it is because the
strings are either from lsets representing different characters or from the lset representing
λ. In either case, α is a maximal match between s and s′. For an internal node u, the
algorithm generates a pair (s, s′) only if (i) s and s′ are from lsets either representing
different characters or λ, and (ii) s and s′ are from lsets of two different children of u.
The former ensures α is left-maximal; the latter ensures α is right-maximal. Thus α is a
maximal match of s and s′. Figure 13.3 illustrates an example case at an internal node.

COROLLARY 13.1 The number of times a pair is generated is at most the number of
distinct maximal common substrings of the pair.

Proof Follows directly from Lemma 1 and the fact that a pair is generated at a node
at most once. The latter is true because for any internal node the algorithm retains only
one occurrence of a string before generating pairs; whereas for any leaf node there can be
at most one occurrence of any string in its lsets. While this bounds the maximum number
of times a pair is generated, a pair may not be generated as many times.

Note that the converse of Lemma 13.1 need not necessarily hold because the elimination
of multiple occurrences of strings while processing an internal node may remove the cor-
responding occurrences that would otherwise lead to the generation of a pair at a given
node. This could, however, happen only if the same pair was generated elsewhere because

Algorithms for Large-Scale Clustering and Assembly of Biological Sequence Data 13-11

of a longer maximal match. In other words, it is guaranteed that each promising pair is
generated at least once, as proved below.

LEMMA 13.2 Each promising pair is generated at least once.

Proof Let (s, s′) be a promising pair. Consider α, a largest maximal match of length
≥ w between s and s′. This implies that there exists either a leaf or an internal node u
with path-label α. Also there exist suffixes β and β′ of s and s′ respectively such that
leaf(β), leaf(β′) ∈ subtree(u) and α is a prefix of both β and β′ satisfying left- and right-
maximal properties. Thus if u is a leaf node, then s ∈ lc1(u) and s′ ∈ lc2(u) such that c1 �= c2
or c1 = c2 = λ, implying that the algorithm will generate the pair at u. If u is an internal
node, then the fact that α is a largest maximal match ensures that s and s′ will occur once,
even after the duplicate elimination process at u, in the lsets of different children and the
lsets will correspond either to different characters or to λ. Thus the algorithm will generate
the pair at u.

LEMMA 13.3 The algorithm runs in time proportional to the number of pairs generated
plus O(N). The space complexity of the algorithm is O(N).

Proof Each node at string-depth ≥ w is processed exactly once. At an internal node,
the initial elimination process reduces the total size of lsets of all its children by at most a
factor of (|Σ|+ 1). This is because a string is present in at most one lset of each child node
and the number of children is bounded by (|Σ| + 1). The total size of all the lsets of all
the children after duplicate elimination is bounded by the number of pairs generated at the
node. Taken together, this implies that the cost of the elimination process is bounded by a
constant multiple of the number of pairs generated at the node (assuming |Σ| is a constant).

The space complexity of the GST data structure is O(N). The space required by lsets is
proportional to the total number of lset entries to be stored at all the leaf nodes, which is
O(N). This is because lsets at internal nodes are constructed from lsets of their children
and so do not require additional space.

13.4.2 The Clustering Algorithm

The overall clustering algorithm can be divided into a preprocessing phase followed by a
clustering phase, as shown in Figure 13.5. In the preprocessing phase, the GST for all n
input sequences is constructed and its nodes are sorted based on their string-depths. This
phase takes linear time and space. The clustering phase begins by initializing n clusters, one
for each input sequence. Promising pairs are then generated one at a time, and considered in
the same order for alignment on-the-fly. Managing clusters involves two types of operations:
finding the current cluster that contains a given sequence; and combining two clusters into
one. As these operations are performed on disjoint sets, the union-find data structure [28] is
used for managing the clusters. This enables each operation to cost an amortized run-time
given by the inverse of Ackermann’s function, a constant for all practical purposes. While
the space complexity of the clustering phase is O(N), its run-time is proportional to the
number of promising pairs generated plus the alignment computation cost for the pairs
selected by the clustering mechanism.

Asymptotically, the run-time is likely to be dominated by the time spent in computing
alignments, a fact that is corroborated by our experiments on large collections of genomic

13-12 Handbook of Computational Molecular Biology

FIGURE 13.5: The sequential clustering algorithm. Steps 1 and 2 are collectively
called the “preprocessing phase” and the remainder of the algorithm is called “clustering
phase”. Find(si) returns the set containing si and Union(Cp, Cq) performs a union of
the two sets.
Cluster()
Input: Set S = {s1, s2, . . . sn} of n sequences
Output: A partition C = {C1, C2, . . . Cm} of S, 1 ≤ m ≤ n
1. G ← Construct the Generalized Suffix Tree of S
2. Radix sort nodes in G with string-depth ≥ w in decreasing order of string-depth.
3. Initialize clusters:

C ← {{si} | 1 ≤ i ≤ n}
4. For each node u in the sorted list

REPEAT
(si, sj) ← generate next pair from u
Cp ← Find(si)
Cq ← Find(sj)
IF Cp �= Cq THEN

Overlap ← align(si, sj)
IF Overlap is significant THEN

Union(Cp, Cq)
UNTIL no more pairs at u

5. Output C

fragments and ESTs (see Section 13.6). The alignment computation run-time can be re-
duced by using the maximal match information that caused a pair to be generated to
“anchor” its alignment as shown in Figure 13.6. By anchoring, it is only required to com-
pute alignment over the two flanking extensions, thereby saving the alignment run-time.
Further savings can be achieved by extending this idea to include multiple maximal matches
as part of the same anchor, and in addition computing alignment over a band of diagonals
[8] within each area of the table not covered by the anchored maximal matches. Anchoring
may, however, produce a sub-optimal alignment, as it is possible that none of the optimal
alignments have all the anchored maximal matches in their paths.

In practice, partial clustering information may be available through alternative means
for a subset of input sequences prior to clustering. For example, it may be known that two
sequences were derived from two ends of the same clone. Such “mate” information can be
incorporated into the clustering algorithm by initializing the clusters such that all mates
are already clustered.

Space Requirement

While the space complexity is O(N), the constant of proportionality is that of what is
required to store the GST on all input sequences. Since there are at most N leaf nodes in
the GST, the total number of nodes is limited to 2×N − 1. Because the above algorithm
does a bottom-up traversal of the tree, in which a parent is visited only after all its children
are visited, the tree can be implemented as follows: The nodes are stored in an array in the
depth-first traversal order. Each node in the tree stores its string-depth, a pointer to its
lsets and a pointer to the rightmost leaf in its subtree. A leaf node’s pointer points to itself.
Given an internal node, all its children can be accessed as follows: The node immediately
next to it in the array is its leftmost child. Its right sibling can be obtained by tracing the

Algorithms for Large-Scale Clustering and Assembly of Biological Sequence Data 13-13

b . . . d

b . . . c

a . . . d

d

a . . . c

a

c

b

s

s′

s

s′ s′

s

s s

s′

α

α

s′

αα

α

α

α

α

α

α

(a) (b)

FIGURE 13.6: Using maximal match information while computing alignments, assuming an
alignment based modeling. (a) Dynamic programming table showing the ex-
tension of a maximal match α, at both its ends. The alignment is said to be
“anchored” at α. (b) Four possible overlap patterns resulting from suffix-prefix
alignment computation and their corresponding optimal paths in the table.

array entry next to its rightmost pointer entry. If a node’s rightmost pointer points to the
same as its parent’s, then it is the rightmost child of its parent. The lsets need N entries,
one for each suffix in the input. An additional array of at most 2×N −1 entries is required
to store the node identifiers in sorted order of their string-depths.

Our implementation meeting the above storage requirements has a worst case constant of
∼ 40 bytes for every input base. Because DNA sequences are double stranded, a sequence
should be considered both in its forward and reverse complemented form for overlaps. This
doubles the constant to ∼ 80 for every input base. As an example, on a set of shotgun
sequences sampled at 8x coverage over a megabase long genomic stretch (i.e., for an input
size of 8 megabases), this implementation requires 640 MB in the worst case.

13.5 Parallel Clustering

Extending the reach of clustering to gigabases of sequence data requires tens of gigabytes
of memory. In the absence of parallel software, a common strategy is to run a sequential
code but on a shared memory machine with tens of gigabytes of memory; in the event the
memory requirement is still not satisfied, the input is first partitioned among multiple such
machines and the code is run concurrently on each before circulating the local portion to
other machines to affect their clustering. Furthermore, the alignment workload is distributed
among multiple processors within the same machine to reduce the overall run-time. This
strategy suffices although it requires durations of days to weeks. In contrast, the PaCE
parallel clustering methodology, to the best of our knowledge, is the only “truly parallel”
solution with a demonstrated linear scalability over hundreds to thousands of processors.
Its parallel algorithms are based on the heuristic described in the previous section. In what
follows, we describe the details of its underlying parallel algorithms and implementation.

13-14 Handbook of Computational Molecular Biology

13.5.1 Parallel Construction of GST

The preprocessing phase requires the construction of a distributed representation of the
GST in parallel. There are algorithms for constructing suffix tress in parallel under CR-
CW/CREW PRAM models of computing [1, 12]. However, due to the unrealistic assump-
tions underlying the PRAM model, a direct implementation of these algorithms is not
practically useful. The following is an alternative algorithm.

Let p denote the number of processors. Initially, the input set S is partitioned across
p processors, such that each processor gets O(N

p) of the input. Through a linear scan,
each processor partitions the suffix positions of the local input into |Σ|k buckets based on
their first k ≤ w characters. The suffix positions are then globally redistributed such that
those belonging to the same bucket are grouped in the same processor, while maintaining
O(N

p) suffix positions per processor after redistribution. The value of k should be carefully
chosen. While its value is upper bounded by w, a small value may result in too few buckets
to distribute among processors, or too many (>> N

p) suffixes per bucket. For example, a
value of 10 would generate 1 million buckets for distribution among processors assuming
DNA alphabet.

Once buckets are assigned to processors, each processor constructs one subtree for all
suffixes in each bucket. Note that a sequential suffix tree construction algorithm cannot
be used for this purpose, because all suffixes of a string need not be present in the same
bucket, unless the string is repetition of a single character. A depth-first construction of
each subtree is achieved as follows. First, partition all suffixes in a bucket into at most |Σ|
sub-buckets based on their first characters. This partitioning is then recursively applied on
each sub-bucket until all suffixes separate from one another, or their characters exhausted.
As this involves scanning each character of a suffix at most once, the run-time is O(N×�

p),
where is the average length of a sequence. Despite not being optimal, this algorithm is
practically efficient mainly because is only about 500–800 bases (independent of n).

There is, however, one catch. Because each subtree is constructed in a depth-first manner,
this algorithm assumes the availability of all characters corresponding to its suffixes in the
local memory. Storing characters of all suffixes assigned to a processor is not a viable
solution, because these suffixes can span n sequences in the worst case. There are two
ways to address this problem without affecting the method’s scalability. If the underlying
machine supports scalable parallel I/O, then each processor can construct its subtrees in
batches such that the strings required to be loaded in the memory per batch is O(N

p),
and acquire those strings before each batch from disk. If the underlying communication
network provides a faster alternative, then the following communication-based approach
can be pursued: Evenly partition the input among processors’ memory and then construct
subtrees in batches as in the previous scheme, except that before each batch, strings are
acquired from processors that have them by remembering the initial distribution of input.
In either approach, further optimizations can be done by masking the latency time with
the data transfer time. In practice, disk latencies and data transfer rates are in the order
of milliseconds and microseconds, respectively (in the absence of parallel I/O); where as
communication latencies and transfer rates are in the order of microseconds and tens of
nanoseconds, respectively.

Note that the resulting set of trees over all processors represents a distributed collection of
subtrees of the GST for S, except for the top portion consisting of nodes with string-depth
< k. Once the GST is constructed, the nodes within each processor are locally sorted using
radix sort as mentioned in the previous section.

Algorithms for Large-Scale Clustering and Assembly of Biological Sequence Data 13-15

13.5.2 Parallel Clustering Phase

The parallel implementation of the clustering phase follows the master-worker paradigm.
A single master processor maintains the set of clusters, selects pairs generated by worker
processors for alignment based on the current state of clusters, and then distributes them
to worker processors. The worker processors first build the GST in parallel. After sorting
its nodes locally, each worker processor then generates promising pairs, sends them to the
master processor for evaluation, and computes alignments assigned by the master processor.
Instead of communicating one pair at a time, pairs are communicated in batches of size that
is just large enough to offset the communication latency but small enough to take advantage
of the latest clustering — a value that is empirically determined. The master processor is
a necessary intermediary that regulates the work flow and balances the load of alignment
work distribution. The space complexity is O(N

p) with the same constant of proportionality
as our sequential approach. More details about the parallel implementation can be found
in [14].

13.6 Applications

Many non-traditional assembly approaches would benefit from this parallel clustering frame-
work. Comparative genome sequencing, which uses a complete genome to anchor a low
redundancy skim of a related genome, could easily be performed using this approach. As
an example of its application, Marguiles and colleagues [19] proposed that most mammalian
genomes can be scaffolded on the completed human genome sequences and therefore would
provide both a “road map” for initial sequence assembly as well as an important informa-
tion resource for those interested in deciphering genes and their functions. Another group
of researchers, Katari et al. [15], have used low redundancy sequencing of Brassica oleracea
to identify previously unknown genes in the important model plant Arabidopsis thaliana.

The rest of this section focuses on applications to plant genome assembly and EST clus-
tering. In particular, we discuss the design and development of a parallel genome assembly
framework we developed in the context of ongoing national efforts spearheaded by U.S
National Science Foundation (NSF), Department of Energy (DOE) and Department of A-
griculture (USDA) to sequence and assemble the maize genome. Previous approaches have
been very useful in identifying gene sequences within plants and are being applied to wheat,
sorghum and pine. We will discuss the various sequencing strategies being used, the various
biological idiosyncrasies in the maize genome that warrant novel sequencing approaches,
and the advantages of using the parallel cluster-then-assemble assembly paradigm on these
non-uniformly sampled sequence data.

13.6.1 Maize Genome Assembly

Maize (i.e., corn) is both economically important and a principal model organism for the
majority of world food production. In addition to its estimated size of 2.5–3 billion bases
[2], which makes it comparable in size to the human genome, maize genome sequencing and
assembly is considered particularly challenging because highly similar repetitive sequences
span an estimated 65-80% of this genome. Maize is also highly interesting to biologists;
it is believed that the complex domestication performed by Native Americans in tandem
with modern crop improvement has generated an immense amount of genomic diversity as
evidenced by the vast phenotypic diversity in different maize species (Figure 13.7). Some
researchers believe that the differences between two maize varieties revealed by genome

13-16 Handbook of Computational Molecular Biology

FIGURE 13.7: Examples of phenotypic diversity found in different maize lines. Photo courtesy
of Lois Girton and Patrick Schnable, Iowa State University

sequencing could be more interesting than any previous comparison, e.g., human and mouse,
because they are the same species and therefore must have occurred recently. For this reason,
along with the rich scientific history of maize, the U.S. NSF, DOE and USDA have decided
to jointly fund large-scale genome sequencing efforts.

Maize Genome Project: An Introduction

Since its role in the rediscovery of Mendel’s laws of inheritance [25], maize has had an integral
part in furthering the overall understanding of biology. For example, Barbara McClintock’s
work on maize led to the seminal discovery of transposable elements, which later won her
a Nobel Prize. A strong reason for this, and other discoveries, is the community of maize
geneticists who have used this species as a model not only for food crops but also for plants
in general over the past century. This is in stark contrast to the model plant Arabidopsis
that has only recently been used to elucidate biological processes and a strong reason why
maize genome sequencing is a high priority for the plant research community.

Over the past few thousand years, the domestication and spread of maize throughout
the Americas has led to an immense source of phenotypic variation including kernel color,
cob size and other important nutritional traits such as sugar content. It was once believed
that colinearity, or the preservation of the positions of genes in related species, within the
cereal crops (e.g., rice, wheat, barley and maize) would facilitate comparative mapping and
discovery of economically important genes faster than traditional approaches. Therefore,
draft sequences of the much smaller rice genome (430 million bases) were completed [10]
and an international sequencing project was begun. Based on incoming sequence data
from smaller intervals of these species, however, biologists now believe that the genomic
and evolutionary differences between maize and rice — and even between multiple maize
subspecies [4] — are unique and interesting enough to warrant genome sequencing. The
inbred line B73, which was developed at Iowa State University and is the genetic ancestor
of commercially important lines, was the initial choice for sequencing with the goal of

Algorithms for Large-Scale Clustering and Assembly of Biological Sequence Data 13-17

FIGURE 13.8: Illustration of clone pair information. (a) Larger pieces of the target genome,
typically thousands of nucleotides, are sub-cloned into a bacterial vector and se-
quenced from both ends; (b) these paired fragments (shaded) allow the determi-
nation of the order and orientation of disjoint contigs based upon the unsequenced
region in the middle of the cloning vector.

sequencing other maize lines as and when the resources become available.
Unfortunately, the predominance of repeats within this genome make it unlikely that a

cheaper shotgun sequencing approach alone will be able to accurately reconstruct the maize
genome given current experimental and computational limitations. Because the highly sim-
ilar repeats, however, are expected to be scattered throughout the maize genome, breaking
the genome into smaller chunks (e.g., Bacterial Artificial Chromosomes, or BACs) should
reduce their effect on maize genome assembly. As such, an incremental sequencing approach
would increase assembly correctness along with reducing the computational work required
at the expense of performing thousands of smaller “mini” genome assemblies as opposed to
one large assembly when using a whole genome shotgun approach.

An alternative strategy to sequencing the maize genome, genome reduction, consists of
filtering out the repeats sometime during the shotgun sequencing project. This would
therefore achieve the advantages of BAC-based sequencing with regard to correctness with
the added bonus of reduced sequencing costs. To meet the immediate goal of deciphering
the 10-15% of the genome [3] outside the highly similar repeat content in this manner,
biologists have designed special experimental techniques that bias a shotgun-like sequencing
approach toward the gene-rich regions in plants [21, 31]. As of April 2005, a total of 3.1
million sequences totaling over 2.5 billion nucleotides have been generated and deposited in
public repositories for experimenting with these different sequencing strategies.

If genome reduction works, why should assembly teams bother with traditional shotgun
sequencing? The simple answer is that although highly complex, the portion not captured
by these biological filters contains a small fraction of “real” maize genes that may be im-
portant [9]. The same is true even for BAC-based sequencing; currently, about 6–8% of all
maize genes are absent from the current maize map and therefore would not be captured
during sequencing. The availability of unfiltered shotgun data, therefore, allows an unbiased
sampling to occur that does not miss any of these potentially important regions.

Another application of genomic shotgun data, which has been used for multiple mam-
malian genomes, is the construction of inferred physical relationships using data often called
“clone pairs” or “mate pairs” (Figure 13.8). The concept is simple: pairs of uniformly sized

13-18 Handbook of Computational Molecular Biology

pieces derived from a larger piece can be used to infer the existence of an unsampled region
of the genome during assembly. Moreover, this information can also be used to estimate
gaps between contigs and ensure that the placement of component fragments is in line with
the expected size. To use these data, most modern genome projects now use a predominant
clone size, e.g., 4–5 thousand bases, augmented by larger clones called fosmids based on
the experimental protocol. Although these longer clones are more useful for ordering and
orienting the various contigs into larger structures often called “scaffolds”, at present they
are subject to a much higher experimental error rate using current technology.

Non-uniform sequencing strategies

The stated goal of the NSF, DOE and USDA joint effort is explicit in its special emphasis on
identifying and locating all genes and their associated regulatory regions along the genome.
Note that unlike previous sequencing projects, such as the human genome project, the
emphasis has shifted from knowing the complete genome to a large collection of genomic
contigs whose order and orientation along maize chromosomes is known. Most of this
rationale is driven by the highly complex nature of the maize genome and the fact that only
a few hundred million bases will be useful to most plant biologists.

There are two primary genome reduction sequencing strategies that have been successfully
tried on maize and are now being applied to other plants including wheat, pine and sorghum.
The first strategy, Methyl Filtration (MF) [24], discards the portions of the genome that
are methylated. The second strategy, High-C0t sequencing (HC) [32], utilizes hybridization
kinetics to isolate low-copy fractions of a genome. Each of these techniques is explained in
detail below.

Methylation occurs at certain nucleotides and is important in multiple biological process-
es. One such effect, especially in plants, is the silencing, or turning off of transcription,
of certain regions of the genome. In particular, it has been shown that retrotransposons
and other repetitive sequences in maize, which spread based on a transcription mechanism,
tend to be predominantly silenced by methylation. By sampling the unmethylated regions,
as done by the sequencing strategy, the resulting sequences should mostly originate from
the gene-rich stretches of the genome. The interesting aspect of this sequencing approach
is that it uses a special strain of E. coli that is able to select against even a single methyl
group. Therefore, the protocol is the same as performed in traditional sub-cloning reactions
with a special bacterial host.

The HC sequencing approach is somewhat more complex than MF because it relies on
biochemical filtration, but it will be applicable in most eukaryotic genome projects. Repet-
itive sequences hybridize more often in a heterogeneous mixture of single-stranded genomic
DNA fragments; consequently, removing double-stranded sequences after some elapsed time
enriches for lower-copy sequences. Consider, as an example, a bag of marbles. Suppose this
bag has more green marbles than grey ones, say by a ratio of 4:1 and our game consists
of reaching into the bag and pulling out two marbles at random. If the colors match, we
discard them; otherwise, we place all green-grey pairs in a pile that will eventually be placed
back into the bag. It should be clear that in the beginning of this exercise we will remove
many more green pairs (64% chance) than grey pairs (4% chance). Moreover, the only way
a marble survives this game is if it finds an opposite-colored partner. It follows that our
original population, therefore, can be normalized from a ratio of 4:1 to 1:1 upon completion
by simply using the pile that should be placed back into the bag. Even if we stop this
exercise early, such that not all of the marbles have been processed, or place heterogeneous
pairs back into the bag (i.e., solution) we still enrich for the underrepresented sequences
because the overrepresented sequences preferentially get removed from the game. Note,

Algorithms for Large-Scale Clustering and Assembly of Biological Sequence Data 13-19

Before Cleaning After Cleaning
Sequence Number of Total length Number of Total length

Type Sequences (in millions) Sequences (in millions)

MF 411,654 335 349,950 288
HC 441,184 357 427,276 348
BAC 1,132,295 964 425,011 307
WGS 1,138,997 870 405,127 309
Total 3,124,130 2,526 1,607,364 1,252

TABLE 13.1 Maize genomic sequence data types and size statistics: Methyl-filtrated (MF), High-C0t
(HC), Bacterial Artificial Chromosome derived (BAC), and Whole Genome Shotgun (WGS).

however, that HC selection may also remove non-repetitive sequences as the ratio within
the solution approaches equilibrium. HC filtration therefore uses multiple time intervals
that both maximize low-copy sequence recovery while minimizing the loss of highly similar
genic sequences (e.g., gene families).

Cluster-then-assemble as applied on maize sequence data

Initial work on maize has focused on the biological idiosyncrasies involved in sequencing the
maize genome from the perspective of capturing genes. Although it is not yet clear which
additional portions of the maize genome are being sampled by enrichment strategies, it is
apparent that a substantial number of genes and non-genes are being over-sampled relative
to traditional sequencing approaches [7, 27].

A summary of currently available maize data broken into different categories is provided
in Table 13.1. As of April 2005, there are a total of 3,124,130 sequences totaling about 2.5
billion bp. Of these, 852,838 are MF and HC sequences, which is about 27% of the total
data; 1,138,997 are WGS sequences constituting about 36%; and the remaining sequences
are derived from BACs.

The cluster-then-assemble parallel framework used for these maize data consists of three
main phases [7] — sequence cleaning, clustering, and assembly. An illustration is provided in
Figure 13.9. Raw sequences obtained from sequencing strategies can also be contaminated
with foreign DNA elements known as vectors, which are removed using the program Lucy
[5]. This step is not yet parallelized. An efficient masking procedure is important because
unmasked repeats cause spurious overlaps that cannot be resolved in the absence of paired
fragments spanning multiple length scales. Such data may become available from future
sequencing projects; however, repeat masking would remove a substantial number of these
random shotgun sequences because of the large repetitive fraction in the maize genome
(Table 13.1).

After vector screening and repeat masking procedures, the input is clustered by the PaCE
clustering software in parallel. Sequences in each resulting cluster are then assembled using
the CAP3 assembler, though any assembler can be substituted here. The assembly process
was parallelized by first partitioning the PaCE clusters among compute nodes and then
running the CAP3 serially on each cluster.

Generation of a partial maize genome assembly

Even though genome enrichment artificially places gaps into the original genome sequence,
the highly repetitive nature of the maize genome may lead to excessive merges of unrelated
regions based on common repeats. To solve this problem, a modified transitive closure
clustering algorithm was used in order to locate statistically-defined repeats, or SDRs, that
could later be used to mask the repetitive sequences and thus eliminate the formation of

13-20 Handbook of Computational Molecular Biology

large clusters [7]. Interestingly, an Interpolated Markov Model, which is often used for
locating genic regions within genome sequences, was also useful to expand the original,
high-confidence SDRs to other regions of the genome.

Once the database of repetitive sequences was initialized in August 2003, accurate clus-
tering and assembly of 730,974 non-uniformly sampled sequences was performed in 4 hours
on 64 nodes of a Pentium III 1.1 GHz cluster. The next partial assembly, which incorpo-
rated an improved repeat database along with other biological enhancements, assembled a
total of 879,523 sequences in under 2 hours on the same machine in October 2003. These
results imply that a substantial savings in run-time can be achieved by identifying repeats
and not using these sequences as seeds for promising pairs. Both the August and October
data sets were on the order of 600–700 million bases post-masking.

Because both sets were relatively small compared to the data described in Table 13.1,
their memory requirements both fit into the 64 GB available on the Pentium III cluster. To
meet the estimated memory requirement of ∼100 GB on the entire maize collection (i.e.,
1,252 million bases times 80 bytes per input base) and to accelerate the clustering process,
a total of 1,024 dual-processor nodes of the IBM BlueGene/L supercomputer — each with
512 MB RAM and 700 MHz CPUs — were used. This allowed the clustering to complete in
2 hours. In comparison with the October 2003 clustering, this clustering computed almost
ten times as many alignments in just the same parallel run-time, using 16 times as many,
but less powerful processors.

Figure 13.10a shows the run-times of the preprocessing and clustering phases of PaCE as
a function of processor size on a data size of 500 million bp. As shown, these phases scale
almost linearly until 1,024 processors. Even though the preprocessing phase takes more
time than the clustering phase for this data size, the clustering phase is asymptotically
dominant. For example, on the entire 1,252 million bp data set, the preprocessing phase
took 13 minutes while the clustering phase took 102 minutes.

Figure 13.10b shows the number of promising pairs generated as a function of input size.
The results also indicate the effectiveness of the clustering heuristic in significantly reducing
the alignment work. For the 1,252 million bp data set, about 40% of the pairs generated are
aligned. However, less than 1% of the pairs aligned are accepted, indicating the presence of
numerous repetitive elements that may have survived masking.

The most recent assembly based upon the BlueGene/L clustering described above com-
pleted in under 8.5 hours on 40 processors of the Pentium III cluster and resulted in a
total of 163,390 maize genomic islands (or contigs) formed by two or more input sequences,
and 536,377 singletons (i.e., sequences that did not assemble with any other sequence). On

FIGURE 13.9: A parallel framework for genome assembly. PaCE is used for parallel clustering,
and CAP3 is used for assembly. The output is a set of sequences representing
contiguous stretches of the genome, or contigs (shown in thick lines).

Algorithms for Large-Scale Clustering and Assembly of Biological Sequence Data 13-21

(a) (b)

FIGURE 13.10: (a) Phase-wise run-times for PaCE clustering as a function of the processor size
on 500 million bases of maize input, and (b) The number of pairs generated,
aligned, and accepted as a function of input size.

an average, each cluster assembled into 1.1 contigs; given that the CAP3 assembly is per-
formed with a higher stringency, this result indicates the high specificity of our clustering
method and its utility in breaking the large assembly problem into disjoint pieces of easily-
manageable sizes for conventional assemblers. The overall size of our contigs is about 268
million bp, which is roughly 10% of the entire maize genome. Upon validation using inde-
pendent gene-finding techniques, we confirmed that our contigs span a significant portion
(∼ 96%) of the estimated gene-space. The average number of input sequences per contig
is 6.55 sequences, while the maximum is 2,435. To more accurately assess non-uniformity
within these data, coverage throughout the entire maize assembly was analyzed. Given the
1X coverage of the maize genome in this analysis, it is unexpected, and interesting, that the
mean observed coverage was 3.24 in this gene-rich assembly. Moreover, 1.34 million bases
of this assembly have sequence coverage of 25 or higher and may correspond to unmasked
repeats and/or biases from the gene-enrichment approach. The results of our assembly,
named Maize Assembled Genomic Islands (MAGIs) [7, 9], can be graphically viewed at
(http://www.plantgenomics.iastate.edu/maize). An example of a genomic island is
shown in Figure 13.11.

13.6.2 EST Clustering

ESTs are sequenced experimentally from mRNAs, which are transcribed from genes. The
number of ESTs derived from a gene is a direct indication of its level of activity under such
experimental conditions. ESTs can also be used to identify alternative splicing behavior
of genes. Intronic and exonic boundaries can be identified by aligning the ESTs to their
corresponding genes. ESTs collected during an experiment may have originated from many
gene sources, and clustering them according to their sources provides a good starting point
for deriving gene-specific information from them. ESTs, their applications, and an overview
on different clustering methods are presented in Chapter 12. In this section, we discuss the
computational challenges in clustering large EST data.

13-22 Handbook of Computational Molecular Biology

FIGURE 13.11: (See color insert following page 20-4.) Graphical representation of MAGI-
3.1-4593. The first two rows above, as illustrated in the key, correspond to HC
and MF sequences, respectively. The next two rows correspond to genes pre-
dicted using either EST-based or ab initio prediction approaches and include
introns. The last row are annotated protein matches. It follows that this single
contig shows a case where there are three genes on a genomic island; however,
notice how the sampling sources differ in the different intervals above. Some re-
gions are only captured using HC reads (3–5KB) while others are only captured
using MF (8–10KB).

Besides the usual complications introduced by sequencing errors, EST data present addi-
tional challenges to the clustering process. EST data may contain sequences derived from
alternatively spliced transcripts derived from the same gene. Computationally, such splicing
events can be detected by first grouping ESTs based on common gene source and then by
common transcript source. Two ESTs are likely from the same gene source if they have a
chain of significant local alignments between them, where each local alignment indicates a
shared exon. Alternatively, a pair is likely from the same transcript if they have a good
suffix-prefix alignment. Because fragment assembly software also detect such suffix-prefix
alignments, they can be used for clustering ESTs by transcript source. EST data may also
contain introns retained during the transcription process, which can be computationally
detected by treating them as special cases of alternative splicing. EST data may also have
originated from different genes of the same gene family or may have Single Nucleotide Poly-
morphisms (SNPs), and the general strategy to identify such cases is to first group based on
sequence similarity and then look for desired patterns among sequences within each cluster.

Algorithms for Large-Scale Clustering and Assembly of Biological Sequence Data 13-23

(a) (b)

FIGURE 13.12: (a) The number of overlaps stored by the CAP3 assembly software as a function
of input size on a subset of Rattus sp. (rat) ESTs. The peak memory usage
reached 2 GB for 150,000 ESTs. (b) The number of pairs generated, aligned,
and accepted by the PaCE clustering software as a function of input size for the
entire EST data publicly available in GenBank for Rattus sp. (or rat) consisting
of 726,988 ESTs. The ratio of number of pairs unaligned to the total number
of pairs generated signifies the percentage work that is saved by the clustering
heuristic.

While it is possible to handle the above properties of EST data by devising specialized
variation of alignment methods post-clustering, there are two more properties prevalent in
EST data — non-uniform sampling across gene sources and within a gene source — that
make their clustering particularly hard especially with increasing data sizes. The number of
ESTs derived from a gene depends on its level of activity, and because some genes may be
expressed more than others, the resulting EST collection may show highly diverse sampling
levels. In addition, the underlying sequencing mechanism may differentially cover a cDNA
clone. For example, it is possible that the 3′ end of a clone is covered by hundreds to
thousands of ESTs, while the 5′ end is covered by less than tens of ESTs.

Either case of non-uniform sampling implies a worst case quadratic number of “truly”
overlapping ESTs to be dealt with during clustering, and may therefore limit the scalability
of approaches that store such overlaps. Experimentation on different sized subsets of rat
(Rattus sp.) ESTs downloaded from GenBank using CAP3 assembler (a software that is
widely used for clustering EST data and also highly acclaimed for its clustering quality [18])
show that for an input increase from 100,000 to 150,000 ESTs the number of overlaps stored
almost doubled, as illustrated in Figure 13.12a. The peak memory usage for the 150,000
data is 2 GB. Also note that the number of overlaps stored means that at least as many
alignments were computed by the software. This quadratic increase in storage is expected
of CAP3 or any other assembly software when applied to ESTs because they were originally
developed for the assembly problem assuming uniform sampling.

In order to provide readers a perspective of these scaling issues associated with software
developed for EST clustering, we experimented on the entire rat collection comprising of
726,988 ESTs and its subsets (data downloaded as of May 2005, from GenBank) using
the PaCE software. PaCE clustered the entire collection in 2 hours on 27 dual-processor

13-24 Handbook of Computational Molecular Biology

nodes of a myrinet cluster with 3.06 GHz Xeon processors and 2 GB RAM each. The peak
memory consumed per processor was ∼600 MB. Using a minimum exact match length (w)
of 40 bp, the number of promising pairs generated was ∼60 million, of which the greedy
heuristic selected only ∼18 million (30%) for alignment. Less than 1% of the aligned pairs
were “accepted” i.e., contributed to merging of clusters, indicating the presence of numerous
exact matches between ESTs that do not overlap significantly. Figure 13.12b shows similar
statistics for other subsets of the rat EST collection. The increase in the number of promising
pairs generated with input size indicates the expected worst-case quadratic behavior.

Because of cost-effectiveness, ESTs are sequenced in large quantities. The largest publicly
available EST database is the dbEST repository maintained by the GenBank division of the
National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/dbEST/).
As of May 2005, this database has over 26.8 million sequences obtained from 869 organisms.
Among the animals, the human collection is the largest with 6,057,790 ESTs followed by
mouse with 4,334,174 ESTs. Among the plants, the largest is that of Triticum aestivum
(wheat) with 589,455 ESTs followed by Zea mays (maize) with 452,984 ESTs.

Among publicly funded EST clustering projects, the UniGene project undertaken by
NCBI is an excellent resource that creates and maintains clusters of ESTs based on gene
sources, with a goal of representing the “transcriptome” (or the set of all mRNA transcripts)
in different species. The UniGene clustering procedure is incremental — existing clusters
are updated with every new increment of EST data, thereby making their method applicable
to situations in which input sequences become available over an extended period of time.
As of May 2005, the UniGene collection contained clustering for EST data obtained from
52 organisms, the largest being that of human with over 53,000 clusters.

The Institute for Genomic Research (TIGR) maintains the TIGR Gene Indices (TGI),
by forming EST clusters (obtained using the TGICL software) and a subsequent assembly
(obtained using CAP3). Gene indices are available for 31 animals, 30 plants and many
microbial species.

Another public repository is PlantGDB, a NSF-funded resource for plant comparative ge-
nomics (http://www.plantgdb.org) that publishes and maintains clusters for plant ESTs.
The project curates clustering results of EST data from about 50 plant species, with sizes of
individual collections ranging from a few hundred ESTs to as large as 554,859 for Triticum
aestivum (wheat). The PaCE software is used for clustering purposes, and the result-
ing clusters are assembled using CAP3 assembly software. The results can be viewed at
(http://www.plantgdb.org/ESTCluster/progress.php).

13.7 Towards a Generic Platform for Large-scale Sequence
Analysis

In Sections 13.4 and 13.5, we described a clustering-based framework for performing large-
scale genome assembly and EST clustering projects. This framework can be extended into a
more generic platform for conducting other types of large-scale sequence analysis in parallel,
by providing a new capability for analyzing multiple sequence types during the same analysis
experiment. In this section, we discuss various potential applications that motivate the need
to develop such a generalized framework, and then describe a clustering-based approach that
can be tuned with “rules” based on the outcome desired by the end-user.

Public repositories such as GenBank have genes, full-length cDNAs, ESTs, protein and
amino acid sequences, and genomic fragments that can be classified into many sub-types
based on their sources and size ranges (e.g., full-length assembled BACs, whole genome
shotgun sequences, fosmids, known repetitive elements, etc.). Providing the capability to

Algorithms for Large-Scale Clustering and Assembly of Biological Sequence Data 13-25

handle multiple sequence types and integrating information across multiple sequence types
will extend the reach of analysis experiments. Listed below are some potential applications
that can benefit directly from a platform that supports this capability.

• Gene identification, structure prediction and alternative splicing stud-
ies: In a genome project, genes can be located within contigs by finding portions
that have expression evidence. This can be achieved by identifying the contigs
that align “well” with ESTs, cDNAs, and/or proteins that are derived from same
or closely related organisms. Once a gene is identified through this alignment
process, its intronic and exonic boundaries can also be predicted by marking the
boundaries of the alignments. Furthermore, if many ESTs align to the same
genic region but not necessarily at same segments of it, a subsequent assembly of
the corresponding ESTs can be used to identify the different alternatively spliced
forms of the gene.

• Scaffolding: In genome projects, aligning expressed sequences with contigs can
also provide scaffolding information at the level of a gene. Due to lack of coverage,
a gene may be split across multiple contigs. Since expressed data such as ESTs,
cDNAs and protein sequences represent genic regions but without their introns,
they may have originated from distant exons of the same gene and so can be used
to order and orient the contigs containing any of their exons.
Assuming that the order of most genic and inter-genic regions are conserved
across closely related species (as mentioned in Chapter 10), genome projects can
also benefit from scaffolding information already computed in previous genome
projects. Treating the contigs from two different genome projects, one currently
underway and another completed, as two “types”, a partial order and orientation
of contigs in the first type can be induced from the already computed information
of their counterparts in the second type.

• Gene discovery: Novel expressed genes in organisms for which the genomes
have not yet been sequenced can be predicted by clustering its ESTs and cDNAs
and then identifying those clusters that have protein evidence.

• Incremental clustering: In sequencing projects, sequences are typically avail-
able over a period of time. The goal of incremental clustering is to take advantage
of the results of previous clustering and assembly efforts, and to compute only
those changes that are induced in the output by the new increment — by treating
the old and new data as two different types.

• Polymorphism detection: Expressed data extracted from normal and diseased
tissues often exhibit Single Nucleotide Polymorphisms (SNPs). Detecting such
polymorphic events between sequences from different tissues (types) is an impor-
tant step in identifying the genetic basis of certain inherited diseases. Similarly,
polymorphic events can be used to differentiate among paralogous genes (genes
in the same organism that are highly similar).

• Repeats and vector cleaning: Sequences can contain foreign DNA elements
or repetitive elements that confound the assembly process by indicating “false”
overlaps. Given a set of known repeats and vector sequences, the task of locating
them in the input sequence data before the assembly process is similar to the
task of finding contained substrings or subsequences (to allow for a few errors)
between the input and the repeat/vector sequences.

13-26 Handbook of Computational Molecular Biology

Type I Type II Alignment Method

genomic DNA genomic DNA semi-global
genomic DNA cDNA/EST spliced
cDNA/EST cDNA/EST semi-global, local alignment
Amino acid EST/cDNA DNA protein alignment without intronic insertions
Amino acid genomic DNA DNA protein alignment accounting for introns

TABLE 13.2 A sample rule-table showing the appropriate alignments to compute for corresponding
pairs of types. Types I and II denote the types of any two sequences that can be considered for alignment.

13.7.1 A Rule-Based Approach

Considerable work has already been done towards finding and establishing relationships
between sequences of different types, although at a sequence to sequence level — the central
theme of them all being “related sequences show a corresponding sequence homology”.
Overall, these methods are specialized alignment techniques that take two sequences and
account for the patterns induced by their types, in a way that reflects their original biological
origins. For example, aligning a genomic fragment with a cDNA/EST sequence is computed
as a spliced alignment that accounts for the intronic insertions that are spliced out during
transcription, a subject of focus in Chapter 2. Aligning a genomic fragment with a protein
sequence with the goal of gene structure prediction is a well studied problem [11, 13, 16],
while aligning a cDNA sequence with a protein sequence is the subject of [33]. Furthermore,
there are programs such as BLAST and its myriad varieties used for making local alignment
based inferences.

When it comes to performing cross-type analyses between sets of sequences, a popular
strategy is to run an appropriate alignment program between all sequences of one type
against all sequences of another. While this simple protocol is capable of producing desired
biological results, it is computationally a brute-force approach, limiting the scale of data to
which such an approach can be applied. Therefore, developing a more efficient platform for
conducting large-scale cross-type sequence analysis can accelerate the process of biological
inferences drawn from sequence data. The rule-based approach proposed below, which
targets efficient solutions for the applications including those listed in Section 13.7, is a
good starting point towards developing a more generic platform.

Suppose the user inputs sequence data with information on their types. Along side, the
user provides a set of “rules” stating the combination of types to be evaluated for overlap
and their corresponding alignment methods. A sample set of such rules is provided in
Table 13.2.

Based on the input sequence types and the rules specified by the user, the algorithm
first preprocesses the input so that all are represented in one alphabet, either DNA or
amino acid characters but not both, and then constructs a string data structure such as the
generalized suffix tree or generalized suffix array on this transformed input. For example, if
the input comprises genomic fragments and protein sequences, the genomic fragments can be
translated to their six reading frames (three each in forward and reverse orientations), and a
GST can be constructed over the amino acid alphabet on the translated genomic fragments
and the input protein sequences. An exception to this approach is incremental clustering,
in which a GST corresponding to the older data can be retrieved and updated with the new
increment. The next step is to generate promising pairs and “consider” them for alignment
computation consistent with the rules. Variations of the PaCE clustering heuristic that
selects alignment workload are sought for this purpose. Performance optimization can be
achieved by taking advantage of the rules — if the rules allow only for overlaps to be

Algorithms for Large-Scale Clustering and Assembly of Biological Sequence Data 13-27

computed across types, it is needless to generate promising pairs from within the same type
of sequences, and so the subtrees or their equivalents with only one type of sequence in it
are not constructed, saving both run-time and space.

The efficiency of this rule-based approach lies in the choice of an appropriate definition
for promising pairs and in devising efficient mechanisms to generate such pairs in parallel.
Measures other than maximal matches may suit different clustering objectives. For example,
while detecting single nucleotide polymorphic events in an input, a solution that allows
for single character mismatches is preferable over another that allows only for maximal
matches. In applications involving cross-species analysis, sequence relatives are expected
to show more divergence among themselves. In such cases, allowing up to a fixed number
of gaps and mismatches in addition to long matches is likely to increase the chances of a
promising pair of genomic fragments passing an alignment test. This can be achieved by
developing methods that detect bounded approximate matches within multiple sequences
in parallel.

13.8 Conclusions

Molecular biology continues to shift toward data-driven hypotheses. Small questions related
to a specific pathway or process are still undertaken; however, these experiments are often
aided and sometimes greatly improved based upon the availability of complete genome se-
quences. To accomplish this goal, an intimate alliance has been formed between traditional
biologists and computer scientists to process and analyze these large-scale sequence data re-
sources. In this chapter, we have discussed two of these problems, namely genome assembly
and EST clustering.

One of these solutions, the human genome sequence, was a massive endeavor and a
great accomplishment. Maize, which is discussed in depth in this chapter, will be another
accomplishment and will usher in the application of technology being used to improve
human health to improve economically important crops. While the complexity involved in
many of these projects is not likely to be more complex than the human and maize genome,
these approaches will require a significant amount of computational resources. In particular,
the memory requirements of traditional genome assemblers require special consideration or
the need to redesign them. The parallel clustering framework presented in this chapter
and other previous parallelization approaches have begun this shift to high performance
computers that can effectively address these immense problems without a complete overhaul
of well-tested assembly techniques.

As the benefit of genomics-driven biology becomes more and more important during
every day molecular biology, there is a push to provide even rudimentary sequences of
the genes within these species until time and resources can be allocated to completing
the entire genome. In this manner genome reduction and EST sequencing represent two
valuable approaches that maximize value given minimal resources. Unfortunately, both
of these sequencing approaches are subject to non-uniformity that further aggravate the
computational resources needed to solve these problems. We believe that a cluster-then-
assemble, as presented in this chapter, is a viable solution and demonstrated its usefulness
towards the creation of Maize Assembled Genomic Islands (MAGIs) along with in large-scale
EST clustering.

There appear to be two intriguing challenges based upon the ideas we have explored
within this chapter. First, as the amount and availability of diverse large-scale sequencing
data becomes available to bioinformaticians and computational biologists, can the scientific
community devise accurate and appropriate algorithms and experiments to extract as much

13-28 References

information as possible on diverse topics including molecular evolution, functional genomics,
and comparative biology to name only a few. Second, would the sequencing capabilities ever
improve to the point that genome assembly may well become a trivial step in the course of
personalized medicine? If not, could the current developing understanding on haplotypes
and other natural variations within the human species facilitate the design of diagnostic
tests based on technology like microarrays? These questions remain to be answered.

Acknowledgements

This work was supported in part by the U.S. National Science Foundation under ACR-
0203782 and CNS-0130861.

References

[1] A. Apostolico, C. Iliopoulos, G.M. Landau, and B. Schieber et al. Parallel construction
of a suffix tree with applications. Algorithmica, 3:347–365, 1988.

[2] K. Arumuganathan and E.D. Earle. Nuclear DNA content of some important plant
species. Plant Molecular Biology Reporter, 9:208–219, 1991.

[3] J.L. Bennetzen, V.L. Chandler, and P.S. Schnable. National Science Foundation-
sponsored workshop report. Maize genome sequencing project. Plant Physiology,
127:1572–1578, 2001.

[4] S. Brunner, K. Fengler, M. Morgante, and S. Tingey et al. Evolution of DNA sequence
homologies among maize inbreds. Plant Cell, 17:343–360, 2005.

[5] H. Chou, G.G. Sutton, A. Glodek, and J. Scott. Lucy - a sequence cleanup program.
In Proc. Tenth Annual Genome Sequencing and Annotation Conference, 1998.

[6] International Human Genome Sequencing Consortium. Initial sequencing and analysis
of the human genome. Nature, 409:860–921, 2001.

[7] S.J. Emrich, S. Aluru, Y. Fu, and T. Wen et al. A strategy for assembling the maize
(Zea mays L.) genome. Bioinformatics, 20:140–147, 2004.

[8] J. Fickett. Fast optimal alignment. Nucleic Acids Research, 12(1):175–179, 1984.
[9] Y. Fu, S. J. Emrich, L. Guo, and T. Wen et al. Quality assessment of Maize Assembled

Genomic Islands (MAGIs) and large-scale experimental verification of predicted novel
genes. Proceedings of the National Academy of the Sciences USA, 102:12282–12287,
2005.

[10] S.A. Goff, D. Ricke, T.H. Lan, and G. Presting et al. A draft sequence of the rice
genome (Oryza sativa L. ssp. japonica). Science, 296:92–100, 2002.

[11] O. Gotoh. Homology-based gene structure prediction simplified matching algorithm
using a translated codon (tron) and improved accuracy by allowing for long gaps.
Bioinformatics, 16(3):190–202, 2000.

[12] R. Hariharan. Optimal parallel suffix tree construction. Journal of Computer and
System Sciences, 55(1):44–69, 1997.

[13] X. Huang and J. Zhang. Methods for comparing a DNA sequence with a protein
sequence. Computer Applications in the Biosciences, 12(6):497–506, 1996.

[14] A. Kalyanaraman, S. Aluru, V. Brendel, and S. Kothari. Space and time efficient
parallel algorithms and software for EST clustering. IEEE Transactions on Parallel
and Distributed Systems, 14(12):1209–1221, 2003.

[15] M.S. Katari, V. Balija, R.K. Wilson, and R.A.Martienssen et al. Comparing low
coverage random shotgun sequence data from Brassica oleracea and Oryza sativa

References 13-29

genome sequence for their ability to add to the annotation of Arabidopsis thaliana.
Genome Research, 15(4):496–504, 2005.

[16] P. Ko, M. Narayanan, A. Kalyanaraman, and S. Aluru. Space-conserving optimal
DNA-protein alignment. Proc. IEEE Computational Systems Bioinformatics Con-
ference, pages 80–88, 2004.

[17] E.S. Lander and M.S. Waterman. Genomic mapping by fingerprinting random clones:
a mathematical analysis. Genomics, 2:231–239, 1988.

[18] F. Liang, I. Holt, G. Pertea, and S. Karamycheva et al. An optimized protocol for
analysis of EST sequences. Nucleic Acids Research, 28(18):3657–3665, 2000.

[19] E.H. Margulies, J.P. Vinson, W. Miller, and D.B. Jaffe et al. An initial strategy
for the systematic identification of functional elements in the human genome by low-
redundancy comparative sequencing. Proceedings of the National Academy of Sci-
ences USA, 102(13):4795–4800, 2005.

[20] J.C. Mullikin and Z. Ning. The Phusion assembler. Genome Research, 13(1):81–90,
2003.

[21] L.E. Palmer, P.D. Rabinowicz, A.L. O’Shaughnessy, and V.S. Balija et al. Maize
genome sequencing by methylation filtration. Science, 302(5653):2115–7, 2003.

[22] G. Pertea, X. Huang, F. Liang, and V. Antonescu et al. TIGR Gene Indices clustering
tool (TGICL) a software system for fast clustering of large EST datasets. Bioinfor-
matics, 19(5):651–652, 2003.

[23] P.A. Pevzner, H. Tang, and M.S. Waterman. An Eulerian path approach to DNA
fragment assembly. Proceedings of the National Academy of Sciences USA, 98:9748–
9753, 2001.

[24] P.D. Rabinowicz, K. Schutz, N. Dedhia, and C. Yordan et al. Differential methylation
of genes and retrotransposons facilitates shotgun sequencing of the maize genome.
Nature Genetics, 23:305–308, 1999.

[25] M. M. Rhoades. The early years of maize genetics. Annual Reviews in Genetics,
18:1–29, 1984.

[26] F. Sanger, A.R. Coulson, G.F. Hong, and D.F. Hill et al. Nucleotide sequence of
bacteriophage lambda DNA. Journal of Molecular Biology, 162:729–773, 1982.

[27] N.M. Springer and W.B. Barbazuk. Utility of different gene enrichment approaches
toward identifying and sequencing the maize gene space. Plant Physiology, 136:3023–
3033, 2004.

[28] R.E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the
ACM, 22(2):215–225, 1975.

[29] D.C. Torney, C. Burks, D. Davison, and K.M. Sirotkin. Computers and DNA.
Addison-Wesley, New York, 1990.

[30] J.C. Venter, M.D. Adams, E.W. Myers, and P.W. Li et al. The sequence of the human
genome. Science, 291:1304–1351, 2001.

[31] C.A. Whitelaw, W.B. Barbazuk, G. Pertea, and A.P. Chan et al. Enrichment of
gene-coding sequences in maize by genome filtration. Science, 302:2118–2120, 2003.

[32] Y. Yuan, P.J. SanMiguel, and J.L. Bennetzen. High-C0t sequence analysis of the maize
genome. The Plant Journal, 34:249–255, 2003.

[33] Z. Zhang, W.R. Pearson, and W. Miller. Aligning a DNA sequence with a protein
sequence. Journal of Computational Biology, pages 339–49, 1997.

[34] Z. Zhang, S. Shwartz, L. Wagner, and W. Miller. A greedy algorithm for aligning DNA
sequences. Journal of Computational Biology, 7:203–214, 2000.

14
Comparisons of Long Genomic

Sequences: Algorithms and
Applications

Michael Brudno
University of Toronto

Inna Dubchak
Lawrence Berkeley National Laboratory

14.1 Introduction . 14-1
14.2 Local Alignment . 14-2

Seed generation • Joining of neighboring seeds •

Ungapped and gapped extension
14.3 Global Alignment . 14-5

Finding potential anchors • Building a consistent set
of anchors • Filling in the gaps

14.4 Multiple Global Alignment . 14-7
Scoring a multiple alignment • MGA and DIALIGN
alignment algorithms • Progressive alignment

14.5 Alignment of Sequences with Rearrangements . . . 14-9
Pairwise alignment with Shuffle-LAGAN • Multiple
alignment with Mauve

14.6 Whole Genome Alignment . 14-11
Local alignment on a whole genome scale •

Local-global tandem approach
14.7 Visualization . 14-13

Visualization of pairwise alignments • Visualization of
multiple alignments • Whole-genome visualization of
alignments

14.8 Applications of Alignments . 14-17
14.9 Conclusion . 14-19

14.1 Introduction

Comparing genomic sequences across related species is a fruitful source of biological insight,
because functional elements such as exons tend to exhibit significant sequence similarity due
to purifying selection, whereas regions that are not functional tend to be less conserved. The
first step in comparing genomic sequences is to align them – that is, to map the letters of one
sequence to those of the others. There are several categories of alignments: local alignments
identify local similarities between regions of each sequence, global alignments find a mapping
between all the letters of the sequences. Alignments can be either pairwise, between two
sequences, or multiple that compare several sequences. The main challenge in developing
algorithms for genomic alignment is that these must be fast enough to deal with megabase
long sequences and gigabase long genomes, but also accurately map individual base pairs.

14-1

14-2 Handbook of Computational Molecular Biology

While generating alignments is difficult computationally, visualization of alignments also
presents challenges, such as how to enable users to interact with the data and the processing
programs in the context of enormous datasets. Visualization frameworks should be easy to
understand by a biologist and provide insight into the mutations that a particular region
has undergone. Finally, alignments are useful only if they help shed light on the important
functional elements in the genomic sequence. In this chapter, after a detailed discussion of
algorithms used to construct genomic alignments and methods to visualize them we give
a short overview of several algorithms that use an alignment to improve predictions of
transcription factor binding sites.

14.2 Local Alignment

Local alignment is the basic problem of finding similar fragments in two sequences, regard-
less of the order and location of these similarities. Consequently local alignments allow
one to identify rearrangements between two sequences, and are suitable for aligning draft
sequences. The original local alignment algorithm is the Smith-Waterman [62] dynamic
programming approach. This algorithm, however, runs in time proportional to the product
of the lengths of the sequences. As this is impractical for comparing two long genomic inter-
vals there has been extensive work since the mid 1980s on development of fast approaches
for local alignment of genomic sequences. While the details of all of these approaches are
different, most share some overriding paradigms. In particular, almost all algorithms start
with seed generation – the location of short, exact or nearly exact matches between two
sequences. Because this can be accomplished quickly by indexing one of the two sequences
in an appropriate data structure, such as a lookup table or some variant of a suffix tree,
these seeds help to reduce the search area of the local alignment algorithm to just the re-
gions that are likely to be similar. Once generated, nearby seeds may be joined together:
the presence of several seeds close to each other is a stronger evidence of homology than a
single seed. Finally the individual seeds (or groups of seeds) are extended to find regions
that did not match exactly but are still conserved. These three steps form the basis of most
local alignment algorithms for DNA sequences; the individual algorithms differ in how they
solve each of the steps.

14.2.1 Seed generation

Perhaps the simplest way to generate seeds between two sequences is a straight lookup table
technique: all k-long words (k-mers) of one sequence (the database) are indexed in a table,
and the k-mers of the other sequence (the query) are used to retrieve from the lookup table
the locations at which the particular k-mer of the query is present in the database sequence.
This approach was used in the two first (and perhaps the best known) local aligners for long
sequences, FASTA [53] and BLAST [1, 2]. An alternative approach for seed generation is
to use a suffix tree or one of its variants (such as Aho-Corasick automaton) to search for the
seeds. This approach suffers from higher constant overhead, in terms of both the memory
requirements and the running time, but allows for the use of longer k-mer matches as it
takes advantage of sparseness of longer seeds: there are 4k possible DNA words of length k,
and only a small fraction of them may be present in a particular sequence. This makes suffix
tree approaches preferable when one is searching for longer seeds, while direct lookup tables
are preferable for shorter ones. Instead of searching for k-long words that match exactly
between the two sequences it is possible to use degenerate words as seeds, that is, words
where a certain number of the letters are allowed not to match. These seeds allow for a

Comparisons of Long Genomic Sequences: Algorithms and Applications 14-3

higher sensitivity than exact matching k-mer seeds, but are more computationally intensive
to generate. These seeds can be found in one of several ways, all of which, however, lead to
an exponential running time increase in the number of degeneracies: it is possible to create
indices where all of the possible degenerate positions are absent (i.e. index all possible 7
bases within an 8-mer). This leads to each word being represented only once in an index,
but the number of indices grows as

(
k
n

)
where n is the number of degeneracies allowed.

Alternatively, one can index each word at all of its degenerate locations. This way there
is only one index, but each word is indexed in many places, resulting in a blowup in the
amount of memory required for the index. A popular alternative to both of these techniques
is known as a “spaced” seed, which was initially implemented in the PatternHunter program
[46]. These seeds are similar to degenerate seeds, in that they allow certain positions to not
match, but these positions are pre-specified. For example a 110101 seed requires 4 (1st, 2nd,
4th and 6th) out of 6 positions to match. The other two positions may not match. This
pattern is referred to as a (4,6) spaced seed. Because the degenerate positions are known
ahead of time it is possible to use just a single index to look up all seeds. PatternHunter
seeds have been shown to be preferable to regular fixed-length k-mers because two adjacent
k-mers will no longer share k−1 positions, reducing the correlation between adjacent words.
If in the case of exact matching seeds it is sufficient to introduce a mutation every k − 1
positions in order to prevent the algorithm from finding a seed, this is not sufficient in the
case of spaced seed. In fact, for the optimal (9,15) seed 111001010011011 it is necessary to
have a mutation at least every 7 base pairs to prevent a single seed from being found.

PatternHunter seeds are preferable to exact matching k-mers when the stretch of sim-
ilarity between the two sequences is long; their efficacy drops off when one is comparing
sequences with very short (< 30 bases) stretches of homology. Another way to generate
seeds is to use k-mers extended to the first mismatch, which are called max-mers or max-
imal extended matches (MEMs) of a certain minimal length. Max-mers can be found in
strictly linear time in the sequence length by using a suffix tree (see chapter 5). While
max-mers do not offer a sensitivity improvement over k-mers (wherever there is a k-mer
there is also a max-mer and vice-versa) they have the advantages of returning only a single
seed for every stretch of exact matches, no matter how long. When one is comparing very
close sequences, such as two primates or two strains of bacteria, this will lead to a reduced
number of seeds that need to be analyzed. However, when one is comparing more distant
sequences (such as humans and mice) most of the matches tend to be short, and MEMs do
not offer a significant reduction in the number of seeds, while the extra overhead of finding
MEMs makes k-mers or PatternHunter seeds preferable. Additional theoretical work on
seeds has included vector seeds [11] and random projections [16], but these have not been
used in any alignment program.

14.2.2 Joining of neighboring seeds

While one seed can be a good indicator of homology, several smaller seeds located “near”
each other can be an even better indicator. This idea has been used by many programs,
starting with the first heuristic local aligner FASTA, that required m seeds of length k
within a certain window to start a local alignment. It has also been common practice
in BLAST and several other programs to search for two nearby seeds (spaced by a few
base pairs) before starting an extension. These approaches are commonly implemented by
creating a lookup table or hash table for all of the diagonals of the dynamic programming
matrix, numbering all of the diagonals from 1 to X+Y for two sequences of length X and
Y. Once a new seed is found, its diagonal is looked up the table. If there is already a seed
linked to the diagonal, and the seed is close enough to the new one, the two seeds are joined

14-4 Handbook of Computational Molecular Biology

FIGURE 14.1: The CHAOS algorithm: The seed shown can be chained to any seed which lies
inside the search box. All seeds located less then distance bp from the current
location are stored in a skip list, in which we do a range query for seeds located
within a gap cutoff from the diagonal on which the current seed is located. The
seeds located in the grey areas are not available for chaining to make the algorithm
independent of sequence order

together.
An alternative approach is used in the CHAOS program [12]. While similar to FASTA,

it allows for groups of seeds to be on nearby diagonals. Each seed, once found, is stored
in a skip list (a probabilistically balanced binary tree), indexed by the difference of its
indices in the two sequences (diagonal number). For each new seed a range query is done
in the skip list, searching for previously stored seeds which have a diagonal number within
the permitted gap penalty from the diagonal at which the current seed is. The distance
criterion is enforced by removing from the skip list any seed that is too far away from the
position at which the new seeds are generated. This finds the possible previous seeds with
which the current one can be chained. The highest scoring chain is picked, and it can then
be further extended by future seeds (see Figure 14.1).

14.2.3 Ungapped and gapped extension

Once the seeds or groups of seeds are found, it is common practice to do some form of
extension of the seeds in order to find the boundary of the homology. For this the most
common approach is to do gap-free extensions which were first introduced in the original
BLAST program. Here one keeps on adding one letter from each sequence to the already
existing alignment, keeping track of the total score. The score goes up if the two letters
match, and goes down otherwise. Once the score has fallen significantly lower than the

Comparisons of Long Genomic Sequences: Algorithms and Applications 14-5

maximum the extension is stopped and the alignment with the maximum score is returned.
This process is commonly referred to as BLAST, or ungapped extension and is used in all of
the early versions of the BLAST algorithm, as well as the CHAOS program. The alternative
to this approach is a Smith-Waterman extension, where one is allowed to introduce gaps
around the seeds. This process is much more time consuming, and is most useful when
comparing distant genomic sequences. It is used in the BLASTZ alignment program [56],
where gapped extensions are only triggered for ungapped alignments meeting a particular
scoring threshold.

14.3 Global Alignment

Global alignments find the correspondence between two strings end-to-end by building a
monotonically increasing map between the letters of each sequence. This produces a more
accurate alignment at the base-pair level when the conserved features (for example genes)
are in the same order in the compared species. The original global alignment algorithm
is Needleman-Wunsch [51], which requires time proportional to the product of the lengths
of the aligned sequences. This algorithm is too inefficient for comparing megabase long
genomic sequences. Faster and more accurate methods have been developed recently: DI-
ALIGN [50, 12], MUMmer [22, 23], GLASS [4], WABA [39], AVID [9] and LAGAN [13]. All
these methods rely on an anchoring approach. It is worth noting that the anchors in global
alignment serve the same purpose as the seeds in local alignment – to reduce the inherently
quadratic search space. The overall approach followed by all of the tools mentioned above
(as well as several others) can be summarized as 1) generate the fragments (local stretches
of similarity) between the sequences, 2) resolve the set of fragments into the highest scoring
consistent set using the sparse dynamic programming approach or some alternative, and 3)
run a thorough global alignment algorithm either between the anchors, or in some region
around them.

14.3.1 Finding potential anchors

The next chapter (chaining) shows how to construct the highest scoring consistent chains
from fragments. When these algorithms are applied in the context of global alignment,
the immediate question is how these fragments should be found, and what is a meaningful
fragment. Perhaps the most straightforward method is to use k-mers as these fragments,
as was done in the GLASS alignment program. Because individual k-mers are not a re-
liable guide to homology they were supplemented with a short extension by running the
Needleman-Wunsch algorithm in a 12 × 12 window around each k-mer. Simultaneously
the authors of MUMmer program suggested the use of maximum unique matches (MUMs)
as the fragments used for the chaining algorithm. MUMs are maximum exact matching
strings between two sequences that appear exactly once in each of the sequences. The fact
that the MUM is a unique word in each of the sequences, reduces the probability of a false
positive match. The disadvantage of this approach is its inability to find anchors between
divergent genomes, where the maximal exact matches are usually too short to be unique.
These two ideas were combined in the AVID program, which searches for maximal exact
(not necessarily unique) matches, and does 12 × 12 Needleman-Wunsch windows around
each match to verify its quality.

The most recent approach for generating the fragments has been the use of full local
alignments. The first implementation of this idea was in the DIALIGN/CHAOS combina-
tion [12], where CHAOS local alignments were used to narrow down the search space of

14-6 Handbook of Computational Molecular Biology

the DIALIGN program. CHAOS was subsequently used in a similar way in the LAGAN
program, while BLAST local alignments were used in the ORCA program (Arenillas and
Wasserman, unpublished).

Other approaches have leveraged biological knowledge in the process of anchor selection,
with two prominent examples being the WABA [39] and CONREAL [5] programs, which
search for anchors that are likely protein coding regions and transcription factor binding
sites, respectively. In the case of WABA, the anchors between two sequences are “wob-
blemers”, or k-mers where every third position is allowed not to match. Wobblemers are
equivalent to PatternHunter seeds of the form 110110110...110. Allowing the third base pair
to mutate more accurately reflects the conservation pattern of protein coding sequences as
mutations in the third base pair of a codon are likely to be “silent”: they will not change
the amino acid being coded. This allows the wobblemers to be an effective method for
anchoring protein regions. The CONREAL program, on the other hand, searches for po-
tential transcription factor binding sites using the TRANSFAC suite of programs [47]. Two
potential binding sites for the same transcription factor in the two sequences are used as
the potential anchor points. While both WABA and CONREAL have been shown to be
successful for their main purpose, that is alignment of protein coding and promoter regions,
respectively, they are not general purpose alignment tools. Using a model of conservation
rooted in a biological phenomenon usually does not work as well at modeling a different
type of conservation: WABA will not work well for promoters and CONREAL will not align
gene coding regions accurately.

14.3.2 Building a consistent set of anchors

The simplest way to find a consistent set of local alignment hits so that they can be used
as anchor points is to use a greedy approach, where the strongest match (one with highest
score using some scoring function) is accepted first, and every subsequent match is included
if it does not conflict with any of the previous ones. This, however, leads to the problem of
incorrect anchor points when several slightly weaker similarities may be ignored because of
one strong one. Still, several alignment programs, including OWEN [54], use this approach.

Eppstein and colleagues [26] showed that it was possible to find the highest scoring
consistent set of fragments in time O(nlogn) via a sparse dynamic programming chaining
procedure. For practical reasons it is not uncommon to do several rounds of anchoring:
at the first step just the most confident fragments are fixed, a second pass fixes the less
confident ones, etc. This approach, commonly known as hierarchical anchoring is useful
because it allows one to search for lower levels of conservation: using a small seed size while
looking at long sequences would lead to a very large number of seeds that are difficult to
process. Because fewer anchors are found in each pass, hierarchical anchoring allows for an
accurate analysis of each potential anchor.

14.3.3 Filling in the gaps

Once the set of anchors is fixed it is possible to reduce the search space of the final, slow
global alignment algorithm to just the areas consistent with the anchors; usually Needleman-
Wunsch is used, though the CHAOS/DIALIGN combination uses the DIALIGN program.
Both k-mer and max-mer matches can be used as “hard” anchors: because these consist
only of matches with no gaps, the optimal alignment has to go exactly over them. By
comparison, local alignments are not reliable hard anchors, as a local alignment may have
small errors. For this reason LAGAN implemented a more flexible anchoring scheme, where
the anchor is not fixed, but rather noted, and the global alignment is required to go near

Comparisons of Long Genomic Sequences: Algorithms and Applications 14-7

FIGURE 14.2: General scheme for most global alignment algorithms: (a) optimal map between
the sequences (target) (b) potential anchors are found (c) highest scoring increas-
ing subset of them is located (d) dynamic programming is done in the limited
area. (From [13]).

the anchor, though not necessarily exactly over it (Figure 14.2).

14.4 Multiple Global Alignment

Similarity across large evolutionary distances can reveal conserved, and likely important
biological features [30, 35, 65]. More recently it has been shown that it is unnecessary to
compare distant species: it suffices to compare many close ones, and through the process of
phylogenetic shadowing it is possible to separate the conserved regions from the neutral ones
[7]. Comparative analysis, however, depends on multiple alignments. Multiple alignments
have been shown to be more powerful than pairwise ones both in that they give a higher
resolution of conserved regions [17] and a higher overall accuracy alignment [13]. Multiple
alignments also allow for estimates of local rates of evolution that give quantitative measures
of the strength of evolutionary constraints and the importance of functional elements [61,
63, 19]. Multiple alignments are considerably more difficult to compute than pairwise
alignments: the running time scales as the product of the lengths of all the sequences.

14-8 Handbook of Computational Molecular Biology

Formally, the problem is NP-complete under several formulations [68, 8]. For this reason
heuristic approaches are usually applied. Below we will first discuss the problem of scoring a
multiple alignment, and then talk about two possible ways of obtaining a multiple alignment,
the first via multi-way anchoring and the second via progressive alignment.

14.4.1 Scoring a multiple alignment

Perhaps the most basic, and at the same time the most non-trivial issue with multiple
alignment is how to score it. The most common method used is the sum-of-pairs scoring,
where the score for a particular column is set to just the sum of all the pairwise substitution
and gap events. Alternatively it is possible to use a consensus model: for every column
one finds the most likely character and penalizes divergence from the character. Another
approach is to measure entropy in the column (see [25] for a summary). It is also possible to
combine these approaches: LAGAN, for example, uses sum-of-pairs scoring for matches and
mismatches and consensus for gaps. The problem of accurately scoring a multiple alignment
remains very much an open one. Some innovative solutions have been published recently,
such as T-COFFEE [52], and a full probabilistic framework for modeling multiple sequence
alignments was implemented in HANDEL [34].

14.4.2 MGA and DIALIGN alignment algorithms

In order to generate global alignments of long genomic sequences it is necessary to generate
anchor points between several sequences. For this only one truly multiple method has been
suggested: multi-MEMs, that is multiple exact matches between all of the sequences being
aligned. Because it is possible to find the highest scoring consistent chain in an arbitrary
number of sequences in sub-quadratic time (see next chapter) these multi-MEMS can be
used to reduce the search space for a multiple alignment algorithm. In between the anchor
points it is necessary to run a sensitive multiple sequence alignment method to align the
individual base pairs. This approach was first implemented in the MGA [33] program. The
drawback to the MGA approach is that the requirement of each anchor being present in all
sequences is too strict when one is comparing distant sequences. Because it is hard to find
enough anchor points, the running time of the procedure becomes prohibitive. Consequently
the MGA aligner, while being the first true global multiple alignment method for long
genomic sequences is suitable only for comparing very close homologs, such as different
strains of a bacterium.

Another approach for construction of multiple alignments from pairwise ones was imple-
mented in the DIALIGN program [50]. The DIALIGN alignment consists of segments of
ungapped homology (diagonals). To create a multiple alignment the set of pairwise diag-
onals is sorted according to the weights of the diagonals in a greedy way. Diagonals are
incorporated one by one into the multiple alignment starting with the diagonal of maximum
weight, provided they are not contradictory with the diagonals already incorporated. Di-
agonals contradictory with the growing set of consistent diagonals are rejected. The result
of this selection process is a consistent set of diagonals – i.e., a multiple alignment.

14.4.3 Progressive alignment

The most common approach used for multiple alignment of several sequences is a progressive
strategy, which constructs a multiple alignment by successive applications of a pairwise
alignment algorithm. The best known system based on progressive alignment is perhaps
CLUSTALW [66]. Some other systems include MULTALIGN [3], MULTAL [64], and PRRP

Comparisons of Long Genomic Sequences: Algorithms and Applications 14-9

[29]. The basic idea behind this approach is that pairwise alignment techniques can be
generalized from alignment of two sequence to alignment of two profiles, that is sequences
where each position consists of some fraction of A’s, C’s, T’s and G’s rather than an
individual letter. Because an alignment can be thought of as a profile (the gap can, for
instance, be treated as a fifth character) it is possible to generate a multiple alignment
via a bottom-up traversal of the phylogenetic tree, where after generating the alignments
corresponding to a node’s left and right children, one aligns these to get an alignment for
the node itself.

Anchoring an alignment of two profiles

The progressive approach described in the previous paragraph can be used to build an
alignment of two profiles in time proportional to the product of their lengths. This, how-
ever, is too slow for long sequences, and anchoring approaches have been used to reduce
the running time of this problem in a very similar manner to the pairwise anchoring prob-
lem described above. The MLAGAN multiple alignment program uses all pairwise local
alignments between the sequences to generate the set of anchor points. For example, given
the sequences X and Y , the alignment between them X/Y and a third sequence Z, the
anchors between X/Y and Z are computed as follows: First, all anchors in the rough global
maps between X and Z, and between Y and Z, are mapped to their coordinates in the
X/Y alignment and become anchors between X/Y and Z, with score equal to their original
score. Second, each anchor between X and Z that overlaps an anchor between Y and Z,
is reweighed with score equal to (s1 + s2) I/U , where s1, s2 are the scores of the (X,Z)
and (Y, Z) anchors, respectively, I is the length of intersection, and U is the length of union
of the anchors (summed in X/Y and Z). The rough global map between X/Y and Z is
the highest scoring consistent chain of these anchors. An alternative method was suggested
by the authors of the MAVID program [10]: they use phylogenetic methods to predict the
likely ancestor of two sequences, and use the sequence of the ancestor as the representative
of the sequences in the progressive steps.

14.5 Alignment of Sequences with Rearrangements

One common way in which the genome evolves is through rearrangement (shuffling) of blocks
of DNA. Some of the most common rearrangement events are inversions (a block of DNA
changes direction, but not location in the genome), translocations (a piece of DNA moves to
a new location in the genome), and duplications (two copies of a block of DNA appear where
there was one previously). Of the two main methods for alignment, global alignment, which
shows how one sequence can be transformed into another using a combination of the simple
edits, and local alignment, which identifies local similarities between regions of sequences,
neither handles rearrangement events satisfactorily. Global alignment algorithms do not
handle these events at all: the map between the two sequences that a global alignment
algorithm creates must be monotonically increasing. While local alignment methods are
able to identify homology in the presence of rearrangements between two sequences, they
do not suggest how the two sequences could have evolved from their common ancestor.
Also, in the case where both sequences have n paralogs (copies) of a particular gene or
feature, local aligners return n2 local alignments between all of the pairs, whereas a simple
global alignment more clearly reflects the evolutionary process.

Varre and colleagues proposed a distance metric between two DNA sequences that models
various rearrangement events [67]. Their algorithm, called Tnt1, builds a second sequence
from an initially empty string using insertions and copying of blocks from the first sequence.

14-10 Handbook of Computational Molecular Biology

The distance between the two strings is defined to be the Kolmogorov complexity of the
program that builds the second sequence. This algorithm has several shortcomings, the
most notable being its inability to handle simple edit operations. It was also too slow to
have practical applications to genomic sequences. The first programs for alignment of long
genomic sequences with rearrangements were Shuffle-LAGAN [14] for pairwise sequences
and Mauve [21] for multiple sequences. These are now discussed in turn.

14.5.1 Pairwise alignment with Shuffle-LAGAN

The Shuffle-LAGAN (S-LAGAN algorithm) was built on the LAGAN global alignment
framework but allowed for rearrangements using a novel chaining technique. The S-LAGAN
algorithm consists of three distinct stages. During the first stage the local alignments be-
tween the two sequences are found using the CHAOS tool. Second, the maximal scoring
subset of the local alignments under certain gap penalties is picked to form a 1-monotonic
conservation map. It is the structure of this map that makes S-LAGAN different from stan-
dard anchored global aligners. Finally, the local alignments in the conservation map that
can be part of a common global alignment are joined into maximal consistent subsegments,
which are aligned using the LAGAN global aligner.

Building the 1-Monotonic Conservation Map

Most tools for rapid global alignment start with a set of local alignments, which they resolve
into a “rough global map” – the set of anchors described in section 3.2. The rough global
map must be non-decreasing in both sequences. In order to allow S-LAGAN to catch
rearrangements, this assumption is relaxed to allow the map to be non-decreasing in only
one sequence, without putting any restrictions on the second sequence. This is called a
1-monotonic conservation map.

To build this map we first sort all of the local alignments based on their coordinates in
the base genome. For every next alignment we chain it to the previous one that gives the
highest overall score subject to the affine chaining penalties. The penalty enforced depends
on whether the previous alignment is on the same or different strand than the previous
one, and whether it is before or after it in the coordinates of the second sequence (roughly
speaking the four cases correspond to regular gap (same strand, after), inversion (different
strand, after), translocation (same strand, before), and inverted translocation (different
strand, before). By using the Eppstein-Galil sparse dynamic programming algorithm we
can reduce the running time of this chaining procedure to O(nlogn) from O(n2). The
resulting highest scoring chain is 1-monotonic (strictly increasing in the base genome, but
without any restrictions on the second genome order). The 1-monotonic chain can capture
all rearrangement events besides duplications in the second genome.

Aligning Consistent Subsegments

Two local alignments are considered to be consistent if they can both be a part of a global
alignment. Once we have a 1-monotonic conservation map it is straight-forward to generate
the maximal consistent subsegments of the map by simply sorting all of the local alignments
in the 1-monotonic map by their coordinates in the 1-monotonic sequence, taking the first
alignment to be the start of a consistent subsegment, and adding additional local alignments
while they are all consistent. As soon as an alignment is found to be inconsistent with the
current subsegment, we start a new subsegment. Every consistent subsegment is extended
to the nearest adjacent local alignment, so as to include areas of homology that did not
fall into the local alignment, and are aligned using LAGAN. The overlap between adjacent

Comparisons of Long Genomic Sequences: Algorithms and Applications 14-11

consistent subsegments is resolved by doing a linear passes through the alignments, and
finding the optimal breakpoint at which to end the first alignment and start the second
one.

14.5.2 Multiple alignment with Mauve

The general problem of aligning multiple genomes that have undergone recombination events
such as translocation, inversion, and duplication-loss remains an open problem. One early
method that has shown promise has been implemented in the Mauve genome alignment
package [21]. Like the other methods described in this chapter, Mauve uses a seeding
procedure to generate candidate anchors, chains these anchors, and finally computes a
progressive multiple alignment between anchors. Unlike previous methods, Mauve does not
build a single consistent set of anchors, but rather builds one consistent set of anchors for
every collinear segment of the genome sequences. Each consistent set of anchors is referred
to as a Locally Collinear Block (LCB). LCBs are bounded on either side by a breakpoint:
a change in LCB order or orientation among a pair of sequences.

The original Mauve algorithm used a seed-and-extend technique to generate multi-MUMs
which were used as candidate anchors. Because multi-MUMs must be exact, unique matches
occurring in every genome the original anchoring method had limited sensitivity. Current
releases of Mauve use a spaced seed pattern to match multiple sequences simultaneously.
The inexact matching method substantially improves anchoring sensitivity. Given a set
of potential anchors that match in all of the genomes being aligned, Mauve uses a greedy
breakpoint elimination method to filter out matches due to paralogy and random similarity.
The greedy breakpoint elimination method repeats three core steps. (1) Use breakpoint
analysis [45] to identify breakpoints in the anchor order, yielding LCBs (2) Calculate the
weight o f each LCB as the sum of its constituent anchor lengths (3) Identify the lowest
weight LCB. If it has weight < MinWeight then delete its anchors and return to step 1;
otherwise end.

In the original Mauve paper, the genome alignment algorithm was applied to a group
of nine closely related Enterobacteria, identifying numerous genome rearrangements and
sites of differential gene content. Currently over 300 bacterial genomes have been finished
and many more are nearly complete. As genome sequencing continues, we expect that
automated methods for aligning multiple genomes with rearrangements will be tantamount
to understanding the evolutionary forces shaping gene and genome function.

14.6 Whole Genome Alignment

The availability of the whole-genome human, mouse, and later rat assemblies presented
for the first time the challenge of building multiple alignments of several large genomes.
The problem of aligning genomes is more difficult than that of aligning sequences not only
because of the size of the problem – a mammalian genome has about three billion basepairs
– but also because of necessity of find the orthologous blocks, matching areas between
the genomes, in which to apply alignment algorithms. Finding these blocks between two
species computationally is a non-trivial task. Local alignment tools find a lot of high
scoring matching segments, in particular the orthologous segments, but in addition they
identify many paralogous relationships, or even false positive alignments resulting from
simple sequence repeats and other artifacts [18]. The initial approaches for whole genome
comparison developed for human and mouse genomes were based either on local alignment
[55, 46, 6], or on a local/global technique, where stretches of one genome are mapped onto

14-12 Handbook of Computational Molecular Biology

FIGURE 14.3: General computational scheme of tandem local/global genome alignment from
(from [20]). The scheme used to aligns individual contigs, supercontigs, or long
fragments of assemblies.

the others by a local aligner, and then the homology is confirmed and refined by a global
one [20].

14.6.1 Local alignment on a whole genome scale

Perhaps the most straightforward approach to aligning two whole genomes is to do all-by-
all local alignment. This is a challenging task due to the large amount of computation
required, and is also difficult due to the problem of setting a threshold for individual local
alignments: if the threshold is set too low many false positive local alignments could be
found. If it is set too high true positive alignments are missed. Additionally classical local
alignment methods do not consider whether a particular local alignment falls into a larger
syntenic region. This leads to difficulties with local alignments that are either the result
of repeats that were not masked, or with paralogous copies. Nevertheless local alignments
were initially used for whole genome comparisons as they were better able to consider the
rearrangements that are present between two large mammalian genomes. The initial local
alignmets of the human and mouse genomes was done with BLASTZ [55] and PatternHunter
[46]. For the human/mouse/rat three way alignments MULTIZ, a multiple sequence version
of BLASTZ was used [6].

14.6.2 Local-global tandem approach

A computational strategy for finding and aligning orthologous regions that combines ad-
vantages of both local and global alignment techniques was first applied to the comparative
analysis of the mouse and human genomes [20] and then expanded to the human, mouse
and rat genomes [15]. In this technique the mouse genome is split up into contigs of 250
Kbp. The potential human homologs for each contig are found using the BLAT aligner
[36]. The human sequence is then extended around the BLAT anchor, and aligned to the
mouse contig using a global aligner (Figure 14.3). If the BLAT hits fall on both strands,
then the aligner is called both with the original mouse contig and a reverse-complemented
copy, making it possible to catch some inversions. This procedure has been expanded to

Comparisons of Long Genomic Sequences: Algorithms and Applications 14-13

three way alignment for comparing the human, mouse and rat genomes: First, the mouse
and rat genomes are aligned using the BLAT program for approximate mapping followed
by global alignment of selected regions. This step results in a set of mouse-rat multi-contigs
(global alignments of rat contigs and mouse genomic sequence) as well as the remaining
unaligned sequences. Second, the multi-contigs are aligned to human using the union of all
available BLAT local alignments from mouse to human and from rat to human; mouse or
rat sequences that could not be aligned to the other rodent are also aligned to human. The
local/global tandem approach combines advantages of local and global alignment schemes
in order to obtain both specificity (with respect to identifying only orthologous alignments)
and sensitivity (in terms of coverage of genomic features of interest). At the same time the
method is highly dependent on the parameters used at the local alignment stage, and it
has difficulty aligning sequences that have undergone micro-rearrangements: small changes
in the order of conserved elements due to inversions, duplications, or translocations of very
short (sometimes only tens of base pairs) pieces of DNA.

14.7 Visualization

After obtaining alignments of two or more genomic sequences the next step is to analyze the
level of overall homology, distribution of highly conserved elements and other comparative
features. Visualization of results is a critical component of a comparative sequence analysis
since manual examination of alignment on the scale of megabase long genomic regions is
not efficient. Alignment-browsing systems should identify regions that exhibit properties
suggestive of a particular biological function, for example well-conserved segments within
an alignment, or matching the consensus sequence for a specific transcription factor binding
site [49].

14.7.1 Visualization of pairwise alignments

There are several publicly available visualization tools for long pairwise DNA alignments.
PIPMaker [55] represents the level of conservation in ungapped regions of BLASTZ local
alignment as horizontal dashes called percent identity plots or pips. VISTA [28, 24, 48]
displays comparative data in the form of a curve, where conservation is calculated in a
sliding window of a gapped global alignment.

PipMaker and the companion server MultiPipMaker (http://bio.cse.psu.edu, [57])
visualize BLASTZ [56] local alignments. PipMaker visualizes the local alignments in two
different formats: Percent identity plots (pips) and a dot plots. Pips present a compact,
understandable display of local alignments on long genomic regions [32]. The program
plots the position (in the base sequence) and percent identity of each gap-free segment
of the alignments. The top horizontal axis is automatically marked with the positions of
repeats and exons. The positions of CpG islands are also computed and displayed along
the horizontal axis.

VISTA system is fundamentally based on global alignments, and its plot is generated
by moving a user-specified window over the entire alignment and calculating the percent
identity over the window at each base pair. The X-axis represents the base sequence; the
Y-axis represents the percent identity. If the user supplies an annotation file, genes and
exons are marked above the plot. Conserved segments with percent identity X and length
Y are defined to be regions in which every contiguous sub-segment of length Y was at least
X% identical to its paired sequence. These segments are merged to define the conserved
regions. Conserved regions calculated by using user-submitted cutoffs are highlighted under

14-14 Handbook of Computational Molecular Biology

FIGURE 14.4: adapted from Frazer et al., 2003. [27] PipMaker: input and output files. The
Pip plot shown is a subregion of the human ST7 interval compared with the
orthologous baboon, cow, mouse, or fugu sequences. Each panel represents a
pairwise comparison between human sequence and that of the indicated species

the curve, with different colors indicating a conserved non-coding regions, exons and UTRs.
Figures 14.4 and 14.5 from the review of Frazer and coauthors ([27]) show the PipMaker
and VISTA input and output.

Currently the selection of a particular visualization tool is mostly defined by the type
of alignment used for the analysis. It is important to note, that as alignment algorithms
become more sophisticated, it is becoming harder to distinguish between local and global
alignment tools. For example, a chaining option for BLASTZ [56] allows for the extraction
of global alignments from BLASTZ local alignments, and similarly Shuffle-LAGAN [14] is
a hybrid glocal aligner that explicitly deals with rearrangements between sequences. Thus
visualization methods also will have to become universal.

Comparisons of Long Genomic Sequences: Algorithms and Applications 14-15

FIGURE 14.5: adapted from Frazer et al., 2003 [27]. VISTA: input and output files. The VISTA
plot shown here is also a subregion of the human ST7 interval compared with
the orthologous baboon, cow, mouse, or fugu sequences. Conserved sequences
represented as peaks [noncoding (red) and coding (blue)] are shown relative to
their positions in the human genome (horizontal axes), and their percent identities
(50%-100%) are indicated on the vertical axes.

14.7.2 Visualization of multiple alignments

Both the VISTA and PipMaker approaches, described above, support visualization of a
multiple alignment by projecting the alignment to a particular base sequence and in effect
visualizing pairwise alignments between this base sequence and any number of homologous
genomic intervals. This approach, however, only shows a part of the multiple alignment; it
will be missing any similarity between fragments of two sequences other that the base that
is not present in the base genome. For example, if there is a multiple alignment of human,
mouse and rat with human used as the base, areas of conservation between mouse and rat
that are not present in human will not be displayed. Full visualization of a multiple align-
ment is a difficult and largely unsolved problem, and currently is an area of active research.

14-16 Handbook of Computational Molecular Biology

The first tool to support visualization of multiple alignments was SynPlot [31]. The SynPlot
graphical output includes a similarity profile of the long-range alignment together with a
diagrammatic representation of both loci. Unlike PIPMaker and VISTA, SynPlot uses an
alignment as a base coordinate, so the positions of all features in the individual sequences
are mapped to the alignment coordinates. Feature files generated during annotation contain
the positions of exons and repeat elements and can be directly imported into the graphical
output. Therefore, the SynPlot output conveys comparative gene structure, repeat patterns
(plus any other user-defined patterns), and relative sequence homology in a single linear
plot. Its main drawback is that the single plot does not allow the user to distinguish the
source of the similarity within the multiple alignment: a strongly conserved region in 3 of
5 species that is absent in the other two would look very similar to a weakly conserved re-
gion in all 5 of them. A recently developed program from the VISTA family, Phylo-VISTA
(short for Phylogenetic VISTA, Shah et al., 2004)[58], uses the phylogenetic relationship as
a guide to display and analyze the level of conservation across internal tree nodes. Using
the entire multiple alignment, not a reference sequence, as a base in the x-axis allows for
additional capabilities in visualization, such as presentation of comparative data together
with available annotations for all sequences and computation of a measure of similarity for
any node of the tree. The phylogenetic relationship among species is important for building
and analyzing multiple alignments, thus visualizing sequence alignment data while taking
phylogenetic trees into account is important to make the results easy to interpret.

14.7.3 Whole-genome visualization of alignments

The algorithmic challenge of whole genome alignment has been accompanied by user inter-
face challenges, such as how to visualize information related to enormous datasets and how
to enable users to interact with the data and the processing programs.

The principle of selecting a whole genome as a base sequence is utilized on the whole-
genome scale in the UCSC genome browser (http://genome.ucsc.edu [38]) and the VISTA
browser (http://pipeline.lbl.gov [20, 15]). These tools provide complementary infor-
mation for a number of genomes including human, mouse, rat, drosophila. The UCSC
browser represents annotations as a series of horizontal “tracks” over the genome sequence.
Each track displays a particular type of annotation, such as Genscan gene predictions, m-
RNA alignments, interspersed repeats, and others. There are two types of tracks to display
comparative data such as alignments and various statistical measures of alignments. The
first is a curve, the other is a conventional UCSC genome browser block-based display. The
curve track called “Conservation” shows a measure of evolutionary similarity in multiple
species based on the phylogenetic Hidden Markov Model (phylo-HMM) [59, 60] and MULTI-
Z alignments [6] of human, chimpanzee, mouse, rat, and chicken whole-genome assemblies.
Unlike the “Conservation” track, other comparative genomics tracks show particular frag-
ments of alignments as boxes. Thus, “Chained Blastz” shows genomic alignment of different
assemblies to the base sequence. Another track, “Alignment Net” [37] shows the best chain
for every part of the base genome. There are some other comparative block tracks, such as
tight subset of best alignments, differential view of the human/chimp alignment, and others.

The VISTA Browser is a Java applet for interactively visualizing results of alignment of
entire genomes in the VISTA format on the scale of whole chromosomes along with anno-
tations [15]. The user may select any genome as the reference or base, and display the level
of conservation between this reference and the sequences of another species in a particular
interval. The browser has a number of options, such as zoom, extraction of a region to be
displayed, user-defined parameters for conservation level, and options for selecting sequence
elements to study. A VISTA display is also implemented as a custom track linked to the

Comparisons of Long Genomic Sequences: Algorithms and Applications 14-17

FIGURE 14.6: (See color insert following page xxx.) UCSC browser [36] with custom-built
VISTA tracks showing conservation between the human chr. 9 interval aligned
with orthologous mouse and rat sequences.

UCSC Browser. Figure 14.6 shows the UCSC Browser display of conservation with added
VISTA conservation tracks and a control panel as a custom module accessible through the
Berkeley Genome Browser.

14.8 Applications of Alignments

Identifying transcriptional and other regulatory elements represents a significant challenge
in annotating the genomes of higher vertebrates because these elements are usually very
short (5 to 20 bp in length) and have low information content. Adding comparative sequence
analysis methods allowed for improving and refining signal searches. These methods help
filter computational predictions to reduce noise of false positive predictions at the price of
some decrease in sensitivity. Here we briefly describe two approaches. One of them uses
functional site prediction information together with comparative data to refine and improve
predictions, while the other utilizes comparative and co-expression data.

Clues for identifying sequences involved in the complex regulatory networks of eukaryotic
genes are provided by the presence of transcription factor binding sites (TFBS) motifs, the
clustering of such binding site motifs, and the conservation of these sites between species.
rVISTA [43, 44] takes advantage of all these established strategies to enhance the detection

14-18 Handbook of Computational Molecular Biology

of functional transcriptional regulatory sequences controlling gene expression through its
ability to identify evolutionarily conserved and clustered TFBSs. Although the identifi-
cation of conserved TFBSs on a small genomic interval can be achieved by phylogenetic
footprinting [32, 40], a strength of the rVISTA algorithm is its ability to efficiently ana-
lyze large genomic intervals and potentially whole genomes. The clustering modules and
the user-defined customization of visualized sites make this a further useful tool for the
investigation of TFBSs. To take advantage of combining sequence motif recognition and
multiple sequence alignment of orthologous regions in an unbiased manner, rVISTA analysis
proceeds in four major steps: (1) identification of transcription factor binding sites (TFBS)
matches in the individual sequences (the program uses available position weight matrices in
the TRANSFAC database and independently locates all TFBS matches in each sequence),
(2) identification of globally aligned noncoding TFBSs, (3) calculation of local conservation
extending upstream and downstream from each orthologous TFBS, and (4) visualization
of individual or clustered noncoding TFBSs. Available sequence annotations are used to
identify aligned TFBS matches in noncoding genomic intervals.

Another tool, Consite [41] uses the same principle of combining predictions of TFBS
and sequence conservation information. This program used a good quality binding profiles
collection of TFBS developed by the authors and provided an efficient graphical web appli-
cation to visualize results of the analysis. It is also worth mentioning here that CONREAL
algorithm, described earlier, is both an alignment algorithm and a tool for finding TFBS.
By using potential TFBSs as anchor points CONREAL attempts to more accurately align
these. This leads to a decrease in the false positive rate, achieved in the same way as in the
rVISTA program.

A novel approach for finding transcription factor binding sites in a genome is to use both
conservation information within a species and information about coregulation of genes in
the same genome. While the latter allows for ab initio prediction of TFBSs for which no
known motifs exist, the former leads to a reduction in the false positive rate. Two programs
that use this idea are PhyloCon and CompareProspector.

PhyloCon (Phylogenetic Consensus) [69] is based on the Consensus algorithm previously
established by the same group and takes into account both conservation among orthologous
genes and co-regulation of genes within a species. This algorithm first aligns conserved
regions of orthologous sequences into multiple sequence alignments, or profiles, and then
compares profiles representing co-regulated genes. Motifs emerge as common regions in
these profiles, and a greedy approach is used to search for common subprofiles in the se-
quences. PhyloCon thus integrates knowledge of co-regulation of genes in a single species
and sequence conservation across multiple species to improve performance of motif finding.

Similar ideas were used in CompareProspector [42]. This program takes as input the
upstream sequences of a group of genes that are known or predicted to be coregulated,
as well as local sequence conservation calculated based on alignments with orthologous
sequences. CompareProspector uses a Gibbs sampling approach to search for motifs in
the input sequences, biasing the search toward conserved regions by integrating sequence
conservation into the posterior probability in the sampling process. CompareProspector was
tested on two data sets from humans using human-mouse comparisons and two data sets
from Caenorhabditis elegans using C. elegans – C. briggsae comparisons, and demonstrated
the power of comparative genomics-based biased sampling in eukaryotic regulatory element
identification.

References 14-19

14.9 Conclusion

In this chapter we have tried to illustrate the standard methodologies that have been used for
creation and visualization of alignments of genomic sequence. We would like to emphasize
that Comparative Genomics is a vibrant, growing field, and that this chapter represents a
snapshot in time. We are bound to have missed covering some programs and algorithms,
for example because they appeared too late for us to include them (most of this chapter was
written in the summer of 2004). Some parts, especially individual programs and particular
visualization techniques may become dated very quickly, however we are hopeful that the
readers will find our synopsis of the underlying methodologies helpful.

Acknowledgments

The section on Mauve was contributed by Aaron Darling. We would like to thank Katya
Permiakova for reading an early draft of the chapter and making many useful comments.
We would like to thank our co-authors on many of the papers on which this chapter is
partially based, especially Serafim Batzoglou, Greg Cooper, Chuong (Tom) Do, Burkhard
Morgenstern, Alex Poliakov, Arend Sidow, and many others. Their ideas have contributed
to our understanding of this area and helped define the general directions of this chapter. We
are also grateful to the biologists in the Genomics Division of Lawrence Berkeley National
Laboratory, especially Edward Rubin and Kelly Frazer (now at Perlegen Sciences) who
introduced us to many challenging problems in comparative genomics.

References

[1] S.F. Altschul, W. Gish, W. Miller, and E.W. Myers et al. Basic local alignment search
tool. Journal of Molecular Biology, 215:403–410, 1990.

[2] S.F. Altschul, T.L. Madden, A.A. Schäffer, and J. Zhang et al. Gapped BLAST and
PSI-BLAST: a new generation of protein database search programs. Nucleic Acids
Res., 25(17):3389–3402, September 1997.

[3] G.J. Barton and M.J. Sternberg. A strategy for the rapid multiple alignment of pro-
tein sequences. Confidence levels from tertiary structure comparisons. J Mol Biol,
198(2):327–337, Nov 1987.

[4] S. Batzoglou, L. Pachter, J.P. Mesirov, and B. Berger et al. Human and mouse gene
structure: comparative analysis and application to exon prediction. Genome Res,
10(7):950–958, Jul 2000.

[5] E. Berezikov, V. Guryev, R.H.A. Plasterk, and E. Cuppen. CONREAL: conserved
regulatory elements anchored alignment algorithm for identification of transcription
factor binding sites by phylogenetic footprinting. Genome Res, 14(1):170–178, Jan
2004.

[6] M. Blanchette, W.J. Kent, C. Riemer, and L. Elnitski et al. Aligning multiple genomic
sequences with the threaded blockset aligner. Genome Res., 14(4):708–715, 2004.

[7] D. Boffelli, J. McAuliffe, D. Ovcharenko, and K.D. Lewis et al. Phylogenetic shad-
owing of primate sequences to find functional regions of the human genome. Science,
299(5611):1391–1394, Feb 2003.

[8] P. Bonizzoni and G.D. Vedova. The complexity of multiple sequence alignment with
SP-score that is a metric. Theor. Comput. Sci., 259(1-2):63–79, 2001.

14-20 References

[9] N. Bray, Dubchak I., and Pachter L. AVID: a global alignment program. Genome
Res, 13(1):97–102, 2003.

[10] N. Bray and L. Pachter. MAVID: constrained ancestral alignment of multiple se-
quences. Genome Res., 14(4):693–699, 2004.

[11] B. Brejova, D. Brown, and T. Vinar. Vector seeds: an extension to spaced seeds allows
substantial improvements in sensitivity and specificity. In G. Benson and R. Page, edi-
tors, Algorithms and Bioinformatics: 3rd International Workshop (WABI), volume
2812 of Lecture Notes in Bioinformatics, pages 39–54, Budapest, Hungary, Septem-
ber 2003. Springer.

[12] M. Brudno, M. Chapman, B. Gottgens, and S. Batzoglou et al. Fast and sensitive
multiple alignment of large genomic sequences. BMC Bioinformatics, 4(1):66, 2003.

[13] M. Brudno, C.B. Do, G.M. Cooper, and M.F. Kim et al. LAGAN and Multi-LAGAN:
efficient tools for large-scale multiple alignment of genomic DNA. Genome Res,
13:721–731, 2003.

[14] M. Brudno, S. Malde, A. Poliakov, and C.B. Do et al. Glocal alignment: finding
rearrangements during alignment. Bioinformatics, 19 Suppl 1:54–62, 2003. Evaluation
Studies.

[15] M. Brudno, A. Poliakov, A. Salamov, and G.M. Cooper et al. Automated whole-
genome multiple alignment of rat, mouse, and human. Genome Res, 14(4):685–692,
2004.

[16] J. Buhler. Provably sensitive indexing strategies for biosequence similarity search.
Journal of Computational Biology, 10(3/4):399–417, 2003.

[17] M.A. Chapman, I.J. Donaldson, J. Gilbert, and D. Grafham et al. Analysis of multiple
genomic sequence alignments: a web resource, online tools, and lessons learned from
analysis of mammalian SCL loci. Genome Res, 14(2):313–318, Feb 2004.

[18] R. Chen, J.B. Bouck, G.M. Weinstock, and R.A. Gibbs. Comparing vertebrate whole-
genome shotgun reads to the human genome. Genome Res, 11:1807–1816, 2001.

[19] G.M. Cooper, M. Brudno, E.D. Green, and S. Batzoglou et al. Quantitative estimates
of sequence divergence for comparative analyses of mammalian genomes. Genome
Res, 13(5):813–820, May 2003.

[20] O. Couronne, A. Poliakov, N. Bray, and T. Ishkhanov et al. Strategies and tools for
whole-genome alignments. Genome Res, 13(1):73–80, Jan 2003.

[21] A.C.E. Darling, B. Mau, F.R. Blattner, and N.T. Perna. Mauve: multiple alignment
of conserved genomic sequence with rearrangements. Genome Res, 14(7):1394–1403,
Jul 2004.

[22] A.L. Delcher, S. Kasif, R.D. Fleischmann, and J. Peterson et al. Alignment of whole
genomes. Nucleic Acids Research, 27(11):2369–2376, 1999.

[23] A.L. Delcher, A. Phillippy, J. Carlton, and S.L. Salzberg. Fast algorithms for large-
scale genome alignment and comparison. Nucleic Acids Res, 30(11):2478–2483, Jun
2002.

[24] I. Dubchak, M. Brudno, L.S. Pachter, and G.G. Loots et al. Active conservation
of noncoding sequences revealed by 3-way species comparisons. Genome Research,
10:1304–1306, 2000.

[25] R. Durbin, S.R. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis:
probabilistic models of proteins and nucleic acids. Cambridge Univ. Press, 2000.
Durbin.

[26] D. Eppstein, Z. Galil, R. Giancarlo, and G.F. Italiano. Sparse dynamic programming
I: linear cost functions. J. ACM, 39(3):519–545, July 1992.

[27] K.A. Frazer, L. Elnitski, D.M. Church, and I. Dubchak et al. Cross-species sequence
comparisons: a review of methods and available resources. Genome Res, 13(1):1–12,

References 14-21

Jan 2003.
[28] K.A. Frazer, L. Pachter, A. Poliakov, and E.M. Rubin et al. VISTA: computational

tools for comparative genomics. Nucleic Acids Res., 32:W273–9, July 2004. Web
Server issue.

[29] O. Gotoh. Significant improvement in accuracy of multiple protein sequence alignments
by iterative refinement as assessed by reference to structural alignments. J Mol Biol,
264(4):823–838, Dec 1996.

[30] B. Gottgens, L.M. Barton, M.A. Chapman, and A.M. Sinclair. Transcriptional reg-
ulation of the stem cell leukemia gene (SCL)–comparative analysis of five vertebrate
SCL loci. Genome Res, 12(5):749–759, May 2002. Letter.

[31] B. Gottgens, J.G. Gilbert, L.M. Barton, and . Grafham et al. Long-range comparison of
human and mouse SCL loci: localized regions of sensitivity to restriction endonucleases
correspond precisely with peaks of conserved noncoding sequences. Genome Res.,
11:87–97, 2001.

[32] R.C. Hardison, J. Oeltjen, and W. Miller. Long human-mouse sequence alignments
reveal novel regulatory elements: a reason to sequence the mouse genome. Genome
Res, 7(10):959–966, Oct 1997.

[33] M. Hohl, S. Kurtz, and E. Ohlebusch. Efficient multiple genome alignment. Bioinfor-
matics, 18 Suppl 1:312–320, 2002. Evaluation Studies.

[34] I. Holmes and W.J. Bruno. Evolutionary HMMs: a Bayesian approach to multiple
alignment. Bioinformatics, 17(9):803–820, Sep 2001.

[35] M. Kellis, N. Patterson, M. Endrizzi, and B. Birren et al. Sequencing and comparison
of yeast species to identify genes and regulatory elements. Nature, 423(6937):241–254,
May 2003.

[36] J. Kent. BLAT - the BLAST-like alignment tool. Genome Res., 12:656–664, 2002.
[37] W.J. Kent, R. Baertsch, A. Hinrichs, and W. Miller et al. Evolution’s cauldron:

duplication, deletion, and rearrangement in the mouse and human genomes. Proc
Natl Acad Sci U S A, 100(20):11484–11489, Sep 2003.

[38] W.J. Kent, C.W. Sugnet, T.S. Furey, and K.M. Roskin et al. The human genome
browser at UCSC. Genome Res., 12(6):996–1006, 2002.

[39] W.J. Kent and A.M. Zahler. Conservation, regulation, synteny, and introns in a large-
scale C. briggsae-C. elegans genomic alignment. Genome Res, 10(8):1115–1125, Aug
2000.

[40] W. Krivan and W.W. Wasserman. A predictive model for regulatory sequences direct-
ing liver-specific transcription. Genome Res, 11(9):1559–1566, Sep 2001.

[41] B. Lenhard, A. Sandelin, L. Mendoza, and P. Engstrom et al. Identification of con-
served regulatory elements by comparative genome analysis. Journal of Biology,
2(2):13, May 2003. Epub.

[42] Y. Liu, X.S. Liu, L. Wei, and R.B. Altman et al. Eukaryotic regulatory element
conservation analysis and identification using comparative genomics. Genome Res.,
14(3):451–458, 2004.

[43] G. Loots, I. Ovcharenko, L. Pachter, and I. Dubchak et al. rVISTA for comparative
sequence-based discovery of functional transcription factor binding sites. Genome.
Res., 12:832–839, 2002.

[44] G.G. Loots and I. Ovcharenko. rVISTA 2.0: evolutionary analysis of transcription
factor binding sites. Nucleic Acids Res., 32:W217–21, 2004. Web Server issue.

[45] Blanchette M., G. Bourque, and D. Sankoff. Breakpoint Phylogenies. Genome Inform
Ser Workshop Genome Inform, 8:25–34, 1997. JOURNAL ARTICLE.

[46] B. Ma, J. Tromp, and M. Li. PatternHunter: faster and more sensitive homology
search. Bioinformatics, 18(3):440–445, 2002.

14-22 References

[47] V. Matys, E. Fricke, R. Geffers, and E. Gossling et al. TRANSFAC: transcriptional
regulation, from patterns to profiles. Nucleic Acids Res, 31(1):374–378, Jan 2003.

[48] C. Mayor, M. Brudno, J.R. Schwartz, and A. Poliakov et al. VISTA: visualizing global
DNA sequence alignments of arbitrary length. Bioinformatics, 16:1046–1047, 2000.

[49] W. Miller. Comparison of genomic DNA sequences: solved and unsolved problems.
Bioinformatics, 17:391–397, 2001.

[50] B. Morgenstern, K. Frech, A. Dress, and T. Werner. DIALIGN: finding local similari-
ties by multiple sequence alignment. Bioinformatics, 14(3):290–294, 1998.

[51] S.B. Needleman and C.D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J Mol Biol, 48(3):443–453,
Mar 1970.

[52] C. Notredame, D.G. Higgins, and J. Heringa. T-Coffee: A novel method for fast and
accurate multiple sequence alignment. J Mol Biol, 302(1):205–217, Sep 2000.

[53] W.R. Pearson. Rapid and sensitive sequence comparison with FASTP and FASTA.
Methods Enzymol, 183:63–98, 1990.

[54] M.A. Roytberg, A.Y. Ogurtsov, S.A. Shabalina, and A.S. Kondrashov. A hierarchical
approach to aligning collinear regions of genomes. Bioinformatics, 18(12):1673–1680,
2002.

[55] S. Schwartz, L. Elnitski, M. Li, and M. Weirauch et al. Nisc comparative sequencing
program: Multipipmaker and supporting tools: alignments and analysis of multiple
genomic dna sequences. Nucleic Acids Res., 31:3518–3524, 2003.

[56] S. Schwartz, W.J. Kent, A. Smit, and Z. Zhang et al. Human-mouse alignments with
blastz. Genome Res., 13(1):103–107, April 2003.

[57] S. Schwartz, Z. Zhang, K.A. Frazer, and A. Smit et al. PipMaker-a web server for
aligning two genomic DNA sequences. Genome Res., 10(4):577–586, 2000.

[58] N. Shah, O. Couronne, L.A. Pennacchio, and M. Brudno et al. Phylo-VISTA: interac-
tive visualization of multiple DNA sequence alignments. Bioinformatics, 20(5):636–
643, Mar 2004. Evaluation Studies.

[59] A. Siepel and D. Haussler. Combining phylogenetic and hidden markov models in
biosequence analysis. In Proceedings of the Seventh Annual International Confer-
ence on Computational Molecular Biology (RECOMB 2003), pages 277–286, 2003.

[60] A. Siepel and D. Haussler. Statistical Methods in Molecular Evolution, chapter
Phylogenetic hidden Markov models. Springer, 2004. in press.

[61] A.L. Simon, E.A. Stone, and A. Sidow. Inference of functional regions in proteins by
quantification of evolutionary constraints. Proc Natl Acad Sci U S A, 99(5):2912–
2917, Mar 2002.

[62] T.F. Smith and M.S. Waterman. Identification of common molecular subsequences. J
Mol Biol, 147(1):195–197, Mar 1981.

[63] K. Sumiyama, C.B. Kim, and F.H. Ruddle. An efficient cis-element discovery method
using multiple sequence comparisons based on evolutionary relationships. Genomics,
71(2):260–262, Jan 2001.

[64] W.R. Taylor. A flexible method to align large numbers of biological sequences. J Mol
Evol, 28(1-2):161–169, Dec 1988.

[65] J.W. Thomas, J.W. Touchman, R.W. Blakesley, and G.G. Bouffard et al. Com-
parative analyses of multi-species sequences from targeted genomic regions. Nature,
424(6950):788–793, Aug 2003.

[66] J.D. Thompson, D.G. Higgins, and T.J. Gibson. CLUSTAL W: improving the sensitiv-
ity of progressive multiple sequence alignment through sequence weighting, position-
specific gap penalties and weight matrix choice. Nucleic Acids Res, 22(22):4673–4680,
Nov 1994.

References 14-23

[67] J.S. Varre, J.P. Delahaye, and E. Rivals. Transformation distances: a family of dis-
similarity measures based on movements of segments. Bioinformatics, 15(3):194–202,
Mar 1999.

[68] L. Wang and T. Jiang. On the complexity of multiple sequence alignment. Journal of
Computational Biology, 1(4):337–348, 1994.

[69] T. Wang and G.D. Stormo. Combining phylogenetic data with co-regulated genes to
identify regulatory motifs. Bioinformatics, 19(18):2369–2380, December 2003.

15
Chaining Algorithms and

Applications in Comparative
Genomics

Enno Ohlebusch
University of Ulm

Mohamed I. Abouelhoda
University of Ulm

15.1 Motivation: Comparison of Whole Genomes 15-1
15.2 Basic Definitions and Concepts . 15-4
15.3 A Global Chaining Algorithm without Gap

Costs . 15-5
The Basic Chaining Algorithm • Applications

15.4 Incorporating Gap Costs into the Algorithm 15-11
Costs in the L1 Metric • Costs in the L∞ Metric

15.5 Variations . 15-14
Local Chains • 1-dimensional Chaining • A More
General Problem

15.6 Higher-dimensional Chaining . 15-19

15.1 Motivation: Comparison of Whole Genomes

The output of sequence data from worldwide sequencing centers has been rising at an
exponential rate for the past decade or two. The first two publications of microbial whole
genome sequencing projects appeared in 1995. To date (September 2004), there are 294
published complete genomes as well as 740 prokaryotic and 532 eukaryotic ongoing genome
sequencing projects.

Comparative genomics is concerned with comparing genomic sequences to each other. If
the organisms under consideration are closely related (that is, if no or only a few genome
rearrangements have occurred) or one compares regions of conserved synteny (regions in
which orthologous genes occur in the same order), then global alignments can be used for
the prediction of genes and regulatory elements. This is because coding regions are rela-
tively well preserved, while non-coding regions tend to show varying degree of conservation.
Non-coding regions that do show conservation are thought important for regulating gene
expression, maintaining the structural organization of the genome and possibly have other,
yet unknown functions. Several comparative sequence approaches using alignments have
recently been used to analyze corresponding coding and non-coding regions from different
species, although mainly between human and mouse; see, e.g., [8, 44]. These approach-
es are based on software-tools for aligning two [18, 45, 8, 32, 19, 10] or multiple genomic
DNA-sequences [38, 26, 11, 12, 43]; see [14] for a review. Here we focus on comparing two
genomes and briefly outline how the methods described in this chapter can be extended

15-1

15-2 Handbook of Computational Molecular Biology

(b)(a)

t

o

6

5

4

3

632

1 754
2S

S

2S

1
S

732

1

1

2

7

FIGURE 15.1: Given a set of fragments (upper left figure), an optimal global chain of colinear
non-overlapping fragments (lower left figure) can be computed, e.g., by computing
an optimal path in the graph in (b) (in which not all edges are shown).

to the comparison of multiple genomes. This is of utmost importance because there is an
immediate need for “reliable and automatic software for aligning three or more genomic
sequences”[37]. To cope with the sheer volume of data, most of the software-tools use an
anchor-based method that is composed of three phases:

1. computation of fragments (segments in the genomes that are similar),
2. computation of a highest-scoring global chain of colinear non-overlapping frag-

ments: these are the anchors that form the basis of the alignment,
3. alignment of the regions between the anchors.

This chapter deals, among other things, with algorithms for solving the combinatorial
chaining problem of the second phase: finding a highest-scoring global chain of colinear non-
overlapping fragments, where gaps between the fragments are penalized. Roughly speaking,
two fragments are colinear if the order of their respective segments is the same in both
genomes. In the pictorial representation of Figure 15.1(a), two fragments are colinear if the
lines connecting their segments are non-crossing (in Figure 15.1, for example, the fragments
2 and 3 are colinear, while 1 and 6 are not). Two fragments overlap if their segments
overlap in one of the genomes (in Figure 15.1, for example, the fragments 1 and 2 are
overlapping, while 2 and 3 are non-overlapping). For didactic reasons, the presentation of
the global chaining algorithm is separated into two sections. In Section 15.3, we will explain
a global chaining algorithm that neglects gap costs, i.e., gaps between the fragments are
not penalized at all. An application of this algorithm is cDNA mapping and a variant is
an algorithm that solves the heaviest increasing subsequence problem. In Section 15.4, the
algorithm is modified in two steps, so that it can deal with certain gap costs. It is worth
mentioning that a related technique used to solve the global chaining problem is known
under the name sparse dynamic programming. It was invented by Eppstein et al. [20] and
independently by Myers and Huang [40] in solving a different problem. In our opinion, the
approach presented here is conceptually simpler than those of [20, 40].

Global alignments are valuable in comparing genomes of closely related species. For
diverged genomic sequences, however, a global alignment strategy is likely predestined to
failure for having to align unrelated regions in an end-to-end colinear approach. This is be-
cause one expects that many genome rearrangements occurred during evolution. Genome

Chaining Algorithms and Applications in Comparative Genomics 15-3

rearrangements comprise large scale duplications, transpositions (where a section of the
genome is excised and inserted at a new position in the genome, without changing orien-
tation), and inversions (where a section of the genome is excised, reversed in orientation,
and re-inserted). In this case, either local alignments are the strategy of choice or one
must first identify syntenic regions, which then can be individually aligned. However, both
alternatives are faced with obstacles. Current local alignment programs suffer from a huge
running time, while the problem of automatically finding syntenic regions requires a priori
knowledge of all genes and their locations in the genomes — a piece of information that
is often not available. (It is beyond the scope of this chapter to discuss the computation-
al difficulties of gene prediction and the accurate determination of orthologous genes.) In
Section 15.5, we will show that a variant of our global chaining algorithm can be used to
solve the problem of automatically finding local regions of similarity in large genomic DNA
sequences. As in the anchor-based global alignment method, one first computes fragments
between the two genomes. In the second phase, instead of computing a highest-scoring
global chain of colinear non-overlapping fragments, we compute significant local chains —
chains whose score exceeds a user-defined threshold. Under stringent thresholds, significant
local chains of colinear non-overlapping fragments represent candidate regions of conserved
synteny. If one aligns these individually, one gets good local alignments. Because we have
to deal with inversions, however, we also chain fragments between the first genome and the
reverse complement of the second genome in a seperate run of the chaining algorithm. We
would like to point out that the automatic identification of regions of similarity is a first
step toward an automatic detection of genome rearrangements; see [1].

Section 15.5 also deals with other variations of the chaining problem. For example, apart
from its global 2-dimensional chaining option, the software tool PipMaker [45] provides
an alternative method — the single coverage option — that “selects a highest-scoring set
of alignments such that any position in the first sequence can appear in one alignment, at
most.” As we shall see, this single coverage problem can be solved by a 1-dimensional global
chaining algorithm. Interestingly, the same algorithm can be used to compute the transfor-
mation distance between two genomes as defined by Varré et al. [50]. The transformation
distance problem addresses the question of how two sequences may be most economically
derived from one another by various genome rearrangements.

We conclude Section 15.5 by considering a generalization of the chaining problem, in
which the colinearity requirement is removed. This generalized problem is to find a set of
non-overlapping fragments such that the amount of sequence covered by the fragments is
maximized. In computational biology, a solution to the problem can be used to determine
the relative degrees of completion of two sequencing projects. To be more precise, in the
comparison of the assemblies of two genomes, one tries to maximize their common regions
regardless of the order of the assembled segments. This interesting generalization of the
chaining problem is equivalent to finding a maximum weight independent set in a certain
intersection graph. It has been shown to be NP-complete by Bafna et al. [6]. Therefore,
one has to resort to approximation algorithms for solving it. As an alternative, one could
use the approach of Halpern et al. [25]. The key idea of their solution is to minimally “re-
fine” (subdivide) fragments until all overlaps between the refined fragments are “resolved”,
i.e., the projections of any two refined fragments onto each sequence are either disjoint or
identical.

In Section 15.6, we outline the extension of the global and local chaining algorithms to
the higher-dimensional case. This makes it possible to compare multiple genomes simulta-
neously. Among other things, most of the chaining algorithms described in this chapter are
implemented in the program CHAINER [2].

It is worth mentioning that chaining algorithms are also useful in other bioinformatics

15-4 Handbook of Computational Molecular Biology

applications such as comparing restriction maps [40]; see also [24, Section 16.10].

15.2 Basic Definitions and Concepts

For 1 ≤ i ≤ 2, Si = Si[1 . . . ni] denotes a string of length |Si| = ni. In our application, Si

is the DNA sequence of a genome. Si[li . . . hi] is the substring of Si starting at position li
and ending at position hi. A fragment f consists of two pairs beg(f)= (l1, l2) and end(f)=
(h1, h2) such that the strings (henceforth also called segments) S1[l1 . . . h1] and S2[l2 . . . h2]
are “similar”. If the segments are exact matches, i.e., S1[l1 . . . h1] = S2[l2 . . . h2], then we
speak of exact fragments. Examples of exact fragments are maximal unique matches as
used in MUMmer [18, 19], maximal exact matches as used in MGA [26] and AVID [10], and
exact k-mers as used in GLASS [8]. In general, however, one may also allow substitutions
(yielding fragments as in DIALIGN [39] and LAGAN [12]) or even insertions and deletions
(as the BLASTZ-hits [44] that are used in PipMaker [45]). Each fragment f has a positive
weight (denoted by f.weight) that can, for example, be the length of the fragment (in case
of exact fragments) or its similarity score.

A fragment f can be represented by a rectangle in R
2 with the lower left corner beg(f) and

the upper right corner end(f), where each coordinate of the corner points is a non-negative
integer. To fix notation, we recall the following concepts. For any point p ∈ R

2, let p.x1

and p.x2 denote its coordinates (we will also sometimes use p.x and p.y instead of p.x1 and
p.x2). A rectangle, whose sides are parallel to the axes, is the Cartesian product of two
intervals [l1 . . . h1] and [l2 . . . h2] on distinct coordinate axes, where li < hi for 1 ≤ i ≤ 2.
A rectangle [l1 . . . h1] × [l2 . . . h2] will also be denoted by R(p, q), where p = (l1, l2) and
q = (h1, h2) are the lower left and the upper right corner, respectively.

In what follows, we will often identify the point beg(f) or end(f) with the fragment f .
This is possible because we assume that all fragments are known from the first phase of
the anchor-based approach described in Section 15.1 (so that every point can be annotated
with a tag that identifies the fragment it stems from). For example, if we speak about
the score of a point beg(f) or end(f), we mean the score of the fragment f . For ease of
presentation, we consider the origin 0 = (0, 0) and the terminus t = (|S1| + 1, |S2| + 1) as
fragments with weight 0. For these fragments, we define beg(0) = ⊥, end(0) = 0, beg(t) = t,
and end(t) = ⊥, where ⊥ stands for an undefined value.

DEFINITION 15.1 We define a binary relation � on the set of fragments by f � f ′ if
and only if end(f).xi < beg(f ′).xi for 1 ≤ i ≤ 2. If f � f ′, then we say that f precedes f ′.

Note that 0 � f � t for every fragment f with f �= 0 and f �= t.

DEFINITION 15.2 A chain of colinear non-overlapping fragments (or chain for short)
is a sequence of fragments f1, f2, . . . , f� such that fi � fi+1 for all 1 ≤ i < . The score of
C is score(C) =

∑�
i=1 fi.weight−

∑�−1
i=1 g(fi+1, fi), where g(fi+1, fi) is the cost (penalty)

of connecting fragment fi to fi+1 in the chain. We will call this cost gap cost.

DEFINITION 15.3 Given m weighted fragments and a gap cost function, the global
fragment-chaining problem is to determine a chain of highest score (called optimal global
chain in the following) starting at the origin 0 and ending at terminus t.

Chaining Algorithms and Applications in Comparative Genomics 15-5

The global fragment-chaining problem was previously called fragment alignment problem
[51, 20]. A direct solution to this problem is to construct a weighted directed acyclic
graph G = (V,E), where the set V of vertices consists of all fragments (including 0 and t)
and the set of edges E is characterized as follows: There is an edge f → f ′ with weight
f ′.weight − g(f ′, f) if f � f ′; see Figure 15.1(b). An optimal global chain of fragments
corresponds to a path of maximum score from vertex 0 to vertex t in the graph. Because
the graph is acyclic, such a path can be computed as follows. Let f ′.score be defined as
the maximum score of all chains starting at 0 and ending at f ′. f ′.score can be expressed
by the recurrence: 0.score = 0 and

f ′.score = f ′.weight+ max{f.score− g(f ′, f) : f � f ′} (15.1)

A dynamic programming algorithm based on this recurrence takesO(|V |+|E|) time provided
that computing gap costs takes constant time. Because |V | + |E| ∈ O(m2), computing an
optimal global chain takes quadratic time and linear space; see [33, 16]. This graph-based
solution works for any number of genomes and for any kind of gap cost. It has been proposed
as a practical approach for aligning biological sequences, first for two sequences by Wilbur
and Lipman [51] and for multiple sequences by Sobel and Martinez [47]. However, the
O(m2) time bound can be improved by considering the geometric nature of the problem. In
order to present the material systematically, we first give a chaining algorithm that neglects
gap costs. Then we will modify this algorithm in two steps, so that it can deal with certain
gap costs.

15.3 A Global Chaining Algorithm without Gap Costs

15.3.1 The Basic Chaining Algorithm

Because our algorithm is based on orthogonal range-searching for a maximum, we have to
recall this notion. Given a set S of points in R

2 with associated score, a range maximum
query RMQ(p, q) asks for a point of maximum score in R(p, q).

LEMMA 15.1 If the gap cost function is the constant function 0 and RMQ(0, beg(f ′)−�1)
(where �1 denotes the vector (1, 1)) returns the end point of fragment f , then we have
f ′.score = f ′.weight+ f.score.

Proof This follows immediately from recurrence (15.1).

We will further use the line-sweep paradigm to construct an optimal chain. Suppose
that the start and end points of the fragments are sorted w.r.t. their x1 coordinate. Then,
processing the points in ascending order of their x1 coordinate simulates a line that sweeps
the points w.r.t. their x1 coordinate. If a point has already been scanned by the sweeping
line, it is said to be active; otherwise it is said to be inactive. During the sweeping process,
the x1 coordinates of the active points are smaller than the x1 coordinate of the currently
scanned point s. According to Lemma 15.1, if s is the start point of fragment f ′, then
an optimal chain ending at f ′ can be found by an RMQ over the set of active end points of
fragments. Since p.x1 < s.x1 for every active end point p (w.l.o.g., start points are handled
before end points, hence the case p.x1 = s.x1 cannot occur), the RMQ need not take the first
coordinate into account. In other words, the RMQ is confined to the range R(0, s.x2 − 1), so
that the dimension of the problem is reduced by one. To manipulate the point set during
the sweeping process, we need a data structure D that stores the end points of fragments

15-6 Handbook of Computational Molecular Biology

and efficiently supports the following two operations: (1) activation and (2) RMQ over the
set of active points. The following algorithm is based on such a data structure D, which
will be defined later.

FIGURE 15.2: 2-dimensional chaining of m fragments
Sort all start and end points of the m fragments in ascending order w.r.t. their
x1 coordinate and store them in the array points; because we include the end
point of the origin and the start point of the terminus, there are 2m+ 2 points.
Store all end points of the fragments (ignoring their x1 coordinate) as inactive
(in the 1-dimensional) data structure D.
for i := 1 to 2m+ 2

if points[i] is the start point of fragment f ′ then
q := RMQ(0, points[i].x2 − 1)
determine the fragment f with end(f) = q
f ′.prec := f
f ′.score := f ′.weight+ f.score

else /� points[i] is end point of a fragment f ′ �/
activate points[i].x2 in D /� activate with score f ′.score �/

In the algorithm, f ′.prec denotes the preceding fragment of f ′ in a chain. It is an
immediate consequence of Lemma 15.1 that Algorithm 15.2 (Note: for Algorithm 15.2, see
Figure 15.2 etc.) finds an optimal chain. One can output this chain by tracing back the
prec pointers from the terminus to the origin. The complexity of the algorithm depends of
course on how the data structure D is implemented.

Answering RMQ with Activation Efficiently

To answer RMQ with activation, we use the priority search tree devised by McCreight [35].
Let S be a set of m one dimensional points. For ease of presentation, assume that no two
points have the same coordinate ([35] shows how to proceed if this is not the case). The
priority search tree of S is a minimum-height binary search tree T with m leaves, whose
ith leftmost leaf stores the point in S with the ith smallest coordinate. Let v.L and v.R
denote the left and right child, respectively, of an interior node v. To each interior node v
of T , we associate a canonical subset Cv ⊆ S containing the points stored at the leaves of
the subtree rooted at v. Furthermore, v stores the values hv and pv, where hv denotes the
largest coordinate of any point in Cv and pv denotes the point of highest score (priority) in
Cv that has not been stored at a shallower depth in T . If such a point does not exist, pv is
undefined; see Figure 15.3. In essence, the priority search tree of S is a variant of a range
tree and a heap (i.e., priority queue). It can be built in O(m logm) time and O(m) space.

In Algorithm 15.2, storing all end points of the fragments as inactive boils down to
constructing the priority search tree of the end points, where each point stored at a leaf has
score −∞ and pv is undefined for each interior node v.

In a priority search tree T , a point q can be activated with priority score in O(logm) time
as follows. First, update the value of q.score by q.score := score. Second, update the pv

values by a traversal of T that starts at the root. Suppose node v is visited in the traversal.
If v is a leaf, there is nothing to do. If v is an interior node with pv.score ≤ q.score, then

Chaining Algorithms and Applications in Comparative Genomics 15-7

- - -- -

RMQ(0,19)
87

P12

31292725241

27

P12 P16

29

P14P13

3

2925

P15

- -

P1

P1

15

8

1412974

P4

P10

3

P9

P7

P5

P2

P9

17

P10

P11

20

P9

P4

P11

P7

8 8

P8

8 8

P8

2220

20

17 224

15

12

9 141

247

P3 P5

8

P10

8 30 21 9 8425 79 56

P11

P6

coordinate

score

FIGURE 15.3: Priority search tree: The points with score −∞ are inactive; the others are active.
The value hv.L in every interior node v is the coordinate that separates the points
in its left subtree v.L from those occurring in its right subtree v.R. The pv value
of v is depicted as a “child” between v.L and v.R. If it is missing, then pv

is undefined. The colored nodes are visited in answering the RMQ(0, 19). The
hatched boxes contain the modified pv values when point p12 is activated with
score 87.

swap q and pv (more precisely, exchange the values of the variables q and pv); otherwise
retain q and pv unchanged. Then determine where the procedure is to be continued. If
q ≤ hv.L, proceed recursively with the left child v.L of v. Otherwise, proceed recursively
with the right child v.R of v.

A range maximum query RMQ(0, q) can be answered in O(logm) time as follows. We
traverse the priority search tree starting at the root. During the traversal, we maintain a
variable max point that stores the point of highest score in the range R(0, q) seen so far
(initially, max point is undefined). Suppose node v is visited in the traversal. If v is a leaf
storing the point pv, we proceed as in case (1) below. If v is an interior node, we distinguish
the cases (1) pv ≤ q and (2) pv �≤ q. In case (1), if pv.score ≥ max point.score, we update
max point by max point := pv. In case (2), if q ≤ hv.L, we recursively proceed with the
left child v.L of v; otherwise, we recursively proceed with both children of v.

Another example of a data structure that supports RMQ with activation is the kd-tree
[9]. In essence, the one-dimensional kd-tree coincides with the priority search tree, but the
operations on kd-trees are accelerated in practice by various programming tricks; see [9].

An Alternative Data Structure

The priority search tree is a semi-dynamic data structure, in the sense that points are not
really inserted. The advantage of using semi-dynamic data structures in Algorithm 15.2 will
become clear in Section 15.6. There it is shown that the approach can be naturally extended
to the higher-dimensional case. Here, however, we can also use any other one dimensional
dynamic data structure D to answer RMQ with activation, provided that it supports the
operations1

1In the dynamic case, the sentence preceding the for-loop in Algorithm 15.2 must be deleted.

15-8 Handbook of Computational Molecular Biology

• insert(q): if q is not in D, then put q into D; otherwise update its satellite
information, i.e., the fragment corresponding to q

• delete(q): remove q from D

• predecessor(q): gives the largest element ≤ q in D
• successor(q): gives the smallest element > q in D

To answer RMQ(0, q) boils down to computing predecessor(q) inD, and Algorithm 15.4 shows
how to activate a point q in D. Note that the operations predecessor(q) and successor(q)
are always well-defined if we initialize the data structure D with the origin and the terminus
point.

FIGURE 15.4: Implementation of the operation activate in the data structure D
if (q.score > predecessor(q).score) then

insert(q)
while (q.score > successor(q).score)

delete(successor(q))

Note that the following invariant is maintained: If 0 ≤ q1 < q2 < · · · < q� ≤ n are the
entries in the data structure D, then q1.score ≤ q2.score ≤ · · · ≤ q�.score.

Many data structures supporting the aforementioned operations are known. For example,
the priority queues devised by van Emde Boas [49, 48] and Johnson’s improvement [29]
support the operations in time O(log logN) and space O(N), provided that every q satisfies
1 ≤ q ≤ N . The space requirement can be reduced to O(n), where n denotes the number
of elements stored in the priority queue; see [36]. Recall that a fragment corresponds
to segments of the strings S1 and S2 that are similar. W.l.o.g., we may assume that
n1 = |S1| ≤ |S2| = n2 (otherwise, we swap the sequences). In Algorithm 15.2, sorting
all start and end points of the m fragments in ascending order w.r.t. their x1 coordinate
by counting sort (see, e.g., [16]) takes O(n1) time. Since Algorithm 15.2 employs at most
O(m) priority queue operations, each of which takes time O(log logn1), the overall time
complexity of this implementation is O(n1 + m log logn1). If the fragments are already
ordered as in the heaviest increasing subsequence problem (see below), the worst case time
complexity reduces to O(m log logn1). Using Johnson’s data structure [29], Eppstein et
al. [20] showed that their sparse dynamic programming algorithm solves the problem in
O(n1+n2+m log log min(m,n1n2/m)) time. However, as noted by Chao and Miller [15], the
data structure employed to obtain this theoretical efficiency is unusable in practice. With
a practical data structure, the complexity becomes O(m logm); see also [30, 24]. Moreover,
in most applications m is relatively small compared to n1, so that it is advantageous to sort
the start and end points of the m fragments in O(m logm) time. Then the usage of AVL
trees (see, e.g., [5]), red-black trees (see, e.g., [16]), or any other practical data structure
that supports the above-mentioned operations in O(logm) time, gives an O(m logm) time
and O(m) space implementation of Algorithm 15.2.

Chaining Algorithms and Applications in Comparative Genomics 15-9

exon 1 exon 3exon 2

exon 2 exon 3

intron intron

exon 1
cDNA

Genome

FIGURE 15.5: (See color insert following page 20-4.) cDNA mapped to a genomic se-
quence.

15.3.2 Applications

Global Alignment

As already mentioned in Section 15.1, software-tools that compute global alignments of
large sequences use anchor-based methods to cope with the huge amount of data. These
are composed of three phases:

1. computation of fragments,
2. computation of an optimal global chain of colinear non-overlapping fragments,
3. alignment of the regions between the fragments (the anchors) in the computed

chain (by applying the same method recursively with less stringent parameters
or by using another alignment program).

Obviously, Algorithm 15.2 solves the second phase in sub-quadratic time. The incorporation
of gap costs (see Section 15.4) turns the algorithm into a practical tool for computing global
alignments of whole genomes. Its extension to the higher-dimensional case makes it possible
to compare multiple genomes simultaneously; see Section 15.6.

cDNA Mapping

cDNA (complementary or copy DNA) is DNA obtained from mRNA (messenger RNA)
through reverse transcription. The cDNA consists only of the exons of the expressed gene
because the introns (which are common in eukaryotes) have been spliced out. The problem
of cDNA mapping is to find the gene (and its exon/intron structure) on the genome from
which the cDNA was derived; see Figure 15.5. A precise mapping allows further analyses
such as finding regulatory elements.

The global fragment-chaining algorithm 15.2 can be used for cDNA mapping. As cDNA
lacks the introns that are contained in the DNA sequence from which it was derived, gaps
should not be penalized in this application. To avoid that an exon is chained to a spurious
match that is very far away, one can add a gap constraint when connecting fragments.
To be more precise, the start point beg(f) of a fragment f is connected to the end point
of a highest-scoring fragment that lies within a (user-defined) gap distance δ. This gap
constraint can be incorporated into Algorithm 15.2 by restricting the range R(0, beg(f)−�1)
of each RMQ to the range R(beg(f)− δ, beg(f)−�1), that is, the RMQ(0, beg(f)−�1) is replaced
with RMQ(beg(f)− δ, beg(f)−�1).

It has been observed by Shibuya and Kurochkin [46] that if one uses maximal exact
matches as fragments, then the corresponding segments may slightly overlap in the cDNA
sequence. Thus, they developed a variant of Algorithm 15.2 that can deal with overlaps.
The worst case running time of this variant is still O(m logm).

It is worth mentioning that there are several heuristic algorithms for cDNA mapping.

15-10 Handbook of Computational Molecular Biology

Algorithms that heuristically map cDNA to a genome include sim4 [22] and BLAT [31].

Longest/Heaviest Increasing Subsequence

The software tools MUMmer [18, 19] and LAGAN [12] compute a heaviest increasing subse-
quence to find a chain of colinear non-overlapping fragments. In contrast to Algorithm 15.2,
however, the computed chain is not necessarily optimal. MUMmer, for example, uses maxi-
mal unique matches (MUMs) as fragments, where the length of a MUM yields the weight of
the corresponding fragment. Since MUMs are unique in both sequences, every fragment has
exactly one segment in the genomic sequence S1 and one in S2. The fragments are sorted
according to their start position in S1 and then they are numbered consecutively. Thus,
the numbers of the segments in S1 give the sequence 1, 2, . . . ,m, while the numbers of the
corresponding segments in S2 yield a permutation π of the sequence 1, 2, . . . ,m. MUMmer
outputs a heaviest increasing subsequence (see below) of π as an optimal global chain. It
is easy to see that the resulting chain of MUMs may contain overlapping MUMs, which in
turn may lead to inconsistencies (i.e., it may not be possible to find an alignment that is
consistent with all selected MUMs). MUMmer takes an ad hoc approach to handle this: It
simply removes the overlapping parts from the MUMs.

Let us briefly recall the heaviest increasing subsequence problem. Given a sequence
A = A[1 . . .m] over some linearly ordered alphabet Σ, the longest increasing subsequence
(LIS) problem is to find a longest subsequence of A that is strictly increasing. For ease of
presentation, we assume that Σ = {1, . . . , n}. If everyA[i] has a weight A[i].weight, then the
heaviest increasing subsequence (HIS) problem is to find a strictly increasing subsequence of
A such that the sum of the weights of its elements is maximal (among all strictly increasing
subsequences). Clearly, the LIS problem is a special case of the HIS problem in which each
A[i] has weight 1. There is an abundance of papers on the LIS problem and the closely
related longest common subsequence (LCS) problem; we refer the interested reader to [24]
for references. If we write the sequence A in the form (1, A[1]), (2, A[2]), . . . , (m,A[m]) and
view the pair (i, A[i]) as the ith fragment, then it becomes obvious that the HIS problem
is a special case of the 2-dimensional fragment-chaining problem. Therefore, the following
specialization of Algorithm 15.2 solves the HIS problem. Note that the first three statements
of the for-loop correspond to the processing of start points, while the remaining statements
correspond to the processing of end points.

FIGURE 15.6: Computation of a heaviest increasing subsequence
for i := 1 to m

(j, A[j]) := predecessor(A[i]− 1)
(i, A[i]).prec := (j, A[j])
(i, A[i]).score := (i, A[i]).weight+ (j, A[j]).score
if ((i, A[i]).score > predecessor(A[i]).score) then

insert((i, A[i]))
while ((i, A[i]).score > successor(A[i]).score)

delete(successor(A[i]))

Algorithm 15.6 takesO(m·min{logm, log logn}) time and O(m) space, because no sorting
is required in this application. Note that Algorithm 15.6 is a little different from the original

Chaining Algorithms and Applications in Comparative Genomics 15-11

ACCXXXX AGG ACCXXXXAGG
ACC YYYAGG ACCYYY AGG

FIGURE 15.7: Alignments based on the fragments ACC and AGG w.r.t. gap cost g1 (left) and g∞
(right), where X and Y are anonymous characters.

HIS algorithm devised by Jacobson and Vo [28].

15.4 Incorporating Gap Costs into the Algorithm

In the previous section, fragments were chained without penalizing the gaps in between
them. In this section we modify the algorithm, so that it can take gap costs into account.
The usual gap costs used in alignments correspond to gap costs in the L∞ metric; see right
side of Figure 15.7. For didactic reasons, however, we first consider gap costs in the L1

metric.

15.4.1 Costs in the L1 Metric

We first handle the case in which the cost for the gap between two fragments is the distance
between the end and start point of the two fragments in the L1 metric. For two points
p, q ∈ R

2, this distance is defined by

d1(p, q) =
2∑

i=1

|p.xi − q.xi|

and for two fragments f � f ′ we define g1(f ′, f) = d1(beg(f ′),end(f)). If an alignment of
two sequences S1 and S2 shall be based on fragments and one uses this gap cost, then the
characters between the two fragments are deleted/inserted; see left side of Figure 15.7.

The problem with gap costs in our approach is that an RMQ does not take the cost g(f ′, f)
from recurrence (15.1) into account, and if we would explicitly compute g(f ′, f) for every
pair of fragments with f � f ′, then this would yield a quadratic time algorithm. Thus, it
is necessary to express the gap costs implicitly in terms of weight information attached to
the points. We achieve this by using the geometric cost of a fragment f , which we define in
terms of the terminus point t as gc(f) = d1(t, end(f)).

LEMMA 15.2 Let f , f̃ , and f ′ be fragments such that f � f ′ and f̃ � f ′. Then the
inequality f̃ .score − g1(f ′, f̃) > f.score − g1(f ′, f) holds true if and only if the inequality
f̃ .score− gc(f̃) > f.score− gc(f) holds.

Proof

f̃ .score− g1(f ′, f̃) > f.score− g1(f ′, f)
⇔ f̃ .score−

∑2
i=1 (beg(f ′).xi − end(f̃).xi) > f.score−

∑2
i=1 (beg(f ′).xi − end(f).xi)

⇔ f̃ .score−
∑2

i=1 (t.xi − end(f̃).xi) > f.score−
∑2

i=1 (t.xi − end(f).xi)
⇔ f̃ .score− gc(f̃) > f.score− gc(f)

The second equivalence follows from adding
∑2

i=1 beg(f
′).xi to and subtracting∑2

i=1 t.xi from both sides of the inequality. Figure 15.8 illustrates the lemma.

15-12 Handbook of Computational Molecular Biology

sweep-line

ty

xo

s

q

p

FIGURE 15.8: Points p and q are active end points of the fragments f and f̃ . The start point
s of fragment f ′ is currently scanned by the sweeping line and t is the terminus
point.

Because t is fixed, the value gc(f) is known in advance for every fragment f . Therefore,
Algorithm 15.2 needs only two slight modifications to take gap costs into account. First,
we replace the statement f ′.score := f ′.weight+ f.score with

f ′.score := f ′.weight+ f.score− g1(f ′, f)

Second, if points[i] is the end point of f ′, then it will be activated with f ′.priority :=
f ′.score− gc(f ′). Thus, an RMQ will return a point of highest priority instead of a point of
highest score.

The next lemma implies the correctness of the modified algorithm.

LEMMA 15.3 If the range maximum query RMQ(0, beg(f ′)−�1) returns the end point of
fragment f̃ , then we have f̃ .score− g1(f ′, f̃) = max{f.score− g1(f ′, f) : f � f ′}.

Proof If the range maximum query RMQ(0, beg(f ′)−�1) returns the end point of fragment
f̃ , then f̃ .priority = max{f.priority : f � f ′}. Since f.priority = f.score − gc(f) for
every fragment f , it is an immediate consequence of Lemma 15.2 that f̃ .score− g1(f ′, f̃) =
max{f.score− g1(f ′, f) : f � f ′}.

15.4.2 Costs in the L∞ Metric

In this section we consider the gap cost associated with the L∞ metric. The distance
between two points p, q ∈ R

2 in the L∞ metric is d∞(p, q) = maxi∈{1,2} |p.xi − q.xi|, or
equivalently,

d∞(p, q) =
{
|p.x1 − q.x1| if |p.x1 − q.x1| ≥ |p.x2 − q.x2|
|p.x2 − q.x2| if |p.x2 − q.x2| ≥ |p.x1 − q.x1|

Furthermore, the gap cost of connecting two fragments f � f ′ in the L∞ metric is defined by
g∞(f ′, f) = d∞(beg(f ′),end(f)). If an alignment of two sequences S1 and S2 shall be based
on fragments and one uses the gap cost g∞, then the characters between the two fragments

Chaining Algorithms and Applications in Comparative Genomics 15-13

t

s

sweep-line

y

xo

p
O

O

q

2

1

FIGURE 15.9: The first quadrant of point s is divided into two octants.

are replaced as long as possible and the remaining characters are deleted or inserted; see
right side of Figure 15.7.

In order to compute the score of a fragment f ′ with beg(f ′) = s, the following definitions
are useful. The first quadrant of point s ∈ R

2 consists of all points p ∈ R
2 with p.x1 ≤ s.x1

and p.x2 ≤ s.x2. We divide the first quadrant of s into regions O1 and O2 by the straight
line x2 = x1 + (s.x2 − s.x1). The first octant O1 of s consists of all points p in the first
quadrant of s satisfying s.x1 − p.x1 ≥ s.x2 − p.x2, these are the points lying above or on
the straight line x2 = x1 + (s.x2 − s.x1); see Figure 15.9. The second octant O2 consists
of all points q satisfying s.x2 − q.x2 ≥ s.x1 − q.x1, these are the points lying below or on
the straight line x2 = x1 + (s.x2 − s.x1). Then f ′.score = f ′.weight+ max{v1, v2}, where
vi = max{f.score− g(f ′, f) : f � f ′ and end(f) lies in octant Oi} for i ∈ {1, 2}.

However, our chaining algorithms rely on RMQ, and these work only for orthogonal regions,
not for octants. For this reason, we will make use of the octant-to-quadrant transformations
of Guibas and Stolfi [23]. The transformation T1 : (x1, x2) "→ (x1 − x2, x2) maps the first
octant to a quadrant. More precisely, point T1(p) is in the first quadrant of T1(s) if and
only if p is in the first octant of point s.2 Similarly, for the transformation T2 : (x1, x2) "→
(x1, x2 − x1), point q is in the second octant of point s if and only if T2(q) is in the first
quadrant of T2(s). By means of these transformations, we can apply the same technique
as in the previous section. We just have to define the geometric cost properly. In the first
octant O1, the geometric cost gc1 of a fragment f is gc1(f) = t.x1 − end(f).x1, while in
second octant O2 we define gc2(f) = t.x2 − end(f).x2.

LEMMA 15.4 Let f , f̃ , and f ′ be fragments such that f � f ′ and f̃ � f ′. If end(f)
and end(f̃) lie in the octant Oi of beg(f ′), then f̃ .score − g∞(f ′, f̃) > f.score − g∞(f ′, f)
if and only if f̃ .score− gci(f̃) > f.score− gci(f).

Proof Similar to the proof of Lemma 15.2.

2Observe that the transformation may yield points with negative coordinates, but it is easy to overcome
this obstacle by an additional transformation (a translation). Hence we will skip this minor problem.

15-14 Handbook of Computational Molecular Biology

In Section 15.4.1 there was only one geometric cost gc, but here we have to take two
different geometric costs gc1 and gc2 into account. To cope with this problem, we need two
data structures D1 and D2, where Di stores the set of points

{Ti(end(f)) : f is a fragment}

If we encounter the end point of fragment f ′ in Algorithm 15.2, then we activate point
T1(end(f ′)) in D1 with priority f ′.score − gc1(f ′) and point T2(end(f ′)) in D2 with pri-
ority f ′.score − gc2(f ′). If we encounter the start point of fragment f ′, then we launch
two range maximum queries, namely RMQ(0, T1(beg(f ′) − �1)) in the data structure D1 and
RMQ(0, T2(beg(f ′) − �1)) in D2. If the first RMQ returns T1(end(f1)) and the second return-
s T2(end(f2)), then fi is a fragment of highest priority in Di such that Ti(end(fi)) �
Ti(beg(f ′)), where 1 ≤ i ≤ 2. Because a point p is in the octant Oi of point beg(f ′) if and
only if Ti(p) is in the first quadrant of Ti(beg(f ′)), it follows that fi is a fragment such
that its priority fi.score− gci(fi) is maximal in octant Oi. Therefore, according to Lemma
15.4, the value vi = fi.score − g(f ′, fi) is maximal in octant Oi. Hence, if v1 > v2, then
we set f ′.prec = f1 and f ′.score := f ′.weight + v1. Otherwise, we set f ′.prec = f2 and
f ′.score := f ′.weight+ v2.

For gap costs in the L∞-metric, the chaining algorithm runs in O(m logm log logm) time
and O(m logm) space because of the two-dimensional RMQs required for the transformed
points; see Section 15.6. This is in sharp contrast to gap costs in the L1-metric, where we
merely need one-dimensional RMQs. We would like to point out that the sparse dynamic
programming method of Eppstein et al. [20] can solve the chaining problem for gap costs
in the L∞-metric (and for the sum-of-pairs gap cost introduced in [41]) for the special case
k = 2 in O(n1 + n2 +m log log min(m,n1n2/m)) time, where n1 = |S1| and n2 = |S2|. As
noted by Myers and Miller [41], however, it seems that their approach cannot be extended
to the case k > 2. By contrast, our method can naturally be extended to the higher-
dimensional case; see Section 15.6.

15.5 Variations

15.5.1 Local Chains

Chao and Miller [15] extended the sparse dynamic programming algorithm of Eppstein et
al. [20] such that it delivers any desired number of highest-scoring chains at a slight increase
in asymptotic time complexity. In this section we will extend our algorithm in the same
direction.

In the previous sections, we have tackled the global chaining problem, which asks for
an optimal chain starting at the origin 0 and ending at terminus t. However, in many
applications (such as searching for local similarities in genomic sequences) one is interested
in chains that can start and end with arbitrary fragments. If we remove the restriction that
a chain must start at the origin and end at the terminus, we get the local chaining problem;
see Figure 15.10.

DEFINITION 15.4 Given m weighted fragments and a gap cost function g, the local
fragment-chaining problem is to determine a chain of highest score. Such a chain will be
called optimal local chain.

Note that if g is the constant function 0, then an optimal local chain must also be
an optimal global chain, and vice versa. Our solution to the local chaining problem is a

Chaining Algorithms and Applications in Comparative Genomics 15-15

g

g
1

o g

g

1

2

(b)

t3

87
641

9

87

6

54

2

1

95

6

4

3

2

2

(a)

7

1

8

FIGURE 15.10: Computation of local chains of colinear non-overlapping fragments. The optimal
local chain is composed of the fragments 1, 4, and 6. Another significant local
chain consists of the fragments 7 and 8.

variant of the global chaining algorithm. For ease of presentation, we will use gap costs
corresponding to the L1 metric (see Section 15.4.1), but the approach also works with gap
cost in the L∞-metric (see Section 15.4.2).

DEFINITION 15.5 Let f ′.score = max{score(C) : C is a chain ending with f ′}. A
chain C ending with f ′ and satisfying f ′.score = score(C) will be called optimal chain
ending with f ′.

LEMMA 15.5 The following equality holds:

f ′.score = f ′.weight+ max({0} ∪ {f.score− g1(f ′, f) : f � f ′}) (15.2)

Proof Let C′ = f1, f2, . . . , f�, f
′ be an optimal chain ending with f ′, that is, score(C′) =

f ′.score. Because the chain that solely consists of fragment f ′ has score f ′.weight ≥ 0, we
must have score(C′) ≥ f ′.weight. If score(C′) = f ′.weight, then f.score−g1(f ′, f) ≤ 0 for
every fragment f that precedes f ′, because otherwise it would follow score(C′) > f ′.weight.
Hence equality (15.2) holds in this case. So suppose score(C′) > f ′.weight. Clearly,
score(C′) = f ′.weight + score(C) − g1(f ′, f�), where C = f1, f2, . . . , f�. It is not difficult
to see that C must be an optimal chain that is ending with f� because otherwise C′ would
not be optimal. Therefore, score(C′) = f ′.weight + f�.score − g1(f ′, f�). If there were a
fragment f that precedes f ′ such that f.score − g1(f ′, f) > f�.score − g1(f ′, f�), then it
would follow that C′ is not optimal. We conclude that equality (15.2) holds.

With the help of Lemma 15.5, we obtain an algorithm that solves the local chaining
problem.

It is not difficult to verify that we can use the techniques of the previous sections to solve
the local fragment-chaining problem in the same time and space complexities as the global
fragment-chaining problem.

We stress that Algorithm 15.11 can easily be modified, so that it can report all chains
whose score exceeds some threshold T (in Algorithm 15.11, instead of determining a frag-
ment f̃ of highest score, one determines all fragments whose score exceeds T). Such chains

15-16 Handbook of Computational Molecular Biology

FIGURE 15.11: Finding an optimal local chain based on RMQ

for every fragment f ′ do begin
determine f̂ such that f̂ .score− g1(f ′, f̂) = max{f.score− g1(f ′, f) : f � f ′}
max := max({0} ∪ {f̂ .score− g1(f ′, f̂)})
if max > 0 then f ′.prec := f̂ else f ′.prec := NULL
f ′.score := f ′.weight+max

end
determine a fragment f̃ such that f̃ .score = max{f.score : f is a fragment }
report an optimal local chain by tracing back the pointers from f̃ .prec until a fragment f
with f.prec = NULL is reached

will be called significant local chains; see Figure 15.10. In this case, however, an additional
problem arises: Several chains can share one or more fragments, so that the output can be
quite complex. To avoid this, local chains are partitioned into equivalence classes by the
starting fragment of the chain [27, 15]. Two local chains belong to the same class if and
only if they begin with the same fragment. Instead of all chains in an equivalence class,
only one highest-scoring chain is reported as a representative of that class. In Figure 15.10,
for example, the chains 1,4,6 and 7,8 are reported.

15.5.2 1-dimensional Chaining

The Single Coverage Problem

As noted by Schwartz et al. [45] the chaining option of PipMaker (which solves the global
2-dimensional chaining problem) “should be used only if the genomic structure of the two
sequences are known to be conserved; otherwise a duplication might not be detected.”
PipMaker also provides an alternative method — the single coverage option — that “selects
a highest-scoring set of alignments such that any position in the first sequence can appear
in one alignment, at most.” In our terminology, this problem is to find a set of fragments of
maximum coverage of the x-axis without overlapping on that axis. The following definitions
make this precise.

DEFINITION 15.6 We define a binary relation �x on the set of fragments by f �x f
′

if and only if end(f).x < beg(f ′).x.

DEFINITION 15.7 Given a set F of m fragments, the single coverage problem is to
find a subset F ′ = {f1, f2, . . . , f�} of F such that the elements of F ′ do not overlap on the
x-axis (i.e., either fi �x fj or fj �x fi) and

∑�
i=1(end(fi).x− beg(fi).x) is maximized.

Schwartz et al. [45] did not describe PipMaker’s algorithm for solving the single coverage
problem, but they demonstrated the value of the single coverage option in a comparison of
the β-globin gene clusters of human (six genes) and chicken (four genes).

The single coverage problem can be solved as follows. For any 2-dimensional fragment
f = (beg(f), end(f)), let If be the interval [beg(f).x, . . . , end(f).x], i.e., If is the projection
of f to the x-axis. Then, given a set F = {f1, f2, . . . , fm} of 2-dimensional fragments, a
solution to the single coverage problem can be found by solving the global 1-dimensional

Chaining Algorithms and Applications in Comparative Genomics 15-17

chaining problem for the set {If1 , If2 , . . . , Ifm}. The latter can be done in O(m logm) time
by the following algorithm; see also [24].

FIGURE 15.12: Global chaining of m intervals (1-dimensional fragments)

Sort all start and end points of the m intervals in ascending order and store them in the
array points;
Imax := 0
for i := 1 to 2m

if points[i] is the start point of interval I then
I.prec := Imax

I.score := I.weight+ Imax.score
else /� points[i] is end point of an interval �/

determine the interval I with end(I) = points[i]
if I.score > Imax.score then Imax := I

In the algorithm, Imax denotes the interval that has highest score among all intervals
already scanned. Consequently, upon termination of the algorithm, it is the last interval in
an optimal global chain. Recall that I.prec denotes a field that stores the preceding interval
of I in a chain. Hence we obtain an optimal global chain by following the back-pointers
from Imax to the origin 0. Note that the for-loop in Algorithm 15.12 requires only O(m)
time.

The Transformation Distance

The transformation distance between two genomes as defined in [50] can also be computed
by solving the single coverage problem. The transformation distance problem addresses
the question of how two sequences may be most economically derived from one another
by various genome rearrangements. Varré et al. [50] applied the graph-based O(m2) time
solution described in Section 15.2 to solve this problem, but Algorithm 15.12 obviously
provides a better solution.

It should be noted that if one uses exact fragments weighted by their length, then the
following gap cost gx is (implicitly) incorporated in Algorithm 15.12. Given 2-dimensional
fragments f �x f ′, the gap cost gx(f ′, f) is the distance between the intervals If ′ and
If on the x-axis, i.e., gx(f ′, f) = beg(f ′).x − end(f).x. Because a solution to the single
coverage problem maximizes the coverage of the x-axis, it automatically minimizes the
overall amount of gaps between the intervals on the x-axis. Note that it is also possible to
explicitly incorporate other gap costs into Algorithm 15.12 by using the approach of Section
15.4. Details are left to the reader.

Using the sparse dynamic programming technique of Eppstein et al. [20], Brudno et al.
[13] showed that it is also possible to incorporate 2-dimensional gap costs into the algorithm
without changing its O(m logm) time complexity.

15.5.3 A More General Problem

The problems dealt with in previous sections required colinearity of the fragments to be
selected. Now we drop this requirement, that is, we are now interested in an optimal

15-18 Handbook of Computational Molecular Biology

FIGURE 15.13: Two fragments fi = (beg(fi), end(fi)) and fj = (beg(fj), end(fj)) overlap-
ping on both axes are refined into the three fragments (beg(fi), beg(fj)),
(beg(fj), end(fi)), and (end(fi), end(fj)).

set of non-overlapping fragments. For example, in determining the relative degrees of
completion of two sequencing projects, an interesting question is “how much of each sequence
is not represented in the other, under the restriction that positions in each sequence can
be involved in at most one selected match” [25]. In other words, one wants to find a set of
non-overlapping fragments such that the amount of sequence covered by the fragments is
maximized. The following definition gives a precise formulation.

DEFINITION 15.8 Given a set F of m fragments, the corresponding MWIS problem is
to find a subset F ′ = {f1, f2, . . . , f�} of F such that the elements of F ′ are pairwise non-
overlapping and the amount of sequence covered by the fragments, i.e.,

∑�
i=1(end(fi).x −

beg(fi).x) +
∑�

i=1(end(fi).y − beg(fi).y), is maximized.

In the terminology of graph theory, the preceding problem is to find a maximum weight
independent set (MWIS) in the following kind of intersection graph (called 2-union graph):
For every fragment fi there is a vertex labeled fi with weight fi.weight in the graph and
there is an undirected edge connecting vertices fi and fj if and only if fi and fj overlap.

Recall that an independent set (IS) of a graph G = (V,E) is a subset V ′ ⊆ V of vertices
such that each edge in E is incident on at most one vertex in V ′. The independent set
problem is to find an independent set of maximum size. If each vertex has a weight as in
our problem, then the maximum weight independent set problem is to find an independent
set of maximum weight. By a reduction from 3-SAT, Bafna et al. [6] showed that the
MWIS problem for fragments is NP-complete. (They also provided ideas for approximation
algorithms.) Even worse, this problem was recently shown to be APX-hard; see [7]. A
maximization problem is called APX-hard if there exists some constant ε > 0 such that it
is NP-hard to approximate the problem within a factor of (1− ε).

Halpern et al. [25] studied an interesting variation of the preceding problem, which they
called Maximal Matched Sequence Problem (MMSP). Given a set F of fragments, the MM-
SP is to compute a set F ′ of non-overlapping fragments that are all subfragments of the
fragments in F such that the amount of sequence covered by the fragments is maximized.
Halpern et al. [25] showed that this problem can be solved optimally in polynomial time.
The key idea of their solution is to minimally “refine” (subdivide) fragments until all over-
laps between the refined fragments are “resolved”, i.e., the projections of any two refined
fragments onto each sequence are either disjoint or identical; see Figures 15.13 and 15.14.

Chaining Algorithms and Applications in Comparative Genomics 15-19

FIGURE 15.14: Two fragments overlapping on the x-axis but not on the y-axis are subdivided
into four refined fragments.

For the details which are quite involved, and for experimental results, we refer to [25].

15.6 Higher-dimensional Chaining

As mentioned in Section 15.2, the graph based approach also solves the chaining problem for
more than two genomes. However, the running time of this chaining algorithm is quadratic
in the number m of fragments. This can be a serious drawback if m is large. To overcome
this obstacle, Zhang et al. [53] presented an algorithm that constructs an optimal chain using
space division based on kd-trees, a data structure known from computational geometry [9].
However, a rigorous analysis of the running time of their algorithm is difficult because the
construction of the chain is embedded in the kd-tree structure. Another chaining algorithm,
devised by Myers and Miller [41], is based on the line-sweep paradigm and uses orthogonal
range-searching supported by range trees instead of kd-trees. The algorithm presented
below improves the sub-quadratic worst-case time complexity O(m logk m) of Myers and
Miller’s algorithm.

A big advantage of Algorithm 15.2 is that it can be naturally extended to higher dimen-
sions. In order to chain k-dimensional fragments, the 1-dimensional data structure D in
Algorithm 15.2 has to be replaced with a (k − 1)-dimensional data structure that supports
range maximum queries and activation. In the following, we will outline two such data
structures for dimension d = k − 1.

Our orthogonal range-searching data structures are based on range trees, which are well-
known in computational geometry. Given a set S of m d-dimensional points, its range tree
can be built as follows (see, e.g., [4, 42]). For d = 1, the range tree of S is a minimum-height
binary search tree or an array storing S in sorted order. For d > 1, the range tree of S is
a minimum-height binary search tree T with m leaves, whose ith leftmost leaf stores the
point in S with the ith smallest x1-coordinate. To each interior node v of T , we associate
a canonical subset Cv ⊆ S containing the points stored at the leaves of the subtree rooted
at v. For each v, let lv (resp. hv) be the smallest (resp. largest) x1 coordinate of any point
in Cv and let C∗v = {(p.x2, . . . , p.xd) ∈ R

d−1 : (p.x1, p.x2, . . . , p.xd) ∈ Cv}. The interior
node v stores lv, hv, and a (d− 1)-dimensional range tree constructed on C∗v . For any fixed
dimension d, the data structure can be built in O(m logd−1m) time and space.

Given a set S of points in R
d, a range query (RQ) asks for all points of S that lie in a

hyper-rectangle R(p, q). A range query RQ(p, q) for the hyper-rectangle R(p, q) = [l1 . . . h1]×
[l2 . . . h2]×· · ·× [ld . . . hd] can be answered as follows. If d = 1, the query can be answered in

15-20 Handbook of Computational Molecular Biology

p6

p2

p4

p5

p3p1

p8

p7

(3, 29)
(9, 33)

(21, 15)
(13, 19)

(7, 1)

(17, 27)

query rectangle [0 .. 22]x[0 .. 28]

(31, 23)

(25, 5)

FIGURE 15.15: A set of points and a query rectangle.

O(logm) time by a binary search. For d > 1, we traverse the range tree starting at the root.
Suppose node v is visited in the traversal. If v is a leaf, then we report its corresponding point
if it lies inside R(p, q). If v is an interior node, and the interval [lv . . . hv] does not intersect
[l1 . . . h1], there is nothing to do. If [lv . . . hv] ⊆ [l1 . . . h1], we recursively search in the
(d−1)-dimensional range tree stored at v with the hyper-rectangle [l2 . . . h2]×· · ·×[ld . . . hd].
Otherwise, we recursively visit both children of v. This procedure takes O(logdm+z) time,
where z is the number of points in the hyper-rectangle R(p, q).

In Section 15.3.1, we have seen that the priority search tree can be used for 1-dimensional
RMQ with activation. For d ≥ 2 dimensions, we modify the d-dimensional range tree by
replacing the range tree in the last dimension with a priority search tree. It is not difficult
to show that this data structure supports range maximum queries of the form RMQ(0, q) and
activation operations in O(logd m) time. Thus, the usage of this data structure yields a
chaining algorithm for k > 2 sequences that runs in O(m logk−1m) time. However, we can
do even better.

The technique of fractional cascading [52] saves one log-factor in answering range queries
(in the same construction time and using the same space as the original range tree). Here, we
will recall this technique for range queries of the form RQ(0, q) because we want to modify it
to answer range maximum queries of the form RMQ(0, q) efficiently. For ease of presentation,
we consider the case d = 2. In this case, the range tree is a binary search tree (called x-tree)
of arrays (called y-arrays). Let v be a node in the x-tree and let v.L and v.R be its left and
right children. The y-array Av of v contains all the points in Cv sorted in ascending order
w.r.t. their y coordinate. Every element p ∈ Av has two downstream pointers: The left
pointer Lptr and the right pointer Rptr. The left pointer Lptr points to the largest (i.e.,
rightmost) element q1 in Av.L such that q1 ≤ p (Lptr is a NULL pointer if such an element
does not exist). In an implementation, Lptr is the index with Av.L[Lptr] = q1. Analogously,
the right pointer Rptr points to the largest element q2 of Av.R such that q2 ≤ p. Figure
15.16 shows an example of this structure.

Locating all the points in a rectangle R(0, (h1, h2)) is done in two stages. In the first
stage, a binary search is performed over the y-array of the root node of the x-tree to locate
the rightmost point ph2 such that ph2 .y ∈ [0 . . . h2]. Then, in the second stage, the x-tree is
traversed (while keeping track of the downstream pointers) to locate the rightmost leaf ph1

such that ph1 .x ∈ [0 . . . h1]. During the traversal of the x-tree, we identify a set of nodes
which we call canonical nodes (w.r.t. the given range query). The set of canonical nodes is
the smallest set of nodes v1, . . . , v� of x-tree such that $�

j=1Cvj = RQ(0, (h1,∞)). ($ denotes
disjoint union.) In other words, P := $�

j=1Avj = $�
j=1Cvj contains every point p ∈ S such

Chaining Algorithms and Applications in Comparative Genomics 15-21

p1 p2 p8p4 p5 p6p3

p7 p8p2 p1

p3p1p2 p7

p7

p6 p5p3

p8p6p7p3p1

p8p4

p4

p5p2

p5p6

p4

21

25

7

1793

1 2 3 4 5 6 7 8

3 2 31 4 1 4

1 2

2

13

FIGURE 15.16: Range tree with fractional cascading for the points in Fig. 15.15. The colored
nodes are visited for answering the range query of Fig. 15.15. Hatched nodes are
the canonical nodes. The small circles refer to NULL pointers. In this example,
ph1 = p6 and ph2 = p5. The colored elements of the y-arrays of the canonical
nodes are the points in the query rectangle of Fig. 15.15. The value hv.L in
every internal node v is the x coordinate that separates the points in its left
subtree from those occurring in its right subtree.

that p.x ∈ [0 . . . h1]. However, not every point p ∈ P satisfies p.y ∈ [0 . . . h2]. Here, the
downstream pointers come into play. As already mentioned, the downstream pointers are
followed while traversing the x-tree, and to follow one pointer takes constant time. If we
encounter a canonical node vj , then the element ej, to which the last downstream pointer
points, partitions the list Avj as follows: Every e that is strictly to the right of ej is not in
R(0, (h1, h2)), whereas all other elements of Avj lie in R(0, (h1, h2)). For this reason, we will
call the element ej the split element. It is easy to see that the number of canonical nodes
is O(logm). Moreover, we can find all of them and the split elements of their y-arrays
in O(logm) time; cf. [52]. Therefore, the range tree with fractional cascading supports
2-dimensional range queries in O(logm + z) time, where z is the number of points in the
rectangle R(0, q). For dimension d > 2, it takes time O(logd−1m+ z).

In order to answer RMQ with activation efficiently, we will further enhance every y-array
that occurs in the fractional cascading data structure with a priority queue as described in
[48, 29]. Each of these queues is (implicitly) constructed over the rank space of the points in
the y-array (because the y-arrays are sorted w.r.t. the y dimension, the rank of an element
y-array[i] is its index i). The rank space of the points in the y-array consists of points
in the range [1 . . .N], where N is the size of the y-array. The priority queue supports
the operations insert(r), delete(r), predecessor(r), and successor(r) in time O(log logN),
where r is an integer in the range [1 . . .N]; see Section 15.3.1. Algorithm 15.17 shows how
to activate a point q in the 2-dimensional range tree and Algorithm 15.18 shows how to
answer an RMQ(0, q).

Note that in the outer while-loop of Algorithm 15.17, the following invariant is maintained:
If 0 ≤ i1 < i2 < · · · < i� ≤ n are the entries in the priority queue attached to Av, then
Av[i1].score ≤ Av[i2].score ≤ · · · ≤ Av[i�].score.

Algorithm 15.18 gives pseudo-code for answering RMQ(0, q), but we would like to first
describe the idea on a higher level. In essence, we locate all canonical nodes v1, . . . , v�

in D for the hyper-rectangle R(0, q). For any vj , 1 ≤ j ≤ , let the rjth element be

15-22 Handbook of Computational Molecular Biology

FIGURE 15.17: Activation of a point q in the data structure D
v := root node of the x-tree
find the rank (index) r of q in Av by a binary search
while (v �= ⊥)

if (Av[r].score > Av[predecessor(r)].score) then
insert(r) into the priority queue attached to Av

while(Av[r].score > Av[successor(r)].score)
delete(successor(r)) from the priority queue attached to Av

if (Av[r] = Av.L[Av[r].Lptr]) then
r := Av[r].Lptr
v := v.L

else
r := Av[r].Rptr
v := v.R

the split element in Avj . We have seen that $�
j=1Avj contains every point p ∈ S such

that p.x ∈ [0 . . . q.x]. Now if rj is the index of the split element of Avj , then all points
Avj [i] with i ≤ rj are in R(0, q), whereas all other elements Avj [i] with i > rj are not in
R(0, q). Since Algorithm 15.17 maintains the above-mentioned invariant, the element with
highest score in the priority queue of Avj that lies in R(0, q) is qj = predecessor(rj) (if
rj is in the priority queue of Avj , then qj = rj because predecessor(rj) gives the largest
element ≤ rj). We then compute max score := max{Avj [qj].score : 1 ≤ j ≤ } and return
max point = Avi [qi], where Avi [qi].score = max score.

FIGURE 15.18: RMQ(0, q) in the data structure D

v := root node of the x-tree
max score := −∞
max point := ⊥
find the rank (index) r of the rightmost point p with p.y ∈ [0 . . . q.y] in Av

while (v �= ⊥)
if (hv.x ≤ q.x) then /� v is a canonical node �/
tmp := predecessor(r) in the priority queue of Av

max score := max{max score,Av[tmp].score}
if (max score = tmp.score) then max point := Av[tmp]

else if (hv.L.x ≤ q.x) then /� v.L is a canonical node �/
tmp := predecessor(Av [r].Lptr) in the priority queue of Av.L

max score := max{max score,Av.L[tmp].score}
if (max score = tmp.score) then max point := Av.L[tmp]
r := Av[r].Rptr
v := v.R

else
r := Av[r].Lptr
v := v.L

Chaining Algorithms and Applications in Comparative Genomics 15-23

Because the number of canonical nodes is O(logm) and any of the priority queue op-
erations takes O(log logm) time, answering a 2-dimensional range maximum query takes
O(logm log logm) time. Since every point occurs in at most logm priority queues, there
are at most m logm delete operations. Hence the total time complexity of activating m
points is O(m logm log logm).

THEOREM 15.1 Given k > 2 genomes and m fragments, an optimal global chain
(without gap costs) can be found in O(m logk−2m log logm) time and O(m logk−2m) space.

Proof In Algorithm 15.2, the points are first sorted w.r.t. their first dimension and the
RMQ with activation is required only for d = k − 1 dimensions. For d ≥ 2 dimensions, the
preceding data structure is implemented for the last two dimensions of the range tree, which
yields a data structure D that requires O(m logd−1m) space and O(m logd−1m log logm)
time for m range maximum queries and m activation operations. Consequently, one can
find an optimal chain in O(m logk−2m log logm) time and O(m logk−2m) space.

Details on the incorporation of gap costs into the higher-dimensional chaining algorithm
can be found in [3]. (The same worst-case complexities hold for the local fragment-chaining
algorithm; see [1].) There, it is shown that the global fragment-chaining problem for m
fragments and k > 2 genomes can be solved in

• O(m logk−2m log logm) time and O(m logk−2m) space for gap costs in the L1

metric,
• O(k! m logk−1m log logm) time and O(k! m logk−1m) space for gap costs in the
L∞ metric and also for the sum-of-pairs gap cost as introduced in [41].

If the kd -tree is used instead of the range tree, for m fragments and k > 2 genomes, the
algorithms take

• O((k − 1)m2− 1
k−1) time and O(m) space for gap costs in the L1 metric,

• O(k m2− 1
k) time and O(m) space for gap costs in the L∞ metric,

• O(k!m2− 1
k) time and O(m) space for the sum-of-pairs gap cost.

This is because answering one d-dimensional range query with the kd -tree takes O(dm1− 1
d)

time in the worst case; see [34]. Moreover, for small k, a collection of programming tricks
can speed up the running time in practice; see [9].

We would like to conclude by pointing out an interesting connection between the global
chaining problem and the maximum weight independent set (MWIS) problem in trapezoid
graphs. Trapezoid graphs were introduced by Dagan et al. [17] and solutions to the maxi-
mum clique problem or the minimum coloring problem for trapezoid graphs are important in
channel routing problems in VLSI design. Felsner et al. [21] showed that a maximum weight
independent set in a k-trapezoid graph with n vertices can be computed in O(n logk−1 n)
time and O(n logk−2 n) space provided that its k-dimensional box representation is given.
Interestingly, the solution presented in this chapter solves the MWIS problem for k-trapezoid
graphs in O(n logk−2 n log logn) time and O(n logk−2 n) space. That is, it improves the time
complexity by a factor log n

log log n .

15-24 References

Acknowledgement

The authors were supported by DFG-grant Oh 53/4-1 and thank Stefan Kurtz for his
comments on the manuscript.

References

[1] M.I. Abouelhoda and E. Ohlebusch. A local chaining algorithm and its applications
in comparative genomics. In Proc. 3rd Workshop on Algorithms in Bioinformatics,
volume 2812 of Lecture Notes in Bioinformatics, pages 1–16, Berlin, 2003. Springer-
Verlag.

[2] M.I. Abouelhoda and E. Ohlebusch. CHAINER: Software for comparing genomes. In
12th International Conference on Intelligent Systems for Molecular Biology/3rd
European Conference on Computational Biology, 2004. Short paper available at
http://www.iscb.org/ismbeccb2004/short%20papers/19.pdf.

[3] M.I. Abouelhoda and E. Ohlebusch. Chaining algorithms for multiple genome com-
parison. Journal of Discrete Algorithms, 3:321–341, 2005.

[4] P. Agarwal. Range searching. In J.E. Goodman and J. O’Rourke, editors, Handbook
of Discrete and Computational Geometry, chapter 31, pages 575–603. CRC Press
LLC, 1997.

[5] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structures and Algorithms. Addison-
Wesley, 1983.

[6] V. Bafna, B. Narayanan, and R. Ravi. Nonoverlapping local alignments (weighted
independent sets of axis-parallel rectangles). Discrete Applied Mathematics, 71:41–
53, 1996.

[7] R. Bar-Yehuda, M.M. Halldórsson, J. Naor, and H. Shachnai. Scheduling split intervals.
In Proc. ACM-SIAM Symposium on Discrete Algorithms, pages 732–741, 2002.

[8] S. Batzoglou, L. Pachter, J.P. Mesirov, and B. Berger et al. Human and mouse
gene structure: Comparative analysis and application to exon prediction. Genome
Research, 10:950–958, 2001.

[9] J.L. Bentley. K-d trees for semidynamic point sets. In Proc. 6th Annual ACM
Symposium on Computational Geometry, pages 187–197, 1990.

[10] N. Bray, I. Dubchak, and L. Pachter. AVID: A global alignment program. Genome
Research, 13:97–102, 2003.

[11] N. Bray and L. Pachter. MAVID multiple alignment server. Nucleic Acids Res.,
31:3525–3526, 2003.

[12] M. Brudno, C.B. Do, G.M. Cooper, and M.F. Kim et al. LAGAN and Multi-LAGAN:
Efficient tools for large-scale multiple alignment of genomic DNA. Genome Research,
13(4):721–731, 2003.

[13] M. Brudno, S. Malde, A. Poliakov, and C.B. Do et al. Glocal alignment: Finding
rearrangements during alignment. Bioinformatics, 19:i54–i62, 2003.

[14] P. Chain, S. Kurtz, E. Ohlebusch, and T. Slezak. An applications-focused review of
comparative genomics tools: Capabilities, limitations and future challenges. Briefings
in Bioinformatics, 4(2):105–123, 2003.

[15] K.-M. Chao and W. Miller. Linear-space algorithms that build local alignments from
fragments. Algorithmica, 13:106–134, 1995.

[16] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, MA, 1990.

References 15-25

[17] I. Dagan, M.C. Golumbic, and R.Y. Pinter. Trapezoid graphs and their coloring.
Discrete Applied Mathematics, 21:35–46, 1988.

[18] A.L. Delcher, S. Kasif, R.D. Fleischmann, and J. Peterson et al. Alignment of whole
genomes. Nucleic Acids Res., 27(11):2369–2376, 1999.

[19] A.L. Delcher, A. Phillippy, J. Carlton, and S.L. Salzberg. Fast algorithms for large-
scale genome alignment and comparison. Nucleic Acids Res., 30(11):2478–2483, 2002.

[20] D. Eppstein, Z. Galil, R. Giancarlo, and G.F. Italiano. Sparse dynamic programming.
I: Linear cost functions; II: Convex and concave cost functions. Journal of the ACM,
39:519–567, 1992.

[21] S. Felsner, R. Müller, and L. Wernisch. Trapezoid graphs and generalizations, geometry
and algorithms. Discrete Applied Mathematics, 74:13–32, 1997.

[22] L. Florea, G. Hartzell, Z. Zhang, and G. Rubin et al. A computer program for aligning
a cDNA sequence with a genomic DNA sequence. Genome Research, 8:967–974, 1998.

[23] L.J. Guibas and J. Stolfi. On computing all north-east nearest neighbors in the L1

metric. Information Processing Letters, 17(4):219–223, 1983.
[24] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University

Press, New York, 1997.
[25] A.L. Halpern, D.H. Huson, and K. Reinert. Segment match refinement and applica-

tions. In Proc. Workshop on Algorithms in Bioinformatics, volume 2452 of Lecture
Notes in Computer Science, pages 126–139, Berlin, 2002. Springer-Verlag.

[26] M. Höhl, S. Kurtz, and E. Ohlebusch. Efficient multiple genome alignment. Bioinfor-
matics, 18:S312–S320, 2002.

[27] X. Huang and W. Miller. A time-efficient, linear space local similarity algorithm.
Advances in Applied Mathematics, 12:337–357, 1991.

[28] G. Jacobson and K.-P. Vo. Heaviest increasing/common subsequence problems. In
Proc. 3rd Annual Symposium on Combinatorial Pattern Matching, volume 644 of
Lecture Notes in Computer Science, pages 52–66, Berlin, 1992. Springer-Verlag.

[29] D.B. Johnson. A priority queue in which initialization and queue operations take
O(log logD) time. Mathematical Systems Theory, 15:295–309, 1982.

[30] D. Joseph, J. Meidanis, and P. Tiwari. Determining DNA sequence similarity using
maximum independent set algorithms for interval graphs. In Proc. 3rd Scandinavian
Workshop on Algorithm Theory, volume 621 of Lecture Notes in Computer Science,
pages 326–337, Berlin, 1992. Springer-Verlag.

[31] W.J. Kent. BLAT—the BLAST-like alignment tool. Genome Research, 12:656–664,
2002.

[32] W.J. Kent and A.M. Zahler. Conservation, regulation, synteny, and introns in large-
scale C. briggsae–C. elegans genomic alignment. Genome Research, 10:1115–1125,
2000.

[33] E.L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart,
and Winston, New York, 1976.

[34] D.T. Lee and C.K. Wong. Worst-case analysis for region and partial region searches
in multidimensional binary search trees and balanced quad trees. Acta Informatica,
9:23–29, 1977.

[35] E.M. McCreight. Priority search trees. SIAM Journal of Computing, 14(2):257–276,
1985.

[36] K. Mehlhorn and S. Näher. Bounded ordered dictionaries in O(log logN) time and
O(n) space. Information Processing Letters, 35(4):183–189, 1990.

[37] W. Miller. Comparison of genomic DNA sequences: Solved and unsolved problems.
Bioinformatics, 17(5):391–397, 2001.

[38] B. Morgenstern, A. Dress, and T. Werner. Multiple DNA and protein sequence align-

15-26 References

ment based on segment-to-segment comparison. Proc. National Academy of Science
USA, 93:12098–12103, 1996.

[39] B. Morgenstern, K. Frech, A. Dress, and T. Werner. DIALIGN: Finding local similar-
ities by multiple sequence alignment. Bioinformatics, 14:290–294, 1998.

[40] E.W. Myers and X. Huang. An O(n2 logn) restriction map comparison and search
algorithm. Bulletin of Mathematical Biology, 54(4):599–618, 1992.

[41] E.W. Myers and W. Miller. Chaining multiple-alignment fragments in sub-quadratic
time. In Proc. 6th ACM-SIAM Symposium on Discrete Algorithms, pages 38–47,
1995.

[42] F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, New York, 1985.

[43] S. Schwartz, L. Elnitski, M. Li, and M. Weirauch et al. MultiPipMaker and supporting
tools: Alignments and analysis of multiple genomic DNA sequences. Nucleic Acids
Res., 31(13):3518–3524, 2003.

[44] S. Schwartz, W.J. Kent, A. Smit, and Z. Zhang et al. Human-mouse alignments with
BLASTZ. Genome Research, 13:103–107, 2003.

[45] S. Schwartz, Z. Zhang, K.A. Frazer, and A. Smit et al. PipMaker–a web server for
aligning two genomic DNA sequences. Genome Research, 10(4):577–586, 2000.

[46] S. Shibuya and I. Kurochkin. Match chaining algorithms for cDNA mapping. In Proc.
3rd Workshop on Algorithms in Bioinformatics, volume 2812 of Lecture Notes in
Bioinformatics, pages 462–475, Berlin, 2003. Springer-Verlag.

[47] E. Sobel and M. Martinez. A multiple sequence alignment program. Nucleic Acids
Res., 14:363–374, 1986.

[48] P. van Emde Boas. Preserving order in a forest in less than logarithmic time and linear
space. Information Processing Letters, 6(3):80–82, 1977.

[49] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient
priority queue. Mathematical Systems Theory, 10:99–127, 1977.

[50] J.-S. Varré, J.-P. Delahaye, and E. Rivals. Transformation distances: a family of
dissimilarity measures based on movements of segments. Bioinformatics, 15(3):194–
202, 1999.

[51] W.J. Wilbur and D.J. Lipman. Rapid similarity searches of nucleic acid and protein
data banks. Proc. National Academy of Science USA, 80:726–730, 1983.

[52] D.E. Willard. New data structures for orthogonal range queries. SIAM Journal of
Computing, 14:232–253, 1985.

[53] Z. Zhang, B. Raghavachari, R.C. Hardison, and W. Miller. Chaining multiple-
alignment blocks. J. Computional Biology, 1:51–64, 1994.

16
Computational Analysis of

Alternative Splicing

Mikhail S. Gelfand
State Scientific Center GosNIIGenetika and

Russian Academy of Sciences

16.1 Introduction . 16-1
16.2 Biology of (Alternative) Splicing 16-2
16.3 Large-scale Computational Analysis and Databases on

Alternative Splicing . 16-4
16.4 Large-scale Experimental Studies 16-7
16.5 Alternative Splicing in Non-mammalian Species . 16-10
16.6 Alternative Splicing, Alternative Promoters, and

Alternative Polyadenylation . 16-11
16.7 Tissue-specific and Cancer-specific Isoforms 16-11
16.8 Conservation of Alternative Splicing 16-13
16.9 Functionality of Alternative Isoforms.

Nonsense-mediated Decay . 16-15
16.10 Impact of Alternative Splicing on Protein Structure

and Function . 16-16
16.11 Evolutionary Origin of Alternative Splicing 16-17
16.12 Regulation of Alternative Splicing 16-18
16.13 Concluding Remarks: Why Is Alternative Splicing So

Prevalent? . 16-21
16.14 An Update . 16-22

16.1 Introduction

Soon after discovery of splicing [13, 35], it was observed that transcripts of some genes
are spliced in different ways [14, 132]. However, until projects of mass sequencing of ESTs
started to produce data on composition of total cellular mRNA, alternative splicing was
believed to be rather rare, involving about 5% of human genes [143].

Mapping of ESTs to the genomic [113] or mRNA [66, 22] sequences produced an un-
expected result: at least one third of human genes had alternatively spliced variants. In
subsequent studies these estimates fluctuated between 20% and 60% (Table 16.1). Although
the functionality of all of the observed isoforms remains questionable, it is clear that alter-
native splicing is a major mechanism of generating functional and evolutionary proteome
diversity. A major role in studying alternative splicing was played by computational anal-
ysis, reviewed in this chapter.

The plan of this chapter is as follows. After a brief biological introduction, we start with
description of alternative splicing databases and review of early studies, and then proceed to
the analysis of tissue specificity of alternatively spliced isoforms and identification of cancer-

16-1

16-2 Handbook of Computational Molecular Biology

TABLE 16.1 Frequency of Alternative Splicing.
% of alternatively
spliced genes Reference Comment

5% [143] Nobel lecture
5% [175] First systematic EST–to–genome analysis
35% [113] Pro-EST program; EST/genome alignments
38% [66],[22] Based on EST/mRNA alignments
22% [45] ISIS database
55% [80] TAP program; extrapolation from EST/genome alignments
42% [117] HASDB database
59% [69] Skipped exons, chromosome 22
∼ 33% [168] Human genome paper
59% [76] Human genome paper
28% [38] AltExtron database
44% [24] Approximation from EST/genome alignments (4-34% for

other species, dependent on EST coverage).
all? [81] Only 17-28% with total minor isoform frequency > 5%
74% [78] Exon junction oligonucleotide microarrays
38% [158] Only 22% conserved in mouse or supported by 4 or more ESTs
40% [75] Full length cDNA/genome alignments, FLcDNAs database
30% [183] Mouse, full length cDNA/genome alignments
41% [53] Collection of papers about the mouse genome
60% [184] Mouse, full length cDNA/genome alignments

Note: By default, human genes are considered.

specific alternative splicing. We then address the dependence of the perceived alternative
splicing frequency on the EST coverage and describe computational issues arising from large-
scale experiments on alternative splicing. From that we turn to the analysis of functionality
of alternative splicing. We consider conservation of alternative isoforms in the human/mouse
gene pairs and a possible link between alternative splicing and nonsense-mediated mRNA
decay. Further, we present recent results on the impact of alternative splicing on the protein
structure. We describe the attempts to analyze the regulation of alternative splicing. The
chapter concludes with two general sections on the evolution of alternative splicing and
the overall discussion of the role of alternative splicing in the evolution and physiology of
eukaryotes.

16.2 Biology of (Alternative) Splicing

Splicing is a process of elimination of introns from transcribed RNA and ligation of remain-
ing exons, leading to the formation of messenger RNA [143]. This process is effected by
the spliceosome, a complex consisting of five small nuclear ribonucleoproteins (snRNP) and
more than a hundred proteins [131, 187]. The sequence signals involved in this process are,
firstly, donor and acceptor splicing sites at the exon–intron and intron–exon boundaries
respectively [20, 118], and, secondly, numerous binding sites for additional regulatory pro-
teins, so-called exonic and intronic splicing enhancers and silencers [12, 133, 95, 30].These
proteins, belonging to the SR and hnRNP classes, regulate both constitutive and alternative
splicing [108, 92, 64]. The process of splicing involves an intricate interaction between these
proteins and snRNPs that recognize the splicing sites [67]. Most introns start with GT and
end with AG, although there are also rare GC–AG introns and also a special type of intron
starting with AT and ending with AC; the latter are spliced by the so-called U12-spliceosome
[144, 28, 38]. The U12-spliceosome also splices some GT–AG introns [144].

The main types of elementary splicing alternatives [21] are shown in Figure 16.1. Differ-
ential choice of alternative donor or acceptor sites leads to exon extension or truncation,
dependent on what isoform is assumed to be the major one (Figure 16.1-a, b). Complete
inactivation of splicing may lead either to intron retention (Figure 16.1-e), or to skipping
of cassette exons (Figure 16.1-c). These four types of events lead to insertions/deletions in

Computational Analysis of Alternative Splicing 16-3

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

FIGURE 16.1: Types of Alternative Splicing.

the mRNA and, if occurring in the coding region, in the encoded protein. A more compli-
cated case is that of alternative, or mutually exclusive exons (Figure 16.1-d) that generate
different segments in the protein. Alternative splicing can be linked to other types of alter-
native events. Thus, the start of transcription at alternative promoters leads to alternative
initial exons (Figure 16.1-f) or a cassette initial exon vs. exon extension alternative (Figure
16.1-g). Similarly, alternative splicing at the last intron may create alternative terminal
introns (Figure 16.1-h), whereas competition between splicing and polyadenylation leads to
a cassette vs. extended terminal exon alternative (Figure 16.1-i). Combinations of elemen-

16-4 Handbook of Computational Molecular Biology

tary events may create a complicated set of alternative isoforms; one rather frequent type
of such combination is a cassette exon that has alternative sites as well. There is a clear
link between alternative splicing and mutations in splicing sites that also may lead to exon
skipping, intron retention, and activation of cryptic (cf. alternative) sites [91, 120, 167].

16.3 Large-scale Computational Analysis and Databases on
Alternative Splicing

For many years after its discovery, alternative splicing was believed to occur in a minor-
ity of cases, up to 5% [143]. Representation of alternative splicing events in the existing
databases was not systematic. GenBank [11] and EMBL [94] do not handle alternatively
spliced genes in any specific way. Alternatively spliced genes can be found using text search
for keywords such as “alternative splicing”, “alternative exon”, “isoform” or recognized by
overlapping mRNA or CDS (coding sequence) descriptors in the feature tables [77]. SWISS-
PROT [4] normally describes protein variants produced by alternative splicing using the
“VARSPLIC” feature that identifies positions where an alternatively spliced isoform differs
from the main one supplemented by the corresponding sequence fragment of the alterna-
tive isoform. In some cases alternative isoforms are described by independent SWISS-PROT
entries [60]. A special program varsplic.pl has been developed to generate all alternative iso-
forms, and its output is available for each new release of SWISS-PROT/TrEMBL databases
[84]. This is a useful resource, as results of the protein similarity search may depend on the
isoform present in the database.

Mass sequencing and analysis of ESTs prompted reappraisal of the prevalence of alterna-
tive splicing. In two early studies, ESTs were mapped to human genes [113] or proteins and
mRNAs [66, 22]. Both approaches yielded a close estimate: about one third of human genes
were found to be alternatively spliced. Further analysis gradually increased the fraction of
genes with multiple alternatively spliced isoforms to about 60% (Table 16.1). As all these
studies involved automatic processing of large amounts of data, it is not surprising that
their results were published not only in the form of numerical estimates, but in most cases
were made accessible as databases (Table 16.2).

Most databases are based on mapping of ESTs, mRNAs and proteins to genomic se-
quences. ESTs were mapped to target genes by BLAST [3], and ESTs arising from one
gene were clustered. Spliced alignment of these sequences to the genomic fragment was
used for reconstructions of the exon-intron structure. Later, pre-existing clusters of ESTs
such as UniGene [189] were used. All such projects involved extensive filtering of possible
artifacts [175, 26, 115]. This filtering removes ESTs that arise from unspliced transcripts
and contamination of clone libraries by genomic DNA. This makes it difficult to estimate
the frequency of intron retention, which cannot be reliably distinguished from the above
artifacts. There are also chimeric and aberrant ESTs probably created by recombination
during cloning. Such ESTs create intron-like deletions in cDNA that can be recognized by
the lack of universal GT–AG dinucleotides at their boundaries. Also, in many such cases
the intron-like deletion in a EST sequence aligned to a genomic fragment is flanked by short
direct or inverted repeats. EST clusters may be generated by recently duplicated and thus
highly similar paralogous genes that could appear as alternatively spliced isoforms. Finally,
there may exist unknown systematic errors [151].

Independent alignment of ESTs to the genome may introduce spurious results due to low
sequence quality leading to minor differences at exon–intron boundaries. Several programs
were developed to find consistent alignments of EST clusters to the genome, while still
allowing for alternative splicing [173, 17]. In a pilot study, it was shown that this approach

Computational Analysis of Alternative Splicing 16-5

TABLE 16.2 Alternative Splicing Databases.
Database Content Organisms URL Reference

EDAS EST/genome Human http://www.ig-msk.ru:8005/EDAS/ [122]
alignments

IGMS/ EST/mRNA Human (detailed http://eased.bioinf.mdc-berlin.de/, [24],
EASED/ alignments data); mouse,rat http://eased.bioinf.mdc-berlin.de/igms [130],
ASforms cow, Xenopus, [129]

zebrafish,
Drosophila,
C. elegans,
Arabidopsis

ASD EST/genome Human,mouse, http://www.ebi.ac.uk/asd [165]
alignments; rat, cow,
literature chicken
data; zebrafish
regulation Drosophila,

C. elegans,
Arabidopsis

PASDB GenBank and Plants http://pasdb.genomics.org.cn [186]
literature data

ASAP/ EST/genome Human http://www.bioinformatics.ucla.edu/ASAP [99],
HASDB alignments [117]

MouSDB mRNA/genome Mouse http://genomes.rockefeller.edu/MouSDB [184],
alignments [53]

ProSplicer EST/genome and Human http://140.115.50.96/ProSplicer/ [72]
protein/genome
alignments

SpliceNest EST/genome Human http://splicenest.molgen.mpg.de/ [90]
alignments [43]

PALS db EST/mRNA Human and http://palsdb.ym.edu.tw/ [73]
alignments mouse

Alternative mRNA/genome Mouse http://www.bioinfo.sfc.keio.ac.jp/ [86]
Splicing alignments research/intron/index.html
Supplemental
Resources

AltExtron EST/genome Human http://www.bit.uq.edu.au/altExtron/, [38]
alignments http://www.ebi.ac.uk/∼thanaraj/altExtron/

AsMamDB Processed Human, mouse, http://166.111.30.65/ASMAMDB.html [77]
GenBank: rat
mRNA/DNA
alignments

STACK EST/genome Human http://www.sanbi.ac.za/Dbases.html [69]
alignments

Intronerator EST/genome Nematode http://www.cse.ucsc.edu/∼kent/intronerator/ [83]
alignments C. elegans

VARSPLIC Processed All organisms ftp://ftp.ebi.ac.uk/pub/databases/sp tr nrdb, [84]
SWISS-PROT ftp://ftp.expasy.ch/databases/sp tr nrdb

AEDB Literature data Human http://www.ebi.ac.uk/asd/aedb/ [156]

Note: EST/genome implies mRNA/genome.

allows one to find new alternative splicing events supported by multiple ESTs, missed by
simple EST–to–genome alignment [17].

After that, the alternative splicing events are classified into elementary alternatives when-
ever possible. Databases of the last generation, such as EASED and EDAS, incorporate data
on expression of observed isoforms and individual alternative events. These data include
tissue and stage specificity, as well as the disease state. In addition, functional annotation
of the corresponding genes is provided.

16-6 Handbook of Computational Molecular Biology

However, despite the multiplicity of genome projects, in some cases the genome data
for comparison are not available. Indeed, many large-scale sequencing projects involve
sequencing of ESTs rather than genomic sequences [15]. Thus there arises the following
problem: how to represent the diversity of alternatively spliced isoforms in such cases. One
possibility is to use assembly programs borrowed from genome sequencing projects and
generate all possible linear isoforms. In particular, this approach was used to create the
TIGR gene index [2, 159]. However, as the EST data are local (with the size of a single
fragment being 300-500 nt), it does not capture information about long-range dependencies
between alternative variants at distant regions. Moreover, it is not immediately clear that
such dependencies always exist. Anyhow, this leads to a combinatorial explosion in the
number of alternative isoforms. An often cited example is that of the Drosophila Dscam
gene that may generate up to 38, 000 potential isoforms [141, 63]. This may be a likely
reason for an EST-based overestimate of the number of human genes [104].

A simpler possibility is to align available ESTs [26]. This avoids the combinatorial ex-
plosion, but provides no insight into the structure of the data. Besides, representation of
alternating exons and other types of events generating non-alignable segments in mRNA
still remains a problem. Still, this is a convenient method when only individual splicing
events are studied without the need to reconstruct the overall structure [169]. A procedure
allowing one to take into account alternative splicing when using EST data for protein
identification from peptide mass fingerprinting was suggested in [106].

To deal with the combinatorial explosion problem, several studies introduced a concept
of a splicing graph [68, 98, 62, 158]. It is a directed graph in which each vertex corresponds
to a position observed in at least one EST, and two vertices are linked by an edge if
they are consecutive positions in at least one EST. For convenience, linear chains of non-
branching vertices may be collapsed into one vertex. Such a graph may be constructed by
multiple alignment of a set of ESTs, or by aligning ESTs to genomic sequences. Each path
along this graph represents a possible isoform. Although this representation still does not
allow for modeling long-range dependencies, it provides a convenient and intuitively clear
representation used in a number of databases.

Importantly, even purely EST-based analysis allows for some insight into the proportion
of different elementary alternatives. To do that, one needs to analyze the sequence at the
boundaries of alternative regions [86]. Indeed, an overwhelming majority (more than 99%) of
introns start at GT and end at AG [27, 28, 163], and there are additional conserved positions
in donor and acceptor signals [118, 59]. Internal splicing sites and sites of non-spliced introns
are retained in longer isoforms (Figure 16.2), and thus the analysis of candidate sites at the
boundaries of an alternative region may tell what type of elementary alternative generated
this region.

To analyze the dependencies between elementary alternatives one needs to analyze full-
length isoforms. These isoforms can be collected from the literature. Currently three
projects, ASDB, ASD/AED and PASDB follow this path; FlyBase contains curated data
on the alternative splicing of Drosophila genes [57]. Curated literature-based databases have
two additional advantages. One of them is the possibility to collect data on regulation,
tissue specificity studied in comparable controlled experiments, and cellular localization
of resulting proteins. Another advantage is the ability to take into account additional
isoforms discovered after publication of the gene. Such isoforms often are not deposited
in sequence databases, but are shown in subsequent publications in the form of figures,
textual descriptions etc. Analysis of the literature allows one to find such isoforms. As the
exhaustive literature search is expensive and time-consuming, there are attempts to apply
text mining techniques for finding papers on alternative splicing by analysis of abstracts in
the PubMed database, and to link genes, isoforms, and tissue specificity data [142].

Computational Analysis of Alternative Splicing 16-7

GT

1 GT AG GT AG

alternative
donor sites

cassette
exon

 AG

alternative
acceptor sites

GT AG

retained
intron

Genomic sequence (non-observed)

mRNAs with alternative donor sites

3

2

GT

1

3

2

1

3

2

mRNAs with alternative acceptor sites

1

3

1

3

2

 AG

mRNAs with included and skipped cassette exons

1

3

2

1

3

2

mRNAs with retained and spliced intron

1

3

1

3

2

GT AG

2

FIGURE 16.2: Remaining Splicing Sites at Insert Boundaries in Alignment of ESTs by Different
Types of Alternative Splicing Events.

16.4 Large-scale Experimental Studies

Large-scale experiments aimed at sequencing of full-length cDNAs provide another rich
source of data. The FANTOM2/RIKEN project aimed at sequencing mouse RNAs uses
a special experimental technique aimed at capturing polyadenylated mRNAs carrying the
cap structure at 5′ end [53], whereas the ORESTES approach is based on sequencing EST-
s uniformly distributed along mRNA with subsequent mapping to the genome, creating
EST contigs, and directed gap closure [29, 137]. Both approaches use hybridization-based
normalization strategies to avoid multiple sequencing of abundant transcripts, and thus
discriminate against alternatively spliced isoforms. Still, they are able to cover many alter-
native splicing events, and, as with ordinary ESTs, the number of genes having alternatively
spliced isoforms increases with increased coverage [137]. In particular, the estimate of the
fraction of alternatively spliced mouse genes based on data generated in the mouse full-
length cDNA sequencing project increased in just one year from 30% [183] through 41%
[53] to 60% [184] (Table 16.1). A number of new isoforms were identified by alignment
of full-length mouse cDNAs [86], although no estimates on the prevalence of alternative
splicing were given. Similarly, combination of the data from six projects on sequencing full-
length human cDNAs in the framework of the H-Inv project identified alternative splicing
isoforms for 40% of human genes. Enrichment strategies increase the number of unique
variants (e.g. 40% of alternative exons generated in the ORESTES project do not appear
in conventional ESTs) [137], although it is not clear whether these are functional and not

16-8 Handbook of Computational Molecular Biology

 alternative

donor sites
cassette

exon
retained
intron

genomic sequence

is
of

or
m

s

exon
probes

exon-intron
junction probes

ex
on

-e
xo

n
ju

nc
ti

on
 p

ro
be

s

FIGURE 16.3: Microarray-based analysis of alternative splicing. Design of oligonucleotide ar-
ray assuming complete knowledge of the exon-intron structure and alternative
splicing.

results of aberrant splicing, see below.
Another large-scale approach is based on the use of oligonucleotide microarrays. Two

types of oligonucleotide probes are used: exon probes that hybridize to constant or alter-
native exons or parts of exons, and junction probes that hybridize to exon–exon junction
regions. A prerequisite to this analysis is complete description of the exon–intron structure,
including all alternative variants (Figure 16.3). An alternative is to create a high-density
array covering known mRNAs (isoform 0). At that, skipped exons, alternative exons and in-
ternal splicing sites can be observed, as the oligonucleotides occurring within corresponding
alternative regions would not hybridize (Figure 16.4, isoforms 1 and 2 respectively), although
new exons or alternative splicing sites extending known exons may not be found. However,

Computational Analysis of Alternative Splicing 16-9

0

4

3

2

1

is
of

or
m

s

 ettessac
)dedulcni(

noxe

 ettessac
)deppiks(

noxe

 evitanretla
 rotpecca

setis

FIGURE 16.4: Microarray-based analysis of alternative splicing. Design of dense oligonucleotide
arrays to the main mRNA (isoform 0).

if by chance an oligonucleotide spans an alternative exon–exon junction, even insertion-type
events such as additional cassette exons and extending alternative sites might be diagnosed
(Figure 16.4, isoforms 1 and 3).

Note that in this case the observed intensities are not uniform, and reflect the level of
inclusion of alternative regions and thus the relative fraction of the isoforms in the sampled
tissue. Specific algorithms are used to process the data and to estimate the splicing level
for all isoforms. One of the first papers specifically aiming at the analysis of alternative
splicing was [71]. In that study 1600 rat genes were considered, each represented by twenty
25-mer oligonucleotide probes densely covering the 3′ end of the known mRNA, and the
expression was studied in ten normal tissues. This resulted in identification of a number of
new isoforms confirmed by analysis of available EST data and direct RT–PCR using primer
pairs identified as informative in the array experiment.

The exon–exon junction arrays for large-scale analysis of alternative splicing were intro-
duced in [180]. Expression of exons in ten thousand genes was analyzed in 52 tissue samples
using ∼125, 000 exon junction probes [78]. The observed hybridization level was compared
to the expected level estimated from the probe response across tissues, and the expression
level in a given tissue assuming all exons are present. Tissue-specific alternative splicing was
observed for a number of known isoforms; moreover, new alternative splicing events were
predicted, when some probes failed to hybridize, indicating that the corresponding splicing
sites are not used universally. A fraction of observations was confirmed by RT–PCR. Com-
parison with EST data demonstrated that arrays seem to be more sensitive in detection of
low-level alternative splicing. Further, the comparison of the EST-derived splice junctions
and mRNA data from RefSeq demonstrated that 20% exon junctions, not necessarily alter-
native, are not represented in ESTs, and 11% junctions are present in only one EST, and
thus would be deemed unreliable by many analysis tools.

16-10 Handbook of Computational Molecular Biology

The same techniques can be used to analyze the processes of splicing, processing and
decay of mRNAs, as demonstrated in a study of yeast genes [39].

A different approach is based on genome sequence per se rather than known exons and in-
trons. In such studies oligonucleotide probes are uniformly distributed along chromosomes,
forming so-called tiling arrays. Such studies are mainly directed towards identification of
new classes of transcripts, such as non-coding RNAs. However, as the distance between ad-
jacent probes and probe length are comparable to exon length, in many cases new isoforms
are identified [145, 82]. Sensitivity of relatively long oligonucleotide probes in tiling arrays
(up to 60 bp) for detection of exon-intron boundaries has been demonstrated [33]. However,
so far only the shortest chromosomes (21 and 22) have been analyzed by this approach.

Since in most cases raw hybridization data represents a mixture of alternative variants
produced by different isoforms, special treatment is needed to determine the fraction of each
individual isoform, especially in non-trivial cases involving several independent choices of
variants in different elementary alternatives. Such a model was proposed in [169]. Observed
probe intensities are transformed into fractions of corresponding variants using standard
models, whereas isoform frequencies are derived from the elementary variant fractions using
a system of linear equations. The approach was validated by comparisons with samples of
known isoform composition in vitro and the results of RT–PCR applied to genes with known
expression patterns in vivo.

A database MAASE was developed to simplify the construction of microarray chips for
studying alternative splicing and collection of the results [185]. An interactive interface is
used to annotate known isoforms combining the data extracted automatically from existing
databases and manual analysis of the literature, and then aids in selection of probes.

16.5 Alternative Splicing in Non-mammalian Species

The observed level of alternative splicing is highest in the human genes. Arguably, this is
a consequence of higher EST coverage. An attempt to make an independent estimate was
made in [24]. The observed prevalence of alternative splicing was computed for comparable
numbers of ESTs in several species (human, mouse, rat, cow, Drosophila, nematode C.
elegans, and plant Arabidopsis), and the saturation levels were estimated. The level of
alternative splicing was comparable in all animal species and slightly lower in Arabidopsis.

Alternatively spliced nematode genes are collected in the Intronerator database [83]. The
FlyBase database of Drosophila genes (release 3.1) [57] contains the data on alternative
splicing of 2774 genes (of 13656 genes in the database). Of these, 1815 genes are alternatively
spliced in the coding region, whereas 959 are alternatively spliced only in untranslated
regions. Most data are derived from ESTs, with only 75 genes with alternative splicing
verified by the literature search. A database of alternative splicing in plants, based on
literature and EST data, was compiled in [186]. The functional categories most represented
in this database were cell growth and enzymatic activity, although the size of the database
is rather small and no analysis of statistical significance of this finding was made. About
10% of Arabidopsis full-length cDNA were found to be alternative isoforms in a large-
scale study[65], although the authors warn that this number should not be extrapolated to
the entire genome. Finally, out of approximately 230 intron-containing genes of the yeast
Saccharomyces cerevisiae, only three are alternatively spliced [63].

Computational Analysis of Alternative Splicing 16-11

16.6 Alternative Splicing, Alternative Promoters, and Al-
ternative Polyadenylation

Alternative splicing is closely related to other types of alternative events, such as alternative
starts of transcription and alternative polyadenylation. Indeed, an early study demonstrat-
ed that a large fraction of alternative splicing events takes place in non-coding regions
and leads to alternative 5′ or, less often, 3′ mRNA termini [113]. However, it is difficult
to exactly estimate the frequency of such events, especially at the 5’ end,as this frequen-
cy depends on the technique used to generate EST libraries (polyT-primed libraries have
low coverage of5′-termini), identification of translation start, and, for so-called full-length
libraries, of the completeness of cDNA.Still, the observed trends are the same. Analysis
of EST data produced the following breakdown of observed elementary alternatives: 22%
in 5-untranslated region, 74% in the coding region, and only 4% in the 3-untranslated
region[113]. Meta-analysis of human cDNA sequencing projects demonstrated that 35% of
all genes had alternatives in the coding region [75]. Among alternatively spliced transcripts,
48% had alternative 5-ends,62% had internal loops, and 29% had alternative 3-ends.Full-
length mouse cDNA had 74% of elementary alternatives overlapping with the coding region
[184],whereas ORESTES human cDNAs had 85% of alternative exons in coding regions,
compared to 77% alternative exons in a EST sample [137]. Thus, despite some differences,
a clearly emerging tendency is higher frequency of alternative splicing at the 5-region com-
pared to the 3-region. One possible explanation for that could be that it allows the cell to
use different transcription promoters and thus different regulatory cassettes for the same
gene[113]. Thus, instead of a complicated mosaic of regulatory elements in the upstream
region of a gene that needs to be expressed in several different conditions, there are several
promoters switched on independently, whereas the coding regions is the same and the exces-
sive 5-leader region is removed by splicing. This generates alternatives of the types shown
in Figure16.1-f and Figure 16.1-g. On the other hand, analysis of ESTs sequenced from the
3′-termini of mRNAs demonstrated that 29% of human genes have multiple polyadenylation
sites [9], and more than 40% of genes have variable termini due to multiple polyadenylation
sites and alternative cleavage sites downstream of single polyadenylation site [128]. More-
over, in many cases the choice of a polyadenylation site is tissue- or disease-specific[10].
This analysis is based on a combination of clustering of polyT-primed ESTs [58, 9]with
computational identification of candidate polyadenylation sites [61]. Alignment to the ge-
nomic sequence is used to filter out ESTs primed at internal polyA runs: unlike polyA tails
added to mRNAs during polyadenylation, internal runs are present both in EST and the
genomic sequence.

16.7 Tissue-specific and Cancer-specific Isoforms

A natural extension to large-scale analysis of alternative splicing is identification of isoforms
specific to tissues, and developmental and disease stages. It has been suggested that a large
proportion of alternative splicing events takes place in specific physiological context,such
as nervous and immune system [155, 117]. High level of alternative splicing was observed
in brain, eye (retina),lymph, as well as testis, muscle and skin, and about 10-30%of alter-
natively spliced human genes were shown to have tissue-specific isoforms [179]. Clearly,
such estimates are very sensitive to the coverage of various tissues by clone libraries. For
example, out of 25 exons assumed to be brain-specific in [25], at least 12 turned out to be
expressed in other tissues as well [46]. Moreover,absolute tissue specificity is rare [176]. This
problem was addressed in a Bayesian statistical approach developed in [179]. It treats the

16-12 Handbook of Computational Molecular Biology

true alternative splicing variant frequency in a given tissue as a hidden variable. The tissue
specificity is defined as the difference between the probability that this variant is preferred
in a given tissue (more exactly, the conditional probability that its true frequency exceeds
50% given the observed data) and the probability that the variant is preferred in a pool
of other tissues. It is a some what indirect measure. A test involving log-odds ratio was
developed in [178]. It directly measures the probability that the frequency of one of two
alternative variants in one condition (e.g. cancer, see below) is greater than its frequency in
a different condition (e.g.,normal). This test can be also applied to analyze tissue-specific
splicing.

Tissue-specificity data can be obtained in array experiments, see above. In particular,
in[78] it has been demonstrated that the highest frequency of alternative splicing is seen in
cell lines, and the overall patterns of alternative splicing are similar in related tissues such
as stomach and duodenum, heart and skeletal muscle,as well as in all neuronal tissues. It
may be also interesting to identify elementary alternatives with complementary distribution
of variants, so that one variant is expressed in one set of tissues, and the other variant in
a different, non-overlapping set of tissues. Several such cases were found in [176].However,
such analysis is greatly complicated by inhomogeneity of cell types forming most tissue
samples. Of major interest are genes having cancer-specific isoforms,especially if there is
evidence of medical importance of these isoforms, e.g.[174, 136, 157, 56, 89, 32, 1, 44, 127],see
also [178] for more references. Note that cancer specificity in this context should be assumed
with some caution.Firstly, it is unlikely that an isoform strictly specific for cancer cells
would be evolutionarily stable. More likely, it is expressed in some specific, not yet sampled
condition or stage,whereas its appearance in cancer is due to aberrant regulation. There
are many examples of such kind in the area of transcriptional regulation, e.g. the so-called
cancer/testis antigens, expressed in cancer and germ-line cells [139]. Further, an additional
complication is insufficiently detailed and reliable description of many clone libraries [176].
The most frequent type of error is omission of indication to the cancer or cell line origin of a
clone library [7]. Manual curation, though labor-consuming, often allows one to resolve this
issue [122], (I.Kosmodemyansky, personal communication).It should be interesting also to
distinguish between cell lines and primary cancer tissue; no such studies have been reported
sofar. Computationally, the analysis of cancer-specific variants is similar to the analysis
of tissue specificity, and often such analysis are performed simultaneously. Several cancer-
specific isoforms of known genes were identified in [176], and colon cancer-specific isoforms
were found in [23]. A z–statistic was applied to identify cancer-specific isoforms,followed by
experimental RT–PCR analysis of pairs of tumor and normal samples from several tissues
[169]. It turned out that a large fraction of alternative splicing variants were indeed cancer-
specific; in addition, in several cases tissue-specific splicing was observed. On the other hand,
the increased frequency of non-GT–AG introns in [169] is probably due to contamination,
as insufficient filtering criteria were applied[149]. Indeed, it was not clear, whether any of
these non-GT–AG introns were supported by experimental analysis in the original paper
[169], although some were observed in a follow-up study [170]. The set of genes with cancer-
specific isoforms identified in[178] was enriched in tumor suppressors, genes encoding cell
cycle, growth and proliferation proteins, genes whose products were involved in transcription
and splicing and, more generally,genes encoding DNA- and RNA-binding proteins. This
could be due to over-expression of these genes in cancer, leading to increased statistical
significance of any trends. However, the results were consistent with mRNA data. Moreover,
validation of the EST-derived sets of cancer-specific and normal tissue-specific isoforms
by comparison with known mRNAs from GenBank yielded a surprising result: in many
cases known mRNAs were the cancer-specific ones,whereas their normal counterparts were
identified only by EST analysis. The opposite situation was relatively rare. Further, to avoid

Computational Analysis of Alternative Splicing 16-13

TABLE 16.3 Conservation of Human Alternatives in Mouse and Rat.
Reference Results

[80] 55% human genes alternatively spliced; 11% alternative splicing patterns observed in mouse ESTs
[123], [121] 17-31% elementary alternatives are non-conserved between human and mouse;

36-55% alternatively spliced genes have species-specific isoforms.
[164] 61% of alternative exon–exon junctions; 74% of constitutive exon junctions conserved in mouse.
[116] 98% constitutive exons, 98% major form cassette exons, 28% of skipped exons conserved

between human and mouse.
[134] Exons observed to be skipped in human and mouse ESTs are 12% of all human skipped exons

and 28% of all mouse skipped exons.
[158] 3% retained introns, 38% cassette exons, 8% alternative donor sites, 18% alternative acceptor

sites, 32% other alternatives conserved in mouse transcriptome.
[152] 75% cassette exons are not conserved in mouse.

mixing cancer specificity and tissue specificity,tissue-specific samples of cancer and normal
origin were compared,and the results were consistent with the data from pooled cancer and
normal clone libraries. Conversely, an overwhelming majority of cancer-specific isoforms was
supported by evidence from clone libraries both of different tumor origin and from multiple
normal tissues. The majority of significant shifts in the isoform distribution were loss (more
exactly, strong decrease of frequency) of one variant in cancer (56%) with approximately
equal frequency of both variants in the normal sample; 31% of cases demonstrated shift
from one prevalent variant to the other one; and only 13% of cases were of the type with a
skewed variant frequencies in the normal sample and a more uniform frequencies in cancer.
Thus the obtained results were not due to deregulation and loss of specificity in cancer.

16.8 Conservation of Alternative Splicing

Sequencing of additional genomes,especially the mouse genome, created an opportunity
to compare the alternative splicing of orthologous genes in the two genomes.Indeed, there
were scattered observations of species-specific splicing isoforms (listed in [121], see also[162]
about the role of alternative splicing in speciation). However, the extent of non-conservation
of alternative splicing was quite surprising: it looks like alternative splicing is much less
conserved than the gene complement in general (Table 16.3).

Indeed, 80% of mouse genes form strict pairs of orthologs with human genes [119]. Most
of the remaining genes belong to expanded families of paralogs, so that it is impossible to
establish 1:1 relation between the human and mouse genes despite clear homology. Not
surprisingly, this is characteristic of genes of the reproduction system, pheromones, hor-
mones, the olfactory system, and the immune system. In an early study it was demon-
strated that only about 5-14% of the human–mouse gene pairs had different exon–intron
structure[8, 119]. On the other hand, a considerable fraction of human genes seem to have
isoforms not conserved in the mouse genome, see below. Uneven and incomplete coverage of
the human and mouse genomes by ESTs preclude direct comparison of the alternative splic-
ing patterns in the two genomes. Indeed, only 11% of human alternative splicing patterns
were observed in mouse ESTs as well[80]. One way to deal with that was to extrapolate the
observed fraction of conserved elementary alternatives to the situation of complete coverage
[164], an approach reminiscent of the estimates of the prevalence of alternative splicing in
different genomes discussed above [24]. Given a number of simplifying assumptions (same
tissue specificity of orthologous isoforms, same coverage of tissues by clone libraries, in-
dependence of the probability of a gene to be alternative spliced on the expression level,
and the independence of the probability of isoform conservation on the expression level),
it is possible to derive a formula for the probability of an exon–exon junction (that is, a
variant of an elementary alternative) to be conserved and, moreover, to find the confidence

16-14 Handbook of Computational Molecular Biology

interval for this probability. It turned out that 74%(71-78% at the 95% confidence level) of
constitutive splice junctions and 61% (47-86% respectively) of alternative splice junction-
s of human genes are conserved in mouse.Although compared to results of other studies
(below) these estimates seem to be somewhat too low, they provide a lower estimate on
the conservation of constitutive and alternative splicing. A different approach is to map
human isoforms to the mouse genome.At that, if an isoform cannot be expressed because
an exon cannot be aligned or splicing sites are destroyed, it is clear that this isoform is
not conserved. However, conservation of sequence features does not guarantee existence of
the isoform, as other,unknown regulatory elements can be destroyed. Further, it does not
allow for the analysis of skipped exons (as the exon will be conserved anyhow because it
is included in the longer isoform), intron retention (which in at least one case was proven
to be an important diversity-generating mechanism [162]), and alternative splicing in non-
coding regions (where the level of sequence conservation is much lower and exons cannot
be reliably aligned in many cases). Thus such analysis provides an upper estimate on the
conservation of splicing isoforms. Application of this approach to a sample of 166 human–
mouse gene pairs demonstrated that 69-76% of human elementary alternatives (mRNA- and
EST-derived, respectively) are conserved in mouse, and75-83% of mouse ones, in human.
Further, 55% human and36% mouse genes had species-specific isoforms[123, 121]. A similar
technique was applied to the analysis of human, mouse,and rat genes [115]. Only cassette
exons were considered.These exons were divided into two groups, those present in the major
isoform (that is, included in more than 50% ESTs spanning the relevant region) and those
present in the minor isoform(skipped in more than 50% ESTs). Mapping of human exons
onto mouse and rat genomic sequences was done by BLAST. Similarly to the results of [69],
the proportion of genes with major form cassette exons to the genes with skipped exons
was approximately 2:1. The levels of inclusion of a given exon inhuman and mouse were
significantly correlated (80%). Most importantly, the conservation of the major form exons
was the same as of the constitutive exons (98%), whereas as many as 72%of skipped exons
turned out to be genome-specific. All types of events were analyzed in [158]. Human and
mouse EST libraries were compared. The frequency of genes for which alternative splicing
was observed both in human and mouse was 10%. The level of conservation of human alter-
natives depended on the type of the alternative; variants supported by multiple ESTs were
more likely to be conserved. Although the results of this study are not directly comparable
to the 11%conservation observed in [80], as it is not clear how to combine the results for
different types of alternatives into a single value, it seems that increased EST coverage of the
mouse genome leads to increased level of conserved variants. In fact, it could be instructive
to apply the same procedure in the opposite direction: consider all mouse alternatives and
compute how likely they are to be present in human ESTs. Indeed, the importance of the
coverage was demonstrated in[79], where human ESTs were aligned to the mouse genome
and vice versa. Human ESTs identify 27% of known mouse alternatives; novel alternatives
were found in 51% genes. Conversely, 21% known human alternatives were recovered using
mouse ESTs, and new patterns were found in 42% of human genes.In fact, humans ESTs
recover more mouse alternatives than mouse mRNAs do, and 60% of EST-derived alterna-
tives. For comparison,40% of mRNA-derived human alternatives were supported by human
ESTs. For constitutive splicing events, all these numbers are very close (82-84%) and much
higher than for the alternative splices. This again supports the observation that alternative
splicing events are much less conserved that constitutive ones.

Computational Analysis of Alternative Splicing 16-15

16.9 Functionality of Alternative Isoforms. Nonsense-mediated
Decay

An important question arising from these studies is whether all of the observed isoforms
are real. Indeed, given the size of EST datasets, it is possible that some alternative s-
plicing events,especially those supported by unique ESTs, cancer-specific ones, and those
non-conserved in mouse, result from aberrant splicing. There is little experimental data
about the level of splicing errors in vivo. Up to 2% of aberrant exon skipping in the human
HPRT gene was observed in normal tissue, whereas up to 20% aberrant intron retention in
the RET gene was observed in cancer [146]. Recently this problem was directly addressed
in [152], where it has been suggested that a large fraction of alternative isoforms might not
be functional. Indeed, the frequency of frame shifts that result in shortening the protein
C-terminus was estimated as19% (with 6% of extensions and overall 46% of C-terminus
replacements) [117], 22% [156], 29% (with50% skipped exons retaining the reading frame)
[69].In [164], 22% of cassette exons have not lead to frameshifts, nor introduced stop codon-
s. Change of the reading frame due to the use of alternative sites in mouse was estimated
as53% for acceptor sites and 35% for donor sites [184], the difference due mainly to a spe-
cific case of 3 nt distance between adjacent acceptor sites. A detailed study compared
the features of human cassette exons conserved and non-conserved in mouse [152]. The
reading frame was retained in 77% of conserved exons, and of these only 5% contained an
in-frame stop codon.Thus 73% of such exons did not change the protein C-terminus.For
non-conserved cassette exons these numbers were 40% frame retention, 53% of these with
open reading frame, and overall only 23% proteins with intact C-termini. However, there
are several lines of evidence supporting functionality of observed isoforms. Indeed, at least
47% of observed events were observed more than once, that is, were supported by more
than one EST [117]. Similarly, a binomial test was developed in [81] to estimate the fre-
quency of minor variants. It turned out, that although more than 99% of genes with high
EST coverage had alternative splicing variants, 17-28% of gene had variants with frequency
exceeding 5%; the frequency of reliable intron retention was less than 5%. Very similar
conservation rates were observed for elementary alternatives supported by ESTs (69% and
75% in human and mouse, respectively) and mRNAs (resp., 76% and83%) [121]. Of hu-
man skipped (minor isoform)exons, 28% were up-regulated in one tissue, whereas 70% of
such skipped tissue-specific exons still were not conserved in the mouse genome [116]. The
suggestion that many cancer-specific isoforms are due to general deregulation of splicing
in cancer contradicts the observation that most changes in isoform frequency observed in
cancer are loss of a normal-specific isoform, followed by a switch from a normal-specific to
a cancer-specific isoform[178]. This rules out both deregulation of splicing in cancer as a
source of new isoforms and the carcinogenic effect of cancer-specific isoforms, and speaks
in favor of a tumor suppressor function of normal-specific isoforms, lost in cancer. One
possible explanation for the discrepancy between perceived functionality of most isoforms
and the fact that most isoforms contain a frameshift could be that truncated proteins en-
coded by isoforms with alternatives leading to frameshifts or premature stop codons have
a dominant negative effect on the main product and serve a regulatory role [93]. Further,
isoforms creating premature stop codons (introduced by frameshifts or by in-frame stops
in alternative regions) are subject to nonsense-mediated mRNA decay [103]. This process
degrades mRNAs where the 3-proximal exon–exon junction is more than 50 nucleotides
downstream of the stop codon. It turned out that 35% alternative isoforms suggested by
ESTs were candidates for nonsense-mediated decay, whereas only 5% of RefSeq mRNAs
belonged to this category. A large fraction of these encoded splicing factors,translation

16-16 Handbook of Computational Molecular Biology

factors, and ribosomal proteins, and in some cases nonsense-mediated decay was shown to
regulate gene expression. The authors of [103] have suggested that their results demonstrate
that nonsense-mediated decay of alternative isoforms may be a major mechanism of the reg-
ulation of gene expression.Subsequent analysis of protein isoforms annotated in Swiss-Prot
(more exactly, of corresponding mRNAs)demonstrated that 6% of isoforms corresponding
to 7% of genes would be subject to nonsense-mediated decay[70]. Moreover, taking into
account nonsense-mediated decay allowed the authors to explain some previously published
experimental results. Finally, in plants, incomplete splicing might be associated with gene
silencing [111, 65].

16.10 Impact of Alternative Splicing on Protein Structure
and Function

Several studies reported relatively high frequency of alternative splicing of genes involved
in signal transduction[117, 78] and genes encoding proteins of the nervous and immune sys-
tems [117]. Array data show than similar tissues (e.g. stomach and duodenum, skeletal and
heart muscle, adult and fetal liver) express similar spectra of alternative splicing isoforms
[78]. Analysis of the domain structure of alternatively spliced protein isoforms demonstrat-
ed that alternative splicing tends to shuffle domains rather than disrupt domains or change
regions between domains [93].The data were compared to several types of random controls
aimed at eliminating general correlation of all (not necessarily alternatively spliced) exons
and domains as a source of the observed tendency. This was done by fixing the observed
domain structure and considering all possible placements of alternatively spliced regions on
the protein. Further, those alternative-splicing events that influenced domains and were
sufficiently short so as not to disrupt domains completely, were shown to target protein
functional sites. Some particular cases were considered in detail in [19]. However, sim-
ilar analysis of interacting proteins demonstrated lack of correlation between contacting
residues and alternatively spliced regions[126]. Analysis of EST-derived isoforms by com-
parison with PFAM domain annotations demonstrated that alternative splicing frequently
targets domains involved in cellular (annexin and collagen), protein-protein (KRAB do-
mains, ankyrin repeats, Kelch domains) and protein-DNA (zinc fingers, SANT domains,
homeodomains) interactions [135].However, there was no significant increase in the rate of
splicing of such domains, and, as noted by the authors, the observation may simply reflect
the relative frequency of such domains in the human genome. The same conclusion was
reached for mouse genes in [184]. One domain, likely involved in adhesion, and preferential-
ly observed in cancer-specific isoforms, was identified by sequence comparison and named
AMOP [37]. Prediction of transmembrane segments in products of alternatively spliced
genes showed no significant preference of alternative splicing to target transcript fragments
encoding such segments[40]. More exactly, specific targeting was observed only in the case
of proteins with single transmembrane segments and likely reflected alternative splicing of
signal peptides. Finally, comparison of alternative splicing data and SCOP structural as-
signments yielded preferential splicing of genes encoding proteins with α/β(alternating α
and β secondary structure elements)domains compared to proteins with α+β (separatedα
and β structural elements) or small domains [75]. However, the details of the normaliza-
tion procedure were not given, and there remains a possibility that this simply reflects the
relative frequency of such domains.

Computational Analysis of Alternative Splicing 16-17

16.11 Evolutionary Origin of Alternative Splicing

An attempt to reconcile the comparative and functional data wasmade in [134], where
skipped exons and alternative splicing sites from five genomes (human, mouse, rat, ze-
brafishDanio rerio, and fruit fly Drosophila) were considered. For each exon, an attempt
was made to identify orthologous exons using the HomoloGene database [172] for verte-
brates and BLAST for Drosophila. The frequency of frame-preserving(with length divisible
by three) constitutive exons was 40% (of all constitutive exons); frame-preserving cassette
exons formed 42% of human cassette exons and45% of mouse exons, exactly as expected
from the distribution of introns relative to codon positions. However, if an exon was ob-
served to be alternatively spliced in two species, it was frame-preserving in 53-73% of cases
(in human-mouse and human-rat pairs). Similarly, higher frequency of frame-preservation
was observed for alternative splicing events conserved in zebrafish and Drosophila ESTs.
A surprising result was higher frequency of frame preservation among minor isoform exons
and alternative splicing sites compared to major form and constitutive splicing events. This
and earlier[116] studies show very similar behavior of constitutive and major form exons
in terms of both frame-preservation and conservation in several genomes, whereas minor
form exons are mostly young and more often frame-preserving. The following explanation
was suggested: the major form exons are former constitutive exons that encountered com-
petition due to recent activation of cryptic splicing sites. On the other hand, the minor
form exons are young, and the fact that they have been fixed means that they produce
functional proteins; thus to become fixed, the exon should avoid disrupting the reading
frame of downstream exons. Several studies addressed the problem of origin of new iso-
forms.Analysis of alternative (mutually exclusive) exons demonstrated that at least 9%of
them are reliably homologous, that is, arose from tandem exon duplication [87]. This is
likely an underestimate,as such exons are often short and thus residual similarity might
be unnoticeable or insufficiently significant. Notably, in approximately half of cases the
length of alternative regions was not a multiple of 3, and thus both alternative variants
could not be present in mRNA without disrupting the reading frame. Thus the isoforms
were mutually exclusive immediately after the duplication. When orthologs from several
species were known, an upper limit on the time of duplication could be set. It turned out
that many duplications are common to mammals, some to mammals and birds, amphibiae,
fishes, and even mammals and nematodes. However,some duplications occurred in the last
common ancestor of mouse and rat. The number of genes for which such dating could
be made is rather small, so no general inferences can be made. Moreover,in some cases
the situation may be obscured by secondary loss of alternative exons: one such example is
skipped exon of lactadherin that is present in mouse and some other species, but lost in
human [18]. A similar study started with identification of all genes with duplicated exons
[101]. To avoid artifacts caused by mis-annotation of genes, each exon was compared to
adjacent introns, and possible non-functional exons were filtered out based on a number
of criteria such as absence of in-frame stop-codons.Exact duplications that likely resulted
from genome mis-assembly were also removed. Hypothetical and EST-confirmed duplicated
exons had the same statistical features, such as the ratio of non-synonymous and synony-
mous substitution rates. The fraction of genes with duplicated exons was 11% in human,
7% in fruitfly D. melanogaster and 8% in nematode C. elegans. In about 60% of cases
the length of alternative exons was not a multiple of 3 (close to random expectation), and
thus they are likely mutually exclusive exons. On the other hand, in less than 1% of cases
there was EST evidence for inclusion of both exons. Thus the vast majority of duplicated
exons are likely to be alternative exons. Notably,in some cases the difference between the
duplicated exons map to functional sites of proteins and would likely result in changes in

16-18 Handbook of Computational Molecular Biology

the protein function, e.g. by creating dominant negative isoforms with regulatory function
(cf. discussion of[93] in the previous section). A clear example of independent duplica-
tions creating alternative exons is provided by several groups of ion channels in genomes
of insects (drosophila and mosquito), vertebrates(human, mouse and fugu, and nematodes
C. elegans and C. briggsae)[41]. In three groups of orthologous ion channels,homologous
exons were duplicated independently in these three lineages, creating mutually exclusive
pairs or triples of exons.In other members of the family, the corresponding exons are not
duplicated and are constitutive. Another source of alternative (in this case, skipped) exons
is exonization of non-coding regions. About 5% of internal alternative exons originate from
Alu sequences, whereas no copies of Alu were found in constitutive exons [148]. Most (84%)
Alu-derived exons in coding regions change the reading frame or introduce in-frame stop
codons; they are mainly included in minor isoforms. At that, several different positions
in the Alu consensus were utilized as splicing sites, both donor and acceptor, mainly in
the minus (polyT-containing) Alu strand. The two most commonly used positions are two
AG dinucleotides that are only two nucleotides apart [102]. If both AG’s are present, the
upstream one is used unless it is preceded by a purine, thus having a very weak match
to the consensus in position +3. In such cases the downstream AG is functional. This
observation conforms to the experimental data with mutated sites. Moreover, the balance
between competing sites was shown to be essential for alternative splicing, as opposed to
constitutive exon skipping or inclusion. An attempt to analyze all types of events lead-
ing toinsertions/deletions in proteins was made in [88].To distinguish between insertions
and deletions, bacterial and yeast orthologs of alternatively spliced genes as well as protein
domain signatures from PFAM and SMART databases were considered as outgroups.The
ancestral state was reliably predicted in 73 cases, in which25 of alternatively spliced regions
were insertions and 48were deletions. Inserted alternative regions never involved more than
one exon. Recently duplicated families of paralogs provide a window through which one can
study evolution of alternative splicing at short time periods. One such family is the MAGE-
A family ofcancer/testis-antigens [139]. This family of at least thirteen genes resulted from
multiplication of a common ancestor after the divergence of the primate and rodent lin-
eages. The ancestral gene was generated by retroposition of a processed mRNA[34]. None
of the MAGE-A genes have introns in the protein-coding region. However, the analysis of
the5-untranslated region revealed multiple alternatively spiced introns [5]. Since the genes
in this family are sufficiently close to each other to make multiple alignment of non-coding
regions possible, one can infer the ancestral state at most alignment positions. After that,
one can observe both creation of new exons and splicing sites by mutations activating cryp-
tic sites, and loss of isoforms by mutations disrupting or weakening existing sites. This
provides a snapshot of a transitional state in the history of this gene family.

16.12 Regulation of Alternative Splicing

Analysis of regulation of alternative splicing proceeds in two major directions. One of them
is comparison of features of constitutive and alternative splicing sites, and the other,analysis
of regulatory sites such as splicing enhancers and silencers. The positional nucleotide fre-
quencies of splicing sites at the boundaries of cassette non-conserved exons was claimed to
be the same as in constitutive splicing sites [116]. However, other studies reported weaker
consensus of alternative sites, compared to constitutive site. Thus, neuron-specific exons
were shown to have weaker consensus at positions −3(C) and +4(A) of the donor site and
−3(C) (with increased frequency of A) of the acceptor site as well as weaker polypyrim-
idine tract[155]. A similar trend was observed in a subsequent study of a larger dataset,

Computational Analysis of Alternative Splicing 16-19

with difference in the donor sites of cassette and constitutive exons most pronounced in
positions+4(A) and +5(G) [156]. Similarly, in mouse,alternative donor sites have weaker
positions +4(A) and +5(G)and there are weaker positions −5(Y) and −6(Y) of acceptor
sites [184]. Cryptic (minor form) exons tend to have even weaker sites compared to skipped
(major form) exons[38]. A special case is that of GC–AG introns. Such introns are rather
rare (less than 1% of humanintrons) [27, 28], but much more frequent among sites involved
in alternative splicing [163].Constitutive GC donor sites have a stronger match to the con-
sensus in the remaining positions [27]. However, there is a subset of alternative GC donor
sites that have a weak match to the consensus [163]. In such introns the corresponding
acceptor sites have stronger match to the consensus at positions+1 and +2 compared to
acceptor sites of GT–AG introns with weak donor sites or weak polypyrimidine tracts. Thus
it seems tobe a specific mechanism facilitating regulation of alternative splicing. Further,
there was increased frequency of GC in alternative donor sites. Vice versa, 62% of observed
GC–AG introns were alternative. Similar analysis performed on the data from nematode
C. elegans produced somewhat less spectacular results [54]. Most GC–AGintrons (185 of
196 which is less than 1% of all introns in this genome) were not alternatively spliced. Of
26 cases when orthologous introns were available in a related C. briggsaegenome, only 5
introns retained C at position +2. However, in one of such cases (tenth intron of the let-2
gene) it was shown that C(+2) is essential for regulated splicing. Thus, as in human, it
seems that a subpopulation of GC donor sites indeed are essential for regulation. As more
genomes become available,this analysis could be repeated for other pairs of genomes such
as two Drosophila species or human and mouse. Comparison of oligonucleotide distribution
of alternative and constitutive exons produced no consistent pattern. Some purine-rich
motifs related to known splicing enhancers were over-represented both in constitutive and
alternative exons [156, 184],whereas pyrimidine-rich motifs were over-represented in alter-
native exons compared to constitutive exons both in human[156] and mouse [184]. The
input data for mass analysis of splicing enhancers are SELEX[160, 161], in vivo [42] or in
vitro [166, 108, 140] selection from a pool of random sequences as well as identification
of individual binding sites for regulatory proteins [95], in particular by analysis of disease
alleles [30, 154]. Then the selected sequences are analyzed in order to determine a common
core. Several thus identified signals were purine-rich motifGGGGA/GGAGGA/GGAGA,
pyrimidine-rich motif UCUCC/UCUUC/UCCUC,motifs GGACCNG and cCACCc, all of
which were similar to naturally occurring enhancers [140]. Recall, however, that splicing
enhancers occur not only in alternative, but also in constitutive exons. A SELEX proce-
dure complemented by the Gibbs sampler analysis of selected sites identified binding signals
SRSASGA for SF2/ASF,ACDGS for SRp40, and ASCGKM for SRp55; all of these signals
differed significantly from signals identified in earlier studies and from known sites in real
genomic sequences, indicating that the derived signal might be highly sensitive to the de-
tails of the used experimental technique [108]. This makes it difficult to develop methods
for in silico identification of enhancer sites. On the other hand, some regions known to be
involved in regulation of alternative splicing were enriched in candidate enhancers. Further,
the observed degeneracy in the enhancer consensuses could answer a functional requiremen-
t to reconcile the enhancer sites with the protein-coding message. At that, the functional
specificity could be achieved by clustering of multiple sites and co-operative binding of SR-
proteins to these sites.Based on this and other studies, a procedure for identification of
candidate splicing enhancers for SF2/ASF, SC35, SRp40, and SRp55was developed (ES-
Efinder, http://exon.cshl.edu/ESE/[31]. ESEfinder analysis can be useful for assessment
of the implications of silent mutations in synonymous codon positions; however, as the clus-
tering of candidate sites is not taken into account, it cannot be used for identification of
splicing enhancers de novo. This program was used to establish that more than half of

16-20 Handbook of Computational Molecular Biology

single-base mutations causing aberrant exon skipping fall into predicted enhancers [107].
A different approach is to start from computational identification of candidate enhancer
signals with subsequent experimental verification of obtained results [51]. Known splicing
enhancers up-regulate weak splicing sites. Thus each word(hexanucleotide in [51]) can be
characterized by its frequency in exons in general, upstream of weak(non-consensus) donor
sites and downstream of weak acceptor sites.Hexanucleotides enriched in the vicinity of
weak splicing sites,as compared to exonic sequences in general, were clustered by similarity
and, based on the above assumption, predicted to be splicing enhancer signals. Notably,
there was considerable similarity between acceptor site and donor site enhancers. One of
the most prominent signals, GAAGAA, was identified in a number of natural exons and
shown to be important for the regulation of splicing by point mutagenesis in mini gene
constructs. Again, the degeneracy of the identified signals is so high, that about 10%of all
hexanucleotides match the predicted signals, and each human exon contains three to seven
candidate sites. However, exons flanked by weak donor and acceptor splicing sites are slight-
ly enriched in candidate enhancer sites, while there was no significant difference between
cassette and constitutive exons. Finally, it is possible to take advantage from the fact that
while there seems to be no sharp difference between enhancers of constitutive and alternative
splicing, some genes are not spliced at all. Indeed, the oligonucleotide composition of these
two groups of genes, taking into account the reading frame, was significantly different [55].
However, this difference could not be ascribed to a small group of specific oligonucleotides;
rather, it was due to numerous small variations.Further, the list of oligonucleotides with
frequencies showing the greatest difference between intron-containing and intronless genes
had little intersection with known enhancers. Similarly, a higher fraction of synonymous
SNPs (single nucleotide polymorphisms) in single-exon genes compared to intron-containing
genes demonstrates that exons in spliced genes contain regulatory elements[109]. In intron-
s, comparison of regions downstream of brain- and muscle-specific and constitutive exons
demonstrated over-representation of the UGCAUG hexanucleotide [25].Indeed, in some cas-
es it is known to function as an intronic splicing enhancer [95]. Intron regions adjacent to
alternatively exons tend to be more conserved in the human and mouse genes than regions
adjacent to the constitutive exons [147]. 77%of conserved alternative exons were flanked on
both sides by long conserved intronic sequences, compared to only 17% of constitutive ex-
ons. The average length of both upstream and downstream conserved sequences was about
100 nt, whereas the degree of conservation in the upstream introns was slightly higher,
88% compared to 80% in downstream introns, although this might be due to the influence
of the polypyrimidine tract in acceptor sites, where the functional pressure decreases the
effective alphabet size. The UGCAUG hexanucleotide was over-represented in conserved
downstream intronic regions adjacent to alternative exons, but neither downstream of con-
stitutive exons, nor in upstream conserved intronic regions. In most cases(93%) UGCAUG
within conserved regions was conserved itself.This coincides with the observation that UG-
CAUG hexanucleotides downstream of cassette exons tend to be conserved between human
and mouse if they occur within conserved regions [46]and demonstrates that such hexanu-
cleotides are likely functionally relevant, but only when placed in suitable sequence context.
It is likely that they might be binding sites for a regulatory factor acting in co-operation
with additional regulatory proteins. Increased conservation in intronic regions adjacent to
skipped exons, alternative donor and acceptor sites was demonstrated also in [158]. More-
over, this increased conservation was observed within exons as well, especially in the regions
between alternative splicing sites. Similarly, relative decrease of the fraction of synonymous
SNPs near exon termini was demonstrated in[109]. This also might reflect the increas-
ing number of regulatory elements in these regions; however, in this study alternative and
constitutive exons were not distinguished. However, given small size of sites regulating

Computational Analysis of Alternative Splicing 16-21

splicing, it is difficult to find conserved functional sites on the background of conserved
protein-coding message: splicing-related conservation in non-synonymous positions cannot
be distinguished from amino acid conservation in the protein, and thus only synonymous
positions can be analyzed. The information in pairwise comparisons is clearly insufficient to
find conserved regulatory sites within protein-coding regions. However, if more sequences
are available,the conservation becomes more significant, and thus highly conserved sites
can be analyzed. An analytical theory for such analysis, that is, estimation of nucleotide
sequence conservation conditioned on encoded amino acid sequences, was developed in[16].
All types of alternative events (cassette exons and alternative sites) and various types of
regions(intronic, exonic/intronic dependent on the isoform, purely exonic) were studied in
[138]. One notable observation was observed prevalence of poly-G motifs in the vicinity of
alternative splicing. It agrees both with experimental data showing that some such motifs
function as intronic splicing enhancers [110], and with early statistical studies that demon-
strated elevated frequency of such motifs near intronboundaries[59, 124, 125, 48, 109]and in
short introns [110], [105]. Two motifs, one enriched in C and composed of CTCC/CCTCCC
repeats, and the other enriched in G and composed of AGGG repeats, were observed up-
stream and downstream of cassette (skipped) exons in[112], again in agreement with earlier
studies where alternatively and constitutively spliced genes were not distinguished [109].
It was suggested that such sites form alternative secondary structure that lead to exon
skipping when complementary sites from the upstream and downstream introns form stems
with the exon in the loop region.

16.13 Concluding Remarks: Why Is Alternative Splicing So
Prevalent?

In the mosaic of observations described above, one can discern several common motifs such
as tissue and cancer specificity of alternative isoforms, frame preservation and nonsense-
mediated decay, old (conserved) and young (species-specific) elementary alternatives, inter-
play between alternative splicing and protein structural domains and functional patterns.

Initially most studies addressed these problems separately.Notably, despite differences
in the data collection and statistical methods, the obtained results were remarkably con-
sistent. However, the interpretation of the results was difficult as it was not clear whether
all observed isoforms and elementary alternatives were indeed functional. Computational
studies of the second generation look at several features at once. This uncovered various de-
pendencies between theage of alternatives, their tissue specificity and inclusion level,frame
preservation, genome specificity etc. Similarly, modern databases attempt to collect all
these data. In fact, it is possible that there exist different subpopulations of alternative s-
plicing events. To uncover such subpopulations one needs to analyze all aspects of the data
simultaneously.Frame-preservation, nonsense-mediated decay and protein structure-related
features, tissue and cancer specificity, and inclusion levels can be compared for conserved and
non-conserved alternative splicing events and isoforms. In addition, for conserved isoforms
it might be interesting to compare the ratio of the rate of synonymous and non-synonymous
substitutions, Some preliminary observations indicate that there might be positive selection
acting on alternative regions [74]. To verify that, one should analyze also the distribution
of SNPs in constitutive and alternative regions, but to do that, one needs to restrict the
analysis to actually translated regions: here mere conservation of isoforms might be insuffi-
cient. A commonly accepted role of alternative splicing is the increase of protein diversity
[63]A less appreciated role of alternative splicing is the regulatory one. In addition to the
increasing number of individual observations, this role emerges as a likely explanation of

16-22 Handbook of Computational Molecular Biology

some computational observations. In particular, frequent alternative splicing on 5-ends of
transcripts can simplify the arrangements of complex transcriptional regulatory cassettes
regulating alternative promoters. On the other hand, frame-disrupting alternative splicing
events may be related to regulation via nonsense-mediated decay in animals and RNA in-
terference in plants. Finally, alternative splicing is a powerful mechanism of maintaining
protein identity. Indeed, a more direct mechanism is available to generate diverse proteins,
that is, gene duplication.On the other hand, in many cases the cell needs proteins that are
different in some regions but exactly the same in other domains. The most obvious case
is that of secreted,membrane-anchored, and cytoplasmic isoforms of some receptors. The
recognition domain remains the same, whereas the localization of the protein is determined
by the presence of a signal peptide or a transmembrane segment encoded by alternatively
spliced parts of the transcript. Another example is provided by isoforms that regulate other
isoforms by competitive binding to the same ligand without subsequent functional action.
It is clear that it would be difficult to maintain the necessary level of identity in duplicated
genes and their concerted evolution by purifying selection, whereas in alternative isoforms
it is achieved automatically. Of course, more analyses need to be done before these and
other questions are answered. At that, it should be noted that this review covers less than
five years of intensive studies. As more data become available from sequencing projects,
expression arrays, and proteomic studies, more exact and detailed analyses become possi-
ble. In particular, it will be extremely interesting to analyze multiple vertebrate genomes.
There already is sufficient data to analyze other groups of genomes: to compare alterna-
tive splicing in the genomes of fruit flies D. melanogaster and D. pseudoobscura, and to
compare it with the alternative splicing of the malaria mosquito Anopheles gambiae; and
the nematodes Caernorhabditis elegans and C.briggsae. In both cases, several genomes are
available,supplemented by more or less extensive EST and cDNA data for one member of
the group (D. melanogaster and C. elegans)respectively. I would not be surprised if such
studies are published while this book is completed and printed.

16.14 An Update

Several new studies were published after this chapter was completed. Mainly they continue
the trends discussed in the main text, but sometimes add a new twist to the old observations
or provide a new angle to look at the data. Two recent reviews are [96] on the evolution
of alternative splicing and [100] on the use of microarrays for the analysis of alternative
splicing. Application of the PSEP program for gene identification base onEST and com-
parative genome analysis demonstrated alternative splicing of approximately 75% human
genes in standard well-curated datasets (ROSETTA and chromosome 20), with about25%
elementary alternatives not conserved between human and mouse. This agrees well with the
earlier estimates[36]. The alternative splicing rate in different species defined as the average
number of alternative isoforms per gene (as opposed to the fraction of alternatively spliced
genes) was measured in[85]. The authors suggested that this number is larger in mammals
compared to the C. elegans and Drosophila.However, as demonstrated in [49], this is like-
ly a result of artifacts in data (using EST contigs instead of raw ESTs). Several studies
addressed evolution and origin of alternative splicing. The origins of alternative splicing
have been studied in [6], where it has been demonstrated that the information content of
donor splicing sites decreases from budding yeast Saccharomyces cerevisiae to fission yeast
Schisosaccharomyces pombe to metazoans. This coincides with increase of the number in-
trons and emergence of alternative splicing. The author suggests that gradual weakening of
the donor site consensus and change in the structure of the donor site-U1snRNA allows for

Computational Analysis of Alternative Splicing 16-23

regulated splicing, consistent with the observation that alternative sites are generally weak-
er. Analysis of donor sites generated by exonisation of Alurepeats [150] demonstrated that
functional sites arise from either C-to-T mutation, creating a GT dinucleotide, or aG-to-A
mutation at intron position 3, that strengthens the GC-containing site. The observation
that mutation patterns are different in constitutive and cassette exons and in introns adja-
cent to such exons [102], lead to creation of a program for identification of cassette exons
based mainly on comparison of human and mouse orthologs [153]. Another program by
the same group uses the support vector machine to combine sequence features for the same
recognition task, achieving 50%sensitivity and .5% specificity of discrimination of cassette
exons from constitutive ones [47]. Most studies described in the main text centered on
finding tissue-specific isoforms. A converse problem was addressed in[181], where tissues
expressing the highest fraction of known isoforms were identified. Three clear winners were
brain,liver, and testis. At that, brain and testis demonstrated the largest diversity of cas-
sette exons, whereas liver had the most diverse choice of alternative donor and acceptor
sites. Expression profiles of splicing factors were considered, and it was demonstrated that
the adult liver was an outlier, having the most specific pattern of splicing factor expression.
Sequence motifs that could be responsible for alternative splicing in the three tissues with
highest isoform diversity were identified and some of them were shown to be similar to
known splicing regulatory sites. A program for identification of tissue-specific alternative
splicing using microarray expression data was presented in[97]. All types of events, includ-
ing alternative sites,skipped and mutually exclusive exons, alternative initial and terminal
exons could be detected with 75−80% validation rate byRT-PCR. The program RESQUE-
ESE for identification of candidate regulatory sites, in particular, exonic splicing enhancers,
was implemented as a Web server (http://genes.mit.edu/burgelab/rescue-ese/)[52],
and applied to several types of analysis. It was demonstrated that exonic splicing enhancer
patterns are similar in vertebrates, whereas the intronic signals are different in mammals
and fish [182]. This agrees with the fact that SR-proteins,binding to exonic splicing en-
hancers, are conserved invertebrates, whereas hnRNPs, binding to introns, are more diverse
both in domain composition and genomic content. Analysis of human SNPs and comparison
with the chimpanzee genome as an outlier allowing for the identification of ancestral alleles
demonstrate that mutations disrupting predicted exonic splicing enhancers,especially those
close to exon boundaries, are subject to purifying selection [50]. Another group of regu-
latory sites, exonic splicing silencers, were studied in a combination of computational and
experimental (in vivo splicing reporter system) approaches [171].Several identified motifs
were similar to known binding signals of hnRNPs H and A1. This analysis lead to devel-
opment of the ExonScan program which simulates splicing by analysis of potential splicing
motifs. Analysis of full-length isoforms generated by human and mouse cDNA sequencing
projects demonstrated that minor isoforms more often contain premature stop codons that
could lead to nonsense-mediated decay (NMD) than major ones (11.1% and 4.7% respec-
tively),and the effect is even more pronounced for genes from the X chromosome, where
the overall frequency of premature stop codons is lower compared to autosomes [177]. This
suggests mean that NMD reduces selection against aberrant mRNAs that could yield dom-
inant negative phenotypes. Minor, but statistically significant differences between amino
acid frequencies in constitutively and alternatively spliced genes were observed in [188]. The
value of these observations is not clear, as the direction of change is not only inconsistent
between mammals, C. elegans and Drosophila, but in sometimes even within mammals (hu-
man, mouse, rat and bovine). On the other hand, alternatively spliced genes consistently
produced longer proteins. It might be interesting to compare amino acid usage in consti-
tutive and alternative regions. Several papers addressed alternative splicing of individual
genes or gene families. It has been demonstrated that the expression profiles of splicing

16-24 References

factors are different in normal and malignant ovarian tissue, which may explain observed
changes in alternative splicing of the CD44 gene in ovarian and breast cancers[154]. High
conservation of intronic sites regulating alternative splicing of fibroblast growth receptors
from the FGRF family in metazoans from sea urchin to mammals was shown in[114].

Acknowledgements

This study was supported by grants from the Ludwig Institute of Cancer Research (CRDF
RB0-1268), the Howard Hughes Medical Institute (55000309), the Russian Fund of Basic
Research(04−04−49440), and programs “Molecular and Cellular Biology”and “Origin and
Evolution of the Biosphere” of the Russian Academy of Sciences.

References

[1] M. Adams, J.L. Jones, R.A. Walker, and J.H. Pringle et al. Changes in Tenascin-C
isoform expression in invasive and preinvasive breast disease. Cancer Res., 62:3289–
3297, 2002.

[2] M.D. Adams, A.R. Kerlavage, R.D. Fleischmann, and R.A.Fuldner et al. Initial
assessment of human gene diversity and expression patterns based upon 83 million
nucleotides of cDNA sequence. 1995, 377:3–174, 1995.

[3] S.F. Altschul, T.L. Madden, A.A. Schaffer, and J. Zhang et al. Gapped BLAST and
PSI-BLAST: A new generation of protein database search programs. Nucleic Acids
Res., 1997:3389–3402, 1997.

[4] R. Apweiler, A. Bairoch, C.H. Wu, and W.C. Barker et al. UniProt: the universal
protein knowledgebase. Nucleic Acids Res., 32:D115–D119, 2004.

[5] I.I. Artamonova and M.S. Gelfand. Evolution of the exon-intron structure and al-
ternative splicing of the MAGE-A family of cancer/testis antigens. J. Mol. Evol.,
69:620–631, 2004.

[6] G. Ast. How did alternative splicing evolve? Nature Rev. Genet., 5:773–782, 2004.
[7] A.V. Baranova, A.V. Lobashev, D.V. Ivanov, and L.L. Krukovskaya et al. In silico

screening for tumour-specific expressed sequences in human genome. FEBS Lett.,
508:143–148, 2001.

[8] S. Batzoglou, L. Pachter, J.P. Mesirov, and B. Berber et al. Human and mouse gene
structure: comparative analysis and application to exon prediction. Genome Res.,
10:950–958, 2000.

[9] E. Beaudoing, S. Freier, J. Wyatt, and J.M. Claverie et al. Patterns of variant
polyadenylation signals in human genes. Genome Res., 10:1001–1010, 2000.

[10] E. Beaudoing and D. Gautheret. Identification of alterantive polyadenylation sites
and analysis of their tissue distribution using EST data. Genome Res., 11:1520–1526,
2001.

[11] D.A. Benson, I. Karsch-Mizrachi, D.J. Lipman, and J. Ostell et al. GenBank: update.
Nucleic Acids Res., 32:D23–D26, 2004.

[12] S.M. Berget. Exon recognition in vertebrate splicing. J. Biol. Chem., 270:2411–2414,
1995.

[13] S.M. Berget, C. Moore, and P.A. Sharp. Spliced segments at the 5’ terminus of
adenovirus 2 late mRNA. Proc. Natl. Acad. Sci. USA, 74:3171–3175, 1977.

[14] A.J. Berk and P.A. Sharp. Structure of the adenovirus 2 early mRNAs. Cell, 14:695–

References 16-25

711, 1978.
[15] A. Bernal, U. Ear, and N. Kyrpides. Genomes online database (GOLD): a monitor

of genome projects world-wide. Nucleic Acids Res., 29:126–127, 2001.
[16] M. Blanchette. A comprarative method for detecting binding sites in coding regions.

Annu. Int. Conf. on Research in Computational Molecular Biology RECOMB’03,
7:57–65, 2003.

[17] P. Bonizzoni, G. Pesole, and R. Rizzi. A method to detect gene structure and al-
ternative splice sites by agreeing ESTs to a genomic sequence. Lecture Notes in
Bioinformatics (WABI’2003), 2812:63–77, 2003.

[18] S. Boue, I. Letunic, and P. Bork. Alternative splicing and evolution. BioEssays,
25:1031–1034, 2003.

[19] S. Boue, M. Vingron, E. Kriventseva, and I. Koch. Theoretical analysis of alternative
splice forms using computational methods. Bioinformatics, 18:S65–S73, 2002.

[20] R. Breathnach and P. Chambon. Organization and expression of eucaryotic split
genes coding for proteins. Annu. Rev. Biochem., 50:349–383, 1981.

[21] R.E. Breitbart, A. Andreadis, and B. Nadal-Ginard. Alternative splicing: A ubiq-
uitious mechanism for the generation of multiple protein isoforms from single genes.
Annu. Rev. Biochem., 56:467–495, 1987.

[22] D. Brett, J. Hanke, G. Lehmann, and S. Haase et al. EST comparison indicates 38%
of human mrnas contain possible alternative splice forms. FEBS Lett., 474:83–86,
2000.

[23] D. Brett, W. Kemmner, G. Koch, and C. Roefzaad et al. A rapid bioinformatic
method identifies novel genes with direct clinical relevance to colon cancer. Oncogene,
20:4581–4585, 2001.

[24] D. Brett, H. Pospisil, J. Valcarcel, and J. Reich et al. Alternative splicing and genome
complexity. Nature Genet., 30:29–30, 2002.

[25] M. Brudno, M.S. Gelfand, S. Spengler, and M. Zorn et al. Computational analy-
sis of candidate intron regulatory elements for tissue-specific alternative pre-mRNA
splicing. Nucleic Acids Res., 29:2338–2348, 2001.

[26] J. Burke, H. Wang, W. Hide, and D.B. Davison. Alternative gene form discovery
and candidate gene selection from gene indexing projects. Genome Res., 8:276–290,
1998.

[27] M. Burset, I.A. Seledtsov, and V.V. Solovyev. Analysis of canonical and non-canonical
mammalian splice sites. Nucleic Acids Res., 28:4364–4375, 2000.

[28] M. Burset, I.A. Seledtsov, and V.V. Solovyev. SpliceDB: database of canonical and
non-canonical mammalian splice sites. Nucleic Acids Res., 29:255–259, 2001.

[29] A.A. Camargo, H.P. Samaia, E. Dias-Neto, and D.F. Simao et al. The contribution
of 700,000 ORF sequence tags to the definition of the human transcriptome. Proc.
Natl. Acad. Sci. USA, 98:12103–12108, 2001.

[30] L. Cartegni, S.L. Chew, and A.R. Krainer. Listening to silence and understanding
nonsense: exonic mutations that affect splicing. Nature Rev. Genet., 3:285–297,
2002.

[31] L. Cartegni, J. Wang, Z. Zhu, and M.Q. Zhang et al. ESEfinder: a web resource to
identify exonic splicing enhancers. Nucleic Acids Res., 31:3568–3571, 2003.

[32] P. Castellani, L. Borsi, B. Carnemolla, and A. Biro et al. Differentiation between
high- and low-grade astrocytoma using a human recombinant antibody to the extra
domain-b of fibronectin. Am. J. Pathol., 161:1695–1700, 2002.

[33] J. Castle, P. Garrett-Engele, C.D. Armour, and S.J. Duenwald et al. Optimization
of oligonucleotide arrays and RNA amplification protocols for analysis of transcript
structure and alternative splicing. Genome Biol., 4:R66, 2003.

16-26 References

[34] P. Chomez, O. De Backer, M. Bertrand, and M. De Plaen et al. An overview of
the MAGE gene family with the identification of all human members of the family.
Cancer Res., 61:5544–5551, 2001.

[35] L.T. Chow, R.E. Gelinas, T.R. Broker, and R.J. Roberts. An amazing sequence
arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell, 12:1–8, 1977.

[36] T.J. Chuang, F.C. Chen, and M.Y. Chou. A comparative method for identification
of gene structures and alternatively spliced variants. Bioinformatics, 20:3064–3079,
2004.

[37] F.D. Ciccarelli, T. Doerks, and P. Bork. AMOP, a protein module alternatively
spliced in cancer cella. Trends Biochem. Sci., 27:113–115, 2002.

[38] F. Clark and T.A. Thanaraj. Categorization and characterization of transcript-
confirmed constitutively and alternatively spliced introns and exons from human.
Hum. Mol. Genet., 11:451–464, 2002.

[39] T.A. Clark, C.W. Sugnet, and Jr M. Ares. Genomewide analysis of mRNA processing
in yeast using splicing-specific microarrays. Science, 2002:907–910, 2002.

[40] M.S. Cline, R. Shigeta, R.L. Wheeler, and M.A. Siani-Rose et al. The effects of
alternative splicing on transmembrane proteins in the mouse genome. Pac. Symp.
Biocomput., pages 17–28, 2004.

[41] R.R. Copley. Evolutionary convergence of alternative splicing in ion channels. Trends
Genet., 20:171–176, 2004.

[42] L.R. Coulter, M.A. Landree, and T.A. Cooper. Identification of a new class of exonic
splicing enhancers by in vivo selection. Mol. Cell. Biol., 17:2143–2150, 1997.

[43] E. Coward, S.A. Haas, and M. Vingron. Splicenest: visualization of gene structure
and alternative splicing based on EST clusters. Trends Genet., 18:53–55, 2002.

[44] M.S. Cragg, H.T. Chan, M.D. Fox, and A. Tutt et al. The alternative transcript
of CD79b is overexpressed in B-CLL and inhibits signaling for apoptosis. Blood,
100:3068–3076, 2002.

[45] L. Croft, S. Schandorff, F. Clark, and K. Burrage et al. ISIS, the intron informa-
tion system, reveals the high frequency of alternative splicing in the human genome.
Nature Genet., 24:340–341, 2000.

[46] S. Denisov and M.S. Gelfand. Conservativity of the alternative splicing signal UG-
CAUG in the human and mouse genomes. Biofizika, 48:30–35, 2004.

[47] G. Dror, R. Sorek, and R. Shamir. Accurate identification of alternatively spliced
exons using support vector machine. Bioinformatics, page Nov 5, 2004.

[48] J. Engelbrecht, S. Knudsen, and S. Brunak. G+c-rich tract in 5’ end of human introns.
J. Mol. Biol., 227:108–113, 1992.

[49] W.G. Fairbrother, D. Holste, C.B. Burge, and P.A. Sharp. Reply to [85]. Nat. Genet.,
36:916–917, 2004.

[50] W.G. Fairbrother, D. Holste, C.B. Burge, and P.A. Sharp. Single nucleotide
polymorphism-based validation of exonic splicing enhancers. PloS Biology, 2:e268,
2004.

[51] W.G. Fairbrother, R.-F. Yeh, P. Sharp, and C.B. Burge. Predictive identification of
exonic splicing enhancers in human genes. Science, 297:1007–1013, 2002.

[52] W.G. Fairbrother, G.W. Yeo, R. Yeh, and P. Goldstein et al. Variation in alternative
splicing across human tissues. Nucleic Acids Res., 32:W187–W190, 2004.

[53] FANTOM2 Consortium and the RIKEN GSC Genome Exploration Group Phase I &
II Team. Analysis of the mouse transcriptome based upon functional annotation of
60,770 full length cDNAs. Nature, 420:563–573, 2002.

[54] T. Farrer, A.B. Roller, W.J. Kent, and A.M. Zahler. Analysis of the role of caenorhab-
ditis elegans GC-AG introns in regulated splicing. Nucleic Acids Res., 30:3360–3370,

References 16-27

2002.
[55] A. Fedorov, S. Saxonov, L. Fedorova, and I. Daizadeh. Comparison of intron-

containing and intron-lacking human genes elucidates putative exonic splicing en-
hancers. Nucleic Acids Res., 29:1464–1469, 2001.

[56] C.M. Feltes, A. Kuda, O. Blaschuk, and S.W. Byers. An alternatively spliced
cadherin-II enhances human breast cancer cell invasion. Cancer Res., 62:6688–6697,
2002.

[57] FlyBase Consortium. The flybase database of the drosophila genome projects and
community literature. Nucleic Acids Res., 31:172–175, 2003.

[58] D. Gautheret, Poirot. O., F. Lopez, and A. Audic et al. Expressed sequence tag
(EST) clustering reveals the extent of alternate polyadenylation in human mRNAs.
Genome Res., 1998:524–530, 1998.

[59] M.S. Gelfand. Statistical analysis of mammalian pre-mRNA splicing sites. Nucleic
Acids Res., 17:6369–6382, 1989.

[60] M.S. Gelfand, I. Dubchak, I. Dralyuk, and M. Zorn. ASDB: database of alternatively
spliced genes. Nucleic Acids Res., 27:301–302, 1999.

[61] J.H. Graber, C.R. Cantor, S.C. Mohr, and T.F. Smith. In silico detection of contronl
signals: mRNA 3′-end-processing sequences in diverse species. Proc. Natl. Acad.
Sci., 96:14055–14060, 1999.

[62] C. Grasso, B. Modrek, Y. Xing, and C. Lee. Genome-wide detection of alternative s-
plicing in expressed sequences using partial order multiple sequence alignment graphs.
Pacific Symp. Biocomput., 9:29–41, 2004.

[63] B. Graveley. Alternative splicing: increasing diversity in the proteomic world. Trends
Genet., 17:100–107, 2001.

[64] B.R. Graveley. Sorting out the complexity of sr functions. RNA, 6:1197–1211, 2000.
[65] B.J. Haas, N. Volofsky, C.D. Town, and M. Troukhan et al. Full-length messenger

RNA sequences greatly improve genome annotation. Genome Biol., 3:R29, 2002.
[66] J. Hanke, D. Brett, I. Zastrow, and A. Aydin et al. Alternative splicing of human

genes: more the rule than the exception? Trends Genet., 15:389–390, 1999.
[67] M.L. Hastings and A.R. Krainer. Pre-mRNA splicing in the new millennium. Curr.

Opin. Cell Biol., 13:302–309, 2001.
[68] S. Heber, M. Alekseev, S.-H. Sze, and H. Tang et al. Splicing graphs and EST

assembly problem. Bioinformatics, 18:S181–S188, 2002.
[69] W.A. Hide, V.N. Babenko, P.A. van Heusden, and C. Seoighe et al. The contribution

of exon-skipping events on chromosome 22 to protein coding diversity. Genome Res.,
11:1848–1853, 2001.

[70] R.T. Hillman, R.E. Green, and S.E. Benner. An unappreciated role for RNA surveil-
lance. Genome Biology, 5:R8, 2004.

[71] G.K. Hu, S.I. Madore, B. Moldover, and T. Jatkoe et al. Predicting splice variant
from DNA chip expression data. Genome Res., 11:1237–1245, 2001.

[72] H.D. Huang, J.T. Horng, C.C. Lee, and B.J. Liu. ProSplicer: a database of putative
alternative splicing information derived from protein, mRNA and expressed sequence
tag sequence data. Genome Biol., 4:R29, 2003.

[73] Y.H. huang, Y.T. Chen, J.J. Lai, and S. T. Yang et al. PALS db: Putative alternative
splicing database. Nucleic Acids Res., 30:186–190, 2002.

[74] K. Iida and H. Akashi. A test of translational selection at ’silent’ sites in the human
genome: base composition comparisons in alternatively spliced genes. Gene, 261:93–
105, 2000.

[75] T. Imanishi, T. toh, Y. Suzuki, and C. O’Donovan et al. Integrative annotation of
21,037 human genes validated by full-length cDNA clones. PloS Biology, 2:0001–

16-28 References

0020, 2004.
[76] International Human Genome Sequencing Consortium. Initial sequencing and analysis

of the human genome. Nature, 409:860–921, 2001.
[77] H. Ji, Q. Zhou, F. Wen, and H. Xia et al. AsMamDB: an alternative splice database

of mammals. Nucleic Acids Res., 29:260–263, 2001.
[78] J.M. Johnson, J. Castle, P. Garrett-Engele, and Z. Kan et al. Genome-wide survey

of human alternative pre-mRNA splicing with exon junction microarrays. Science,
302:2141–2144, 2003.

[79] Z. Kan, J. Castle, J.M. Johnson, and N.F. Tsinoremas. Detection of novel splice
forms in human and mouse using cross-species approach. Pacific Symposium in
Biocomputing, 9:42–53, 2004.

[80] Z. Kan, E.C. Rouchka, W.R. Gish, and D.J. States. Gene structure prediction and
alternative splicing analysis using genomically aligned ESTs. Genome Res., 11:889–
900, 2001.

[81] Z. Kan, D. States, and W. Gish. Selecting for functional alternative splices in ESTs.
Genome Res., 12:1837–1845, 2002.

[82] P. Kapranov, S.E. Cawley, J. Drenkow, and S. Bekiranov et al. Large-scale transcrip-
tional activity in chromosomes 21 and 22. Science, 296:916–919, 2002.

[83] W.J. Kent and A.M. Zahler. The intronerator: exploring introns and alternative
splicing in caenorhabditis elegans. Nucleic Acids Res., 28:91–93, 2000.

[84] P. Kersey, H. Hermjakob, and R. Apweiler. VARSPLIC: alternatively spliced protein
sequences derived from SWISS-PROT and TrEMBL. Bioinformatics, 16:1048–1049,
2000.

[85] H. Kim, R. Klein, J. Majewski, and J. Ott. Estimating rates of alternative splicing in
mammals and invertebrates. correspondence re [24]. Nat. Genet., 36:915–916, 2004.

[86] H. kochiwa, R. Suzuki, T. Wasio, and R. Saito et al. Inferring alternative splicing
patterns in mouse from a full-length cDNA library and microarray data. Genome
Res., 12:1286–1293, 2002.

[87] F.A. Kondrashov and E.V. Koonin. Origin of alternative splicing by tandem exon
duplication. Hum. Mol. Genet., 10:2661–2669, 2001.

[88] F.A. Kondrashov and E.V. Koonin. Evolution of alternative splicing: deletions, inser-
tions and origin of functional parts of proteins from intron sequences. Trends Genet.,
19:115–119, 2003.

[89] M. Koslowski, O. Tureci, C. Bell, and P. Krause et al. Multiple splice variants
of lactate dehydrogenase C selectively expressed in human cancer. Cancer Res.,
62:6750–6755, 2002.

[90] A. Krause, S.A. Haas, E. Coward, and M. Vingron. SYSTERS, GeneNest, SpliceNest:
exploring sequence space from genome to protein. Nucleic Acids Res., 30:299–300,
2002.

[91] M. Krawczak, J. Reiss, and D.N. Cooper. The mutational spectrum of single base-
pair substitutions in mRNA splice junctions of human genes: cases and consequences.
Hum. Genet., 90:41–54, 1992.

[92] A.M. Krecic and M.S. Swanson. hnRNP complexes: composition, structure, and
function. Curr. Opin. Cell Biol., 11:363–371, 1999.

[93] E.V. Kriventseva, I. Koch, R. Apweiler, and M. Vingron et al. Increase of functional
diversity by alternative splicing. Trends Genet., 19:124–128, 2003.

[94] T. Kulikova, P. Aldebert, N. Althorpe, and W. Baker et al. The EMBL nucleotide
sequence database. Nucleic Acids Res., 32:D27–D30, 2004.

[95] A.N. Ladd and T.A. Cooper. Finding signals that regulate alternative splicing in the
post-genomic era. Genome Biol., 3:R8, 2002.

References 16-29

[96] L.F. Lareau, R.E. Green, R.S. Bhatnagar, and S.E. Brenner. The evolving roles of
alternative splicing. Curr. Opin. Struct. Biol., 14:273–282, 2004.

[97] K. Le, K. Mitsouras, M. Roy, and Q. Wang et al. Detecting tissue-specific regulation
of alternative splicing as a qualitative change in microarray data. Nucleic Acids Res.,
35:e180, 2004.

[98] C. Lee. Generating consensus sequences from partial order multiple sequence align-
ment graphs. Bioinformatics, 19:999–1008, 2003.

[99] C. Lee, L. Atanelov, B. Modrek, and Y. Xing. ASAP: the alternative splicing anno-
tation project. Nucleic Acids Res., 31:101–105, 2003.

[100] C. Lee and M. Roy. Analysis of alternative splicing with microarrays: successes and
challenges. Genome Biol., 5:231, 2004.

[101] I. Letunic, R.R. Copley, and P. Bork. Common exon duplication in animals and its
role in alternative splicing. Hum. Mol. Genet., 11:1561–1567, 2002.

[102] G. Lev-Maor, R. Sorek, N. Shomron, and G. Ast. The birth of an alternatively spliced
exon: 3′ splice-site selection in alu exons. Science, 300:1288–1291, 2003.

[103] B.P. Lewis, R.E. Green, and S.E. Brenner. Evidence for the widespread coupling
of alternative splicing and nonsense-mediated mRNA decay in humans. Proc. Natl.
Acad. Sci. USA, 100:189–192, 2003.

[104] F. Liang, I. Holt, G. Pertea, and S. Karamycheva et al. Gene index analysis of the
human genome estimates approximately 120,000 genes. Nature Genet., 25:239–240,
2000.

[105] L.P. Lim and C.B. Burge. A computational analysis of sequence features involved in
recognition of short introns. Proc. Natl. Acad. Sci. USA, 98:11193–11198, 2001.

[106] F. Lisacek, M. Traini, D. Sexton, and J. Harry et al. Strategy for protein isofor-
m identification from expressed sequence tags and its application to peptide mass
sequencing. Proteomics, 1:186–193, 2001.

[107] H.X. Liu, L. Cartegni, M.Q. Zhang, and A.R. Krainer. A mechanism for exon skipping
caused by nonsense or missensenmutations in brca1 and other genes. Nature Genet.,
27:55–58, 2001.

[108] H.X. Liu, M. Zhang, and A.R. Krainer. Identification of functional exonic splicing
motifs recognized by individual sr proteins. Genes Dev., 12:1998–2012, 1998.

[109] J. Majewski and J. Ott. Distribution and characterization of regulatory elements in
the human genome. Genome Res., 12:1827–1836, 2002.

[110] A.J. McCullough and S.M. Berget. An intronic splicing enhancer binds U1 snRNPs
to enhance splicing and select 5′ splice sites. Mol. Cell. Biol., 20:9225–9235, 2000.

[111] M. Metzlaff, M. O’Dell, R. Hellens, and R.B. Flavell. Developmentally and transgene
regulated nuclear processing of primary transcripts of chalcone synthase A in petunia.
Plant J., 23:63–72, 2000.

[112] E. Miriami, H. Margalit, and R. Sperling. Cosnerved sequence elements associated
with exon skipping. Nucleic Acids Res., 31:1974–1983, 2003.

[113] A.A. Mironov, J.W. Fickett, and M.S. Gelfand. Frequent alternative splicing of human
genes. Genome Res., 9:1288–1293, 1999.

[114] N. Mistry, W. Harrington, E. Lsda, and E.J. Wagner et al. Of urchins and men:
Evolution of an alternative splicing unit in fibroblast growth factor receptor genes.
RNA, 9:209–217, 2004.

[115] B. modrek and C. Lee. A genomic view of alternative splicing. Nature Genet.,
30:13–19, 2002.

[116] B. Modrek and C.J. Lee. Alternative splicing in the human, mouse and rat genomes is
associated with an increased frequency of exon creation and/or loss. Nature Genet.,
34:177–180, 2003.

16-30 References

[117] B. Modrek, A. Resch, C. Grasso, and C. Lee. Genome-wide detection of alternative
splicing in expressed sequences of human genes. Nucleic Acids Res., 29:2850–2859,
2001.

[118] S.M. Mount. A catalogue of splice junction sequences. Nucleic Acids Res., 10:459–
472, 1982.

[119] Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis
of the mouse genome. Nature, 420:520–562, 2002.

[120] K. Nakai and H. Sakamoto. Construction of a novel database containing aberrant
splicing mutations of mammalian genes. Gene, 141:171–177, 1994.

[121] R.N. Nurtdinov, I.I. Artamonova, A.A. Mironov, and M.S. Gelfand. Low conservation
of alternative splicing patterns in the human and mouse genomes. Hum. Mol. Genet.,
12:1313–1320, 2003.

[122] R.N. Nurtdinov and I. Kosmodemyansky. The EDAS (EST-derived alternative splic-
ing) database. Int. Moscow Conf. on Computational Molecular Biology MCCM-
B’03, 1:171–172, 2003.

[123] R.N. Nurtdinov, A.A. Mironov, and M.S. Gelfand. Is alternative splicing of mam-
malian genes conservative? Biofizika (Moscow), 47:587–594, 2002.

[124] R. Nussinov. (A)GGG(A), (A)CCC(A) and other potential 3′ splice signals in primate
nuclear pre-mRNA sequences. Biochim. Biophys. Acta, 910:261–270, 1987.

[125] R. Nussinov. Conserved signals around the 5′ splice sites in eukaryotic nuclear pre-
cursor mRNAs: G-runs are frequent in the introns and C in the exons near both 5′

and 3′ splice sites. J. Biomol. Struct. Dynam., 6:985–1000, 1989.
[126] M. Offman, R.N. Nurtdinov, M.S. Gelfand, and D. Frishman. No statistical support

for correlation between the positions of protein interaction sites and alternatively
spliced regions. BMC Bioinformatics, 5:41, 2004.

[127] A. Parareda, J.C. Villaescusa, J. Sanchez de Toledo, and S. Gallego. New splicing
variants for human tyrosine hydroxylase gene with possible implications for the de-
tection of minimal residue disease in patients with neuroblastoma. Neurosci. Lett.,
336:29–32, 2003.

[128] E. Pauws, A.H. van Kampen, van De Graaf S.A., and J.J. de Vijlder. Heterogeneity
in polyadenylation cleavage sites in mammalian mRNA sequences: Implications for
SAGE analysis. Nucleic Acids Res., 29:1690–1694, 2001.

[129] H. Pospisil, A. Herrmann, R.H. Bortfeldt, and J.G. Reich. EASED: Extended alter-
natively spliced EST database. Nucleic Acids Res., 32:D70–D74, 2004.

[130] H. Pospisil, A. Herrmann, H. Pankow, and J.G. Reich. A database on alternative
splice forms on the integrated genetic map service. In Silico Biology, 3:0020, 2003.

[131] J. Rappsilber, U. Ryder, A.I. Lamond, and M. Mann. Large-scale proteomic analysis
of the human spliceosome. Genome Res., 12:1231–1245, 2002.

[132] V.B. Reddy, B. Thimmappaya, R. Dhar, and K.L. Subramanian et al. The genome
of simian virus 40. Science, 200:494–502, 1978.

[133] R. Reed. Initial splice-site recognition and pairing during pre-mRNA splicing. Curr.
Opin. Gen. Dev., 6:215–220, 1996.

[134] A. Resch, Y. Xing, A. Alekseenko, and B. Modrek et al. Evidence for a subpopulation
of conserved alternative splicing events under selection pressure for protein reading
frame preservation. Nucleic Acids Res., 32:1261–1269, 2004.

[135] A. Resch, Y. Xing, B. Modrek, and M. Gorlick et al. Assessing the impact of alter-
native splicing on domain interactions in the human proteome. J. Proteome Res.,
3:76–83, 2004.

[136] H. Saito, S. Nakatsuru, J. Inazawa, and T. Nishihira et al. Frequent association
of alternative aplicing of NER, a nuclear hormone receptor gene in cancer tissues.

References 16-31

Oncogene, 14:617–621, 1997.
[137] N.J. Sakabe, de Souza J.E., Galante P.A., and P.S. de Oliveira et al. ORESTES

are enriched in rare exon usage variants affecting the encoded proteins. C. R. Biol.,
326:979–985, 2003.

[138] H. Sakai and Maruyama O. Extensive search for discriminative features of alternative
splicing. Pacific Symposium in Biocomputing, 9:54–65, 2004.

[139] M.J. Scanlan, A.O. Gure, A.A. Jungbluth, and L. J. Old et al. Cancer/testis antigens:
an expanding family of targets for cancer immunotherapy. Immunologucal Rev.,
188:22–32, 2002.

[140] T.D. Schaal and T. Maniatisclark. Selection and characterization of pre-mRNA splic-
ing enhancers: Identification of novel SR protein-specific enhancer sequences. Mol.
Cell. Biol., 19:1705–1719, 1999.

[141] D. Schmucker, J.C. Clemens, H. Shu, and C. A. Worby et al. Dscam is an axon
guidance receptor exhibiting extraordinary molecular diversity. Cell, 101:671–684,
2000.

[142] P.K. Shah, M.A. Andrade, and P. Bork. Text mining for alternative splicing events
using support vector machines. 1st Int. Conf. ”Functional Genomics and Disease”,
Prague, page PT4/185, 2003.

[143] P.A. Sharp. Split genes and RNA splicing. Cell, 77:805–815, 1994.
[144] P.A. Sharp and C.B. Burge. Classification of introns: U2-type or U12-type. Cell,

91:875–879, 1997.
[145] D.D. Shoemaker, E.E. Schadt, C.D. Armour, and Y.D. He et al. Experimental an-

notation of the human genome using microarray technology. Nature, 2001:922–927,
2001.

[146] A. Skandalis, P.J. Ninniss, D. McCormack, and L. Newton. Spontaneous frequency
of exon skipping in the human HPRT gene. Mutat. Res., 501:37–44, 2002.

[147] R. Sorek and G. Ast. Intronic sequences flanking alternatively spliced exons are
conserved between human and mouse. Genome Res., 2003:1631–1637, 2003.

[148] R. Sorek, G. Ast, and D. Graur. Alu-containing exons are alternatively spliced.
Genome Res., 12:1060–1067, 2002.

[149] R. Sorek, O. Basechess, and H.M. Safer. Expressed sequence tags: clean before using.
correspondence re [169]. Cancer Res., 63:6996, 2003.

[150] R. Sorek, G. Lev-Maor, M. Reznik, and T. Dagan et al. Minimal conditions for the
exonization of intronic sequences: 5′ splice site formation in alu exons. Mol. Cell,
14:221–231, 2004.

[151] R. Sorek and H.M. Safer. A novel algorithm for computational identification of con-
taminated EST libraries. Nucleic Acids Res., 31:1067–1074, 2003.

[152] R. Sorek, R. Shamir, and G. Ast. How prevalent is functional alternative splicing in
the human genome? Trends Genet., 20:68–71, 2004.

[153] R. Sorek, R. Shemesh, Y. Cohen, and O. Basechess et al. A non-EST-based method
for exon-skipping prediction. Genome Res., 14:1617–1623, 2004.

[154] S. Stamm. Signals and their transcduction pathways regulating alternative splicing:
a new dimension of the human genome. Hum. Mol. Genet., 11:2409–2416, 2002.

[155] S. Stamm, M.Q. Zhang, T.G. Marr, and D.M. Helfman. A sequence compilation and
comparison of exons that are alternatively spliced in neurons. Nucleic Acids Res.,
22:1515–1526, 1994.

[156] S. Stamm, J. Zhu, K. Nakai, and P. Stoilov et al. An alternative-exon database and
its statistical analysis. DNA Cell Biol., 19:739–750, 2000.

[157] M. Stimpfl, D. Tong, B. Fasching, and E. Schuster et al. Vascular endothelial growth
factor splice variants and their prognostic value in breast and ovarian cancer. Clin.

16-32 References

Cancer Res., 8:2253–2259, 2002.
[158] C.W. Sugnet, W.J. Kent, M. Ares Jr., and D. Haussler. Transcriptome and genome

organization of alternative splicing events in humans and mice. Pacific Symposium
in Biocomputing, 9:66–77, 2004.

[159] G. Sutton, O. White, M. Adams, and A. Kerlavage. TIGR assembler: A new tool
for assembling large shotgun sequencing projects. Genome Science and Technology,
1:9–19, 1995.

[160] R. Tacke and J.L. Manley. The human splicing factors ASF/SF2 and SC35 possess
distinct, functionally significant RNA binding specificities. EMBO J., 14:3540–3551,
1995.

[161] R. Tacke, M. Tohyama, S. Ogawa, and J.L. Manley. Human Tra-2 proteins are
sequence-specific activators of pre-mRNA splicing. Cell, 93:139–148, 1998.

[162] Y. Terai, N. Morikawa, K. Kawakami, and N. Okada. The complexity of alternative
splicing of hagoromo mRNAs is increased in an explosively speciated lineage in east
african cichlids. Proc. Natl. Acad. Sci. USA, 100:12798–12803, 2004.

[163] T.A. Thanaraj and F. Clark. Human GC-AG alternative intron isoforms with weak
donor sites show enhanced consensus at acceptor exon positions. Nucleic Acids Res.,
29:2581–2593, 2001.

[164] T.A. Thanaraj, F. Clark, and J. Muilu. Conservation of human alternative splice
events in mouse. Nucleic Acids Res., 31:2544–2552, 2003.

[165] T.A. Thanaraj, S. Stamm, F. Clark, and J.J. Riethoven et al. ASD: the alternative
splicing database. Nucleic Acids Res., pages D64–D69, 2004.

[166] H. Tian and R. Kole. Selection of novel exon recognition elements from a pool of
random sequences. Mol. Cell. Biol., 15:6291–6298, 1995.

[167] C.R. Valentine. The association of nonsense codons with exon skipping. Mutat. Res.,
411:87–117, 1998.

[168] J.C. Venter, M.D. Adams, E.W. Myers, and P.W. Li et al. The sequence of the
human genome. Science, 291:1301–1351, 2001.

[169] Z. Wang, H.S. Lo, H. Yang, and S. Gere et al. Computational analysis and exper-
imental validation of tumor-associated alternative RNA splicing in human cancer.
Cancer Res., 63:655–657, 2003.

[170] Z. Wang, H.S. Lo, H. Yang, and S. Gere et al. Reply to [149]. Cancer Res., 63:6996–
6997, 2003.

[171] Z. Wang, M.E. Rolish, G. Yeo, and V. Tung et al. Systematic identification and
analysis of exonic splicing silencers. Cell, 119:831–845, 2004.

[172] D.L. Wheeler, D.M. Church, R. Edgar, and S. Federhen et al. Database resources
of the national center for biotechnology information: update. Nucleic Acids Res.,
32:D35–D40, 2004.

[173] R. Wheeler. A method for consolidating and combining EST and mRNA alignments
to a genome to enumerate supported splice variants. Lecture Notes in Computer
Science (WABI’2002), 2452:201–209, 2002.

[174] C. J. Wikstrand, L. P. Hale, S. K. Batra, and M. L. Hill et al. Monoclonal antibodies
against EGFRvIII are tumor specific and reat with breast and lung carcinomas and
malignant gliomas. Cancer Res., 55:3140–3148, 1995.

[175] T.G. Wolfsberg and D. Landsman. A comparison of expressed sequence tags (ESTs)
to human genomic sequences. Nucleic Acids Res., 25:1626–1632, 1997.

[176] H. Xie, W.Y. Zhu, A. Wasserman, and V. Grebinskiy et al. Computational analysis
of alternative splicing using EST tissue information. Genomics, 80:326–330, 2002.

[177] Y. Xing and C.J. Lee. Negative selection pressure against premature protein trun-
cationis reduced by alternative splicing and diploidy. Trends Genet., 20:472–475,

References 16-33

2004.
[178] Q. Xu and C. Lee. Discovery of novel splice forms and functional analysis of cancer-

specific alternative splicing in human expressed sequences. Nucleic Acids Res.,
31:5635–5643, 2003.

[179] Q. Xu, B. Modrek, and C. Lee. Genome-wide detection of tissue-specific alternative
splicing in the human transcriptome. Nucleic Acids Res., 30:3754–3766, 2002.

[180] J.M. Yeakley, J.B. Fan, D. Doucet, and L. Luo et al. Profiling alternative splicing on
fiber-optic arrays. Nature Biotechnol., 20:353–358, 2002.

[181] G. Yeo, D. Holste, G. Kreiman, and C.B. Burge. Variation in alternative splicing
across human tissues. Genome Biology, 5:R74, 2004.

[182] G. Yeo, S. Hoon, B. Venkatesh, and C.B. Burge. Variation in sequence and orga-
nization of splicing regulatory elements in vertebrate genes. Proc. Natl. Acad. Sci.
USA, 101:15700–15705, 2004.

[183] M. Zavolan, S. Kondo, C. Schonbach, and J. Adachi et al. Impact of alternative splic-
ing on the diversity of the mRNA transcripts encoded by the mouse transcriptome.
Genome Res., 13:1290–1300, 2003.

[184] M. Zavolan, E. van Nimwegen, and T. Gaasterland. Splice variation in muouse full-
length cDNAs identified by mapping to the mouse genome. Genome Res., 12:1377–
1385, 2003.

[185] C.L. Zheng, T.M. Nair, M. Gribskov, and Y.S. Kwon et al. A database designed
to computationally aid in experimental approach to alternative splicing. Pacific
Symposium in Biocomputing, 9:78–88, 2004.

[186] Y. Zhou, C. Zhou, L. Ye, and J. Dong et al. Database and analyses of known
alternatively spliced genes in plants. Genomics, 82:584–595, 2003.

[187] Z. Zhou, L.J. Licklider, S.P. Gygi, and R. Reed. Comprehensive proteomic analysis
of the human spliceosome. Natura, 419:182–185, 2002.

[188] Y. Zhuang, F. Ma, J. Li-Ling, and X. Xu et al. Comparative analysis of amino acid
usage and protein length distribution between alternatively and non-alternatively
spliced genes across six eukaryotic genomes. Mol. Biol. Evol., 20:1978–1985, 2003.

[189] D. Zhuo, W. Zhao, F. Wright, and H. Yang et al. Assembly, annotation, and inte-
gration of unigene clusters into the human genome draft. Genome Res., 11:904–918,
2001.

17
Human Genetic Linkage Analysis

Alejandro A. Schäffer
National Institutes of Health

17.1 Introduction . 17-1
17.2 Chromosomes, Meiosis, and Recombination 17-5
17.3 Markers Used in Genetic Linkage Analysis 17-8
17.4 Map Functions . 17-10
17.5 Maximum Likelihood in Genetic Linkage

Analysis. 17-11
17.6 Elston-Stewart Algorithm . 17-13
17.7 Marker Maps . 17-16
17.8 Lander-Green Algorithm . 17-18
17.9 Methods That Do Not Use a Penetrance

Function Model . 17-21
17.10 Simulation Methods. 17-23
17.11 Some Alternative Data Representations Leading to

New Methods . 17-26
17.12 Conclusion . 17-29

17.1 Introduction

Genetic linkage analysis is a collection of statistical techniques used to identify the ap-
proximate chromosomal location of disease-associated genes and other markers of interest.
Numerous highly-publicized gene discoveries have included a linkage analysis step. A few
examples of such discoveries include: a gene for cystic fibrosis [87, 79], a gene for Hunting-
ton’s disease [24, 26], a gene for spinal muscular atrophy [9, 56], two genes for hereditary
non-polyposis colorectal cancer [71, 22, 57, 70], two genes for hereditary breast and ovarian
cancer [29, 61, 99, 98], and four genes for Parkinson’s disease [75, 76, 60, 36, 18, 6, 89, 88].
For each gene discovery, I chose only one important paper with pertinent linkage results, al-
though there may have been many papers with linkage results; for example, the entire April
1993 issue of American Journal of Human Genetics contains linkage studies of the chromo-
some 17 region containing the BRCA1 gene [61]. As can be seen from the above examples,
while disease-gene hunting and linkage analysis have been greatly facilitated by the results
of the human genome project, linkage analysis was carried out before the genome project
started, and continues today after most of the human sequence is complete. Because some
genetic linkage analysis computations may take a long time to run, a few computational
biologists have been interested in the algorithmic problems that arise in those computations.

In this chapter, I give an overview of human linkage analysis from what I consider to be
first principles. My emphasis is on data, practical applications, widely-used software, and
algorithms. Readers with more patience or a more statistical orientation will find the books
by Ott [69] and Sham [81] more helpful. I was introduced to genetic linkage analysis in

17-1

17-2 Handbook of Computational Molecular Biology

1992 by reading an earlier edition [68], and found it to be easy to read and very helpful.
Genetic linkage analysis and association analysis are essential techniques in a strategy

called positional cloning that identifies disease-causing genes based on their chromosomal
location more so than by the function of the proteins that the genes encode. Even though
the human genome sequence was nearly complete in 2004, a list of all genes with functional
annotations is far from complete. Moreover, even if one had a list of all genes with all
normal functions annotated, the phenotype that results when a gene is mutated may be
hard to guess. For example, the normal function of the proteins encoded by the colorectal
cancer genes cited above is to participate in repair of DNA mismatches in all cells, which is
not a function local to the colorectal organs. Hence, information about the genomic position
of a disease-causing gene can be extremely useful in narrowing the list of candidate genes.

The basic steps in identifying a gene by positional cloning are as follows:

1. Identify one or more sets of related patients.
2. Connect patients into families, also called pedigrees or kindreds.
3. Genotype patients and their families at a coarse set of markers throughout the

genome.
4. Look for variations that cosegregate with the disease by linkage analysis.
5. When linkage is found, narrow the region with more families and/or markers.
6. Once the linkage region is small, either find candidate genes and skip to step 9,

or clone DNA from the area and put into artificial hosts (vectors).
7. Sequence the DNA in the region.
8. Look for genes (e.g., by computer prediction, exon trapping, cDNA screen, etc.)
9. Screen genes for potential mutations, comparing patients and healthy relatives.

10. Prove mutations are causal.

The focus of this chapter is the data analysis at steps 4 and 5, so I will not discuss the later
steps at all, except to say that cosegregation of a DNA variation with disease in families can
be an essential component of the “proof of causality” at step 10. To understand the basics
of that analysis, one needs to understand first: the biological phenomena of recombination
and linkage (discussed in Section 17.2) and what types of markers are used at steps 3 and
5 (discussed in Section 17.3). Steps 1 and 2 are usually not computational, but accurate
genealogical databases may be needed (e.g., [2]). Steps 4 and 5 are often called genome scan
and fine mapping respectively. To set up for the next two sections, consider the following
three pictures of pedigrees showing what one looks for intuitively when hunting for genetic
linkage for a dominant or recessive disease.

To understand pedigree pictures one needs to know the following genetics conventions.
Squares are males and circles are females. Two slightly different styles are shown for the
lines to connect parents to children. A shaded shape represents an affected (i.e., diseased)
individual, while a clear shape represents an unaffected individual. Parents are always
drawn above their children. An individual is a founder if no parents are shown, and an
individual is a nonfounder if both parents are shown. By convention, one always shows
either zero or two parents, even if the identity of one parent is unknown or that parent is
unavailable. One models the disease gene as if it had only two variants: ‘h’ for healthy
and ‘d’ for disease. Variants in either the disease gene or markers are called alleles. The
genotype of an individual at a marker is the two alleles. In most examples, I will index the
marker alleles by 1, 2, 3, . . ., but Section 17.3 explains a few aspects of how the distinct alleles
are measured in the laboratory. The phase of a genotype indicates which allele (if they are
different) came from the father and which allele came from the mother. When genotypes

Human Genetic Linkage Analysis 17-3

13 14
dh

16
hh

34
hh

25
hh

hh dh

dh

12
dh

2321
hd

41
hh

16

FIGURE 17.1: Dominant inheritance with ideal cosegregation of a marker near the disease locus.

are determined in the laboratory, the phase is unknown. In some cases, the phase can be
inferred. Many algorithms in linkage analysis work at their core with genotypes of known
phase, and average over the possible phases. An individual (genotype at a marker) is called
heterozygous if the two alleles are distinct, and homozygous if the two alleles are identical.

A disease has a dominant inheritance pattern if having a single ‘d’ allele is sufficient
to cause the disease, while a disease has a recessive inheritance pattern, if having two ‘d’
alleles is necessary and sufficient to cause the disease. A probability function that defines the
probability of a phenotype conditioned on a genotype is called a penetrance function, and I
will denote it by pen(x|g), where x denotes the phenotype and g denotes the genotype. Thus,
for a dominant disease, pen(affected | hh) = 0, pen(affected | dh or hd) = pen(affected |
dd) = 1. For a recessive disease, pen(affected | hh) = pen(affected | dh or hd) = 0 and
pen(affected | dd) = 1. In practice, many linkage analyses use a more equivocal penetrance
function; detailed examples of why and how this is done can be found in Chapters 9 and 10
of [86].

In the figures the alleles ‘h’ and ‘d’ are shown as if they were known, but in reality they
are never known until the disease gene is identified and sequenced. The alleles at the disease
locus are inferred from the phenotypes, via the disease status and penetrance function.

Notice that in Figure 17.1, the 1 is always co-inherited with the d, while in Figure 17.2,
the 2 and 4 are co-inherited with the d. Notice also that there is an unaffected male
in the bottom generation of Figure 17.1 who inherited the 1 allele from his unaffected
mother who married in; this unaffected male did not inherit the disease-associated 1 allele
from his affected father. When a marker allele is consistently co-inherited with a disease-
associated allele along paths in the pedigree, one says that the alleles cosegregate with
the disease. Figure 17.3 illustrates why inbred populations and pedigrees are popular for
studying recessive diseases; in this case the allele 1 and the allele 4 are passed down two
distinct paths of inheritance to the affected individuals in the bottom generation, making the
affected individuals homozygous at markers flanking the disease gene. One can often detect
the disease locus in such pedigrees by looking for regions where the affected individuals
are homozygous at several markers in a row, but unaffected relatives are not consistently
homozygous at those same markers.

17-4 Handbook of Computational Molecular Biology

hh
24
dd

14
dd
24

hd
13

23
dh

13
hh

hd
 12

hd
34

FIGURE 17.2: Recessive inheritance with ideal cosegregation of a marker near the disease locus,
but no inbreeding.

Figure 17.4 shows a different representation, called the marriage graph [10], of the pedigree
in Figure 17.3. In the marriage graph, the matings are shown as separate nodes of a different
type. There is a an edge i → m from individual i to mating m, if i is one of the two
participants in the mating. There is an edge m→ c, if c is a child produced by the mating.
Marriage graphs are often drawn with the directions on edges implicit from top to bottom
because the undirected version has some utility as well.

Genetic linkage analysis attempts to compute statistical measures of cosegregation of
known marker alleles and putative disease alleles, inferred from the phenotype and pen-
etrance function. As explained in the next section, when such cosegregation is deemed
significant, then one may conclude that the putative disease gene is close to the cosegregat-
ing marker. Therefore, if one knows the precise chromosomal location of the marker, one
may infer an approximate location for the nearby disease gene. In general, one may use
more than a single marker within a linkage analysis calculation. Using multiple markers
simultaneously can lead to more convincing statistical proof of linkage and in some cases to
proof that the gene is likely to lie in between two markers.

The first major distinction between linkage analysis and association analysis is illustrated
by the multiple founders with the allele 1 in Figure 17.1. Linkage analysis looks for the
co-inheritance of the allele along paths, while association analysis looks for co-occurrence of
the allele. The second major distinction between linkage analysis and association analysis
can be understood intuitively by imagining that one has two pedigrees with the structure
of Figure 17.1, except that in the second copy the alleles 1 and 2 are swapped. In linkage
analysis, one treats the separate pedigrees separately, so that if marker alleles 1 and 2
were swapped in the second pedigree, both pedigrees would still be indicative of linkage.
In association analysis, one is interested in the co-occurrence of a specific marker allele
with the disease allele across affected individuals. Thus, to have consistent evidence of
association, one would want the same 1 allele to be cosegregating with the d allele in both

Human Genetic Linkage Analysis 17-5

13

44
dd
11

46

dh

13

54
hd
21

dh

46

44
dd
11

FIGURE 17.3: First-cousin mating leading to a recessive disease in two offspring. Notice that
the affected individuals are homozygous for the alleles 1,4 flanking the disease
locus.

pedigrees. Association analysis is traditionally done with (unconnected) individuals in a
case/control design, but it is also possible to do association analysis on multi-individual
pedigrees. See [80] for a survey of association analysis methods and software.

The next section explains why cosegregation of marker and disease alleles occurs when a
marker and a disease gene are near each other, and defines proximity in a probabilistic way.

17.2 Chromosomes, Meiosis, and Recombination

The biological basis for genetic linkage analysis is crossing over of chromosomes during
meiosis, through which parents pass DNA to offspring. Before explaining crossing over,
I summarize pertinent information about the chromosome content of cells. Most human
cells have two copies of every autosomal chromosome numbered 1 through 22, in approx-
imate decreasing order by size. For simplicity, all the subsequent descriptions of linkage
analysis methods assume autosomal data, but in most cases they have been easily modified
to handle X chromosome data. Cells in females have two copies of the X chromosome,
while cells in males have one X and one Y. A cell with two copies of every autosome is
called diploid, while a cell with only one copy is called haploid. A cell with more than
two copies is called polyploid. These terms are also used to describe some organisms in
that an organism is called haploid/diploid/polyploid if the vast majority of its cells are

17-6 Handbook of Computational Molecular Biology

A

D

CB

FIGURE 17.4: Marriage graph for the pedigree in Figure 17.3 with genotypes omitted. Each
small circle represents a nuclear family; letters are for later usage. Edges are
shown as undirected, but may be considered as directed from top to bottom in
some usages.

haploid/diploid/polyploid throughout its lifespan. Not all organisms fit neatly into this
classification, since some, such as the malaria parasite, change ploidy at different life stages.

One reason I entitled this chapter “Human Genetic Linkage Analysis” is to limit the scope
to diploid organisms, such as humans. Much of the content applies to all diploid organisms,
including all mammals. However, human studies generally differ from non-human studies
in that: 1) mating is close to random and 2) the geneticist has no control over the breeding
strategy. The resulting lack of statistical power has to be overcome by collecting more
samples or using better methods of data analysis.

Meiosis is the process by which diploid cells divide into haploid gametes, sperm in males
and eggs in females. Genetic linkage analysis tries to reverse engineer meiosis computation-
ally to infer what pieces of DNA were transmitted from parent to offspring. As the offspring
grow, cells double many times through mitosis, during which DNA is copied from parent
cells to daughter cells. Maintenance of the two copies of each autosomal piece of DNA and

Human Genetic Linkage Analysis 17-7

accurate copying of the DNA is important to the health of the cell and its human host. The
breast cancer and colorectal cancer gene discoveries highlighted in the opening paragraph
illustrate this point. In families with hereditary BRCA1 or BRCA2 mutations one copy
of the gene has a mutation that is passed from parent to child in meiosis, but for breast
or ovarian cancer to arise it is necessary that the second copy of the gene be disrupted
through an aberrant mitosis. The aberrant mitosis could introduce a tiny mutation in a
single DNA letter or a large-scale DNA deletion, for example. In families with hereditary
nonpolyposis colorectal cancer due to MSH2 or MLH1 mutations, local editing errors arise
in mitosis at a higher rate than normal. When enough of these errors accumulate in critical
genes of a single cell, cancer may follow. Nevertheless, copying errors in mitosis can be
quite useful, especially when they occur outside protein-coding genes, as I shall explain in
the next section.

During meiosis the four strands of each chromosome come together in “chiasma” enabling
the haploid offspring cells to receive a mixture of parental DNA. Genetic linkage analysis
is based on a model of how this mixture occurs. I find it useful to explain this model
with a medieval metaphor of a monk producing a new copy of a document starting from
multiple old editions. Usually the monk will copy the ith and i+ 1st words from the same
old edition. If this persisted from the first word to the last, then the new edition would
correspond exactly to one of the old ones. However, variation is introduced in two ways:

1. The monk occasionally takes a break; when he resumes, he forgets from which old
edition he was copying, and he chooses at random from among the old editions.

2. The monk occasionally makes a mistake in copying, introducing a local change.

In the DNA context, the first source of variation is called crossing over and the second
source is called mutation. When two pieces of DNA, A and B on the same haploid offspring
chromosome derive from different chromosomes in the parent, one says that there is a re-
combination between A and B. Since the parent has two chromosomes, the occurrence of a
recombination between A and B implies that an odd number of crossovers occurred between
the locus of A and the locus of B. The process of mutation is necessary to observe recom-
binations because one can only detect recombinations between loci at which the parental
genotypes are heterozygous. Loci at which this property occurs with high probability are
sometimes called markers and are the topic of the next section.

One says that two loci 1 and 2 are linked if the probability of recombination between them
θ12 < 0.5 . The letter θ with various subscripts is almost always used to denote a probability
of recombination, and is also called the recombination fraction. In disease-gene hunting 1
and 2 would be markers of known location, and one would like to estimate θ1D and θ2D to
decide if the disease gene D is near those markers. Human marker maps are dense enough
that one can expect to have θ1D < 0.1 for monogenic diseases, even for the genome scan at
step 4. However, best estimates of θ can be between 0.1 and 0.5 when there are multiple
genes involved and and the single locus penetrance model is a poor representation of the
inheritance pattern. To publish a statistical proof of linkage, it is not sufficient that the
best estimate θ̂ be substantially less than 0.5. Genetic linkage analysis is always done in
a framework of statistical hypothesis testing. Therefore, as part of a proof of linkage, one
must show that some test statistic for the “alternate hypothesis of linkage” is significantly
higher than the same test statistic for the “null hypothesis of no linkage”. Much of this
chapter is about how to define and compute some commonly used test statistics for genetic
linkage analysis.

The rate of crossing over in humans is approximately 1 time per megabase in males
and 1.5 times per megabase in females [69]. The average number of crossovers per meiosis
varies widely from one mother to another, but not so much from one father to another [40].

17-8 Handbook of Computational Molecular Biology

The rates vary widely across the genome with the male rate generally higher near the
chromosome ends and the female rate higher elsewhere [69]. The analysis of DNA sequence
features that may promote or suppress crossing over is an active area of research, but outside
the scope of this chapter.

The model of crossing over that I gave above in the monk metaphor is “memoryless”,
which implies that the process of defining the crossover points along the linear DNA sequence
is a Poisson process. The Poisson model is used in most human disease-gene hunting studies,
although it is an approximation, and there is ample real data that show it is far from
perfect. In Section 17.4, I delineate some models relating distance along the DNA sequence
to probability of recombination, and I explain how these models enter into genetic linkage
analysis computations.

17.3 Markers Used in Genetic Linkage Analysis

The input data used for linkage analysis computations includes: pedigree structures, phe-
notypes, and genotypes on polymorphic markers from the human genome. From now on, I
will use the term marker to refer to a variable DNA location for which the alleles can be
determined explicitly in the laboratory, and locus to refer to either a marker or a putative
disease gene. In a typical linkage analysis computation for hunting a gene, one simulta-
neously analyzes (m ≥ 2) loci of which 1 is the putative disease gene, whose position is
unknown, and the other (m − 1) are markers whose order and approximate location on
a map are known. I have found it useful to understand some of the laboratory aspects
of markers and genotyping. This understanding helps for example in: 1) making sense of
diverse data formats used by different laboratories 2) recommending markers for follow-up
genotyping in regions that look promising or have large holes and 3) looking for possible
laboratory errors in the data.

In mathematical terms, a marker is a set of DNA sequences, with 5 pieces: M =
PF1V F2R. I call it a set of sequences because the middle part V varies from individual
to individual, generating the polymorphism that helps track inheritance events. P and R
are called the forward and reverse primers. The sequences P and R are used to specify
the conditions for a polymerase chain reaction (PCR) that makes it possible to copy and
sequence M in individuals. A frequent source of confusion is that the decomposition of
M into parts is not unique. In particular, different primer pairs can be used to sequence
the same marker, and different laboratories may use different boundaries for the variable
part V . These confusions can make combining genotypes generated in different laboratories
most challenging [92]. For this reason, in this section, I will use the term allele to refer
to either variants of V or variants of M . For example, suppose that the different variants
differ by size, then the different sizes in bases of V might be 100, 104, 108, 112, while the
corresponding possible sizes of M might be 280, 284, 288, 292.

Some characteristics of a marker useful for linkage analysis are:

1. PCR reaction with primers P and R amplifies exactly one region of the human
genome.

2. PCR conditions (e.g., temperature) that allow copying of M are known and work
reliably across laboratories.

3. The range of allele sizes and possible alleles are known ahead of time.
4. The probability that a randomly chosen individual has two distinct alleles at M

is high.
5. The spontaneous mutation rate in meioses of the sequence V is high enough to

Human Genetic Linkage Analysis 17-9

achieve property 4, but low enough that the allele in a child matches one allele
in the parent in the vast majority of meioses. Mutation rates between 0.001 and
0.00001 are typically of interest.

A marker that satisfies properties 1 and 2 is often called a sequence tagged site (STS), even
though it may not be polymorphic. Before the human genome was sequenced extensively,
one could not know for certain whether a marker satisfied property 1, but if PCR followed
by sequencing consistently generated at most 2 alleles in each individual following rules of
inheritance, then it would be assumed to map to a unique site. The probability that an
individual is heterozygous (property 4) is called the heterozygosity of a marker.

Three commonly used types of markers are single nucleotide polymorphisms (SNPs), vari-
able length tandem repeats (VLTRs) and restriction fragment length polymorphisms (RFLP-
s). For RFLPs, the variation is due to the presence or absence of a cutter site for a
restriction enzyme. Therefore, RFLPs usually have two alleles and the heterozygosity is at
most 0.5. VLTRs are variations due to one or more repeated strings in V , such that the
number of copies of the repeat(s) varies. Single tandem repeat polymorphisms (STPRPs),
are a special case of VLTRs in which there is a single substring that is repeated a variable
number of times. Many STRPs have been found based on 2,3, or 4 letter repeat units such
as CA, AGC, or GATA; such markers are sometimes called microsatellites. The CEPH and
Marshfield maps described below include thousands of microsatellites with heterozygosities
> 0.75. The Marshfield effort also includes recommended screening sets of markers that are
coarsely spaced across the genome, with high heterozygosity, and very reliable conditions for
PCR. In most cases, microsatellites are outside genes, and the variations are phenotypically
irrelevant. However, there is a class of diseases, including Huntington’s disease, for which
a 3-letter repeat marker (usually CAG, coding for the amino acid glutamine) in a gene can
expand to have a pathogenic number of repeat units [26].

SNPs are variations due to substitutions in a single DNA position; since there are 4 DNA
letters, a SNP can have up to 4 alleles and heterozygosity up to 0.75. However, most SNPs
have only 2 alleles. Most modern linkage studies use STRPs and SNPs. Advantages of
SNPs include:

1. SNPs are much more abundant in the human genome.
2. Many genes have SNPs in the promoter or protein coding regions, and these

variants may actually be associated with diseases or even causative.

Advantages of STRPs include:

1. STRPs with heterozygosities > 0.75 are abundant [90]
2. Genotyping errors with STRPs are much more likely to lead to violations of the

rules of inheritance, and hence be more easily detectable [25]
3. It is currently easier to find STRPs in a given region that have been used in

multiple studies.

Above, I alluded to the issues of genotyping errors and rules of inheritance. The pertinent
rules of inheritance are that at an autosomal marker, a child receives exactly one allele from
the mother and one allele from the father. At an X-chromosome marker, a male child
receives exactly one allele from the mother, and a female child receives exactly one allele
from each parent. If the genotypes at a marker obey these rules, then they are said to be
consistent. Consistency is correlated with correctness but neither one implies the other.
For example, suppose two parents are heterozygous with alleles 240 244; a child might be
reported as homozygous 244 244, and this would be consistent. However, the child may in
fact be heterozygous 240 244 and the presence of the 240 allele was missed. Conversely, the

17-10 Handbook of Computational Molecular Biology

child might be reported correctly as heterozygous 240 248 because one of the 244 alleles
mutated to a 248 base length allele during meiosis.

When genotypes are not completely filled in, it can be quite challenging computationally
to determine whether they are consistent with the rules of inheritance. All of the software
packages I describe below indicate correctly when the rules are violated, but information
about where the violation(s) occur(s) may be very limited. The best software package
for this purpose is PedCheck [65], based on the same algorithmic ideas encoded in the
linkage package VITESSE [64] . A particularly useful feature of PedCheck is that when
an inconsistent set of genotypes for a single pedigree and marker can be made consistent
by a single change, all such single changes are shown along with a likelihood estimate
for each change. As indicated above, not all cases of inconsistent genotypes are due to a
laboratory error. The variation in the markers arises naturally because of mutations during
meiosis, and the mutation rate may be as high as 0.001. Therefore, in any large study
one should expect cases where neither of a child’s alleles are present in one parent. It is
useful to know that most mutations in microsatellites change the number of repeat units
by 1. Mutations and genotyping errors that do not violate the rules of inheritance are
also important because they often create an apparent recombination, thereby inflating the
apparent recombination fraction between markers. There exist several software packages
for detecting likely genotype errors and mutations in marker data that is consistent. Two of
these packages that attempt to model the sources of error are GenoCheck [19] and a recent
version of SIMWALK2 [83].

17.4 Map Functions

One of the primary achievements during the Human Genome Project is the construction of
genetic maps that describe a sorted order of STS markers along each chromosome, and give
distance estimates between markers. Distances on these maps are expressed in Morgans or
centiMorgans; 1 Morgan is one expected crossover. For any pair of markers A,B, I will
denote the distance in Morgans between A and B as dAB . Some more aspects of marker
maps and examples are described in the next section.

Another fundamental quantity in linkage analysis relating two loci A,B is the recombi-
nation fraction θAB . Here I use “loci” rather than “marker”, because A or B may represent
a putative disease gene. The value θAB is a unitless probability. Although d is expressed in
Morgans and θ is unitless, they can be related; functions that relate the two quantities are
called map functions. I will mention three commonly used map functions. More material
can be found in [69, Sec. 1.5].

The simplest map function used in practice is Morgan’s map function: dAB = θAB. This
function cannot work for large values because d is unbounded, while θ (being a probability)
must be ≤ 1 always and must be ≤ 0.5 under most circumstances. However, Morgan’s
function makes some sense for very small values. In general, it is true that dAB ≥ θAB

because the left-hand side counts the number of crossovers, while the right-hand side counts
1 if there are 1, 3, 5, 7, . . . crossovers and 0 otherwise, and then both sides take an average
over all meioses. If one assumes that there can be at most 1 crossover between A and B,
then the two quantities are equal; this assumption is plausible for very small distances, say
under 2cM.

A second widely used map function is Haldane’s [28] map function:

dAB = −1
2
ln(1− 2θAB).

This function follows naturally from the assumption that the crossover process is a memo-

Human Genetic Linkage Analysis 17-11

ryless Poisson process moving along the chromosome, treated as a one-dimensional space.
Geneticists use the term no interference to refer to the assumption that the location of
the next crossover does not depend on previous crossovers. There is considerable biologi-
cal data that in vivo, interference does occur. The most widely-used function allowing for
interference is Kosambi’s [41] map function:

dAB =
1
2
arctanh(2θAB).

The derivation of this function is explained in [81]. Haldane’s map function is used in
most disease-gene studies, where dAB between adjacent markers is generally < 0.20M .
In contrast, Kosambi’s map function is used for maps, where longer distances must be
considered. Other map functions that are of theoretical interest are defined and derived
in [81].

As I shall explain below, practical genetic linkage analysis often involves simultaneous
consideration of 3 or more loci; an especially important case is the possibility that a gene
is located between two markers, as shown in Figure 17.3. For three loci A,B,C in or-
der, it is necessary to compute one of θAC , θAB, θBC , given the other two. For Mor-
gan’s map function, the relationship is: θAC = θAB + θBC . For Haldane’s map func-
tion, the relationship is: θAC = θAB + θBC − 2θABθBC . For Kosambi’s map function,
θAC = (θAB + θBC)/(1 + 4θABθBC). Derivations for the latter two formulas can be found
in ftp://fastlink.nih.gov/pub/fastlink/README.mapfun. In [69], Figure 1.4 shows a plot
of four map functions, including the three I described, for comparison. It is not necessarily
the case that a relation analogous to the above three can be derived for a proposed map
function. The theoretical problem of whether a map function is valid for more than two
loci is considered in [35, 91], for example.

17.5 Maximum Likelihood in Genetic Linkage Analysis

Many linkage analysis calculations are based on the principle of maximum likelihood and on
likelihood ratio tests. Typical input to a linkage analysis calculation would include:

1. a pedigree structure K; (I am using K for kindred, so as to reserve P for Prob-
ability)

2. loci l1, . . . lm, including number and frequency of the alleles;
3. genotypes gij for some individuals, where i is the index on individuals and j is

the index on loci; Gj will denote the vector of all genotypes at locus j.
4. phenotypes xi for some individuals; X will denote the vector of all phenotypes
5. penetrance functions pen(x | g), where different individuals may have different

penetrance functions;
6. (when there are at least two markers of known position) recombination fractions
θ1, θ2, . . . between consecutive markers.

For the simplest case, let us assume there is one putative disease locus l1 and one marker
locus l2. Then for any fixed recombination fraction θ1 between the loci, it is possible to
define the likelihood L as a function of the input parameters and θ1. For brevity, I will
denote this by L(K | θ1). One would like to know whether the disease l1 is linked to the
marker l2, which is suggested when the value θ̂ that maximizes the likelihood is much less

17-12 Handbook of Computational Molecular Biology

than 0.5. Formally, one defines the likelihood ratio:

L(K | θ1 = θ̂)
L(K | θ1 = 0.5)

(17.1)

that compares the alternate hypothesis of linkage in the numerator to the null hypothesis of
no linkage in the denominator. The log base 10 of this ratio (or any other ratio of likelihoods
in linkage analysis) is call the log odds score or LOD score for short. LOD scores are conve-
nient because when the data include multiple pedigrees, the combined likelihood is product
of single pedigree likelihoods, and the combined LOD score is the sum of individual pedigree
LOD scores. One can extend the likelihood and the ratio test to use more than 2 loci by
allowing multiple recombination fractions in the numerator and the denominator; typically
one would use a fixed locus order and fixed recombination values in the denominator, and
allow some of these values to vary in the numerator.

For a sequential testing design in which one tests one marker in the genome after another,
Morton [62] proposed a LOD score threshold of 3.0 (corresponding to a likelihood ratio
of 1000) as high enough to declare linkage, and stop testing markers if the disorder is
monogenic. Chotai [11] evaluated this threshold test analytically and by simulation and
raised some concerns. To compare the LOD score statistic with other test statistics it
would be useful to have a correspondence between LOD scores and the more common
measure of statistical signifcance, p-values. However, the threshold of 3 does not directly
correspond to a precise p-value. Under any circumstances, a LOD score of s guarantees a
point-wise p-value of 10−s [68]. Ott [68] gives some heuristic arguments that a LOD score
of 3 corresponds to a genome-wide false positive rate of approximately 0.05. For traits that
appear X-linked based on the inheritance pattern, one may use a LOD threshold of 2.0,
since only a small fraction of the genome is considered [86]. Asymptotically, the LOD score
multiplied by the constant 2 ln 10 = 4.6 is distributed as a 50:50 mixture of a point mass at
0 and a Chi-squared random variable with 1 degree of freedom (df) [81]. This distribution
can be used to get asymptotic pointwise p-values, which ignore the usual case that multiple
marker loci are tested for linkage to the disease. The empirical significance of any particular
LOD score in a specific study can be assessed by simulation as described in Section 17.10.

Lander and Kruglyak [45] questioned the 3.0 LOD score threshold for studies of common,
complex diseases, where the correct penetrance function is unclear, pedigrees will usually
be small, and the marker set used will be very dense due to uncertainty. Suppose that
one is interested in a LOD threshold s, for which the corresponding Chi-quared value
C = (2 ln 10)s has pointwise significance αp = 1 − Φ(

√
(C)), where Φ is the standard

normal distribution [81]. Based on theoretical work of Feingold et al. [21], Lander and
Kruglyak showed that the number of regions where a multilocus LOD score s will achieve
a pointwise significance αp is distributed approximately as a Poisson random variable with
mean:

µ = (N + 2MC)αp,

where N is the number of chromosomes, and M is the total length of the genome map
in Morgans. Using the above formula, they estimated that the genome wide significance
αg = 1− e−µ. Plugging in some estimated values for the human genome, they determined
that a higher threshold of 3.3 corresponds to the desired genome-wide significance of 0.05.
The use of these thresholds is fuzzy in practice because one computes LOD scores for
multiple single markers and combinations of markers.

Likelihood ratio tests are used in linkage analysis for purposes other than the basic test
of linkage vs. non-linkage. I summarize four such usages.

Human Genetic Linkage Analysis 17-13

First, suppose there is a published claim of linkage between disease D and marker l.
One is studying another pedigree K with disease D, and one wants to know whether the
disease in K is also linked to l. Then one may apply the test in 17.1 restricting the θ in
the numerator to very small values, typically < 0.05. Because of this restriction, the LOD
score can be negative, and LOD < −2 is considered sufficient evidence to exclude linkage
of K to l [86]. Cases where the same apparently monogenic disease is linked to different
genomic regions in different pedigrees are common, and this phenomenon is called locus
heterogeneity. I mentioned colorectal cancer, breast and ovarian cancer, and Parkinson’s
disease as examples of phenotypes with proven locus heterogeneity in the first paragraph of
the Introduction.

Second, suppose one has established linkage of a disease gene to a region containing
markers l1, l2, . . ., and one wishes to decide where in the region, the gene is most likely to
be found. Then one computes the likelihood with different placements of the disease gene
relative to the markers. The recombination fraction between consecutive pairs of markers
stays fixed, but the recombination fractions between the putative gene and the two closest
flanking markers are varied, keeping the fraction between the flanking markers fixed. For
this purpose, the equations in the previous section that relate θAC to θAB , θBC are used,
with θAC fixed and the position of the disease (as B) varying. One defines a support region
in which the LOD score comparing the best position for the disease to any other position
in the region is at most s units. A threshold of s = 1 is often used to define the support
region [86].

Third, suppose one is building a map of markers and one wishes to decide among two locus
orders: l1, l2, l3, . . . and l1, l3, l2, Then one can determine the recombination fractions
that maximize the likelihood of each marker order and do a likelihood ratio test of the two
orders. Thresholds of either s = 1 or s = 3 are used in practice depending on how reliable
one wants the marker order to be. There is a tradeoff between being able to order fewer
markers with a higher s versus more markers with a lower s.

Finally, one may use likelihood computations to optimize some of the input parameters,
other than the recombination fraction. When I defined L, I suppressed all the parameters
except the pedigree K treating them as fixed values. In practice, some of the input values
may be uncertain. Two common examples are the marker allele frequencies and the pen-
etrance. In this context, one chooses the parameter values that maximize the likelihood,
and no likelihood ratio test is used.

17.6 Elston-Stewart Algorithm

The pedigree likelihood can be written as a nested sum and product as described below.
If evaluated directly, there are an exponential number of terms. Elston and Stewart [20]
found a general method to rearrange the nested computation for some pedigrees that leads
to running time polynomial in the number of individuals. Assume that the individuals are
numbered 1, . . . , n; I will consider different orders depending on pedigree structure. Let
F(i) and M(i) be the father and mother of i, if i is not a founder, and 0 otherwise.

I use P (gi) to denote the probability that i receives genotypes gi; here gi denotes multilo-
cus genotype. For founders P (gi) is the product of the population frequencies of each allele
at each locus. For example, suppose that the genotype gi is 11 at the first locus and 35 at
the second locus, with P (1) = 0.4, P (3) = 0.2, P (5) = 0.1. If the phases are specified, then
P (gi) = 0.4 × 0.4 × 0.2× 0.1 = 0.0032. If the phases are unknown, then the heterozygous
35 could arise two ways and P (gi) = 0.0064. This definition assumes that allele frequencies
within a locus and across loci are independent.

17-14 Handbook of Computational Molecular Biology

For nonfounders i, P (gi) = trans(gi | gF(i), gM(i), θ), which is the (conditional) trans-
mission probability for the genotype of a child conditional on the parental genotypes. The
algorithm works with phase-known genotypes, so if there are m loci, then each parent can
transmit any one of 2m (not necessarily distinct) combinations of alleles. Let Rj = 0, 1, 2
depending on how many recombinations occur between loci j and j + 1. Then

trans(gi | gF(i), gM(i), θ) = 4−mΠ1≤j<mθ
Rj

j (1− θj)2−Rj .

The product can be decomposed into male and female components in case one wants to use
distinct male and female θ values.

Using P (gi) the pedigree likelihood is given by:

L(K,X,G, θ) = Σg1 · · ·ΣgnΠ1≤i≤npen(xi | gi)P (gi, θ). (17.2)

Elston and Stewart observed that for some pedigrees the expression 17.2 could be computed
efficiently (as a function of n) by factoring out one nuclear family at a time. In a nuclear
family with father f, mother m, and children indexed 1, . . . , c the likelihood can be factored
as:

L = Σgf pen(xf | gf)P (gf)×Σgmpen(xm | gm)P (gm)×Π1≤i≤cΣgipen(xi | gi)trans(gi | gf , gm, θ).

This factoring can be iterated, using appropriate subexpressions. Suppose f is the only
person that connects this nuclear family to the rest of the pedigree. Then

Pcond(gf) = Σgmpen(xm | gm)P (gm)×Π1≤i≤cΣgipen(xi | gi)trans(gi | gf , gm, θ)

is the probability for each genotype of the father f conditional on spouse and children. If
the children also have descendants, then one uses the more general tail recursion:

Pcond(gf) = Σgmpen(xm | gm)P (gm)×Π1≤i≤cΣgipen(xi | gi)trans(gi | gf , gm)Pcond(gi).
(17.3)

For a leaf child i, Pcond(gi) is initialized to 1 if gi is possible given the input data, and 0
otherwise.

The above recursion is said to peel one nuclear family at a time. More precisely, consider
the following algorithm:

1. Order the nuclear families 1, 2, . . . k such that family a comes before family b
whenever b has a proper ancestor of a.

2. Apply 17.3 or the corresponding expression when the mother is the connecting
parent to nuclear families 1, 2, 3

3. If family k is the only one with two founders, then sum Pcond for the possible
genotypes one of the two founder conditioned on the other.

For example, in Figure 17.1 there are 2 nuclear families at the bottom that could be peeled
in either order, and the nuclear family at the top would be peeled last.

The above algorithm works for pedigrees in which: 1) there is at most one nuclear family in
which there are two founder parents and 2) there are no multiply mated parents. Pedigrees
that meet these two conditions are called simple. For example, the pedigree in Figure 17.1
is a simple pedigree. Condition 1) is sometimes stated as requiring that each individual
have at most 1 pair of grandparents in the pedigree. Condition 2) can be weakened to
requiring no multiply-mated nonfounders, and the algorithm still works. Simple pedigrees
are quite common in linkage analysis because for a dominant disease, there is typically

Human Genetic Linkage Analysis 17-15

one affected founder who passed the disease down paths, and in each nuclear family one
unaffected parent founder mated with an affected founder. The algorithm was generalized
to nonsimple, loopless pedigrees by Lange and Elston [49] by developing an expression
analogous to 17.3 for updating the probability of a child’s genotype conditional on siblings
and parents. This allows one to traverse the pedigree graph in any direction, always peeling
off nuclear families that are connected to the rest of the graph by a single individual.

The first production implementation of the generalized Elston-Stewart algorithm was
done by Ott in the package LIPED [66], which is still used today. In the process Ott
extended the algorithm to handle most looped pedigrees as described in the next paragraph.
A pedigree has a loop if and only if the undirected version of the marriage graph has a cycle.
For example, the pedigree in Figures 17.3 and 17.4 has a loop involving the nuclear families
A, B, D, C. The problem of computing the pedigree likelihood is NP-complete for looped
pedigrees [73]. In the example figures the single loop is an inbreeding loop because the two
parents in family D at the bottom of the loop have a common ancestor (the parents in
family A). Loops of other types can arise, for example if two brothers in one nuclear family
mate separately with two sisters in another family, and such loops are called marriage
loops. Some geneticists find it useful to distinguish between inbreeding loops and marriage
loops because inbreeding loops typically arise in pedigrees with recessive diseases, where the
affected individuals are homozygous for markers near the disease gene. However, it is not
possible to clearly define or distinguish inbreeding loops and marriage loops in pedigrees
that have many loops of both kinds.

One can make twin copies of an individual in the pedigree, so as to break a cycle in
the undirected marriage graph. For example, in the pedigree graph of Figure 17.4 one
could make either parent in family D into twins. If one chose the father, then one twin
would be only the child in family B, while the other would be the child in family D; both
copies would be required to have genotypes 21 at the first marker and 46 at the second
marker. Suppose individual i is split into individuals i1 and i2; usually i1 retains the
parents of i and has no children, while i2 has all the children of i, but no parents in the
pedigree. Only this parent/child split into two individuals is allowed in the widely-used
package LINKAGE, but more general splits including allowing more than two copies can
speed up the computation [3]. If one forces the resulting copied individuals to have identical
genotypes, then the likelihood calculation remains valid. If there are t individuals split into
twin copies, the t nested sums for those individuals are moved to the outside in equation 17.2
and they cannot be easily decomposed, so the running time is exponential in t.

Lathrop et al. [52, 54] made an engineering breakthrough by implementing the full mul-
tilocus, generalized Elston-Stewart algorithm in LINKAGE [54]. Among the innovations
in LINKAGE was the ability to calculate genetic risks based on genotype data and phe-
notype data on relatives, which is useful in genetic counseling when the causative gene
has not yet been found [52]. Another widely-used implementation started in the 1980’s
is MENDEL [51]. Among the innovations introduced in the first version of MENDEL are
dynamic ordering of the nuclear families based on the input data [48] and use of boolean
logic and graph algorithms to reduce the list of possible genotypes at each locus [50].

Other major algorithmic improvements include:

1. Take advantage of symmetry in algebraic subexpressions of 17.3 [53].
2. Use sparsity in the arrays storing intermediate terms to replace arithmetic oper-

ations with boolean operations [12].
3. Encode possible genotype at each locus separately, and compose the possible

multilocus genotypes for an individual on the fly [64].
4. Recode the set of possible alleles inherited by an individual using a “fuzzy”

17-16 Handbook of Computational Molecular Biology

method to reduce the effective number of possible alleles and hence genotypes at
a locus. [64]

While I have not devoted much space to the algorithmic improvements, they have reduced
the running time of implementations of the generalized Elston-Stewart algorithm by at least
5 orders of magnitude, not even counting the improvements in CPU speeds over the same
time period. The improvements are especially evident when analyzing more loci and looped
pedigrees, although the running time remains exponential both in the number of loops
and the number of loci. The VITESSE package can handle 8-10 loci on medium, loopless
pedigrees [63], while LINKAGE is limited to about 3 loci on the same pedigree. Due to the
concurrent improvement in availability of markers and reliability of maps, 8 loci is far more
than sufficient for most human disease-gene hunting case studies.

17.7 Marker Maps

In 1980, Botstein et al. [7] formally proposed the construction of large-scale marker maps
to be used in disease-gene hunting. The first genome-wide genetic map was published only
seven years later [17], around the same time as numerous higher-density maps of individual
chromosomes. The primary computational problem in genetic map construction is to order
the markers along each chromosome. Efficient marker ordering was greatly facilitated by the
discovery of the Lander-Green algorithm for linkage analysis, described in Section 17.8, and
its implementation in software packages MAPMAKER [47] and CRI-MAP [46]. Another
widely used package for map construction is MULTIMAP [59], which uses CRI-MAP as an
engine to compute likelihoods, but further automates the process of building partial maps
and selecting marker orders. Maps that order markers based on meioses and recombination,
and present intermarker distances in cM, are called genetic maps. This nomenclature is to
distinguish them from radiation hybrid and physical maps, which are based on biological
phenomena other than recombination and linkage, and are hence outside the scope of this
chapter.

Genetic map construction is solved using the same maximum likelihood formulation of
linkage analysis that I presented in Section 17.5. However, there are some basic differences
between disease-gene hunting usages and map construction. In disease-gene hunting one
is trying to locate a new locus with respect to an existing map of markers in known or-
der. Thus, the number of loci that need to be simultaneously analyzed is limited. In map
construction one is trying to put m markers into order, and m may be large. In disease-
gene hunting one may be studying a rare disease for which it is desirable to collect one or
more pedigrees with dozens or even hundreds of individuals. For map construction, one
can restrict attention to pedigrees of three generations and of modest size; three-generation
pedigrees are used, so that in the youngest generation it may be possible to identify the
grandparent-of-origin for each allele, and infer phase of genotypes. For disease-gene hunt-
ing, the genotype at the disease locus is inferred via the penetrance function, while map
construction usually uses markers for which the genotype and phenotype are identical. For
disease-gene hunting it is necessary to treat pedigrees in which members are not available
for genotyping; this is also done in map construction, but one could reasonably impose the
restriction that all individuals sampled are genotyped at all markers to be ordered.

The Lander-Green algorithm made map construction much easier because it can com-
pute the likelihood of one order of m markers in time that is polynomial in m, although
the time is exponential in the number of individuals. Map construction is still compu-
tationally challenging because m!/2 different marker orders might have to be considered.
Computational biologists do not necessarily appreciate that there are very time consuming

Human Genetic Linkage Analysis 17-17

TABLE 17.1 A Few Markers on Human Chromosome 5 from
the Marshfield Genetic Map
Marker Dname sex-ave(cM) female(cM) male(cM)

AFM028xb12 D5S392 0.00 0.00 0.00
AFMa217zh1 D5S1981 1.72 0.00 3.34
AFMa183wh5 D5S1970 5.43 1.54 9.14
AFM205wh8 D5S417 6.67 2.19 11.07
GATA145D10 D5S2849 7.77 3.28 12.17
AFM336tc1 D5S675 9.41 4.37 14.36

non-computational tasks required in map construction. These include: 1) DNA sequenc-
ing to identify markers that meet the criteria discussed in Section 17.3 2) ascertainment
of pedigrees 3) genotyping at candidate markers and 4) inter-species hybridization and/or
cytogenetic experiments to physically assign markers to chromosomes. Besides the order of
markers, and intermarker distances, an important output of some map construction projects
is an estimate of frequencies of the observed alleles at each marker. Recall from the previous
sections that disease and marker allele frequencies are among the inputs to linkage analysis
for disease-gene hunting, and it is often useful to have external estimates not based on the
disease pedigrees being analyzed.

Major progress in ascertainment of pedigrees was made under the leadership of Nobel-
prize winner Jean Dausset, who set up a foundation Centre d’Etude du Polymorphisme
Humain (CEPH) to collect pedigrees, develop markers, and make maps. The most recent
of the human maps from the large CEPH effort is described in [16], and it remains wide-
ly used. Broman et al. [8] constructed a denser, and more reliable map by genotyping
some CEPH pedigrees at lots more markers and developing better marker ordering pro-
cedures for short distances. This map is commonly called the “Marshfield map” and can
be found at: (http://research.marshfieldclinic.org/genetics/Map_Markers/maps/
IndexMapFrames.html) Table 17.7 shows a few entries from chromosome 5 from this map.
The maps show marker positions in cM from the upper end of the chromosome; these dis-
tances can be converted to recombination fractions using map functions. More recently,
Kong et al. [40] built an even denser map, called the “deCODE map”, using a newly as-
certained set of Icelandic families. Now that the genome sequence is nearly complete, one
can check marker order in the sequence directly. However, it remains extremely useful to
estimate the inter-marker recombination fractions using the published maps.

There is no generally agreed upon algorithm for finding a good ordering of m markers,
when m is large, and MAPMAKER and CRI-MAP recommend different heuristic approach-
es. The MAPMAKER approach is to find a coarse set of f “framework markers” such that:
1) no two of the markers are very close to each other, say at least 10cM apart, 2) the set
of markers is much smaller, so many, if not all, of the f !/2 orders can be considered and 3)
the f markers can be reliably ordered. By “reliably ordered”, I mean that the difference in
log-likelihood between the best order and the second best order is large, preferably above
3.0. Once a framework map is computed, one can then assign each remaining marker to a
place within the framework map and attempt to order all the markers between each pair
of framework markers. The main advantage of the framework approach is that a subset of
the map is reliably ordered, and in some usages of genetic maps, it is acceptable to use only
the framework markers. The main disadvantage is that finding a set of framework markers
that meet the three enumerated criteria may be impossible for some data sets.

CRI-MAP and MULTIMAP instead implement iterative algorithms, where one can start
with an initial order for some markers, possibly framework markers, and add one marker
at a time. These methods have the advantages that they always place all markers, and one
can test the reliability of ordering at any stage. A common way to do this is to apply a

17-18 Handbook of Computational Molecular Biology

“flips test” in which each set of k (typical value 5–8) consecutive markers in the current
preferred order are permuted in all k! possible ways, leaving the other markers fixed, and
the log-likelihoods of each resulting order on all markers computed. The main disadvantage
of the iterative approach is that the output map is likely to depend on the order in which
the markers are inserted [30].

In the iterative approach it is useful to have a good starting order for at least some
markers. The input for this problem is usually taken to be the

(
m
2

)
pairwise LOD scores and

best recombination fractions for each pair of markers. Weeks and Lange [93] implemented
simulated annealing algorithms for two objective functions: one was the sum of the LOD
scores between adjacent markers, and the other was based on least squares fitting for all
pairs of markers. In a program called FIRSTORD, Curtis [13] implemented a different
heuristic search algorithm to optimize a different objective function based on analogy to
minimizing the energy of a collection of springs.

17.8 Lander-Green Algorithm

In 1987, Lander and Green [46] discovered a completely different algorithm for computing
multilocus pedigree likelihoods. Their algorithm runs in time that is polynomial in the
number of markers m, but exponential in the number of individuals n. The Lander-Green
algorithm is ideally suited for computing genetic linkage maps because that can be done
with small pedigrees and requires simultaneous analysis of many markers. Indeed, the CRI-
MAP and MAPMAKER packages, which both implement variants of the Lander-Green
algorithm, have been used to compute many linkage maps for humans and other organisms
as well. The initial formulation was primarily for codominant markers, where phenotype
= genotype, and there is no need for a penetrance function. I will describe a more general
variant of the algorithm developed by Kruglyak et al. [42, 43]. Improved versions of this
algorithm are implemented in the widely used software packages GENEHUNTER [43] and
Allegro [27].

The critical innovations in the Lander-Green algorithm are to represent the flow of alleles
by inheritance vectors and to treat the inheritance vectors as hidden states in a Hidden
Markov model (HMM). I will use I to denote an inheritance vector; the inheritance vector
will usually be associated with a position j, between 1 and m, in an m-locus map, in which
I will denote the vector by Ij . I will assume that the recombination fractions between
adjacent loci are specified. I reserve positions 0 and m + 1 for the situation in which a
hypothetical disease gene is a locus outside of the marker map; the disease gene could also
be a locus within the map, flanked by two marker loci.

Suppose the pedigree contains n individuals, partitioned into sets F of founders and C
for nonfounders (C stands for children) of sizes f and c = n− f respectively. The pedigree
contains 2c meioses or inheritance events by which the c nonfounders get their genotypes.
An inheritance vector I is a 0-1 array of length 2c in which the entry I[k] is 0 if that allele
was inherited from the grandfather and 1 if that allele was inherited from the grandmother.
I will assume that whenever genotypes are known/assigned for founders, they are assigned
with phase, so that one knows which allele came from the founder’s father and which came
from the mother, even though those individuals are not in the pedigree. Given phase-known
founder genotypes and an inheritance vector, the phase-known genotypes of all nonfounders
are uniquely determined by tracking the meioses down the pedigree. There are 22c possible
inheritance vectors at any locus. Suppose Ij and Ij+1 are inheritance vectors for adjacent
loci, then the positions in which they differ correspond precisely to recombinations. Let

Human Genetic Linkage Analysis 17-19

θj be the recombination fraction between loci j and j + 1. Define a 22c × 22c transition
matrix Tj indexed by the possible inheritance vectors, such that Tj [v, w] = θd

j (1 − θj)2c−d,
if the vectors v, w differ in exactly d out of 2c entries. Then Tj represents the transition
probability matrix in a Markov chain whose states are the inheritance vectors. It is a Hidden
Markov model because the inheritance vectors cannot in general be determined uniquely
from the available genotypes and phenotypes, but it is possible to infer probabilities on each
inheritance vector at each position.

One basic algorithmic problem is to compute probabilities at a single locus that relate
genotypes and phenotypes to inheritance vectors. Suppose Xj and Gj represent the vectors
of phenotypes and genotypes at locus j, respectively. Then P (Xj | Ij) = ΣGj pen(Xj |
Gj)P (Gj | Ij), where the penetrance function is 1 for markers and provided as input
if j is the disease locus. Let GFj be the founder genotypes at locus j and let GCj be
the nonfounder genotypes. As noted above, if one fully specifies Ij and GFj , then this
determines GCj , so let that function be GCj(GF j, Ij). One could compute

P (Gj | Ij) = ΣGF jP (GFj)×GCj(GF j, Ij). (17.4)

The term

P (GFj) = Π1≤i≤2fP (a | allele assigned to founder position i is a)

can be computed from the input marker allele frequencies exactly as in the Elston-Stewart
algorithm. I will first explain how to use P (Xj | Ij) to compute the likelihood, and then ex-
plain how to reduce the number of terms in the sum on the right hand side of equation 17.4..

Using P (Xj | Ij) and the transition matrices Tj one can compute the overall likelihood of
the data by a chained matrix product. Let 12c be a vector of all 1’s. Let Qj be a 22c × 22c

matrix with diagonal entries P (Xj |Ij) and zeroes off the diagonal. Then the likelihood (as
a function of phenotypes X , the locus map, and recombination fractions θj) is proportional
to:

12cQ1T1Q2T2 · · ·TmQm12c. (17.5)

The above formula is used to compare the likelihood of two maps in genetic map construction
or two possible positions of a disease gene in disease gene finding. Specifically, suppose
one wishes to compare the hypothesis of linkage with the disease as locus j to the null
hypothesis of no linkage. For the likelihood of no linkage treat the disease gene locus as
locus 0, with θ0 = 0.5 (i.e. unlinked to the other loci), and let T0 represent the transition
matrix all of whose entries are 2−2c. Let θ′ be the recombination fraction between the
markers in positions j − 1 and j + 1 that flank the putative disease locus, and let T ′ be the
corresponding transition matrix. Then the likelihood ratio test (whose log base 10 is the
LOD score) can be computed by using as numerator

12cQ1T1Q2T2 · · ·Qj−1Tj−1QjTjQj+1 · · ·TmQm12c,

and as denominator

12cQ0T0Q1T1Q2T2 · · ·Qj−1T
′Qj+1 · · ·TmQm12c.

In the numerator, there is flexibility as to how to set θj and θj+1 subject to the Haldane or
Kosambi equations given at the end of Section 17.4. In general, one may wish to consider
all possible positions for the disease along the map, so it is most efficient to compute all
partial products from the left and the right in the all-locus product equation 17.5 first, and
then compose the terms to the left of the disease locus, at the disease locus hypothetical
position, and to the right of the disease locus.

17-20 Handbook of Computational Molecular Biology

One can compute P (Gj | Ij) more efficiently in most cases by observing that many
assignments of founder genotypes GFj are not consistent with the input marker data [43].
Moreover, for some inheritance vectors Ij and some founder allele positions, the allele in
that position is not passed down to any genotyped individual, so all possible alleles are
valid. One can determine which founder allele assignments are consistent with the observed
genotypes and a fixed vector Ij by a linear-time graph algorithm. Define a multigraph
H(Ij) with 2f vertices v1, v2, . . . v2f representing the phased alleles of the founders. Let i
be some genotyped individual whose actual unphased alleles are a1, a2. Tracing back the
inheritance vector, one can determine two founder allele positions V1(Ij , i) and V2(Ij , i)
such that those are the alleles that must have been passed down to individual i. The
entire correspondence between genotyped individuals and founder alleles positions can be
determined in one bottom-up traversal of the pedigree graph for each vector Ij . Add to
the graph H , the edge V1(Ij , i)—V2(Ij , i) with label {a1, a2}. Note that the labels are
unordered sets. If a vertex v in H has no adjacent edges, then that allele position can be
assigned any allele, so the term for position v in P (GFj) is set to 1, and that position is
ignored. If there are outgoing edges from v, then the only valid alleles must be in the set
labels of all outgoing edges, and that intersection is of size at most 2. If the intersection is
empty, then the vector Ij is not consistent with the observed data. If the intersection has a
single allele, that allele must be assigned to position v. If there are two choices a1, a2, then
choose one assignment and that forces the assignment of all vertices in the same connected
component as v in the multigraph H , so there at most two possible valid allele assignments
for each nontrivial connected component of H . Hence P (GFj) can be expressed as the sum
and product of a linear (in number of individuals) number of terms.

Having obtained P (Gj | Ij), one can apply Bayes’s theorem to compute P (Ij | Gj). More
generally to compute the conditional probability of an inheritance vector at any position
in the map conditional on all the genotype data, one uses the forward-backward dynamic
programming algorithm that is standard in HMM theory [77]. Denote this probability for
locus j by Pcond(Ij). One advantage of computing Pcond(Ij) conditional on all the data
(pedigree, genotypes, phenotypes, recombination fractions) is that one can apply a variety
of tests of linkage using this probability, not just the LOD score test. See examples in
the next section. The likelihood ratio test for linkage in which the putative disease gene
occupies position j can be written as

ΣIjP (X | Ij , θj−1, θj)Pcond(Ij)
ΣI0P (X | I0, θ0 = 0.5)2−2c

In the denominator, each inheritance vector for the unlinked disease locus has equal prior
probability.

Ingenious techniques have been found to speed up the Lander-Green algorithm and these
are of at least two different types. There are new algorithmic methods that reduce the
number of arithmetic operations to compute the expression in formula 17.5 such as those
in [42, 43, 32, 44]. There are also algebraic methods to reduce the dimensionality of the
exponential-size inheritance vector space such as those in [43, 27, 58]. The latter can be
general or take advantage of pedigree-specific symmetries. For these reasons, I did not give
a specific running time for variants of the Lander-Green algorithm. Suffice to say that the
recent innovations have enabled one to compute LOD scores instantaneously on pedigrees
of modest size that were intractable with the original Lander-Green algorithm, but some
real pedigrees are still too large for current implementations.

Human Genetic Linkage Analysis 17-21

12
56

34
57

5765
1413

FIGURE 17.5: The siblings share the allele 1 identical by descent. The siblings do not share the
allele 5 identical by descent because the left sibling inherited 5 from the mother,
while the right sibling inherited 5 from the father.

17.9 Methods That Do Not Use a Penetrance Function Model

Many researchers consider the LOD score method unsuitable for complex traits, which
involve multiple genes, because it is impossible to specify an accurate penetrance function.
This concern has led to the development of methods that analyze the genotypes of only
affected relatives. The intuition is that affected relatives should have marker genotypes
that are more similar near disease-associated genes than at random places in the genome.
In this section, I introduce a few of the concepts and software packages used for analysis
of affected relatives. For the LOD score method, different packages all compute the same
test statistic. This is not at all true for affected relative methods. I will mention a few test
statistics that are used, but mostly refrain from recommendations.

There is an unfortunate terminology confusion that makes it more difficult than necessary
to read the literature on affected relative methods. Many authors refer to methods that
use a penetrance function as “parametric” and other methods as “non-parametric”. This
is incorrect because all methods use parameters such as recombination fractions and allele
frequencies. I will instead use the terminology preferred by Robert Elston and Joseph
Terwilliger, two linkage analysis luminaries. A method that uses a penetrance function is
called model-based; other methods are called model-free.

The first model-free method was proposed by Penrose [72] and predates the LOD score
method by about 20 years. Model-free methods were largely ignored until the late 1970’s
because early studies focused on diseases for which simple dominant or recessive penetrance
functions fit the data well.

Early model-free methods assumed a study design in which clinicians collected nuclear
families with at least two affected siblings. Statistical tests for linkage can be based on
whether the affected siblings share more alleles than would be expected by chance. To
make this more precise, it is useful to distinguish two types of allele sharing. Alleles a
and b in two individuals are identical by state (IBS) if a = b. Alleles a, b are identical by
descent (IBD) if they are inherited via two paths from the same founder allele. IBD is
closely related to the notion of an inheritance vector in the Lander-Green algorithm. Given
a pedigree, an assignment of phased genotypes to founders, and an inheritance vector, one
can determine whether any two alleles in different individuals are identical by descent. The
distinction between IBS and IBD is shown in Figure 17.5.

The advantages of measuring sharing IBS are that: 1) it is computationally trivial for
genotyped individuals 2) one can more easily derive asymptotic statistics for how many
alleles are shared IBS in large pedigrees [94]. The advantage of measuring sharing IBD is

17-22 Handbook of Computational Molecular Biology

that sharing IBD actually capture the notion of linkage in that the identical by descent
alleles should be carrying along the disease associate gene variant, if there is linkage.

Tests of affected sibling pairs (ASP) all compute an estimate of the fractions of sibling
pairs ẑ0, ẑ1, and ẑ2 that share 0, 1, or 2 alleles. Using IBD sharing, and under the null
hypothesis of no linkage one expects z0 = 1/4, z1 = 1/2, z2 = 1/4. Different software
packages for ASP linkage tests differ on aspects such as the following:

1. how families with > 2 affected siblings are counted;
2. how pedigrees with multiple nuclear families are counted;
3. how the genotypes of ungenotyped individuals are estimated.

A more fundamental difference is in how to test the estimated proportions ẑ0, ẑ1, and ẑ2
against a null hypothesis. The simplest test, called “the mean test”, compares 2ẑ2 + ẑ1 to
its expectation of 1 by a Chi-squared test with 1 degree of freedom (df). More generally,
one can compare ẑ0, ẑ1, and ẑ2 to the expected proportions 1/4, 1/2, 1/4 by a Chi-squared
test with 2df. Let sij , i = 0, 1, 2 be the probability that sibling pair j share i alleles IBD and
suppose there are N sibships. Risch [78] proposed estimating the ẑi by maximum likelihood
and testing their departure from the null hypothesis by a likelihood ratio test. For the case
of sibling pairs the set of formulas is:

LR = Π1≤j≤N (ẑ0w0j + ẑ1w1j + ẑ2w2j)/(0.25w0j + 0.5w1j + 0.25w2j),

where the w terms are weights that can be set to make different tests depending on family
sizes and mode of inheritance. He called the log 10 of this likelihood ratio a LOD score, but it
is not generally equivalent to the model-based LOD score. Knapp et al. [37] showed that the
mean test is equivalent to the model-based LOD score method, in that one can define a 1-to-1
correspondence between values of the test statistics, provided the true mode of inheritance
is recessive with no phenocopies (penetrance function has values 0, 0, 1). This type of
result illustrates why different test statistics on the observed proportions may be preferred
for different data sets. Davis and Weeks [15] carried out computational experiments on
numerous ASP software packages for realistic complex disease pedigrees.

Holmans [31] proved a triangle constraint:

2z1 ≤ 1, (z1 + z2) ≤ 1, (3z1/2 + z2) ≥ 1

that applies under plausible assumptions about how the disease gene contributes to the
disease etiology. So, it is not model-free, but is valid under a wide range of penetrance
models. Holmans showed that forcing the maximum likelihood estimates of z1, z2, z3 to
lie in the triangle defined by the inequalities leads to a statistically more powerful test.
Whittemore and Tu [97] pushed this idea further by asking what is the test that has the
best worst-case power (minmax) over all the models allowed by Holmans. This leads to a
more general system of algebraic equations whose solution yields the test statistic

1.045(1.58− 2.58ẑ0 − 1.872ẑ1)
√

(N),

where N is the number of affected sibling pairs.
Several different test statistics have been proposed for affected relatives in multi-generation

pedigrees; I will mention only three. Weeks and Lange [94] proposed to use IBS status of
affected relative genotypes as follows. Let the affected relatives in pedigree p be Ap1 . . . Apr

and let the two alleles at a marker of Api be gpi1, gpi2. Let a =IBS b take on the value 1 or 0
depending on whether the alleles a and b are identical by state. Then the affected pedigree
member (APM) test statistic for pedigree p is:

ΣAi,Aj Σk=1,2Σl=1,2f(gpik)(gpik =IBS gpjl),

Human Genetic Linkage Analysis 17-23

where f is some function of the allele frequency that penalizes more frequent alleles. Weeks
and Lange [94] proposed f(a) = P (a)−1/2, where P (a) is the input allele frequency of a.
The above test statistic has the advantage that for any specific loopless pedigree, one can
use variants of the Elston-Stewart algorithm to determine the mean Mp, and the variance
Vp for each pedigree, and these in turn can be used to determine the statistical significance
of any observed value of the following test statistic for a collection of pedigrees:

T =
ΣpWp(Sp −Mp)

ΣpW 2
p Vp

,

where Wp is some weight function that favors pedigrees with more affected members. The
statistic T follows the standard normal distribution asymptotically, so one can assess the
significance of a result by table lookup. In practice, one may not know if the number of
pedigrees is large enough to use the asymptotic result, so simulation is used, as described
in the next section.

Instead of using IBS status one can use IBD status and define:

ΣAi,Aj Σk=1,2Σl=1,2f(gpik)(gpik =IBD gpjl),

When f(a) = P (a), this test statistic is usually denoted Sp,pairs because it sums the shared
alleles over all pairs of affected relatives in pedigree p. The statistic Sp,pairs can be computed
using the generalized Lander-Green algorithm by noting that for each inheritance vector I,
one can determine whether each pair of alleles is identical by descent; let the value of the
statistic for a fixed inheritance vector I be denoted by Sp,pairs(I). Then

Sp,pairs = ΣISp,pairs(I)P (I | G,X).

Whittemore and Halpern [96] observed that in pedigrees with > 2 affected relatives, it
is more indicative of linkage if subsets of size > 2 share the same allele IBD passed down
from a single founder. Let sample represent any of the 2r ways to sample 1 allele from
each affected relative. Let occurt(sample) denote the number of times the founder allele in
position t = 1, 2 . . . , 2f occurs in sample. The statistic they proposed is

Sall = 2−rΣsample[Π1≤t≤2f (occurt(sample)!)].

As for Spairs, one computes this by fixing the inheritance vector I, and summing:

Sp,all = ΣISp,all(I)P (I | G,X).

For example, consider a pedigree with 3 affected relatives and a dominant inheritance
pattern, so that all three affected relatives share 1 allele IBD, and the other alleles are
different. Then Spairs = 0.75 because each pair scores 0.25, while Sall = 1.5 because the
selection of the 3 shared alleles scores 0.75 and each of 3 ways of selecting 2 shared alleles
scores 0.25.

A limitation of Spairs and Sall is that there is no analytical formula or algorithm to
determine their asymptotic distributions. Different versions of GENEHUNTER [43, 39] use
different approximations to estimate p-values. One could also use simulation as outlined in
the next section.

17.10 Simulation Methods

Simulation can be used in genetic linkage analysis either to assess the statistical power
to detect linkage for prospective studies or to assess the statistical significance of possible

17-24 Handbook of Computational Molecular Biology

linkage findings on real data. To illustrate, I will discuss two software packages SLINK [69,
95, 12] and SimIBD [14] that rely on simulation. Another package called SIMLINK [5, 74]
is similar in usage and design to SLINK.

The basic paradigm for use of simulation in linkage analysis is:

1. Generate N replicates of the input pedigree(s) filling in genotypes at random.
2. Compute some test statistic S on each replicate, such as its LOD score.
3. If N ′ replicates have a test statistic better than some threshold TS , then N ′/N

is an estimate of the power or significance.

There are some noteworthy distinctions between power estimation and significance testing.
Power estimation should be done before any true genotypes are determined in the laboratory,
while significance testing is done after linkage analysis of the true data has been done. Power
calculations are often done before the DNA samples are collected, and a high estimate of
power can be used to justify resources needed to collect and genotype the samples. In power
estimation the replicates at step 1 are filled in with the marker data linked to the trait locus,
with some specified recombination fractions. Because of this, most power estimation is done
in a model-based framework with a penetrance function for the trait locus specified and the
LOD score as a test statistic. In significance testing, the replicates have the marker data
unlinked to the trait, so testing can be done either penetrance model-based or model-free.

Because power calculations are done before the genotypes are collected and because they
reflect the behavior of “average” markers, one must make some some educated guesses
about the upcoming gene hunt. For example, one may represent typical markers with .75
or .80 heterozygosity by using a hypothetical marker with 4 or 5 alleles respectively, and
all allele frequencies equal. Also, one has to guess how close the disease gene will be to
the nearest marker or flanking markers. One can do a two-stage simulation corresponding
to steps 4 and 5 in the gene-hunting procedure summarized in the Introduction. The first
stage uses markers spaced as they will be in the genome scan, and a lower threshold for the
test statistic. The second stage uses very densely spaced markers and a higher threshold.
I typically use 1 as the LOD score threshold in the genome scan and 3 as the LOD score
threshold for the fine mapping phase. If 80% of the replicates exceed the thresholds in each
stage that is usually considered high enough power to proceed with confidence to collect
samples and genotype them.

Suppose one wishes to test the empirical significance of an observed LOD score s. Then
one can simulate N replicates using marker spacing and allele frequencies exactly as they
occurred in the real data. The threshold in step 3 is the observed score s, rather than any
prescribed threshold such as 3 or 3.3. For example, an observed score of 2.92 might turn out
to be significant at an empirical genome-wide significance α < 0.001 even though it is below
3. This leads to an important difference between power estimation and significance testing.
In either setting, N ′/N is the maximum likelihood estimate at step 3 of the probability
of observing a score above TS. However, in significance testing, one wants to be extra
certain that a score above TS is unlikely to occur. Therefore it is recommended to generate
enough replicates so that the desired α is strictly above the 95% confidence interval of the
probability estimate for TS [68]. In particular, suppose N ′ = 0, that the true LOD score is
above any LOD scores observed in the unlinked replicates. Then, it takes N = 1000 to get
the estimate for α < 0.001, but it takes N ≈ 3000 replicates to get 0.001 above the 95%
confidence interval for the estimate [68].

The data set may contain more than p > 1 pedigrees and one may wish to consider the
possibility that there is locus heterogeneity either for power estimation or for significance
testing. One can specify a parameter 0 ≤ β ≤ 1 to indicate the fraction of linked replicates.

Human Genetic Linkage Analysis 17-25

This can be used to generate a pool of replicates for each pedigree in which the fraction
β are expected to be linked to the trait locus and 1 − β unlinked. Then one can sample
one replicate from each pool to get a collection of p pedigrees of which an expected fraction
β are linked to the true locus. In practice, one is unlikely to have a good estimate of
β and generating N replicates of each pedigree for each possible value of β can be very
computationally intensive. Instead one can generate much smaller pools of replicates for
each individual pedigree and use bootstrapping to sample with repetition from these to make
a p-pedigree compound replicate. This reduces both the computation time to generate the
replicates and the time to compute the test statistic. Different sampling and bootstrapping
strategies are considered in [4, 85, 84]; a practical example of bootstrapping in significance
testing can be found in [34].

The basic computational question in linkage analysis simulation is how can one efficiently
generate a single replicate. Consider again the nested sum and product 17.2. With subscript
1 for the outside summation, the summation over the genotypes g1 occurs last. One can
take advantage of the fact that there is flexibility in the numbering of individuals, and in
particular which individual gets number 1. The pedigree likelihood can be expressed as

Σg1(P (g1 | X, g2, g3, . . . , θ))

In words, it is the sum of the multilocus genotype probabilities of the individual numbered
1, conditioned on all the phenotypes, the recombination fraction(s), and the genotypes
of all the other individuals in the pedigree. The genotypes may be known or unknown.
By taking the marginal sum over the marker loci, this formulation can be used to make
risk calculations that individual 1 has any genotype at the disease locus [52]. This option is
offered in LINKAGE/FASTLINK and can be used in genetic counseling for situations where
linkage has been established, but the disease gene is unknown and cannot be sequenced for
mutations. The above formula can also be used in simulation to present the probability
distribution for genotypes of the any individual i, and then one can sample from this
distribution at random to fill in a simulated genotype for i. This observation can be made
into an iterative algorithm [67]:

1. Order the individuals 1, 2 . . . , n. Let Rj be the set of individuals numbered > j.
Do the next two steps for i = n, n− 1, . . . 1.

2. Treat individual i as if (s)he were number 1 in the pedigree, and use the Elston-
Stewart algorithm to carry out the risk calculation for:

P (gi | X, gRi, θ).

By using gRi on the right hand side, I mean that the genotypes for whoever is
available in Ri have been filled in, while the remaining marker genotypes are
blank.

3. Sample a genotype for individual i from the probability distribution generated
at step 2.

The above method is implemented in SIMLINK and SLINK. Some of the optimizations
to make the Elston-Stewart algorithm faster can be applied, and those in the first version
of FASTLINK [12] have been integrated into SLINK. However, most optimizations that
depend on reducing the set of possible alleles cannot be applied easily because one wants
to sample from the set of all possible alleles.

In practice, one distinguishes pedigree members who are “available” and “unavailable”.
For example, in the initial pedigree figures, some individuals have no genotypes, indicating

17-26 Handbook of Computational Molecular Biology

that they are unavailable for sampling. When filling in genotypes, only available pedigree
members get genotypes filled in, and unavailable individuals get alleles 0 0 at each marker.
Usually, all available pedigree members have genotypes zeroed out and then filled in at
random in simulation. However, the algorithm outlined above does allow some available
pedigree members to have their genotypes fixed as the true genotypes, while other individ-
uals have genotypes filled in differently in each replicate. The SimIBD software package
that I describe next takes advantage of this flexibility.

The SimIBD package computes a model-free test statistic and then uses simulation via
SLINK as a subroutine to determine the empirical p-value of the test statistic [14]. The
test statistic in SimIBD is similar to that in APM, but as the name implies, it attempts to
distinguish alleles that are identical by descent from those that are just identical (by state).
Like APM, SimIBD works only on pedigrees with at least 2 affected individuals. Let the
affected individuals be A1, A2, Let the alleles of Ai be gi1 and gi2. Let the specified
population frequency of allele gik be P (gik), and let f(gik) = (P (gik))−1/2. The SimIBD
test statistic for a single pedigree is:

ΣAi,AjΣk=1,2Σl=1,2f(gik)IBD(gik, gjl),

where IBD(a1, a2) is the probability that alleles a1 and a2 are identical by descent. This test
statistic is similar to that used in APM, but APM uses the indicator function (Gik = Gjl)
instead of the IBD probability. The IBD function can be hard to compute, especially
for looped pedigrees that are too large for the Lander-Green algorithm. SimIBD uses a
recursive algorithm that is exact in most cases, and approximate in some. I will continue
on the theme of approximate algorithms in the next section.

Another major difference between APM and SimIBD is how the genotypes are filled in
during the simulation that determines the empirical significance of the test statistic. APM
fills in random genotypes for all available individuals. SimIBD keeps the genotypes of the
available unaffected individuals fixed at the true genotypes, and fills in random genotypes for
the affecteds conditional on the unaffected marker genotypes. The simulation uses the trait
values only to determine which individuals keep genotypes fixed or not, because it generates
marker genotypes that are unlinked to the disease as is always done for significance testing.
Keeping the genotypes of the unaffecteds fixed at the true genotypes limits the effects of
skewed allele frequencies [96]. Computational experiments show that SimIBD has high
power to detect linkage for complex traits [14].

17.11 Some Alternative Data Representations Leading to
New Methods

In this section I present a sample of data representation ideas behind three newer software
packages MERLIN [1], SIMWALK2 [82], and Superlink [23]. I chose these for two reasons.
Firstly, SIMWALK2 and MERLIN are widely used and Superlink shows a lot of potential.
Secondly, I wanted to illustrate by example that the use of alternative representations of
patterns of inheritance and genotypes can lead to better algorithms and running times.
The selections in this section reflect my taste and knowingly omit dozens of other pertinent
papers and software packages. A comprehensive list of software packages related to genetic
linkage analysis, genetic association analysis, and other problems on pedigrees, such as
drawing and database management, can be found at (http://linkage.rockefeller.edu).
Many of the entries there include references or links for downloading the software.

The formulas that summarize the Lander-Green algorithm, such as formula 17.5 require
computing matrix products and/or sums over all 22c inheritance vectors. Abecasis et al. [1]

Human Genetic Linkage Analysis 17-27

recognized that in typical data sets:

• many inheritance vectors are not consistent with available genotypes, and/or
• due to genotype symmetries or ungenotyped individuals, the likelihood of sub-

pedigrees is identical regardless of whether a specific entry in an inheritance
vector is 0 (allele came from grandfather) or 1 (allele came from grandmother).

Therefore, in MERLIN, they represent the set of possible inheritance vectors with a
compact binary search tree (sometimes called a trie), with a special flag for symmetry
between sibling nodes. The root of the tree represents the first bit in possible inheritance
vectors. The second level may have two nodes representing vectors that start with 0 or
1; the third level may have four nodes representing vectors that start with 00, 01,10, 11,
the fourth level may have up to 8 nodes and so on. Nodes and the subtrees they would
root are omitted if any inheritance vector with the corresponding prefix is inconsistent with
the available genotypes. If two prefixes V 0 and V 1 have the symmetry property that the
likelihood summed over all vectors starting V 0 is identical to the likelihood summed over all
vectors V 1, then the node for V 1 is made a leaf with a flag indicating it has the same value
as the node for V 0. Symmetry can be detected by rules on the pedigree and genotypes,
without actually computing the likelihoods.

As shown in [1], the sparse tree representation leads to some speedups of the Lander-Green
algorithm because the number of nodes in the binary tree is often a miniscule fraction of the
possible 22c + 1. This saves memory leading to faster computation times. It also facilitates
the use of sparse matrix algorithms and divide-and-conquer [32] to compute the chained
matrix product 17.5.

Another feature of MERLIN is an approximation algorithm in which one requires that
there are at most a small constant r recombinations between adjacent loci. This assumption
is plausible when the marker map is very dense, as can happen in the use of SNP markers.
As a consequence, the transition matrices Tj are necessarily sparse and the matrix chain
product 17.5 can be computed more quickly.

The second alternative representation is a graph on the inheritance vectors used as a
Markov chain, as implemented in the software package SIMWALK2 [82]. In that paper,
the inheritance vectors are themselves represented as graphs called pedigree descent graphs,
but this is mostly a change of notation, so I will explain the construction of a Markov
chain in terms of inheritance vectors directly. The principal advantage of the Markov chain
approach is that it gives a structured way to explore the possible inheritance vectors while
keeping track of only feasible inheritance vectors that are encountered. Thus, SIMWALK2
goes even farther than MERLIN in reducing the fraction of 22c possible inheritance vectors
about which some information is stored. Therefore, large pedigrees can be analyzed. The
tradeoff is that SIMWALK2 results are approximate because they are based on a random
sample.

The construction of the Markov chain M starts implicitly with a graph in which there are
22c vertices representing the inheritance vectors. Inheritance vectors that are not consistent
with the available genotypes will be avoided. The next step is to define 3 classes of edges
(Sobel and Lange call them transformations) 0,1,2 that define possible direct transitions in
the Markov chain.

• Edges of type 0 connect two inheritance vectors if they differ in a single bit
position; i.e., these correspond to changing the grandparent origin for a single
allele. E.g., there would be an edge 0110—0010 if both vectors are consistent
with the available genotypes.

• Edges of type 1 are defined by choosing one individual h, and connecting two

17-28 Handbook of Computational Molecular Biology

inheritance vectors if they differ exactly on every bit that corresponds to an allele
inherited by a child of h from h, and agree on all other bits. This corresponds
to flipping the grandparent of origin for every child of h on the allele inherited
from h.

• Edges of type 2 are defined by choosing a mated couple h,w, and connecting
two inheritance vectors if they differ exactly on every bit that corresponds to an
allele inherited from either h or w.

The resulting graph may not be connected (making the Markov chain reducible); to make
it connected, Sobel and Lange allow “tunneling edges” that are multi-edge paths composed
of basic edges of types 0,1,2. To put probabilities on the Markov chain, there are the edge-
type probabilities for traversing an edge of type 0,1,2, and a length probability, defined as
2−�, for taking a multi-edge path of length in a single Markov chain step. Only edges or
multi-edge paths whose endpoints are feasible vectors are considered; but a multi-edge path
may traverse through intermediate infeasible inheritance vectors.

The above Markov chain is then used in a Monte Carlo Markov chain algorithm of the
proposal form. Each transition can be subdivided into three logical steps.

1. From the current state Ij , one chooses a number of edges to traverse in a
single Markov chain step, and which edges they are by the above probability
distributions. This leads to a new state I ′j .

2. Using either the Lander-Green algorithm as described above or a variant of the
Elston-Stewart algorithm and Bayes’s theorem, one can compute the conditional
probabilities P (Gj | Ij) and P (Gj | I ′j) and compare them.

3. If the P (Gj | I ′j) is higher, then the proposed new state I ′j is automatically
accepted as the new current state in the Markov chain traversal. If P (Gj | I ′j) <
P (Gj | Ij) then I ′j is chosen as the new state (by generating a random number)
with probability P (Gj | I ′j)/P (Gj | Ij).

By allowing transitions to lower probability states, the Markov chain does not get stuck at
local maxima. In practice, SIMWALK2 does not compute the new probability P (Gj | I ′j)
from scratch, but uses fast probability update methods that take into account which terms
changed as a result of the bit changes between Ij and I ′j .

As in any Markov chain, one can estimate the steady-state probabilities of each inheri-
tance vectors state while doing the traversal. If S(Ij) is the estimated steady-state probabili-
ty of vector Ij , then the overall pedigree likelihood for the single locus j is ΣIjS(Ij)P (Gj |Ij).
SIMWALK2 extends this approach to analyze multiple loci simultaneously including deter-
mination of the most likely phase of the genotypes.

The third alternative representation I selected is Bayesian networks, also known as belief
networks or graphical models. Computing exact or approximate pedigree likelihoods turns
out to be a special case of inference in Bayesian networks. Since powerful, general techniques
have been developed by researchers in that domain, representing pedigrees as Bayesian
networks has proven useful in practice.

So far as I know, the first researcher to explicitly exploit the Bayesian network represen-
tation was Augustine Kong in a 1991 paper [38]. However, the general idea can be seen
in a 1978 paper of Cannings et al. [10] providing an alternative formulation of the general-
ized (to arbitrary pedigrees) Elston-Stewart algorithm. The Bayesian network theme was
used further by Jensen and Kong [33] culminating in an MCMC software package (differ-
ent from SIMWALK2) that uses Gibbs sampling of sets of variables to calculate accurate
approximate likelihoods for complex pedigrees. Lauritzen and Sheehan [55] lay out in some
detail how Bayesian networks can be applied to genetic linkage analysis and other genetic

Human Genetic Linkage Analysis 17-29

inference problems.
Becker, Geiger, and I [3] used the Bayesian network approach to address the problem

of selecting individuals to break the loops in Ott’s extension [66] of the Elston-Stewart
algorithm to looped pedigrees. Fishelson and Geiger [23] have pushed the Bayesian net-
work representation much further in a package called Superlink that does exact likelihood
computations for complex pedigrees and many loci. The Bayesian network representation
allows Superlink to carry an algorithm that is a hybrid between the Elston-Stewart and
Lander-Green algorithms, as determined by the input data. For brevity and consistency, I
follow the presentation in [23], but this describes an early version, and alternative Bayesian
network representations may be useful also.

In general, a Bayesian network is a graph of variables along with conditional probability
tables connecting them. The variables in a pedigree likelihood problem can be:

1. the individuals and relationships as represented by the marriage graph,
2. alleles with inheritance information (Superlink uses gijf gijm to represent the

alleles that individual i inherited at locus j from the father and mother),
3. the phenotypes, as above Xi is the phenotypes of individual i and X the pheno-

type vector,
4. inheritance vectors, as in the Lander-Green algorithm, and
5. the recombination fractions, θ1, θ2, . . . between adjacent loci.

Some of the pertinent probabilities are:

1. the probabilities of transmission from parent to child, as defined in Section 17.6,
2. the penetrance function expressing the probability of the phenotype data X con-

ditional on the genotype data G,
3. rules for recombination that express the probability of changing from an inher-

itance vector at one locus Ij−1 to an inheritance vector Ij at the next locus,
conditional on the intervening θj−1, and

4. marker allele frequencies.

Using either the Elston-Stewart approach or the Lander-Green approach, one can write
the pedigree likelihood as a nested sum and product of these variables and probabilities.
The major virtue of the Bayesian network representation is that one evaluates the nested
sum using general techniques that adapt to the input data. This allows run-time choices
for things such as: the order of the nuclear families, the order of the loci, pruning of
infeasible inheritance vectors (as in MERLIN) and infeasible alleles. The algorithms in
Superlink use run-time data about the size of conditional probability tables and other
intervariable dependencies to dynamically choose an order of evaluation for the pedigree
likelihood. Timing data on a couple of sample pedigrees in [23] shows lots of promise.
However, experience with more real data is needed to see on which types of inputs the
Bayesian network methods work better than the best current implementations of the Elston-
Stewart and Lander-Green algorithms.

17.12 Conclusion

I had the good fortune to stumble into the topic of genetic linkage analysis in 1992 on
a dare from Robert Cottingham Jr. to speed up and parallelize the LINKAGE package.
Since 1992, huge advances have been made by many researchers in genetic linkage analysis
methods and software, greatly reducing the frequency with which computational analysis

17-30 References

of pedigree data is a time bottleneck in hunting disease-causing genes. I highlighted a few
of these advances as well as more fundamental research on some basic algorithms, genetic
markers, and marker maps.

Genetic linkage analysis has intrinsic attractions for researchers in genetics, statistics,
mathematics, computer science, and other disciplines. Linkage analysis is unusual and
extrinsically attractive because it allows computational biologists to participate directly
in searching for the subtle DNA differences that distinguish between life and death, and
between good health and genetic disease.

Acknowledgements

I thank my past collaborators on linkage analysis methods: Richa Agarwala, Ann Beck-
er, Jeremy Buhler, Robert Cottingham Jr., Alan Cox, Sandhya Dwarkadas, Dan Geiger,
Sandeep Gupta, Ramana Idury, Marek Kimmel, Shriram Krishnamurthi, and Willy Zwaenepoel.
I thank Leslie Biesecker, Soumitra Ghosh, and Robert Nussbaum for mentoring me on how
human genetics research is done in the clinic, in the field, and in the biology laboratory. I
thank Richa Agarwala for proofreading this chapter.

References

[1] G. R. Abecasis, S. S. Cherny, W. O. Cookson, and L. R. Cardon. Merlin–rapid analysis
of dense gene maps using sparse gene flow trees. Nature Genetics, 30:97–101, 2002.

[2] R. Agarwala, L. G. Biesecker, K. A. Hopkins, and C. A. Francomano et al. Software
for constructing and verifying pedigrees within large genealogies and an application to
the Old Order Amish of Lancaster County. Genome Research, 8:211–221, 1998.

[3] A. Becker, D. Geiger, and A. A. Schäffer. Automatic selection of loop breakers for
genetic linkage analysis. Human Heredity, 48:49–60, 1998.

[4] J. Besag and P. Clifford. Sequential Monte Carlo p-values. Biometrika, 78:301–304,
1991.

[5] M. Boehnke. Estimating the power of a proposed linkage study: A practical computer
simulation approach. American Journal of Human Genetics, 39:513–527, 1986.

[6] V. Bonifati, P. Rizzu, M. J. van Baren, and O. Schaap et al. Mutations in the DJ-1
gene associated with autosomal recessive early-onset Parkinsonism. Science, 299:256–
259, 2003.

[7] D. Botstein, R. L. White, M. Skolnick, and R. W. Davis. Construction of a genet-
ic linkage map in man using restriction fragment length polymorphisms. American
Journal of Human Genetics, 32:314–331, 1980.

[8] K. W. Broman, J. C. Murray, V. C. Sheffield, and R. L. White et al. Comprehensive
human genetic maps: Individual and sex-specific variation in recombination. American
Journal of Human Genetics, 63:861–869, 1998.

[9] L. M. Brzustowicz, T. Lehner, L. H. Castilla, and G. K. Penchaszadeh et al. Genetic
mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2-
13.3. Nature, 344:540–541, 1990.

[10] C. Cannings, E. A. Thompson, and M. H. Skolnick. Probability functions on complex
pedigrees. Advances in Applied Probability, 10:26–61, 1978.

[11] J. Chotai. On the lodscore method in linkage analysis. Annals of Human Genetics,
48:359–378, 1984.

References 17-31

[12] R. W. Cottingham Jr., R. M. Idury, and A. A. Schäffer. Faster sequential genetic
linkage computations. American Journal of Human Genetics, 53:252–263, 1993.

[13] D. Curtis. Another procedure for the preliminary ordering of loci based on two point
lod scores. Annals of Human Genetics, 58:65–75, 1994.

[14] S. Davis, M. Schroeder, L. R. Goldin, and D. E. Weeks. Nonparametric simulation-
based statistics for detecting linkage in general pedigrees. American Journal of Hu-
man Genetics, 58:867–880, 1996.

[15] S. Davis and D. E. Weeks. Comparison of nonparametric statistics for the detection of
linkage in nuclear families: Single marker evaluation. American Journal of Human
Genetics, 61:1431–1444, 1997.

[16] C. Dib, S. Fauré, C. Fizames, and D. Samson et al. A comprehensive genetic map of
the human genome based on 5,264 microsatellites. Nature, 380:152–154, 1996.

[17] H. Donis-Keller, P. Green, C. Helms, and S. Cartinhour et al. A genetic linkage map
of the human genome. Cell, 51:319–337, 1987.

[18] C. M. Duijn, M. C. Dekker, V. Bonifati, and R. J. Galjaard et al. PARK7, a novel locus
for autosomal recessive early-onset Parkinsonism, on chromosome 1p36. American
Journal of Human Genetics, 69:629–634, 2001.

[19] M. G. Ehm, M. Kimmel, and R. W. Cottingham Jr. Error detection for genetic data,
using likelihood methods. American Journal of Human Genetics, 58:225–234, 1996.

[20] R. C. Elston and J. Stewart. A general model for the analysis of pedigree data. Human
Heredity, 21:523–542, 1971.

[21] E. Feingold, P. O. Brown, and D. Siegmund. Gussian models for genetic linkage analysis
using complete high-resolution maps of identity by descent. American Journal of
Human Genetics, 53:234–251, 1993.

[22] R. Fishel, M. K. Lescoe, M. R. S. Rao, and N. G. Copeland et al. The human mutator
gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer.
Cell, 75:1027–1038, 1993.

[23] M. Fishelson and D. Geiger. Exact genetic linkage computations for general pedigrees.
Bioinformatics, 18:S189–S198, 2002.

[24] S. E. Folstein, J. A. Phillips III, D. A. Meyers, and G. A. Chase et al. Huntington’s
disease: Two families with differing clinical features show linkage to the G8 probe.
Science, 229:776–779, 1985.

[25] D. Gordon, S. C. Heath, and J. Ott. True pedigree errors more frequent than apparent
errors for single nucleotide polymorphisms. Human Heredity, 49:65–70, 1999.

[26] Huntington’s Disease Collaborative Research Group. A novel gene containing a trinu-
cleotide repeat that is expanded and unstable on Huntington’s disease chromosomes.
Cell, 72:971–983, 1993.

[27] D. F. Gudbjartsson, K. Jonasson, M. L. Frigge, and A. Kong. Allegro, a new computer
program for multipoint linkage analysis. Nature Genetics, 25:12–13, 2000.

[28] J. B. S. Haldane. The combination of linkage values and the calculation of distances
between the loci of linked factors. Journal of Genetics, 8:299–309, 1919.

[29] J. M. Hall, M. K. Lee, B. Newman, and J. E. Morrow et al. Linkage of early-onset
familial breast cancer to chromosome 17q21. Science, 250:1684–1689, 1990.

[30] C. Hitte, T. D. Lorentzen, R. Guyon, and L. Kim et al. Comparison of MultiMap
and TSP/CONCORDE for constructing radiation hybrid maps. Journal of Heredity,
94:9–13, 2003.

[31] P. Holmans. Asymptotic properties of affected-sib-pair linkage analysis. American
Journal of Human Genetics, 52:362–374, 1993.

[32] R. M. Idury and R. C. Elston. A faster and more general hidden Markov model
algorithm for multipoint likelihood calculations. Human Heredity, 47:197–202, 1997.

17-32 References

[33] C. S. Jensen and A. Kong. Blocking gibbs sampling for linkage analysis in large
pedigrees with many loops. American Journal of Human Genetics, 65:885–901,
1999.

[34] T. Kainu, S.-H. H. Juo, R. Desper, and A. A. Schäffer et al. Somatic deletions in
hereditary breast cancers implicate 13q21 as a putative novel breast cancer suscepti-
bility locus. Proceedings of the National Academy of Sciences USA, 97:9603–9608,
2000.

[35] S. Karlin and U. Liberman. Classifications and comparisons of multilocus recombina-
tion distributions. Proceedings National Academy of Sciences USA, 75:6332–6336,
1978.

[36] T. Kitada, S. Asakawa, N. Hattori, and H. Matsumine et al. Mutations in the parkin
gene cause autosomal recessive juvenile parkinsonism. Nature, 392:605–608, 1998.

[37] M. Knapp, S. A. Seuchter, and M. P. Baur. Linkage analysis in nuclear families. 2:
Relationship between affected sib-pair tests and lod score analysis. Human Heredity,
44:44–51, 1994.

[38] A. Kong. Efficient methods for computing linkage likelihoods of recessive diseases in
inbred pedigrees. Genetic Epidemiology, 8:81–103, 1991.

[39] A. Kong and N. J. Cox. Allele-sharing models: LOD scores and accurate linkage tests.
American Journal of Human Genetics, 61:1179–1188, 1997.

[40] A. Kong, D. F. Gudbjartsson, J. Sainz, and G. M. Jonsdottir et al. A high-resolution
recombination map of the human genome. Nature Genetics, 31:241–247, 2002.

[41] D. D. Kosambi. The estimation of map distances from recombination values. Annals
of Eugenics, 12:172–175, 1944.

[42] L. Kruglyak, M. J. Daly, and E. S. Lander. Rapid multipoint linkage analysis of reces-
sive traits in nuclear families, including homozygosity mapping. American Journal of
Human Genetics, 56:519–527, 1995.

[43] L. Kruglyak, M. J. Daly, M. P. Reeve-Daly, and E. S. Lander. Parameteric and
nonparametric linkage analysis: A unified multipoint approach. American Journal of
Human Genetics, 58:1347–1363, 1996.

[44] L. Kruglyak and E. S. Lander. Faster multipoint linkage analysis using Fourier trans-
forms. Journal of Computational Biology, 5:1–7, 1998.

[45] E. Lander and L. Kruglyak. Genetic dissection of complex traits: guidelines for inter-
preting and reporting linkage results. Nature Genetics, 11:241–247, 1995.

[46] E. S. Lander and P. Green. Construction of multilocus genetic linkage maps in humans.
Proceedings National Academy of Sciences USA, 84:2363–2367, 1987.

[47] E. S. Lander, P. Green, J. Abrahamson, and A. Barlow et al. MAPMAKER: An inter-
active computer package for constructing primary genetic linkage maps of experimental
and natural populations. Genomics, 1:174–181, 1987.

[48] K. Lange and M. Boehnke. Extensions to pedigree analysis V. optimal calculation of
Mendelian likelihoods. Human Heredity, 33:291–301, 1983.

[49] K. Lange and R. C. Elston. Extensions to pedigree analysis. I. Likelihood calculation
for simple and complex pedigrees. Human Heredity, 25:95–105, 1975.

[50] K. Lange and T. M. Goradia. An algorithm for automatic genotype elimination.
American Journal of Human Genetics, 40:250–256, 1987.

[51] K. Lange, D. Weeks, and M. Boehnke. Programs for pedigree analysis: MENDEL,
FISHER, and dGene. Genetic Epidemiology, 5:471–473, 1988.

[52] G. M. Lathrop and J. M. Lalouel. Easy calculations of lod scores and genetic risks on
small computers. American Journal of Human Genetics, 36:460–465, 1984.

[53] G. M. Lathrop and J.-M. Lalouel. Efficient computations in multilocus linkage analysis.
American Journal of Human Genetics, 42:498–505, 1988.

References 17-33

[54] G. M. Lathrop, J. M. Lalouel, C. Julier, and J. Ott. Multilocus linkage analysis in
humans: Detection of linkage and estimation of recombination. American Journal of
Human Genetics, 37:482–498, 1985.

[55] S. L. Lauritzen and N. A. Sheehan. Graphical models for genetic analyses. Statistical
Science, 18:489–514, 2003.

[56] S. Lefebvre, L. Bürglen, S. Reboullet, and O. Clermont et al. Identification and
characterization of a spinal muscular atrophy-determining gene. Cell, 80:155–165,
1995.

[57] A. Lindblom, P. Tannerg̊ard, B. Werelius, and M. Nordenskjöld. Genetic mapping of a
second locus predisposing to hereditary non-polyposis colon cancer. Nature Genetics,
5:279–282, 1993.

[58] K. Markianos, M. J. Daly, and L. Kruglyak. Efficient multipoint linkage analysis
through reduction of inheritance space. American Journal of Human Genetics,
68:963–977, 2001.

[59] T. C. Matise, M. Perlin, and A. Chakravarti. Automated construction of genetic
linkage maps using an expert system (MultiMap): A human genome linkage map.
Nature Genetics, 6:384–390, 1994.

[60] H. Matsumine, M. Saito, S. Shimoda-Matsubayashi, and H. Tanaka et al. Localization
of a gene for an autosomal recessive form of juvenile Parkinsonism to chromosome
6q25.2-27. American Journal of Human Genetics, 60:588–596, 1997.

[61] Y. Miki, J. Swensen, D. Shattuck-Eidens, and P. A. Futreal et al. A strong candidate
for the breast and ovarian cancer susceptibility gene BRCA1. Science, 266:66–71,
1994.

[62] N. E. Morton. Sequential tests for the detection of linkage. American Journal of
Human Genetics, 7:277–318, 1955.

[63] J. R. O’Connell. Rapid multipoint linkage analysis via inheritance vectors in the
Elston-Stewart algorithm. Human Heredity, 51:226–240, 2001.

[64] J. R. O’Connell and D. E. Weeks. The VITESSE algorithm for rapid exact multilocus
linkage analysis via genotype set-recoding and fuzzy inheritance. Nature Genetics,
11:402–408, 1995.

[65] J. R. O’Connell and D. E. Weeks. PedCheck: A program for identification of genotype
incompatibilities in linkage analysis. American Journal of Human Genetics, 63:259–
266, 1998.

[66] J. Ott. Estimation of the recombination fraction in human pedigrees: Efficient com-
putation of the likelihood for human linkage studies. American Journal of Human
Genetics, 26:588–597, 1974.

[67] J. Ott. Computer-simulation methods in human linkage analysis. Proceedings Na-
tional Academy of Sciences USA, 86:4175–4178, 1989.

[68] J. Ott. Analysis of Human Genetic Linkage. The Johns Hopkins University Press,
Baltimore and London, 1991. Revised edition.

[69] J. Ott. Analysis of Human Genetic Linkage. The Johns Hopkins University Press,
Baltimore and London, 1999. Third edition.

[70] N. Papadopoulos, N. C. Nicolaides, Y.-F. Wei, and S. M. Ruben et al. Mutation of a
mutL homolog in hereditary colon cancer. Science, 263:1625–1629, 1994.

[71] P. Peltomäki, L. A. Aaltonen, P. Sistonen, and L. Pylkkänen et al. Genetic mapping
of a locus predisposing to human colorectal cancer. Science, 260:810–812, 1993.

[72] L. S. Penrose. The detection of autosomal linkage in data which consist of brothers
and sisters of unspecified parentage. Annals of Eugenics, 6:133–138, 1935.

[73] A. Piccolboni and D. Gusfield. On the complexity of fundamental computational
problems in pedigree analysis. Journal of Computational Biology, 10:763–773, 2003.

17-34 References

[74] L. M. Ploughman and M. Boehnke. Estimating the power of a proposed linkage study
for a complex genetic trait. American Journal of Human Genetics, 44:543–551, 1989.

[75] M. H. Polymeropoulos, J. J. Higgins, L. I. Golbe, and W. G. Johnson et al. Mapping
of a gene for Parkinson’s disease to chromosome 4q21-q23. Science, 274:1197–1199,
1996.

[76] M. H. Polymeropoulos, C. Lavedan, E. Leroy, and S. E. Ide et al. Mutation in the α-
synuclein gene identified in families with Parkinson’s disease. Science, 276:2045–2047,
1997.

[77] L. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 32:257–286, 1989.

[78] N. Risch. Linkage strategies for genetically complex traits III: The effect of marker
polymorphism on analysis of relative pairs. American Journal of Human Genetics,
46:242–253, 1990.

[79] J. M. Rommens, M. C. Iannuzzi, B. Kerem, and M. L. Drumm et al. Identification of
the cystic fibrosis gene: Chromosome walking and jumping. Science, 245:1059–1065,
1989.

[80] T. G. Schulze and F. J. McMahon. Genetic association mapping at the crossroads:
Which test and why? overview and practical guidelines. American Journal of Medical
Genetics, 114:1–11, 2002.

[81] P. Sham. Statistics in Human Genetics. Arnold Publishers, London, 1998.
[82] E. Sobel and K. Lange. Descent graphs in pedigree analysis: Applications to haplo-

typing, location scores, and marker-sharing statistics. American Journal of Human
Genetics, 58:1323–1337, 1996.

[83] E. Sobel, J. C. Papp, and K. Lange. Detection and integration of genotyping errors in
statistical genetics. American Journal of Human Genetics, 70:496–508, 2002.

[84] K. K. Song, D. E. Weeks, E. Sobel, and E. Feingold. Efficient simulation of P values
for linkage analysis. Genetic Epidemiology, 26:88–96, 2004.

[85] J. D. Terwilliger and J. Ott. A multisample bootstrap approach to the estimation
of maximized-over-models lod score distributions. Cytogenetics and Cell Genetics,
59:142–144, 1992.

[86] J. D. Terwilliger and J. Ott. Handbook of Human Genetic Linkage. The Johns
Hopkins University Press, Baltimore and London, 1994.

[87] L.-C. Tsui, M. Buchwald, D. Barker, and J. C. Braman et al. Cystic fibrosis locus
defined by a genetically linked polymorphic DNA marker. Science, 230:1054–1057,
1985.

[88] E. M. Valente, P. M. Abou-Sleiman, V. Caputo, and M. M. K. Muqit et al. Hereditary
early-onset Parkinson’s disease caused by mutations in PINK1. Science, 304:11158–
1160, 2004.

[89] E. M. Valente, A. R. Bentivoglio, P. H. Dixon, and A. Ferraris et al. Localization
of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human
chromosome 1p35-p36. American Journal of Human Genetics, 68:895–900, 2001.

[90] J.L. Weber and P. E. May. Abundant class of human DNA plymorphisms which can be
typed using the polymerase chain reaction. American Journal of Human Genetics,
44:388–396, 1989.

[91] D. E. Weeks. Invalidity of the Rao map function for three loci. Human Heredity,
44:178–180, 1994.

[92] D. E. Weeks, Y. P. Conley, R. E. Ferrell, and T. S. Mah et al. A tale of two genotypes:
Consistency between two high-throughput genotyping centers. Genome Research,
12:430–435, 2002.

[93] D. E. Weeks and K. Lange. Preliminary ranking procedures for multilocus ordering.

References 17-35

Genomics, 1:236–242, 1987.
[94] D. E. Weeks and K. Lange. The affected-pedigree-member method of linkage analysis.

American Journal of Human Genetics, 42:315–326, 1988.
[95] D. E. Weeks, J. Ott, and G. M. Lathrop. SLINK: a general simulation program for

linkage analysis. American Journal of Human Genetics, 47:A204(abstr.), 1990.
[96] A. S. Whittemore and J. Halpern. A class of tests for linakge using affected pedigree

members. Biometrics, 50:118–127, 1994.
[97] A. S. Whittemore and I.-P. Tu. Simple, robust linkage tests for affected sibs. American

Journal of Human Genetics, 62:1228–1224, 1998.
[98] R. Wooster, G. Bignell, J. Lancaster, and S. Swift et al. Identification of the breast

cancer susceptibility gene BRCA2. Nature, 378:789–793, 1995.
[99] R. Wooster, S. L. Neuhausen, J. Mangion, and Y. Quirk et al. Localization of a breast

cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science, 265:2088–2090,
1994.

18
Haplotype Inference

Dan Gusfield
University of California, Davis

Steven Hecht Orzack
Fresh Pond Research Institute

18.1 Introduction to Variation, SNPs, Genotypes, and
Haplotypes . 18-2
The Biological Problem • The Computational
Problems • The Need for a Genetic Model • Two
Major Approaches

18.2 Clark’s Algorithm and Other Rule-Based
Methods . 18-3
Introduction to Clark’s Algorithm • What is the
Genetic Model in Clark’s Method? • The Maximum
Resolution Problem • Improving Clark’s Method

18.3 The Pure Parsimony Criterion . 18-7
Introduction to Pure Parsimony • A Conceptual
Integer Programming Formulation • A More Practical
Formulation • Computational Results • Further Work
on Pure Parsimony

18.4 Perfect Phylogeny Haplotyping . 18-12
Introduction to Perfect Phylogeny Haplotyping •

Algorithms and Programs for the PPH Problem •

Uniqueness of the Solution: A Phase Transition •

Related Models, Results, and Algorithms •

Near-Perfect Phylogeny
18.5 Population-Genetic and Statistical Methods 18-19
18.6 Going Forward . 18-21

A “haplotype” is a DNA sequence that has been inherited from one parent. Each human
possesses two haplotypes for most regions of the genome. The most common type of vari-
ation among haplotypes possessed by individuals in a population is the single nucleotide
polymorphism (SNP), in which different nucleotides (alleles) are present at a given site
(locus). Almost always, there are only two alleles at a SNP site among the individuals
in a population. Given the likely complexity of trait determination, it is widely assumed
that the genetic basis (if any) of important traits (e.g., diseases) can be best understood
by assessing the association between the occurrence of particular haplotypes and particular
traits. Hence, one of the current priorities in human genomics is the development of a full
Haplotype Map of the human genome [1, 47, 48, 17], to be used in large-scale screens of
populations [16, 54]. In this endeavor, a key problem is to infer haplotype pairs and/or
haplotype frequencies from genotype data, since collecting haplotype data is generally more
difficult than collecting genotype data. Here, we review the haplotype inference problem
(inferring pairs and inferring frequencies), the major combinatorial and statistical methods
proposed to solve these two problems, and the genetic models that underlie these methods.

18-1

18-2 Handbook of Computational Molecular Biology

18.1 Introduction to Variation, SNPs, Genotypes, and Hap-
lotypes

Now that high-throughput genomic technologies are available, the dream of assessing DNA
sequence variation at the population level is becoming a reality. The processes of natural
selection, mutation, recombination, gene-conversion, genome rearrangements, lateral gene
transfer, admixture of populations, and random drift have mixed and remixed alleles at
many loci so as to create the large variety of genotypes found in many populations. The
challenge is to find those genotypes that have significant and biologically meaningful as-
sociations with important traits of interest. A key technological and computational part
of this challenge is to infer “haplotype information” from “genotype information”. In this
section, we explain the basic biological and computational background for this “genotype
to haplotype” problem.

In diploid organisms (such as humans) there are two (not completely identical) “copies”
of almost all chromosomes. Sequence data from a single copy is called a haplotype, while
a description of the conflated (mixed) data on the two copies is called a genotype. When
assessing the genetic contribution to a trait, it may often be much more informative to
have haplotype data than to have only genotype data. The underlying data that form
a haplotype are either the full DNA sequence in the region, the number of repeats at
microsatellite markers, or more commonly the single nucleotide polymorphisms (SNPs) in
that region. A SNP is a single nucleotide site where more than one (usually two) nucleotides
occur with a population frequency above some threshold (often around 5-10%). The SNP-
based approach is the dominant one, and high-density SNP maps have been constructed
across the human genome with a density of about one SNP per thousand nucleotides [48, 17].

18.1.1 The Biological Problem

In general, it is not easy to examine the two copies of a chromosome separately, and genotype
data rather than haplotype data are obtained, although it is the haplotype data that may
be of greater use. The data set typically consists of n genotype vectors, each of length m,
where each value in the vector is either 0, 1, or 2. The variable n denotes the number of
individuals in the sample, and m denotes the number of SNP sites for which one has data.
Each site in the genotype vector has a value of 0 (respectively 1) if the associated site on
the chromosome has state 0 (respectively 1) on both copies (it is a homozygous site); it
has a value of 2 otherwise (the chromosome site is heterozygous). The goal is to extract
haplotype information from the given genotype information.

A variety of methods have been developed and used to do this (e.g., [14, 15, 29, 37, 43, 59,
62, 64, 67, 70]). Some of these methods give very accurate results in some circumstances,
particularly when identifying common haplotypes in a population. However, research on
haplotype inference continues because no single method is considered fully adequate in
all applications, the task of identifying rare haplotypes remains difficult, and the overall
accuracy of present methods has not been resolved.

18.1.2 The Computational Problems

The haplotype inference (HI) problem can be abstractly posed as follows. Given a set of
n genotype vectors, a solution to the HI problem is a set of n pairs of binary vectors, one
pair for each genotype vector. For any genotype vector g, the associated binary vectors
v1, v2 must both have value 0 (or 1) at any position where g has value 0 (or 1); but for any

Haplotype Inference 18-3

position where g has value 2, exactly one of v1, v2 must have value 0, while the other has
value 1.

A site in g is considered “resolved” if it contains 0 or 1, and “ambiguous” if it contains
a 2. If a vector g has zero ambiguous positions, it is called “resolved” or “unambiguous”;
otherwise it is called “ambiguous”. One can also say that the conflation of v1 and v2
produces the genotype vector g, which will be ambiguous unless v1 and v2 are identical. For
an individual with h heterozygous sites there are 2h−1 possible haplotype pairs that could
underlie its genotype. For example, if the observed genotype g is 0212, then one possible
pair of vectors is 0110, 0011, while the other is 0111, 0010. Of course, we want to infer the
pair that gave rise to the genotype of each of the n individuals.

A related problem is to estimate the frequency of the haplotypes in the sample. We call
this the HF problem. It is important to note that a solution to the HI problem necessarily
solves the HF problem, but the converse is not true.

18.1.3 The Need for a Genetic Model

Non-experimental haplotype inference (the HI and HF problems) would likely be inaccurate
without the use of some genetic model of haplotype evolution to guide an algorithm in
constructing a solution. The choice of the underlying genetic model can influence the type
of algorithm used to solve the associated inference problem.

18.1.4 Two Major Approaches

There are two major approaches to solving the inference problem: combinatorial methods
and population-genetic methods. Combinatorial methods often state an explicit objective
function that one tries to optimize in order to obtain a solution to the inference problem.
Population-genetic methods are usually based on an explicit model of haplotype evolution;
the inference problem is then cast as a maximum-likelihood or a Bayesian inference problem.
Combinatorial approaches are discussed in Sections 18.2 to 18.4.5, and statistical approaches
are discussed in Section 18.5.

18.2 Clark’s Algorithm and Other Rule-Based Methods

18.2.1 Introduction to Clark’s Algorithm

Clark’s algorithm to solve the HI problem [14] has been widely used and is still in use today.
The algorithm starts by identifying any genotype vectors with zero or one ambiguous sites,
since these vectors can be resolved in only one way. These haplotypes are called the initial
resolved haplotypes; this method requires that some be derivable from the input vectors
(sample). One attempts to resolve the remaining ambiguous genotypes by starting with the
initial resolved haplotypes. Clark proposed the following rule that infers a new resolved
vector NR from an ambiguous vector A and an already resolved genotype vector R.

The resolved vector R can either be one of the initial resolved haplotypes, or a haplotype
inferred by an earlier application of the following Inference Rule:

Suppose A is an ambiguous genotype vector with h ambiguous sites and R is a
resolved vector that is a haplotype in one of the 2h−1 potential resolutions of
vector A. Then infer that A is the conflation of one copy of resolved vector R
and another (uniquely determined) resolved vector NR. All of the ambiguous
positions in A are set in NR to the opposite of the entry in R. Once inferred,

18-4 Handbook of Computational Molecular Biology

vector NR is added to the set of known resolved vectors, and vector A is removed
from the set of ambiguous vectors.

For example, if A is 0212 and R is 0110, then NR is 0011.
When the Inference Rule can be used to infer the vector NR from the vectors A and R,

we say that R can be applied to resolve A. It is easy to determine if a resolved vector R
can be applied to resolve an ambiguous vector A: R can be applied to A if and only if A
and R contain identical unambiguous sites.

Clark’s entire algorithm for resolving the set of genotypes is to first identify the initial
resolved set, and then repeatedly apply the Inference Rule until either all the genotypes have
been resolved, or no further genotypes can be resolved. There are important implementation
details for Clark’s algorithm that need to be specified, and one can choose different ways
to do this. Several alternative variations were studied in [64] and the results of that study
will be described in Section 18.2.4.

Note that in the application of the Inference Rule, for any ambiguous vector A there may
be several choices for vector R, and any one choice can constrain future choices. Hence, one
series of choices might resolve all the ambiguous vectors in one way, while another execution
involving different choices might resolve the vectors in a different way, or leave ambiguous
vectors that cannot be resolved (orphans). For example, consider two resolved vectors 0000
and 1000, and two ambiguous vectors 2200 and 1122. Vector 2200 can be resolved by
applying 0000, creating the new resolved vector 1100, which can then be applied to resolve
1122. In this way, one resolves both of the ambiguous vectors and thereby produces the
resolved vector set 0000, 1000, 1100 and 1111. But 2200 can also be resolved by applying
1000, creating 0100. At that point, none of the three resolved vectors, 0000, 1000 or 0100
can be applied to resolve the orphan vector 1122.

Clark’s method can produce different solutions depending on how the genotype data are
ordered, so the problem of choices is addressed in [14] by reordering the data multiple times
and running the algorithm on each ordering. The “best” solution among these executions
is reported. Of course, only a tiny fraction of all the possible data orderings can usually be
tried. We refer to this as the local inference method.

Without additional biological insight, one cannot know which solution (or data ordering)
is the most accurate. However, simulations discussed in [14] showed that the inference
method tended to produce the wrong vectors only when the execution also leaves orphans.
The interpretation is that there is some “global” structure to the set of real haplotype pairs
that underlie the observed genotypes, so that if some early choices in the method incorrectly
resolve some of the genotypes, then the method will later become stuck, unable to resolve
the remaining genotypes. Clark recommended that the execution that resolved the most
genotypes should be the best and the one most trusted. The efficacy of the local inference
method was shown in [14] and in simulations that we have done, when the data are such that
there is a unique execution that maximizes the number of resolved genotypes. However,
there are also data sets where most, if not all, of the executions resolve all of the genotypes
and do so differently. In that case, some other approach must be used. We discuss that
situation in Section 18.2.4.

18.2.2 What is the Genetic Model in Clark’s Method?

Here we give a partial justification for the Inference Rule described above.
First, note that Clark’s method resolves identical genotypes identically, implying the

assumption that the history leading to two identical sequences is identical. The genetic
model that justifies this is the “infinite sites” model of population genetics, in which only one

Haplotype Inference 18-5

mutation at a given site has occurred in the history of the sampled sequences [72]. Second,
the Inference Rule seems most applicable when it is assumed that the genotypes in the
current population resulted from random mating of the parents of the current population.
The sampled individuals are also drawn randomly from the population, and the sample is
small compared to the size of the whole population, so the initial resolved vectors likely
represent common haplotypes that appear with high frequency in the population.

These two assumptions are consistent with the way in which the method gives prefer-
ence to resolutions involving two initially resolved haplotypes. Such haplotypes are always
queried first in Clark’s method. Similarly, the rule gives preference to resolutions involving
one initially resolved haplotype as compared to those involving no initially resolved hap-
lotypes. (However, a logically consistent extension of the rule would require use of two
initially resolved haplotypes whenever possible, but this is not what Clark’s method does).

We can define the “distance” of an inferred haplotype NR from the initial resolved vec-
tors as the number of inferences used on the shortest path of inferences from some initial
resolved vector, to vector NR. The above justification for the use of the Inference Rule be-
comes weaker as it is used to infer vectors with increasing distance from the initial resolved
vectors. However, Clark’s Inference Rule is justified in [14] by the empirical observation of
consistency discussed above. For additional perspective on Clark’s method see [41].

18.2.3 The Maximum Resolution Problem

Given what was observed and proposed in [14], the major open algorithmic question is
whether efficient rules exist to break choices in the execution of Clark’s algorithm, so as to
maximize the number of genotypes it resolves. This leads to the Maximum Resolution
(MR) Problem studied in [36, 37]:

Given a set of genotypes (some ambiguous and some resolved), what execution
maximizes the number of ambiguous vectors that can be resolved by successive
application of Clark’s Inference Rule?

An algorithm to solve the MR problem must take a more global view of the data than does
the local inference method, in order to see how each possible application of the Inference
Rule influences later choices.

We show in [37] that the MR problem is NP-hard, and in fact, Max-SNP complete.
However, the MR problem was reformulated as a problem on directed graphs, with an
exponential time (worst case) reduction to a graph-theoretic problem that can be solved via
integer linear programming. The general idea is to encode all the possible actions of Clark’s
algorithm as a directed, acyclic graph. In that graph, each node represents a haplotype
that could be generated in some execution of Clark’s algorithm, and an edge extends from
node u to node v if and only if the haplotype at u can be used to resolve some genotype
in the data, resulting in the inference of the haplotype at node v. Accordingly, the MR
problem can be formulated as a search problem on this graph, and solved using integer linear
programming. Computations [37] showed that this approach is very efficient in practice,
and that linear programming alone (without explicit reference to integrality) often suffices
to solve the maximum resolution problem. However, an alternative modification of Clark’s
method proved more successful in obtaining more accurate resolutions. We next discuss
this modification.

18-6 Handbook of Computational Molecular Biology

18.2.4 Improving Clark’s Method

Computations done on the MR problem suggest that solving it is not a completely adequate
way to find the most accurate solutions. One significant problem is that there are often many
solutions to the MR problem, i.e., many ways to resolve all of the genotypes. Moreover,
while it is clear that Clark’s method should be run many times, and this can generate many
different solutions, it is not clear how to use the results obtained. In fact, no published
evaluations of Clark’s method, except for the evaluation in [64], propose an approach to
this issue, and almost all have run Clark’s method only once on any given data set. This
ignores the stochastic behavior of the algorithm, and these evaluations are uninformative.
The critical issue in Clark’s method is how to understand and exploit its stochastic behavior.

Clark’s method is just one specific instantiation of the “rule-based” approach to the HI
problem. In this general approach, one starts by enumerating the unambiguous haplotypes
in the sample and then proceeds to use these to resolve ambiguous genotypes. However,
different variations of the rule-based approach differ in how the list of reference haplotypes is
formed and updated during the process of inferral and how the list of ambiguous genotypes
is treated. Some of the variations are discussed in [64]; they can differ in the genetic model
of haplotype evolution with which they are consistent.

In [64], we examined the performance of several variations of the rule-based method
(including Clark’s original method), using a set of 80 genotypes at the human APOE locus,
of which 47 were ambiguous; each genotype contained nine SNP sites. The real haplotype
pairs were experimentally inferred in order to assess the inferral accuracy of each variation
(how many inferred haplotype pairs matched the real haplotype pairs). Most variations
produced a large number of different solutions, each of which resolved all of the 47 ambiguous
genotypes. The variability of accuracy among these solutions was substantial, and a solution
chosen at random from among the solutions would likely be one with poor accuracy. Hence,
an important issue in using rule-based methods, such as Clark’s method, is how to exploit
the many different solutions that it can produce.

How to Handle Multiple Solutions: The Consensus Approach

The multiplicity of solutions motivates an effort to understand how they can be used so as
to provide a single accurate solution.

We found that the following strategy works to greatly improve the accuracy of any of the
variations of the rule-based method. First, for the input genotype data, run the algorithm
many times (say, 10,000), each time randomizing the order of the input data. In some
variations, we also randomize the decisions that the method makes. The result is a set
of solutions that may be quite different from one another. Second, select those runs that
produce a solution using the fewest or close to the fewest number of distinct haplotypes;
in our analysis of the APOE data, the number of such runs was typically under 100. For
this set of runs, record the haplotype pair that was most commonly used to explain each
genotype g. The set of such explaining haplotype pairs is called the “consensus” solution.
We observed that the consensus solution had dramatically higher accuracy than the average
accuracy of the 10,000 solutions. For example, for the APOE data, out of the 10,000
executions of one of the variations, there were 24 executions that used 20 or 21 distinct
haplotypes; no executions used a fewer number of haplotypes. The average accuracy of
the 10,000 executions was 29 correct haplotype pairs out of the 47 ambiguous genotypes,
and the execution with the highest accuracy in the 10,000 had 39 correct pairs. However,
the average accuracy of the 24 selected executions was 36, and the consensus solution of
those 24 executions had 39 correct pairs. Hence, this simple rule allowed us to generate a
single solution that was as good as the most accurate solution out of all 10,000 solutions.

Haplotype Inference 18-7

In another variation, the consensus solution had 42 correct pairs, while the average of all
the 10,000 solutions had 19 correct pairs. These consensus results compare well with those
of other approaches. Multiple executions of the program Phase [70] always produced 42
correct resolutions, whereas the program Haplotyper [62] produced a range of solutions
with most getting either 43 or 42 correct, with one solution getting 44 correct, and three
solutions getting 37 correct.

We also observed that among the solutions that use the smallest and next-to-smallest
number of distinct haplotypes, any haplotype pair that is used with high frequency, say
above 85% of the time, was almost always correct. This allows one to home in on those
pairs that can be used with high confidence.

18.3 The Pure Parsimony Criterion

18.3.1 Introduction to Pure Parsimony

A different approach to the haplotype inference problem is called the Pure-Parsimony ap-
proach. To our knowledge, this approach was first suggested by Earl Hubbell, who also
proved that the problem of finding such solutions is NP-hard [50]. The Pure-Parsimony
problem is:

Find a solution to the haplotype inference problem that minimizes the total
number of distinct haplotypes used.

For example, consider the set of genotypes: 02120, 22110, and 20120. There are solutions
for this example that use six distinct haplotypes, but the solution (00100, 01110), (01110,
10110), (00100, 10110) uses only three distinct haplotypes.

Use of such a parsimony criterion is consistent with the fact that the number of distinct
haplotypes observed in most natural populations is vastly smaller than the number of pos-
sible haplotypes; this is expected given the plausible assumptions that the mutation rate
at each site is small and recombinations rates are low. Further, we observed in Section
18.2.4 that the most accurate rule-based solutions were those that inferred a small number
of distinct haplotypes.

We note that some authors have described Clark’s method [14] as relying on a parsimony
criterion for the number of haplotypes used [2, 62], although there is no such criterion in
the method and in fact, it rarely produces a most parsimonious solution in our experience
(see Section 18.2.4). The inferral program Phase [70] has also been described as relying on
a parsimony criterion [23]. However, the complex details of its computation makes it hard
to quantify the influence of a parsimony criterion. This makes it difficult to use any of these
methods to evaluate the effectiveness of the parsimony criterion as an objective function in
solving the HI problem.

In [39] we described how to use integer linear programming to compute an HI solution
that minimizes the number of distinct haplotypes, i.e., solving the Pure-Parsimony problem.
However, the theoretical worst-case running time of this method increases exponentially
with the number of genotypes, so empirical studies were undertaken to see if this approach is
practical for data sets of current interest in population-scale genomics. The basic approach,
combined with additional ideas presented in [39], is practical on moderately sized datasets,
and this allows a comparison of the accuracy of solutions based on the Pure-Parsimony
criterion and the accuracy of solutions obtained from inferral methods not so based. This
is detailed in the next section.

18-8 Handbook of Computational Molecular Biology

18.3.2 A Conceptual Integer Programming Formulation

We begin by describing a conceptual integer-linear-programming solution to the Pure-
Parsimony problem. The solution would generally be impractical to use without additional
improvements. After describing this solution, we introduce two simple observations that
make it practical for data sets of current biological interest.

Let gi denote the ith genotype input vector, and suppose it has hi ambiguous sites.
There are 2hi−1 pairs of haplotypes that could have generated gi. We enumerate each one
of these pairs, and create one integer programming variable yi,j for each of the 2hi−1 pairs.
As we create these y variables, we take note of the haplotypes in the enumerated pairs.
Whenever a haplotype is enumerated that has not been seen before, we generate a new
integer programming variable xk for that haplotype. There will only be one x variable
generated for any given haplotype, regardless of how often it is seen in a genotype.

What are the linear programming constraints? Consider the following example. For
genotype gi = 02120 we enumerate the two haplotype pairs (00100, 01110) and (01100,
00110), and generate the two variables yi,1 and yi,2 for these pairs. Assuming that these
four haplotypes have not been seen before, we generate the four variables x1, x2, x3, x4 for
them. We create the constraint

yi,1 + yi,2 = 1

All of the x and y variables can be set only to 0 or 1. Therefore, this inequality says that
in a solution, we must select exactly one of the enumerated haplotype pairs as the resolution
of genotype gi. Which y variable in this constraint is set to 1 indicates which haplotype
pair will be used in the explanation of genotype gi.

Next, we create two constraints for each variable yi,j . In our example, these are:

yi,1 − x1 ≤ 0

yi,1 − x2 ≤ 0

yi,2 − x3 ≤ 0

yi,2 − x4 ≤ 0

The first constraint says that if we set yi,1 to 1, then we must also set x1 to 1. This
means that if we select the haplotype pair associated with variable yi,1 to explain gi, then
we must use the haplotype associated with variable x1, because that haplotype is one of
the pair of haplotypes associated with variable yi,1. The second constraint says the same
thing for the haplotype associated with variable x2.

These are the types of constraints that are included in the integer programming formu-
lation for each input genotype. If a genotype has h ambiguous sites, then there will be
exactly 2h + 1 constraints generated for it.

For the objective function, let X denote the set of all the x variables that are generated by
the entire set of genotypes. Recall that there is one x variable for each distinct haplotype,
no matter how many times it occurs in the enumerated pairs. Then the objective function
is:

Minimize
∑

x∈X

x

This function forces the x variables to be set so as to select the minimum possible number
of distinct haplotypes. Taken together, the objective function and the constraints, along
with the restriction that the variables can only be set to 0 or 1, specify an integer-linear-
programming formulation whose solution minimizes the number of distinct haplotypes used.

Haplotype Inference 18-9

Thus, this formulation solves the “Pure-Parsimony” haplotype problem. This formulation
is called the “TIP formulation” in [39].

18.3.3 A More Practical Formulation

For many current data sets (50 or more individuals and 30 or more sites) the large number
of constraints generated in the TIP formulation make it impractical to solve the resulting
integer program. For that reason, additional ideas are required to make it practical.

The first idea is the following: if the haplotype pair for variable yi,j consists of two
haplotypes that are both part of no other haplotype pair, then there is no need to include
variable yi,j or the two x variables for the two haplotypes in the pair associated with yi,j

in the integer program. In this way, we create a “reduced” formulation by removing such y
and x variables. This formulation is called the “RTIP” formulation in [39].

The RTIP formulation correctly solves the Pure-Parsimony problem because if there is
a genotype vector g such that all associated y variables are removed from the TIP for-
mulation, then there is an optimal solution to the TIP formulation where we arbitrarily
choose a permitted haplotype pair for g. Otherwise, there is an optimal solution to the TIP
formulation that does not set any of the removed x or y variables to 1. Hence, there is no
loss in removing them, and the RTIP formulation will find the same solution that the TIP
formulation finds.

This reduced formulation is particularly effective because DNA sequences in populations
have generally undergone some amount of recombination, a process that creates two chimeric
sequences from two input sequences. Depending on the realized level of recombination in
the evolution of the sequences, the reduced formulation can be much smaller (fewer variables
and inequalities) than the original original formulation. The reason is that as the level of
recombination increases, the number of distinct haplotypes in the sample typically increases
and the frequency distribution of the haplotypes becomes more uniform. Therefore, more
of the haplotypes appear only in one of the sampled genotypes. These “private” haplo-
types are removed in the RTIP formulation. Smaller formulations generally allow integer
programming solution codes to run faster.

The reduced formulation preserves the optimal solution to the original formulation. How-
ever, if the reduced formulation is created by first creating the original formulation and then
removing variables and constraints, the work involved could still make this approach im-
practical. The following is a more efficient way to create the reduced formulation: let gi

be a genotype vector, and let Hi be the set of haplotypes that are associated with gi in
the original integer programming formulation. Then for any pair of genotypes gi, gj, it is
easy to identify the haplotypes in Hi ∩Hj , and to generate them in time proportional to
m|Hi ∩ Hj |, where m is the length of the genotype vector. Simply scan gi and gj left to
right; if a site occurs with a value of 1 in one haplotype and 0 in the other, then Hi∩Hj = ∅;
if a site occurs with a 2 in one vector and a 0 or 1 in the other, then set that 2 to be equal
to the other value. Then if there are k remaining sites, where both gi and gj contain 2’s,
there are exactly 2k distinct haplotypes in Hi ∩Hj , and we generate them by setting those
k sites to 0 or 1 in all possible ways. The time for this enumeration is proportional to
m|Hi ∩Hj |. Moreover, each generated haplotype in Hi ∩Hj specifies a haplotype pair that
will be included in the reduced formulation, for both gi and gj .

Any x variable that is included in the reduced formulation must occur in an intersecting
set for some pair of genotypes, and every pair of haplotypes that should be associated with
a y variable must also be found while examining some pair of genotypes. Hence, the reduced
formulation can be produced very quickly if it is small.

18-10 Handbook of Computational Molecular Biology

18.3.4 Computational Results

Computations reported in [39] show that a Pure Parsimony solution for problem instances
of current interest can be efficiently found in most cases. The practicality and accuracy
of the reduced formulation depend on the level of recombination in the data (the more
recombination, the more practical but less accurate is the method). We show in [39] that
the Pure-Parsimony approach is practical for genotype data of up to 50 individuals and 30
sites. Up to moderate levels of recombination, 80 to 95 percent of the inferred haplotype
pairs are correct, and the solutions are generally found in several seconds to minutes, except
for the no-recombination case with 30 sites, where some solutions require a few hours.

When the recombination rate is low, Pure-Parsimony solutions were generally as accurate
as those obtained with the program Phase [70]. However, they become somewhat inferior
to Phase solutions when the recombination rate becomes large. Nonetheless, these Pure
Parsimony results are a validation of the genetic model implicit in the Pure-Parsimony
objective function, for a randomly picked solution would correctly resolve only a minuscule
fraction of the genotypes. It is conceivable that a program that adds heuristics to the
Pure Parsimony criterion would produce results that are competitive with programs such
as Phase.

18.3.5 Further Work on Pure Parsimony

The Pure-Parsimony criterion has also been examined in [74], where a branch-and-bound
method, instead of integer programming, was used to solve the problem. More theoretical
results on pure parsimony appear in [41, 49, 55, 56]. No computational results on pure
parsimony are reported in these papers. The first two papers also presented an integer
linear programming formulation of the problem whose size grows polynomially with the
size of the input. This is in contrast with the approach in [39] where (in the worst case) the
size of the integer program can grow exponentially with the size of the input (although in
practice, the growth is more modest).

A Polynomial-size Integer Linear Programming (ILP) Formulation for Pure
Parsimony

A different polynomial-size integer linear programming formulation was developed [10] along
with additional inequalities (cuts) that decrease the running time needed to solve the integer
program. This formulation was also presented in [42] without the additional inequalities,
and without computational results.

In this ILP formulation, for each genotype vector i, we create two binary variables (which
can take on values 0 or 1 only), y(2i− 1, j) and y(2i, j), for each site j in genotype vector
i. If site j in genotype i is homozygous with state 0, then we create the constraint:

y(2i− 1, j) + y(2i, j) = 0
If site j in genotype i is homozygous with state 1, then we create:

y(2i− 1, j) + y(2i, j) = 2

If site j in genotype i is heterozygous, then we create:

y(2i− 1, j) + y(2i, j) = 1

For any genotype vector i, the states of the variables y(2i− 1, j) and y(2i, j), for all m
sites, should define two haplotypes that explain genotype i. The above constraints ensure
that any solution to the ILP creates two haplotypes that explain each genotype.

Haplotype Inference 18-11

We want to minimize the number of distinct haplotypes used, and the key issue is how to
set up constraints to do this. As a first step, let k and k′ < k be any two indices between 1
and 2n, i.e., indices for the 2n haplotypes produced by a solution. We will use “haplotype
k” to denote the haplotype indexed by k in the solution. For each (k′, k) pair, we create the
variable d(k′, k), which we want to be set to 1 if (but not only if) haplotype k′ is different
from haplotype k. This is accomplished by creating the following two constraints for each
site j:

d(k′, k) ≥ y(k, j)− y(k′, j)
d(k′, k) ≥ y(k′, j)− y(k, j)

The variable d(k′, k) will be set to 1 if haplotypes k and k′ are different, since they will
be different if and only if they differ in at least one site j.

We next introduce the variable x(k), for each k from 1 to 2n, which we want to be set
to 1 in a solution, if (but not only if) haplotype k is distinct from all of haplotypes k′ < k.
This is achieved with the following constraint:

[
i−1∑

k′=1

d(k′, k)]− i+ 2 ≤ x(k)

To understand this constraint, note that if haplotype k is different from every haplotype
k′ < k, then

∑i−1
k′=1 d(k

′, k) = i− 1, and so

[
i−1∑

k′=1

d(k′, k)]− i+ 2

will equal one.
With the above constraints, a solution to this integer program specifies a pair of haplo-

types that explain the genotypes, where
∑2n

k=1 x(k) is greater than or equal to the number
of distinct haplotypes in the solution. Therefore, by using the objective function

Minimize
2n∑

k=1

x(k),

any solution to this integer program will be a solution to the Pure Parsimony problem.
The reader can verify that the number of variables and constraints grows only polyno-

mially with n and m, rather than exponentially (in worst case) as in the TIP and RTIP
formulations.

No computation were shown in [42], but extensive computations shown in [10] compared
the polynomial-size formulation with the earlier formulation in [39]. Perhaps surprisingly,
the exponential-size formulation did not always run slower than the polynomial-size formu-
lation, and there were many cases where the former formulation ran in seconds while the
latter formulation took hours (although there were cases where the opposite was observed).
Perhaps the reason is that smaller formulation has to computationally discover necessary
features of the optimal solution (such as the candidate haplotype pairs) that are explicitly
specified in the larger formulation.

Recent Contributions

More recently, a hybrid formulation that combines ideas from [39] and [10] was developed
and tested in [11]. The result is an integer programming formulation that again only uses

18-12 Handbook of Computational Molecular Biology

polynomial space (similar to the formulation in [10]), but whose running time in practice is
closer to the running time observed with the RTIP formulation, although it is still generally
slower than that formulation. The hybrid formulation allows practical computation of
problem instances whose RTIP formulation is too large to fit into memory, and whose
running time with the formulation from [10] is excessive.

In a somewhat different direction, an approximation algorithm was developed and tested
in [49] using Semidefinite Programming Relaxation of an Integer Quadratic Programming
formulation of the Pure Parsimony problem. This method was shown to compare well in
both speed and accuracy with several other haplotyping methods when applied to simulated
and real data sets. Other recent work on Pure-Parsimony includes a heuristic algorithm
that builds a solution in a somewhat greedy manner [58].

18.4 Perfect Phylogeny Haplotyping

18.4.1 Introduction to Perfect Phylogeny Haplotyping

As noted earlier, the haplotype inference problem would be impossible to solve without some
implicit or explicit genetic assumptions about how DNA sequences evolve. An important
set of such assumptions are embodied in the population-genetic concept of a coalescent
[51, 72]. A coalescent is a stochastic process that provides an evolutionary history of
a set of sampled haplotypes. This history of the haplotypes is represented as a directed,
acyclic graph, where the lengths of the edges represent the passage of time (in number
of generations). In our problems, we ignore time, so we are only concerned with the fact
that the history is represented by a directed, acyclic graph. The key observation [51] is
that “In the absence of recombination, each sequence has a single ancestor in the previous
generation.” Hence, if we trace back the history of a single haplotype H from a given
individual I, we see that haplotype H is a copy of one of the haplotypes in one of the
parents of individual I. It doesn’t matter that I had two parents, or that each parent
had two haplotypes. The backwards history of a single haplotype in a single individual
is a simple path, if there is no recombination. That means the histories of two sampled
haplotypes (looking backwards in time) from two individuals merge at the most recent
common ancestor of those two individuals.

There is one additional element of the basic coalescent model: the infinite-sites assump-
tion (see above). This assumption is justified when the probability of mutation at any
given site is small, so that the probability of two or more mutations at a given site can be
taken as zero. Hence, the coalescent model of haplotype evolution says that without recom-
bination, the true evolutionary history of 2n haplotypes, one from each of 2n individuals,
can be displayed as a tree with 2n leaves, and where each of the m sites labels exactly one
edge of the tree.

More formally, if M is a set of binary sequences, and V is a binary sequence that will label
the root, the tree displaying the evolution of the haplotypes is called a perfect phylogeny
for M and V [34, 35]. It is a rooted tree T with exactly 2n leaves that obeys the following
properties:

1. The root of T is labeled with an m-length binary vector V , which represents the
“ancestral sequence”, i.e., the ancestral state of each of the m sites.

2. Each of the 2n rows labels exactly one leaf of T , and each leaf is labeled by one
row.

3. Each of the m columns labels exactly one edge of T .
4. Every interior edge (one not touching a leaf) of T is labeled by at least one

Haplotype Inference 18-13

column.
5. For any row i, the value M(i, j) is unequal to V (j) if and only if j labels an edge

on the unique path from the root to the leaf labeled i. Hence, that path, relative
to V , is a compact representation of row i.

Often we assume that V is the all-zero vector, but the above definition is more general.
An illustration of a perfect phylogeny and of its use in “association mapping” are pre-

sented in [3].
Part of the motivation for the perfect phylogeny model (i.e., coalescent without recombi-

nation) comes from recent observations [18, 73] of little or no evidence for recombination in
long segments of the Human genome, and the general belief that most SNPs are the result
of a mutation that has occurred only once in human history [48].

Formally, the Perfect Phylogeny Haplotype (PPH) Problem is:

Given a set of genotypes, M , find a set of explaining haplotypes, M ′, which
defines a perfect phylogeny.

In the perfect phylogeny model, each genotype vector (from a single individual in a
sample of n individuals) was obtained from the mating of two of 2n haplotype vectors in an
(unknown) coalescent (or perfect phylogeny). In other words, the coalescent with 2n leaves
is the history of haplotypes in the 2n parents of the n individuals under study. Those 2n
haplotypes are partitioned into pairs, each of which gives rise to one of the n genotypes.

So, given a set S of n genotype vectors, we want to find a perfect phylogeny T , and a
pairing of the 2n leaves of T that explains S. In addition to efficiently finding one solution
to the PPH problem, we would like to determine if that is the unique solution, and if not,
we want to represent the set of all solutions, so that each one can be generated efficiently.

18.4.2 Algorithms and Programs for the PPH Problem

The PPH problem was introduced and first solved in [38], where it was explained that after
one PPH solution is obtained, one can build an implicit representation of the set of all
PPH solutions in O(m) time. The algorithm given in [38] is based on reducing the PPH
problem to a well-studied problem in graph theory, called the graph-realization problem.
The theoretical running time of this initial approach is O(nmα(nm)), where α is the inverse
Ackerman function, usually taken to be a constant in practice. Hence, the worst-case time
for the method is nearly linear in the size of the input, nm. The time for the reduction itself
is O(nm), and the graph-realization problem can be solved by several published methods.
In [38] we used a graph-realization algorithm (the Bixby-Wagner algorithm) [8] in order to
establish the near-linear time bound for the PPH problem. The Bixby-Wagner algorithm is
based on a general algorithm due to Löfgren [60], and runs in O(nmα(nm)) time. However,
the Bixby-Wagner algorithm is difficult to understand and to implement. Accordingly, we
implemented a reduction-based approach using a different solution to the graph-realization
problem [31]. The resulting program (called GPPH) [13] has a worst-case running time
of O(nm2). Recently, the original reduction-based approach was implemented [57] using a
Java implementation of the Bixby-Wagner method [63, 52].

A second program to solve the PPH problem (called DPPH) is based on deeper insights
into the combinatorial structure of the PPH problem, rather than on a reduction to the
graph-realization problem. The algorithm underlying DPPH was developed in [5]. The
running time for the algorithm and program is also O(nm2), and the algorithm produces
a graph that represents all solutions in a simple way. Insights similar to those in [5] were
presented in [77], but were not developing into an explicit algorithm for solving the PPH

18-14 Handbook of Computational Molecular Biology

problem.
A third algorithm to solve the PPH problem was developed in [26], and it has been

implemented in a program we call BPPH [12]. That algorithm and program also have
worst-case running time of O(nm2), and they can be used to find and represent all solutions.

A Linear-Time Solution

Recently, we developed an algorithm for the PPH problem that runs in O(nm) time, i.e.,
in linear time [22]. The program based on this algorithm is called LPPH. An alternative
linear-time algorithm was published in [68]. The results of empirical testing of the first
three programs mentioned above can be found in [12]. Some comparisons of LPPH to
DPPH (the fastest of the first three) are also shown in [22]. LPPH is significantly faster
than DPPH when the number of sites is large. For example, in tests with n = 1000
individuals and m = 2000 sites, DPPH ran for an average of 467 seconds, while LPPH
ran for an average of 1.89 seconds. All four of the PPH programs can be obtained at
wwwcsif.cs.ucdavis.edu/~gusfield/.

The conceptual and practical value of a linear-time solution can be significant. Although
most current inference problems involve under one hundred sites, where the differences in
running time between the programs are not of great practical significance, there are regions
of the human genome up to several hundred kilobases long where the SNP states are highly
correlated. Such high correlation is called “linkage disequilibrium” (LD), and high LD
suggests that little or no recombination has occurred in those regions. Further, there
is very little known about haplotype structure in populations of most organisms, so it is
too early to know the full range of direct application of this algorithm to PPH problems
involving long sequences (see [12] for a more complete discussion).

Faster algorithms are of practical value when the PPH problem is repeatedly solved in
the inner-loop of an algorithm. This occurs in the inference of haplotype pairs affected by
recombination [71], and when searching for recombination hotspots and low-recombination
blocks [77]. In both of these cases one finds for every SNP site the longest interval starting
at that site for which there is a PPH solution. When applied on a genomic scale (as is
anticipated), even a ten-fold increase in speed is important. Moreover, in some applications,
one may need to examine subsets of the given SNP sites for which there is a PPH solution.
This is partly due to small departures from the perfect phylogeny model. It is also motivated
by observations of subsets of SNP sites with high pairwise LD, where the sites in the subset
are not contiguous in the SNP haplotype, but are are interlaced with other SNP sites
which are not in high LD with sites in the subset. Such a subset of SNP sites is called a
dispersed haplotype block. The lengths of these dispersed haplotype-blocks are not known.
When solving the PPH problem repeatedly on a large number of subsets of sites, increased
efficiency in the inner loop will be important, even if each subset is relatively small.

The High Level Idea Behind the Linear-Time Solution

In obtaining the linear-time solution [22], we used the general method of Löfgren, but we
exploited properties of the PPH problem to obtain a specialized version that is simpler to
implement than the Bixby-Wagner graph-realization method. Although there is no explicit
mention of the graph-realization problem in [22], in order to develop the intuition behind
the method, it is useful to review a bit of the Whitney-Löfgren theory of graph-realization,
specialized to the PPH problem.

Let M be an instance of the PPH problem, and let T be a perfect phylogeny that solves
the PPH problem for M . Each leaf of T is labeled by one row of M , and each row of M
labels two distinct leaves of T . We define a three-partition of the edges of T to be a partition

Haplotype Inference 18-15

of the edges of T into three connected, directed subtrees T1, T2, T3 of T , such that T1 is
rooted at the root of T , and T2 and T3 are rooted at distinct nodes, u, v (respectively) in
T1. Note T1 might consist only of the root node of T ; also note that the nodes of T are not
partitioned between the three subtrees, and that either, but not both, of u or v might be
the root of T . A three-partition is legal if the set of labels of the leaves in T2 is identical to
the set of labels of the leaves in T3. Given a legal three-partition, we define a legal flip in
T of T2 and T3 as the following operation: disconnect trees T2 and T3 from T , and merge
node u in T2 with node v in T1, and merge node v in T3 with node u in T1.

The application of Whitney’s theorem [76] to the PPH problem implies that every PPH
solution for M can be obtained by a series of legal flips, starting from any PPH solution
T , and every tree T ′ created in the series is also a PPH solution for M . Moreover, the
number of needed flips is bounded by the number of edges of T . This theorem is the basis
for Löfgren’s graph-realization algorithm, and the version of the theorem above specializes
to a version of Löfgren’s algorithm that solves the PPH problem. We will describe this
approach for the case when M contains only entries that are 0 or 2. The effect of having
no 1 entries is that for every row i, and every PPH solution T , the path in T between the
two leaves labeled i must go through the root of T .

We now describe at a high level the approach to solving the PPH problem based on
Löfgren’s general method for solving the graph-realization problem. Let T (k) be a solution
to the PPH problem restricted to the first k rows of M . Let OLD(k + 1) be the set of
sites that have value 2 in row k + 1 and have value 2 in some row 1 through k. Each site
in OLD(k + 1) is an “old” site, and already labels an edge in T (k). Let N(k + 1) be the
remaining set of sites in row k+ 1, i.e., the “new” sites. Let M ′(k+ 1) be the matrix made
up of the first k rows of M , together with a new row created from row k+ 1 by setting to 0
all the entries in N(k + 1). Whitney’s theorem implies that if there is a PPH solution for
M ′(k+1), then a PPH solution for M ′(k+1) can be obtained by a series of legal flips (each
relative to a three-partition) starting from T (k). Löfgren’s algorithm finds such a solution
T ′(k+ 1) for M ′(k+ 1) by finding an appropriate series of flips. Moreover, there is a series
of flips that can find a particular solution T ′(k + 1), so that the sites in N(k + 1) can be
added in a single path, at the end of one of the two paths in T ′(k+1) that contain the sites
of OLD(k + 1).

Additional ideas and appropriate data structures are needed to make this approach ef-
ficient. A key idea is that when finding a solution T ′(k + 1), we never allow a flip that
is forced to be done later in the opposite direction, and so all the edges incident with the
nodes u and v (defined in the three-partition) can be “fixed”, thus specifying more of the
PPH solution for M (if there is a solution). At each point in the execution of the algorithm,
a data structure called a “shadow tree” implicitly represents all possible solutions to the
problem seen so far. As the algorithm proceeds, more of the solution becomes fixed, and
the shadow tree at the end of the algorithm represents all solutions to the PPH problem.

18.4.3 Uniqueness of the Solution: A Phase Transition

For any given set of genotypes, it is possible that there will be more than one PPH solution.
How many individuals should be in the sample so that the solution is very likely to be
unique? To answer this question, we did computations that determine the frequency of
a unique PPH solution for various numbers of sites and of genotypes [12]. Intuitively, as
the ratio of genotypes to sites increases, one expects that the frequency of unique solutions
should increase. This was observed, as was a striking phase transition in the frequency of
unique solutions as the number of individuals grows. In particular, the frequency of unique
solutions is close to zero for a small number of individuals, and then jumps to over 90%

18-16 Handbook of Computational Molecular Biology

with the addition of just a few more individuals. In our computations, the phase transition
occurs when the number of individuals is around twenty-five. The phase transition was
also found in computations done by T. Barzuza and I. Pe’er [7], although they observed
the transition with somewhat fewer individuals than in our computations. These results
have positive practical implications, since they indicate that a surprisingly small number of
individuals is needed before a unique solution is likely.

18.4.4 Related Models, Results, and Algorithms

The PPH problem has become well-known (see the surveys [9, 40, 41, 42]), and there is
now a growing literature on extensions, modifications, and specializations of the original
PPH problem [4, 6, 19, 20, 27, 26, 43, 46, 53] and on the PPH problem when the data or
solutions are assumed to have some special form [32, 33, 44]. Some of these papers give
methods that run in linear time, but only work for special cases of the PPH problem [32, 33],
or are only correct with high probability [19, 20]. Some of the papers discuss the problems
associated with incomplete or incorrect data, some develop complexity results that limit the
extent that one can expect to obtain polynomial-time methods, and some consider different
biological contexts that change some of the details of the problem. We will now discuss
some of these results.

Papers by [32, 53] showed that the the PPH problem is NP-complete when the data
are incomplete. It was established in [4] that the problem of finding a PPH solution that
minimizes the number of distinct haplotypes it uses is NP-hard. It was also established
there that the O(nm2)-time solutions to the PPH problem in [5, 26] are unlikely to be
implementable in O(nm) time, even though the same paper shows that if either method
could be implemented in O(nm + m2) time, then the algorithm could be implemented in
O(nm) time. The PPH solution in [5] runs in O(nm) time, except for an initial computation
that runs inO(nm2) time but only produces output of sizeO(m2). So it seemed attractive to
see if that initial computation could be implemented to run in O(m2) time. The method in
[26] contains the same initial computation, and although no explicit algorithm is presented
in [77], the ideas there are based on this initial computation. However, we showed in [4]
that the initial computational task is equivalent to boolean matrix multiplication. That
implies that if the computation could be implemented to run in O(nm) time, then two n
by n boolean matrices could be multiplied in O(n2) time, which is significantly faster than
is currently possible.

He and Zelikovsky [46] used linear algebra to find redundancies that can be removed to
reduce the number of sites in an instance of the HI problem. This approach is not guaranteed
to preserve the set of solutions, but the typical loss of accuracy can vary depending on which
specific haplotyping method is used. When tested along with the program DPPH (solving
the PPH problem), this approach resulting in little loss of accuracy and a large increase in
speed.

In contrast to papers that focus primarily on algorithmic issues related to the PPH
problem, several papers discuss variants of the original PPH problem that arise in different
biological contexts. The papers [32, 33] considered the PPH problem where the input is
assumed to have a row where all the entries have value two. That is, there must be a pair
of haplotypes in the solution in which every site is heterozygous. Such a pair is called a
“yin-yang” haplotype; they are found in many populations [79]. Hence, in any solution T
to a PPH problem of this type, there must be two paths from the root of T that contain
all of the sites. Note that there may be rows that are not all-2, but since a solution T must
have two directed paths from the root that contain all of the sites, any other haplotype in
the solution must be defined by a path in T that forms some initial portion of one of those

Haplotype Inference 18-17

two paths. Thus, this variant of the PPH problem is called the “Perfect Phylogeny Path
Haplotyping” (PPPH) problem. The method in [32] is simple and runs in linear time. The
PPPH problem may be related to the classical “consecutive ones” problem. Part of the
intuition for this is that the graph-realization problem, which can be viewed as the basis
for the PPH problem, is a generalization of the consecutive-ones problem, where the “ones”
have to form consecutive intervals in a tree instead of on the line. But the PPPH problem
is the PPH problem when restricted to a single path, which can be embedded on a line.

The XOR PPH problem

Suppose that the genotype vector for an individual indicates whether a site is heterozygous
or homozygous, but does not indicate the specific state of a homozygous site. Genotype
vectors of this type may be cheaper and easier to obtain than those that indicate the specific
state at every homozygous site. Such a genotype vector is the XOR (exclusive OR) of the
two (0-1)-haplotype vectors [6].

Given a set of n such XOR genotypes, the XOR PPH problem is to find a perfect phyloge-
ny T with 2n leaves, and a pairing of the leaf sequences of T , so that the n input genotype
vectors result from taking the XOR of each of the n paired leaf sequences. The main re-
sult in [6] is that this problem can also be reduced to an instance of the graph-realization
problem, as in the original PPH problem, and hence can be solved in O(α(nm)nm) time in
theory. As in the PPH problem, initial implementations were based on using a slower and
simpler solution to the graph-realization problem, resulting in an O(nm2)-time algorithm
for the XOR PPH problem. Just as in the original PPH problem, it is important to assess
how many individuals are needed in the sample in order to find a PPH solution (if there is
one) that is likely to be unique. Computations were done in [6] to compare the number of
needed individuals in the two PPH formulations, and the result is that a high probability
of uniqueness is obtained for XOR genotype input using only a few more individuals than
with the full PPH genotype input.

There is another interesting and potentially important result in [6] concerning the PPH
model and the so-called Tag SNPs in “haplotype blocks”. Several recent studies have found
long regions in human DNA, called haplotype blocks, where high LD is observed (see [73]
for a review). There are other definitions of haplotype blocks that are not explicitly based
on LD, such as defining a block to be a region of sufficient length for which only a small
number of haplotypes are found among most individuals. (Different instantiations of the
words “sufficient”, “most”, and “few” lead to different precise block definitions and to
different methods to recognize blocks or to partition a sequence into blocks.) No matter
what the causal basis is for haplotype blocks, they can be exploited to make large-scale
genotyping more practical. The high association between the states of SNP sites inside a
single haplotype block makes it possible to identify a small number of “Tag-SNP” sites in
a set of haplotypes, whose states act as a label for all (or most) of the haplotypes in the
sample. In other words, the (0-1) states of the Tag-SNPs for an individual allow one to
determine the states of the other SNP sites for that individual. Given the haplotypes in a
sample, a smallest set of Tag-SNPs can be found by solving an instance of a “minimal test-
set problem”, which is easily framed as a set-cover problem. The minimal test-set problem
is NP-hard, but is solvable in practice for current data sets (up to a few hundred individuals
and one hundred sites). The advantage of knowing a small set of Tag-SNPs is clear: if the
haplotypes in yet unstudied individuals are like those in the sampled individuals, one would
need to look only at the Tag-SNPs to infer the haplotype pairs of the unstudied individuals.

The definition of a Tag-SNP has been for haplotypes, but it is genotypes that will be
determined in large screens. Can one find a subset of sites in the genotypes of the sample,

18-18 Handbook of Computational Molecular Biology

so that for any individual in the sample, the values at those genotypes determine the two
underlying haplotypes of the individual? One can define and identify “Tag genotype SNPs”
as a set of sites that determine the genotype values at the other sites in the sample. But is
a set S of Tag genotype SNPs also a set of Tag-SNPs for that underlying haplotype solution
in the sample? If so, by knowing the genotype values at S, one would know all the genotype
values for the individual, and also know the underlying haplotype pair for that individual.
It is shown in [6] that a set of Tag genotype SNPs is not always a set of Tag haplotype SNPs,
but when the data have a PPH solution (or a XOR PPH solution if only XOR genotypes
are known) a set of Tag genotype SNPs is also a set of Tag haplotype SNPs. In this case,
genotype data in large screens are as useful as haplotype data. This is potentially a very
important result.

18.4.5 Near-Perfect Phylogeny

One modification of the PPH problem, called the “imperfect” or “near-perfect” or “almost-
perfect” phylogeny haplotyping problem deserves particular attention. This approach was
developed in three papers by E. Eskin, E. Halperin, and R.M. Karp [25, 26, 43], and is
implemented in a program called HAP [43]. HAP was recently used to infer haplotype pairs
and to predict haplotype-blocks, in the largest-yet published study of the patterns of SNP
variation in human populations [48].

The main motivation for the near-perfect phylogeny model is the observation that in
certain well-studied data sets (e.g., [18]), the common haplotypes (the ones most frequent-
ly seen in the sample) fit the perfect phylogeny model, but the full set of haplotypes in
the sample do not. Halperin and Eskin [43] stated that “infrequent haplotypes cause the
majority of the conflicts with the perfect phylogeny model”. They derived this conclusion
from studying the data in [18], where very few conflicts remain after the removal of haplo-
types that occur in fewer than 5% of the sample, and no conflicts remain after the removal
of haplotypes that occur in fewer than 10% of the sample. Thus, the haplotypes fit the
perfect-phylogeny model after modifications are made to the data, and are said to fit a
“near-perfect-” or “almost-perfect-” phylogeny.

HAP uses this observation to perform haplotype inference in non-overlapping fixed-length
intervals of contiguous SNP sites. In each such interval, the program finds a subset of
the genotypes (possibly all of them) for which there is a solution to the HI problem that
fits a perfect phylogeny. These haplotypes are expected to be the common haplotypes in
the population. It then uses these haplotypes to infer haplotype pairs for the remaining
genotypes, which may include genotypes initially removed due to missing data. Missing
values in a genotype are inferred from the haplotypes in the PPH solution by a maximum-
likelihood approach.

We now discuss how HAP finds haplotype pairs for the common haplotypes in a fixed
interval. The program derives from an algorithm [25] that solves the original PPH problem.
The specific ways that HAP modifies that algorithm and the ways that it modifies the
data as the algorithm proceeds have not been completely explained in [43] (HAP contains
well over 10,000 lines of code). But the general ideas have been articulated as follows [43].
The PPH algorithm in [25] builds a PPH solution from the root of the tree downward,
examining each row of the input in turn. When examining a row, it may learn that in all
PPH solutions, a specific pair of sites must be together on a directed path from the root,
or it may learn the opposite, that they cannot be together on any directed path from the
root. Alternatively, the examination of a row may indicate that there is no PPH solution
possible. HAP follows the general outline of this algorithm, but instead of acting under
the influence of a single row, it looks at additional rows to see how many rows support the

Haplotype Inference 18-19

same conclusion (for example, that the edge containing one of the sites should be made an
ancestor of the edge containing the other). If only a small number of rows support that
conclusion, and the other rows support an alternative conclusion, then the minority action
is not taken and the (few) rows supporting the action can be removed (this detail is not
explicitly stated in [43]). In this way, a perfect phylogeny is created for a subset of the rows.
One of the features of the algorithm in [25] (and other algorithms for the PPH problem) is
that it produces an implicit representation of the set of all PPH solutions. In HAP, that
representation is used to enumerate all the PPH solutions (for the rows not removed) in
order to choose one that best conforms to the assumption that the observed genotypes were
created by random mating of the inferred haplotypes, and therefore fits the Hardy-Weinberg
equilibrium.

In addition to the assumption of random mating, the implicit model of haplotype evo-
lution embodied in HAP is that the rare haplotypes are created by recent recombinations
of a few common haplotypes, or by recent mutations of common haplotypes. That view of
haplotype evolution is articulated in [24, 66]. The near-perfect phylogeny model goes one
step further, by asserting that the common haplotypes fit a perfect-phylogeny model.

We consider the observation in [43] that well-studied data nearly fit the perfect phylogeny
model to be a validation of the original PPH idea. The strict PPH model may be overly-
idealized, or too brittle to handle errors in real data, but it is valuable to have a precisely-
specified model that leads to an efficiently-solved computational problem that can be used
in the core of other more heuristic programs (such as HAP) to handle more complex (and
messier) real-world data. An initial effort to more formally specify a model of imperfect
phylogeny haplotyping, and to solve the associated computational problems, was recently
published in [71].

18.5 Population-Genetic and Statistical Methods

Much of the work described above has been carried out by computer scientists and/or with
the methods used by computer scientists. A number of other important approaches to
the problem of haplotype inference have originated mainly in the research community of
population geneticists and statisticians interested in the assessment and analysis of genetic
variation.

Of central historical and scientific note in this regard is the use of maximum likelihood to
estimate haplotype frequencies and to infer haplotype pairs. It is straightforward to write
down the likelihood function associated with any given sample of individuals if one makes an
assumption about the process by which mating occurs within the population. The standard
and usually reasonable assumption is that there is a process of random mating among
individuals. Given this assumption, one can then derive an explicit likelihood function and
the goal is to determine its maximum value [75]. This value will yield estimates of the
haplotype frequencies underlying the observed genotype frequencies. Given the haplotype
frequencies, one can then determine the most probable pair of haplotypes that underlies
any given ambiguous genotype. The main problem in practice then is the derivation of the
maximum value of the likelihood function.

For two SNP sites, one can analytically derive the maximum value [65]. This fact has long
been known but unfortunately, this approach has almost never been exploited as a means of
solution for this important case (exceptions are [21, 78]). Instead, for this case and for the
m-site case, the method of expectation-maximization (EM) has been used [28, 45, 61, 67].
The use of this numerical approach to determine the maximum value of the likelihood
function has both positive and negative consequences.

18-20 Handbook of Computational Molecular Biology

On the one hand, it allows the estimation of haplotype frequencies for data sets for which
there are few, if any, alternative estimation approaches available. The importance of this
can hardly be overestimated. On the other hand, a numerical method such as EM yields
only limited information about the overall “dimensionality” of the estimation problem. So,
for example, typical use of the EM algorithm does not reveal whether there are multiple
peaks on the likelihood surface or whether the surface around a peak is flat or steep. Such
information has obvious important implications for the confidence one has in any given
result of the application of EM. Examples are shown in Orzack et al. [65] of two-site
genotype data sets for which the EM algorithm yields misleading results.

In the case of two sites, we recommend use of the analytical method presented in [65].
For data sets with more than two sites, the EM approach is certainly one that should be
considered, if one uses it in such a way that the topography of the likelihood surface is
at least partially described. The simple way of doing this is by starting the algorithm
with many different initial estimates of the unknown haplotype frequencies. If all such
different estimates result in the same value of the likelihood function then one can have
more confidence that at least there is just one peak. It is not clear with this (or any other
method, see below) how to proceed if one has multiple peaks, but at least knowing of their
existence is better than proceeding in ignorance.

The likelihood approach can be viewed as a special case of a Bayesian-inference problem.
In this case, one has a flat prior, implying that no one prior estimate of haplotype frequen-
cies is better than any other. In the last five years, a number of alternative approaches
have been developed in which more informative prior information is incorporated into the
estimation procedure, so as to get better estimates of the unknown haplotype frequencies
and/or haplotype pairs. Of note in this regard are the programs called Phase [70] and
Haplotyper [62]. In the case of Phase, the Bayesian-prior is derived from the infinite-sites
model and to this extent, it is a plausible prior to use for many (but not all) data sets.
The Gibbs sampler is then used to calculate the posterior distribution from which one can
derive estimates of haplotype frequencies and infer haplotype pairs. Further elaboration
and discussion of this approach can be found in [59, 69].

In contrast, the other Bayesian method, Haplotyper, uses a prior that is not derived from
an explicit population-genetic model; it is consistent with a model of inheritance in which
sequences of parents and offspring are potentially independent of one another [69]. The
Dirichlet distribution is used here as the sampling distribution. This prior is clearly less
biologically meaningful than the prior used in Phase. The Gibbs sampler is also used to
calculate the posterior distribution.

What all of these methods have in common is the use of a numerical method to derive
estimates of haplotype frequencies and predictions of haplotype pairs. In addition, all
of these calculations are stochastic in the sense that one must start each execution with
different initial haplotype frequencies (in the cases of Phase and Haplotyper) or should do
so (in the case of EM). To this extent, the concern is that the reliability of results derived
from any one execution is uncertain. This problem has been recognized by the creators of
some of these programs (e.g, [70]) but the resulting implications for how these programs
should be used have not been adequately explored. So, typical analyses based on these
methods have involved a single execution of a program. How meaningful the associated
results are is very unclear; at the very least, it is easy to find genotypic configurations for
which different executions of any given method can result in very different estimates of
haplotype frequencies (see [65]).

The main problem here is not the discovery of alternative solutions for any given data set.
The only requirement is sufficient computing power. Several thousand executions of even
the most time-intensive methods that are presently available can be achieved in a few days

References 18-21

on the fastest available microprocessors. Accordingly, the central and unresolved problem is
what one can make of the possible multiple solutions that one may find for any given data
set. One possibility is the use of consensus, just as it was applied in the analysis of multiple
solutions stemming from the rule-based algorithms such as Clark’s method (as described
in Section 18.2.4). Consensus has also been applied in [30]. It is clear that there is great
promise to the consensus approach and it may prove widely useful. However, this remains
to be seen and additional applications and theoretical analysis are needed. Of course, in any
given instance, multiple executions of an inference program may result in the same solution.
Such was the case for several thousand Phase analyses of the APOE data set described above
(e.g., [64]). However, how typical such monomorphism is remains unknown. Given present
evidence and the black-box nature of present stochastic inference methods, we strongly
caution against an expectation that the results of any method should be regarded as “true”
even if multiple executions result in the same solution. Such confidence can come only from
improved understanding of the performance of the algorithms and especially from analyses
in which the accuracy of any given method is assessed by a comparison of inferred and real
haplotype pairs.

18.6 Going Forward

Our hope is that this review provides a meaningful and stimulating assessment of the
present state of the biologically important problem of haplotype inference. While important
progress has been made, it is clear that there are substantial questions and issues that remain
to be resolved. We hope and expect that further progress will come from the separate and
combined efforts of biologists, computer scientists, and statisticians. The interdisciplinary
nature of this research effort is testimony to the remarkable state of present research in
bioinformatics.

Acknowledgments

Research partially supported by award EIA-0220154 from the National Science Foundation
and award P01-AG0225000-01 from the National Institute of Aging.

References

[1] www.hapmap.org.
[2] R. M. Adkins. Comparison of the accuracy of methods of computational haplotype

inference using a large empirical dataset. BMC Genetics, 5(22), 2004.
[3] D. Altshuler and A. Clark. Harvesting medical information from the Human family

tree. Science, 307:1052–1053, 2005.
[4] V. Bafna, D. Gusfield, S. Hannenhalli, and S. Yooseph. A note on efficient computation

of haplotypes via perfect phylogeny. Journal of Computational Biology, 11(5):858-
866, 2004.

[5] V. Bafna, D. Gusfield, G. Lancia, and S. Yooseph. Haplotyping as perfect phylogeny:
A direct approach. Journal of Computational Biology, 10:323–340, 2003.

[6] T. Barzuza, J.S. Beckman, R. Shamir, and I. Pe’er. Computational Problems in
perfect phylogeny haplotyping: XOR genotypes and TAG SNPs In Thirteenth Annual
Symposium on Combinatorial Pattern Matching (CPM’04), p. 14-31, 2004.

18-22 References

[7] T. Barzuza and I. Pe’er. personal communication.
[8] R. E. Bixby and D. K. Wagner. An almost linear-time algorithm for graph realization.

Mathematics of Operations Research, 13:99–123, 1988.
[9] P. Bonizzoni, G. Della Vedova, R. Dondi, and J. Li. The haplotyping problem: Models

and solutions. Journal of Computer Science and Technology, 18:675–688, 2003.
[10] D. Brown and I. Harrower. A new integer programming formulation for the pure

parsimony problem in haplotype analysis. Proceedings of the 2004 Workshop on
Algorithms in Bioinformatics, Springer Lecture Notes in Bioinformatics, LNCS, Vol.
3240 p. 254-265.

[11] D. Brown and I. Harrower. A new formulation for haplotype inference by pure parsi-
mony. Technical report, University of Waterloo, School of Computer Science. Report
CS-2005-03.

[12] R.H. Chung and D. Gusfield. Empirical exploration of perfect phylogeny haplotyping
and haplotypers. Proceedings of the 9th International Conference on Computing
and Combinatorics COCOON03. Springer Lecture Notes in Computer Science, Vol.
2697, pages 5–19, 2003.

[13] R.H. Chung and D. Gusfield. Perfect phylogeny haplotyper: Haplotype inferral using
a tree model. Bioinformatics, 19(6):780–781, 2003.

[14] A. Clark. Inference of haplotypes from PCR-amplified samples of diploid populations.
Molecular Biology and Evolution, 7:111–122, 1990.

[15] A. Clark, K. Weiss, D. Nickerson, and S. Taylor et al. Haplotype structure and
population genetic inferences from nucleotide sequence variation in human lipoprotein
lipase. American Journal of Human Genetics, 63:595–612, 1998.

[16] A. G. Clark. Finding genes underlying risk of complex disease by linkage disequilibrium
mapping. Current Opinion in Genetics & Development, 13:296–302, 2003.

[17] International HapMap Consortium. HapMap project. Nature, 426:789–796, 2003.
[18] M. Daly, J. Rioux, S. Schaffner and T. Hudson et al. High-resolution haplotype

structure in the human genome. Nature Genetics, 29:229–232, 2001.
[19] P. Damaschke. Fast perfect phylogeny haplotype inference. 14th Symposium on

Fundamentals of Computation Theory FCT, 2751:183–194, 2003.
[20] P. Damaschke. Incremental haplotype inference, phylogeny and almost bipartite graph-

s. 2nd RECOMB Satellite Workshop on Computational Methods for SNPs and
Haplotypes, pages 1–11, 2004.

[21] I. De Vivo, G. S. Huggins, S. E. Hankinson, and P. J. Lescault et al. A function-
al polymorphism in the promoter of the progesterone receptor gene associated with
endometrial cancer risk. Proceedings of the National Academy of Science (USA),
99:12263–12268, 2002.

[22] Z. Ding, V. Filkov, and D. Gusfield. A linear-time algorithm for the perfect phylogeny
haplotyping problem. Proceedings of the Ninth Annual International Conference
on Computational Biology (RECOMB 2005). S. Miyano, J. Mesirov, S. Kasif, and
S. Istrail et al. (eds). Springer Lecture Notes in Bioinformatics, LNCS Vol. 3500 p.
585-600.

[23] P. Donnelly. Comments made in a lecture given at the DIMACS conference on Com-
putational Methods for SNPs and Haplotype Inference, November 2002.

[24] N. El-Mabrouk and D. Labuda. Haplotype histories as pathways of recombinations.
Bioinformatics, 20:1836–1841, 2004.

[25] E. Eskin, E. Halperin, and R. M. Karp. Large scale reconstruction of haplotypes
from genotype data. Proceedings of the 7th Annual International Conference on
Computational Biology (RECOMB 2003). p. 104-113

[26] E. Eskin, E. Halperin, and R. M. Karp. Efficient reconstruction of haplotype structure

References 18-23

via perfect phylogeny. Journal of Bioinformatics and Computational Biology, 1:1–
20, 2003.

[27] E. Eskin, E. Halperin, and R. Sharan. Optimally phasing long genomic regions us-
ing local haplotype predictions. In Proceedings of the Second RECOMB Satellite
Workshop on Computational Methods for SNPs and Haplotypes, February 2004.
Pittsburgh, USA.

[28] L. Excoffier and M. Slatkin. Maximum-likelihood estimation of molecular haplotype
frequencies in a diploid population. Molecular Biology and Evolution, 12:921–927,
1995.

[29] S. M. Fullerton, A. Clark, C. Sing and D.A. Nickerson et al. Apolipoprotein E variation
at the sequence haplotype level: implications for the origin and maintenance of a major
human polymorphism. American Journal of Human Genetics, 67:881–900, 2000.

[30] S. M. Fullerton, A. V. Buchanan, V. A. Sonpar and S. L. Taylor et al. The effects
of scale: variation in the apoa1/c3/a4/a5 gene cluster. Human Genetics, 115:36–56,
2004.

[31] F. Gavril and R. Tamari. An algorithm for constructing edge-trees from hypergraphs.
Networks, 13:377–388, 1983.

[32] J. Gramm, T. Nierhoff, R. Sharan, and T. Tantau. On the complexity of haplotyping
via perfect phylogeny. In Second RECOMB Satellite Workshop on Computational
Methods for SNPs and Haplotypes, Pittsburgh, USA, February 2004. In Springer
Lecture Notes in Bioinformatics, LNCS 2004.

[33] J. Gramm, T. Nierhoff, and T. Tantau. Perfect path phylogeny haplotyping with
missing data is fixed-parameter tractable. In First International Workshop on Pa-
rameterized and Exact Computation (IWPEC 2004), Bergen, Norway, September
2004. In Springer LNCS 3162, 174-186.

[34] D. Gusfield. Efficient algorithms for inferring evolutionary history. Networks, 21:19–28,
1991.

[35] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge, UK, 1997.

[36] D. Gusfield. A practical algorithm for deducing haplotypes in diploid populations. In
Proceedings of 8th International Conference on Intelligent Systems in Molecular
Biology, pages 183–189. AAAI Press, 2000.

[37] D. Gusfield. Inference of haplotypes from samples of diploid populations: complexity
and algorithms. Journal of Computational Biology, 8(3):305-323, 2001.

[38] D. Gusfield. Haplotyping as Perfect Phylogeny: Conceptual Framework and Efficien-
t Solutions. In Proceedings of RECOMB 2002: The Sixth Annual International
Conference on Computational Biology, pages 166–175, 2002. Extended Abstract.

[39] D. Gusfield. Haplotype inference by pure parsimony. In E. Chavez R. Baeza-Yates
and M. Crochemore, editors, 14th Annual Symposium on Combinatorial Pattern
Matching (CPM’03), volume 2676, pages 144–155. Springer LNCS, 2003.

[40] D. Gusfield. An overview of combinatorial methods for haplotype inference. In S. Is-
trail, M. Waterman, and A. Clark, editors, Computational Methods for SNPs and
Haplotype Inference, volume 2983, pages 9–25. Springer, 2004. Lecture Notes in Com-
puter Science.

[41] B. Halldorsson, V. Bafna, N. Edwards and R. Lipert et al. Combinatorial problems
arising in SNP and haplotype analysis. In C. Calude, M. Dinneen, and V. Vajnovski,
editors, Discrete Mathematics and Theoretical Computer Science. Proceedings of
DMTCS 2003, volume 2731, pages 26–47. Springer, 2003. Springer Lecture Notes in
Computer Science.

[42] B. Halldorsson, V. Bafna, N. Edwards and R. Lipert et al. A survey of computational

18-24 References

methods for determining haplotypes. In Proceedings of the First RECOMB Satellite
on Computational Methods for SNPs and Haplotype Inference. Springer Lecture
Notes in Bioinformatics, LNCS, Vol. 2983 p. 26-47, 2003.

[43] E. Halperin and E. Eskin. Haplotype reconstruction from genotype data using imper-
fect phylogeny. Bioinformatics, 20:1842–1849, 2004.

[44] E. Halperin and R. Karp. Perfect phylogeny and haplotype assignment. Proceedings
of The 8th Ann. International Conference Research in Computational Molecular
Biology (RECOMB 2004, pages 10–19. ACM Press, 2004.

[45] M. Hawley and K. Kidd. HAPLO: a program using the EM algorithm to estimate the
frequencies of multi-site haplotypes. Journal of Heredity, 86:409–411, 1995.

[46] J. He and A. Zelikovsky. Linear reduction for haplotype inference. In Proc. of 2004
Workshop on Algorithms in Bioinformatics, Springer Lecture Notes in Bioinformat-
ics, LNCS Vol. 3240. pages 242-253.

[47] L. Helmuth. Genome research: Map of the human genome 3.0. Science, 293:583–585,
2001.

[48] D. Hinds, L. Stuve, G. Nilsen, E. Halperin, E. Eskin, D. Gallinger, K. Frazer, and
D. Cox. Whole-genome patterns of common DNA variation in three human popula-
tions. Science, 307:1072–1079, 2005.

[49] Y.T. Huang, K.M. Chao, and T. Chen. An approximation algorithm for haplotype
inference by maximum parsimony. ACM Symposium for Applied Computing SAC’05,
2005.

[50] E. Hubbell. Personal communication.
[51] R. Hudson. Gene genealogies and the coalescent process. Oxford Survey of Evolu-

tionary Biology, 7:1–44, 1990.
[52] S. Iwata. University of Tokyo. Personal Communication.
[53] G. Kimmel and R. Shamir. The Incomplete Perfect Phylogeny Haplotype Problem.

Journal of Bioinformatics and Computational Biology, 3:1-25, 2005
[54] P.Y. Kwok. Genomics: Genetic association by whole-genome analysis? Science,

294:1669–1670, 2001.
[55] G. Lancia, C. Pinotti, and R. Rizzi. Haplotyping populations: Complexity and ap-

proximations. Technical Report dit-02-082, University of Trento, 2002.
[56] G. Lancia, C. Pinotti, and R. Rizzi. Haplotyping populations by pure parsimony:

Complexity, exact and approximation algorithms. INFORMS Journal on Computing,
Special issue on Computational Biology, 16:348–359, 2004.

[57] J. Lee. U.T. Austin. Personal Communication.
[58] Z. Li, W. Zhou, X. Zhang, and L. Chen. A Parsimonious tree-grow method for

haplotype inference. Bioinformatics. 21:3475-3481, 2005.
[59] S. Lin, D. Cutler, M. Zwick, and A. Chakravarti. Haplotype inference in random

population samples. American Journal of Human Genetics, 71:1129–1137, 2003.
[60] L. Löfgren. Irredundant and redundant boolean branch networks. IRE Transactions

on Circuit Theory, CT-6:158–175, 1959.
[61] J.C. Long, R.C. William, and M. Urbanek. An E-M algorithm and testing strategy for

multiple-locus haplotypes. American Journal of Human Genetics, 56:799–810, 1995.
[62] T. Niu, Z. Qin, X. Xu, and J.S. Liu. Bayesian haplotype inference for multiple linked

single-nucleotide polymorphisms. American Journal of Human Genetics, 70:157–169,
2002.

[63] T. Ohto. An experimental analysis of the Bixby-Wagner algorithm for graph realiza-
tion problems. IPSJ SIGNotes ALgorithms Abstract, http:// www. ipsj.or. jp/
members/SIGNotes/Eng/ 16/ 2002/084/ article001.html , 084-001, 2002.

[64] S.H. Orzack, D. Gusfield, J. Olson and S. Nesbitt et al. Analysis and exploration of

References 18-25

the use of rule-based algorithms and consensus methods for the inferral of haplotypes.
Genetics, 165:915–928, 2003.

[65] S.H. Orzack, L. Subrahmanyan, D. Gusfield and S. Lissargue et al. A comparison of
an exact method and algorithmic method for haplotype frequency inferral. Preprint,
2005.

[66] D. Posada and K. Crandall. Intraspecific gene genealogies: trees grafting into networks.
Trends in Ecology and Evolution, 16:37–45, 2001.

[67] Z. Qin, T. Niu, and J.S. Liu. Partition-ligation-expectation-maximization algorithm
for haplotype inference with single-nucleotide polymorphisms. American Journal of
Human Genetics, 71:1242–1247, 2002.

[68] R. V. Satya and A. Mukherjee. An Optimal Algorithm for Perfect Phylogeny Hap-
lotyping. Proceedings of 4th CSB Bioinformatics Conference. IEEE Press, Los
Alamitos, CA, 2005.

[69] M. Stephens and P. Donnelly. A comparison of Bayesian methods for haplotype re-
construction from population genotype data. American Journal of Human Genetics,
73:1162–1169, 2003.

[70] M. Stephens, N. Smith, and P. Donnelly. A new statistical method for haplotype
reconstruction from population data. American Journal of Human Genetics, 68:978–
989, 2001.

[71] Y. Song, Y. Wu and D. Gusfield. Haplotyping with one homoplasy or recombina-
tion event. Proceedings of Workshop on Algorithms in Bioinformatics (WABI) 2005.
Springer, Lecture Notes in Bioinformatics, LNCS Vol. 3692.

[72] S. Tavare. Calibrating the clock: Using stochastic processes to measure the rate of
evolution. In E. Lander and M. Waterman, editors, Calculating the Secrets of Life.
National Academy Press, 1995.

[73] J. D. Wall and J. K. Pritchard. Haplotype blocks and linkage disequilibrium in the
human genome. Nature Reviews, 4:587–597, 2003.

[74] L. Wang and L. Xu. Haplotype inference by maximum parsimony. Bioinformatics,
19:1773–1780, 2003.

[75] B. S. Weir. Genetic Data Analysis II Sinauer Associates 1996.
[76] W. T. Whitney. 2-isomorphic graphs. American Mathematics Journal, 55:245–254,

1933.
[77] C. Wiuf. Inference of recombination and block structure using unphased data. Genet-

ics, 166:537–545, 2004.
[78] R. Y. L. Zee, H. H. Hegener, N. R. Cook, and P. M. Ridker. C-reactive protein gene

polymorphisms and the risk of venous thromboembolism: a haplotype-based analysis.
Journal of Thrombosis and Haemostasis, 2:1240–1243, 2004.

[79] J. Zhang, W. Rowe, A. Clark, and K. Buetow. Genomewide distribution of high-
frequency, completely mismatching SNP haplotype pairs observed to be common across
Human populations. American Journal of Human Genetics, 73:1073–1081, 2003.

19
An Overview of Phylogeny

Reconstruction

C. Randal Linder
The University of Texas at Austin

Tandy Warnow
The University of Texas at Austin

19.1 Introduction . 19-1
19.2 What are Phylogenies Used for in Biological

Research? . 19-2
19.3 The Steps of a Phylogenetic Analysis 19-4

Designing the study • Collecting organisms in the field
• In the lab • Multiple Sequence Alignment •

Phylogenetic reconstruction • Support assessment
19.4 Research Problems in Molecular Phylogenetics . . 19-19

Performance analysis of algorithms • Phylogenetic
reconstruction on molecular sequences • Multiple
Sequence Alignment (MSA) • Special challenges
involved in large-scale phylogenetics

19.5 Special Topic: Supertree Methods 19-29
Introduction • Tree Compatibility • Matrix
Representation Parsimony • Other supertree methods
• Open problems

19.6 Special Topic: Genomic Phylogeny
Reconstruction . 19-32

19.7 Conclusions and Suggestions for Further
Reading . 19-34

19.1 Introduction

The best evidence strongly supports that all life currently on earth is descended from a single
common ancestor. Over a period of at least 3.8 billion years, that single original ancestor
has split repeatedly into new and independent lineages (i.e., species), and, on occasion, some
of these otherwise independent lineages have come back together to form yet other lineages
or to exchange genetic information. The evolutionary relationships among these species is
referred to as their “phylogeny”, and phylogenetic reconstruction is concerned with inferring
the phylogeny of groups of organisms. The ultimate goal is to infer the phylogeny of all life
on earth.

Phylogenies are important to biology in many ways. So much so, that phylogenies have
become an integral part of much biological research, including biomedical research, drug
design, and areas of bioinformatics (such as protein structure prediction and multiple se-
quence alignment). Accurate phylogenetic reconstructions involve significant effort due to
the difficulties of acquiring the primary biological data and the computational complexity of
the underlying optimization problems. Not surprisingly, phylogenetic inference is providing
interesting and hard problems to the computer science algorithms research community – as

19-1

19-2 Handbook of Computational Molecular Biology

witnessed by the three chapters in this volume on novel algorithmic research for phyloge-
ny reconstruction. The limitations of existing phylogenetic reconstruction methods have a
direct impact on the ability of systematists (that is, biologists who study the evolutionary
history of a group of organisms) to analyze their data with adequate accuracy and efficiency,
so that their subsequent scientific inferences are reliable.

The purpose of this chapter is to help computer scientists develop sufficient knowledge and
taste in the area of computational phylogenetics, so that they will be able to develop new
methods for phylogeny reconstruction that can help the practicing molecular systematist.
Understanding the various applications of phylogenies will help the algorithms designer
appreciate where errors in phylogeny estimation can be tolerated, and where they will
have a more serious impact. Much of our discussion will therefore be from the viewpoint
of a molecular systematist, and will (a) elucidate promising areas for additional research,
(b) provide a context with which to understand the potential for impact of algorithmic
innovations, and (c) give the algorithms research community a better understanding of
the strengths and limitations of data collection and analysis in current practice. The final
point is important because a better understanding of the type and amount of raw data
that biologists can routinely obtain and analyze will help mathematicians and computer
scientists in designing methods that are compatible with and take advantage of the types
and quantities of data used by biologists. In particular, we will draw attention to the sources
of potential error in the primary data, and to those aspects of the input data that have the
potential to impact reconstruction methods in significant and potentially different ways.

We therefore begin our discussion in Section 19.2 with an overview of how phylogenies
are used in biology, focusing on the questions that can be answered once the phylogeny is
obtained. We continue in Section 19.3 with a description of the process a biologist goes
through, from the inception of a project to the production of a publishable phylogenetic
inference. In Section 19.4 we review each of the steps involved in phylogenetic inference, and
discuss their major methodological and algorithmic issues. In Section 19.5 and Section 19.6,
we describe advances on two specialized research problems – supertree methods (the subject
of one of the chapters in this volume) and gene order phylogenetics (which is discussed
in another chapter), respectively. We close in Section 19.7 with some comments about
algorithmic research in phylogeny and recommendations for additional reading.

Finally, a caveat. Phylogenies are generally represented as rooted binary trees since
speciation events are generally bifurcating, i.e., speciation usually occurs when an ancestral
lineage splits into two new, independent lineages. The assumption is that reticulation, i.e.,
horizontal gene transfer and hybrid speciation, is rare. Nonetheless, reticulation events are
known to occur and are fairly common in certain groups of organisms, e.g., hybrid speciation
is relatively common in plants [48]. Therefore, the evolutionary history of all life is not
properly represented as a tree. Instead, the appropriate graphical model of evolution for
all life is a directed acyclic graph (DAG) which we call a “phylogenetic network” [44, 45].
Despite the reality of reticulation, in order to keep the chapter to a reasonable size, we
will confine most of our discussion to phylogenetic trees and their reconstruction and will
only talk about reticulate evolution insofar as it creates difficulties for tree reconstruction.
Readers who want to learn more about reticulate phylogenies may wish to read the tutorial
on reticulate evolution at the DIMACS web site for reticulate evolution [38].

19.2 What are Phylogenies Used for in Biological Research?

Phylogenies are reconstructed on the basis of character data, where a “character” is any
feature of an organism that can have different states. A typical biological example of a

An Overview of Phylogeny Reconstruction 19-3

character is a nucleotide position in a DNA sequence, with the character state being the
particular nucleotide (A,G,C,T) occupying that position. From a mathematical standpoint,
a character is just a function that maps the set of taxa to its set of states. When the set of
states is discrete, the character is said to be “qualitative” or “discrete”, and when the set of
states is continuous, then the character is said to be “quantitative”. Molecular phylogenetics
research is concerned not only with the evolutionary history of different organisms, but also
with how the different characters evolve in the course of that history. Thus, characters are
used to infer species trees, but can also be of interest in their own right.

The uses for phylogenies, beyond elucidating the evolutionary relationships of biological
species, are many and growing; here we highlight the most common uses and some of the
most intriguing.

The most common use of a phylogeny is for a comparative study [5, 30]. A comparative
study is one where a particular question is addressed by comparing how certain biological
characters have evolved in different lineages in the context of a phylogeny. This information
is used to infer important aspects of the evolution of those characters. That statement
is vague and general because of the many types of characters studied using a compara-
tive approach. Some examples of areas in which the comparative method can be applied
include adaptation, development, physiology, gene function, vaccine design, and modes of
speciation. In essence, a comparative approach can be taken any time a biologist wishes to
examine a process or aspect of biological organisms that has evolved on a time scale that
is greater than the time of an individual species or lineage. An evolutionary perspective,
through the use of an accurately estimated phylogeny, makes it possible to ensure that the
number of independent data points used in the comparative study is not over estimated,
and to determine the order of the events.

Consider the following example, where a biologist is studying the qualitative character
egg color, and finds that a particular state for that character (e.g., blue egg color) occurs in
50 of the 100 species in a clade (where a “clade” consists of all the descendants from a single
node in the tree). The biologist would like to know how many times in the evolutionary
history this particular color arose and was lost. Without knowledge of the phylogeny of
the clade it is not possible to estimate these numbers, since the pattern itself is consistent
with one mutation leading to blue egg color, or even 50 mutations. However, knowing
the phylogeny for the clade makes it possible to obtain tighter lower bounds–and to even
quantify statistically–the number of times that character has changed state. Hence, these
questions can be answered with greater accuracy when the phylogeny is known. Similarly,
the biologist might also like to know if the trait is ancestral (i.e., that it evolved before
the clade of interest) or derived (i.e., that it evolved at some point within the clade under
study). These questions fall more generally into the question of understanding the evolution
of a particular character within a clade of the evolutionary tree for a particular group.

The researcher might also want to know about the rate at which a quantitative character
has changed in the clade overall or in different parts of the clade, and for qualitative char-
acters the researcher might like to know the number of times a trait was gained or lost and
how those gains and losses are distributed. For both types of traits, the researcher might
also like to know if there are correlations between changes in sets of traits or among traits
and particular external (environmental) factors. In order to ensure independence between
the inferences made in a comparative analysis and the phylogeny that is used to make the
inference, biologists usually strive to use different sets of characters for inferring phylogenies
and for comparative studies. Comparative studies have become extremely common in biol-
ogy, and one can easily find examples of them in almost any issue of experimental biological
journals, as well as in the general science journals, Nature and Science.

A second common use of phylogenies is to test biogeographic hypotheses. Biogeography is

19-4 Handbook of Computational Molecular Biology

concerned with the geographical distribution of organisms, extant and extinct. For example,
a researcher may be interested in whether a particular group of species has colonized a set
of islands a single time or repeatedly. This can be assessed by determining whether all of
the species on the island arose from a single most recent mainland common ancestor or
whether there are multiple independent mainland ancestors.

Phylogenies can be used to look at the mode and tempo of speciation. Regular bifur-
cating speciation is hypothesized to occur by several mechanisms. One of these, allopatric
speciation, is caused by the geographical separation of a single ancestral species into two
geographically isolated groups. Hence, one can look at the geographical distributions of
species in a clade to determine whether there is support for allopatric speciation. For ex-
ample, if the geographical ranges of a set of species is well known, it is sometimes possible to
correlate speciation events with large scale geological events such as mountain building or
plate tectonics. If there are adequate fossil records or if a molecular clock (the assumption
that each character evolves at a rate that is proportional to elapsed time) can reasonably
be assumed, one can also compare and contrast the rates of speciation in different clades
and in different parts of a clade. However, the assessment of speciation rates is somewhat
clouded by the fact that our knowledge of the number of extinct species in a clade is of-
ten poor. Since every extinct lineage must also have had a speciation event, it is possible
to significantly underestimate the absolute number of speciation events, and their relative
proportions between clades. For the same reasons, it is often difficult to use phylogenies to
say much about rates of extinction in different clades.

One can also use a phylogeny to attempt to infer the amino acid sequence of extinct
proteins. These putative extinct proteins can then be synthesized or an artificial gene
coding for them can be produced, and the functional characteristics of the protein that are
of interest to the researcher can be tested.

In a more practical vein, phylogenies can be used to track the evolution of diseases, which
can, in turn, be used to help design drugs and vaccines that are more likely to be effective
against the currently dominant strains. The most prominent example of this use is the flu
vaccine, which is altered from year-to-year as medical experts work to keep track of the
influenza types most likely to dominate in a given flu season [7].

Finally, phylogenies have even been used in criminal cases, most famously, in a case
where a doctor in Louisiana was accused of having deliberately infected his girlfriend with
HIV [41]. The phylogenetic evidence featured prominently in the trial and the doctor was
ultimately convicted of attempted second degree murder.

The key here is that phylogenies are useful in any endeavor where the historical and
hierarchical structure of the evolution of species can be used to infer the history of the
point of interest.

19.3 The Steps of a Phylogenetic Analysis

Biologists are reconstructing phylogenies for hundreds of sets of organisms representing all
of the major divisions of the “Tree of Life,” e.g., bacteria, plants, animals, etc. While that
might lead one to think that the practice of inferring phylogenies could be very different
depending upon the taxonomic group that is being studied, there are many details and steps
in the generation of the primary data that are similar whether the researcher is studying
microbes, invertebrates, vertebrates, plants or fungi. And if DNA sequence data are used
as the primary data for reconstruction, the steps after purified DNA has been extracted
from the group of interest are very similar, if not identical. In this section, we outline the
process of inferring a phylogeny, from its conception to the assessment of support for an

An Overview of Phylogeny Reconstruction 19-5

inferred phylogeny.
Our aim in providing this information is to give developers of phylogenetic methods a

feeling for what a biologist must do to produce a phylogeny for a group of organisms.
Some steps are relatively easy and not very time consuming; others are rate limiting and
have significant impact on the type, quantity and quality of raw data that are available for
analysis. A better understanding of how biologists work, what data they can easily augment
and what they must struggle to provide, will help researchers to produce methods that will
be most useful to biologists.

19.3.1 Designing the study

Before a biologist collects her first organism, the scope and nature of her study must be
delineated, and a plan must be put in place to accomplish its goals. The first decision to
be made is why the study is being conducted. This decision will determine the taxonomic
scope of the project, e.g., a small recently evolved clade (such as a single genus of the
great apes), or a clade that encompasses an older group (such as all insects), or even the
relationships among the kingdoms of life1. However, the broader the taxonomic scope, the
more likely a supertree analysis will be needed, for reasons which we will discuss below. In
particular, the phylogeny of all life cannot be directly reconstructed. Instead, phylogenies
of many subsets of the complete phylogeny are being independently inferred by hundreds
of systematists around the world with the goal of ultimately combining the subsets into a
single phylogeny for all life. This all-inclusive phylogeny is a major goal of phylogenetic
reconstruction.

There are many reasons for wanting to reconstruct phylogenies at all levels, and the
reasons for estimating the phylogeny of a particular group can be as varied as the purposes
to which a phylogeny can be put (as we discussed in Section 19.2). However, once the
taxonomic scope of the work is determined, many of the facets of the study (the sampling
scheme, the markers to be used, etc.) will either be determined or at least constrained.

Taxon selection and sampling

Although a phylogenetic reconstruction can occasionally encompass over 10,000 species
[61], the majority of studies where the researchers generate the primary data from scratch
involve fewer than 100 species. Therefore, unless researchers are working with a small clade
of organisms, a sampling scheme needs to be decided upon since it will not be possible
to include all of the species in the clade. For example, if a researcher decides to look at
floral evolution in a genus of plants with over two hundred described species distributed
throughout the globe, several aspects of the study become immediately evident. First,
several issues may prevent collection of specimens for every species in the genus: the number
of species may be too great to collect and process; the species may be too geographically

1In traditional taxonomy, organisms are hierarchically grouped according to a standard terminology.
From least to most inclusive the hierarchy goes species, genus, family, order, class, phylum, kingdom.
Generically, any level can be referred to as a taxon. Ideally each hierarchical level represents a clade
of organisms, but there are still many taxonomic groups where it is not yet known if they represent
clades, and many organisms have to be reclassified as their phylogenetic relationships become clearer.
Since there are at least several million species on earth, the number of taxonomic categories is obviously
insufficient to give a name to every level of clades in the phylogeny of life. It is also important to note
that the evolutionary depth of a given taxonomic level is not consistent from one group of organisms to
the next. For example, not all genera represent clades that are approximately 4 million years old.

19-6 Handbook of Computational Molecular Biology

widespread to allow all collections to be made, even if sympathetic workers in other countries
agree to help collect specimens locally; it may be politically infeasible to get collections from
some countries; some countries may have highly restrictive laws regarding study of their
flora by foreign scientists; and it might not be possible to obtain sufficient funds for all of
the travel and permits required. These considerations will necessitate strategic decisions
about which taxa are most critical to the study and what sort of sampling scheme will be
most likely to yield scientifically valid results, given the goals of the study. It also means
that methods designed for inferring phylogenies need to be robust to missing taxa. Note
that even if a researcher is able to sample all of the extant taxa for his or her group, there
are likely to be some missing taxa due to extinction.

Because our example study is interested in the evolution of characters, the researcher will
also have to decide how many individuals from each species will need to be examined to have
a statistically valid sample of the range of character variation within and between individual
species. Also, if the species are recently evolved and poorly circumscribed taxonomically,
the researcher may need to sample several individuals from more than one population of
each species to ensure the variation that is used for reconstructing the phylogeny truly
represents interspecific variation rather than ancestral variation that has been inherited
by several species from a common ancestor. If the species for which a phylogeny will
be reconstructed are more distantly related, a smaller number of samples will usually be
required from each species. Finally, because in nearly all cases biologists want to reconstruct
the rooted phylogeny, the researcher will need to select species to be used as outgroups.
Outgroup species are ones that are not included in the clade of interest (the ingroup) and
which, therefore, can be used to root the clade of interest. This method of rooting works
because the common ancestor of the ingroup and the outgroup lies further back in time than
the common ancestor of the ingroup. If the outgroup is correctly chosen, and a phylogeny
is reconstructed that is correct (as an unrooted tree), then the rooted phylogeny obtained
by rooting the reconstructed phylogeny on the edge between the ingroup and the outgroup
will be the correct as a rooted phylogeny.

Selecting the outgroup is tricky. The first issue is the obvious one: a taxon may seem
to be an outgroup, but it may not be. And if the taxon is not actually an outgroup, the
resultant rooting of the reconstructed phylogeny can be incorrect, and hence the inferred
order of speciation events will also at least in part be incorrect. Since many of the uses
of phylogenies are strongly based upon accurate reconstruction of the order of speciation
events, this can have negative consequences for scientific inferences later on. This is not
just a theoretical danger: in many cases, work has shown that species that were considered
outgroups were misclassified and actually belonged in the ingroup. For example, potatoes
and tomatoes were originally thought to be in different genera, but are now known to be
close relatives in the same genus.

Since more closely related groups of species are expected to be more similar to one another
(because they will have inherited a larger number of unaltered ancestral traits from their
most recent common ancestor), it would seem that adding a taxon (as an outgroup) which
is most different from the ingroup taxa would be the “right thing” to do; and, indeed, such a
choice would avoid the problem of inadvertently picking a member of the ingroup instead of
an outgroup. However, this too is potentially problematic. Suppose we take this approach
seriously, and we pick taxon A as an outgroup to a set S of taxa. Let us also suppose
that A is in fact a true outgroup, and that it is quite dissimilar to every taxon in S. The
problem here is that the more dissimilar taxon A is to the taxa of S, the harder it is for
any phylogeny reconstruction method to connect the taxon A to the phylogeny on S. That
is, evolution is modeled as a random process that is operating on a phylogeny, producing
sequences at the nodes of the tree. The more dissimilar A is to S, the closer to random

An Overview of Phylogeny Reconstruction 19-7

the sequence for A is to the sequences for the taxa in S. The more random these sequences
look relative to each other, the more random the placement of the edge that connects A to
the rest of the tree. This has the consequence that, once again, the rooting of the resultant
phylogeny can be incorrect, and much of the subsequent scientific analysis can be based
upon false premises.

Thus, a good outgroup taxon must be dissimilar enough to be definitely an outgroup tax-
on, but not so dissimilar that the phylogenetic reconstruction method cannot reconstruct
the phylogeny correctly. If a molecular clock hypothesis is reasonable for the dataset (in-
cluding the outgroup), these decisions are much easier to make, but in general this is quite
a tricky and difficult problem.

Marker selection

Another critical part of the planning is to choose markers that are appropriate for the
study. In this context a “marker” can refer to a particular region of DNA, a protein, a
morphological character, or the order of genes on a chromosome. Each type of marker has its
own special challenges and techniques. Rather than attempting to provide a comprehensive
overview of how all of the different markers are selected and used, we will focus on the most
common type in use today, DNA sequences, with occasional comments about the other
types.

When a phylogeny is reconstructed for a region of DNA, what is really being reconstructed
is the phylogeny of that DNA region, which does not necessarily have to be the same as
the phylogeny of the species from which the DNA was taken (see below); this is the classic
gene tree/species tree problem [39, 40, 49, 50, 51, 52]. What can a researcher do to increase
the probability that their DNA region will produce a gene tree whose evolutionary history
is identical to that of the species tree? Achieving this ideal requires picking markers with
the following characteristics:

1. The marker is unrecombined. When sex cells (eggs, sperm, ovules, pollen, etc.)
are produced by normal diploid organisms (organisms that inherit one copy of
each nuclear chromosome from their mother and one from their father2), they
undergo a process called recombination in every generation, which causes indi-
vidual strands of DNA to be a mixture of two or more different geneological
histories. Details about recombination (or more formally “meiotic recombina-
tion”) are available in any introductory genetics text. What is important here
are not the details of how recombination produces DNA sequences having mul-
tiple evolutionary histories, but rather the effect this can have on phylogenetic
reconstruction. If a recombination event has taken place within a marker used for
phylogenetic analysis it will be composed of two different evolutionary histories.
If the researcher can determine where the recombination event occurred, then the
marker can be broken into these two regions, and each region can be analyzed
separately – and each can produce a potentially different gene tree. But since
only rarely does a researcher know that a marker has undergone recombination,
it is more likely that she will analyze the full DNA sequence without consid-
ering the separate histories of the different parts of the sequence. Depending
on the reconstruction method used and the relative amounts of data from the

2The one exception to this rule is the sex chromosomes. The sex that is heterogametic (XY, ZW, etc.)
only has one copy of each type, e.g., human males have one copy of the X and one copy of the Y
chromosomes.

19-8 Handbook of Computational Molecular Biology

different histories, analysis of such combined histories can produce a phylogeny
that neither reflects the gene trees nor the species tree. To avoid the problem of
recombined sequences, in many cases researchers use sequences that are predom-
inantly uniparentally inherited such as mitochondrial and chloroplast sequences.
Because these organelles are inherited from only one parent the sequences in these
organelles are haploid and do not undergo recombination. This greatly reduces
the probability that different genes will have different trees.

2. The marker is single copy or is subject to rapid concerted evolution. Another way
that gene trees and species trees can differ is the presence of gene duplication,
i.e., when a gene has copies at two or more locations (loci) on one or more
chromosomes. If a gene is duplicated one or more times before a clade originates
and then different copies of the duplications are randomly lost in different lineages
(“random assortment”), the leaves of the tree will have different sets of copies of
the gene. Depending upon how the systematist analyzes the data (a complicated
situation which we will not discuss here - see [38] for more information), this can
cause the reconstructed gene tree to differ from the species tree.
The gene tree is more likely to match the species tree if there is only one copy
of a marker that has not undergone duplication and loss in the clade of interest,
and for this reason single copy markers are the most desirable in phylogenetics.
However, some duplicated genes can be useful in a phylogenetic analysis, provided
they undergo “concerted evolution”, a process that rapidly homogenizes all the
copies of a gene to a single type with the same sequence. As long as concerted
evolution is homogenizing the sequences of the copies at a rate significantly faster
than the rate of speciation, then the probability that the phylogeny for the marker
(the “gene tree”) will be identical to that of the species tree will be high. Thus,
picking markers with multiple copies can also work, provided that the region has
sufficiently rapid concerted evolution. The ribosomal DNA repeat is one such
region, and it is broadly used by systematists.

3. Finally, it is preferable to sequence the same allele of a gene for reconstruction.
Because diploid organisms have two copies of each autosome (non-sex chromo-
somes), they have two copies (alleles) of every gene at a position (called a “locus”)
on a chromosome. Although each individual in a species can only have up to t-
wo different alleles at a locus, collectively, all the individuals in the species can,
and often do, have three or more alleles at that locus. Hence, even single copy
genes can experience the same assortment and sampling problems expected with
duplicated genes. The only way for a researcher to make sure she is using the
same allele for phylogenetic reconstruction is to sequence extensively and deter-
mine the phylogenetic relationships among the alleles of all the species in his/her
clade. Because this is so much extra work, most systematists focus on organel-
lar DNA sequences or nuclear sequences that undergo rapid concerted evolution,
which homogenizes the repeats on both copies of the chromosome.

In addition to the issues surrounding gene trees and species trees, the researcher is also
looking for the following characteristics in a DNA region.

1. The marker is readily amplifiable by polymerase chain reaction (PCR). At present,
almost all DNA sequencing is preceded by amplification of the region to be se-
quenced using PCR. PCR requires highly conserved sequences at either end of
the marker so that “primers”(single stranded DNA sequences that have approx-
imately 18-30 nucleotides) will bind to them for all of the species that will be

An Overview of Phylogeny Reconstruction 19-9

sequenced. If a priming sequence for a marker varies significantly within the set
of species in the study, it can be very difficult to get DNA sequence data for all
the species in a study.

2. The marker can be sequenced. Some DNA regions can be amplified but are very
difficult to sequence due to repetitive elements in the sequence. This problem can
be caused by either very short repeats (one to four nucleotides in length) that
cause the DNA polymerase enzyme to stutter and produce different numbers of
repeats, or very large repeats that make it difficult to sequence through that
region. Modern DNA sequencing methods use primers in a fashion similar to
but not identical to PCR. For a given primer only 600-1000 nucleotides can be
sequenced. If contiguous repeats are longer than twice this upper limit, it may
be impossible to sequence through that repeat region. See Section 19.3.4 for a
discussion of the problems with aligning repeats.

3. The marker evolves quickly enough to distinguish among the most recently evolved
species in the ingroup, but does not evolve so quickly that it is either impossible
or extremely difficult to infer a reliable multiple sequence alignment (see Section
19.3.4). Markers that evolve very slowly, such as the ribosomal DNA genes,
can be used to reconstruct relationships among organisms from different king-
doms, the broadest traditional taxonomic group, whereas, very rapidly evolving
markers, such as mitochondrial sequences in animals, may only be suitable for
reconstructing genera, the least inclusive taxonomic group above species. The
incomplete taxonomic coverage of all but a few slow evolving DNA regions is part
of the reason supertree methods (see Section 19.5) are needed for reconstructing
large numbers of species from diverse taxonomic groups. For example, if the
ingroup is closely related, rapidly evolving markers that have been vetted by the
systematics community for the characteristics enumerated above will be a sys-
tematist’s first choice, but if these prove to have too little variation to distinguish
the species, the researcher may have to invest significant time and resources into
developing a new marker or markers. In general, for each kingdom of organisms,
there is a fairly small set of DNA regions that are currently considered accept-
able for phylogenetic analysis. There are undoubtedly more regions that could
be used, but to save time and expense, researchers use the ones that are already
developed first.

Having made these critical decisions (and hopefully having secured funding), a systematist
can now turn to the next step.

19.3.2 Collecting organisms in the field

Depending on the taxonomic group that is under study, collecting the organisms which
will be studied can involve a small number of trips close to the home institution of the
researcher or a number of far flung trips to locations that are difficult to access for both
geographical and political reasons. Often the researcher will have to obtain permission
from one or more governmental agencies to collect specimens. This is especially true in less
developed countries where concern about bioprospecting is high. The rules for collecting in
different countries are as varied as the countries themselves, and the researcher will have
to negotiate the legal web of the countries in which she needs to collect. In some cases, it
will be possible to get tissue for DNA for some species by arranging to borrow museum or
herbarium collections recently made by other systematists. The older the specimens, the
less likely they will have intact DNA.

19-10 Handbook of Computational Molecular Biology

When the researcher is in the field she must collect and preserve specimens of every species
that will be studied. How the specimens are preserved and returned to the lab depends
on the taxonomic group studied. For most vertebrates, specimens will either be frozen in
the field and then processed back at the lab or placed in a preserving solution. Insects can
be easily captured, killed and preserved in the field with particular body parts, e.g., a leg,
being harvested for DNA extraction back in the lab. Plants are usually placed in presses
in the field to produce dried vouchers that will be kept permanently at a herbarium. At
the time of collection, some material (usually leaves or flowers) from the voucher will be
quickly dried in silica gel. With plants, the researcher also often has the option of collecting
seeds which can later be grown in a greenhouse for vouchering and fresh material for DNA
extraction.

For microorganisms or fungi, a researcher might collect from a particular locality and then
culture the organisms back in the lab for identification and DNA extraction. However, the
vast majority of species in these groups are not culturable. In these cases, the researcher will
collect material, e.g., soil or water, from a locality and preserve it until it can be brought
back to the lab where molecular techniques can be used to determine the species in the
sample.

Collecting is often conducted over a period of several years, so the researcher is at pains
to plan well before the trips are made. It may be prohibitively expensive or politically
infeasible to return to an area a second time in rapid succession.

19.3.3 In the lab

Once a portion of the species in a study has been collected, work can begin on gathering the
primary data for phylogenetic analysis. We focus here on DNA sequence data, researchers
might also collect morphological, RNA, protein or gene order data.

For multicellular organisms, generally, a small piece of tissue from the organism is taken
through a series of physical and chemical steps to release and purify the DNA from cells
and organelles. For single celled organisms, either single species are cultured under sterile
conditions and samples are taken from these cultures, or a mixture of many species is
extracted simultaneously, e.g., from a soil sample. The steps for extracting and purifying
DNA from different groups of organisms differ, but generally, it is easier to get DNA from
animals than it is from plants, fungi, and some groups of microbes. Plants and fungi
often have secondary compounds that either damage DNA when it is extracted or that
co-extract with it, thereby complicating the purification process. Plants, fungi, and some
microorganisms also often have either a secondary cell wall or other cell-wall structures
that can interfere with DNA extraction. The researcher must often try several different
extraction and purification procedures before sufficient quantities of high quality DNA, free
of interfering compounds, are reliably obtained. In some cases, months can be spent just
on determining an effective extraction and purification procedure.

Once high quality DNA has been obtained, the researcher will usually conduct a prelim-
inary study on a subset of their taxa to determine which markers are likely to have enough
informative variation for phylogenetic reconstruction. This study will consist of some taxa
that are expected to be closely related and some that are expected to be distantly related,
in an attempt to determine whether a given marker has sufficient variation to distinguish
among closely related taxa but is not evolving so rapidly that it will be unalignable for the
distantly related taxa and the outgroups.

Generally, PCRs will be set up to amplify the region of interest. If the amplifications
are successful, they will be purified and sequenced. If they are unsuccessful, the researcher
will attempt to determine if there was a problem with the PCR or with the template DNA

An Overview of Phylogeny Reconstruction 19-11

and will correct the problems with the PCR or try other methods of getting purified DNA,
respectively. Although modern DNA sequencing methods make it possible to sequence
large quantities of DNA, and the sequence of nucleotides can be called with a fair degree of
accuracy by machine when the raw sequence data are of sufficient quality, the automated
process is not infallible. Researchers proofread their sequences by eye and resequence regions
that are ambiguous or of low quality.

If these preliminary runs indicate the marker is good for the group of interest, the re-
searcher will amplify and sequence the marker for all of the taxa in the study. Because
it is often the case that some taxa are more difficult to obtain or extract than others, a
researcher often does not complete the sequencing for all of the taxa simultaneously. When
this occurs she may perform preliminary phylogenetic analyses on the taxa that are more
readily available for sequencing.

Usually, a researcher will sequence two or more markers and then check whether the
phylogenetic analyses of each marker produces trees that are topologically identical. Topo-
logically different trees produced by different markers can be caused by several things: gene
tree/species tree problems, reticulation, lack of support for parts of the phylogeny, and use
of different reconstruction methods for different markers. If a researcher finds that markers
and the methods of analysis produce conflicting phylogenies, she will usually take addition-
al steps to determine the source of the conflict. Conflicting tree topologies from multiple
markers from the same organelle (or multiple markers from a region experiencing concerted
evolution) cannot usually be caused by reticulation or gene tree/species tree problems since
the markers usually do not contain multiple evolutionary histories. Therefore, in the absence
of compelling evidence that two or more organellar markers have well supported conflicting
phylogenies (see Section 19.3.6), it is usually assumed in these cases that conflict is due to
particular aspects of the evolutionary history (e.g., evolutionary trees with edges on which
very few mutations occur) that make it hard to fully resolve the evolutionary tree. Such
conditions usually result in aspects of the reconstructed trees that are not well supported
by the data. To solve this problem, the researcher will often sequence more of the organellar
genome or the region that is evolving concertedly. On the other hand, if organellar and
nuclear or two or more nuclear markers produce well supported conflicting phylogenies, the
researcher will have to try to decide whether the cause is gene tree/species tree problems
or reticulation. At present, we lack reliable methods for making this judgment solely on
the basis of the sequences. However, the researcher may be able to make a judgment using
other biological information that we do not discuss here.

19.3.4 Multiple Sequence Alignment

Once the sequence data are available, they need to be put in a multiple sequence alignment
(MSA) before a phylogeny reconstruction method can be applied. There are many methods
for producing multiple sequence alignments, some of which are quite recently developed,
while others (e.g., ClustalW [77]) have been in use for a long time. Many of the most
promising MSA algorithms in use are described in this volume, in a chapter on multiple
sequence alignment. The focus in that chapter is on MSAs for amino acid sequences, with
particular interest in identifying structural features of the proteins. The focus we take this
chapter is the use of MSA for phylogeny reconstruction purposes, and thus our discussion
will be slightly different.

A multiple sequence alignment of a set S of sequences is defined by a matrix where the
rows are the sequences in S, and the entries within each column are “homologous”. For phy-
logenetic reconstruction, this means positional homology, i.e., that all the nucleotides in the
same column have evolved from a common ancestor. However, multiple sequence alignments

19-12 Handbook of Computational Molecular Biology

(especially of protein sequences) can also be defined in terms of structural homology, so that
columns identify residues that produce identical structural features in the three-dimensional
folding of the protein. To a large extent, structural alignments and phylogenetically driven
alignments are either the same or very similar, but there can be differences because non-
homologous regions in proteins can sometimes evolve to have the same functional/structural
form. “Convergent evolution” is the term used to describe this phenomenon, whereby sim-
ilar characters in different species can evolve from nonhomologous genes or gene regions.
Convergent evolution can take place at many levels in organisms, e.g., similar structural
features in a protein or the spines on cacti and other desert plants.

The usual procedures for producing a multiple sequence alignment operate by inserting
gaps (represented by dashes) into the sequences, so that the final resultant sequences are
all the same length. This limitation means that if the sequences submitted to the MSA
method do not begin and end at homologous sequence positions, the leading and trailing
bases for which at least some of the sequences lack homologous positions will often not be
aligned correctly. In some cases this can confuse the alignment algorithms and produce very
poor alignments as they attempt to make all of the sequences the same length. To avoid
this problem, most researchers trim their sequences to begin and end at what they believe
are the same homologous positions before submitting them for multiple alignment.

However, equalizing the length of the sequences is not the objective but rather a feature
of the MSA process, as the following discussion should make clear. For example, if we begin
with n DNA sequences, with maximum sequence length k, the result of an MSA will be a
set of n sequences over the alphabet {A,C, T,G,−}, each of length k′ ≥ k. These sequences
can then be placed in an n × k′ matrix, and hence the correspondence between matrices
and multiple alignments.

There are a number of features that are difficult for the current set of methods to han-
dle. The two most prevalent problems are (1) sequences that have diverged so much that
similarity is difficult to infer and (2) introduction of large gaps, especially when these are
due to different numbers of repeat sequences. When sequences from different taxa have
differing numbers of imperfect repeats, the current set of MSA algorithms usually cannot
determine which repeats from one sequence should be aligned with which repeats from the
other. Consider the simplest example with two sequences. If sequence A has 4 repeats and
sequence B has 2 repeats, which of the repeats in A should be aligned with the repeats
in B? In some cases, the researcher will simply delete the repeats from his/her analyses.
Alternatively, if the researcher thinks the repeats have important phylogenetic information
and the repeats are long enough and varied enough, the researcher can try to determine the
phylogenetic relationships of the repeats, by producing a MSA consisting of each copy of
each repeat from each taxon and then using that MSA as input to a phylogenetic analysis.
In this way the researcher can produce a hypothesis of which repeats are homologous (they
will appear in clades together) and which are not. The phylogeny can then be used to guide
a hand alignment of the putatively homologous repeats within the larger alignment of the
marker. An MSA algorithm that could at least partially automate this process would be
very useful. Thus, many systematists obtain multiple sequence alignments at least partly
by hand, either aligning sequences themselves, or taking the output of some software (e.g.
ClustalW [77]) and then modifying the alignment. While this may seem inefficient, the
limitations of the current set of MSA algorithms necessitates it.

Finally, after the alignment is obtained, it is often further modified in order to eliminate
unreliable sites (columns) or taxa (rows). For example, the systematist may eliminate those
columns that contain too many gaps to have confidence in the positional homology of that
region of the alignment, or that have a low “score” as computed by ClustalW; she may
also elect to eliminate taxa (rows) that contain too many gaps. The objective of these

An Overview of Phylogeny Reconstruction 19-13

modifications is to reduce the noise in the alignment that arises from poor quality data,
since excessive noise (especially due to large numbers of unequal length gaps, which are often
introduced in regions that are hard to align well) will result in poorly estimated phylogenies.
Consequently, by eliminating the problematic components of the alignment, it may become
possible to obtain an accurate reconstruction of the phylogeny on the remaining data.

19.3.5 Phylogenetic reconstruction

After the multiple alignment is obtained and before proceeding to reconstruct the phyloge-
ny, several intermediate steps take place. The first involves deciding how to best analyze
datasets which contain multiple markers for the same set of organisms. In this case, the
systematist must decide between doing a phylogenetic analysis on a “combined” dataset
(obtained by concatenating the individual datasets), or doing phylogenetic analyses on the
individual datasets and then comparing the resultant phylogenies. As discussed above,
this determination requires ascertaining whether the datasets have the same evolutionary
history, so that issues such as lineage sorting or reticulate evolution can be ruled out as
causes for making the evolutionary histories different. Methods for determining when it is
safe to combine datasets exist, but these methods are not necessarily sufficiently accurate
[32]. Most do not even consider whether reticulate evolution is a reasonable explanation
for not combining the sets. As pointed out above, sequences from the same uniparentally
inherited organelle are generally considered safe to combine, but unless the assumption of
uniparental inheritance is explicitly tested for each species–a time consuming and sometimes
highly impractical task–combined analyses can be misleading even for these sequences.

The second issue has to do with the choice of phylogenetic reconstruction method. If
the systematist wants to use one of the statistical estimation techniques (i.e., Maximum
Likelihood or Bayesian MCMC), she needs to decide which stochastic model would be most
appropriate for her data. If she is using multiple markers and wishes to perform a combined
analysis (combining the datasets into one dataset), then the model selection will in general
be different for the different markers, and her phylogenetic analysis will need to be able to
maintain these partitions during the inference phase.

Standard stochastic models of evolution

There are many stochastic models of site evolution, most of which have been described
in terms of DNA sequence evolution. The models used for DNA sequence evolution do
not usually involve bringing in constraints on the evolutionary history that would arise
due to structural issues (such as secondary structures for RNA and tertiary structures for
regions that code for amino-acid sequences), and so are simpler than stochastic models for
either RNA or amino-acid sequences. Stochastic models of DNA sequence evolution used
in practice range from the simplest Jukes-Cantor (JC) Markov model, to the fairly complex
General Time Reversible (GTR) Markov model. These models describe the evolution of a
sequence beginning at the root and evolving down the tree as a sequence of point mutations.
Thus, no insertions, deletions, or duplications occur, and instead the only changes possible
on an edge of the tree are at individual nucleotide positions where the current state of a
nucleotide changes to another state. The result of these assumptions is that if the root
sequence has length k, then the result of this evolutionary process is that every leaf in the
tree is assigned a sequence also of length k. Furthermore, standard models assume that all
the positions (sites) within the sequence evolve under identical processes, and independently
of each other.

19-14 Handbook of Computational Molecular Biology

Rate variation across sites

The reader may be aware that it is often assumed that the sites evolve at different
rates, with some sites evolving more quickly than others; furthermore, some sites may be
invariable, and so not be allowed to change at all.3 However, these observations do not
violate the assertion that standard models assume that the sites are evolving identically
and independently (i.i.d.). That is, when rate variation is incorporated into these models,
these rates are assumed to be taken from a distribution (typically a gamma distribution);
thus, each site has a probability of being invariable (i.e., having rate 0), but if it is allowed to
vary, it then selects its rate from a common distribution, typically the gamma distribution,
and then maintains this relative rate on all edges of the tree. Thus, even when sites have
variable rates or may be invariable, this way of defining the rates has the consequence that
the sites are still evolving under identical and independent processes.

Thus, standard stochastic models of evolution are essentially defined by two considera-
tions: how a random site evolves, since all sites will follow the same model, and then the
distribution of rates across sites. Typically these rates are taken from a gamma distribution,
and can be incorporated into any single site evolution model. Here we now focus on the
single site evolution models.

Different stochastic models of evolution differ substantially with respect to their impact
on the resultant phylogenetic analysis, and yet the mathematics involved in the theory un-
derlying the models generally in use in phylogenetics (i.e., from the simplest Jukes-Cantor
(JC) model to the complex Generalized Time Reversible (GTR) model) is the same. That
is, all of these models are identifiable (the probability distribution a model tree defines on
the “patterns” suffices to identify the model tree). To understand how a character defines
patterns, suppose that a character has r states and there are n taxa. Then there are rn pos-
sible ways that the character can assign states to the leaves, and these are the “patterns” for
the character. Furthermore, the parameter values for the model (such as the substitution
probabilities on each edge) determine the probabilities of each pattern occurring. Thus,
the model tree itself defines a probability distribution on the rn possible patterns at the
leaves. Saying that a model is identifiable means that knowing the probability distribu-
tion of the patterns is sufficient to define the tree. Thus, all the models that are under
general consideration, from the JC to the GTR model, are identifiable. However, not all
stochastic models are identifiable – the “no-common-mechanism” model [80] is one non-
identifiable model. Other models that are not identifiable include standard site evolution
models in which sites either do not evolve i.i.d., or have rates of evolution drawn from more
complicated distributions than the gamma distribution (see [10, 14, 72, 88]).

Thus, all the standard models currently used in phylogenetic reconstruction are iden-
tifiable. Furthermore, methods that have provably good performance under the simplest
of these models (i.e., under JC) will also have provably good performance under GTR. In
essence, therefore, there is little mathematical difference between any two models in current
use in phylogenetic reconstruction.

3Note that a site that does not vary its state on a particular dataset is said to be “invariant”; however,
that does not mean that the site is invariable – rather, its rate of evolution may be so slow as to not
exhibit a change on a particular dataset. Thus, saying a site is invariable is a statement about the model,
and not about its evolution on a particular dataset.

An Overview of Phylogeny Reconstruction 19-15

The Jukes-Cantor (JC) model

The assumption of the JC model which characterizes it is that if a site changes its state,
it changes with equal probability to the other states. Hence, in the JC model we can specify
the evolutionary process on the tree T by the assigning of substitution probabilities p(e) to
each edge e, where p(e) indicates the probability that a site changes on the edge e.

The Generalized Time Reversible (GTR) model

For the GTR model, we do not make the assumption of equiprobable nucleotide sub-
stitutions, but we do require that the model be time-reversible. This is a fairly modest
assumption, and allows us to model the evolution of a single site with a symmetric 4 × 4
stochastic substitution matrix M , along with the usual lengths (or substitution probabili-
ties) on the edges. Thus, the GTR model contains the JC model, the Kimura 2-parameter
(K2P) model, etc., as special cases, but allows greater complexity by having additional free
parameters. It is not the most complex model that has been used to analyze datasets; in
particular, the General Markov (GM) model [70] is a model which relaxes the assumption
of time-reversibility, while still allowing for identifiability.

Phylogenetic analysis using stochastic models of evolution

Various statistical techniques have been developed which make it possible to select the
best fitting model within this spectrum – from JC to GM – for a given DNA sequence
dataset [55]. Thus, if a statistical estimation is desired, the first step in a phylogenetic
analysis is generally to use one of these statistical tests to select the model under which
the data will be analyzed. Once the model is selected, the researcher can then decide how
to analyze his/her data – whether with a method that uses the model explicitly, or with
one that does not. Phylogeny reconstruction methods come in essentially three flavors: (a)
distance-based methods, such as Neighbor Joining [62], which tend to be polynomial time
and are very fast in practice; (b) heuristics for either maximum likelihood or maximum
parsimony, two hard optimization problems, and (c) Markov Chain Monte Carlo (MCMC)
methods. Of these, only distance-based methods are polynomial time; despite this, most
systematists prefer to use one of the other types of analyses, because numerous studies (both
empirical and simulated) have shown that the other types of methods will often produce
better estimates of evolutionary history.

Distance-based methods operate by computing a matrix of pairwise “distances” between
the sequences (these are typically not just edit distances, but distances which are supposed
to approximate the evolutionary distance, and so are derived from statistically-based dis-
tance calculations), and then use only that distance matrix to estimate the tree. Maximum
Parsimony is an NP-hard [19] optimization problem in which the tree with the minimum
total number of changes is sought (thus, it is the Hamming Distance Steiner Tree problem).
Maximum Likelihood (ML) is another NP-hard optimization problem [11], but this problem
is defined in terms of an explicit parametric stochastic model of evolution. The optimization
problem is then to find the tree and its associated parameters (typically substitution proba-
bilities) that maximizes the probability of the data. The theoretical advantage of Maximum
Likelihood over Maximum Parsimony is that it is “statistically consistent” under most mod-
els; this means that it is guaranteed to return the correct tree with high probability [9] if
the sequences are sufficiently long – something which is not true of Maximum Parsimony
[15]. However, ML is even harder in practice than MP, and heuristics for both problems
require very substantial amounts of time (weeks or months) for acceptable levels of accuracy
on even moderate sized datasets. MCMC methods also explicitly reference a parametric
stochastic model of evolution, but rather than trying to solve the ML problem under the

19-16 Handbook of Computational Molecular Biology

model, they perform a random walk through the space of model trees. After some burn-in
period, statistics are gathered on the set of trees that are subsequently visited. Thus, the
output of an MCMC method is not so much a single tree, but a probability distribution on
trees or aspects of evolutionary history.

Thus, the major methods for phylogenetic inference, if run a sufficiently long time to
obtain an acceptable level of accuracy, can take weeks, months or longer on large datasets,
and even moderate datasets (with just a hundred or so taxa) can take several days. Since
there are no well established techniques for determining whether a phylogenetic analysis
has run for a sufficient time, most systematists use ad hoc methods to determine when to
stop.

19.3.6 Support assessment

At the end of the process of reconstructing a phylogeny, a systematist may or may not have a
single best reconstruction. This is particularly common for maximum parsimony analyses,
where for some datasets there can be thousands of equally good trees. With maximum
likelihood this is less likely to happen (because of the real-valued optimization, the optimal
solution is more likely to be unique), but it can happen with neighbor joining due to ties
during the agglomerative procedure. However, all methods have the potential to produce
a set of trees that are very close in score to the best score achievable on the dataset, and
which are probably statistically no better. In these cases, the researcher would like to have
an objective measure of the support for the best phylogeny (i.e., the one that optimizes
the objective criterion, such as MP or ML). In the case where the best tree does not have
significant support (such as will happen if the second best trees are not substantially worse
than the best tree with respect to the objective criterion), the researcher will still want
to know which aspects of the evolutionary history implied by the best tree are reliable,
where “reliable” means a measure of how well supported the reconstruction is given the
data and the method used. Usually reliability is assessed at the level of individual edges
in the tree. Reliability can be addressed through statistical techniques, or through more
purely combinatorial or “data-mining” techniques.

The combinatorial approach: consensus techniques

The first step of the combinatorial approach to estimating reliability is to select the profile
of trees to evaluate. This profile consists of those trees that are close enough to optimal
(with respect to the objective criterion) to be considered equally reliable. From this set, a
“consensus” tree will be inferred. Of the many ways of defining consensus trees, the most
frequently used consensus methods in systematics are the “strict consensus” and “majority
consensus” trees. These are defined in terms of edge-induced bipartitions, in a natural way
which we now describe.

Let S be a set of species, T be a tree leaf-labeled by S, and e be an edge in T . The
deletion of e from T splits the tree into two pieces, and hence creates a bipartition ce on the
set S of leaves. We can thus identify each edge e in T by the bipartition ce. Furthermore,
the tree T is uniquely identified by its set C(T) = {ce : e ∈ E(T)}, and that set is called
the “character encoding” of T . We can now define the strict and majority consensus trees.

Given a collection T of trees, so T = {T1, T2, . . . , Tk}, the tree Tsc such that C(Tsc) =
∩iC(Ti) is called the strict consensus tree. It is not hard to see that the strict consensus
tree always exists, and that is the most refined common contraction of all the trees in T .
The tree Tmaj defined by C(Tmaj) = {ce : |{i : ce ∈ C(Ti)| > k/2} is called the majority
consensus tree. The majority consensus tree always exists, and it always refines or equals

An Overview of Phylogeny Reconstruction 19-17

the strict consensus tree. Both the strict consensus and the majority trees can be computed
in polynomial time. In practice, the majority consensus tree is more often reconstructed
than the strict consensus tree. If desired, other consensus trees can also be computed. For
example, instead of picking the tree whose bipartitions appear in more than half the trees,
one can pick a different threshold, and every threshold p > 1/2 will define a tree that
will necessarily exist (if p < 1/2 this consensus tree may not exist). See [23, 35, 54, 87]
for examples of other consensus methods, and [6] for an overview of consensus methods in
terms of their theoretical performance.

Other methods of assessing support are statistical in nature. For MP, ML, or distance-
based phylogenetic reconstructions, the most common method of support is a bootstrap
analysis, although a jackknife analysis is also sometimes applied. When a Bayesian MCMC
approach is used to estimate the tree, posterior probabilities are often estimated.

The Bootstrap

Bootstrap analyses take two basic forms: non-parametric and parametric. A non-parametric
bootstrap resamples with replacement each of the positions in the original dataset, creating
a new dataset drawn from the same distribution. The researcher then uses the same method
by which the phylogeny was reconstructed, and the resulting “bootstrap phylogeny” is com-
pared with the reconstructed phylogeny. Many replicated bootstrap runs are performed and
the proportion of times that each edge in the reconstructed phylogeny appears in the boot-
strap phylogenies is recorded and interpreted as support for the edge. (In biological papers,
edges are frequently referred to as “branches”, and so the support of an edge in the tree is
called “branch support”.)

The interpretation of the non-parametric bootstrap is an important issue, and it is often
assumed that the bootstrap support for an edge somehow indicates the likelihood that the
estimated edge is correct (that is, that it appears in the true tree). However, this is clearly
overly simplified. It is possible for a phylogenetic reconstruction method to return the same
tree on all replicated datasets, thereby producing bootstrap proportions that are all 100%,
and yet the tree (and hence all its edges) may be incorrect. The standard example for
this is the “Felsenstein zone” quartet tree, for which maximum parsimony and UPGMA
converge to the wrong tree as the sequence length increases, and thus will give very high
bootstrap proportions to the wrong tree; see [15] for this result, and [17] for more about
phylogeny reconstruction methods, including UPGMA. (It is also important to remember
that the gene tree being estimated in this process can differ from the species tree; this, more
general point, has to do with how to interpret any phylogenetic analysis.) Thus, strictly
speaking, the best way to interpret the bootstrap support for an edge is that it indicates
the probability that the edge would continue to be reconstructed if the same phylogenetic
estimation procedure were applied to datasets having the same distribution as the original
dataset. Thus, when the phylogenetic reconstruction method is statistically consistent for
the model, the bootstrap proportion for an edge indicates the strength of support for that
edge in the original dataset.

Parametric bootstrapping can only be performed when we assume an explicit model of
sequence evolution, such as in ML or distance-based phylogenetic analyses. In this case,
we use the original data to estimate the parameters of the stochastic model of evolution
on the tree we constructed for the dataset. These parameters will generally include site-
specific rates of evolution or the distribution from which the rates of evolution are drawn,
substitution probabilities on each edge, and an overall substitution matrix governing the
evolutionary process across the tree. Once this model tree is constructed, we can simulate
evolution down the model tree, producing datasets of the same length as the original dataset.

19-18 Handbook of Computational Molecular Biology

We then apply the same method used to construct the original tree, and estimate the tree
on these new datasets. As with the nonparametric bootstrap, support is assessed by the
proportion of times the edges in the phylogeny reconstructed using the original dataset
appear in the parametrically bootstrapped reconstructions.

The Jackknife

Jackknifing involves repeatedly deleting some proportion of the original sites (or in some
cases original taxa) at random and then using the same method as was used for the full
dataset to reconstruct trees on the reduced dataset. Here again, the aim is to determine the
strength of support for the edges the tree constructed using the full dataset by assessing the
proportion of times that the edges in the analysis of the full dataset appear in the jackknife
reconstructions.

Bayesian MCMC methods

When the phylogenetic reconstruction uses a Bayesian MCMC analysis, the output itself
is in the form of an estimation of the statistical support for each of the hypotheses. That is,
instead of a single best tree being returned, the output contains a frequency count for each
of the trees that is visited after burn-in. These values are then normalized to produce the
“posterior probabilities” of the different trees. Just as with the bootstrap and jackknife, the
interpretation of these values is complicated and subtle (and like the parametric bootstrap,
this interpretation will depend upon issues having to do with the model of evolution used
to analyze the data).

Computational issues

Because a single analysis of a large dataset under either maximum likelihood or maximum
parsimony (to a reasonable level of accuracy) can take a long time to complete (days, weeks
or months), a full bootstrap or jackknife analysis can take prohibitively long. Running
the bootstrap analysis using fewer replications, or using faster (and hence less accurate)
analyses, changes the outcome, and may therefore produce different estimates of support
than would have been obtained if the analyses were correctly repeated. This impacts the
accuracy of support estimations obtained using bootstrap or jacknifing. On the other hand,
using Bayesian MCMC to produce posterior probabilities does not have the same issue –
these values are a natural outcome of the initial analysis.

Interpreting support

In the context of phylogenetic analysis, the features of the evolutionary history for which
support is estimated are usually topological – particularly, splits (bipartitions) in the tree.
Once the phylogenetic analysis is done and the support values have been estimated, a naive
interpretation of support values would suggest that features with high support are likely to
be true of the true tree, and that features with low support may not be. However, a more
sophisticated user of the support estimation technique understands that these interpreta-
tions can only reliably be made when the model that has generated the molecular sequence
data is the same as the model used to estimate the tree and subsequently to estimate the
support. (Of course, some methods, such as maximum parsimony, for estimating trees and
support, are not explicitly based upon models; in this case, we would need to know that the
method is reasonably accurate under the generating model.) Thus, except under carefully
proscribed circumstances, even high levels of support may not be indicative of true features
of evolution, and low levels of support may not be indicative of features unlikely to be true.

An Overview of Phylogeny Reconstruction 19-19

19.4 Research Problems in Molecular Phylogenetics

Molecular phylogenetics is concerned with the estimation of phylogenies from molecular
(i.e., DNA, RNA, or amino-acid) data, which usually consists of sequences, but for DNA it
can also be gene orders. There are many research issues in molecular phylogenetics, each
of which could have potentially a large impact on practice in systematics. Some of these
issues involve database research, others involve statistical inference (including developing
better models of the evolutionary process), and some are algorithmic in nature. Rather than
attempting to be comprehensive, in this chapter we will limit ourselves to discussing algo-
rithmic research involved in phylogenetic inference, since the target audience is algorithms
researchers in computer science. Also, in order to keep this chapter reasonably moderate in
size, we will restrict our discussion to issues involved in reconstructing phylogenetic trees,
rather than the more general problem of reconstructing phylogenetic networks.

19.4.1 Performance analysis of algorithms

Before discussing research problems in phylogenetics, it is important to discuss how algo-
rithms are evaluated in this community. Algorithm developers are familiar with designing
algorithms for numeric or combinatorial optimization problems, like vertex coloring, trav-
eling salesperson, etc. Algorithms for polynomial time problems are generally exact - i.e.,
they find optimal solutions - and hence they are compared in terms of their running time
(whether asymptotic running times or on benchmark datasets). By contrast, if a prob-
lem is NP-hard, then algorithms may not be exact, but may instead offer bounded-error
guarantees (e.g., obtaining a solution no more than twice the cost of the optimal solution),
or simply be designed to find hopefully good local (rather than global) optima. In these
cases, algorithms (or heuristics, as they are often called) can be evaluated in terms of the
scores they find on benchmark datasets and the time they take to find these scores. Bench-
marks can be real datasets (typically from some application domain), or random datasets
simulated from some distribution (such as random graphs of some sort). Comparing algo-
rithms for NP-hard problems is thus a bit more complicated than comparing algorithms
for polynomial time problems, since there is a trade-off between performance with respect
to the optimization criterion and running time. Thus, algorithms for the usual numeric or
combinatorial optimization problems can be evaluated both theoretically and empirically,
with criteria that include running time and accuracy with respect to the objective criterion.

In this light we now consider phylogenetic estimation. Here, too, we have numeric op-
timization problems, and for the most part they are hard (either proven to be NP-hard,
or conjectured to be so); maximum parsimony and maximum likelihood are two obvious
examples. (The evaluation of Bayesian MCMC methods is more complicated, since the
output is not a single tree with a score for some objective criterion, but rather a probability
distribution on trees. We will discuss the issues in evaluating these methods later in this
chapter.)

As with all algorithms for hard optimization problems, methods for MP and ML can
be evaluated using the same kind of criteria and methodology as described above. Thus,
benchmark datasets can be obtained, some real and some randomly generated, and recon-
struction methods can be compared in terms of their accuracy with respect to the referenced
objective criterion on these benchmarks. When the method is a local search heuristic (i.e.,
it keeps on searching for improved solutions), the methods can also be evaluated at dif-
ferent points in time, and their performance can then be measured with respect to how
long it takes each method to obtain an acceptable level of accuracy. These studies can help
evaluate the performance of phylogenetic reconstruction methods to the extent that the

19-20 Handbook of Computational Molecular Biology

user is interested in solving the particular optimization problem (whether it be MP, ML, or
something else).

However, phylogeny reconstruction problems are different from the usual combinatorial
optimization problems, in several significant ways. First, we are trying to estimate the
“true” tree, not just solve some numeric problem, and so our criteria for success must
include how close our reconstructed trees are to the tree that actually generated the data.
This statement itself makes it clear that phylogeny reconstruction can be considered a
statistical estimation problem, whereby we are trying to infer something (the tree) from
data generated by a stochastic process (defined by the model tree). Thus, issues such as
how much data does a method need to get an accurate reconstruction with high probability
are just as significant as the running time of the method (if not more so) (see the chapter
in this volume on large-scale phylogenetic analysis and [85] for more information on this).
These issues can be evaluated theoretically, or in simulation.

Simulation studies

The accuracy of a phylogeny reconstruction method is typically measured topologically
with respect to the true history. Since the true tree is not usually known on any biological
dataset, this accuracy estimation is done using a simulation study, as follows. First, a
stochastic model of evolution (such as Jukes-Cantor or the Generalized Time Reversible
model) is selected, and a model tree (that is, a rooted tree T along with the parameters
necessary to define the evolutionary process) is specified. Then a sequence of some length
is placed at the root of the tree T and evolved down the tree according to the specified
model. At the end of this process there are sequences at each leaf of the tree, and these
can be given as input to a phylogeny reconstruction method (such as neighbor joining, or a
heuristic for MP, etc.), thus producing an estimated tree T ′. The estimated tree T ′ is then
compared to the model tree T with respect to topological accuracy.

The standard way that trees are compared in the phylogenetic research literature is the
Robinson-Foulds (RF) metric [59]. The RF metric between trees is defined in terms of the
character encoding of a tree (as described in Section 19.3.6 earlier). Let T be the true
tree for a set S of n taxa, and let T ′ be a reconstructed tree on S. Then RF (T, T ′) =
|C(T)−C(T ′)|+|C(T ′)−C(T)|

2(n−3) . Note that 0 ≤ RF (T, T ′) ≤ 1, and that T = T ′ if and only if
RF (T, T ′) = 0. RF rates below 10% are generally required, unless the data themselves are
so poor that a good estimation of the true tree is unlikely.

The major advantage of using simulations as compared to real data is that for almost
all real datasets, it is not possible to know precisely the correct evolutionary history, and
those aspects of the evolutionary history that are reliable are also generally easy to infer
using any method. Thus, it is not particularly helpful nor straightforward to try to evaluate
methods with respect to topological accuracy on real datasets. Since topological accuracy is
so important, simulations have become a standard methodology for evaluating the accuracy
of phylogenetic reconstruction methods.

There are, however, distinct issues (and disadvantages) in using simulation studies. The
most compelling of these issues is that the mathematical models used to define the evolu-
tionary processes are not nearly as complex as those that operate on real organisms and
genomes; thus, inferences about accuracy of reconstruction methods must be taken with a
certain amount of salt, metaphorically speaking. Additionally, to the extent that simula-
tions are used to evaluate running times for heuristics for hard optimization problems, the
landscape produced by these models are also smoother (easier to navigate and find optimal
solutions) than the landscapes of real datasets. All in all, however, simulations are impor-
tant (otherwise we can rarely, if ever, have a real benchmark), and have changed practice

An Overview of Phylogeny Reconstruction 19-21

within molecular systematics dramatically.

19.4.2 Phylogenetic reconstruction on molecular sequences

Various numeric optimization problems have been formulated for phylogeny reconstruction,
of which a few have received significant support by the systematic biology community; these
are Maximum Parsimony, Maximum Likelihood, and (in a disguised form) Maximum Inte-
grated Likelihood. While systematists do not generally agree which of these optimization
problems is the most appropriate, all of these are of interest to a sizeable community. Unfor-
tunately, these are hard problems (MP and ML provably NP-hard), and so exact solutions
are not generally feasible except for sufficiently small datasets.

Heuristic searches for MP and ML

Heuristics for MP and ML (largely based upon hill-climbing) are in very broad use in
the systematics user community, and seem to provide quite accurate solutions on small to
moderate sized datasets. These heuristics differ from each other in various ways, but most
use the same set of transformations for moving from one tree to another. First, a fast
method (neighbor joining, or a greedy insertion of taxa into a tree to optimize MP or ML)
is used to obtain an initial tree. Then, a neighborhood of the tree is examined, and each
tree scored with respect to the objective criterion (MP or ML). If a better tree is found, the
search continues from the new tree; otherwise, the current tree is a local optimum and the
search may terminate. Some heuristics include additional techniques in order to get out of
local optima. The Ratchet [47] is one of the most successful of these techniques for getting
out of local optima; it randomly perturbs the sequence data, and then hill-climbs from the
current tree (but using the perturbed data to score each visited tree) until a local optimum
is found. Then the data are returned to their original values, and the hill-climbing resumes.

It should be clear from the description that these methods may not terminate in any
acceptable time period, especially if randomness is included; thus, the systematist must
decide when the search has gone on long enough.

The best of these heuristics, as implemented in the popular software packages PAUP*
[75], TNT [22], and others, are quite effective at producing good MP analyses on even
fairly big datasets (containing a few hundred sequences), provided enough time is allotted.
The limit for maximum parsimony analyses using currently available software is probably
1,000 taxa, and maximum likelihood analyses are probably limited to 100 (or fewer) taxa.
(Bayesian MCMC methods are reputed to be able to do well on large datasets, but as it is
not clear how to evaluate the performance of these methods, this needs additional study.)

However, with lowered costs, automation, and worldwide accumulation of DNA sequence
data, systematists now attempt to reconstruct phylogenies on ever larger datasets; many
phylogenetic datasets now have easily above a thousand sequences. These datasets are much
harder to analyze well in a “reasonable” time (of perhaps a few days or even a few weeks),
by comparison to smaller datasets.

Thus, in general, large-scale phylogenetic analysis is quite difficult to do in a reasonable
amount of time, and much of the focus of algorithm development (and of our discussion) is
on developing better heuristics – ones that can provide sufficient analyses on large datasets
in a matter of days rather than months or years. However, since MP and ML searches can
take a long time to find optimal solutions, it is also important to be able to assess when it
is safe to stop searching for better trees. The current technique is to run the analysis until
it seems to have converged. However, it is very difficult to establish convergence, and there
is clearly a real possibility that the method has not converged so much as slowed down

19-22 Handbook of Computational Molecular Biology

dramatically with respect to finding improved scores.
Thus, a natural combinatorial optimization problem that is also relevant to practice is to

obtain better bounds for MP and ML. If good lower bounds could be obtained, these could
be used to evaluate how close to optimal a current best tree is, and that in turn could be
used to evaluate whether it was reasonably safe to stop running the heuristic search.

Maximum Parsimony

We begin with Maximum Parsimony, which is the simplest of these optimization problems.
Heuristics for this problem have been used to construct perhaps the majority of published
phylogenies, and so MP is a major approach to phylogeny estimation. However, optimal
solutions to MP may not be correct reconstructions of evolution. There is no guarantee
that MP will yield a correct solution, even given infinitely long sequences because MP is
not statistically consistent in general. Still, MP is an important problem, and improved
algorithms for MP would represent an important advance for computational phylogenetics.

The Maximum Parsimony Search Problem:

• Input: Set S of sequences, each of length k, in a multiple alignment
• Output: Tree T leaf-labeled by S and with additional sequences, all of length k,

labeling the internal nodes of T , so as to minimize
∑

(u,v)∈E

H(su, sv),

where su and sv denote the sequence labeling the nodes u and v, respectively,
H(x, y) denotes the Hamming distance between x and y, and E denotes the
edge set of T . (The Hamming distance between two sequences is the number of
positions in which they differ.)

Maximum Parsimony (MP) is thus the Hamming distance Steiner Tree problem. Although
MP is NP-hard [19], it, like Steiner Tree problems in general, can be approximated. Also,
although finding the best tree is NP-hard, it is possible to score a given fixed tree in linear
time (i.e., it is possible to compute sequences at the internal nodes of a given fixed tree so
as to minimize the total number of steps in O(rnk) time, where there are n sequences each
of length k, each over an alphabet of size r), using the well known Fitch-Hartigan algorithm
[18]. Therefore, finding the best MP trees can be solved exactly through techniques such
as exhaustive search and branch-and-bound, but such techniques are limited to about 25 or
30 taxa, since the number of trees on n leaves is (2n − 5)!!. For larger datasets, heuristic
search techniques are used to analyze essentially all datasets of interest to systematists. On
moderate sized datasets (up to a few hundred sequences) these heuristics probably work
quite well (though there are no theoretical guarantees bounding the error of these heuristics),
but much less is understood about their performance on larger datasets, especially datasets
with more than a thousand sequences.

Research questions for MP

In addition to the general challenges we discussed earlier in the context of both MP and
ML, there are many research questions of particular relevance to MP. One question that
is particularly intriguing is to explain, mathematically, why MP is as good as it is. That
is, statistical theory has established that MP is not a statistically consistent method for
even simple DNA sequence evolution models, and so cannot be guaranteed to reconstruct
the true tree (with high probability) even on extremely long sequences. Yet MP’s perfor-
mance in simulation studies (when the model trees are sufficiently large and biological) is

An Overview of Phylogeny Reconstruction 19-23

clearly not bad. In some cases, it can be better than statistically consistent methods like
neighbor joining, and comparable to ML. Why? There must be some theory to explain this
phenomenon.

Maximum Likelihood

The usual maximum likelihood problem in phylogenetics is to find a tree and its associated
parameters so as to maximize the probability of the observed data. Since stochastic models
differ according to the parameters that must be specified (and those that are fixed for
the model), the use of a maximum likelihood analysis requires that the stochastic model
of evolution already be explicitly specified. While the model choice definitely affects the
running time of the software for finding the best ML trees (the more parameters in the model
that must be estimated, the more computationally intensive), in essence the mathematics
of ML estimation does not change between the simplest model (JC) and the most complex
of the standard models (the GTR model). Thus, we will discuss Maximum Likelihood
estimation under the JC model.

Recall that, like all of the standard models, the JC model assumes that the sites evolve
identically and independently down a tree T , and that the state of each site at the root
of T is drawn from a given distribution (usually the uniform distribution or a distribution
estimated from the dataset). The model is then simply defined in terms of the evolution
of a single site. The main feature of the JC model is that it asserts that if a site changes
on an edge e, it changes with equal probability to the remaining states. Thus, the entire
evolutionary model can be described by the pair (T, p), where T is a rooted tree, and p is
a function p : E(T)→ (0, 3/4), so that p(e) is the substitution probability on edge e.

Once a model tree (that is, the tree T and its associated parameters as defined by the
function p) is specified, it is possible to define the probability Pr[S|T, p] of a given set S of
sequences placed at the leaves being generated by the model tree (T, p). Furthermore, this
quantity can be calculated in polynomial time, using dynamic programming [16].

The ML score of a fixed tree

Let T be a fixed tree. The score of the tree under ML (for a given model) is defined to be
scoreML(T) = supp{Pr[S|T, p]}. Note that we have used the supremum, indicated by sup,
instead of the maximum. This is because the maximum may not exist, but the supremum
will (because the set {Pr[S|T, p]} is bounded from above by 1).

Maximum Likelihood for the Jukes-Cantor model:

We now define the ML search problem, again in the context of the Jukes-Cantor model
(though the definitions and discussion extend in the obvious way to models with more
parameters).

The objective in an ML search is to find the tree with the highest ML score; however, this
optimal solution may not exist, because the set is not closed (in the same sense in which we
can say there is no largest number in the open interval (0, 3/4)). Therefore we will state the
ML problem as a decision problem (i.e., does there exist a solution of at least score B?).

• Input: A set S of sequences, each of the same length, and a value B.
• Output: A model tree (T, p) (where p : E(T) → (0, 3/4) defines the substitution

probabilities on the edges of T) such that Pr[S|T, p] ≥ B (if such a model tree
exists); otherwise, FAIL.

From a computational viewpoint, ML is very difficult. Solving ML tree under the Jukes-
Cantor model is NP-hard [11] (and conjectured NP-hard under the other models), and

19-24 Handbook of Computational Molecular Biology

harder in practice than MP. Worse, even the problem of finding the optimal parameters for a
fixed tree is potentially NP-hard, even for trees with only four leaves! Existing approaches to
find optimal parameters on a fixed tree, which utilize hill-climbing on the finite dimensional
real-parameter space, are not known to solve the problem exactly [69]. Note that the usual
exhaustive search strategy isn’t feasible, since this optimization is over a continuous space
rather than a discrete space.

Research questions for ML

While ML and MP are clearly different, both ML and MP share the same search-space
issues, and so heuristics that improve techniques for searching through “treespace” will help
speed up both ML and MP analyses. Thus, many of the questions that we discussed in the
context of MP apply here as well. However, ML has some additional challenges that are
not shared by MP, and which make ML analyses additionally challenging.

The main challenge is computing the ML score of a given tree T ; in practice, this amounts
to finding parameter settings that will produce (up to some tolerated error) the maximum
probability of the data. The computational complexity of this problem is open, and current
techniques use hill-climbing strategies which may not find global optima [69]. By contrast,
the corresponding problem for MP (computing the “length” of a fixed tree) can be solved in
linear time using dynamic programming. Thus, parameter estimation on a given tree is the
real bottleneck for ML searches. In fact, this is such a time-consuming step in ML searches,
that the popular heuristics for ML do not actually try to find optimal parameters on every
tree, but only on some. The cost of computing these optimal parameters is just too high.

Consider then the possibility of not computing the optimal parameters. Instead, suppose
we could quickly compute an upper bound on the ML score of the tree (that is, the proba-
bility of the data under the best possible settings of the parameter values). If we could do
this, efficiently, we might be able to speed up solutions to ML. That is, during the heuris-
tic search through treespace, instead of performing the computationally intensive task of
computing optimal parameters on a tree we visit, we would simply check that the upper
bound we have on its score is at least as big as our current best score. If it is not, we can
eliminate this tree from consideration. In this way, we can (rigorously) select those trees
which are worth actually spending the time to score exactly, and thus potentially speed up
the search.

Closely related to this is the question of simply comparing two trees for their possible
scores, rather than scoring either one. Consider the following question:

For fixed phylogenetic trees T1 and T2 on set S, is

scoreML(T1) > scoreML(T2)?

Suppose we could answer this question in a fraction of the time it takes to find the optimal
parameters on a tree (i.e. faster than it takes to actually compute scoreML(T). In this case,
we could also traverse tree space more quickly, and thus get improved solutions to ML.

The challenge in these approaches is to be able to make these comparisons rigorously
and efficiently, rather than in an ad hoc fashion. In addition, the objective is to obtain an
empirical advantage, and not just a theoretical one.

MrBayes, and other Bayesian MCMC methods

It should be clear that Bayesian MCMC methods are not trying to solve maximum
likelihood in the sense we have defined, whereby the model tree (that is, the tree with
parameter values) is returned that maximizes the probability of the data. However, there
is a kind of maximum likelihood problem which Bayesian MCMC methods can be used to

An Overview of Phylogeny Reconstruction 19-25

solve. This problem is the “maximum integrated likelihood” problem, described in [71],
and which we now define. Recall that if we are given a set S of sequences and a model tree
T with an assignment p of the parameter values to the tree, we can compute Pr[S|T, p] in
polynomial time. Thus, for a fixed tree T , we can define the “integrated likelihood” of T
to be the integral of this quantity, over all the possible parameter settings. In other words,
the integrated likelihood of a tree T , which we denote IL(T), is defined by

IL(T) =
∫
Pr[S|T, p]dF (p|T),

where F (p|T) is the distribution function of the parameters p on T . In general, (F (p|T))
has a probability density function f(p|T), so that we can write this as

IL(T) =
∫
Pr[S|T, p]f(p|T)dp.

The tree T which has the maximum possible integrated likelihood value is called the
“maximum integrated likelihood tree”. The maximum integrated likelihood tree has many
desirable properties, some of which are quite surprising [69]. In particular, as Penny and
Steel [69] point out, the integrated likelihood of a tree T is proportional to its posterior
probability.

Despite the popularity of MrBayes [33] and other Bayesian MCMC methods, not much
is known about how to run the methods so as to obtain good analyses, nor about how to
evaluate the performance of a Bayesian MCMC method. By contrast, much more is known
about MP and ML. Consider, for example, the question of how to evaluate the performance
of a heuristic for MP or ML. We can assemble benchmark datasets, and we can analyze
each dataset using various heuristics, and record the best score found by each heuristic
under various conditions. This is a legitimate way to compare methods, provided that the
conditions are identical.

Some systematists use Bayesian MCMC methods as heuristics for ML; rather than us-
ing the normal output (i.e., posterior probabilities), they simply return either the most
frequently visited tree, or the model tree which had the best likelihood score. If Bayesian
MCMC methods are used in this way, then it is reasonable to use the same methodology
for evaluating ML methods to evaluate Bayesian MCMC methods. But this is not what
Bayesian MCMC methods are really designed for – they produce posterior distributions on
trees, not single trees with scores. Therefore, how should we evaluate a Bayesian MCMC
method? To do this, we need to know what the “correct” output should be, and failing
that, whether one posterior distribution is better than another.

Research questions for Bayesian MCMC methods

The most fundamental problem for Bayesian MCMC is to be able to say what the “correc-
t” output is, and to be able to analytically compute that (even if it would take a long time
to obtain an answer). Recall the observation made earlier that the integrated likelihood of
a tree T is proportional to its posterior probability, if the MCMC method were to reach
the stationary distribution. Hence, if we can calculate the integrated likelihood of each tree
exactly, we can actually evaluate the accuracy of a Bayesian MCMC method. The question
then becomes: how can we calculate this integral exactly? Once again, this seems difficult,
and the problem is that we are trying to calculate something that is in a multi-dimensional
continuous space, not a discrete space.

The difficulty in how to evaluate the output of a MCMC method is part of both the
appeal and the problem with using MCMC methods – if there is no explicit way to evaluate

19-26 Handbook of Computational Molecular Biology

the quality of the output, then stopping early (and hence finishing quickly) is potentially
acceptable. On the other hand, if one wishes to be more conservative about the use of this
technology, it becomes necessary to have tools for evaluating how long one should take for
the burn-in period, before sampling from what is hoped to be the stationary distribution.
Thus, two algorithmic research problems that present themselves in the context of MCMC
methods are (1) developing analytical techniques for obtaining bounded-error estimations of
the integrated likelihood of fixed trees, and (2) determining when a sufficient amount of time
has elapsed so that the burn-in period can be considered complete and the sampling of trees
can begin. It is easy to approach these problems using ad hoc techniques; the challenge here
is (if possible) to develop techniques with a firm theoretical foundation. More generally, of
course, designing new MCMC methods with better convergence rates is always beneficial.

19.4.3 Multiple Sequence Alignment (MSA)

MSA remains one of the most significant open problems related to phylogeny estimation,
with no really satisfactory software. One of the major challenges for the algorithms designer
in developing better MSA methods is that no objective criterion for MSA has been met
with general acceptance in the phylogeny research community. Instead, MSA methods
(especially MSA methods for protein sequences) are evaluated with respect to accuracy
on specific real datasets for which correct structural alignments are known. This makes
the development of improved methods for MSA difficult to achieve since the structures of
most molecular sequences are not known in advance, and the alignment must be obtained
without that knowledge. Furthermore, as noted above, a correct structural alignment may
not produce an alignment that maximizes positional homology (i.e., structural alignments
need not produce a set of columns where each column has character states that are the
result of a common evolutionary history for those character states). Since datasets where
analyses based upon these different optimality criteria can lead to different alignments do
come up in practice, the current approaches for MSA are inadequate for the purposes of
phylogenetic reconstruction.

The rest of this section will describe two numeric optimization problems that have been
suggested for MSA. Each of these optimization problems defines the cost of a given multiple
alignment on the basis of a set of pairwise alignments. Therefore, we begin by describing
how pairwise alignments are scored.

Pairwise alignments

Typically, the cost of a pairwise alignment depends upon the number of each type of
substitution, and the number and length of the gaps in the pairwise alignment. The cost
of each type of substitution is given by a substitution cost matrix which can be quite
arbitrary, although there are standard matrices used in the community. The cost of a gap
is more complicated. In general, “affine gap penalties” are the most frequently used. These
penalties are of the form C0 + C1(l − 1), where l is the length of the gap, and C0 and C1

are two positive real numbers. In general, C1 is much less than C0, reflecting the model
assumption that initiating a gap is harder to do than extending a gap. Note also that if we
allowed C0 = ∞, then no gaps would be permitted, and so affine gap penalties can be used
to model various model conditions.

Given any such function for the cost of a pairwise alignment, we can then define the ob-
vious optimization problem – given two sequences, find the pairwise alignment of minimum
cost. The pairwise alignment problem can be solved in polynomial time (standard dynamic
programming techniques give an O(mn) time algorithm when the cost function uses an

An Overview of Phylogeny Reconstruction 19-27

affine gap penalty, where m and n are the lengths of the two sequences).
Consider now a multiple alignment A on the set S = {s1, s2, . . . , sn}, and consider two

sequences si and sj in S. The pairwise alignment induced by A on sequences si and sj is
obtained by examining the alignment A, and restricting the attention to just the ith and
jth rows. We denote this induced pairwise alignment by A(si, sj). Then if we are given a
cost function f(·, ·) on pairwise alignments, we can extend it to any multiple alignment in
the obvious way: simply score every induced pairwise alignment, and add up the scores.
We formalize this as follows:

Sum-of-Pairs (SOP) alignment

• Input: A set S = {s1, s2, . . . , sn}, of sequences and a function f(·, ·) for computing
the cost of a given pairwise alignment between two sequences.

• Output: A multiple alignment A on S such that
∑

i,j f(A(si, sj)) is minimized.

This natural optimization problem is NP-hard to solve exactly [34], but can also be
approximated. Despite its natural appeal, it has no demonstrated connection to evolution.
Therefore, consider the following alternative way of looking at multiple sequence alignments.
This problem (a special case of which was introduced in [64]) can be seen as an extension
of the maximum parsimony optimization problem in which we allow for insertions and
deletions of substrings during the evolutionary process.

Generalized Tree Alignment (GTA)

• Input: A set S of sequences and a function f(·, ·) for computing the cost of a
given pairwise alignment between two sequence.

• Output: A tree T which is leaf-labeled by the set S and with additional sequences
labeling the internal nodes of T , so as to minimize

∑

(v,w)∈E

f(Aopt(sv, sw)),

where sv and sw are the sequences assigned to nodes v and w respectively and
E is the edge set of T .

It is easy to see that the Generalized Tree Alignment (GTA) problem is NP-hard, since the
special case where gaps have infinite cost (and hence are not permitted) is the maximum
parsimony (MP) problem, which is NP-hard. The fixed tree version of GTA is also of
interest, and has received as much attention as the Generalized Tree Alignment problem.
We now describe this.

Tree Alignment

• Input: A tree T leaf-labeled by a set S of sequences and a function f(·, ·) for
computing the cost of a given pairwise alignment between two sequences.

• Output: An assignment of sequences to the internal nodes of T so as to minimize
∑

(v,w)∈E

f(Aopt(sv, sw)),

where sv and sw are the sequences assigned to nodes v and w respectively and
E is the edge set of T .

Unfortunately, Tree Alignment is also NP-hard [81]. Algorithms which return provably
optimal solutions for the Tree Alignment problem have been developed for the case where

19-28 Handbook of Computational Molecular Biology

the function f(·, ·) uses an affine gap penalty, but these run in O(cnkn) time, where c is a
constant, k is the maximum sequence length, and n is the number of leaves in the tree [37];
thus, exact solutions to Tree Alignment are computationally infeasible except for extremely
small trees with short sequences. Approximation algorithms for the problem have also been
developed. One of the simplest of the approximation algorithms is the 2-approximation
algorithm in [26], which can be used with arbitrary functions f(·, ·) that satisfy the triangle
inequality). For the case of affine gap penalties, a PTAS (polynomial time approximation
scheme) has also been developed [82]. However, because all the approximation algorithms
with good ratios are computationally intensive (even on small datasets!), they are not used
in practice. (Gusfield, however, suggests using the 2-approximation in [26] in order to
obtain lower bounds on achievable alignment costs, rather than to actually estimate a good
alignment!)

Heuristics for either the Generalized Tree Alignment problem (in which the tree is not
known) or the Tree Alignment problem (when the tree is assumed) have also been developed,
and there is still a lively interest in this area (see [21, 26, 37, 56, 65, 57, 82, 86]). However,
the performance of these methods is still not well understood, and the standard practice by
most systematists is still to use a method such as ClustalW to obtain an alignment, and
then to infer a tree on the basis of the alignment.

Maximum likelihood and Bayesian approaches can also be used for phylogenetic multiple
sequence alignment, but these require an explicit model of evolution which incorporates
insertions and deletions (and perhaps also duplications) as well as site substitutions. Some
such models exist, but ML and Bayesian methods based upon these models are extremely
computationally intensive, and are unlikely to scale; see [31, 42, 58, 67, 73, 78, 79] for some
work in this area.

Research questions for MSA

The main challenge here, from the point of view of phylogenetic estimation, is developing
MSA techniques that are appropriate for phylogenetic reconstruction, so that accurate
trees can be obtained when the input data are not yet aligned. To establish such a method,
however, better models of sequence evolution (ones that include events that make a multiple
alignment necessary) need to be developed, so that methods can be tested on simulated
data. Such events include duplications of genes, insertions and deletions of DNA regions,
and large-scale events such as inversions and transpositions. Realistic simulators should
incorporate all these events, while still keeping the flexibility of the standard DNA sequence
models which do not enforce molecular clocks or constant rates across sites. No simulator
available today has all the flexibility needed to be of real use in testing alignment algorithms.
Until we can test methods in simulation, we will not know if trying to optimize the tree
length (i.e., trying to solve the Generalized Tree Alignment problem) will produce better
trees from unaligned sequences. It is possible that we may need to come up with different
optimality criteria in order to best construct trees and alignments simultaneously.

Thus, there are really two main challenges: first, to develop good stochastic models
that reflect the properties of real datasets, and then to develop methods for alignment
(and perhaps simultaneous alignment and phylogeny reconstruction) that enable accurate
phylogenies to be inferred. The general challenge of developing better, more biologically
realistic, models of evolution applies to all aspects of phylogenetic inference.

An Overview of Phylogeny Reconstruction 19-29

19.4.4 Special challenges involved in large-scale phylogenetics

Since most approaches for estimating phylogenies involve solving hard optimization prob-
lems, phylogeny reconstruction is generally computationally intensive, and the larger the
dataset the more computationally challenging the analysis. This is the obvious challenge
in analyzing large datasets. But certain other problems become particularly difficult when
large datasets are analyzed. In particular, as mentioned before, assessing confidence in
estimated phylogenies using bootstrapping becomes infeasible, unless fast reconstruction
methods are used instead of computationally intensive ones.

Another challenge that comes up is storing and analyzing the set of best trees found
during an analysis. Even for moderate sized datasets this can be a large number (running
in the thousands), and the number of best trees for larger datasets may conceivably run into
the millions. How to store these datasets in a space-efficient manner, and so that consensus
methods and other datamining techniques can be applied to the set, is still largely an open
problem. (See [4] for some progress on this problem.)

Finally, with datasets containing many taxa, the incidence of missing data and difficult
multiple sequence alignments increases, thus making the usual approaches to phylogeny
estimation difficult. In these cases, the systematist may wish to consider approaches for
phylogeny reconstruction which first divide the full data matrix into smaller (probably
overlapping) subsets (which may have less missing data, or be easier to align); such subsets
should be easier to analyze phylogenetically. These smaller trees on subsets of the taxa may
then be used in a supertree analysis (the subject of the next section) in order to obtain a
phylogeny on the full dataset.

19.5 Special Topic: Supertree Methods

19.5.1 Introduction

Supertree methods attempt to estimate the evolutionary history of a set S of sequences
given estimates of evolutionary history for subsets of S. Thus, supertree methods take as
input a collection of trees (which may be rooted or unrooted, depending upon the method
used to estimate evolution), and they produce a tree on the union of all the input leaf sets.
Supertree methods may be critical to the inference of the “Tree of Life” (although other
approaches do exist, which we discuss below), and for this reason there is an increasing
interest in the research community on understanding these methods. See, for example, [3],
a volume focusing on supertree methods, their analyses, and discussions of the benefits and
pitfalls of these approaches.

Supertree methods can be used in an exploratory fashion, to see (for example) what can
be inferred just by combining phylogenies from previously published analyses. However,
sometimes a biologist has a dataset that suggests the use of a supertree analysis, due
to properties of the data themselves. For example, recall that systematists routinely use
multiple markers for phylogenetic reconstruction. Even if the markers are considered to be
likely to produce compatible trees (i.e., if reticulation and gene tree/species tree conflicts
have been ruled out), when there are enough missing data, each marker may only be relevant
for a subset of the taxa. When this happens, each marker may be analyzed separately, with
the result being that a different tree is obtained for each marker. Since the trees will not
have identical leaf sets, in order to obtain a tree on the entire dataset, a supertree method
is then applied. We call this type of use of supertree methods (when only the trees are used
to construct the supertree, and not the character matrices as well) meta-analysis.

Thus, in some cases the original character datasets are available, but in others only the

19-30 Handbook of Computational Molecular Biology

trees are available. When the original character datasets are available, supertree methods
are not the only option – supermatrix analyses (where the different matrices for each marker
are combined into one data matrix) can also be considered. If the submatrices do not all
share the same taxa, then some characters will be missing states for some taxa. In this
case, when the supermatrix is created, the missing entries are simply coded as “missing”.
Phylogeny reconstruction methods are generally adapted for such data, since missing data
are fairly common, and so the newly created supermatrix can then be given as input to a
phylogenetic reconstruction method. (In this case, however, a reconstruction method may
keep track of the way the new supermatrix is composed of submatrices, so that different
stochastic models can be used on the different parts of the supermatrix during the estimation
of the phylogeny.)

Supertree methods may also be used as part of a divide-and-conquer strategy whereby a
dataset is decomposed into smaller, overlapping datasets, trees are reconstructed on each
subset, and then the smaller trees are merged into a tree on the full dataset. (See the
chapter on large-scale phylogenetic analysis in this volume, and also [60], for more on this
kind of application of supertree methods.)

Each of these uses of supertree methods entails somewhat different algorithmic challenges.
Supertree methods designed for use in arbitrary meta analyses need to be able to accept
arbitrary inputs (and perform well on them). However, supertree methods used in the
context of a divide-and-conquer strategy need not be designed to handle (or perform well
on) arbitrary inputs, since the input trees can be assumed to have certain overlap patterns
(since the divide-and-conquer strategy can produce subset decompositions that are favorable
to the supertree method).

The utility of a supertree method must always be considered in comparison to the obvious
supermatrix analysis; both approaches have theoretical advantages and disadvantages, and
the relative quality of these approaches is not yet known. Note, however, that a supermatrix
approach is not always possible; sometimes only the trees are available, and not the original
character data.

19.5.2 Tree Compatibility

The most obvious computational problem related to supertree construction is to determine
if a collection of trees is compatible, and if so, to construct a supertree consistent with all
the input trees. We now make these concepts precise.

Terminology

Let T and T ′ be two trees on S. Then T is said to refine T ′ if T ′ can be obtained from T
by a sequence of edge-contractions. Thus, every tree refines the star-tree on the same set of
leaves, and if T refines T ′ and both are binary trees (or more simply have the same number
of edges), then T = T ′. Finally, trees T and T ′ on the same leaf set are compatible if there
is a tree T ′′ such that T ′′ refines both T and T ′. Note that if T ′′ exists, it may be equal to
T or T ′.

These definitions can be extended to the case where the input trees are not on the same
leaf set, by considering trees restricted to subsets of their leaf sets. We can restrict a tree T
to a subset A of its leaves in the obvious way: including only the subtree of T connecting
the leaves in A and suppressing nodes of degree two. The resultant tree is denoted by TA.
We now define tree compatibility.

An Overview of Phylogeny Reconstruction 19-31

Tree compatibility

• Input: Set T = {T1, T2, . . . , Tk} of trees on sets S1, S2, . . . , Sk, respectively.
• Output: Tree T , if it exists, such that for each i, T |Si refines Ti.

The tree compatibility problem is NP-hard [68], and so is difficult to solve. Furthermore,
its relevance to practice is questionable, as almost all phylogenetic analyses have some
errors, and so most inputs to a supertree problem will simply not be compatible.

Now consider the case where the input trees are rooted. In this case, we are looking for
a rooted supertree which is consistent with all the inputs – thus, the rooted trees must be
correct with respect to the location of their roots, as well as topologically. Once again,
we can ask if the problem is computationally tractable and relevant to practice. Here, the
answers are as follows. First, the rooted compatibility problem is solvable in polynomial
time [1]. However, since inputs to the (unrooted) tree compatibility problem are unlikely
to be compatible, inputs to the rooted compatibility problem are even less likely to be
compatible – therefore, the problem is not particularly relevant to practice.

19.5.3 Matrix Representation Parsimony

Since estimates of evolutionary trees may not be completely correct, supertree methods
need to be able to handle incompatibility in their inputs. Fortunately, there are approaches
for constructing supertrees from incompatible trees. The most popular method is Matrix
Representation Parsimony (MRP). This method can be applied to rooted or unrooted trees,
and uses maximum parsimony to analyze the data matrix that it creates. The technique
used to create the data matrix depends upon whether the trees are rooted or unrooted.

If the trees are unrooted, then each input tree is replaced by a data matrix of partial
binary characters on the entire set of taxa, where by “partial binary character” we mean
characters whose states are 0, 1, and ?, where the ? indicates that the state is missing for
that taxon. An example will make this clear. Let T be one of the trees, and let T have leaf
set A ⊂ S. Let e ∈ E(T) be an edge in T , and let A0|A1 be the bipartition on A created
by deleting e (but not its endpoints) from T . Then e is represented by the partial binary
character ce defined by ce(a) = 0 if a ∈ Ai, i = 0, 1, and ce(s) =? if s ∈ S − A. Note that
ce can be defined in two ways, depending upon the definition of A0 and A1; however, this
is irrelevant to the computation that ensues. Thus T is replaced by the data matrix on S
with character set {ce : e ∈ E(T)}. We represent each tree in the profile by its data matrix,
and concatenate all the data matrices.

The same representation is used for rooted trees, except that the characters ce are defined
in such a way that the part of the tree containing the root is assigned the zero state. Also,
an additional row consisting of all zeros is added to the data matrix that is created to
represent the root, and the trees that are obtained are rooted at this added node. In this
way, MRP can be used to analyze either unrooted or rooted trees.

This concatenated data matrix is then analyzed using maximum parsimony, and the
output of the maximum parsimony method is returned (this can either be all the optimal
trees, or a consensus of the optimal trees, as desired). Note that if all the trees are compatible
(meaning that they can be combined into one supertree T without loss of accuracy), then
this technique will construct the correct supertree (along with any other supertree which is
consistent with all the input trees). However, because MRP involves solving an NP-hard
problem, its running time is not generally efficient. Furthermore, most inputs will have
some error, and it is not clear how errors in the input trees affect the quality of the MRP
tree. Thus, despite the nice theoretical property of MRP, its performance in practice is less
clear.

19-32 Handbook of Computational Molecular Biology

19.5.4 Other supertree methods

Finally, other supertree methods also exist which can handle unrooted or rooted trees
which have errors. For example, Gordon’s strict consensus supertree [23] method is an
interesting method, but not in general use. Another method quite similar to Gordon’s strict
consensus supertree method is used in the “Disk-Covering Methods” (DCMs) described in
this volume. These DCMs are divide-and-conquer methods used to speed up maximum
parsimony analyses, as well as improve other phylogenetic reconstruction methods. Both
of these supertree methods are guaranteed to solve tree compatibility if the input trees are
“big enough” (i.e. have enough overlap) and are correct.

19.5.5 Open problems

Despite the potential for supertree methods to be useful, and the interest in them (see
the book chapter in this volume on supertrees, and also [3]), little is really known about
how well they work on real data analyses. Thus, the main research that needs to be done
is to evaluate how well they work in comparison to each other, and also in comparison to
supermatrix approaches. In the likely event that current approaches are not able to produce
high quality supertrees, new methods should be developed. As a first step, it is likely that
new optimization problems should be developed. As these are likely to be NP-hard (as is
almost everything in phylogeny estimation), heuristics for these problems will need to be
developed.

19.6 Special Topic: Genomic Phylogeny Reconstruction

In the previous section we described phylogenetic inference when the input is a set of
aligned molecular (DNA, RNA, or amino-acid) sequences. In this section, we will discuss
phylogenetic inference for a different kind of data – whole genomes, in which the information
is the order and strandedness of the genes within the genomes.

Just as evolution changes the individual nucleotides within gene sequences, other events
also take place which affect the “chromosomal architecture” of whole genomes. Some of
these events, such as inversions (which pick up a region and replace it in the same location
but in the reverse order, and on the opposite strand) and transpositions (which move a
segment from one location to another within the same chromosome) change the order and
strandedness of genes within individual chromosomes; others, such as translocations (which
move genomic segments from one chromosome to another) duplications, insertions, and
deletions can change both the order and also the number of copies of a given gene within
a chromosome. Finally, fissions (which split a chromosome into two) and fusions (which
merge two chromosomes) change the number of chromosomes within a genome.

All these events are less frequent than individual point mutations, and so have inspired
biologists to consider using gene orders as a source of phylogenetic signal in the hope
that they might allow evolutionary histories to be reconstructed at a deeper level than
is typically possible using molecular phylogenetics. On the other hand, much less is really
understood about how genomes evolve, and so the statistical models describing the evolution
of whole genomes are not as well developed. Equally problematic is the fact that from a
computational standpoint, whole genome phylogenetic analysis is much more difficult than
comparable approaches in molecular phylogenetics.

Research in gene order phylogeny has largely focused on two basic approaches: parsimony-
style methods that seek to find trees with a minimum total “length”, and distance-based
methods. Both types of approaches require the ability to compute either edit distances

An Overview of Phylogeny Reconstruction 19-33

between two genomes (that is, determining the minimum number of events needed to trans-
form one gene order into another) or estimating true evolutionary distances (i.e., estimating
the actual number of events that occurred in the evolutionary history between the two gene
orders). Algorithms to compute edit distances tend to involve graph-theoretic algorithms
(see [27, 28, 29] for initial work in the area) whereas algorithms to estimate true evolutionary
distances involve probability and statistics (see [12, 13, 43, 74, 83, 84]).

The estimation of true evolutionary distances (that is, the actual number of events that
have occured in the evolutionary history between a pair of gene orders) is directly relevant
to phylogeny reconstruction since if this estimation if done sufficiently well and obtained for
every pair of chromosomes, then distance-based reconstruction methods (such as neighbor
joining) applied to these distances will return accurate trees (the same statement is not
true when used with edit distances). However, the inference of these distances requires
that a stochastic model for the evolutionary process be given. Typically these algorithms
operate by computing one of two standard edit distances on the two chromosomes (either
the minimum inversion distance or the breakpoint distance, both of which can be computed
in polynomial time and do not depend upon any model assumptions), and then using that
value to estimate the number of events that occured in the evolutionary history between
the two chromosomes. Since the estimations obtained by these algorithms depends closely
on the assumptions of the stochastic model, the more general the model the more accurate
(and more generally applicable) the algorithm is likely to be. The algorithms in [12, 13]
apply to a model of gene order evolution in which only inversions occur, and the algorithms
in [43, 83, 84] apply to a model of gene order evolution in which inversions, transpositions,
and inverted transpositions occur. The algorithm in [74] can be used when these events, as
well as insertions and deletions, occur.

Note that this last algorithm can analyze datasets which have unequal gene content (i.e.,
some chromosomes have more than one copy of a gene, while others have only one copy or
may even lack any copy of the gene). While some other work has been done for unequal gene
content case, the majority of the research has been focused on the equal gene content case.
Even for this special case, however, many computational problems are known or conjectured
to be NP-hard. For example:

• Computing the inversion distance is solvable in polynomial time [2, 28].
• Computing the transposition distance is of unknown computational complexity.
• Computing the inversion median of three genomes is NP-hard [8].
• Computing the breakpoint median of three genomes is NP-hard (though it re-

duces to the well studied traveling salesperson problem, and hence can often be
solved quickly in practice) [63].

In other words, under even fairly idealized conditions (where the only events are inversions
and transpositions), most optimization problems are hard to solve. Heuristics without
proven performance guarantees have been developed for these idealized conditions [24], but
even these only have good performance under certain conditions.

Research questions in whole genome phylogeny

There are essentially two main obstacles for whole genome phylogeny. The first is that
almost all the methods that have been developed (and their stochastic models) assume that
all the genomes have exactly one copy of each gene (an assumption that is widely violated),
and the second is that despite a fair amount of effort, we still do not have methods that
can reliably analyze even moderately large datasets, even under these idealized conditions.
Thus, work in both directions needs to be done.

19-34 Handbook of Computational Molecular Biology

The problem with the assumption that all genomes have one copy of each gene is that
events that change gene content (such as insertions, deletions, and duplications) occur in
enough datasets to make the current approaches inapplicable without some preprocessing.
Thus, in fact, essentially all the datasets that have been analyzed using existing methods
that assume equal gene content are first processed to remove duplicate genes. While in some
cases this processing is acceptable (and should not change the phylogenetic reconstruction),
it is not always clear how to do this rigorously (and in any event, throwing out data is
almost always not desirable). Thus, making progress on developing new stochastic models
that incorporate these events that change gene content is important, and will allow us to
then test the performance of methods that we develop to infer evolutionary history from
the full range of data.

Also, the usual stochastic models of gene order evolution make assumptions that all
events of the same type are equiprobable, so that (for example) any two inversions have
the same probability. However, research now suggests that “short inversions” may have a
higher probability than “long inversions”. Incorporating these changed assumptions into
phylogenetic inference changes the computational problems in interesting ways. For exam-
ple, instead of edit distances we would have weighted edit distances (so the cost of an event
would reflect its probability), and estimations of true evolutionary distances would also need
to be changed to reflect the additional complexity of the model. While some progress has
been made towards estimating these distances [74], much still needs to be done.

Finally, methods for whole genome phylogeny reconstruction are quite computationally
intensive – more so than the corresponding problems for DNA sequence phylogenetics by
far. For example, computing the inversion length of a fixed tree on just three leaves can take
a long time on some instances! While some progress has been made to provide speed-ups
for whole genome phylogeny so that they can analyze large datasets, so far these speed-ups
are limited to datasets with certain properties (no long edges, in particular). Therefore, a
natural research area is to develop techniques for handling large datasets which do not have
as significant limitations as the current set of methods.

19.7 Conclusions and Suggestions for Further Reading

Research into methods for phylogeny reconstruction offers surprisingly deep and interesting
challenges to algorithms developers. Yet understanding the data, the methods, and how
biologists use phylogenies is necessary in order for the development to be productive. We
hope this chapter will help the reader appreciate the difference between pure algorithmic
research, and that which could make a tremendous difference to practice.

There is a wealth of books and papers on phylogenetics, from all the different fields
(biology, statistics, and computer science). The following list is just a sample of some of
these books and papers, that will provide additional grounding in the field of computational
and mathematical phylogenetics.

For more information from the perspective of a systematist, see [17, 76]. For books with a
greater emphasis on mathematical and/or computational aspects, see [20, 66]. Expositions
with a greater emphasis on stochastic models can be found in [25, 46]. Texts that are
intermediate between these include [53]. For an on-line tutorial on phylogenetics, see [36].

Acknowledgments

This work was supported in part by the National Science Foundation, the David and Lucile
Packard Foundation, and the Institute for Cellular and Molecular Biology at the University

References 19-35

of Texas at Austin. Special thanks are due to Martin Nowak, and to the Program for
Evolutionary Dynamics at Harvard University which supported both the authors for the
2004-2005 academic year. The authors also wish to thank Erick Matsen, Mike Steel, and
Michelle Swenson, for their comments on earlier drafts of this chapter.

References

[1] A. Aho, Y. Sagiv, T. Szymanski, and J. Ullman. Inferring a tree from lowest common
ancestors with an application to the optimization of relational expressions. In Proc.
16th Ann. Allerton Conf. on Communication, Control, and Computing, pages 54–
63, 1978.

[2] D.A. Bader, B.M.E. Moret, and M. Yan. A linear-time algorithm for computing in-
version distances between signed permutations with an experimental study. Journal
of Computational Biology, 8(5):483–491, 2001.

[3] O.R.P. Bininda-Emonds, editor. Phylogenetic Supertrees: Combining Information
to Reveal the Tree of Life, volume 3 of Computational Biology. Kluwer Academics,
2004.

[4] R. Boyer, A. Hunt, and S.M. Nelesen. A compressed format for collections of phylo-
genetic trees and improved consensus performance. Proceedings of the 5th Workshop
on Algorithmics in Bioinformatics (WABI 2005), 2005. Lecture Notes in Bioinfor-
matics, Springer, LNBI 3692.

[5] D.R. Brooks and D.A. McLennan. Phylogeny, Ecology, and Behavior. University of
Chicago Press, Chicago, 1991.

[6] D. Bryant. A classification of consensus methods for phylogenetics. DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, 1991.

[7] R.M. Bush, C.A. Bender, K. Subbarao, and N.J. Cox et al. Predicting the evolution
of human influenza A. Science, 286:1921–1925, 1999.

[8] A. Caprara. Formulations and complexity of multiple sorting by reversals. In S. Istrail,
P.A. Pevzner, and M.S. Waterman, editors, Proceedings of the Third Annual Inter-
national Conference on Computational Molecular Biology (RECOMB-99), pages
84–93, 1999.

[9] J.T. Chang. Full reconstruction of Markov models on evolutionary trees: identifiability
and consistency. Mathematical Biosciences, 137:51–73, 1996.

[10] J.T. Chang. Inconsistency of evolutionary tree topology reconstruction methods when
substitution rates vary across characters. Mathematical Biosciences, 134:189–215,
1996.

[11] B. Chor and T. Tuller. Maximum likelihood of evolutionary trees is hard. In Pro-
ceedings of the 9th annual international conference on Research in Computational
Molecular Biology (RECOMB) 2005, pages 296–310, 2005.

[12] N. Eriksen. Approximating the expected number of inversions given the number of
breakpoints. In Proceedings of the Workshop on Algorithms for Bio-Informatics
(WABI), volume 2452, pages 316–330, 2002. Lecture Notes in Computer Science.

[13] N. Eriksen and A. Hultman. Estimating the expected reversal distance after a fixed
number of reversals. Advances of Applied Mathematics, 32:439–453, 2004.

[14] S.N. Evans and T. Warnow. Unidentifiable divergence times in rates-across-sites model-
s. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1:130–
134, 2005.

[15] J. Felsenstein. Cases in which parsimony and compatibility methods will be positively
misleading. Systematic Zoology, 27:401–410, 1978.

19-36 References

[16] J. Felsenstein. Evolutionary trees from DNA sequences: a maximum likelihood ap-
proach. Journal of Molecular Evolution, 17:368–376, 1981.

[17] J. Felsenstein. Inferring Phylogenies. Sinauer Associates, Sunderland, Massachusetts,
2004.

[18] W. Fitch. Toward defining the course of evolution: minimum change for a specified
tree topology. Systematic Biology, 20:406–416, 1971.

[19] L. R. Foulds and R. L. Graham. The Steiner problem in phylogeny is NP-complete.
Advances in Applied Mathematics, 3:43–49, 1982.

[20] O. Gascuel, editor. Mathematics of Evolution and Phylogeny. Oxford Univ. Press,
2005.

[21] G. Giribet. Exploring the behavior of POY, a program for direct optimization of
molecular data. Cladistics, 17:S60–S70, 2001.

[22] P.A. Goloboff. Analyzing large data sets in reasonable times: solution for composite
optima. Cladistics, 15:415–428, 1999.

[23] A.D. Gordon. Consensus supertrees: the synthesis of rooted trees containing overlap-
ping sets of labeled leaves. Journal of Classification, 3:335–348, 1986.

[24] GRAPPA (genome rearrangements analysis under parsimony and other phylogenetic
algorithms). http://www.cs.unm.edu/∼moret/GRAPPA/.

[25] D. Grauer and W.H. Li. Fundamentals of Molecular Evolution. Sinauer Publishers,
2000.

[26] D. Gusfield and L. Wang. New uses for uniform lifted alignments, 1999. DIMACS
Series on Discrete Math and Theoretical Computer Science.

[27] S. Hannenhalli and P.A. Pevzner. Towards computational theory of genome rearrange-
ments. Computer Science Today: Recent Trends and Developments. Lecture Notes
in Computer Science, 1000:184–202, 1995.

[28] S. Hannenhalli and P.A. Pevzner. Transforming cabbage into turnip (polynomial al-
gorithm for sorting signed permutations by reversals). In Proc. of the 27th Annual
Symposium on the Theory of Computing (STOC 95), pages 178–189, 1995. Las
Vegas, Nevada.

[29] S. Hannenhalli and P.A. Pevzner. Transforming mice into men (polynomial algorithm
for genomic distance problem). In Proc. of the 36 Annual Symposium on Founda-
tions of Computer Science (FOCS 95), pages 581–592, 1995. Milwaukee, Wisconsin.

[30] P.H. Harvey and M.D. Pagel. The Comparative Method in Evolutionary Biology.
Oxford University Press, Oxford, 1991.

[31] I. Holmes and W.J. Bruno. Evolutionary HMMs: a Bayesian approach to multiple
alignment. Bioinformatics, 17(9):803–820, 2001.

[32] J.P. Huelsenbeck, J.J. Bull, and C.W. Cunningham. Combining data in phylogenetic
analysis. Trends in Ecology and Evolution, 11(4):152–158, 1996.

[33] J.P. Huelsenbeck and R. Ronquist. MrBayes: Bayesian inference of phylogeny. Bioin-
formatics, 17:754–755, 2001.

[34] W. Just. Computational complexity of multiple sequence alignment with SP-score.
Journal of Computational Biology, 8(6):615–623, 2001.

[35] S. Kannan, T. Warnow, and S. Yooseph. Computing the local consensus of trees.
SIAM J. Computing, 27(6):1695–1724, 1995.

[36] J. Kim and T. Warnow. Tutorial on phylogenetic tree estimation, 1999. Presented at
the ISMB 1999 conference, available on-line at
http://kim.bio.upenn.edu/ jkim/media/ISMBtutorial.pdf.

[37] B. Knudsen. Optimal multiple parsimony alignment with affine gap cost using a phy-
logenetic tree. In G. Benson and R. D. M. Page, editors, Workshop on Algorithms
for Bioinformatics (WABI), volume 2812 of Lecture Notes in Computer Science,

References 19-37

pages 433–446. Springer, 2003.
[38] C.R. Linder and B.M.E. Moret. Tutorial on reticulate evolution. Present-

ed at the DIMACS workshop on reticulate evolution, and available online at
http://dimacs.rutgers.edu/Workshops/Reticulated WG/slides/slides.html.

[39] B. Ma, M. Li, and L. Zhang. On reconstructing species trees from gene trees in
terms of duplications and losses. In Proc. 2nd Ann. Int’l Conf. Comput. Mol. Biol.
(RECOMB98), 1998.

[40] W. Maddison. Gene trees in species trees. Systematic Biology, 46(3):523–536, 1997.
[41] M.L. Metzker, D.P. Mindell, X.M. Liu, and R.G. Ptak et al. Molecular evidence

of HIV-1 transmission in a criminal case. Proceedings of the National Academy of
Sciences of the United States of America, 99(22):14292–14297, 2002. OCT 29.

[42] I. Miklós, G. A. Lunter, and I. Holmes. A “long indel” model for evolutionary sequence
alignment. Molecular Biology and Evolution, 21(3):529–540, 2004.

[43] B. Moret, L.S. Wang, T. Warnow, and S. Wyman. New approaches for reconstructing
phylogenies based on gene order. In Proceedings of 9th Int’l Conf. on Intelligent
Systems for Molecular Biology (ISMB’01), pages 165–173, 2001.

[44] B.M.E. Moret, L. Nakhleh, T. Warnow, and C.R. Linder et al. Phylogenetic networks:
modeling, reconstructibility, and accuracy. IEEE/ACM Transactions on Computa-
tional Biology and Biocomputing, 1(1), 2004.

[45] L. Nakhleh, J. Sun, T. Warnow, and C.R. Linder et al. Towards the development of
computational tools for evaluating phylogenetic network reconstruction methods. In
Proc. 8th Pacific Symp. on Biocomputing (PSB 2003), 2003.

[46] M. Nei, S. Kumar, and S. Kumar. Molecular Evolution and Phylogenetics. Oxford
University Press, 2003.

[47] K.C. Nixon. The parsimony ratchet, a new method for rapid parsimony analysis.
Cladistics, 15:407–414, 1999.

[48] S.P. Otto and J. Whitton. Polyploid incidence and evolution. Annual Review of
Genetics, 34:401–437, 2000.

[49] R. Page. Maps between trees and cladistic analysis of historical associations among
genes, organisms, and areas. Systematic Biology, 43:58–77, 1994.

[50] R. Page. GeneTree: comparing gene and species phylogenies using reconciled trees.
Bioinformatics, 14(9):819–820, 1998.

[51] R. Page and M. Charleston. From gene to organismal phylogeny: reconciled trees and
the gene tree/species tree problem. Molecular Phylogeny and Evolution, 7:231–240,
1997.

[52] R. Page and M. Charleston. Reconciled trees and incongruent gene and species trees.
In B. Mirkin, F. R. McMorris, F. S. Roberts, and A. Rzehtsky, editors, Mathematical
hierarchies in biology, volume 37. American Math. Soc., 1997.

[53] R. Page and E. Holmes. Molecular Evolution: A phylogenetic approach. Blackwell
Publishers, 1998.

[54] C.A. Phillips and T. Warnow. The asymmetric median tree: a new model for building
consensus trees. Discrete Applied Mathematics, 71:311–335, 1996.

[55] D. Posada and K.A. Crandall. Modeltest: testing the model of DNA substitution.
Bioinformatics, 14(9):817–818, 1998.

[56] D.R. Powell, L. Allison, and T.I. Dix. Fast, optimal alignment of three sequences using
linear gap costs. Journal of Theoretical Biology, 207:325–336, 2000.

[57] R. Ravi and J.D. Kececioglu. Approximation algorithms for multiple sequence align-
ment under a fixed evolutionary tree. Discrete Applied Mathematics, 88:355–366,
November 1998.

[58] B.D. Redelings and M.A. Suchard. Joint Bayesian estimation of alignment and phy-

19-38 References

logeny. Systematic Biology, 54(3):401–418, 2005.
[59] D.F. Robinson and L.R. Foulds. Comparison of phylogenetic trees. Mathematical

Biosciences, 53:131–147, 1981.
[60] U. Roshan, B.M.E. Moret, T.L. Williams, and T. Warnow. Performance of supertree

methods on various dataset decompositions. In O.R.P. Bininda-Emonds, editor, Phy-
logenetic Supertrees: Combining Information to Reveal the Tree of Life, pages
301–328, 2004. Volume 3 of Computational Biology, Kluwer Academics, (Andreas
Dress, series editor).

[61] U. Roshan, B.M.E. Moret, T.L. Williams, and T. Warnow. Rec-I-DCM3: A fast al-
gorithmic technique for reconstructing large phylogenetic trees. In Proc. IEEE Com-
puter Society Bioinformatics Conference (CSB 2004), 2004. Stanford University.

[62] N. Saitou and M. Nei. The neighbor-joining method: A new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution, 4:406–425, 1987.

[63] D. Sankoff and M. Blanchette. Multiple genome rearrangement and breakpoint phy-
logeny. Journal of Computational Biology, 5:555–570, 1998.

[64] D. Sankoff and R.J. Cedergren. Simultaneous comparison of three or more sequences
related by a tree. In Time Warps, String Edits, and Macromolecules: the The-
ory and Practice of Sequence Comparison, pages 253–264. Addison-Wesley, 1983.
Chapter 9.

[65] B. Schwikowski and M. Vingron. The deferred path heuristic for the generalized tree
alignment problem. Journal of Compututational Biology, 4(3):415–431, 1997.

[66] C. Semple and M. Steel. Phylogenetics. Oxford Series in Mathematics and its Appli-
cations, 2004.

[67] A. Siepel and D. Haussler. Phylogenetic hidden Markov models. In R. Nielsen, editor,
Statistical methods in molecular evolution, pages 325–351. Springer, 2005.

[68] M.A. Steel. The complexity of reconstructing trees from qualitative characters and
subtrees. Journal of Classification, 9:91–116, 1992.

[69] M.A. Steel. The maximum likelihood point for a phylogenetic tree is not unique.
Systematic Biology, 43(4):560–564, 1994.

[70] M.A. Steel. Recovering a tree from the leaf colourations it generates under a Markov
model. Applied Mathematics Letters, 7(2):19–24, 1994.

[71] M.A. Steel and D. Penny. Parsimony, likelihood, and the role of models in molecular
phylogenetics. Molecular Biology and Evolution, 17(6):839–850, 2000.

[72] M.A. Steel, L.A. Székely, and M.D. Hendy. Reconstructing trees when sequence sites
evolve at variable rates. Journal of Computational Biology, 1:153–163, 1994.

[73] J. Stoye, D. Evers, and F. Meyer. Rose: generating sequence families. Bioinformatics,
14(2):157–163, 1998.

[74] K.M. Swenson, M. Marron, J.V. Earnest-DeYoung, and B.M.E. Moret. Approximat-
ing the true evolutionary distance between two genomes. In Proc. 7th Workshop
on Algorithm Engineering and Experiments (ALENEX’05), Vancouver (Canada).
SIAM Press, 2005.

[75] D. L. Swofford. PAUP*: Phylogenetic analysis using parsimony (and other methods),
1996. Sinauer Associates, Sunderland, Massachusetts, Version 4.0.

[76] D.L. Swofford, G.J. Olsen, P.J. Waddell, and D.M. Hillis. Phylogenetic inference.
In D.M. Hillis, C. Moritz, and B.K. Mable, editors, Molecular Systematics. Sinauer
Associates, Sunderland, Massachusetts, 1996.

[77] J.D. Thompson, D.G. Higgins, and T.J. Gibson. CLUSTAL W: improving the sensi-
tivity of progressive multiple sequence alignment through sequence weighting, position
specific gap penalties and weight matrix choice. Nucleic Acids Research, 22:4673–
4680, 1994.

References 19-39

[78] J.L. Thorne, H. Kishino, and J. Felsenstein. An evolutionary model for maximum
likelihood alignment of DNA sequences. Journal of Molecular Evolution, 33:114–124,
1991.

[79] J.L. Thorne, H. Kishino, and J. Felsenstein. Inching towards reality: An improved
likelihood model of sequence evolution. Journal of Molecular Evolution, 34:3–16,
1992.

[80] C. Tuffley and M. Steel. Links between maximum likelihood and maximum parsimony
under a simple model of site substitution. Bulletin of Mathematical Biology, 59:581–
607, 1997.

[81] L. Wang and T. Jiang. On the complexity of multiple sequence alignment. Journal of
Computational Biology, 1:337–348, 1994.

[82] L. Wang, T. Jiang, and D. Gusfield. A more efficient approximation scheme for tree
alignment. SIAM Journal of Computing, 30(1):283–299, 2000.

[83] L.S. Wang. Exact-IEBP: A new technique for estimating evolutionary distances be-
tween whole genomes. In Lecture Notes for Computer Sciences No. 2149: Proceed-
ings for the First Workshop on Algorithms in BioInformatics (WABI’01), pages
175–188, 2001.

[84] L.S. Wang and T. Warnow. Estimating true evolutionary distances between genomes.
In Proceedings of the Thirty-Third Annual ACM Symposium on the Theory of
Computing (STOC’01), pages 637–646, 2001.

[85] T. Warnow, B. M. Moret, and K. St. John. Absolute convergence: true trees from
short sequences. Proceedings of ACM-SIAM Symposium on Discrete Algorithms
(SODA 01), pages 186–195, 2001.

[86] W. Wheeler. Optimization alignment: the end of multiple sequence alignment in
phylogenetics? Cladistics, 12:1–9, 1996.

[87] M. Wilkinson. Common cladistic information and its consensus representation: re-
duced Adams and reduced cladistic consensus trees and profiles. Syst. Biol., 43
(3):343–368, 1994.

[88] Z. Yang. Maximum-likelihood estimation of phylogeny from DNA sequences when
substitution rates differ over sites. Molecular Biology and Evolution, 10:1396–1401,
1996.

20
Consensus Trees and Supertrees

Oliver Eulenstein
Iowa State University

20.1 Introduction . 20-1
20.2 Preliminary Notation, Definitions and Results . . . 20-3
20.3 Fundamental Properties of Consensus and Supertree

Methods . 20-4
20.4 Preservation of Consensus Tree Methods 20-5

Adams Consensus (consensus by nestings) •

Consensus by cluster occurrence
20.5 Build Supertree Algorithms . 20-6

The MinCutSupertree algorithm • Page’s refinement
of the MinCutSupertree algorithm

20.6 Supertree Methods Using Matrix
Representations . 20-10
Notation and basic results • MRP supertrees • MRF
supertrees • Consensus properties of MRF and MRP
supertrees

20.7 Supertrees Assembled from Gene Trees 20-15
Gene tree reconciliation • Supertrees for gene trees

20.8 Concluding Remarks . 20-19

20.1 Introduction

This chapter discusses supertree methods , methods that assemble a collection of either
rooted or unrooted input trees into one or more trees, called supertrees [34]. The strength
of supertrees is that they can make statements about branching information that are not
contained in a single input tree, but derive from the cumulative branching information
of several input trees. Figure 20.1 depicts an example. Typically supertrees are used
to describe complex phylogenetic relationships that allow evolutionary biologists to study
their implications on the tree of all species — the Tree of Life. Thus, ideally, input trees
are species trees , that describe evolutionary relationships of species. An overview and
discussions about the biological relevance of supertree methods can be found in [61, 73, 10,
57, 23, 30, 9].

There is evidence that there are no reasonable supertree methods for unrooted input
trees. This evidence is derived from fundamental properties, described by Steel et al. [69],
that should be satisfied by any reasonable supertree method. One of these properties is
that the method should assemble a supertree that contains all the branching information
of the input trees, if they are compatible. Input trees are compatible, if there exists a tree,
called parent tree, that contains each input tree as a homeomorphic subtree. Hence, every
supertree method should construct a parent tree for the input trees, if they are compatible.
Thus supertree methods need to solve the compatibility problem, that is to decide if the

20-1

20-2 Handbook of Computational Molecular Biology

T2T1 T3

b c da b c a db c

FIGURE 20.1: The supertree T3 contains the branching information of the input trees T1 and
T2. The branching information of the dashed subtree tree in T3 is not contained
in either tree T1 or tree T2, but derives from the branching information of tree
T1 and T2 together.

input trees are compatible. While the compatibility problem can be solved for rooted input
trees in polynomial time using the Build algorithm from Aho et al. [3], the problem is
NP-complete for unrooted input trees [68, 12]. Thus, the time complexity of supertree
problems for rooted and unrooted trees are clearly different. An even stronger separation
between supertree methods for rooted and unrooted input trees was made by Steel et
al. [69]. Steel et al. showed that in contrast to supertree methods for rooted input trees, no
supertree method for unrooted input trees exists that satisfies a subset of the fundamental
supertree properties. From this result Semple and Steel [63] conclude that there exists no
‘reasonable’ supertree method for unrooted input trees. Consequently, this chapter will
focus on supertree methods for rooted input trees.

A fundamental question in biological classification is how a supertree method should as-
semble input trees to optimally represent their branching information. Probably the oldest
supertree algorithm for rooted input trees is the Build algorithm, introduced by Aho et
al. [3] in 1976, and that can be used to solve the compatibility problem in polynomial time.
While other supertree problems are typically NP-complete, there are several modifications
of the Build algorithm that still run in polynomial time. Semple and Steel [63] introduced
a modified version of the Build algorithm, the MinCut Supertree algorithm. While the
algorithm does not have an explicitly specified computational problem that it solves, it is
designed to handle incompatible input trees and to produce a unique supertree satisfying
certain mathematical properties. The MinCut Supertree algorithm is guided by a local
optimization criterion: whenever a conflict is encountered, a minimum amount of incom-
patible branching information is deleted from the input trees to allow the computation to
proceed. Various other polynomial time algorithms are based on the Build algorithm (e.g.
Consantinescu and Sankoff [22], Bryant and Steel [18], Ng and Wormland [50], Henzinger
et al. [41], Böcker et al. [11], Semple and Steel [63], Page [53], Willson [72]). Another group
of supertree problems that are typically NP-complete, are based on a matrix encoding of
the input trees that is then modified by different optimization criteria (e.g. Chen et al. [20],
Baum [8], Ragan [59]). The wide variety of existing supertree methods reflects the difficulty
to specify criteria to assemble input trees to the needs of evolutionary biologists.

While there is no standard to measure the effectiveness of supertree methods, they can
be compared to a special case of supertree methods, called ‘consensus tree’ methods, that
is somewhat better understood. Consensus tree methods are supertree methods, where
all input trees have the same taxon set and output a unique tree, called consensus tree.
For consensus tree methods there are natural assembly criteria that are typically defined
by set operations and discussed thoroughly in the classification literature. Constraining a
supertree method to input trees with the same taxon set allows analyzing the method if it
‘preserves’ natural assembly criteria of consensus tree methods.

While most supertree methods assume that their input trees are species trees, some

Consensus Trees and Supertrees 20-3

methods assemble supertrees from gene trees. Typically the given species trees are directly
implied from gene trees that describe evolutionary relationships of genes. However, in
many cases the directly implied species trees differ from the real species tree caused by
evolutionary mechanisms like gene duplication, lateral gene transfer or lineage sorting [55].
Supertree methods for gene trees reconcile the gene trees to imply (species) supertrees
(e.g. [36, 54, 39]).

The chapter is organized as follows. First we introduce basic notations and results in
Section 20.2. We survey the axiomatic approach from Steel et al. [69] that shows general
and inherent limitations of supertree methods in Section 20.3. In Section 20.4 we first
survey basic consensus tree criteria and then define their preservation in supertree methods.
Now we are prepared to discuss a selection of three types of supertree methods: supertree
methods that are based on the Build algorithm in Section 20.5, supertree methods that
work with the matrix representation of input trees in Section 20.6, and supertree methods
that have gene trees as their input trees in Section 20.7. Concluding remarks are given in
Section 20.8.

20.2 Preliminary Notation, Definitions and Results

Here we introduce basic notations and results. For a graph G we refer to its node set
by V (G) and to its edge set by E(G). If G is undirected, deg(v) is the degree of a node
v ∈ V (G).

Let T be a tree. If deg(v) > 1, then v is an internal node, otherwise it is a leaf. An
edge connecting two internal nodes is an internal edge. The set L(T) denotes the set of
all leaf nodes in T , and T is said to be a graph on L(T). An internal node v ∈ V (T) is a
bifurcation, if deg(v) ≤ 3 and a multifurcation otherwise. T is binary, if every internal node
is a bifurcation. A multifurcation in T that is interpreted as an evolutionary polytomy is
either ‘true’ or ‘apparent’ [44, 66, 53]. The multifurcation is true , if three or more lineages
diverge from it. The multifurcation is apparent , if it represents an unknown binary tree
on the set of its adjacent nodes. The graph T is a (phylogenetic) tree, if it has no degree
two nodes. For convenience the term tree will refer to a phylogenetic tree, unless stated
otherwise. A quartet is a binary tree with four leaves. For a quartet on {a, b, c, d} we write
ab|cd, if removing the internal edge results in two trees, one on {a, b} and one on {c, d}.

A cycle free graph T is a rooted (phylogenetic) tree, if a unique internal node, denoted as
r(T) ∈ V (T), is marked as the root of T , and deg(u) �= 2 for any node u ∈ (V (T)−{r(T)}).
A rooted binary tree T with three leaves is a triplet . For a triplet T on {a, b, c} we write
bc|a, if a and r(T) are connected through an edge in T . A set T of rooted trees is a profile
and L(T) :=

⋃
T∈T L(T). If L(T) = X , then T is said to be a profile on X . The profile T is

complete, if L(T) = L(T) for any T ∈ T. We call T binary, if it contains only rooted binary
trees.

Let T be a rooted tree. We define the semi-order (V (T),≤) where x ≤T y, if y is a
node on the path between r(T) and x in T . If x ≤T y and x �= y we write x <T y. For
convenience we write ≤ and <, if the tree T is obvious. We call x a child of y, if x < y and
there exists no node z ∈ V (T) such that x < z and z < y. The set of all children of y is
denoted by Ch(y). If x ≤ y then x is a descendant of y, and y is an ancestor of x. If x < y,
x is a proper descendant of y and y is a proper ancestor of x.

Let M ⊆ L(T) be a non-empty set. The least common ancestor of a set M in T , denoted
as lcaT (M), is the node y ∈ V (T) such that (i) x ≤ y for every x ∈ M and (ii) there
exists no y′ ∈ V (T) such that y′ < y and x ≤ y′ for every x ∈ M . If M � L(T) we define

20-4 Handbook of Computational Molecular Biology

lcaT (M) := NIL.
Nestings in a tree T are described by the binary relation <T over the powerset of L(T),

where A <T B if lcaT (A) <T lcaT (B). The set A nests in the set B with respect to T , if
A <T B.

The tree T constrained by M , denoted as T|M , is the subgraph in T that is induced by the
set {v ∈ V (T) | ∃x ∈M : x ≤ v ≤ lcaT (M)} with its degree two nodes contracted that are
not lcaT (M). The profile T constrained by M is the set T|M := {T|M | T ∈ T}. A tree T ′ is
displayed by T , denoted as T ′ ≤ T , if T ′ can be obtained from T|L(T ′) by contracting edges.
The profile T is compatible if there exists a tree S such that T ′ ≤ S for any T ′ ∈ T. If such
a tree S on L(T)) exists, it is called a parent tree of T. The subtree of T rooted at y ∈ V (T),
denoted as T (y), is the subgraph of T that is induced by the set {v ∈ V (T) | v ≤ y}.

The set c(v) := L(T (v)) is a cluster in T , for any v ∈ V (T). If the node v ∈ V (T) is not
a leaf or the root in T , then the cluster c(v) is proper . The set c(T) is the set of all proper
clusters in T and the set c(T) :=

⋃
T∈T c(T) is the set of all proper clusters in the profile T.

Two sets A and B are not in conflict if A ∩B ∈ {∅, A,B}. A set M of sets is conflict-free,
if no pair A,B ∈ M is in conflict. For convenience we extend the definition for the least
common ancestor to lcaT (v) := lcaT (c(v)) for a node v ∈ V (T).

Let M be a set. A (directed binary) character over M is an ordered pair C := (N,O),
where N ⊆ M and O ⊆ N . We call N the taxon set of C, O the 1-state of C, and N − O
the 0-state of C. The character C is complete, if N = M . A completion of C is a complete
character C′ = (M,O′) such that O ⊆ O′ and N −O ⊆M −O′ (that is, the 1-state and the
0-state of C are contained in the 1-state and 0-state of C′, respectively).

Let T be a rooted tree and C = (N,O) be a character. C is consistent with T , if and
only if T has a cluster X such that X ∩N = O. Character tuple C is compatible if and only
if there exists a phylogeny T consistent with Ci for each i ∈ {1, . . . , r}.

The compatibility of a set of characters can be tested in polynomial time [4, 56]. For
complete characters, the following result is well known .

THEOREM 20.1 [Estabrook et al.[28], Gusfield [37]] Character tuple C is compatible if
and only if Oi and Oj are not in conflict for every i, j ∈ {1, . . . , r}.

20.3 Fundamental Properties of Consensus and Supertree
Methods

Supertree methods can be constructed by either (i) devising a method and then determining
its mathematical properties (e.g. the MRP and MRF supertree methods in Section 20.6),
or (ii) by specifying mathematical properties and then try to design a method that satisfies
them [46] (e.g. the MinCutSupertree algorithm in Section 20.5). For the latter design
concept most of the work on properties (axioms) for supertrees can be embedded in the
broader framework of Arrow’s social choice theory [6]. As a result there are groups of
mathematical properties that can not be satisfied together by any supertree method. Here
the reader is referred to the work of Day and McMorris [24]. However, independent of the
design concept any supertree method should satisfy a set of fundamental properties. As
a first step in this direction Steel et al. [69] introduced the following properties that any
supertree and consensus tree method should satisfy.

P1: The method can be applied to any set of either rooted or unrooted input trees.
P2: If the leaves of the input trees are renamed, then the new output trees are the

Consensus Trees and Supertrees 20-5

old output trees with their leaves renamed.
P3: If the input trees are compatible, then every output tree is a parent tree of the

input trees.
P4: If a leaf is in some input tree, then the leaf is in every output tree.
P5: There exists a polynomial time algorithm for the supertree method.
P6u: If a quartet is displayed by a tree in a set of unrooted and compatible input

trees, then the quartet is displayed by every output tree.
P6r: If a triplet is displayed by a tree in a set of rooted and compatible input trees,

then the triplet is displayed by every output tree.
P7r: If in a set of rooted input trees a triplet ab|c is displayed by a tree and the

triplets ac|b and bc|a are not displayed by any tree, then any output tree displays
the triplet ab|c.

Properties P1 and P2 seem to be absolutely necessary and the remaining properties are
desirable to be satisfied by any supertree method. The following propositions show strong
constraints on the ability to assemble input trees into supertrees.

PROPOSITION 20.1 [Steel et al. [69]] There exists no supertree method for unrooted
binary input trees that satisfies properties P1, P2, and P3.

PROPOSITION 20.2 [Steel et al. [69]] There exists no consensus tree method for un-
rooted input trees that satisfies properties P1, P2, and P6u.

Consequently, there exists no ‘reasonable’ supertree method for unrooted input trees.
On the positive side Proposition 20.1 and Proposition 20.2 do not hold for rooted input
trees. Proposition 20.1 does not hold for rooted trees, since the Build algorithm, described
in Section 20.5, satisfies properties P1, P2 and P3. Proposition 20.2 does not hold for
rooted trees, since the Adams consensus method described in Section 20.4 satisfies properties
P1, P2, P6r. However, there is no consensus tree method for rooted supertrees that satisfies
all properties.

PROPOSITION 20.3 There exists no consensus tree method for rooted input trees that
satisfies properties P1, P2, and P7r.

While no supertree method satisfies P1, P2 and P7r, a supertree method can maximize
the number of uncontradicted triplets in the input trees. An example for such a method is
Page’s modified MinCutSupertree algorithm described in Section 20.5.

20.4 Preservation of Consensus Tree Methods

In order to better understand the properties of supertree methods it is natural to investigate
if the method for complete input profiles preserves familiar consensus tree properties. Here
we first define the preservation of consensus tree methods in supertree methods. We then
survey basic consensus tree methods in preparation to analyze their preservation properties
in the supertree methods that are discussed in this chapter. For a more complete survey of
consensus tree methods the reader is referred to Bryant’s work [16, §6.2] and [15].

For a supertree method S let S(T) be the set of output trees of S, for an input profile T.

20-6 Handbook of Computational Molecular Biology

DEFINITION 20.1 [cluster preservation] Let C be a consensus method and C(T) a
resulting consensus tree for a complete profile T. The supertree method S preserves C, if
c(T) ⊆ T for any T ∈ S(T).

DEFINITION 20.2 [nesting preservation] The supertree method S preserves the nestings
in T, if for any tree T ∈ S(T) any pair of subsets X,Y of L(T) where X <T Y it holds that
X <Ti Y for every i ∈ {1, . . . , |T|}.

Next we survey consensus tree methods for a profile T of k trees.

20.4.1 Adams Consensus (consensus by nestings)

Likely, the oldest consensus approach for phylogenetic trees is the ‘Adams consensus’ that
was introduced by Adams [1] (see also [2]) in 1972. The Adams Consensus A(T) is a rooted
tree over L(T) that has exactly the nesting relations which are represented in all of the trees
in T. That is, A(T) satisfies the following two properties.

• If A ⊆ L(T) and B ⊆ L(T) such that A <T B for all T ∈ T, then A <A(T) B.
• If A,B are clusters in A(T) such that A <A(T) B, then A <T B for any T ∈ T.

The Adams Consensus can be computed in polynomial time in the size of the given profile
using the algorithm from McMorris et al. [47].

20.4.2 Consensus by cluster occurrence

For 0 ≤ l ≤ k the consensus rule Ml(T) is the set of clusters that appears in at least
l of the trees in T. The family of consensus rules has been described axiomatically by
McMorris and Neumann [48]. If l = k the consensus rule Ml(T) is the strict consensus tree
introduced by Sokal and Rohlf [67]. If l = �k/2� + 1 the consensus rule Ml(T) is a the
majority rule consensus , a refinement of the strict consensus tree, introduced by Margush
and McMorris [45, 47].

Assuming that cluster can be compared in O(1) time, the following time complexity
results are known. Wareham and Day gave an algorithm that computes the majority rule
consensus tree in O(n2 + k2n) time [71]. Amenta et al. gave a randomized algorithm to
compute the majority consensus tree in time O(kn) [5].

A semi-strict consensus or combinable component [13, 7] tree of the profile T is the set of
all clusters in trees T ∈ T that are not in conflict with any other cluster in T.

20.5 Build Supertree Algorithms

We will survey supertree algorithms that originated from the Build algorithm [3]. Therefore
we first specify the original objective of the Build algorithm, which is based on the following
definition of lineage constraints.

DEFINITION 20.3 [lineage constraint] A lineage constraint is a binary relation < on
ordered pairs of elements: (i, j) < (k, l) is satisfied by a rooted tree T , if {i, j} <T {k, l}.
A rooted tree T is consistent with a set of lineage constraints S, if every constrain in S is
satisfied by T .

Consensus Trees and Supertrees 20-7

The Build algorithm constructs a rooted tree that is consistent with a given set of lineage
constrains. If no such tree exists the empty tree (represented by NIL) is returned. Given n
lineage constrains the Build algorithm runs in O(n2) time [3]. To construct a parent tree
for a given profile, the Build algorithm is executed on the set of all lineage constrains that
are consistent with a tree in the profile.

To derive the supertree methods in this section it is convenient to use a variant of the
Build algorithm, the Build-Graph-Representation algorithm. Following Semple and
Steel [63], Figure 20.2 depicts the Build-Graph-Representation algorithm, which com-
putes a parent tree for a given profile. Note that in case the profile is not compatible the
parent tree is empty. The Build-Graph-Representation algorithm associates with a
given profile T the graph G(T) = (L(T), ET), where e ∈ ET if there exists a proper clus-
ter C ∈ c(T) such that e ⊆ C. Figure 20.5 shows an example for a graph G(T). We
denote the connected components of G(T) by B(T). The correctness of the Build-Graph-

Presentation algorithm follows from the correctness of the Build algorithm [3].

FIGURE 20.2: The Build-Graph-Representation algorithm
Build-Graph-Representation(T)1

if |L(T)| ≤ 2 then2

return the tree T where L(T) = L(T)3

end4

if |B(T)| > 1 then5

for each S ∈ B(T) do6

TS := Build-Graph-Representation(T|S);7

if TS = Nil then8

return Nil;9

end10

end11

else12

return Nil;13

end14

return the tree T where Ch(r(T)) = {r(TS) | S ∈ B(T)};15

Other modifications of the Build algorithm include the algorithm Superb [22] that
computes all binary trees consistent with a set of given lineage constrains, and the algorithms
OneTree and AllTree [50] that compute for a triplet profile one or all parent trees
respectively. A simplified version of OneTree [18] computes a parent tree in time O(nm)
for a set of m triplets over a set of n taxa. Semple and Steel [63] introduced the algorithm
MinCutSupertree that modifies the Build algorithm to always return a non-empty tree
that contains the nestings common to all trees in a given profile. Page [53] modified the
MinCutSupertree algorithm to optimize the algorithms effectiveness in real applications.
Later Semple et al. [62] followed the approach of the Build algorithm to include either
ancestral divergence dates or a labeling of inner nodes of trees in the profile. In the following
we will survey the MinCutSupertree algorithm and Page’s refinement of it.

20-8 Handbook of Computational Molecular Biology

20.5.1 The MinCutSupertree algorithm

Semple and Steel [63] introduced the algorithm MinCutSupertree that given a profile
T computes a unique tree, that is denoted by M(T) and called the MinCut supertree. As
a major objective of the algorithm, the MinCut supertree contains the nestings that are
common to the trees in T.

The MinCutSupertree algorithm is a modified version of the Build-Graph- Repre-

sentation algorithm. Whenever the Build-Graph-Presentation algorithm detects a
connected component graph G(T) representing incompatibility (in line 13), the MinCutSu-

pertree algorithm disconnects this component by deleting a selected set of edges, and thus
allows the Build-Graph-Presentation algorithm to proceed in building a supertree.

To identify the edges to be deleted, each edge e ∈ ET is weighted by the number of trees in
the profile T where e is contained in a proper cluster. A natural objective is to disconnect
the connected component by deleting edges that cross the minimum cuts in G(T). To
return a supertree with the desired nesting property of the MinCut supertree, edges that
are supported by each tree in T, denoted by Emax

T need to be exempt from deletion. The
edges that are available for deletion are identified through the graph G(T) − Emax

T that is
derived from G(T) as follows. Every maximal subgraph (V,E) in G(T) that contains only
edges in Emax

T is collapsed into the node V . If any distinct collapsed nodes V and V ′ are
connected through a non-empty edge set E′ = {{v, v′} | v ∈ V, v′ ∈ V ′}, then the edges in
E′ are replaced by the single edge {V, V ′}. The single edge is weighted by the number of
trees in the profile T with a proper cluster that contains the endpoints of at least one edge in
the parallel class. Figure 20.3 depicts an example for constructing the graph G(T)−Emax

T .

G’’

T2

G({T1, T2})
d

a

e

d

e

e

b c d e

T1

c

b

cba

a
1

1
1

2

{c,d}

1

{a,b}

2
G’

{a,b} {c,d}1

{a,d}

{b,c}

FIGURE 20.3: The figure depicts how the edges in Emax
T in the graph G(T) for the profile

T = {T1, T2} are collapsed. The weight of an edge e in the graph G(T) represents
the number of trees in T in which e is contained in a proper cluster. Thus
Emax

T = {{a, b}, {c, d}}. Graph G′ shows the maximal connected subgraphs that
contain only edges from Emax

T collapsed into the nodes {a, b} and {c, d}. In
G′′ = G(T)−Emax

T the two ‘parallel’ edges in G′ are replaced by one edge. Only
tree T2 contains the endpoints of the edge {a, b} and {c, d}. Thus the edge
replaced edge is marked by 1.

To disconnect the graph G(T), line 13 is replaced by the line shown in Figure 20.4.
After this modification Build-Graph-Representation can not return an empty tree, and

Consensus Trees and Supertrees 20-9

FIGURE 20.4: MinCutSupertree modification
13 remove any edge from G(T), if it is represented by an edge in G(T) − Emax

T that
crosses a minimum-weight cut in G(T)− Emax

T ;

thus lines 8, 9 and 10 can be removed from the algorithm. The modified algorithm is the
MinCutSupertree algorithm. Note, that in the original MinCutSupertree algorithm
each tree in the given profile have weights from Q

+ assigned to it, and the edge set Emax
T

is defined by the set of edges in ET weighted by the sum of all weights of trees in T.

Consensus properties of the MinCutSupertree algorithm

Semple and Steel [63] show the following properties for the MinCutSupertree algorithm.
Let T be a given profile. If T is compatible, then the MinCut supertree M(T) is a parent
tree of T (property P3 in Section 20.3). Furthermore, the MinCutSupertree algorithm
preserves the nestings shared by the trees in the given T, and consequently the MinCut su-
pertree M(T) contains the triplets shared by the trees in T (property P6r in Section 20.3).
By definition the Adams consensus tree A(T) satisfies this property too, but is not neces-
sarily equal or even comparable with M(T). However, Semple and Steel showed a strong
connection between A(T) and M(T). Assuming that the trees in T have the same taxon
set, then either A(T) ≤M(T) or A(T) and M(T) are not comparable. As an open problem
Semple and Steel [63, p.157] ask, if there exists a modification of the MinCutSupertree

algorithm such that always A(T) ≤ M(T). Day and McMorris [24, p.110] conclude from
this, that if such a modification could be described axiomatically it would yield a new
characterization of the Adams consensus rule.

20.5.2 Page’s refinement of the MinCutSupertree algorithm

The refinement of the MinCutSupertree algorithm from Page [53] allows to display addi-
tional nesting information from a profile that is uncontradicted. An edge e ∈ ET represent
a nesting e <T r(T) for at least one tree in T. This nesting can be contradicted by some
other tree T ′ ∈ T where e ≮T ′ r(T ′) and e ⊆ L(T ′). If r(T ′) is a bifurcation or a true
multifurcation the nesting is clearly contradicted by e ≮T ′ r(T ′). True nestings are rare
in practice [66], and Page assumes that multifurcated root nodes are apparent. If r(T ′) is
an apparent multifurcation, it always can be replaced by an unknown rooted binary tree
where e <T ′ r(T). Thus, T ′ does not make any statement whether the nesting e <T r(T)
is contradiction or not. Hence an edge e ∈ ET is contradicted, if there exists a bifurcated
root r(T ′) for some tree T ′ ∈ T where e ≮T ′ r(T ′). An example for contradicted edges is
depicted in Figure 20.5.

Note that the definition for contradicted edges may still contain edges that contradict
each other. As an example let T = {a|bc, ab|c, abc}, where abc represents the non-binary
rooted tree on {a, b, c}. The edges {a, b} and {b, c} are elements in E(T). By definition
both edges are uncontradicted. However, the edge {a, b} assumes that abc is resolved as
c|ab, while the edge {b, c} assumes that abc is resolved as a|bc. Thus, for at least one of the
edges the nesting is contradicted by the tree abc. Such contradicting edges will be cut by
the MinCutSupertree algorithm.

To refine the MinCutSupertree algorithm to display more uncontradicted edges , these
edges are prevented from being part of any minimum cut. By Proposition 20.2 this is not
always possible, since the MinCutSupertree algorithm satisfies properties P2 and P3.
Therefore, exactly prior to the execution of line 13 in Figure 20.6 the refinement tests if the

20-10 Handbook of Computational Molecular Biology

c
G({T1, T2})

e dcba

T1

d

e

contradictedunanimous uncontradicted

a b d

T2

b ca

t2 (dashed lines)

uncontradicted

FIGURE 20.5: The graph G(T) associated with the profile T = {T1, T2} is shown. The ‘u-
nanimous’ edge {a, b} is an edge in Emax

T , since it is contained in the proper
cluster {a, b, c} ∈ c(T1) and the proper cluster {a, b} ∈ c(T2). The edge {c, d}
is contradicted, since it is not contained in a proper cluster in c(T1) and r(T1)
is a bifurcation. The edges {a, c} and {b, c} are uncontradicted, since the are
contained in proper clusters in c(T1) and the apparent multifurcation r(T2) can
be replaced by the tree t2 (dashed), where both edges are contained in the proper
cluster {a, b, c, d}.

graph G(T) − (Emax
T) can be disconnected by only cutting edges that are contradicted. If

not, then the MinCutSupertree algorithm proceeds. Otherwise, the refinement exempts
the set Eu of uncontradicted edges in the graph G(T)−(Emax

T) from being cut by collapsing
them. Similar to the graph G(T) − (Emax

T) that results from collapsing edges in Emax
T ,

the graph G′ = (G(T) − (Emax
T)) − Eu is constructed. This graph then replaces the graph

G(T) − (Emax
T) and the MinCutSupertree algorithm proceeds to cut edges crossing a

minimum cut in G′. The algorithm for the refinement is given below.

FIGURE 20.6: MinCutSupertree refinement
13(a) determine the set of contradicted edges Ec in G(T)− (Emax

T).;
13(b) if removing Ec from G(T)− (Emax

T) disconnects the graph then
G′ := (G(T) − Emax

T)− EC ;
else

G′ := G(T) − (Emax
T);

end
13(c) remove any edge from G(T), if it is represented by an edge in G′ that is crossing

a minimum-weight cut in G′;

The strengths and weaknesses of Page’s refinement in practice are discussed in [53].

20.6 Supertree Methods Using Matrix Representations

Several supertree methods take a matrix representation of trees as their input. These
methods include ‘matrix representation using parsimony’ (MRP) and ‘matrix representation
using flipping’ (MRF), which we will survey in this section after we have introduced some

Consensus Trees and Supertrees 20-11

basic notation and results.

20.6.1 Notation and basic results

The ‘cluster matrix’ [14, 8, 59, 58] for a profile encodes each proper cluster in every input
tree through a partial binary character. Taxa present in the cluster are scored as a 1-
entry, those absent in the cluster are scored as a 0-entry, and those not sampled in the
cluster’s source tree are scored by a ?-entry. An example for a cluster matrix is depicted in
Figure 20.7.

FIGURE 20.7: Top: A set of incompatible trees T = {T1, T2, T3}. Bottom: C(T); each column
is labeled by the proper cluster to which it corresponds.

If the cluster matrix for a multi set of input trees allows to replace each ?-entry by either a
0- or 1-entry such that there exists a rooted tree that contains the resulting (not necessarily
proper) clusters, then the matrix is said to have a ‘compatible completion’. Figure 20.8
gives an example for a compatible completion of a cluster matrix. In the following we
will give formal definitions and basic results for the matrix representation for a profile
T = {T1, . . . , Tk}.

DEFINITION 20.4 [Complete and incomplete cluster matrix] For p ∈ {1, . . . , k}, let
c(TP) = {Xp1, . . . , Xpqp} be the set of proper clusters in the tree Tp. The cluster matrix
of Tp is the n× qp matrix C(Tp) := [cij], where

cij :=

? if si �∈ L(Tp)
1 if si ∈ Xpj

0 otherwise

20-12 Handbook of Computational Molecular Biology

Let m =
∑k

i=1 qi. The cluster matrix of the profile T is the n×m matrix C(T) that consists
of k blocks of columns, where block p is C(Tp) (see Figure 20.7). We call the matrix C(T)
complete if it has no ?-entries, and incomplete otherwise.

DEFINITION 20.5 [Compatibility and completion of cluster matrices] Let B = [bij] be
an n ×m complete cluster matrix and let Oj(B) denote the set of row indices i such that
bij = 1. The matrix B is compatible if there exists a tree T over the set {s1, . . . , sn} such that
for every j ∈ {1, . . . ,m}, there exists a cluster X ∈ c(T) such that X = {si : i ∈ Oj(B)}.
Let C = [cij] be an n×m incomplete cluster matrix. A completion of C is an n×m complete
cluster matrix B = [bij] such that, for all i, j, bij = cij whenever cij �=?. C is said to be
compatible if it has a compatible completion.

The following corollary follows directly from Theorem 20.1.

COROLLARY 20.1 A complete cluster matrix B is compatible if and only if for any pair
of columns i and j, the sets Oi(B) and Oj(B) are not in conflict.

Thus, a compatible completion of an incomplete cluster matrix C exists if and only if all
?-entries in C can be changed to 0-entries or 1-entries such that for any pair of columns
i and j, Oi(B) and Oi(B) are not in conflict. Clearly, the profile T is compatible if and
only if C(T) is compatible. Consequently, the Build algorithm can be used to decide if
there exists a compatible completion of C in polynomial time. However, there are other
polynomial time algorithms that test for the existence of a compatible completion and to
construct one, if it exists (e.g. [56]).

20.6.2 MRP supertrees

The MRP problem takes the cluster matrix C(T) of the profile T as input, interprets the
clusters in C(T) as partial binary characters, and seeks the phylogeny that requires the
fewest number of character state transitions, under the parsimony criteria employed (e.g.,
Dollo, Wagner, irreversible).

While the interpretation of the clusters as characters for the MRP problem seems to be
somewhat ad-hoc, the wide availability of parsimony heuristics [32] has made this method
for building supertrees the typical choice of phylogeneticists working with real data sets.
Since deciding the parsimony problem is NP complete [35], the MRP problem is intrinsically
hard to solve.

20.6.3 MRF supertrees

The input for the MRF problem is the cluster matrix for a profile T of trees. The MRF
problem seeks the smallest number of edit steps, called ‘flips’, that change the given matrix
into a compatible one. The resulting matrix then corresponds perfectly to some tree, called
a ‘MRF supertree’. A ‘flip’ in a cluster matrix modifies a 1-entry into a 0-entry or vice
versa. Figure 20.8 illustrates the notion of the ‘flips’. We first describe the MRF problem
formally and then survey its theoretical results.

Consensus Trees and Supertrees 20-13

FIGURE 20.8: C(T) is the cluster matrix for the incompatible set of trees from Figure 20.7. C′

is the compatible cluster matrix that results from flipping the underlined entries
of C(T). B is a completion of C′; the tree corresponding to B is also shown. Note
that the placement of taxon d as ancestral to taxon e is not supported by the
input trees of Figure 20.7; it is simply an artifact of the matrix completion chosen
in this example, which is not the only one that would have led to compatibility.
Note that the completion of C′ can be interpreted as ? → 1 or ? → 0 flips with
zero cost. Thus, there is no order between flipping and completion

Definitions and Notation

Let C be a cluster matrix. A flip in the matrix C is the operation of replacing an entry cij ,
where cij �=?, by its complement. If cij = 0, the flip is called a 0 → 1 flip, or an insertion
flip; if aij = 1, the flip is called a 1→ 0 flip, or a deletion flip.

Given is a cluster matrix C, the MRF problem is to find the minimum number of flips
that convert C into a compatible matrix C′. If the flips are constrained to be either only
insertion or deletion flips the MRF problem is called MRF insertion problem or MRF
deletion problem respectively. A tree T corresponding to C′ is called MRF supertree. Note
that this tree is not necessarily unique.

Given additionally an integer k, the decision version of the MRF problem is to decide if
the matrix C′ can be converted into a compatible matrix by at most k flips. The decision
versions of the MRF insertion and MRF deletion problem constrain the flips to be either
insertion or deletion flips respectively.

Each MRF problem can be extended to the weighted MRF problem. A collection of flips is
weighted by the sum of their weights. Here flips of matrix elements are weighted by numbers
(e.g. to reflect differential node support and confidence from clustering statements). The
problem is to find the collection of flips with minimum weight under other collections that
convert C into a compatible matrix C′.

20-14 Handbook of Computational Molecular Biology

Survey of theoretical results

We survey results on the computational complexity of the MRF problems as well as their
consensus properties.

THEOREM 20.2 [Chen et al. [20]] The decision versions of the MRF problem and its
restrictions the MRF insertion and deletion problem are NP-complete.

This and other results rely on the graph-theoretic formulation of the MRF decision prob-
lem and its variants, which we now summarize.

DEFINITION 20.6 [cluster graph] Let C(T) be a complete cluster matrix for a profile
T. We define the cluster graph G(T) of C(T) to be the bipartite graph (X,Y,E), where
X = {x1, . . . , xm} represents all columns in C(T) (these are the proper clusters of trees in
T), Y = L(T) represents the overall taxa set of the rows in C(T), and {x, y} ∈ E exactly if
cluster x contains taxon y.

Corollary 20.1 can be restated in graph-theoretic terms as a forbidden M -graph problem.

DEFINITION 20.7 [M -graph, M -free] Let G = (X,Y,E) be a bipartite graph. A M -
graph in G is a simple path of length 4, where the degree one nodes are elements in Y . The
graph G is M -free, if it does not contain an induced M -graph. Figure 20.9 depicts the
bipartite graph for a tuple of incompatible complete characters.

FIGURE 20.9: Left: A tuple of incompatible complete characters. Right: The corresponding
character graph; note that the latter contains the induced M -graph defined by
the path 〈b, 2, c, 4, e〉.

THEOREM 20.3 [Chen et al. [20]] A complete profile T is compatible if and only if G(T)
is M -free.

If the cluster matrix C(T) is complete (the profile T is complete) an edge insertion or
deletion in G(T) corresponds to an insertion or a deletion flip in C(T) respectively. Hence,
the MRF decision problems for complete cluster matrices can be stated as the following
polynomially equivalent graph modification problem.

Consensus Trees and Supertrees 20-15

DEFINITION 20.8 [M -free graph problems] Given is a cluster graphG(T) for a complete
profile T and an integer k. The M -free graph problem is to decide if G can be modified into
an M -free graph, by at most k deletions or insertions of edges. If only either edge deletions
or insertions are allowed the problem is called the M -free graph insertion problem or the
M -free graph deletion problem respectively.

The NP completeness proof for the decision version of the MRF insertion problem is by
reduction from the chain graph completion problem, studied and proved NP complete by
Yannakakis [74].

On the positive side, the MRF problem can be solved approximately within certain guar-
anteed bounds. A minimization problem P is approximable within a factor of α, for some
α ≥ 1, if there exists a polynomial time algorithm A for P such that on any input, the
cost c of the solution returned by A is within a factor of α of the cost c∗ of the optimum
solution; that is, c/c∗ ≤ α. The following theorem relies on some general results on edge
modification problems by Natanzon et al. [49].

THEOREM 20.4 [Chen et al. [20]] Let T be a complete profile, and the node degree in
X of the cluster graph G(T) = (X,Y,E) is at most d (any cluster in each tree in T has at
most d taxa). The MRF problem and the MRF deletion problem for the input matrix G(T)
are approximable within a factor of 2d.

The graph-theoretic interpretation of clusters is also useful for obtaining an algorithm
for the version of the MRF decision problem where a maximum number k of flips is fixed:
given a complete profile T, are at most k flips necessary to make C(T) compatible? The
next result might be useful when k is small; it implies that the MRF decision problem is
fixed-parameter tractable, in the sense of Downey and Fellows [26].

THEOREM 20.5 [Chen et al. [20]] Let G(T) = (X,Y,E) be a cluster graph for a complete
profile T, where x := |X | and y := |Y |, and k ∈ N a fixed number of flips. The MRF decision
problem can be solved in O(6kxy) time, and the decision versions of the MRF insertion and
the MRF deletion problem can be solved in O(2kxy and O(4rxy) time respectively.

20.6.4 Consensus properties of MRF and MRP supertrees

On the negative side the MRF and MRP supertree methods do not preserve the majority
consensus. The latter property implies that the MRF and MRP supertree methods do not
preserve nesting and thus not the Adams consensus [19, 25]. On the positive side, the
MRF and MRP supertree methods preserve the semi-strict consensus, and thus the strict
consensus. Thus, whenever the input trees are compatible, both any MRF and any MRP
supertree is a parent tree of T ([17, 19, 25]).

20.7 Supertrees Assembled from Gene Trees

Supertrees describe complex phylogenetic relationships that allow biologists to study their
implications on the tree of all species, the Tree of Life. Thus, ideally, input trees for supertree
problems are species trees , that describe evolutionary relationships of species. Species trees
are generally implied from gene trees , that represent evolutionary relationships of genes.

20-16 Handbook of Computational Molecular Biology

Such species trees likely differ from the true species tree, when implied from gene trees that
are confounded by a complex history of gene duplication and losses.

DolphinChimpHuman

Gene Tree G Species Tree S Reconciled Gene Tree R

 loss loss loss

 duplication

α human α dolphin β chimp α human α chimp α dolphin β human β chimp β dolphin

 αcopy βcopy

FIGURE 20.10: Reconciling gene tree G with species tree S by the minimum number of du-
plications and losses D(G, S) (= 1 duplication + 3 losses) needed to achieve
agreement between G and S.

Figure 20.10 gives an example, depicting a gene tree G derived from globins of human,
dolphin and chimp and the true species tree S of these species. The gene tree G and species
tree S differ, because of an ancient gene duplication taking place in the root species of S.
Each copy of the duplication develops along the topology of the species tree S and results
in the reconciled gene tree R. The gene tree G is a homeomorphic subtree of R. Thus
duplication is responsible for the incompatibility of trees G and S. The gene duplication
could not be detected, because of the leaves in R that are not part of the embedding of G
into R.

Gene duplication occurs in prokaryotes [42], but is especially common in eukaryotes,
affecting as many as 40% of the genes [60], and leads to the diversification of entire gene
families, i.e. globins or rhodopsins, in the same genome [40].

To construct supertrees from gene trees, we need a method to reconcile gene trees. We
first describe gene tree reconciliation in Section 20.7.1 and then, in Section 20.7.2, apply this
approach to assemble supertrees from gene trees. For convenience, unless noted otherwise,
we assume gene and specie trees to be rooted binary trees.

20.7.1 Gene tree reconciliation

In 1979 Goodman et al. [33] introduced the concept gene tree parsimony (GTP) of recon-
ciling a gene tree with a species tree. Later this concept was refined and formalized by
Page [51], Guigo et al. [36], and Eulenstein [29]. While the literature describes GTP by
multi-sets [51, 29], we will introduce GTP through a graph-theoretic approach.

Let G and S be a binary gene and species tree respectively, such that every gene in L(G) is
sampled from exactly one species in L(S). To represent this association between genes and
species we say that G is a gene tree under S, if L(G) ⊆ L(S). We assume that the gene tree
G and the species tree S can only differ because G contains gene duplications. The GTP
approach determines a reconciled (gene) tree R, minimal in the number of nodes that can be
derived from the species tree S by gene duplications and contains G as a subtree. Trees that
are derived from the species tree through zero or more duplications are ‘duplication trees’.
For example any tree isomorphic to the species tree is a duplication tree, representing a gene
in the species r(S) that evolves along the topology of S only through speciation (without
duplications). If a gene undergoes a duplication event, it duplicates into two or more copies
in the same species. As an example the reconciled tree R in figure 20.10 is a duplication tree
whose root r(R) represents a gene that is duplicated in species r(S). We use the duplication
function to describes the association of the genes in the duplication tree with their species.

Consensus Trees and Supertrees 20-17

If a gene v undergoes a speciation event this function maps the children of v to the species
which are children of the species of v in S. Otherwise v undergoes a duplication event, and
thus the duplication function maps the children of v to the species it maps v to. In the
following definition duplication trees are defined through the duplication function.

DEFINITION 20.9 [duplication tree] A tree D is a duplication tree for S, if there exists a
surjective function d : V (D)→ V (S), such that (i) either d(Ch(v)) = {d(v)} or d(Ch(v)) =
Ch(d(v)) for every v ∈ V (D) and (ii) d(L(D)) = L(S). If d(Ch(v)) = {d(v)}, then v is a
duplication in D and each node in Ch(v) is a copy of v. Otherwise v is a speciation in D .
The function d is a duplication function for D.

Since G and S differ only because of duplications, there exists a duplication tree in which
we can embed the gene tree G. Such a duplication tree is called an ‘explanation tree’, since
it explains possible differences between the gene and species tree through its duplications.
A ‘reconciled tree’ is an explanation tree with the minimum number of nodes that explains
the difference. We are prepared to give the formal definition of a reconciled tree.

DEFINITION 20.10 [explanation tree, reconciled tree] Let D be a duplication tree for
S, and d a duplication function for D. We call D an explanation tree for G under S, if there
exists a subset L ⊆ L(D) such that there exists an isomorphism e : V (G) → V (DL), called
an embedding of G into R . A node v ∈ V (G) is a duplication in G, if e(v) is a duplication
in D. An explanation tree with the minimum number of nodes is a reconciled tree.

THEOREM 20.6 [Eulenstein [29]]

1. The reconciled trees for G under S have a unique topology.
2. Let R be a reconciled tree for G under S, and e an embedding of G into R. A

node v′ ∈ V (R) is a duplication in R exactly if there exists v ∈ V (G) such that
e(v) = v′ where lcaS(v) = lcaS(c) for a child c ∈ Ch(v). (If G or S are not
binary trees the condition is extended by the additional requirement, “or there
exist distinct children a, b ∈ Ch(v) where lcaS(lcaS(a), lcaS(c(b))) < lcaS(v))”.

By theorem 20.6 all duplications in a reconciled tree R for G under S are the duplications
in G embedded into R, and the duplications in G can be identified through the lcaS mapping
from G to S. Thus we can identify the duplications in R through the lcaS relationships
independent of the reconciled tree.

DEFINITION 20.11 [duplications] Let G be a gene tree under the species tree S. The set
of duplications for G under S is D(G,S) := {v ∈ V (G) | ∃c ∈ Ch(g) : lcaS(c) = lcaS(g)}.

Let n := L(S), then D(G,S) can be computed in O(n) on a RAM [75], and in O(nα(n, n),
where α is the inverse Ackerman function, on a pointer machine [29]. A reconciled tree R
can be constructed from D(G,S) in Θ(|V (R)|) [29]. Clearly, in the worst case the size of
the reconciled tree can be quadratic in the size of S.

The fit of G to S can be measured by the duplication cost c(G,S) := |D(G,S)|. While the
duplication cost satisfies the triangle inequality it is asymmetric [43]. Another measure for
the reconciliation adds to the duplication cost the number of maximal unobserved subtrees,
called losses , in a reconciled tree R for G under S [51]. For example the reconciled tree

20-18 Handbook of Computational Molecular Biology

in Figure 20.10 has three losses, each consisting of a single node. A subtree is unobserved
if it does not contain any embedded nodes from G. This measure is equivalent [29] to the
mutation cost [36].

DEFINITION 20.12 [Guigo et al. [36]] Let g ∈ V (G) and a, b the distinct children of
Ch(g), and p(a, b) the number of nodes on the path between lcaS(a) and lcaS(b).

l(g) :=

0 if lcaS(g) = lcaS(a) = lcaS(b)
p(g, a) + 1 if lcaS(g) < lcaS(a) and lcaS(g) = lcaS(b)
p(g, a) + p(g, b) otherwise.

The mutation cost is defined as l(G,S) := c(G,S) + Σg∈V (G)l(g).

Notice that this measure can be determined only from just the gene and species tree.
Software for reconciling gene trees and computing the reconciliation cost includes the

phylogenetic software packages COMPONENT [65, 52], FORESTER [76], and Notung [21].
In practice gene trees are often not rooted or not binary. Chen et al. [21] extended the

reconciliation of gene trees to unrooted gene trees. The extension of the GTP approach
to rooted trees that are not necessarily binary depends on the biological interpretation of
a multifurcation in a gene tree [44, 66]. Eulenstein [29] extended the GTP concept from
rooted binary trees to rooted gene and species trees with true multifurcations, and showed
that gene tree reconciliation can be done in polynomial time.

20.7.2 Supertrees for gene trees

A supertree for a profile of gene trees is a species tree under which the gene trees can be
reconciled with the minimum reconciliation cost. We will first define supertree problems
for gene trees and then survey results for these problems.

To define supertree problems for gene trees we extend the duplication and mutation cost
to a profile of gene trees.

DEFINITION 20.13 Let G be a profile of gene trees under the species tree S, that is
L(G) = L(S). The duplication cost for G under S is (̧G, S) := ΣG∈Gc(G,S) and the optimal
duplication cost for G is c∗(G) := min({c(G, S) | S is a tree over L(G)}). If c(G, S) = c∗(G),
then S is a duplication supertree for G. Similarly the mutation cost for G under S is
l(G, S) := ΣG∈Gl(G,S) and the optimal mutation cost for G is l∗(G) := min({l(G, S) |
S is a tree overL(G)}). If l(G, S) = l∗(G), then S is a duplication-loss supertree for G.

DEFINITION 20.14 [duplication and duplication-loss problem] Given a profile of gene
trees G, the duplication problem is to find a duplication supertree, and the duplication-loss
problem is to find a duplication-loss supertree. Given additionally an integer k, the decision
version of the duplication and the duplication-loss problem is to decide if there exists a
species tree such that c(G, S) ≤ k and l(G, S) ≤ k respectively.

Figure 20.11 shows the profile G = {T1, T2, T3} of pairwise compatible gene trees and
the duplication supertree S, which minimizes D(G, S), by reconciling T1 with one gene
duplication; T2 and T3 do not require a gene duplication.

The decision versions of the duplication and the duplication-loss problem are NP com-
plete [43, 31]. The gene duplication problem is fixed parameter tractable, when parameter-

Consensus Trees and Supertrees 20-19

1 2 3 2 3 5 4 4 3 5 1 2 3 5 4 1

Supertree ST2 T3T1

FIGURE 20.11: A gene tree profile G = {T1, T2, T3} and its duplication supertree S.

ized by the number of duplications [70], and the duplication-loss problem is fixed parameter
tractable when parameterized by the maximal number of copies that can evolve along a
branch in the species tree [39]. Various other parameterizations and restrictions of these
problems are shown to be NP complete [43, 31].

Using heuristics, the effectiveness of the duplication loss problem to construct supertrees
from gene trees has been evaluated using nuclear gene families. Cotton and Page [23]
extracted 118 gene families from HOVERGEN [27] and recovered a nearly classical ver-
tebrate phylogeny. This is in marked contrast to the highly unorthodox trees recovered
from analyzes of complete mitochondrial genomes. It also demonstrates the potential of
the duplication-loss problem to construct supertrees directly from gene trees, instead from
uncertain species trees.

Implying species trees from gene trees is not only complicated by gene duplications,
but also by horizontal gene transfer, and lineage sorting [64]. Horizontal gene transfer is
common in prokaryotes and refers to the copying and insertion of DNA from one genome
into another. Lineage sorting refers to the persistence of multiple copies of genes through
speciation events, followed by their distribution into different descendant lineages. Hallet
et al. [38] extended the GTP concept to a combinatorial model that incorporates horizontal
gene transfer and gene duplications simultaneously.

20.8 Concluding Remarks

To construct the evolutionary history of life, systematic biologists are faced with the
problem of assembling large collections of small phylogenetic trees. This has fostered a
strong interest in developing supertree methods, which combine phylogenetic trees into
large trees — supertrees. A fundamental issue in developing supertree methods is to resolve
conflicting branching information among the input trees.

In this chapter we outlined a variety of supertree methods that resolve conflicting branch-
ing information. All presented methods except for the MRP method derive the supertrees
from a modification of the input trees that resolves the conflicting branching information.
From this resolved branching information supertrees are derived. The MinCut supertree

methods and the MRF method modify the branching information in the input trees such
that they become compatible and output possible parent trees. Both methods differ in
the way they modify the branching information. The MinCut supertree modifies the
branching information to construct one parent tree that satisfies a particular consensus
property, which is to preserve the nestings common to the input trees. Note that this is the
only consensus property presented in this chapter that applies to input trees with different
leaf sets. The MRF method minimizes the overall changes of the branching information.
Properties that are satisfied by resulting parent trees are not part of the methods objective.
The supertree method for gene trees resolves the conflict in the input trees by reconciling
them using an evolutionary model. Reconciling input trees, adds additional subtrees to

20-20 References

the input trees and does not modify the original branching information. The objective of
reconciling is to minimize the overall number of gene duplications and losses to reconcile
the input trees.

Thus the methods can be categorized into two groups by their objectives. One group is
specified by an objective that relates only to the input trees. For example the MRF method
is designed to correct errors in the input trees and the supertree method for gene trees is
designed to correct the gene trees by identifying missing gene duplications that are used to
reconcile the input trees. The other group is specified by an objective that the resulting
supertree needs to satisfy.

While it might be impossible to determine a supertree objective that performs most
effectively in practice, evolutionary biologist have access to supertrees constructed by an
increasing number of different objectives and known theoretical properties. Those supertrees
can support systematic biologists in their efforts to construct the Tree of Life.

Acknowledgements

The author thanks W. Chang and D. Fernandéz-Baca for careful reading of the manuscript
and helpful suggestions. This work was supported in part by the NSF grant EF-0334832.

References

[1] E.N. Adams. Consensus techniques and the comparison of taxonomic trees. Systematic
Zoology, 21:390–397, 1972.

[2] E.N. Adams. N-trees as nestings: Complexity, similarity, and consensus. Journal of
Classification, 3:299–317, 1986.

[3] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. On finding lowest common ancestors in
trees. SIAM Journal on Computing, 1(5):115–132, 1976.

[4] A.V. Aho, Y.Sagiv, T.G. Szymanski, and J.D. Ullman. Inferring a tree from lowest
common ancestors with an application to the optimization of relational expressions.
SIAM Journal on Computing, 10(3):405–421, 1981.

[5] N. Amenta, F. Clarke, and K. St.John. A linear-time majority tree algorithm. In
WABI, pages 216–227, 2003.

[6] K.J. Arrows. Social Choice and Individual Values. Wiley, New York, 1952.
[7] J.P. Barthélemy, F.R. McMorris, and R.C. Powers. Dictatorial consensus functions on

n-trees. Mathematical Social Sciences, 25(1):59–64, 1992.
[8] B.R. Baum. Combining trees as a way of combining data sets for phylogenetic inference,

and the desirability of combining gene trees. Taxon, 41:3–10, 1992.
[9] Olaf R.P. Bininda-Emonds, editor. Phylogenetic supertrees. Springer Verlag, 2004.

[10] O.R.P. Bininda-Emonds, J.L. Gittleman, and M.A. Steel. The (super) tree of life:
procedures, problems, and prospects. Annual Review of Ecology and Systematics,
33:265–289, 2002.

[11] S. Böcker, D. Bryant, A.W.M. Dress, and M.A. Steel. Algorithmic aspects of tree
amalgamation. Journal of Algorithms, 37(2):522–537, 2000.

[12] H.L. Bodlaender, M.R. Fellows, and T.J. Warnow. Two strikes against perfect phy-
logeny. In Proc. 19th Internat. Colloq. on Automata, Languages and Programming,
1992.

[13] K. Bremer. Combinable component consensus. Cladistics, 6:369–372, 1990.

References 20-21

[14] D.R. Brooks. Hennig’s parasitological method: A proposed solution. Syst. Zool.,
30:325–331, 1981.

[15] D. Bryant. A classification of consensus methods for phylogenetics. In Bioconsensus.
DIMACS-AMS, 163–184.

[16] D. Bryant. Hunting for trees, building trees andcomparing trees: theory and method
in phylogeneticanalysis. PhD thesis, Dept. of Mathematics, University of Canterbury,
1997.

[17] D. Bryant. A classification of consensus methods for phylogenies. In Bioconsensus,
volume 61 of DIMACS: Series in Discrete Mathematics and Theoretic Computer
Science, pages 163–183. American Mathematical Society, Providence, Rhode Island,
USA, 2003.

[18] D. Bryant and M. Steel. Extension operations on sets of leaf-labelled trees. Discrete
Applied Mathematics, 16:425–453, 1995.

[19] D. Chen, L. Diao, O. Eulenstein, and D. Fernández-Baca et al. Flipping: A supertree
construction method. In Bioconsensus, volume 61 of DIMACS: Series in Discrete
Mathematics and Theoretic Computer Science, pages 135–160. American Mathe-
matical Society, Providence, Rhode Island, USA, 2003.

[20] D. Chen, O. Eulenstein, D. Fernández-Baca, and M.J. Sanderson. Supertrees by flip-
ping. In Computing and Combinatorics, 8th Annual International Conference,
COCOON 2002, Singapore, August 15-17, 2002, Proceedings, volume 2387 of Lec-
ture Notes in Computer Science, pages 391–400. Springer, 2002.

[21] K. Chen, D. Durand, and M. Farach-Colton. Notung: a program for dating gene
duplications and optimizing gene family trees. Journal of Computational Biology,
7(3/4):429–447, 2000.

[22] M. Constantinescu and D. Sankoff. An efficient algorithm for supertrees. Journal of
Classification, 12:101–112, 1995.

[23] J. Cotton and R.D.M. Page. Vertebrate phylogenomics: reconciled trees and gene
duplications. In Pacific Symposium on Biocomputing, pages 536–547, 2002.

[24] W.H.E. Day and F.R. McMorris. Axiomatic consensus theory in group choice and
biomathematics. In Frontiers in Applied Mathematics, volume 39. Society for Indus-
trial and Applied Mathematics, 2003.

[25] L. Diao, O. Eulenstein, D. Fernández-Baca, and M.J. Sanderson. Consensus prop-
erties of MRP supertrees. Technical report, Dept. of Computer Science, Iowa State
University, 226 Atanasoff Hall, Ames, IA 50011-1040 USA, 2003.

[26] R.G. Downey and M.R. Fellows. Parameterized Complexity. Springer, 1997.
[27] L. Duret, D. Mouchiroud, and M. Gouy. Hovergen: A database of homologous verte-

brate genes. Nucleic Acids Research, 2:2360–2365, 1994.
[28] G.F. Estabrook, C. Johnson, and F.R. McMorris. An idealized concept of the true

cladistic character? Mathematical Bioscience, 23:263–272, 1975.
[29] O. Eulenstein. Predictions of gene-duplications and their phylogenetic development.

PhD thesis, University of Bonn, Germany, 1998. GMD Research Series No. 20 / 1998,
ISSN: 1435-2699.

[30] O. Eulenstein, D. Chen, J. G. Burleigh, and D. Fernández-Baca et al. Performance of
flip supertree construction with a heuristic algorithm. Systematic Biology, 53:299–308,
2003.

[31] M. Fellows, M. Hallett, C. Korostensky, and U. Stege. Analogs & duals of the mast
problem for sequences & trees. In European Symposium on Algorithms (ESA), LNCS
1461, pages 103–114, 1998.

[32] J. Felsenstein. PHYLIP. http://evolution.genetics.washington.edu/phy-
lip.html.

20-22 References

[33] M. Goodman, J. Czelusniak, G. W. Moore, and A. E. Romero-Herrera et al. Fitting
the gene lineage into its species lineage. a parsimony strategy illustrated by cladograms
constructed from globin sequences. Systematic Zoology, 28:132–163, 1979.

[34] A.D. Gordon. Consensus supertrees: The synthesis of rooted trees containing overlap-
ping sets of labelled leaves. Journal of Classification, 9:335–348, 1986.

[35] R.L. Graham and L.R. Foulds. Unlikelihood that minimal phylogenies for a realistic
biological study can be constructed in reasonable computation time. Math. Biosci.,
60:133–142, 1982.

[36] R. Guigó, I. Muchnik, and T.F. Smith. Reconstruction of ancient molecular phylogeny.
Molecular Phylogenetics and Evolution, 6(2):189–213, 1996.

[37] D. Gusfield. Algorithms on strings, trees, and sequences. Cambridge University
Press, New York, NY, USA, 1997. ISBN 0 521 58519 8.

[38] M. Hallett, J. Lagergren, and A. Tofigh. Simultaneous identification of duplications
and lateral transfers. In RECOMB, pages 326–335, 2004.

[39] M.T. Hallett and J. Lagergren. New algorithms for the duplication-loss model. In
RECOMB, pages 138–146, 2000.

[40] S. E. Henikoff, E. A. Green, S. Pietrokovski, and P. Bork et al. Gene families: The
taxonomy of protein paralogs and chimeras. Science, 278:609–614, 1997.

[41] M. R. Henzinger, V. King, and T. Warnow. Constructing a tree from homeomorphic
subtrees, with applications to computational evolutionary biology. Algorithmica, 24:1–
13, 1999.

[42] I.K. Jordan, K.S. Makarova, J.L. Spouge, and Y.I. Wolf et al. Lineage-specific gene
expansions in bacterial and archaeal genomes. Genome Research, 11:555–565, 2001.

[43] B. Ma, M. Li, and L. Zhang. On reconcstructing species trees from gene trees in term
of duplications and losses. In RECOMB, pages 182–191, 1998.

[44] W. P. Maddison. Reconstructing character evolution on polytomous cladograms.
Cladistics, 5:355–377, 1989.

[45] T. Margush and F.R. McMorris. Consensus n-trees. Bulletin of Mathematical Biology,
43:239–244, 1981.

[46] F.R. McMorris. On the compatibility of binary qualitative taxonomic characters. Bul-
letin of Mathematical Biology, 39:133–138, 1977.

[47] F.R. McMorris, D.B. Meronk, and D.A. Neumann. Numerical Taxonomy, chapter A
view of some consensus methods for trees. Springer-Verlag, 1983.

[48] F.R. McMorris and D.A. Neumann. Consensus functions defined on trees. Mathemat-
ical Social Sciences, 4:131–136, 1983.

[49] A. Natanzon, R. Shamir, and R. Sharan. Complexity classification of some edge mod-
ification problems. Discrete Applied Mathematics, 113(1):109–128, 2001.

[50] M.P. Ng and N.C. Wormald. Reconstruction of rooted trees from subtrees. Discrete
Applied Mathematics, 69(1-2):19–31, 1996.

[51] R.D.M. Page. Maps between trees and cladistic analysis of historical associations
among genes, organisms, and areas. Systematic Biology, 43(1):58–77, 1994.

[52] R.D.M. Page. COMPONENT, 1995. Phylogenetic Program Package, available at
http://taxonomy.zoology.gla.ac.uk/rod/cpw.html.

[53] R.D.M. Page. Modified mincut supertrees. In D. Gusfield and R. Guigó, editors,
International Workshop, Algorithms in Bioinformatics (WABI), volume 2452 of
Lecture Notes in Computer Science, pages 300–315. Springer Verlag, September 2002.

[54] R.D.M. Page and M.A. Charleston. Reconciled trees and incongruent gene and species
trees. In DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ences, volume 37, 1997.

[55] R.D.M. Page and E.C. Holmes. Molecular evolution: a phylogenetic approach. Black-

References 20-23

well Science, 1998.
[56] I. Pe’er, R. Shamir, and R. Sharan. Incomplete directed perfect phylogeny. In R. Gi-

ancarlo and D. Sankoff, editors, Combinatorial Pattern Matching, volume 1848 of
Lecture Notes in Computer Science, pages 143–153. Springer-Verlag, 2000.

[57] D. Pisani, A.M. Yates, M.C. Langer, and M.J. Benton. A genus-level supertree of the
dinosauria. Proceedings of the Royal Society of London, 269:915–921, 2002.

[58] A. Purvis. A modification to Baum and Ragan’s method for combining phylogenetic
trees. Systematic Biology, 44:251–255, 1995.

[59] M.A. Ragan. Phylogenetic inference based on matrix representation of trees. Molecular
Phylogenetics and Evolution, 1:53–58, 1992.

[60] G.M. Rubin, M.D. Yandell, and J.R. Wortman. Comparative genomics of the eukary-
otes. Science, 287:2204–2215, 2000.

[61] M.J. Sanderson, A. Purvis, and C. Henze. Phylogenetic supertrees: Assembling the
trees of life. Trends Ecol. Evol., 13:105–109, 1998.

[62] C. Semple, P. Daniel, W. Hordijk, and R.D.M. Page et al. Supertree algorithms for
ancestral divergence dates and nested taxa. Bioinformatics, in press.

[63] C. Semple and M.A. Steel. A supertree method for rooted trees. Discrete Applied
Mathematics, 105:147–158, 2000.

[64] J. Slowinski and R.D.M. Page. How should species phylogenies be inferred from se-
quence data? Systematic Biology, 105:147–158, 1999.

[65] J.B. Slowinski. Review of Component. Cladistics, 9:351–353, 1993.
[66] J.B. Slowinski. Molecular polytomies. Molecular Phylogenetics and Evolution,

19:114–120, 2001.
[67] R.R. Sokal and F.J. Rohlf. Taxonomic congruence in the leptopodomorpha re-

examined. Systematic Zoology, 30:309–325, 1981. And 1981, IBM Watson Research
Center. RC no. 8624, 31 pp.

[68] M.A. Steel. The complexity of reconstructing trees from qualitative characters and
subtrees. Journal of Classification, 9:91–116, 1992.

[69] M.A. Steel, A.W.M. Dress, and S. Böcker. Simple but fundamental limitations on
supertree and consensus tree methods. Systematic Biology, 49:363–368, 2000.

[70] U. Stege. Gene trees and species trees: The gene-duplication problem is fixed-
parameter tractable. In Proceedings of the 6th International Workshop on Algo-
rithms and Data Structures, LNCS 1663, Vancouver, Canada, 1999.

[71] H.T. Wareham. An efficient algorithm for computing Ml consensus trees. B.Sc. Hon-
ours thesis, Memorial University of Newfoundland, 1985.

[72] S.J. Willson. Reconstruction of additive rooted trees. http://www.public.iastate.edu-
/�swillson/BMB-04-09.pdf, 2004.

[73] M.F. Wojciechowski, M.J. Sanderson, K.P. Steele, and A. Liston. Molecular phylogeny
of the “temperate herbaceous tribes” of papilionoid legumes: a supertree approach. In
P. Herendeen and A. Bruneau, editors, Advances in Legume Systematics, volume 9,
pages 277–298. Royal Botanic Garden, Kew., 2000.

[74] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM Journal on
Algebraic and Discrete Methods, 2(1):77–79, 1981.

[75] L. Zhang. On a Mirkin-Muchnik-Smith conjecture for comparing molecular phyloge-
nies. Journal of Computational Biology, 4(2):177–187, 1997.

[76] C.M. Zmasek. FORESTER, 2001. Phylogenetic Program Package, available at
http://www.genetics.wustl.edu/eddy/forester.

21
Large-scale Phylogenetic Analysis

Tandy Warnow
The University of Texas at Austin

21.1 Introduction . 21-1
21.2 Phylogenetic Analysis . 21-3

Stochastic models of sequence evolution • Statistical
performance issues • Maximum parsimony •

Distance-based methods • Fast-converging methods
21.3 The Basic Divide-and-Conquer Strategy 21-7

Introduction • Phase I: a brief overview • Phase II:
Merging the subtrees • Phase III: Refining trees

21.4 Triangulated Graphs . 21-8
Basic material • Threshold graphs • Short subtree
graphs • Decompositions of triangulated graphs

21.5 Designing DCMs . 21-11
Introduction • Obtaining triangulated graphs from
datasets • Considerations in design strategies

21.6 DCM-boosting Techniques for Maximum
Parsimony . 21-14
Objectives • DCM3 • Iterative-DCM3 • Recursive
DCM3 • Recursive-Iterative-DCM3 • Experimental
results

21.7 DCM-boosting Distance-based Methods 21-17
Objectives • DCM1NJ + SQS: Designing an afc
method using DCM-boosting • Improving the
empirical performance of DCM1NJ + SQS •

Experimental Results
21.8 Related Work and Conclusions . 21-21

21.1 Introduction

Large-scale phylogeny reconstruction poses several challenges to the algorithms designer.
To begin with, the fundamental objective in phylogeny reconstruction is to reconstruc-
t, as accurately as possible, the tree that produced the input dataset (typically aligned
biomolecular sequences), rather than to solve any particular numeric optimization problem.
Therefore, all reconstruction methods are studied (typically in simulation - see [15, 17, 18]
for some examples of simulation studies) with respect to what is called their “topological
accuracy” - whereby the reconstructed trees are compared against the model tree and the
differences between the branching order in the two trees are quantified. Some reconstruction
methods operate in polynomial time and have been shown to perform well with respect to
the topological accuracy of the reconstructed trees under many model conditions; however,
recent work has shown that for large model trees with high interleaf distances, popular
polynomial time methods do not produce trees with acceptable levels of topological accu-
racy [1, 27, 29, 30, 31]. For this reason, among others, most systematists prefer methods

21-1

21-2 Handbook of Computational Molecular Biology

that attempt to solve either maximum parsimony (MP) or maximum likelihood (ML), two
NP-hard optimization problems [5, 12]. While many heuristics exist for these optimization
problems, it is not clear that these heuristics are able to obtain good enough solutions (for
their criteria) on large datasets - that is, they do not scale well. Thus, large-scale phy-
logenetic analysis is a difficult challenge. (For a more detailed introduction to phylogeny
reconstruction, see [16, 22].)

This chapter will present a meta-technique for large-scale phylogenetic analysis which
has been shown to improve both types of phylogenetic reconstruction methods. The basic
meta-technique first “decomposes” the dataset into overlapping subsets. Trees are then
constructed on each of the resultant datasets using a favored phylogenetic reconstruction
method; since the subsets overlap, these trees also overlap on their leaf sets. These subtrees
can then be merged together, using a preferred “supertree” method, into a tree on the full set
of taxa. We call the class of methods using this basic structure “Disk-Covering Methods”,
or DCMs, for historic reasons. Our research shows that DCMs can make phylogenetic
reconstruction more accurate and/or faster, depending upon the particular vulnerabilities
of the base method. Thus, a DCM is designed to “boost” the performance of a given
“base method”. Our current DCMs have focused on two different types of base methods –
polynomial time distance-based methods, such as neighbor joining [36], and heuristics for
maximum parsimony implemented in software such as PAUP* [41] and TNT (see [13] for a
description of TNT). These DCMs differ in their design, because of the particular aspects of
the base method. Most noticeably, they use different decomposition strategies. The DCM
we use for neighbor joining uses a decomposition that produces very small subproblems with
small evolutionary diameters (i.e., interleaf-distances), while the decomposition strategy
used in the DCM for maximum parsimony produces larger subproblems, with a maximum
subproblem size that is still reasonably large. In addition, the DCM for maximum parsimony
is used iteratively within a heuristic search in order to obtain improved results. However,
we do not expect our current approaches for improving heuristic maximum parsimony or
neighbor joining to be the best that can be achieved, and so new DCMs will continue
to be useful for these problems. Furthermore, new DCMs will likely be needed as new
problems (such as maximum likelihood or phylogenetic multiple sequence alignment [37])
are considered. Thus, we believe that this type of algorithm design, in which base methods
are used on carefully selected subproblems and solutions then merged together, represents a
promising approach to phylogeny reconstruction, but that DCMs are really in their infancy.
We write this chapter, therefore, in the hope that by presenting both the intuition behind
the design strategies and the details involved in designing DCMs for specific base methods,
algorithms researchers will be able to design their own DCMs as new challenges arise.

The structure of the chapter is as follows. In Section 21.2 we present the basic issues
involved in phylogenetic analysis, including definitions of the basic optimization problems,
stochastic models of evolution, statistical aspects of a phylogenetic estimation, and algo-
rithmic issues. In Section 21.3 we present the basic divide-and-conquer strategies we use
in our various DCMs. These techniques rely heavily on the theory of triangulated graphs,
which we present in Section 21.4. We then discuss general design issues for DCMs in Sec-
tion 21.5. We then begin our description of a few specific DCMs in order to illustrate these
techniques. We begin in Section 21.6 with the DCM we designed for use with maximum
parsimony heuristics. We continue in Section 21.7 with a description of DCMs that were
designed for use with distance-based methods like neighbor joining. Finally, we conclude
in Section 21.8 with a discussion of further research directions, and some specific open
problems.

Large-scale Phylogenetic Analysis 21-3

21.2 Phylogenetic Analysis

21.2.1 Stochastic models of sequence evolution

Stochastic models have been proposed for all types of biomolecular sequences, including
RNA, DNA, and amino-acid. Of these, DNA have the simplest models, since typically
these models do not include any structural constraints, as would be generally true in RNA
or amino-acid models. Hence, we will focus here on describing the models that have been
proposed for DNA evolution.

A model of DNA sequence evolution must describe the probability distribution of the
four states, A,C, T,G, at the root, the evolution of a random site (i.e., position within
the DNA sequence) and how the evolution differs across the sites. Typically the probability
distribution at the root is uniform (so that all sequences of a fixed length are equally likely).
The evolution of a single site on a given edge e is modeled through a collection of parameters
- one is the “length” l(e) of the edge (which for many stochastic models is equivalent to the
expected number of changes of a random site on that edge) and the other is a substitution
probability matrix which determines the probabilities of each substitution of one nucleotide
by another in a single substitution. These together can be fully expressed by a single
“stochastic substitution matrix,” M(e), which for DNA is a 4 × 4 matrix in which every
row sums to 1. Note that the matrix M(e) can have up to 12 free parameters. The simplest
such model is the Jukes-Cantor model, with one free parameter, and the most complex is
the General Markov model, with all 12 parameters [39].

DEFINITION 21.1 The General Markov (GM) model of single-site evolution is defined
as follows.

1. The nucleotide in a random site at the root is drawn from a known distribution,
in which each nucleotide has positive probability.

2. The probability of each site substitution on an edge e of the tree is given by a
4× 4 stochastic substitution matrix M(e) in which det(M(e)) is not 0, 1, or −1.

Note that these models only describe the evolution of a single site down the tree. To
model how a sequence evolves we would also need to describe how the different sites evolve.
Almost all models of sequence evolution assume that different sites evolve independently
(a notable exception is the covarion model [42]), but most phylogenetic analyses are based
upon models for which the independence of different sites is assumed. The majority of
models used in inference allow for sites to evolve differently, but almost all assume that
the differences between sites is limited in the following way. The assumption of how sites
differ is expressed by saying that for every site i we have a rate ri, so that the expected
number of changes on the edge e is simply the product of the edge length l(e) with the
rate ri. If all sites evolve under the same rate, then ri = rj for all i, j. These {ri} are the
“rates-across-sites”, with ri the rate for the ith site. Typically these rates are drawn from
some distribution. Note that what this expresses is that if a site i is expected to evolve
twice as fast as site j on one edge, then it is expected to evolve twice as fast on every edge
– that is, sites speed up or slow down identically under all conditions. While this is not
necessarily a reasonable assumption in molecular evolution, it is the underlying assumption
of models in practice.

In this chapter, we use the GM model with the assumption that ri = rj , so as to simplify
the analysis. We denote a model tree in the GM model as a pair, (T, {Me : e ∈ E(T)}), or
more simply as (T,M). We assume that the number of changes of a given site on a given

21-4 Handbook of Computational Molecular Biology

edge obeys a Poisson distribution. For each edge e ∈ E(T), we define the length λ(e) of the
edge e to be − log |det(Me)|. This allows us to define the matrix of leaf-to-leaf distances,
[λij], with λij =

∑
e∈Pij

λ(e) and where Pij is the path in T between leaves i and j. Note
that [λij] is a symmetric matrix. It is a well-known fact that, given the distance matrix
[λij], it is easy to recover the underlying leaf-labeled tree T in polynomial time.

This general model of site evolution subsumes the great majority of other models exam-
ined in the phylogenetic literature, including the Hasegawa-Kishino-Yano (HKY) model,
the Kimura 2-parameter model (K2P), the Kimura 3-ST model (K3ST), the Jukes-Cantor
model (JC), etc. These models are all special cases of the General Markov model, because
they place restrictions on the form of the stochastic substitution matrices (see [25] for more
information about stochastic models of evolution).

21.2.2 Statistical performance issues

Once a stochastic model of evolution is stated, it becomes possible to discuss statistical
inference under the model, define and develop explicitly statistical estimation methods (such
as maximum likelihood), and to ask about the performance of phylogeny reconstruction
methods under the model. One of the aspects of performance that is typically considered is
whether a reconstruction method is “statistically consistent” under the given model. Put
simply, a reconstruction method is statistically consistent under a given model of evolution,
if, for all model trees under the model, as the sequence length increases, the probability of
reconstructing the model tree goes to 1. This is a mathematical question and establishing
statistical consistency requires a mathematical proof. Such proofs have been obtained for
many methods, including most distance-based methods (including neighbor-joining [36])
and maximum likelihood (which seeks the model tree that maximizes the probability of the
data) under the GM model, and hence under all its submodels.

Another aspect of statistical performance under a model is its “convergence rate”, which
roughly speaking asks how quickly the error rate in the estimation goes to 0 as a function of
the sequence length. In order to make this statement precise, we must provide a definition
of topological error. While there are many ways to quantify this, the one that is used most
typically in the phylogenetics research community is the Robinson-Foulds [32] rate. This is
given as follows.

DEFINITION 21.2 Let T be the true tree, and let T ′ be an estimated tree, both on the
same set of n leaves. For each edge e in T , there is an associated bipartition π(e) defined
on the leaf set of T which is produced by deleting the edge e from T . We can therefore
identify T with its set C(T) = {π(e) : e ∈ E(T)}. Similarly we can identify the tree T ′ by
its set C(T ′), defined in the analogous way. The Robinson-Foulds distance between T
and T ′ is then the average of |C(T)−C(T ′)|/(n− 3) and |C(T ′)−C(T)|/(n− 3); the first
of these two values is called the missing edge or false negative rate, and the second of these
two values is called the false positive rate.

These are rates because they are divided by n−3, where n is the number of leaves in each
tree (n− 3 corresponds to the number of internal edges in a binary tree on n leaves). Error
rates that are below 5% are desired, and above 10% are unacceptable - unless the data are
just too poor to allow for greater resolution.

Two methods which are both statistically consistent under a model may have very differ-
ent convergence rates, with one method producing trees with much lower error rates than
the other, at most “reasonable” sequence lengths. Thus, the convergence rate of a method

Large-scale Phylogenetic Analysis 21-5

is highly significant when it comes to predicting its performance on different datasets.
While statistical consistency is relatively easy to establish (the proofs are not difficult

generally), mathematical analyses of the convergence rates of different methods is more
difficult (see [1, 8, 9] for some initial results). For this reason, the performance of phylogeny
reconstruction methods is typically evaluated in simulation.

21.2.3 Maximum parsimony

We now define the maximum parsimony problem.

• Input: Set S of sequences, each over an alphabet A, and of the same length k.
• Output: a tree T with leaves labeled by S and with internal nodes labeled by

other elements of Ak, so as to minimize the total “length” of the tree, which is
defined to be

∑
eH(e), where H(e) denotes the Hamming distance between the

sequences labeling the different endpoints of the edge e (i.e., H(e) is the number
of sites at which the sequences labeling the endpoints of e differ).

Finding the optimal trees under maximum parsimony (MP) is an NP-hard problem, and
so hard to solve exactly for datasets beyond about 30 or so taxa (if the tree T is fixed, then
the problem of assigning sequences to the internal nodes so as to minimize the total length
of the tree is easily solved using dynamic programming in polynomial time [11]). Because
MP is important in practice, many heuristics exist which attempt to solve the problem
through a combination of hill-climbing and randomization to get out of local optima. These
heuristics may actually find optimal solutions, though current approaches do not provide
sufficiently good lower bounds to make it possible to assess the degree of suboptimality in
a given analysis. Current practice therefore tends to involve running a favored heuristic
until it seems that better solutions will not be found. Such analyses can take a few days on
moderate sized datasets, to weeks or months on large datasets.

MP is not statistically consistent under the GM model, which means that there are
some model trees so that as the sequence length increases, the probability that an exact
solution to MP would yield the true tree does not provably approach 1 [10]. Even so, MP
is a popular method, and many heuristics exist to attempt to solve MP. (For more on MP,
see [16].)

21.2.4 Distance-based methods

Distance-based methods operate in two phases: first they use statistically-based techniques
to estimate pairwise distances, and then they construct a tree on the basis of these estimated
distances. Provided that the appropriate technique is used to estimate pairwise distances,
and a good method is used in the second step to construct a tree from the distances, the
combined two-phase reconstruction is statistically consistent. The most popular distance-
based methods are polynomial-time, and hence these methods are quite attractive.

Of the various distance-based methods, neighbor-joining is probably the most popular;
it is statistically consistent under the GM model and performs well in many simulation
studies by comparison to other distance-based methods. On the other hand, the only
mathematical theory about its convergence rate shows that it can require sequence lengths
to be exponential in the maximum leaf-to-leaf distance within the model tree, in order
to produce the topologically correct true tree with high probability (see below). Since
sequence lengths are generally not extremely long, this is a vulnerability of neighbor joining
with respect to large-scale phylogeny reconstruction. (This theoretical statement also holds

21-6 Handbook of Computational Molecular Biology

true for other distance-based methods and so this vulnerability of neighbor joining is not
unique.) Simulation studies have verified that neighbor joining’s performance degrades as
the interleaf-distances increase without a corresponding increase in the sequence length [36],
and so from an empirical standpoint this vulnerability seems to be significant. (It is worth
noting that all methods seem to degrade in performance with increasing interleaf-distances,
with the degradation of neighbor-joining less so than that of some other distance-based
methods, but worse - it seems - than some sequence-based methods.)

The basic theorem for the convergence rate of neighbor joining is as follows.

THEOREM 21.1 [From [1]] Let (T,M) be a General Markov Model tree with n leaves,
with 0 < f ≤ λe ≤ g <∞ for all edges e in T . Let ε > 0 be given, and let λ∗ = maxij{λij}.
Then there is a constant C > 0 such that, if the sequence length exceeds

C logneO(λ∗)

then, with probability at least 1− ε, the Neighbor-Joining method recovers the true tree.

Note that λ∗ ≤ g · diam(T), where g is the maximum edge length and diam(T) is the
number of edges in the longest path in the tree T (i.e. it is the topological diameter of T),
and that diam(T) can be as large as n − 1. Thus the sequence length requirement of the
neighbor joining method is bounded from above by a function that grows exponentially in
n, even when g is fixed. Such a method is said to have an exponential convergence rate.

21.2.5 Fast-converging methods

Since letting f be arbitrarily small or g be arbitrarily large affects the sequence length re-
quirement, we are interested in developing methods for which polynomially long sequences
ensure accuracy under the General Markov model, when both f and g are fixed, but arbi-
trary. In order to define this concept precisely, we first parameterize the General Markov
model.

DEFINITION 21.3 GMf,g contains those (T,M) ∈ GM for which f ≤ λ(e) ≤ g holds
for all edges e ∈ E(T).

We now define absolute fast convergence:

DEFINITION 21.4 A phylogenetic reconstruction method Φ is absolute fast-converging
(afc) for the GM model if, for all positive f, g, ε, there is a polynomial p such that, for all
(T,M) in the GM model, on set S of n sequences of length at least p(n) generated on T ,
we have Pr[Φ(S) = T] > 1− ε.

Note that method M operates without any knowledge of parameters f or g—or indeed
any function of f and g. Thus, although the polynomial p depends upon both f and g, the
method itself does not.

There are now several methods which have been proven to be afc (see [6, 7, 30, 43]), and
in Section 21.7 we will describe how we derive one such afc method through the use of a
DCM. All afc methods, whether implicitly or explicitly, have two steps: first they produce
a set of trees, and then they select the best tree from the set. Proofs that the methods are
afc then require proving (a) that the first step produces a set that includes the true tree

Large-scale Phylogenetic Analysis 21-7

with high probability, given polynomial length sequences, and (b) the second step picks the
true tree with high probability, under the assumption that the true tree is in the set and
the input sequences are of polynomial length.

21.3 The Basic Divide-and-Conquer Strategy

21.3.1 Introduction

Each DCM is fundamentally based upon a divide-and-conquer strategy, which has the
following three phase structure:

• Phase I: Compute a decomposition of the dataset into overlapping subsets, and
construct trees on the subsets using the base method.

• Phase II: Use a supertree method to merge the trees on the subsets into a tree
on the full dataset.

• Phase III: If the tree obtained in Phase II is not fully resolved (i.e. if the tree
is not a binary tree), we resolve it further into a binary tree so that it optimizes
the desired objective criterion (e.g., maximum parsimony).

We have designed these phases so that we can guarantee accuracy in the reconstructed
tree obtained at the end of the first two phases under certain conditions. These guarantees
and other properties of our DCMs rely upon the theory of triangulated graphs which is
presented in Section 21.4 below. In general, however, we are motivated not only by theory
but also by empirical performance, and so much of our discussion here will attempt to reflect
those dual concerns.

21.3.2 Phase I: a brief overview

The main issue in the design of Phase I is the decomposition of the set of taxa into overlap-
ping subsets. Our approach for Phase I is to first construct a triangulated graph (that is, a
graph without any simple induced cycle of size four or more) whose vertex set corresponds
to the input set of taxa, and then compute a decomposition of the vertices of the triangu-
lated graph (and hence of the set of taxa) into overlapping subsets. We describe how we
obtain triangulated graphs from our input sets, and how we decompose these triangulated
graphs, in Section 21.4 below.

21.3.3 Phase II: Merging the subtrees

After Phase I is completed, we have a set of trees, one for each of the sets in the decom-
position of the set of taxa. These subtrees share taxa in common, and the objective is to
merge these subtrees into a tree on the full dataset. We would like this merger to retain
accuracy if possible, so that in particular if all the subtrees are correct (meaning that they
accurately reflect the true tree restricted to the subset), then the merger of these subtrees
should be the true tree. This is the Subtree Compatibility problem:

• Input: Set T = {T1, T2, . . . , Tk} with Ti an unrooted tree on leaf set Si.
• Output: Tree T on leaf set S = ∪iSi, if it exists, such that T |Si = Ti.

This problem is NP-hard, as was shown in [38]. Thus, any method for this problem which
attempts to retain accuracy is likely to fail under some conditions, or to require exponential
time.

21-8 Handbook of Computational Molecular Biology

The method we use is the Strict Consensus Merger, described originally in [19]. This is
a polynomial time method which is based upon the theory of triangulated graphs, and has
provable accuracy under certain conditions.

Strict Consensus Merger

The Strict Consensus Merger of a set of trees is a technique we developed for use with
subtrees obtained through our DCM decompositions. Details of this technique are given in
[19, 20, 43]; here we provide a brief description.

The Strict Consensus Merger (SCM) operates by sequentially merging pairs of subtrees
until all the subtrees have been merged into a tree on the full set, and the particular order
in which the subtrees are merged matters. Given two trees t1 and t2 on S1 ⊆ S and S2 ⊆ S,
respectively, SCM operates as follows. First SCM computes S1 ∩ S2, the set of leaves that
the two trees share, and considers the two trees restricted to just that common set of leaves.
The strict consensus of these two subtrees (i.e., the most resolved common contraction of
the two trees) is then computed; this constitutes the “backbone” of the resultant tree. The
remaining pieces of t1 and t2 (on leaf sets S1 − S2 and S2 − S1, respectively) are then
reattached onto the backbone. If both t1 and t2 should contribute pieces to the same edge
of the backbone, then that edge is bisected, and all the pieces of both trees are attached to
that newly introduced node.

Note the following. First, the SCM of a set of trees can be computed in polynomial time,
since the strict consensus of two trees is a linear time operation. Also, the SCM of a set
of a set of trees is typically not a binary tree, since any conflict in the trees will result in
edge contractions during the merger of the trees together. Finally, even if the set of trees is
compatible (meaning that a supertree exists consistent with all the given trees), the SCM
of these trees may not produce such a compatible supertree. This last comment is not
surprising since the subtree compatibility problem is NP-hard [38], and hence a polynomial
time algorithm cannot be expected to solve the problem. On the other hand, we showed
in [19] that when the subtrees are “big enough” (a statement we quantify exactly) and the
subtrees are compatible, then SCM does solve the subtree compatibility problem.

21.3.4 Phase III: Refining trees

The strict consensus merger contracts edges in the subtrees in order to make the subtrees
compatible with each other; as a consequence, the tree returned in Phase II is often not
fully resolved. We therefore apply techniques for refining the tree obtained in Phase II. A
typical approach for this refinement phase is to attempt to find a refinement of the given
tree that optimizes some criterion, such as the maximum parsimony criterion, among all
refinements. However, such problems tend to be NP-hard (see [4] for this problem when
the optimization criterion is maximum parsimony). Heuristics for refining trees so as to
optimize maximum parsimony are implemented in the major phylogeny software packages,
but are not particularly effective nor fast. Consequently, the optimal tree refinement (OTR)
problem is of general importance in phylogeny reconstruction.

21.4 Triangulated Graphs

We now turn to the basic theory of triangulated graphs. The particular properties of
triangulated graphs allow us to design these first two phases with provable performance
guarantees in terms of accuracy of the reconstructed tree, and in terms of running time.
(The interested reader is directed to Golumbic’s excellent book [14] from which much of

Large-scale Phylogenetic Analysis 21-9

this theory can be obtained.)

21.4.1 Basic material

We begin with a definition.

DEFINITION 21.5 A graph which has no induced simple cycles of length greater than
three is a triangulated graph.

Triangulated graphs are perfect graphs and are well-studied (see [14] for more on tri-
angulated graphs, and other classes of perfect graphs). The first basic theorem about
triangulated graphs is that each such graph has a perfect elimination scheme:

DEFINITION 21.6 A perfect elimination scheme for a graph G = (V,E) is an
ordering of the vertices v1, v2, . . . , vn, so that for each i = 1, 2, . . . , n − 1, Xi = Γ(vi) ∩
{vi+1, vi+2, . . . , vn} is a clique (here Γ(vi) indicates the neighbor set of vi).

Not only does every triangulated graph have a perfect elimination scheme, but such an
ordering can be found in polynomial time. Using the existence of a perfect elimination
scheme, the following two theorems (which are the basis for the decomposition of S into
overlapping subsets) can also be proved. The first result is as follows:

THEOREM 21.2 Every triangulated graph G = (V,E) has at most n = |V | maximal
cliques, and these can be found in O(n2) time.

THEOREM 21.3 For every triangulated graph G = (V,E), ∃X ⊆ V such that X is a
clique and G −X is the disjoint union of components C1, C2, . . . Ck. Furthermore, we can
find such an X that minimizes maxi|C ∪X | in O(n3) time, where n = |V |.

A basic aspect of the design of a DCM is producing a triangulated graph. Here we
describe two such ways of obtaining triangulated graphs.

21.4.2 Threshold graphs

Let S = {s1, s2, . . . , sn} be a set of taxa, let [dij] be a distance matrix for the set of taxa,
and let q be any non-negative real number. Then the threshold graph for d and q is defined
as follows:

DEFINITION 21.7 The threshold graph TG(d, q) has vertex set S and edges (si, sj)
such that dij ≤ q.

Therefore, if q ≥ max dij then TG(d, q) is a clique, and for small enough q (for example,
q = 0), the threshold graph will not be connected.

Before describing how we get triangulated graphs from threshold graphs, we need to
define additive distances.

DEFINITION 21.8 An n×n matrix [dij] for which there exists a tree T with n labeled

21-10 Handbook of Computational Molecular Biology

leaves, with positive edge-weighting w : E(T) → R+ so that dij =
∑

e∈Pij
w(e) for all i, j

(where Pij is the path in T between the leaves i and j) is said to be additive.

In [34] we proved the following:

THEOREM 21.4 Let d be an additive matrix, and let q be a real number. Then TG(d, q)
is triangulated.

21.4.3 Short subtree graphs

Let S be a set of taxa, and let T be a tree leaf-labeled by S, with non-negative edge-weights
w(e) assigned to each edge e in T .

DEFINITION 21.9 Let e be an edge of an edge-weighted binary tree T . Let t1, t2, t3,
and t4 be the four subtrees around the edge e (i.e., t1 through t4 are the components of
G− {x, y}, where e = (x, y)). Let xi denote those leaves in ti which are closest to the edge
e (using the path lengths defined by the edge-weighting on T). Then the short subtree
around e is x1 ∪ x2 ∪ x3 ∪ x4.

We now define the short subtree graph.

DEFINITION 21.10 Let T be a tree with leaf set S and edge weighting w : E(T)→ R+.
Let G be the graph with vertex set S and edge set E defined by (si, sj) ∈ E if and only if
∃e ∈ E(T) such that si and sj are both in the short subtree around e. This is the short
subtree graph of (T,w), denoted by SSG(T,w).

In [34] we showed the following:

THEOREM 21.5 Let T be any tree with positive edge-weighting w. Then the short
subtree graph defined by T and w is triangulated.

21.4.4 Decompositions of triangulated graphs

Theorems 21.2 and 21.3 imply two decompositions of the vertex set of a triangulated graph
G, as follows:

• Max-clique decomposition: Given a triangulated graph G, return the set of
maximal cliques of G.

• Separator-Component decomposition: Given G, find a clique separator X
and compute all the components of G − X . Then return the sets of the form
X ∪ C, where C is one of the components of G−X .

The first type of decomposition is uniquely determined by the triangulated graph, and for
this reason we will refer to it as “the max-clique decomposition”. However, a triangulated
graph can have many different clique separators, each of which thus can define a different
decomposition. For this reason, we will refer to any decomposition obtained by choosing a
clique separator as “a separator-component decomposition”. In Theorem 21.3 we showed
that picking a clique separator X so as to minimize the maximum size of any created sub-

Large-scale Phylogenetic Analysis 21-11

problem could be solved in O(n3) time, but this running time is not always acceptable.
Therefore, we may sometimes prefer to use a suboptimal separator-component decompo-
sition, i.e., one that would produce somewhat larger subproblems, if it can be computed
faster.

Now consider the difference between the max-clique decomposition and a separator-
component decomposition on the same fixed triangulated graph G. It is easy to see that the
max-clique decomposition will produce more subproblems (up to n of them, where n = |V |),
but each subproblem will be smaller (or at least not larger) than the subproblems obtained
by the separator-component decomposition. However, the separator-component decompo-
sition will produce potentially only a few subproblems. Furthermore, the pairwise intersec-
tions of the subsets produced by the max-clique decomposition can differ significantly (and
will even be disjoint in some cases), whereas in any separator-component decomposition
all pairwise intersections are the same. These differences will be significant in developing
DCMs for different base methods.

21.5 Designing DCMs

21.5.1 Introduction

All of our DCMs use the same three phase structure (although some also use recursion
and/or iteration), with the main difference between the DCMs being the decomposition
technique. All current DCMs first construct a triangulated graph and then apply either the
max-clique or a separator-component decomposition to the graph to obtain subproblems.
The combination of base method, choice of triangulated graph, and decomposition technique
on that triangulated graph, impact the behavior of the resultant “DCM-boosted” method.
For example, methods which will take a long time on big datasets will finish faster on the
max-clique decomposition. A more subtle point is the impact of error on subsets – since
the technique we use in merging subtrees contracts edges whenever two subtrees disagree,
there is a potential for a greater loss of resolution in the max-clique decomposition than in a
separator-component decomposition, especially when the separator is small. The difference
between using threshold graphs and short subtree graphs is also interesting, but depends as
much on the dataset as on the method. Thus, the design of a DCM reflects the particular
properties of the base method and of the particular dataset, and only by studying the actual
performance of the resultant DCM-boosted methods can we tell which design strategy will
be the most beneficial.

We begin this section with a description of how we obtain triangulated graphs from
molecular datasets.

21.5.2 Obtaining triangulated graphs from datasets

Threshold graph decompositions.

Threshold graph decompositions can be used on any dataset for which a distance can
be defined between each pair of taxa. In molecular sequence datasets, these distances can
be Hamming distances, or distances obtained under some statistical estimation procedure
selected to match the model of evolution underlying the dataset.

In a threshold graph decomposition, we are given a set S of sequences and a matrix [dij]
of distances on the set S of taxa. To compute a threshold graph we must first select the
threshold (the value q). We then construct the threshold graph, TG(d, q) (see Definition
21.7). If TG(d, q) is triangulated, we can compute either the max-clique decomposition,

21-12 Handbook of Computational Molecular Biology

or a separator-component decomposition; however, if TG(d, q) is not triangulated, then we
must first triangulate it, by adding edges to TG(d, q) so that the graph is triangulated.
However, when we add edges to TG(d, q) we affect the decompositions (either max-clique
or separator-component) that we can obtain from the triangulated graph.

In some of our DCMs our objective is to minimize the maximum evolutionary distance
within any subproblem, so that in a max-clique decomposition we would wish the cliques
to have the smallest maximum distance. This suggests the following objective in the tri-
angulation process: add edges to TG(d, q) so as to minimize the “weight” of the heaviest
edge added. This optimization problem is NP-hard, however, and so in our experiments,
we have used a greedy triangulation scheme that works reasonably well: compute for each
vertex v in the graph the value W (v) = max{dij : {i, j} ⊆ Γ(v)}, where Γ(v) denotes the
neighbors of the vertex v. Select the vertex v that minimizes W (v) and make it simplicial
(i.e., make the neighbors of v into a clique). Recurse on G−{v}. This approach produces a
triangulation of G but may not minimally triangulate the graph G; however, in our experi-
ments this worked quite well. (See also [24] for a polynomial time technique that creates a
triangulation with good theoretical properties.)

Thus, threshold graph decompositions have the following structure. They begin with a
distance matrix [dij], and operate as follows:

1. Pick a threshold q ∈ {dij}
2. Construct TG(d, q)
3. Add edges to TG(d, q) to triangulate it, producing graph G
4. Compute either the max-clique or a separator-component decomposition from G

Guide tree decompositions:

We now describe how we can obtain guide trees, and from them the triangulated short
subtree graph.

The most typical technique for obtaining a guide tree is to use some phylogeny recon-
struction method (such as a heuristic for maximum parsimony or maximum likelihood, or
perhaps a fast method such as neighbor joining) to obtain an estimation T of the true tree.
Given T , we can then use one of many techniques to assign edge lengths. For example,
if the set of taxa are biomolecular sequences in a multiple alignment, then we can assign
edge lengths to T by using the Fitch-Hartigan dynamic programming fixed-tree maximum
parsimony algorithm of [11] to assign sequences to internal nodes, and then use Hamming
distances to define edge lengths. We can also use maximum likelihood estimation of edge
lengths, which may be more accurate but will take more time than maximum parsimony. In
general, however, if T was obtained using a phylogeny reconstruction method, it will typ-
ically already have edge lengths (such is the case with the three techniques we mentioned
earlier - heuristic MP, heuristic ML, or neighbor joining).

Given the guide tree T with its edge lengths, we then compute the short subtree graph.
This is easily done in polynomial time. Once the short subtree graph is obtained, we
can compute either the max-clique or a separator-component decompositions on it (since
it is already triangulated). As noted before, finding an optimal separator-decomposition -
although polynomial time - can be more expensive than desired; consequently faster decom-
positions based upon clique-separators can also be used. In [33] we showed how we could
compute a decomposition we call the “heuristic centroid-edge” decomposition in linear time
(this fast running time was accomplished without explicitly constructing the short subtree
graph). This decomposition worked very well in practice, as we showed in [33, 34].

Large-scale Phylogenetic Analysis 21-13

21.5.3 Considerations in design strategies

We have described ways we can obtain triangulated graphs, and ways we can decompose a
triangulated graph. How do these choices interact with base methods?

Some methods - in particular, distance-based methods like neighbor joining [36], have poor
topological accuracy on datasets with large evolutionary diameters, although they are quite
fast. These methods would therefore seem to benefit from decompositions that produce
the smallest diameter subproblems. Other methods, in particular exhaustive searches for
optimal trees under hard optimization criteria, can only realistically handle quite small
datasets – maximum parsimony is limited to perhaps 20 or 25 taxa, and maximum likelihood
limited to much smaller datasets; these methods would require subproblems to be as small
as possible. In a third class are local-search heuristics (like the hill-climbing heuristics used
in maximum parsimony searches), which seem not to be impacted by large diameters so
much, but are still impacted by dataset size. Understanding the best design strategy for
these local-search heuristics is more complicated.

The particular technique used to obtain a triangulated graph also has an impact on
the resultant DCM. If we use a guide tree, there is only one triangulated graph that we
can obtain, but different guide trees will produce potentially different decompositions. This
makes guide tree decompositions useful for heuristic searches for optimal trees under criteria
such as maximum parsimony, because as the search finds better solutions, it can become a
new guide tree, and a new decomposition can be obtained.

The issues involved in selecting threshold graph decompositions are more complicated.
In this case, the distance matrix [dij] is usually considered fixed, but the threshold can
change. If the threshold is too small, the threshold graph will not even be connected,
and so the tree on the full dataset cannot be reconstructed from subtrees, even if they
are correctly computed. If the threshold is too big, the subproblems become essentially
as difficult (almost as large and with almost the same evolutionary diameter) as the full
dataset, although correct subtrees on the subproblems would then be likely to define the
full tree. Thus, finding the “correct” threshold to use is a difficult problem.

Our experiments with real and simulated data showed us two very interesting things. The
first was that the threshold graphs obtained for biomolecular sequence datasets had very
large cliques – so large, in fact, that on many datasets the largest subproblems obtained
in a threshold graph decomposition were close to the full dataset size [33, 34]. This meant
that we’d be analyzing several subproblems of size almost the full dataset size, with the
consequence that there was little gained in using a threshold graph decomposition. On the
other hand, the subset sizes obtained by using reasonable guide trees (obtained using good
heuristic searches for MP, for example) produced much smaller subproblems for the same
datasets [33, 34], so that decompositions based upon the short subtree graph were more
suited for boosting heuristic searches for maximum parsimony or maximum likelihood.

Other experiments showed that even the best distance-based methods (neighbor joining,
for example) had poor topological accuracy on large diameter subproblems, confirming the
theory that had been established for the convergence rates (i.e., the sequence length require-
ments) of these methods [1]. In order to develop methods with provably good convergence
rates, we needed to work with threshold graphs, rather than with guide trees. In order to
obtain the provable theory, however, we had to take a third approach - rather than selecting
a threshold, we compute all possible threshold graphs (one for each threshold that creates
a connected graph), and hence we compute O(n2) trees, one for each threshold graph. We
then have to apply yet another step (whereby we obtain a single tree from the O(n2) trees)
in order to return a tree for the input taxa.

Finally, DCMs have also been designed for reconstructing phylogenies on whole genomes

21-14 Handbook of Computational Molecular Biology

(using gene order data) using the GRAPPA software suite (see [28] for a description of
GRAPPA and of the DCM-boosting designed for use with GRAPPA techniques). This
is empirically a harder problem – datasets above 13 or so genomes cannot be handled
by GRAPPA, and so decomposing the dataset into smaller subsets (each subset explicitly
limited to at most 13 genomes) is an absolute requirement.

In the next sections we describe the DCMs we used for boosting maximum parsimony
heuristics and for use with distance-based methods; readers interested in the use of DCMs
for boosting GRAPPA should see [28].

21.6 DCM-boosting Techniques for Maximum Parsimony

21.6.1 Objectives

We begin with a description of our DCMs for maximum parsimony. The main issue con-
fronting maximum parsimony and maximum likelihood heuristics is running time – they
take a long time to reach reasonable accuracy on large datasets. In fact, it is not uncommon
for phylogenetic analyses to take weeks or months (or years) on large datasets – and with
the increasing availability of sequence data, this trend may continue or even get worse.
Finding ways to make these analyses much faster is the objective of this algorithm design.

The simplest design of a DCM involves only one application of a base method on a
subproblem - so that after the subtrees are constructed and merged together, the analysis
stops. When the objective is to solve an optimization problem, however, this no longer
makes sense - we will want to continue searching for better trees as long as the data suggests
that we may not have found sufficiently good trees. Therefore, we would usually use the
output of a DCM as the input to a standard heuristic search, with the hope that the
improvement obtained by the DCM would give us a “head start” over standard approaches.
In addition, we would like to design DCMs that allow for iterative use, so that instead
of switching over to standard heuristic searches we could continue using DCM-boosted
heuristics. Thus, iterative-DCMs will be potentially beneficial for maximum parsimony (as
well as for other optimization problems).

Thus, DCMs which produce smaller subproblems make a lot of sense, and it would seem
that the smallest possible subproblems would be the most desirable. However, in our
experiments, the loss of resolution that results from using the max-clique decomposition
proved to be more of a problem than the running time used in a separator-component
decomposition, because the third phase in which we attempt to resolve the tree optimally
with respect to maximum parsimony was too expensive. Furthermore, we observed that the
subsets obtained using the threshold graph decomposition produced subproblems that were
quite big - 90% of the taxa in the largest subproblem - so that there was little improvement
gained in the running time.

For this reason, we developed the short subtree graph decomposition, since these produced
maximal cliques that were much smaller than the subproblems we obtained in the threshold
graph decompositions. What seems to have worked quite well for maximum parsimony
heuristics is to produce a separator-component decomposition on a short subtree graph:
these subproblems contain no more than 50-60% of the taxa, and so are substantially
smaller than the subproblems obtained using the threshold graph decomposition. The
separators we find in these decompositions tend also to be very small – four or five taxa,
in fact. Furthermore, because these subproblems overlap only on the separator, very little
resolution is lost during the merger of the subtrees into the supertree. Finally, when 50-
60% of the taxa is still too large for the base method, we examined recursive uses of the
decomposition.

Large-scale Phylogenetic Analysis 21-15

21.6.2 DCM3

Thus, we have several variants of a basic design, which we call DCM3. In its simplest
form, we would use some technique to obtain a guide tree, and then compute the short
subtree graph from the guide tree. We would then compute some separator-component
decomposition based upon the guide tree, thus producing a set of subsets of the original
taxa. Following this, we would apply the base method to the subproblems, merge the
resultant subtrees using the strict consensus merger, and then refine the tree. In summary,
the basic algorithm is as follows.

DCM3(T1, w).
The input to this routine is a tree, T1, leaf-labeled by a set S of sequence, and an edge

weighting w of T1.

1. Construct G = SSG(T1, w), the short subtree graph based upon the guide tree
T1 with edge-weighting w. Compute a separator-component decomposition on
G, producing subsets Si = Ci ∪ X , where X is the separator and Ci is the ith

component of G−X .
2. Let ti be T1|Si (that is, ti is the subtree of T1 induced by the set Si of taxa).

Use a preferred method to construct trees on each subset, starting with the tree
ti for the subset Si.

3. Merge the resultant subtrees using the Strict Consensus Merger.
4. Return a refinement of the resultant tree.

Several comments are worth making here. The first is to note that we do not simply apply
the favored heuristic to each subproblem, but rather we take advantage of our current best
tree (the guide tree, that is) in order to initialize the search at a (hopefully) good tree. That
is, we will begin our search for the optimal tree on the subset Si with the tree ti.

Secondly, we have left open several steps of the technique: for example, which separator-
component decomposition do we compute?, how do we refine the resultant tree?, how exactly
do we obtain the guide tree T1?, and how long do we apply our favored heuristic on each
subset Si? These are all aspects of the design of DCM3 that will depend quite strongly
upon the particular base method, as well as the properties of the dataset being analyzed.

Furthermore, we can choose different MP heuristics for each of the steps (one for the
initial step where we obtain our tree T1, and another where we analyze subsets). Also, we
can try to optimize the decomposition as described above or just take some reasonably good
decomposition, and we can attempt to optimally refine the unresolved tree we get from the
Strict Consensus Merger, or we can refine it heuristically (or even randomly). Thus, the
particular application of this DCM3 strategy involves decisions at various points.

21.6.3 Iterative-DCM3

The main use we have made of DCM3 is in its iterative form, where we have alternated
between the use of a heuristic on the full dataset and the use of the same heuristic (perhaps
applied slightly differently) on the subproblems. That is, Iterative-DCM3 follows upon the
construction of an initial guide tree (T1), and has the following steps.

• Repeat until you want to stop:

– Let T = DCM3(T1) (i.e. T is the tree obtained by applying DCM3 to the
guide tree T1)

21-16 Handbook of Computational Molecular Biology

– Apply your favored heuristic to T until you reach a local optimum, or until
you satisfy some stopping rule, and let T1 be the current best tree.

Note that this use of DCM3 introduces yet another level of flexibility (or ambiguity):
now we have three places where we will apply a heuristic for MP to a dataset: the initial
stage, where we obtain our first estimate of the optimal tree from scratch, and then we will
alternate between applying a heuristic just to subsets, and applying a heuristic to the full
set. We may elect to use the same basic heuristic, but apply it with fewer or more iterations
depending upon the size of the subset being analyzed. Or, we may change the heuristic we
use (and not just vary it by changing the number of iterations) depending upon the size or
features of the subset. These issues again will depend upon the features of the dataset and
the optimization criterion, as well as upon the desired level of accuracy and/or the amount
of time that is available for the analysis.

21.6.4 Recursive DCM3

Recursive DCM3 is a simple modification of DCM3, in which we recursively decompose
subsets until we reach a desired subset size. Then we apply the favored heuristic to the
subsets (starting, as before, with the subtree induced by the guide tree on each subset),
and then merge trees using the strict consensus merger as we go back up the recursion
tree. Once all the subtrees are merged into a tree on the full dataset, we then apply the
refinement step.

The main advantage of Recursive-DCM3 is that the subproblems can be made signifi-
cantly smaller, even with just one or two levels of recursion.

21.6.5 Recursive-Iterative-DCM3

Recursive-Iterative-DCM3 combines both recursion and iteration, so that we iteratively call
Recursive-DCM3. This technique has the best performance of the various techniques we
examined in our studies, when the base methods were standard heuristics for maximum
parsimony.

21.6.6 Experimental results

In this section we summarize the results of fairly extensive studies on real datasets ranging
from 1000 sequences up to almost 14,000 sequences, with base methods for maximum par-
simony taken from different software packages. An example of one such study is given in
Figure 21.6.6.

We have experimented with several variants of DCMs for use with heuristics for maxi-
mum parsimony on a number of very large datasets. These experiments have examined base
methods and compared them to their DCM-boosted versions on a number of real dataset-
s. We included DCM2, which is the separator-component decomposition based upon the
threshold graph obtained using the smallest threshold that produces a connected graph [20].
In order to compare DCM2 and DCM3 to base heuristics, we used the output of DCM2 and
DCM3 as a starting tree for their base heuristics, so that we could explore performance over
a longer period of time. Thus, the comparison is made as a function of time – examining the
best MP score found at each point in time, over a period of days or weeks (depending upon
the dataset). We consider DCM-boosting to be advantageous if we obtain an improvement
at every point in time for a considerable length of time, preferably for at least 24 hours.
These experiments (detailed in [33, 34]) showed the following:

Large-scale Phylogenetic Analysis 21-17

• The better the base method is, the better the DCM must be in order to obtain
an advantage over the base method. Thus, even a poor DCM can improve upon
a poor base method, but for the best base methods, we need very good DCMs
to obtain an advantage.

• DCM2 (the separator-component decomposition applied to a threshold graph)
produces subproblems that are very large, and the decomposition takes a long
time. In fact, when we use very good heuristics for MP, DCM2-boosting worsens
the performance rather than improving it. Consequently, DCM2 is not helpful
for solving maximum parsimony on most datasets we examined, by comparison
to good base heuristics.

• DCM3, based upon finding an optimal decomposition but using a random refine-
ment, and then continuing with the base heuristic, did not typically improve the
performance of the best base methods, but it also didn’t generally make things
worse.

• Recursive-DCM3 gave a slight advantage over the best base heuristics, and a
somewhat larger advantage over other base methods.

• Iterative-DCM3 gave a somewhat larger advantage over all base methods than
Recursive-DCM3.

• Recursive-Iterative-DCM3, using both optimal and heuristic decompositions, gave
the largest advantages over even the best base heuristics.

• All advantages obtained by any DCM-boosting technique depended on the diffi-
culty of the dataset and the quality of the base heuristic. Thus, when used with
good base heuristics on small to moderately large datasets, the advantage is not
always significant. Thus, the main advantage obtained is on the largest and most
difficult datasets.

21.7 DCM-boosting Distance-based Methods

21.7.1 Objectives

In this section we describe the DCM we have developed for use with distance-based recon-
struction methods, such as neighbor joining (NJ).

The best distance-based methods are very fast, and topologically very accurate even on
large datasets as long as the subproblems have small diameter. However, as the diameter
increases, their accuracy decreases (see [27, 29, 30, 31]). This empirical observation is
supported by the theory that has been established about these methods as described earlier
in the chapter.

Thus, the main empirical purpose in devising a DCM for use with neighbor joining is to
produce a method that will enable recovering the true tree from shorter sequences (as well
as more accurate trees at every sequence length). However, the main theoretical purpose
is to use DCM-boosting so as to produce an absolute fast converging (afc) method from
NJ (see Definition 21.3). The design of the DCMs for use with NJ (and other distance-
based methods) differ slightly depending upon whether the empirical goal or the theoretical
objective is more important.

21-18 Handbook of Computational Molecular Biology

0 4 8 12 16 20 24
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (hours)

A
ve

ra
ge

 %
 a

bo
ve

 th
e

be
st

 k
no

w
n

sc
or

e

DCM2
TNT
DCM3
Rec−DCM3
I−DCM3
Rec−I−DCM3

FIGURE 21.1: The performance of different versions of DCM3(TNT) on a dataset of 4114 aligned
16s rRNA Actinobacteria sequences, each of length 1263 (from the Ribosomal
Database Project at the University of Michigan). The x-axis reports the best
MP score found by each method during the first 24 hours of analysis. The y-axis
measures the error rate of each method as a percentage above the current best M-
P score found on this dataset, where “current best” means the best score found
using any method over any amount of time. The base method is the Ratchet
heuristic for MP within the TNT software [13]. The recursive-DCM3 code pro-
duces subsets of size 1/8th the original dataset size. Each point is the average of
5 runs, and all runs are done on the same machines – 700MHz Pentiums.

21.7.2 DCM1NJ + SQS: Designing an afc method using DCM-boosting

In [43] we gave a technique to produce an absolute fast converging method from any method
with an exponential convergence rate, such as neighbor joining. Recalling the definition of
the threshold graph given in Definition 21.7, the DCM1 decomposition, and the Strict
Consensus Merger, the technique is as follows:

DCM1NJ + SQS:

• Phase I:

– For each q ∈ {dij}, compute tq = DCM1(TG(d, q)); i.e.,
∗ Construct the threshold graph TG(d, q), and triangulate it with a min-

imum weight triangulation (minimizing the maximum weight of any
added edge).

∗ Compute the max-clique decomposition of TG(d, q), and construct trees
on each maximal clique using neighbor joining.

∗ Merge the trees together using the Strict Consensus Merger.
• Phase II:

– Evaluate each tree tq according to the Short Quartet Support Criterion
(SQS) (see [43]).

– Return the tree with the best score.

We have explicitly referenced the neighbor-joining (NJ) method in this description, but
any method could be used in its place as a base method. However, in order to obtain a

Large-scale Phylogenetic Analysis 21-19

theoretical guarantee of fast convergence, the base method needs to have a convergence rate
that is no worse than exponential in the maximum evolutionary diameter of the model tree
(this is true for NJ and most of the other distance-based methods that have been proposed).

Note that this DCM requires that the triangulation of the threshold graph be optimal,
which requires therefore solving an NP-hard problem. However, in [24] Jens Lagergren
showed that certain polynomial time triangulation techniques also have the desired theo-
retical properties so that his variant of DCM-boosting would also produce an afc method
without requiring an exact solution to the NP-hard problem of minimally triangulating the
threshold graph.

21.7.3 Improving the empirical performance of DCM1NJ + SQS

DCM1NJ + SQS is designed for theoretical performance, and thus involves more compu-
tational time than we would want (in particular, it involves solving a hard computational
problem and it produces O(n2) trees in Phase I). Improving upon the speed of this DCM is
a necessary objective if this technique is going to be useful for any real analysis. Further-
more, the specific technique used in Phase II (selecting the tree which optimizes the Short
Quartet Support) was also used because of its theoretical properties, but that technique
- although theoretically optimal - turns out not to have as good performance (as shown
in our simulation studies) as other criteria. Thus, in a later study [30] we explored the
empirical consequences of modifying the algorithmic design of DCM1NJ + SQS, in order
to improve the speed and/or accuracy in simulated and real datasets. We specifically ex-
amined a variant where we modified Phase I by examining only ten thresholds (rather than
all possible thresholds), and where we used a greedy technique to triangulate the threshold
graph (as described earlier in this chapter). We then modified Phase II by selecting the
tree that optimized some other criterion (we examined specifically maximum parsimony or
maximum likelihood, and found them largely to have the same performance and both su-
perior to SQS). These studies led us to propose (as heuristics) two DCMs for boosting NJ:
DCM1NJ + MP and DCM1NJ + ML, neither of which has provable theoretical perfor-
mance, but both of which provide a distinct topological accuracy advantage over NJ, while
being still reasonably fast. (Neither is as fast as NJ, but both are fast enough to complete
analyses in a few minutes rather than in hours or days, as any serious MP or ML analysis
would require.)

21.7.4 Experimental Results

We designed a simulation study to explore the relative performance of our heuristic ap-
proximations to DCM1NJ + MP and DCM1NJ + SQS, in comparison to NJ and to a
provably afc method called HGT+FP (for “Harmonic Greedy Triplets, plus the Four Point
Method) [7], a sample of which is shown in Figure 21.7.4. (See [27, 29, 31, 35] for some
more experiments.) Our two methods are thus not provably afc but rather only heuristic
approximations to DCM1NJ + SQS, which is afc.

Our implementation of DCM1NJ +SQS is heuristic because we only examine ten thresh-
olds rather than all possible thresholds, and we do not optimally triangulate the threshold
graphs, thus it is not provably afc. Even perhaps more serious, from a theoretical viewpoint,
the use of MP as the selection criterion in the second phase of DCM1NJ +MP automat-
ically makes the method not afc and probably not even provably statistically consistent.

However, the difference in performance between the methods is striking. The error rates of
NJ rises quite quickly, but the remaining methods have flat error rates in these experiments.

21-20 Handbook of Computational Molecular Biology

Furthermore, using MP rather than SQS improves the performance of DCM1NJ , even
though from a theoretical perspective it is worse. Finally, although HGT+FP is provably
afc its performance is worse than the DCM1NJ methods on all these datasets.

The difference in performance between these methods is due to a combination of factors.
NJ’s performance problem is due to the fact that it uses all the entries of the matrix,
without sufficiently downweighting large entries, and hence has an exponential convergence
rate. The difference in performance between HGT+FP and our DCM1NJ methods is
largely due to the improvement obtained in practice by using NJ rather than a quartet-
based method, which is what HGT+FP essentially uses. The difference in performance
between DCM1NJ + SQS and DCM1NJ + MP is more mysterious: why should MP,
which is not statistically consistent, outperform SQS as a selection criterion? Once again,
the difference may be in the specific design of SQS; it is based upon quartet accuracy,
with a particular technique to determine the “correct” tree on each quartet. Although
this criterion is theoretically sound, empirically quartet-based methods (such as SQS) are
not as accurate as methods that compute trees from all the data. Despite the theoretical
guarantees that can be established for quartet methods, they have in general not been able
to be as accurate in simulation as the neighbor joining method, as shown in [21].

The lesson from this comparison of distance-based methods is an interesting one, and
instructive: while dividing into subproblems can yield improvements in accuracy, precisely
how one divides into subproblems is tremendously important.

0 400 800 1200 1600
NUMBER OF TAXA

0.0

0.2

0.4

0.6

0.8

E
R

R
O

R
R

A
T

E

NJ
HGT FP
DCMNJ + SQS
DCMNJ + MP

FIGURE 21.2: The performance of DCM1NJ with different techniques used in Phase II, com-
pared to NJ and to another afc method, HGT+FP, as a function of the number
of taxa. In this experiment we simulated evolution of sequences with 1000 sites
down uniform distribution random trees with branch lengths drawn from the
same distribution under the Kimura 2-parameter model [23] of evolution. K2P
distances were used as inputs to each method.

References 21-21

21.8 Related Work and Conclusions

DCM-boosting has also been used to improve the speed of software for the inversion and
breakpoint phylogeny problems (both NP-hard problems) within the GRAPPA software
suite for whole genome phylogeny reconstruction [28]. There are two basic challenges for
GRAPPA’s phylogenetic analysis: first, because the techniques employed within GRAPPA
exhaustively search all trees on each input dataset, GRAPPA is explicitly limited to ana-
lyzing datasets below (about) 14 taxa. Secondly, because of its design, GRAPPA is unable
to efficiently analyze any dataset where the underlying tree has very large edge lengths.
The authors used a DCM in order to address the first of these two challenges; the second
remains a problem for any explicit attempt to solve these optimization problems.

The DCM they designed for use with GRAPPA [28] employed many levels of recursion,
so that each subproblem was small enough. The specific design of their DCM was similar
to the DCM1 design, but computed a consensus tree of the different trees (one for each
threshold) they obtained, and they studied their DCM-boosting technique in simulation.
Their study showed that using DCM-boosting allowed GRAPPA to be applied to datasets
with thousands of taxa, in other words a huge improvement in performance.

Future research will explore DCMs for other types of base methods, such as maximum
likelihood and phylogenetic sequence alignment [37].

Finally, we note that other divide-and-conquer strategies have been proposed. Some of
the most well known are quartet-based methods, such as quartet puzzling [40], quartet-
cleaning [3], the Q∗ method [2], and the short quartet methods [8, 9], but none of these has
been shown to reliably outperform neighbor joining (see [21] for some of these results). On
the other hand, methods such as Compartmentalization [26] are also promising, and could
be investigated. Research into supertree methods which can construct trees from arbitrarily
defined subtrees also needs further investigation.

Acknowledgments

This work was supported in part by the National Science Foundation, the David and Lucile
Packard Foundation, the Institute for Cellular and Molecular Biology at the University of
Texas at Austin, the Radcliffe Institute for Advanced Study, and the Program for Evolu-
tionary Dynamics at Harvard University.

References

[1] K. Atteson. The performance of the neighbor-joining methods of phylogenetic recon-
struction. Algorithmica, 25:251–278, 1999.

[2] V. Berry and O. Gascuel. Inferring evolutionary trees with strong combinatorial evi-
dence. In Proc. 3rd Ann. Int’l Conf. Computing and Combinatorics (COCOON97),
pages 111–123. Springer Verlag, 1997. in LNCS 1276.

[3] V. Berry, T. Jiang, P. Kearney, and M. Li et al. Quartet cleaning: improved algorithms
and simulations. In Proc. Europ. Symp. Algs. ESA99, pages 313–324. Springer Verlag,
1999. in LNCS 1643.

[4] M. Bonet, M. Steel, T. Warnow, and S. Yooseph. Faster algorithms for solving parsi-
mony and compatibility. J. Comput. Biol., 5:409–422, 1999.

[5] B. Chor and T. Tuller. Maximum likelihood of evolutionary trees is hard. In RECOMB

21-22 References

2005, 2005.
[6] M. Cryan, L. Goldberg, and P. Goldberg. Evolutionary trees can be learned in polyno-

mial time in the two-state general Markov model. In Proc. IEEE Symp. Foundations
of Comput. Sci. (FOCS98), pages 436–445, 1998.

[7] M. Csűrös. Fast recovery of evolutionary trees with thousands of nodes. Journal of
Computational Biology, 9(2):277–297, 2002.

[8] P.L. Erdos, M. Steel, L. Székély, and T. Warnow. A few logs suffice to build almost
all trees –I. Random Structures and Algorithms, 14:153–184, 1997.

[9] P.L. Erdos, M. Steel, L. Székély, and T. Warnow. A few logs suffice to build almost
all trees –II. Theor. Comp. Sci., 221:77–118, 1999.

[10] J. Felsenstein. Cases in which parsimony and compatibility methods will be positively
misleading. Syst. Zool., 27:401–410, 1978.

[11] W.M. Fitch. Toward defining the course of evolution: minimum change for a specified
tree topology. Syst. Zool., 20:406–416, 1971.

[12] L.R. Foulds and R.L. Graham. The Steiner problem in phylogeny is NP-complete.
Advances in Applied Mathematics, 3:43–49, 1982.

[13] P.A. Goloboff. Analyzing large data sets in reasonable times: solution for composite
optima. Cladistics, 15:415–428, 1999.

[14] M. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press Inc,
1980.

[15] D.M. Hillis. Inferring complex phylogenies. Nature, 383:130–131, 1996.
[16] D.M. Hillis, C. Moritz, and B. Mable. Molecular Systematics. Sinauer Pub., Boston,

1996.
[17] J. Huelsenbeck. Performance of phylogenetic methods in simulation. Syst. Biol.,

44:17–48, 1995.
[18] J. Huelsenbeck and D. Hillis. Success of phylogenetic methods in the four-taxon case.

Syst. Biol., 42:247–264, 1993.
[19] D. Huson, S. Nettles, and T. Warnow. Disk-covering, a fast-converging method for

phylogenetic tree reconstruction. Journal of Computational Biology, 6:369–386, 1999.
[20] D. Huson, L. Vawter, and T. Warnow. Solving large scale phylogenetic problems using

DCM2. In Intelligent Systems for Molecular Biology, pages 118–129, 1999.
[21] K. St. John, B.M. Moret, L. Vawter, and T. Warnow. Performance study of phyloge-

netic methods: (unweighted) quartet methods and neighbor-joining. J. of Algorithms,
48(1):173–193, 2003. Also appeared in the Proceedings of 2001 ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA 01).

[22] J. Kim and T. Warnow. Tutorial on phylogenetic tree estimation. In Proc. 7th Int’l
Conf. on Intelligent Systems for Mol. Biol. (ISMB99), 1999.

[23] M. Kimura. A simple method for estimating evolutionary rates of base substitutions
through comparative studies of nucleotide sequences. J. Mol. Evol., 16:111–120, 1980.

[24] J. Lagergren. Combining polynomial running time and fast convergence for the disk-
covering method. Journal of Computer and System Science, 65(3):481–493, 2002.

[25] W.H. Li. Molecular Evolution. Sinauer, Massachuesetts, 1997.
[26] B.D. Mishler. Cladistic analysis of molecular and morphological data. American

Journal of Physical Anthropology, 94:143–156, 1994.
[27] B.M.E. Moret, U. Roshan, and T. Warnow. Sequence length requirements for phy-

logenetic methods. In Proc. 2nd Int’l Workshop Algorithms in Bioinformatics
(WABI’02), volume 2452 of Lecture Notes in Computer Science, pages 343–356.
Springer-Verlag, 2002.

[28] B.M.E. Moret, J. Tang, and T. Warnow. Reconstructing phylogenies from gene-content
and gene-order data. Mathematics of Evolution and Phylogeny, pages 321–352, 2005.

References 21-23

[29] L. Nakhleh, B.M.E. Moret, U. Roshan, and K. St. John et al. The accuracy of fast
phylogenetic methods for large datasets. In Proc. 7th Pacific Symp. Biocomputing
(PSB’2002), pages 211–222. World Scientific Pub., 2002.

[30] L. Nakhleh, U. Roshan, K. St. John, and J. Sun et al. Designing fast converging
phylogenetic methods. In Proc. 9th Int’l Conf. on Intelligent Systems for Molecular
Biology (ISMB’01), volume 17 of Bioinformatics, pages S190–S198. Oxford U. Press,
2001.

[31] L. Nakhleh, U. Roshan, K. St. John, and J. Sun et al. The performance of phylogenetic
methods on trees of bounded diameter. In Proc. 1st Int’l Workshop Algorithms in
Bioinformatics (WABI’01), volume 2149 of Lecture Notes in Computer Science,
pages 214–226. Springer-Verlag, 2001.

[32] D.F. Robinson and L.R. Foulds. Comparison of phylogenetic trees. Mathematical
Biosciences, 53:131–147, 1981.

[33] U. Roshan. Algorithmic techniques for improving the speed and accuracy of phylo-
genetic methods. PhD thesis, The University of Texas at Austin, 2004.

[34] U. Roshan, B.M.E. Moret, T. Warnow, and T.L. Williams. Rec-I-DCM3: a fast algo-
rithmic technique for reconstructing large phylogenetic trees. In Proceedings of the
IEEE Computational Systems Bioinformatics conference (CSB), Stanford, Califor-
nia, USA, 2004.

[35] U. Roshan, B.M.E. Moret, T.L. Williams, and T. Warnow. Performance of supertree
methods on various dataset decompositions. In O.R.P. Bininda-Emonds, editor, Phy-
logenetic Supertrees: Combining Information to Reveal the Tree of Life, volume 3
of Computational Biology, pages 301–328. Kluwer Academics, 2004. (Dress, A. series
ed.).

[36] N. Saitou and M. Nei. The neighbor-joining method: A new method for reconstructing
phylogenetic trees. Mol. Biol. Evol., 4:406–425, 1987.

[37] D.D. Sankoff and R.J. Cedergren. Simultaneous comparison of three or more sequences
related by a tree. In D. Sankoff and J.B. Kruskal, editors, Time Warps, String Edits,
and Macromolecules: the Theory and Practice of Sequence Comparison, pages 253–
264. Addison-Wesley, Reading, MA, 2003.

[38] M.A. Steel. The complexity of reconstructing trees from qualitative characters and
subtrees. Journal of Classification, 9:91–116, 1992.

[39] M.A. Steel. Recovering a tree from the leaf colourations it generates under a Markov
model. Appl. Math. Lett., 7:19–24, 1994.

[40] K. Strimmer and A. von Haeseler. Quartet puzzling: A quartet maximum likeli-
hood method for reconstructing tree topologies. Molecular Biology and Evolution,
13(7):964–969, 1996.

[41] D.L. Swofford. PAUP*: Phylogenetic analysis using parsimony (and other methods),
1996. Sinauer Associates, Sunderland, Massachusetts, Version 4.0.

[42] C. Tuffley and M.A. Steel. Modelling the covarion hypothesis of nucleotide substitution.
Mathematical Biosciences, 147:63–91, 1997.

[43] T. Warnow, B.M. Moret, and K. St. John. Absolute convergence: true trees from short
sequences. Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA
01), pages 186–195, 2001.

22
High-Performance Algorithms for

Phylogeny Reconstruction with
Maximum Parsimony

David A. Bader
Georgia Institute of Technology

Mi Yan
University of New Mexico

22.1 Introduction . 22-1
22.2 Whole-Genome Based Phylogeny Reconstruction 22-2

Incremental Tree Generators • A Linear-Time
Algorithm to Compute Inversion Distance • GRAPPA

22.3 Breakpoint Analysis (BPAnalysis) 22-6
22.4 Sequence-Based Phylogeny Reconstruction 22-7

Branch-and-Bound Optimization Approaches •

Preprocessing of input data • Fast algorithms to
compute tree length • Parallel implementation on a
symmetric multiprocessor (SMP) • Experimental
results

22.5 Conclusions . 22-17

22.1 Introduction

All biological disciplines are united by the idea that species share a common history. These
relationships are crucial to the understanding of biological evolution and biological mech-
anisms in medical and pharmaceutical research. The evolutionary history is usually rep-
resented by a phylogeny, an unrooted, binary tree where each leaf represents a species.
Phylogeny reconstruction, the problem of inferring the evolutionary relationships from the
set of leaves by using sequence (e.g., from the DNA of nuclear or organelle genomes), mor-
phological, or gene-order data, and a plausible model of evolution, is a fundamental problem
in computational biology and is increasingly used in drug discovery, epidemiology, and ge-
netic engineering [4]. Unfortunately, most problems in phylogeny reconstruction are proven
to be NP-hard problems that can take years to solve on realistic datasets [8, 32]. De-
spite the large number of available tools and approaches, even moderate-sized datasets can
require months or years of computation. Many biologists throughout the world compute
phylogenies involving weeks or years of computation without necessarily finding global op-
tima. Certainly more such computational analyses will be needed for larger datasets. The
enormous computational demands in terms of time and storage for solving phylogenetic
problems can only be met through high-performance computing.

Swofford et al. [39] gave an overview of phylogeny reconstruction methods and categorize
them into criteria-based and direct approaches. Criteria-based approaches examine all
trees and choose the trees that are optimal according to some criteria, such as Maximum

22-1

22-2 Handbook of Computational Molecular Biology

Likelihood (ML) and Maximum Parsimony (MP); while direct approaches reconstruct a
tree directly from a pairwise distance matrix, such as Neighbor-Joining (NJ) [35, 37]. MP
is arguably the most widely-used criteria by far, and the experimental studies on sequence
data in [34] show that parsimony is hard to beat. The principle of a MP approach is to
choose the trees that show the smallest amount of evolutionary change. Since there are
(2n− 5)!! = 1 · 3 · 5 · · · (2n− 5) unrooted binary trees given n species (e.g., almost 14 billion
trees for n = 13), it is prohibitively expensive and very time-consuming to examine all trees
to obtain the exact optimal trees. Note that we use the term taxa in this chapter to represent
the taxonomic units such as species contained in the tree. Most researchers focus on heuristic
algorithms that examine only a certain number of topologies that are likely to be close to
the true tree and choose the best one examined for very large datasets (perhaps examining
hundreds to thousands of candidate trees). It may be meaningful to find exact MP solutions
for small to moderate sized datasets, or to characterize the quality of approximations from
heuristic approaches. Therefore, we investigate new high-performance approaches to find
the exact solution for the phylogeny reconstruction problem under maximum parsimony
criteria.

Several software packages reconstruct sequence-based phylogeny. The most popular
phylogeny software suites that contain parsimony methods are PAUP* by Swofford [38],
PHYLIP by Felsenstein [15], and TNT and NONA by Goloboff [19, 31]. We have developed
a freely-available shared-memory code for computing MP, that is part of our software suite,
GRAPPA (Genome Rearrangement Analysis through Parsimony and other Phylogenetic
Algorithms) [28]. GRAPPA was designed to re-implement, extend, and especially speed up
the breakpoint analysis (BPAnalysis) method of Sankoff and Blanchette [36]. Breakpoint
analysis is another form of parsimony-based phylogeny where species are represented by
ordered sets of genes and distances is measured relative to differences in orderings. It is
also solved by branch and bound. One feature of our MP software is that it does not con-
strain the character states of the input and can use real molecular data and also characters
reduced from gene-order data such as Maximum Parsimony on Binary Encodings (MPBE)
[11].

Scientists study species evolution at two levels: from sequences to whole genomes. Sequence-
based evolution has been studied for many years while investigating whole-genome-based
evolution is a relatively new area. In the following chapter, we not only investigate new ap-
proaches for phylogeny-related problems on sequence data, but also discuss open problems
for genome-based phylogeny. In Section 22.2 we describe our work on genome data: the
first linear time algorithm to compute the inversion distance between two signed gene order,
efficient tree generators, and GRAPPA, software we co-developed for the high-performance
reconstruction of evolutionary histories. In Section 22.4 we introduce the main concepts
used in sequence-based phylogeny reconstruction. We put forward several new techniques
to preprocess the input data before performing combinatorial optimizations such as branch-
and-bound (B&B) searches. We also propose a fast character algorithm to compute tree
lengths that can be used during a local tree optimization search including B&B, subtree
pruning and re-grafting (SPR), and tree bisection and reconnection (TBR) searches. Final-
ly, in Section 22.5 are our conclusions.

22.2 Whole-Genome Based Phylogeny Reconstruction

In whole genome-based phylogeny reconstructions, species are represented by their genomes
which are described by a set of chromosomes, each consisting of an ordered set of genes.
This type of data (with gene order, orientation, and number) presents new opportunities

High-Performance Phylogeny Reconstruction 22-3

for discoveries about deep evolutionary rearrangement events. Phylogenetic analysis based
on whole genomes and gene-order data is a new and computationally-hard field, and fast
and accurate techniques are of utmost concern for large-scale genome-based phylogeny re-
construction.

22.2.1 Incremental Tree Generators

Exploring tree space, whether exhaustively or selectively, requires the efficient generation
of tree topologies. Since the tree space for examination is often huge or intractably large,
and it is typically impossible to generate and store all of the tree topologies. Instead, one
can generate a tree, evaluate it, then generate the next tree. The desired tree generator
must be interruptible and restartable at any point. In [40] we give a series of tree generator
algorithms that not only meet the above requirement but also allow a stepping feature that
enables us to sample the tree space or easily partition the tree space on parallel computers.

Given n taxa, the basic approach to generate all (2n−5)!! tree topologies is illustrated in
Fig. 22.1. Tree A is the initial core tree, the unique unrooted binary tree of the first three
taxa labeled 1, 2, and 3. Taxon 4 can be added at any branch of Tree A resulting in the
four-taxon trees B,C, and D. In a similar fashion, taxon 5 can be added at any branch
of the four-taxon trees to generate the five-taxon trees. For example, from tree C, we can
get five five-taxon trees, C1, C2, C3, C4, and C5. We repeatedly add taxa one by one until
all taxa are connected to the tree. An unrooted binary tree Tk with k leaves has (2k − 3)
edges. Thus, the unrooted binary tree Tk+1 on (k + 1) taxa can be generated from Tk by
inserting the (k + 1)th taxon onto any edge of Tk.

Let ik take a value in {1, . . . , k} and represent the position where the new taxon is
inserted at each level. Then there is a one-to-one mapping between each tree topology and
its unique id, a vector (i3, i5, i7, . . . , i2n−5). We generate each tree Tid in the following order.
By convention, the digits of the id are ordered from left-to-right going from the least to
most significant. The first tree is the one with id = (1, 1, . . . , 1). During the tree generation,
we retain the path from the initial core tree of the first three taxa to the current tree Tm.
When generating T(m+s), the tree s steps away from Tm, first we find the nearest common
ancestor T l of Tm and T(m+s), then generate T(m+s) from T l. By using the pre-order tree
encoding, this incremental tree generations leads to a fast tree generator. Assuming any
leaf to be a root that has only one left child, each partial tree on the generating path can be
represented by its pre-order traversal. After adding one taxon to a partial tree, we create a
pair of vertices in the tree, a new internal node bisecting the selected branch and a new leaf.
We suggest adding the new taxon as the left child such that this new pair of vertices can
be inserted contiguously before any element except the first one in the pre-order encoding.

The stepping feature allows any tree be generated directly. The generator makes it
possible to sample the tree space and acquire a gross knowledge of the landscape for large
datasets. Partitioning the tree space for processing by multiple processors is straightforward
using this tree generator. A parallel version may achieve linear speedup in the number of
processors if the computation is fairly-well balanced among the processors.

The similar tree generation mechanism cannot only be applied to the general binary tree
generator but can also be applied to the generation of constraint trees, subtree pruning
and re-grafting (SPR) trees, and tree bisection and reconnection (TBR) trees [40]. A
constraint tree generator produces only unrooted, binary trees that are compatible with a
given arbitrary tree and enables one to refine non-bifurcating phylogenies. As mentioned
previously, SPR and TBR are techniques to search locally around a good tree [38].

22-4 Handbook of Computational Molecular Biology

5

1

32

32

1

3

(B)

 (A)

(C) (D)

(C1) (C2) (C3) (C4) (C5)

1

4

2 3

1

32

1

2

4

4

5

4

32

1

32

1

32

1

3

4

5

4

5

4

5

2

1

4

FIGURE 22.1: An example of taxon addition tree generation. At top, tree A is the base three
taxa tree. Trees B, C, and D, represent the three four-taxa trees by adding taxon
4 to each of three branches of tree A.

22.2.2 A Linear-Time Algorithm to Compute Inversion Distance

In maximum-parsimony phylogeny reconstruction, one must score trees by computing the
tree length, the minimum number of evolutionary events along the edges of the tree. Thus,
one subproblem of computing tree length is to compute edge length, the distance between
two species. In many cases, the evolutionary process that operates on single-chromosome
organisms (such as mitochondria or chloroplasts) consists mostly of inversions of portions
of the chromosome. Assuming a fixed set of genes {g1, g2, . . . , gn}, each genome is then
an ordering (circular or linear) of these genes, with each gene given an orientation that is
either positive (gi) or negative (−gi). Let G be the genome with signed ordering (linear or
circular) g1, g2, . . . , gn, then an inversion between indices i and j, for i ≤ j, produces the
genome with linear ordering

g1, g2, . . . , gi−1,−gj,−gj−1, . . . ,−gi, gj+1, . . . , gn.

The inversion distance between two genomes (two signed permutations of the same set) is
then the minimum number of inversions that must be applied to one genome in order to
produce the other.

Hannenhalli and Pevzner [20] gave the first polynomial-time algorithm for computing the
inversion distance between two signed permutations, as part of the larger task of determining

High-Performance Phylogeny Reconstruction 22-5

the shortest sequence of inversions needed to transform one permutation into the other.
Their algorithm (restricted to distance calculation) proceeds in two stages: in the first stage,
the overlap graph induced by the permutation is decomposed into connected components,
then in the second stage certain graph structures (hurdles and others) are identified. Berman
and Hannenhalli [7] avoided the explicit computation of the overlap graph and gave an
O(nα(n)) algorithm, based on a Union-Find structure, to find its connected components,
where α is the inverse Ackermann function. The bottleneck in their algorithm is to compute
the connected components of the overlap graph.

We observe that it is sufficient to know which cycles belong to the same connected compo-
nent in order to recognize hurdles, and it is not necessary to know the connections between
cycles in each connected component. In [6], we introduced the concept of an overlap forest
that can be used instead to find the connected components. We describe a linear time algo-
rithm to construct the overlap forest, and thus, have the first linear-time inversion distance
calculation between two signed permutations. Our algorithm for computing connected com-
ponents scans the permutation twice. The first scan sets up a trivial forest in which each
node is its own tree, labeled with the beginning of its cycle. The second scan carries out an
iterative refinement of this forest, by adding edges and merging trees in the forest. Upon the
completion of the algorithm, it is known to which connected component each cycle belongs.
Unlike the Union-Find approach, we do not attempt to maintain the forest within certain
shape parameters, and this improvement leads to the linear time algorithm. Our algorithm
is not only the fastest in theory and in practice, but also is very easy to implement by using
a stack.

In [6], we give the results of computational experiments over a large range of permutation
pairs produced through simulated evolution. We generated test data according to the
evolutionary model of Nadeau and Taylor [29] using five evolutionary rates: 4, 16, 64, 256,
and 1024. This rate is the number of evolutionary events applied to the original sequence
to generate the two sequences used as the input permutation pairs. We ran experiments on
signed permutations of length 10, 20, 40, 80, 160, 320, and 640. Comparing with the Union-
Find approach, our experiments show a speedup by a factor of 2 to 5 in the computation of
the connected components and by a factor of 1.3 to 2 in the overall distance computation.

22.2.3 GRAPPA

The first heuristic given for reconstructing phylogeny trees from gene order is the breakpoint
phylogeny introduced by Sankoff and Blanchette in [36]. They use breakpoint distance as
the surrogate of true evolutionary distance such as inversion distance. Later, Blanchette and
Sankoff developed BPAnalysis, the software developed to solve the breakpoint phylogeny
problem. BPAnalysis (see Fig. 22.2) exhaustively examines every possible tree topology in
turn, and, for each topology, generates an optimized set of ancestral genomes that minimize
the total breakpoint distance in the tree. For each candidate tree topology, this algorithm
solves many instances of the breakpoint median-of-three problem as it searches for a locally
optimal tree labeling that minimizes the sum of the tree’s edge lengths. The breakpoint
median-of-three can be solved by a reduction to the Traveling Salesperson Problem (TSP)
where each gene maps to a pair of cities in an interesting twinned-city TSP instance. The
TSP instance may be solved exactly or approximately, and its tour gives the gene order
and orientation of the median-of-three genome. The computational complexity of the entire
algorithm is exponential in each of the number of genomes and the number of genes. Some
studies suggest that the breakpoint analysis approach works well for certain datasets, but
also find that BPAnalysis is too slow to use on all but very small datasets [11, 12].

22-6 Handbook of Computational Molecular Biology

for each tree T in the tree space do

Initially label all internal nodes with gene orders;

Repeat

for each internal node v, with neighbors A, B, and C, do
Solve the median problem for breakpoints on A,B,C to yield label m;
if relabeling v with m improves the score of T , then do it;

end

until no internal node can be relabeled ;

end

FIGURE 22.2: BPAnalysis

22.3 Breakpoint Analysis (BPAnalysis)

With colleagues at the University of New Mexico and the University of Texas at Austin,
we designed and implemented an experimental software platform Genome Rearrangement
Analysis under Parsimony and other Phylogenetic Algorithms (GRAPPA) [5, 28] for phylo-
genetic performance studies. GRAPPA performs an exhaustive search under the maximum
parsimony criterion and adopts a framework similar to BPAnalysis. In addition, recent ver-
sions of GRAPPA now handle inversion phylogeny and unequal gene content. GRAPPA
also employs several techniques to make it faster and more flexible:

• Tree generation An interruptible and restartable tree generator with a stepwise
feature enumerates the trees in amortized constant time and also makes it possible
to sample a wide range of tree topologies for large datasets.

• Tree Labeling The most time-consuming part of tree labeling is solving the
median-of-three problem by using the TSP reduction. We only generate a TSP
instance for nodes that saw at least one of their three neighbors relabeled over
the last pass.

• Condensation In those cases when all genomes in a set contain shared adjacen-
cies, we condense the shared adjacencies: we redefine gene fragments to consist
of the longest shared subsequences and replace the original instance by one given
in terms of the new gene fragments. Such condensation does not affect label-
ing or any of the rearrangement based distance measures (breakpoint, inversion,
transposition), but decreases the size of the TSP reduction.

• Approximate TSP solvers We used the Concorde library [1] for two of our
approximate TSP solvers—the chained and the simple versions of the famous Lin-
Kernighan heuristics [25]. We also implemented the standard greedy algorithm
for TSP.

• Our exact TSP solver We implemented a standard include-exclude backtrack-
ing search with pruning.

To help improve the overall speed, GRAPPA uses the principle of algorithmic engineer-
ing [26], a combination of low-level algorithmic changes, data structure changes, and coding
strategies, that combine to eliminate bottlenecks in the code, balance its computational
tasks, and make it cache-sensitive. GRAPPA v1.0 includes all of the features of BPAnaly-

High-Performance Phylogeny Reconstruction 22-7

sis, but runs about one billion times faster on the IBM/Myrinet 512-processor Los Lobos
supercluster at the University of New Mexico to run a complete analysis of the Campanu-
laceae dataset (13 genomes with 105 genes each).

We ran GRAPPA on this system and obtained a 512-fold speed-up (linear speedup with
respect to the number of processors): a complete breakpoint analysis (with the more de-
manding inversion distance used in lieu of breakpoint distance) for the 13 genomes in the
Campanulaceae data set ran in less than 1.5 hours in an October 2000 run, for a million-fold
speedup over the original implementation [3, 4]. Our latest version features significantly
improved bounds and new distance correction methods and, on the same dataset, exhibits
a speedup factor of over one billion. In each of these cases a factor of 512 speed up came
from parallelization. The remaining speed up came from algorithmic improvements and im-
proved implementation. The techniques of better bounding and new searching order used
in the latest version of GRAPPA make it run much faster [27].

22.4 Sequence-Based Phylogeny Reconstruction

The evolution at DNA or protein level bears little resemblance to the genome level. In
sequence-based phylogeny, each species is represented by a string of characters representing
sequences of, for example, DNA nucleotides or amino acids. It is usually assumed that
each character evolves independently. Researchers have developed a variety of models to
study character evolution [39]. Fitch’s model [16] is one that is commonly used and allows
unordered, multi-state characters, which can transform directly from one state to another.
Fitch [16] presented a method to determine the parsimony cost, the minimum number
of changes, for a specific tree. His method requires two passes of a rooted binary tree.
Although it takes polynomial time to compute the tree cost, there are still (2n− 5)!! trees
to be evaluated (where n is the number of species). When n is larger, the branch-and-bound
combinatorial optimization technique [21] is often used to prune the search space.

22.4.1 Branch-and-Bound Optimization Approaches

The combinatorial optimization problem is that of maximum parsimony, a minimization
problem since the most parsimonious tree is that one which has the least number of character
changes along its edges. The underlying idea of the branch-and-bound (B&B) technique is
the successive decomposition of the original problem into smaller disjoint subproblems until
an optimal or all optimal solutions are found. During the B&B search, those subproblems
that cannot yield an optimal solution are pruned. A B&B algorithm has four basic rules
for a given problem.

• Branching rule divides a feasible solution set X into X1, X2, . . . , Xn, where
X =

⋃n
i=1Xi and Xi

⋂
Xj = φ for i �= j.

• Selection Rule chooses the most promising subproblem for further branching.
• Elimination Rule recognizes and eliminates subproblems that cannot yield an

optimal solution to the original problem. The most often used rule is called
the lower bound test. A subproblem Q can be eliminated either when Q has
been solved or Q’s lower bound is greater than the global upper bound–the best
solution obtained so far.

• Termination Rule determines whether a feasible solution is optimal.

Next we will discuss the five main aspects that affect the performance of the B&B sequence-
based phylogeny reconstruction algorithm: branching scheme, search strategy, lower bound-

22-8 Handbook of Computational Molecular Biology

ing function, global upper bounding function, and the data structure.

Branching scheme

The branching scheme gives the procedure for decomposing a subproblem in the search s-
pace. The branching scheme used in phylogeny reconstruction employs the same mechanism
developed for the general tree generator in Section 22.2.1 because the B&B search space is
similar to Fig. 22.1. Each node associated with tree T in the B&B search space represents
the subproblem to find the most parsimonious tree on all n taxa with strict consensus with
the partial tree T . The trees with strict consensus to T are those that can be generated by
inserting the remaining species into T . The shape of the B&B search space depends on the
addition order of species, which affects the tightness of the lower bound of tree T and thus
affects the efficiency of the B&B algorithm.

Search strategy

At any point of the execution, if a subproblem is neither decomposed nor eliminated, we
call it an open problem. Search strategy decides which of the currently open subproblems
will be selected for decomposition. The two strategies most commonly used are depth-first
search (DFS) which selects the node with longest path to the root and best-first search
(BeFS) which selects the node with minimum lower bound. DFS is space-saving, while
BeFS is more targeted towards a better global upper bound. In the case when the initial
global upper bound obtained by heuristic approaches is exactly optimal or very close to
the optimal value, there typically is no significant difference in the number of examined
subproblems between DFS and BeFS searches, and DFS is then a better search strategy for
reasons of space efficiency. Experiments show that the heuristic approaches in Section 22.4.1
can provide a very good solution. Due to the above reasons, we employ DFS as our primary
B&B search strategy and for nodes with the same depth we adopt BeFS to break the tie.

Lower bounding of the subproblem

The lower bounding function l associates with each open subproblem p a value v (lower
bound) that satisfies the following three conditions:

1. v is less than or equal to the best feasible solution in p;
2. for a leaf of the search space, its lower bound is equivalent to its objective cost;

and
3. the function l has nondecreasing values along every path from the root to the

leaves of the search space. In other words, the lower bound of a node in the
search tree is greater than or equal to the lower bound of its parent.

Ibaraki [22] shows that under the assumption that the dominance test is consistent with
lower bound test (it is true in our case), a tight lower bounding function always results in
an improvement for DFS and BeFS.

Hendy and Penny [21] used the cost of the associated tree as the lower bound of the
subproblem. This traditional approach is straightforward, and obviously, it satisfies the
properties of the lower bounding function. However, it is not tight and cannot prune
branches very efficiently. Purdom et al. used the sum of the single column discrepancy and
the cost of the associated tree as the lower bound. For each column (character), the single
column discrepancy is the number of states that do not occur among the species in the
associated tree but only occur among the remaining species. Purdom’s experiments show
that it usually reduces the number of decomposed nodes in the search space compared to

High-Performance Phylogeny Reconstruction 22-9

Hendy and Penny’s lower bounding function [33].

Global upper bounding function

Before starting the B&B search, an initial global upper bound is required. A good upper
bound should be somewhat close to the optimal cost in order to work with the lower bound
to prune branches efficiently. We investigate two fast heuristic algorithms: neighbor-joining
(NJ) [35, 37] and greedy parsimony [13].

Based on the distance matrix, the neighbor-joining algorithm repeatedly pairs two sub-
trees (at first, a pair of leaves; thereafter, in recursive fashion, entire subtrees), and replaces
that pair in further computation with a single artificial taxon representing the subtree,
thereby eventually returning a binary tree. The NJ algorithm can always reconstruct the
correct tree from an additive distance matrix. However, the distance matrix we use is the
minimum distance between sequences and is very likely to underestimate the true distance.
Hence, the reconstruction of the correct tree cannot be guaranteed in our case.

The greedy algorithm adopts a strategy that constructs the tree by adding one taxon at
a time to the position that yields the best score. Adding taxa in a different order yields
different trees. We use the as is and random option described in [38]. In the as is method,
the initial core tree is produced by the first three taxa given in the dataset and the following
taxon addition is done according to the taxon order in the dataset. In the random method,
pseudo-random numbers are used to determine the order of taxon addition.

From experiments, we find that the greedy method usually obtains a better tree than NJ.
Thus, we use the greedy algorithm with two different addition orders and use the better
score as the initial global upper bound.

Data structure for B&B search space

In Fig. 22.3 we illustrate the data structure used to keep open subproblems, where n is the
number of species. In the phylogeny reconstruction problem, most of the time is spent on
evaluating the tree length of a partial tree, and the choice of different priority queue (PQ)
implementations does not make significant difference in performance. So for simplicity, we
use a D-heap [23] implementation for the priority queues. A D-heap is organized as an
array, using the rule that the first location is the root of the tree, and the locations 2i and
2i+ 1 are the children of location i.

22.4.2 Preprocessing of input data

The input data of the sequence-based phylogeny reconstruction is usually a multiple aligned
sequence matrix, of which each column represents a character and each row represents the
state sequence of a species. We adopt a series of preprocessing steps of the sequence matrix
in order to conduct the B&B search efficiently.

Binary encoding of original states

The MP algorithm is dominated by computing the parsimony cost of a tree with Fitch’s
method. The basic operation of Fitch’s method is to compute the Farris Interval which is
the intersection or union of state sets. Since most computers can perform efficient bitwise
logical operations, we use the binary encoding of a state in order to implement intersection
and union by bitwise AND and bitwise OR. Each column is encoded independently. There
is a one-to-one mapping between the bits of the encoding and the character states. Given
a species, if a state is present, then the corresponding bit is set to one, and otherwise it is

22-10 Handbook of Computational Molecular Biology

Depth 3 i n

heap size heap size heap size

Partial treeLower bound

Pr
io

ri
ty

 Q
ue

ue

Pr
io

ri
ty

 Q
ue

ue

Pr
io

ri
ty

 Q
ue

ue

FIGURE 22.3: Data structure to keep the open subproblems.

set to zero.

Deciding the addition order of the species

During the branch and bound process, starting with an initial core tree, the remaining taxa
are added one by one as we proceed from the root to the leaves of the search tree. Our
experiments show that overall execution time can change drastically depending on the order
in which the taxa are added. In this section we discuss the well-known heuristic called the
maximum-of-minimum-values (or max mini) algorithm [30] as well as our improved heuristic
max cross min.

The max mini algorithm proceeds as follows. Starting with initial core tree of three
species, for each of the remaining species, we try to insert the species into any edge and
find the best position which results the minimum score. Then at the next step, we choose
the species that produced the tree with maximum minimum-score to be added at its best
position. This process is repeated until the addition order of all of the species is determined.

The max mini rule is proven to be very efficient and most often used in practice. The
intuition behind this rule is that we assume that the greater the score of the best par-
tial tree, the tighter the obtained lower bound. Assuming we have chosen the first i
species {S1, . . . , Si−1, Si} and the best partial tree Ti, then at the (i + 1)th step, for each
species Sk from the remaining set {Si+1, . . . , Sn}, we must choose the best tree T k

i+1 on
{S1, . . . , Si−1, Si} and Sk. The max mini rule assumes T k

i+1 can be obtained by adding Sk

to one branch of Ti. But this speculation is not always true. We have designed a way to
improve T k

i+1 from the max mini rule, called max cross mini.
Suppose the first (i− 1) species are {S1, . . . , Si−1}, at the ith step, we get the best tree

T k
i on {S1, . . . , Si−1} and Sk for k = i, . . . , n. Without loss of generality, we assume T i

i

(that is, k = i) has the maximum score and choose to add Si at step i. T i
i is Ti in the

max mini rule. But in the max cross mini rule, when we add the next Sk′ at step (i+ 1),
we not only try to insert Sk′ into each edge of T i

i , but also try to insert Si into T k′
i . Let

the best tree be T k′
i+1. Similar with max mini, we select the species k′ that gives the tree

with maximum minimum-score. Since this rule screens more trees, the best tree obtained
this way may be better than max mini. We compared these rules on 6 datasets and in 4
datasets, the max cross mini rule leads to fewer decomposed nodes in the B&B search than

High-Performance Phylogeny Reconstruction 22-11

the max mini rule.

Reorder sites

Fitch [17] made a basic classification of sequence sites, the columns of the sequence matrix.
At a given site, we say that a state is non-singleton if it appears more than once. A site with
at most one non-singleton state is a parsimony uninformative site since the state changes
at such kind of a site can always be explained by the same number of substitutions in all
topologies in the following way. If there is one non-singleton state A, we can simply assign
all of the internal nodes of the tree topology to be A; if there is no non-singleton state,
we can choose any state and assign it to all of the internal nodes. In either case, for any
tree topology, the state substitution at this site is equal to the number of states minus one.
Since the parsimony uninformative sites do not contribute to the construction of the MP
tree, we can ignore them when we evaluate the cost of a tree.

At each level k of the B&B search when we add the kth species, we need to distinguish
parsimony informative sites from uninformative sites for the first k species and move all of
the parsimony informative sites to a contiguous area in memory in order to evaluate the cost
of tree faster. With the addition of species, it is possible for a parsimony uninformative site
to turn into a parsimony informative site but the inverse process is not possible. Therefore,
we can compute the following by scanning the sequence matrix:

• the level at which a site turns into a parsimony informative site from parsimony
uninformative site;

• at each level how many sites turn into parsimony informative sites from parsimony
uninformative sites;

• the number of state substitutions on those parsimony uninformative sites;

Then, based on the above information, the targeted position of each site in the new sequence
matrix can be computed. Finally, we copy the states of each site from the original sequence
matrix to their targeted positions in the new sequence matrix.

22.4.3 Fast algorithms to compute tree length

No matter whether one is performing the local search of heuristic algorithms or the ex-
pansion of an active node in a branch-and-bound search, parsimony problems require the
evaluation of enormous numbers of trees. Rapid evaluation of a candidate tree generated by
stepwise addition or branch swapping (e.g. SPR or TBR) is a crucial factor to the perfor-
mance of a parsimony program. Although the methods proposed by Farris [14] and Fitch
[16] are still considered the basis of the calculation of tree length under Wagner parsimo-
ny and Fitch parsimony, respectively, modifications of those basic algorithms can increase
efficiency substantially. In the following we will demonstrate an amortized constant time
algorithm to compute tree length which is more efficient than Goloboff’s method [18] in
B&B search since it only makes a single pass in the tree.

First let us see what happens during the stepwise addition. As shown in Fig. 22.4A, a
new taxon S is added to an arbitrary branch (U, V) of tree T to obtain a new tree T ′.
Assume the potential root on (RUV , S) is the calculation root and one post-order pass of
T ′ is sufficient to compute the parsimonious length of T ′. The preliminary state set of RUV

will not change from T to T ′. Our first goal is to pre-process T before the addition of taxa
and compute the preliminary state set of RUV for each branch (U, V) of T .

22-12 Handbook of Computational Molecular Biology

V

(B) Choose R in the subtree Tv as the calculation root

(D) Choose R’ to be the calculation root

(C) Choose Ruv to be the calculation root

U
Tu Tv

 S

Ruv

Tu

Tv

RuvU V
Pk P1 RP(k+1) P(k−1)

S(k+1) S2 S1

U V
P1P(m+2)

S(m+2) S(m+1) S2 S1

Pm RP(m+1) R’

Tm

 Sk

U V
Pk P1P(k+1) P(k−1)

S(k+1) Sk S2 S1

Ruv

(A) Add a new taxon S to branch (U,V)

FIGURE 22.4: Choose different potential root node as the calculation root

Computation of the final states of each potential root node

Without loss of generality, let an arbitrary node R in the subtree TV be the calculation root
of T (see Fig. 22.4B). In this rooted binary tree, V is the parent of U . Let Pk+1 represent
U and Pk represent V , then (Pk+1, Pk, . . . , P1, R) is the path from Pk+1 to R. Pi−1 is the
parent of Pi and Si is the sibling of Pi for i = 1, . . . , (k + 1). (R is the parent of P1.)

In the post-order traversal of Fitch’s method, the preliminary state set of node A comes
from the information of all of the nodes in the subtree rooted at A. In Fig. 22.4C, we
assume RUV to be the calculation root. Comparing Figs. 22.4B and 22.4C, one can see that
the preliminary state sets of each node in (Pk+1, Sk+1, . . . , S1) will be the same whether R
or RUV is the calculation root since the subtree rooted at such a node does not change.
But the preliminary state set of each node in (Pk, . . . , P1) does change with the choice of
calculation root and the preliminary state set of Pi depends on that of Pi−1 and Si+1 (see
Fig. 22.4C). Therefore, we can first traverse the rooted tree in Fig. 22.4B in post-order and

High-Performance Phylogeny Reconstruction 22-13

compute the preliminary state set of each node in (Pk+1, Sk+1, . . . , S1), next traverse the
tree in pre-order and compute the states sets of each node in (Pk, . . . , P1), and then obtain
the state set of RUV directly from that of Pk+1 and Pk.

Assume an arbitrary root for the unrooted binary tree T , then for any branch (U, V), we
assume V is the parent of U without loss of generality. Use

−→
U to designate the preliminary

state set of the root of the subtree TU which can be obtained from the the post-order
traversal of T and use

←−
U to designate the preliminary state set of the root of the subtree

TV which can be obtained from the pre-order traversal of T . Since characters are assumed
to evolve independently, Algorithm 22.5 describes how two passes of the unrooted binary
tree can produce the final states of the potential root node on each branch for one single
character.

Computation of tree length in local search

When one searches the neighborhood of a tree by stepwise addition, SPR or TBR, we first
use the approach in Section 22.4.3 to compute the tree length of the original tree and the
final state set for each potential root node, then for each rearrangement, only a constant
time step is required to compute the increase of the tree length from the original tree to
the new tree. We explain next the details for different local searches.

B&B Search

Add a new taxon S to tree T with n leaves. Preprocess T as demonstrated in Figure 22.5.
Then for each new tree obtained by adding S into edge (U, V), perform Fitch’s operations
on (S,RUV) to compute the increase of the tree length. The preprocessing needs (4n− 6)
Fitch’s operations, and each of the (2n−3) new trees takes one Fitch’s operation. Therefore,
(6n − 9) Fitch’s operations are needed to calculate all of the (2n − 3) new trees, and the
amortized number of Fitch’s operations to evaluate each new tree is 3.

During the B&B search, when we compute the local change between the new tree and
the old tree, we actually obtain the preliminary state sets of all internal nodes of the new
tree assuming the point of reunion to be the calculation root. If we keep these preliminary
state sets, we can save one pass in the preprocessing when adding the next species.

SPR search

In the SPR (subtree pruning and re-grafting) [38] search, a branch of a tree T is cut
into two parts: a clipped tree Tc and a target tree Tt. The cutting point of the clipped
subtree is then grafted onto each edge of the target tree to produce a new topology. In
the preprocessing step, the first pass for Tc and both of the two passes for Tt are required.
Let the basic tree length be the sum of the tree lengths of Tc and that of Tt. For each
rearrangement by adding the root Rc of Tc into an arbitrary branch (U, V) of Tt, the
increase of the tree length from the basic tree length can be obtained by performing Fitch’s
operation on (Rc, RUV).

TBR Search

In the tree bisection and reconnection (TBR) search, a tree T is cut at an edge and split
into two subtrees Tc and Tt. Then the two subtrees are reconnected by joining each pair of
edges (one from Tc and the other from Tt) by a new edge. In the preprocessing step, both
passes of Algorithm in Figure 22.5 are required for Tc and Tt. Let the basic tree length be
the sum of the tree lengths of Tc and Tt. For each rearrangement by connecting branch
(U, V) of Tc and (X,Y) of Tt, the increase of the tree length from the original tree length
can be obtained by performing Fitch’s operation on (RUV , RXY).

22-14 Handbook of Computational Molecular Biology

Data: T rooted at R.

Result: (1) cost, the parsimonious length of T ; (2) The final state sets of the potential
root on the branch between each node i and its parent.

Begin

1. cost = 0;

2. Traverse T in post-order.

foreach internal node i of T do
−→
i = the intersection of the state sets of its two children;
if
−→
i is empty then
−→
i = the union of the state sets of its two children;
cost = cost+ 1;

end
end

3. Suppose R has two children lChild and rChild.

(a)
←−−−−
lChild =

−−−−→
rChild;

(b)
←−−−−
rChild =

−−−−→
lChild;

(c) Traverse the subtrees rooted at lChild and rChild in pre-order, respectively.
foreach node i whose parent is p and sibling is b do
←−
i = the intersection of ←−p and

−→
b ;

if
←−
i is empty then
←−
i = the union of ←−p and

−→
b ;

end
end

4. Compute the final state sets of the potential root nodes.

foreach branch between node i and its parent do
Let the final state set of the potential root node to be the intersection
of
←−
i and

−→
i ;

if the intersection is empty then

Let the final state set to be the union of
←−
i and

−→
i ;

end
end

End

FIGURE 22.5: Algorithm: pre-process T to get the final states of each potential root node.

22.4.4 Parallel implementation on a symmetric multiprocessor (SMP)

Shared-memory systems, often called symmetric multiprocessors (SMPs), contain from two
to hundreds of microprocessors tightly coupled to a shared memory subsystem, running
under a single system image of one operating system. For instance, the IBM Power5 p-

High-Performance Phylogeny Reconstruction 22-15

Series systems and the Sun Fire Enterprise-class systems all scale from dozens to hundreds
of processors in shared-memory images with near-uniform memory access. In addition to
a growing number of processors in a single shared memory system, we anticipate the next
generation of microprocessors will be “SMPs-on-a-chip”. For example, uniprocessors such as
the IBM Power4 using simultaneous multithreading (SMT), Sun UltraSparc IV, and Intel
Pentium 4 using Hyper-Threading each act like a dual-processor SMP. Future processor
generations are likely to have four to eight cores on a single silicon chip. Over the next five
to ten years, SMPs will likely become the standard workstation for engineering and scientific
applications, while clusters of very large SMPs (with hundreds of multi-core processors) will
likely provide the backbone of high-end computing systems.

Since an SMP is a true (hardware-based) shared-memory machine, it allows the program-
mer to share data structures and information at a fine grain at memory speeds. An SMP
processor can access a shared memory location up to two orders of magnitude faster than
a processor can access (via a message) a remote location in a distributed memory system.
Because processors all access the same data structures (same physical memory), there is
no need to explicitly manage data distribution. Computations can naturally synchronize
on data structure states, so shared-memory implementations need fewer explicit synchro-
nizations in some contexts. These issues are especially important for irregular applications
with unpredictable execution traces and data localities, often characteristics of combinato-
rial optimization problems, security applications, and emerging computational problems in
biology and genomics.

Although the branch-and-bound approach is a very effective technique to solve the exact
optimization problem for phylogeny reconstruction when it is applied to large-scale dataset-
s, B&B still requires considerable computation time. In order to improve the performance,
we need to utilize the computation power of parallel computers. Since most parallel B&B
frameworks [2] are targeted at distributed memory systems, and a symmetric multiprocessor
(SMP) has much faster access to their shared memory compared to the message passing be-
tween processors on distributed memory systems, we study the parallel B&B algorithms for
phylogeny reconstruction with maximum parsimony on Cache-Coherent Uniform-Memory-
Access (CC-UMA) SMPs.

Branch-and-bound algorithms can be parallelized at different levels. A low-level par-
allelization finds maximum concurrency with the computations of each step such as the
bounding function, the subproblem selection, node decomposition, and evaluation. A high-
level parallelization is such that each processor selects different active nodes then processes
the computation associated with its nodes. We focus on the high-level parallelism of the
general B&B approach as this coarse-grained parallelism is sufficient for achieving a good
load balance among the processors in the system with minimal synchronization. We will
tackle a few key issues that affect the performance of the parallel B&B algorithm.

Control scheme for parallel B&B

Since the search space tends to be highly irregular and any static allocation of subtrees
to processors is bound to result in significant load imbalance among processors, we need
to decide how to coordinate the search subspace of each processor as the computation
proceeds. The control scheme of the coordination can be broadly classified into synchronous
and asynchronous models.

In the synchronous parallel B&B model [10], the computation is accomplished in consec-
utive synchronous iterations, and several subproblems are concurrently decomposed during
each iteration. In the asynchronous model [9], each processor works at its own pace and
does not need to wait at predetermined points for data to become available.

22-16 Handbook of Computational Molecular Biology

Obviously, the synchronous model guarantees a nearly even load balance between proces-
sors. However, the cost of synchronization between processors is still very high on modern
computers since in aggregate, processors may sit idle waiting at the synchronization points
rather than performing useful work. And for the sequence-based phylogeny reconstruction
problem, the computation at each step is low polynomial time and may not be large enough
to dominate the overhead of the synchronization. So we prefer to the SPMD asynchronous
model that uses the processors more efficiently than the synchronous version.

Data structure for parallel B&B

We use a single shared data structure to hold the priority queues (similar to Fig. 22.3).
With the shared data structure, the processors can balance the work fairly evenly and the
termination of the algorithm is easy to detect. Since multiple processors access the shared
data structure concurrently, the key issue is to avoid contention. Several data structures
that allow concurrent operation can be found in the literature, and a comparison between
concurrent priority queues is summarized in [24]. However, the comparison is typically
conducted using large heaps. While in our serial DFS search, the heap size of each level k
is bound by (2k − 3). For such small heaps, the D-heap is simple and efficient. Each heap
Hi is protected by a lock Locki for 3 ≤ i ≤ n. Each processor locks the entire heap Hi

whenever it makes an operation on Hi.
In the sequential B&B algorithm, we use DFS strictly meaning that Hi can be accessed

only if the heaps at higher levels (Hj for i < j ≤ n) are all empty. While in the parallel
version, in order to minimize contention we allow Hi to be accessed if all of the heaps at
higher levels are empty or locked by other processors. When a processor detects that all
the heaps are unlocked and empty, no more active nodes exist in the frontier (except those
being decomposed by other processors), and this processor can terminate its own execution
of the algorithm.

22.4.5 Experimental results

The effectiveness of a phylogenetic reconstruction method depends on the model tree shape,
the evolutionary rate, and whether or not the molecular clock hypothesis stands. We
use the benchmark collection at (http://www.lirmm.fr/~ranwez/PHYLO/benchmarks24.
html). Each dataset consists of 24 sequences and the length of DNA sequences is 500. These
tests allow comparison on trees whose internal branch lengths are not all equal, and over a
wide variety of tree shapes and evolutionary rates.

The experiments of our serial code are carried out on a Sun workstation, whose proces-
sor is a 500MHz UltraSparcII and the operating system is Solaris 5.8. We compared the
running time between our serial code and PAUP*. Our code uses the max-mini rule as the
taxa addition order heuristic and is compiled with option -xO3 -fast. We use the bandb
addseq=maxmini commands for PAUP*. The experimental results are very promising. The
results differ for each dataset. Among 20 datasets chosen randomly from 24 tax 500, for
10 datasets our MP implementation, UNM MP, is 1.2-7 times faster than PAUP*, for 5 test
instances UNM MP runs as fast as PAUP*, for 5 other instances UNM MP is 1.2-2 times
slower than PAUP*.

The experiments of our parallel code are run on a Sun E4500, a uniform-memory-access
(UMA) shared-memory parallel machine with 14 UltraSparcII 400MHz processors and 14
gigabytes of main memory. Each processor has 16 kilobytes of direct-mapped data (L1)
cache and 4 megabytes of external (L2) cache. The test bed uses 200 datasets drawn ran-
domly from the benchmark. Compared with the running time on a single processor, in

References 22-17

average we have speedups of 1.92, 2.78, and 4.34, on 2, 4, and 8 processors, respective-
ly. The obtained experimental results show that our strategies on the parallel phylogeny
reconstruction problems are efficient.

22.5 Conclusions

We have presented quite a few techniques to compute the exact optimal solutions for phy-
logeny reconstruction with maximum parsimony. We discussed both the whole-genome-
based phylogeny and sequence-based phylogeny. All of the ideas proposed in this chapter
are implemented in our serial and parallel code, freely-available as open source code from
our web site. For huge datasets, our approaches may successfully serve as base methods for
higher-level divide-and-conquer supertree strategies.

Acknowledgments

This work was supported in part by NSF Grants CAREER ACI-00-93039, NSF DBI-
0420513, ITR ACI-00-81404, DEB-99-10123, ITR EIA-01-21377, Biocomplexity DEB-01-
20709, and ITR EF/BIO 03-31654; and DARPA Contract NBCH30390004.

References

[1] D. Applegate, R. Bixby, V. Chivátal, and W. Cook. CONCORDE: Combinatori-
al optimization and networked combinatorial optimization research and development
environment. http://www.keck.caam.rice.edu/concorde.html.

[2] D.A. Bader, W.E. Hart, and C.A. Phillips. Parallel algorithm design for branch and
bound. In H.J. Greenberg, editor, Tutorials on Emerging Methodologies and Ap-
plications in Operations Research, chapter 5, pages 1–44. Kluwer Academic Press,
2004.

[3] D.A. Bader and B.M.E. Moret. GRAPPA runs in record time. HPCwire, 9(47),
November 23 2000.

[4] D.A. Bader, B.M.E. Moret, and L. Vawter. Industrial applications of high-performance
computing for phylogeny reconstruction. In H.J. Siegel, editor, Proc. SPIE Commer-
cial Applications for High-Performance Computing, volume 4528, pages 159–168,
Denver, CO, 2001. SPIE.

[5] D.A. Bader, B.M.E. Moret, T. Warnow, and S.K. Wyman et al. http://phylo.unm.
edu/.

[6] D.A. Bader, B.M.E. Moret, and M. Yan. A linear-time algorithm for computing in-
version distance between signed permutations with an experimental study. Journal of
Computational Biology, 8(5):483–491, 2001.

[7] P. Berman and S. Hannenhalli. Fast sorting by reversal. In D.S. Hirschberg and E.W.
Myers, editors, Proc. 7th Ann. Symp. Combinatorial Pattern Matching (CPM96),
volume 1075 of Lecture Notes in Computer Science, pages 168–185, Laguna Beach,
CA, June 1996. Springer-Verlag.

[8] A. Caprara. Formulations and hardness of multiple sorting by reversals. In 3rd Ann.
Int’l Conf. Computational Molecular Biology (RECOMB99), Lyon, France, April
1999. ACM.

[9] R. Corrêa and A. Ferreira. Modeling parallel branch-and-bound for asynchronous im-

22-18 References

plementation. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, 22:45–56, 1995.

[10] R. Corrêa and A. Ferreira. On the effectiveness of synchronous parallel branch-and-
bound algorithms. Parallel Processing Letters, 5(3):375–386, September 1995.

[11] M.E. Cosner, R.K. Jansen, B.M.E. Moret, and L.A. Raubeson et al. An empirical com-
parison of phylogenetic methods on chloroplast gene order data in Campanulaceae. In
D. Sankoff and J. Nadeau, editors, Comparative Genomics: Empirical and Analyt-
ical Approaches to Gene Order Dynamics, Map Alignment, and the Evolution of
Gene Families, pages 99–121. Kluwer Academic Publishers, Dordrecht, Netherlands,
2000.

[12] M.E. Cosner, R.K. Jansen, B.M.E. Moret, and L.A. Raubeson et al. A new fast
heuristic for computing the breakpoint phylogeny and a phylogenetic analysis of a
group of highly rearranged chloroplast genomes. In Proc. 8th Int’l Conf. Intelligent
Systems for Molecular Biology (ISMB00), pages 104–115, San Diego, CA, 2000.

[13] R.V. Eck and M.O. Dayhoff. Atlas of Protein Sequence and Structure. National
Biomedical Research Foundation, Silver Spring, MD, 1966.

[14] J. Farris. Methods for computing wagner trees. Systematic Zoology, 34:21–24, 1970.
[15] J. Felsenstein. PHYLIP – phylogeny inference package (version 3.2). Cladistics, 5:164–

166, 1989.
[16] W.M. Fitch. Toward defining the course of evolution: Minimal change for a specific

tree topology. Systematic Zoology, 20:406–416, 1971.
[17] W.M. Fitch. On the problem of discovering the most parsimonious tree. The American

Naturalist, 111(978):223–257, 1977.
[18] P.A. Goloboff. Character optimization and calculation of tree lengths. Cladistics,

9:433–436, 1993.
[19] P.A. Goloboff. Analyzing large data sets in reasonable times: Solutions for composite

optima. Cladistics, 15:415–428, 1999.
[20] S. Hannenhalli and P.A. Pevzner. Transforming cabbage into turnip (polynomial al-

gorithm for sorting signed permutations by reversals). In Proc. 27th Ann. Symp.
Theory of Computing (STOC95), pages 178–189, Las Vegas, NV, 1995. ACM.

[21] M.D. Hendy and D. Penny. Branch and bound algorithms to determine minimal
evolutionary trees. Mathematical Biosciences, 59:277–290, 1982.

[22] T. Ibaraki. The power of upper and lower bounding functions in branch-and-bound
algorithms. Journal of the Operations Research Society of Japan, 25(3):292–320,
1982.

[23] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3.
Addison-Wesley Publishing Company, Reading, MA, 1973.

[24] B. LeCun and C. Roucairol. Concurrent data structures for tree search algorithms. In
A. Ferreira and J.D.P. Rolim, editors, Parallel Algorithms for Irregular Problems:
State of the Art, pages 135–156. Kluwer Academic Publishers, 1995.

[25] S. Lin and B.W. Kernighan. An effective heuristics algorithm for the traveling salesman
problem. Operations Research, 21:498–516, 1973.

[26] B.M.E. Moret. Towards a discipline of experimental algorithmics. In M.H. Goldwasser,
D.S. Johnson, and C.C. McGeoch, editors, Data Structures, Near Neighbor Searches,
and Methodology: Fifth and Sixth DIMACS Implementation Challenges, volume 59
of DIMACS Monographs in Discrete Mathematics and Theoretical Computer Sci-
ence. American Mathematical Society, 2002.

[27] B.M.E. Moret, J. Tang, L.S. Wang, and T. Warnow. Steps toward accurate recon-
struction of phylogenies from gene-order data. J. Comput. Syst. Sci., 65(3):508–525,
2002. Invited, special issue on computational biology.

References 22-19

[28] B.M.E. Moret, S. Wyman, D.A. Bader, and T. Warnow et al. A new implementation
and detailed study of breakpoint analysis. In Proc. 6th Pacific Symp. Biocomputing
(PSB 2001), pages 583–594, Hawaii, 2001.

[29] J.H. Nadeau and B.A. Taylor. Lengths of chromosome segments conserved since di-
vergence of man and mouse. In Proceedings of the National Academy of Sciences
USA, volume 81, pages 814–818, 1984.

[30] M. Nei and S. Kumar. Molecular Evolution and Phylogenetics. Oxford University
Press, Oxford, UK, 2000.

[31] K.C. Nixon. The parsimony ratchet, a new method for rapid parsimony analysis.
Cladistics, 15:407–414, 1999.

[32] I. Pe’er and R. Shamir. The median problems for breakpoints are NP-complete. Techni-
cal Report 71, Electronic Colloquium on Computational Complexity, November 1998.

[33] P.W. Purdom Jr., P.G. Bradford, K. Tamura, and S. Kumar. Single column discrep-
ancy and dynamic max-mini optimization for quickly finding the most parsimonious
evolutionary trees. Bioinfomatics, 2(16):140–151, 2000.

[34] K. Rice and T. Warnow. Parsimony is hard to beat. In Computing and Combinatorics,
pages 124–133, August 1997.

[35] N. Saitou and M. Nei. The neighbor-joining method: A new method for reconstruction
of phylogenetic trees. Molecular Biological and Evolution, 4:406–425, 1987.

[36] D. Sankoff and M. Blanchette. Multiple genome rearrangement and breakpoint phy-
logeny. Journal of Computational Biology, 5:555–570, 1998.

[37] J.A. Studier and K.J. Keppler. A note on the neighbor-joining method of Saitou and
Nei. Molecular Biological and Evolution, 5:729–731, 1988.

[38] D.L. Swofford and D.P. Begle. PAUP: Phylogenetic analysis using parsimony. Sin-
auer Associates, Sunderland, MA, 1993.

[39] D.L. Swofford, G.J. Olsen, P.J. Waddell, and D.M. Hillis. Phylogenetic inference.
In D.M. Hillis, C. Moritz, and B.K. Mable, editors, Molecular Systematics, pages
407–514. Sinauer, Sunderland, MA, 1996.

[40] M. Yan. High Performance Algorithms for Phylogeny Reconstruction with Max-
imum Parsimony. PhD thesis, Electrical and Computer Engineering Department,
University of New Mexico, Albuquerque, NM, January 2004.

23
Microarray Data: Annotation,

Storage, Retrieval and
Communication

Catherine A. Ball
Stanford University

Gavin Sherlock
Stanford University

23.1 Introduction . 23-1
23.2 Information to be Captured by a LIM System . . . 23-5

Tracking and preparation of samples • Sequences on
arrays • Microarray printing

23.3 Information to be Stored in a Results Database . 23-7
23.4 Freely Available Results Databases 23-11

BioArray Software Environment (BASE) • Gecko
(Gene Expression: Computation and Knowledge
Organization) • GeneX and derivatives • maxdSQL •

RNA Abundance Database (RAD) • Stanford
Microarray Database (SMD) • TM4 and MicroArray
DAta Manager (MADAM)

23.5 Conclusions . 23-17

23.1 Introduction

Thirty years ago, Ed Southern published a method that could be used to detect a particular
sequence within a population of nucleic acids attached to a solid support, using a radio-
labeled probe [30]. The Southern blot, as it became known, permitted measurement of a
nucleic acid’s presence and relative abundance. Methods for the screening of clone libraries
[10] and the gridding of libraries on filters allowed a larger-scale application of hybridization
on filters. These technologies allowed one to detect molecules in a mixed population that
hybridized to a single sequence.

The microarray is the high-throughput, miniaturized descendant of the filter-based blots
introduced some 30 years ago. Instead of hybridizing a radioactively “known” nucleic acid to
a size-sorted population of nucleic acids fixed to a membrane, microarrays use a population
of known nucleic acids individually arrayed in known locations on a solid support to report
on an unknown population of fluorescently labeled nucleic acids. This simple difference,
allows us to determine the presence (and in some cases, the abundance) of thousands of
sequences by performing a single hybridization, and has been exploited to great effect. For
example, in a pioneering study Alizadeh et al [1] profiled diffuse large B-cell lymphomas,
and were able to identify distinct subtypes of the disease with different predicted outcomes,
based solely on their molecular signatures. Furthermore, these molecular signatures provid-
ed additional prognostic information that was independent of the pre-existing prognostic

23-1

23-2 Handbook of Computational Molecular Biology

criteria. It is this ability to gain a global understanding of a biological system that has led
to the widespread adoption of the technology.

Two types of microarray were pioneered in the early 1990s. Commercially manufactured
microarrays were pioneered by Steve Fodor and colleagues at Affymetrix [9, 21], using pho-
tolithography and solid phase chemical synthesis to build short oligonucleotides in situ on
chips. Around the same time, Patrick Brown and co-workers at Stanford University de-
veloped an alternative microarray technology, that involved spotting DNA sequences, such
as PCR products or cDNA clones, onto glass microscope slides by capillary action, us-
ing a robot with a multi-tipped print head [28, 29]. In the years immediately following,
widespread use of microarrays was prevented by the high cost and the degree of expertise
required to manufacture the arrays, perform the hybridizations, scan the slides, capture
signals from the resulting images and then to analyze the resulting data. In addition,
there was no easy-to-use and freely available software for microarray fabrication, image
quantification and data analysis. Since that time, microarrays have overcome their “bou-
tique” status and have become widely used for a variety of applications. The widespread
manufacture of “home-grown” microarrays was encouraged by the web-based “MGuide”
(http://cmgm.stanford.edu/pbrown/mguide/) provided by the Brown lab . The MGuide
provided unrestricted access to detailed parts lists and assembly directions for robotic array-
ers, software (Joe DeRisi’s ArrayMaker) and protocols. Access to microarray technology has
been dramatically increased by the widespread access to information necessary to construct
microarrays or the ability to simply purchase microarrays and the equipment to perform
hybridizations and scans. The concept of mechanically spotting microscopic spots of cDNAs
on glass slides has been elaborated so that many companies as well as academic laboratories
are manufacturing different types of microarrays. In addition, Mike Eisen, while a post-
doctoral researcher with David Botstein and Pat Brown, wrote and released ScanAlyze (for
image quantification), Cluster (for data analysis) and TreeView (for data visualization).
The release of these software packages made all aspects of dealing with microarray data
more accessible to life sciences researchers. Extraction of numerical data from a two color
microarray, turning the channel intensities into log ratios, and subsequent visualization of
these data using a false color representation is shown in Figure 23.1.

Currently, there are several commercial and “home-grown” microarray platforms in wide-
spread use. Those based on the technology developed by the Brown laboratory still rely
on mechanical printing to “print” spots of DNA on an array, and microarrays with up
to 60,000 spots have been manufactured using this technique. Affymetrix, using their
photolithography method is able to synthesize more than two million 25-mer oligonucleotides
on an array as 5-micron features. Agilent uses a technology similar to inkjet printing to
synthesize oligonucleotides (typically 60-mers) in situon glass slides, with up to 44,000
features per microarray. Another vendor, Nimblegen arrays uses maskless lithography, a
technique which relies on dynamic mirrors to create masks on the fly, to manufacture
oligonucleotide arrays, with up to 380,000 oligonucleotides, which can range from 25-mers
to 50-mers. As microarrays have become more widely used, there is every reason to expect
more companies to throw their hats into the ring.

Regardless of the array platform used, most microarray experiments that assay transcript
abundance follow roughly the same experimental design. Populations of mRNA are isolated
from experimental samples and a control or reference sample. cDNA is then made from the
mRNA, which may be subjected to one or more rounds of linear amplification. The cDNA
is labeled by the incorporation of fluorescence-tagged nucleotides, sometimes using an oligo-
dT primer, or sometimes using random hexamers, or even a combination of both. When
a two-channel platform is used, the experimental and reference samples are labeled with
tags that fluoresce at different wavelengths, and these labeled samples are competitively

Microarray Data: Annotation, Storage, Retrieval and Communication 23-3

FIGURE 23.1: (See color insert following page 20-4.) Conversion of image data to raw
and false color data. A. The intensities in each channel in the scanned image are
converted to the raw numeric values, and then used to produce a log ratio. Log
ratios above zero are then represented as red, with the intensity being propor-
tional to the value, while green is used to represent negative log ratios. A log
ratio of zero is represented by black. B. Data for multiple genes across multiple
experiments are represented by block of color, one block per measurement, as
suggested in [8].

hybridized to the microarrays in a manner very similar to the original Southern blots.
After hybridization, an image for each fluor is created using a scanning laser microscope
(typically referred to as the scanner). This image is then processed by software (such as
GenePix) to obtain dozens of measurements for each spot on the microarray that can be
used to calculate signal, determine data quality and calculate the relative abundance of
each transcript between the experimental and control samples. The storage and annotation
of these data is the subject of this chapter, while its analysis and processing are covered in
subsequent chapters.

While many of the original printed arrays relied on PCR-amplified cDNAs or genomic
sequences, more and more array manufacturers (both commercial and academic facilities)
are using oligonucleotides for their reporters (‘reporter’ refers to the nucleic acid that is
spotted on a microarray). The use of oligonucleotides has the benefit of providing a lower
risk of unwanted cross-hybridization that are possible with longer sequences and the poten-
tial to differentiate between alternately spliced transcripts, as well as avoiding costly and
time consuming PCR reactions. However, when oligonucleotides are synthesized in situ,
there is the possibility of truncated products due to failed synthesis steps, and these may
have the potential for non-specific hybridization. For spotted oligonucleotides, the oligos
can first be purified based on length, which avoids this problem (though it is more costly).

Microarray technology has been enormously successful in looking at transcript abundance
to paint molecular portraits of tumors, tissues, cell cultures and many other experimental
systems covering various aspects of fundamental cellular processes (e.g. [7, 13, 25, 32]).
However, microarray technology has also been applied to other types of molecular sur-
veys. Array-based comparative genome hybridization (array-CGH or aCGH) has been used
to look for copy number changes in genomic DNA in a number of studies, for instance
identifying genomic regions of recurrent deletion or amplification in various cancers (e.g.
[17, 22, 23]). Others have used microarrays to identify DNA sequences that are immunopre-
cipitated while cross-linked to DNA-binding proteins. Such chromatin immunoprecipitation

23-4 Handbook of Computational Molecular Biology

(chip-ChIP) experiments have been used to detect targets of transcription factors or other
DNA binding proteins on a genome-wide basis (e.g. [11, 16]). Microarrays are now being
adapted and used for sequencing, genotyping, identifying SNPs and others applications are
sure to arise.

Typically, microarray experiments produce a great deal of data. Not only is the output
from a scanned slide a large data set, recording the work that went into performing the
experiment in the first place requires storing large quantities of complex data. The output
from scanned microarrays includes dozens of measurements pertaining to each spot, each of
which can be used either to calculate the signal or the quality of a spot. Other information
that must be recorded includes information about the reporter molecules fixed to the surface
of the microarray, details of microarray fabrication, conditions of each experiment, quality
assessment scores and records of data analysis steps. Successful use of the DNA microarray
technology requires that the researcher be able to efficiently retrieve and make sense of this
information. Without it, it is almost impossible to track down and troubleshoot problems,
such as contamination of samples, or incorrect recording of print information. In addition,
unless vital information is comprehensively catalogued, it is impossible for others to replicate
the work or assess its quality. Although some researchers use microarrays to perform a
limited series of experiments, there are lessons to be learned from those that have been
tracking and storing the data for large-scale projects. Many such large-scale projects make
use of databases to assist researchers storing and accessing information about many aspects
of their experiments and the resulting data. The types of information that should be
recorded include:

• Experimental design
• Treatment, isolation and labeling of biosample
• Hybridization conditions
• Scanning parameters
• Image processing/data acquisition procedures
• Data selection, filtering, quality control
• Data analysis methods
• Biological annotation of reporters on microarray

There are three different data storage needs for most microarray studies: methods for
tracking the fabrication of the microarrays themselves, methods for storing the data gener-
ated from and describing the hybridization of microarrays and finally, methods to archive
and make available published microarray data. Most large-scale microarray production
facilities use LIM systems (laboratory information management systems) to record the in-
formation detailing the manufacture of microarrays. A LIM system is essentially a tracking
database that records, for example, how the microarrays were constructed. Results of the
hybridization of microarrays are usually stored in a second database that could be referred
to as a results database or a research database. Results databases hold more than raw
data — they must also contain enough biological annotation to make analysis of the results
possible, for in the absence of biological context, expression data are meaningless. While
the distinction between LIM systems and results databases seems quite natural, in reality
there is significant overlap in the types of information each requires, and it is important that
these two separate systems have an interface through which data from one can be connected
to data in the other. In many cases, there is considerable duplication of information in LIM
systems and in results databases. Consequently, many projects could reasonably make use
of a single database that combines a LIM system and a results database. Finally, data that
are published need to be made freely available to other researchers so that the conclusions

Microarray Data: Annotation, Storage, Retrieval and Communication 23-5

of the original study can be confirmed and so that the data might be used for other research
purposes. The databases that provide access to published data can be thought of as archival
data repositories.

23.2 Information to be Captured by a LIM System

While researchers purchasing commercially available microarrays have no need to record the
details of microarray manufacture, those who are constructing microarrays on-site will need
a LIM system. In order to troubleshoot problems and to properly interpret and annotate
one’s microarray data, it is essential to track data that describes how a microarray is
manufactured. For instance, when reporters (‘reporter’ refers to the nucleic acid that is
spotted on a microarray) on a microarray are based on the same sequence yet different
results are observed, contamination of one of the reporters might be indicated. Given the
tens of thousands of reporter sequences on a typical array, automated approaches are needed
to make this situation easy to detect. Conversely, the expression pattern of a given sequence
may consistently show close similarity to that of an unrelated sequence. In the absence
of tracking information, similar expression patterns would be interpreted as biologically
meaningful. However, the ability to track probe information enables a researcher to detect
instances where sequences in adjacent wells in a microtiter plate show similar expression
patterns. In such a case, it is very likely that one sample has contaminated the other. The
ability to detect likely contamination and other procedural problems allows the microarray
spots generated from suspect samples to be flagged as unreliable.

An effective microarray LIM system should track procedures that were used to generate
sequences spotted on microarrays, should map samples as they are transferred from one
microtiter plate to another, should record the identity of the sequences spotted on microar-
rays as well as their position on the microarray and finally, should store the details of the
microarray printing process.

23.2.1 Tracking and preparation of samples

It is essential that information about the sequence identity of reporters and their preparation
is stored (‘reporter’ refers to the nucleic acid that is spotted on a microarray). Access to
sequence information about reporters allows them to be properly annotated with biological
information, both in the present and in the future event of changes to the genomic sequence
record. Reporters are most often PCR products (amplified from cDNAs or from genomic
sequences) or oligonucleotides. PCR products can be generated from a variety of templates,
such as genomic DNA or cDNAs inserted into vectors. A microarray LIM system must be
able to record each step of a sample preparation as well as the sources of templates and
primers and their locations in relevant microtiter plates.

23.2.2 Sequences on arrays

An obvious use of a LIM system is to keep track of what is spotted on each array. There are
really two components to this. The first is recording what the sequence is supposed to be.
In the case of oligonucleotides spotted on a microarray, it could be as simple as recording
its sequence. However, if a PCR product is to be spotted, its identity is based on both the
template and the primers. In both of these cases, it could be advantageous to record the
gene or other genetic element that the spotted sequence is supposed to report. Suspected
contamination or PCR failure must be associated correctly with spotted sequences for future

23-6 Handbook of Computational Molecular Biology

reference. The second component is mapping where on a microarray each sequence has been
placed.

For example, producing a PCR product from a vector insert requires that the LIM sys-
tem record the following information (much the same information should be stored for the
manufacture of oligonucleotide arrays):

1. The source of clones/bacteria
2. Strains containing plasmids
3. The identity of the plasmid
4. The storage location of the plasmid
5. Any relevant accession numbers or clone ids, or other identifiers pertaining to

the insert in the plasmid
6. Identity and source of each primer (usually a common pair of vector primers are

used for amplification)
7. Storage locations of each primer
8. Sequences of primers used for amplifying genomic DNA
9. Expected size of the PCR product

10. Identity of the PCR product
11. Expected sequence of the PCR product
12. Storage location of the PCR product
13. Images of any gels used to evaluate the quality of the PCR product
14. The quality of the PCR product, with both respect to whether it is close to the

expected size, and/or whether a single, or multiple bands are seen, or indeed no
bands are seen

15. Transfer of samples from plate to plate
16. Protocols followed at each step of the production of the microarray

Being able to reconstruct the methods used to generate spots on a microarray is beneficial
for troubleshooting. Suspected contamination or incorrect annotation can be verified only
if the original samples can all be readily tested.

23.2.3 Microarray printing

The procedural details of microarray fabrication that should be recorded include the array-
ing machine that was used (if more than one was available), the tip configuration that was
employed, and the wash and dry times between each loading of the tips with sample. Most
projects record the number of microarrays made, the order of each microarray within the
batch (often glass slide microarrays printed at the beginning of a batch may have larger
spots than microarrays printed later), the type of slide or surface used, and any pretreat-
ments that might have been applied to the surface prior to printing. In addition, date, time
and names of individuals responsible for the print are often useful. Large-scale facilities
will also have to track the fates of each microarray (whether given to a researcher or simply
dropped and broken) and might even have to track billing and payment records.

Microarray Data: Annotation, Storage, Retrieval and Communication 23-7

23.3 Information to be Stored in a Results Database

Biological samples

A microarray database should allow recording of as much information as possible about
the biological samples used for experiments. Such information includes the organism and
genotype from which the sample was derived, the organ and/or anatomical derivation of the
sample, if appropriate. If possible, these annotations should be from controlled vocabularies,
or ontologies so that the descriptions of samples can be consistent, and more easily searched
by software, and return more complete results from searches.

Protocols

During the course of a microarray experiment, many manipulations of the biological
sample are likely to be carried out, and protocols for these manipulations often need to be
accessed by the experimenters themselves, or a third party, to assess exactly how, and in
what context the microarray data were generated. The protocols for the extraction of RNA
from the biological sample, and the hybridization protocol itself should also be recorded,
both for the purposes reproducing the experiment, and for troubleshooting and tracking of
any protocol-dependent systematic errors that may have occurred.

Data from the hybridization

Data are obtained by first scanning a hybridized microarray to generate an image of the
fluorescent signal. The resulting image is processed to identify spots and to extract data
for each spot. Several software packages are available for these tasks and the database a
project uses should obviously support data entry from the chosen image analysis program.
No matter what microarray platform or data acquisition package is used, the data acquired
from a microarray image consist of more than single measurement for each spot, and instead
are several dozen values per spot, many of which can be used as quality indicators. Most
image analysis programs produce dozens of data metrics per spot, such as total intensity in
each channel, background in each channel, regression correlation of all pixels in the spot,
etc. While the values used in the ultimate data analysis may simply be the normalized ratios
(see below) of background-subtracted signal intensities, many of the other measurements
provide information about spot quality (such as regression correlation) and valuable as filters
to help researchers select spots that have generated reliable data. If one decides to discard
some measurements provided by data acquisition software, one must be well informed about
which metrics are least likely to be useful for data selection and quality assessment. Since
the analysis of microarray data has so few “Standard Operating Procedures” and we can
reasonably expect novel and more sophisticated data analysis procedures to be created, it
is probably wise to store as many data columns as possible, if not all of them. However,
storage of so many measurements for each spot on a microarray accordingly demands greater
storage space.

Normalized data

There are many sources of systematic variation in microarray experiments that affect the
measured raw data — normalization is the process used to remove such variation. In the case
of two-color microarray experiments, the normalized data values that are most pertinent are
normalized log ratios. There are several methods that can be used for data normalization
(see [24] for a review), including global mean or median normalization, intensity dependent
normalization (using a lowess function [37]), and variance stabilization [12]. In addition,
some of these methods may be employed in conjunction with spike-in controls [36], and be

23-8 Handbook of Computational Molecular Biology

applied separately to data from different regions of the microarray to correct for spatial
bias. A microarray database must provide one or more of these methods for normalization,
as well as to have the ability to store the normalized data.

Data retrieval

Efficient and flexible data queries are what make databases attractive tools for storing
microarray data. To be even remotely useful, a microarray database must support a query
for data about a single microarray, in a file containing all the results for the array, as well
as the associated biological information. Since annotation of the elements on the array is
essential for interpretation of the results, it is important to retrieve relevant and up-to-date
information describing each of those elements. Another basic requirement is to retrieve
specific data fields from multiple microarrays, so that expression of genes in a group of
related arrays (for example, arrays that are part of a time series or a study of related tissue
samples) can be assayed.

Filtering of data

A microarray database should support filtering of data during retrieval, both on a spot-
by-spot basis, and also on a clone-by-clone, oligo-by-oligo or gene-by-gene basis. One should
be able to disregard, or filter, data that are generated from spots of low confidence using
flexible quality assessment criteria. Some examples of spot metrics that can be used in
filtering include the spot’s regression correlation, its signal to background ratio or its overall
intensity. Additionally, quality measurements from the manufacture of the array (whether
a PCR product showed an anomaly or whether the sample might be contaminated) should
also be available as metrics to use for data filtering. Examples of LIMS-type data that
can be used as filtering metrics include sequence verification, contamination and flag status
(indicating that a spot was identified as being suspect by visual inspection or by the data
acquisition software package).

When selecting data from multiple arrays it should also be possible to select data for
sequences that pass filtering criteria in some percent of arrays in the dataset, or sequences
whose signals vary by a certain amount within a set of arrays. Alternatively, a researcher
might want to retrieve all data for a subset of genes, clones or oligonucleotides, using a list
of genes of interest, or even selecting based on gene annotation.

Modeling of biological samples

An easily overlooked issue in recording microarray data is how to model the reporters on
the arrays and how they relate to the biological molecules (often, but not always, genes)
that they assay. A simple model would be to simply treat the DNA sequences on the chip
as if they were the genes themselves. However most experiments using microarrays require
a data model that is more sophisticated. First, such an approach does not allow effective
modeling of non-genic sequences (such as intergenic regions), or of large sequences that
may span several genes, such as BACs. Second, it is also not adequate to model genes,
either. A microarray database must model the sequences using at least two different levels
of specificity, first that of the physical sequence that is the reporter on the microarray, and
secondly, at the level of the genetic locus to which that reporter maps. It is important to bear
in mind that many reporters on a microarray may map to a single gene, and indeed that the
mapping between a reporter and a gene may change over time, as our knowledge of genomes,
and ability to predict genes within them, becomes more sophisticated. For instance, many
sequences (e.g. cDNA clones or oligonucleotides designed using a cDNA clone) may map
to a single genetic entity, such as a UniGene cluster. The ability to retrieve individually

Microarray Data: Annotation, Storage, Retrieval and Communication 23-9

microarray data as a function of the clones whether or not they map to the same clone is
useful to verify the reproducibility of the data from the individual clones. An expression
pattern that is significantly different than those of other clones in a UniGene cluster could
indicate that clone is contaminated, has been erroneously mapped to a particular UniGene
cluster, or may be the result of an alternative splicing event. Alternatively retrieval of
data for multiple reporters that map to the same genetic locus as a single, collapsed set
of data is also an important function for a microarray database. Collapsing the data as
a function of the genetic locus is a means to prevent multiple measurements of the same
gene from affecting downstream data analysis. An additional level of identification of the
reporters on an array is that of ‘instances of a piece of DNA’. For example, a cDNA clone
or oligonucleotide may come into a laboratory or array fabrication facility through more
than one path, and even though each copy of the clone should ostensibly contain exactly
the same sequence, it is prudent to have the ability to track these entities separately in case
differences in manufacture or handling cause differences in data obtained from the reporters.

A more sophisticated and much more useful plan would be to map reporter sequences on
a microarray not just to the genes they represent, but also to each of the gene’s exons or
introns. With this information, the data would facilitate comparison of expression patterns
of alternative transcripts. As the number of reporters on microarrays increase (particu-
larly those that are fabricated using photolithography, such as Nimblegen and Affymetrix
microarrays), it is likely that many array platforms will have enough reporters to assay
exon-exon junctions for each exon in each transcript, so as to be able to assay different
splice forms, so a data model to take advantage of such a feature of the microarrays would
be attractive in a microarray results database.

Biological annotation of sequences

Interpretation of microarray data is impossible without biological information describing
the reporters on the array. For this reason, it is essential that a microarray results database
links each reporter to accurate and current annotation of the genes to which they map.
One factor that complicates this task is that our understanding of genes and their products
changes as research uncovers new information. A second complicating factor is that the
types of annotation may change. Types and sources of important biological annotation
differ with different organisms and with the scientific intent of the experiment. A third,
and very challenging factor, is that the actual mapping between a piece of DNA and the
gene it is meant to represent can also change. For example, upon each build of the human
UniGene clusters, several hundred clones will change their allegiance to different clusters
than in the previous build. Thus a microarray database must allow the annotation of entities
on chips to be easily updated, flexible and dynamic.

A standard for experimental annotation: MIAME

Independent verification, accurate interpretation and re-use of microarray results require
very careful annotation of experiments. Towards this end, the Microarray Gene Expres-
sion Data Society (MGED; www.mged.org), a grass-roots group of microarray researchers,
has developed a standard to define the Minimal Information About Microarray Experi-
ments (MIAME; [6]). The MIAME specification, available at (www.mged.org), is not a
strict set of requirements, but really a set of guidelines that indicates the types of anno-
tations that should be recorded when microarray data are made publicly available. Since
several journals and funding agencies have adopted the MIAME standard for data release,
a researcher selecting a microarray results database should check whether the package is
MIAME-supportive. The MIAME specification describes experimental annotations that fall
into six categories, much of which has been discussed as prerequisites of a good database:

23-10 Handbook of Computational Molecular Biology

1. Experimental design: MIAME allows a group of microarrays to be described in
the context of a single experiment. Both the type of experiment can be described
(for example, a time series, a comparison of diseased tissue to healthy tissue, or
comparison of a wild-type to a mutant) and the relationships of one array to
another can be detailed, e.g. an order of the arrays within a series. Experimental
factors being assayed, quality control steps and associated publications are part
of the experimental design.

2. Array design: In addition to a description of the manufacture of the arrays and
the microarray platform, this section records details about the features on each
spot, such as its sequence. The sections above about LIM systems and biological
sequence modeling provide a discussion of the issues associated with recording
this type of information.

3. Samples used, extract preparation and labelling: In order to understand the
experiments performed, information about the origin of each biological sample
must be provided as well as details about any procedures or manipulations that
were performed using the biological sample. The description of the samples used
for hybridization should include topics such as the primary source of the biolog-
ical sample, the organism from which it was derived, and the protocols used for
its preparation, the RNA extraction and subsequent labeling.

4. Hybridizations procedures and parameters: This section of MIAME describes
the protocol and conditions used for hybridization, blocking and washing, includ-
ing any post-processing steps.

5. Measurement data and specifications: This section of MIAME covers the raw
and processed data that make up the actual experimental results. Care should
be exercised to record information about the original scans of the array (images),
the extracted microarray data based on image analysis and the final data after
normalization and consolidation of replicates. Importantly, this section of MI-
AME specifies that data extraction and processing protocols should be explained
in sufficient detail to replicate the data analysis.

A standard for data exchange : MAGE-ML

MAGE-ML is an XML-based markup language that is based on the MicroArray Gene Ex-
pression object model (MAGE-OM)indexMAGE-OM developed by members of the MGED
society [31]. Expressed in the Universal Modeling Language (UML), MAGE-OM mod-
els the entire process of microarray experimentation, from array design, to hybridization
and data analysis. Since MAGE-OM permits one to record all MIAME-required annota-
tions, MAGE-ML provides an excellent and comprehensive method to exchange microar-
ray data. To provide information to populate MAGE files, the MAGE Ontology (MO;
http://mged.sourceforge.net/ontologies/) has been developed. MO provides con-
trolled terms for use within the MAGE-OM. The goal of this ontology is to help different
groups to annotate their microarray experiments in consistent and predictable manners so
that computational analysis will be easier to accomplish. One obvious advantage of con-
sistent annotation is that data entered into a microarray repositories, such as GEO [5] or
ArrayExpress [20], will be more easily queried by investigators.

Tools and analysis packages

A microarray database could simply serve as a data repository, with methods to enter and
retrieve the data, as discussed above. However, it is often extremely inconvenient to have to
extract data, perhaps re-format it manually and then import it into various analysis tools.

Microarray Data: Annotation, Storage, Retrieval and Communication 23-11

Instead, analytic tools can be associated with the database itself, reducing the manipulation
and effort required to explore data sets. An example of a valuable tool would be one to
produce graphs of various spot parameters (for example, channel 1 intensity vs. channel
2 intensity), which may be useful for assessing overall array quality. Data analysis tools,
such as hierarchical clustering [8], Self Organizing Maps [33] and principal components
analysis [2] would be very useful components of a database package. Since there are so
many commercial and free stand-alone tools for microarray analysis, it is essential that the
database produce data in the correct format for such tools to read.

Archival data repositories

There are currently three archival microarray data repositories. In the US, at the NCBI is
the Gene Expression Omnibus (GEO; [5]), which accepts data in multiple formats, including
MAGE-ML . In Europe, there is ArrayExpress [20], which is a product of the European
Bioinformatics Institute in Cambridge, England, and has more stringent file format and data
annotation requirements for data entry. Data can be either directly entered in MAGE-ML
format or entered using a web-based interface (MIAMExpress) that will construct MAGE-
ML for entry into the database. Finally, in Japan there is Cibex, which is being developed by
the DDBJ, though is not yet accepting public data submissions. Despite their geographical
separation, one of the stated goals of the three archival repositories to share data in the
same spirit as GenBank/EMBL/DDBJ, though no formal accession numbering system of
data exchange procedures have yet been formally worked out.

23.4 Freely Available Results Databases

For local installation, a microarray results database can either be purchased from a ven-
dor, such as Rosetta’s Resolver, or Iobion’s GeneTraffic, or alternatively may be installed
from one of several free software projects. While there are several commercial microarray
databases available (see [3], for review), their relatively high cost can make their use pro-
hibitive. Below, we present eight freely available results databases, all of which distribute
their full source code and schema, permitting customization (or improvement) by enterpris-
ing installers, and discuss their advantages and disadvantages, as well as their installation
requirements.

23.4.1 BioArray Software Environment (BASE)

BASE [26] is a MIAME-supportive system that provides an integrated framework for stor-
ing and analyzing microarray data and related information.

Requirements and Installation: BASE is written in PHP, with some additional C++
code for CPU-intensive tasks, and uses the Open Source MySQL database for data stor-
age. Typically, it is deployed on Linux, though there have also been successful reports of
deployment on Sun’s Solaris operating system, and MacOSX, and it can be modified for
deployment on Windows using Cygwin. The BASE software itself is released under the
GNU General Public License, and depends only on Open Source software, such as Linux.
Since BASE does not require any software purchase, there is a very low cost for deployment.

Features: BASE is capable of storing data from all aspects of the microarray process,
from LIMS data (including tracking clones in microtiter plates, and recording details about
microarray printing) to the loading and analysis of results data. Internally, the BASE data

23-12 Handbook of Computational Molecular Biology

model closely resembles the MAGE Object Model [31] and allows users to specify relation-
ships between various aspects of a microarray experiment. For example, which biological
samples were hybridized on a given microarray, and data from which hybridizations were
grouped together to form an experimental set or series can be easily stored. BASE sup-
ports the loading of Array Designs for homemade spotted arrays, as well as for commercial
arrays, though currently BASE only supports two-channel arrays, so Affymetrix arrays are
not fully supported. BASE has a flexible configuration system, such that importing data
from a variety of image extraction packages, such as GenePix and QuantArray is relatively
straightforward. BASE also has plug-in software architecture, so external developers could
contribute additional software packages, and extracted data are typically produced in a
BASEfile format, which can be used by the plug-ins. Several plug-ins are already avail-
able, including ones that implement Lowess normalization, and Multi-Dimensional Scaling.
BASE also allows data export in a variety of different formats for use in other analysis tools,
as well as in MAGE-ML format. BASE also provides tools so users can allow others to view
their data, so it can facilitate collaborative research.

Advantages: Completely Open Source solution, with low cost of deployment. MIAME-
supportive, able to export MAGE-ML. Flexible data import tool, and ability to share data
easily. Able to store at least 3,000 hybridizations, each with 30,000 features. Flexible
analysis and filtering pipeline, which can store your parameters for later retrieval. Plug-in
architecture that allows new analysis software to be easily added.

Disadvantages: Lack of real support for Affymetrix data. No easy way to transfer data
between one BASE instance and another. No MAGE-ML import. Unproven scalability of
MySQL may lead to performance issues.

23.4.2 Gecko (Gene Expression: Computation and Knowledge Organi-
zation)

Gecko [34] (http://sourceforge.net/projects/geckoe) uses a client server architecture,
with a centralized repository that can store tens of thousands of Affymetrix scans, and
comes with a suite of analysis tools.

Requirements and Installation: Gecko requires a Sun server running Solaris, and uses
Oracle as its RDBMS. The Gecko client currently runs only on Windows, although work is
underway to write a Java client, which theoretically could run on any platform.

Features: Gecko features a database, a client tool for accessing the data, and a suite of
analysis tools. Currently, the computational engine implements an admirable number of
analysis tools, including many two-class comparison tests (Student t-tests, SAM, compari-
son of variances, Mann-Whitney), as well as multiple-class and multiple-factors tests (one
and two-way ANOVA) and the ability to perform contrast calculations. In addition, Gecko
has self-organized maps (SOM), average linkage hierarchical clustering, principal component
analysis (PCA), multidimensional scaling (MDS) and the ability to build and display cor-
relation or distance matrices, as well as various data transformation tools. Gecko provides
a tool they term “Analysis Trees,” which enable users to perform and save complex data
analysis work flows, which are stored as Directed Acyclic Graphs (DAGs). While Gecko
use has thus far been limited to Affymetrix data, it is theoretically able to store two color
microarray data as well. While not fully MIAME compliant, Gecko implements some of the
MIAME required annotation fields.

Microarray Data: Annotation, Storage, Retrieval and Communication 23-13

Advantages: Scalable to tens of thousands of arrays, with a comprehensive suite of anal-
ysis tools, and Analysis Trees that allow users to track and repeat analyses.

Disadvantages: Requires expensive hardware and software for the server, and the client
software only runs on Windows. Not fully MIAME compliant, and does not produce MAGE-
ML. At the time of writing, only the client software has been made available for download,
which significantly diminishes its value.

23.4.3 GeneX and derivatives

GeneX was one of the first Open Source microarray database solutions [19] and was orig-
inally developed at the National Center for Genome Research (NCGR), and is now be-
ing maintained as GeneX Lite (http://www.ncgr.org/genex/index.html). Other groups
are also developing two additional variants of GeneX. First, GEOSS (http://va-genex.
sourceforge.net/), formerly known as GeneX Va [15], is based on the 1.05 release of
GeneX, and has additional layers of security to enable data sharing, and also provides sup-
port for Affymetrix data. Second, GeneX-2 (http://genex.sourceforge.net/) is being
developed by a volunteer team that includes several of the original GeneX developers. All
three of these GeneX variants provide a freely available database (released under the GNU
lesser public license) that uses the free database system (PostgreSQL) to store the data.
Commercial installations of GeneX Lite are subject to some restrictions, so license issues
should be investigated prior to installation.

Requirements and Installation: GeneX installation requires a Linux machine with Perl
installed and an Apache web server. An installation script is used to configure the compo-
nents of the system.

Features: A Java-based curation tool is provided for formatting datasets for secure upload
into the database, and then simple html interfaces are used to retrieve that data. In ad-
dition, the GeneX software package provides an Application Programming Interface (API)
that allows experienced programmers to make extensions to the interface. There are a num-
ber of analytical routines that can be executed with microarray data, such as clustering,
multidimensional scaling, cluster validation and Principal Components Analysis, which are
provided as separately available add-ons for the database.

Advantages: GeneX can be installed on inexpensive hardware and is relatively easy to
install. The flexible data model allows users to store data from different array platforms,
such as two-color microarray data, and single-channel Affymetrix data. Some data analysis
tools are provided. GeneX is under active development, and thus future improvements can
be expected, although this is somewhat mitigated by the fact that the three development
tracks are independent.

Disadvantages: GeneX has not yet been demonstrated to scale to hold data for many
thousands of experiments, though that of course does not mean it will not scale to that
size. GeneX does not allow viewing of proxy images for characterization of array quality.

23-14 Handbook of Computational Molecular Biology

23.4.4 maxdSQL

maxdSQL (http://bioinf.man.ac.uk/microarray/maxd/) is a MIAME-supportive database
based on the ArrayExpress schema (which in turn is a direct implementation of the MAGE
Object Model).

Requirements and Installation: maxdSQL is implemented entirely using the SQL92
standard, and thus is supported by any database management system that implements that
standard. This includes Oracle, PostgreSQL and MySQL. The various tools that comprise
the maxd database are written in Java, so theoretically can be run on any platform. There
are instructions for Linux, Windows and MacOSX.

Features: Maxd provides a database loading application, maxdLoad2, for the loading of
new data into the database. MaxdLoad2 is a standalone Java application that can be run
either on the same machine upon which the database resides, or it can also be used on
a remote machine. MaxdLoad2 permits users to specify all of the details of their experi-
mental design, closely following the MAGE model in terms of the objects and process they
describe. For loading of results data, maxdLoad2 allows users to define the file format of
a particular data file, and then save that definition for later reuse. Results data can be
loaded in batch. Maxd provides a second application, maxdView, which provides facilities
for data visualization, filtering transformation and analysis.

Advantages: maxdSQL is very flexible, and can be deployed on any platform that can
support Java, and can use any database that implements the SQL92 standard. This means
that an entirely open source implementation can be deployed, that provides a low cost to
entry. Data loading is flexible, and many data file formats can be used. Standalone Java
applications provide interactive means by which experimental data can be loaded, viewed
and analyzed. Data can be output in MAGE-ML, and database fully supports the MIAME
standard.

Disadvantages: Scalability not yet proven (though this does not imply that it will not
scale).

23.4.5 RNA Abundance Database (RAD)

RAD [18] provides a MIAME-supportive infrastructure for gene expression data manage-
ment and makes extensive use of ontologies. RAD is part of the more general Genomics
Unified Schema (GUS; www.gus.org).

Requirements and Installation: Because RAD relies on GUS, it is actually necessary
to install GUS. GUS is supported using either Oracle 8i/9i/10g, or PostgreSQL. Perl, PHP
and Apache (www.apache.org) are required for installation, and there are some additional
optional Java modules. GUS installation currently requires a certain level of expertise, but
the authors are working on a ready-to-use package.

Features: The RAD Study Annotator records specific details on protocols, biological sam-
ples and study designs, which are collected through web-based annotation forms. The RAD
Querier provides basic hierarchical clustering tools, plots for quality assessment of single
arrays and an in-house algorithm for detecting differentially regulated genes (PaGE), which
is also available separately as a Perl program or a Java application (http://www.cbil.

Microarray Data: Annotation, Storage, Retrieval and Communication 23-15

upenn.edu/PaGE/). For capturing data and meta-data, all microarray platforms and image
analysis software are supported. In addition, RAD is being used for CGH, ChIP, and SAGE
data. RAD can produce MAGE-ML files for export of data to other databases or software
packages. RAD is part of a more general Genomics Unified Schema, which provides a plat-
form to integrate gene and transcript data from a variety of organisms.

Advantages: RAD provides a scalable, web-accessible solution that can accommodate da-
ta from several laboratories. The software is provided in an Open Source method. The
security features allow fine-tuned access for keeping unpublished data private, sharing data
with collaborators and making published data freely available. The methods to store and
visualize information about protocols, biological samples and the design of experiments are
excellent. RAD can produce MAGE-ML, easing submission of microarray data to public
repositories. Since RAD and GUS are being actively developed (indeed, RAD was selected
for the microarray data module of the Generic Model Organism Database project (GMOD;
http://www.gmod.org/), bugs are likely to be fixed and new releases with additional fea-
tures can be expected.

Disadvantages: Installation and maintenance of RAD can be rather work-intensive, but
hardware, software, and personnel requirements are dependent of the scale and scope of the
project. RAD (as part of GUS) can be installed on a laptop and maintained by a single
computer-savvy student or can be use to support cores and large bioinformatics resources.
RAD has limited LIMS features and has limited analysis tools available as part of the
package.

23.4.6 Stanford Microarray Database (SMD)

The Stanford Microarray Database [4] is a MIAME-supportive database, which can store
results data and some LIMS data, and has data analysis tools available as part of the instal-
lation. Its full source code and schema are available from (http://genome-www.stanford.
edu/microarray)

Requirements and Installation: The Stanford installation of SMD use Oracle 9i on a
Sun Microsystems V880 server, running Solaris 2.9, with 8 processors, and 32GB of RAM.
While there is no specific reason to use a Solaris system, Oracle updates and bug fixes
often appear first on this platform, making it desirable for housing an Oracle database.
SMD installation requires the Oracle Enterprise Edition server software, a web server, Perl,
and several Perl modules. Although an installer script distributed with the software takes
care of many of the steps required to get the system running, it is still not a simple task.
Additional details, such as setting up the Oracle instance of the database, and creating all
the tables and the relationships between them does require the efforts of a trained database
administrator, though all the SQL scripts required to do this are distributed with the SMD
package. Making a more easily installed package, with regular, quarterly releases, is an
explicit goal of SMD.

Features: SMD incorporates a LIMS tracking system, to track the 96- and 384-well plates
that might have been used for printing homemade microarrays, either in people’s labora-
tories, or at the Stanford Functional Genomics Facility (SFGF; http://www.microarray.
org/). SMD also allows loading of commercial MAGE-ML Array Designs, for example from
Agilent Technologies, Affymetrix, or GeneXP Biosciences). Data derived from GenePix, S-
canAlyze and SpotReader (Niles Scientific), as well as data extracted by Agilent’s Feature

23-16 Handbook of Computational Molecular Biology

Extraction software from Agilent arrays may be loaded into SMD. In addition, SMD also
provides native support for Affymetrix data, allowing users to upload CEL files and d-
Chip files. More platforms are added as the SMD user base at Stanford use arrays from
new sources - at the time of writing, SMD was adapting software to accept data from ar-
rays manufactured by both Nimblegen (http://www.nimblegen.com/) and Combimatrix
(http://www.combimatrix.com/). Users may enter data derived from any of these packages
in either a single or batch mode. For each of the data file types that SMD supports, all data
are stored (in many cases several dozen metric per spot), and upon entry, data from two-
color microarray experiments may be normalized using either a Global Mean Normalization,
or using a Lowess based normalization, either globally, or per print tip. Data retrieval of
an arbitrary number of experiments, can be done using complex filters, such that any spot
metric, LIMS data, or biological annotation may be used as a filtering criterion, which may
be combined together in Boolean queries, using AND, OR or NOT. In addition, SMD has
several built-in tools for assessing array quality, experiment reproducibility, and visualizing
a representation of the original microarray, as well as tools for downstream analyses. These
tools include hierarchical clustering, Self-Organizing Maps, Singular Value Decomposition
[2], and imputation of missing data [35]. SMD supports the MIAME standard, and upon
publication data can be exported in MAGE-ML for import into the ArrayExpress or GEO
data repositories. Finally, SMD has well-developed data access methods so that some data
can be restricted to a few close collaborators and other data can be made publicly avail-
able. SMD has been successfully used for gene expression, chromatin immunoprecipitation
(ChIP), comparative genome hybridization (CGH) and protein microarrays, as well as other
applications of microarray technology.

Advantages: SMD is a scaleable solution for storing microarray data from large complex
projects — the Stanford installation currently has data from >50,000 microarrays, compris-
ing data from ∼1,300,000,000 spots — while a flexible security model allows fine-grained
access control to both data and tools. SMD is MIAME-supportive and can export data
in MAGE-ML format for direct submission to GEO or ArrayExpress. Several tools are
available as part of the package, and software for viewing proxy images of the microarray
scans to visually evaluate the quality of the data are also available. Furthermore, SMD
dynamically updates annotation of the human, mouse and yeast genes that are represented
on the microarrays, and is under active development, so that new features and improved
schema and software are regularly available. Finally, SMD has support for both two-color
data, and for Affymetrix data.

Disadvantages: As implemented, SMD requires expensive hardware and software, as well
as trained staff (at least a database administrator and a programmer/curator) to install it.
An offshoot of SMD, the Longhorn Array Database (LAD; [14]), was developed specifically
because of these drawbacks of SMD. LAD can be deployed entirely using Open Source
software, with its primary platform being PostGreSQL on Linux, and has been shown to be
able to store data from several thousand microarrays. As of the time of writing (January
2005), LAD is based on a previous release of SMD, prior to the addition of Affymetrix,
Agilent and MAGE-ML support, though it is likely that LAD will update to a newer version
of the SMD package.

23.4.7 TM4 and MicroArray DAta Manager (MADAM)

TM4 [27] is apackage that includes a MySQL database and a suite of tools, and is available
from The Institute for Genomic Research (TIGR)through (http://www.tm4.org). One of

References 23-17

the tools associated with TM4, MADAM, provides a graphic user interface for entering data
into and retrieving data from the database.

Requirements and Installation: MADAM runs on the Windows 2000/NT/XP systems,
as well as Linux, and requires Java v1.4.1 or higher. It uses MySQL for its database.

Features: TM4 with MADAM provides a Java interface for entering and annotating mi-
croarray data, in a MIAME-supportive fashion, and provides integrated MAGE-ML export.
While MADAM itself does not have any analysis tools, the TM4 package includes MIDAS
(Microarray Data Analysis System) and MeV (Multi-experiment viewer). Together, these
tools provide the user the ability to carry out various normalizations, quality control steps,
data transformations and data analyses on their data, and are tightly integrated with the
entire TM4 suite, such that data from one component can easily be loaded into a different
component. It is probably fair to say that TM4 contains the most comprehensive set of
open source tools available with intuitive graphical interfaces and the system continues to
be developed and expanded.

Advantages: Extensive support for various different analysis methods through the inte-
grated tools in the TM4 suite, and completely open source. MIAME supportive annotation
and MAGE-ML export.

Disadvantages: MADAM currently only has support for two color microarray experiments
and can upload only the “.mev” file format. A utility called ExpressConverter can convert a
wide range of formats, including GenePix, ImaGene, ScanArray, ArrayVersion, and Agilent
to “.mev” format for loading, but some information in these formats is lost.

23.5 Conclusions

Many researchers conducting experiments using microarray technology are left in a diffi-
cult position when it comes time to analyze and interpret their data. While a microarray
database is a necessity for handling the quantity of data and the complexity of its annota-
tions, buying a commercial product is costly, and creating and maintaining a local database
is no simple proposition. A number of free databases are available for local installation, but
none is a “one size fits all” solution. Researchers initiating microarray experiments should
carefully consider their database requirements and should plan accordingly to obtain fund-
ing. An adequate database solution will significantly ease interpretation, annotation, anal-
ysis, communication and publication of microarray experiments. For that reason, database
needs should be specified just as explicitly as the experiments that the database will even-
tually house. Selecting or developing a database to keep data safe and to help researchers
retrieve data, keep biological annotations up to date, share data with collaborators, analyze
data and publish conclusions should be a high priority for any microarray project.

References

[1] A.A. Alizadeh, M.B. Eisen, R.E. Davis, and C. Ma et al. Distinct types of diffuse
large B-cell lymphoma identified by gene expression profiling. Nature, 403(6769):503–
11, 2000.

23-18 References

[2] O. Alter, P.O. Brown, and D. Botstein. Singular value decomposition for genome-wide
expression data processing and modeling. Proc Natl Acad Sci U S A, 97(18):10101–6,
2000.

[3] P. Anderle, M. Duval, S. Draghici, and A. Kuklin et al. Gene expression databases
and data mining. Biotechniques, pages 36–44, 2003. Suppl.

[4] C.A. Ball, I.A. Awad, J. Demeter, and J. Gollub et al. The stanford microarray
database accommodates additional microarray platforms and data formats. Nucleic
Acids Res, (33):D580–2, 2005. Database Issue.

[5] T. Barrett, T.O. Suzek, D.B. Troup, and S.E. Wilhite et al. NCBI GEO: mining
millions of expression profiles–database and tools. Nucleic Acids Res, (33):D562–6,
2005. Database Issue.

[6] A. Brazma, P. Hingamp, J. Quackenbush, and G. Sherlock et al. Minimum information
about a microarray experiment (MIAME)-toward standards for microarray data. Nat
Genet, 29(4):365–71, 2001.

[7] J.L. DeRisi, V.R. Iyer, and P.O. Brown. Exploring the metabolic and genetic control
of gene expression on a genomic scale. Science, 278(5338):680–6, 1997.

[8] M.B. Eisen, P.T. Spellman, P.O. Brown, and D. Botstein. Cluster analysis and display
of genome-wide expression patterns. Proc Natl Acad Sci U S A, 95(25):14863–8, 1998.

[9] S.P. Fodor, R.P. Rava, X.C. Huang, and A.C. Pease et al. Multiplexed biochemical
assays with biological chips. Nature, 364(6437):555–6, 1993.

[10] M. Grunstein and D.S. Hogness. Colony hybridization: a method for the isolation of
cloned DNAs that contain a specific gene. Proc Natl Acad Sci U S A, 72(10):3961–5,
1975.

[11] C.T. Harbison, D.B. Gordon, T.I. Lee, and N.J. Rinaldi et al. Transcriptional regula-
tory code of a eukaryotic genome. Nature, 431(7004):99–104, 2004.

[12] W. Huber, A. von Heydebreck, H. Sultmann, and A. Poustka et al. Variance stabi-
lization applied to microarray data calibration and to the quantification of differential
expression. Bioinformatics, 18(suppl 1):S96–104, 2002.

[13] V.R. Iyer, M.B. Eisen, D.T. Ross, and G. Schuler et al. The transcriptional program
in the response of human fibroblasts to serum. Science, 283(5398):83–7, 1999.

[14] P.J. Killion, G. Sherlock, and V.R. Iyer. The longhorn array database (LAD): an
open-source, MIAME compliant implementation of the Stanford Microarray Database
(SMD). BMC Bioinformatics, 4(1):32, 2003.

[15] J.K. Lee, T. Laudeman, J. Kanter, and T. James et al. GeneX Va: VBC open source
microarray database and analysis software. Biotechniques, 36(4):634–8, 640, 642, 2004.

[16] T.I. Lee, N.J. Rinaldi, F. Robert, and D.T. Odom et al. Transcriptional regulatory
networks in saccharomyces cerevisiae. Science, 298(5594):799–804, 2002.

[17] S.C. Linn, R.B. West, J.R. Pollack, and S. Zhu et al. Gene expression patterns
and gene copy number changes in dermatofibrosarcoma protuberans. Am J Pathol,
163(6):2383–95, 2003.

[18] E. Manduchi, G.R. Grant, H. He, and J. Liu et al. RAD and the RAD study-annotator:
an approach to collection, organization and exchange of all relevant information for
high-throughput gene expression studies. Bioinformatics, 20(4):452–9, 2004.

[19] H. Mangalam, J. Stewart, K. Zhou, and M. Sclauch et al. GeneX: An open source gene
expression database and integrated tool set. IBM Systems Journal, 40(2):552–569,
2001.

[20] H. Parkinson, U. Sarkans, M. Shojatalab, and N. Abeygunawardena et al.
ArrayExpress–a public repository for microarray gene expression data at the EBI.
Nucleic Acids Res, (33):D553–5, 2005. Database Issue.

[21] A.C. Pease, D. Solas, E.J. Sullivan, and M.T. Cronin et al. Light-generated oligonu-

References 23-19

cleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci U S A,
91(11):5022–6, 1994.

[22] J.R. Pollack, C.M. Perou, A.A. Alizadeh, and M.B. Eisen et al. Genome-wide analysis
of DNA copy-number changes using cDNA microarrays. Nat Genet, 23(1):41–6, 1999.

[23] J.R. Pollack, T. Sorlie, C.M. Perou, and C.A. Rees et al. Microarray analysis reveals
a major direct role of DNA copy number alteration in the transcriptional program of
human breast tumors. Proc Natl Acad Sci U S A, 99(20):12963–3, 2002.

[24] J. Quackenbush. Microarray data normalization and transformation. Nat Genet,
(32):496–501, 2002.

[25] D.T. Ross, U. Scherf, M.B. Eisen, and C.M. Perou et al. Systematic variation in gene
expression patterns in human cancer cell lines. Nat Genet, 24(3):227–35, 200.

[26] L.H. Saal, C. Troein, J. Vallon-Christersson, and S. Gruvberger et al. BioArray soft-
ware environment (BASE): a platform for comprehensive management and analysis of
microarray data. Genome Biol, 3(8):SOFTWARE0003, 2002.

[27] A.I. Saeed, V. Sharov, J. White, and J. Li et al. TM4: a free, open-source system for
microarray data management and analysis. Biotechniques, 34(2):374–8, 2003.

[28] M. Schena, D. Shalon, R.W. Davis, , and P.O. Brown. Quantitative monitoring of gene
expression patterns with a complementary DNA microarray. Science, 270(5235):467–
70, 1995.

[29] D. Shalon, S.J. Smith, and P.O. Brown. A DNA microarray system for analyzing
complex DNA samples using two-color fluorescent probe hybridization. Genome Res,
6(7):639–45, 1996.

[30] E.M Southern. Detection of specific sequences among DNA fragments separated by
gel electrophoresis. Mol Biol, 98(3):503–17, 1975.

[31] P.T. Spellman, M. Miller, J. Stewart, and C. Troup et al. Design and implemen-
tation of microarray gene expression markup language (MAGE-ML). Genome Biol,
3(9):RESEARCH0046, 2002.

[32] P.T. Spellman, G. Sherlock, M.Q. Zhang, and V.R. Iyer et al. Comprehensive i-
dentification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by
microarray hybridization. Mol Biol Cell, 9(12):3273–97, 1998.

[33] P. Tamayo, D. Slonim, J. Mesirov, and Q. Zhu et al. Interpreting patterns of gene
expression with self-organizing maps: methods and application to hematopoietic dif-
ferentiation. Proc Natl Acad Sci U S A, 96(6):2907–12, 1999.

[34] J. Theilhaber, A. Ulyanov, A. Malanthara, and J. Cole et al. GECKO: a complete
large-scale gene expression analysis platform. BMC Bioinformatics, 5(1):195, 2004.

[35] O. Troyanskaya, M. Cantor, G. Sherlock, and P. Brown et al. Missing value estimation
methods for DNA microarrays. Bioinformatics, 17(6):520–5, 2001.

[36] J. van de Peppel, P. Kemmeren, H. van Bakel, and M. Radonjic et al. Monitoring global
messenger RNA changes in externally controlled microarray experiments. EMBO Rep,
4(4):387–93, 2003.

[37] Y.H. Yang, S. Dudoit, P. Luu, and D.M. Lin et al. Normalization for cDNA microar-
ray data: a robust composite method addressing single and multiple slide systematic
variation. Nucleic Acids Res, 30(4):e15, 2002.

24
Computational Methods for

Microarray Design

Hui-Hsien Chou
Iowa State University

24.1 Introduction . 24-1
24.2 Basic Design Strategies . 24-4

Sequence level comparison • Thermodynamic
calculation • Additional design criteria • Global probe
selection

24.3 DNA Microarray Design . 24-11
24.4 Long Oligo Microarray Design . 24-13

Picky design parameters • Suffix array construction
and search • Local alignment and melting
temperature estimation • Optimal probe set and
experiment temperature determination

24.1 Introduction

Microarrays for measuring the expression profile of cells under different developmental or
environmental stages are gaining rapid acceptance by biologists as a popular method to
conduct whole genome biological studies. This is especially promising given that many
genomes of varying sizes have recently been sequenced, including some large genomes like
Drosophila [1], Arabidopsis [31, 35, 7], human [27, 50], mouse [53] and rice [17, 56]. Soon
additional large genomes such as maize [13], rat [49], chicken [41] and dog [25] may become
available as well.

With the knowledge of the whole genome or a significant portion of its coding region, it is
now possible to computationally optimize the design of microarrays to ensure the optimal
chance to correctly gather the expression profile deemed highly important for biologists to
elucidate gene functions and to eventually better understand life. Given that microarray
terminologies are not always consistent in the literature, in this chapter we explicitly use
the terms “spot”, “probe” or “oligo” to denote the sensor on the microarray surface, and
the terms “target”, “nontarget” or “sequence” to denote the labeled single-strand DNA or
RNA that are converted from extracted cell RNA, commonly just from mRNA.

Currently there are three major formats of microarrays in use, based on spotted cDNA
clones [15, 18], lithographically synthesized short oligos (the Affymetrix array) [32, 59], and
long oligos either synthesized in situ (the Agilent array) or prescribed and spotted by users
[21, 9]. See Figure 24.1 for illustrations of the three different types of arrays.

DNA clones are the byproducts of whole genome or EST sequencing projects, therefore
they are readily available for DNA microarray manufacturing. After genome assembly or
EST clustering, a representative template from the clone library can be computationally

24-1

24-2 Handbook of Computational Molecular Biology

DNA array

DNA chip

probe

sense strand

anti-sense strand
(hanging over)

labeled target

300~2000bp perfect match

labeled nontargets

fluorescent dye

imperfect matches

Short oligo (Affymetrix array)

25bp perfect match

PM1

MM1

labeled nontargets

fluorescent dye

imperfect match

PMn
MMn

labeled target

n = 16~20 PM/MM
pairs per target gene

imperfect matchDNA chip

probe

Long oligo (Picky designed)

50~70bp perfect match

labeled target

fluorescent dye

DNA chip

probe

FIGURE 24.1: Illustrations of the three main microarray formats in use today. DNA
arrays were made from spotted DNA fragments amplified from clone
libraries. Due to their enormous length, uneven melting temperature
and the extra anti-sense strands, cross-hybridization with nontargets is
the highest with DNA arrays. Short oligos used in Affymetrix arrays
were lithographically synthesized directly on the array surface. Due to
their shorter length of 25 bp, a set of match/mismatch pairs of oligos
is required to uniquely identify the expression level of a single target.
For each perfect match (PM) oligo there is a companion mismatch
(MM) oligo that is used to gauge the background hybridization level
with nontargets. Long synthesized oligo arrays such as those designed
by Picky were computationally optimized that can uniquely identify
each labeled target without ambiguity. With a global design approach,
theoretically there should not be any cross-hybridization of each probe
with nontargets at the optimal experiment temperature determined by
the design.

Computational Methods for Microarray Design 24-3

selected to best represent each gene or gene family. Standard PCR amplification procedure
can then be followed to manufacture the probe that will be spotted onto the microarray
surface. Depending on whether custom primers were used during the amplification process,
the DNA probe size can vary from a couple hundred base pairs to thousands of base pairs.
DNA arrays usually provide the strongest fluoresce signal due to their long binding site with
the targets, however, for the same reason they also suffer the highest cross-hybridization
noise due to their inability to differentiate similar genes or gene families sharing long stretch
of common subsequences. Since different DNA spots on an array may have very different
melting temperatures with their intended targets, it is impossible to obtain an optimal mi-
croarray experiment temperature that can successfully separate all probe/target hybridiza-
tions from all probe/nontarget hybridizations. The anti-sense strand of each DNA probe
may also double the likelihood of cross-hybridization since it is freely available to grab onto
labeled nontarget(s). Finally, tracking and maintaining DNA clone libraries may introduce
some handling errors into microarray experiment because these libraries were not usually
collected for microarray purposes at the beginning.

The Affymetrix lithographically synthesized microarrays are manufactured in situ on sil-
icon wafers and are the most popular short oligo (20–25 bp) microarray solution. Since
only sequence information is needed to design and manufacture the Affy-arrays, they do
not have the clone tracking or PCR synthesis errors that might occur with DNA array
manufacturing. Because Affymetrix is the primary vendor of this type of arrays, its op-
eration protocol has been standardized and is much easier to be followed by customers to
produce reasonably good results. This is particular beneficial to small labs or new users.
Short oligos as used in the Affy-arrays can potentially hybridize to many different genes of
a species, therefore multiple oligos must be used as a set to uniquely identify and measure
the expression level of each target gene [36]. For each perfect match (PM) oligo in an oligo
set, a companion mismatch (MM) oligo is also included in the set to gauge the nontarget
background hybridization potential of the PM oligo. The sophisticate Affymetrix microar-
ray data processing software uses data gathered from all PM/MM pairs in an oligo set to
computationally determine the actual expression level of each target gene. The silicon wafer
masks for manufacturing Affy-arrays are expensive to produce, therefore Affy-arrays cannot
be updated as frequently as spotted DNA or long oligo arrays for ongoing genome projects.
Affymetrix both designs and manufactures their arrays for its customers, therefore users
only need to supply their gene sequences in order to obtain their Affy-arrays. Although
general principles of Affymetrix microarrays design can be found in the literature [32, 36],
the details remained proprietary to Affymetrix. For these two reasons, this chapter does
not attempt to cover Affymetrix microarray design. However, the basic design strategies
outlined below are still applicable to similar short oligo array design.

The third type of microarrays uses longer oligos (50–70 bp) as spots. These arrays can
be designed by end-users or companies, for all or a subset of the genes of a species, and
manufactured in small or large quantities. Since oligos used in these arrays can be individ-
ually updated throughout a genome project cycle, they allow quicker incorporation of new
gene sequences without incurring a high replacement cost. Due to their longer length and
single-strand nature, the long oligos used in this type of arrays can be made very sensitive to
their intended targets, therefore often just one oligo is needed to detect a specific gene [40].
Additionally, these oligos can be computationally optimized together to achieve a much
greater individual specificity and global uniformity, thereby reducing cross-hybridization
dramatically. In fact, in theory there should not be any stable cross-hybridization of any
designed probe with any nontarget sequence under the globally computed optimal microar-
ray experiment temperature, given that all input sequences are complete and correct. Just
like the Affy-array, only sequence data are required to design and manufacture long oligo

24-4 Handbook of Computational Molecular Biology

arrays, therefore clone tracking and PCR errors can be entirely avoided. Finally, optimal
long oligo microarray design tools such as Picky are freely available to academic users
to create their own arrays [14]. All these reasons make long oligo microarrays the most
suitable ones for studying species under ongoing sequencing projects, or species with lesser
commercial interest therefore commercial arrays may not be available for them.

This chapter reviews the fundamental principles of microarray design that are shared by
all three types of arrays, then moves on to describe DNA microarray and long oligo mi-
croarray design in detail. Emphases are placed more on the design of long oligo microarray
because it is currently the most suitable end-user designed array format. Note that this
chapter concerns only the computational aspects of microarray design. Microarray experi-
ments are inherently biochemical processes, and there are many other steps such as RNA
extraction, labeling, hybridization, and scanning that all have to be conducted correctly for
the entire microarray experiment to be successful. Discussions of these non-computational
steps are beyond the scope of this chapter, but most of these steps are standardized proto-
cols that can be reliably repeated by end-users if they follow their lab manuals or vendor
recommended protocols.

24.2 Basic Design Strategies

Technological advances allow microarray experiments to be conducted at higher throughput
and greater convenience, but microarrays must be carefully designed for the data produced
from them to be useful. Specifically, spots on the arrays for detecting the expression level
of each gene must be unique to a gene (i.e., exhibit high specificity), must be able to
detect that gene (i.e., exhibit high sensitivity), and must function optimally under the same
melting temperature and other experiment conditions (i.e., exhibit high uniformity). These
are fundamental design principles that may not all be achievable by each type of arrays.
For example, DNA arrays are the least likely to achieve specificity due to their extended
probe length and anti-sense strand, but they have a higher sensitivity level. Short and long
oligo arrays can both be computationally designed to be more specific to their intended
targets, but it is still relatively more difficult to make all short oligos specific to all genes
in a set due to their limited length. Therefore, cross-hybridization level must be estimated
using a pair of match/mismatch oligos, and a set of oligo pairs must be used together to
determine the actual expression level of a target gene, as in Affymetrix design. On the
other hand, the match/mismatch pair strategy does not work for long oligo arrays because
at longer length it becomes thermodynamically in-differentiable for a few mismatches during
hybridization. Instead, for long oligo arrays, there is a greater chance to achieve specificity
through uniqueness in probe selection, so background hybridization does not need to be
individually estimated for each oligo probe but can be taken as a global characteristic of
the whole array.

Despite the different characteristics of each type of arrays and the different issues that
must be addressed in their design, many common computation strategies are still shared
among their design. In this section, these common computation strategies are reviewed
first. Type specific design strategies will then be discussed when each type of microarray
design is discussed.

24.2.1 Sequence level comparison

Since gene sequences to be targeted by microarray experiments are generally known, a lot
of design computation can be conducted based on sequence comparison alone. For example,

Computational Methods for Microarray Design 24-5

Suffix tree

A
C

G
T

T
A

A
C

G
T

a1

A
A

C
G

T

G
G
A
A
T

G
T
T
A
A

C
G
T
T

G G A A TC
G
T

G
C
A

T
T
A
A
C
G
T

G C A

G G A A T

a2

a3b2
c3

b3
a4

c4

b4

a1 a2 b2 a3 c3 b3 a4 c4 b4Suffix array
A
C
G
T
T
A
A
C
G
T

LCP array

C
G
T
T
A
A
C
G
T

C
G
T
T
G
G
A
A
T

G
T
T
A
A
C
G
T

G
T
T
A
A
G
C
A

T
T
A
A
C
G
T

T
T
A
A
G
C
A

T
T
G
G
A
A
T

G
T
T
G
G
A
A
T

 0 4 0 5 3 0 4 2

 1
 1 2 3 4 5 6 7 8 9 0

a: ...ACGTTAACGTTAACGT...
b: CGTTCGTTGGAAT...
c : GTTAAGTTAAGCA...

Pairwise alignment

a: ...ACGTTCGTTAACGT...
b:CGTTCGTTGGAAT...

a: ...ACGTTAAGTTAACGT...
c :GTTAAGTTAAGCA...

b:CGTTGTTGGAAT...
c :GTTGTTAAGCA...
.
.
.

Hash table

0

1

2

3

4

5

6

TG:b5

AG:c7

AT:b9

TA:a5 TA:c5

AC:a1 AC:a7 GA:b7

GT:a3 GT:a9 GT:b3 GT:c3 CA:c9

Conceptual DNA substrings not directly represented
in each data structure

FIGURE 24.2: Popular indexing data structures for quick sequence similarity detec-
tion. Illustrations of hash table, suffix tree and suffix array are given for
a sample gene set consisting of only three sequences a, b and c. Note
that except for pairwise alignments, the DNA fragments shown in each
illustration are not explicitly represented in the data structure. Instead,
they are indirectly represented by the position information stored in the
data structure. Nevertheless, they were explicitly drawn with a grey
background to facilitate understanding of these data structures. See
the main text for discussions of the indexing data structures.

to achieve probe specificity, a unique region in each gene must be chosen to be targeted by
each microarray probe. Although in principle unique regions can be determined simply by
running pairwise sequence alignments for all possible pairs of input gene sequences [52], in
practice this is too slow. For large gene sets this naive method can take very long time to
complete. More efficient indexing methods must be used to achieve a better performance.
Three data structures are commonly used for quick sequence similarity identification: hash
table, suffix tree and suffix array. See Figure 24.2 for simple illustrations of these data
structures when applied to a sample gene set consisting of just three sequences a, b and
c. In the following only a brief discussion is given for each indexing method. Interested
readers are referred to the references for more detail descriptions.

A hash table [47] is constructed by breaking the input gene sequences into fragments of
a certain size (usually 16 bp on 32-bit computers), then converting these fragments using a
hashing function to integers no larger than the hash table size. The hash table size is usually

24-6 Handbook of Computational Molecular Biology

a prime number to enhance the hashing effect. The hashed integers then serve as indices
into the hash table to add or search for fragment matches. Each hash table entry usually
points to a linked list which records sequence fragments that are hashed into the same
entry, because different fragments can be hashed into the same hash table entry. To find
unique regions in a gene sequence, the sequence is converted into consecutively overlapping
fragments of the same size and those fragments were used to search against the hash table.
If one or more matches are found in the hash table, the regions from where the matching
fragments are derived are then known to be non-unique and should be avoided as the probe
target sites. In the example given in Figure 24.2, the three sample sequences are broken
down into fragments of 2 bp each, which are then mapped to a hash table of seven entries.
To discover sequence similarity, each of the linked list pointed at by each hash table entry
must be traversed, e.g., the fragment GT is found along entry 4 at position 3 on all three
sample sequences and also at position 9 on sequence a. Note that in practice only fragment
positions are recorded in the hash table, not the actual DNA fragments since that can be
derived from the positions and the original input sequences. This holds true for the other
two data structures suffix tree and suffix array discussed next.

The suffix tree is the fastest indexing data structure to construct and search. As demon-
strated in Figure 24.2, each suffix of the input sequences is represented by a path leading
from the root of the tree to an external leaf, where the position of the suffix is recorded.
If common prefixes are shared between some suffixes, branch nodes are created to accom-
modate them at the differentiating points, thus to find all other sequences sharing common
substrings longer than a certain length with a particular target sequence, one only has to
locate all its suffixes on the tree, traverse down the tree with enough length to locate a
branch, and then conduct a depth-first search to identify all other suffixes under the same
branch. A more elaborate data structure called a suffix link (not shown in the figure) allows
jumping from one suffix to the next suffix of the same sequence without having to descent
from the root of the tree repetitively, thus dramatically speeding up the search. In the
example given in Figure 24.2, only the first few suffixes of each sample sequence are shown
on the tree and their common substrings are highlighted in boldface. It is easy to see that
sequences a and b share a substring CGTT starting at position 2, for example.

Suffix array is very similar to suffix tree in concept but has a more space-saving data
structure that is slightly slower than suffix tree [11, 19]. Suffix array records in alphabetical
order all possible suffixes and their locations in the input sequences. The theory of suffix
array states that the longest common prefix (LCP) shared by any two non-adjacent suffixes
must be equal or shorter than the LCP of any two neighboring suffixes between them in
the suffix array [33]. The LCP array can be efficiently computed once the suffix array is
constructed. Thus, to determine if a particular gene sequence shares some substrings of
certain lengths with the other sequences, we can locate all its suffixes in the suffix array and
scan both the left and right sides from each of its suffixes. The other suffixes encountered
during the scan indicate shared substrings and their locations in the other sequences can be
immediately identified. Once found, regions containing the shared substrings are known to
be non-unique and therefore should be avoided as probe target sites. In the example given
in Figure 24.2, only the first few suffix positions of each sample sequence are sorted in the
suffix array. Their mutual longest common prefix (LCP) are computed. Shared common
prefixes of those suffixes are represented by bold type face. To discover if sequence c share
any common substring with the other sequences, first we locate the prefix location c3 in
the array using an invert suffix array not shown in this figure, then scan toward its right to
find a 3 bp overlap with b3, and scan toward its left to find a 5 bp overlap with a3.

All three indexing data structures work efficiently in determining non-unique sequence
regions. The hash table method is easier to understand and implement, but its fixed frag-

Computational Methods for Microarray Design 24-7

ment size is less flexible than the suffix tree or suffix array. For example, a 15 bp exact
match would not be found if the fragment size was set at 16 bp during hash table construc-
tion. Therefore, to ensure the detection of all important matches larger than a minimum
fragment size, the hash table fragment size must be set at the minimum, which could result
in more hashing collisions, longer linked lists, and less efficient searches. Although the hash
table size can be increased to alleviate some of these problems, it is still comparably less
flexible than the suffix tree or suffix array.

Although the suffix tree is the quickest data structure to build and search for sequence
similarity, it requires a much larger memory footprint, usually in the order of 50 bytes per
input DNA base. Therefore, it is not suitable for very large gene sets. For large gene sets
suffix array is probably the most suitable data structure, since it requires only about 10
bytes to store each input DNA base, including the suffix array, the invert suffix array and
a 2 byte per entry pre-computed LCP array (assuming no common subsequences are longer
than 65,536 bp). Once all companion data structures of the suffix array are constructed, it is
almost as efficient to search the suffix array as to search the suffix tree. The suffix array can
be very flexible in detecting exact matches of arbitrary sizes, depending only on the LCP
cutoff value during the left and right scanning from each sequence suffix. The only difficulty
to use suffix array is that the algorithm to efficiently construct it is harder to understand and
implement. Fortunately, pre-implemented suffix array construction algorithms are readily
available on the Internet for use in an array design program [11, 23].

In addition to finding non-unique regions that should be totally avoided, the sequence
level comparison can also be used to prioritize the remaining unique regions when they are
being considered for probe targeting. Two types of information have been used in oligo
design software for prioritizing target regions. The method based on the average longest
match length found in each region is easier to compute and can be used directly as the
priority score for a region. A more elaborated average landscape method can also be used
[29, 30] which averages all match lengths in each region and uses that as the priority score
for a region. Note that it is relatively easier to find the longest matches than to find all
matches for a region. Also, for large genomes there is a greater chance of random short
matches among sequences, so averaging short random matches does not help discriminating
good and bad target regions. For example, a 3,460 maize gene set is analyzed in Figure 24.3,
where the number of gene sequences that cannot have any probe-size region that is free of
random short matches to the other sequences is drawn against the match size. When the
minimum match size considered is 10 bp or above, none of the sequences can have any
unique region, and therefore are all bad. Obviously, averaging short matches at this size
does not help identifying good and bad sequence regions. If the minimum match size is
increased, however, the number of bad sequences drops sharply, and then levels off. This
is when randomness ceases, and what remain are significant longest matches that should
really be avoided. Therefore, by averaging the longest matches found in each region they
can be more correctly prioritized in our opinion.

24.2.2 Thermodynamic calculation

Although sequence level comparison allows non-unique regions to be quickly identified and
avoided, it does not automatically suggest the best regions to be targeted by the probes.
This conclusion can only be determined by thermodynamic calculations since the biochem-
ical process that drives probe/target or probe/nontarget hybridizations is controlled by
thermodynamic free energies, not by sequence similarity per se. Sequence comparison only
provides hints that certain sequence regions must be examined for cross-hybridization pos-
sibility, i.e., for each candidate region of a sequence that are determined to be relatively

24-8 Handbook of Computational Molecular Biology

0

005

0001

0051

0002

0052

0003

0053

0004

52423222120291817161514131211101

ezis hctam muminim

b
a
d

 s
e
q

u
e
n

c
e
s

FIGURE 24.3: Random short match statistics. A 3,460 maize gene set is analyzed,
where the number of sequences without any probe size region free of
matches to the other sequences is drawn against the minimum size of
the match considered. Many sequences are totally covered by random
short matches and will be considered bad if the detectable match size
is set too small, but only a few sequences actually have significantly
longer matches that should really be avoided as probe target regions.

unique by sequence level comparison, all other sequence regions that are similar to it to
some extent must be identified and their thermodynamic characteristics must be compared
with the target region. Using the same indexing methods, however, these so called nontar-
gets can all be quickly gathered and their melting temperatures with any oligo candidate
targeting the candidate region can then be estimated.

There are several models for estimating the melting temperatures of DNA hybridization.
The most popular model is the nearest neighbor (N-N) model [10, 45, 46, 2]. To estimate
the melting temperature of a probe with its target, the following equation is used:

TM =
∆H

∆S +R ln(C/4)
+ 12.0× log10

[
Na+

]
− 273.15

H and S are the accumulated enthalpy and entropy values based on the sequence content
of an oligo and its target region using N-N parameter tables [2, 8], R is the molar gas
constant 1.987, C is the molar concentration of total oligonucleotides in the microarray
experiment, and [Na+] is the molar concentration of salt. The oligonucleotide concentration
is generally unknown, so a value of 1×10−6M is used by default as suggested in the literature
[30, 20, 43]. Salt has a stabilizing effect on oligonucleotide annealing, so a salt concentration
term is added to the equation to correct for that temperature shift with a coefficient of 12.0
as suggested by the literature and an oligo vendor [46, 16]. A somewhat higher value of 16.0
were used by others for that term [45, 37]. An example is given in Figure 24.4 to demonstrate
how the melting temperature calculation works. Note that there are differences between
hybridizations in solution and on a microarray surface because probe oligos are partially

Computational Methods for Microarray Design 24-9

H S
AA/TT -7900 -22.2
AC/TG -8400 -22.4
AG/TC -7800 -21
AT/TA -7200 -20.4
CA/GT -8500 -22.7
CC/GG -8000 -19.9
CG/GC -10600 -27.2
CT/GA -7800 -21
GA/CT -8200 -22.2
GC/CG -9800 -24.4
GG/CC -8000 -19.9
GT/CA -8400 -22.4
TA/AT -7200 -21.3
TC/AG -8200 -22.2
TG/AC -8500 -22.7
TT/AA -7900 -22.2

H S

_A/AT -700 -0.8
_C/AG -2100 -3.9
_G/AC -5900 -16.5
 _T/AA -500 -1.1
_A/CT 4400 14.9
_C/CG -200 -0.1
_G/CC -2600 -7.4
_T/CA 4700 14.2
_A/GT -1600 -3.6
_C/GG -3900 -11.2
_G/GC -3200 -10.4
_T/GA -4100 -13.1
_A/TT 2900 10.4
_C/TG -4400 -13.1
_G/TC -5200 -15
_T/TA -3800 -12.6

16 Exact Match Values

initialization

AA AT TC CG GT TG GT TC CA AT Sum
H -7900 -7200 -8200 -10600 -8400 -8500 -8400 -8200 -8500 -7200 -83100

S -22.2 -20.4 -22.2 -27.2 -22.4 -22.7 -22.4 -22.2 -22.7 -20.4 -225

From 16 Exact Match Values Table

Sample Target Sequence …GCTTATTAGCACAGTAGTTAC…
Sample Probe Sequence AATCGTGTCAT

Add initialization and Dangling End values from the tables above:
Beginning A, 2300(H), 4.1(S) Ending T, 2300(H), 4.1(S)
Left Dangling _A/AT, -700(H), -0.8(S) Right Dangling T_/AG, -1100(H), -1.6(S)
Finally, H = -80300, S = -219. Using the N-N formula in the text:

57.3515.2731075log0.12
)21.30(219

80300 3
10 =−××+

−+−
−= −

mT

Left Dangling End Right Dangling End

A, T 2300 4.1 G, C 100 -2.8
H, S H, S

 H S
T_/AA 200 2.3
G_/CA -6300 -17.1
C_/GA -3700 -10
A_/TA -2900 -7.6
T_/AC 600 3.3
G_/CC -4400 -12.6
 C_/GC -4000 -11.9
A_/TC -4100 -13
T_/AG -1100 -1.6
G_/CG -5100 -14
C_/GG -3900 -10.9
A_/TG -4200 -15
T_/AT -6900 -20
G_/CT -4000 -10.9
C_/GT -4900 -13.8
A_/TT -200 -0.5

FIGURE 24.4: Melting temperature calculation example. Probe and target melting
temperature can be determined by looking up all the enthalpy and
entropy values from the four N-N tables based on sequence content,
then adding these values together for use in the equation given in the
main text. For example, as calculated, the probe AATCGTGTCAT
will hybridize with its target at roughly 35oC.

fixed to the array surface. However, all N-N parameters currently available are measured
in solution where oligonucleotides are free to move around, therefore they are used only as
the best approximation until surface based parameters become available.

The melting temperature between a probe and its target region can be estimated as

24-10 Handbook of Computational Molecular Biology

illustrated above. In addition, its melting temperatures with all potential nontargets can
also be estimated to prevent imperfectly matched cross-hybridizations. Note that perfectly
matched nontargets for a candidate probe is impossible since such candidate probes should
have already been screened out during the sequence level comparison step. Generally, it
is much harder to estimate nontarget melting temperatures precisely given our current
limited knowledge of mismatch hybridizations. Although there is only one perfect match to
an oligo (i.e., its Watson-Crick complement), there are an enormous number of imperfect
matches between an oligo and its nontargets. Fortunately, very precise nontarget melting
temperatures are not necessary when we simply want to know if they can cause cross-
hybridizations. Therefore, sequence level comparison can again be used as a guide. For
example, any sequence level similarity over 75% may potentially cause problems and must
be examined carefully (discussed next). Using one of the indexing methods, all potential
nontarget regions can be uncovered and aligned with a probe candidate up to the 75%
similarity level using dynamic programming methods. The alignments can then be used
to estimate the probe/nontarget melting temperatures using the same equation above but
with additional N-N parameters that accommodate simple mismatches, including single
base mismatches (e.g. G·A, G·G or G·T) [2, 5, 4, 3, 39], and dangling end and gaps (i.e.,
bulge or loop) [58, 8]). The calculated melting temperatures of a candidate probe with all
its nontargets are to be used to prioritize the probe in the global selection phase.

24.2.3 Additional design criteria

In addition to sequence comparison and thermodynamic calculation, additional criteria for
selecting microarray probes must be followed. These criteria are related to the content and
morphological shape of the probes. Using long oligo probe as an example, the following
conditions are suggested to guarantee good oligo design [32, 21, 30, 40]:

1. Base composition: no single base should make up more than 50% of an oligo.
2. Base distribution: no stretch of a continuous base should exceed 25% of the

length of an oligo.
3. GC content: the best is between 30–70%.
4. No secondary structures, i.e., oligo probes should not form dimers and hairpins

or attempt to target sequence regions that may form dimers and hairpins under
the experiment temperature.

5. Length of exact complementary match to nontargets should ideally be less than
15 bp.

6. Length of overall complementarity match to nontargets should ideally be less
than 75%.

Although these conditions are listed separately, enforcing them are not necessarily individual
computational steps. For example, condition 2 is implicitly enforced by the other conditions,
i.e., a single base region longer than 25% of the oligo size is over 15 bp for a 60 bp oligo, so
it cannot be targeted by an oligo by condition 5 if the reverse-complement of each sequence
is also considered as a nontarget, which is usually recommended.

24.2.4 Global probe selection

Traditionally, a pipeline of screening is conducted during the probe design process, e.g.,
BLAST [6] or one of the indexing methods is used to select unique oligo candidates base
on similarity level comparison, then MFold [57] or other similar tools are used to estimate

Computational Methods for Microarray Design 24-11

thermodynamic properties [54, 37, 43, 51]. Probes are selected when they passed this
batch-mode screening. In our opinion, this batch-mode design method may not produce
the optimal probe sets. The most critical issue of this method is that the size of all oligos
and the microarray experiment temperature must be given a priori as parameters to get
the batch design pipeline started, but our research suggests that these parameters should
instead be determined by a chosen probe set after it has been selected. In addition, similar
to others’ recent observations [37, 43], we also noticed that the best probe set should allow
oligos of varying sizes, i.e., non-uniformity in oligo lengths can achieve greater uniformity
in the melting temperature range of all oligos and therefore reduce the chance of cross-
hybridization. To sum up, a global step to optimally select the best probe set and to
determine the best experimental temperature is essential to achieve the best microarray
experiment results.

Therefore, the last step in microarray design is to compare target and nontarget melting
temperatures of all probe candidates for all sequences in order to discover an optimal subset
that can detect each gene, has the least chance to cross-hybridize to nontargets, shares a
uniform temperature range, and maximizes the distance between the lowest target and the
highest nontarget melting temperature of the resulted set. Selection of the optimal subset
of probe candidates resembles a non-integer knapsack problem [34], which is known to be
NP-complete. Fortunately, we can limit ourselves to consider only the best, say, 5 non-
overlapping probe candidates of each gene, and we can also use an iterative algorithm to
approximate the optimal selection of the probe subset. This iterative algorithm goes as
follows. First, the experiment temperature is set to the average mid-temperature among
all target and nontarget melting temperatures of all probe candidates. Deviations from
this temperature are then computed for each probe candidate. For each gene, their probe
candidates up to a user desired number are selected into a new subset based on their
deviations from the average mid-temperature. A new average temperature can then be
determined from the new subset, and the iteration is repeated until it converges to an
optimal subset and an optimal experiment temperature that no longer changes.

24.3 DNA Microarray Design

DNA libraries are usually the byproducts of whole genome or EST sequencing projects,
and are readily available for microarray manufacturing. However, DNA microarrays suffer
from high cross-hybridization noise due to their double strand probes and their inability
to differentiate similar genes or gene families sharing long stretch of common subsequences
(see Figure 24.1 on page 24-2 for an illustration). Since different DNA spots can have
very different melting temperatures with their intended targets, it is impossible to obtain
an optimal experiment temperature that can successfully separate all target hybridizations
from all nontarget hybridizations. Also as mentioned earlier, tracking and maintaining DNA
libraries can potentially introduce additional errors into the microarray experiments.

After genome assembly or EST clustering, a representative template can be selected for
each gene from the library. The selection is usually based on the clone coverage length (the
longer the better), and the position of the clone (the closer to the 3′ end of an mRNA, the
better). The assembly or clustering overlap information for each gene region or contig is
used as the selection input, and it is straightforward to select a representative template for
each gene based on the criteria just stated. However, for genome assembly contigs a gene
prediction step is usually necessary to target only the exons or 3′ end untranslated region
(3′ UTR) of a gene.

Once a template has been selected for a gene, four different methods are possible to man-

24-12 Handbook of Computational Molecular Biology

ufacture the actual microarray probe from the template. In order of increasing complexity
and cost, they are listed below:

• Use the template as the probe, i.e., just spot it with the vector sequence un-
removed (not commonly used);

• Use the standard primer pair of the cloning vector to amplify the clone insert
from the template and use it as a probe;

• Use one custom primer of the insert and one standard primer of the cloning vector
(or the poly-T primer if it is an EST clone) to amplify a specific region closer to
the 3′ UTR of the clone insert and use that as a probe (it is hard to come by
with a primer pair that works this way); or

• Use a custom primer pair of the insert to amplify a specific region of the clone
insert from the template (this is more specific but can be expensive and may not
compare favorably to synthesized oligo arrays).

Depending on the library type, some processing may not work. For shotgun library, introns
may be contained within the clone insert, therefore only option 4 makes sense to manufacture
the microarray probes after gene prediction. However, if custom primer pairs have to be
designed in order to amplify probes from templates, it makes more sense to simply synthesize
oligo probes and bypass the PCR process altogether, i.e., to use oligo microarrays instead
of DNA arrays. On the other hand, EST clone libraries naturally have most of the introns
removed from the clone insert, and for higher organisms the 3′ UTR is more unique and
more suitable for microarray probe targeting. Therefore, creating cDNA arrays from EST
libraries using standard primer pair (i.e. option 2) is economical and easy. In any case, the
more specific the selected probes are, the better their specificity and hybridization quality
will be, but the cost of custom primer pairs makes option 3 or 4 above less favorable when
compared to oligo microarrays, especially if the complete genome sequence is already known.

Since each clone template is amplified separately, it is relatively easy to design custom
primers once each template is selected. This job primarily involves thermodynamic consid-
eration only, i.e., within certain desired length or region, a pair of primers must be chosen
that are within the same melting temperature range and satisfy the other primer design
criteria similar to the oligo design criteria mentioned earlier, e.g., 18–30 bp length, 40–60%
GC content, no secondary structure at the melting temperature, and unique to the priming
target. The aforementioned basic design strategies can be applied, and a primer design tool
like Primer3 [44] is readily available for this task.

Under special situations, custom primer pairs may have to be designed against a whole-
genome background in order to amplify specific regions directly from the genome. These
situations are generally not related to microarrays. A few examples of why such whole-
genome primer design may be necessary are the following:

• For gene rich genome sequencing projects, primer pairs are designed using known
assemblies in order to 1) confirm assembly correctness, 2) discover whole region
polymorphism, or 3) close physical gaps;

• After a genome sequencing project is finished, using custom whole-genome primer
pairs to clone and study genes from closely related species or strands for single
nucleotide polymorphism, genotyping or other genetic studies; or

• Simply to uniquely amplify a specific region from a complex genome for various
other reasons.

Currently, there are no integrated whole-genome primer pair design software that can di-
rectly design the optimal primer pairs based on a complete gene set. Therefore, batch-mode

Computational Methods for Microarray Design 24-13

processing must be conducted. In the case of PCR, nontarget mis-priming can happen only
when both primers in a pair can strongly cross-hybridize to nontargets within about the
same distance as the intended target region, be in the proper directions, and be in the
same melting temperature range, therefore it is relatively more efficient to design candi-
date primer pairs first using standard primer design tools like Primer3, then just screen
those candidates against the whole genome background using sequence level comparison
and thermodynamic calculation.

24.4 Long Oligo Microarray Design

Long oligo microarray design is of high interest and very challenging due to its enormous
solution space, e.g., oligos ranging from 50 to 70 bp can all be used, and they all must
be unique to their intended targets under a variety of user design parameters and input
data characteristics. An oligo design program must be flexible enough to accommodate all
reasonable parameters and make minimal assumptions about the input data characteristics,
yet still produces computationally optimal probe set for microarray use. As mentioned in
Section 24.2.4, traditionally a batch-mode design method has been used for oligo microarray
design, but batch-mode design may not find the optimal oligo set because the size of the
oligos and the experiment temperature must be given a priori as parameters to get a batch
design pipeline started. However, these parameters should best be determined by a chosen
oligo set after it has been designed. In this section, we will base our discussion of long oligo
microarray design on the newly available tool Picky, whose integrated design approach
allows these two important parameters to be determined by the input data while it selects
an optimal probe set [14]. In addition, Picky is currently the fastest oligo microarray design
program, requiring only a few hours to process large gene sets from rice, maize or human.

A comparison of the traditional batch-mode oligo design strategy and the Picky design
strategy is given in Figure 24.5. The most noticeable differences are that in Picky there
are two global steps instead of just one, and the added global step is an iterative step that
optimizes the oligo set and determines the best microarray experiment temperature. In
a batch-mode design, a global indexing data structure is created first to guide the probe
candidate selection and nontarget detection steps. Then, each fixed-size probe candidate is
aligned with potential nontargets, its melting temperature is estimated, and it is selected
based on the deviation of its melting temperature from that of a user preset temperature. In
Picky design, a suffix array is similarly constructed as the first global step to guide the three
subsequent screening steps. For each sequence, first its bad regions are screened out, and
then its good candidate regions are selected. Both steps use only sequence level comparison
and therefore are very fast. The suffix array is also guiding the next step to detect all
nontargets that have to be aligned with each candidate region of a sequence in order to
obtain a temperature landscape of each candidate region. The temperature landscapes will
be discussed later in this chapter. Once all processing steps are completed for a sequence,
its best variable length candidate probes are put into a pool. After all sequences have been
processed, the iterative global step is conducted to select the actual probes that will form
an optimal oligo set for the microarray. The experiment temperature is finally determined
from the chosen optimal set. In the following, the Picky design steps will be discussed in
more detail.

24-14 Handbook of Computational Molecular Biology

Global Steps quick index
data structure

fixed length
probe set

temperature
estimation &
screening

probe
candidate
selection

alignment
with all
nontargets

Individual
Sequence
Steps

Batch mode strategy

Picky strategy

bad region
screening
(fast)

temperature
landscape
calculation

good region
selection
(fast)

alignment
with all
nontargets

Global Steps

Inidividual
Sequence
Steps

optimal
probe set &
exp. temp.

iterative
probe set
selection

variable
length probe
candidates

suffix array
construction

FIGURE 24.5: Comparison of batch-mode and Picky oligo design strategies. A batch-
mode design generally has only one global step to construct an indexing
data structure, which is then used to guide the probe candidate selec-
tion and the detection of potential nontargets. Fixed length oligos are
then selected based on their deviation from a user given microarray
experiment temperature. In Picky design, a suffix array is constructed
to similarly guide the subsequent sequence level comparison steps, but
there is an additional global step at the end that selects an optimal
variable length probe set and actually determines the best microarray
experiment temperature.

24.4.1 Picky design parameters

All of the general oligo design criteria previously mentioned in Section 24.2.3 on page 24-10
are considered by Picky, and most are user adjustable parameters that can be modified
depending on the characteristics of the input gene set. In addition to these, Picky also
considers more sophisticated design parameters. Picky accepts the minimum and maximum
oligo lengths instead of a fixed length, and within the specified range it can adjust the
length of oligos to achieve greater specificity and uniformity among all oligos. Also, rather
than requesting the melting temperature as an input parameter from users, Picky takes
the minimum separation temperature as a parameter, and ranks best oligo candidates by
comparing their target and nontarget melting temperature differences. Only oligos that
provide at least the minimum separation temperature will be considered in Picky, and it is
their joint temperature ranges that finally determine the optimal temperature suggested by
Picky for microarray experiments. Picky also handles multiple target and nontarget gene
sets, where the nontarget sets are used as a screening background while oligos are being

Computational Methods for Microarray Design 24-15

designed for the target sets. This allows, for example, a small budget experiment to study a
handful of genes of a large genome and still guarantees the results will be as good as those
obtained from a whole genome array.

Among the suggested oligo design criteria for selecting the best oligos on page 24-10,
we have found conditions 5 and 6 recommended in Kane et al.’s paper [21] to be the
most often cited conditions [30, 42, 54]. We call these Kane’s first and second conditions.
Since these two conditions are only based on sequence similarity, they are not sufficient to
determine good oligo candidates without in-depth thermodynamic calculation. Nevertheless,
they provide the most efficient way to screen out bad oligo candidates. The reason is as
follows. Although mismatches to nontargets do not ascertain good oligo candidates without
thermodynamic calculations, exact matches to nontargets do indeed identify oligos that
should be avoided to prevent cross-hybridizations. It will become clear in the following
that Kane’s two conditions efficiently drive the two initial Picky steps for screening each
sequence.

24.4.2 Suffix array construction and search

The first step in Picky’s oligo computation is to construct a generalized suffix array that
can quickly identify all substrings contained in all sequences and their reverse complements.
The companion LCP and invert arrays are then computed from the suffix array. With these
three data structures, Picky can quickly determine if a particular gene sequence shares
some common substrings of certain lengths with the other sequences. This is conducted by
locating all of its suffixes in the suffix array and scanning both the left and right sides of
each of its suffixes (cf. Figure 24.2 and the discussion on page 24-6 for details). Such non-
unique regions violate Kane’s first condition and therefore must be avoided as probe target
sites. For large gene sets, due to evolutionary duplications, many gene regions are non-
unique and should not be targeted by any oligo probe. Picky’s initial scanning step based
on Kane’s first condition can quickly identify these bad regions and completely avoid any
further computation with them. This provides a dramatic speed boost when compared to
a batch-mode design method because Picky can skip all subsequent time-consuming local
alignment and thermodynamic calculation steps for many large bad regions without losing
any chance of finding the optimal probes. Since a sequence and its own reverse complement
are both represented in the suffix array, Picky scanning steps also detect repetitive, low
complexity, self-similar and self-complementary regions. All of these are avoided as probe
target regions as well.

The Burkhardt-Kärkkäinen algorithm [11] is used in Picky after some modification to
efficiently construct the generalized suffix array. Although there are several other efficient
suffix array construction algorithms, including three linear-time complexity ones [24, 26, 22],
we have found through experiments that the Burkhardt-Kärkkäinen algorithm is the quick-
est and the most memory efficient one in practice. The inverse suffix array is linearly
constructed from the suffix array, which indexes suffixes in the suffix array from the per-
spective of each sequence. To avoid string comparison and to speed up suffix array scanning
in later steps, the longest common prefix (LCP) array that records the length of the shared
prefix of each neighboring suffix pair is also pre-computed using the Kasai et al. linear-time
algorithm [23]. Altogether, Picky requires 20 bytes to represent each DNA base in those
three arrays. If double-strand screening is turned off, its requirement drops to only 10 bytes
per input base.

24-16 Handbook of Computational Molecular Biology

24.4.3 Local alignment and melting temperature estimation

The next step in Picky’s computation is to find, among the remaining regions of a sequence,
the best candidates to be targeted by oligo probes. For each best candidate region, all other
sequences that are similar to it to the level of Kane’s second condition must be discovered
and their thermodynamic properties must be compared to prevent cross-hybridizations.
Again using the suffix array, these potential nontargets can be quickly gathered using a
smaller exact match size than when checking Kane’s first condition. Since suffix array finds
only exact matches, rigorous probability models have been established to determine the
minimum exact match size that can still guarantee finding a certain similarity level. For
example, an exact match of 10 bp guarantees that any 60 bp regions in the data set with
a similarity of 90% or higher will be detected using the suffix array, no matter how the
mismatch bases are distributed among their alignment [14].

The melting temperatures of all nontargets with any potential oligo targeting the candi-
date region can then be estimated after an alignment was made with the candidate region
using the detected exact matches as alignment seeds. This is going to be a slow process using
traditional quadratic time dynamic programming algorithm. Therefore, Picky uses a novel
linear time local alignment algorithm, which works as follows. Instead of constructing the
alignment matrix in a row-by-row or column-by-column fashion as in traditional methods,
Picky interleaves the row and column construction steps. See Figure 24.6 for an illustra-
tion. Boundaries are automatically set when the accumulated negative alignment score in
a cell falls below a value that prevents any possibility of an local alignment having the simi-
larity level set by Kane’s second condition to be achievable beyond that cell boundary. For
example, for a 75% similarity threshold, for every three base matches there can only be one
mismatch, thus if the accumulated mismatches go beyond that threshold, it is impossible
to obtain a local alignment that maintains 75% or above similarity. Construction of the
alignment matrix in this fashion is therefore bound by a banded region narrowly centered
around the starting alignment seed, and it will stop immediately when the upper and lower
boundaries converge. Note that the covered region in this alignment matrix does not have
to be totally square, i.e., either the row or column construction can be stopped first when
the boundary in that direction has been reached.

A very unique strategy in Picky is that it does not enumerate all possible oligos targeting
a candidate region and individually compare them with all potential nontargets as in a
batch-mode method. Instead, all nontargets discovered by the suffix array are aligned and
compared to the target region just once, and two temperature landscapes are derived during
this process. One is computed from the target region itself and includes all valid oligos
within the allowable length range that are targeting different locations of the region. For
example, in Figure 24.7a, the target temperature landscape of a typical candidate region
is shown. Oligos targeting between base location 773 to 862 and with variable length 50
to 70 bp can hybridize with this region at different melting temperatures. Only locations
targeted by valid oligos have a nonzero temperature, hence temperatures for longer oligos
start dropping off beyond location 792 (862-70mer=792) and the last location in this region
that can be targeted is 812 (862-50mer=812).

The nontarget temperature landscape for the same region (Figure 24.7b) is computed by
aligning each potential nontarget with the target region and estimating its melting tempera-
tures with all oligos targeting the same region. Since the goal is to avoid cross-hybridizations,
only the highest nontarget temperature discovered at each location is recorded in the non-
target temperature landscape. Hence, this landscape is relatively flat because the highest
temperature found in a location is usually shared by all oligos overlapping the same loca-
tion. In batch-mode style processing a program might have selected oligos with the highest

Computational Methods for Microarray Design 24-17

1

16

2

3 4

5

6

7 8 9

10

11

12

13 14 15

< -n

< -n

< -n

< -n

. . .

. . .

. . .

. . .

< -n

< -n

< -n

. . .

A C G T T A A C G T

A

C

G

T

T

A

A

C

G

T

FIGURE 24.6: Linear-time local alignment algorithm. To determine a local alignment
in linear-time, one can interleave the row and column construction steps
of an alignment matrix in the order indicated by the numbers. The
starting boundary of the construction of each row or column is limited
by the accumulated negative alignment score boundary, such that when
the score is below a certain threshold value −n, one can skip those cells
above (in column construction) or to the left (in row construction)
during the construction process. This maintains a narrow alignment
white band that grows in linear-time. The alignment stops when the
row and column boundaries converge.

target temperatures, e.g., the 70mer oligo targeting location 778 indicated by the red circle
in Figure 24.7a. In Picky’s integrated approach, both the target and nontarget landscapes
are considered together, and it is their difference that finally determines the oligo selection.
The temperature difference between the two landscapes is shown in Figure 24.7c. There-
fore, the best oligo for this particular region of the sequence should actually be the 64mer
targeting location 796 as indicated by the red circle in Figure 24.7c because a greater differ-
ence in melting temperature translates to both a greater specificity and a lower background
hybridization. The oligo for a gene is later selected among the best non-overlapping oligos
found in each candidate region of the gene by further comparing their temperatures. This
example also highlights the benefit of varying oligo lengths to achieve a higher difference
between target and nontargets melting temperatures as seen in those three figures.

Although the highest temperature in the difference landscape suggests an oligo, it may
still be rejected if its value is lower than the minimum temperature separation, i.e., the
minimum height of the difference temperature landscape. Picky’s default setting is to
ignore oligos whose target and nontarget melting temperature difference is lower than 20◦C.

24-18 Handbook of Computational Molecular Biology

773
778

783
788

793
798

803
808

50

55

60

65
70

45

50

55

60

65

70

75

80

85

(a
)

T
a

rg
e

t
te

m
p

e
ra

tu
re

 (
°C

)

Oligo length

773
778

783
788

793
798

803
808

50

55

60

65
70

45

50

55

60

65

70

75

80

85

(b
)

N
o

n
ta

rg
e

t
te

m
p

.
(°

C
)

Oligo length

773
778

783
788

793
798

803
808

50

55

60

65
70

0

5

10

15

20

25

30

(c
)

T
e

m
p

.
d

if
fe

re
n

c
e

 (
°C

)

Oligo length

Target location

Target location

Target location

FIGURE 24.7: (See color insert following page 20-4.) Temperature landscapes
and the selection of oligo target regions. The (a) target, (b) nontarget
and (c) difference melting temperature landscapes are drawn against d-
ifferent sequence locations and oligo lengths. Red circles indicate oligos
that might be chosen under different design strategies.

References 24-19

This parameter can be adjusted by the users, and based on our experience 15–20◦C seems
to be the most suitable range for this parameter. Once an oligo is selected, the other
potential oligos overlapping it will not be considered further. Non-overlapping oligos will
continue to be selected while they still satisfy the minimum temperature separation. This
selection process is independent of the order of the input sequences since genes are considered
individually at this stage.

24.4.4 Optimal probe set and experiment temperature determination

The last step is to compare target and nontarget melting temperatures of all probe candi-
dates from all sequences in order to find a subset that can detect each gene, has the least
chance to cross-hybridize, shares a uniform temperature range, and maximizes the distance
between the lowest target and the highest nontarget melting temperatures of the chosen set.
Picky reports the optimal microarray experiment temperature after the probe set has been
determined. This differs significantly from most oligo design tools that take the temperature
as input to screen against probe candidates. Picky uses an iterative selection algorithm
for the optimal subset of probe candidates, which has been outlined in Section 24.2.4 on
page 24-10. The oligos designed are then presented in a GUI panel where they can be
examined and subsequently saved to files.

It may seem that secondary structure screening is omitted from Picky steps. That is not
the case. Because all sequences and their reverse-complements are represented in the suffix
array and are included in cross-hybridization screening, self-similarity tests for secondary
structures are conducted alongside mutual similarity tests for cross-hybridizations. Thus, no
additional secondary structure screening step is necessary in Picky. Furthermore, Picky’s
inclusion of the reverse-complement of each input sequence ensures that oligos designed will
function correctly even in the presence of anti-sense transcripts [28, 48, 12, 38, 55].

References

[1] M.D. Adams, S.E. Celniker, R.A. Holt, and C.A. Evans et al. The genome sequence
of drosophila melanogaster. Science, 287(5461):2185–95, 2000. 0036-8075 Journal
Article.

[2] H.T. Allawi and J. SantaLucia Jr. Thermodynamics and NMR of internal G*T mis-
matches in DNA. Biochemistry, 36:10581–10594, 1997.

[3] H.T. Allawi and J. SantaLucia Jr. Nearest neighbor thermodynamic parameters for
internal G*A mismatches in DNA. Biochemistry, 37:2170–2179, 1998.

[4] H.T. Allawi and J. SantaLucia Jr. Nearest-neighbor thermodynamics of internal A*C
mismatches in DNA: Sequence dependence and ph effects. Biochemistry, 37:9435–
9444, 1998.

[5] H.T. Allawi and J. SantaLucia Jr. Thermodynamics of internal C*T mismatches in
DNA. Nucleic Acids Research, 26(11):2694–2701, 1998.

[6] S.F. Altschul, W. Gish, W. Miller, and E.W. Myers et al. Basic local alignment search
tool. Journal of Molecular Biology, 215:403–410, 1990.

[7] The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering
plant arabidopsis thaliana. Nature, 408:796–815, 2000.

[8] S. Bommarito, N. Peyret, and J. SantaLucia Jr. Thermodynamic parameters for DNA
sequences with dangling ends. Nucleic Acids Research, 28(9):1929 –1934, 2000.

[9] J.T. Bosch, C. Seidel, S. Batra, and H. Lam et al. Validation of sequence-optimized

24-20 References

70 base oligonucleotides for use on DNA microarrays. Technical report, Westburg
Company, 2002 2002.

[10] K.J. Breslauer, M. Frank, H. Blocker, and L.A. Marky. Predicting DNA duplex sta-
bility from the base sequence. Biochemistry, 83:3746–3750, 1986.

[11] S. Burkhardt and J. Krkkinen. Fast lightweight suffix array construction and checking.
In R.A. Baeza-Yates, E. Chvez, and M. Crochemore, editors, 14th Annual Sympo-
sium, CPM 2003, volume 2676 of Lecture Notes in Computer Science, pages 55–69.
Springer, 2003.

[12] G.G. Carmichael. Antisense starts making more sense. Nat Biotechnol, 21(4):371–2,
2003.

[13] V.L. Chandler and V. Brendel. The maize genome sequencing project. Plant Physiol,
130(4):1594–7, 2002.

[14] H.H. Chou, A.P. Hsia, D.L. Mooney, and P.S. Schnable. Picky: oligo microarray design
for large genomes. Bioinformatics, 20(17):2893–2902, 2004.

[15] J.L. DeRisi, V.R. Iyer, and P.O. Brown. Exploring the metabolic and genetic control
of gene expression on a genomic scale. Science, 278(5338):680–6, 1997.

[16] E.J. Devor, L. Huang, and R. Owczarzy. IDT technical bulletins Â calculation of Tm
for oligonucleotides. Technical report, Integrated DNA Technologies, 2002 2002.

[17] S.A. Goff, D. Ricke, T.H. Lan, and G. Presting et al. A draft sequence of the rice
genome (oryza sativa l. ssp. japonica). Science, 296(5565):92–100, 2002.

[18] T.R. Golub, D.K. Slonim, P. Tamayo, and C. Huard et al. Molecular classification of
cancer: Class discovery and class prediction by gene expression monitoring. Science,
286(5436):531–537, 1999.

[19] D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University
Press, Cambridge, United Kingdom, 1997.

[20] L. Kaderali and A. Schliep. Selecting signature oligonucleotides to identify organisms
using DNA arrays. Bioinformatics, 18(10):1340–1349, 2002.

[21] M.D. Kane, T.A. Jatkoe, Craig R. Stumpf, and J. Lu et al. Assessment of the sensi-
tivity and specificity of oligonucleotide (50mer) microarrays. Nucleic Acids Research,
28(22):4552–4557, 2000.

[22] J. Karkkainen and P. Sanders. Simple linear work suffix array construction. Automata,
Languages and Programming, Proceedings, 2719:943–955, 2003. Times Cited: 2
Lecture Notes in Computer Science Article English Cited References Count: 39 Bx39s.

[23] T. Kasai, G. Lee, H. Arimura, and S. Arikawa et al. Linear-time longest-common-
prefix computation in suffix arrays and its applications. In A. Amir and G.M. Landau,
editors, Combinatorial Pattern Matching, 12th Annual Symposium, Jerusalem,
Israel, Lecture Notes in Computer Science. Springer Verlag, Berlin, 2001.

[24] D.K. Kim, J.S. Sim, H. Park, and K. Park. Linear-time construction of suffix arrays. In
R.A. Baeza-Yates, E. Chvez, and M. Crochemore, editors, 14th Annual Symposium,
CPM 2003, volume 2676 of Lecture Notes in Computer Science, pages 186–199.
Springer, 2003.

[25] E.F. Kirkness, V. Bafna, A.L. Halpern, and S. Levy et al. The dog genome: survey
sequencing and comparative analysis. Science, 301(5641):1898–903, 2003.

[26] P. Ko and S. Aluru. Space efficient linear time construction of suffix arrays. In
Ricardo A. Baeza-Yates, Edgar Chvez, and Maxime Crochemore, editors, 14th Annual
Symposium, CPM 2003, volume 2676 of Lecture Notes in Computer Science, pages
200–210. Springer, 2003.

[27] E.S. Lander, L.M. Linton, B. Birren, and C. Nusbaum et al. Initial sequencing and
analysis of the human genome. Nature, 409(6822):860–921, 2001. 0028-0836 Journal
Article.

References 24-21

[28] B. Lehner, G. Williams, R.D. Campbell, and C.M. Sanderson. Antisense transcripts
in the human genome. Trends Genet, 18(2):63–5, 2002.

[29] S. Levy, L. Compagnoni, E.W. Myers, and G.D. Stormo. Xlandscapes: The graphical
display of word frequencies in sequences. Bioinformatics, 14(1):74–80, 1998.

[30] F. Li and G.D. Stormo. Selection of optimal DNA oligos for gene expression arrays.
Bioinformatics, 17(11):1067–1076, 2001.

[31] X. Lin, S. Kaul, S. Rounsley, and T.P. Shea et al. Sequence and analysis of chromosome
2 of the plant arabidopsis thaliana. Nature, 402:761–768, 1999.

[32] D.J. Lockhart, H. Dong, M.C. Byrne, and M.T. Follettie et al. Expression monitor-
ing by hybridization to high-density oligonucleotide arrays. Nature Biotechnology,
14(12):1675–1680, 1996.

[33] U. Manber and E.W. Myers. Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, 1993.

[34] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Imple-
mentations. John Wiley & Sons, New York, NY, 1990.

[35] K. Mayer. Sequence and analysis of chromosome 4 of the plant arabidopsis thaliana.
Nature, 402:769–777, 1999.

[36] R. Mei, E. Hubbell, S. Bekiranov, and M. Mittmann et al. Probe selection for high-
density oligonucleotide arrays. Proc Natl Acad Sci U S A, 100(20):11237–42, 2003.

[37] H. B. Nielsen, R. Wernersson, and S. Knudsen. Design of oligonucleotides for microar-
rays and perspectives for design of multi-transcriptome arrays. Nucleic Acids Res,
31(13):3491–6, 2003.

[38] N. Osato, H. Yamada, K. Satoh, and H. Ooka et al. Antisense transcripts with rice
full-length cDNAs. Genome Biol, 5(1):R5, 2003.

[39] N. Peyret, P.A. Seneviratne, H.T. Allawi, and J. SantaLucia Jr. Nearest-neighbor
thermodynamics and NMR of DNA sequences with internal A*A, C*C, G*G, and
T*T mismatches. Biochemistry, 38:3468–3477, 1999.

[40] A. Relógio, C. Schwager, A. Richter, and W. Ansorge et al. Optimization of
oligonucleotide-based DNA microarrays. Nucleic Acids Research, 30(11):E51, 2002.

[41] C. Ren, M.K. Lee, B. Yan, and K. Ding et al. A BAC-based physical map of the
chicken genome. Genome Res, 13(12):2754–8, 2003.

[42] J.-M. Rouillard, C.J. Herbert, and M. Zuker. Oligoarray: genome-scale oligonucleotide
design for microarrays. Bioinformatics, 18(3):486–487, 2002.

[43] J.M. Rouillard, M. Zuker, and E. Gulari. Oligoarray 2.0: design of oligonucleotide
probes for DNA microarrays using a thermodynamic approach. Nucleic Acids Res,
31(12):3057–62, 2003.

[44] S. Rozen and H.J. Skaletsky. Primer3, 1998 1997.
[45] W. Rychlik, W.J. Spencer, and R.E. Rhoads. Optimization of the annealing tem-

perature for DNA amplification in vitro. Nucleic Acids Research, 18(21):6409–6412,
1990.

[46] J. SantaLucia Jr., H.T. Allawi, and P.A. Seneviratne. Improved nearest-neighbor
parameters for predicting DNA duplex stability. Biochemistry, 35:3555–3562, 1996.

[47] R. Sedgewick. Algorithms in C++ part 1-4: fundamentals, data structures, sorting,
searching. Addison-Wesley, Reading, MA, 1998.

[48] J. Shendure and G.M. Church. Computational discovery of sense-antisense transcrip-
tion in the human and mouse genomes. Genome Biol, 3(9):RESEARCH0044, 2002.

[49] T.J. Summers, J.W. Thomas, S.Q. Lee-Lin, and V.V. Maduro et al. Comparative
physical mapping of targeted regions of the rat genome. Mamm Genome, 12(7):508–
12, 2001.

[50] J.C. Venter, M.D. Adams, E.W. Myers, and P.W. Li et al. The sequence of the human

24-22 References

genome. Science, 291(5507):1304–51, 2001. 0036-8075 Journal Article.
[51] X. Wang and B. Seed. Selection of oligonucleotide probes for protein coding sequences.

Bioinformatics, 19(7):796–802, 2003.
[52] M.S. Waterman. Introduction to computational biology: Maps, sequences and

genomes. Chapman & Hall, Florence, KY, 1995.
[53] R.H. Waterston, K. Lindblad-Toh, E. Birney, and J. Rogers et al. Initial sequencing

and comparative analysis of the mouse genome. Nature, 420(6915):520–62, 2002.
[54] D. Xu, G. Li, L. Wu, and J. Zhou et al. PRIMEGENS: robust and efficient design of

gene-specific probes for microarray analysis. Bioinformatics, 18(11):1432–1437, 2002.
[55] R. Yelin, D. Dahary, R. Sorek, and E.Y. Levanon et al. Widespread occurrence of

antisense transcription in the human genome. Nat Biotechnol, 21(4):379–86, 2003.
[56] J. Yu, S. Hu, J. Wang, and G.K. Wong et al. A draft sequence of the rice genome

(oryza sativa l. ssp. indica). Science, 296(5565):79–92, 2002.
[57] M. Zuker. Mfold web server for nucleic acid folding and hybridization prediction.

Nucleic Acids Res, 31(13):3406–15, 2003.
[58] M. Zuker, D.H. Mathews, and D.H. Turner. Algorithms and thermodynamics for RNA

secondary structure predictions: A practical guide. In J. Barciszewski and B.F.C.
Clark, editors, RNA Biochemistry and Biotechnology. Kluwer Academic, Dordrecht,
1999.

[59] F. Zuo, N. Kaminski, E. Eugui, and J. Allard et al. Gene expression analysis reveals
matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proceedings
of the National Academic of Sciences, 99(9):6292–6297, 2002.

25
Clustering Algorithms for Gene

Expression Analysis

Pierre Baldi
University of California, Irvine

G. Wesley Hatfield
University of California, Irvine

Li M. Fu
University of Florida, Gainesville

25.1 Problems and Approaches . 25-1
25.2 Visualization, Dimensionality Reduction, and

Principal Component Analysis . 25-3
25.3 Clustering Overview . 25-5

Data Types • Supervised/Unsupervised •

Similarity/Distance • Number of Clusters • Cost
Function and Probabilistic Interpretation

25.4 Hierarchical Clustering . 25-7
Hierarchical Clustering Algorithm • Tree Visualization

25.5 K-Means, Mixture Models, and EM Algorithm . . 25-9
K-Means Algorithm • Mixtures Models and EM

25.6 Self-Organizing Maps . 25-12
25.7 Cluster Analysis of Microarray Gene Expression

Data . 25-14
Gene Clustering • Gene Selection and Filtering •

Sample Clustering • Two-Dimensional Clustering •

Visualization of Gene Expression Data
25.8 DNA Arrays and Regulatory Regions 25-18

25.1 Problems and Approaches

Differential expression is a useful tool for the analysis of DNA microarray data. However,
and in spite of the fact that it can be applied to a large number of genes, differential analysis
remains within the confines of the old one-gene-at-a-time paradigm. Knowing that a gene’s
behavior has changed between two situations is at best a first step. In a cancer experiment,
for instance, a significant change could be associated with a direct causal link (activation
of an oncogene), a more indirect chain of effects (signalling pathway), a non-specific related
phenomena (cell division), or even a spurious event completely unrelated to cancer (“noise”).

Most, if not all, genes act in concert with other genes. What DNA microarrays are really
after is the patterns of expression across multiple genes and experiments. And to detect
such patterns, additional methods such as clustering must be introduced. In fact, in the
limit, differential analysis can be viewed as a clustering method with only two clusters:
change and no-change. Thus, at the next level of data analysis, we want to remove the
simplifying assumption that genes are independent and look at their covariance, at whether
there exist multi-gene patterns, clusters of genes that share the same behavior, and so forth.
While array data sets and formats remain heterogeneous, a key challenge in time is going

25-1

25-2 Handbook of Computational Molecular Biology

to be the development of methods that can extract order across experiments, in typical
data sets of size 30, 000 × 1, 000 and model, for instance, the statistical distribution of a
gene’s expression levels over the space of possible conditions. Not surprisingly, conceptually
these problems are not completely unlike those encountered in population genetics, such as
detecting combinations of SNPs (single nucleotide polymorphisms) associated with complex
diseases.

The cluster’s boundaries can be very noisy, especially in isolated experiments with low
repetition. The key observation, however, is that even in the presence of low-repetition,
i.e. highly noisy measurements at the level of individual experiments, complex expression
patterns can still be detected robustly across multiple experiments and conditions. Con-
sider, for instance, a cluster of genes directly involved in the cell division cycle and whose
expression pattern oscillates during the cycle. For each individual measurement at a given
time t, noise alone can introduce distortions so that a gene which belongs to the cluster may
fall out of the cluster. However, when the measurements at other times are also considered,
the cluster becomes robust and it becomes unlikely for a gene to fall out of the cluster
it belongs to at most time steps. The same can be said of course for genes involved in a
particular form of cancer across multiple patients, and so forth. In fact, it may be argued
that robustness is a fundamental characteristic of regulatory circuits that must somehow
transpire even through noisy microarray data.

In many cases, cells tend to produce the proteins they need simultaneously, and only when
they need them. The genes for the enzymes that catalyze a set of reactions along a pathway
are likely to be co-regulated (and often somewhat co-located along the chromosome). Thus,
depending on the data and clustering methods, gene clusters can often be associated with
particular pathways and with co-regulation. Even partial understanding of the available
information can provide valuable clues. Co-expression of novel genes may provide a simple
means of gaining leads to the functions of many genes for which information is not yet
available. Likewise, multi-gene expression patterns could characterize diseases and lead
to new precise diagnostic tools capable of discriminating, for instance, different kinds of
cancers.

Many data analysis techniques have already been applied to problems in this class, in-
cluding various clustering methods from k-means to hierarchical clustering, principal com-
ponent analysis, factor analysis, independent component analysis, and self-organizing maps,
to name just a few. It is impossible to review all the methods of analysis in detail in the
available space and counterproductive to try to single out a “best method” because: (1) each
method may have different advantages depending on the specific task and specific properties
of the data set being analyzed; (2) the underlying technology is still rapidly evolving; and
(3) noise levels do not always allow for a fine discrimination between methods. Rather, we
focus on the main methods of analysis and the underlying mathematical background.

Array data is inherently high dimensional, hence methods that try to reduce the dimen-
sionality of the data and/or lend themselves to some form of visualization remain particular-
ly useful. These range from simple plots of one condition versus another, to projection onto
lower dimensional spaces, to hierarchical and other forms of clustering. In the next sections,
we focus on dimensionality reduction (principal component analysis) and clustering since
these are two of the most important and widely used method of analysis for array data. For
clustering, we partially follow the treatment in [6]. Clustering methods of course can be
applied not only to genes, but also to conditions, DNA sequences, and other relevant data.
From array-derived gene clusters it is also possible to go back to the corresponding gene
sequences and look, for instance, for shared motifs in the regulatory regions of co-regulated
genes.

Clustering Algorithms for Gene Expression Analysis 25-3

25.2 Visualization, Dimensionality Reduction, and Princi-
pal Component Analysis

The simplest approach to visually explore current array data is perhaps a 2D plot of the
activity levels of the genes in one experimental condition versus another. When each experi-
ment is repeated several times, the average values can be used. In such plots, typically most
genes are found along the main diagonal (assuming similar calibration between experiments)
while differentially expressed genes appear as outliers.

A second more sophisticated approach for dimensionality reduction and visualization is
principal component analysis. Principal component analysis (PCA) is a widely used statis-
tical data analysis technique that can be viewed as: (1) a method to discover or reduce the
dimensionality of the data; (2) a method to identify new meaningful underlying variables;
(3) a method to compress the data; and (4) a method to visualize the data. It is also
called the Karhunen-Loéve transform, Hotelling transform, or singular value decomposition
(SVD) and provides an optimal linear dimension reduction technique in the mean-square
sense.

Consider a set ofN points x1, . . . , xN in a space of dimensionM . In the case of array data,
the points could correspond to genes if the axis are associated with different experiments
or to experiments if the axis are associated with the probes/genes. We assume that the
x’s have already been centered by substracting their mean value, or expectation, E[x].The
basic idea in PCA is to reduce the dimension of the data by projecting the x’s onto an
interesting linear subspace of dimension K, where K is typically significantly smaller than
M . The interesting subspace is defined in terms of variance maximization.

PCA can easily be understood by recursively computing the orthonormal axis of the
projection space. For the first axis, we are looking for a unit vector u1 such that, on
average, the squared length of the projection of the x’s along u1 is maximal. Assuming that
all vectors are column vectors, this can be written as

u1 = arg max
||u||=1

E[(uTx)2] (25.1)

where uT denotes transposition, and E is the expected or average value (Figure 25.1).
Any vector is always the sum of its orthogonal projection onto a given subspace and the
orthogonal complement, so that here x = (uTx)u + (x − (uTx)u). The second component
maximizes the residual variance associated with (x− (uTx)u) and so forth. More generally,
if the first u1, . . . , uk−1 component have been determined, the next component is the one
that maximizes the residual variance in the form

uk = arg max
||u||=1

E[(uT (x−
k−1∑

i=1

(uT
i x)ui))2] (25.2)

The principal components of the vector x are given by ci = uT
i x. By construction, the

vectors ui are orthonormal. In practice, it can be shown the ui’s are the eigenvectors of
the (sample) covariance matrix Σ = E[xxT] associated with the K largest eigenvalues and
satisfy

Σuk = λkuk (25.3)

In array experiments, these give rise to “eigengenes” and “eigenarrays” [3]. Each eigenvalue
λk provides a measure of the proportion of the variance explained by the corresponding
eigenvector.

25-4 Handbook of Computational Molecular Biology

FIGURE 25.1: A two-dimensional set of points with its principal component axis.

By projecting the vectors onto the subspace spanned by the first eigenvectors, PCA retains
the maximal variance in the projection space and minimizes the mean-square reconstruction
error. The choice of the number K of components is in general not a serious problem–
basically it is a matter of inspecting how much variance is explained by increasing values of
K. For visualization purposes, only projections onto two- or three-dimensional spaces are
useful. The first dominant eigenvectors can be associated with the discovery of important
features or patterns in the data. In DNA microarray data where the points correspond to
genes and the axis to different experiments, such as different points in time, the dominant
eigenvectors can represent expression patterns. For example, if the first eigenvector has a
large component along the first experimental axis and a small component along the second
and third axis, it can be associated with the experimental expression pattern “‘high-low-
low.” In the case of replicated experiments, we can expect the first eigenvector to be
associated with the principal diagonal.

There are also a number of techniques for performing approximate PCA, as well as prob-
abilistic and generalized (non-linear and projection pursuit) versions of PCA [7, 45, 46, 10],
and references therein. An extensive application of PCA techniques to array data is de-
scribed in [3].

Although PCA is not a clustering technique per se, projection onto lower dimensional
spaces associated with the top components can help reveal and visualize the presence of
clusters in the data. These projections however must be considered carefully since clusters
present in the data can become hidden during the projection operation (Figure 25.2). Thus,
while PCA is a useful technique, it is only one way of analyzing the data that should be
complemented by other methods, and in particular by methods whose primary focus is data
clustering.

Clustering Algorithms for Gene Expression Analysis 25-5

FIGURE 25.2: Schematic representation of four data clusters (A, B, C, and D) in 2D space.
Projection of the data onto the first principal component axis results in only
three clusters, with clusters B and C projected into the same cluster (enclosed
by a dotted line).

25.3 Clustering Overview

Another direction for visualizing or compressing high-dimensional array data is the appli-
cation of clustering methods. Clustering refers to an important family of techniques in
exploratory data analysis and pattern discovery, aimed at extracting underlying cluster
structures. Clustering, however, is a “fuzzy” notion without a single precise definition.
Dozens of clustering algorithms exist in the literature and a number of ad hoc clustering
procedures, ranging from hierarchical clustering to k-means have been applied to DNA array
data [22, 2, 33, 50, 14, 47, 17, 64]. Because of the variety and “open” nature of clustering
problems, it is unlikely that a systematic exhaustive treatment of clustering can be giv-
en. However there are a number of important general issues to consider in clustering and
clustering algorithms, especially in the context of gene expression.

25.3.1 Data Types

At the highest level, clustering algorithms can be distinguished depending on the nature
of the data being clustered. The standard case is when the data points are vectors in
Euclidean space. But this is by no means the only possibility. In addition to vectorial data,
or numerical data expressed in absolute coordinates, there is the case of relational data,
where data is represented in relative coordinates, by giving the pairwise distance between
any two points. In many case the data is expressed in terms of a pairwise similarity (or
dissimilarity) measure that often does not satisfy the three axioms of a distance (positivity,
symmetry, and triangle inequality). There exist situations where data configurations are
expressed in terms of tertiary or higher order relationships or where only a subset of all the
possible pairwise similarities is given. More importantly, there are cases where the data is
not vectorial or relational in nature, but essentially qualitative, as in the case of answers
to a multiple-choice questionnaire. This is sometimes also called nominal data. While at
the present time gene expression array data is predominantly numerical, this is bound to
change in the future. Indeed, the dimension “orthogonal to the genes” covering different
experiments, different patients, different tissues, different times, and so forth is at least in
part non-numerical. As databases of array data grow, in many cases the data will be mixed

25-6 Handbook of Computational Molecular Biology

with both vectorial and nominal components.

25.3.2 Supervised/Unsupervised

One important distinction amongst clustering algorithms is supervised versus unsupervised.
In supervised clustering, clustering is based on a set of given reference vectors or classes.
In unsupervised clustering, no predefined set of vectors or classes is used. Hybrid methods
are also possible where an unsupervised approach is followed by a supervised one. At
the current early stage of gene expression array experiments, unsupervised methods such
as k-means and self organizing maps [50] are most commonly used. However supervised
methods have also been tried [14, 28], where clusters are pre-determined using functional
information or unsupervised clustering methods, and then new genes are classified in the
various clusters using a classifier, such as linear and quadratic discriminant analysis, decision
trees, neural networks, or support vector machines, that can learn the decision boundaries
between data classes. The feasibility of class discrimination with array expression data has
been demonstrated, for instance for tumor classes such as leukemias arising from several
different precursors [30], and B-cell lymphomas [1] (see also [61, 65]).

25.3.3 Similarity/Distance

The starting point of several clustering algorithms, including several forms of hierarchical
clustering, is a matrix of pairwise similarities or distances between the objects to be clus-
tered. In some instances, this pairwise distance is replaced by a distortion measure between
a data point and a class centroid as in vector quantization methods. The precise definition
of similarity, distance, or distortion is crucial and, of course, can greatly impact the output
of the clustering algorithm. In any case, it allows converting the clustering problem into
an optimization problem in various ways, where the goal is essentially to find a relatively
small number of classes with high intraclass similarity or low intraclass distortion, and good
interclass separation. In sequence analysis, for instance, similarity can be defined using a
score matrix for gaps and substitutions and an alignment algorithm. In gene expression
analysis, different measures of similarity can be used. Two obvious examples are Euclidean
distance (or more generally Lp distances) and correlation between the vectors of expres-
sion levels. The Pearson correlation coefficient is just the dot product of two normalized
vectors, or the cosine of their angle. It can be measured on each pair of genes across, for
instance, different experiments or different time steps. Each measure of similarity comes
with its own advantages and drawbacks depending on the situation, and may be more or
less suitable to a given analysis. The correlation, for instance, captures similarity in shape
but places no emphasis on the magnitude of the two series of measurements and is quite
sensitive to outliers. Consider, for instance, measuring the activity of two unrelated genes
that are fluctuating close to the background level. Such genes are very similar in euclidean
distance (distance close to 0), but dissimilar in terms of correlation (correlation close to 0).
Likewise, consider the two vectors 1000000000 and 0000000001. In a sense they are similar
since they are almost always identical and equal to 0. On the other hand, their correlation
is close to 0 because of the two “outliers” in the first and last position.

25.3.4 Number of Clusters

The choice of the number K of clusters is a delicate issue, which depends, among other
things, on the scale at which one looks at the data. It is safe to say that an educated partly
manual trial-and-error approach still remains an efficient and widely used techniques, and

Clustering Algorithms for Gene Expression Analysis 25-7

this is true for array data at the present stage. Because in general the number of clusters
is relatively small, all possible values of K within a reasonable range can often be tried.
Intuitively, however, it is clear that one ought to be able to assess the quality of K from the
compactness of each cluster and how well each cluster is separated from the others. Indeed
there have been several recent developments aimed at the automatic determination of the
number of clusters [47, 53] with reports of good results.

25.3.5 Cost Function and Probabilistic Interpretation

Any rigorous discussion of clustering on a given data set presupposes a principled way of
comparing different ways of clustering the same data, hence the need for some kind of
global cost/error function that can easily be computed. The goal of clustering then is to
try to minimize such function. This is also called parametric clustering in the literature, as
opposed to non-parametric clustering, where only local functions are available [12].

In general, at least for numerical data, this function will depend on quantities such as
the centers of the clusters, the distance of each point in a cluster to the corresponding
center, the average degree of similarity of the points in a given cluster, and so forth. Such a
function is often discontinuous with respect to the underlying clustering of the data. Here
again there are no universally accepted functions and the cost function should be tailored
to the problem, since different cost functions can lead to different answers.

Because of the advantages associated with probabilistic methods and modeling, it is
tempting to associate the clustering cost function with the negative log-likelihood of an
underlying probabilistic model. While this is formally always possible, it is of most interest
when the structure of the underlying probabilistic model and the associated independence
assumptions are clear. This is when the additive terms of the cost function reflect the
factorial structure of the underlying probabilities and variables. As we shall see this is the
case with mixture models, where the k-means clustering algorithm can be viewed as a form
of EM (expectation-maximization).

In the rest of this section, we describe in more detail basic clustering algorithms that can
be applied to DNA array data, hierarchical clustering, k-means, and self-organizing maps.
Many other related approaches, including vector quantization [15], graph methods [47], and
factorial analysis can be found in the references.

25.4 Hierarchical Clustering

Clusters can result from a hierarchical branching process. Thus there exist methods for
automatically building a tree from data given in the form of pairwise similarities. In the
case of gene expression data, this is the approach used in [22].

25.4.1 Hierarchical Clustering Algorithm

The standard algorithm used in [22] recursively computes a dendogram that assembles
all the elements into a tree, given the correlation (or distance or similarity) matrix. The
algorithm starts by assigning a leaf of the tree to each element (gene). At each step of the
algorithm:

• The two most similar elements of the current matrix (highest correlation) are
computed and a node joining these two elements is created.

• An expression profile (or vector) is created for the node by averaging the two

25-8 Handbook of Computational Molecular Biology

expression profiles (or vectors) associated with the two points (missing data can
be ignored and the average can be weighted by the number of elements they
contain).

• A new smaller correlation matrix is computed using the newly computed ex-
pression profile or vector and replacing the two joined elements with the new
node.

• With N starting points, the process is repeated at most N − 1 times, until a
single node remains.

This algorithm is familiar to biologists and has been used in sequence analysis, phyloge-
netic trees, and cluster analysis. As described, it requires O(N3) steps since for each of the
N − 1 fusions one must search for an optimal pair. An O(N2) version of the algorithm is
described in [23].

In the above algorithm, each node is associated with an expression profile (or feature
vector) when created. The similarity/distance between two nodes is computed based on
their expression profiles. Alternatively, the similarity/distance between two nodes can be
determined using the average linkage method, which takes the average similarity/distance
between all possible pairs of elements of the two nodes. Other options exist, such as single
linkage and complete linkage [21].

The output of hierarchical clustering is typically a binary tree and not a set of clusters.
In particular, it is usually not obvious how to define clusters from the tree since clusters are
derived by cutting the branches of the tree at more or less arbitrary points.

25.4.2 Tree Visualization

In the case of gene expression data, the resulting tree organizes genes or experiments so
that underlying biological structure can often be detected and visualized [22, 49, 2, 1]. As
already pointed out, after the construction of such a dendogram there is still a problem of
how to display the result and which clusters to choose. Leaves are often displayed in linear
order and biological interpretations are often made in relation to this order, e.g. adjacent
genes are assumed to be related in some fashion. Thus the order of the leaves matters.

At each node of the tree, either of the two elements joined by the node can be ordered to
the left or the right of the other. Since there are N − 1 joining steps, the number of linear
orderings consistent with the structure of the tree is 2N−1. Computing the optimal linear
ordering maximizing the combined similarity of all neighboring pairs seems difficult, and
therefore heuristic approximations have been proposed [22]. These approximations weigh
genes using average expression level, chromosome position, and time of maximal induction.

More recently, it was noticed in [9] that the optimal linear ordering can be computed
in O(N4) steps, and further improved to O(N3) steps [8], simply by using dynamic pro-
gramming, in a form which is essentially the well-known inside portion of the inside-outside
algorithm for stochastic context- free grammars [6]. If G1, . . . , GN are the leaves of the tree
and φ denotes one of the 2N−1 possible orderings of the leaves, we would like to maximize
the following criterion function

N−1∑

i=1

C(Gφ(i), Gφ(i+1)) (25.4)

where Gφ(i) is the i-th leaf when the tree is ordered according to φ. Let V denote both an
internal node of the tree as well as the corresponding subtree. V has two children: Vl on
the left and Vr on the right, and four grand-children Vll, Vlr , Vrl, and Vrr. The algorithm

Clustering Algorithms for Gene Expression Analysis 25-9

FIGURE 25.3: Tree underlying the dynamic programming recurrence of the inside algorithm.

works bottom up, from the leaves towards the roots by recursively computing the cost of
the optimal ordering M(V, U,W) associated with the subtree V when U is the leftmost leaf
of Vl and W is the rightmost leaf of Vr (Figure 25.3). The dynamic programming recurrence
is given by:

M(V, U,W) = max
R∈VlrS∈Vrl

M(Vl, U,R) +M(Vr, S,W) + C(R,S) (25.5)

The optimal cost M(V) for V is obtained by maximizing over all pairs U,W . The global
optimal cost is obtained recursively when V is the root of the tree, and the optimal tree can
be found by standard backtracking. The algorithm requires computing M(V, U,W) only
once for each O(N2) pair of leaves. Each computation of M(V, U,W) requires maximization
over all possible O(N2) (R,S) pairs of leaves. Hence the algorithm requires O(N4) steps
with O(N2) space complexity, since only one M(V, U,W) must be computed for each pair
(U,W) and this is also the size of the pairwise similarity matrix. For some applications,
O(N4) is too slow. A faster algorithm on average is developed in [9] by early termination
of search paths that are not promising.

Hierarchical clustering has proved to be a useful for array data analysis in the literature,
for instance for finding genes that share a common function [22, 49, 1]. The main clusters
derived are often biologically significant and the optimal leaf ordering algorithm can further
improve the quality and interpretability of the results [9]. Optimal leaf ordering helps in
improving the definition of cluster boundaries and the relationships between clusters.

25.5 K-Means, Mixture Models, and EM Algorithm

25.5.1 K-Means Algorithm

Of all clustering algorithms, k-means [21] is among the simplest and most widely used,
and has probably the cleanest probabilistic interpretation as a form of EM (expectation-
maximization) on the underlying mixture model. In a typical implementation of the k-
means algorithm, the number of clusters is fixed to some value K based, for instance, on
the expected number of regulatory patterns. K representative points or centers are initially
chosen for each cluster more or less at random. In array data, these could reflect, for

25-10 Handbook of Computational Molecular Biology

instance, regulatory patterns. These points are also called centroids or prototypes. Then
at each step:

• Each point in the data is assigned to the cluster associated with the closest
representative.

• After the assignment, new representative points are computed for instance by
averaging or taking the center of gravity of each computed cluster.

• The two procedures above are repeated until the system converges or fluctuations
remain small.

Hence notice that k-means requires choosing the number of clusters and also being able
to compute a distance or similarity between points and compute a representative for each
cluster given its members.

The general idea behind k-means can lead to different software implementations depend-
ing on how the initial centroids are chosen, how symmetries are broken, whether points
are assigned to clusters in a hard or soft way, and so forth. A good implementation ought
to run the algorithm multiple times with different initial conditions and possibly also try
different values of K automatically.

When the cost function corresponds to an underlying probabilistic mixture model [24, 54],
k-means is an on-line approximation to the classical EM algorithm [20, 6], and as such in
general is bound to converge towards a solution that is at least a local maximum likelihood
or maximum posterior solution. A classical case is when Euclidean distances are used
in conjunction with a mixture of Gaussian models. A related application to a sequence
clustering algorithm is described in [4].

25.5.2 Mixtures Models and EM

To better understand the connection to mixture models, imagine a data setD = (d1, . . . , dN)
and an underlying mixture model with K components of the form

P (d) =
K∑

k=1

P (Mk)P (d|Mk) =
K∑

k=1

λkP (d|Mk) (25.6)

where λk ≥ 0 and
∑

k λk = 1 and Mk is the model for cluster k. Mixture distributions pro-
vide a flexible way for modeling complex distributions, combining together simple building-
blocks, such as Gaussian distributions. The Lagrangian associated with the log-likelihood
and the normalization constraints on the mixing coefficients is given by

L =
N∑

i=1

log(
K∑

k=1

λkP (di|Mk))− µ(
K∑

k=1

λk − 1) (25.7)

with the corresponding critical equation

∂L
∂λk

=
N∑

i=1

P (di|Mk)
P (di)

− µ = 0 (25.8)

Multiplying each critical equation by λk and summing over k immediately yields the value of
the Lagrange multiplier µ = N . Multiplying again the critical equation across by P (Mk) =
λk, and using Bayes theorem in the form

P (Mk|di) = P (di|Mk)P (Mk)/P (di) (25.9)

Clustering Algorithms for Gene Expression Analysis 25-11

yields

λ∗k =
1
N

N∑

i=1

P (Mk|di) (25.10)

Thus the maximum likelihood estimate of the mixing coefficients for class k is the sample
mean of the conditional probabilities that di comes from model k. Consider now that each
model Mk has its own vector of parameters (wkj). Differentiating the Lagrangian with
respect to wkj gives

∂L
∂wkj

=
N∑

i=1

λk

P (di)
∂P (di|Mk)
∂wkj

(25.11)

Substituting Equation 25.9 in Equation 25.11 finally provides the critical equation

N∑

i=1

P (Mk|di)
∂ logP (di|Mk)

∂wkj
= 0 (25.12)

for each k and j. The maximum likelihood equations for estimating the parameters are
weighted averages of the maximum likelihood equations

∂ logP (di|Mk))/∂wkj = 0 (25.13)

arising from each point separately. As in Equation 25.10, the weights are the probabilities
of membership of the di in each class.

The maximum likelihood Equations 25.10 and 25.12 can be used iteratively to search for
maximum likelihood estimates, yielding also another instance of the EM algorithm. In the
E step, the membership probabilities (hidden variables) of each data point are estimated for
each mixture component. The M step is equivalent to K separate estimation problems with
each data point contributing to the log-likelihood associated with each of the K components
with a weight given by the estimated membership probabilities. Different flavors of the
same algorithm are possible depending on whether the membership probabilities P (M |d)
are estimated in hard or soft fashion during the E step. The description of k-means given
above correspond to the hard version where these membership probabilities are either 0
or 1, each point being assigned to only one cluster. This is analogous to the use of the
Viterbi version of the EM algorithm for hidden Markov models, where only the optimal path
associated with a sequence is used, rather than the family of all possible paths. Different
variations are also possible during the M step of the algorithms depending, for instance,
on whether the parameters wkj are estimated by gradient descent or by solving Equation
25.12 exactly. It is well known that the center of gravity of a set of points minimizes
its average quadratic distance to any fixed point. Therefore in the case of a mixture of
spherical Gaussians, the M step of the k-means algorithm described above maximizes the
corresponding quadratic log-likelihood and provides a maximum likelihood estimate for the
center of each Gaussian component. It is also possible to introduce prior distributions on
the parameters of each cluster and/or the mixture coefficients and create more complex
hierarchical mixture models.

PCA, hierachical clustering, k-means, as well as other clustering and data analysis algo-
rithms are currently implemented in several publicly (Figure 25.4) or commercially avail-
able software packages for DNA array data analysis. It is important to recognize that
many software packages will output some kind of answer, for instance a set of clusters, on
any kind of data set. These answers should not be trusted always blindly. Rather it is

25-12 Handbook of Computational Molecular Biology

wise practice, whenever possible, to track down the assumptions underlying each algorith-
m/implementation/package and to run the same algorithms with different parameters, as
well as different algorithms, on the same data set, as well as other data sets.

• R Cluster

– Platform: Web-based

– Provider: UCI

– Web URL:www.genomics.uci.edu

– Functions: Hierarchical clustering, k-means

• EPCLUST (Expression Profiler)

– Platform: Web-based

– Provider: European Bioinformatic Institute

– Web URL: www.ebi.ac.uk/microarray

– Functions: Hierarchical clustering, k-means

• Cluster and TreeView

– Platform: Window

– Provider: Stanford University

– Web URL: rana.lbl.gov/Eisen/Software.htm

– Functions: Hierarchical clustering, k-means, PCA, SOM

• Xcluster

– Platform: Window, Mac, Unix

– Provider: Stanford University

– Web URL: genome-www.Stanford.edu/ sherlock/cluster.html

– Functions: SOM, k-means

• GeneCluster

– Platform: Window

– Provider: Whitehead Institute/MIT

– Web URL: www.genome.wi.mit.edu/MPR

– Functions: SOM

FIGURE 25.4: Publicly available software for cluster analysis of microarray gene expression data.

25.6 Self-Organizing Maps

The self-organizing map (SOM) [36] is treated as a cluster analysis method. Like k- means,
the SOM is a kind of partitional clustering algorithm that partitions the data into a pre-
defined number of clusters. However, unlike k-means, which produces an unorganized or
unstructured collection of clusters, the SOM can form a topological map of input distribu-
tion.

Clustering Algorithms for Gene Expression Analysis 25-13

FIGURE 25.5: The formation of a topological map of input distribution (adapted from [50]).
Data points and SOM node vectors are represented by solid and blank circles,
respectively. The movement trajectories of nodes are indicated by arrows.

The SOM is constructed by choosing an array of nodes (typically, a 2D array). The nodes
are mapped into the input feature space, initially at random, and then adjusted iteratively
(Figure 25.5). In each iteration, a data point (i.e., the feature vector of an object) P is
randomly chosen, and the nodes are moved towards P in the feature space, but only the
nearest node (denoted by Np) and its neighbors in the map can change their positions in
the feature space. Through iterations, neighboring nodes in the map evolve into ones with
similar feature vectors. As a result, physically adjacent nodes in the map tend to represent
related clusters. The correlation between the physical location of nodes in the map and the
vectors of the nodes in the feature space is attributed to the adaptive mechanism based on
neighborhood. In essence, the SOM transforms the input patterns into a topological map.
The SOM has also been conceived as a neural network model, where the vectors associated
with the nodes in the map are called the weight vectors. The adaptive formula in each
iteration is given by (following [50]):

fk+1(N) = fk(N) + τ(d(N,Np), k)(P − fk(N)) (25.14)

In the above equation, fk(N) denotes the position of nodeN in the feature space at iteration
k; τ is the learning rate that decreases with the distance of node N from Np and with
iteration number k (e.g., τ in the form of a Gaussian function or a window function); Np

is the node closest to the input data point P . What this equation says is that node Np

as well as its neighbor nodes within the limit specified by the function τ is allowed to
adjust its vector in the direction of P . By iteratively reducing the learning rate and the
radius of the neighborhood, the algorithm converges to a map with optimum clusters and
topology, and each node vector settles in the mean of the data points belonging to the node.

25-14 Handbook of Computational Molecular Biology

The assignment of a data point to a node (cluster) is determined by the shortest distance
between the data vector and the node vector.

The SOM lends itself well to exploratory data analysis. It provides a convenient way
for data visualization and interpretation and has the advantage of handling data with non-
uniformity or irregularities [50]. The landscape of the topological map is psychologically
meaningful. On the negative side, there is no theoretical basis for determining the optimal
dimensions of the SOM, and it may take a very large number of iterations before convergence
(like 20,000 50,000). This technique has been applied to pattern interpretation [50] and
class discovery [30] based on microarray gene expression data.

25.7 Cluster Analysis of Microarray Gene Expression Data

With the capability of uncovering the structure and patterns in the data, cluster analysis
has become a routine for comprehension and interpretation of complex biological informa-
tion embedded in microarray gene expression data. Cluster analysis of genome- wide gene
expression data offers a system-level exploration of functionally related genes that exhib-
it similarity or correlation in gene expression across various conditions. Given the gene
expression data of a set of tissue samples, cluster analysis may reveal novel class structure.

In general, it is required that the data are normalized and standardized for removing sys-
tematic sources of variation and allowing array-to-array comparison before analysis. Cluster
analysis software accepts the gene expression data typically represented in the format of a
table (or a matrix), where each row, often labeled with a gene name, consists of the ex-
pression levels of a particular gene across all experiments, and each column, often labeled
with an experiment ID, is formed by all gene expression levels in a particular experiment.
Thus, in the data matrix, each entry xij is the expression level of gene i in experiment
j. An experiment here means a hybridization experiment with respect to a condition or a
sample. As clustering is a process of grouping objects according to the similarity in their
feature descriptions, it is clear that the gene expression data can be clustered in two ways:
treating genes as objects and each experiment as a feature, and vice versa, depending on
the application objective.

25.7.1 Gene Clustering

Cluster analysis is a crucial step for extracting information from the massive amount of
gene expression data. This analysis can generate gene clusters, with each cluster compris-
ing genes whose expressions are correlated across experiments [22]. The co-expression of
genes suggests that they are functionally related in the same cellular process and are like-
ly co-regulated. Co-regulated genes here refer to genes regulated by common molecular
factors called transcription factors in a mechanism known as transcriptional control. The
functions of many uncharacterized genes can be annotated with the functions of respectively
co-expressed known genes. The objectives of gene clustering on microarray gene expression
data can be boiled down to four essentials: (1) functional organization of genes, (2) interpre-
tation of the cellular status according to the genome-wide expression pattern, (3) functional
deduction of unknown genes, and (4) exploration of transcriptional regulation.

Identification of regulatory genes and their target genes is fundamental to building a
genetic network essential for understanding basic biological principles. Given microarray
gene expression data, cluster analysis can recognize genes whose regulatory regions (cis-
regulatory elements) are bound by the same proteins (transcription factors) in vivo. Such a
set of co- regulated genes is referred to as a “regulon”. Gene regulatory regions are described

Clustering Algorithms for Gene Expression Analysis 25-15

in more detail in the next section.
Microarray data used for the global analysis of gene function can be collected across

multiple growth conditions or collected over a period of time. Time-series microarray gene
expression data are particularly useful for studying the dynamics of gene regulation.

Validation of Gene Clusters

Cluster validation is difficult in the absence of formal statistical tests for determining the
number of clusters. Statistical bootstrapping has been proposed to assess the reliability
of gene clusters [35] in much the same spirit it is used in phylogenetic analysis. In this
approach, for example, the match of a gene to a cluster pattern is called 95% stable if this
is the case in the actual data clustering and in at least 95% of the bootstrap clusterings.

To evaluate a regulon hypothesis, the upstream regions of co-expressed genes are searched
for common motifs, which are the consensus binding sequences (cis-regulatory elements) of
the transcription factors. The presence of statistically significant consensus motifs strength-
ens the belief that the genes are co-regulated. Genes in the same cluster are expected to
be involved in the same biological pathway and share similar functional annotations. This
can be confirmed by literature and database search.

Assume that cluster analysis arrives at a set of clusters, and there exist known functional
categories. The hypergeometric distribution can be used to calculate the chance probability
of observing at least k genes from a functional category within a cluster as follows [51]:

P = 1−
k−1∑

i=0

(
f
i

)(
g − f
n− i

)

(
g
n

) (25.15)

where n and f denote the total numbers of genes within the cluster and within the functional
category, respectively; and g is the total number of genes in the genome. Consider the
yeast genome for example. Since there are about 200 functional categories in the MIPS
database [40], only clusters with P < 0.0003 for a certain functional category are considered
statistically significant at a level of significance of approximately 0.05, adjusted for the
multiplicity effect due to 200 categories.

25.7.2 Gene Selection and Filtering

A clustering algorithm relies on a distance or similarity measure that calculates the dis-
tance between any two given feature vectors (collections of feature values). The inclusion
of irrelevant features in the distance function will lead to imprecise or incorrect distance
calculation and impact on clustering. A clustering algorithm could tolerate this problem
to some some extent, but the quality of clustering begins to degrade as more irrelevant
features get involved. In the context of microarray data clustering, this is not so much a
problem in gene clustering as in sample clustering since the dimension of the feature space
for gene clustering is considerably smaller than that for sample clustering (e.g., hundreds
versus tens of thousands). Data pre-processing for removal of irrelevant genes and selection
of relevant genes is thus needed for microarray-based sample clustering. However, this issue
may have to be dealt with separately for supervised and unsupervised clustering.

In supervised clustering, samples are associated with class labels so that genes can be
selected on the basis of the statistical significance of their differential expression across
different classes. Intensive research has resulted in many algorithms for differential gene
expression analysis, e.g., [56, 55]. Some algorithms specifically focus on gene selection for

25-16 Handbook of Computational Molecular Biology

discriminant analysis, and tend to select a small set of discriminant genes for predictive or
diagnostic purposes, e.g., [31, 52]. Genes selected thereby can be used as a basis to dis-
criminate between classes, and more interestingly, to further analyze the internal structure
of the data within classes in an unsupervised manner, leading to possible new subclasses
discovered (e.g., [48]).

The approach of using prior class membership information may fail to identify genes relat-
ed to unknown classes. In unsupervised clustering, this kind of information is unavailable or
ignored. Since however, an informative gene is expected to stand out from the background
noise and show at least some variation among samples, a simple gene filter can be designed
to filter out genes of low expression or low variation. In one study, for example, a gene filter
selected genes with signal intensity >1.5-fold over background in both test and reference
channels in at least 75% of samples in conjunction with ≥ 3-fold variation from the mean
in at least two samples [37].

25.7.3 Sample Clustering

Microarray-based gene expression profiling has emerged as a promising approach to disease
classification. Taking the same approach to automatic class discovery is even a greater
challenge. In both cases, the samples are grouped according to the similarity in their gene
expression profiles. It has been demonstrated that this approach can generate clusters,
independent of prior biological knowledge, that are consistent with known classes [30]. This
demonstration raises the interesting opportunity of class identification in a new domain and
subclass distinction within known classes in this approach. This is a significant development
since the microarray approach offers a rapid solution in contrast to the traditional typically
slow process on this problem. Furthermore, with this approach, the clusters identified can
be analyzed directly from the associated gene expression patterns in molecular or clinical
perspectives.

Validation of Sample Clusters

Whether putative classes resulting from clustering reflect the true structure in the data
and are domain-meaningful can be further evaluated. Basically, a class predictor based
on the putative classes derived from one data set is tested on another independent data
set. If the initial data set and the independent data set share similar structure, then good
predictive performance is expected. However, predictive accuracy cannot be measured for
the independent data set in which the samples are not associated with any putative class.
Instead, predictive performance can be assessed by the strength of prediction (for instance,
in a continuous range between 0 and 1) [30]. High average prediction strength on the
independent data suggests the validity of the putative classes.

25.7.4 Two-Dimensional Clustering

A sample cluster is made up of samples sharing similar expression values across genes. Often,
a sample cluster is characterized by a subset of genes that are either over-or under-expressed
relative to other sample clusters. For example, certain genes are expressed in cancer tissue
but not in normal tissue. On the other hand, a gene cluster may be specifically associated
with a subset of samples. Two-dimensional clustering on gene expression data combines
gene clustering with sample clustering. The graphical display of two-dimensional clustering
can reveal the correlation between genes and tissue samples if there is any, whereas either
gene clustering or sample clustering alone may not.

Clustering Algorithms for Gene Expression Analysis 25-17

A clustering algorithm can be applied to genes or samples or both. If an algorithm
performs on these two axes separately, it is called one-way clustering. Such is the case
for hierarchical clustering, k-means and self-organizing maps. Some algorithms, however,
cluster on both dimensions (gene- and sample-) simultaneously, and are thus called two-
way clustering (e.g., [17, 29]). Two-way clustering seeks subsets of the genes and samples
so that significant partitions result when one subset is used to cluster the other [29]. These
techniques can be found in the references.

25.7.5 Visualization of Gene Expression Data

Hierarchical clustering produces a dendrogram that reveals the structure in the data but
does not provide information about the variation with respect to particular features across
clusters. When samples are clustered on the basis of their gene expression profiles, vi-
sualization of clusters together with their gene expression profiles often permits natural
extraction of the correlation information between clusters and gene expression profiles, and
thereby gives rise to useful biological insight. The heat map is a 2D grid of color points
for representing clustered gene expression data such that each point corresponds to the ex-
pression level of a gene in a sample with the color grade indicative of the level of intensity.
In two-dimensional hierarchical clustering, it is expedient for data interpretation to order
genes and samples so that genes showing a strong correlation across samples appear near
each other on the gene tree, and samples with similar gene expression profiles are adjacent
on the sample tree, as illustrated by an example in cancer classification [27] (Figure 25.6).

FIGURE 25.6: (See color insert following page 20-4.) Two-dimensional hierarchical clus-
tering of the microarray gene expression data on small round blue cell tumors
with selected genes. The dendrograms for gene clusters and sample clusters are
shown on top and right of the map, respectively.

25-18 Handbook of Computational Molecular Biology

25.8 DNA Arrays and Regulatory Regions

Another important level of analysis consists in combining DNA array data with DNA se-
quence data, and in particular with regulatory regions. This combination can be used to
detect regulatory motifs, but also to address global questions of regulation. While gene reg-
ulatory elements have been found in a variety of regions including introns, distant intragenic
regions, and downstream regions, the bulk of the regulation of a given gene is, in general,
believed to depend primarily on a more or less extended region immediately upstream of the
gene. In [32], for instance, this model was tested on a genomic scale by coupling expression
data obtained during oxidative stress response with all pairwise alignments of yeast ORF
upstream regions. In particular, it was found that as the difference in upstream regions
increases, the correlation in activity rapidly drops to zero and that divergent ORFs, with
overlapping upstream regions, do not seem to have correlated expression levels. By and
large, however, the majority of current efforts aimed at combining DNA array and sequence
data are focused on searching for regulatory motifs.

Several techniques have been developed for the discovery of “significant” patterns from
a set of unaligned DNA sequences. Typically these patterns represent regulatory (tran-
scription factor DNA binding sites) or structural motifs that are shared in some form by
the sequences. The length and the degeneracy of the pattern are of course two important
parameters [44, 43, 41]. Probabilistic algorithms such as EM and Gibbs sampling naturally
play an essential role in motif finding, due to both the structural and location variability of
motifs [38].

Simple measures of over-representation have also been shown to be effective for detecting
such motifs, for instance in sets of gene upstream or downstream [58] regions. While these
data mining algorithms can be applied using a purely combinatorial approach to genomic
DNA [13, 57], the methods and results can be further refined, and the sensitivity increased,
by focusing the search on specific clusters of genes derived from array data analysis, such as
clusters of genes that appear to be co-regulated. In addition to regulatory motifs found in
the TRANSFAC database [62], these methods can detect novel motifs in the large amounts
of more or less unannotated genomic DNA that has become available through genome and
other sequencing projects [32, 60, 16, 34, 11].

The basic idea behind these approaches is to compute the number of occurrences of each
k-mer, typically for values of k in the range of 3 to 10, within a set of sequences, such as
all gene-upstream regions, or all the upstream regions of a particular set of co- regulated
genes, and look for k-mers that are over-represented. Over- representation is a statistical
concept that can be assessed in a number of different ways and, depending on the problem,
a number of points must be carefully considered. These include:

• Regions: How are the upstream, or downstream, regions defined? Do they have
fixed length? How are they treated with respect to neighboring genes on each
strand and possible overlaps?

• Counts: Are the two strands treated separately or aggregated? It is well known,
for instance, that certain regulatory motifs are active regardless of the strand
on which they occur and these are better detected if counts on both strands are
aggregated. Other motifs are strand-specific.

• Background model: Over-representation must be assessed with respect to a sta-
tistical background model. The choice of the background model is critical and
non-trivial. In particular the background model cannot be too good otherwise
it would predict the counts exactly and therefore would be worthless. Typical
models used in the literature are Markov models of various orders, measured on

Clustering Algorithms for Gene Expression Analysis 25-19

the data or some other reference set. Another possible background model, is to
consider the average of single (or multiple) base pair mismatches, i.e. to estimate
the counts of a given k-mer using the counts of all the k-mers that differ in one
position.

• Statistics: Several statistics can be used to detect significant over-representation
from the raw counts, such as ratio, log-likelihood, z-score binomial, t-test, Pois-
son, and compound Poisson. As in the case of array data, inference based on
ratio alone can be tricky, especially for low expected frequencies that can induce
false positives (e.g. 1 versus 4 is very different from 1,000 versus 4,000).

• Gene clusters: if the method is applied to the DNA sequences associated with
a cluster of genes derived from array data, how is the cluster determined? Are
the genes up-or down regulated under a given condition? Etc. Notice also that
array data can be used as a filter to detect over-representation before or after the
counts, often yielding somewhat different results.

k-mers that are over-represented are of particular interest and have been shown to com-
prise well-known regulatory motifs (also known as cis-regulatory elements). For instance,
when the algorithms are run on the yeast upstream regions using oxidative stress data, one
immediately detects the well-known stress element CCCCT [39] and its reverse comple-
ment AGGGG, or the YAP1 element TTACTAA and its reverse complement TTAGTAA
[63, 25, 19] (See Figure 25.7).

Alignment Sequence Distance from ATG Strand
GATTACTAAG 0 134 1
GCTTACGAAT 1 231 0
GCTTACTAAT 1 256 1
GCTTACTAAT 1 276 0
GCTTAGTAAA 2 171 1
GATTAGTAAT 3 276 1
GATTAGTAAT 3 300 1
GATTAGTAAT 3 312 1
GATTAGTAAT 3 324 1
GATTAGTAAT 3 336 1
GCTGACTAAT 4 331 0
GCTTACTAAT 5 400 1
GATTAATAAT 5 431 1
GCTGACTAAG 6 181 1
ACTTAGTAAT 6 332 0
GATTACTAAT 7 89 1
GCTTAATAAT 8 285 1
GCTTAGTAAT 10 139 1
GCTTACTAAG 10 203 1

FIGURE 25.7: The cis-regulatory element of a group of co-regulated genes identified by the Alig-
nACE program (http://atlas.med.harvard.edu/). The gene sequences (ORFs) are
0:YKL071W, 1:YFL056C, 2:YLL060C, 3:YOL165C, 4:YML116W, 5:YBR008C,
6:YPL171C, 7:YLR460C, 8:YKR076W, 9:YHR179W, 10:YML131W in Saccha-
romyces cerevisiae. The motif given here satisfies predefined statistical criteria,
and is consistent with Yap1-binding sites (TTACTAA or TGACTAA).

In general, however, only a fraction of the putative motifs detected by these techniques
nowadays are typically found also in the TRANSFAC [62] data base, or in the current
literature, and most must await future experimental verification. In the meantime, over-
represented motifs can be further studied in terms of their patterns of localization and co-

25-20 Handbook of Computational Molecular Biology

9-mer C0 C1 27 × C0/C1
GCGATGAGC 67 273 6.62
GCTCATCGC 51 262 5.26

FIGURE 25.8: Over-representation of 9-mer GCGATGAGC and its reverse complement across
all 500bp gene-upstream regions in yeast. C0 is the total number of occurrences.
C1 represents the total number of occurrences of all the 27=3x9 9-mers that differ
in only one position from the 9-mer (background model). Under this model, the
9-mer is over 6-fold over-represented.

occurrence within, for instance, upstream regions and/or their DNA structure. Non-uniform
patterns of localization, for instance, can be indicative of biological function. To illustrate,
consider the over-represented 9- mer GCGATGAGC in yeast (Figure 25.8). When one
looks at the 500bp upstream regions of all the genes in yeast, this 9-mer and its reverse
complement GCTCATCGC have roughly symmetric distributions with a noticeable peak 50
to 150 bp upstream from the genes they seem to regulate [13, 34]. As far as DNA structure
is concerned, it can be analyzed to some extent by using some of the available DNA physical
scales [5, 42] (e.g. bendability, propeller twist). Typical over-represented k-mers that have
peculiar structural properties include runs of alternating AT which are identical to their
own reverse complement and correspond to highly bent or bendable DNA regions (such as
the TATA box) or, at the opposite end of the structural spectrum, runs of As or runs of Ts
which tend to be very stiff.

All together, these techniques are helping inferential and other data mining efforts aimed
at unraveling the “language” of regulatory regions. A somewhat orthogonal approach de-
scribed in [18] computes for each motif the mean expression profile over a set of array
experiments of all the genes that contain the motif in their transcription control regions.
These profiles can be useful for visualizing the relationship between the genome sequence
and gene expression data, and for characterizing the transcriptional importance of specific
sequence motifs.

Detection of gene expression differences, clusters of co-regulated genes, and/or gene regu-
latory motifs are essential steps toward the more ambitious and long-term goal of inferring
regulatory networks on a global scale, or even along more specific sub-components [59, 26, 66]
such as a pathway or a set of co- regulated genes.

Acknowledgement

This work has been supported in part by grants from the NIH and NSF to GWH and
PB. GWH and PB wish also to thank Cambridge University Press for permission to reuse
material from their book DNA Microarrays and Gene Expression–From Experiments to
Data Analysis and Modeling.

References 25-21

References

[1] A.A. Alizadeh, M.B. Eisen, R.E. Davis, and C. Ma et al. Distinct types of diffuse large
B-cell lymphoma identified by gene expression profiling. Nature, 403:503–510, 2000.

[2] U. Alon, N. Barkai, D.A. Notterman, and K. Gish et al. Broad patterns of gene
expression revealed by clustering analysis of tumor and normal colon tissues probed
by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA, 96:6745–6750, 1999.

[3] O. Alter, P.O. Brown, and D. Botstein. Singular value decomposition for genome-wide
expression data processing and modeling. PNAS, 97:10101–10106, 2000.

[4] P. Baldi. On the convergence of a clustering algorithm for protein-coding regions in
microbial genomes. Bioinformatics, 16:367–371, 2000.

[5] P. Baldi and P.-F. Baisnée. Sequence analysis by additive scales: DNA structure for
sequences and repeats of all lengths. Bioinformatics, 16(10):865–889, 2000.

[6] P. Baldi and S. Brunak. Bioinformatics: the machine learning approach. MIT Press,
Cambridge, MA, 2001. Second edition.

[7] P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning
from examples without local minima. Neural Networks, 2(1):53–58, 1988.

[8] Z. Bar-Joseph, E.D. Demaine, D.K. Gifford, and A.M. Hamel et al. K-ary clustering
with optimal leaf ordering for gene expression data. Bioinformatics, 19:1070–1078,
2003.

[9] Z. Bar-Joseph, D.K. Gifford, and T.S. Jaakkola. Fast optimal leaf ordering for hierar-
chical clustering. Bioinformatics, 17(Suppl 1):S22–9, 2001.

[10] C.M. Bishop. Bayesian PCA. In M.S. Kearns, S.A. Solla, and D.A. Cohn, editors,
Advances in Neural Information Processing Systems, volume 11, pages 382–388.
MIT Press, Cambridge, MA, 1999.

[11] M. Blanchette and S. Sinha. Separating real motifs from their artifacts. Bioinformat-
ics, 17(Suppl 1):S30–8, 2001.

[12] M. Blatt, S. Wiseman, and E. Domany. Super-paramagnetic clustering of data. Phys-
ical Review Letters, 76:3251–3254, 1996.

[13] A. Brazma, I.J. Jonassen, J. Vilo, and E. Ukkonen. Predicting gene regulatory elements
in silico on a genomic scale. Genome Research, 8:1202–1215, 1998.

[14] M.P.S. Brown, W.N. Grundy, D. Lin, and N. Cristianini et al. Knowledge-based
analysis of microarray gene expression data by using support vector machines. PNAS
USA, 97:262–267, 2000.

[15] J.M. Buhmann and H. Kuhnel. Vector quantization with complexity costs. IEEE
Transactions on Information Theory, 39(4):1133–1145, 1993.

[16] H.J. Bussemaker, H. Li, and E.D. Siggia. Building a dictionary for genomes: identifi-
cation of presumptive regulatory sites by statistical analysis. PNAS, 97:10096–10100,
2000.

[17] Y. Cheng and G.M. Church. Biclustering of expression data. In Proceedings of the
2000 Conference on Intelligent Systems for Molecular Biology (ISMB00), La Jolla,
CA, pages 93–103. AAAI Press, Menlo Park, CA, 2000.

[18] D.Y. Chiang, P.O. Brown, and M.B. Eisen. Visualizing associations between genome
sequences and gene expression data using genome-mean expression profiles. Bioinfor-
matics, 17(Suppl 1):S49–55, 2001.

[19] S.T. Coleman, E.A. Epping, S.M. Steggerda, and W.S. Moye-Rowley. Yap1p activates

25-22 References

gene transcription in an oxidant-specific fashion. Mol. Cell. Biol., 19:8302–8313, 1999.
[20] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete

data via the EM algorithm. Journal Royal Statistical Society, B39:1–22, 1977.
[21] R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. John Wiley

and Sons, 1973.
[22] M.B. Eisen, P.T. Spellman, P.O. Brown, and D. Botstein. Cluster analysis and display

of genome-wide expression patterns. Proc. Natl. Acad. Sci USA, 95:14863–14868,
1998.

[23] D. Eppstein. Fast hierarchical clustering and other applications of dynamic closest
pairs. Proceedings of the 9th ACM-SIAM Symp. on Discrete Algorithms, pages
619–628, 1998.

[24] B.S. Everitt. An Introduction to Latent Variable Models. Chapman and Hall, London
and New York, 1984.

[25] L. Fernandes, C. Rodrigues-Pousada, and K. Struhl. Yap, a novel family of eight
bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Mol.
Cell Biol., 17:6982–6993, 1997.

[26] N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to analyze
expression data. Journal of Computational Biology, 7:601–620, 2000.

[27] L.M. Fu and C.S. Fu-Liu. Multi-class cancer subtype classification based on gene
expression signatures with reliability analysis. FEBS Letters, 561(1-3):186–190, 2004.

[28] T.S. Furey, N. Cristianini, N. Duffy, and D.W. Bednarski et al. Support vector machine
classification and validation of cancer tissue samples using microarray expression data.
Bioinformatics, 16:906–914, 2000.

[29] G. Getz, E. Levine, and E. Domany. Coupled two-way clustering analysis of gene
microarray data. Proc Natl Acad Sci, 97(22):12079–84, 2000.

[30] T.R. Golub, D.K. Slonim, P. Tamayo, and C. Huard et al. Molecular classification of
cancer: class discovery and class prediction by gene expression monitoring. Science,
286:531–537, 1999.

[31] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification
using support vector machines. machine learning, 46:389–422, 2002.

[32] S. Hampson, P. Baldi, D. Kibler, and S. Sandmeyer. Analysis of yeast’s ORFs up-
stream regions by parallel processing, microarrays, and computational methods. In
Proceedings of the 2000 Conference on Intelligent Systems for Molecular Biology
(ISMB00), La Jolla, CA, pages 190–201. AAAI Press, Menlo Park, CA, 2000.

[33] L.J. Heyer, S. Kruglyak, and S. Yooseph. Exploring expression data: identification
and analysis of co-expressed genes. Genome Research, 9:1106–1115, 1999. in press.

[34] J.D. Hughes, P.W. Estep, S. Tavazole, and G.M. Church. Computational identifica-
tion of cis-regulatory elements associated with groups of functionally related genes in
saccharomyces cerevisiae. J. Mol. Biol., 296:1205–1214, 2000.

[35] M.K. Kerr and G.A. Churchill. Bootstrapping cluster analysis: assessing the reliability
of conclusions from microarray experiments. Proc Natl Acad Sci, 98:8961–5, 2001.

[36] T. Kohonen. Self-Organization, Associative Memory. Springer-Verlag, New York,
NY, 1988.

[37] J. Lapointe, C. Li, J.P. Higgins, and M. van de Rijn et al. Gene expression profiling
identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci, 101:811–
6, 2004.

[38] C.E. Lawrence, S.F. Altschul, M.S. Boguski, and J.S. Liu et al. Detecting subtle
sequence signals: a gibbs sampling strategy for multiple alignment. Science, 262:208–
14, 1993.

[39] M.T. Martinez-Pastor, G. Marchler, C. Schuller, and A. Marchler-Bauer et al. The

References 25-23

saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for tran-
scriptional induction through the stress-response element (STRE. EMBO Journal,
15:2227–2235, 1996.

[40] H.W. Mewes, K. Albermann, M. Bahr, and D. Frishman et al. Overview of the yeast
genome. Nature, 387:7–65, 1997.

[41] G. Pavesi, G. Mauri, and G. Pesole. An algorithm for finding signals of unknown
length in DNA sequences. Bioinformatics, 17(Suppl 1):S207–14, 2001.

[42] A.G. Pedersen, L.J. Jensen, S. Brunak, and H.H. Staerfeldt et al. A DNA structural
atlas for escherichia coli. J Mol Biol, 299:907–30, 2000.

[43] P.A. Pevzner. Computational Molecular Biology. An Algorithmic Approach. The
MIT Press, Cambridge, MA, 2000.

[44] P.A. Pevzner and S. Sze. Combinatorial approaches to finding subtle signals in DNA
sequences. In Proceedings of the 2000 Conference on Intelligent Systems for Molec-
ular Biology (ISMB00), La Jolla, CA, pages 269–278. AAAI Press, Menlo Park, CA,
2000.

[45] S. Roweis. EM algorithms for PCS and SPCA. In M.I. Jordan, M.S. Kearns, and
S.A. Solla, editors, Advances in Neural Information Processing Systems, volume
10, pages 626–632. MIT Press, Cambridge, MA, 1998.

[46] B. Scholkopf, A.J. Smola, and K.R. Mller. Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

[47] R. Sharan and R. Shamir. CLICK: a clustering algorithm with applications to gene
expression analysis. In Proceedings of the 2000 Conference on Intelligent Systems
for Molecular Biology (ISMB00), La Jolla, CA, pages 307–316. AAAI Press, Menlo
Park, CA, 2000.

[48] T. Sorlie, C.M. Perou, R. Tibshirani, and T. Aas et al. Gene expression patterns of
breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl
Acad Sci, 98:10869–74, 2001.

[49] P.T. Spellman, G. Sherlock, M.Q. Zhang, and V.R. Iyer et al. Comprehensive i-
dentification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by
microarray hybridization. Molecular Biology of the Cell, 9:3273–3297, 1998.

[50] P. Tamayo, D. Slonim, J. Mesirov, and Q. Zhu et al. Interpreting patterns of gene
expression with self-organizing maps: methods and application to hematopoietic dif-
ferentiation. Proc. Natl. Acad. Sci. USA, 96:2907–2912, 1999.

[51] S. Tavazoie, J.D. Hughes, M.J. Campbell, and R.J. Cho et al. Systematic determina-
tion of genetic network architecture. Nat Genet, 22:281–5, 1999.

[52] R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu. Diagnosis of multiple cancer
types by shrunken centroids of gene expression. Proc Natl Acad Sci, 99:6567–72, 2002.

[53] N. Tishby and N. Slonim. Data clustering by Markovian relaxation and the infor-
mation bottleneck method. In T. Leen, T. Dietterich, and V. Tresp, editors, Neural
Information Processing Systems (NIPS 2000), volume 13. MIT Press, Cambridge,
MA, 2001.

[54] D.M. Titterington, A.F.M. Smith, and U.E. Makov. Statistical Analysis of Finite
Mixture Distributions. John Wiley & Sons, New York, 1985.

[55] O.G. Troyanskaya, M.E. Garber, P.O. Brown, and D. Botstein et al. Nonparametric
methods for identifying differentially expressed genes in microarray data. Bioinfor-
matics, 18:1454–61, 2002.

[56] V.G. Tusher, R. Tibshirani, and G. Chu. Significance analysis of microarrays applied
to the ionizing radiation response. Proc Natl Acad Sci, 98:5116–21, 2001.

[57] J. van Helden, B. Andre, and J. Collado-Vides. Extracting regulatory sites from the
upstream region of yeast genes by computational analysis of oligonucleotide frequen-

25-24 References

cies. J. Mol. Biol., 281:827–842, 1998.
[58] J. van Helden, M. del Olmo, and J.E. Perez-Ortin. Statistical analysis of yeast genomic

downstream sequences reveals putative polyadenylation signals. Nucleic Acids Res.,
28:1000–1010, 2000.

[59] E.P. van Someren, L.F.A. Wessels, and M.J.T. Reinders. Linear modeling of genetic
networks from experimental data. In Proceedings of the 2000 Conference on Intelli-
gent Systems for Molecular Biology (ISMB00), La Jolla, CA, pages 355–366. AAAI
Press, Menlo Park, CA, 2000.

[60] J. Vilo and A. Brazma. Mining for putative regulatory elements in the yeast genome
using gene expression data. In Proceedings of the 2000 Conference on Intelligen-
t Systems for Molecular Biology (ISMB00), La Jolla, CA, pages 384–394. AAAI
Press, Menlo Park, CA, 2000.

[61] A. von Heydebreck, W. Huber, A. Poustka, and M. Vingron. Identifying splits with
clear separation: a new class discovery method for gene expression data. Bioinfor-
matics, 17(Suppl 1):S107–14, 2001.

[62] E. Wingender, X. Chen, E. Fricke, and R. Geffers et al. The TRANSFAC system on
gene expression regulation. Nucleic Acids Res., 29:281–284, 2001.

[63] A.L. Wu and W.S. Moye-Rowley. GSH1 which encodes gamma-glutamylcysteine syn-
thetase is a target gene for YAP-1 transcriptional regulation. Mol. Cell. Biol., 14:5832–
5839, 1994.

[64] E.P. Xing, M.I. Jordan, and R.M. Karp. Feature selection for high-dimensional genomic
microarray data. In Proc. 18th International Conf. on Machine Learning, pages
601–608. Morgan Kaufmann, San Francisco, CA, 2001.

[65] C.H. Yeang, S. Ramaswamy, P. Tamayo, and S. Mukherjee et al. Molecular classifica-
tion of multiple tumor types. Bioinformatics, 17(Suppl 1):S316–22, 2001.

[66] A. Zien, R. Kuffner, R. Zimmer, and T. Lengauer. Analysis of gene expression data
with pathway scores. In Proceedings of the 2000 Conference on Intelligent Systems
for Molecular Biology (ISMB00), La Jolla, CA, pages 407–417. AAAI Press, Menlo
Park, CA, 2000.

26
Biclustering Algorithms: A Survey

Amos Tanay
Tel-Aviv University

Roded Sharan
Tel-Aviv University

Ron Shamir
Tel-Aviv University

26.1 Introduction . 26-1
26.2 Cheng and Church’s Algorithm . 26-3
26.3 Coupled Two-way Clustering . 26-5
26.4 The Iterative Signature Algorithm. 26-6
26.5 The SAMBA Algorithm . 26-8

Statistical Data Modeling • Finding Heavy Subgraphs
• The Full Algorithm

26.6 Spectral Biclustering . 26-10
26.7 Plaid Models . 26-12

Estimating Parameters • Initialization and Stopping
Rule

26.8 Discussion . 26-15
Model and score • Algorithmic approaches • Quo
vadis biclustering?

26.1 Introduction

Gene expression profiling has been established over the last decade as a standard technique
for obtaining a molecular fingerprint of tissues or cells in different biological conditions
[18, 7]. Based on the availability of whole genome sequences, the technology of DNA chips
(or microarrays) allows the measurement of mRNA levels simultaneously for thousands
of genes. The set (or vector) of measured gene expression levels under one condition (or
sample) are called the profile of that condition. Gene expression profiles are powerful
sources of information and have revolutionized the way we study and understand function
in biological systems [1].

Given a set of gene expression profiles, organized together as a gene expression matrix with
rows corresponding to genes and columns corresponding to conditions, a common analysis
goal is to group conditions and genes into subsets that convey biological significance. In its
most common form, this task translates to the computational problem known as clustering.
Formally, given a set of elements with a vector of attributes for each element, clustering aims
to partition the elements into (possibly hierarchically ordered) disjoint sets, called clusters,
so that within each set the attribute vectors are similar, while vectors of disjoint clusters are
dissimilar. For example, when analyzing a gene expression matrix we may apply clustering
to the genes (as elements) given the matrix rows (as attributes) or cluster the conditions
(as elements) given the matrix columns (as attributes). For reviews on clustering see an
earlier chapter in this book. Analysis via clustering makes several a priori assumptions
that may not be perfectly adequate in all circumstances. First, clustering can be applied to
either genes or samples, implicitly directing the analysis to a particular aspect of the system

26-1

26-2 Handbook of Computational Molecular Biology

genes

conditions conditionsconditions

condition clusters biclustersgene clusters

FIGURE 26.1: Clustering and biclustering of a gene expression matrix. Clusters correspond
to disjoint strips in the matrix. A gene cluster must contain all columns, and a
condition cluster must contain all rows. Biclusters correspond to arbitrary subsets
of rows and columns, shown here as rectangles. Note that since gene (condition)
clusters are disjoint, the rows (columns) of the matrix can be reordered so that
each cluster is a contiguous strip. Similar reordering of rows and columns that
shows all the biclusters as rectangles is usually impossible.

under study (e.g., groups of patients or groups of co-regulated genes). Second, clustering
algorithms usually seek a disjoint cover of the set of elements, requiring that no gene or
sample belongs to more than one cluster.

The notion of a bicluster gives rise to a more flexible computational framework. A
bicluster is defined as a submatrix spanned by a set of genes and a set of samples (compare
Figure 26.1). Alternatively, a bicluster may be defined as the corresponding gene and sample
subsets. Given a gene expression matrix, we can characterize the biological phenomena it
embodies by a collection of biclusters, each representing a different type of joint behavior of
a set of genes in a corresponding set of samples. Note that there are no a-priori constraints
on the organization of biclusters and in particular, genes or samples can be part of more
than one bicluster or of no bicluster. The lack of structural constrains on biclustering
solutions allows greater freedom but is consequently more vulnerable to overfitting. Hence,
biclustering algorithms must guarantee that the output biclusters are meaningful. This
is usually done by an accompanying statistical model or a heuristic scoring method that
define which of the many possible submatrices represent a significant biological behavior.
The biclustering problem is to find a set of significant biclusters in a matrix.

In clinical applications, gene expression analysis is done on tissues taken from patients
with a medical condition. Using such assays, biologists have identified molecular fingerprints
that can help in the classification and diagnosis of the patient status and guide treatment
protocols [2, 16]. In these studies, the focus is primarily on identifying profiles of expression
over a subset of the genes that can be associated with clinical conditions and treatment
outcomes, where ideally, the set of samples is equal in all but the subtype or the stage
of the disease. However, a patient may be a part of more than one clinical group, e.g.,
may suffer from syndrome A, have a genetic background B and be exposed to environment
C. Biclustering analysis is thus highly appropriate for identifying and distinguishing the
biological factors affecting the patients along with the corresponding gene subsets.

In functional genomics applications, the goal is to understand the functions of each of the
genes operating in a biological system. The rationale is that genes with similar expression

Biclustering Algorithms: A Survey 26-3

patterns are likely to be regulated by the same factors and therefore may share function.
By collecting expression profiles from many different biological conditions and identifying
joint patterns of gene expression among them, researchers have characterized transcriptional
programs and assigned putative function to thousands of genes [23, 11, 8]. Since genes have
multiple functions, and since transcriptional programs are often based on combinatorial
regulation, biclustering is highly appropriate for these applications as well.

An important aspect of gene expression data is their high noise levels. DNA chips provide
only rough approximation of expression levels, and are subject to errors of up to two-fold
the measured value [1]. Any analysis method, and biclustering algorithms in particular,
should therefore be robust enough to cope with significant levels of noise.

Below we survey some of the biclustering models and algorithms that were developed for
gene expression analysis. Our coverage is not exhaustive, and is biased toward what we
believe are the more practical methods. We attempt to cover at least one method from
each class of algorithms under development. We do not review methods that are based on
extended biological models (e.g., inferring regulation or integrating data types [19, 24]), but
focus on algorithms for biclustering per-se. Throughout, we assume that we are given a set
of genes V a set of conditions U , and a gene expression matrix E = (evu) where evu is the
expression level of gene v in sample u. We assume that the matrix is normalized, though
some of the algorithms below perform additional normalization. A bicluster B = (U ′, V ′)
is defined by a subset of genes V ′ ⊂ V and a subset of conditions (or samples) U ′ ⊂ U .
Different algorithmic approaches to the biclustering problem use different measures for
the quality of a given biclustering solution. We therefore define the goal function of each
algorithm as part of its description.

26.2 Cheng and Church’s Algorithm

Cheng and Church were the first to introduce biclustering to gene expression analysis [6].
Their algorithmic framework represents the biclustering problem as an optimization prob-
lem, defining a score for each candidate bicluster and developing heuristics to solve the
constrained optimization problem defined by this score function. In short, the constraints
force the uniformity of the matrix, the procedure gives preference to larger submatrices and
the heuristic is a relaxed greedy algorithm.

Cheng and Church implicitly assume that (gene, condition) pairs in a “good” bicluster
have a constant expression level, plus possibly additive row and column specific effects.
After removing row, column and submatrix averages, the residual level should be as small
as possible. More formally, given the gene expression matrix E, a subset of genes I and

a subset of conditions J , we define eIj =
∑

i∈I
eij

|I| (row subset average) eiJ =
∑

j∈J
eij

|J|

(column subset average) and eIJ =
∑

i∈I,j∈J
eij

|I||J| (submatrix average). We define the residue
score of an element eij in a submatrix EIJ as RSIJ(i, j) = eij − eIj − eiJ + eIJ and

the mean square residue score of the entire submatrix as H(I, J) =
∑

i∈I,j∈J

RS2
ij

|I||J| . The
intuition behind this definition can be understood via two examples: a completely uniform
matrix will have score zero. More generally, any submatrix in which all entries have the
form eij = bi + cj would also have score zero. Given the score definition, the maximum
bicluster problem seeks a bicluster of maximum size among all biclusters with score not
exceeding a threshold δ. The size can be defined in several ways, for example as the number
of cells in the matrix (|I||J |) or the number of rows plus number of columns (|I|+ |J |).

The maximum bicluster problem is NP-hard if we force all solutions to be square matrices

26-4 Handbook of Computational Molecular Biology

Cheng-Church(U , V , E, δ):
U : conditions. V : genes.
E : Gene expression matrix.
δ: maximal mean square residue score.

Define eIj =

∑
i∈I

eij

|I|

Define eiJ =

∑
j∈J

eij

|J|

Define eIJ =

∑
i∈I,j∈J

eij

|I||J|
Define RSIJ(i, j) = eij − eIj − eiJ + eIJ

Define H(I, J) =
∑

i∈I,j∈J

RS2
ij

|I||J| .
Initialize a bicluster (I, J) with I = U, J = V .
Deletion phase:

While (H(I, J) > δ) do
Compute for i ∈ I , d(i) = 1

|J|
∑

j∈J
RSI,J(i, j).

Compute for j ∈ J , e(j) = 1
|I|
∑

i∈I
RSI,J(i, j).

If maxi∈Id(i) > maxj∈Je(j) assign I = I \ {argmaxi(d(i))}.
Else J = J \ {argmaxj(e(j))}

Addition phase:
assign I ′ = I, J ′ = J
While (H(I ′, J ′) < δ) do

Assign I = I ′, J = J ′

Compute for i ∈ U \ I , d(i) = 1
|J|

∑
j∈J

RSI,J(i, j).

Compute for j ∈ V \ J , e(j) = 1
|I|
∑

i∈I
RSI,J(i, j).

If maxi∈Id(i) < maxj∈Je(j) assign I ′ = I ∪ {argmaxi(d(i))}.
Else J ′ = J ∪ {argmaxj(e(j))}

Report I, J

FIGURE 26.2: The Cheng-Church algorithm for finding a single bicluster.

(|I| = |J |) or if we use the total number of submatrix cells as our optimization goal (Re-
ductions are from Maximum Balanced Biclique or Maximum Edge Biclique). Cheng and
Church suggested a greedy heuristic to rapidly converge to a locally maximal submatrix
with score smaller than the threshold. The algorithm (presented in Figure 26.2) can be
viewed as a local search algorithm starting from the full matrix. Given the threshold pa-
rameter δ, the algorithm runs in two phases. In the first phase, the algorithm removes rows
and columns from the full matrix. At each step, where the current submatrix has row set I
and column set J , the algorithm examines the set of possible moves. For rows it calculates
d(i) = 1

|J|
∑

j∈J RSI,J(i, j) and for columns it calculates e(j) = 1
|I|

∑
i∈I RSI,J(i, j). It

then selects the highest scoring row or column and removes it from the current submatrix,
as long as H(I, J) > δ. The idea is that rows/columns with large contribution to the score
can be removed with guaranteed improvement (decrease) in the total mean square residue
score. A possible variation of this heuristic removes at each step all rows/columns with a
contribution to the residue score that is higher than some threshold.

In the second phase of the algorithm, rows and columns are being added, using the
same scoring scheme, but this time looking for the lowest square residues d(i), e(j) at each
move, and terminating where none of the possible moves increases the matrix size without
crossing the threshold δ. Upon convergence, the algorithm outputs a submatrix with low
mean residue and locally maximal size.

Biclustering Algorithms: A Survey 26-5

TWOWAY(U , V , E, ALG):
U : conditions. V : genes.
E : Gene expression matrix.
ALG : one-dimensional clustering algorithm. Inputs a matrix and outputs

significant (stable) clusters of columns or rows.
Initialize a hash table weight
Initialize U1 = {U}, V1 = {V }
Initialize U = ∅, V = ∅
Initialize the sets hierarchy table HV storing for gene clusters the condition

subsets used to generate them.
Initialize the sets hierarchy table HU storing for condition clusters the gene

subsets used to generate them.
While (U1
= ∅ or V1
= ∅) do

Initialize empty sets U2,V2.
For all (U ′, V ′) ∈ (U1 × V1) ∪ (U1 × V) ∪ (U × V1) do

Run ALG(EU′V ′) to cluster the genes in V ′:
Add the stable gene sets to V2

Set HV [V ′′] = U ′ for all new clusters V ′′.
Run ALG(EU′V ′) to cluster the conditions in U ′:

Add the stable condition sets to U2

Set HU [U ′′] = V ′ for all new clusters U ′′.
Assign U = U ∪ U1, V = V ∪ V1

Assign U1 = U2, V1 = V2

Report U ,V and their hierarchies HU , HV .

FIGURE 26.3: Coupled two-way clustering.

To discover more than one bicluster, Cheng and Church suggested repeated application of
the biclustering algorithm on modified matrices. The modification includes randomization
of the values in the cells of the previously discovered biclusters, preventing the correlative
signal in them to be beneficial for any other bicluster in the matrix. This has the obvious
effect of precluding the identification of biclusters with significant overlaps.

An application of the algorithm to yeast and human data is described in [6]. The software
is available at (http://arep.med.harvard.edu/biclustering).

26.3 Coupled Two-way Clustering

Coupled two-way clustering (CTWC), introduced by Getz, Levine and Domany [9], defines
a generic scheme for transforming a one-dimensional clustering algorithm into a biclustering
algorithm. The algorithm relies on having a one-dimensional (standard) clustering algorith-
m that can discover significant (termed stable in [9]) clusters. Given such an algorithm, the
coupled two-way clustering procedure will recursively apply the one-dimensional algorithm
to submatrices, aiming to find subsets of genes giving rise to significant clusters of conditions
and subsets of conditions giving rise to significant gene clusters. The submatrices defined
by such pairings are called stable submatrices and correspond to biclusters. The algorithm,
which is shown in Figure 26.3, operates on a set of gene subsets V and a set of condition
subsets U . Initially V = {V } and U = {U}. The algorithm then iteratively selects a gene
subset V ′ ∈ V and a condition subset U ′ ∈ U and applies the one dimensional clustering
algorithm twice, to cluster V ′ and U ′ on the submatrix U ′ × V ′. If stable clusters are

26-6 Handbook of Computational Molecular Biology

detected, their gene/condition subsets are added to the respective sets V , U . The process
is repeated until no new stable clusters can be found. The implementation makes sure that
each pair of subsets is not encountered more than once.

Note that the procedure avoids the consideration of all rows and column subsets, by
starting from an established row subset when forming subclusters of established column
subsets, and vice versa. The success of the coupled two-way clustering strategy depends
on the performance of the given one-dimensional clustering algorithm. We note that many
popular clustering algorithms (e.g. K-means, Hierarchical, SOM) cannot be plugged “as is”
into the coupled two-way machinery, as they do not readily distinguish significant clusters
from non-significant clusters or make a-priori assumption on the number of clusters. Getz
et al. have reported good results using the SPC hierarchical clustering algorithm [10]. The
results of the algorithm can be viewed in a hierarchical form: each stable gene (condition)
cluster is generated given a condition (resp. gene) subset. This hierarchical relation is
important when trying to understand the context of joint genes or conditions behavior. For
example, when analyzing clinical data, Getz et al. have focused on gene subsets giving rise
to stable tissue clusters that are correlative to known clinical attributes. Such gene sets
may have an important biological role in the disease under study.

The CTWC algorithm has been applied to a variety of clinical data sets (see, e.g., [17]),
the software can be downloaded via the site (http://ctwc.weizmann.ac.il).

26.4 The Iterative Signature Algorithm

In the Iterative Signature Algorithm (ISA) [12, 5] the notion of a significant bicluster is
defined intrinsically on the bicluster genes and samples — the samples of a bicluster uniquely
define the genes and vice versa. The intuition is that the genes in a bicluster are co-regulated
and, thus, for each sample the average gene expression over all the bicluster’s genes should
be surprising (unusually high or low) and for each gene the average gene expression over all
biclusters samples should be surprising. This intuition is formalized using a simple linear
model for gene expression assuming normally distributed expression levels for each gene or
sample as shown below.

The algorithm, presented in Figure 26.4, uses two normalized copies of the original gene
expression matrix. The matrix EG has rows normalized to mean 0 and variance 1 and the
matrix EC has columns normalized similarly. We denote by eG

V ′u the mean expression of
genes from V ′ in the sample u and by eC

vU ′ the mean expression of the gene v in samples
from U ′. A bicluster B = (U ′, V ′) is required to have:

U ′ = {u ∈ U : |eG
V ′u| > TCσC}, V ′ = {v ∈ V : |eC

vU ′ | > TGσG} (26.1)

Here TG is the threshold parameter and σG is the standard deviation of the means eC
vU ′ where

v ranges over all possible genes and U ′ is fixed. Similarly, TC , σC are the corresponding
parameters for the column set V ′. The idea is that if the genes in V ′ are up- or down-
regulated in the conditions U ′ then their average expression should be significantly far (i.e.,
TG standard deviations) from its expected value on random matrices (which is 0 since the
matrix is standardized). A similar argument holds for the conditions in U ′. The standard
deviations can be predicted as 1√

|U ′| ,
1√
|V ′| being a linear sum of |U ′| (or |V ′|) independent

standard random variables. Alternatively (and in fact, more practically), the standard
deviations can be estimated directly from the data, correcting for possible biases in the
statistics of the specific condition and gene sets used. In other words, in a bicluster, the
z-score of each gene, measured with respect to the bicluster’s samples, and the z-score of
each sample, measured with respect to the bicluster’s samples, should exceed a threshold.

Biclustering Algorithms: A Survey 26-7

ISA(U , V , E, Vin, TG, TC , m, ε):
U : conditions. V : genes.
E : Gene expression matrix.
Vin : Initial gene set.
TG, TC : gene and condition z-score thresholds.
m, ε: stopping criteria.
Construct a column standardized matrix EC .
Construct a row standardized matrix EG.
Initialize counters n = 0, n′ = 0.
Initialize the current genes set V ′ = Vin

Initialize an empty condition set U ′.
While (n− n′ < m) do

Compute eG
V ′u = 1

|V ′|
∑

v∈V ′ eG
vu for u ∈ U .

U ′ = {u ∈ U : |eG
V ′u| > TC√

|V ′|}
Compute eC

vU′ = 1
|U′|

∑
u∈U′ eC

vu for v ∈ V .

V ′′ = V ′

V ′ = {v ∈ V : |eC
vU′ | > TG√

U′ }
if (|V ′\V ′′|

|V ′∪V ′′| < ε) then n′ = n

n = n + 1
Report U ′, V ′

FIGURE 26.4: The ISA algorithm for finding a single bicluster.

As we shall see below, ISA will not discover biclusters for which the conditions (26.1) hold
strictly, but will use a relaxed version.

The algorithm starts from an arbitrary set of genes V0 = Vin. The set may be randomly
generated or selected based on some prior knowledge. The algorithm then repeatedly applies
the update equations:

Ui = {u ∈ U : |eG
Viu| > TCσC}, Vi+1 = {v ∈ V : |eC

vUi
| > TGσG} (26.2)

The iterations are terminated at step n satisfying:

|Vn−i \ Vn−i−1|
|Vn−i ∪ Vn−i−1|

< ε (26.3)

for all i smaller than some m. The ISA thus converges to an approximated fixed point that
is considered to be a bicluster. The actual fixed point depends on both the initial set Vin

and the threshold parameters TC , TG. To generate a representative set of biclusters, it is
possible to run ISA with many different initial conditions, including known sets of associated
genes or random sets, and to vary the thresholds. After eliminating redundancies (fixed
points that were encountered several times), the set of fixed points can be analyzed as a set
of biclusters.

The ISA algorithm can be generalized by assigning weights for each gene/sample such
that genes/samples with a significant behavior (higher z-score) will have larger weights. In
this case, the simple means used in (26.1) and (26.2) are replaced by weighted means and
the algorithm can be represented using matrix operations.

The signature algorithm has been applied for finding cis-regulatory modules in yeast
([12]) and for detecting conserved transcriptional modules across several species ([4]). For
software see (http://barkai-serv.weizmann.ac.il/GroupPage/).

26-8 Handbook of Computational Molecular Biology

26.5 The SAMBA Algorithm

The SAMBA algorithm (Statistical-Algorithmic Method for Bicluster Analysis) [24, 20] us-
es probabilistic modeling of the data and graph theoretic techniques to identify subsets of
genes that jointly respond across a subset of conditions, where a gene is termed responding
in some condition if its expression level changes significantly at that condition with respect
to its normal level. Within the SAMBA framework, the expression data are modeled as
a bipartite graph whose two parts correspond to conditions and genes, respectively, with
edges for significant expression changes. The vertex pairs in the graph are assigned weights
according to a probabilistic model, so that heavy subgraphs correspond to biclusters with
high likelihood. Discovering the most significant biclusters in the data reduces under this
weighting scheme to finding the heaviest subgraphs in the model bipartite graph. SAMBA
employs a practical heuristic to search for heavy subgraphs. The search algorithm is mo-
tivated by a combinatorial algorithm for finding heavy bicliques that is exponential in the
maximum gene degree in the graph.

In the following we describe the probabilistic model used by SAMBA and the theoretical
algorithm on which the search method is based. Finally, the full SAMBA algorithm is
presented.

Applications of SAMBA for gene expression data are described in [25]. SAMBA was also
applied to highly heterogeneous data, including expression, phenotype growth sensitivity,
protein-protein interaction and ChIP-chip data [24]. The software is available as part of the
Expander package [20, 21].

26.5.1 Statistical Data Modeling

The SAMBA algorithm is based on representing the input expression data as a bipartite
graph G = (U, V,E). In this graph, U is the set of conditions, V is the set of genes,
and (u, v) ∈ E iff v responds in condition u, that is, if the expression level of v changes
significantly in u. A bicluster corresponds to a subgraph H = (U ′, V ′, E′) of G, and
represents a subset V ′ of genes that are co-regulated under a subset of conditions U ′. The
weight of a subgraph (or bicluster) is the sum of the weights of gene-condition pairs in it,
including edges and non-edges.

Coupled with the graph representation is a likelihood ratio model for the data. Let
H = (U ′, V ′, E′) be a subgraph of G and denote E′ = (U ′ × V ′) \ E′. For a vertex
w ∈ U ′ ∪ V ′ let dw denote its degree in G. The null model assumes that the occurrence of
each edge (u, v) is an independent Bernoulli variable with parameter pu,v. The probability
pu,v is the fraction of bipartite graphs with degree sequence identical to G that contain the
edge (u, v). In practice, one estimates pu,v using a Monte-Carlo process. This model tries
to capture the characteristics of the different genes and conditions in the data.

The alternative model assumes that each edge of a bicluster occurs with constant, high
probability pc. This model reflects the belief that biclusters represent approximately uniform
relations between their elements. The log likelihood ratio for H is therefore:

logL(H) =
∑

(u,v)∈E′
log

pc

pu,v
+

∑

(u,v)∈E′

log
1− pc

1− pu,v

Setting the weight of each edge (u, v) to log pc

pu,v
> 0 and the weight of each non-edge (u, v)

to log 1−pc

1−pu,v
< 0, one concludes that the score of H is simply its weight.

Biclustering Algorithms: A Survey 26-9

MaxBoundBiClique(U , V , E, d):
Initialize a hash table weight; weightbest ← 0
For all v ∈ V do

For all S ⊆ N(v) do
weight[S]←weight[S]+

max{0, w(S, {v})}
If (weight[S] > weightbest)
Ubest ← S
weightbest ← weight[S]

Compute Vbest = ∩u∈Ubest
N(u)

Output (Ubest, Vbest)

FIGURE 26.5: An algorithm for the maximum bounded biclique problem.

26.5.2 Finding Heavy Subgraphs

Under the above additive scoring scheme, discovering the most significant biclusters in the
data reduces under this scoring scheme to finding the heaviest subgraphs in the bipartite
graph. Since the latter problem is NP-hard, SAMBA employs a heuristic search for such
subgraphs. The search uses as seeds heavy bicliques and we now present the underlying
algorithm to find good seeds. In the rest of the section it will be convenient to assume that
the degree of every gene is bounded by d.

Let G = (U, V,E) be a bipartite graph with n = |V | genes. Let w : U × V → R be a
weight function. For a pair of subsets U ′ ⊆ U, V ′ ⊆ V we denote by w(U ′, V ′) the weight of
the subgraph induced on U ′ ∪V ′, i.e., w(U ′, V ′) =

∑
u∈U ′,v∈V ′ w((u, v)). The neighborhood

of a vertex v, denoted N(v), is the set of vertices adjacent to v in G.
The Maximum Bounded Biclique problem calls for identifying a maximum weight com-

plete subgraph of a given weighted bipartite graph G, such that the vertices on one side of
G have degrees bounded by d. This problem can be solved in O(n2d) time (and space) as
we show next.

Observe that a maximum bounded biclique H∗ = (U∗, V ∗, E∗) in G must have |U∗| ≤ d.
Figure 26.5 describes a hash-table based algorithm that for each vertex v ∈ V scans all
O(2d) subsets of its neighbors, thereby identifying the heaviest biclique. Each hash entry
corresponds to a subset of conditions and records the total weight of edges from adjacent
gene vertices. The algorithm can be shown to spend O(n2d) time on the hashing and finding
Ubest. Computing Vbest can be done in O(nd) time, so the total running time is O(n2d).

Note that the algorithm can be adapted to give the k condition subsets that induce
solutions of highest weight in O(n2d log k) time using a priority queue data structure.

26.5.3 The Full Algorithm

Having described the two main components of SAMBA, we are now ready to present the full
algorithm, which is given in Figure 26.6. SAMBA proceeds in two phases. First, the model
bipartite graph is formed and the weights of vertex pairs are computed. Second, several
heavy subgraphs are sought around each vertex of the graph. This is done by starting with
good seeds around the vertex and expanding them using local search. The seeds are found
using the hashing technique of the algorithm in Figure 26.5. To save on time and space
the algorithm ignores genes with degree exceeding some threshold D, and hash for each

26-10 Handbook of Computational Molecular Biology

SAMBA(U , V , E, w, d, N1, N2, k):
U : conditions. V : genes.
E : graph edges. w : edge/non-edge weights.
N1, N2 : condition set hashed set size limits. k : max biclusters per gene/condition.
Initialize a hash table weight
For all v ∈ V with |N(v)| ≤ d do

For all S ⊆ N(v) with N1 ≤ |S| ≤ N2 do
weight[S]← weight[S] + w(S, {v})

For each v ∈ V set best[v][1 . . . k] to the k heaviest sets S such that v ∈ S
For each v ∈ V and each of the k sets S = best[v][i]

V ′ ← ∩u∈SN(u).
B ← S ∪ V ′.
Do {

a = argmaxx∈V ∪U(w(B ∪ x))
b = argmaxx∈B(w(B \ x))
If w(B ∪ a) > w(B \ b) then B = B ∪ a else B = B \ b

} while improving
Store B.

Post process to filter overlapping biclusters.

FIGURE 26.6: The SAMBA biclustering algorithm.

gene only subsets of its neighbors of size ranging from N1 to N2. The local improvement
procedure iteratively applies the best modification to the current bicluster (addition or
deletion of a single vertex) until no score improvement is possible. The greedy process is
restricted to search around the biclique without performing changes that would eliminate
vertices in it or make vertices in it redundant (having a total negative contribution to the
bicluster score). To avoid similar biclusters whose vertex sets differ only slightly, a final
step greedily filters similar biclusters with more than L% overlap.

26.6 Spectral Biclustering

Spectral biclustering approaches use techniques from linear algebra to identify bicluster
structures in the input data. Spectral biclustering approaches use techniques from linear
algebra to identify bicluster structures in the input data. Here we review the biclustering
technique presented in Kluger et al. [13]. In this model, it is assumed that the expression
matrix has a hidden checkerboard-like structure that we try to identify using eigenvector
computations. The structure assumption is argued to hold for clinical data, where tissues
cluster to cancer types and genes cluster to groups, each distinguishing a particular tissue
type from the other types.

To describe the algorithm, suppose at first that the matrix E has a checkerboard-like
structure (see Figure 26.7). Obviously we could discover it directly, but we could also infer
it using a technique from linear algebra that will be useful in case the structure is hidden
due to row and column shuffling. The technique is based on a relation between the block
structure of E and the block structure of pairs of eigenvectors for EET and ETE, which
we describe next. First, observe that the eigenvalues of EET and ETE are the same. Now,
consider a vector x that is stepwise, i.e., piecewise constant, and whose block structure
matches that of the rows of E. Applying E to x we get a stepwise vector y. If we now apply
ET to y we get a vector with the same block structure as x. The same relation is observed

Biclustering Algorithms: A Survey 26-11

Ex =

8 8 7 7 3 3
8 8 7 7 3 3
6 6 4 4 5 5
6 6 4 4 5 5

a
a
b
b
c
c

=

d
d
e
e

 = y,ET y =

8 8 6 6
8 8 6 6
7 7 4 4
7 7 4 4
3 3 5 5
3 3 5 5

d
d
e
e

 =

a′

a′

b′

b′

c′

c′

= x′

FIGURE 26.7: An example of a checkerboard-like matrix E and the eigenvectors of EET and
ET E. The vector x satisfies the relation ET Ex = ET y = x′ = λx. Similarly, y
satisfies the equation EET y = Eλx = λy.

when applying first ET and then E (see Figure 26.7). Hence, vectors of the stepwise pattern
of x form a subspace that is closed under ETE. This subspace is spanned by eigenvectors
of this matrix. Similarly, eigenvectors of EET span the subspace formed by vectors of the
form of y. More importantly, taking now x to be an eigenvector of ETE with an eigenvalue
λ, we observe that y = Ex is an eigenvector of EET with the same eigenvalue.

In conclusion, the checkerboard-like structure of E is reflected in the stepwise structures
of pairs of EET and ETE eigenvectors that correspond to the same eigenvalue. One can
find these eigenvector pairs by computing a singular value decomposition of E. Singular
value decomposition is a standard algebraic technique (cf. [15]) that expresses a real matrix
E as a product E = A∆BT , where ∆ is a diagonal matrix and A and B are orthonormal
matrices. The columns of A and B are the eigenvectors of EET and ETE, respectively. The
entries of ∆ are square roots of the corresponding eigenvalues, sorted in a non-increasing
order. Hence the eigenvector pairs are obtained by taking for each i the ith columns of A
and B, and the corresponding eigenvalue is the ∆2

ii.
For any eigenvector pair, one can check whether each of the vectors can be approximated

using a piecewise constant vector. Kluger et al. use a one-dimensional k-means algorithm
to test this fit. The block structures of the eigenvectors indicate the block structures of the
rows and columns of E.

In the general case, the rows and columns ofE are ordered arbitrarily, and the checkerboard-
like structure, if E has one, is hidden. To reveal such structure one computes the singular
value decomposition of E and analyzes the eigenvectors of EET and ETE. A hidden check-
board structure will manifest itself by the existence of a pair of eigenvectors (one for each
matrix) with the same eigenvalue, that are approximately piecewise constant. One can
determine if this is the case by sorting the vectors or by clustering their values, as done
in [13].

Kluger et al. further discuss the problem of normalizing the gene expression matrix to
reveal checkerboard structures that are obscured, e.g., due to differences in the mean expres-
sion levels of genes or conditions. The assumed model for the data is a multiplicative model,
in which the expression level of a gene i in a condition j is its base level times a gene term,
which corresponds to the gene’s tendency of expression under different conditions, times a
condition term, that represents the tendency of genes to be expressed under condition j.
The normalization is done using two normalizing matrices: R, a diagonal matrix with the
mean of row i at the ith position; and C, a diagonal matrix with the mean of column j at
the jth position. The block structure of E is now reflected in the stepwise structure of pairs
of eigenvectors with the same eigenvalue of the normalized matrices M = R−1EC−1ET and
MT . These eigenvector pairs can be deduced by computing a singular value decomposition
of R−1/2EC−1/2. Due to the normalization, the first eigenvector pair (corresponding to an

26-12 Handbook of Computational Molecular Biology

Spectral(U , V , E):
U : conditions. V : genes.
En×m : Gene expression matrix.

Compute R = diag(E · 1m) and C = diag(1T
n ·E).

Compute a singular value decomposition of R−1/2EC−1/2.
Discard the pair of eigenvectors corresponding to the largest eigenvalue.

For each pair of eigenvectors u, v of R−1EC−1ET and C−1ET R−1E with the same eigenvalue do:
Apply k-means to check the fit of u and v to stepwise vectors.

Report the block structure of the p u, v with the best stepwise fit.

FIGURE 26.8: The spectral biclustering algorithm.

eigenvalue of 1) is constant and can be discarded. A summary of the biclustering algorithm
is given in Figure 26.8.

The spectral algorithm was applied to human cancer data and its results were used for
classification of tumor type and identification of marker genes [13].

26.7 Plaid Models

The Plaid model [14] is a statistically inspired modeling approach developed by Lazzeroni
and Owen for the analysis of gene expression data. The basic idea is to represent the
genes-conditions matrix as a superposition of layers, corresponding to biclusters in our
terminology, where each layer is a subset of rows and columns on which a particular set
of values takes place. Different values in the expression matrix are thought of as different
colors, as in (false colored) “heat maps” of chips. This metaphor also leads to referring to
“color intensity” in lieu of “expression level”. The horizontal and vertical color lines in the
matrix corresponding to a layer give the method its name.

The model assumes that the level of matrix entries is the sum of a uniform background
(“grey”) and of k biclusters each coloring a particular submatrix in a certain way. More
precisely, the expression matrix is represented as

Aij = µ0 +
K∑

k=1

θijkρikκjk

where µ0 is a general matrix background color, and θijk = µk +αik +βjk where µk describes
the added background color in bicluster k, α and β are row and column specific additive
constants in bicluster k. ρik ∈ {0, 1} is a gene-bicluster membership indicator variable, i.e.,
ρik = 1 iff gene i belongs to the gene set of the k-th bicluster. Similarly, κjk ∈ {0, 1} is a
sample-bicluster membership indicator variable. Hence, similar to Cheng and Church [6],
a bicluster is assumed to be the sum of bicluster background level plus row-specific and
column-specific constants.

When the biclusters form a k-partition of the genes and a corresponding k-partition of
the samples, the disjointness constraints that biclusters cannot overlap can be formulated
as

∑
k κjk ≤ 1 for all j,

∑
k ρik ≤ 1 for all i. Replacing ≤ by = would require assignment of

each row or column to exactly one bicluster. Generalizing to allow bicluster overlap simply
means removing the disjointness constraints.

The general biclustering problem is now formulated as finding parameter values so that
the resulting matrix would fit the original data as much as possible. Formally, the problem

Biclustering Algorithms: A Survey 26-13

is minimizing
∑

ij

[Aij −
K∑

k=0

θijkρikκjk]2 (26.4)

where µ0 = θij0. If αik or βjk are used, then the constraints
∑

i ρikαik = 0 or
∑

j κjkβjk = 0
are added to reduce the number of parameters. Note that the number of parameters is at
most k + 1 + kn+ km for the θ variables, and kn+ km for the κ and ρ variables. This is
substantially smaller than the nm variables in the original data, if k << max(n,m).

26.7.1 Estimating Parameters

Lazzeroni and Owen propose to solve problem (26.4) using an iterative heuristic. New layers
are added to the model one at a time. Suppose we have fixed the first K − 1 layers and we
are seeking for the K-th layer to minimize the sum of squared errors. Let

Z
(K−1)
ij = Aij −

K−1∑

k=0

θijkρijκjk (26.5)

be the residual matrix after removing the effect of the first K − 1 layers. In iteration K we
wish to solve the following quadratic integer program.

min Q(K) = 1
2

∑n
i=1

∑p
j=1(Z

(K−1)
ij − θijKρiKκjK)2

s.t.
∑

i ρ
2
iKαiK = 0,

∑
j κ

2
jKβjK = 0

ρiK ∈ {0, 1}, κjK ∈ {0, 1}
(26.6)

The proposed heuristic method to solve (26.6) is again iterative. To avoid confusion we
call the iterations for fixed K cycles, and indicate the cycle number by a superscript in
parentheses, e.g. θ(i). The integrality constraints are ignored throughout, and the goal is
to solve corresponding relaxation of it. A cycle is done as follows: compute the best values
of the θ parameters given fixed ρ and κ values; compute the best values of the ρ parameters
given new θ and the old κ values; compute the best values of the κ parameters given the
new θ and the old ρ values. In order to avoid “locking in” of the membership variables to
0 or 1, their values are changed only modestly on the first cycle, and they are allowed to
become integral only at the final cycle.

The following optimal parameter values in the relaxed version of (26.6) are obtained by
using Lagrange multipliers:

µK =

∑
i

∑
j ρiKκjKZ

K−1
ij

(
∑

i ρ
2
iK)(

∑
j κ

2
jK)

(26.7)

αiK =

∑
j(Z

(K−1)
ij − µKρiKκjK)κjK

ρiK

∑
jK κ2

jK

(26.8)

βjK =

∑
i(Z

(K−1)
ij − µKρiKκjK)ρiK

κjK

∑
iK ρ2

iK

(26.9)

So, in cycle s, we use these equations to update θ(s) using the old values ρ(s−1) and κ(s−1).
The values for ρiK and κjK that minimize Q are:

ρiK =

∑
j θijKκjKZ

K−1
ij∑

j θ
2
ijKκ

2
jK

(26.10)

26-14 Handbook of Computational Molecular Biology

Plaid(U , V , E, S):
U : conditions. V : genes.
E : Gene expression matrix.
S: maximum cycles per iteration.
Set K = 0
adding a new layer:

K=K+1

Compute initial values of κ
(0)
jK , ρ

(0)
iK . Set s = 1

While (s ≤ S) do:

Compute µ
(s)
K , α

(s)
iK , β

(s)
jK using equations (26.7)- (26.9).

Compute κ
(s)
K using equations (26.11)

Compute ρ
(s)
K using equations (26.10)

If ρ
(s)
K > 0.5 set ρ

(s)
K = 0.5 + s/2S, else set ρ

(s)
K = 0.5− s/2S

If κ
(s)
K > 0.5 set κ

(s)
K = 0.5 + s/2S, else set κ

(s)
K = 0.5− s/2S

If the importance of layer K is non random then record the layer and repeat
Else exit.

Report layers 1, . . . , K − 1.

FIGURE 26.9: The Plaid model algorithm.

κjK =

∑
i θijKρiKZ

K−1
ij∑

i θ
2
ijKρ

2
iK

(26.11)

At cycle s, we use these equations to update ρ(s) from θ(s) and κ(s−1), and update κ(s) from
θ(s) and ρ(s−1). The complete updating process is repeated a prescribed number of cycles.

26.7.2 Initialization and Stopping Rule

The search for a new layer K in the residual matrix Zij = Z
(K)
ij requires initial values of

ρ and κ. These values are obtained by finding vectors u and v and a real value λ so that
λuvT is the best rank one approximation of Z. We refer the readers to the original paper
for details.

Intuitively, each iteration “peels off” another signal layer, and one should stop after K−1
iterations if the residual matrix Zij = Z

(K)
ij contains almost only noise. Lazzeroni and Owen

define the importance of layer k by σ2
k =

∑n
i=1

∑p
j=1 ρikκjkθ

2
ijk. The algorithm accepts a

layer if it has significantly larger importance than in noise. To evaluate σ2
k on noise, repeat

the following process T times: Randomly permute each row in Z independently, and then
randomly permute each column in the resulting matrix independently. Apply the layer-
finding algorithm on the resulting matrix, and compute the importance of that layer. If σ2

k

exceeds the importance obtained for all the T randomized matrices, add the new layer K
to the model.

The complete algorithm is outlined in Figure 26.9.
Plaid models have been applied to yeast gene expression data [14]. The software is

available at (http://www-stat.stanford.edu/~owen/plaid).

Biclustering Algorithms: A Survey 26-15

26.8 Discussion

The algorithms presented above demonstrate some of the approaches developed for the
identification of bicluster patterns in large matrices, and in gene expression matrices in
particular. One can roughly classify the different methods a) by their model and scoring
schemes and b) by the type of algorithm used for detecting biclusters. Here we briefly
review how different methods tackle these issues.

26.8.1 Model and score

To ensure that the biclusters are statistically significant, each of the biclustering methods
defines a scoring scheme to assess the quality of candidate biclusters, or a constraint that
determines which submatrices represent significant bicluster behavior. Constraint based
methods include the iterative signature algorithm, the coupled two-way clustering method
and the spectral algorithm of Kluger et al. In the first two, we search for gene (condition)
sets that define “stable” subsets of properties (genes). In the last, the requirement is for
compatibility of certain eigenvectors to a hidden checkboard-like matrix structure.

Scoring based methods typically rely on a background model for the data. The basic
model assumes that biclusters are essentially uniform submatrices and scores them accord-
ing to their deviation from such uniform behavior. More elaborate models allow different
distributions for each condition and gene, usually in a linear way. Such are, for example,
the Cheng-Church algorithm and the Plaid model and the alternative formulation in [22].
A more formal statistical model for an extended formulation of the biclustering problem
was used in [19, 3]. In this family of algorithms a complete generative model including a
set of biclusters and their regulation model is optimized for maximum likelihood given the
data. Another approach for the modeling of the data is used in SAMBA, where a degree-
preserving random graph model and likelihood ratio score are used to ensure biclusters
significance.

26.8.2 Algorithmic approaches

The algorithmic approaches for detecting biclusters given the data are greatly affected by the
type of score/constraint model in use. Several of the algorithms alternate between phases
of gene sets and condition sets optimization. Such are, for example, the iterative signature
algorithm and the coupled two-way clustering algorithm. Other methods use standard linear
algebra or optimization algorithms to solve key subproblems. Such is the case for the Plaid
model and the Spectral algorithm. A heuristic hill climbing algorithm is used in the Cheng-
Church algorithm and is combined with a graph hashing algorithm in SAMBA. Finally, EM
or sampling methods are used for formulations introducing a generative statistical model for
biclusters [19, 3, 22]. The overall picture seems to support a view stressing the importance
of statistical models and scoring scheme and restricting the role of the search/optimization
algorithm to discovering relatively bold structures. A current important goal for the research
community is to improve our understanding of the pros and cons of the various modeling
approaches described here, and to enable more focused algorithmic efforts on the models
that prove most effective.

26.8.3 Quo vadis biclustering?

Biclustering is a relatively young area, in contrast to its parent discipline, clustering, that
has a very long history going back all the way to Aristo. It has great potential to make

26-16 References

significant contributions to biology and to other fields. Still, some of the difficulties that
haunt clustering are present and are even exacerbated in biclustering: Multiple formulations
and objective functions, lack of theoretical and complexity analysis for many algorithms,
and few criteria for comparing the quality of candidate solutions. Still, the great potential of
the paradigm of biclustering, as demonstrated in studies over the last five years, guarantees
that the challenge will continue to be addressed. In time, the concrete advantages and
disadvantages of each formulation and algorithm will be made clearer. We anticipate an
exciting and fruitful next decade in biclustering research.

Acknowledgments

R. Shamir was supported in part by the Israel Science Foundation (grant 309/02). R.
Sharan was supported in part by NSF ITR Grant CCR-0121555. A. Tanay was supported
in part by a scholarship in Complexity Science from the Yeshaia Horvitz Association.

References

[1] The chipping forecast II. Special supplement to Nature Genetics Vol 32, 2002.
[2] A.A. Alizadeh , M.B. Eisen, R.E. Davis, C. Ma et al. Distinct types of diffuse large

B-cell lymphoma identified by gene expression profiling. Nature, 403(6769):503–511,
2000.

[3] A. Battle, E. Segal, and D. Koller. Probabilistic discovery of overlapping cellular
processes and their regulation. In Proceedings of the Sixth Annual International
Conference on Computational Molecular Biology (RECOMB 2002), 2004.

[4] S. Bergman, J. Ihmels, and N. Barkai. Similarities and differences in genome-wide
expression data of six organisms. PLoS, 2(1):E9, 2004.

[5] S. Bergmann, J. Ihmels, and N. Barkai. Iterative signature algorithm for the analysis
of large-scale gene expression data. Phys Rev E Stat Nonlin Soft Matter Phys, 67(3
Pt 1):03190201–18, 2003.

[6] Y. Cheng and G.M. Church. Biclustering of expression data. In Proc. ISMB’00, pages
93–103. AAAI Press, 2000.

[7] J. DeRisi, L. Penland, P.O. Brown, and M.L. Bittner et al. Use of a cDNA microarray
to analyse gene expression patterns in human cancer. Nat Genet, 14:457–460, 1996.

[8] A.P. Gasch ,M. Huang, S. Metzner, and D. Botstein et al. Genomic expression re-
sponses to DNA-damaging agents and the regulatory role of the yeast ATR homolog
mec1p. Mol. Biol. Cell, 12(10):2987–3003, 2001.

[9] G. Getz, E. Levine, and E. Domany. Coupled two-way clustering analysis of gene
microarray data. Proc. Natl. Acad. Sci. USA, 97(22):12079–84, 2000.

[10] G. Getz, E. Levine, E. Domany, and M.Q. Zhang. Super-paramagnetic clustering of
yeast gene expression profiles. Physica, A279:457, 2000.

[11] J.D. Hughes, P.E. Estep, S. Tavazoie, and G.M. Church. Computational iden-
tification of cis-regulatory elements associated with groups of functionally relat-
ed genes in Saccharomyces Cerevisiae. J. Mol. Biol., 296:1205–1214, 2000.
http://atlas.med.harvard.edu/.

[12] J. Ihmels, G. Friedlander, S. Bergmann, and O. Sarig et al. Revealing modular orga-
nization in the yeast transcriptional network. Nature Genetics, 31(4):370–7, 2002.

[13] Y. Kluger, R. Barsi, J.T. Cheng, and M. Gerstein. Spectral biclustering of microarray

References 26-17

data: coclustering genes and conditions. Genome Res., 13(4):703–16, 2003.
[14] L. Lazzeroni and A. Owen. Plaid models for gene expression data. Statistica Sinica,

12:61–86, 2002.
[15] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes:

The Art of Scientific Computing. Cambridge University Press, Cambridge (UK) and
New York, 2nd edition, 1992.

[16] S. Ramaswamy, P. Tamayo, R. Rifkin and S. Mukherjee et al. Multiclass cancer diagno-
sis using tumor gene expression signature. Proc. Natl. Acad. Sci. USA, 98(26):15149–
15154, 2001.

[17] T. Rozovskaia, O. Ravid-Amir, S. Tillib, and G. Getz et al. Expression profiles of
acute lymphoblastic and myeloblastic leukemias with all-1 rearrangements. Proc Natl
Acad Sci U S A, 100(13):7853–8, 2003.

[18] M. Schena, D. Sharon, R.W. Davis, and P.O. Brown et al. Quantitative monitoring of
gene expression patterns with a complementary DNA microarray. Science, 270:467–
470, 1995.

[19] E. Segal, M. Shapira, A. Regev, and D. Pe’er et al. Module networks: identifying
regulatory modules and their condition-specific regulators from gene expression data.
Nat Genet., 34(2):166–76, 2003.

[20] R. Sharan, A. Maron-Katz, N. Arbili, and R. Shamir. EXPANDER: EXPres-
sion ANalyzer and DisplayER, 2002. Software package, Tel-Aviv University,
http://www.cs.tau.ac.il/∼rshamir/expander/expander.html.

[21] R. Sharan, A. Maron-Katz, and R. Shamir. CLICK and EXPANDER: a system for
clustering and visualizing gene expression data. Bioinformatics, 2003.

[22] Q. Sheng, Y. Moreau, and B. De Moor. Biclustering gene expression data by Gibbs
sampling. Bioinformatics, 19(Supp 2):i196–i205, 2003.

[23] P.T. Spellman, G. Sherlock,M.Q. Zhang, and V.R. Iyer et al. Comprehensive identifi-
cation of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray
hybridization. Mol. Biol. Cell, 9:3273–3297, 1998.

[24] A. Tanay, R. Sharan, M. Kupiec, and R. Shamir. Revealing modularity and organi-
zation in the yeast molecular network by integrated analysis of highly heterogeneous
genomewide data. Proc Natl Acad Sci U S A., 101(9):2981–6, 2004.

[25] A. Tanay, R. Sharan, and R. Shamir. Biclustering gene expresion data. Submitted for
publication, 2002.

27
Identifying Gene Regulatory

Networks from Gene Expression Data

Vladimir Filkov
University of California, Davis

27.1 Introduction . 27-1
27.2 Gene Networks . 27-2

Definition • Biological Properties • Utility
27.3 Gene Expression: Data and Analysis 27-5
27.4 General Properties of Modeling Formalisms 27-6
27.5 Graph Theoretical Models . 27-9
27.6 Bayesian Networks . 27-12
27.7 Boolean Networks . 27-15
27.8 Differential Equations Models and Linearization 27-19
27.9 Summary and Comparison of Models 27-24
27.10 Future Directions and Conclusions 27-24

27.1 Introduction

The ultimate goal of the genomic revolution is understanding the genetic causes behind phe-
notypic characteristics of organisms. Such an understanding would mean having a blueprint
which specifies the exact ways in which genetic components, like genes and proteins, interact
to make a complex living system. The availability of genome-wide gene expression tech-
nologies has made at least a part of this goal closer, that of identifying the interactions
between genes in a living system, or gene networks. Well suited for both qualitative and
quantitative level modeling and simulation, and thus embraced by both biologists and com-
putational scientists, gene networks have the potential to elucidate the effect of the nature
and topology of interactions on the systemic properties of organisms.

Gene networks can be modeled and simulated using various approaches [9, 17]. Once the
model has been chosen, the parameters need to be fit to the data. Even the simplest network
models are complex systems involving many parameters, and fitting them is a non-trivial
process, known as network inference, network identification, or reverse engineering.

This chapter reviews the process of modeling and inference of gene networks from large-
scale gene expression data, including key modeling properties of biological gene networks,
general properties of combinatorial models, specifics of four different popular modeling
frameworks, and methods for inference of gene networks under those models.

Our knowledge about gene networks, and cellular networks in general, although still lim-
ited, has grown in the past decade significantly, due mostly to advances in biotechnology.
Some of those known and key properties of gene networks, which can aid in their under-
standing and modeling, especially with the discrete, combinatorial methods covered in this

27-1

27-2 Handbook of Computational Molecular Biology

chapter, are described in Section 27.2. Some properties, like low average connectivity, or the
nature of cis-trans interactions during transcription have been used repeatedly in modeling
and inference of gene networks.

This chapter is de Some background on the nature of large-scale gene expression experi-
ments together with very short description of methods used for the analysis of the observed
data is given in Section 27.3. More detailed descriptions of both the technology and the
data analysis methods can be found elsewhere in this book.

Before the actual methods are described in detail, general properties of modeling for-
malisms which both define and limit them are described in Section 27.4.

Those properties (synchronicity, stochasticity, etc.) are necessary considerations when
modeling gene networks and define the resulting models to a large extent.

The four large classes of modeling formalisms covered in this chapter are graph theoretical
models in Section 27.5, Bayesian networks in Sec. 27.6, Boolean networks in Sec. 27.7, and
Linearized differential equation models 27.8. Together with the models and their properties
inference methods and algorithms are presented from the most influential research articles
in the area, together with pertinent results on both steady-state and time-course gene
expression data. The relationship between model complexity and amount/type of data
required versus the quality of the results is underlined.

At the end of the chapter the models and methods for inference are summarized and
future directions toward better gene network inference are outlined.

This chapter is not comprehensive with respect to the different frameworks available
for modeling gene networks, and more thorough reviews exist in that respect [17]. The
emphasis here is on an integrated presentation of the models and the methods for network
inference for them. Gene network modeling using feedback control theory is presented in
another chapter of this book.

27.2 Gene Networks

27.2.1 Definition

Gene regulation is a general name for a number of sequential processes, the most well
known and understood being transcription and translation, which control the level of a
gene’s expression, and ultimately result with specific quantity of a target protein.

A gene regulation system consists of genes, cis-elements, and regulators. The regulators
are most often proteins, called transcription factors, but small molecules, like RNAs and
metabolites, sometimes also participate in the overall regulation. The interactions and bind-
ing of regulators to cis-elements in the cis-region of genes controls the level of gene expression
during transcription. The cis-regions serve to aggregate the input signals, mediated by the
regulators, and thereby effect a very specific gene expression signal. The genes, regulators,
and the regulatory connections between them, together with an interpretation scheme form
gene networks.

Depending on the degree of abstraction and availability of empirical data, there are
different levels of modeling of gene networks. Figure 27.1 shows a hypothetical gene network
together with different levels at which it can be modeled. The particular modeling level
depends on the biological knowledge and the available data, as well as the experiment
goal, which can be as simple as hypothesis testing, or as complex as quantitative network
modeling.

There are a number of gene regulatory networks known in great detail: the lysis/lysogeny
cycle regulation of bacteriophage-λ [51], the endomesoderm development network in Sea
Urchin [16], and the segment polarity network in Drosophila development [68, 5]. The first

Identifying Gene Regulatory Networks from Gene Expression Data 27-3

P
ro

te
in

 3

P
ro

te
in

 4

Gene 2

P
ro

te
in

 1

Gene 3

Gene 2’s cis−region

Gene 1

G
en

e
Sp

ac
e

Pr
ot

ei
n

Sp
ac

e

M
et

ab
ol

ic
 S

pa
ce

Protein 2

Protein 4

Gene 2

Gene 1 Gene 3

Protein 1

Protein 3

Complex 3−4

Metabolite 1 Metabolite 2

Gene 4

Gene 4

M
et

ab
ol

ite
 2

FIGURE 27.1: (See color insert following page 20-4.) A hypothetical gene network. Shown
on the left (redrawn from [10]) are the multiple levels at which genes are regulated
by other genes, proteins and metabolites. On the right is a useful abstraction
subsuming all the interactions into ones between genes only. The cis-regions are
shown next to the coding regions, which are marked with pattern fill and start
at the bent arrows. The edges are marked with the name of the molecule that
carries the interaction. Some reactions represent trans-factor – DNA binding,
happen during transcription, and are localized on the cis-regions. In those cases
the corresponding protein-specific binding sites, or cis-elements, on the cis-regions
are shown (colored polygons). Otherwise, the interactions can take place during
transcription or later (e.g. post-translational modifications) as may be the case
with Metabolite 2 interacting with Gene 4. The nature of the interactions is
inducing (arrow) or repressing (dull end).

two networks are mostly qualitative representations of the relationships among the genes,
while the last involves quantitative models. Many other networks are available in some
detail, laid out in databases which are publicly available, like KEGG [37] and EcoCyc [38].
Such detailed networks are extracted from the published work of many researchers working
on individual links in the networks. With the advent of large-scale technologies in genomics
things are becoming faster by orders of magnitude, and there is potential for automating
the process of network discovery.

27.2.2 Biological Properties

Substantially more is known about gene regulation and networks today than a decade ago.
Some of this knowledge can be used to effectively model gene networks. What follows is a
collection of mostly empirical facts which, although few in number, are powerful modeling
and design rules.

Topology

The topology of a network defines the connections between nodes, and it can be a starting
point for modeling. One of the most important and powerful rules in gene network modeling
is that their topology is sparse, i.e. there is a small constant number of edges per node,
much smaller than the total number of nodes. This rule is a result of biological observations
that genes are regulated by a small constant number of other genes, 2-4 in bacteria [43]

27-4 Handbook of Computational Molecular Biology

and 5-10 in eukaryotes [6]. The sparseness property is often used to prune the search space
during network inference, as described later.

More on connectedness, recent studies have shown that the frequency distribution of
connectivity of nodes in biological (and other types of naturally arising) networks tends to
be longer tailed than the normal distribution [36]. The appropriate distribution seems to
belong to a class of power-law functions described by P (k) = k−γ , where k is the degree
of a vertex in the network graph, and γ is some network specific constant. Such networks
are called scale-free and exhibit several important properties. The first is the emergence of
hubs, or highly connected nodes, which would have been vanishingly unlikely to appear in a
network with normally distributed node degrees. These hubs correspond to highly central
nodes in the gene network, i.e. genes that do a large amount of the overall regulation. The
second property is that through the hubs, the rest of the nodes are connected by, in the
worst case, very short paths, yielding overall short longest paths between nodes (degree of
separation, small-world networks).

Transcriptional Control

The cis-regions serve as aggregators of the effects of all transcription factors involved in
gene regulation. Through protein-specific binding sites the cis-regions recruit and bring
in proximity single or groups of TFs having specific regulatory properties, with the sole
purpose of inducing precisely when, where, and at what rate a gene is to be expressed.
The hard-coded binding sites, or cis-elements, in the regulatory regions of DNA sequences
are in fact the code, or logic, by which input signals are chosen and processed. Very good
quantitative examples of such logic processing units are, for example, the endo16 system in
Sea Urchin [15], and the process of lysis/lysogeny in bacteriophage-λ [51].

The range of effects (i.e. output) of the cis-processing logic on the input TF signals has
been characterized for very few but telling examples. From them we learn that the cis-
function is a multi-valued, complex function of the input concentrations even only for two
inputs [55]. However the function becomes simpler, and can be decomposed into linear com-
binations of independent functional signal contributions, when the functional cis-elements
are known (at least when performed over the same conditions, and for genes on the pe-
riphery of the network (i.e. ones without feedback input) [77, 76]. The traditional roles of
individual or groups of TFs as inducers and suppressors (i.e. activators and inhibitors), with
respect to a gene, have been based on the change they cause in expression, and are viable if
their effects are strong enough and independent of other TF effects. Those roles have been
refined recently by associating function to modules of cis-elements (or equivalently TFs) to
include more operators, like enhancers, switches, and amplifiers, which form the repertoire
of transcriptional control elements. Some of those have been used to engineer synthetic
gene circuits with pre-specified functions [25].

Robustness

Real gene networks are very robust to fluctuations in their parameter values [68, 8], and there
is strong indication that only specific topology choices can guarantee such robustness [68,
36]. Insensitivity to variations in molecular concentrations is particularly important during
organism development, when things are happening in orchestrated cues around the whole
organism at the same time, with the goal of producing the same body plan every time,
but under a variety of different conditions [15]. It has also been argued that the process of
evolution naturally converges to scale-free design in organized structures [52], and that the
scale-freeness ensures the robustness of networks to random topology changes [36].

Identifying Gene Regulatory Networks from Gene Expression Data 27-5

Noise

Noise is an integral part of gene networks, as they are emerging properties of biochemical
reactions which are stochastic by nature [42]. Even small variations in the molecular con-
centrations during the process of translation can be passed along through the network [65].
The networks control the noise through feedback, although in some cases noise enhances
some functional characteristics of the networks [67] and hence may have a role in network
evolution. In some cases noise measurements can be used to learn the rates of signal prop-
agation in networks too [48].

27.2.3 Utility

A gene network, at any level of modeling, is a blueprint for understanding the functional
cooperativity among genes.

Individually, gene networks are succinct representations of the knowledge about the sys-
tem studied. For example, they can be used for gene classification, based on the localization
of the gene’s influence on other genes and the others’ influence on them. The regulatory
interactions between genes can be studied at large-scales, allowing for example for under-
standing cascades of gene regulations (e.g during organism development). Another use
can be in elucidating the connection between gene regulation and phenotype, again on a
systemic scale.

In quantitative settings, they can be used to simulate various scenarios, and even predict
future behavior of the system. As such they can serve as in-silico hypothesis generation
and testing tools with the potential of running many experiments in a very short time
on a desktop computer. Knowing the interacting components can help with identifying
molecular targets for specific drugs, or drugs for specific targets. Such knowledge coupled
with understanding of the network behavior, can lead to designing controlled systems with
potential for producing disease-specific cures and personalized health care solutions.

Having gene networks of multiple organisms will allow for their comparison, yielding
understanding of structural and functional changes of the networks with time, i.e. their
evolution. Through such network comparisons the different effects of stimuli on organisms
can be potentially attributed to differences in their networks.

27.3 Gene Expression: Data and Analysis

The amount of mRNA produced during transcription is a measure of how active or func-
tional a gene is. Gene chips, or microarrays, are large-scale gene expression monitoring
technologies, used to detect differences in mRNA levels of thousands of genes at a time,
thus speeding up dramatically genome-level functional studies. Microarrays are used to
identify the differential expression of genes between two experiments, typically test vs. con-
trol, and to identify similarly expressed genes over multiple experiments. Microarray data
and analysis methods are described in detail in other chapters of this book. Here we only
briefly describe the types of expression data and analysis methods used for gene network
inference.

Microarray experiments for our purposes can be classified in two groups: time-course
experiments, and perturbation experiments. The former are performed with the goal of
observing the change of gene expression with time, and are used for understanding time-
varying processes in the cell. The latter are performed to observe the effects of a change
or treatment on the cell, and are used for understanding the genetic causes for observed
differences between cell/tissue types, or responses of pathways to disruptions.

27-6 Handbook of Computational Molecular Biology

The processing pipeline of microarray data involves pre-processing the raw data to get
a gene expression matrix, and then analyzing the matrix for differences and/or similarities
of expression. The gene expression matrix, GEM, contains pre-processed expression values
with genes in the rows, and experiments in the columns. Thus, each column corresponds to
an array, or gene-chip, experiment, and it could contain multiple experiments if there were
replicates. The experiments can be time points (for time-course experiments), or treatments
(for perturbation experiments). Each row in the matrix represents a gene expression profile.
An example hypothetical table is given in Table 27.1.

TABLE 27.1 Gene Expression Matrix
Exp1 Exp2 · · · Expm

Gene1 0.12 −0.3 · · · 0.01
Gene2 0.50 0.41

.

.

.
.
.
.

. . .
Genen -0.02 -0.07

Gene-chips can hold probes for tens of thousands of genes, whereas the number of exper-
iments, limited by resources like time and money, is much smaller, at most in the hundreds.
Thus, the gene expression matrix is typically very narrow (i.e. number of genes, n &
number of experiments, m). This is known as the dimensionality curse and it is a serious
problem in gene network inference. Namely, in any complex system, when trying to eluci-
date the interactions among the state variables it is best to have many more measurements
than states, otherwise the system is largely under-constrained and can have many solutions.
The inference methods described in Sections 27.5- 27.8 use different ways to address this
problem.

Once normalized the data are analyzed for differential expression using statistical tests.
The most robust tests allow for replicate measurements, yield a confidence level for each
result, and correct for multiple hypothesis testing (i.e. testing if hundreds of genes are
differentially expressed). Additionally, to identify functional relationships genes are often
combined in groups based on similarities in their expression profiles using a variety of
supervised or unsupervised clustering and/or classification techniques [59]. Most of those
methods are good for identifying starting points for network inference.

A good source of microarray data is the Stanford Microarray Database (SMD) [29].

27.4 General Properties of Modeling Formalisms

The actual choice of a modeling formalism for a gene network will depend on the type and
amount of data available, prior knowledge about the interactions in the network, nature
of the questions one needs answered, area of formal training of the modeler, experimental
and computational resources, and possibly other study- or organism-specific factors. Here,
based on their general properties different models are classified in several groups, which can
be used as selection criteria among them.

Physical vs. Combinatorial Models

The most detailed models of any complex dynamical system, like gene networks, are based
on differential equations describing the quantitative relationships between the state variables
in the system. Although such physical models can be used to run simulations and predict

Identifying Gene Regulatory Networks from Gene Expression Data 27-7

the future behavior of the system, in general any higher level organization is very difficult
to obtain from the equations. But, identifying even simple features (e.g. if one variable is
responsible for the behavior of another) may be complicated. In addition, physical models
typically have many parameters, necessitating large number of experiments to fit them to
the data. Some high-level analyses of dynamical systems, like steady state, have yielded
promising results (S-systems by Savageau [53]), but lack inference methods.

On the other hand, combinatorial models start from higher level features of the system
by defining the characteristics and features of interest, like the important observables, i.e.
gene expression levels, and the nature of relationships, like causality for example. A typical
representation for such models is a graph of nodes and edges between them from which many
important high-level questions can be readily answered (see Section 27.5). Because of the
higher level of modeling, the combinatorial models are most often qualitative, and effective
methods for their learning or inference exist even for small number of observations (relative
to the number of variables). Most models described in this chapter will be combinatorial,
except for the linearized model of differential equations.

Dynamic vs. Static Models

Dynamic gene network models describe the change of gene expression in time. Typically,
each node in the network is a function that has some inputs, which it aggregates, and
produces output based on them. Most dynamic models are based on simplifications of
differential rate equations for each node:

dxi(t)
dt

= fi(xi1 (t), xi2 (t), . . .) (27.1)

where the xi on the left is the observable concentration of gene expression, for gene i,
the xi1 , xi2 , . . . on the right, are concentrations of molecules that anyhow influence xi’s
expression, and fi(·) is the rate function specifying the exact way in which the inputs
influence xi. Dynamic models tend to be more complete than static ones, in that they aim
to characterize the interactions among the input signals, and offer quantitative predictions
for the observable variables. However, they do require more input data in general because
of the large number of parameters to fit, as well as some type of understanding of the nature
of the aggregation function. This usually amounts to making simplifying assumptions, e.g.
assuming that the interactions between regulators of a gene are limited to being additive.
In addition, time is often discretized and the changes are assumed to be synchronous across
all variables. Examples of dynamic models covered in this chapter are Boolean networks
and linearized differential equations.

Static models do not have a time-component in them. This practically means that static
models yield only topologies, or qualitative networks of interactions between the genes, often
specifying the nature of the interactions. Static models can be revealing of the underlying
combinatorial interactions among genes, a feature most often simplified away in the dynamic
models, with the notable exception of the Boolean network model. Examples of static
models are: Graph theoretic models, Bayesian networks, and Linear Additive Models (under
some modeling assumptions).

The choice between these two modeling paradigms clearly depends on the type and
amount of data and experimental setup available, and it often involves understanding and
prioritizing the imperatives in the study, for example, the importance of the exact predic-
tions vs. the nature of interactions.

27-8 Handbook of Computational Molecular Biology

Synchronous Models

Dynamic models are attractive because they offer quantitative predictions. However, many
additional assumptions need to be made for the available inference methods to work. One
such assumption is synchronous delivery of all signals to the targets or equivalently, updating
the states of all genes at the same time. Large-scale gene expression measurements drive
these models because all the observables are measured at the same times.

In synchronous models time is discretized to the intervals between consecutive observa-
tions. If these time intervals are small enough, then Eq. 27.1 can be approximated as:

xi(tj+1)− xi(tj)
tj+1 − tj

≈ fi(xi1 (tj), xi2 (tj), . . .) (27.2)

where tj and tj+1 are two consecutive observation times. Although clearly unrealistic when
tj+1 − tj is not small, this approximation is the base for some of the most popular models
for gene network inference from expression data, as described in section 27.4.

Finally, reality is obviously asynchronous. However there are no existing effective methods
for inferring gene networks solely from expression data for any asynchronous model.

Deterministic vs. Stochastic Models

In deterministic models the expression states of the genes are either given by a formula
or belong to a specific class. Measured at two different times or places, while keeping all
other parameters the same, a gene’s expression would be the same. The precision of the
observed expression values, then, depends solely on the experimental setup and technological
precision, and can be refined indefinitely with technological advances. The edges stand for
relationships which, like the node states, are also deterministic.

Stochastic models, on the other hand, start from the assumption that gene expression
values are described by random variables which follow probability distributions. The differ-
ence with the deterministic models is fundamental: randomness is modeled to be intrinsic
to the observed processes, and thus all things being equal, a gene’s expression on two dif-
ferent occasions may be different. Stochastic edges indicate probabilistic dependencies, and
their absence may indicate independencies between nodes. They are not easy to interpret
in practice.

Stochastic gene network models are especially appropriate for reconstructing gene net-
works from expression data because of the inherent noise present in them. A fairly general
statistical way to accommodate imprecisions and fluctuations in the measurements is to
assume that each observed quantity is drawn from an underlying set of values, or a distribu-
tion, that the observable variable may take. Then, assessing whether a gene is differentially
expressed with respect to another turns into well studied problems of statistical hypothesis
testing [59]. In addition to the distribution of a gene’s expression one would also like to
model the relationships between such distributions as indicators of possible causal relation-
ships between them. One example of a stochastic model of gene networks are the Bayesian
Networks, discussed in Section 27.6. Although likely more realistic, stochastic models are
more difficult to learn and to interpret.

Expanding Known Networks

Often the goal is to find missing links in a partially known network, or expanding a network
around a known core of interacting genes. Although, in general, not necessarily easier to
solve than the problem of inferring a network from scratch, expanding a known network
is typically a smaller problem and less data might be necessary. In other words, the same

Identifying Gene Regulatory Networks from Gene Expression Data 27-9

amount of data should yield better (i.e. more accurate) or simply more predictions if prior
knowledge is available.

27.5 Graph Theoretical Models

Graph theoretical models (GTMs) are used mainly to describe the topology, or architecture,
of a gene network. These models feature relationships between genes and possibly their
nature, but not dynamics: the time component is not modeled at all and simulations cannot
be performed. GTMs are particularly useful for knowledge representation as most of the
current knowledge about gene networks is presented and stored in databases in a graph
format.

GTMs belong to the group of qualitative network models, together with the Boolean
Network models (Section 27.7), because they do not yield any quantitative predictions of
gene expression in the system.

In GTMs gene networks are represented by a graph structure, G(V,E), where V =
{1, 2, . . . , n} represent the gene regulatory elements, e.g. genes, proteins, etc., and E =
{(i, j)|i, j ∈ V } the interactions between them, e.g. activation, inhibition, causality, bind-
ing specificity, etc. Most often G is a simple graph and the edges represent relationships
between pairs of nodes, although hyperedges, connecting three or more nodes at once, are
sometimes appropriate. Edges can be directed, indicating that one (or more) nodes are
precursors to other nodes. They can also be weighted, the weights indicating the strengths
of the relationships. Either the nodes, or the edges, or both are sometimes labeled with the
function, or nature of the relationship, i.e. activator, activation, inhibitor, inhibition, etc.
(see Figure 27.1). The edges imply relationships which can be interpreted as temporal (e.g.
causal relationship) or interactional (e.g. cis-trans specificity).

Many biologically pertinent questions about gene regulation and networks have direc-
t counterparts in graph theory and can be answered using well established methods and
algorithms on graphs. For example, the tasks of identifying highly interacting genes, re-
solving cascades of gene activity, comparing gene networks (or pathways) for similarity
correspond to, respectively, finding high degree vertices, topological vertex ordering, and
graph iso(homo)-morphisms in graphs.

Inferring gene networks under GTMs amounts to identifying the edges and their param-
eters (co-expression, regulation, causality) from given expression data. The type of data
used directs the approaches taken in the inference. Typically, parsimonious arguments stem-
ming from biological principles are used to restrict the resulting networks. Here, several
different approaches are mentioned, using both time-series measurements and perturbation
measurements of gene expression.

Inferring Co-expression Networks

Co-expression networks are graphs where edges connect highly co-expressed nodes (genes
or gene clusters). Two genes are co-expressed if their expression profiles (rows in the
expression matrix) are strongly correlated. The data can be any set of experiments on the
genes, possibly a mix of time-series measurements and perturbation data. The goal in this
approach is to obtain a graph where the nodes are clusters of genes with indistinguishable
expression profiles, and the edges between such clusters are indicative of similarities between
clusters.

The process of inference closely follows clustering: given are two-thresholds, within clus-
ter, τw, and between cluster, τb, a gene expression matrix with n genes and m experiments,
and a measure for pair-wise scoring of expression profiles (e.g. correlation coefficient),

27-10 Handbook of Computational Molecular Biology

Score(i, j). These scores between pairs of genes are used to cluster them in the same clus-
ter based on τw, using for example hierarchical clustering [35]. The genes in each cluster
are considered indistinguishable for all practical purposes. The gene network is formed by
placing edges between clusters of very similar average expression as determined by τb, while
possibly averaging the profiles within clusters and using those as representative profiles.

The problem with this approach is that resulting edges in the network are difficult to
interpret. They identify relationships which follow the specifics of the similarity function,
but it is hard to justify any similarity function a priori. When the correlation coefficient is
used, for example, the justification is that genes with visually similar expression patterns are
likely coexpressed, and possibly regulating each other. When compared to known regulatory
pairs such approaches have yielded prediction rates of no more than 20% [22].

Regulatory Interactions from Time-Series Data

Here, given time-series gene expression data the goal is to infer edges as potential regulation
relationships between genes. Thus a directed edge (i, j) would imply that gene i regulates
gene j. The idea is to consider time-course gene expression experiments and correlate sus-
tained positive and negative changes in the expression levels while incorporating biological
considerations.

Chen et al. [12] extended the co-expression networks model by considering a scoring
function based on signal, or time-series similarity (instead of correlation at the second
clustering step above). The scoring function identified putative causal regulation events of
the type: a positive change in the expression of gene i followed by a positive change in the
expression of gene j implies a potential regulation (or a joint co-regulation). Such putative
relationships were consequently pruned by minimizing the overall number of regulators, and
consistently labeling nodes as activators or inhibitors. Additional biological considerations
were that regulators should either be activators or inhibitors, but not both, and that their
number should be small, while the number of regulated nodes should be large. The authors
showed that a number of theoretical problems of network inferenc on such labeled graphs are
NP-complete, even for networks of very low in-degree (even only 2). By using local search
heuristics on more general edge-weighted graphs they maximized the overall regulation
while minimizing the number of regulators. Their results yielded networks with interesting
biological properties. In a subsequent study they improved on their scoring function for
detecting meaningful pairwise regulation signals between genes, and showed that they do
significantly better than the correlation measure [22]. This pairwise scoring approach,
however, is limited to resolving relationships between pairs of genes, whereas in real networks
multiple genes can participate in the regulation.

In a similarly motivated, signal-based approach, Akutsu et al. [4] also considered only
qualitative clues in time-series expression data to infer regulation. They define a regulatory
relationship between genes to be consistent with the data only when all positive (or negative)
changes in the expression of one gene consistently correspond to changes in expression of
another gene. In general, their method amounts to solving linear inequalities using linear
programming methods. The linear inequalities were obtained by estimating the rate (or
change) of expression for each gene, from time measurements of gene expression, coupled
with linearizing a rate equation 27.1 (as in Section 27.8). This method is comparable to
the Linear Additive models’ inference, and thus probably has the same limitations, see
Sect. 27.8 for more on this. It is notable that their analysis is similar to the qualitative type
of steady-state analysis of rate equations in the S-system model [53].

Identifying Gene Regulatory Networks from Gene Expression Data 27-11

Causal Networks from Perturbation Experiments

Perturbing a gene in a gene network effects all genes downstream of it, but no others.
For example, perturbing Gene 1 in the network in Figure 27.1 can influence Gene 2 and
Gene 4, but not Gene 3. Thus, in principle, performing gene perturbations is a very good
methodology for elucidating causal relationships among genes. The inference problem, then,
is to find a network consistent with expression data resulting from genetic perturbations.

A perturbation of gene i in the gene network graph G = (V,E) yields a set of differentially
expressed genes Diff (i) ⊆ V . This set is a subset of Reach(i)–the set of all genes reachable
from i. The set Reach(i) includes both the nodes adjacent to i, i.e. the set Adj(i), and
the nodes reachable but not adjacent to i in G. As examples of Adj(i) and Reach(i), in
the network in Figure 27.1, Adj(1) = Adj(3) = {2}, Adj(2) = {4}, Adj(4) = {2}, and,
Reach(1) = Reach(2) = Reach(3) = Reach(4) = {2, 4}. The graph Gc = (V,Ec), where
Ec = {(i, j), j ∈ Diff (i)}, for all perturbed nodes i, specifies all perturbation effects, and
represents a causal gene network. Note that in general Gc has more edges than the gene
network graph G.

The inference problem can then be re-stated as: given Diff (i) ⊆ Reach(i) for all 1 ≤
i ≤ n, retrieve the graph G. There are, in general, many solutions to this problem, since
many different gene networks may yield the same differentially expressed genes under all
perturbations. Additional biological assumptions on the nature or number of interactions
can be used to resolve the best out of all the graphs consistent with the data.

Wagner [69] considered the case when perturbing a gene changes the expression of all
the genes downstream from it, i.e. the observed changes yield the full transitive closure
of G, or in other words Diff (i) = Reach(i). (The graph G∗ with the same nodes as G
and Gc and edges E∗ = {(i, j), j ∈ Reach(i)}, for all i, is called the transitive closure
of G (and Gc) [14].) Then, motivated by biological parsimony, he used an additional
assumption that the biologically most plausible solution has the minimal number of edges
of any graph having the same transitive closure. With that assumption, the inference
problem above becomes the well-known problem in graph-theory of transitive reduction,
which in general is NP-complete [1]. However, if there are no cycles in the graph, there is
exactly one transitive reduction ofG∗, and it can be obtained from the transitive closure very
efficiently [1], also [69] (cyclic graphs can be reduced to acyclic by condensing the cycles into
single nodes [69]). The required amount of measurements/experiments to resolve a network
with this method is n, i.e. each gene must be perturbed and the effects measured (an
experiment consists of measuring the expression of all n genes at a time, i.e. whole-genome
microarray experiment). Thus, in the case of yeast, the number of experiments would
be ∼ 6000, which is still practically infeasible. Biologically, the parsimonious argument
of the gene network having the minimal number of relationships is not so easy to justify,
especially since for acyclic graphs this implies having no shortcuts (essentially no double
paths between two nodes) which in reality is not true (e.g. feed-forward loops are essential
in gene networks but because they contain shortcuts are excluded in this model [45]).

Limitations and Extensions

GTMs are very useful for knowledge representation but not simulation. The characteristic
of these models is that they only resolve the topology of the networks, and are naturally
amenable to inference using graph theoretical arguments. Existing inference methods use
parsimonious assumptions about the nature of the networks to reduce the solution space
and yield a single solution. The required amount of data points varies between models,
and it is between O(logn) for clustering based methods and O(n) for perturbation based
methods. GTMs are becoming increasingly important as recent studies indicate that the

27-12 Handbook of Computational Molecular Biology

topology of networks is a determining factor in both re-engineering the network as well as
understanding network and organism evolution.

27.6 Bayesian Networks

Bayesian networks are a class of graphical probabilistic models. They combine two very
well developed mathematical areas: probability and graph theory. A Bayesian network
consists of an annotated directed acyclic graph G(X,E), where the nodes, xi ∈ X , are
random variables representing genes’ expressions and the edges indicate the dependencies
between the nodes. The random variables are drawn from conditional probability distribu-
tions P (xi|Pa(xi)), where Pa(xi) is the set of parents for each node. A Bayesian network
implicitly encodes the Markov Assumption that given its parents, each variable is inde-
pendent of its non-descendants. With this assumption each Bayesian network uniquely
specifies a decomposition of the joint distribution over all variables down to the conditional
distributions of the nodes:

P (x1, x2, . . . , xn) =
n∏

i=1

P (xi|Pa(xi)) (27.3)

Besides the set of dependencies (children nodes depend on parent nodes) a Bayesian net-
work implies a set of independencies too (see Figure 27.2). This probabilistic framework
is very appealing for modeling causal relationships because one can query the joint prob-
ability distribution for the probabilities of events (represented by the nodes) given other
events. From the joint distribution one can do inferences, and choose likely causalities. The
complexity of such a distribution is exponential in the general case, but it is polynomial if
the number of parents is bounded by a constant for all nodes.

Learning Bayesian Networks

Given measurements of genome-wide gene expression data the goal is to learn candidate
Bayesian networks that fit the data well. A survey of general methods for learning Bayesian
networks is given in Heckerman et al. [32]. Here we give a very short overview and point
the reader to studies in which Bayesian networks were used to analyze expression data.

Two Bayesian networks are defined to be equivalent, or indistinguishable, if they imply
the same set of independencies [24]. From any given data most one can hope to learn
is equivalence classes of networks, and not individual networks. The process of learning
Bayesian networks from the data is essentially two-fold [23]:

• The first part is model selection: Given observed data find the best graph (or
model) G of relationships between the variables.

• The second is parameter fitting: Given a graph G and observed data find the best
conditional probabilities for each node.

Parameter fitting is the easier of the two in general. Given a graph model G, good
candidates for the best conditional probability distributions can be found by Maximum
Likelihood Estimation algorithms (when all nodes are known), or Expectation Maximization
algorithms (when some nodes are hidden), both well known methods. For model selection,
on the other hand, only simple heuristics are known, without solid convergence results,
which amount to brute-force search among all graphs.

The gene network inference problem combines both of these: the space of all model
graphs is searched, and each candidate model is scored. The highest scoring model is the

Identifying Gene Regulatory Networks from Gene Expression Data 27-13

FIGURE 27.2: An Example Bayesian network where the genes can assume discrete states of Up
and Down. The probability distributions at the nodes imply the dependencies of
nodes only on their parent nodes. The joint probability can be computed directly
from the graph, for any instance of the node values. Eg. P (a = U, b = U, c =
D, d = U) = P (a = U)P (b = U |a = U)P (c = D|a = U)P (d = U |b = U, c =
D) = 0.7 ∗ 0.8 ∗ 0.4 ∗ 0.7 = 16%. The implied independencies in this network are:
I(b; c|a) (i.e. b is independent of c given a), and I(c; b|a) (i.e. c is independent of
b given a).

best fitting network to the data.
Given a model, its Bayesian score is the posterior probability of the graph G, given the

data D:

S(G : D) = logP (G|D) = log
P (D|G)P (G)

P (D)
= logP (D|G) + logP (G) + Const. (27.4)

The non-constant terms on the right hand side correspond to the two problems above.
Namely, the first term averages the probability of the model G over all possible parametric
assignments to it, and it corresponds to the maximum log-likelihood of G given D. The sec-
ond term average the probability over all possible models G given the data and corresponds
to model complexity. The third is a constant independent of the model. Logs are taken to
achieve additive independence of the terms above which can be individually estimated.

Finding the best model amounts to optimizing S(G : D), i.e. finding the model and

27-14 Handbook of Computational Molecular Biology

parametric assignment with the best score. To do this efficiently, it is imperative to chose a
scoring function which is decomposable to the individual score contributions of each node
and for which there are provable guarantees that the highest scoring models are likelier to
capture the real network, given the data, than other models. Examples of existing scoring
functions with such properties are: the Bayesian Information Criterion (BIC), Akaike Infor-
mation Criterion (AIC), and Bayesian Dirichlet equivalent (BDe). Even though because of
their decomposition property these functions prune the search space, optimizing them over
all models (i.e. graphs) is still NP-hard. Thus, heuristics like hill-climbing and simulated
annealing are used to efficiently search the space of models by looking at neighboring graphs
around a given graph, by adding and deleting edges, or reversing directions of edges.

In addition to the scoring function, other important choices have to be made to get
from the observed data of gene expressions to the learned network. These include data
discretization into few levels (e.g. -1,0,+1 for under-expression, no expression and over-
expression) and choices for priors (e.g. linear, multinomial), and are often related.

In [30] different scoring schemes are illustrated and in [75] various scoring functions, dis-
cretizations, and heuristics are compared. The results, although from limited data studies,
single out BIC as the score of choice, in conjunction with a three level discretization of the
data, and a random-start hill-climbing heuristic for model selection.

The final issue is interpretation. Bayesian networks model the gene expression of each
gene as a random variable having a distribution conditional on its parent genes. From that,
one wants to infer causal relationships between genes. For that, another assumption, the
local Markov Rule is needed, which says that variables are independent of all other nodes
given their parents. With this assumption, directed edges in the learned equivalence class
stand for causal relationships, with the direction indicated by the arrow. If in a class there
are undirected edges, then the causality is unknown.

Practical Approaches and the Dimensionality Curse

In practice the available data suffers from the dimensionality curse (see Sec. 27.3) and
many different Bayesian networks may fit the data just as well. To lower the number of
high-scoring networks, simplifying assumptions regarding the topology of the graph or the
nature of the interactions have been used. In addition, instead of trying to learn large-
scale networks the focus has been on retrieving features consistently over-represented in
high-scoring networks.

In [24] the authors use Bayesian networks to establish regulatory relationships between
genes in yeast, based on time-series data of gene expression. To do that, they used several
biologically plausible simplifying assumptions. The first one is that the nodes are of bounded
in-degree, i.e. the networks are sparse. The second is that the parent and children nodes
likely have similar expression patterns, and thus coexpressed pairs of genes might be in
regulatory relationships. Both are realistic to a degree, and are meant to reduce the number
of potential high-scoring networks. It was found that even with these assumptions the
number of high-scoring networks was still high, and instead of full networks subgraphs, or
robust features, in common to many high-scoring networks, were considered, like pair-wise
relationships for example. Two separate prior distributions were used for the nature of the
interactions of the edges at each node (i.e. the combined distributions): a linear Gaussian
and a multinomial, requiring different data discretizations each, three levels for the first
one and continuous for the second. The results, not surprising, were excellent for the linear
prior and mediocre for the multinomial.

A subsequent study by the same group [49], applied Bayesian networks to perturbation
gene expression data, with a similar but expanded goal: to identify regulatory relationships

Identifying Gene Regulatory Networks from Gene Expression Data 27-15

and in addition, to predict their nature of activation or inhibition. To do that, they in-
corporated perturbations into the Bayesian framework. Activations and inhibitions were
modeled by requiring that for each change in a regulator’s expression the regulated gene
must exhibit a change too, much like Akutsu et al. [4] did in their qualitative network model
study. The results were, again, conserved features over many runs of the algorithms, and
the number of features considered was larger than in the previous study. The resolution of
co-regulation was much better than that of correlation methods and yielded subnetworks
of known networks automatically from the data.

Although no analysis of the required amount of data was given in either of these studies,
the available data is very insufficient. In the first paper, this problem was circumvented by
clustering of the data and considering clusters of genes, thus lowering the dimensionality of
the original problem. In the second, the results were sub-networks, needing much less data
than a genome-scale gene network, specifically those for which there was a lot of support
in the expression data.

Extending Bayesian Networks

Bayesian networks offer an intuitive, probabilistic framework in which to model and reason
about qualitative properties of gene networks. The gene expression data available is insuf-
ficient for full gene network learning, but conserved features over high-scoring models are
biologically significant. The Bayesian Network formalism is easily extendable to describe
additional properties of the gene networks, like the activatorin the second study above. This
implies that other types of data, like regulator candidates, promoter sequence alignment, or
TF-DNA binding data, can be used to refine the models, as recent studies have done [54, 7].

The problem with learning of Bayesian networks is combinatorial: if the graph model is
not known then the space of all graph models has to be explored. But this space is super-
exponential even for directed acyclic graphs and exploring it completely is impossible even
with the fastest heuristics. Exploring hierarchical properties of DAGs can help in pruning
the search space down to exponential size(from super-exponential), for which, with current
technology, exact solutions can be obtained for small networks of n < 30 nodes [47]. A
promising direction is to restrict the search space further by including additional biological
knowledge as it becomes available.

In their basic form, Bayesian networks are qualitative models of acyclic gene networks.
There have been efforts to extend them to both include cyclic networks and to model
network dynamics by duplicating the nodes in the network. Namely, a state transition of a
gene network from time t to time t + 1 can be modeled by having two copies of the same
Bayesian network, with additional edges between the two. Similar unrolling of the network
can be used to model cycles. Learning such duplicated networks would require more data
in general.

27.7 Boolean Networks

Boolean networks are a dynamic model of synchronous interactions between nodes in a
network. They are the simplest network models that exhibit some of the biological and
systemic properties of real gene networks. Because of the simplicity they are relatively
easier to interpret biologically.

Boolean networks as a biological network modeling paradigm were first used by Kaufmann
in the 1970s [39], where he considered directed graphs of n nodes and connectivity, or
degree, per node of at most k, called NK-Boolean networks. He studied their organization
and dynamics and among other things showed that highly-connected NK-networks behave

27-16 Handbook of Computational Molecular Biology

differently than lowly connected ones. In particular, NK-networks of low per-node degree
seem to exhibit several of the properties that real life biological systems exhibit, like periodic
behavior and robustness to perturbation.

Model and Properties

For completeness, the following summary of Boolean logic is provided. A variable x that
can assume only two states or values is called Boolean. The values are denoted usually as
0 and 1, and correspond to the logical values true and false. The logic operators and, or,
and not are defined to correspond to the intuitive notion of truthfulness and composition of
those operators. Thus, for example x1andx2 = true if and only if both x1 and x2 are true.
A Boolean function is a function of Boolean variables connected by logic operators. For
example, f(x1, x2, x3) = x1 or (not (x2 and x3)) is a Boolean function of three variables.

A Boolean network is a directed graph G(X,E), where the nodes, xi ∈ X , are Boolean
variables. To each node, xi, is associated a Boolean function, bi(xi1 , xi2 , . . . , xil

), l ≤ n, xij ∈
X , where the arguments are all and only the parent nodes of xi in G. Together, at any
given time, the states (values) of all nodes represent the state of the network, given by the
vector S(t) = (x1(t), x2(t), . . . , xn(t)).

For gene networks the node variables correspond to levels of gene expression, discretized
to either up or down. The Boolean functions at the nodes model the aggregated regulation
effect of all their parent nodes.

The states of all nodes are updated at the same time (i.e. synchronously) according to
their respective Boolean functions:

xi(t+ 1) = bi(xi1 (t), xi2 (t), ..., xil
(t)). (27.5)

All states’ transitions together correspond to a state transition of the network from S(t)
to the new network state, S(t + 1). A series of state transitions is called a trajectory,
e.g. S5, S1, S2 is a trajectory of length 3 in the network in Figure 27.3. Since there is a
finite number of network states, all trajectories are periodic. The repeating part of the
trajectories are called attractors, and can be one or more states long, e.g. S2 is an attractor
in the network in Figure 27.3. All the states leading to the same attractor are the basin of
attraction [73].

The dynamic properties of Boolean networks make them attractive models of gene net-
works. Namely, they exhibit complex behavior, and are characterized with stable and
reproducible attractor states, resembling many biological situations, like steady expression
states. In addition, the range of behaviors of the system is completely known and ana-
lyzable (for smaller networks) and is much smaller than that of other dynamic models. In
terms of topology, it has been shown that high connectivity yields chaotic behavior, whereas
low connectivity leads to stable attractors, which again corresponds well to real biological
networks [39].

Reverse Engineering

The goal in reverse engineering Boolean networks is to infer both the underlying topology
(i.e. the edges in the graph) and the Boolean functions at the nodes from observed gene
expression data.

The actual observed data can come from either time-course or perturbation gene expres-
sion experiments. With time-course data, measurements of the gene expressions at two
consecutive time points simply correspond to two consecutive states of the network, S(i)
and S(i+ 1). Perturbation data comes in pairs, which can be thought as the input/output

Identifying Gene Regulatory Networks from Gene Expression Data 27-17

FIGURE 27.3: An example Boolean network and three possible ways to represent it. The one
on the left is a gene network modeled as a Boolean network, in the middle is
a wiring diagram obviating the transitions between network states, and on the
right is a truth table of all possible state transitions.

states of the network, Ii/Oi where the input state is the one before the perturbation and the
output the one after it. In both cases, a natural experimental unit is a pair of consecutive
observations of genome-wide gene expression, i.e. states of the network, or a state transi-
tion pair. The total amount of observed data, m, is the number of available state transition
pairs. Perturbation input/output pairs can be assumed to be independent whereas time-
course pairs are rarely so. The actual 0, 1 values are obtained by discretizing the observed
continuous expression values, and has to be done with necessary care.

Given the observations of the states of a Boolean network, in general many networks will
be found that are consistent with that data, and hence the solution network is ambiguous.
There are several variants of the reverse engineering problem: (a) finding a network con-
sistent with the data, (b) finding all networks consistent with the data, and (c) finding the
“best” network consistent with the data (as per some pre-specified criteria). The first one
is the simplest one and efficient algorithms exist for it, although the resulting network may
be very different from the real one. Hence the second problem, which yields all possible
solutions, including the real one, although the number of solutions may be very large. The
third variant solves the problem of having too many correct solutions by introducing ad-

27-18 Handbook of Computational Molecular Biology

ditional assumptions or modeling imperatives. Although very attractive computationally,
sometimes the additional criteria may be oversimplifications.

Data Requirement

The reverse engineering problems are intimately connected to the amount of empirical data
available. It is clear that, in general, by having more data points the inferred network will
be less ambiguous. The amount of data needed to completely determine a unique network is
known as the data requirement problem in network inference. The amount of data required
depends on the sparseness of the underlying topology and the type of Boolean functions
allowed. In the worst case, the deterministic inference algorithms need on the order of
m = 2n transition pairs of data to infer a densely connected Boolean Network with general
Boolean functions at the nodes [2]. They also take exponential time as the inference problem
in this case is known to be NP-complete [4].

If, however, the in-degree of each node is at most a constant k then the data amount
required to completely disambiguate a network drops significantly. The lower bound, or the
minimum number of transition pairs needed (in the worst case) can be shown to be Ω(2k +
klogn) [19, 3]. For the expected number of experiments needed to completely disambiguate
a network both randomized and deterministic theoretical results are known, although the
latter only for a special case. Akutsu and collaborators have shown [3] that the expected
number of pairs is proportional to 22kklogn, with high probability, if the data is chosen
uniformly at random. For a limited class of Boolean functions, called linearly separable
and related to the linear models of Section 27.8, Hertz has shown [33] that klog(n/k) pairs
would suffice to identify all parameters. Empirical results show that the expected number
of experiments needed is O(logn), with the constant before the log being in the order of
2kk [19, 3], although these studies assumed that the data consists of statistically independent
state transition pairs, which is not generally true.

Inference Algorithms

The simplest exhaustive algorithm for inferring Boolean networks consistent with the data
is to try out all Boolean functions bi(·) of k variables (inputs) on all

(
n
k

)
combinations of

k out of n genes [3]. For a bounded in-degree network this algorithm works in polynomial
time. If all possible assignments for the input state of the network are given (22k different
values), then this algorithm uniquely determines a network consistent with the data. This
is of course an extraordinary amount of data which is not available in practice. In [3] the
authors show empirically on synthetic data that the expected number of input/output pairs
is much smaller, and proportional to logn.

Algorithms that exploit similarity patterns in the data fair much better, on average. Liang
et al. [41] used an information theoretic method to identify putative coregulation between
genes by scoring the mutual information between gene profiles from the expression matrix.
Starting from one regulator per node, their algorithm adds in-edges progressively, trying all
the time to minimize the number of edges needed (i.e. variables in the Boolean function at
that node) to explain the observed transition pairs. Although in the worst case the data
requirement is exponential, their algorithm does much better in practice, demonstrating
that O(logn) experiments usually suffice. A theoretical analysis of the expected number of
experiments required to disambiguate a gene network has not been given. Their algorithm
worked well in practice for very small k.

The combinatorial approach of Ideker et al [34] also exploits co-expression among genes
using steady-state data from gene perturbation experiments. Their algorithm identifies a
putative set of regulators for each gene by identifying the differentially expressed genes

Identifying Gene Regulatory Networks from Gene Expression Data 27-19

between all pairs of network states (Si, Sj), including the wildtype (or baseline) state, S0.
The network states, Si, correspond to steady-states of gene expression of all the genes in the
network following a single gene perturbation. To derive the network topology the authors
utilize a parsimony argument, whereby the set of regulators in the network was postulated
to be equal to the smallest set of nodes needed to explain the differentially expressed genes
between the pairs of network states. The problem thus becomes the classical combinatorial
optimization problem of minimum set covering, which is NP-complete in general. They
solved small instances of it using standard branch and bound techniques. The solutions were
graphs, or gene network topologies. To complete the network inference, i.e. to identify the
Boolean functions at the nodes, they built truth tables from the input data and the inferred
regulators for each node. This procedure does not yield a unique network in general. The
authors proposed an information-theoretic approach for predicting the next experiment to
perform which best disambiguated the inferred network, based on an information theoretic
score of information content. Their results confirmed that the number of experiments
needed to fully infer a Boolean network is proportional to logn, with double perturbation
experiments having better resolving power on average than single perturbation ones.

Limitations and Extensions

Boolean networks make good models for biologically realistic systems because their dynam-
ics resembles biological systems behavior and they are also simple enough to understand and
analyze. However, these models are ultimately limited by their definition: they are Boolean
and synchronous. In reality, of course, the levels of gene expression do not have only two
states but can assume virtually continuous values. Thus discretization of the original data
becomes a critical step in the inference, and often reducing the values to two states may
not suffice. In addition, the updates of the network states in this model are synchronous,
whereas biological networks are typically asynchronous. Finally, despite their simplicity,
computationally only small nets can be reverse engineered with current state-of-the-art
algorithms.

Boolean network models have been extended in various ways to make them more biologi-
cally realistic and computationally more tractable. With the availability of better data and
models describing the cis-regulatory control and signal propagation through networks, a
number of theoretical models, including chain functions [27, 28] and certain Post classes of
Boolean functions [57], have been proposed to restrict the Boolean functions at the network
nodes. In addition to offering more realistic network modeling, these approaches have the
computational benefit of significantly pruning the solution space for inference.

Additionally, there have been approaches to introduce stochasticity to these models,
through probabilistic Boolean networks [56], related to dynamic Bayesian networks, which
further increase their realism.

27.8 Differential Equations Models and Linearization

Differential equations (DE) are the starting point for quantitative modeling of complex
systems. DEs are continuous and deterministic modeling formalisms, capable of describing
non-linear and emerging phenomena of complex dynamical systems.

DE models of gene networks are based on rate equations, quantifying the rate of change
of gene expression as a function of the expressions of other genes (and possibly other quan-

27-20 Handbook of Computational Molecular Biology

tities). The general form of the equations, one for each of n genes, is:

dxi

dt
= fi(xi1 , xi2 , . . . , xil

) (27.6)

where each xj is a continuous function, representing the gene expression of gene j.
Each fi(·) quantifies the combined effect of its arguments, or regulators, on xi, and it sub-

sumes all the biochemical effects of molecular interactions and degradation. {xi1 , xi2 , . . . , xil
},

the set of arguments of fi(·), is a subset of all gene expression functions, {x1, x2, . . . , xn}.
In the gene network, fi(·) can be thought of as the function at node i which processes the
inputs, xi1 , xi2 , . . . , xil

and produces an output rate for gene i.
In addition to the variables, the fi(·) will include many free parameters whose values

must be determined from observed data. Given the fi(·)’s and all their parameters, the
dynamics of the network can be approximated even if analytical solutions are unknown, by
using various numerical differential equation solvers, or even more specifically, gene network
simulator software. Thus, the functions fi(·), with all parameters fitted, specify the gene
network fully.

The specific forms of the node functions fi(·) come out of biochemical considerations and
modeling of the components of the genetic system. In general, these functions are non-linear
because, among other things, in reality all concentrations get saturated at some point in
time. These functions are usually approximated by sigmoid functions [17]. One such class
of functions are the squashing functions [70], where fi(x(t)) = 1/(1 + e−(αjx(t)+βj)). The
constants αj and βj are gene specific and determine the rapidity of the gene response to the
regulation. More complicated, non-linear functions, are also used; for example, Savageau’s
S-systems, which have some nice representational properties [53].

Identifying a gene network from observed data under this model means estimating (or
fitting) the parameters in the functions fi(·). In general the number of arguments, the
functions fi(·), and their parameters are not known. Given observed gene expression data,
the first step to identifying the gene network is to guess or approximate the fi(·)’s. Since the
identification process depends solely on the form of the fi(·)’s, the functions are typically
linearized, as described below.

The question is how many observations are needed to identify the parameters in the
differential equation system? For general differential equations, in a recent work Sontag
showed that if the system has r parameters, then 2r + 1 experiments suffice to identify
them [58]. Although it is not immediately obvious how many parameters there are in a
gene network, if we assume at most a constant number of parameters per argument in the
rate functions, the total number of parameters in a dense network of n nodes is O(n2), and
for a sparse one O(n). A large scale gene expression monitoring technology allows for n
observations at a time, which may further lower the number of sufficient experiments.

Linearized Additive Models (LAM)

The simplest interesting form that the fi(·)’s can take are linear additive functions, for
which Eq. 27.6 becomes:

dxi(t)
dt

= exti(t) + wi1x1(t) + . . .+ winxn(t) (27.7)

(with possibly some additional linear terms on the right hand side, indicating the degrada-
tion rate of gene i’s mRNA or environmental effects, which can all be incorporated in the
wij parameters, assuming their influence on xi is linear [74]). The term exti(t) indicates
a (possible) controlled external influence on gene i, like a perturbation for example, and is
directly observable.

Identifying Gene Regulatory Networks from Gene Expression Data 27-21

FIGURE 27.4: Example of a Linear Additive Model for a four node Gene network. The dashed
lines are inhibiting relationships, and the full lines are inducing relationships.
The weight matrix specifies the existence of relationships between genes and
their nature and strength.

The justification for the linear additive model is three-fold. First of all, the wij ’s intu-
itively relate to the regulatory effect of one gene, j, on another, i, and correspond to the
strength of this effect. In the graph representation of the gene network, with genes at the
nodes, and edges for each wij �= 0, the parents of a node are its regulators. The biological
interpretation for the weights is that if wij > 0 then gene j induces expression of gene i,
and if wij < 0 then gene j represses transcription of gene i. For convenience, we assume
wij = 0 if there is no edge from j to i. The second justification for the linearization is
that in the immediate neighborhood of any n-dimensional point (x1, x2, . . . , xn) the surface
fi(x1, x2, . . . , xn) can be linearized to a plane tangent to it at that point, as in Eq. 27.7,
where the coefficients are given by wij = ∂fi/∂xj [60]. Finally, when the system is observed
in a steady-state, or equilibrium, where dxi/dt = 0, and is brought to that steady state
slowly, the linear approximation holds.

The reason for linearizing the original system is to turn it into a linear differential e-
quation system, in which the parameters, wij can easily be fitted to the data using linear
algebra methods. From each microarray experiment, be it a time-course, steady-state, or
perturbation, one linear equation can be set up for each gene i. Then m such genome-

27-22 Handbook of Computational Molecular Biology

wide microarray experiments would yield nm linear equations. All of those can be written
succinctly in a matrix notation as follows.

For experiment l, let x(l) and ext(l) be column vectors consisting of the gene expression
functions x1, . . . , xn, and the external influences on the individual genes, ext1, . . . , extn
respectively. Then, let Xn×m = (x(1), . . . ,x(m)) and Extn×m = (ext(1), . . . , ext(m)), be
the matrices consisting of the above vectors for all m experiments. Also, let Wn×n be the
matrix of all weights wij , 1 ≤ i, j ≤ n. Then, the system of equations becomes

d

dt
Xn×m = Wn×nXn×m + Extn×m (27.8)

Here, Xn×m is the gene expression matrix, consisting of observations of expression for each
gene in each experiment, and Extn×m is a matrix of observed external influences. The
rate terms on the left hand side of Eq. 27.8, are either known, i.e. observed rates in the
experiments, are equal to zero (in the steady state), or are approximated from the available
data as ∆xi/∆t, where ideally ∆t is very small (in practice that is not the case, and the
approximations may be bad).

When dxi/dt is approximated by ∆xi/∆t = (xi(t + 1) − xi(t))/∆t, the behavior of
the network is effectively discretized in time. Then, the next state of a gene’s expression
can be expressed as a function of the previous states of its regulators, i.e. xi(t + 1) =
∆t(xi(t)+

∑n
j=1 wijxj(t)). Such models are also known as linear additive, or weight matrix

models, and are particularly suited for modeling time-course gene expression experiments.

Gene network identification under LAM

Under the linearized differential equation model network identification amounts to finding
a matrix Wn×n which is consistent with Eq. 27.8, i.e. it is the best solution to that system.

In total, there are n2 unknowns and nm equations in this system. The existence and
uniqueness of solutions to the linear equation system depends on two parameters: m, the
number of whole-genome microarray experiments, and r(≤ nm) the number of linearly
independent equations in the system. Namely, if r = n2 then the system has a unique
solution. If r > n2 then the system is over-constrained and there is no solution. However,
in practice more than the sufficient number of observations is preferred for better results.
A solution for an over-constrained system can be found by performing multiple regression
of each gene on the other genes. If r < n2 the system is under-constrained and there are
infinitely many solutions, all of which can be expressed in terms of a subset of independent
solutions. To address this dimensionality curse, many methods have been used to bridge the
gap between r and n2, resulting in both under-constrained and over-constrained systems.

In practice, the gene expression matrix is very long and narrow, that is, there are typically
many more genes than experiments, so m � n and thus r � n2. Choosing a solution
from the infinitely many plausible ones is a non-trivial task. Often a solution with special
properties, or a pseudo-inverse is chosen. Such are for example the Moore-Penrose pseudo-
inverse, and the Singular Value Decomposition (SVD), and although they rarely give the
correct solution [74] they can be used as starting points for generating better solutions.

Additional biological assumptions are needed to prune the search space, of which the
network-sparseness assumption has been the most popular one: each gene cannot be reg-
ulated by more than a fixed number k of other genes [70, 13, 74]. Chen et al. in [13]
translated the problem of finding a solution W of Eq. 27.8 when the number of nonzero
weights wij for any given i is at most a fixed constant k, into a combinatorial problem
called Minimum Weight Solutions to Linear Equations, and showed that it is polynomially
solvable in general, although they offered a computationally expensive algorithm.

Identifying Gene Regulatory Networks from Gene Expression Data 27-23

Collins and collaborators in a series of papers used a system similar to Eq. 27.8 to model
gene networks under the sparseness assumption, and offered several methods to identify
networks from both time-course and perturbation data under such models. In [74], they used
Singular Value Decomposition on time-course experiments to generate an initial solution and
then refined it by using an optimization technique called robust regression. The solutions
were much better than those from using SVD alone. Experimentally, the authors used very
fine sampling times in this study which allowed them to approximate the dxi/dt’s very
well. This method is particularly well suited for identification of larger networks. In [64]
they use the same linear model, but with advanced gene perturbation (over-expression)
technology (described in [25]), and measurements at steady-states. The goal there was
different from above: based on previous perturbations they wanted to choose the next
perturbation to best identify the still unknown parameters in the network. To that end,
they used an algorithm which as the next best perturbation chooses genes which have either
changed the least in the past perturbations or have most uncertain connections to other
genes. However, as a consequence of the steady-state modeling their algorithm is unable to
predict wii for any gene (which is the case in similar methods too, e.g. [18]). In subsequent
work Collins and colleagues showed that the linear additive model with steady-state data
of targeted perturbations allows for effective identification of both small [26] and large [21]
gene networks.

As emphasized above, if only the observed data is used the system of linear equations is
mostly under-constrained. However, under some assumptions, the gene expression matrix
can be processed to yield an over-constrained system. To identify a small gene network of
CNS development regulation in rat, D’Haeseleer and colleagues [20] used cubic interpolation
between successive time points of gene expression observations, thereby increasing the total
amount of data. They generated just as many interpolated points as needed for the linear
system of equations to become over-constrained, which they consequently solved using a
least squares optimization. The interpolation approach does well when the phenomena
studied have been sampled finely enough to capture the essential changes in gene expression,
which cannot be guaranteed in general. In a complementary approach, Someren et al. [66]
used clustering of the time-course expression matrix to reduce the dimensionality of W.
Hierarchical (progressive) clustering was performed until the resulting linear system had
the smallest error in explaining the whole data, i.e. was close to being over-constrained.
Their approach drew a lot from the success of clustering in identifying coregulated clusters
of genes through coexpression, but it has its limitations too: the resulting gene network is
a network of gene clusters and not genes, and the interpretation is non-trivial.

Data Requirement

If the weight matrix is dense (i.e. the average connectivity per node in the network is
O(n), then n+ 1 arrays of all n genes are needed to solve the linear system, assuming the
experiments are independent (which is not exactly true with time-series data). If instead
the average connectivity per node is a fixed constant, k, as is the case in realistic networks,
than it can be shown that the number of experiments needed is O(klogn) [19, 74, 64].

Limitations and Extensions

Linear models yield good, realistic looking predictions when the expression measurements
have been performed around a steady state or on a slow changing system. Otherwise,
the rates of change of the genes’ expressions cannot be estimated well. As with the other
methods, the available data is insufficient for large-scale network inference, although the
inference methods for this model scale well with the amount of data and should work for

27-24 Handbook of Computational Molecular Biology

larger networks too.
A possible way to extend these models would be to make them hold not just in the vicinity

of a steady-state point, but further away too. To do that second order relationships, i.e. xixj

product terms, could be considered, although the data requirement may become prohibitive
in that case.

27.9 Summary and Comparison of Models

The overall properties of the four models and inference methods are summarized in Ta-
ble 27.2.

There have been several attempts to compare different network inference approaches
based on how well they retrieve a known network [71, 72]. Unfortunately those approaches
have compared different modeling strategies without any systematic method behind it. For
example Boolean network reverse engineering methods were compared to Bayesian networks
etc. The results are therefore not reliable, and by no means definite.

It is more reasonable to compare the efficacy of different network inference methods
within the same modeling category. To that end well known real data sets should be used.
In addition, results should be reported on much larger sets of artificial data satisfying pre-
specified statistical and biological properties, like precise knowledge of what is signal and
what noise [44]. Finally, the results of any network inference from public data should be
made fully available to the public for future comparison and reference. The trend so far
has been of reporting predicted sub-parts of the overall networks, those that had some
immediate positive reporting value.

TABLE 27.2 Summary of Model Properties and Inference Methods
Graph Bayes Boolean LAM

Nodes Genes Random Variables Discretized Expres-
sion

Continuous Expres-
sion

Edges Causality Conditional Depen-
dency

Arguments in
Boolean Functions

Arguments in Regu-
latory Functions

Additional
Parameters

Activation, Inhibi-
tion

Activation, Inhibi-
tion

Boolean Function Weight Matrix

Properties Static topology Static topology, S-
tochastic

Dynamic, Biological-
ly Realistic

Dynamic, Steady-
state realistic

Inference Biological Parsimo-
ny, Optimization

Bayes Scoring, ML,
Optimization

Optimization, Infor-
mation Theory

Linear Regression,
Optimization

Data Re-
quirement

O(logn) −O(n) ? O(2kklogn) O(knlogn)

27.10 Future Directions and Conclusions

In this chapter were presented various models, modeling methodologies, and inference meth-
ods for reverse engineering gene networks from large-scale gene expression data. In addition
to the computational methods, gene network inference involves considerations of type and
quantity of data, prior biological knowledge, modeling framework, and experimental tech-
nologies. Ultimately, one has to first identify the modeling imperatives (e.g. obtaining the
topology only may be enough for some applications but not for others), then compile all
available knowledge about the network of interest, decide on what type of data/experiments
to use, and only at the end choose the inference method.

Identifying Gene Regulatory Networks from Gene Expression Data 27-25

The various inference problems presented in this chapter could be used as starting points
and ideas to build on; many of them are rather naive although their solutions involve
intricate theoretical arguments.

The main challenges in network reconstruction are data related. First of all, typically the
currently available data is not sufficient for large-scale network reconstruction (dimension-
ality curse), and the formal statements of the models are very over-constrained. Second,
the question is how much is in the data, i.e. do the experiments capture relevant events or
not. For example, in time-series data if the sampling is too coarse the important biological
events may happen in-between sampling points. Both of these data related issues will likely
be resolved with technological advancements.

Even with ideal gene expression data the inference problems may be difficult to solve
because of the large space of solutions. In general, including biological constraints, like
the bounded indegree of a node, or restricted cis-functions, narrow down the huge space of
possibilities to potentially a manageable one. Such a model-based modeling should become
the standard as more and more is learned about gene networks.

It is very important to extend the gene network modeling to other levels of physical inter-
actions as in Figure 27.1, especially since some gene–gene interactions cannot be recovered
at all from the gene expression data. To do that other types of experiments are needed
besides gene expression measurements. Utilizing different types of data together, or data
integration, is becoming a hot area of research in functional genomics. The problem is how
to put together information from heterogeneous empirical data.

The available large-scale genomic data includes DNA sequences (as most reliable), gene
expression data, TF-DNA interaction data (Chromatin Immuno-Precipitation on a chip),
protein expressions, and protein-protein interactions (e.g. yeast two-hybrid). Combining
these diverse data could potentially reveal gene network interactions beyond what each can
individually. For example, promoter DNA regions have been used together with expression
data to identify cis-elements in co-regulated genes, starting from either the expression [63],
the DNA promoter regions [11], or both [50, 40]. Gene coding DNA together with expression
data have been very successfully combined to verify that conserved coding regions across
organisms have a conserved function too [61]. TF-DNA interaction data together with
expression data has been used to identify modules of functionally related genes [31]. Protein-
protein interaction data has been used to refine gene networks estimated from expression
data, in a Bayesian setting [46]. Many different types of data were used to identify most of
the functional relationships between the genes in yeast [62]. Thus, having more and varied
types of data would allow for better, more meaningful predictions of gene networks.

Conclusions

Gene network modeling and inference is a very young research area, mostly because current
gene expression data is inadequate for most types of definitive analyses. In addition, most
inference methods apply to the simplest models, Boolean networks, and even in those bio-
logical over-approximations the algorithms quickly become computationally intractable. In
the future, the confluence of better data, through data integration, and powerful inference
methods should bring about networks of predictive and comparative value yielding reliable
and testable models of systemic gene regulation.

27-26 References

References

[1] A. Aho, M.R. Garey, and J.D. Ullman. The transitive reduction of a directed graph.
SIAM J. Comput., 1:131–7, 1972.

[2] T. Akutsu, S. Kuhara, O. Maruyama, and S. Miyano. Identification of gene regula-
tory networks by strategic gene disruptions and gene overexpressions under a boolean
model. Theor. Comput. Sci., 298:235–51, 2003.

[3] T. Akutsu, S. Miyano, and S. Kuhara. Identification of genetic networks from a small
number of gene expression patterns under the boolean network model. In Pac. Symp.
Biocomputing, volume 4, pages 17–28, 1999.

[4] T. Akutsu, S. Miyano, and S. Kuhara. Algorithms for inferring qualitative models of
biological networks. In Pac. Symp. Biocomputing, volume 5, pages 290–301, 2000.

[5] R. Albert and H.G. Othmer. The topology of the regulatory interactions predicts the
expression pattern of the drosophila segment polarity genes. J. Theor. Biol., 223:1–18,
2003.

[6] M.I. Arnone and E.H. Davidson. The hardwiring of development: organization and
function of genomic regulatory systems. Development, 124:1851–1864, 1997.

[7] Z. Bar-Joseph, G.K. Gerber, T.I. Lee, and N.J. Rinaldi et al. Computational discovery
of gene modules and regulatory networks. Nat. Biotech., 21(11):1337–1342, 2003.

[8] H. Bolouri and E.H. Davidson. Transcriptional regulatory cascades in development:
Initial rates, not steady state, determine network kinetics. Proc. Natl. Acad. Sci.
USA, 100(16):9371–9376, 2003.

[9] J.M. Bower and H. Bolouri, editors. Computational modeling of genetic and bio-
chemical networks. MIT Press, 2001.

[10] P. Brazhnik, A. de la Fuente, and P. Mendes. Gene networks: how to put the function
in genomics. Trends Biotechnol., 20:467–472, 2002.

[11] H. Bussemaker, H. Li, and E. Siggia. Regulatory element detection using correlation
with expression. Nat. Genet., 27:167–71, 2001.

[12] T. Chen, V. Filkov, and S. Skiena. Identifying gene regulatory networks from experi-
mental data. Parallel Comput., 27(1-2):141–162, 2001.

[13] T. Chen, H.L. He, and G.M. Church. Modeling gene expression with differential
equations. Pac. Symp. Biocomputing, 4:29–40, 1999.

[14] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Intoduction to Algorithms. MIT
Press, 2nd edition, 2001.

[15] E.H. Davidson. Genomic Regulatory Systems. Academic Press, 2001.
[16] E.H. Davidson, J.P. Rast, P. Oliveri, and A. Ransick et al. A genomic regulatory

network for development. Science, 295:1669–1678, 2002.
[17] H. de Jong. Modeling and simulation of genetic regulatory systems: a literature review.

J. Comp. Bio., 9(1):67–103, 2002.
[18] A. de la Fuente, P. Brazhnik, and P. Mendes. A quantitative method for reverse

engineering gene networks from microarray experiments using regulatory strengths. In
2nd International Conference on Systems Biology, pages 213–221, 2001.

[19] P. D’Haeseleer, S. Liang, and R. Somogyi. Genetic network inference: From co-
expression clustering to reverse engineering. Bioinformatics, 16:707–26, 2000.

[20] P. D’Haeseleer, X. Wen, S. Fuhrman, and R. Somogyi. Linear modeling of mRNA
expression levels during CNS development and injury. Pac. Symp. Biocomputing,

References 27-27

pages 41–52, 1999.
[21] D. di Bernardo, T.S. Gardner, and J.J. Collins. Robust identification of large genetic

networks. In Pac. Symp. Biocomputing, volume 9, pages 486–497, 2004.
[22] V. Filkov, J. Zhi, and S. Skiena. Analysis techniques for microarray time-series data.

J. Comp. Bio., 9(2):317–330, 2002.
[23] N. Friedman. Inferring cellular networks using probabilistic graphical models. Science,

303:799–805, 2004.
[24] N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using bayesian networks to analyze

expression data. J. Comp. Bio., 7(6):601–620, 2000.
[25] T.S. Gardner, C.R. Cantor, and J.J. Collins. Construction of a genetic toggle switch

in escherichia coli. Nature, 403:339–342, 2000.
[26] T.S. Gardner, D. di Bernardo, D. Lorenz, and J.J. Collins. Inferring genetic networks

and identifying compound mode of action via expression profiling. Science, 301:102–
105, 2003.

[27] I. Gat-Viks and R. Shamir. Chain functions and scoring functions in genetic networks.
Bioinformatics, 19(Suppl 1):i108–i117, 2003.

[28] I. Gat-Viks, R. SHAMIR, R.M. KARP, and R. SHARAN. Reconstructing chain func-
tions in genetic networks. In Pac. Symp. Biocomputing, volume 9, pages 498–509,
2004.

[29] J. Gollub, C.A. Ball, G. Binkley, and J. Demeter et al. The stanford microarray
database: data access and quality assessment tools. Nucleic Acids Res, 31:94–6,
2003.

[30] A.J. Hartemink et al. Using graphical models and genomic expression data to statis-
tically validate models of genetic regulatory networks. In Pac. Symp. Biocomputing,
volume 6, pages 422–433, 2001.

[31] A.J. Hartemink, D.K. Gifford, T. Jaakkola, and R.A. Young. Combining location and
expression data for principled discovery of genetic regulatory network models. In Pac.
Symp. Biocomputing, volume 7, pages 437–449, 2002.

[32] D. Heckerman, D. Geiger, and D. Chickering. Learning bayesian networks: The com-
bination of knowledge and statistical data. Mach. Learn., 20:197–243, 1995.

[33] J. Hertz. Statistical issues in reverse engineering of genetic networks. Pac. Symp.
Biocomputing, 1998. Poster.

[34] T. Ideker, V. Thorsson, and R. Karp. Discovery of regulatory interactions thrugh per-
turbation: inference and experimental design. In Pac. Symp. Biocomputing, volume 5,
pages 302–313, 2000.

[35] A. Jain and R. Dubes. Algorithms for Clustering Data. Prentice-Hall, Englewood
Cliffs NJ, 1988.

[36] H. Jeong, B. Tombor, R. Albert, and Z.N. Oltvai et al. The large-scale organization
of metabolic networks. Nature, 407:651–4, 2000.

[37] M. Kanehisa and S. Goto. kegg: Kyoto encyclopedia of genes and genomes. nucleic
acid. Nucl. Acid Res., 28:27–30, 2000.

[38] P.D. Karp, M. Arnaud, J. Collado-Vides, and J. Ingraham et al. The e. coli ecocyc
database: No longer just a metabolic pathway database. ASM News, 70:25–30, 2004.

[39] S.A. Kauffman. The Origins of Order: Self Organization and Selection in Evolu-
tion. Oxford University Press, 1993.

[40] M. Lapidot and Y. Pilpel. Comprehensive quantitative analyses of the effects of pro-
moter sequence elements on mRNA transcription. Nucleic Acids Res., 31(13):3824–
3828, 2003.

[41] S. Liang, S. Fuhrman, and R. Somogyi. REVEAL, a general reverse engineering al-
gorithm for inference of genetic network architectures. In Pac. Symp. Biocomputing,

27-28 References

volume 3, pages 18–29, 1998.
[42] H.H. McAdams and A. Arkin. Stochastic mechanisms in gene expression. Proc Natl.

Acad. Sci. USA, 94:814–819, 1997.
[43] H.H. McAdams and A. Arkin. Simulation of prokaryotic genetic circuits. Ann. Rev.

Biophys. Biomolecul. Struct., 27:199–224, 1998.
[44] P. Mendes, W. Sha, and K. Ye. Artificial gene networks for objective comparison of

analysis algorithms. Bioinformatics, 19:122–9, 2003.
[45] R. Milo, S. Shen-Orr, S. Itzkovitz, and N. Kashtan et al. Network motifs: Simple

building blocks of complex networks. Science, 298:824–827, 2002.
[46] N. Nariai, S. Kim, S. Imoto, and S. Miyano. Using protein-protein interactions for

refining gene networks estimated from microarray data by bayesian networks. In Pac.
Symp. Biocomputing, pages 336–47, 2004.

[47] S. Ott, S. Imoto, and S. Miyano. Finding optimal models for small gene networks. In
Pac. Symp. Biocomputing, volume 9, pages 557–567, 2004.

[48] J. Paulsson. Summing up the noise in gene networks. Nature, 427:415–418, 2004.
[49] D. Pe’er, A. Regev, G. Elidan, and N. Friedman. Inferring subnetworks from perturbed

expression profiles. Bioinformatics, 17(Suppl 1):S215–S224, 2001.
[50] Y. Pilpel, P. Sudarsanam, and G. Church. Identifying regulatory networks by combi-

natorial analysis of promoter elements. Nat. Genet., 29:153–159, 2001.
[51] M. Ptashne. A Genetic Switch: Phage Lambda and Higher Organisms. Cell Press

and Blackwell Scientific, 2nd edition, 1992.
[52] E. Ravazs, A.L. Somera, D.A. Mongru, and Z.N. Oltvai et al. Hierarchical organization

of modularity in metabolic networks. Science, 297:1551–5, 2002.
[53] M.A. Savageau and P. Sands. Completly uncoupled or perfectly coupled circuits for

inducible gene regulation. In E.O. Voit, editor, Canonical nonlinear modeling: S-
system approach to understanding complexity. Van Nostrand Reinhold, New York,
1990.

[54] E. Segal, M. Shapira, A. Regev, and D. Peer et al. Module networks: Identifying
regulatory modules and their condition specific regulators from gene expression data.
Nat. Genet., 34(2):166–76, 2003.

[55] Y. Setty, A.E. Mayo, M.G. Surette, and U. Alon. Detailed map of a cis-regulatory
input function. Proc. Natl. Acad. Sci. USA, 100:7702–7707, 2003.

[56] I. Shmulevich, E.R. Dougherty, S. Kim, and W. Zhang. Probabilistic boolean networks:
A rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18:261–
74, 2002.

[57] I. Shmulevich, H. Lähdesmäki, E.R. Dougherty, and J. Astola et al. The role of certain
post classes in boolean network models of genetic networks. Proc. Natl. Acad. Sci.
USA, 100:10734–9, 2003.

[58] E.D. Sontag. For differential equations with r parameters, 2r+1 experiments are enough
for identification. J. Nonlinear Sci., 12:553–83, 2002.

[59] T. Speed, editor. Statistical Analysis of Gene Expression Microarray Data. CRC
Press, 2003.

[60] J. Stark, D. Brewer, M. Barenco, and D. Tomescu et al. Reconstructing gene networks:
what are the limits? Biochem. Soc. Transact., 31:1519–25, 2003.

[61] J. Stuart, E. Segal, D. Koller, and S.K. Kim et al. A gene co-expression network for
global discovery of conserved genetics modules. Science, 302:249–55, 2003.

[62] A. Tanay et al. Revealing modularity and organization in the yeast molecular network
by integrated analysis of highly heterogeneous genomewide data. Proc. Natl. Acad.
Sci. USA, 101(9):2981–2986, 2004.

[63] S. Tavazoie, J.D. Hughes, M.J. Campbell, and R.J. Cho et al. Systematic determina-

References 27-29

tion of genetic network architecture. Nat. Genet., 22:281–5, 1999.
[64] J. Tegner, M.K. Yeung, J. Hasty, and J.J. Collins. Reverse engineering gene networks:

integrating genetic perturbations with dynamical modeling. Proc. Natl. Acad. Sci.
USA, 100(10):5944–5949, 2003.

[65] M. Thattai and A. van Oudenaarden. Intrinsic noise in gene regulatory networks.
Proc. Natl. Acad. Sci. USA, 98(15):8614–8619, 2001.

[66] E.P. van Someren, L.F. Wessels, and M.J. Reinders. Linear modeling of genetic net-
works from experimental data. In Proc. ISMB, pages 355–366, 2000.

[67] J.M. Vilar, H.Y. Kueh, N. Barkai, and S. Leibler. Mechanisms of noise-resistance in
genetic oscillators. Proc. Natl. Acad. Sci. USA, 99(9):5988–92, 2002.

[68] G. von Dassow, E. Meir, E.M. Munro, and G.M. Odell. The segment polarity network
is a robust developmental module. Nature, 406:188–92, 2000.

[69] A. Wagner. How to reconstruct a large genetic network from n gene perturbation in
n2 easy steps. Bioinformatics, 17:1183–97, 2001.

[70] D.C. Weaver, C.T. Workman, and G.D. Stormo. Modeling regulatory networks with
weight matrices. Pac. Symp. Biocomputing, 4:112–123, 1999.

[71] L.F. Wessels, E.P. van Someren, and M.J. Reinders. A comparison of genetic network
models. In Pac. Symp. Biocomputing, volume 6, pages 508–519, 2001.

[72] F.C. Wimberly, C. Glymor, and J. Ramsey. Experiments on the accuracy of algorithms
for inferring the structure of genetic regulatory networks from microarray expression
levels. IJCAI 2003 Workshop on Learning Graphical Models for Computational
Genomics, 2003.

[73] A. Wuensche. Genomic regulation modeled as a network with basins of attraction. In
Pac. Symp. Biocomputing, volume 3, pages 89–102, 1998.

[74] M.K.S. Yeung, J. Tegnãr, and J.J. Collins. Reverse engineering gene networks using
singular value decomposition and robust regression. Proc. Natl. Acad. Sci. USA,
99:6163–6168, 2002.

[75] J. Yu, A.V. Smith, P.P. Wang, and A.J. Hartemink et al. Using bayesian network
inference algorithms to recover molecular genetic regulatory networks. In International
Conference on Systems Biology, 2002.

[76] C.-H. Yuh, H. Bolouri, and E.H. Davidson. Genomic cis-regulatory logic: experimental
and computational analysis of a sea urchin gene. Science, 279:1896–1902, 1998.

[77] C.-H. Yuh, J.G. Moore, and E.H. Davidson. Quantitative functional interrelations
within the cis-regulatory system of the s. purpuratus endo-16 gene. Development,
122:4045–4056, 1996.

28
Modeling and Analysis of Gene

Networks Using Feedback Control
Theory

Hana El Samad
University of California, Santa Barbara

Mustang Rammish
University of California, Santa Barbara

28.1 Introduction . 28-1
28.2 Gene Regulatory Networks: a Definition 28-2
28.3 Modeling Approaches to Gene Regulatory

Networks . 28-3
Deterministic Modeling • The Stochastic Modeling
Approach • Stochastic Versus Deterministic

28.4 Computational and Modeling Packages 28-12
28.5 The Concept of Feedback . 28-12
28.6 Feedback Loops and Their Dynamic Role in Gene

Regulatory Networks . 28-13
Feedback and Steady State Behavior • Feedback and
Stability • Feedback and Sensitivity to Parameter
Variations • Feedback, Filtering and Noise Resistance
• Feedback and Transient Response • Feedback and
Building Sophisticated Logic Molecular Gates

28.7 Novel Insights through the Use of Control and
Systems Theory: Some Case Studies 28-19
Integral Feedback and Chemotaxis • Robustness and
Complexity in the Bacterial Heat Shock Response

28.8 Conclusions . 28-28

28.1 Introduction

The Human Genome Project, which sequenced the three billion DNA letters, has resulted
in an unprecedented amount of information for scientists to analyze. The ultimate goal
is to answer one of biology’s next big challenges: how to go from the DNA sequence of
a gene, to the structure of the protein for which it encodes to the activity of the protein
and its function within the cell, to the tissue and then ultimately to the organism? The
answer to this question ultimately involves two central problems. The first is related to the
identification of the functional role of a specific gene in the organism; the second is related
to the analysis of its interactions within a genetic pathway. Accomplishing this is not a
trivial task, especially with the challenges imposed by high dimensionality, uncertainty and
complexity of biological systems. As has been frequently suggested, research relying strictly
on traditional wet lab or clinical approaches is of prime importance, but is not sufficient
by itself to accomplish the goal of using genetic information to understand the functioning

28-1

28-2 Handbook of Computational Molecular Biology

of organisms as integrated systems. Therefore, this type of experimental biology should be
complemented by the use of mathematical and computational models of the cell and its
molecular pathways. These models do not have to be entirely accurate to provide useful
insight. Given the enormous increase in genetic and molecular data and with the help of
guided experiment, the models will continue to improve to become an essential tool for
evaluating hypotheses and suggesting new directions in experimental procedures.

Molecular pathways are a part of a remarkable hierarchy of regulatory networks that
operate at all levels of organization. The dynamic character of these pathways and the
prevalence of feedback regulation strategies in their operation make them amenable to
systematic mathematical analysis using the same tools that have been used with remarkable
success in analyzing and designing engineering control systems. The promise of dynamical
systems and feedback control theory as an effective tool for the study of biological systems
at the molecular level is increasingly being recognized. As a consequence, quantitative tools
developed for engineering systems analysis and/or design are being used successfully in the
study of systems biology. Indeed, in a recent paper by Hartwell et al [34], it has been
suggested that ideas borrowed from “synthetic” sciences such as engineering and computer
science could be of enormous help in understanding functional biological modules and their
interactions. The authors propose that the resulting modular view enables an understanding
of the behavior of biological systems that may not be easily attainable from knowledge of
the behavior of the underlying molecules.

It is the aim of this article to illustrate this point of view and demonstrate that ideas,
methods and principles specifically borrowed from feedback control and dynamical systems
theories are necessary in order to fully probe and understand biological complex behavior
[80]. We argue this point by providing numerous examples showing the ubiquity of feedback
loops in cellular regulatory organization. To this end, we itemize a variety of biological
behaviors in terms of the feedback loops that generate these behaviors. We further discuss
the use of various ideas from feedback control theory to study these examples and the insight
gained in characterizing and understanding the general principles of their functionality and
modularity. To set a basis for our analysis, we provide a short review of the mathematical
methods that are commonly used in modeling gene networks.

28.2 Gene Regulatory Networks: a Definition

Gene regulatory networks can be broadly defined as groups of genes that are activated by
particular signals and stimuli, and once activated, orchestrate their operation to regulate
certain biological functions, such as metabolism, development, and the cell cycle. These
gene networks are therefore dynamic objects that continuously sense the environment and
orchestrate their operation accordingly. The core of this operation lies in the “central dog-
ma” of biology which describes how “operative information” stored in the DNA is used to
generate “operating elements”, mostly proteins. Proteins are produced from an interme-
diate product, called the RNA. First, coding regions of DNA (genes) are “transcribed” to
synthesize these RNA molecules. Thereafter, proteins are generated through the “trans-
lation” of these RNA molecules. These proteins, in turn, affect the production of other
proteins (or even auto-regulate their own production), or catalyze and regulate reactions
responsible for various cellular activities. The organization of these proteins and genetic
elements in networks that possess various levels of regulation and feedback can be perceived
as a working definition of a gene regulatory network.

Modeling and Analysis of Gene Networks Using Feedback Control Theory 28-3

Deterministic
Modeling

Boolean
Fuzzy

Continuous

Stochastic
Modeling

Langevin Molecular
Dynamics

Master
Equation

Modeling Gene Networks

Fokker-
Planck

LangevinHybrid

FIGURE 28.1: Modeling approaches to gene regulatory networks.

28.3 Modeling Approaches to Gene Regulatory Networks

Gene regulatory networks can be modeled and analyzed in deterministic or stochastic set-
tings. Within these two broad categories, various approaches can be adopted. We list here
a few of these approaches. However, we caution the reader that this list is not in any
way exhaustive. It is rather aimed to be a broad account of the most common modeling
techniques. A diagrammatic representation of these methods is provided in Figure 28.1.

28.3.1 Deterministic Modeling

Boolean and Bayesian Modeling

Genes can be viewed as logical elements which state is either ON or OFF. Consequently,
regulatory control is approximately achieved through some rules that implement logic gates
(e.g. AND, OR, NOR) [67, 68]. This is known as the Boolean modeling approach. Boolean
modeling has been shown to reproduce qualitatively some of the dynamical behavior of
various genetic systems [71, 72]). It has been specifically used to model Drosophila embryo-
genesis where it yielded precious insight into the genes necessary to simulate embryogenesis
in both Drosophila and other insects [10].

Continuous Modeling

Cellular processes are often perceived to be systems of distinct chemical reactions. As in
chemical kinetics, these reactions can be described using the laws of mass-action, yielding a
set of differential equations (linear or nonlinear) that give the succession of states (usually
concentration of species) adopted by the network over time. The equations are usually of
the form

dxi

dt
= fi(x), 1 ≤ i ≤ n (28.1)

where x = [x1, ...xn]′ is a vector of non-negative real numbers describing concentrations and
fi : Rn → Rn is a linear or nonlinear function of the concentrations. Ordinary differential
equations are arguably the most widespread formalism for modeling gene regulatory net-
works and their use goes back to the ‘operon’ model of Jacob and Monod [40] and the early
work of Goodwin [31]. Powerful mathematical methods for this approach have been devel-
oped, especially in the context of metabolism [11]. These methods are based on different
formalisms to specify the fi functions in order to describe various kinetic interactions. For

28-4 Handbook of Computational Molecular Biology

example, activation of the production of protein xi by a protein xj can be described using
a function of the form

fi(xj , θj ,m) =
xm

j

xm
j + θm

j

This function is called a Hill curve, where the number m (called the Hill constant) indicates
the steepness of the curve and θj is the threshold for the regulatory influence of xj on xi. The
sigmoidal shape of the Hill function (m > 1) corresponds to experimental data, but other
regulatory functions are possible (e.g. step and logoid functions). Due to the importance of
the continuous modeling, we illustrate its use through a simple example borrowed from [80].
The example is a sequence of enzyme reactions representing a simplified signal transduction
scheme. In this scheme, a substrate S is turned into a product P via an intermediate
enzyme-substrate complex SE. The rate of formation of SE is denoted by k1. Once
formed, SE can either dissociate into E and S with a rate constant k2 or form a product
P at a rate k3. These reactions proceed as follows

S + E
k1�
k2
SE

k3⇀ E + P

The nonlinear set of differential equations that describes the evolution of species concentra-
tions as dictated by these reactions is

dS(t)
dt

= −k1S(t)E(t) + k2SE(t)

dE(t)
dt

= −k1S(t)E(t) + (k2 + k3)SE(t)

dSE(t)
dt

= k1S(t)E(t)− (k2 + k3)SE(t)

dP (t)
dt

= k3SE(t) (28.2)

One should append to these differential equations algebraic constraints describing the re-
lation between total concentration of a certain specie and the different forms it can take.
These constraints are often referred to as “mass balance equations”. A simple mass balance
relation for the example above is one in which the total concentration of enzyme E, ET , is
equal to that of E in its free form in addition to that of E complexed with the substrate.
This translates to

E(t) + SE(t) = ET

Generic descriptions of the functions generated by various interactions in gene networks
have been proposed in the literature. The most influential of these generalizations are
the Generalized Mass Action systems (GMA) and Synergetic (S) systems developed by
Savageau and various coworkers. GMA and S systems approaches propose the use of
power-law functions yielding the following descriptions

dxi

dt
=

r∑

k=1

αik

n+m∏

j=1

x
gijk

j −
r∑

k=1

βik

n+m∏

j=1

x
hijk

j , i = 1, ..., n (28.3)

for GMA systems and

dxi

dt
= αi

n+m∏

j=1

x
gij

j − βi

n+m∏

j=1

x
hij

j , i = 1, ..., n (28.4)

Modeling and Analysis of Gene Networks Using Feedback Control Theory 28-5

for Synergetic S systems. gijk and hijk are kinetic order parameters for elementary processes
corresponding to production and degradation respectively, while αik and βik are rate con-
stant parameters for these processes. These descriptions are capable of representing almost
any physical system of interest due to the fact that any nonlinear function (that is compos-
ite of elementary functions) can be transformed into the power law formalism through an
operation called recasting [61]. Using this power law formalism, many systemic properties
can be derived analytically, including analytical solutions for steady-states (which reduce
to conventional linear analysis in logarithmic space) [58], local dynamic behavior through
eigenvalue analysis [51], and Hopf Bifurcations [44]. The power law formalism has been
successfully applied in the study of various problems, such as the fundamental design prin-
ciples of gene networks [77, 60], functional effectiveness of different types of coupling in
these networks [59], and mathematically controlled comparison [2].

Hybrid Modeling

Combining Boolean and continuous modeling is possible, the result being what is commonly
known as hybrid modeling. Boolean logic can be used to represent biochemical processes
characterized by sharp thresholds or transients while continuous dynamics are used to model
processes that have slower thresholds. Hybrid modeling has been used by McAdams and
Shapiro to describe the bacterial λ-phage lysis lysogeny system [48] and Yuh and colleagues
[82] to describe the endo16 developmental gene in sea urchin embryo.

Brief Comparison of Deterministic Modeling Approaches

Boolean, continuous and hybrid approaches have been successfully used in the modeling of
various gene regulatory networks. Adopting any of these approaches is very much system
dependent, as they all offer advantages and drawbacks. For example, the boolean approach
is less computationally intensive than either the continuous or hybrid modeling approach-
es. However, boolean representations mainly give qualitative information and may even
produce erroneous results. For example, mathematical analysis shows that boolean repre-
sentations can produce steady states that do not exist in the continuous description and
periodic solutions that may not correspond to the same periodic solutions in the continuous
representation of the same system [30, 4]. Furthermore, spatial dimensions (such as diffusion
and transport) cannot be readily incorporated into boolean representations. In contrast, in
differential equations descriptions, transport can be incorporated using delays [65, 64], but
these equations tend to be computationally expensive. Obviously, one can strike a middle
ground by adopting a hybrid modeling approach. Hybrid modeling requires less computa-
tional effort than the continuous modeling approach. However, hybrid modeling is still in
its infancy, and mathematical results on steady states and other characteristics yielded by
the hybrid approach still await further investigation.

28.3.2 The Stochastic Modeling Approach

Gene expression is a “noisy” or stochastic process. Roughly speaking, this noise can come
about in two ways. Firstly, the inherent stochasticity in biochemical processes (such as
binding, transcription, and translation) generates what is known as “intrinsic noise”. Sec-
ondly, variations in the amounts or states of cellular components and species that affect
those biochemical reactions generate additional fluctuations, termed “extrinsic noise”. In-
trinsic noise is believed to become especially significant when species are present at low
copy numbers [55]. Deterministic modeling does not embody any description of this noise.
Hence, alternative stochastic approaches should be used if the stochastic effects are deemed

28-6 Handbook of Computational Molecular Biology

essential in the understanding of the dynamic behavior and performance of a certain genetic
system. In this section, we provide a summary of the various stochastic modeling approach-
es that can be used to this end. We then present a simplified model of the circadian rhythm
where stochastic modeling has been proven to be necessary.

Molecular Dynamics Modeling

Molecular dynamics modeling depicts the procedure of producing the exact behavior of
chemically reaction systems. Molecular dynamics simulations account for both reacting and
non-reacting collisions, in addition to tracking the position and velocity of every molecule
in the system. Therefore the information content of this type of modeling includes the
temporal and spatial evolution of the system, and as such, it requires a substantial amount
of computation and time to simulate even the smallest systems. This approach has mainly
been used to study protein folding [63]. In the context of modeling gene networks, it is
however often sufficient to track only the reactive collisions under the rationale that non-
reacting collisions only serve to stir the system. In this case, and based on the assumption
of a uniform spatial distribution, one can go to Master Equation type of modeling.

Master Equation Modeling

The Chemical Master Equation (CME) description accounts for the probabilistic nature
of cellular processes. The CME descibes the time evolution of the probability of having a
certain number or concentration of molecules, as opposite to deterministic rate equation de-
scriptions of the absolute concentration of these molecules [41, 27]. In the Master Equation,
reaction rates are transformed into probability transition rates which can be determined
based on physical considerations. The CME can be derived based on the Markov property
of chemical reactions. Using this Markov property, one can write the Chapman-Kolmogorov
equation, an identity that must be obeyed by the transition probability of any Markov pro-
cess. Using stationarity and taking the limit for infinitesimally vanishing time intervals, one
obtains the Master equation, as the differential form of the Chapman-Kolmogorov equation
[41]. Another derivation of the CME based on basic probability and physical principles
is given by Gillespie [24]. Here, we give the expression for the CME without proof. The
interested reader if referred to [41] or [24] for a more detailed account.

Suppose we are dealing with a chemically reacting system involving N molecular species
S1,SN reacting through M reaction channels R1....RM . Let X(t) = (X1(t)....Xn(t)) be
the state vector, where Xi(t) is a random number that defines the number of molecules of
species Si in the system at time t. We assume that the system is well stirred and in thermal
equilibrium. Under these circumstances, each reaction channel Rk is characterized by a
propensity function wk and an N-dimensional state change vector sk = (s1k....sNk) . The
vector sk represents the stoichiometric change of the molecular species by an Rk reaction.
Let

S =
[
s1 s2 sM

]

and
W =

[
w1 w2 wM

]T

The Chemical Master Equation written for the evolution of probability in this system is
given by:

∂P (X, t|X0, t0)
∂t

=
M∑

k=1

[wk(X − sk)P (X − sk, t|x0, t0)− wk(X)P (X, t|X0, t0)]

Modeling and Analysis of Gene Networks Using Feedback Control Theory 28-7

where P (X, t|X0, t0) should be interpreted as the probability that at time t, X(t) = X
given that X(t0) = X0 (X and X0 are integers). To illustrate how one can write the master
equation, we give a simple example. Consider a protein existing in two states A or B. This
protein can transform from A to B with a transition rate k1 and from B to A at a rate k2

A
k1�
k2

B

For this system,

S =
[
−1 1
1 −1

]

and

W =
[
k1na

k2nb

]

where na and nb are the numbers of A and B respectively. The the Master Equation for
this system can be written as

dP (na, nb; t|na(t0), nb(t0); t0)
dt

= k1(na + 1)P (na + 1, nb − 1; t|na(t0), nb(t0); t0)

+ k2(nb + 1)P (na − 1, nb + 1; t|na(t0), nb(t0); t0)
− (k1na + k2nb)P (na, nb; t|na(t0), nb(t0); t0)

In general, the Chemical Master Equation is not analytically or numerically solvable in
any but the simplest cases. Therefore, one has to resort Monte Carlo type simulations that
produce a random walk through the possible states of the system under study. Various
such methods have been developed, such as StochSim [50] and the Gillespie Stochastic
Simulation Algorithm (SSA) [25, 26, 28]. We briefly describe the Gillespie algorithm as the
most commonly used representative of these stochastic simulation methods.

The Gillespie Stochastic Simulation Algorithm

The Gillespie Stochastic Simulation Algorithm (SSA) involves the computation of the prob-
ability of elementary reactions to occur. The time at which these reactions occur is then
determined based on this probability. More specifically, Gillespie proved, that starting at
time t, the time τ to the next occurring reaction is the exponentially distributed random
variable with mean 1

w0(X) . He also proved that the next reaction Rk to occur is the one

whose index k is the integer random variable with probability wk(X)
w0(X) , where w0(X) is given

by

w0(X) =
M∑

k=1

wj(X) (28.5)

Generating samples of these random variables is then an easy task. For example, one can
draw two random number r1 and r2 from the uniform distribution in the unit interval, and
then take

τ =
1

w0(X)
ln

1
r1

and k= the smallest integer satisfying
∑k

j′=1 w
′
j(X) > r2w0(X). Based on τ and Rk one can

then advance the simulation time by τ , and update the state of the system and repeat until

28-8 Handbook of Computational Molecular Biology

final time or state. The trajectory obtained in this fashion is a stochastic realization based
on the description of the Master Equation. The Gillespie stochastic algorithm tracks exactly
all the reactions that occur in the system and the species they affect. This often represents a
huge computational load which makes these simulations rather prohibitive if the system has
species with large numbers of molecules or reactions that evolve at fast time scales. Making
the SSA more computationally efficient is the subject of active research. For example,
Gibson et al. improved the computational and data storage capabilities of the algorithm
[23], while Rao et al. explored the incorporation of quasi-steady-state assumptions into this
stochastic setting [54]. Recently, Rathinam et al. devised a “leaping” procedure whereby
the algorithm leaps over a number of reactions using preselected τ values [56]. It was argued
that this leaping can be safely and conveniently done in dynamically-stiff systems (systems
with widely different time scales, the fastest of them being stable).

Langevin Modeling

Langevin modeling was originally devised to incorporate the effects of external noise on a
vector process X whose evolution is described by a set of differential equations. In this case,
the governing equations are augmented with additive or multiplicative stochastic terms [41].
An example of a Langevin equation is:

Ẋ(t) = f(X) + Γ(t)

where is Γ(t) is Gaussian white noise. However, the use of Langevin type equations in
modeling intrinsic noise has not been rigorously justified. Various researchers argue that
Langevin modeling could, in some instances, be a good representation of reality. For ex-
ample, starting from the premises of the Master Equation, Gillespie derived a “Chemical
Langevin Equation” valid under some assumptions on the system. This equation takes the
form

dX(t)
dt

.=
M∑

k=1

skwk(X(t)) +
M∑

k=1

sk

√
wk(X(t))Γk(t)

where sk, wk and Γk are as defined previously [29]. Furthermore, there has been recently
a renewed interest in expansions of the Master Equation which result in a Langevin type
equations for the intrinsic noise. More specifically, Elf and coworkers have recently derived
a so called Linear Noise Approximation (LNA) [18] of the Master Equation. The LNA
is the multidimensional extension of the Van Kampen’s system size (Ω-expansion) of the
Master Equation [41]. In the Ω-expansion formulation, the master equation is expanded in
Taylor series near macroscopic (deterministic) system trajectories or stationary solutions
in powers of 1/

√
Ω, where Ω is the system volume. In this expansion, terms of first order

in 1/
√

Ω yield the deterministic rate equations, while terms of second order in 1/
√

Ω yield
the approximate noise equations. The complete exposition of this procedure is given in
[18]. We briefly outline this procedure. We start by defining a random vector ξ by the
relation X = Ωφ + Ω1/2ξ where φ is the macroscopic concentration vector defined by
φ = limΩ←∞X/Ω (given by the deterministic rate equations). The probability distribution
of X is therefore related to that of ξ by

P (X, t) = P (Ωφ+ Ω1/2ξ, t) = Π(ξ, t)

One can then differentiate the expression above with respect to time, then expand the
propensity functions (which are functions of X = Ωφ + Ω1/2ξ) in Taylor series around φ,

Modeling and Analysis of Gene Networks Using Feedback Control Theory 28-9

and replace all of the above in the Master Equation (28.5). Ignoring high order terms in
this expansion (higher than Ω0), and matching expressions appearing in powers of Ω, one
obtains the following equation for the evolution of the noise pdf

∂Π(ξ, t)
∂t

= −
∑

i,j

Aij
∂(ξjΠ(ξ, t))

∂ξi

+
1
2

∑

i,j

[BBT]ij
∂2Π(ξ, t)
∂ξi∂ξj

(28.6)

with Aij =
∑M

k=1 sik
∂wk(φ)

∂φj

and [BBT]ij =
∑M

k=1 siksjkwk(φ). Equation (28.6) is a linear Fokker-Planck Equation
with jacobian coefficient matrix A = S[∂W

∂X
] |φ and diffusion matrix D = BBT |φ, where

B = S
√
diag(W (φ)). The stationary solution of (28.6) (with A and D evaluated φs, the

fixed point of φ) can be shown to be a multidimensional normal distribution

P (ξ) = ((2π)N/2
√
detΣ)−1exp(−ξT Σξ/2)

The covariance matrix Σ = E(ξξT) is given by the solution of the continuous algebraic
Lyapunov equation

A |φs Σ + ΣAT |φs +D |φs= 0 (28.7)

The covariance matrix of X is given by C = ΩΣ. It is worth mentioning here that the
Fokker-Planck equation in (28.6) describes an Ornstein-Uhlenbeck process given by the Ito
stochastic differential equation (Langevin Equation)

dξ = Aξdt+BdΛ(t)

where dΛ(t) is a Wiener process in M dimensions.

Fokker-Planck Modeling

The time evolution in the Chemical Langevin Equation induces a similar evolution for the
probability distribution of X(t), described by the Fokker-Planck Equation

∂P (X, t|X0, t0)
∂t

.=
N∑

i=1

∂

Xi
[(

M∑

j=1

νijaj(X))P (X, t|X0, t0)]

+
1
2

N∑

i=1

∂2

∂X2
i

[(
M∑

j=1

ν2
ijaj(X))P (X, t|X0, t0)]

+
N∑

i,i′=1;i<i′

∂2

∂Xi∂Xi′
[(

M∑

j=1

νijνi′jaj(X))P (X, t|X0, t0)]

The Fokker-Planck equation is similar to the Master Equation in that it describes the
evolution of a probability distribution of the state X(t). However,X(t) depicts a continuous
Markov process instead of a jump (discrete) Markov process as in the Master Equation.
Therefore, the Fokker-Planck Equation is sometimes called a diffusion approximation of the
Master Equation.

28-10 Handbook of Computational Molecular Biology

Brief Comparison of Stochastic Modeling Approaches

Biological noise is most accurately captured through the use of the Chemical Master Equa-
tion where molecular species (such as proteins, messenger RNA and ribosomes) are modeled
as discrete entities. In this framework, and as has been already mentioned, reaction rates are
replaced by reaction events which are individually explicitly modeled. From a mathematical
perspective, the master equation is simple due to its linearity. It is however not solvable
because it is very large (For example, to describe a three-step linear pathway involving
one hundred molecules, the master equation requires ten thousand equations to account for
each possible combination of molecules [55]). Therefore, it is a much more feasible task to
simulate the random evolution of the system using Monte-Carlo techniques as in the Gille-
spie algorithm [25]. Each run of the algorithm yields a realization of the stochastic process.
Therefore, to estimate the statistics of the process, one has to repeat the simulation task
many times. The drawback of this procedure is the computational efficiency which rapidly
degrades as the complexity of the system increases. Active research is devoted to resolve
this issue.

The Master Equation and Fokker-Planck formulations are closely related. One main
difference between the two is how the species are represented: In the Fokker-Planck rep-
resentation, the description is continuous while in the Master Equation the representation
is discrete. If the biochemical system involved contains only a few number of reacting
molecules, the discrete representation is believed to be more accurate than the continu-
ous representation. Sometimes, working with the Fokker-Planck equation is beneficial in
the sense that tools such as sensitivity analysis and bifurcation theory are available. But
once again, for systems involving more than a few species (usually ≥ 4), it is impossible to
solve the Fokker-Planck equation, even numerically. As an alternative, one can adopt the
equivalent Langevin description and again use Monte-Carlo methods to solve the Langevin
equation many times in order to estimate the system’s statistics.

28.3.3 Stochastic Versus Deterministic

In many cases, the stochastic and deterministic descriptions of a system coincide in the sense
that the mean or average behavior of the system can be perceived as accurately captured
by the deterministic behavior. Under these circumstance, one can extract a large amount of
information about the system by considering the deterministic description (about average
behavior, since even in that case, the fluctuations can significant and need to be studied).
However, in other cases, deterministic and stochastic behaviors diverge. This can occur
when the system is operating near a critical point. In this case, noise can cause the system
to undergo a “phase transition” by changing its stability properties. To illustrate this point,
we present the example of a simplified model of the circadian rhythm where similar behavior
has been observed.

The circadian rhythm is a biological clock that regulates the changes that best suit
environmental periodicity, such as daily cycles or light and dark. In [6, 76], a minimal model
for the circadian rhythm was presented. The model consists of two genes: one responsible
for the synthesis of an activator A and the other for a repressor R. The activator A binds
to the A and R gene promoters, increasing their transcription rate. Therefore, A can be
thought of as a positive feedback element. R acts as a negative feedback element since it can
sequester A (producing the complex C). Sequestered A cannot bind to the gene promoters
transcribe for A and R (see Figure 28.2).

These interactions can be described using a set of nonlinear differential. Gillespie’s SSA
can also be used to provide a stochastic description. Comparing the results of these two

Modeling and Analysis of Gene Networks Using Feedback Control Theory 28-11

A

A

A

R

A

A

A

RRR

C

FIGURE 28.2: Simplified model of the circadian oscillator. Adapted from [76]

(a) (b)

FIGURE 28.3: (a) Deterministic simulation results of the circadian oscillator. (b) Stochastic
simulation results for the circadian oscillator.

modeling approaches, one observes the following. First, for a certain set of parameters,
the stochastic and deterministic time courses coincide. Namely, they both exhibit periodic
behavior with the only difference being the presence of random fluctuations in the con-
centration and period of the stochastic system. However, as parameters are varied, the
deterministic description gives rise to a stable steady state, while stable oscillations per-
tain in the stochastic description (see Figure 28.3). This discrepancy in behavior between
stochastic and deterministic can be attributed to the presence of noise. In the deterministic
case, the solution, started from any initial conditions, eventually converges to the stable
equilibrium and stays there afterwards. In the stochastic case, however, a steady-state dis-
tribution rather than a steady state point exists. At steady-state, the process can take any
value within this distribution. For some of these values, the trajectory back to steady-state
takes the system into a new cycle of oscillations. Therefore, the intrinsic noise eventually
initiates a new cycle instead of allowing the time evolution of the system to settle into its
stable fixed point. Since Robustness is a feature demanded from these circadian clocks,
it can be concluded that noise has increased the reliability of the oscillations. However,

28-12 Handbook of Computational Molecular Biology

the fact remains that the deterministic modeling has been insufficient to account for this
observation.

28.4 Computational and Modeling Packages

Many simulation and software packages are being developed for the modeling of gene reg-
ulatory networks. Here we list a few of these packages.

• CellML CellML is an XML-based make up language to facilitate the integration,
storage and and exchange of various biological models. The CellMLTM language
is an open standard based on the XML markup language. It enables scientists
to share models formulated in various model-building softwares and reuse com-
ponents from one model in another. CellML includes information about model
structure (how the parts of a model are organizationally related to one anoth-
er) and equations describing the underlying biological processes. It also includes
metadata defined as additional information about the model that allows users
to search for specific models or model components in a database. CellML is be-
ing developed by the Bioengineering Institute at the University of Auckland and
affiliated research groups with early support and input from Physiome Sciences
Inc. in Princeton, New Jersey [37].

• E-Cell E-Cell A software environment for building integrative models based
on gene sets. The E-CELL system allows a user to define functions of proteins,
protein-protein interactions, protein-DNA interactions, regulation of gene expres-
sion and other features of cellular metabolism, as a set of reaction rules. E-CELL
simulates cellular functions by numerically integrating the differential equations
describing these interactions. The user can observe, through a GUI interafce,
dynamic changes in concentrations of chemical species in the cell [74].

• SBML SBML is the Systems Biology Makeup Language that is intended to
be software-independent. It is a free, open, XML-based format for representing
biochemical reaction networks that describe any model component in a biological
process, including cell signaling pathways, metabolic pathways, gene regulation,
and others [38].

• Virtual Cell Virtual Cell is a simulation engine for mammalian cells. It is based
on precise measurements of how molecules diffuse and migrate to react with each
other. A key feature of the Virtual Cell is that it permits the incorporation of
realistic experimental geometries within full 3D spatial models. It enables the
formulation of both compartmental and spatial models. Those spatial model
could depict either idealized or experimentally derived geometries of one, two or
three dimensions [45].

28.5 The Concept of Feedback

In the field of engineering, the demand for robustness and disturbance rejection has long
been recognized. Water clocks in 300 BC Alexandria, the Watt Governor in 1788 and the
operational amplifiers in the 1920’s are classic examples of man-made machines that capi-
talized on the use of feedback for reliable operation. Present technology is also characterized
by the massive use of feedback. “Fly-by-wire” aircrafts, high accuracy positioning robots,
automotive cruise control, and chemical process control are some of many examples. The

Modeling and Analysis of Gene Networks Using Feedback Control Theory 28-13

Temperature Sensor

Home Heating
Process

Fuel Valve
(actuator)

Thermostat
(controller)

-

Set
Point

Controller
error

Controller
output
signal

Manipulated fuel
flow to furnace

Home
Temperature

Heat Loss
Disturbance

House temperature
measured signal

FIGURE 28.4: Diagram showing components of a typical feedback system.

basic idea of feedback is simply to use the current state of a system to make decisions about
the course of action for its future. Such a scheme is called “closed loop”, while a scheme
where no information on the state of the system is used to influence its future operation
is called “open loop”. An important form of feedback is negative feedback which we illus-
trate through a common example: Heat Regulation. A simplified block diagram scheme
of temperature regulation in a house is shown in Figure 28.4. In this scheme, it is desired
to keep the temperature of a house (plant or process) at a certain reference temperature
(set point). For this purpose, temperature is measured (sensor) and its deviation from the
desired temperature is assessed (error signal). The error signal is then fed to the thermostat
(controller) that devises that appropriate control action. The output of the controller is
used to operate the heat fuel valve (actuator), therefore generating appropriate actuation
signal (fuel to furnace). Errors or deviations from temperature setpoint are hence corrected
through the action of this negative feedback.

28.6 Feedback Loops and Their Dynamic Role in Gene Reg-
ulatory Networks

Much like technological systems, gene regulatory networks need to operate robustly. Hence,
it does not come much as a surprise that regulatory feedback loops are ubiquitously used
in gene networks to tackle this robustness demand. In addition to robustness, feedback
influences many other dynamical properties in these networks. We review some of these
features in the following sections.

28.6.1 Feedback and Steady State Behavior

Often times, the feedback structure in a system dictates its steady state behavior. Here, we
focus on the role of feedback in creating monostability, multistability and periodic behavior.

Monostability and Homeostasis

Early mathematical results predicted the important role of autoregulation and feedback
in homeostasis (the ability of biological mechanisms to restore their equilibrium in the

28-14 Handbook of Computational Molecular Biology

presence of disturbances [78, 59]), but it was not until recently that this fact has been verified
experimentally by Becskei and Serrano [8]. Their elegant experimental setting consisted of a
tetR-EGFP (enhanced green fluorescent protein) fusion protein that binds to tetO operator
sites in the promoter that drives its own production, thus implementing a negative feedback
loop (see Figure 28.5). Using this setup, they demonstrated that autoregulatory negative
feedback provides better stability of the homeostatic fixed point than an open loop system,
all the while limiting the range over which the concentrations of networks components can
fluctuate [8]. We shall return to the mathematical proof of their experimental result in more
details later.

TetR-EGFP-33 -10tet0-1 tet0-1

--

FIGURE 28.5: Simple monostable autoregulatory synthetic gene network. Adapted from [8].

Multistability and the Implementation of Molecular Switches

Positive feedback, could generate multistability [33, 75, 66, 71, 73]. For example, a tran-
scription factor activating its own synthesis (direct positive feedback) or two transcription
factors repressing each other (indirect positive feedback) can produce a multistable system
[42, 20]. Examples of multistability are abundant in the literature [21, 7]. Here, we give a
simple example of multistability in the phage λ system.

The λ bacteriophage system has been thoroughly investigated both experimentally and
mathematically [52, 47], and has been used to illustrate the importance of stochasticity in
gene regulation [3]. A simplified model for the bacteriophage λ was proposed by Hasty and
coworkers [36]. In their model, the gene cI expresses the λ repressor CI which dimerizes
and binds to DNA as a transcription factor at either of two binding sites, OR2 or OR3.
Binding of this transcription factor to OR2 enhances transcription of CI (positive feedback),
while binding to OR3 represses transcription of CI (negative feedback) (see Figure 28.6(a)).
Therefore, the lysis or lysogeny outcome in cells is determined by the specific temporal
pattern of CI. For example, lysogeny occurs in cells where, by chance, there is early CI
production through the interplay of positive and negative feedback. Due to separation in
time scale between all the reactions involved, the description of the system reduces to one
differential equation describing the time evolution of repressor concentration.

dx

dt
=

αx2

1 + 2x2 + 5x4
− γx+ 1

where x denotes the concentration of the repressor CI. α and γ are dimensionless parameters
which are functions of the original parameters of the system. The steady state concentration
of x is dependent on the values of α and γ. For some values of these parameters, the system

Modeling and Analysis of Gene Networks Using Feedback Control Theory 28-15

CI+CI-->CI2

CI2

OR1 OR2

(a)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

C
I c

on
ce

nt
ra

tio
n

(b)

FIGURE 28.6: (a) The simplest system that reproduces the dynamics of the lambda bacterio-
phage (b) Bistability in the lamdba bacteriophage system. The trajectory of the
repressor evolves to one of the two fixed points based on the initial conditions.

PL LacO1 tetR-lite PL tetO1 cI-lite PR LacI-lite

--

-

FIGURE 28.7: The Repressilator system. Reproduced from [19].

has one fixed point. For another set, the system has three fixed points, one of them being
unstable. Depending on the initial concentration for the repressor, the solution will converge
to either one of the two stable fixed points. This behavior is shown Figure 28.6(b) where
x(t) is shown for different initial conditions.

Stable Oscillations and Limit Cycles

Oscillations in the concentration of some key proteins in the cell are often present to im-
plement clocks that synchronize behavior in response to various growth and adaptation
demands (such as day-night cycles). There are various feedback structures that implement
such oscillatory behavior.

• Negative feedback Negative feedback can be a mediator for oscillatory behavior
as shown in the the so-called “Repressilator” [19]. The Repressilator is a bac-
terial synthetic network consisting of three genes whose product represses each
other. The LacI protein represses the promoter of the Tet gene, the TetR protein
represses the promoter of the cI gene, and the CI protein represses the promoter
of the lac gene, therefore closing the loop (Figure 28.7). Mathematical analysis

28-16 Handbook of Computational Molecular Biology

of this system showed that oscillations are most likely to occur by the presence
of strong promoters coupled to efficient ribosome binding sites, tight transcrip-
tional control, cooperative repression and comparable protein and mRNA decay
rates. The experimental system, constructed using these guidelines, produces self
sustained oscillations in the concentration of its three proteins: LacI, TetR, and
CI.

• Positive and negative feedback The interaction of positive and negative feed-
back can give rise to oscillatory behavior. Roughly speaking, if the positive feed-
back creates bistability, then the negative feedback drives the system back and
forth between the two stable fixed points. An example is that of the Cdc2-cyclin
B system in early embryonic cell cycle. Recent experimental and mathemati-
cal results have shown that the basic functionality of this oscillator stems from
the interplay of positive and negative feedback. Positive feedback implements a
toggle switch characterized by biochemical hysteresis (Cdc2 activation system),
while a negative feedback loop involving Cdc2 allows sustained oscillations, much
like the relaxation oscillator in microelectronics [53].

28.6.2 Feedback and Stability

As hinted to previously, negative feedback loops enhance stability. Let’s look back at the
system in Figure 28.5 and compare it to an identical system where the negative feedback
loop is abolished. We describe the two variations of this system using differential equations,
and get the following for the dynamics of the repressor (tetR)

funreg =
dRunreg(t)

dt
= n

kpP

1 + kpP
k1a− kdegRunreg(t)

fauto =
dRauto(t)

dt
= n

kpP

1 + kpP + krRauto(t)
k1a− kdegRauto(t) (28.8)

where P is the concentration of the RNA polymerase, kp and kr are the binding constants
of the polymerase and the repressor respectively, k1 is the promoter isomerization rate from
closed to initiating complex, a the proportionality constant between mRNA and protein,
kdeg is the degradation rate of the repressor, and n is the gene copy number [79]. Stability
(S) in this context is defined as the rate at which the response to a perturbation η from
equilibrium decays. We can get the value of S by expanding in Taylor series around R∗ (the
steady state value of the repressor) such that

f(R∗ + η) = f(R∗) + ηf
′
(R∗) + Θ(η2) (28.9)

Notice that this rate is simply S = f
′
(R∗). Therefore,

Sunreg = −kdeg (28.10)

Sauto = n
kpPk1akr

(1 + kpP + krR∗)2
− kdeg (28.11)

Since Sunreg < Sauto, the stability in the autoregulatory system is higher than that in the
unregulated system for all positive values of the parameters and steady states.

Modeling and Analysis of Gene Networks Using Feedback Control Theory 28-17

28.6.3 Feedback and Sensitivity to Parameter Variations

In engineering, it is generally possible to build robust systems out of imprecise components
through the use of feedback. For example, consider the system in Figure 28.8 which consists
of the interconnection of a plant K and a controller C. Assume for simplicity that K and
C are constant (this could be thought of as the steady-state behavior of a dynamic system
after all the transients had settled). The relationship between the output Y and the input
R can be easily computed as

Y

R
=

K

1 + CK

If CK >> 1 (which ideally can be achieved by the design of the controller C) then
Y
R ' K

CK = 1
C . In this case Y

R ' K
CK is only dependent on C, which makes it independent

of any uncertainties and variations that might occur in the plant K. Such a scheme can
be (and is) implemented in gene networks, for example by autogenous regulation of the
transcription of a gene by its own product.

R YK

C
-+

FIGURE 28.8: Elementary feedback system with atucator/system K and controller/sensor C.
The goal is for response Y to track reference R, independent of uncertainty and
variation in K.

28.6.4 Feedback, Filtering and Noise Resistance

Engineering systems mostly use negative feedback as noise attenuating mechanism. Not
surprisingly, molecular networks which must function reliably in the presence of noise, also
ubiquitously use feedback. In terms of its filtering properties, a simple negative feedback
loop functions as a low-pass filter. More sophisticated types of feedback, such as integral
feedback, can shape band-pass filters. Integral feedback is, for example, implemented in
bacterial chemotaxis [81](see subsequent sections). The main idea of integral feedback is
the use of a negative feedback loops that integrates previous history (keeps a memory)
to attenuate high and low frequencies and amplify intermediate frequencies. Feedback is
also instrumental in attenuating biochemical intrinsic fluctuations. Results pointing in that
direction have been obtained by Thattai and Van Oudenaarden through a simple model
for gene expression in prokaryotes [70]. In their example, mRNA molecules are assumed
to be synthesized constitutively off a DNA template strand and transcribed at a rate KR.
These molecules are then translated at a rate KP into proteins. mRNA and proteins are
degraded at rates γR and γP respectively (Figure 28.9). Two scenarios are investigated: an
unregulated gene and a gene where the protein regulates its own production in a negative

28-18 Handbook of Computational Molecular Biology

FIGURE 28.9: Simple transcription/translation module. Adapted from [70]

feedback fashion. In the unregulated gene network, KR is constant whereas in the regulated
gene networkKR is taken to be an affine function of P , i.e. KR = K0−K1P . The statistical
moments of this example are solvable analytically from the master equation. The quantity
used to quantify the noise rejection properties of this system is the variance of the protein
steady state distribution normalized by the mean value of the distribution. This is called
the Fano factor f . It is used to characterize the deviation of the protein distribution from
Poissonian statistics. This quantity is

fu =
σu

P
2

< Pu >
=

b

1 + η
+ 1

in the unregulated case and

fr =
σr

P
2

< P r >
= (

1− φ
1 + bφ

)(
b

1 + η
) + 1

in the regulated case. η = γP

γR
, b = KP

γR
, and φ = K1

γP
. Obviously, fu > f r, indicating that

feedback is indeed an efficient way for intrinsic noise reduction.

28.6.5 Feedback and Transient Response

The work of Monod had suggested that the kinetics of simple transcription units are typ-
ically slow [49]. However, it was shown later that many strategies are used to speed up
those kinetics. For example, in the regulation of enzyme levels in mammalian tissues, fast
dynamics are achieved using large synthesis and degradation rates [62]. Negative feedback
can also be used to that effect as first suggested in [59] and proven both mathematically and
experimentally in [57]. The experimental setup in [57] consisted of a transcription unit that
produces a certain steady-state protein concentration when induced (similar to the simple
experimental setup of Becskei and Serrano (see Figure 28.5 and Sections 28.6.1 and 28.6.2).
A simplified mathematical representation of this problem takes the form of an ODE for the
protein concentraion x

dx(t)
dt

= A(t)− αx

Modeling and Analysis of Gene Networks Using Feedback Control Theory 28-19

Promoter1

lacI tetR promoter 2 gfp

-

- cI

-

FIGURE 28.10: AND logic gate with memory. Adapted from [35].

A(t) being the production rate and αx the dilution/degradation term (growth rate is
α = ln(2)/τ , τ is the cell cycle time). A(t) = constant corresponds to the case where
x does not feedback regulate its own production. However, if A(t) is dependent on x (in
michaelis-Menten like form, for example), the protein product negatively regulates its own
synthesis. The two designs can be built to achieve the same steady state value by tuning the
maximal production rate of their promoters, therefore adjusting the production term A(t).
To compare the transient performance of both designs, the rise time tr is adopted. tr is
defined as the time at which x reaches half of its steady state value. For the autoregulated
case, tr ' 0.21τ while for the unregulated case tr = τ , therefore indicating that feedback
was instrumental in speeding up the response of the system.

28.6.6 Feedback and Building Sophisticated Logic Molecular Gates

A classic example of a molecular logic gate is the “AND gate” implemented by the arabinose
operon. This operon is only induced if both arabinose and AraC are present. Alternatively,
it is in the OFF state if either is absent. Similarly, OR gates can be built. These simple
logic gates operate in open loop. The addition of feedback loops can implement complex
and sophisticated behavior such as memory. For example, consider the scenario presented in
Figure 28.10. Promoter 2 is repressed by either LacI or TetR. At the same time, Promoter
1 directs the transcription of the lac and tet genes, and is itself induced by the simultaneous
presence of the chemical IPTG and anhydrotetracyclin (aTc). This construct implements
an AND gate switched ON by the presence of IPTG and aTc and OFF by the absence
of either. The memory in this scheme is implemented through the feedback loop from CI
to promoter 1. Once the system is in the ON state, the production of LacI and TetR is
repressed. Consequently, the system stays in the ON state independently of the subsequent
levels of the inducers. By doing so, it remembers that at some point in the past, both
inducers were present simultaneously.

28.7 Novel Insights through the Use of Control and Systems
Theory: Some Case Studies

28.7.1 Integral Feedback and Chemotaxis

Ideas and concepts stemming from control theory have already been used to delineate the
essence of structure and functionality in many examples of gene regulatory networks. The
robust perfect adaptation in bacterial chemotaxis is an admirable illustration. Bacterial
chemotaxis is the process by which bacteria sense the concentration of chemical species and

28-20 Handbook of Computational Molecular Biology

migrate toward chemoattractants or away from chemorepellants. This behavior is mainly
achieved by integrating signals received from the environments (detected through recep-
tors) to modulate the direction of their flagellar rotation. The chemotactic system has long
intrigued biologists who accumulated a large body of genetic, structural and biochemical
data about this system [9, 32]. It has been established that in bacteria, the chemotactic
response is accomplished by signal transmission between two supramolecular entities — the
receptor complexes situated at the poles of the cell, and the flagellar motor complexes em-
bedded in the membrane in a random distribution around the cell. The messenger protein
CheY moves between these two entities, therefore transmitting chemotactic signals from
receptors to flagella. The interaction of CheY with the flagellar-motor complex increases
the probability of changing the flagellar rotation from its default counterclockwise direction
(CCW) to clockwise direction (CW). The consequence of CW rotation is abrupt tumbling
after which the cell swims in a new direction. The chemotactic system includes cascades of
phospho-relay systems consisting of (in addition to CheY), five other intracellular proteins:
A, B, R, W, Z (see Figure 28.11(a)). Proteins R and B enzymatically add and remove (re-
spectively) methyl groups on the receptor/ligand complex. The phosphorylation level of B
dictates its removal activity. This phosphorylation of B is dependent on the histidine kinase
A, which is coupled to the receptor via adaptor protein W. Furthermore, protein A mediates
the phosphorylation of protein Y, and protein Z removes this phosphorylation. The level of
phosphorylated Y affects the cell tumbling frequency through interaction with the flagellar
motors. Therefore, the input to this system is usually perceived to be ligand concentration
and the output to be the concentration of phosphorylated Y. In a pioneering work, Alon et
al. [1] demonstrated experimentally that the input-output relationship between ligand and
phosphorylated Y concentration possesses a property that Barkai and colleagues had iden-
tified as “perfect adaptation”[5]. Upon a change in input (stimulus concentration), perfect
adaptation is the process by which the output returns at steady state to its exact prestim-
ulus value, despite the persistence of the input. This property is necessary for the ability
of bacteria to respond to stimulus gradients [46]. Although this fact has been long known,
an exact understanding of the mechanism that insures this behavior was absent until the
elegant work of Yi and coworkers [81]. Their fresh “control engineering” perspective on the
problem established the necessity for the presence of an integration process in the chemo-
tactic system in order to accomplish the observed perfect adaptation. Their result was a
direct application of a classic control engineering principle: the internal model theorem,
due to Francis and Wonham [22]. This theorem states that for a linear system to track a
reference signal or robustly reject a disturbance belonging to a class of time functions, it
must contain a subsystem which can itself generate all disturbances in this class. In the
context of chemotaxis, this result implies that in order to accomplish perfect adaptation
after a step increase in ligand concentration, the system must possess a subsystem which
generates all constant time signals, i.e. an integrator. However, the question remains of how
this integration can physically be accomplished by the interaction of molecules and cellular
components. To keep our presentation simple, we illustrate the physical implementation of
this postulated integral action in a simplified model of chemotaxis in the social amoebea
Dictyostelium discoideum [39]. As in bacterial chemotaxis, suppose there exists a response
regulator (similar to CheY) that can exist in one of two states: active (R) and inactive
(R∗), such that its total number is constant RT = R(t)+R∗(t). This regulator is activated
through the action of an enzyme A and inactivated through the action of an enzyme I, which
are in turn regulated by an external signal S proportional to chemoattractant concentration

Modeling and Analysis of Gene Networks Using Feedback Control Theory 28-21

(a)

R*

I

S

A
R

(b)

FIGURE 28.11: (a) Schematic illustration of bacterial chemotaxis. Adapted from [81] (b) Sim-
plified model of chemotaxis in the social amoebea Dictyostelium Discoideum.
Adapted from [39]

(see Figure 28.11(b)). The deterministic rate equations describing these interactions are

dR∗(t)
dt

= −k−rI(t)R∗(t) + krA(t)R(t)

= −(k−rI(t) + krA(t))R∗(t) + krA(t)RT (28.12)

and

dA(t)
dt

= −k−aA(t) +KaS(t)

dI(t)
dt

= −k−iI(t) +KiS(t) (28.13)

where k−r, kr, k−a, ka, k−i and ki are positive rate constants. We are now in position to
analyze this system. When the strength of S increases, stepping from S0 to S1 (representing
a sharp increase in chemoattractant concentration for example), the enzyme A and I react

28-22 Handbook of Computational Molecular Biology

accordingly. Their time profiles are the solution of (28.13) with S(t) taken as the input

A(t) = A1KA + e−k−at(S0 − S1)KA

I(t) = I1KI + e−k−it(S0 − S1)KI (28.14)

with KA = ka

k−a
and KI = ki

k−i
. the ratio A(t)

I(t) is

A(t)
I(t)

=
KA

KI

S1 + e−k−at(S0 − S1)
S1 + e−k−it(S0 − S1)

The exponential terms in the above expression decay as t→∞. Therefore the steady state
ratio of A and I is

A(∞)
I(∞)

=
KA

KI
(28.15)

Similarly, the steady state concentration of the active regulator R∗, found by setting
dR∗(t)

dt = 0, is given by

R∗(∞) =
krA(∞)/I(∞)

k−r + krA(∞)/I(∞)
RT

Using (28.15), we get

R∗(∞) =
kr

KA

KI

k−r + kr
KA

KI

RT (28.16)

R∗(∞) is independent of S, indicating that although R∗ reacts to the change in chemoat-
tractant (initiating the corresponding course of action for movement toward that chemoat-
tractant), it always returns to its prestimulus value and no residual effect of S pertains. As
such, the chemotactic system is ready to react to another gradient change in chemoattrac-
tant concentration. The integral action in this system can be better visualized by rewriting
(28.12) as

dR∗(t)
dt

= −(k−rI(t) + krA(t)(R∗(t)− S∗(t)) (28.17)

with

S∗(t) = RT

A(t)
I(t)

k−r

kr
+ A(t)

I(t)

If S∗(t) is associate with the external disturbance, then the whole system can be seen to be
an integral control feedback with time varying gain k−rI(t) + krA(t).

We emphasize here that the main contribution of this insight resides in proving the
necessity aspect for the existence of an integral feedback scheme. The existence of this
mechanism is simply required to account for the observed adaptation. As a result, known
biology can be probed to establish how this integral action is implemented. If the known
components cannot account for this action, further guided experiments can be suggested to
uncover potential missing parts. The presence of integral feedback in chemotaxis is not a
singular occurrence. Indeed, it has been postulated that integral feedback is present at all
levels of biological regulation and accounts for various adaptation mechanisms. For example,
integral feedback has been identified in the basic hormonal mechanism that underlies the
adaptation of the calcium levels in mammals to external disturbances affecting the plasma
calcium pools [15].

Modeling and Analysis of Gene Networks Using Feedback Control Theory 28-23

28.7.2 Robustness and Complexity in the Bacterial Heat Shock Re-
sponse

High temperatures cause cell proteins to unfold from their normal shapes, resulting in mal-
functioning and eventually death of the cell. Cells have evolved gene regulatory mechanisms
to counter the effects of heat shock by expressing specific genes that encode heat shock pro-
teins (hsps) whose role is to help the cell survive the consequence of the shock. In E. coli,
the heat shock (HS) response is implemented through an intricate architecture of feedback
loops centered around the σ- factor that regulates the transcription of the HS proteins under
normal and stress conditions. The enzyme RNA polymerase (RNAP) bound to this regula-
tory sigma factor, σ32, recognizes the HS gene promoters and transcribes specific HS genes.
The HS genes encode predominantly molecular chaperones (DnaK, DnaJ, GroEL, GrpE,
etc.) that are involved in refolding denatured proteins and proteases (Lon, FtsH, etc.) that
function to degrade unfolded proteins. At physiological temperatures (30◦C to 37◦C), there
is very little σ32 present and hence little transcription of the HS genes. When bacteria
are exposed to high temperatures, σ32 first rapidly accumulates, allowing increased tran-
scription of the HS genes and then declines to a new steady state level characteristic of the
new growth temperature. An elegant mechanism that senses temperature and immediately
reacts to its effect is implemented as follows in the bacterial heat shock response. At low
temperatures, the translation start site of σ32 is occluded by base pairing with other regions
of the σ32 mRNA. Upon temperature upshift, this base-pairing is destabilized, resulting
in a “melting” of the secondary structure of σ32, which enhances ribosome entry, therefore
increasing the translation efficiency. Indeed the translation rate of the mRNA encoding σ32

increases immediately upon temperature increase [69]. Hence, a sudden increase in temper-
ature, sensed through this mechanism, results in a burst of σ32 and a corresponding increase
in the number of heat shock proteins. This mechanism implements a control scheme very
similar to a feedforward control loop. With the use of this mechanism, the production of
heat-shock proteins is made to be temperature dependent.

The level and activity of σ32 are also regulated. In addition to their function in pro-
tein folding, the chaperone DnaK are also capable of binding to σ32, therefore limiting its
capability to bind to RNA polymerase. Raising the temperature produces an increase in
the cellular levels of unfolded proteins that then titrate DnaK/J away from σ32, allowing
it to bind to RNA polymerase, resulting in increased trancription of DnaK/J and other
chaperones. The accumulation of high levels of HS proteins leads to the efficient refolding
of the denatured proteins thereby decreasing the pool of unfolded protein, freeing up D-
naK/J to sequester this protein from RNA polymerase. This implements what is referred
to as a sequestration feedback loop. In this way, the activity of σ32 is regulated through a
feedback loop that involves the competition of σ32 and unfolded proteins for binding with
free DnaK/J chaperone pool.

During steady state growth, σ32 is rapidly degraded (t1/2 = 1 minute), but is stabilized
for the first five minutes after temperature upshift. The chaperone DnaK and its cochap-
erone DnaJ are required for the rapid degradation of σ32 by the HS protease FtsH. RNAP
bound σ32 is protected from this degradation. Furthermore, FtsH itself being a product of
the heat-shock protein expression, experiences a synthesis rate that is tied to the transcrip-
tion/translation rate of DnaK/J. Therefore, as protein unfolding occurs, σ32 is stabilized
by the relief of its sequestration from DnaK. However, as more proteins are refolded, and
as the number of FtsH itself increases, there is a decrease in the concentration of σ32 to a
new steady state concentration that is dictated by the balance between the temperature-
dependent translation of the rpoH mRNA and the level of σ32 activity modulated by the
hsp chaperones and proteases acting in a negative feedback fashion. In this way, the FtsH

28-24 Handbook of Computational Molecular Biology

FIGURE 28.12: Biological Block Diagram for the Heat Shock Response

mediated degradation of σ32 is feedback regulated. We refer to this as the FtsH degradation
feedback loop. A biological block diagram of the heat shock response that shows the various
regulation mechanisms is shown in Figure 28.12.

Full and reduced order models have been devised to describe the rich dynamics of the
bacterial heat shock response [43, 16, 17]. These models have been successful in accurately
producing the behavior of the heat shock system. The predictions of the models have
been used to mathematically confirm various experimental results (e.g. the absence of
translational shutoff for σ32 mRNA in the adaptation phase), and suggest new experiments
(e.g. temperature downshift, regulation of degradation). The thorough control analysis of
the heat shock response also revealed important universal design principle that are likely
to be present in other biological system. For example, it has been demonstrated that
biological complexity is not a futile outcome of evolution, but rather the result of improvised
solutions to achieve various performance objectives, such as robustness, transient response
and efficient use of materials [14]. Biological systems share this control design philosophy
with engineered systems. To demonstrate this, we start with a minimal system that achieves
basic functionality of a heat shock response system. We then add one layer of regulation
after another, each time using control engineering intuition to demonstrate how that layer
is needed to improve the performance of the overall system with respect to some objective.
The simplest functional design that uses σ32 to produce heat shock proteins will have the
blocks shown in Figure 28.13(a).

In this hypothetical open-loop design strategy, the number of σ32 dictates the level of
heat shock proteins in the cell. The production of heat-shock proteins can be made to be
temperature dependent with the use of the translational control mechanism (feedforward).
Figure 28.14 shows the level of σ32, chaperones, and folded proteins associated with this
design. In this appealingly simple design, one can observe acceptable steady state levels
of folded proteins, both at low and high temperatures. However, this system suffers from
a critical shortcoming: the lack of robustness. Indeed, it can be easily shown that the
slightest change in the transcription and translation rates results in a corresponding change
in the number of heat shock proteins produced. This sensitivity to parametric uncertainty
is a well known problem of open loop designs, and is one of the key reasons why feedback
control systems are superior to open loop systems. The property of feedback to attenuate
this sensitivity has led to the pervasive and extremely successful use of feedback control
systems in all engineering disciplines. As in man-made engineering systems, the hyper

Modeling and Analysis of Gene Networks Using Feedback Control Theory 28-25

Transcription and
Translation

of HSP

Protein
Folding

Transcription and
Translation

of HSP

Synthesis of
σ32

(a)

Protein
Folding

Transcription and
Translation

of HSP

Sequestration of
σ32

−
Synthesis of

σ32

Degradation of
σ32

(b)

Protein
Folding

Transcription and
Translation

of HSP

Degradation of
σ32

−
Synthesis of

σ32

(c)

FIGURE 28.13: Hypothetical Design Models for the Heat Shock Response (a) Open loop design
with feedforward control that achieves the basic functionality of protein folding
(b) closed loop design with sequestration loop that modulates the activity of
σ32 (c) closed loop design with sequestration loop and degradation loop

sensitivity to parameter variations in the heat shock response seen in the open loop design
is circumvented through the use of feedback. This feedback is implemented through the
sequestration of free σ32 by the chaperones, thus modulating the pool of σ32 available for
RNA polymerase binding (see Figure 28.13 (b)). In addition to its obvious benefits in
reducing parametric uncertainty, the added sequestration loop achieves at least two other
functional purposes. Firstly, this loop is instrumental in reducing the delay in the folding
of proteins as compared to the open loop case (see Figure 28.15). This effect can be best
understood by thinking of the pool of the complex formed by σ32 bound to the chaperones
as a reservoir for σ32 that can be immediately used once the chaperones are recruited to
refold denatured proteins. The immediate burst in free σ32 results in a faster production of
chaperones, and consequently a faster folding of proteins. The use of feedback to improve
the transient response is again a common practice in control engineering. Secondly, although
the number of chaperones at high temperature in the open loop case is much higher than
that with the sequestration loop added, the folded proteins number in the two cases is very

28-26 Handbook of Computational Molecular Biology

Time

L
e

v
e

l
o

f
s
ig

m
a

3
2

380 400 420 440 460 480
0

100

200

300

400

500

600
Open Loop, Feedforward

(a) Time

L
ev

el
o

fC
h

ap
er

o
n

es

380 400 420 440 460 480
8000

12000

16000

20000

24000

28000

32000

(b) Time

L
ev

el
o

fF
o

ld
ed

P
ro

te
in

s

380 400 420 440 460 480
800000

1E+06

1.2E+06

1.4E+06

1.6E+06

1.8E+06

2E+06

2.2E+06

(c)

FIGURE 28.14: Levels of σ32, DnaK, and unfolded proteins for the open loop design

Time

L
e

v
e

l
o

f
s
ig

m
a

3
2

380 400 420 440 460 480
0

100

200

300

400

500

600

Sequestration Feedforward
Open Loop, Feedforward

(a) Time

L
ev

el
o

fC
h

ap
er

o
n

es

380 400 420 440 460 480
8000

12000

16000

20000

24000

28000

32000

(b) Time

L
ev

el
o

fF
o

ld
ed

P
ro

te
in

s

380 400 420 440 460 480
800000

1E+06

1.2E+06

1.4E+06

1.6E+06

1.8E+06

2E+06

2.2E+06

(c)

FIGURE 28.15: The levels of σ32, DnaK, and unfolded proteins for a design with added seques-
tration of σ32 by chaperone. Parameters are chosen to have same steady-state
concentrations of σ32 and chaperones in open loop (green) and closed loop with
sequestration (blue) at low temperature, and performance is assessed at high
temperature

comparable (see Figure 28.15). This is mainly due to the fact that in the closed loop case,
the synthesis of proteins is self regulating, and the excess of unneeded heat shock proteins
produced in the open loop case is hindered by feeding back a measure of the folding state in
the cell (through the σ32 − chaperone complex) to regulate the pool of free σ32. Hence the
unnecessary use of materials and energy that open-loop systems suffer from is completely
avoided through the utilization of feedback, which has the advantage of producing the
required number of heat-shock proteins thereby avoiding the excessive metabolic burden
associated with over-expression of them.

Now, if the speed of the repair response is dependent on the immediate increase in the
number of σ32, then slowing down the degradation of σ32 after the onset of heat would be
also beneficial in that direction. This could be achieved by making the degradation signal
of σ32 dependent on the protein folding state of the cell. The effect of such an added layer

Modeling and Analysis of Gene Networks Using Feedback Control Theory 28-27

Time

L
e

v
e

l
o

f
s
ig

m
a

3
2

380 400 420 440 460 480
0

100

200

300

400

500

600

700 Sequestration, Feedforward, Outer Loop
Sequestration Feedforward
Open Loop, Feedforward

(a) Time

L
ev

el
o

fC
h

ap
er

o
n

es

380 400 420 440 460 480
8000

12000

16000

20000

24000

28000

32000

(b) Time

L
ev

el
o

fF
o

ld
ed

P
ro

te
in

s

380 400 420 440 460 480
800000

1E+06

1.2E+06

1.4E+06

1.6E+06

1.8E+06

2E+06

2.2E+06

(c)

FIGURE 28.16: The levels of σ32, DnaK, and unfolded proteins for a design with added se-
questration and degradation. Parameters are chosen to have same steady-state
concentrations of σ32 and chaperones in open loop (green), closed loop with
sequestration (blue), and closed loop with sequestration and degradation (red)
at low temperature, and performance is assessed at high temperature

of feedback regulation is shown in Figure 28.16 for σ32, DnaK, and folded proteins. Notice
that the delay in the protein folding process is greatly reduced, while the folding of proteins
is only slightly impaired. This comes as a natural consequence of the tighter control over the
number of σ32. This is an example of the kind of tradeoffs that usually appear when various
performance objectives must be balanced. Yet another objective that is of primary impor-
tance in cellular processes is their ability to attenuate undesirable noise and stochasticity.
The nature of stochasticity in these processes stems from various sources of uncertainty
inside the cell and has been termed intrinsic noise, to differentiate it from extrinsic noise
that results from the environment. Various structures and strategies have been identified
as leading to intrinsic noise rejection or exploitation mechanisms. For example, the use of
feedback has been observed experimentally to attenuate intrinsic cellular noise (see previ-
ous sections for more details on the origin of this stochasticity, and various approaches to
model it). We briefly describe one simple example in the heat shock system showing the
role of feedback in noise rejection. Using the Stochastic Simulation Algorithm of Gillespie,
we simulate the system in the presence and absence of the degradation feedback loop. The
result of this simulation in shown in Figure 28.17 for two sample paths, one without the
degradation loop and the other with that loop in place. It is apparent that this feedback
loop is instrumental in reducing the stochastic fluctuations around the heat shock proteins
steady-state.

As a conclusion, the detailed scrutiny of the control strategies in the heat shock response
has uncovered that the use of elaborate and increasingly sophisticated control mechanisms
results in more reliable gene regulatory networks, all the while generating spiraling levels
of complexity. This need for robustness is however balanced by constraints resulting from
other performance criteria, such as the transient response and the limited cellular energies
and materials. This echoes the various tradeoffs considered in the design of engineering
systems, and motivates all the more the use of engineering principles for the exploration of
biological complexity.

28-28 References

Time

Ch
ap

er
on

el
ev

el

0 25 50 75 100
8000

8400

8800

9200

9600 Constitutive Degradation of S32
Deterministic
Wild Type

FIGURE 28.17: Stochastic level of chaperones in the presence (green) and absence (red) of the
outer degradation feedback loop

28.8 Conclusions

Robust functionality in gene networks is in great part implemented through the use of e-
laborate regulatory feedback, the outcome being rather complex dynamics that cannot be
solely captured through casual intuition alone. Hence the need for theoretical methods and
precise mathematical formulations, combined with bench biology experimentation. Ideas
borrowed from “synthetic” sciences such as engineering and computer science are increas-
ingly proving to be very powerful tool in understanding functional biological modules and
their interactions. In this article, we have presented various examples illustrating the spe-
cific use of control theory to that purpose. For a detailed account on the similarities and
differences in biology and engineering at the system-level, in addition to engineering results
that are most likely to impact biology, the reader is referred [12]. A thorough understand-
ing of these similarities and differences is at the core of “Systems Biology” whose future
holds many promises. Deeper understanding of the causes of disease (merely the failure of
regulatory networks) and the effects of administration of therapeutic drugs [13] are nothing
by a few of the anticipated fruits.

References

[1] U. Alon, M.G. Surette, N. Barkai, and S. Leibler. Robustness in bacterial chemotaxis.
Nature, 397:168–171, 1999.

[2] R. Alves and M.A. Savageau. Comparing systemic properties of ensembles of biological
networks by graphical and statistical methods. Bioinformatics, 16(6):527–533, 2000.

[3] A. Arkin, J. Ross, and H. McAdams. Stochastic kinetic analysis of developmental
pathway bifurcation in phage λ-infected escherichia coli cells. Genetics, 149:1633–
1648, 1998.

[4] R.J. Bagley and L. Glass. Counting and classifying attractors in high dimensional

References 28-29

dynamical systems. J. Theor. Biol, 183:269–284, 1996.
[5] N. Barkai and S. Leibler. Robustness in simple biochemical networks. Nature, 387:913–

917, 1997.
[6] N. Barkai and S. Leibler. Biological rythms-circadian clocks limited by noise. Nature,

403:267–268, 2000.
[7] A. Becskei, B. Seraphin, and L. Serrano. Positive feedback in eukaryotic gene networks:

Cell differentiation by graded binary response conversion. EMBO J., 20:2528–2535,
2001.

[8] A. Becskei and L. Serrano. Engineering stability in gene networks by autoregulation.
Nature, 405:590–593, 2000.

[9] D.F. Blair. How bacteria sense and swim. Ann. Rev. Microbiol., 49:489–522, 1995.
[10] J. Boden. Programming the Drosophila embryo. J. Theor. Biol., 188:391–445, 1997.
[11] A. Cornish-Bowden. Fundamentals of Enzyme Kinectics. Portland Press, London,

1995.
[12] M. Csete and J.C. Doyle. Reverse engineering of biological complexity. Science,

295:1664–1669, 2002.
[13] E.J. Davidov, J.M. Holland, E.W. Marpleand, and S. Naylor. Advancing drug discovery

through systems biology. Drug Discovery Today, 8(4):175–183, 2003.
[14] H. El-Samad and M. Khammash. Systems biology: From physiology to gene regulation.

IEE Contr. Syst. Mag., 2003.
[15] H. El-Samad, M. Khammash, and J.P. Goff. Calcium homeostasis and parturient

hypocalcemia: An integral feedback perspective. J. Theor. Biol., 214:17–29, 2002.
[16] H. El-Samad, M. Khammash, H. Kurata, and J.C. Doyle. Robustness Analysis of the

Heat Shock Response in e. coli. In Proceedings of the American Control Conference,
pages 1742–1747, 2002.

[17] H. El-Samad, S. Prajna, A. Papachristodoulou, and M. Khammash et al. Model
validation and robust stability analysis of the bacterial heat shock response using
SOSTOOLS. In Proceedings of the 42nd IEEE Conference on Decision and Control,
Maui, Hawai, December 2003.

[18] J. Elf and M. Ehrenberg. Fast evaluation of fluctuations in biochemical networks with
the linear noise approximation. Genome Research, 13:2475–2484, 2003.

[19] M.B. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional regu-
lators. Nature, 403:335–338, 2000.

[20] J.E. Ferrell. Self-perpetuating states in signal transduction: Positive feedback, double
negative feedback and bistability. Curr. Op. Chem. Biol., 6:140–148, 2002.

[21] J.E. Ferrell and E.M. Machleder. The biochemical basis for an all-or-none cell fate in
xenopus oocytes. Science, 280:895–898, 1998.

[22] B.A. Francis and W.M. Wonham. The internal model principle for linear multivariable
regulators. Appl. Math. Optim., 2:170–194, 1985.

[23] M.A. Gibson and J. Bruck. Exact stochastic simulation of chemical systems with many
species and many channels. J. Phys. Chem., 105:1876–1889, 2000.

[24] D. Gillespie. A rigorous derivation of the chemical master equation. Physica A,
188:404–425, 1992.

[25] D. T. Gillespie. A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. J. Comp. Phys., 22:403–434, 1976.

[26] D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem., 81:2340–2361, 1977.

[27] D.T. Gillespie. Markov Processes: An Introduction for Physical Scientists. Aca-
demic Press, 1992.

[28] D.T. Gillespie. A rigorous derivation of the chemical master equation. Physica A,

28-30 References

188:404–425, 1992.
[29] D.T. Gillespie. The chemical Langevin equation. J. Chem. Phys., 113:297–306, 2000.
[30] L. Glass and S.A. Kauffman. The logical analysis of continuous, non-linear biochemical

control networks. J. Theor. Biol., 39:103–129, 1973.
[31] B.C. Goodwin. Temporal Organization in Cells. Academic Press, New York, 1963.
[32] T.W. Grebe and J. Stock. Bacterial chemotaxis: The five sensors of a bacterium.

Curr. Biol., 8:R154–R157, 1998.
[33] J.S. Griffith. Mathematics of cellular control processes. II. positive feedback to one

gene. J. Theor. Biol., 20:209–216, 1968.
[34] L.H. Hartwell, J. Hopfield, and A.W. Murray. From molecular to modular cell biology.

Nature, 81:C47–C52, 1999.
[35] J. Hasty, D. McMillen, and J.J. Collins. Engineered gene circuits. Nature, 420:224–230,

2002.
[36] J. Hasty, J. Pradines, M. Dolnik, and J.J. Collins. Noise-based switches and amplifiers

for gene expression. PNAS, 97:2075–2080, 2000.
[37] W.J. Hedley, M.R. Nelson, D.P. Bullivantand, and P.F. Nielsen. A short introduction

to CellML. Philosophical Transcations of the Royal Society of London Series A-
Mathematical Physical and Engineering Sciences, 359 (1783):1073–1089, 2001.

[38] M. Hucka, A. Finney, H.M. Sauro, and H. Bolouri et al. The systems biology markup
language (SBML): a medium for representation and exchange of biochemical network
models. Bioinformatics, 19 (4):524–531, 2003.

[39] P.A. Iglesias. Feedback control in intracellular signaling pathways: Regulating chemo-
taxis in dictyostelium discoideum. Eur. J. Control, 9:227–236, 2003.

[40] F. Jacob and J. Monod. On the regulation of gene activity. Cold Spring Harb. Symp.
Quant. Biol., 26:193–211, 389–401, 1961.

[41] N.G. Van Kampen. Stochastic Processes in Physics and Chemistry. Elsevier Science
Publishing Company, 1992.

[42] A. Keller. Model genetic circuits encoding autoregulatory transcription factors. J.
Theor. Biol., 172:169–185, 1995.

[43] H. Kurata, H. El-Samad, T.M. Yi, and M. Khammash et al. Feedback Regulation of
the Heat Shock Response in e. coli. In Proceedings of the 40th IEEE Conference on
Decision and Control, pages 837–842, 2001.

[44] D.C. Lewis. A qualitative analysis of S-systems: Hopf birfucations. In Canonical
Nonlinear Modeling: S-System Approach to Understanding Complexity, pages 304–
344, 1991.

[45] L.M. Loew and J.C. Schaff. The virtual cell: a software environment for computational
cell biology. Trends in Biotechnology, 19(1):401–406, 2001.

[46] R.M. Macnab and D.E. Koshland. Gradient sensing mechanism in bacterial chemo-
taxis. PNAS, 69:2509–2512, 1972.

[47] H. McAdams and A. Arkin. Stochastic mechanisms in gene expression. In PNAS,
volume 94, pages 814–819, 1997.

[48] H. McAdams and L. Shapiro. Circuit simulation of genetic networks. Science, 269:650–
656, 1995.

[49] J. Monod, A.M. Pappenhimer, and G. Cohen Bazire. La cinetique de la biosynthese de
la β-galactocidase chez e. coli consideree comme fonction de la croissance. Biochim.
Biophys. Acta, 9:648–660, 1952.

[50] C.J. Morton-Firth and D. Bray. Predicting temporal fluctuations in an intracellular
signalling pathway. J. Theor. Biol., 192(1):117–128, 1998.

[51] T.C. Ni and M.A. Savageau. Model assessement and refinement using strategies from
biochemical systems theory: Application to metabolism in red blood cells. J. Theor.

References 28-31

Biol., 179:329–368, 1996.
[52] M. Plasthne. A Genetic Switch: Phage λ and Higher Organisms. Cell Press and

Blackwell Scientific Publications, Cambridge, MA, 1992.
[53] J.R. Pomerening, E.D. Sontag, and J.E. Ferrell. Building a cell cycle oscillator: Hys-

teresis and bistability in the activation of Cdc2. Nature, 3:346–351, 2003.
[54] C. Rao and A.P. Arkin. Stochastic chemical kinetics and the quasi-steady-state as-

sumption: Application to the gillespie algorithm. J. Chem. Phys., 118:4999–5010,
2003.

[55] C.V. Rao, D.M. Wolf, and A.P. Arkin. Control, exploitation and tolerance of intracel-
lular noise. Nature, 420(6912):231–237, 2002.

[56] M. Rathinam, L. Petzold, and D.T. Gillespie. Stiffness in stochastic chemically reacting
systems: The implicit tau-leaping method. To appear J. Chem. Phys.

[57] N. Rosenfeld, M.B. Elowitz, and U. Alon. Negative autoregulation speeds the response
time of transcription networks. J. Molec. Biol., 323:785–793, 2002.

[58] M.A. Savageau. Biochemical systems analysis II: The steady-state solution for an
n-pool system using a power law approximation. J. Theor. Biol., 25:370–379, 1969.

[59] M.A. Savageau. A comparison of classical and autogenous systems of regulation in
inducible operons. Nature, 252:546–549, 1974.

[60] M.A. Savageau. Demand theory of gene regulation. I. quantitative development of the
theory. Genetics, 149(4):1665–1676, 1998.

[61] M.A. Savageau and E.O. Voit. Recasting nonlinear differential equations as S-systems:
A canonical nonlinear form. Math. Biosci., 163:105–129, 1987.

[62] R.T. Schimke. On the roles of synthesis and degradation in regulation of enzyme levels
in mammalian tissues. Curr. Top. Cell. Regul., 1:77–124, 1969.

[63] J.E. Shea and C.L. Brooks. From folding theories to folding proteins: A review and
assessment of simulation studies of protein folding and unfolding. Ann. Rev. Phys.
Chem., 52:499–535, 2001.

[64] H. Smith. Monotone semiflows generated by functional differential equations. J. Diff.
Eq., 66:420–442, 1987.

[65] H. Smith. Oscillations and multiple steady sates in a cyclic gene model with repression.
J. Math. Biol., 25:169–190, 1987.

[66] E.H. Snoussi and R. Thomas. Logical identification of all steady states: The concept
of feedback loop characteristic states. Bull. Math. Biol., 55:973–991, 1993.

[67] R. Somogyi and C. Sniegoski. Modeling the complexity of genetic networks: Under-
standing multigenic and pleitropic regulation. Complexity, 1:45–63, 1996.

[68] R. Somogyi and C. Sniegoski. The gene expression matrix: Towards the extraction
of genetic network architectures. In Proceedings of the Second World Congress of
Nonlinear Analysis, 1997.

[69] D.B. Straus, W.A. Walter, and C.A. Gross. The Activity of σ32 is Reduced Under
Conditions of Excess Heat Shock Protein Production in escherichia coli. Genes &
Dev., 3:2003–2010, 1989.

[70] M. Thattai and A. Van Oudenaarden. Intrinsic noise in gene regulatory networks.
PNAS, 98:8614–8619, 2001.

[71] R. Thomas. The role of feedback circuits: Positive feedback circuits are a necessary
condition for positive real eigenvalues of the jacobian matrix. Ber. Busenges Phys.
Chem., 98:1158–1151, 1994.

[72] R. Thomas and R. D’Ari. Biological Feedback. CRC Press, Boca Raton, FL, 1990.
[73] R. Thomas, D. Thieffry, and M. Kauffman. Dynamical behavior of biological regulatory

networks- I. biological role of feedback loops and practical use of the concept of the
loop-characteristic state. Bull. Math. Biol., 57:247–276, 1995.

28-32 References

[74] M. Tomita, K. Hashimoto, K. Takahashi, and T.S. Shimizu et al. E-CELL: Software
environment for whole cell simulation. Bioinformatics, 15:172–84, 1999.

[75] J. Tyson and H.G. Othmer. The dynamics of feedback control circuits in biochemical
pathways. Prog. Theor. Biol., 5:2–62, 1978.

[76] J.M. Vilar, H.Y. Kueh, N. Barkai, and S. Leibler. Mechanisms of noise resistance in
genetic oscillators. PNAS, 99:5988–92, 2002.

[77] M.E. Wall, W.S. Hlavacek, and M.A. Savageau. Design principles for regulator gene
expression in a repressible gene circuits. J. Molec. Biol., 332(4):861–876, 2003.

[78] N. Wiener. Cybernetics, or Control and Communication in the Animal and the
Machine. John Wiley and sons, New York, 1948.

[79] D.M. Wolf and F.H Eckman. On the relationship between genomic regulatory element
organization and gene regulatory dynamics. J. Theor. Biol., 195:167–178, 1998.

[80] O. Wolkenhauer, H. Kitano, and K.H. Cho. Systems biology. IEEE Contr. Syst.
Mag., 23(4):38–48, 2003.

[81] T.-M. Yi, Y. Huang, M. Simon, and J.C. Doyle. Robust perfect adaptation in bacterial
chemotaxis through integral feedback control. PNAS, 97:4649–4653, 2000.

[82] C.H. Yuh, H. Bolouri, and E.H. Davidson. Genomic cis regulatory logic, experimental
and computational analysis of a sea urchin gene. Science, 279:1896–1902, 1998.

29
Predicting Protein Secondary and

Supersecondary Structure

Mona Singh
Princeton University

29.1 Introduction . 29-1
Background • Difficulty of general protein structure
prediction • A bottom-up approach

29.2 Secondary Structure . 29-5
Early Approaches • Incorporating local dependencies •

Exploiting evolutionary information • Recent
developments and conclusions

29.3 Tight Turns . 29-13
29.4 Beta Hairpins . 29-14
29.5 Coiled Coils . 29-15

Early approaches • Incorporating local dependencies •

Predicting oligomerization • Structure-based
predictions • Predicting coiled-coil protein interactions
• Promising future directions

29.6 Conclusions . 29-22

29.1 Introduction

Proteins play a key role in almost all biological processes. They take part in, for example,
maintaining the structural integrity of the cell, transport and storage of small molecules,
catalysis, regulation, signaling and the immune system. Linear protein molecules fold up
into specific three-dimensional structures, and their functional properties depend intricately
upon their structures. As a result, there has been much effort, both experimental and
computational, in determining protein structures.

Protein structures are determined experimentally using either x-ray crystallography or
nuclear magnetic resonance (NMR) spectroscopy. While both methods are increasingly
being applied in a high-throughput manner, structure determination is not yet a straight-
forward process. X-ray crystallography is limited by the difficulty of getting some proteins
to form crystals, and NMR can only be applied to relatively small protein molecules. As a
result, whereas whole-genome sequencing efforts have led to large numbers of known protein
sequences, their corresponding protein structures are being determined at a significantly s-
lower pace. On the other hand, despite decades of work, the problem of predicting the
full three-dimensional structure of a protein from its sequence remains unsolved. Never-
theless, computational methods can provide a first step in protein structure determination,
and sequence-based methods are routinely used to help characterize protein structure. In
this chapter, we review some of the computational methods developed for predicting local

29-1

29-2 Handbook of Computational Molecular Biology

R

N

H

H

C

C

O

H

N

H

C

R

C

O R

N

C

H

H

C

O

i-1 i+1

i

α

α α

Peptide bond

FIGURE 29.1: Proteins are polymers of amino acids. Each amino acid has the same fundamental
structure (boxed), differing only in the atoms making up the side chain. Here,
the i-th side chain in the protein sequence is designated by Ri. The carbon atom
to which the amino group, carboxyl group, and side chain are attached is called
the alpha carbon (Cα). Two amino acids i−1 and i are linked linearly through a
peptide bond between the carboxyl group of amino acid i−1 and the amino group
of amino acid i; a water molecule is removed in the process of bond formation.

aspects of protein structure.

29.1.1 Background

We begin by giving some introductory background to protein structure; there are many
excellent sources for further information (e.g.,[16, 77, 103]).

A protein molecule is formed from a chain of amino acids. Each amino acid consists of a
central carbon atom (Cα), and attached to this carbon are a hydrogen atom, an amino group
(NH2), a carboxyl group (COOH) and a side chain that characterizes the amino acid. The
amino acids of a protein are connected in sequence with the carboxyl group of one amino
acid forming a peptide bond with the amino group of the next amino acid (Figure 29.1).
Successive bonds make up the protein backbone, and the repeating amino-acid units (also
called residues) within the protein consist of both the main-chain atoms that comprise the
backbone as well as the side-chain atoms.

There are 20 side chains specified by the genetic code, and each is referred to by a one-
letter code. A protein sequence can thus be described by a string over a 20-letter alphabet,
and the primary structure of a protein refers to the covalent structure specified by its se-
quence (i.e., Figure 29.1), along with its disulfide bonds. The 20 side chains vary in atomic
composition, and thus have different chemical properties. Some side chains are non-polar,
or hydrophobic, because of their unfavorable interactions with water. Side chains have
many other characteristics, and different side chains are commonly described as being pos-
itively charged, negatively charged, polar, small or large. Hydrophobic amino acids include
isoleucine (I), leucine (L), methionine (M), phenylalanine (F) and valine (V). Arginine (R)
and lysine (K) are positively charged in physiological pH, and aspartic acid (D) and glutam-
ic acid (D) are negatively charged. Polar amino acids include asparagine (N), glutamine (Q)
histidine (H), serine (S) and threonine (T). Alanine (A) is a small amino acid that is non-
polar. Glycine (G) is the smallest amino acid, with just a hydrogen. Cysteine (C) can
take part in disulfide bridges. Proline (P) has the strongest stereochemical constraints, and

Predicting Protein Secondary and Supersecondary Structure 29-3

FIGURE 29.2: Schematic backbone conformations of an α-helix (left) and a β-sheet (right).
An α-helix consists of contiguous amino acid residues. A β-sheet consists of
individual β-strands, each of which is made up of contiguous amino acid residues.
Here, a 5-stranded β-sheet, without the intervening regions, is shown.

tryptophan (W) and tyrosine (Y) are large, ring-shaped amino acids. There are many other
(and sometimes conflicting) ways to classify and describe the amino acids.

The differences in physico-chemical properties of side chains result in the diversity of
three-dimensional protein folds observed in nature. In particular, each possible structural
conformation brings together a different set of amino acids, and the energy of the confor-
mation is determined by the interactions of the side-chain and main-chain atoms with each
other, as well as with solvent and ligands. There are many forces driving protein folding;
for water-soluble proteins, the most dominant is the hydrophobic effect, or the tendency of
hydrophobic amino acids to avoid water and bury themselves within the core of the pro-
tein. Hydrogen bonding, electrostatic interactions and van der Waals forces are also very
important.

From a structural perspective, it is useful to think of protein chains as subdivided into
peptide units consisting of the main-chain atoms between successive Cα atoms. In protein
structures, the atoms in a peptide unit are fixed in a plane with bond lengths and angles
similar in all units. Each peptide unit essentially has only two degrees of freedom, given by
rotations around its N-Cα and Cα-C bonds. Phi (φ) refers to the angle of rotation around
the N-Cα bond, and psi (ψ) refers to the angle of rotation around the Cα-C bond. The
entire backbone conformation of a protein can thus be specified with a series of φ and ψ
angles. Only certain combinations of φ and ψ angles are observed in protein backbones,
due to steric constraints between main-chain and side-chain atoms.

As a result of the hydrophobic effect, the interior of water-soluble proteins form a hy-
drophobic core. However, a protein backbone is highly polar, and this is unfavorable in the
hydrophobic core environment; these main-chain polar groups can be neutralized via the
formation of hydrogen bonds. Secondary structure is the “local” ordered structure brought
about via hydrogen bonding mainly within the backbone. Regular secondary structures
include α-helices and β-sheets (Figure 29.2). A canonical α-helix has 3.6 residues per
turn, and is built up from a contiguous amino acid segment via backbone-backbone hydro-
gen bond formation between amino acids in positions i and i+ 4. The residues taking part
in an α-helix have φ angles around −60◦ and ψ angles around −50◦. Alpha helices vary
considerably in length, from four or five amino acids to several hundred as found in fibrous
proteins. A β-strand is a more extended structure with 2.0 residues per turn. Values for φ
and ψ vary, with typical values of −140◦ and 130◦, respectively. A β-strand interacts via
hydrogen bonds with other β-strands, which may be distant in sequence, to form a β-sheet.
In parallel β-sheets, the strands run in one direction, whereas in antiparallel sheets, they
run in alternating directions. In mixed sheets, some strands are parallel, and some are
antiparallel. A β-strand is typically 5–10 residues in length, and on average, there are six

29-4 Handbook of Computational Molecular Biology

strands per sheet. Coil or loop regions connect α-helices and β-sheets and have varying
lengths and shapes.

Supersecondary structures, or structural motifs, are specific combinations of secondary
structure elements, with specific geometric arrangements with respect to each other.1 Com-
mon supersecondary motifs include α-helix hairpins, β hairpins, β-α-β motifs, and coiled
coils. Elements of secondary structure and supersecondary structure can then combine to
form the full three-dimensional fold of a protein, or its tertiary structure. Many proteins
exist naturally as aggregates of two or more protein chains, and quartenary structure refers
to the spatial arrangement of these protein subunits.

29.1.2 Difficulty of general protein structure prediction

Experiments performed decades ago demonstrated that the information specifying the three-
dimensional structure of a protein is contained in its amino acid sequence [5, 4], and it is
generally believed that the native structure of the majority of proteins is the conformation
that is thermodynamically most stable. It is now known that some proteins require specific
proteins, or chaperones, to help them fold into their global free-energy minimum. A quan-
tum mechanics treatment to predict structure is intractable for protein sequences, and thus
physics-based methods for structure prediction typically use empirical molecular mechanics
force fields. In these methods, the system is described as a set of potential energy terms
(typically modeling bond lengths, bond angles, dihedral angles, van der Waals interactions
and electrostatics), and the goal is to find, for any given protein sequence, the conformation
that minimizes the potential energy function (e.g., see [18]). The accuracy of state-of-the-art
energy functions, the small energy differences between native and unfolded proteins, and the
size of the conformational space that must be searched are all limiting factors in the overall
performance of these physics-based methods. In the case where a protein is homologous to
another with known structure, the search space is limited, as the homolog provides a tem-
plate backbone; improved statistical methods for remote homology detection as well as the
increasing number of solved protein structures have made such approaches more widely ap-
plicable. Purely statistical approaches have also been developed for predicting the tertiary
structure of a protein. One such approach is known as threading [117, 13, 61, 19], where
a sequence is aligned (or “threaded”) onto all known backbones using an energy function
that is estimated from observed amino acid frequencies in known protein structures. Many
modern approaches use a combination of both statistics and physics; for example, in some
of the more successful approaches for predicting protein structure, backbone fragments for
particular subsequences are sampled from known structures, and then pieced together and
evaluated using a molecular mechanics energy function [14]. While there has been much
progress in developing computational methods for predicting the three-dimensional struc-
tures of proteins, it is clear that the problem is far from being solved (e.g., [92, 72, 2, 118]).

29.1.3 A bottom-up approach

Because of the difficulty of the general protein structure prediction problem, an alternative
approach for predicting protein structure is “bottom-up”: here, the goal is to focus on
specific, local three-dimensional structures, and develop specialized computational methods

1Supersecondary structure is sometimes defined so as to require that the secondary structure units are
consecutive in the protein sequence; we do not take that viewpoint here.

Predicting Protein Secondary and Supersecondary Structure 29-5

for recognizing them within protein sequences. At the most basic level, a protein’s secondary
structure can be predicted. At the next level, computational methods may be developed
to predict local supersecondary structures or structural motifs. Protein structure can also
be characterized by identifying portions that are membrane-spanning, or by assessing the
solvent accessibility of individual residues, though such subjects will not be reviewed here.
By focusing on specific aspects of protein structures, it is possible to develop computational
methods that can make high-confidence predictions; these can then be used to constrain
methods that attempt to predict tertiary structure. At the same time, one hope is that
ultimately it will be possible to build up a “library” of increasingly complex structures that
can be recognized via specialized computational methods, and that this library may provide
an alternative means for predicting the tertiary structures of proteins.

In the remaining portion of this chapter, we review computational techniques that have
been developed for predicting secondary and supersecondary structures. While the most
accurate predictions of structure are made by detecting homology to proteins with known
structure, we primarily focus on methods that can make predictions even if there are no such
homologs. Since there have been hundreds of papers written on predicting the secondary
and supersecondary structure of proteins, we will only have a chance to discuss a small
subset of the many important papers in the field.

29.2 Secondary Structure

Most commonly, the secondary structure prediction problem is formulated as follows: given
a protein sequence with amino acids r1r2 . . . rn, predict whether each amino acid ri is in
an α−helix (H), a β−strand (E), or neither (C). Predictions of secondary structure are
typically judged via the 3-state accuracy (Q3), which is the percent of residues for which a
method’s predicted secondary structure (H, E, or C) is correct. Since residues in known
protein structures are approximately 30% in helices, 20% in strands and 50% in neither,
a trivial algorithm that always predicts C has a 3-state accuracy of 50%. The 3-state
accuracy measure does not convey many useful types of information. For example, it does
not indicate whether one type of structure is predicted more successfully than another,
whether some structure is over- or under- predicted, or whether errors are more likely
along the boundaries of secondary structure units than within them. Nevertheless, 3-state
accuracy is a concise, useful measure that is frequently used to compare how well different
methods perform. Other methods to judge the quality of secondary structure predictions
include the Matthews correlation coefficient [87] and measures of how well the predicted
secondary structure segments overlap the actual ones [107, 130].

Secondary structural elements are readily evident in the crystal structures of proteins,
and are defined operationally based primarily on their hydrogen bonding patterns. Given
the 3D atomic coordinates of a protein structure, there are several automated means for
extracting secondary structure, including DSSP [62] and STRIDE [44]. The assignment
of secondary structure to each amino acid is not completely well-defined, and these two
programs differ on approximately 5% of residues (e.g.,see [32]). Both DSSP and STRIDE
report detailed descriptions of secondary structure. For example, the DSSP method has
eight secondary structure classifications: H, α-helix; E, β-strand; G, 310 helix, a helix with
backbone-backbone hydrogen bonds between positions i and i+ 3; I, π-helix, a helix with
backbone-backbone hydrogen bonds between positions i and i+5; B, bridge, a single residue
β-strand; T, a hydrogen bonded turn; S, bend; and C, any residue that does not belong to
any of the previous seven groups.

There are different schemes for translating the more detailed descriptions given by DSSP

29-6 Handbook of Computational Molecular Biology

and STRIDE into the three broad categories corresponding to helix, sheet and other. One
scheme translates all helices (H, G, and I) into H, bridges and strands (E, B) into E and
every thing else (T, S, C) into C. An alternative scheme takes the DSSP categories of H
and E as helix and strand, and maps all other categories into C. The reported performance
of a secondary structure prediction method can vary depending on which precise translation
scheme is used, with the second scheme leading to higher estimates of accuracy [32].

Testing of secondary structure prediction methods has improved over the years. We
note that whereas the PDB (the Protein Data Bank of solved structures [11]) contains
structures for many very similar sequences, the training set used for estimating parameters
should not contain sequences that are too similar to those in the test set. In particular, a
protein sequence in the test set should be less than 25–30% similar to any sequence in the
training set. Otherwise, reported accuracy is likely to be an overestimate of actual accuracy.
Methods are typically tested using N -fold cross-validation, where a dataset is split into N
parts. Each part is in turn left out of the training set and performance is judged on it. The
performance of the method is the average performance over each left out part.

Early secondary structure prediction methods (such as Chou-Fasman and GOR, described
below) have a 3-state cross-validation accuracy of 50–60%. Today’s methods have an accu-
racy of > 75%.

29.2.1 Early Approaches

The earliest approaches for secondary structure prediction considered just single amino acid
statistics and properties, and were limited by the small number of proteins with solved struc-
tures. While these early methods are not state-of-the-art, they are natural first attempts to
the secondary structure prediction problem, and are the basis of many subsequent approach-
es. Below, we consider three of the most well-known early secondary structure prediction
methods.

Chou-Fasman method. One of the first approaches for predicting protein secondary
structure, due to Chou and Fasman [27], uses a combination of statistical and heuristic
rules. First, using a set of solved protein structures, “propensities” are calculated for each
amino acid ai in each structural conformation sj , by taking the frequency of ai in each
structural conformation, and then normalizing by the frequency of this amino acid in all
structural conformations. That is, if a residue is drawn at random from the space of protein
sequences, and its amino acid identity A and structural class S are considered, propensities
are computed as Pr(A = ai|S = sj)/Pr(A = ai).2 These propensities capture the most basic
concept in predicting protein secondary structure: different amino acids occur preferentially
in different secondary structure elements.

Once the propensities are calculated, they are used to categorize each amino acid as either
a helix-former, a helix-breaker, or helix-indifferent. Each amino acid is also categorized as
either a sheet-former, a sheet-breaker, or sheet-indifferent. For example, as expected, glycine
and proline have low helical propensities and are thus categorized as helix-breakers. Then,
when a sequence is input, “nucleation sites” are identified as short subsequences with a
high-concentration of helix-formers (or sheet-formers). These sites are found with heuristic

2Sometimes propensities are defined by considering the frequency of a particular structural conformation
given an amino acid, and normalizing by the frequency of that structural conformation. These two
formulations are equivalent since Pr(A = ai|S = sj)/ Pr(A = ai) = Pr(S = sj |A = ai)/ Pr(S = sj).

Predicting Protein Secondary and Supersecondary Structure 29-7

rules (e.g., “a sequence of six amino acids with at least four helix-formers, and no helix-
breakers”), and then extended by adding residues at each end, while maintaining an average
propensity greater than some threshold. Finally, overlaps between conflicting predictions
are resolved using heuristic rules.
GOR method. The GOR method [47] formalizes the secondary structure prediction prob-
lem within an information-theoretic framework. If x and y are any two events, the definition
of the information that y carries on the occurrence of event x is [42]:

I(x; y) = log
(

Pr(x|y)
Pr(x)

)
. (29.1)

For the task at hand, the goal is to predict the the structural conformation Sj of residue Rj

in a protein sequence, and the GOR method estimates the information that the surrounding
“local” 17-long window contains about it:

I(Sj ;Rj−8, . . . , Rj , . . . Rj+8) = log
(

Pr(Sj |Rj−8, . . . Rj , . . . , Rj+8)
Pr(Sj)

)
. (29.2)

In fact, each structural class x is considered in turn, and the following value, representing
the preference for x over all other alternatives x is computed:

I(Sj = x : x;Rj−8, . . . , Rj , . . . Rj+8) = I(Sj = x;Rj−8, . . . , Rj , . . . , Rj+8)−
I(Sj = x;Rj−8, . . . Rj , . . . , Rj+8).

To predict residue Rj ’s structural conformation, these values are computed for all structural
states, and the one that has the highest value is taken as the prediction.

Because there are far too many possible sequences of length 17, it is not possible to esti-
mate Pr(Sj |Rj−8, . . . Rj , . . . , Rj+8) with any reliability. Instead, the original GOR method
assumes that the values of interest can be estimated using single residue statistics:

I(Sj = x;Rj−8, . . . , Rj , . . . , Rj+8) =
m=8∑

m=−8

I(Sj = x;Rj+m), (29.3)

where by definition I(Sj = x;Rj+m) = log(Pr(Sj = x|Rj+m)/Pr(Sj = x)).3 I(Sj =
x;Rj+m) represents the information carried by a residue at position j + m on the confor-
mation assumed by the residue at j. If m �= 0, this does not take into account the type of
residue at position j, and the intuition is that it describes the interaction of the side chain
of residue j + m with the backbone of residue j. For each structural class, this method
requires estimating 20× 17 parameters.
Lim method. A complicated, stereochemical rule-based approach for predicting secondary
structure in globular proteins was developed at about the same time as the statistical meth-
ods discussed above. In this method, longer-range interactions between residues are con-
sidered. If the protein sequence is r1r2 . . . rn, then for the i-th residue, the following pairs
and triples are considered particularly important for helical regions: (ri, ri+1), (ri, ri+3),
(ri, ri+4), (ri, ri+1, ri+4), (ri, ri+3, ri+4). Note that residues three and four apart are con-
sidered, as they lie on the same face of an α-helix. Similarly, the pair (ri, ri+2) contains

3Note that when m = 0, these values are equivalent to taking the log of the Chou-Fasman propensity
values.

29-8 Handbook of Computational Molecular Biology

residues on the same face of a β-strand. Pairs and triplets of particular amino acids are then
deemed as compatible or incompatible with helices and strands based on various rules that
try to ensure that these residues present a face that allows tight packing of hydrophobic
cores. Factors used to determine these rules include each amino acid’s size, hydrophobicity,
charge, and its ability to form hydrogen bonds. For example, if a protein sequence has
hydrophobic residues every three to four residues, this method predicts compatibility with
an α-helix, as this would result in one side of the helix being hydrophobic, thus facilitating
packing onto the rest of the protein structure.

29.2.2 Incorporating local dependencies

Whereas the first statistical methods for predicting protein secondary structure examined
each amino acid individually, later approaches began to consider higher-order residue in-
teractions, either within statistical approaches or via machine learning methods. Reported
3-state accuracies for most of these methods are above 60%.
Information theory approaches. One approach to incorporate higher-order residue
interactions is an extension to the original GOR method [48]. The notion of conditional
information is helpful here. In particular, I(x; y2|y1) is defined as log(Pr(x|y1, y2)/P (x|y1)).
Note that I(x; y1, y2, . . . , yn) = I(x; y1)+ I(x; y2|y1)+ . . .+ I(x; yn|y1, y2, . . . yn−1). Instead
of the assumption made in equation 29.3, the following assumption is made:

I(Sj = x;Rj−8, . . . , Rj , . . . , Rj+8) = I(Sj = x;Rj) +
m=8∑

m=−8,m �=0

I(Sj = x;Rj+m|Rj).

This formulation incorporates the information carried by the residue at j +m on the con-
formation of the residue at j, taking into account the type of residue at position j. Note
that by changing these assumptions, different pairwise or higher-order residue interactions
may be considered. Later versions of the GOR algorithm do precisely this (e.g., see [75]).

Nearest-neighbor approaches. Nearest-neighbor methods classify test instances ac-
cording to the classifications of “nearby” training examples. In the context of secondary
structure prediction, the overall approach is to predict the secondary structure of a residue
in a protein sequence by considering a window of residues surrounding it, and finding sim-
ilar sequence segments in proteins of known structure. The assumption is that short, very
similar sequences of amino acids have similar secondary structure even if they come from
non-homologous proteins. The known secondary structures of the middle residue in each of
these segments are then combined to make a prediction, either via a simple voting scheme
or a weighted voting scheme, with segments more similar to the target segment weighed
more. Early nearest-neighbor approaches include [94, 78]. Similar segments can be found
via sequence similarity, or via structural profiles [13], as in [81].

Neural network approaches. Neural networks provide another means for capturing
higher-order residue interactions. They were first applied to predict secondary structure
by [101, 55], and some of the most successful modern methods are also based on neural
networks (e.g., [105] and its successors).

Because neural nets are widely used in the field of secondary structure prediction, we
briefly describe them here. Neural networks, loosely based on biological neurons, are ma-
chine learning methods that learn to classify input vectors into two or more categories.
Feedforward neural networks consist of two or more connected layers. The first layer is the
input layer, and the last layer is the output layer that indicates the predicted category of
the input. All other layers are called hidden layers. A simple neural network with no hidden

Predicting Protein Secondary and Supersecondary Structure 29-9

X X

Σ

σ

1 2 Xm
W

W1
2

Wm
...

FIGURE 29.3: A simple neural network with no hidden units. There are m inputs x1 . . . xm, and
the neural net computes a function on these inputs by first calculating

∑
i
wixi,

and then using this as input to an activation function σ.

units is given in Figure 29.3. The inputs can be encapsulated in a vector �x = (x1, . . . , xm)T ,
and each of the input edges has a corresponding weight, giving �w = (w1, . . . , wm)T . Each
input is multiplied by the corresponding weight of its edge. Then, the network computes
a weighted sum, and feeds it into some activation or continuous threshold function σ. For
example, σ(a) could be 1

1+e−a , which is a sigmoidal function with values between 0 and
1.4 Thus, the function computed by this simple neural network is given by σ(�w · �x), and is
essentially linear. In most cases, a neural net must learn the weights from a training set of
input vectors {�xi} where the target value ti for each is known. For example, in the scenario
described, there may be two classes of examples with target values of 0 and 1. Typically,
the goal is to find the weights �w minimizing some error function (e.g., the squared error
E =

∑
i(σ(�w · �xi) − ti)2). Such a �w can be found via gradient descent.5 A full-blown

neural net is built up from a set of simpler units that are interconnected in some topology
so that the outputs of some units become the inputs of other units (e.g., see Figure 29.4).
The gradient descent procedure for arbitrary neural networks is implemented via the back-
propagation algorithm [109, 108]. While neural nets with multiple layers are not as easy
to interpret as those without hidden layers, they can approximate any continuous function
f : Rm → R as long as they have a sufficient number of hidden units and at least two
hidden layers [33].

The two early neural-network approaches to secondary structure prediction use similar
neural network topologies. Holley and Karplus [55] build a neural net that tries to predict
the secondary structure of a residue rj by considering residues rj−8, . . . , rj , . . . , rj+8. Each

4While a strict 0/1 threshold function can also be used, a continuous function is preferred for ease of
optimization.
5There are many other approaches to find a set of weights that “best” linearly separate two classes. For
example, the support vector machine framework (SVM) [119] finds weights so that the margin between
the two classes of examples is maximized; that is, an SVM finds the weights by maximizing the distance
between the hyperplane specified by the weights and the closest training examples. In the case where
the two classes are not linearly separable, the data are typically embedded in a higher dimensional space
where they are separable. An alternative approach, linear discriminant analysis, tries to find a set of
weights so that when considering Dx = �w · �x for all examples �x, these values are as close as possible
within the same class and as far apart as possible between classes.

29-10 Handbook of Computational Molecular Biology

Helix Sheet

-8 -7 -6 -5 -4 -3 -2 -1 +1 +2 +3 +4 +5 +6 +7 +80

FIGURE 29.4: A neural network topology for predicting secondary structure [55]. To predict
the secondary structure of the middle residue, eight residues on either side are
considered. Each of the 17 input units drawn actually consists of 21 mutually
exclusive binary inputs, one for each possible amino acid, and one used when the
window overlaps the end of the protein sequence. There is one hidden layer with
two units, and an output layer with two units. Here, each node in the hidden
layer and output layer contains both a summation and activation component.
The basic neural network of [101] is similar, but with 13 input units, more hidden
units, and a third output unit corresponding to coil.

of these residues is represented with 21 bits, corresponding to the 20 amino acids and an
extra bit for the case where the window overlaps the beginning or end of the sequence.
Thus, each example is represented by 17 × 21 bits, with only 17 non-zero entries. The
topology of the neural net has one hidden layer with two nodes, and two output nodes, one
corresponding to helix and the other to sheet (see Figure 29.4). For the training process,
if the middle residue’s secondary structure is helix, then the target output has the helix
output set to 1 and the sheet output set to 0. For a new sequence, helix is assigned to four
or more adjacent residues each with helix output value greater than both the sheet output
value and some threshold. Strand is assigned similarly, though only two adjacent strand
residues are required.

Qian and Sejnowski [101] have a slightly different network topology. They consider 13-long
windows, and have three output units (one for each of the three states). More significantly,
they additionally use a cascade of neural networks in order to capture correlations between
secondary structure assignments of neighboring residues. In particular, they show improved
performance by first training a neural net to predict the secondary structure of a central
amino acid, and then taking the outputs for adjacent residues using this trained network
and feeding them into a second network. The input layer of this second network has 13
groups, with three units per group, one for each output unit from the first network.

29.2.3 Exploiting evolutionary information

It is well-known that protein structure is more conserved than protein sequence, and that two
sequences that share more than 30% sequence identity are likely to have similar structures.
Thus, when predicting the secondary structure of a particular protein sequence, predictions
for its homologs may also prove useful. Additionally, conservation evident in multiple
sequence alignments (MSAs) of homologs helps reveal which amino acids are likely to be
functionally or structurally important, and may highlight the characteristic hydrophobic

Predicting Protein Secondary and Supersecondary Structure 29-11

patternings of secondary structure elements. For example, surface-exposed loop regions
that are not important functionally tend to be part of variable regions in MSAs.

A natural first attempt to use homologous proteins in order to improve secondary struc-
ture prediction might make predictions for each homolog, and then average (or otherwise
combine) these predictions for corresponding amino acids [134, 75]. Alternatively, informa-
tion from all sequences may be used at once in order to make one set of predictions. This is
the approach taken by Rost and Sander [105], and their neural network based program was
the first to surpass 70% 3-state accuracy. The use of evolutionary information is critical
for the improved performance, and all modern approaches use evolutionary information in
making secondary structure predictions.

To make predictions about a single protein sequence, the approach of [105] begins with
homologs gathered via database search. These homologs are then aligned in a MSA, and a
profile is made. In particular, for each column j in the MSA, the frequency of each amino
acid i in the column is computed. To determine the secondary structure of residue rj , a
sequence-to-structure neural network considers a window of 13 residues rj−6 . . . rj . . . rj+6.
For each residue in the window, instead of giving just the identity of this residue as input to
the neural net, the frequencies of all amino acids in the corresponding column of the MSA
are fed into the neural network. These frequencies encapsulate the evolutionary constraints
on each residue. Other features, including overall amino acid composition, are also input
to the network. This network has three output units, one for each secondary structure
state. Similar to [101], the output of this first level neural network is fed to a structure-
to-structure network. Finally, a jury system is used to make the final predictions. Because
neural networks are sensitive to topology, the set of training data, the order of training,
as well as other parameters, several networks are trained while varying these parameters.
The jury system level takes as input the results from each of these nets and averages them.
The secondary structure with the highest average score is output as the prediction. A very
useful feature of this approach is a per-position reliability index, where higher numbers
correspond to more confident predictions. Neural nets have become the most common
approach to secondary structure prediction; more recent extensions have included the use
of recurrent neural nets to capture non-local interactions [6, 100].

Incorporating evolutionary information into other basic secondary structure prediction
methods also results in improved performance, and while it was initially suggested otherwise,
it is unlikely that there is some special feature of neural nets that makes them particularly
well-suited to predicting secondary structure. For example, similar performance has also
been achieved using support vector machines (SVMs) [56]. Adding evolutionary information
to nearest-neighbor approaches [110] also performs competitively; here, predictions are made
individually for each homolog and then combined. Another MSA approach with similar
reported performance [74] uses linear discriminant analysis to combine several predictive
attributes. These include: residue propensities, computed as in GOR [47]; distance from
the end of the protein sequence; moments of hydrophobicity [39] for each residue under the
assumption that it and its three neighboring residues in each direction are in either helices
or sheets; whether or not an insertion or deletion is observed in any of the homologs in the
MSA; and an entropy-based measurement of residue conservation. Sequence correlations
are captured by feeding in the output of the first linear discrimination function into another
one, and additionally incorporating smoothing of features over nearby residues, predicted
ratios of α-helix and β-strand, and measures of sequence amino acid content.

While most methods incorporate evolutionary information using global MSAs, an al-
ternate method relies solely on pairwise local alignments [45]. A weight is computed for
each pairwise alignment based on its score and length. For each residue in the original
sequence, the weighted sum over all aligned sequences is computed independently for sev-

29-12 Handbook of Computational Molecular Biology

eral propensity values, which are then combined using a rule-based system to make a final
prediction. These propensity values are interesting, as several of them try to incorporate
non-local interactions [45]. In particular, β-strand hydrogen bonding parallel and anti-
parallel propensities (obtained from known structures) are computed between neighboring
sequence fragments, and helical hydrogen bonding propensities are computed for fragments
by considering residues i and i+ 4. A propensity concerning β-turn is also used ([58], see
below), as well as helical, strand and coil propensities computed using a nearest-neighbor
approach.

29.2.4 Recent developments and conclusions

Further improvements in performance have come from better remote homology detection
(e.g., using PSI-BLAST [3] or hidden Markov models [64, 65]), and larger sequence databas-
es [31, 104]. For example, Jones [60] obtained better performance than [105] (> 75% 3-state
accuracy) using a similar neural network architecture (without a jury system layer), but
where homologs are first detected via PSI-BLAST [3]. PSI-BLAST is an iterative database
searching method that uses homologs found in one iteration to build a profile used for
searching in the next iteration. The detected homologs are then input into the neural net-
work via the profile provided by PSI-BLAST; this profile incorporates sequence weighting
so that several closely-related homologs detected in the database do not overwhelm the
contribution of more remote homologs. It is likely that sequence weighting also plays a role
in the improved performance of this method, as it has been shown that predictions improve
when getting rid of closely related homologs [32].

Several authors have also attempted to predict secondary structure by combining the
results of several different programs. For example, Cuff and Barton [32] predict secondary
structure by taking the most commonly predicted state by four methods [105, 110, 74, 46],
and show a modest improvement in performance. Existing approaches have also been
combined using machine-learning methods such as linear discriminant analysis, decision
trees and neural nets, and have shown to give upto a 3% improvement in 3-state accuracy
over the best individual method [73].

Future evaluation. An important recent development has been to set up continuous eval-
uation procedures (such as EVA [41]). Protein sequences with newly determined structures
are sent to the webservers of the programs being evaluated. In general, evaluation and com-
parison of methods is often difficult, due to differences in the evaluation methodology and
the changing structural databases; thus, a community-wide approach such as this should
have great impact on future development of secondary structure prediction methods.

Limitations of secondary structure prediction. In general, it is believed that α-helices
are easier to predict than β-sheets. A recent evaluation found that helices were predicted
9.5% more accurately than strands [2]. This may be because the hydrogen bonding patterns
for α-helices are among amino acids in close proximity to each other, and those for β-
sheets are not. Additionally, shorter secondary structure elements are harder to predict,
presumably because the signal is not strong enough from these fragments.

Clearly, protein secondary structure is influenced by both short- and long-range inter-
actions. It has been demonstrated that there are 11-long amino acid sequences that can
fold into an α-helix in one context, and a β-sheet in another [91]. However, even assuming
that long-range tertiary interactions can be incorporated into secondary structure predic-
tion algorithms, the best possible 3-state accuracy will not be 100%. First, assignment
of secondary structure is not always clear even when there is a crystal structure. This
is evident from the observed differences between STRIDE and DSSP [32]. Additionally,

Predicting Protein Secondary and Supersecondary Structure 29-13

while secondary structure predictions improve when incorporating evolutionary informa-
tion, homologous structures do not share identical descriptions of secondary structure as-
signments [106]. Even when a query sequence can be aligned confidently to a sequence of
known structure, the alignment will produce a secondary structure “prediction” with 3-state
accuracy of only 88% on average [106]. Accordingly, while secondary structure prediction
methods continue to improve, it is unlikely that any method that does not also solve the
tertiary structure prediction problem will achieve ideal performance in predicting secondary
structure.

29.3 Tight Turns

Tight turns are secondary structure elements consisting of short backbone fragments (no
more than six residues) where the backbone reverses its overall direction. Tight turns allow
a protein to fold into a compact globular structure, and identifying them correctly in a
protein sequence limits the search space of possible folds for the sequence. Tight turns are
also important because they are often on the surface of proteins, and thus may play a role in
molecular interactions. Tight turns are categorized according to their lengths into δ−, γ−,
β−, α− and π− turns, which consist of two, three, four, five, and six residues respectively.

Computational methods have been developed for recognizing tight turns in protein struc-
tures, with most of the work focusing on β-turns, which occur most frequently in protein
structures. Approximately one-quarter of all protein residues are in β-turns [62]. A β-turn
is defined as four consecutive residues ri, ri+1, ri+2 and ri+3, where the distance between
the Cα of residue ri and the Cα of residue ri+3 is < 7 Å, and the central two residues
are not helical. These β-turns can be further assigned to one of several (6–10) classes on
the basis of the backbone φ and ψ angles of residues ri+1 and ri+2 [120, 80, 103, 58, 25].
The first methods for predicting β-turns focused on identifying which residues take part
in β-turns [79, 28], and later methods have additionally attempted to predict the type of
β-turn [125]. Some β-turn types show preferences for particular topological environments;
for example, type I′ and type II′ β-turns are preferentially found in β hairpins [112].

As with 3-state secondary structure prediction, methods to predict β-turns fall into two
classes: probabilistic methods and machine-learning methods. The earliest probabilistic
methods computed the probability that a certain amino acid ai is located at the j-th
position in a β-turn by dividing the number of times the amino acid ai occurred in the j-th
position of a turn by the total occurrences of amino acid ai [79]. Assuming independence
between positions, the probability that a certain 4-long window is an occurrence of a β-turn
is calculated by the product of the appropriate four terms, and a cutoff for prediction is
chosen. These predictions can be further refined so that a 4-long window that has helical
or sheet propensity that is larger than its β-turn propensity is eliminated [28]; structural
propensities are defined as in [27]. Modifications of this basic approach to predict turn
types include [125, 126, 58].

Other probabilistic methods consider each possibility Ψ (where Ψ can be each type of β-
turn as well as non-β-turns) in turn, and compute the probability of observing a particular
4-long window given that it is an instance of Ψ. In particular, given a subsequence r1r2r3r4,
it is scored by considered a random subsequence R1R2R3R4 and computing

Pr(R1 = r1, R2 = r2, R3 = r3, R4 = r4|Ψ).

The possibility Ψ giving the largest value is taken as the prediction. Assuming that each

29-14 Handbook of Computational Molecular Biology

position is independent of every other, this simplifies to

i=4∏

i=1

Pr(Ri = ri|Ψ).

For each type of β-turn, probabilities are estimated from known structures for each of the
four positions. Later models [131] consider the spatial arrangement of β-turns and assumed
dependencies between the first and fourth position, and the second and third positions:

Pr(R1 = r1|Ψ)Pr(R2 = r2|Ψ)Pr(R3 = r3|R2 = r2,Ψ)Pr(R4 = r4|R1 = r1,Ψ).

Alternate models make the 1st order Markov assumption that all dependencies can be
captured by considering adjacent residues [24, 26]:

Pr(R1 = r1|Ψ)Pr(R2 = r2|R1 = r1,Ψ)Pr(R3 = r3|R2 = r2,Ψ)Pr(R4 = r4|R3 = r3,Ψ).

The earliest neural network approaches [88] to β-turn prediction take as input a 4-long
window of amino acids (each residue is represented with 20 bits), and include a hidden layer.
There are four output nodes, two for the most common β−turn classes, one for all other β-
turns, and one for non-β-turns. Later approaches subdivide the problem into first predicting
whether a window contains a β-turn and then predicting the type of turn [111]. As in neural
network based approaches to predicting secondary structure [101, 105], several layers of
neural networks are used. In the first, a nine amino acid window is considered. Additionally,
for each residue, secondary structure predictions (helix, sheet or other) are considered;
inclusion of such predictions improves performance for both neural network [111, 68] and
statistical approaches [66] for β-turn prediction. The output for adjacent residues using this
neural network are fed into a second structure-to-structure network, along with secondary
structure predictions. Predictions are also filtered via a rule-based system. Finally, all data
identified by the turn/not-turn networks as possibly taking part in β-turns are input to
networks for turn types, with only 4-long amino acid windows considered. When several
turn types can be potentially predicted for a particular window, the one with the largest
score is taken as the prediction. As with 3-state secondary structure prediction, further
improvements in β-turn prediction have been obtained by using evolutionary information,
where each sequence position is encoded using a profile describing its amino acid distribution
in a MSA [68, 69]. More recently, nearest-neighbor [71] and SVMs [23] have also been applied
to predict β-turns.

Predictions of β-turns are not as reliable as 3-state predictions of secondary structure.
Approximately 50% of β-turns can be identified with 75% of the sequence fragments pre-
dicted as β-turn actually being correct. Overall accuracy of predictions is around 75%;
a method that always predicts non-β-turns would have similar accuracy. Furthermore,
predictions of β-turn types are only possible for the most frequent turn types.

More recently, attempts have been made to predict γ-turns and α-turns [67, 21, 22]. The
computational techniques are very similar to the ones applied to β-turns. Perhaps due to
the vastly fewer number of residues taking part in either γ- or α-turns, these methods have
only had limited success.

29.4 Beta Hairpins

Beta hairpins are one of the simplest supersecondary structures and are widespread in glob-
ular proteins. They consist of short loop regions (or turns) between antiparallel hydrogen

Predicting Protein Secondary and Supersecondary Structure 29-15

bonded β-strands. Typically, the length of these loop regions is eight residues or less, with
two residue loops being most common [112, 76]. Correct identification of such structures
can significantly reduce the number of possible folds consistent with a given protein, as
differing tertiary folds contain different arrangements and numbers of β-strands. As noted
in [35, 76], consecutive β-strands in a protein sequence can either form more “local” hairpin
structures or “diverge” so that the β-strands may pair with other strands. Methods for
predicting β hairpins have just begun to appear, and two recent approaches are based on
neural networks.

In the first approach [35], β hairpins are identified by first predicting secondary structure.
Each predicted β-coil-β pattern is further evaluated by comparing it to all known β hairpins
of the same length. Each comparison between the pattern and a known β hairpin results in
14 scores. These scores are computed based on the compatibility of the predicted secondary
structures and solvent accessibilities with those known for the hairpin, and additionally
incorporate the segment’s turn potential, secondary structure elements’ lengths, putative
pairwise residue interactions, and pairwise residue contacts. These scores are then fed into
a neural network that is trained to discriminate between hairpins and non-hairpins. Finally,
all the database matches for a particular β-coil-β segment are evaluated, and if there are
more than 10 predictions of a hairpin structure, the segment is predicted as a hairpin.

The second approach [76] incorporates evolutionary information in predicting β hairpins.
Homologs are obtained using PSI-BLAST [3], and each position is represented via the
underlying profile (as in [60]). Two neural networks are trained, where the first predicts the
state of the first residue in a turn, and the second predicts the state of the last residue of
the turn. Each neural network predicts whether the residue being considered is the first (or
last) residue of a hairpin, a diverging turn, or neither. To predict whether a residue is the
start of turn, four residues before it and seven residues after it are considered. Similarly,
to predict whether a residue is the end of turn, seven residues before it and four residues
after it are considered. Thus, turns up to length eight are completely included in the input
window. Each residue in the window is encoded using the appropriate column in the PSI-
BLAST profile, as well as three additional parameters corresponding to secondary structure
as predicted by [60]. Finally, the per-residue predictions are combined to determine the
probability of a particular structure (hairpin turn, other turn, or no turn) starting at residue
i and ending at residue j. The authors additionally show that incorporating predictions of
hairpins or diverging turns improves their method [113] for tertiary structure prediction.

The performance of the two approaches is not directly comparable, as the first considers
hairpins of all lengths, and the second limits itself to hairpins with turn regions of length at
most eight. It is likely that longer-range interactions are more difficult to predict. Addition-
ally, the two approaches use different PDB training and testing sets, and report different
fractions of β-coil-β patterns that are hairpins (40% vs. 60%). The approach of [35] relies
on the correct secondary structure prediction, and thus cannot predict β hairpins whose
underlying secondary structure is not predicted correctly. Given an actual turn, the ap-
proach of [76] identifies whether it is hairpin or diverging with accuracy 75.9%; a baseline
performance of 60% is possible by predicting all turns as hairpin.

29.5 Coiled Coils

The coiled coil is a ubiquitous protein structural motif that can mediate protein interac-
tions. Roughly 5–7% of eukaryotic proteins contain coiled-coil regions. Coiled-coil struc-
tures are associated with several cellular functions, including transcription, oncogenesis, cell
structure and membrane fusion. Coiled coils consist of two or more right-handed α-helices

29-16 Handbook of Computational Molecular Biology

FIGURE 29.5: (a) Side view of a parallel 2-stranded coiled coil. (b) Top view of a parallel 2-
stranded coiled coil. The interface between the α-helices in a coiled-coil structure
is formed by residues at the core positions a, d, e and g. For notational conve-
nience, positions in the two helices are distinguished by the prime notation (e.g.,
a and a′ are analogous positions in the two helices).

wrapped around each other with a slight left-handed superhelical twist. The helices in
a coiled coil may associate with each other in a parallel or anti-parallel orientation, and
the sequences making up the helices may either be the same (homo-oligomers) or different
(hetero-oligomers). Helices taking part in coiled-coil structures exhibit a characteristic hep-
tad repeat, denoted (abcdefg)n, spread out along two turns of the helix (see Figure 29.5).
Residues at positions a and d tend to contain hydrophobic residues, and residues at posi-
tions e and g tend to contain charged or polar residues. The heptad repeat falls 20◦ short
of two complete turns of a regular α-helix, and the supercoiling of the helices maintains
that the a and d positions stay within the core of the structure. Coiled-coil helices pack
with each other in a “knobs-into-hole” fashion [30], where a residue in the a (or d) position
is a “knob” that packs into a hole created by four residues on the other α-helix.

Just as secondary structure assignment from known three-dimensional structures is not
unambiguous (e.g., [32], and see above discussion), it is non-trivial to determine coiled coils
in the set of solved structures. Different researchers may have different opinions on whether
a particular structure is a coiled coil or not. The approach of [124] detects coiled coils
by searching for knobs-into-holes packing. This approach identifies “true” coiled coils, as
well as helical bundle domains where a subset of the helices interact with each other in a
knobs-into-holes fashion.

Computational approaches have been developed both for identifying portions of protein
sequences that can take part in coiled-coil structures, as well as for predicting specific in-
teractions between coiled-coil proteins. While in principle it is possible to identify helices
taking part in coiled coils by secondary structure prediction methods, in practice it is more
effective to develop specialized methods for recognizing their hallmark heptad repeat. Most
of the methods outlined below rely on having databases of known coiled-coil and non-coiled
coil sequences. Non-coiled coil databases can be derived from the PDB by excluding poten-
tial coiled-coil proteins. Coiled-coil databases are built both from analyzing the PDB, and
from including fibrous proteins whose X-ray diffraction patterns reveal coiled-coil structures
but do not permit high-resolution structure determination (review, [29]).

Predicting Protein Secondary and Supersecondary Structure 29-17

29.5.1 Early approaches

The earliest approaches [98, 84] to recognize coiled coils use sequences of known coiled-coil
proteins, and construct a 20× 7 table tabulating the frequency with which each amino acid
is found in each of the seven heptad repeat positions, normalized by the frequency of the
amino acid in all protein sequences. These values are very similar to the propensity values
computed by the Chou and Fasman approach [27]. For example, for leucine and position a,
the corresponding entry in the table is the percentage of position a residues in the coiled coil
database which are leucine, divided by the percentage of residues in all protein sequences
that are leucine. For each amino acid in a protein sequence, this approach considers all
l-long windows that contain it.6 Each of the l windows is considered with its first amino
acid starting in each of the seven possible heptad repeat positions, and the heptad repeat
proceeding uninterrupted in the window. Thus, 7l windows are considered for each residue,
and each window is scored by taking the product of the propensities for each amino acid
(in the appropriate heptad repeat position) in the window. The score for each residue
is then the maximum score for any of the windows containing it, and the score for the
sequence is the maximum score of any of its residues. Scores are converted to probabilities
by approximating both the background and coiled-coil score distributions with Gaussians,
and assuming that 1 in 30 residues is in a coiled coil.

This method has also been extended to recognize the “leucine zipper” family of coiled coils
found in bZIP transcription factors. The bZIPs are a large family of eukaryotic transcription
factors (review, [57]), and their dimerization is mediated by the leucine zipper coiled-coil
region. While the tendency is not uniformly true, leucine zippers tend to have leucines in
the d position of the coiled coil. Early attempts to recognize leucine zippers focused on
identifying leucine repeats, but since leucine is the most frequent amino acid, such patterns
are frequently found by chance [17]. Both [54] and [12] find leucine zipper proteins by first
identifying leucine repeats, and then requiring a coiled-coil prediction by [84]. [54] further
uses both disallowed and highly preferred pairs of residues to identify leucine zipper coiled
coils. The approach of [12] relaxes the requirement of a strict leucine repeat, and additionally
focuses on identifying the short coiled-coil segments found in transcription factors.

29.5.2 Incorporating local dependencies

Subsequent approaches to predicting coiled-coil helices incorporate pairwise frequencies by
explicitly considering the problem within a probabilistic framework [7, 10]. This overal-
l framework for coiled-coil prediction is similar to the information theory approaches de-
scribed above for secondary structure prediction [48]; however, the assumptions used in prac-
tice are very different. Here, the goal is to predict whether a subsequence z = r1, r2, . . . , rl
is a coiled coil by estimating Pr(z ∈ C), where C is the class of coiled coils [7]. If
X = R1, R2, . . . , Rl is a random subsequence selected from the universe of all known protein

6A typical window length is 28 (four heptads), as it is thought that peptides that can form stable coiled
coils in solution should be at least this length. Shorter windows can also be employed; typically, the
discriminatory performance of methods deteriorate with shorter window sizes.

29-18 Handbook of Computational Molecular Biology

sequences, then

Pr(z ∈ C) = Pr(X ∈ C|X = z)

=
Pr(X = z|X ∈ C) Pr(X ∈ C)

Pr(X = z)

∝ Pr(R1 = r1 ∧ . . . ∧Rl = rl|X ∈ C)
Pr(R1 = r1 ∧ . . . ∧Rl = rl)

Using repeated applications of the definition of conditional probability, this is equal to:
∏l−1

i=1 Pr(Ri = ri|Ri+1 = ri+1 ∧ . . . ∧Rl = rl ∧X ∈ C) · Pr(Rl = rl|X ∈ C)
∏l−1

i=1 Pr(Ri = ri|Ri+1 = ri+1 ∧ . . . ∧Rl = rl) · Pr(Rl = rl)
. (29.4)

To estimate these probabilities, it is necessary to make assumptions. For example, the
simplest assumption is that the residues are independent of each other:

Pr(Ri = ri|Ri+1 = ri+1 ∧ . . . ∧Rl = rl ∧X ∈ C) = Pr(Ri = ri|X ∈ C)

and
Pr(Ri = ri|Ri+1 = ri+1 ∧ . . . ∧Rl = rl) = Pr(Ri = ri).

Simplifying the previous equation with these assumptions gives

Pr(z ∈ C) ∝
l∏

i=1

Pr(Ri = ri|X ∈ C)
Pr(Ri = ri)

,

and this is equivalent to the approach of [84].
In α-helices, a better assumption might be that a residue in position i is dependent on

the next residue in the sequence i + 1, as well as on those in positions i + 3 and i + 4,
both of which are on the same face of the helix as position i (see Figure 29.5). This gives
the following assumption: Pr(Ri = ri|Ri+1 = ri+1 ∧ . . . ∧ Rl = rl ∧ X ∈ C) = Pr(Ri =
ri|Ri+1 = ri+1∧Ri+3 = ri+3∧Ri+4 = ri+4∧X ∈ C). However, this would require that 74204

parameters be estimated, and is not feasible in practice. The approach suggested in [7] is
to assume that Pr(Ri = ri|Ri+1 = ri+1 ∧ . . . ∧ Rl = rl ∧X ∈ C) can be approximated by
some function f (e.g., weighted average, minimum or maximum) over Pr(Ri = ri|Ri+1 =
ri+1 ∧ X ∈ C), Pr(Ri = ri|Ri+3 = ri+3 ∧X ∈ C) and Pr(Ri = ri|Ri+4 = ri+4 ∧X ∈ C).
More generally, if D is the set of dependencies (e.g., for helices, D = {1, 3, 4} is the natural
set of dependencies), then it is assumed that the probability of interest can be estimated as
a function over the corresponding pairwise probabilities. In [10, 8, 115, 114], a geometric
average over the pairwise probabilities is used.

The approach outlined above works well if the probabilities are estimated from a database
representative of the types of coiled-coil structures that are to be predicted. However, the
databases are heavily biased towards certain types of coiled coils. In [8], it is proposed
that the basic method be used to iteratively scan a large database of sequences. Initially,
the known database is used to estimate the required probabilities. Then, each sequence is
scored using the framework described above, and this raw score is converted into a (0, 1)
probability p of its being a coiled coil. This probability is computed by fitting a Gaussian to
the score distribution. In each iteration of the algorithm, a sequence is chosen with chance

Predicting Protein Secondary and Supersecondary Structure 29-19

proportional to its probability of being coiled coil, and if chosen, its predicted coiled-coil
residues will be used in the next iteration of the algorithm to update the probabilities. Sin-
gle and pairwise frequencies are estimated in a Bayesian manner, with the initial estimates
providing the prior. The iterative process continues until it stabilizes. This approach has
been successful in identifying coiled-coil-like structures in histidine kinases [115] and viral
membrane fusion proteins [114], with crystal structures confirming several novel prediction-
s [133, 85].

Hidden Markov models (HMMs) have also been applied to coiled-coil recognition [9, 37].
(For a general introduction to HMMs, see [38].) These approaches do not require that a
fixed-length window be used, and thus may better predict shorter coiled-coil segments. Ad-
ditionally, for coiled coils longer than a particular window length, HMMs can incorporate
longer-range information than window-based approaches. In theory, HMMs permit model-
ing of interruptions in the heptad repeat pattern; however, in practice, such interruptions
are severely penalized.

One HMM approach [37] builds a model of 64 states. There is a background state 0
corresponding to residues that do not take part in coiled coils. The other 63 states are
denoted by a group number 1–9 and by a letter that refers to the heptad position. The first
four groups model the first four residues in a coiled-coil segment, and the last four groups
model the last four residues in a coiled-coil segment. The fifth group models internal coiled-
coil residues. Each state corresponding to the same heptad repeat position is given the same
emission probabilities. For groups 1–4 and 6–9, transition probabilities are specified to go
from group i to group i + 1, with deviations from the heptad repeat pattern given some
very small (though non-zero) chance. For group 0, self-transitions are allowed, as well as
transitions to states in group 1. For state 5, there are transitions between states within this
group as well as to states in group 6; in both cases, strong preference is given to transitions
maintaining the heptad repeat. For any sequence, the prediction of whether each residue is
in a coiled coil or not is given by the most likely state sequence through the HMM, given
the sequence.

29.5.3 Predicting oligomerization

Natural coiled coils are known to exist as dimers, trimers, tetramers and pentamers. At-
tempts to predict oligomeric states of coiled-coil sequences have focused on differentiating
between dimeric or trimeric coiled coils. In [128], amino acid frequencies at each heptad
repeat position are computed for both dimeric and trimeric coiled coils, and normalized
by the frequencies expected by chance. These give dimeric and trimeric propensities for
each amino acid/heptad repeat pair. Each coiled-coil segment is then scored by summing
the logs of the single frequency dimeric (and trimeric) propensities. Finally, the segment is
predicted as dimeric if its dimeric propensity is higher than its trimeric one, and trimeric
otherwise.

An alternate approach exploits pairwise residue correlations [127] in predicting oligo-
merization state. This is a multidimensional scoring approach that uses the framework
of [10]. Probabilities are estimated from a dimeric coiled-coil database, and then for 1 ≤
d ≤ 7, each subsequence is scored assuming that dependencies exist between residues i and
i + d. The analogous scores are computed using a trimeric database as well. Finally, a
multidimensional score �s for a subsequence z is converted to a probability of its being a
dimeric coiled coil by computing:

Pr(�s|z is dimeric) · Pr(dimeric coiled coil)
Pr(�s)

.

29-20 Handbook of Computational Molecular Biology

These probabilities are estimated by fitting multivariate Gaussians to the distributions of
scores for dimeric coiled coils, trimeric coiled coils and non-coiled coils, and assuming a
prior probability of dimeric, trimeric and non-coiled-coil residues. Trimer probabilities are
computed similarly.

29.5.4 Structure-based predictions

The approaches outlined above have focused on statistical methods for predicting whether a
given sequence takes part in a coiled-coil structure. There has also been work on predicting
the high-resolution atomic structures of model coiled-coil systems using molecular mechan-
ics. The earliest such attempts include [132, 121, 36]. In [121], a hierarchical procedure
is described to predict the structure of the GCN4 leucine zipper; a backbone root-mean-
squared deviation (RMSD) of 0.81 Å is obtained when predicting the dimeric GCN4 leucine
zipper. In [36], dimeric and tetrameric variants of GCN4 are considered, and an RMSD of
0.73 Å is obtained for residues in the dimerization interface.

The coiled-coil backbone can be parameterized [30], and [52] show how to exploit this pa-
rameterization in order to incorporate backbone flexibility in predicting structures. Coiled-
coil backbones can be described by specifying the superhelical radius R0, the superhelix
frequency ω0, the α-helical radius R1, the helical frequency ω1, and the rise per amino acid
in the α-helix d. The heptad repeat fixes ω1 to be 4π/7 radians per amino acid, so that seven
residues complete two full turns relative to the superhelical axis, and place every seventh
residue in the same local environment. Additionally, it may be assumed that the helices
making up the coiled-coil are regular and symmetric, and so d can be fixed to be the rise per
amino acid of a regular α-helix (1.52 Å) and R1 can be fixed to be the Cα radius of a regular
α-helix (2.26 Å). The remaining parameters can then be varied to enumerate backbone con-
formations. Side chains are then positioned on these backbones via energy minimization.
This approach has resulted in predictions with root-mean-square deviation from crystal
structures of less than 0.6 Å when considering hydrophobic a and d position residues for
three GCN4 variants (2-stranded, 3-stranded and 4-stranded). Additionally, a novel coiled-
coil backbone consisting of a right-handed superhelical twist and an 11-mer repeat has been
designed using the parameterized-backbone approach [51]. A parameterized-backbone ap-
proach has also been used to predict the hydrophobic dimerization interface of six designed
heterodimeric coiled coils [70], as well as to predict the differences in stabilities of these
constructs. In this approach, for each backbone, all near-optimal packings of side chains
are identified, and these structures are then relaxed via energy minimization [18] to find
the minimum energy backbone and side-chain conformations.

29.5.5 Predicting coiled-coil protein interactions

As outlined above, effective sequence-based prediction methods exist for recognizing single
helices that take part in coiled coils. Since coiled coils are made up of two or more helices
that interact with each other, a natural next step in predicting their structures is to try
to predict which helices are interacting with each other. Since these helices may be in
different protein sequences, this begins to address the problem of predicting protein-protein
interactions. This is an important problem as protein-protein interactions play a central
role in many cellular functions. Furthermore, the difficulty of computationally predicting
protein structures suggests a strategy of concentrating first on interactions mediated by
specific interfaces of known geometry.

Early approaches towards predicting coiled-coil interaction specificity have counted the
number of favorable and unfavorable electrostatic interactions to make some specific pre-

Predicting Protein Secondary and Supersecondary Structure 29-21

dictions about the nature of particular coiled-coil protein-protein interactions [97, 89, 122];
however, it is known that many other factors play a role in coiled-coil specificity (e.g., [96,
83, 53]) and thus such simple approaches are limited in their applicability.

An alternative approach represents coiled coils in terms of their interhelical residue inter-
actions and derives a “weight” that indicates how favorable each residue-residue interaction
is [116, 43]. Unlike the other sequence-based approaches outlined in this chapter, this ap-
proach uses not only sequence and structural data, but also experimental data. This use
of experimental data is critical to its performance. The approach has thus far been applied
only to predicting partners for helices taking part in dimeric coiled coils. In dimeric coiled
coils, residues at the a, d, e, and g positions form the protein-protein interface [95, 49] (see
Figure 29.5). Experimental studies show that specificity is largely driven by interactions
between residues at these core positions (e.g., see [123]). The method further assumes that
considering interhelical interactions among these residues in a pairwise manner is sufficient.7

Based on structural features of the interhelical interface [95, 49] as well as experiments on
determinants of specificity (e.g., [96, 83, 122]), the following seven interhelical interactions
are assumed to govern partnering in coiled coils:

aid′i, dia′i+1, die′i, gia′i+1, gie′i+1, aia′i, did′i. (29.5)

The prime differentiates the two strands and the subscript denotes the relative heptad
number (e.g., the first interaction, aid′i, is between the a position in the i-th heptad of one
helix and the d position in the same heptad of the other helix).

Consequently, each coiled-coil structure is represented as a 2800-dimensional vector �x,
the entries of which tabulate the occurrences of amino-acid pairs in the above interactions.
Specifically, entry x(p,q),i,j indicates the number of times amino acids i and j appear across
the helical interface in positions p and q, respectively.

Scoring framework. For each possible interhelical interaction, the method needs a weight
w(p,q),i,j that denotes how favorable the interaction is between amino acid i in position p
and amino acid j in position q. A potential coiled coil represented by �x is then scored by
computing �w · �x where �w is a vector of such weights. Initially this weight vector �w is not
known; however, these weights should satisfy certain constraints.

Experimental information on relative coiled-coil stability (e.g, the observation that coiled
coil �x is more stable than coiled coil �y) is used to constrain the weight vector �w by requiring
that

�w · �x > �w · �y. (29.6)

Additionally, sequences known to form coiled coils should score higher than those that do
not:

�w · �x > 0, for all coiled coils �x, (29.7)
�w · �y < 0, for all non-coiled coils �y. (29.8)

These constraints are similar to those seen most often in machine learning settings.
Finally, knowledge about specific weight elements can be directly incorporated. For exam-
ple, say it is favorable to have a lysine in a g position in one helix with a glutamic acid in

7It is possible to consider three or more amino acids at a time but this would require a larger coiled-coil
database.

29-22 Handbook of Computational Molecular Biology

the following position e in the other helix, but not favorable to have glutamic acid in both
these positions (i.e., g-e K E is “better than” g-e E E). Then the following should be true:

w(g,e),K,E > 0, w(g,e),E,E < 0. (29.9)

Indexing each constraint with i, the above constraints (equations 29.6–29.9) can be
rewritten using vectors �z(i), such that �w is constrained to satisfy �w · �z(i) > 0. Includ-
ing non-negative slack variables εi to allow for errors in sequence or experimental data,
each constraint can then be relaxed as �w · �z(i) ≥ −εi. The goal is to find �w and �ε such that
each constraint is satisfied and

∑
εi is minimized. Trade-offs between training and gener-

alization error suggest the approach of support vector machines (SVMs) [119, 20], in which
the following quadratic objective function (for some constant C) is minimized, subject to a
variation of the previously described set of linear constraints:

1
2
‖ �w ‖2 +C(

∑
εi)

subject to

�w · �z(i) ≥ 1− εi ∀i
εi ≥ 0 ∀i

Differences between this approach and the traditional application of SVMs include con-
straints on specific elements of the weight vector, and constraints about the relative “score”
of different interactions.

This approach has been tested on a near-complete set of coiled-coil interactions among
human and yeast leucine zipper bZIP transcription factors [93], and identifies 70% of strong
interactions while maintaining that 92% of predictions are correct [43]. Though genomic
approaches to predicting protein partners have had some success (e.g., [34, 86, 40, 50, 102,
59, 129]), as have structure-based threading methods [1, 82], the coiled coil is the first
interaction interface for which these types of high-confidence, large-scale computational
predictions can be made.

29.5.6 Promising future directions

Since secondary structure prediction methods improved considerably by incorporating evo-
lutionary information, the next obvious step in improving recognition of helices taking part
in coiled coil structures is to use homologous sequences. For predicting coiled-coil interac-
tions, however, homologous sequences can show very different interaction specificity [93],
and thus it is not obvious how to exploit evolutionary information in this context. Addi-
tionally, while methods have been developed for predicting whether a coiled coil helix is
likely to take part in either a dimeric and trimeric structure [128, 127], there are no meth-
ods for predicting higher-order oligomerization states or for predicting whether the helices
interact in a parallel or anti-parallel manner. Finally, methods for predicting coiled-coil
protein interactions have focused on parallel, 2-stranded coiled coils, and novel approaches
are needed for predicting coiled-coil protein interactions more generally.

29.6 Conclusions

In this chapter, we have reviewed the basic computational methods used to predict pro-
tein secondary structure, as well as β hairpin and coiled coil supersecondary structures.

References 29-23

Of these problems, secondary structure prediction has been the most widely studied, and
almost all successful methods for predicting tertiary structure rely on predictions of sec-
ondary structure (e.g.,see [2]). As methods for predicting other types of local structure
improve, they are likely to play an increasing role in tertiary structure prediction meth-
ods. More recently, effective methods for predicting other types of β-structures, including
β-helices [15]and β-trefoils [90], have also been developed, and these types of specialized
computational approaches provide a new means for predicting protein tertiary structure.
Finally, protein interactions are also mediated by various well-characterized structural mo-
tifs (e.g., see [99]), and as demonstrated with the coiled coil, a promising approach for
making high-confidence predictions of protein interactions and quartenary structure is to
focus first on interactions mediated by specific, local structural interfaces.

Acknowledgments

The author thanks Carl Kingsford, Elena Nabieva and Elena Zaslavsky for helpful discus-
sions, and the NSF for PECASE award MCB–0093399.

References

[1] P. Aloy and R. Russell. Interrogating protein interaction networks through structural
biology. Proceedings of the National Academy of Sciences, 99:5896+, 2002.

[2] P. Aloy, A. Stark, C. Hadley, and R. Russell. Prediction without templates: New
folds, secondary structure, and contacts in CASP5. Proteins: Structure, Function
and Bioinformatics, 53:436+, 2003.

[3] S. Altschul, T. Madden, A. Schaffer, and J. Zhang et al. Gapped BLAST and PSI-
BLAST: a new generation of protein database search programs. Nucleic Acids Re-
search, 25:3389+, 1997.

[4] C. Anfinsen. Principles that govern the folding of protein chains. Science, 181:223+,
1973.

[5] C. Anfinsen, E. Haber, M. Sela, and F. White. The kinetics of formation of native
ribonuclease during oxidation of the reduced polypeptide chain. Proceedings of the
National Academy of Sciences (USA), 47:1309+, 1961.

[6] P. Baldi, S. Brunak, P. Frasconi, and G. Soda et al. Exploiting the past and present
in secondary structure prediction. Bioinformatics, 15:937+, 1999.

[7] B. Berger. Algorithms for protein structural motif recognition. Journal of Compu-
tational Biology, 2:125+, 1995.

[8] B. Berger and M. Singh. An iterative method for improved protein structural motif
recognition. Journal of Computational Biology, 4(3):261+, 1997.

[9] B. Berger and D. Wilson. Improved algorithms for protein motif recognition. In
Symposium on Discrete Algorithms, pages 58+. SIAM, January 1995.

[10] B. Berger, D. B. Wilson, E. Wolf, and T. Tonchev et al. Predicting coiled coils using
pairwise residue correlations. Proceedings of the National Academy of Sciences,
92:8259+, 1995.

[11] H.M. Berman, J. Westbrook, Z. Feng, and G. Gilliland et al. The Protein Data Bank.
Nucleic Acids Research, 28:235+, 2000.

[12] E. Bornberg-Bauer, E. Rivals, and M. Vingron. Computational approaches to identify
leucine zippers. Nucleic Acids Research, 26:2740+, 1998.

29-24 References

[13] J. Bowie, R. Luthy, and D. Eisenberg. A method to identify protein sequences that
fold into a known three-diensional structure. Science, 253:164+, 1991.

[14] P. Bradley, D. Chivian, J. Meiler, and K. Misura et al. Rosetta predictions in CASP5:
Successes, failures, and prospects for complete automation. Proteins: Structure,
Function and Genetics, 53:457+, 2003.

[15] P. Bradley, L. Cowen, M. Menke, and J. King et al. BETAWRAP: Successful pre-
diction of parallel β-helices from primary sequence reveals an association with many
microbial pathogens. Proceedings of the National Academy of Sciences, 98:14819+,
2001.

[16] C. Branden and J. Tooze. Introduction to Protein Structure. Garland Publishing,
Inc., 1999.

[17] V. Brendel and S. Karlin. Too many leucine zippers? Nature, 341:574+, 1989.
[18] B. Brooks, R. Bruccoleri, B. Olafson, and D. States et al. CHARMM: A program

for macromolecular energy, minimization, and dynamics calculations. Journal of
Computational Chemistry, 4:187–217, 1983.

[19] S. H. Bryant and C. E. Lawrence. An empirical energy function for threading protein
sequence through the folding motif. Proteins: Structure, Function and Genetics,
16:92–112, 1993.

[20] C. Burges. A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2(2):121+, 1998.

[21] Y.-D. Cai and K.-C. Chou. Artificial neural network model for predicting α-turn
types. Analytical Biochemistry, 268:407+, 1999.

[22] Y.-D. Cai, K.-Y. Feng, Y.-X. Li, and K. C. Chou. Support vector machine for pre-
dicting α-turn types. Peptides, 24:629+, 2003.

[23] Y.-D. Cai, X.-J. Liu, Y.-X. Li, and X.-B. Xu et al. Prediction of β turns with learning
machines. Peptides, 24:665+, 2003.

[24] K.-C. Chou. Prediction of β-turns. Journal of Peptide Research, 49:120+, 1997.
[25] K.-C. Chou. Prediction of tight turns and their types in proteins. Analytical Bio-

chemistry, 286:1+, 2000.
[26] K.-C. Chou and J. Blinn. Classification and prediction of β-turn types. Journal of

Protein Chemistry, 16:575+, 1997.
[27] P. Chou and G. Fasman. Prediction of protein conformation. Biopolymers, 13:211+,

1974.
[28] P. Chou and G. Fasman. Prediction of β-turns. Biophysical Journal, 26:367+, 1979.
[29] C. Cohen. Why fibrous proteins are romantic. Journal of Structural Biology, 112:3+,

1998.
[30] F. H. C. Crick. The packing of α-helices: simple coiled coils. Acta Crystallographica,

6:689, 1953.
[31] J. Cuff and G. Barton. Application of multiple sequence alignment profiles to improve

protein secondary structure prediction. Proteins: Structure, Function and Genetics,
40:502+, 1999.

[32] J. Cuff and G. Barton. Evaluation and improvement of multiple sequence methods for
protein secondary structure prediction. Proteins: Structure, Function and Genetics,
34:508+, 1999.

[33] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of Control, Signals and Systems, 2:303+, 1989.

[34] T. Dandekar, B. Snel, M. Huynen, and P. Bork. Conservation of gene order: a
fingerprint of proteins that physically interact. Trends in Biochemical Sciences,
23(9):324+, 1998.

[35] X. de la Cruz, E. Hutchinson, A. Shepherd, and J. Thornton. Toward predicting

References 29-25

protein topology: an approach to identifying β hairpins. Proceedings of the National
Academy of Sciences, 99:11157+, 2002.

[36] W. DeLano and A. Brunger. Helix packing in proteins: prediction and energetic
analysis of dimeric, trimeric, and tetrameric GCN4 coiled coil structures. Proteins:
Structure, Function and Genetics, 20:105+, 1994.

[37] M. Delorenzi and T. Speed. An HMM model for coiled-coil domains and a comparison
with pssm-based predictions. Bioinformatics, 18:617+, 2002.

[38] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis:
probabilistic models of proteins and nucleic acids. Cambridge University Press,
2000.

[39] D. Eisenberg, R. Weiss, and T. Terwilliger. The hydrophobic moment detects period-
icity in protein hydrophobicity. Proceedings of the National Academy of Sciences
(USA), 81:140+, 1984.

[40] A.J. Enright, I. Iliopoulos, N.C. Kyrpides, and C.A. Ouzounis. Protein interaction
maps for complete genomes based on gene fusion events. Nature, 402:86+, 1999.

[41] V. Eyrich, M. Marti-Renom, D. Przybylski, and M. Madhusudhan et al. EVA: con-
tinuous automatic evaluation of protein structure prediction servers. Bioinformatics,
17:1242+, 2001.

[42] R. Fano. Transmission of Information. Wiley, New York, 1961.
[43] J. Fong, A.E. Keating, and M. Singh. Predicting specificity in bZIP coiled-coil protein

interactions. Genome Biology, 5(2):R11, 2004.
[44] D. Frishman and P. Argos. Knowledge-based secondary structure assignment. Pro-

teins: Structure, Function and Genetics, 23:566+, 1995.
[45] D. Frishman and P. Argos. Incorporation of non-local interactions in protein sec-

ondary structure prediction from the amino acid sequence. Protein Engineering,
9:133+, 1996.

[46] D. Frishman and P. Argos. Seventy-five percent accuracy in protein secondary struc-
ture prediction. Proteins: Structure, Function and Genetics, 27:329+, 1997.

[47] J. Garnier, D. Osguthorpe, and B. Robson. Analysis and implications of simple
methods for predicting the secondary structure of globular proteins. Journal of
Molecular Biology, 120:97+, 1978.

[48] J. Gibrat, J. Garnier, and B. Robson. Further developments of protein secondary
structure prediction using information theory: new parameters and consideration of
residue pairs. Journal of Molecular Biology, 198:425+, 1987.

[49] J. Glover and S. Harrison. Crystal structure of the heterodimeric bZIP transcription
factor c-Fos-c-Jun bound to DNA. Nature, 373:257+, 1995.

[50] C. Goh, A. Bogan, M. Joachimiak, and D. Walther et al. Co-evolution of proteins
with their interaction partners. J. Mol. Biol, 299:283+, 2000.

[51] P. B. Harbury, J. J. Plecs, B. Tidor, and T. Alber et al. High-resolution protein
design with backbone freedom. Science, 282:1462+, 1998.

[52] P. B. Harbury, B. Tidor, and P. S. Kim. Predicting protein cores with backbone
freedom: Structure prediction for coiled coils. Proceedings of the National Academy
of Sciences, 92:8408+, 1995.

[53] P. B. Harbury, T. Zhang, P. S. Kim, and T. Alber. A switch between two-, three-
and four-stranded coiled coils in GCN4 leucine zipper mutants. Science, 262:1401+,
November 1993.

[54] J. Hirst, M. Vieth, J. Skolnick, and C. Brooks. Predicting leucine zipper structures
from sequence. Protein Engineering, 9:657+, 1996.

[55] L. H. Holley and M. Karplus. Protein secondary structure prediction with a neural
net. Proceedings of the National Academy of Sciences (USA), 86:152+, 1989.

29-26 References

[56] S. Hua and Z. Sun. A novel method of protein secondary structure prediction with
high segment overlap measure: Support vector machine approach. Journal of Molec-
ular Biology, 308:397+, 2001.

[57] H. Hurst. Transcription factors 1: bZIP proteins. Protein Profile, 2(2):101+, 1995.
[58] E.G. Hutchinson and J. Thornton. A revised set of potentials for β-turn formation

in proteins. Protein Science, 3:2207+, 1994.
[59] R.H. Jansen, H. Yu, D. Greenbaum, and Y. Kluger et al. A Bayesian networks

approach for predicting protein-protein interactions from genomic data. Science,
302:449+, 2003.

[60] D. Jones. Protein secondary structure prediction based on position-specific scoring
matrices. Journal of Molecular Biology, 292:195+, 1999.

[61] D. Jones, W. Taylor, and J. Thornton. A new approach to protein fold recognition.
Nature, 358:86–89, 1992.

[62] W. Kabsch and C. Sander. A dictionary of protein secondary structure. Biopolymers,
22:2577+, 1983.

[63] W. Kabsch and C. Sander. How good are predictions of protein secondary structure?
FEBS Lett., 155:179+, 1983.

[64] K. Karplus, C. Barret, and R. Hughey. Hidden Markov models for detecting remote
protein homologies. Bioinformatics, 14:846+, 1998.

[65] K. Karplus, R. Karchin, J. Draper, and J. Casper et al. Combining local-structure,
fold-recognition, and new fold methods for protein structure prediction. Proteins:
Structure, Function and Genetics, 53:491+, 2003.

[66] H. Kaur and G. Raghava. An evaluation of β-turn prediction methods. Bioinfor-
matics, 18:1508+, 2002.

[67] H. Kaur and G. Raghava. A neural-network based method for prediction of γ-turns
in proteins from multiple sequence aligments. Protein Science, 12:923+, 2003.

[68] H. Kaur and G. Raghava. Prediction of β-turns in proteins from multiple aligment
using neural network. Protein Science, 12:627+, 2003.

[69] H. Kaur and G. Raghava. A neural network method for prediction of β-turn types
in proteins using evolutionary information. Bioinformatics, 20:2751+, 2004.

[70] A.E. Keating, V. Malashkevich, B. Tidor, and P. S. Kim. Side-chain repacking calcula-
tions for predicting structures and stabilities of heterodimeric coiled coils. Proceedings
of the National Academy of Sciences, 98(26):14825+, 2001.

[71] S. Kim. Protein β-turn prediction using nearest-neighbor method. Bioinformatics,
20:40+, 2004.

[72] L. Kinch, J. Wrabl, S. Krishna, and I. Majmudar et al. CASP5 assessment of fold
recognition target predictions. Proteins: Structure, Function and Bioinformatics,
53:395+, 2003.

[73] R. King, M. Ouali, A. Strong, and A. Aly et al. Is it better to combine predictions?
Protein Engineering, 13:15+, 2000.

[74] R. King and M. Sternberg. Identification and application of the concepts important
for accuracte and reliable protein secondary structure prediction. Protein Science,
5:2298+, 1996.

[75] A. Kloczkowski, K.-L. Ting, R. Jernigan, and J. Garnier. Combining the GOR V
algorithm with evolutionary information for protein secondary structure prediction
from amino acid sequence. Journal of Molecular Biology, 49:154+, 2002.

[76] M. Kuhn, J. Meiler, and D. Baker. Strand-loop-strand motifs: prediction of hairpins
and diverging turns in proteins. Proteins: Structure, Function and Bioinformatics,
54:282+, 2004.

[77] A. Lesk. Introduction to protein architecture. Oxford University Press, 2001.

References 29-27

[78] J. Levin, B. Robson, and J. Garnier. An algorithm for secondary structure determi-
nation in proteins based on sequence similarity. FEBS Letters, 205(2):303+, 1986.

[79] P. Lewis, F. Momany, and H. Scheraga. Folding of polypeptide chains in proteins: a
proposed mechanism for folding. Proceedings of the National Academy of Sciences,
68:2293+, 1971.

[80] P. Lewis, F. Momany, and H. Scheraga. Chain reversals in proteins. Biochimica et
Biophysica Acta, 303:211+, 1973.

[81] T. Li and E. Lander. Protein secondary structure prediction using nearest-neighbor
methods. Journal of Molecular Biology, 232:1117+, 1993.

[82] L. Lu, H. Lu, and J. Skolnick. Multiprospector: an algorithm for the prediction of
protein-protein interactions by multimeric threading. Proteins, 49(3):1895+, 2002.

[83] K. Lumb and P. S. Kim. A buried polar interaction imparts structural uniqueness in
a designed heterodimeric coiled coil. Biochemistry, 34:8642+, 1995.

[84] A. Lupas, M. van Dyke, and J. Stock. Predicting coiled coils from protein sequences.
Science, 252:1162+, 1991.

[85] V. Malashkevich, M. Singh, and P. S. Kim. The trimer-of-hairpins motif in viral
membrane-fusion proteins: Visna virus. Proceedings of the National Academy of
Sciences, 98:8502+, 2001.

[86] E. Marcotte, M. Pellegrini, H. Ng, and D. Rice et al. Detecting protein function and
protein-protein interactions from genome sequences. Science, 285:751+, 1999.

[87] B. Matthews. Comparison of the predicted and observed secondary structure of T4
phage lysozyme. Biochimica et Biophysica Acta, 405:442+, 1975.

[88] M. McGregor, T. Flores, and M. Sternberg. Prediction of β-turns in proteins using
neural networks. Protein Engineering, 2:521+, 1989.

[89] A. McLachlan and M. Stewart. Tropomyosin coiled-coil interactions: Evidence for an
unstaggered structure. Journal of Molecular Biology, 98:293+, 1975.

[90] M. Menke, E. Scanlon, J. King, B. Berger, and L. Cowen. Wrap-and-pack: A new
paradigm for beta structural motif recognition with application to recognizing beta
trefoils. In Proceedings of the 8th Annual International Conference on Computa-
tional Molecular Biology, pages 298+. ACM, 2004.

[91] D. Minor and P. S. Kim. Context-dependent secondary structure formation of a
designed protein sequence. Nature, 380(6576):730+, 1996.

[92] J. Moult, K. Fidelis, A. Zemla, and T. Hubbard. Critical assessment of methods of
protein structure prediction (CASP)-round V. Proteins: Structure, Function, and
Genetics, 53:334+, 2003.

[93] J. R. S. Newman and A. E. Keating. Comprehensive identification of human bZIP
interactions using coiled-coil arrays. Science, 300:2097+, 2003.

[94] K. Nishikawa and T. Ooi. Amino acid sequence homology applied to prediction of
protein secondary structure, and joint prediction with existing methods. Biochimica
et Biophysica Acta, 871(1):45+, 1986.

[95] E. O’Shea, J. Klemm, P. S. Kim, and T. Alber. X-ray structure of the GCN4 leucine
zipper, a two-stranded, parallel coiled coil. Science, 254:539+, October 1991.

[96] E. O’Shea, R. Rutkowski, and P. S. Kim. Mechanism of specificity in the fos-jun
oncoprotein heterodimer. Cell, 68:699+, 1992.

[97] D. A. D. Parry. Sequences of α-keratin: Structural implication of the amino acid
sequences of the type I and type II chain segments. Journal of Molecular Biology,
113:449+, 1977.

[98] D. A. D. Parry. Coiled coils in alpha-helix-containing proteins: analysis of residue
types within the heptad repeat and the use of these data in the prediction of coiled-
coils in other proteins. Bioscience Reports, 2:1017+, 1982.

29-28 References

[99] T. Pawson, M. Raina, and P. Nash. Interaction domains: from simple binding events
to complex cellular behavior. FEBS Letters, pages 2+, 2002.

[100] G. Pollastri, D. Przybylski, B. Rost, and P. Baldi. Improving the prediction of
protein secondary structure in three and eight classes using recurrent neural networks.
Proteins: Structure, Function and Genetics, 47:228+, 2002.

[101] N. Qian and T. Sejnowski. Predicting the secondary structure of globular proteins
using neural network models. Journal of Molecular Biology, 202(4):865+, 1988.

[102] A. Ramani and E. Marcotte. Exploiting the co-evolution of interacting proteins to
discover interaction specificity. Journal of Molecular Biology, 327:273+, 2003.

[103] J. Richardson. The anatomy and taxonomy of protein structure. Advances in Protein
Chemistry, 34:167+, 1981.

[104] B. Rost. Protein secondary structure prediction continues to rise. Journal of Struc-
tural Biology, 134:204+, 2001.

[105] B. Rost and C. Sander. Prediction of protein secondary structure at better than 70%.
Journal of Molecular Biology, 232:584+, 1993.

[106] B. Rost, C. Sander, and R. Schneider. PhD: an automatic mail server for protein
secondary structure prediction. Computer Applications in Biosciences, 10:53+,
1994.

[107] B. Rost, C. Sander, and R. Schneider. Redefining the goals of protein secondary
structure prediction. Journal of Molecular Biology, 235:13+, 1994.

[108] D. Rumelhart, G. Hinton, and R. Williams. Learning internal representations by
error propagation. In D. Rumelhart and J. McClelland, editors, Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, volume 323, pages
318–362. MIT Press, Cambridge, MA, 1986.

[109] D. Rumelhart, G. Hinton, and R. Williams. Learning representations by back-
propagating errors. Nature, 323:533+, 1986.

[110] A. Salamov and V. Solovyev. Prediction of protein secondary structure by combining
nearest-neighbor algorithms and multiple sequence alignment. Journal of Molecular
Biology, 247:11+, 1995.

[111] A. Shepherd, D. Gorse, and J. Thornton. Prediction of the location and type of
β-turns in proteins using neural networks. Protein Science, 8:1045+, 1999.

[112] B. Sibanda and J. Thornton. Beta-hairpin families in globular proteins. Nature,
316:170+, 1985.

[113] K. Simons, C. Kooperberg, E. Huang, and D. Baker. Assembly of protein tertiary
structures from fragments with similar local sequences using simulated annealing and
bayesian scoring functions. Journal of Molecular Biology, 268:209+, 1997.

[114] M. Singh, B. Berger, and P. S. Kim. Learncoil-VMF: Computational evidence for
coiled-coil-like motifs in many viral membrane-fusion proteins. Journal of Molecular
Biology, 290:1031+, 1999.

[115] M. Singh, B. Berger, P. S. Kim, and J. Berger et al. Computational learning reveals
coiled coil-like motifs in histidine kinase linker domains. Proceedings of the National
Academy of Sciences, 95:2738+, March 1998.

[116] M. Singh and P. S. Kim. Towards predicting coiled-coil protein interactions. In Pro-
ceedings of the 5th Annual International Conference on Computational Molecular
Biology, pages 279+. ACM, 2001.

[117] M. J. Sippl. Calculation of conformational ensembles from potentials of mean force.
Journal of Molecular Biology, 213:859–883, 1990.

[118] A. Tramontano and V. Morea. Assessment of homology-based predictions in CASP5.
Proteins: Structure, Function, and Genetics, 53:352+, 2003.

[119] V. Vapnik. Statistical Learning Theory. Wiley, 1998.

References 29-29

[120] C. Venkatachalam. Stereochemical criteria for polypeptides and proteins. V. Confor-
mation of a system of three linked peptide units. Biopolymers, 6:1425+, 1968.

[121] M. Vieth, A. Kolinski, C. L. Brooks, and J. Skolnick. Prediction of the folding
pathways and structure of the GCN4 leucine zipper. Journal of Molecular Biology,
237:361+, 1994.

[122] C. Vinson, T. Hai, and S. Boyd. Dimerization specificy of the leucine zipper-
containing bZIP motif on DNA binding: prediction and rational design. Genes and
Development, 7(6):1047+, 1993.

[123] C. Vinson, M. Myakishev, A. Acharya, and A. Mir et al. Classification of human
bZIP proteins based on dimerization properties. Molecular and Cellular Biology,
22(18):6321–6335, 2002.

[124] J. Walshaw and D. Woolfson. Socket: a program for identifying and analysing coiled-
coil motifs within protein structures. Journal of Molecular Biology, 307:1427+,
2001.

[125] C. Wilmot and J. Thornton. Analysis and prediction of the different types of β-turn
in proteins. Journal of Molecular Biology, 203:221+, 1988.

[126] C. Wilmot and J. Thornton. β-turns and their distortions: a proposed new nomen-
clature. Protein Engineering, 3:479+, 1990.

[127] E. Wolf, P. S. Kim, and B. Berger. Multicoil: A program for predicting two- and
three-stranded coiled coils. Protein Sci., 6:1179+, 1997.

[128] D. Woolfson and T. Alber. Predicting oligomerization states of coiled coils. Protein
Science, 4:1596–1607, 1995.

[129] H. Yu, N. Luscombe, H. Lu, and X. Zhu et al. Annotation transfer between genomes:
protein-protein interologs and protein-DNA regulogs. Genome Research, 14:1107+,
2004.

[130] A. Zemla, C. Venclovas, K. Fidelis, and B. Rost. A modified definition of Sov, a
segment-based measure for protein structure prediction assessment. Proteins: Struc-
ture, Function and Genetics, 34:220+, 1999.

[131] C.-T. Zhang and K. C. Chou. Prediction of β-turns in proteins by 1–4 and 2–3
correlation model. Biopolymers, 41:673+, 1997.

[132] L. Zhang and J. Hermans. Molecular dynamics study of structure and stability of a
model coiled coil. Proteins: Structure, Function and Genetics, 16:384+, 1993.

[133] X. Zhao, M. Singh, V. Malashkevich, and P. S. Kim. Structural characterization of the
human respiratory syncytial virus fusion protein core. Proceedings of the National
Academy of Sciences, 97:14172+, 2000.

[134] M. Zvelebil, G. Barton, W. Taylor, and M. Sternberg. Prediction of protein secondary
structure and active sites using the alignment of homologous sequences. Journal of
Molecular Biology, 195(4):957+, 1987.

30
Protein Structure Prediction with

Lattice Models

William E. Hart
Sandia National Laboratories

Alantha Newman
Massachusetts Institute of Technology

30.1 Introduction . 30-1
30.2 Hydrophobic-Hydrophilic Lattice Models 30-3
30.3 Computational Intractability . 30-5

Initial Results • Robust Results • Finite-Alphabet
Results

30.4 Performance-Guaranteed Approximation
Algorithms . 30-8
HP Model • HP Model with Side-Chains • Off-Lattice
HP Model • Robust Approximability for HP Models
on General Lattices • Accessible Surface Area Lattice
Model

30.5 Exact Methods . 30-18
Enumeration of Hydrophobic Cores • Constraint
Programming • Integer Programming

30.6 Conclusions . 30-21

30.1 Introduction

A protein is a complex biological macromolecule composed of a sequence of amino acids.
Proteins play key roles in many cellular functions. Fibrous proteins are found in hair, skin,
bone, and blood. Membrane proteins are found in cells’ membranes, where they mediate the
exchange of molecules and information across cellular boundaries. Water-soluble globular
proteins serve as enzymes that catalyze most cellular biochemical reactions.

Amino acids are joined end-to-end during protein synthesis by the formation of peptide
bonds (see Figure 30.1). The sequence of peptide bonds forms a “main chain” or “backbone”
for the protein, off of which project the various side chains. Unlike the structure of other
biological macromolecules, proteins have complex, irregular structures. The sequence of
residues in a protein is called its primary structure. Proteins exhibit a variety of motifs that
reflect common structural elements in a local region of the polypeptide chain: α-helices,
β-strands, and loops — often termed secondary structures. Groups of these secondary
structures usually combine to form compact globular structures, which represent the three-
dimensional tertiary structure of a protein.

The functional properties of a protein depend on its three-dimensional structure. Pro-
tein structure prediction (PSP) is therefore a fundamental challenge in molecular biology.
Despite the fact that the structures of thousands of different proteins have been deter-
mined [10], protein structure prediction in general has proven to be quite difficult. The
central dogma of protein science is that the primary structure of a protein determines its

30-1

30-2 Handbook of Computational Molecular Biology

3

C

H C

O

R1

N

C

H C

O

O

R2

H

peptide bond

NH

FIGURE 30.1: The peptide bond joining two amino acids when synthesizing a protein.

tertiary structure. Although this is not universally true (e.g. some proteins require chaper-
one proteins to facilitate their folding process), this dogma is tacitly assumed for most of
the computational techniques used for predicting and comparing the structure of globular
proteins.

Many computational techniques have been developed to predict protein structure, but
few of these methods are rigorous techniques for which mathematical guarantees can be
described. Most PSP methods employ enumeration or search strategies, which may require
the evaluation of exponentially many protein structures. This observation has led many
researchers to ask if PSP problems are inherently intractable.

Lattice models have proven to be extremely useful tools for reasoning about the complexi-
ty of PSP problems. By sacrificing atomic detail, lattice models can be used to extract essen-
tial principles, make predictions, and unify our understanding of many different properties
of proteins [18]. One of the important approximations made by lattices is the discretization
of the space of conformations. While this discretization precludes a completely accurate
model of protein structures, it preserves important features of the problem of computing
minimum energy conformations. For example, the related search problem remains difficult
and preserves essential features of the conformational space. Consequently, methods that
generate low-energy conformations of proteins for lattice models provide insight into the
protein folding process.

In this chapter, we review results developed in the past decade that rigorously address the
computational complexity of protein structure prediction problems in simple lattice models.
We consider analyses of (1) intractability, (2) performance-guaranteed approximations and
(3) methods that generate exact solutions, and we describe how the lattice models used in
these analyses have evolved. Early mathematical analyses of PSP lattice models considered
abstract formulations that had limited practical impact, but subsequent work has led to
results that (a) apply to more detailed models, (b) consider lattices with greater degrees of
freedom, (c) demonstrate the robustness of intractability and approximability, and (d) solve
problems with general search frameworks. Our discussion complements the recent review by
Chandru et al. [13], who more briefly survey this literature but provide more mathematical
detail concerning some of the results in this area.

We begin by describing the the hydrophobic-hydrophilic model (HP model) [17, 29],
which is one of the most extensively studied lattice models. Next, we review a variety
of results that explore the possible computational intractability of PSP using techniques
from computational complexity theory. These results show that the PSP problem is NP-
hard in many simple lattice models, and thus widely believed to be intractable. Because
of these hardness results, efficient performance-guaranteed approximation algorithms have
been developed for the PSP problem in several lattice models. In particular, many variants
of the HP model have been considered, allowing for different degrees of hydrophobicity,

Protein Structure Prediction with Lattice Models 30-3

explicit side chains and different lattice structures. Finally, we summarize recent efforts to
develop exact protein structure prediction methods that provably guarantee that optimal
(or near-optimal) structures are found. Although enumerative search methods have been
employed for many years, mathematical programming techniques like integer programming
and constraint programming offer the possibility of generating optimal protein structures
for practical protein sequences.

30.2 Hydrophobic-Hydrophilic Lattice Models

The discretization of the conformational space implicit in lattice models can be leveraged to
gain many insights into the protein folding process [18]. For example, the entire conforma-
tional space can be enumerated, enabling the study of the folding code. This discretization
also provides mathematical structure that can be used to analyze the computational com-
plexity of PSP problems.

A lattice-based PSP model represents conformations of proteins as non-overlapping em-
beddings of the amino-acid sequence in the lattice. Lattice models can be classified based
on the following properties:

1. The physical structure, which specifies the level of detail at which the protein se-
quences are represented. The structure of the protein is treated as a graph whose
vertices represent components of the protein. For example, we can represent a
protein with a linear-chain structure [18] that uses a chain of beads to represent
the amino acids.

2. The alphabet of types of amino acids that are modelled. For example, we could
use the 20 naturally occurring types of amino acids, or a binary alphabet that
categorizes amino acids as hydrophobic (non-polar) or hydrophilic (polar).

3. The set of protein sequences that are considered by the model. The set of natu-
rally occurring proteins is clearly a subset of the set of all amino acid sequences,
so it is natural to restrict a model to similar subsets.

4. The energy formula used, which specifies how pairs of amino acid residues are
used to compute the energy of a conformation. For example, this includes contact
potentials that only have energy between amino acids that are adjacent on the
lattice, and distance-based potentials that use a function of the distance between
points on the lattice. Many energy formulas have energy parameters that can be
set to different values to capture different aspects of the protein folding process.

5. The lattice, in which protein conformations are expressed; this determines the
space of possible conformations for a given protein. For example, the cubic
and diamond lattices have been used to describe protein conformations (see Fig-
ure 30.2).

One of the most studied lattice models is the HP model [17, 29]. This lattice model
simplifies a protein’s primary structure to a linear chain of beads. Each bead represents an
amino acid, which can be one of two types: H (hydrophobic, i.e. nonpolar) or P (hydrophilic,
i.e. polar). This model abstracts the hydrophobic interaction, one of the dominant forces
in protein folding. Although some amino acids are not hydrophilic or hydrophobic in all
contexts, the model reduces a protein instance to a string of H’s and P’s that represents the
pattern of hydrophobicity in the protein’s amino acid sequence. Despite its simplicity, the
model is powerful enough to capture a variety of properties of actual proteins and has been
used to discover new properties. For example, proteins in this model collapse to compact
states with hydrophobic cores and significant amounts of secondary and tertiary structure.

30-4 Handbook of Computational Molecular Biology

(a) (b) (c)

(d) (e) (f)

FIGURE 30.2: Examples of crystal lattices: (a) cubic, (b) diamond, (c) cubic with planar
diagonals, (d) hexagonal, (e) triangular and (f) face-centered-cubic.

For simplicity, we denote H by “1” and P by “0”, so the alphabet used in an HP model
is A = {0, 1}. The set of protein instances typically considered for this model is the set
of binary sequences σ = {0, 1}+. Each sequence s ∈ σ corresponds to a (hypothesized)
hydrophobic-hydrophilic pattern of a protein sequence. The HP model uses contact energies
between pairs of amino acids: two amino acids can contribute to the protein’s energies if
they lie on adjacent points in the lattice. Thus the energy formula used in the HP model
is an energy matrix, E = (e(a, b))a,b∈A, where e(a, b) = −1 if a = b = 1, and e(a, b) = 0
otherwise. The HP model studied by Dill and his colleagues models protein conformations
as linear chains of beads folded in the 2D square or 3D cubic lattices.

Much of our review of the computational complexity of PSP focuses on the HP model,
because it has been so widely studied. Additionally, a variety of extensions of the HP model
have been considered in an effort to make these PSP results more practically relevant. For
example, Agarwala et al. [1] consider an extension of the HP model that allows for various
degrees of hydrophobicity.

More general structures have also been considered than the standard linear-chain model.
One example is a simple side-chain structure that uses a chain of beads to represent the
backbone; amino acids are represented by beads that connect to a linear backbone with
a single edge [11, 25, 28]. Figure 30.3 contrasts the structure of linear and side-chain
conformations in the HP model.

Although most work on the HP model has focused on the 2D square and 3D cubic lattices,

Protein Structure Prediction with Lattice Models 30-5

(a) (b) (c)

FIGURE 30.3: Illustrations of conformations for: (a) the standard HP model on the square
lattice, (b) the HP model with side chains on the square lattice, and (c) the HP
tangent spheres model with side chains. Black denotes a hydrophobic amino acid,
white denotes a hydrophilic amino acid, and gray denotes a backbone element.

the computational complexity of PSP for the HP model has been studied for a variety of
different lattices, including the triangular lattice (see Figure 30.2(e)) [1], the face centered
cubic (FCC) lattice (see Figure 30.2(f)) [1, 25], the cubic lattice with diagonal edges on
each face (see Figure 30.2(c)) [28], and general crystallographic lattices [27]. Off-lattice
variants of the HP model have also been explored by treating a protein structure as a set
of connected spheres, with a contact interaction potential that is identical to the standard
HP model (see Figure 30.3(c)) [25]. The term off-lattice is used because the protein is not
actually folded on a lattice. Conformations on a given lattice can clearly be translated into
conformations in this off-lattice model, and near-optimal conformations on triangular and
FCC lattices are closely related to near-optimal off-lattice conformations.

30.3 Computational Intractability

Exhaustive search of a protein’s conformational space is clearly not a feasible algorithmic
strategy. The number of possible conformations is exponential in the length of the protein
sequence, and powerful computational hardware would not be capable of searching this
space for even moderately large proteins. This observation led Levinthal to raise a question
about the paradoxical discrepancy between the enormous number of possible conformations
and the fact that most proteins fold within seconds to minutes [36]. While these observations
appear contradictory, they can be reconciled by noting that they may simply point to the
lack of knowledge that could be used to design an efficient search algorithm (see Ngo et
al. [36] for further discussion of this issue). Computational analyses of PSP address this
lack of knowledge by providing insight into the inherent algorithmic difficulty of folding
proteins.

The native conformation of a protein is the conformation that determines its biological
function. Following the thermodynamic hypothesis [19], computational models of protein
folding are typically formulated to find the global minimum of a potential energy function.
In lattice models, an energy value is associated with every conformation taking into account
particular neighborhood relationships of the amino acids on the lattice. Consequently, given
a lattice model L and sequence s, the PSP problem is to find a conformation of s in L with

30-6 Handbook of Computational Molecular Biology

minimal energy.
Computational intractability refers to our inability to construct efficient (i.e., polynomial-

time) algorithms that can solve a given problem. Here, “inability” refers to both the present
state-of-the-art of algorithmic research as well as possible mathematical statements that no
such algorithms exist. Customary statements about the intractability of a problem are
made by showing that the problem is NP-hard. It is widely believed that a polynomial-time
algorithm does not exist for any NP-hard problem, since the class of NP-hard optimization
problems includes a wide variety of notoriously difficult combinatorial optimization prob-
lems. The best known algorithm for any NP-hard problem requires an exponential number
of computational steps, which makes these problems “practically intractable.”

30.3.1 Initial Results

PSP has been shown to be NP-hard for various lattice models. Initial intractability analyses
of PSP considered models that captured PSP problems in rather limited and unrealistic
ways. We survey these analyses and then critique these PSP results in the following two
sections.

Fraenkel [20] presents a NP-hardness result for a physical model in which each amino
acid is represented as a bead connected to a backbone. The protein must be embedded in
a cubic lattice subject to pairwise constraints on the beads, i.e. specified pairs of beads,
including pairs of beads on the backbone, are required to be at a fixed distance in the
embedding. These specified pairs comprise a contact graph. The alphabet consists of three
types that represent the charges associated with the amino acids: -1, 0, 1. The model uses
a distance-dependent energy formula that computes the product of the charges divided by
distance. The energy is the sum over all edges in the contact graph.

Ngo and Marks [35] present a NP-hardness result for a molecular structure prediction
problem that encompasses protein structures. This model consists of a chain molecule of
atoms that is to be embedded in a diamond lattice. The energy formula is based upon
a typical form of the empirical potential-energy function for organic molecules, which is a
distance-dependent function.

Paterson and Przytycka [37] present a NP-hardness result for a physical model in which
each amino acid is represented as a bead along a chain that is to be embedded in a cubic
lattice. A contact energy formula is used, so a pair of amino acids contributes to the
conformational energy only if they are adjacent on the lattice. This energy formula has
contact energies of one for contacts between identical residues and zero otherwise. The
amino acid types in this model are not limited a priori, so instances of this model can
represent instances of many specific contact-based PSP problems. However, we note below
that this generality is actually a weakness of the model.

Finally, Unger and Moult [43] present a NP-hardness result for a physical model in which
each amino acid is represented as a bead along a chain that is to be embedded in a cubic
lattice with planar diagonals. The energy formula is a simple form of the empirical potential
energy-function for organic molecules, which is a distance-dependent calculation. This NP-
hardness result can be generalized to the Bravais lattices (which includes the cubic lattice),
as well as the diamond and fluorite lattices [24].

30.3.2 Robust Results

It is difficult to provide strong recommendations for particular PSP formulations because
accurate potential energy functions are not known. While various analytic formulations use
potentials that capture known features of “the” potential function, the most appropriate

Protein Structure Prediction with Lattice Models 30-7

analytic formulation of the potential energy for PSP remains an area of active research [15,
44]. Consequently, robust algorithmic results are particularly important for lattice-based
PSP models.

Computational robustness refers to the independence of algorithmic results from partic-
ular settings. In the context of NP-completeness, robustness refers to the fact that a class
of closely related problems can be described, all of which are NP-complete. The members
of the class of problems are typically distinguished by some parameter(s) that form a set
of reasonable alternate formulations of the same basic problem. Intractability results for
PSP can be robust in two different ways [26]. First, an intractability result can be robust
to changes in the lattice. The analysis of the PSP problem formulation posed by Unger and
Moult [43], which uses a simplified empirical energy potential, can be generalized to show
that this PSP problem is NP-hard for any finitely representable lattice [26].

Second, an intractability result can be robust to changes in the energy. Consider a PSP
formulation with an objective of the form

n∑

i=2

i−1∑

j=1

Csi,sjg (|fi − fj |) , (30.1)

where g : Q→ R is an energy potential that monotonically increases to zero (in an inversely
quadratic fashion) as the distance between amino acids increases. This model can be viewed
as a special case of the model examined by Unger and Moult [43], and the class of func-
tions g includes widely used pairwise potential functions like the Lennard-Jones potential.
Additionally, the use of the distance |fi − fj | makes this energy formulation translationally
invariant, which is consistent with practical emperical energy models. For any function g
and for an appropriate discretization of the L2 norm, this PSP problem is NP-hard [26].
Additionally, this result can be generalized to show that this PSP problem is also NP-hard
if the protein is modeled with explicit side-chains instead of as a simple linear chain.

30.3.3 Finite-Alphabet Results

A significant weakness of almost all of the models used in these intractability results is
that the alphabet of amino acid types used to construct protein sequences is unbounded
in size.1 Let an amino acid type be defined by the pattern of interactions it exhibits with
all other amino acids. These PSP problems allow for problem instances for which the
number of amino acid types are not bounded. For example, a PSP formulation that uses
Equation (30.1) allows for O(n2) amino acid types because the interaction between amino
acids i and j is defined in part by the matrix coefficient Csi,sj , which can assume any value.

Consequently, the previous models do not accurately model physically relevant PSP prob-
lems, for which there are 20 naturally occurring amino acid types. To address this concern,
several authors have developed complexity analyses for models with a finite set of amino
acids. For example, a PSP problem for which protein sequences are defined from a set of 12
amino acid types and the conformational energy is computed using a contact potential was
proved to be NP-hard [2]. Nayak, Sinclair and Zwick [32] consider a string folding problem
with a very large alphabet of amino acids, using a technique that “converts” a hardness
proof for a model with an unbounded number of amino acids to a hardness proof in a model

1Fraenkel’s model [20] uses a finite number of amino acid types, but it allows the protein chain to be
embedded in a lattice without forcing subsequent amino acids to lie in close proximity on the lattice,
thereby leading to biologically implausible conformations for certain amino acid sequences.

30-8 Handbook of Computational Molecular Biology

with a bounded number of amino acids. Crescenzi et al. [16] and Berger and Leighton [9]
prove that PSP in the simple HP-model is NP-hard for the 2D square and 3D cubic lattices,
respectively.

30.4 Performance-Guaranteed Approximation Algorithms

Performance guaranteed approximation algorithms complement intractability analyses by
demonstrating that near-optimal solutions can be efficiently computed. An approximation
algorithm has a multiplicative asymptotic approximation ratio of α if the solutions gener-
ated by the algorithm are within a factor of α of the optimum. Performance guaranteed
approximation methods have been developed for a variety of HP lattice models, as well as
some natural generalizations of the HP model.

30.4.1 HP Model

We now take a closer look at some performance guaranteed approximation algorithms that
have been developed for the HP model on the 2D square lattice, 3D cubic lattice, triangular
lattice and the face-centered-cubic (FCC) lattice [1, 23, 31, 33, 34]. These approximation
algorithms take an HP sequence s ∈ {0, 1}+, and form a conformation on the lattice. Recall
that the energy of a conformation is the number of hydrophobic-hydrophobic contacts:
hydrophobics (1’s) that are adjacent on the lattice but not adjacent on the string.

Square Lattice

The PSP problem in the HP model takes as input an HP sequence S, which can be viewed
as a binary string (H=1, P=0). The objective is to find a folding of the string s that forms a
self-avoiding walk on a specified lattice and maximizes the number of contacts. Figure 30.4
illustrates an optimal conformation for a binary string on the 2D square lattice (i.e. with
the maximum number of contacts). Let E [s] denote the number of 1’s in even positions
in the sequence s (even-1’s) and let O[s] denote the number of 1’s in odd positions in s
(odd-1’s). Additionally, let

X [s] = min{E [s],O[s]}. (30.2)

Due to the fact that the square lattice is bipartite, each even-1 in s can have contacts only
with odd-1’s in s and vice-versa. In any conformation of s on the 2D square lattice, each
1 in the string s that is not in the first or last position on the string can have at most two
contacts. Thus, an upper bound on the maximum number of contacts in any conformation
of s on the 2D square lattice is:

2 ·X [s] + 2. (30.3)

FIGURE 30.4: An optimal conformation for the string 0010100001011010 on the 2D square
lattice. This conformation has four contacts.

Protein Structure Prediction with Lattice Models 30-9

odd side p even side

p

even sideodd side

FIGURE 30.5: Illustration of a conformation generated by a simple 1/4-approximation algo-
rithm for the HP model on the square lattice.

The first approximation algorithm developed for the PSP problem on the square lattice
has an approximation ratio of 1/4 [23]. For a given sequence s, this algorithm first finds
a point p in s such that at least half the odd-1’s are in one substring on one side of p
(the odd substring) and at least half the even-1’s are on the other side of p (the even
substring). Then, the odd substring is embedded in the square lattice such that all odd-1’s
in the odd substring have the same y-coordinate and the even substring is embedded in a
complementary fashion (see Figure 30.5). This conformation yields at least X [s]/2 contacts,
which is 1/4 of optimal. Mauri, Piccolboni and Pavesi [31] describe an algorithm that also
has an approximation ratio of 1/4, which they argue works better in practice.

We now briefly describe how the approximation ratio for this problem can be improved to
1/3 [33]. This approximation algorithm creates “circular” conformations, i.e. it results in
foldings in which the end-points of the string occupy adjacent lattice points. For simplicity,
we consider even-length sequences s for which O[s] = E [s]. In the first step of the algorithm,
we find a point p such that as we move clockwise in the loop starting at point p, we encounter
at least as many odd-1’s as even-1’s and as we go counter-clockwise, we encounter at least
as many even-1’s as odd-1’s.

Let BO be the distance between the first pair of consecutive odd-1’s encountered as we
go in the clockwise direction starting at point p and let BE be the distance between the first
pair of consecutive even-1’s encountered as we go in the counter-clockwise direction. We
sketch the algorithm in Figure 30.6. In cases (a) and (b) of Step 2, we form three contacts
and use at most four even- and odd-1’s and “waste” at most four even- and odd-1’s, i.e.
we waste even-1’s that occur on the odd side and vice-versa. In cases (c) and (d), we form
two contacts and use at most three even- and odd-1’s and waste at most three even- and
odd-1’s. Since there are at most 2O[s] + 2 = O[s] + E [s] + 2 contacts, this gives a 1/3
approximation ratio.

30-10 Handbook of Computational Molecular Biology

Step 1:

p

Step 2:

BO = 1, BE = 1 BO ≥ 3, BE ≥ 3 BO ≥ 3, BE = 1 BO = 1, BE ≥ 3

(a)

(b)

(c) (d)

Step 3: Repeat Step 2 until even and odd sides meet.

FIGURE 30.6: The steps used in the 1/3-approximation algorithm for the folding problem in
the HP model on the square lattice.

Cubic Lattice

In any folding of a sequence s on the 3D cubic lattice, each 1 in the string s that is not
in the first or last position can have at most four contacts. Thus, an upper bound on the
maximum number of contacts in any conformation of s on the 3D cubic lattice is:

4 ·X [s] + 2. (30.4)

The previously described 1/4-approximation algorithm for the square lattice can be gener-
alized to an approximation algorithm for the problem on the 3D cubic lattice [23]. Suppose
the odd side of s has at least k odd-1’s and the even side has at least k even-1’s, i.e.
k ≥ X [s]/2. Then we can divide the odd side into segments with

√
k odd-1’s and divide

the even side into segments with
√
k even-1’s. This approximation algorithm repeats the

2D folding algorithm
√
k times in adjacent planes, i.e. the first pair of segments is folded

in the plane z = 0, then next in the plane z = 1, etc. In the resulting conformation, each of
X [s]/2− c

√
X [s] odd-1’s has at least 3 contacts for some constant c. Thus, this algorithm

has an approximation ratio of 3/8− Ω(1/
√
X [s]).

Another approximation algorithm, based on different geometric ideas, improves on this
absolute approximation guarantee [34]. In this algorithm, the string s is divided into two
substrings so that one substring contains at least half the odd-1’s and the other substring
at least half the even-1’s. Each substring is folded along two different diagonals, as shown
in Figure 30.7. All but a constant number of odd-1’s from the odd substring get three
contacts. These geometric ideas can be used to obtain a slightly improved approximation
ratio of .37501, which shows that 3/8 is not the best approximation guarantee that can be
obtained for this problem, despite the fact that it was the best guarantee known for the
past decade.

Protein Structure Prediction with Lattice Models 30-11

z=0

z=1

x

y z

FIGURE 30.7: An illustration of a conformation generated by folding substrings along diagonals
of the cubic lattice.

Triangular and FCC Lattices

One undesirable feature of the square lattice is that a contact must be formed between
hydrophobics with different parities. There is no such parity restriction in real protein
folds. This issue is discussed by Agarwala et al. [1], who suggest that the triangular lattice
is more suitable to model protein folding. They give simple 1/2-approximation algorithms
and a 6/11-approximation algorithm that uses an improved upper bound. Agarwala et al.
generalize these results to a 3D triangular lattice that is equivalent to the FCC lattice, for
which they describe an algorithm with an approximation ratio of 3/5.

30.4.2 HP Model with Side-Chains

Performance guaranteed approximation algorithms have also been developed for an HP
model that explicitly represents side chains [26, 28]. This lattice model represents the
conformation of a protein using a subclass of branched polymers called “branched combs.”
A homopolymer version of this model was introduced by Bromberg and Dill [11], who
argued that linear lattice models fail to capture properties of protein folding, like side chain
packing, that affect the stability of the native protein structure. The HP side chain model
treats the backbone of the protein as a linear chain of beads. Connected to each bead on
the backbone is a bead that represents an amino acid, and each of these side chain beads
is labelled hydrophobic or hydrophilic.

Figure 30.3(b) illustrates a conformation of the HP side chain model on the square lattice.
Note that there are no interactions between backbone elements and side-chain elements, so
the energy of such a conformation is simply the number of contacts between hydrophobic
side chains on the lattice. Further, note that adjacent side chains can contribute energy in
this model, which is a fundamental difference induced by the branched combs structure.

30-12 Handbook of Computational Molecular Biology

FIGURE 30.8: An illustration of the conformations generated by an approximation algorithm
for the HP side chain model on the square lattice.

Figure 30.8 illustrates the repeated conformational structure produced by an approxima-
tion algorithm for the problem on the square lattice [25]. The folding point for this algorithm
is selected in the same manner as for the linear chain model, and thus this structure can
be constructed in linear time. This algorithm guarantees that for a string s, �X [s]/4�
hydrophobic-hydrophobic contacts are formed between the two halves of the conformation.
Since each hydrophobic side chain can have at most three contacts, this algorithm has a
1/12 approximation ratio.

A similar algorithm for the 3D cubic lattice can also be developed [25]. This approxima-
tion algorithm also divides the protein at a folding point, but it then attempts to create a
3D fold with four columns of hydrophobics in the core. Figure 30.9 illustrates the structure
of one of these columns, as well as how the protein sequence forms a hydrophobic core. The
hydrophobic core is formed by threading each half of the protein sequence through the four
columns in an anti-parallel fashion (e.g. up - down - up - down). In this conformation, it
contains at least 4 �X [s]/2�− 20 contacts for a sufficiently large sequence s. Since each hy-
drophobic side chain can have at most five contacts, this algorithm as a 4/10 approximation
ratio.

These approximation results have been generalized to lattices that do not have the parity
restriction imposed by the cubic lattice: the FCC lattice and the cubic lattice with facial
diagonals (which Heun calls the extended cubic lattice (ECL)) [25, 28]. Both of these lattices
allow any hydrophobic amino acids to be in contact with any other hydrophobic amino acid.
Thus if there are N(s) hydrophobic amino acids in a sequence s then we can obtain upper

Protein Structure Prediction with Lattice Models 30-13

(a) (b)

FIGURE 30.9: Illustration of the conformations generated by an approximation algorithm for
the HP side chain model on the cubic lattic: (a) the 3D structure of a single
column, and (b) a perspective of the core generated by interlacing the columns.

bounds of 9N(s)/2 contacts for the FCC lattice and 7N(s) contacts for the ECL.
These approximation algorithms are very similar in that they both place all hydrophobic

side chains in a set of columns, with an algorithm that forms the conformation in a linear
fashion (layer by layer or column by column). The hydrophobic columns form a distinct
hydrophobic core, with an irregular outer layer of hydrophilic side chains. For example,
Figure 30.10 illustrates a conformation generated by an approximation algorithm for the
FCC lattice [25], which generates eight columns of hydrophobics. These tight hydrophobic
cores guarantee that these approximation algorithms have an approximation ratio of 31/36
on the FCC lattice and 59/70 on the ECL.

Heun [28] also considers approximation algorithms that are tailored to the characteristics
of sequences commonly found in the SWISS-PROT protein database. Specifically, Heun
considers HP sequences that can be decomposed into blocks of 6 hydrophobics of the form
σ = P l1H . . . P l6H where

• either there exists i ∈ {2, 3, . . . , 6} such that li = 0, or
• there exists i, j ∈ {1, 2, . . . , 6}, i �= j, such that li + lj ≤ 3.

Heun notes that over 96% of the sequences in SWISS-PROT can be decomposed into blocks
of 6 hydrophobics with this character, and he describes an approximation algorithm for the
ECL with an approximation ratio of 37/42.

30.4.3 Off-Lattice HP Model

The HP tangent spheres models are simple PSP models that do not use a lattice but are
analogous to the standard HP model [25]. Because the conformations in these models are
not defined within a lattice, these models are termed off-lattice models. In these models,
the graph that represents the protein is transformed to a set of tangent spheres of equal
radius (or circles in two dimensions). Every vertex in the graph is replaced by a sphere,
and edges in the graph are translated to constraints that force spheres to be tangent in
a conformation (see Figure 30.3(c)). The linear chain model represents the protein as

30-14 Handbook of Computational Molecular Biology

FIGURE 30.10: Illustration of the conformation generated by an approximation algorithm for
the HP side chain model on the FCC lattice. The structures generated by
Heun’s approximation algorithm on the extended cubic lattice have a similar
structure, with 10 hydrophobic columns in the core.

a sequence of spheres on a string, consecutive spheres being tangent, which are labelled
hydrophobic or hydrophilic. The side chain model represents the backbone as in the linear
chain model, but now every sphere in the backbone is tangent to a side chain sphere that
models the physical presence of that amino acid’s side chain. The side chain spheres are
labelled hydrophobic or hydrophilic. A hydrophobic-hydrophobic contact in such a model
is obtained when two hydrophobic-spheres are tangent.

The tangent spheres side chain model generalizes the HP model in the sense that for any
lattice a conformation on that lattice represents a possible off-lattice conformation. Thus
HP tangent spheres models can be analyzed rigorously by transferring algorithmic analyses
from various lattice HP-models to the off-lattice setting. In 2D, the maximum number of
spheres that can be tangent to a single sphere is 6. Thus a hydrophobic sphere in a linear
chain can be tangent to at most 4 other hydrophobic spheres. The arrow-folding algorithm
described by Agarwala et al. [1] can be used to construct a conformation (with the linear
sphere chain) that has at least N(s)− 3 hydrophobic-hydrophobic contacts. Consequently,
this algorithm has a 1/4 approximation ratio for the HP tangent spheres model.

To analyze the performance of the HP tangent spheres model in three dimensions, recall
that for a set of identical spheres in 3D the maximum number of spheres that can be tangent

Protein Structure Prediction with Lattice Models 30-15

to a single fixed sphere is 12. This is the so-called the 3D kissing number. From this we
can conclude that a hydrophobic sphere in a linear chain can be tangent to only 10 other
hydrophobic spheres, and a hydrophobic side chain sphere in a side chain model can be
tangent to only 11 other hydrophobic side chain spheres. Thus each hydrophobic sphere
in a linear chain can contribute at most 5 contacts and each hydrophobic side chain can
contribute at most 11/2 contacts.

The star-folding algorithm described by Agarwala et al. [1] can be used to construct a FC-
C conformation (with the linear sphere chain) that has 8N(s)/3 hydrophobic-hydrophobic
contacts (ignoring boundary conditions). Consequently, this algorithm has a 8/15 approxi-
mation ratio for the HP tangent spheres model. Similarly, the approximation for the FCC
side chain model [25] can be used to construct a conformation that has at least 31N(s)/8−42
contacts (for sufficiently long sequences), which yields an algorithm with an approximation
ratio of 31/44 for the HP tangent spheres model with side chains.

30.4.4 Robust Approximability for HP Models on General Lattices

The results that we have surveyed in this section demonstrate that near-optimal protein
structures can be quickly constructed for a variety of HP lattice models as well as simple
off-lattice protein models. This naturally begs the question of whether approximability is a
general property of HP lattice models. Results that transcend particular lattice frameworks
are of significant interest because they can say something about the general biological prob-
lem with a higher degree of confidence. In fact, it is reasonable to expect that there will
exist algorithmic invariants across lattices that fundamentally relate to the protein folding
problem, because lattice models provide alternative discretizations of the same physical
phenomenon.

Two “master” approximation algorithms have been developed for bipartite and non-
bipartite lattices that demonstrate how approximation algorithms can be applied to a wide
range of lattices [27]. These master approximation algorithms provide a generic template for
an approximation algorithm using only a sublattice called a latticoid, a structured sublattice
that in which a skeleton of hydrophobic contacts can be constructed. Further, the analysis
of these algorithms includes a complexity theory for approximability in lattices that can
be used to transform PSP algorithms in one lattice into PSP algorithms in another lattice
such that we can provide a performance guarantee on the new lattice.

Figure 30.11 represents two possible latticoids of the square lattice. The bipartite master
approximation algorithm selects a folding point in the same fashion used for the 2D HP
model [23], and a hydrophobic core is similarly made by pairing odd and even hydrophobics
along two faces of the conformation. The central row in these latticoids indicates the points
at which hydrophobic contacts can be made by the master approximation algorithm.

The latticoids in Figure 30.11 can be embedded into a wide range of crystal lattices to
provide a performance guaranteed approximation algorithm for the HP model. To illustrate
this, consider the diamond lattice, whose unit cell is shown in Figure 30.2(b). Figure 30.12
illustrates how the latticoid in Figure 30.11(a) can be embedded into this lattice to ensure
that at least �X [s]/4� hydrophobic-hydrophobic contacts are formed.

The bipartite and non-bipartite master approximation algorithms have performance guar-
antees for a class of lattices that includes most of the lattices commonly used in simple ex-
act PSP models [27]: square and cubic lattices [18, 22, 39], diamond (carbon) lattices [40],
face-centered-cubic lattice [14], and the 210 lattice used by Skolnick and Kolinkski [41].
Additionally, their analysis provides performance guarantees for a wide range of crystal-
lographic lattices: Bravais lattices like the triclinic and triagonal lattices [38], the flourite
lattice, 3D close packed lattices, the body centered cubic lattic and the hexagonal lattice.

30-16 Handbook of Computational Molecular Biology

(a)

(b)

FIGURE 30.11: Illustrations of two latticoids of the square lattice. Dark lines indicate edges
that are used in some protein conformation and dashed lines indicate remaining
edges in the square lattice. The contact edges are the bolded edges in the central
horizontal row.

These results demonstrate that approximability is a general feature of HP models on crystal
lattices.

30.4.5 Accessible Surface Area Lattice Model

Solvent accessible area (ASA) describes the surface area over which contact between protein
and solvent can occur. The concept of the solvent accessible surface of a protein molecule
was originally introduced by Lee and Richards [30] as a way of quantifying hydrophobic
burial. Subsequently, ASA and similar measures have been integrated into a variety of
empirical potentials for PSP. This potential is qualitatively different from the HP model in
that it favors hydrophobic burial rather than hydrophobic-hydrophobic interactions.

Protein Structure Prediction with Lattice Models 30-17

FIGURE 30.12: Illustration of a latticoid embedding into the diamond crystal lattice.

We describe new performance guaranteed approximation algorithms for the ASA lattice
model with a linear chain model on the triangular lattice. As with the HP model, in the
ASA model, we consider protein sequences s ∈ {H,P}+. On a lattice, the ASA for a protein
conformation can be modelled by the number of unoccupied lattice points that are adjacent
to hydrophobic amino acids. Since there exist sequences for which the ASA is zero (i.e. all
hydrophobics can be buried), it is not possible to develop an approximation algorithm that
guarantees a multiplicative approximation ratio. Consequently, we treat this as a covering
problem for the hydrophobics in a HP sequence.

Let ASA(s) refer to the number of covered hydrophobics in a conformation, which is
the value we will attempt to maximize. If a sequence s has N(s) hydrophobics, then
ASA(s) ≤ 4N(s)+2 on the triangular lattice because each amino acid has four neighboring
lattice points that are not covered by the chain itself (except for the endpoints). Let NHP (s)
denote the number of H-P contacts in a conformation, and let NHH(s) denote the number
of H-H contacts. Note that ASA(s) = NHP (s) + 2NHH(s), since a single hydrophobic-
hydrophobic contact represents the fact that two hydrophobics are being covered. Now
consider the conformation of a chain folded back on itself (a simple U-fold). All but 3
hydrophobics in this conformation are guaranteed to have two contacts. Consequently,
NHP (s) + 2NHH(s) ≥ 2N(s) − 6, so an algorithm that generates this conformation has a
1/2 approximation ratio. A similar analysis applies for a U-fold on the 2D square lattice,
so an algorithm that generates that conformation has a 1/2 approximation ratio.

Now consider the conformation in Figure 30.13, which treats the protein as a circular con-
formation that is molded into a square shape. If the protein sequence has n amino acids, then
approximately n−4

√
n amino acids lie strictly within this conformation and are completely

30-18 Handbook of Computational Molecular Biology

FIGURE 30.13: Illustration of conformations generated by the second approximation algorithm
in the ASA model on a triangular lattice.

buried. Now consider the linear-time algorithm that shifts the protein sequence through the
circular conformation to find the shift that minimizes the number of hydrophobics on the ex-
terior of this conformation. The conformation of this shifted minimal sequence has at most
4N(s)/

√
n exposed hydrophobics. Thus we haveNHP (s)+2NHH(s) ≥ 4N(s)−16N(s)/

√
n,

from which it follows that we have an approximation ratio of 1. This implies that asymptot-
ically all but an o(1) fraction of the hydrophobic amino acids are buried in this algorithm.
Note that the conformation in Figure 30.13 can be embedded in the 2D square lattice. A
similar analysis shows that an algorithm that generates this conformation has an approxi-
mation ratio of 1. Furthermore, this result naturally generalizes to the 3D cubic and FCC
lattices, since you can create similarly compact structures for which the surface area is
dominated by the volume.

30.5 Exact Methods

Solving PSP problems exactly is an important practical goal because the lowest-energy
structure determines the biological functionality of a protein. Although PSP has been
proven NP-hard for many different lattice models, this does not preclude the development
of practical tools for many protein sequences. Since exhaustive enumeration is clearly not
practical even for relatively small protein sequences, several search techniques have been
developed to solve PSP for simple lattices models. In each of these methods, the lattice
structure is exploited to mathematically limit the search process.

30.5.1 Enumeration of Hydrophobic Cores

Yue and Dill [45] developed the first exact method for exactly finding globally optimal
protein structures on HP lattice models. The surface area of the hydrophobic core is easier
to estimate (given partial information about the final conformation) than the number of
hydrophobic-hydrophobic contacts, and the core surface area and the number of contacts
are related. Yue and Dill developed the constrained hydrophobic core construction (CHCC)
algorithm, which enumerates all possible shapes of the region containing all hydrophobic
amino acids for a sequence. This enumeration of the possible hydrophobic cores is done
so that core shapes with a smaller surface area are enumerated before core shapes with a
larger surface area. For every core shape, CHCC enumerates all positions of the monomers
that fit into the given core shape. CHCC uses some conditions (or constraints) to reduce
the size of the search tree.

The CHCC has been effectively applied to exactly solve PSP problems for HP sequences
with up to 80 amino acids. Perhaps the greatest limitation of this method is that it is specif-
ically tailored for the HP-model on the cubic lattice. Consequently, this basic algorithmic

Protein Structure Prediction with Lattice Models 30-19

approach has not been effectively generalized to other simple lattice models for PSP.

30.5.2 Constraint Programming

Backofen et al. [3, 4, 5, 6, 7, 8] provide a declarative formulation of the HP lattice model,
which is solved using constraint programming. Constraint programming is a relatively new
programming technique that integrates a declarative definition of a problem (e.g. PROLOG)
with an inherently concurrent programming paradigm, since all constraints are handled in
parallel. The search strategy is not fixed in constraint programming, and systems like
Oz [42] offer a flexible environment for defining a search strategy. Constraint programming
offers a flexible framework for solving PSP on simple lattice models, and Backofen et al.
have described declarative formulations for the HP models on the cubic and FCC lattices,
as well as an extended HP model on the cubic lattice.

We illustrate the type of declarative formulation used for constraint programming to
define feasible conformations in the cubic lattice. Consider variables Xi, Yi and Zi that
indicate the position of the i-th amino acid in the lattice. Without loss of generality we can
restrict the amino acids with the following constraint:

∀i,Xi ∈ [1 . . . (2 · length(s))]
∧

Yi ∈ [1 . . . (2 · length(s))]
∧

Zi ∈ [1 . . . (2 · length(s))],

where length(s) is the length of the HP sequence. We clearly need to satisfy the constraint
∀i �= j, (Xi, Yi, Zi) �= (Xj , Yj , Zj) in a feasible conformation. Additionally, amino acids must
be consecutively placed on the lattice. We can enforce this constraint using variables Xdiffi,
Ydiffi and Zdiffi, which represent the difference of the x, y and z coordinates between amino
acid i and i+ 1. The constraints

∀i,Xdiffi = |Xi −Xi+1|
∀i,Ydiffi = |Yi −Yi+1|
∀i,Zdiffi = |Zi − Zi+1|

define the values of these variables, and the constraint ∀i, 1 = Xdiff i+Ydiff i+Zdiffi ensures
that the distance between consecutive amino acids is one.

Backofen et al. apply a search algorithm that is a combination of a branch-and-bound
search together with a constrain-and-generate principle, which is common for constraint
programming. The branching process selects a variable var to branch on and then creates
two branches for some value var: (1) var =: val, and (2) var �=: val. Subsequently, these
branches are evaluated using a constraint programming system to evaluate the effected
variables according to the constraints, which results in an association of smaller value ranges
to some (or many) variables. Further, the search tree may be pruned when an inconsistent
conformation is generated. The bounding calculation used in this search requires a problem-
specific calculation, based on the feasible domain for a subproblem.

Backofen et al [3, 4, 5, 6, 7, 8] have evaluated constraint programming implementations
for HP lattice models using the Oz language [42]. These methods have effectively solved
problems of up to 200 amino acids (using pre-calculated hydrophobic cores) within a few
seconds. Additionally, these tools have been used to enumerate optimal conformations for
the HP cubic model, for which it appears to be more effective than the CHCC algorithm.

30-20 Handbook of Computational Molecular Biology

30.5.3 Integer Programming

A standard approach for finding exact solutions for hard optimization problems is to model
them as integer programs and try to solve these programs to optimality using techniques
from the field of integer programming such as branch and bound. Additionally, linear pro-
gramming relaxations of integer programs often provide efficiently computable non-trivial
upper bounds.

Several integer programming formulations have been developed for the PSP problem in
the HP model [12, 21, 13]. We illustrate the type of linear constraints used for integer
programming to define feasible conformations in the square lattice. Without loss of gener-
ality, we can restrict the conformations to lattice points L = {1, 2, . . . , n2}, such that the
coordinates are of the form:

yp =
⌊
p− 1
n

⌋
and xp = p− 1 − nyp for p ∈ L.

Let N (p) denote the lattice points adjacent to a point p (whose distance is one away), and
let vip be a binary decision variable that is one if the i-th amino acid is placed at point p on
the lattice, and zero otherwise. Now every residue must be placed on a lattice point, which
is enforced by the following constraint:

∑

p∈L
vip = 1 , i = 1, . . . , n.

Similarly, each point cannot have more than one amino acid placed at it, which is enforced
by the constraint:

n∑

i=1

vip ≤ 1 , ∀p ∈ L.

Finally, we can enforce the connectivity between consecutive amino acids with the following
two constraints:

∑

q∈N (p)

vi+1,q ≥ vip , i = 1, . . . , n− 1, p ∈ L,

∑

q∈N (p)

vi−1,q ≥ vip , i = 2, . . . , n, p ∈ L.

These constraints define a convex region that represents valid solutions if we relax the
constraint that the {vip} variables are binary. This observation provides a mechanism for
computing lower bounds on the minimum energy of a conformation with integer program
formulations, for which the lower bound can be computed with linear programming methods.

Linear programming relaxations can provably provide bounds that are at least as strong
as the simple combinatorial bound 30.3 and some IP formulations may strengthen this
bound even further [12]. Although integer programming formulations have been used to
compute such bounds, these formulations can have many variables, which may limit their
application to large-scale problems. Additionally, it is not clear whether these integer
programming formulations can be used to solve large-scale instances of the PSP problems
exactly.

Protein Structure Prediction with Lattice Models 30-21

30.6 Conclusions

There are many ways that these analyses and methods for PSP problems can be im-
proved. For example, no intractability analysis has been developed for the HP model on
the triangular or FCC lattices. There is wide agreement that these lattices are more prac-
tically relevant for PSP because they do not impose the artificial parity constraints found
in the square and cubic lattices, so such an intractability analysis would be quite interest-
ing. Similarly, exact methods have not been developed for models like the HP side chain
model, which capture greater physical detail. We expect that studies of (near-) optimal
conformations in this model would provide significant insight into PSP (e.g. by studying
the degeneracy of the optimal solution in these problems).

Improving bounds on lattice models could fundamentally improve our assessment for
approximation algorithms. For example, there are strings for which the best conformation
on the 2D square lattice achieves only half of the upper bound in Equation 30.3 [33], so this
bound is demonstrably weak. However, integer programming formulations may provide
a general technique for improving these bounds for specific sequences. The bounds for
the HP tangent spheres model might also be improved by generalizing the bound analysis
of triangular and FCC lattices. In the triangular and FCC lattices, the bounds on the
maximal number of contacts can be tightened by noting that “conflicts” occur between some
hydrophobics and non-hydrophobics, thereby limiting the total number of hydrophobic-
hydrophobic contacts. However, in 3D it is possible to have 12 spheres touching a given
sphere without any pair of them being tangent, so the notion of a “conflict” needs to be
generalized in this case to tighten simple upper bounds.

Researchers analyzing PSP in lattice models have increasingly considered detailed models
and methods that can be applied to a variety of lattice models. This trend is motivated
by the desire to provide robust mathematical insight into protein models that is generally
independent of a particular lattice formulation. Analyses that achieve this goal provide
greater insight into general PSP complexity, which is not bound by lattice constraints and
for which precise empirical energy potentials are not known.

One interesting direction for the analysis of PSP is to consider methods that are tailored
to biologically plausible amino acid sequences. Thus we need to develop complexity analyses
like Heun’s approximation algorithm that is tailored to protein-like sequences. For example,
the possible intractability of PSP remains an open question if PSP is restricted in this
manner.

Similarly, we expect that methods that can solve more detailed protein models will provide
more insight into real protein structures. For example, side chain lattice models are clearly
more representative of the structure of actual proteins than linear chain models. However,
the analysis of side chain models with variable-size side chains could more accurately capture
the complexity of solving side chain packing problems. Additionally, this type of PSP
formulation could capture the fact that the hydrophobicity of a side chain is related to its
surface area. PSP with variable hydrophobicities has been briefly considered by Agarwala
et al. [1], who consider protein structures as linear chains.

Finally, the connection between lattice models and off-lattice models needs to be devel-
oped further to more directly impact real-world PSP problems. Performance guaranteed
algorithms for the FCC lattice can provide performance guarantees for closely related off-
lattice protein models. This is a first step towards a more comprehensive analysis that uses
lattice models to provide mathematical insight into off-lattice models. For example, we
conjecture that lattice-based search methods like constraint programming can be effective-
ly hybridized with optimizers for standard empirical energy potentials to perform a more
effective global search of protein structures.

30-22 References

Acknowledgments

We thank Sorin Istrail for his collaborations on the ASA model. We also thank Edith New-
man for her assistance in creating Figure 30.7. This work was performed in part at Sandia
National Laboratories. Sandia is a multipurpose laboratory operated by Sandia Corpo-
ration, a Lockheed-Martin Company, for the United States Department of Energy under
contract DE-AC04-94AL85000. This work was partially funded by the US Department of
Energy’s Genomes to Life program (www.doegenomestolife.org), under project “Carbon
Sequestration in Synechococcus Sp.: From Molecular Machines to Hierarchical Modeling,”
(www.genomes-to-life.org).

References

[1] R. Agarwala, S. Batzogloa, V. Danč́ik, and S.E. Decatur et al. Local rules for protein
folding on a triangular lattice and generalized hydrophobicity in the HP model. J
Comp Bio, 4(3):276–296, 1997.

[2] J. Atkins and W.E. Hart. On the intractability of protein folding with a finite alphabet
of amino acids. Algorithmica, 25:279–294, 1999.

[3] R. Backofen. Using constraint programming for lattice protein folding. In R.B. Altman,
A.K. Dunker, L. Hunter, and T.E. Klein, editors, Pacific Symposium on Biocomput-
ing (PSB’98), volume 3, pages 387–398, 1998.

[4] R. Backofen. An upper bound for number of contacts in the HP-model on the Face-
Centered-Cubic Lattice (FCC). In R. Giancarlo and D. Sankoff, editors, Proceedings
of the 11th Annual Symposium on Combinatorial Pattern Matching, number 1848
in LNCS, pages 277–292, Montréal, Canada, 2000. Springer-Verlag, Berlin.

[5] R. Backofen. The protein structure prediction problem: A constraint optimisation
approach using a new lower bound. Constraints, 6:223–255, 2001.

[6] R. Backofen and S. Will. Optimally compact finite sphere packings — hydrophobic
cores in the FCC. In Proc. of the 12th Annual Symposium on Combinatorial Pattern
Matching (CPM2001), volume 2089 of Lecture Notes in Computer Science, Berlin,
2001. Springer–Verlag.

[7] R. Backofen and S. Will. A constraint-based approach to structure prediction for
simplified protein models that outperforms other existing methods. In Proceedings
of the Ninetheen International Conference on Logic Programming (ICLP 2003),
2003. in press.

[8] R. Backofen, S. Will, and E. Bornberg-Bauer. Application of constraint programming
techniques for structure prediction of lattice proteins with extended alphabets. J.
Bioinformatics, 15(3):234–242, 1999.

[9] B. Berger and T. Leighton. Protein folding in the hydrophobic-hydrophilic (HP) model
is NP-complete. J Comp Bio, 5(1):27–40, 1998.

[10] H.M. Berman, J. Westbrook, Z. Feng, and G. Gilliland et al. The protein data bank.
Nucleic Acids Research, 28:235–242, 2000. The PDB is at http://www.rcsb.org/
pdb/.

[11] S. Bromberg and K.A. Dill. Side chain entropy and packing in proteins. Prot. Sci.,
pages 997–1009, 1994.

[12] R. Carr, W.E. Hart, and A. Newman. Discrete optimization models for protein folding.
Technical report, Sandia National Laboratories, 2003.

[13] V. Chandru, A. DattaSharma, and V.S.A. Kumar. The algorithmics of folding proteins

References 30-23

on lattices. Discrete Applied Mathematics, 127(1):145–161, Apr 2003.
[14] D.G. Covell and R.L. Jernigan. Biochemistry, 29:3287, 1990.
[15] T.E. Creighton, editor. Protein Folding. W. H. Freeman and Company, 1993.
[16] P. Crescenzi, D. Goldman, C. Papadimitriou, and A. Piccolboni et al. On the com-

plexity of protein folding. J Comp Bio, 5(3), 1998.
[17] K.A. Dill. Theory for the folding and stability of globular proteins. Biochemistry,

24:1501, 1985.
[18] K.A. Dill, S. Bromberg, K. Yue, and K.M. Fiebig et al. Principles of protein folding:

A perspective from simple exact models. Prot. Sci., 4:561–602, 1995.
[19] C.J. Epstein, R.F. Goldberger, and C.B. Anfinsen. The genetic control of tertiary

protein structure: Studies with model systems. In Cold Spring Harbor Symposium
on Quantitative Biology, pages 439–449, 1963. Vol. 28.

[20] A.S. Fraenkel. Complexity of protein folding. Bull. Math. Bio., 55(6):1199–1210,
1993.

[21] H.J. Greenberg, W.E. Hart, and G. Lancia. Opportunities for combinatorial optimiza-
tion in computational biology. INFORMS Journal of Computing, 2003. (to appear).

[22] A.M. Gutin and E.I. Shakhnovich. Ground state of random copolymers and the discrete
random energy model. J. Chem. Phys., 98:8174–8177, 1993.

[23] W.E. Hart and S. Istrail. Fast protein folding in the hydrophobic-hydrophilic model
within three-eighths of optimal. Journal of Computational Biology, 3(1):53–96, 1996.

[24] W.E. Hart and S. Istrail. Invariant patterns in crystal lattices: Implications for protein
folding algorithms. In Combinatorial Pattern Matching, Lecture Notes in Computer
Science 1075, pages 288–303, New York, 1996. Springer.

[25] W.E. Hart and S. Istrail. Lattice and off-lattice side chain models of protein folding:
Linear time structure prediction better than 86% of optimal. Journal of Computa-
tional Biology, 4(3):241–259, 1997.

[26] W.E. Hart and S. Istrail. Robust proofs of NP-hardness for protein folding: General
lattices and energy potentials. Journal of Computational Biology, 4(1):1–20, 1997.

[27] W.E. Hart and S. Istrail. Invariant patterns in crystal lattices: Implications for protein
folding algorithms. Journal of Universal Computer Science, 6(6):560–579, 2000.

[28] V. Heun. Approximate protein folding in the HP side chain model on extended cubic
lattices. Discrete Applied Mathematics, 127(1):163–177, 2003.

[29] K.F. Lau and K.A. Dill. A lattice statistical mechanics model of the conformation and
sequence spaces of proteins. Macromolecules, 22:3986–3997, 1989.

[30] B. Lee and F.M. Richards. The interpretation of protein structures: Estimation of
static accessibility. J Mol Biol, 55:379–400, 1971.

[31] G. Mauri, A. Piccolboni, and G. Pavesi. Approximation algorithms for protein folding
prediction. In Proceedings of the 10th ACM-SIAM Symposium on Discrete Algo-
rithms, SODA, pages 945–946, Baltimore, 1999.

[32] A. Nayak, A. Sinclair, and U. Zwick. Spatial codes and the hardness of string folding
problems. J Comp Bio, pages 13–36, 1999.

[33] A. Newman. A new algorithm for protein folding in the HP model. In Proceedings of
the 13th ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 876–884,
San Francisco, Jan 2002.

[34] A. Newman and M. Ruhl. Combinatorial problems on strings with applications to
protein folding. In Proceedings of the 6th Latin American Theoretical Informatics
(LATIN), pages 369–378, Buenos Aires, 2004.

[35] J.T. Ngo and J. Marks. Computational complexity of a problem in molecular structure
prediction. Protein Engineering, 5(4):313–321, 1992.

[36] J.T. Ngo, J. Marks, and M. Karplus. Computational complexity, protein structure

30-24 References

prediction, and the Levinthal paradox. In K. Merz, Jr. and S. Le Grand, editors,
The Protein Folding Problem and Tertiary Structure Prediction, chapter 14, pages
435–508. Birkhauser, Boston, MA, 1994.

[37] M. Paterson and T. Przytycka. On the complexity of string folding. Discrete Applied
Mathematics, 71:217–230, 1996.

[38] D.E. Sands. Introduction to Crystallography. Dover Publications, Inc., New York,
1975.

[39] E.I. Shakhnovich and A.M. Gutin. Engineering of stable and fast-folding sequences of
model proteins. Proc. Natl. Acad. Sci., 90:7195–7199, 1993.

[40] A.j. Sikorski and J. Skolnick. Dynamice Monte Carlo simulations of globular protein
folding/unfolding pathways. II. α-helical motifs. J. Molecular Biology, 212:819–836,
July 1990.

[41] J. Skolnick and A. Kolinski. Simulations of the folding of a globular protien. Science,
250:1121–1125, 1990.

[42] G. Smolka. The Oz programming model, volume 1000 of Lecture Notes in Computer
Science, pages 324–343. 1995.

[43] R. Unger and J. Moult. Finding the lowest free energy conformation of a protein is a
NP-hard problem: Proof and implications. Bull. Math. Bio., 55(6):1183–1198, 1993.

[44] W.F. van Gunsteren, P.K. Weiner, and A.J. Wilkinson, editors. Computer Simulation
of Biomolecular Systems. ESCOM Science Publishers, 1993.

[45] K. Yue and K.A. Dill. Sequence-structure relationships in proteins and copolymers.
Phys. Rev. E, 48(3):2267–2278, 1993.

31
Protein Structure Determination via

NMR Spectral Data

Guohui Lin
University of Alberta

Xin Tu
University of Alberta

Xiang Wan
University of Alberta

31.1 Introduction . 31-1
31.2 Nuclear Magnetic Resonance Phenomenon 31-2

Chemical Shift • NMR Spectroscopy
31.3 NMR Data Acquisition and Processing 31-4
31.4 NMR Peak Picking . 31-4
31.5 NMR Peak Assignment . 31-5

Peak Grouping and Adjacency Determination •

Assignment Starting with Spin Systems • Scoring
Scheme for Signature Information • Assignment
Starting with Spin Systems and Adjacency Constraint
• Assignment Starting with Peak Lists

31.6 Structure Determination . 31-17
Structural Constraint Extraction • Secondary
Structure Prediction • Three-Dimensional Structure
Calculation

31.7 Conclusions . 31-21

31.1 Introduction

Protein functions are determined mostly by its three dimensional structure and the structure
determination is one of the top challenges in both genomics and proteomics eras. Although
having been employed for a long period of time, NMR spectroscopy and X-ray crystallog-
raphy are still the two main experimental methods for protein structure determination at
atomic resolution. It is acknowledged that NMR protein structure determination hasn’t
been able to achieve the same accuracy as X-ray crystallography does and thus X-ray crys-
tallography remains its dominant position. Nonetheless, NMR spectroscopy complements
it in many ways. Typically, structure determination via NMR spectroscopy can provide the
three dimensional structure of a protein in solution under nearly physiological conditions
along with dynamics information associated with the protein function. Therefore, with the
advent of recent innovations such as heteronuclear NMR and cryoprobes [20], NMR spec-
troscopy is expected to play a more significant role in structural biology, particularly in the
high-throughput structure production of the Structural Genomics Initiative [40].

The procedure of protein structure determination through NMR spectroscopy could be
roughly partitioned into two stages, the first of which is spectral data analysis and the second
is structure calculation under the structural constraints extracted using the analysis results
from the first stage. To achieve the high-throughput goal, the spectral data analysis must be

31-1

31-2 Handbook of Computational Molecular Biology

automated as it consumes most of the time in the whole procedure. There are a lot of efforts
devoted to automate the data analysis in the last two decades. This chapter summarizes
the best performed methods to include their key methodologies and their performance
guarantees. It also presents some of the most recent developments from our group toward
the goal of automated protein structure determination.

The chapter is organized as follows: In the next section, we introduce some basic notions
and inherent principles of Nuclear Magnetic Resonance phenomenon, on which the NMR
spectroscopy has been developed. Section 31.3 sketches the NMR data acquisition and the
Fourier Transformation which transforms the time domain signals into frequency domain
signals for later analysis. Section 31.4 summarizes how to identify real spectral peaks from
noise peaks. The association of the identified spectral peaks with their host residues in
the target protein sequence is given in Section 31.5, where the current methods of choice
and our recent developments are introduced. Section 31.6 presents how and what types
of the structural constraints are extracted and then put into structure builders for three
dimensional structure calculation. We conclude the chapter in Section 31.7.

31.2 Nuclear Magnetic Resonance Phenomenon

Atoms are basic building blocks of matter, and cannot be chemically subdivided by ordinary
means. Atoms are composed of three types of particles: protons, neutrons, and electrons.
Each proton has a positive charge and each electron has a negative charge, while neutrons
have no charge. The number of protons in an atom is the atomic number, which determines
the type of the atom. Both protons and neutrons reside in the nucleus. A same type of
atoms may contain different numbers of neutrons, and they are called isotopes.

A nucleus often acts as if it is a single entity with intrinsic total angular momentum I,
the nuclear spin, which is the overall effect of the imaginary spinning protons and neutrons.
Despite many spin-pairing rules, one characteristic is that a nucleus of odd mass number
(which is the sum of the numbers of protons and neutrons) will have a half-integer spin
and a nucleus of even mass number but odd numbers of protons and neutrons will have an
integer spin. For a nucleus of spin I, there are 2I + 1 spin states (or orientations) ranging
from −I to +I. In the NMR spectroscopy for protein structure determination, the most
important nuclei with spin I = 1/2 are 1H (Hydrogen), 13C (Carbon), 15N (Nitrogen), 19F
(Fluorine), and 31P (Phosphorus), each of which has two spin states; the nucleus with spin
I = 1 is deuteron 2H (Hydrogen); and typical isotopes with no spin (i.e., I = 0) are 12C,
14N, and 16O (Oxygen).

Nuclear Magnetic Resonance (NMR) is a phenomenon which occurs when the nuclei
are immersed in a static magnetic field and are exposed to a second oscillating magnetic
field (which is created by radio frequency (r.f.) pulse). In the absence of an external
magnetic field, for nuclei of spin I, those 2I + 1 states are of equal energy. When an
external magnetic field is applied, the energy levels split. In an external magnetic field of
strength B0, the spinning rotation axis of a nucleus will precess about the magnetic field
with angular frequency ω0 = γB0, called Larmor Frequency, where the gyromagnetic ratio γ
is different for distinct types of nuclei. For nuclei of spin I = 1/2, there will be two possible
spinning orientations/states in the external magnetic field, i.e., parallel to the external field
(low energy state) and opposite to the external field (high energy state). At the time the
external magnetic field is applied, the initial populations of nuclei in the energy levels are
determined by thermodynamics, described by the Boltzmann distribution. This means that
the low energy level will contain slightly more nuclei than the high level. It is possible to
incite the low energy level nuclei into the high energy level with electromagnetic radiation.

Protein Structure Determination via NMR Spectral Data 31-3

In fact, if these aligned nuclei are irradiated with r.f. pulse of a proper frequency, nuclei will
spin-flip from low energy state to high energy state or from high energy state to low energy
state by absorbing or emitting a quantum of energy, respectively. The frequency of radiation
needed is determined by the difference in energy between the two energy levels and when
such a spin transition occurs the nuclei are said to be in resonance with this radiation. The
electromagnetic radiation supplied by the second oscillating magnetic field must be equal to
the frequency of the oscillating electric field generated by nucleus precession, which is

ω0

2π
,

because only under that circumstance, the energy needed in resonance can be transferred
from electromagnetic radiation to precession nucleus. It is possible that by absorbing energy,
the nuclei will reach a state with equal populations in both states. In such a case, the system
is saturated. If the electromagnetic radiation supply by the second oscillating magnetic field
is then switched off, nuclei at the high energy state will be back to the low energy state and
the system will return to thermal equilibrium. Such a phase is the relaxation process. The
relaxation process produces a measurable amount of r.f. signal at the resonant frequency
associated with the spin-flip. This frequency is received and amplified to display the NMR
signal.

31.2.1 Chemical Shift

The resonance frequencies of individual nuclei are not only relevant to the strength of
the external magnetic field B0 applied on them, but also depend on their local chemical
environments. The magnetic field generated by a nucleus itself tends to contradict the effect
of the external magnetic field. This contradiction effect is defined as shielding. The strength
of this shielding effect increases with the electron density. This is called the Chemical Shift
phenomenon. The actual field present at the nucleus is not B0 but Blocal = B0(1 − σ),
where σB0 is the shielding effect (σ is the shielding factor which is small — typically 10−5

for protons and 10−3 for other nuclei [7]). Consequently, the Larmor Frequency becomes
ω0 = γB0(1 − σ). Chemical shift in Parts Per Million (PPM) is defined as

δ =
(ω0 − ωreference)× 106

ωreference
≈ (σreference − σ)× 106,

where ωreference is the reference frequency and σreference is the reference shielding factor.
For both protons and carbons, the reference material is often tetramethylsilane Si(CH3)4
(TMS). Chemical shift is small but it is a very sensitive probe of the chemical environment of
the resonating nucleus, and it is possible that we can distinguish nuclei in different chemical
environments using their chemical shift values. Here, chemical environment refers to the
interactions between nuclei, including chemical bonds, scalar coupling, dipolar coupling,
hydrogen bond, etc. It is observed that even tiny changes of one of these environmental
factors will vary the value of chemical shift. Therefore, on the basis of chemical shift
phenomenon, we will be able to map spectral peaks back to their host amino acid residues
in the target protein sequence through a process called peak assignment, which is one of
the key steps in NMR spectroscopy for protein structure determination.

31.2.2 NMR Spectroscopy

Spectroscopy is the study of the interaction of electromagnetic radiation with matter. NMR
spectroscopy is the use of the NMR phenomenon to study physical, chemical, and biological
properties of matter. As a consequence, NMR spectroscopy finds applications in several
areas of science. For example, NMR spectroscopy is routinely used by chemists to study

31-4 Handbook of Computational Molecular Biology

chemical structure using simple one-dimensional techniques. Two and higher dimension-
al techniques are used to determine the structure of more complicated molecules. These
techniques are improving and are replacing X-ray crystallography for the determination of
protein structure.

NMR spectroscopy derives protein structural information by providing a network of dis-
tance restraints between spatially close (i.e., < 5Å) hydrogen atoms extracted from the
NOEs, dihedral-angle restraints calculated from scalar coupling constants and chemical
shifts, and other various geometric restraints including orientation information from the
residual dipolar coupling. An NMR structure is typically determined through molecular
dynamics (MD) simulation and energy minimization (EM) under the above NMR struc-
tural constraints [5, 8, 11, 24].

31.3 NMR Data Acquisition and Processing

A wide variety of NMR instrumentation is available for NMR experiments to produce the
data for protein structure determination. The common components of NMR spectrometers
are: (a) superconducting magnet for supplying external magnetic field, (b) pulse program-
mer and r.f. transmitter to generate and control r.f. pulses, (c) probe for placing the sample
in the magnet, (d) receiver for receiving the resulting NMR signals, and (e) computers for
data acquisition and processing. Superconducting magnets can provide a wide range of fre-
quencies from 60 to 800 MHz. Note that higher frequency implies the higher sensitivity and
stability of the NMR spectroscopy, because the differences between the chemical shifts are
amplified with the increase of magnetic field strength, meaning better separation between
nuclei resonances.

In NMR spectrometers, superconducting magnet provides the external static magnetic
field. The transverse magnetic field is generated by a series of r.f. pulses. During the
relaxation process of the nuclei in the probe, the time-varying current is amplified and
digitized by preamplifier and analog-to-digital converter (ADC), respectively, and then is
recorded by the spectrometer. This time domain signal is sent to computer for further
processing which transforms the time domain signals into frequency domain signals. The
main step of such a processing is the Fourier Transformation, ahead of which multiple
processing methods including zero filling, apodization, and linear prediction are applied to
prevent information loss. After Fourier Transformation, a post-processing method phase
correlation is applied to optimize the appearance of the frequency domain spectrum. The
frequency domain signals are the chemical shift values which will be analyzed next.

31.4 NMR Peak Picking

Figure 31.1 shows a sample one dimensional chemical shift spectrum which is a sketch of
a proton NMR spectrum for diacetone alcohol molecule [7]. In this spectrum, the x-axis
is the chemical shift in ppm and the y-axis is the intensity. The high-resolution peaks can
be identified with the functional groups in the molecule: δ = 1.23 for 6 protons in (CH3)2,
δ = 2.16 for 3 protons in CH3C=O, δ = 2.62 for 2 protons in CH2, and δ = 4.12 for one
proton in OH. In the spectrum, the peak at 0ppm is the reference peak and there are some
other low intensity peaks which are considered as noise peaks.

Peak picking is a process designed to filter out artificial peaks, to calibrate NMR signal
lineshapes, and to recognize the intensity of each peak. For protein structure determination,
two and higher dimensional NMR spectra are used, where every axis is the chemical shift
in ppm for a certain type of nuclei. Because of strongly overlapping peaks and spectral

Protein Structure Determination via NMR Spectral Data 31-5

5 4 3 2 1 0

Chemical Shift (ppm)

FIGURE 31.1: One dimensional NMR proton spectrum for diacetone alcohol molecule.

distortions due to artificial peaks, robust recognition methods should be developed. In the
literature there are a number of existing methods such as neural networks [13, 16], statistical
approaches [41, 3], and numerical analysis of various properties of the data points [33, 21].
We remark that even robust methods might fail for NMR signal recognition in complex
spectra.

There exists also a number of free software for peak picking process. For example, AU-
TOPSY [34] could deal with overlap and deviations from ideal Lorentzian line shape. AT-
NOS [30] is mainly developed for automated NOESY peak picking. In more details, AU-
TOPSY is an automated peak picking and peak integration method. The essences of this
program are the function for local noise level calculation, the use of lineshapes extracted
from well-separated peaks for resolving strongly overlapping peaks, and the consideration
for symmetry. The key observation used by AUTOPSY is that multidimensional spectra
typically contain multiple peaks that have the same lineshape and the same chemical shift
in one frequency domain. ATNOS is an automated NOESY peak picking software to extract
structural constraints. The input to ATNOS includes target protein sequence, chemical shift
lists from peak assignment, and several 2D or 3D NOESY spectra. Current implementation
of ATNOS performs multiple cycles of NOE peak identification combining with automated
NOE assignment program CANDID [30]. In each cycle, ATNOS performs automated NOE
peak picking by NOESY symmetry criterion. By reassessing the NOESY spectra in each
cycle of structure calculation, ATNOS enables direct feedback among the NOESY spectra,
the NOE assignments, and the protein structure. The new software package RADAR which
combines ATNOS and CANDID will be freely available soon [30].

31.5 NMR Peak Assignment

NMR data acquisition and processing and the spectral peak picking require a complete
knowledge of the NMR phenomenon. The output from every NMR experiment is a list of
spectrum peaks whose quality is mostly dominated by the NMR instrumentation. It should
be noted that in practice, the output peak list might still contain artificial peaks and some
true peaks might be missing from the list because of data degeneracy. In any case, this list

31-6 Handbook of Computational Molecular Biology

of peaks must be mapped to their host nuclei in the amino acid residues in the target protein
sequence in order for the following stage of structural restraint extraction. Such a stage is re-
ferred to as NMR Peak assignment which usually involves multiple spectra or multiple peak
lists. Peak assignment is a crucial stage in the whole process of protein structure determina-
tion as a small error in this stage might result in a huge structure gap. The NMR knowledge
still plays an essential role in the success of peak assignment, nonetheless, computing tech-
niques come into play with more protein structures being determined via NMR spectroscopy.
More importantly, it allows further automation and thus potentially this currently one of the
most time consuming steps in NMR structure determination will become high-throughput
and thus make the overall structure determination a high-throughput technology.

Peak assignment is to map peaks from multiple spectra to their host nuclei in the target
protein sequence. To accomplish the task, two main pieces of information are used. One of
them is the nuclear information and the local chemical environmental information associated
with the chemical shift values, which is called the signature information. In other words,
one type of nuclei in a specific local environment will have its chemical shift values in a very
narrow range. The other piece of information is from the correlation of multiple spectra. In
more detail, the chemical shift of one nucleus will be observed in multiple spectra and thus it
might help bridge the peaks. A spin system refers to a set of chemical shifts which are from
nuclei residing in a common amino acid residue. One important cross-spectra deduction is
that certain pairs of spin systems must be from adjacent amino acid residues in the target
protein sequence, which is called the adjacency information. This is true because the two
and higher dimensional NMR experiments are designed to detect the magnetic interactions
among nuclei that are spatially close to each other and thus some peaks (which represent
the chemical shifts for the nuclei in the interaction) are intra-residue (nuclei from a common
amino acid residue) and some others are inter-residue (nuclei from two adjacent amino acid
residues). It should be clear that peak assignment is another phase that detects artificial
peaks if they are in conflict with the formed spin systems and their mapped residues.

There are many great efforts devoted to the assignment and several software tools devel-
oped (Figure 31.2), some of which are freely available. To name a few, PASTA [35] uses
threshold accepting algorithms, GARANT [6, 9] uses genetic algorithm, PACES [17] and
MAPPER [26] use exhaustive search algorithms, AutoAssign [51] uses heuristic best-first
algorithms, among others.

Every one of these peak assignment approaches takes as input a set of multiple peak lists
which come from various NMR experiments. In the following we will be using some of NMR
spectra to demonstrate the detailed assignment process. Mathematically, one peak in a list
records a vector of chemical shifts corresponding to the nuclei whose magnetic interaction
is designed to be captured. For example, in two dimensional HSQC (heteronuclear single
quantum correlation) spectrum, every peak contains two entries, one for amide proton
(denoted as HN) 1 chemical shift and the other for the directly attached nitrogen (denoted
as NH) chemical shift; In three dimensional HNCA spectrum, every peak contains three
entries, the first one for NH chemical shift, the second one for carbon alpha (denoted as
CA) chemical shift which could be in the same amino acid or in the preceding amino
acid, and the third one for HN chemical shift. The peaks from HSQC and HNCA contain

1In the literature, amide proton is also denoted as HN; the directly attached nitrogen is also denoted
as NH; the alpha carbon is also denoted as Cα; the beta carbon is also denoted as Cβ ; and the second
backbone carbon is also denoted as C. In this chapter they are denoted as HN, NH, CA, CB and CO,
respectively.

Protein Structure Determination via NMR Spectral Data 31-7

Multiple
Peak
Lists

Grouping Adjacency Assignment

Grouping+Adjacency

Adjacency+Assignment

Grouping+Adjacency+Assignment

� �I �II �III �

�IV

�

�V

�VI

FIGURE 31.2: The flow chart of the peak assignment process: different works assume different
starting positions. Phase I includes AutoAssign [51], PASTA [35]; Phase II in-
cludes AutoAssign [51], PASTA [35], Random [32]; Phase III includes AutoAssign
[51], MAPPER [26], CBM [50]; Phase IV includes SmartNotebook [42]; Phase V
includes PACES [17]; Phase VI includes GARANT [6, 9].

chemical shift values for a common nucleus, of which the difference should be within the
reading error range, if not identical. On the other hand, every piece of chemical shift has
its signature information on which type of amino acid residue the nucleus is in and which
type of chemical environment the host amino acid residue is in. By using multiple chemical
shifts, such signature information can be intensified. For this reason, almost every peak
assignment has a stage call peak grouping which essentially groups the chemical shifts for
nuclei residing in a common amino acid residue into a vector called spin system. For HSQC
and HNCA spectra, a spin system would be a vector containing three chemical shifts for
HN, NH, and CA (in fact we will not be able to form such spin systems using HSQC and
HNCA alone, more details in the following). The spin system signature information is the
sum of the signatures of the individual chemical shifts in the spin system. The adjacency
information for a pair of spin systems is provided by the inter-residue peaks such that
the peak in HNCA spectrum which records NH chemical shift, chemical shift for CA from
preceding amino acid residue, and HN chemical shift, since one spin system would contain
the NH and HN chemical shifts and the other spin system would contain the CA chemical
shift.

As illustrated in Figure 31.2, some peak assignment methods do the peak grouping and
adjacency determination first and then move on to the spin system assignment under the
adjacency constraints; the others do the peak grouping and adjacency determination and
the chained spin system assignment at the same time. We have developed several improved
peak assignment methods along both lines and in the following we present some of them.

31-8 Handbook of Computational Molecular Biology

31.5.1 Peak Grouping and Adjacency Determination

We briefly describe how peaks from multiple spectra are grouped into spin systems and
at the same time the adjacency is determined. We go with the ideal case first and then
switch to the more complicated real spectral data. As an example, we use three spectra to
demonstrate in the ideal case: HSQC, CA(CO)NH, and HNCA. We note that different NMR
labs might be able to generate different combinations of NMR spectra, but the grouping
and adjacency determination are done in a pretty much the same fashion.

The CA(CO)NH spectrum gives us triples of inter-residue chemical shifts (HNi,CAi−1,NHi),
where i indexes the residue. The HNCA spectrum gives us triples of inter- and intra-residue
chemical shifts (HNi,CAi−1,NHi) and (HNi,CAi,NHi). The HSQC spectrum gives us pairs
of intra-residue chemical shifts (HNi,NHi). Therefore, from these three spectra, we can as-
sociate with residue i a triple chemical shifts (HNi,NHi,CAi). Our assignment goal is to
identify for each residue its true triple. In the ideal case, the triples can be read out of these
three NMR spectra, and the number of triples is equal to the number of residues in the
target protein sequence. However, in general, the chemical shifts measured out of one NMR
spectrum are different from those measured out of another NMR spectrum. Nonetheless,
the difference is very small and we hope we can still be able to extract the triples, besides
the existence of noise peaks and missing peaks.

In the following, we describe briefly on identifying the triples, together with the adjacency
information between triples.

1. For a pair of chemical shifts (assuming it is associated with the ith residue)
in HSQC spectrum, say (HNi,NHi), search for one triple in the CA(CO)NH
spectrum that shares the HN and NH chemical shifts. Note that there may be
none due to noise peaks or missing peaks; there may also be more and when there
is more then one triple, we have to identify which one is the true triple. Similarly
we expect to find two triples from the HNCA spectrum.

2. Suppose one triple in the CA(CO)NH spectrum is found. Then the CA chemical
shift in the triple is from the (i − 1)th residue. We can denote the triple as
(HNi,CAi−1,NHi).

3. Suppose two triples in the HNCA spectrum are found. Then these two CA
chemical shifts are from the (i− 1)th residue and from the ith residue. We can
denote these two triples as (HNi,CAi−1,NHi) and (HNi,CAi,NHi).

4. Since triple (HNi,CAi,NHi) appears in the HNCA spectrum only, we identify it
as the triple for ith residue. To identify the triple for (i + 1)th residue, we try
to look for some pair of chemical shifts (HNi′ ,NHi′) from HSQC spectrum such
that:

• (HNi′ ,CAi,NHi′) appears in the other two spectra,

which signify the sequential adjacency relationship between two triple spin sys-
tems, (HNi,NHi,CAi) and (HNi′ ,NHi′ ,CAi′). Subsequently, we can assign i′ =
i+ 1.

This searching process is performed for every pair of chemical shifts in the HSQC spectrum
to identify the triple and its adjacent triple. In the case that the chemical shift error is too
large to be believed, the identifying process terminates and is re-started on another pair.
The results are a set of triples, which are the spin systems, and the adjacency information
among these spin systems. In the above ideal case, chemical shifts (and thus peaks) for a
same nucleus (a same set of nuclei) are identical across all three spectra. This might not
be true in reality as they are observed via different experiments and different references

Protein Structure Determination via NMR Spectral Data 31-9

might be used, besides reading errors. The adjacency information connects spin systems
into strings, which will be mapped to non-overlapping polypeptides in the target protein
sequence. It has been shown [45] that the amount and the quality of adjacency information
have significant effects on the assignment results.

As the readers will be seeing in future sections that most peak assignment systems assume
the input to be a list of spin systems rather than several peak lists. Furthermore, they
assume that the spin systems contain correctly and unambiguously grouped peaks from
different spectra. In reality, the peak lists do not have the quality to make the grouping
a trivial task, and the quality and quantity of spin systems produced in peak grouping
stage have the most significant effect on the assignment. Some existing works (including
AutoAssign) address this issue by using an essential the same approach, which considers
the HSQC peaks as base peaks and subsequently maps the peaks from other spectra to
these base peaks. The NH and HN chemical shift values of mapped peaks must fall within
pre-specified match tolerances of base peaks. As the complexity goes high when the length
of protein grows, these works depend on many redundant spectra to resolve the ambiguities
and missing data. A big drawback of this approach is that it is very sensitive to the pre-
specified match tolerance. A high match tolerance will cause more ambiguities that will in
turn result in a dramatic increase in search space. A low match tolerance would produce
less spin systems for low resolution spectral data, which wouldn’t lead to a good assignment.

We propose in the following a new computational model which deals with the real but
more complicated case. In this model, peak grouping is formulated as a weighted bipartite
matching problem, where one side of vertices represent the peaks from one spectrum and
the other side of vertices represent the peaks from another spectrum, and the edge weight
measures the probability of mapping them to a common amino acid residue taken as the
square root of the product of the differences of HN chemical shifts and NH chemical shifts
(and therefore we assume that every peak contains these two chemical shifts). Our goal is
to find a minimum weight matching which tells how two spectra can be “merged” into one.
Repeating the process will eventually result in one “super” spectra which represents the list
of spin systems. Our approach has the advantage that it produces a globally optimal peak
grouping without considering the match tolerance and the resolution of spectral data.

31.5.2 Assignment Starting with Spin Systems

Despite a number of efforts devoted to group the peaks from different peak lists into spin sys-
tems and at the same time to determine their adjacencies [42], several assignment algorithms
start with spin systems without any adjacency information. Rather than determining the
adjacency during the grouping, they determine or predict the adjacency information from
the spin systems. Such a process is of course easier, since the grouping is assumed. Nonethe-
less, in some algorithms the adjacency determination is not done alone but combined into
the spin system assignment (Figure 31.2). A few recent works along this line include
PACES [17], AutoAssign [51], and Random Graph approach [32].

In essence, PACES represents the adjacency relationships among spin systems as a di-
rected network and enumerates all possible paths in it. Each such path represents a possible
string of the involved spin systems which has to be assigned to a polypeptide in the target
protein sequence. PACES validates each path by mapping/assigning it to the best possible
polypeptide incorporating the spin system signature information. We remark that this ap-
proach is only suitable for simple graphs because it is almost impossible to enumerate all
paths in a graph with an average out-degree above 2.

AutoAssign combines the adjacency determination and the assignment to validate each
other. The combination reduces the total number of possible paths dramatically compared

31-10 Handbook of Computational Molecular Biology

to PACES. In more detail, for each amino acid residue in the target protein sequence,
AutoAssign maintains a list of spin systems that the nuclei in this residue may generate.
For each pair of spin systems, AutoAssign checks if they reside in the two lists of spin
systems from two adjacent residues, respectively. If they do, then the pair is considered as
a valid adjacent pair. (At the same time, their assignments could be made if the pair of
adjacent residues in the target protein sequence is unique.) As it is obviously seen that the
spin system signature information is employed for coming up with the lists of spin systems
for every residue. AutoAssign extends this adjacent assignment of two spin systems to more.
However, the number of combinations increases exponentially with the length of spin system
path increases. Even worse, the ambiguities of the adjacencies among the spin systems also
increases the complexity of this approach, even if the list for a residue contains only three
spin systems on average. Indeed, AutoAssign requires much redundant information from
extra NMR spectra in order to reduce the complexity.

Random graph approach models the adjacency determination again as a directed graph,
where vertices represent the spin systems and weighted edges represent their adjacency
with probabilities. It starts from an initial set containing all the unambiguous edges and
iteratively chooses the edges from the remaining graph with probabilities proportional to
their weights. In the real computation, an edge with a high probability doesn’t always
represent a good adjacency due to the noises and chemical shift degeneracy. On the other
hand, the selection of the initial set is crucial to the performance. If the initial set contains
some wrong edges, then these wrong edges will lead to the wrong adjacencies in the output.

In summary, researchers have realized that one big issue in adjacency determination is how
to identify the correct adjacency out of multiple choices. If the data is of high quality, then
the problem might become trivial. In reality, however, this is not the case. Except the works
we reviewed in the above, many other approaches assume that a large amount of correct
adjacency information could be extracted from the peak lists without much difficulty and
focus more on the assignment under the extracted adjacency constraint. We, like the authors
of the above works, have a different opinion that peak grouping and adjacency determination
is more difficult and once it is done with a certain level of guarantee, then the assignment
problem would become trivial. Such an opinion, of course, is based on a certain set of new
observations, one of which is the learning of an accurate scoring scheme for quantified spin
system signature information. Our simulation study supports the conclusion that when
80% adjacency information could be determined, then the peak assignment problem can be
solved efficiently and accurately.

We proposed another way to combine the adjacency determination and the assignment,
different from AutoAssign, but similarly assume grouping. The algorithm employs a best-
first search incorporated with many other heuristics. One of our key observations is that, in
practice, a string of connected spin systems typically has a much better score at the correct
mapping position in the target protein sequence than almost all the other (incorrect) map-
ping positions. This stands out quite obviously when the size of the string increases. Such
an observation leads to our conclusion that a string of spin systems having an outstanding
mapping score has a high probability being correct. In other words, adjacency and assign-
ment support each other. Our algorithm starts with an Open List of strings and seeks to
expand the string with the best mapping score. The subsequently generated descendant
(longer) strings are appended to the Open List only if their (normalized) mapping scores
are better than their ancestor’s. Another list, Complete List, is kept in the algorithm which
saves strings not further expandable. At the time Open List becomes empty, high confident
strings with their mapping positions are filtered out from Complete List with the conflict-
s resolved in a greedy fashion. Our preliminary simulation results show that the system
outperforms PACES, AutoAssign, and Random Graph Approach significantly, and many

Protein Structure Determination via NMR Spectral Data 31-11

instances couldn’t be solved by them can be solved by the system.

31.5.3 Scoring Scheme for Signature Information

The spin system assignment problem can be naturally modeled as a weighted bipartite
matching problem [50] on two disjoint groups, one group containing spin systems and the
other containing a sequence of amino acids, if the adjacency information is not used as
matching constraint. Presumably the weight of an edge measures the likelihood of the
nuclei in an amino acid residue to generate the set of chemical shifts in the spin system.
The matching goal is to find a one-to-one matching between elements of two groups that
maximizes the total weight. However, many experimental results show that the quality of
assignment from such a weighted bipartite matching is poor because frequently there are
multiple amino acid residues of a same type in the target protein sequence. To differentiate
the likelihood, the types of local chemical environment are included to provide the spin
system signature information. The most commonly employed local chemical environment
is the secondary structure which has three types, helix, strand, and coil.

In the rest of this section, we present our work on quantifying the spin system signature
information through issuing a score scheme for the association of an arbitrary spin system
and an amino acid residue in a certain type of secondary structure. We remark that prior
to our work, generally it is assumed that for any type of atom in a combination of an amino
acid residue and a secondary structure, the chemical shifts follow a normal distribution.
Although well adopted, we justify that such an assumption is a very rough statistics and we
conjecture that some other chemical environmental factors might affect the chemical shift
values.

Data Collection and Preprocessing

Our training set for score scheme learning consists of the available NMR spectra of pro-
teins collected in BioMagResBank [10]. The chemical shifts stored in the BioMagResBank
database cannot be used immediately to do the learning as we want, for two reasons. The
first reason is that among the protein sequences collected in the BioMagResBank database,
a lot of them are close homologous. “bl2seq” [2] was run on every pair of the 863 sequences
collected in the BioMagResBank and suitable clustering is done where each cluster contains
sequences sharing at least 50% modified sequence identity (which is taken as the maximum
number of matched amino acids over all local alignments returned by bl2seq divided by the
length of the shorter sequence). This homology filtering gives us at the end 463 clusters and
we randomly pick one protein from each cluster for our score scheme training. Secondly, for
a single protein, the chemical shifts collected in the BioMagResBank for a few amino acids
might be outliers. Since the abnormal behavior of a single outlier may disrupt our scoring
scheme, an efficient statistical method, namely “boxplot” [19], was applied to remove the
outliers. For example, after the treatment, the accepted range of CA’s chemical shifts in
our training data set is from 39.93 to 69.80, substantially narrowed from the observed range
of CA’s chemical shifts across all types of amino acids, i.e. from 4.10 to 85.492.

The chemical shift of a specific atom in a particular type of amino acid is not necessarily
a constant, but affected by the local electronic-biochemical environment. For Alanines, the
distributions of CA chemical shifts in helices, strands, and loop regions are significantly
different, as shown in Figure 31.3. Our score scheme learning accounts for the impact of
secondary structure, and uses the ones predicted by the PsiPred program [31, 38] (approx-
imately 78% accuracy).

31-12 Handbook of Computational Molecular Biology

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 40 45 50 55 60

Li
ke

lih
oo

d

Chemical Shift (ppm)

The Alaline Likelihood Distribution of CA chemical shift

Alanine Helix
Alanine Beta Sheet

Alanine Loop

FIGURE 31.3: Alanine CA chemical shifts in different secondary structures.

Learning Scores

Our scoring scheme can take any combination of chemical shifts (the commonly used ones
are HN, NH, HA, CA, CB and CO). We present here the scoring scheme learning using the
combination of HN, NH, CA, and CB chemical shifts (a portion of the training data we
collected in the last step).

(a) Histogram-Based Score Learning: For every combination of amino acid aa
and secondary structure ss, let Π(aa, ss) denote the chemical shift distribution
we get out of the training dataset given aa and ss. We do not assume there is
any specific pattern that the distribution should follow but use the chemical shift
values directly. Let N(aa, ss) denote the total number of chemical shift values
collected in the database given aa and ss. For every type of chemical shift, we as-
sociate it with an error bound ε (which is different for different types of chemical
shifts). The error bound ε is learned out of the training set such that 10 intervals
of length ε cover the whole range of the chemical shifts. It’s worth pointing out
that the error bound maps very well to the reading error collected in BioMa-
gResBank. For every examined quadruple spin system (HNi,NHi,CAi,CBi), let
(CAi−εα,CAi+εα) be the CA chemical shift window. Let N(aa, ss,CAi) denote
the number of CA chemical shift values collected in the database which fall into
the window. The probability that this examined CA chemical shift is generated
from amino acid aa in the secondary structure ss is

Prob(aa, ss,CAi) =
N(aa, ss,CAi)
N(aa, ss)

.

Similarly we can define the windows for NH and CB chemical shifts. The score
for mapping the quadruple (HNi,NHi,CAi,CBi) to combination (aa, ss) is

score((HNi,NHi,CAi,CBi) | (aa, ss))
= 10× log

(
Prob(aa, ss,NHi)× Prob(aa, ss,CAi)× Prob(aa, ss,CBi)

)

(this number is truncated into an integer).
(b) Representative-Based Score Learning: This learning is to apply clustering

methods from data mining. Clustering is the process of grouping a set of objects

Protein Structure Determination via NMR Spectral Data 31-13

into classes such that objects within a class have high similarity but they are very
dissimilar to objects outside of the class. Clustering is an unsupervised learn-
ing but with the number of classes pre-specified. The method of our choice is
Ordering Points To Identify the Clustering Structure (OPTICS) [1] which is a hi-
erarchical density-based clustering method to compute an augmented clustering
ordering of objects for automatic and interactive clustering analysis. OPTIC-
S not only discovers the arbitrary-shaped classes but also extracts the intrinsic
structure and representatives for every resultant class. In this score scheme learn-
ing, every combination (aa, ss) represents a class and thus we have in total 60
classes. Applying OPTICS on the training set we get for each class a set of d
representative spin systems.
To estimate the likelihood for any given spin system v = (HNi,NHi,CAi,CBi)
generated by nuclei in combination (aa, ss), the tightness is used which is de-
fined as the sum of the Euclidean distance between the spin system and the d
representative spin systems for the combination. In this sense, a spin system is
regarded as a point in a four dimensional space. Namely,

score(v | (aa, ss)) =
d∑

j=1

||v, vj ||2,

where ||·, ·||2 is the Euclidean distance between the two four dimensional points
and v1, v2, . . . , vd are the d representative spin systems for combination (aa, ss).
Note that the less the score, the more likely the spin system is generated by nuclei
from the combination.

(c) Multiclass SVM with Error-Correcting Output Codes: Support Vector
Machine (SVM) is a binary classification tool. In order to apply it to our case
containing 60 classes, we employ a common approach to extend it to a multiclass
SVM by combining the outputs of several binary SVMs. In [18], a technique is
introduced where error-correcting codes are used as a distributed output repre-
sentation. Error-correcting codes can be regarded as a matrix of binary values
such that each row represents a unique coding for a class and each column rep-
resents a target binary function associated with a binary classifier. Table 31.1
shows a 6-bit error-correcting output code matrix for 6 classes. In the training

Code
class f0 f1 f2 f3 f4 f5

0 0 0 0 1 0 1
1 1 0 1 0 0 1
2 0 1 1 0 1 0
3 1 0 1 1 0 0
4 0 1 0 0 1 1
5 1 1 0 1 0 0

TABLE 31.1 An example of error-correcting output code matrix.

step, a unique classifier fi (i = 0, 1, . . . , 5) is learned for each column. In classi-
fication step, a new instance is classified by each classifier and a 6-bit string is
produced. This string is compared to each row and the nearest one is chosen as
the class this new example belongs to.
Our third score scheme learning employs the multiclass SVM with error-correcting

31-14 Handbook of Computational Molecular Biology

output codes. The code matrix is 60× 64 which is generated by using the Ran-
domized Hill Climbing algorithm [18]. Each row represents a combination of
amino acid and secondary structure, which is a 64-bit code. These 64 SVMs are
trained and each of them produces entries in one column in the code matrix.
Given a new spin system v = (HNi,NHi,CAi,CBi), a 64-bit string is produced
by running these 64 SVMs. The hamming distance between it and each of the 60
class strings is taken as the score of mapping v to the combination. Again such a
score measures the “distance” rather than likelihood and thus the less the score,
the more likely the spin system is generated by nuclei from the combination.

Score Enhancement

One may notice that the distribution of HN chemical shifts was not used in the histogram-
based score scheme. The reason is that across 60 aa and ss combinations, no significant
difference is found, and thus adding it into account does not give much useful information.
On the positive aspects, there are quite a few special features of the chemical shifts which
can be taken advantage to estimate the scores. We point out two in the following: (1)
Since there is no CB atom in a Glycine (or GLY, or G), no CB chemical shift should be
examined. If a triple does contain a CB chemical shift, then it should not be generated
from a GLY. Therefore, we can associate with the mapping a score minimum, which tells
the assignment algorithm that such a mapping is illegal. Note that we only use this way of
confident reasoning. For triples not containing a CB chemical shift, they are not necessarily
generated from GLYs, due to possible peak missing, which happens over the time. (2)
Similarly, since a Proline (or PRO, or P) doesn’t have HN atom, a quadruple containing an
HN chemical shift gets a score minimum when mapping to a PRO.

31.5.4 Assignment Starting with Spin Systems and Adjacency Con-
straint

Not using the adjacency information to constrain the output matching, the assignment made
not much sense in terms of the number of correct mappings are recovered. This was widely
true in out extensive simulation study. On the other hand, we have also observed that with
an amount of 80% adjacency determined, the optimal constrained matching, employing any
one of the above three score schemes, is about perfect meaning all correct mappings are
included. We present next the computational model that incorporates both the spin system
signature information and adjacency information into assignment, that called Constrained
Bipartite Matching (CBM) problem. The CBM model is essentially the same as the normal
weighted bipartite graph matching problem except that the group of amino acid residues are
linearly ordered as they appear in the target protein sequence, and the group of spin systems
are partitioned into subsets in each of them the spin systems form into a (directed) string
which must be mapped to a polypeptide in the target protein sequence [50]. Theoretically,
CBM problem is NP-hard even when the edge weights have only two values (the bipartite
graph is complete) [50].

Some heuristics have been proposed very recently, including an exhaustive two-layer
search algorithm [50] and some fast approximation algorithms [14]. These heuristics and
approximations attempt to find feasible matchings with (approximately) the largest weight-
s, and may work well for the NMR peak assignment. Later on, to overcome the explicit
exhaustive search nature in the two-layer algorithm, another heuristics was developed for
finding maximum-weight constrained bipartite matchings based on the branch-and-bound
technique [36]. The branch-and-bound algorithm uses an efficient (unconstrained) bipartite

Protein Structure Determination via NMR Spectral Data 31-15

matching algorithm and the approximation algorithms in [14] to compute necessary lower
and upper bounds on optimal solutions to help prune the search tree, and returns an opti-
mal solution, i.e. a feasible matching with the largest weight. It runs much faster than the
two-layer algorithm. The comparison results for these heuristics and approximations can
be found in [15, 36, 50].

MAPPER is a semi-automatic NMR assignment program that also takes in as inputs the
spin systems and their adjacencies, but conducts the assignment in a different manner. In
more detail, the input to the program consists of the target protein sequence, the spec-
troscopically assembled short fragments of sequential connected residues, and CA and CB
chemical shifts or amino acid type information for each spin system. MAPPER performs
first an individual mapping to enumerate all the possible mappings for each fragment; and
then performs an exhaustive search for global mapping (i.e., self-consistent mappings of all
fragments) to obtain an unambiguous assignment. The global mapping is performed by
fragment nested loops, and the forbidden branches of the search tree will be cut as early as
possible during the search. The only permissible overlap in global mapping is the overlap
between two fragments which share one common residue since the corresponding chemical
shift values for the endpoint atoms satisfy a user-defined tolerance.

A New Heuristics

Our assignment algorithm using the CBM formulation can be described as a two-phase
procedure: in the first phase, a greedy filtering is conducted to select some number of best
possible mappings for the identified strings; in the second phase, for every combination
of string mappings, an efficient maximum weight bipartite matching algorithm is used to
complete the assignment by mapping isolated spin systems to the rest of residues. The
algorithm reports the best assignment from all combinations in terms of the assignment
confidence — the score. Such a heuristics is fairly intuitive, and is very close to what is
currently manually doing in an NMR laboratory. The main difference between the algo-
rithm and manual work is that we employ efficient computational methods to automate
the assignment process at a global view, which produce an assignment within seconds on
a Pentium IV PC. The global view also helps avoid the tedious “undo-redo” which occurs
very often though the manual work.

Greedy Filtering

The greedy filtering process is employed to take advantage of the discerning power of the
score schemes. It is expected that with increasing length, the correct mapping positions for
strings will stand out significantly. The process first sorts the strings into non-increasing
length order, where the length of a string is measured by the number of spin systems therein.
Let k be a parameter to bound the number of the best combinations we want to put into
the second phase. The greedy filtering process starts with finding the first k best mapping
positions for the longest string. This gives the top k combinations, which involve only the
longest string at the moment. For every one of the k combinations, the greedy filtering
process proceeds to find the first k best mapping positions for the second longest string.
In general this will generate in total k2 combinations involving one more string, and the
process only keeps the top k ones, measured by the score, and proceeds to find the k best
positions for the third longest string; and so on.

The process is repeated for all strings of length at least L, called long strings, where L is
a lower bound on the length of strings involved in combinations. The output of the greedy
filtering is a set of (at most) k combinations of mapping positions for the long strings. Recall
that by the assumption, every identified string should map to a polypeptide in the target

31-16 Handbook of Computational Molecular Biology

sequence and no residue on this polypeptide can be mapped multiple times. Therefore, there
might be circumstances that the greedy filtering process terminates at some intermediate
combinations, where it fails to find any legal mapping position for the next string.

These two parameters k and L can be tuned suitably to continue the assignment, depend-
ing on which algorithms employed in the second phase. In our assignment algorithm, the
second phase algorithm is a maximum weight bipartite matching algorithm. Therefore, L is
set to 2, meaning that all identified strings should be mapped to non-overlapping polypep-
tides from the target protein sequence. It worths mentioning that in the Branch-and-Bound
heuristics studied in [36], L is set to 3, meaning that only those strings of length greater
than 2 are long strings and thus should be mapped, and length-2 strings and isolated spin
systems is left to be handled by Branch-and-Bound.

In order to find a feasible configuration for k and L, we tested a number of values for
k and L and find that for almost all instances all correct mappings are found in the top
6 combinations. That is, k = 6 and L = 4 are the settings guaranteeing one of the
combinations contains the correct mappings for all long strings.

Maximum Weight Bipartite Matching

An instance of the maximum weight bipartite matching problem consists of an edge-weighted
bipartite graph G = (S,R,E), where we assume without loss of generality that edge weights
are non-negatives. Intuitively, the vertex set S contains all the isolated spin systems left after
the greedy filtering (note that L = 2); the vertex set R contains all the remaining residues
in the target protein sequence. An edge indicates the mapping between a spin system and
a residue, where its weight records the confidence of the mapping. The goal of the problem
is to compute a matching with maximum weight, corresponding to a partial assignment
achieving the maximum confidence for those isolated spin systems. Since we require that all
identified strings are mapped to non-overlapping polypeptides in any combination, |S| = |R|
is satisfied and the expected matching is perfect (meaning that every spin system is mapped
to some residue). This is guaranteed since the generated bipartite graph is complete.

There are various implementations based on efficient algorithms for the maximum weight
bipartite matching problem, for example one of the fastest algorithms called CSA developed
by Goldberg and Kennedy [22], which is a cost-scaling push-relabel algorithm that finds
minimum or maximum weight matchings of maximum cardinality.

31.5.5 Assignment Starting with Peak Lists

Most automated peak assignment programs apply the same general strategies as described in
the above to perform peak grouping, adjacency determination, and assignment. Ambiguities
arisen at each step are generally resolved within the step. If such ambiguities couldn’t be
resolved at that moment, then multiple outputs have to be produced and all of them would
be considered as candidate inputs to next step. In practice when the spectral data was
of low quality, those ambiguities were too complicated to be automatically resolved to
produce any output; and manual adjustments had to be done which might require a long
time process. During our development, we perceived that a good assignment always comes
along with high confident adjacency information which is determined on the basis of correct
peak grouping. Consequently, the quality of assignment could be regarded as a means for
judging the correctness of resolution to the ambiguities. This observation motivates the
fully automated peak assignment to do the three jobs at the same time. The following is a
brief description of the system.

(1) All peaks from input spectra are put together to form a super peak list, where suitable

Protein Structure Determination via NMR Spectral Data 31-17

shuffling is required to make the spectra to have the same reference point (NH and HN
chemical shifts were employed); (2) A clustering algorithm is applied on the super peak
list to generate peak clusters such that peaks within a cluster share close NH and HN
chemical shifts, where the number of clusters is set to the estimated number of spin systems
using the target protein sequence (note that some different amino acid residues might have
close NH and HN chemical shifts and thus multiple spin systems might reside in a cluster);
(3) Since we cannot distinguish inter-residue and intra-residue peaks, an undirected graph
G = (V,E) is defined where each vertex represents a cluster and two vertices are adjacent
if they contain close chemical shifts for some nuclei (excluding NH and HN, a tolerance
threshold is set); (4) Apply a best-first search algorithm which takes in the score scheme
learned in the above to find a path cover for graph G; At the same time, the direction
of a path will be determined using the spectral nature with the exception that when the
direction cannot be determined then two directed copies of it are generated. The output
of the search algorithm is a (directed) path cover of G with their mapping positions to the
target protein sequence.

We notice that such a system has a strong capability in resolving ambiguities and cross-
validation. An existing assignment algorithm GARANT [6, 9] is the most likely one that can
be classified into this category. GARANT starts with peak lists in two dimensional COSY
and two dimensional NOESY spectra, and uses the knowledge of magnetization transfer
pathways as the input. It represents peak assignment as an optimal match between two
graphs, of which one is built for expected peaks predicted by combining knowledge of the
primary structure and the magnetization transfer paths and the other is for the observed
peaks. It employs a genetic algorithm combined with a local optimization routine to find
the optimal homomorphism of the graphs of the expected and observed peaks, which is
evaluated by a sophisticated statistical score scheme based on mutual information.

31.6 Structure Determination

After the peak assignment is done, structural constraints on the target protein structure can
be extracted. Some constraints are directly associated with the chemical shift values that
were used in the assignment process; while the other should require other NMR experiments
to provide. The latter category of structural constraints is correctly associated to the por-
tion of target protein through the peak assignment. We start with the structural constraint
extraction and then proceed to secondary structure prediction and tertiary structure calcu-
lation. It should be noted that the secondary structure prediction described in the following
can be viewed as a dual subject in the above histogram-based score scheme learning, yet it
also provides additional structural information using the predicted secondary structure to
the next stage of tertiary structure calculation.

31.6.1 Structural Constraint Extraction

Structural constraints refer to the conformations on the target protein structure, which are
hidden in the NMR spectral peaks and need to be correctly associated to the portion of the
target protein. There are three major types of structural constraints that can be extracted
from spectral data, namely, distance constraints, torsion angle constraints, and orientation
constraints. Some other additional structural information, including chemical shift values,
could be derived to further refine the calculated structure.

31-18 Handbook of Computational Molecular Biology

NOE-Derived Distance Constraints

Nuclear Overhauser Effect (NOE) is a common phenomenon between pairs of nuclei of any
types at a spatial distance within 5Å. NOE-derived distance constraints are the most im-
portant source of structural information for protein structure determination. In an NOESY
(Nuclear Overhauser Effect Spectroscopy) spectrum, NOE interactions between pairs of nu-
clei are shown as NOE peaks. Each dimension of the spectrum is the chemical shift of one
type of nucleus. For example, a peak at (4.5ppm, 4.6ppm) in an 1H-1H NOESY spectrum
records an interaction between a proton with chemical shift 4.5ppm and another proton with
chemical shift 4.6ppm, and its intensity is proportional to the product of the inverse sixth
power of the distance between these two protons and a correlation function f(·). It should
be noted that the structural constraints for the next step of structure calculation are mostly
from 1H-1H NOESY spectrum to provide the distance constraint between a pair of protons,
especially for those pairs that are close in space but far away in target protein sequence. For
this spectrum, peak intensities are commonly classified into very strong, strong, medium,
weak, and very weak [37] which say that the distance is in the ranges of [2.3Å, 2.5Å], [2.8Å,
3.1Å], [3.1Å, 3.4Å], [3.5Å, 3.9Å], and [4.2Å, 5.0Å], respectively. Besides some modifications
that could be applied to resolve the ambiguities, these distance constraints can be directly
incorporated into structure calculation such as Distance Geometry [5, 29] and Torsion Angle
Dynamics [24].

J-Coupling-Based Distance and Angle Constraints

J-coupling (or spin-spin coupling) is the interaction between nucleus spins transferred
through the electrons of the chemical bonds. There are a few factors in a J-coupling that
affect the coupling constant, namely, the nuclei involved, the distance between the two
nuclei, the angle of interaction between the two nuclei, and the nuclear spin of the nuclei.
Both homonuclear and heteronuclear J-couplings can provide the nucleus distance (the less
number of chemical bonds between a pair of nuclei, the stronger the coupling constant is)
and the covalent chemical bonds angle (the smaller the angle, the bigger the coupling con-
stant — the Geminal coupling or two-bond coupling or 2J coupling). Among them, one of
the most employed couplings is Vicinal (or three-bond, or 3J) coupling which is dependent
upon the dihedral angle θ between the nuclei. Generally, the more eclipsed or antiperiplanar
the nuclei the greater the coupling constant and the relationship between dihedral angle
and coupling constant is known as the Karplus relationship (that is, the coupling constant
is A2 cos θ + B cos θ + C where constants A,B,C are empirically determined). Obviously,
if the involved four nuclei are NH-CA-C-NH, then dihedral angle θ will confine the back-
bone torsion angles φ and ψ as local structural conformation to the next stage of structure
calculation.

RDC-Based Orientation Constraints

Residual dipolar couplings (RDCs) constraints are introduced into structure calculation
as orientation constraints. Structural information is obtained from RDCs by observing
inter-nuclear dipolar interactions.

In solution, proteins are isotropically oriented, and so the inter-nuclear dipolar interac-
tions average to zero and cannot be observed. If proteins are immersed into an anisotropic
environment which has different properties in different directions, such as solutions con-
taining phases or bicelles, then dipolar couplings no longer average to zero but produce
an observable Residual Dipolar Coupling (RDC). The RDC value between two nuclei is
a function in θ and φ which are cylindrical coordinates describing the orientation of the

Protein Structure Determination via NMR Spectral Data 31-19

inter-nuclear vector in the principal axis system of the molecular alignment tensor. More
specifically, it is equal to Da

[
(3 cos2 θ − 1) + 3

2Dr sin2 θ cos 2φ
]
, where Da is the dipolar

coupling tensor and Dr is the rhombicity. Therefore, given the molecular alignment tensor,
RDCs provide the orientation of inter-nuclear vectors relative to an external reference frame
which is defined in the structure calculation process as an orthogonal axis system [43].

31.6.2 Secondary Structure Prediction

With the structural constraints being correctly associated to their host nuclei and chem-
ical bonds, we may start the three-dimensional structure calculation. As an intermediate
step, some research work has been done on target protein secondary structure prediction.
Although such a prediction is limited since quite a number of NMR experiments have to
be done, and it is very expensive compared to those protein secondary structure predictors
not relying on NMR data. Nonetheless, this prediction can be done very fast, compared to
three-dimensional structure calculation, and it is very accurate and thus is able to provide
more structural constraints to three-dimensional structure calculation.

Most of the secondary structure predictions are done through establishing empirical cor-
relations between protein secondary structure and NMR spectral data. For instance, one
correlation between protein secondary structure and NOE-derived distance constraints and
J-coupling-based angle constraints has been done in [49, 48]; Other correlations between
protein secondary structure and chemical shifts of nuclei such as CA, CB, C, HA, and NH
have been found in Chemical Shift Index (CSI) [47, 46], which gives an empirically deter-
mined table for structural element lookup, and (TALOS) [12], which adopts consensus
from a well designed database of 20 proteins with high resolution X-ray structure. After
the secondary structure elements for residues in the target protein have been recognized,
the constraints on torsion angles will be given as local conformation for three-dimensional
structure calculation.

Recall that the predicted target protein secondary structure was used in the peak assign-
ment. However, this step of secondary structure prediction assumes the peak assignment is
done. It might look contradictory but keep in mind that this step of secondary structure
prediction is only an intermediate step to provide more structural constraints to the next
step of three-dimensional structure calculation. Of course, on the other hand, it could also
serve as a double-checking step to validate the predicted secondary structure employed in
the peak assignment stage.

31.6.3 Three-Dimensional Structure Calculation

With all the structural constraints derived in the above two subsections, we are ready to
do the three-dimensional structure calculation. We will introduce four algorithms in the
following.

Metric Matrix Distance Geometry

Distance Geometry (DG) is the earliest algorithm used in structure calculation and its
underlying principle is that: it is possible to calculate Cartesian coordinates for a set of
points in the three-dimensional space if all the pairwise distances are known.

The Metric Matrix Distance Geometry [27] uses anN×N matrix G to solve the structure,
where N is the number of atoms in the target protein sequence. Matrix G has only three
positive eigenvalues and all the other N − 3 eigenvalues are zero. Let ri, i = 1, 2, . . . , N
denote the coordinates of the ith atom in Cartesian three-dimensional space, to be calculat-

31-20 Handbook of Computational Molecular Biology

ed; and Dij denote the Euclidean distance between the ith and the jth atoms. The matrix
entry Gij is defined to be the inner product of ri and rj , i.e.,

Gij = ri · rj =
{

1
N

∑N
k=1D

2
ik − 1

2N2

∑N
k=1

∑N
l=1D

2
kl, if i = j,

1
2 (D2

ij −Gii −Gjj), if i �= j.

Theoretically, from all the pairwise distances (i.e., distance matrix D) we will be able to
construct metric matrix G and then from G to calculate ri’s,

rα
i =

√
λαeα

i , i = 1, 2, . . . , N ;α = 1, 2, 3,

where λα and eα denote the positive eigenvalues and the corresponding eigenvectors of G,
and (r1i , r

2
i , r

3
i) is the Cartesian coordinate of the ith atom. In practice, however, not every

pairwise distance is available and for most pairs only a range of distance is known. There
are a few proposals on how to approximately determine matrix D [29] and afterwards a
series of triangle inequality checking have to be done to make sure the resultant matrix
G has only three positive eigenvalues [5]. Because of the aforementioned difficulties, DG
algorithms are no longer favorable [27]. However, DG algorithms can still be applied to
generate starting structures for other better structure calculation algorithms [39, 11, 24].

Variable Target Function Method

Structure calculation in variable target function method is formulated as a target function
minimization problem, where the function counts the number of structural constraint vio-
lations. The variables in the target function are torsion angles. This says that the degrees
of freedom are n torsion angles φ1, φ2, . . . , φn. The target function T (φ1, φ2, . . . , φn) is e-
qual to zero if all the experimentally derived constraints are satisfied. In general, solving
a target function starts with small size targets such as intra-residue constraints and then
increases the target size in a step-wise fashion up to the whole protein. In other words,
local conformations of the protein sequence will be obtained first and the global fold could
only be established approaching the end of the calculation.

In the literature there are a number of target functions been employed, among which
some representative ones are DISMAN [8] and DIANA [23]. Although having been proven
to perform well in determining helical proteins [25], variable target function method is still
of low success rate in structure calculation as it is easy to be trapped in local minima [8].
One proposal is to feed in a large number of randomized starting structures in order to
generate a group of good structures. On the other hand, compromise will be made between
small constraint violation and the computational complexity.

Molecular Dynamics in Cartesian Space

Molecular Dynamics (MD) is a method for simulating the movement of molecular systems.
Simulated Annealing (SA) is to simulate a slowly cooling process of molecular systems from
an extremely high temperature. The method combining MD and SA is called Molecular
Dynamics Simulation (MDS). The distinctive feature of MDS to other target function min-
imization methods is the presence of kinetic energy, which greatly reduces the probability
of being trapped in local minima. Different from the standard MD [44], MDS uses a pseudo
potential energy function as the target function.

MDS in Cartesian space defines a system on all the atoms in the target protein sequence.
The overall energy function gives a force to each atom which defines an acceleration of the
atom and thus a velocity at every time. One of the starting structure for MDS in Cartesian
space is provided by Metric Matrix Distance Geometry and the initial coordinates for the

Protein Structure Determination via NMR Spectral Data 31-21

atoms are randomly assigned according to some distribution such as Maxwell-Boltzmann
distribution in XPLOR [11].

The complete procedure in MDS can be described as follows: (1) initialize structure and
velocities for all the atoms; (2) calculate potential energy and from which calculate forces at
every atom; (3) calculate the acceleration from force for every atom and update the velocity
after time step ∆t; (4) update the position (coordinates) after time step ∆t for every atom
using its velocity; control the temperature for SA by scaling the velocities; (5) repeat the
above four steps till the system is equilibrium or the target temperature is reached. Note
that multiple starting structures can be used to obtain a group of final structures.

Torsion Angle Dynamics

Torsion Angle Dynamics (TAD) is another molecular dynamics which uses torsion angles
as the degrees of freedom rather than the Cartesian coordinates of the atoms, which in
fact is the only fundamental difference from MDS in Cartesian space. DYANA [24] is
one representative structure calculation program implemented in TAD, which is currently
incorporated into software package CYANA [30, 28].

In TAD, a rigid body is defined as a collection of atoms whose relative three dimensional
positions are unchangeable. These atoms reside in a common amino acid residue. The
molecular system of the target protein is represented as a tree structure with a fixed base
rigid body (of the N-terminus amino acid residue) and the other n rigid bodies (of the
n amino acid residues) connected by n rotatable bonds, where n + 1 is the number of
amino acid residues in the target protein sequence. These n torsion angles among n + 1
rigid bodies are denoted by θ1, θ2, . . . , θn. For the kth rigid body, there are a number of
variables associated with it, k = 1, 2, . . . , n. For example, �ek denotes a unit vector along the
direction of the bond connecting rigid bodies k− 1 and k; and �rk is a position vector of the
reference point, i.e. the endpoint of the bond between rigid bodies k − 1 and k. The only
movement allowed in this tree structure is the rotation of the bonds. Some incompatible
covalent structure of the tree structure, such as closed flexible rings, will be solved by the
participation of other methods, such as MDS in Cartesian space.

The structure calculation in TAD is pretty much the same as in MDS, except the in-
volvement of the kinetic energy in the torsion angle accelerations calculation. The complete
procedure in TAD can be described as follows: (1) initialize structure by initializing the
torsion angles and the torsional velocities, using some distribution; (2) using the torsion
angles to calculate the Cartesian coordinates and thus the potential energy; (3) using the
torsional velocities and rigid body linear velocities to calculate the kinetic energy; (4) cal-
culate the torsional accelerations using both the potential and kinetic energies according
to the Lagrange equations for classical mechanical systems [4]; (5) control the temperature
for SA by scaling the velocities; (6) update the torsional velocities at a half time-step using
leap-frog scheme [27] and update the torsion angles at full time-step; (7) repeat the above
four steps till the system is equilibrium or the target temperature is reached. DYANA im-
plements the above recursive process by setting the initial torsional velocities according to
a normal distribution with zero mean value and a standard deviation that guarantee some
initial temperature. Some experimental results show that DYANA calculates the structure
in a reasonable amount of time (in minutes) for target proteins of length under 200.

31.7 Conclusions

This chapter provides a description of the full procedure of protein structure determination
via Nuclear Magnetic Resonance spectroscopy. Our intention is to provide computer scien-

31-22 References

tists working in the areas of bioinformatics and structural genomics a global picture of the
technology. With this in mind, a number of problem formulations have been provided for ev-
ery step in the structure determination procedure. In addition, some representative software
packages assisting the determination have been briefly introduced. The readers interested in
any part of the procedure should look into related references for more detailed description.

Specifically, we put focus on the NMR peak assignment process, whose automation would
make the protein structure determination via NMR a high-throughput technology to satisfy
the needs from structural genomics. Nonetheless, despite a lot of previous efforts, the
automation is still not well solved. Our group has been working toward such a goal and
brought out a number of works which partially speed up the peak assignment and make
it more accurately by significant percentages. Our current and near future work is to put
them together to produce an automated peak assignment pipeline. Many simulation studies
are underway, as well as tests on real NMR data.

References

[1] M. Ankerst, M.M. Breunig, H.-P. Kriegel, and J. Sander. OPTICS: Ordering Points To
Identify the Clustering Structure. In Proceedings of ACM SIGMOD’99 International
Conference on Management of Data, pages 49–60, 1999.

[2] S.F. Altschul, T.L. Madden, A.A. Schäffer, and J. Zhang et al. Gapped BLAST and
PSI-BLAST: a new generation of protein database search programs. Nucleic Acids
Research, 25:3389–3402, 1997.

[3] C. Antz, K.P. Neidig, and H.R. Kalbitzer. A general Bayesian method for an automated
signal class recognition in 2D NMR spectra combined with a multivariate discriminant
analysis. Journal of Biomolecular NMR, 5:287–296, 1995.

[4] V.I. Arnold. Mathematical methods of classical mechanics. Springer, 1978.
[5] W. Braun, C. Bosch, L.R. Brown, and N. Go et al. Combined use of proton-proton

overhauser enhancements and a distance geometry algorithm for determination of
polypeptide conformations. Biochimica et Biophysics Acta, 667:377–396, 1981.

[6] C. Bartels, M. Billeter, P. Güntert, and K. Wüthrich. Automated sequence-specific as-
signment of homologous proteins using the program GARANT. Journal of Biomolec-
ular NMR, 7:207–213, 1996.

[7] E.D. Becker. High Resolution NMR: Theory and Chemical Applications. Academic
Press, 2000.

[8] W. Braun and N. Go. Calculation of protein conformations by proton-proton distance
constraints. Journal of Molecular Biology, 186:611–626, 1985.

[9] C. Bartels, P. Güntert, M. Billeter, and K. Wüthrich. GARANT – A general algorith-
m for resonance assignment of multidimensional nuclear magnetic resonance spectra.
Journal of Computational Chemistry, 18:139–149, 1997.

[10] BioMagResBank. http://www.bmrb.wisc.edu. University of Wisconsin. Madison,
Wisconsin.

[11] A.T. Brunger. X-PLOR, Version 3.1. A system for X-ray Crystallography and
NMR. Yale University Press, 1992.

[12] G. Cornilescu, F. Delaglio, and A. Bax. Protein backbone angle restraints from search-
ing a database for chemical shift and sequence homology. Journal of Biomolecular
NMR, 13:289–302, 1999.

[13] S.A. Corne and P. Johnson. An artificial neural network of classifying cross peaks in
two-dimensional NMR spectra. Journal of Magnetic Resonance, 100:256–266, 1992.

References 31-23

[14] Z.-Z. Chen, T. Jiang, G.-H. Lin, and J.J. Wen et al. Improved approximation al-
gorithms for NMR spectral peak assignment. In Proceedings of the 2nd Workshop
on Algorithms in Bioinformatics (WABI 2002), volume 2452 of Lecture Notes in
Computer Science, pages 82–96. Springer, 2002.

[15] Z.-Z. Chen, T. Jiang, G.-H. Lin, and J.J. Wen et al. Approximation algorithms for
NMR spectral peak assignment. Theoretical Computer Science, 299:211–229, 2003.

[16] E.A. Carrara, F. Pagliari, and C. Nicolini. Neural networks for the peak-picking of
nuclear magnetic resonance spectra. Neural Networks, 6:1023–1032, 1993.

[17] B.E. Coggins and P. Zhou. PACES: Protein sequential assignment by computer-
assisted exhaustive search. Journal of Biomolecular NMR, 26:93–111, 2003.

[18] T.G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting
output codes. Journal of Artificial Intelligence Research, 2:263–286, 1995.

[19] J.L. Devore. Probability and Statistics for Engineering and the Science. Duxbury
Press, December 1999. Fifth Edition.

[20] A.E. Ferentz and G. Wagner. NMR spectroscopy: a multifaceted approach to macro-
molecular structure. Quarterly Review Biophysics, 33:29–65, 2000.

[21] D.S. Garret, R. Powers, A.M. Gronenborn, and G.M. Clore. A common sense approach
to peak picking in two-, three-, and four-dimensional spectra using automatic computer
analysis of contour diagrams. Journal of Magnetic Resonance, 95:214–220, 1991.

[22] A.V. Goldberg and R. Kennedy. An efficient cost scaling algorithm for the assignment
problem. Mathematical Programming, 71:153–178, 1995.

[23] P. Güntert, W. Braun, and K. Wüthrich. Efficient computation of three-dimensional
protein structures in solution from nuclear magnetic resonance data using the program
DIANA and the supporting programs CALIBA, HABAS and GLOMSA. Journal of
Molecular Biology, 217:517–530, 1991.

[24] P. Güntert, C. Mumenthaler, and K. Wüthrich. Torsion angle dynamics for NMR
structure calculation with the new program DYANA. Journal of Molecular Biology,
273:283–298, 1997.

[25] P. Güntert, Y.Q. Qian, G. Otting, and M. Muller et al. Structure determination of the
Antp (C39 → S) homeodomain from nuclear magnetic resonance data in solution using
a novel strategy for the structure calculation with the programs DIANA, CALIBA,
HABAS and GLOMSA. Journal of Molecular Biology, 217:531–540, 1991.

[26] P. Güntert, M. Salzmann, D. Braun, and K. Wüthrich. Sequence-specific NMR assign-
ment of proteins by global fragment mapping with the program MAPPER. Journal
of Biomolecular NMR, 18:129–137, 2000.

[27] P. Güntert. Structure calculation of biological macromolecules from NMR data. Quar-
terly Reviews of Biophysics, 31:145–237, 1998.

[28] P. Güntert. Automated NMR protein structure calculation. Progress in Nuclear
Magnetic Resonance Spectroscopy, 43:105–125, 2003.

[29] T.F. Havel and K. Wüthrich. A distance geometry program for determining the struc-
tures of small proteins and other macromolecules from nuclear magnetic resonance
measurements of intramolecular 1H-1H proximities in solution. Bulletin of Mathe-
matical Biology, 46:673–698, 1984.

[30] T. Herrmann, P. Güntert, and K. Wüthrich. Protein NMR structure determination
with automated NOE assignment using the new software CANDID and the torsion
angle dynamics algorithm DYANA. Journal of Molecular Biology, 319:209–227, 2002.

[31] D.T. Jones. Protein secondary structure prediction based on position-specific scoring
matrices. Journal of Molecular Biology, 292:195–202, 1999.

[32] C.B. Kellogg, S. Chainraj, and G. Pandurangan. A random graph approach to NMR
sequential assignment. In RECOMB’04, pages 58–67, 2004.

31-24 References

[33] G.J. Kleywegt, R. Boelens, and R. Kaptein. A versatile approach toward the partially
automatic recognition of cross peaks in 2D 1H NMR spectra. Journal of Magnetic
Resonance, 88:601–608, 1990.

[34] R. Koradi, M. Billeter, M. Engeli, and P. Güntert et al. Automated peak picking
and peak integration in macromolecular NMR spectra using AUTOPSY. Journal of
Magnetic Resonance, 135:288–297, 1998.

[35] M. Leutner, R.M. Gschwind, J. Liermann, and C. Schwarz et al. Automated backbone
assignment of labeled proteins using the threshold accepting algorithm. Journal of
Biomolecular NMR, 11:31–43, 1998.

[36] G.-H. Lin, D. Xu, Z.Z. Chen, and T. Jiang et al. An efficient branch-and-bound
algorithm for the assignment of protein backbone NMR peaks. In Proceedings of
the First IEEE Computer Society Bioinformatics Conference (CSB 2002), pages
165–174, 2002.

[37] J.L. Markley, A. Bax, Y. Arata, and C.W. Hilbers et al. Recommendations for the
presentation of NMR structures of proteins and nucleic acids. Journal of Molecular
Biology, 280:933–952, 1998.

[38] L.J. McGuffin, K. Bryson, and D. T. Jones. The PSIPRED protein structure prediction
server. Bioinformatics, 16:404–405, 2000.

[39] M. Nilges, G.M. Clore, and A.M. Gronenborn. Determination of three-dimensional
structures of proteins from interproton distance data by hybrid distance geometry-
dynamical simulated annealing calculations. FEBS Letters, 229:317–324, 1988.

[40] Pilot Projects for the Protein Structure Initiative (Structural Genomics). National
Institute of General Medical Sciences, Washington, D.C., 1999. http://www.nih.
gov/grants/guide/rfa-files/RFA-GM-99-009.html.

[41] A. Rouh, A. Louis-Joseph, and J.Y. Lallemand. Bayesian signal extraction from noisy
FT NMR spectra. Journal of Biomolecular NMR, 4:505–518, 1994.

[42] C.M. Slupsky, R.F. Boyko, V.K. Booth, and B.D. Sykes. SMARTNOTEBOOK: a
semi-automated approach to protein sequential NMR resonance assignments. Journal
of Biomolecular NMR, 27:313–321, 2003.

[43] N. Tjandra, J.G. Omichinski, A.M. Gronenborn, and G.M. Clore et al. Use of dipolar
1H-15N and 1H-13C couplings in the structure determination of magnetically oriented
macromolecules in solution. Nature Structural Biology, 4:732–738, 1997.

[44] W.F. van Gunsteren and H.J.C. Berendsen. Computer simulation of molecular dynam-
ics: methodology, applications and perspectives in chemistry. Angewandte Chemie
International Edition, 29:992–1023, 1990.

[45] X. Wan, T. Tegos, and G.-H. Lin. Histogram-based scoring schemes for protein NMR
resonance assignment. Journal of Bioinformatics and Computational Biology, 2:747–
764, 2004.

[46] D.S. Wishart and B.D. Sykes. The 13C Chemical-Shift Index: A simple method for the
identification of protein secondary structure using 13C chemical-shift data. Journal of
Biomolecular NMR, 4:171–180, 1994.

[47] D.S. Wishart, B.D. Sykes, and F.M. Richards. The Chemical Shift Index: A fast
and simple method of the assignment of protein secondary structure through NMR
spectroscopy. Biochemistry, 31:1647–1651, 1992.

[48] K. Wüthrich. NMR of Proteins and Nucleic Acids. Wiley, John & Sons, New York,
1986.

[49] K. Wüthrich, M. Billeter, and W. Braun. Polypeptide secondary structure determi-
nation by nuclear magnetic resonance observation of short proton-proton distances.
Journal of Molecular Biology, 180:715–740, 1984.

[50] Y. Xu, D. Xu, D. Kim, and V. Olman et al. Automated assignment of backbone

References 31-25

NMR peaks using constrained bipartite matching. IEEE Computing in Science &
Engineering, 4:50–62, 2002.

[51] D.E. Zimmerman, C.A. Kulikowski, Y. Huang, and W.F.M. Tashiro et al. Automat-
ed analysis of protein NMR assignments using methods from artificial intelligence.
Journal of Molecular Biology, 269:592–610, 1997.

32
Geometric and Signal Processing of

Reconstructed 3D Maps of Molecular
Complexes

Chandrajit Bajaj
The University of Texas at Austin

Zeyun Yu
The University of Texas at Austin

32.1 Introduction . 32-1
32.2 Map Preprocessing . 32-2

Contrast Enhancement • Noise Reduction • Gradient
Vector Diffusion

32.3 Structural Feature Identification 32-6
Symmetry Detection • Boundary Segmentation •

Secondary Structure Identification
32.4 Structure Fitting . 32-12
32.5 Conclusion . 32-14

32.1 Introduction

Today, hybrid experimental approaches for capturing molecular structures (henceforth, com-
plexes), utilizing cryo-electron microscopy (cryo-EM), electron tomography (ET), X-ray
crystallography (X-ray) or nuclear magnetic resonance spectroscopy (NMR) , need to be
ably complemented with faster and more accurate computational and geometric processing
for ultrastructure elucidation at the best level of resolution that is possible [21].

Electron Microscopy (EM) and in particular single particle reconstruction using cryo-EM,
has rapidly advanced over recent years, such that several complexes can be resolved routinely
at low resolution (10-20 Å) and in some cases at sub-nanometer (intermediate) resolution
(7-10 Å) [4]. These complexes provide not only insights into protein and nucleic acid folds,
but perhaps even more importantly provide information about how the various structural
components interact. There are increasing numbers of molecules where the tertiary or
secondary structure of a complex can be fully determined using EM [80]. Often the crystal
structures of individual domains or components of these complexes are also known. An
emerging trend in these fields is to fit the atomic resolution X-ray crystal structures into the
cryo-EM map, to provide a quasi-atomic resolution model of the overall complex, possibly
revealing details about molecular interactions within the assembly. In addition, with the
increasing capability of determining multiple functional conformers of a complex, there is
the promise of studying the dynamics of such interacting systems. The large physical size
and complexity of such complexes combined with intermediate to low resolution models,
presents challenges for structure to biological function determination.

This chapter reviews some of the crucial three dimensional geometric post-processing once

32-1

32-2 Handbook of Computational Molecular Biology

a volumetric cryo-EM map (henceforth a 3D map) has been reconstructed, as essential steps
towards an enhanced and automated computational ultrastructure determination pipeline.
In particular the paper addresses 3D Map contrast enhancement, filtering, automated struc-
tural feature and subunit identification, and segmentation, as well as the development of
quasi-atomic models from the reconstructed 3D Map via structure fitting.

32.2 Map Preprocessing

32.2.1 Contrast Enhancement

Many reconstructed 3D Maps, as well as captured 2D EM images, possess low contrast,
or narrow intensity ranges i.e small differences between structural features and background
densities, thereby making structure elucidation all the more difficult. Image contrast en-
hancement is a process used to “stretch” the intensity ranges, thereby improving the 2D
image or 3D Map quality for better geometric postprocessing such as feature recognition,
boundary segmentation, and visualization. The most commonly used methods in the past
utilized global contrast manipulation based on histogram equalization [22, 49]. It is how-
ever well recognized today that using primarily global information is insufficient for proper
contrast enhancement, as it often causes intensity saturation. Solutions to this problem in-
clude localized (or adaptive) histogram equalization [7, 56], which considers a local window
for each individual image pixel and computes the new intensity value based on the local
histogram defined within the local window. A more recently developed technique called
the retinex model [32], in which the contribution of each pixel within its local window is
weighted by computing the local average based on a Gaussian function. A later version,
called the multiscale retinex model [31], gives better results but is computationally more
intensive. Another technique for contrast enhancement is based on wavelet decomposition
and reconstruction and has been largely used for medical image enhancement especially
digital mammograms [38, 41].

A fast and local method for 2D image or 3D Map contrast enhancement that we have
obtained very good success with, is presented in [75]. This is a localized version of classical
contrast manipulations [22, 49]. The basic idea of this localized method is to design an
adaptive one dimensional transfer function (mapping intensity ranges to intensity ranges)
for each individual pixel (2D) or voxel (3D), based on the intensities in a suitable local
neighborhood. There are three major steps, which we briefly describe for 2D images as its
generalization to 3D Maps is straightforward. First, one computes local statistics (local
average, minimum, and maximum) for each pixel using a fast propagation scheme [12, 72].
The propagation rule from a pixel, say, (m− 1, n) to a neighboring pixel (m, n) is defined
as follows (similar propagation rules exist for other neighbors):

lavgm,n = (1− C)× lavgm,n + C × lavgm−1,n (32.1)

where C is called the conductivity factor, ranging from 0 to 1. The matrix lavg stands
for the local average map, initialized with the input image’s intensity values. The above
propagation rule is sequentially applied in row & column order [12, 72]. In order to compute
local min/max maps, some modifications are required for the above propagation scheme.
To this end, a conditional propagation scheme is introduced in [75]. Assume that lmin and
lmax stand for the local min/max maps, respectively. The conditional propagation scheme
from (m− 1, n) to (m, n) is defined as follows:

Geometric and Signal Processing of Reconstructed 3D Maps of Molecular Complexes 32-3

if(lminm−1,n < lminm,n)
lminm,n = (1− C)× lminm,n + C × lminm−1,n

if(lmaxm−1,n > lmaxm,n)
lmaxm,n = (1 − C)× lmaxm,n + C × lmaxm−1,n

(32.2)

Once these local statistics are calculated, the second step is to design the 1-dimensional
adaptive transfer function, to achieve intensity range stretching on a per pixel basis. Similar
to global contrast manipulations, various linear or nonlinear functions can be used here but
all such functions should “extend” the narrow range of the local intensity histogram to a
much broader range so as to achieve contrast enhancement. In the approach of [75], the
transfer function consists of two pieces: a convex curve (for stretching) in the dark-intensity
range and a concave curve (for inverse stretching) in the bright-intensity range. The overall
transfer function is C1 continuous. Finally, in the last step, the intensity of each pixel
is mapped to a new one using the calculated transfer function. This method inherits the
advantages of the three afore-mentioned techniques, namely, global contrast manipulation,
adaptive histogram equalization and the retinex model. However, unlike global contrast
manipulation, this method is adaptive in the sense that the transfer functions are generally
different from pixel to pixel. Also, unlike adaptive histogram equalization, this method
considers a weighted contribution of each pixel within a local window. Furthermore, the size
of the local window does not need to be pre-specified, due to the conditional propagation
scheme used in this approach, which is also a significant difference between this method
and the retinex model. Finally, the method of [75] demonstrates a multi-scale property
as different choosing different conductivity factors are chosen and used in the propagation
scheme. Paper [75], also gives an anisotropic version of the propagation scheme detailed
above, and some results are shown in figure 32.1.

(a) (b) (c) (d)

FIGURE 32.1: Anisotropic filtering and contrast enhancement of the Rice Dwarf Virus (RDV).
(a) original map (showing only one slice). (b) filtered and enhanced (same slice).
(c) original map (volume-rendered). (d) filtered (volume-rendered).

32-4 Handbook of Computational Molecular Biology

32.2.2 Noise Reduction

Reconstructed 3D Maps are noisy due to both 2D image acquisition as well as compu-
tational errors in the 2D to 3D portion of the reconstruction pipeline [21]. Applying 3D
noise reduction techniques on the 3D maps as a pre-processing step, facilitates improved
post-processing feature identification, segmentation and ultra structure determination. Tra-
ditional noise reduction filters applied to images include Gaussian filtering, median filtering,
and frequency domain filtering [22]. Most of the recent research however, has been devoted
to local anisotropic filters that operate with a directional bias, and vary in their ability
to reduce noise without blurring the geometric structural features, especially edges and
corners.

Bilateral filtering [5, 15, 16, 59], or sometimes called weighted Gaussian filtering, uses
an additional proximity weighting term to affect quasi-anisotropy. Partial differential equa-
tion (PDE) based filtering techniques, known popularly as anisotropic geometric diffusion
[48, 62], differ primarily in the complexity of the local anisotropic modulation. Another
popular anisotropic filtering approach is based on the use of the wavelet transformation
[14]. The basic idea is to identify and zero out wavelet coefficients of a signal that likely
correspond to image noise while maintaining the sharpness of the edges in an image [70].
The development of nonlinear median-based filters in recent years has also produced promis-
ing results. One of these filters, the mean-median (MEM) filter [25, 24], behaves differently
from the traditional median filter, and has been shown to preserve fine details of an image
while reducing noise. Among the aforementioned techniques, two noise reduction methods,
namely wavelet filtering [57] as well as non-linear anisotropic diffusion [19], have also been
applied to molecular tomographic imaging data.

An approach we have experimented successfully with on denoising reconstructed 3D maps,
utilizes bilateral pre-filtering [29], coupled to an evolution driven anisotropic geometric
diffusion PDE (partial differential equation) [2]. The PDE model is :

∂tφ− ‖∇φ‖div
(
Dσ ∇φ
‖∇φ‖

)
= 0 (32.3)

The efficacy of our method is based on a careful selection of the anisotropic diffusion
tensor Dσ based on estimates of the normal and principal curvature directions of a feature
isosurface (level-set) in three dimensions [2]. The diffusivities along the three independent
directions of the feature boundary, are determined by the local second order variation
of the intensity function, at each voxel. In order to estimate continuous first and second
order partial derivatives, a tricubic B-spline basis is used to locally approximate the original
intensity. A fast digital filtering technique based on repeated finite differencing, is employed
to generate the necessary tri-cubic B-spline coefficients. The anisotropic diffusion PDE is
discretized to a linear system by a finite element approach, and iteratively solved by the
conjugate gradient method.

In Figure 32.1, we show an example of a reconstructed cryo-EM map and the results
of filtering and contrast enhancement. In (a) and (b), only one slice of the 3D map is
illustrated. In (c) and (d), a volume-rendering of the original map is compared to that of
the filtered map.

Geometric and Signal Processing of Reconstructed 3D Maps of Molecular Complexes 32-5

32.2.3 Gradient Vector Diffusion

In the earlier subsection we considered volumetric filtering in the special context of “critical”
feature preservation. For a given volumetric map, the critical features are the essential values
that help define the hierarchical structure of a complex. In general these critical features
could be points, curves, or surfaces. The critical points of a scalar map can be classified
as one of three types: local maxima, local minima, and saddle points of the given scalar
function. However, in the context of structure identification, the maximal critical points
are of great interest, due to the fact that, in a molecular density map, higher densities
imply the existence of more atoms. These critical points can be easily computed from the
local maxima of a given scalar map. Since noise is always present in the original maps,
a pre-filtering process should be applied. As mentioned in the earlier subsection, a scalar
map pre-filter can be either linear or nonlinear. A linear filter (e.g., Gaussian filtering) may
destroy some weak features and hence eliminate some critical points. A nonlinear pre-filter
[48, 62], however, tends to “deform” a sub-region, yielding many unwanted critical points.

A good alternative is a vector field filtering technique that is based on the diffusion
of gradient vectors of the scalar 3D map, from which the afore-mentioned critical points
are also easily extracted. In [69], the authors described a diffusion technique to smooth
gradient vector fields. The gradient vectors are represented by Cartesian coordinates and
a set of partial differential equations (PDEs) are separately applied to each component of
the vectors. The equations are linear or isotropic, and therefore inherit the drawbacks of
most linear filtering systems. A better way to diffuse a gradient vector field is based on
the polar-coordinate representation of the vectors [73, 74]. A drawback of this method
is its computational complexity due to the efforts that have to be made to deal with the
periodicity of orientation. An improved method is presented in [3, 76], and we provide some
details below.

We detect the critical points using a set of anisotropic diffusion equations:

du
dt = div(g(α) · ∇u)

dv
dt = div(g(α) · ∇v)

dw
dt = div(g(α) · ∇w)

(32.4)

where (u, v, w) are initialized with the gradient vectors of the original maps. g(·) is a
decreasing function and α is the angle between the central vector and its surrounding
vectors. For instance, we can define g(α) as follows:

g(�c, �s) =

eκ·(�c·�s

‖�c‖‖�s‖−1) if �c �= 0 and �s �= 0

0 if �c = 0 or �s = 0
(32.5)

where κ is a positive constant; �c and �s stand for the central vector and one of the surrounding
vectors, respectively.

Once the gradient vector field is generated and diffused, we can define the critical points
as those where none of the surrounding vectors is pointing away from those points. These
critical points shall be frequently used in the following sections dealing with structural
feature identification.

To better illustrate the application of the anisotropic gradient vector diffusion technique
to accurately extract critical points from a given 3D map, we show cross-sectional two-
dimensional (2D) slices (Figure 32.2). The images are from a slice of the herpes virus

32-6 Handbook of Computational Molecular Biology

(a) (b) (c)

FIGURE 32.2: Illustration of critical point extraction using gradient vector diffusion. (a) one
slice of herpesvirus capsid protein, vp5. (b) gradient vector field without diffusion
corresponding to the boxed out area in (a). (c) gradient vector field after diffusion
(10 iterations) improves the detection of critical points.

(a) (b) (c)

FIGURE 32.3: Illustration of critical point extraction using gradient vector diffusion. (a) one
slice (noise reduced) of rice dwarf virus (RDV). (b) after 10 iterations (1214
critical points were extracted). (c) after 30 iterations (781 critical points were
extracted). The number of critical points can be further reduced by removing
those whose density values are less than a certain threshold.

capsid protein vp5 [81]. For better illustration of vector fields, we only consider a small
area as boxed out in Figure 32.2(a). The vector field in Figure 32.2(b) is computed before the
vector diffusion. Figure 32.2(c) demonstrates the power of the anisotropic vector diffusion,
from which one can easily extract the critical points. Another example with greater detail, is
illustrated in Figure 32.3, where one can see that running the vector diffusion with different
numbers of iterations can result in multiple levels of critical points.

32.3 Structural Feature Identification

32.3.1 Symmetry Detection

The symmetry of a shape or structure provides fundamental information for shape recogni-
tion, and representation. Given the reconstructed 3D map of a large biomolecular complex,
one may ask: (1) Does this structure exhibit certain global and local symmetries? (2) If
it does, what type of symmetries are present (reflectional, rotational, translational, etc)?

Geometric and Signal Processing of Reconstructed 3D Maps of Molecular Complexes 32-7

(3) If the symmetry is rotational, what is the folding number and what is the location of
the symmetry axis? Past relevant work devoted to answering the above questions in the
literature include [13, 40, 43, 55, 58, 71, 79], most of which, however, were applied to simpler
inputs, such as a set of points, curves, or polygons.

In many cases, the 3D maps are of spherical viruses, whose protein capsid shells exhibit
icosahedral symmetry. In these cases, the global symmetry detection can be simplified
to computing the location of the 5-fold rotational symmetry axes, passing through the
twelve vertices of the icosahedron, after which the 3-fold symmetry axis for the twenty
icosahedron faces and the 2-fold symmetry axis for the thirty icosahedron edges can be
easily derived. However local symmetries of the protein arrangement on virus capsid shells
are more complicated, exhibiting varied k-fold symmetry and their detection requires a
modified correlation based search algorithm explained below [78].

In almost all cases of single particle cryo-EM reconstruction, the origin of the 3D map is
identical to the origin of its corresponding icosahedron, as global icosahedral symmetry is
utilized in the reconstruction. Given an axis lθ,ϕ passing through the origin, where θ and
ϕ are defined in a classical way such that θ ∈ [−π, π] and ϕ ∈ [−π/2, π/2], a 3D scalar
map f(�r) is said to possess a 5-fold rotational symmetry about lθ,ϕ if the following equation
holds:

f(�r) = f(R(θ,ϕ,2π/5) · �r), for ∀�r (32.6)

where the 3 × 3 matrix R(θ,ϕ,α) is defined as the coordinate transformation that rotates
a point counterclockwise about an axis lθ,ϕ by an angle of α. In particular, the matrix
R(θ,ϕ,α) can be decomposed into five fundamental coordinate transforms.

In order to detect, for example a 5-fold symmetry axis, one can simply correlate the
original map with its rotated map and search in the resulting correlation map for peaks
[43]. This method has a high computational complexity of O(NM), where N is the number
of voxels and M is the number of angular bins. In current applications of icosahedral
virus reconstructions at medium resolution, N is roughly 7003 and M is about 46,000 (a
quasi-uniform sampling on the orientation sphere with a radius of 200-voxels). Although
a number of techniques can be employed to speed up the search process by reducing the
number of the angular bins (e.g., a principal axis method [58] or a coarse to fine hierarchical
approach), it is still expensive as N is large. In recent work [77, 78], introduced a method
for the fast detection of rotational symmetries, given the fold number. The idea there is to
reduce N , the number of voxels to be tested, by restricting the correlation only to a subset
of the critical points instead of the entire volume.

An example result of their method is shown in Figure 32.4(a) the scoring function of
the outer capsid layer of the rice dwarf virus (RDV) 3D map [80], where one can clearly
identify the “peaks” with high contrast. The corresponding 5-fold symmetry axes and the
reconstructed icosahedra are shown in Figure 32.4(b). Experiments on this 3D Map data
show that the correct symmetry axes could be calculated based only on 23 critical points, in
contrast to the total number of 5123 voxels in the original map (details are given in [77, 78]).
The approach has been extended to automatically detect local symmetries, such as the 3-
or 6-fold symmetry axes of the RDV map [78]. Figure 32.4(c) demonstrates the detection
of the local symmetry axes of the outer capsid layer of RDV.

32.3.2 Boundary Segmentation

Segmentation is a way to electronically dissect significant biological components from a
3D map of a macromolecule, and thereby obtain a clearer view into the macromolecules
architectural organization [17]. For instance, it is often helpful to segment an asymmetric

32-8 Handbook of Computational Molecular Biology

(a) (b) (c)

FIGURE 32.4: (See color insert following page 20-4.) Detection of Symmetry axes and
construction of global icosahedral symmetry as well as local n-fold symmetry. (a)
scoring function. (b) global icosahedral symmetry. (c) local 6-fold symmetry.

local subunit out of an icosahedral virus such that further structural interpretation can
be conducted only on the asymmetric unit instead of the entire map without loss of any
structural information. Segmentation of 3D maps is usually carried out either manually
[26, 27, 37, 39, 45] or semi-automatically [3, 20, 60]. Current efforts on the selection and
decomposition of an icosahedral map into its local subunits also relies largely on manual
work with extensive use of a graphical user interface [30, 80]. This manual task can be te-
dious when the resolution is only marginally high enough to discern the boundaries between
subunits.

Automated segmentation is still recognized as one of the challenge problems in image pro-
cessing, although various techniques have been proposed for automated or semi-automated
segmentation. Commonly used semi-automatic methods include segmentation based on
edge detection, region growing and/or region merging, active curve/surface motion and
model based segmentation (see for example [54, 74]). In particular, two techniques have
been discussed in detail in the electron tomography community. One is called the water-
shed immersion method [60] and the other is based on normalized graph cut and eigenvector
analysis [20].

Papers [77, 78] present steps towards an automatic approach for asymmetric subunit
detection and segmentation of 3D maps of icosahedral viruses. The approach is an enhanced
variant of the well-known fast marching method [42, 53]. The basic idea of the fast marching
method is that a contour is initialized from a pre-chosen seed point, and the contour is
allowed to grow until a certain stopping condition is reached. Every voxel is assigned with
a value called time, which is initially zero for seed points and infinite for all other voxels.
Repeatedly, the voxel on the marching contour with minimal time value is deleted from
the contour and the time values of its neighbors are updated according to the following
equation:

||∇T (�r)|| · F (�r) = 1 (32.7)

where F (�r) is called the speed function that is usually determined by the gradients of the
input maps (e.g., F (�r) = e−α‖∇I‖, where α > 0 and I is the original map). The updated
neighbors, if they are updated for the first time, are then inserted into the contour. The
traditional fast marching method are designed for a single object boundary segmentation.
In order to segment multiple targets, such as 60-component virus capsids or a 3-component
molecular trimeric subunit, one has to choose a seed for each of the components. However,

Geometric and Signal Processing of Reconstructed 3D Maps of Molecular Complexes 32-9

assigning only one seed to each component may cause appropriate boundary detection
problems, as demonstrated in [78], and hence a re-initialization scheme becomes necessary.

The automatic approach of [77, 78] consists of three steps: (1) detection of the critical
points; (2) classification of critical points; (3) a multi-seed fast marching method. The
technique for (1) the detection of critical points has been briefly described in the earlier
subsection on Gradient Vector Diffusion, in this chapter. All the critical points are regarded
as seeds in the fast marching method. In general, the number of critical points in a map
is much larger than the number of object components of interest. In other words, each
component is assigned with a number of seeds instead of just one. Every seed initiates a
contour and all contours start to grow simultaneously and independently. Two contours
corresponding to the same component merge into a single contour, while two contours
corresponding to different components stop on their common boundaries.

The initial classification of critical points as part of step (2) of the algorithm, is crucial
in the segmentation of virus 3D maps. The critical points are classified utilizing local or
global symmetry and based on their equivalence in terms of the asymmetric components
that are to be segmented. Once all the seeds are classified, the above multi-seed variant
of the fast marching method is used. First, each component initially possesses multiple
seeds and hence multiple initial contours. Second, each marching contour is assigned a
membership index based on the classification of seeds and the assignment to components.
Once a voxel (volume element of the 3D Map) is conquered by a marching contour, it is
assigned with the same index as the marching contour. Third, two marching contours with
the same index merge into one when they meet, while two marching contours with different
indices stop at their touching boundaries.

The segmentation approach or [77] has been applied to the global asymmetric components
dissection of icosahedral virus 3D maps. For viruses with more than 60 subunits that form a
quasi-equivalent icosahedron, one additionally needs to incorporate the local symmetry axes
of the viruses into the multi-seed classification and segmentation process [78]. Results from
the above automatic segmentation technique applied to a reconstructed Cryo-EM 3D Map
of the Rice Dwarf Virus (RDV) [80] are shown in Figure 32.5. The RDV has double spherical
protein shells (called capsids) with icosahedral symmetry. The first level segmentation is a
separation of these two shells from the 3D map (see Figure 32.5 (a)). Next is a segmentation
of the asymmetric subunits within each capsid. The sixty asymmetric subunits of the outer
capsid viewed from the 5-fold symmetry axis is shown in Figure 32.5(b). Each subunit
consists of four and one third trimeric sub-subunits [80]. Figure 32.5 (c) and (d) illustrates
the segmented trimers (260 in total), where (c) shows the view from outside while (d) shows
the view from the inside. The segmentation shown in (c) and (d) requires the local symmetry
detection as shown in Figure 32.4(c) and the algorithm discussed in detail in [78]. Figure
32.5 (e) shows the segmented trimeric subunit consisting of three monomeric units, each of
the same protein P8. Figure 32.5(f) shows the P8 protein monomeric unit segmented from
the trimeric unit based on local 3-fold symmetry. It is worthwhile pointing out that in the
visualization of the segmented trimeric subunits in Figure 32.5(b) only five colors are used
to distinguish between sixty subunits, such that any five subunits surrounding the 5-fold
symmetry axis would have different colors. In other directions, however, one may see two
adjacent subunits having the same color although technically they have different component
memberships. One can certainly find a more sophisticated coloring scheme to assure any
two adjacent subunits always have different colors. Several more example segmentations
for both reconstructed cryo-EM 3D Maps and synthetic 3D maps generated from crystal
structure data are given in [78].

32-10 Handbook of Computational Molecular Biology

(a) (b) (c)

(d) (e) (f)

FIGURE 32.5: (See color insert following page 20-4.) Visualization of the architecture of
the Rice Dwarf Virus (RDV) 3D map (a) segmented outer and inner icosahe-
dral capsid boundaries (b) segmented asymmetric subunits of the outer capsid
(60 subunits in total). Each asymmetric subunit consists of four and one third
trimers. (c) & (d) segmented trimeric subunits (260 in total), where (c) shows
the view from the outside while (d) shows the view from inside. (e) each seg-
mented trimeric subunit consists of three monomeric sub-subunits. (f) segmented
monomeric subunit represents the 3D density map of a single P8 protein. The
RDV 3D map data is courtesy Dr. Wah Chiu, NCMI,BCM, Houston

32.3.3 Secondary Structure Identification

Although atomic structures are not detectable in reconstructed 3D cryo-EM maps, given
their low feature resolution, it is sometimes feasible to locate secondary structures (alpha
helices and beta sheets) from those maps [9, 80]. An approach for detecting alpha helices in
3D maps has been described in [63], where the alpha helix is modelled with a cylinder (length
and thickness) and the cylinder is correlated with the segmented protein map. Since the
best solution is achieved by exhaustively searching in translation space (3D) and orientation
space (2D), this method is computationally expensive. In addition, this approach is designed
only for alpha helix detection, not for the beta sheets. Another approach, designed for
beta sheet detection, was recently proposed by [34, 35]. This method uses a disk (planar)
model for beta sheets. It inherits the disadvantage of slow computational speed due to the
exhaustive search in both translation and orientation space, and furthermore cannot find
curved beta sheets.

It is of course possible to combine the two methods above to detect both alpha helices

Geometric and Signal Processing of Reconstructed 3D Maps of Molecular Complexes32-11

and beta sheets, however to detect secondary structures efficiently one must avoiding the
exhaustive search in both translation and orientation space. One possible approach is to
consider scoring candidate helices/sheets only at the critical points of the 3D Map. This
way, the search in translation space can be reduced to a significantly smaller number of
locations. In addition, the search in orientation space at each critical point can be further
reduced by utilizing the local structure tensor [18, 62]. Given the 3D map f(x, y, z), the
gradient tensor is defined as:

G =

f2
x fxfy fxfz

fxfy f2
y fyfz

fxfz fyfz f2
z

(32.8)

This matrix has only one non-zero eigenvalue: f2
x + f2

y + f2
z . The corresponding eigenvector

of this eigenvalue is exactly the gradient (fx, fy, fz). Therefore, this matrix alone does not
give more information than the gradient vector. To make the gradient tensor useful, a
spatial average (over the image domain) should be conducted for each of the entries of the
gradient tensors, yielding what is called the local structure tensor. The averaging is usually
based on a Gaussian filter:

T = Gα =

f2
x ∗ gα fxfy ∗ gα fxfz ∗ gα

fxfy ∗ gα f2
y ∗ gα fyfz ∗ gα

fxfz ∗ gα fyfz ∗ gα f2
z ∗ gα

(32.9)

Here gα is a Gaussian function with standard deviation α. The eigenvalues and eigenvectors
of the structure tensor T indicate the overall distribution of the gradient vectors within
the local window, similar to the well-known principal component analysis (PCA). Three
typical structures can be characterized based on the eigenvalues [18]. Let the eigenvalues
be λ1, λ2, λ3 and λ1 ≥ λ2 ≥ λ3. Then we have the following classifications:

1. blobs: λ1 ≈ λ2 ≈ λ3 > 0.

2. lines: λ1 ≈ λ2 >> λ3 ≈ 0.

3. planes: λ1 >> λ2 ≈ λ3 ≈ 0.

For each of the critical points of the 3D map, the structure tensor and its corresponding
eigenvalues are calculated. Next, the above criterion based on the eigenvalues of the local
structure tensor is computed at each of the critical points to distinguish between alpha
helices (line features) and beta sheets (plane features). A critical point classified as an alpha
helix, is extended on both sides along the direction of the line structure determined by the
local structure tensor, yielding a segment of the median axis of the 3D map. Similarly,
for a critical point corresponding to a beta sheet feature, the plane feature is extended
yielding a piece of median surface of the density map. Since a true alpha helix or beta sheet
may consist of more than one critical point, it is necessary to merge a number of median
segments and median surfaces, from which the final alpha helixes and/or beta sheets are
constructed.

Figure 32.6 illustrates this approach on a Gaussian blurred map of the X-ray atomic
structure of cytochrome c’ (PDB-ID = 1bbh). Figure 32.6(a) shows the atomic structure,

32-12 Handbook of Computational Molecular Biology

(a) (b) (c) (d)

FIGURE 32.6: (See color insert following page 20-4.) Illustration of secondary structural
identification using local structure tensor at critical points of the 3D Map (a) The
X-ray atomic structure representation of cytochrome c’ (PDB-ID = 1bbh). (b)
The volumetric representation of a Gaussian blurred 3D map generated from the
X-ray structure (c) The detected skeletons of the 3D map. (d) Four helices are
finally constructed from the skeletons, while the two on the bottom are discarded
as being too small for being helices

consisting of four alpha-helices, visualized as ribbons. The blurred map of this structure is
visualized by contour rendering in Figure 32.6(b). Based on the the critical points of the 3D
map and use of the structure tensor, the skeletons (median segments/planes) are computed
and shown in Figure 32.6(c). From the skeletons, the four alpha helices are constructed
as shown in Figure 32.6(d). Note that two segments of median axes on the bottom are
discarded simply because their lengths are too small to be a true alpha helix.

32.4 Structure Fitting

A primary technique for structure interpretation and molecular model construction is to
attempt to fit a known high-resolution structure (obtained by X-ray or NMR) into a re-
constructed 3D density map. This technique is commonly known as structure fitting [52].
This technique bridges the resolution gap between low-resolution maps (e.g., lower than
10 Å) [6] and the atomic protein structures (e.g. lower than 3 Å). Figure 32.7 shows an
example of structure fitting between the P8 monomeric protein, segmented from the RDV
3D map [80], and its X-ray atomic structure [47]. Figure 32.7(a) shows the segmented P8
monomeric protein (also see Figure 32.5(f)). The crystal structure of P8 monomer is shown
in Figure 32.7(b), where one beta sheet (top) and two alpha helices (middle and bottom)
are highlighted and used as a high-resolution fitting model. This high-resolution model is
fit against the cryo-EM map of P8 monomer and its best position/orientation within the
cryo-EM map is determined and show in Figure 32.7(c).

There are several papers discussing various techniques on structure fitting. An excellent
review of prior work on this topic is given in [65]. One of the popular methods for volumetric
matching is based on Fourier transforms [44, 46]. The rigid-body fitting can be thought of

Geometric and Signal Processing of Reconstructed 3D Maps of Molecular Complexes32-13

(a) (b) (c)

FIGURE 32.7: (See color insert following page 20-4.) Example of structural fitting in
the segmented P8 monomeric protein of RDV. (a) P8 monomeric protein iso-
surface visualization (b) X-ray atomic structure of the P8 monomeric protein
represented in ways of balls & sticks and cartoons. One beta sheet (top) and two
alpha helices (middle and bottom) are highlighted and used as a fitting model.
(c) By maximizing the correlation between the X-ray atomic model and the 3D
map of the P8 monomer, one builds a pseudo-atomic model of the 3D map

as the minimization of the discrepancy between the cryo-EM maps and the atomic structure
in Fourier space. The discrepancy is defined as follows:

R =
∑

f

||Fem(f)| − λ |Fcalc(f, r, t)||n, n = 1 or 2 (32.10)

where Fem and Fcalc are the Fourier transforms of the 3D map and the calculated atomic
structure (that is, a Gaussian blurred 3D map of the atomic structure). Here r and t stand
for rotation and translation parameters, respectively, and both r and t have three degrees
of freedom.

Instead of fitting the structures in Fourier space, we can also perform the fitting in the
real space [10, 33, 61]. It is known that the minimization of the R factor seen above is
equivalent to the maximization of the cross-correlation defined as below:

C=

∫
ρem(�x)ρcalc(�x, r, t)d�r (32.11)

where ρem and ρcalc are the twin 3D maps of the cryo-EM and the Gaussian blurred atomic
structure. The cross-correlation can be calculated by exhaustive searching with scaling
or sampling of the translation (t) and rotation (r) parameters. While the Fast Fourier
Transform (FFT) is easily used to speed up the cross-correlation scoring calculation over
3D translations [11, 36], it can also be used to compute the cross-correlation coefficients over
rotational parameter (r) space, by first re-expressing the 3D map using trivariate spherical
harmonics.

Another improvement on the conventional cross-correlation scoring method is to use a
locally defined cross-correlation score [51]. In general, the global correlation method does
not exclude the densities in the cryo-EM map that do not correspond to the atomic struc-
ture being considered. In addition, maximizing (32.11) often makes the solution “drift” to

32-14 Handbook of Computational Molecular Biology

the highest density region in the cryo-EM map, which, however, does not mean the best-
matched region. Hence the normalized and localized method [51] often gives more accurate
fitting scores. One disadvantage of this method, however, is that the cross-correlation is
conducted in real-space and a six-parameter searching space is considered in [51], resulting
in a very slow performance. Recently, Roseman [50] incorporated the fast Fourier trans-
form (FFT) into the local correlation algorithm and applied it to the particle detection
in two-dimensional electron micrographs. It was said that the local correlation algorithm
together with FFT could be two orders of magnitude faster than the explicit real-space
implementation [50]. However, no results have been reported for 3D maps using this fast
local correlation algorithm.

The conventional cross-correlation method can also be enhanced by a contour-based fitting
method [8], in which the correlation coefficient is defined the same as (32.11) except that the
Laplacian operator is applied to both maps before the calculation of the cross-correlation.
Although this method is called contour-based fitting, it is not actually based on the detection
of the contours. Due to the Laplacian operator that enhances the edges of both the cryo-EM
map and the calculated atomic structure, this method was shown in [8] to give improved
results (the resulting correlation map has higher contrast) than the classic cross-correlation
method. However, as pointed out in [65], the Laplacian filter may also amplify the noise,
which as a result may weaken the performance of this method.

All the above methods for structure fitting are based on cross-correlation between the
cryo-EM reconstructions and the calculated atomic structures. A different strategy is based
on a data reduction technique. This method has been studied by Wriggers et al [68, 67,
66, 64], based on a vector quantization technique [23, 28]. The idea of vector quantization
is to represent a 3D map with a certain number of vectors (or points in 3D space), from
which a weighted graph is constructed. Instead of computing the cross-correlation between
the cryo-EM 3D map and the calculated 3D atomic blurred map, one computes a new
“difference” function between the two graphs corresponding to the cryo-EM map and the
calculated atomic structure map. The “difference” function can be used to search for the
best volumetric matching. Although this approach reduces the overall search time for its
best match, and it is also possible to extend this to flexible fitting [64, 65], it has two
limitations. First, this method requires that the component of the cryo-EM map to be
fitted should be isolated from the entire map. Second, the number of vectors must be
carefully chosen. A large number of vectors exponentially increases the computational time
while a small number of vectors may not be sufficient for perfect alignment and matching
of the structural features of the map.

32.5 Conclusion

The field of structural biology is increasingly dependent on computational processing for
structural determination of complexes from 3D Maps. Each of the computational structure
or ultra-structure elucidation methods that we highlighted above in separate subsection-
s, remains an active area of future research and development, as there is still a ways to
go. Furthermore. as the size of these reconstructed 3D EM maps grows, computational
processing techniques would need to be developed, working directly from multi-resolution
and compressed volumetric representations [1]. Nevertheless, we are optimistic that with
progressively better techniques for image acquisition, coupled to efficient map reconstruc-
tion, and enhanced computational 3D map processing for structure elucidation, it is only a
matter of time until the resolution gap between X-ray structures and cryo-EM structures
will be bridged.

References 32-15

Acknowledgements

This work was supported in part by NSF grants INT-9987409, ACI-022003, EIA-0325550,
and grants from the NIH 0P20 RR020647, R01 GM074258. We are grateful to Dr. Wah
Chiu and his group at the Baylor College of Medicine, for helpful discussions related to this
project and for providing us the reconstructed 3D map of the rice dwarf virus.

References

[1] C. Bajaj, J. Castrilon-Candas, V. Siddavanahalli, and Z. Xu. Compressed representa-
tions of macromolecular structures and properties. Structure, 13(3):463–471, 2005.

[2] C. Bajaj, Q. Wu, and G. Xu. Level-set based volumetric anisotropic diffusion for 3D
image denoising. In ICES Technical Report, University of Texas at Austin, 2003.

[3] C. Bajaj, Z. Yu, and M. Auer. Volumetric feature extraction and visualization of
tomographic molecular imaging. Journal of Structural Biology, 144(1-2):132–143,
2003.

[4] T.S. Baker, N.H. Olson, and S.D. Fuller. Adding the third dimension to virus life
cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron mi-
crographs. Microbiology and Molecular Biology Reviews, 63(4):862–922, 1999.

[5] D. Barash. A fundamental relationship between bilateral filtering, adaptive smoothing
and the nonlinear diffusion equation. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 24(6):844–847, 2002.

[6] D.M. Belnap, A. Kumar, J.T. Folk, and T.J. Smith et al. Low-resolution density
maps from atomic models: How stepping ‘back’ can be a step ‘forward’. Journal of
Structural Biology, 125(2-3):166–175, 1999.

[7] V. Caselles, J.L. Lisani, J.M. Morel, and G. Sapiro. Shape preserving local histogram
modification. IEEE Trans. Image Processing, 8(2):220–230, 1998.

[8] P. Chacon and W. Wriggers. Multi-resolution contour-based fitting of macromolecular
structures. Journal of Molecular Biology, 317:375–384, 2001.

[9] W. Chiu, M.L. Baker, J. Wen, and Z.H. Zhou. Deriving folds of macromolecular
complexes through electron crymicroscopy and bioinformatics approaches. Current
Opin in Struct Biol, 12:263–269, 2002.

[10] K. Cowtan. Modified phase translation functions and their application to molecular
fragment location. Acta Crystallography, D54:750–756, 1998.

[11] R.A. Crowther. The molecular replacement method. pages 173–178. Gordon & Breach,
1972.

[12] R. Deriche. Fast algorithm for low-level vision. IEEE Trans. on Pattern Recognition
and Machine Intelligence, 12(1):78–87, 1990.

[13] S. Derrode and F. Ghorbel. Shape analysis and symmetry detection in gray-level
objects using the analytical fourier-mellin representation. Signal Processing, 84(1):25–
39, 2004.

[14] D.L. Donoho and I.M. Johnson. Ideal spatial adaptation via wavelet shrinkage.
Biometrika, 81:425–455, 1994.

[15] F. Durand and J. Dorsey. Fast bilateral filtering for the display of high-dynamic-range
images. In ACM Conference on Computer Graphics (SIGGRAPH), pages 257–266,
2002.

[16] M. Elad. On the bilateral filter and ways to improve it. IEEE Transactions On Image
Processing, 11(10):1141–1151, 2002.

32-16 References

[17] R.J. Ellis. Macromolecular crowding: obvious but underappreciated. Trends Biochem.
Sci., 26(10):597–604, 2001.

[18] J.-J. Fernandez and S. Li. An improved algorithm for anisotropic nonlinear diffusion
for denoising cryo-tomograms. J. Struct. Biol., 144(1-2):152–161, 2003.

[19] A. Frangakis and R. Hegerl. Noise reduction in electron tomographic reconstructions
using nonlinear anisotropic diffusion. J. Struct. Biol., 135:239–250, 2001.

[20] A.S. Frangakis and R. Hegerl. Segmentation of two- and three-dimensional data from
electron microscopy using eigenvector analysis. Journal of Structural Biology, 138(1-
2):105–113, 2002.

[21] J. Frank. Three-dimensional Electron Microscope of Macromolecular Assemblies.
San Diego: Academic Press, 1996.

[22] R.C. Gonzalez and R.E. Woods. Digital image processing. Addison-Wesley, 1992.
[23] R.M. Gray. Vector quantization. IEEE ASSP Mag., pages 4–29, 1983.
[24] A. Ben Hamza, P. Luque, J. Martinez, and R. Roman. Removing noise and preserving

details with relaxed median filters. Journal of Mathematical Imaging and Vision,
11(2):161–177, 1999.

[25] A.B. Hamza and H. Krim. Image denoising: A nonlinear robust statistical approach.
IEEE Transactions on Signal Processing, 49(12):3045–3054, 2001.

[26] M.L. Harlow, D. Ress, A. Stoschek, and R.M. Marshall et al. The architecture of
active zone material at the frog’s neuromuscular junction. Nature, 409:479–484, 2001.

[27] D. Hessler, S.J. Young, and M.H. Ellisman. A flexible environment for the visualization
of three-dimensional biological structures. Journal of Structural Biology, 116(1):113–
119, 1996.

[28] IEEE. Special issue on vector quantization. IEEE Transactions on Image Processing,
5(2), 1996.

[29] W. Jiang, M. Baker, Q. Wu, and C. Bajaj et al. Applications of bilateral denoising
filter in biological electron microscopy. J. Struct. Biol., 144(1-2):114–122, 2003.

[30] W. Jiang, Z. Li, M.L. Baker, and P.E. Prevelige et al. Coat protein fold and maturation
transition of bacteriophage P22 seen at subnanometer resolution. Nature Structural
Biology, 10(2):131–135, 2003.

[31] D.J. Jobson, Z. Rahman, and G.A. Woodell. A multiscale retinex for bridging the
gap between color images and the human observation of scenes. IEEE Trans. Image
Processing, 6(7):965–976, 1997.

[32] D.J. Jobson, Z. Rahman, and G.A. Woodell. Properties and performance of a cen-
ter/surround retinex. IEEE Trans. Image Processing, 6(3):451–462, 1997.

[33] G.J. Kleywegt and T.A. Jones. Template convolution to enhance or detect structural
features in macromolecular electron-density maps. Acta Crystallography, D53, pages
179–185, 1997.

[34] Y. Kong and J. Ma. A structural-informatics approach for mining b-sheets: locat-
ing sheets in intermediate-resolution density maps. Journal of Molecular Biology,
332:399–413, 2003.

[35] Y. Kong, X. Zhang, T.S. Baker, and J. Ma. A structural-informatics approach for
tracing b-sheets: building pseudo-ca traces for b-strands in intermediate-resolution
density maps. Journal of Molecular Biology, 339:117–130, 2004.

[36] J.A. Kovacs and W. Wriggers. Fast rotational matching. Acta Crystallography,
D58:1282–1286, 2002.

[37] J.R. Kremer, D.N. Mastronarde, and J.R. McIntosh. Computer visualization of three-
dimensional image data using IMOD. J Struct Biol, 116:71–76, 1996.

[38] A.F. Laine, S. Schuler, J. Fan, and W. Huda. Mammographic feature enhancement by
multiscale analysis. IEEE Trans. Medical Imaging, 13(4):725–738, 1994.

References 32-17

[39] Y. Li, A. Leith, and J. Frank. Tinkerbell-a tool for interactive segmentation of 3D
data. Journal of Structural Biology, 120(3):266–275, 1997.

[40] G. Loy and A. Zelinsky. Fast radial symmetry for detecting points of interest. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 25(8):959–973, 2003.

[41] J. Lu, D.M. Healy, and J.B. Weaver. Contrast enhancement of medical images using
multiscale edge representation. Optical Engineering, 33(7):2151–2161, 1994.

[42] R. Malladi and J.A. Sethian. A real-time algorithm for medical shape recovery. In
Proceedings of International Conference on Computer Vision, pages 304–310, 1998.

[43] T. Masuda, K. Yamamoto, and H. Yamada. Detection of partial symmetry using
correlation with rotated-reflected images. Pattern Recognition, 26(8):1245–1253, 1993.

[44] M. Mathieu and F.A. Rey. Atomic structure of the major capsid protein of rotavirus:
implication for the architecture of the virion. EMBO J., 20:1485–1497, 2001.

[45] B.F. McEwen and M. Marko. Three-dimensional electron micros-copy and its appli-
cation to mitosis research. Methods Cell Biol, 61:81–111, 1999.

[46] R. Mendelson and E.P. Morris. The structure of the acto-myosin subfragment 1 com-
plex: results of searches using data from electron microscopy and x-ray crystallography.
Proc. Natl. Acad. Sci., 94:8533–8538, 1997.

[47] A. Nakagawa, N. Miyazaki, J. Taka, and H. Naitow et al. The atomic structure of rice
dwarf virus reveals the self-assembly mechanism of component proteins. Structure,
11:1227–1238, 2003.

[48] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 12(7):629–639, 1990.

[49] W.K. Pratt. Digital Image Processing (2nd Ed.). A Wiley-Interscience Publication,
1991.

[50] A. Roseman. Particle finding in electron micrographs using a fast local correlation
algorithm. Ultramicroscopy, 94:225–236, 2003.

[51] A.M. Roseman. Docking structures of domains into maps from cryo-electron mi-
croscopy using local correlation. Acta Crystallographica, D56, pages 1332–1340, 2000.

[52] M. G. Rossmann. Fitting atomic models into electron-microscopy maps. Acta Crys-
tallographica, D56, pages 1341–1349, 2000.

[53] J.A. Sethian. A marching level set method for monotonically advancing fronts. Proc.
Natl. Acad. Sci., 93(4):1591–1595, 1996.

[54] J.A. Sethian. Level Set Methods and Fast Marching Methods (2nd edition). Cam-
bridge University Press, 1999.

[55] D. Shen, H.S. Ip, K.T. Cheung, and E.K. Teoh. Symmetry detection by generalized
complex moments: a close form solution. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 21(5):466–476, 1999.

[56] J.A. Stark. Adaptive contrast enhancement using generalization of histogram equal-
ization. IEEE Trans. Image Processing, 9(5):889–906, 2000.

[57] A. Stoschek and R. Hegerl. Denoising of electron tomographic reconstructions using
multiscale transformations. J. Struct Biol, 120:257–265, 1997.

[58] C. Sun and J. Sherrah. 3D symmetry detection using the extended gaussian image.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 19(2):164–168, 1997.

[59] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In 1998
IEEE International Conference on Computer Vision, pages 836–846, 1998.

[60] N. Volkmann. A novel three-dimensional variant of the watershed transform for seg-
mentation of electron density maps. Journal of Structural Biology, 138(1-2):123–129,
2002.

[61] N. Volkmann and D. Hanein. Quantitative fitting of atomic models into observed
densities derived by electron microscopy. Journal of Structural Biology, 125:176–184,

32-18 References

1999.
[62] J. Weickert. Anisotropic Diffusion In Image Processing. ECMI Series, Teubner,

Stuttgart, ISBN 3-519-02606-6, 1998.
[63] J. Wen, M.L. Baker, S.J. Ludtke, and W. Chiu. Bridging the information gap: compu-

tational tools for intermediate resolution structure interpretation. Journal of Molec-
ular Biology, 308:1033–1044, 2001.

[64] W. Wriggers and S. Birmanns. Using situs for flexible and rigid-body fitting of mul-
tiresolution single-molecule data. J. Struct. Biol., 133:193–202, 2001.

[65] W. Wriggers and P. Chacon. Modeling tricks and fitting techniques for multiresolution
structures. Structure, 9:779–788, 2001.

[66] W. Wriggers and P. Chacon. Using situs for the registration of protein structures
with low-resolution bead models from x-ray solution scattering. Journal of Applied
Crystallography, 34:773–776, 2001.

[67] W. Wriggers, R.A. Milligan, and J.A. McCammon. Situs: a package for docking crystal
structures into low-resolution maps from electron microscopy. Journal of Structural
Biology, 125:185–195, 1999.

[68] W. Wriggers, R.A. Milligan, K. Schulten, and J.A. McCammon. Self-organizing neu-
ral networks bridge the biomolecular resolution gap. Journal of Molecular Biology,
284:1247–1254, 1998.

[69] C. Xu and J.L. Prince. Snakes, shapes, and gradient vector flow. IEEE Trans. Image
Processing, 7(3):359–369, 1998.

[70] Y. Xu, J.B. Weaver, D.M. Healy, and J. Lu. Wavelet transform domain filters: A
spatially selective noise filtration technique. IEEE Trans. Image Processing, 3(6):747–
758, 1994.

[71] R. Yip, W. Lam, P. Tam, and D. Leung. A hough transform technique for the detection
of rotational symmetry. Pattern Recognition Letter, 15:919–928, 1994.

[72] I.T. Young and L.J. Vliet. Recursive implementation of the gaussian filter. Signal
Processing, 44:139–151, 1995.

[73] Z. Yu and C. Bajaj. Anisotropic vector diffusion in image smoothing. In Proceedings
of International Conference on Image Processing, pages 828–831, 2002.

[74] Z. Yu and C. Bajaj. Image segmentation using gradient vector diffusion and region
merging. In Proceedings of International Conference on Pattern Recognition, pages
941–944, 2002.

[75] Z. Yu and C. Bajaj. A fast and adaptive algorithm for image contrast enhancement.
In Proceedings of International Conference on Image Processing, pages 1001–1004,
2004.

[76] Z. Yu and C. Bajaj. A segmentation-free approach for skeletonization of gray-scale
images via anisotropic vector diffusion. In Proceedings of 2004 IEEE International
Conference on Computer Vision and Pattern Recognition, pages 415–420, 2004.

[77] Z. Yu and C. Bajaj. Visualization of icosahedral virus structures from reconstructed
volumetric maps. The University of Texas at Austin, Department of Computer
Sciences. Technical Report TR-04-10, 2004.

[78] Z. Yu and C. Bajaj. Automatic ultra-structure segmentation of reconstructed cryoem
maps of icosahedral viruses. IEEE Transactions on Image Processing: Special Issue
on Molecular and Cellular Bioimaging, 14(9):1324–1337, 2005.

[79] K. Yuen and W. Chan. Two methods for detecting symmetries. Pattern Recognition
Letter, 15:279–286, 1994.

[80] Z.H. Zhou, M.L. Baker, W. Jiang, and M. Dougherty et al. Electron cryomicroscopy
and bioinformatics suggest protein fold models for rice dwarf virus. Nature Structural
Biology, 8(10):868–873, 2001.

References 32-19

[81] Z.H. Zhou, M. Dougherty, J. Jakana, and J. He et al. Seeing the herpesvirus capsid
at 8.5 angstrom. Science, 288:877–80, 2000.

33
In Search of Remote Homolog

Dong Xu
University of Missouri-Columbia

Ognen Duzlevski
University of Missouri-Columbia

Xii-Fend Wan
University of Missouri-Columbia

33.1 Introduction . 33-1
Why remote homolog is interesting • Homology and
evolution • Challenges and progresses in identification
of remote homolog

33.2 Sequence Comparison Methods . 33-4
Pairwise sequence alignment • Sequence-profile
alignment • Hidden Markov Models • Profile-profile
alignment • Phylogenetic analysis • Other approaches

33.3 Sequence-Structure Comparison Methods 33-10
Threading components • Identification of remote
homolog from structural relationship • Computational
Studies of Protein Structures in Cyanobacteria

33.4 Sequence-Independent Methods . 33-16
Protein structure comparison • Paralog relationship in
high-throughput biological data

33.5 Assessment of Computational Methods 33-19
33.6 Discussions . 33-21

33.1 Introduction

33.1.1 Why remote homolog is interesting

Homolog identification is becoming more and more important in modern biology. Tradi-
tional biology studies have been focused extensively on model systems, and these studies
provide a tremendous resource to investigate other species. The most used model system-
s include E. coli, budding yeast (Saccharomyces cerevisiae), fission yeast (Schizosaccha-
romyces pombe), Caenorhabditis elegans, Drosophila melanogaster, zebrafish (Danio Rerio),
Arabidopsis thaliana, and mouse (Mus musculus) [7]. Most of the biological knowledge
that has been accumulated so far is related to these model organisms. A convenient way
to study the functions and structures of a new gene is to identify homologs (evolutionary
relationships) in model organisms, from which one can infer structure, function and mecha-
nism of the new gene. Such an approach becomes very powerful nowadays, given the surge
in biological sequence data resulting from large-scale sequencing technologies and various
genome projects.

Homolog identification can be done through computationally matching a query sequence
to similar sequences in the database. However, this matching process is not trivial since
two homologous proteins could have been separated a very long time ago in their evolu-
tionary history. Thus, their sequences have diverged substantially and their evolutionary
relationship may be very difficult to detect. Such distantly related proteins are called remote
homologs. A large proportion, typically 30-40% of the predicted protein coding genes do

33-1

33-2 Handbook of Computational Molecular Biology

not have specific function assignments since we cannot relate these proteins to any protein
with known function in the database. This is the case even in well-studied model organisms.
For example, at present, 2,280 genes have not been annotated with any functions out of
6,324 genes in budding yeast Saccharomyces cerevisiae [30]. Many of these genes proba-
bly have remote homologs whose functions are well characterized, but existing methods for
detecting homology relationships via sequence similarity might not be able to detect such
remote homologs.

33.1.2 Homology and evolution

The evolutionary relationship between genes is complicated. When two genes are evolution-
arily related (i.e., they are descended from a common ancestor), they are called homologs.
Homologs include three different forms (see Figure 33.1), i.e., ortholog, paralog and xenolog
[27]. Homologs that have diverged from each other after speciation events are called or-
thologs. Homologs that have diverged from each other after gene duplication events are
called paralogs. Homologs that have diverged from each other after lateral (horizontal) gene
transfer events are called xenologs [56]. Homologs only indicate their evolutionary relation-
ship, but they may not have the same function. Dividing genes into groups of orthologs,
paralogs and xenologs can help function predictions after the homologs are identified. Or-
thologs typically preserve the gene functions. Gene duplications and horizontal transfer
are frequently accompanied by functional divergence. In many cases, paralogs and also
xenologs have related/overlapping, but not identical biological functions [8, 54]. In general,
homologs have similar protein structures, but it is not true the other way around. Proteins
sharing similar structures but without detectable evolutionary/functional relationship are
called analogs.

The evolution connection can go beyond the one-to-one relationship and have mixed
homology, as shown in 33.1(b). In this case, a new protein has multiple domains and
these domains have homology to domains of different proteins. This happens frequently in
evolution when domains are duplicated, inserted or permuted [77]. Such cases can make
the remote homology detection even more challenging and lead to misleading computational
results. Some computer packages were especially designed to handle such special cases, e.g.,
DIVCLUS, which detects families of duplication modules from a protein sequence database
(http://www.mrc-lmb.cam.ac.uk/genomes)[66]. Some databases use domains as a basis
to study the homologous relationship between proteins, e.g. PRODOM [19].

33.1.3 Challenges and progresses in identification of remote homolog

A major challenge for computational identification of remote homolog is the low signal-
to-noise ratio. Since remote homologs were separated through a long evolutionary history,
similarity due to convergence is generally limited to small regions of genes (signal) and
other parts of sequences were diverged too much to have any relationship (noise). Typically,
remote homologs cannot be identified through straightforward pairwise sequence comparison
using tools such as BLAST [3] or FASTA [69]. When aligning whole sequences or even just
domains, most parts of the sequences are forced to align together so that the noise basically
buries the signal.

In the past ten years or so, active research has been carried out for remote homologs
identification, and some significant advances have been made. New methods for remote
homolog identification include sequence comparison, sequence-structure, and structure-
structure comparison, as well as other methods that do not depend on protein sequence
or structure (e.g., using gene location in the genomic sequence or microarray data). Since

In Search of Remote Homolog 33-3

FIGURE 33.1: Evolutionary relationship among proteins.

remote homologs often reveal themselves through evolutionary history, most new methods
use the information contained within alignments of multiple closely related sequences (se-
quence profiles). In addition, as protein three-dimensional structure is more conserved than
sequence, protein structure prediction and structure-structure comparison also became a
useful tool for identification of remote homologs.

In this chapter, we will provide a review on various methods for identification of remote
homologs. Section 33.2 provides an overview on the methods based on protein sequence
comparison. Section 33.3 focuses on the methods using sequence-structure comparison, i.e.,
the threading method. Section 33.4 discusses other computational methods that do not
rely on protein sequence for remote-homolog identification. Section 33.5 summarizes the
comparisons between different methods. The chapter ends with some discussions in Section
33.6.

33-4 Handbook of Computational Molecular Biology

33.2 Sequence Comparison Methods

The major methods for identification of remote homologs are based on sequence-sequence
comparison. A protein sequence encodes all the information related to its structure and
function. Comparing protein sequences through their alignment often provides the most
direct relationship between the proteins. Sophisticated methods in identifying remote ho-
mologs, such as threading, are often based on the sequence profile resulted from searching
a query sequence against a sequence database.

33.2.1 Pairwise sequence alignment

Pairwise sequence alignment is the foundation of all sequence-dependent methods for ho-
molog identification. Although remote homologs are often missed by pairwise sequence
comparison, since the method is not sensitive, pairwise sequence comparison is typically
the first step in searching for homolog. A pairwise sequence alignment compares two pro-
tein sequences according to a match criterion together with an alignment gap penalty for
insertion and deletion. The match criterion is generally expressed in a mutation matrix
with elements (i, j), describing the preference (score) to replace the amino acid type i with
j. The mutation matrices have been developed from the mutation rates found in sequence
databases. Most popular mutation matrices are PAM – Percent Accepted Mutation [21]
and BLOSUM – BLOcks SUbstitution Matrix [40]. PAM mutation matrix quantifies the
amount of evolutionary changes in a protein sequence and defines a PAM unit, which is the
amount of evolution that will change, on average, 1% of amino acids in a protein sequence.
On the other hand, BLOSUM substitution matrices are derived from observations of the
frequencies of substitutions in blocks of local alignments in related proteins. Each BLO-
SUM matrix is tailored to a particular evolutionary distance. In the BLOSUM62 matrix,
for example, the alignment from which scores were derived was created using sequences
sharing less than 62% identity. Sequences more identical than 62% are represented by a
single sequence in the alignment to avoid redundancy.

The use of a certain matrix depends on different situations. BLOSUM62 is a widely used
matrix for searching close homologs. According to some studies [40, 92], BLOSUM matri-
ces have been shown to improve the sensitivity and accuracy of the alignments of homologs
significantly over PAM. This is mostly due to the fact that PAM matrices have residue sub-
stitution probabilities for distant proteins extrapolated mathematically from rates of closely
related sequences, while BLOSUM matrices are based on observed frequencies in real align-
ments. Furthermore, BLOSUM matrices were simply based on larger datasets used in the
experiment. However, in a separate study, it was shown that PAM250 outperformed other
matrices using some benchmarks of remote homolog identification [25, 1]. In addition, some
variant matrices were also developed in recent years. For example, Probability Matrix from
Blocks (PMB) [92] is derived from the Blocks database of protein alignments, and it approx-
imates the residue substitution probabilities as a function of actual evolutionary distance,
which is an important characteristic lacking in BLOSUM matrices. PMB was constructed
from the original BLOSUM62 matrix and was refined using a Hidden Markov Model. It
linked into statistical estimation methods to quantify the level of residual relatedness within
a protein sequence database.

Several types of algorithms are used to obtain the optimal or near-optimal alignment given
a mutation matrix with gap penalties for the insertions/deletions in the alignment. The
first algorithm was developed by [63], who applied the dynamic programming technique
to determine the optimal solution for a global alignment between two sequences. This
method was further improved by [86] in the aspect that similarity between segments of

In Search of Remote Homolog 33-5

the two sequences (local alignment) can be identified more efficiently with the guaranteed
optimal solution. Several variants of the Smith-Waterman algorithm were developed for fast
analysis, such as FASTA [69] and BLAST [3]. These methods use heuristic approaches for
identifying regions of similarity between sequences and then further exploring the alignment
only between these regions. This heuristics allowed these programs to be much faster than
the original Smith-Waterman algorithm while at the same time sacrificing little in terms
of accuracy or sensitivity. However, neither BLAST nor FASTA can guarantee the optimal
alignment of sequences.

Pairwise sequence comparison has established sound statistical foundation for assessment
of homolog identification results [51, 50, 3]. BLAST produces an expectation value (E-
value), which indicates the statistical significance of the alignment. The E-value represents
the possibility that the alignment is a result of chance, and its value is inversely related to
the significance of the alignment. FASTA has a similar measure. It should be noted that the
E-value sometimes may be misleading, as alignment significance could be over-estimated
[105].

33.2.2 Sequence-profile alignment

Using the sequence profile derived from close homologs of the query protein can significantly
increase the sensitivity for remote homolog identification. A profile is a representation of
a group of related protein sequences, based on a multiple alignment of these sequences
[4]. Once the multiple-sequence alignment is defined, the profile is constructed by counting
the number of each amino acid at each position along the alignment. These counts are
transformed into probabilities by normalizing the counts using the total number of amino
acids and gaps observed at that position. The derived empirical probabilities reflect the
likelihood of observing any amino acid k at position i. Since the counts are based on a finite
set of sequences, it can happen that not all 20 amino acids are observed at each position.
Therefore, pseudo counts are introduced so that no amino acid has a zero probability to
occur at position i. Based on the profiles, if an amino acid matches a highly conserved one
at a particular location, it will score a high positive result. In contrast, all other amino
acids will receive very negative scores for the same position. If the residues at a particular
position distribute randomly, their scores in the profile will gravitate around the value of
zero.

Typical representatives of methods using sequence-profile alignment are PSI-BLAST [4]
and IMPALA [81], where the latter is a modification of the former. PSI-BLAST allows
iterative refinement of profiles by way of discovering sequences that are closely related to
the profile in one step and incorporating these sequences into the profile for the next step.
It uses gapped BLAST (pairwise sequence alignment) to obtain the multiple alignment for
a query protein sequence, from which the profile is produced. The profile is compared
to the database using a slightly modified BLAST code. The statistical significance of the
alignments is then assessed and steps are repeated until convergence or for a user-specified
number of times. However, as [5] pointed out, it is important to optimally select the
query sequences at each step for the PSI-BLAST search. For example, human experts can
recognize undesired proteins and remove them from building the profile for further PSI-
BLAST search. The study observed a correlation between the variability in the selected
sequences and the ability to sense subtle relationships in following steps. This implies that
the level of training of the human operator using the tool would influence the final quality
of the results produced. There are alternative approaches for using the sequence profiles
based on extensions of the Smith-Waterman algorithm, with significant improvements in
the alignment accuracy and the number of detected remote homologs. These algorithms

33-6 Handbook of Computational Molecular Biology

include the Family Pairwise Search (FPS) [36] and Jumping Alignments [88]. FPS is a
generalization of the pairwise approach for the case when multiple query sequences are
available. The idea is to perform multiple pairwise alignments between the sequences in the
database and the sequences in the query set. The resulting scores of the alignment between a
database sequence and all sequences in the query set will then be reconciled into an overall
score for the given database sequence. The method of Jumping Alignments is a multi-
dimensional extension of the Smith-Waterman algorithm for the case of comparing a single
sequence to a multiple sequence alignment. The core of it is to compare a query sequence
to a “reference” sequence from the multiple alignment. If a “jump” is performed (another
sequence is chosen to be the reference), this vertical change is penalized. This implies that
the “reference” sequence is allowed to change at a cost. In essence, the algorithm keeps
track of all rows of the multiple sequence alignment aligned to each column of the query
sequence. The score of this alignment is the standard alignment score (allowing affine gaps
and based on a substitution matrix) minus the penalty incurred when changing rows. It can
be expressed mathematically in an extension of what is generally known as the recurrence
relations for the dynamic programming approach of pairwise alignment of sequences.

33.2.3 Hidden Markov Models

The hidden Markov model (HMM) method [38] is a widely used method to detect remote
homologies. This method is based on generalized profiles [14], which have been demon-
strated to be very effective in detecting conserved patterns in multiple sequences [46, 22].
The typical profile hidden Markov model is a chain of match, insertion, and deletion nodes,
with all transitions between nodes trained to specific probabilities. The single best path
through an HMM corresponds to a path from the start state to the end state in which each
character of the sequence is related to a successive match or insertion state along that path.
In essence a discrete first-order HMM is defined by a set of states S, an alphabet of symbols
m (the size of m is 20 in case of identifying protein remote homologs), a probability matrix
P (pij), and an emissions matrix E(eia). The system can be in state i at a time, where
it has a probability pij for moving from i to j and probability eia for emitting a symbol
a. Evolution will allow states such as match, insert or delete. In the insert and match
states there is an emission while a delete state is quiet. Loops on insertion states allow
for expanding gaps. By the very nature of HMMs described above, it is evident that they
require a family of related sequences (proteins in our case) to produce the statistical model
describing their relatedness and conserved regions. After that, this model can discriminate
against each new sequence in a database HMM. A popular implementation of the HMM
method is SAM [52], which has been shown to significantly outperform tools like Blast,
WU-Blast and Double-Blast in detecting remote homologies.

33.2.4 Profile-profile alignment

Profile-profile comparison provides a sensitive method to detect remote homology. The
algorithm for profile-profile comparison is based on comparing numerical alignment profiles
typically using the classical dynamic programming approach (other approaches can be co-
emission probabilities or Gibbs sampling, for example). It usually consists of four steps:

1. Production of profiles from the multiple sequence alignments between a sequence
and its homologs for both the query sequences and each sequence in the search
database, the latter of which can be pre-computed. The alignment itself can be
performed by using any method discussed above.

In Search of Remote Homolog 33-7

2. Apply a weighting scheme for the alignment sequences to avoid the problem of
non-uniform distribution of the homologs in the alignment. Usually low weights
are assigned to over-represented sequences and high weights to unique ones. A
number of variations of weighting have been introduced in the past, e.g. in-
creasing the weights of sequences that are more similar to the query sequence
[60].

3. Construct sequence profiles that represent the probabilities for each of the twenty
amino acid types at each position in the set. Many times the number of the
sequences that are homologous to each other is insufficient to provide a profile
based only on the given sequences themselves. In this case, a scheme based
on prior probabilities (or expected probabilities) of amino acid occurrences and
substitutions is used and a wide number of pseudo-counting schemes can be
applied.

4. The final stage of profile-profile alignment is aligning the obtained profiles using
gapped alignment with the dynamic programming technique.

Some evaluations show that this method is significantly more sensitive in detecting remote
homologs than the sequence-profile based search programs like PSI-BLAST and various H-
MM approaches [104, 95]. Sadreyev and Grishin [79] demonstrated their tool COMPASS
- “comparison of multiple protein alignments with assessment of statistical significance”
significantly improved sensitivity and accuracy against “classic” approaches such as using
PSI-BLAST. [104] claimed that the improvement obtained using their method as opposed
to PSI-BLAST is comparable to the improvement of PSI-BLAST over regular BLAST. [65]
also demonstrated that using profile-profile alignments, a significant (as much as 30%) im-
provement can be obtained when compared to the sequence-profile approach. On the other
hand, [23] concluded that current profile-profile methods improve sensitivity on average by
2% over profile-sequence methods and 40% over sequence-sequence methods.

Since profiles are typically aligned mutually by way of extended or modified dynamic
programming algorithm, the choice of the gap-allowing scoring function used in aligning
pairs of profile positions is important. Profile columns are vectors of real numbered values.
There are different ways to calculate the score of aligning a column of query profile against
a column of profiles for a sequence in a search database. A simple scoring scheme is defined
as a dot product between the profile vectors. Initial tests among more than twenty various
scoring functions have been performed with a general conclusion that performance varied
on the order of several percent among different functions [23].

33.2.5 Phylogenetic analysis

To predict/confirm the identified remote homolog and study the evolutionary/functional
relationship, phylogenetic analysis can be very useful. Phylogenetic analysis is the process
of building a phylogenetic tree for a group of sequences in order to understand their rela-
tionship and timing of evolutionary development, as well as possibly infer their function. A
phylogenetic tree is composed of branches (or edges), nodes and leafs with each leaf repre-
senting a protein or gene (or species). A node in a tree represents a speciation or divergence
event and in essence symbolizes ancestry. A branch describes the evolutionary relationship
between the nodes and leafs. Trees can be rooted or unrooted. A tree with a root will
provide full evolutionary meaning in a historic sense since the root of the tree will signify
the common ancestor organism (or gene). An unrooted tree will just provide information on
the relationship between the nodes. Since trees can be used to describe species and genes,
it is important to note that a speciation event (a node in a species tree) may not coincide

33-8 Handbook of Computational Molecular Biology

with a divergence event in a gene tree.
Phylogenetic trees, in conjunction with other methods, can significantly improve accuracy

of remote homolog prediction. For a straightforward implementation [75], a phylogenetic
tree is constructed from a given multiple alignment of the family for a sequence-profile
alignment. During the search, each database sequence is temporarily inserted into the tree,
thus adding a new edge to the tree. Homology between family and sequence is then judged
from the length of this edge. A more sophisticated incorporation of phylogenetic information
is the Phylogenetic Tree-Based HMMs [72], which can minimize the effect of closely related
sequences in the HMM model. Using the posterior probabilities of each amino acid at a
particular node in a phylogenetic tree, the sequence profile information can be used more
effectively, as it creates an evolutionary representation of the protein family across time.
When all is put together, the model can serve as a more accurate representation of the
subset of the protein family descended from a particular node.

To make functional predictions based on a phylogenetic tree, it is necessary to first overlay
any known functions onto the tree. There are many ways this map can then be used to make
functional predictions. First, the tree can be used to identify likely gene duplication events
in the past. This allows the division of the genes into groups of orthologs and paralogs.
Uncharacterized genes can be assigned a likely function if the function of any ortholog
is known. Second, parsimony reconstruction techniques can be used to infer the likely
functions of uncharacterized genes by identifying the evolutionary scenario that requires
the fewest functional changes over time. The incorporation of more realistic models of
functional change (and not just minimizing the total number of changes) may prove to be
useful. Using such analysis, the evolutionary and functional relationship between the query
protein and a predicted homolog from other methods can be revealed, and as result may
help confirm the remote homolog identification.

A number of tools incorporated various ways of constructing trees and overlaying function-
s onto these trees. Most of the methods come from several basic approaches such as neighbor
joining, parsimony, and maximum likelihood. Although a maximum likelihood approach
incorporates more biological information into the tree, it is also much slower in construct-
ing the relationships. Tools like Mesquite (http://mesquiteproject.org), PAUP (http:
//paup.csit.fsu.edu/), and PHYLIP (http://evolution.genetics.washington.edu/
phylip.html) can produce trees with different methods, infer consensus trees out of several
initial trees and offer other handy ways of manipulating, editing, tracing and viewing the
information gained from the data. Such tools will also provide a way to observe similari-
ties between trees or construct fits of one tree over another, which is helpful in identifying
functional relationships between sequences.

33.2.6 Other approaches

All the above methods rely on sequence alignment of amino acids, either pairwise or multiple.
There are alternative methods that are also based on sequence comparison. These methods
may not have good specificity, i.e., the prediction reliability may not be as high as the
methods above. However, they may be more sensitive so that they can detect some remote
homologs that cannot be identified by the direct sequence alignment of amino acids. Below
we summarize five alternative methods:

1. Homology detection through intermediate sequences This approach [67]
is based on the idea that two sequences might be so divergent that a direct
comparison between them will not yield any meaningful results, while both
of the sequences may be similar to a third one which will act as a transitive

In Search of Remote Homolog 33-9

sequence between the original two. This is the approach implemented in the
DOUBLE-BLAST tool, where the BLAST hits of a query protein sequence
are used as a new set of queries for the next BLAST run. The work by
[67] also suggests that such ISS (Intermediate Sequence Search) approach
works better in prediction sensitivity than profile-sequence approaches such
as PSI-BLAST. Other implementations of homology detection through ISS
are also available [32, 108, 48].

2. Incorporation of secondary structure information This approach [31, 33]
is based on the fact that secondary structures of proteins are more likely to
be conserved than their sequences. In addition, the accuracy of secondary
structure prediction has reached as high as 80%. Hence, we can predict the
secondary structures for two proteins under alignment, and then use the pre-
dicted secondary structures as an additional scoring function. It was found
that if the predicted secondary structures of two compared sequences match
by more than 50%, then these sequences are more likely to be structurally
related (also likely to be homologs). Even when the sequence identity was
below 20%, homology could still be detected using the secondary structure
comparison [31].

3. Search remote homolog using hydrophobicity profile This approach is based
on hydrophobicity (measure of preference or absence of preference for water)
profile extrapolated from the hydropathy scales of residues along a protein
sequence. Hydropathy scale is defined as a measure of hydrophobicity of
an amino acid and comes in several different sets. A hydrophobicity profile
value at a certain sequence position is obtained by averaging the hydropho-
bicity scales of several neighboring residues. In some cases, the two remote
homologs do not share any significant sequence similarity, but they share
similar hydrophobicity profiles. Detecting a similar hydrophobicity profile
for the query protein in a protein sequence database can be an alternative
approach for possible remote homolog identification. Such strategy is imple-
mented in the Protein Hydrophilicity/Hydrophobicity Search and Compar-
ison Server [71] (http://bioinformatics.weizmann.ac.il/hydroph/).

4. Homolog detection using compositional properties of protein sequence
In this approach, as implemented in PropSearch [42] (http://www.infobiosud.
univ-montp1.fr/SERVEUR/PROPSEARCH/propsearch.html), a fundamental-
ly different measure of similarity between proteins is used - protein dissimi-
larity is defined as a weighted sum of differences of compositional (physico-
chemical) properties such as singlet/doublet residue composition, molec-
ular weight, and isoelectric point. This approach can use either a sin-
gle sequence or multiple sequences as a query to the database. In case
of multiple sequences being used as a query, they can be reconciled into
a consensus sequence describing the “average composition” of the protein
family. PropSearch searches do not require alignments and are very fast
when scanning a preprocessed database. The searches use reduced infor-
mation from protein sequence, and hence, more false positives are expected
than sequence-alignment methods. Nevertheless, the tool provides a use-
ful alternative for further remote homolog identification when traditional
sequence/profile-based methods have failed.

5. Homologous relationship with frame-shift This approach [70] is based on
the assumption that some nucleotide frameshifts from DNA to RNA to

33-10 Handbook of Computational Molecular Biology

protein are responsible for the divergence between protein sequences. In
these cases, the classical sequence comparison methods, which only consider
insertions, deletions and mutations in protein sequences, will not be able
to detect such evolutionary relationships. To account for the frame-shifts,
sequences were compared using special amino acid substitution matrices for
the alternate frames of translation. Such a method provides a sensitive
approach for detecting a different type of remote homologs.

33.3 Sequence-Structure Comparison Methods

Since the 3D structures of proteins have been better conserved during evolution than their
sequences, predicting protein structures often provides a more sensitive approach to identify
distant evolutionary relationship (remote homology) than sequence-comparison methods.
Among the protein-structure prediction methods, threading [9, 85, 49, 103] is most suitable
for remote homolog identification. The idea of threading was derived from the observations
that proteins with no apparent sequence similarity could have similar structural folds and
that the total number of different structural folds in nature may be small [24], possibly in
the range of a few thousands. Thus, a structure prediction problem can be reduced to a
recognition problem, i.e., given a query protein sequence, searching for the most compatible
structural fold based on sequence-structure relationships. Sequence-structure relationships
include the notion that different amino acids may prefer different structural environments,
e.g., a hydrophobic amino acid tends to be in the interior of a globular protein and proline
rarely occurs in an α-helix. Once a structural template for the query sequence is identified,
the template can serve as a basis for function inference of the query protein, although the
template can be an analog of the query protein (i.e., the query and the template do not share
the same biological function). In this section, we will first introduce the four components of
threading. Then we will discuss how to use the predicted structural template for function
inference of the query protein. In the end, we will give an example of remote homolog
identification in a large scale, using three cyanobacterial genomes and carboxysomes as
examples.

33.3.1 Threading components

A threading method typically consists of four components [87]:

1. a library of representative 3D protein structures for use as templates;
2. an energy function for measuring the fitness between a query sequence and a

template structure in the library;
3. a threading algorithm for searching for the lowest energy among the possible

alignments for a given sequence-template pair;
4. a criterion for estimating the confidence level of the predicted structure.

The following discussion addresses each aspect in detail.

Fold template library

A fold template library is intended to represent all the experimentally determined protein
structures in the database PDB [97]. As many proteins in PDB are similar in sequence and
structure, it is not necessary to include all of them in the fold library. Typically, only the

In Search of Remote Homolog 33-11

representative proteins based on protein structure classification are used. Most template
libraries of the existing threading programs are based on three widely used databases of
protein structure classifications, i.e., CATH [64], FSSP [45] and SCOP [62]. CATH is a
hierarchical classification of protein domain structures. FSSP contains similar information
but is based on protein chains rather than domains; in addition, it contains sequence neigh-
bors and multiple structure alignments. SCOP essentially uses a manual procedure. Hence,
its classification is probably of higher quality, compared to the other two. However, SCOP
has not been updated as frequently as desired simply due to the amount of manual work
involved, while FSSP and CATH have been following the PDB updates closely. The classi-
fications for folds by the three databases differ somewhat due to their different classification
criteria (e.g., classification on a whole chain or a structure domain) and structure-structure
comparison methods. As a result, the number of folds (or unique folds) differs among
the three databases. After the templates are selected, some processing is carried out for
each template to include derived information from the structure, such as protein secondary
structure and solvent accessibility, both of which are needed for threading calculation.

Scoring function

The scoring function describes how favorable an alignment between a query sequence and
a template structure is. Threading generally uses knowledge-based scoring functions rather
than physical energies, since physical energies are too sensitive to small displacement of
atomic coordinates, making them less suitable for threading and too time-consuming for
computing. A typical threading scoring function has the following form:

Stotal = Smutate + Sgap + Ssingle + Spair (33.1)

The mutation score Smutate describes the compatibility of substituting one amino acid
type by another; Sgap is the alignment gap penalty; the singleton score Ssingle represents a
residue’s preference to its local secondary structures (α-helix, β-strand, and loop) and its
preference to being in a certain solvent environment (either exposed to solvent or in the
interior of the protein); Spair is the pairwise score between spatially close residues that are
not neighbors in the protein sequence. The mutation score and the alignment gap penalty
are similar to the ones used in sequence alignments. It has been shown that PAM250 is
one of the best substitution matrices available for threading [25, 1]. The gap penalty is
often a linear function of the gap size, with a penalty for opening a gap and a small penalty
for each extension thereafter. Both Ssingle and Spair are typically derived from Boltzmann
statistics from a non-redundant protein database [2]. The basic idea is that if an amino
acid is frequently observed in the interior of protein structures, a favorable score value will
be rewarded when it is aligned to an interior position of a template.

Alignment algorithm

The alignment algorithm in the context of threading means the computational methods
to identify a sequence-structure alignment with the best threading score as described in
Equation 33.1. If we do not consider the pairwise score, a threading problem is essentially
the same as a sequence alignment problem. Such a problem can be solved efficiently by a
dynamic programming approach [63, 86]. There are a number of computer programs which
essentially use dynamic programming for their threading problem, e.g., 123D [2], TOPIT-
S [76] SAS [61], and the UCLA-DOE Structure Prediction Server [25]. An advantage of
a threading algorithm without considering pairwise score is its speed. However, without
pairwise interactions, the threading accuracy is compromised [100]. Threading with pair-
wise terms and alignment gaps is generally considered to be a very difficult problem [57].

33-12 Handbook of Computational Molecular Biology

Two previous existing threading programs with rigorous solutions all have exponential com-
putational complexity [13, 58]. To overcome the computational difficulty, several methods
through statistical sampling have been proposed [85, 49, 12, 20]. Such methods do not guar-
antee to find the globally optimal threading alignment. To resolve this, a unique threading
algorithm [103] was developed to solve the globally optimal threading problem efficiently
under the assumption that the pairwise term needs to be considered only between spatially
close pairs in threading.

Assessment of threading results

A threading score between a query sequence and a template structure may not provide
enough information about whether the template is the “correct” fold. This is because the
scores are generally not normalized to the same scale. Hence, from the threading scores
between a query and a pool of templates, we generally cannot tell if the query’s correct fold
template is in the pool nor can we always tell which is the correct fold even if it is present.
There have been a number of attempts to “normalize” the threading scores so that they
can be compared with each other. An early attempt was to use Z-score [28]. There have
also been attempts to use the P-value scheme [51, 50] as a way to assign a meaning to a
threading score. P-value, which estimates the probability of having a particular alignment
score between two random sequences, have been successfully applied to sequence alignment,
thanks to Karlin’s seminal work on a rigorous model of gapless alignments [51, 50]. Due
to the lack of a rigorous model for threading, the P-values are typically estimated through
compiling a “large” number of threading scores between a query sequence and a template
after randomly shuffling its residues [12]. While some usefulness of the estimated P-value
has been demonstrated, the problem of developing a rigorous P-value scheme for threading
remains an open challenge. A practical way to “normalize” the threading scores is to feed
the threading scores along with various normalization factors such as sequence length to a
neural network which has learned to “optimally” combine these factors based on a training
set [102].

33.3.2 Identification of remote homolog from structural relationship

Even when the predicted 3D structure has poor quality due to a wrong alignment between
the query protein and the template, the identified fold template often represents a remote
homolog of the query protein, so that some evolutionary and functional relationship can
be inferred between the query and the template. Given that threading often produces
inaccurate alignment, it may be more useful in remote homolog identification than in 3D
structure prediction.

Although remote homolog may be identified from the predicted structures, a relationship
in structure does not guarantee homology relation. The relationship between the proteins
can be classified at different hierarchical levels according to structural, functional, and evo-
lutionary relationships. A widely used classification scheme consists of three levels of groups:
family, superfamily, and fold, as shown in the SCOP (Structural Classification of Proteins)
database [62], which currently has 2327 families, 1294 superfamilies, and 800 fold families
(1.65 release, August 1st, 2003). A family consists of proteins that have significant sequence
identity (often 25% or higher) between each other and share a common evolutionary an-
cestor (close homolog). Proteins of different families sharing a common evolutionary origin
(reflected by their common structural and functional features), typically remote homologs,
are placed in the same superfamily. Different superfamilies, i.e., analogs, are grouped into
a fold family if their proteins have the same major secondary structures in the same ar-

In Search of Remote Homolog 33-13

Z-score interval Probability to be correct Confidence level Homology
< 6 < 0.3 unlikely analogs/unrelated
6 - 8 0.35 low superfamily/analogs
8-10 0.63 medium superfamily/fold
10-12 0.85 high superfamily
12-20 0.96 very high family/superfamily
> 20 > 0.99 certain family

TABLE 33.1 Interpretation of the Z-scores from PROSPECT. The first column represents the Z-score
range. The second column shows the probability of a sequence-template pair sharing the same fold within
a certain Z-score range. The third column shows a corresponding qualitative confidence level. The fourth
column provides a possible homologous relationship between the query and template protein in terms of
the SCOP protein family classification, family, superfamily, and fold [62].

rangement and with the same topological connections. The structural similarities among
proteins of the same fold family (but not the same superfamily) may arise just from the
protein energetics favoring certain packing arrangements instead of a common evolutionary
origin.

Although proteins with the same fold may not be the homologs, one can suggest a possible
homolog of a query sequence from its predicted fold, using the SCOP database. When a
predicted structural fold contains multiple superfamilies, it is possible to predict the most
likely homolog for the query proteins among all the superfamilies based on threading results.
For example, PROSPECT [100] calculates a Z-score that measures the reliability of the
structure prediction and the possible homology relationship [53], as shown in Table 33.1.
The Z-score is the threading score in standard deviation unit relative to the average of the
threading raw score distribution of random sequences with the same amino acid composition
and sequence length against the same structural templates. In practice, the average and
the standard deviation are estimated by repeated threading between a template and a
large number of randomly shuffled query sequences. When the Z-score of the prediction is
high, the query and the template are likely to be homologs, and one can simply select the
superfamily with the highest Z-score among all the superfamilies in the predicted fold as
the (remote) homolog. When the Z-score is low, the predicted fold may not represent a
homolog at all.

To further pin down whether a query protein and a predicted template are homologs,
one can check functional motifs. If the predicted structure contains a functional motif
(conserved residues at a particular position in the 3D structure, not necessarily close to
each other on the protein sequence) of a protein in the template, the query protein and the
template are probably homologs. [106] have constructed a database of functional motifs for
known structures (e.g., EF-hand motif for calcium binding), called SITE. Currently, SITE
contains identified functional motifs from about 50% of the SCOP superfamilies. One can
also search the predicted protein structure against PROCAT [96], which is a database of
3-D enzyme active site templates. Although the structural motifs are more general, the
comparison between the query protein and the template in terms of the motifs depends
on the alignment accuracy, which may be different to achieve for threading. Hence, one
can also carry out sequence-based motif searches using PROSITE [43], PRINTS [6], and
BLOCKS [39]. A good example is the target T0053 of CASP3 [101]. Using PROSPECT,
we successfully identified a native-like fold (1ak1) of T0053 in PDB, as shown in Fig. 33.2.
T0053 and 1ak1 have only 11.2% sequence identity in the sequence independent structure-
structure alignment. Without additional information, it is difficult to determine whether
T0053 and 1ak1 are remote homologs. Using the BLOCK search [39], we found that the
two proteins share the same sequence block with a conserved active site at His-183 in 1ak1

33-14 Handbook of Computational Molecular Biology

FIGURE 33.2: (See color insert following page 20-4.) A comparison between the predicted
structure (left) and the experimental one (right) for the CASP-3 target t0053.
The cylinders indicate α-helices, the strands indicate β-sheets, and the lines in-
dicate loops.

and His-145 in T0053. This information allowed us to determine that the two proteins are
remote homologs. Our prediction turned out to be obvious when the experimental structure
of T0053 was determined (PDB code: 1qgo).

33.3.3 Computational Studies of Protein Structures in Cyanobacteria

Since the general applicability of threading, one can apply it in conjunction with other
computational methods to predict protein structure and identify homologs at the genome
scale, as shown by an example in this part for three cyanobacterial genomes; Synechococ-
cus sp. WH8102 and two strains of Prochlorococcus sp. (MED4 and MIT9313). Using
PROSPECT, we performed a global analysis of the structural folds and homologs in the
three genomes and a detailed study of several predicted proteins that have been suggested
to be essential for the function of carboxysomes, the common microcompartments that are
presented in these photosynthetic microorganisms [98].

Overview of three genomes

The cyanobacterial community in the world open oceans is dominated by small unicellular
forms of two genera Synechococcus and Prochlorococcus. Together, these organisms are ma-
jor primary producers in large oligotrophic central gyres of the world’s oceans. Although
the two genera are frequently present together, Synechococcus is widely distributed and

In Search of Remote Homolog 33-15

Species Synechococcus sp. WH8102 Prochlorococcus sp. MIT9313 Prochlorococcus sp. MED4
Total number of ORFs 2502 2251 1694
Membrane proteins 548 (21.9%) 560 (24.9%) 436 (25.7%)
PSI-BLAST hits 867 (34.7%) 867 (38.5%) 640 (37.8%)
PROSPECT (z < 20) 328 (13.1%) 137 (6.1%) 196 (11.6%)
PROSPECT (12 < z <
20)

81 (3.2%) 53 (2.4%) 47 (2.8%)

PROSPECT (10 < z <
12)

39 (1.6%) 28 (1.2%) 23 (1.4%)

PROSPECT (8 < z < 10) 55 (2.2%) 38 (1.7%) 25 (1.5%)
PROSPECT (6 < z < 8) 126 (5.0%) 111 (4.9%) 80 (4.7%)
Total number of struc-
tural homologs predicted

1496 (59.8%) 1234 (54.8%) 1011 (59.7%)

TABLE 33.2 A summary of predicted structural folds in three cyanobacterial genomes. Membrane
proteins are predicted using the SOSUI program [41]. For soluble proteins, PROSPECT was applied to a
gene only when it does not have a PSI-BLAST hit. Each row represents the total numbers of structural
homologs predicted in three genomes, in a particular range of Z-scores of PROSPCT hits or with PSI-BLAST
hits.

dominant in surface water that is rich in nutrients whereas Prochlorococcus is limited to
40oN − 40oS latitudes and often found in oligotrophic waters [68]. Prochlorococcus sp.
MIT9313 is adapted to lower light conditions (at increasing ocean depths) than Prochloro-
coccus sp. MED4. Because regeneration of organic carbon is a critical step in response to
anthropogenic inputs of CO2 into the atmosphere and thus highly relevant to global carbon
recycling, a major focus of biological oceanography has been to study, predict, and manip-
ulate the process of carbon fixation in the ocean. The availability of three complete genome
sequences (Synechococcus sp. WH8102 and two strains of Prochlorococcus sp. (MED4 and
MIT9313)) enables us to study the global properties of the proteins in these genomes us-
ing computational approaches. Such studies will help better understand the structure and
function of the proteins encoded by these genomes.

Global analysis of protein structural folds in three genomes

Protein structure predictions were carried out for all the predicted genes in the three
genomes using the PROSPECT pipeline. The gene predictions were extracted from ORNL’s
Genome Channel at (http://compbio.ornl.gov/channel). Each genome took about one
week for the pipeline to finish all the predictions. These results can be accessed through
the Internet at:

Synechococcussp. WH8102 : http : //compbio.ornl.gov/PROSPECT/syn/
Prochlorococcussp. MIT 9313 : http : //compbio.ornl.gov/PROSPECT/pmar mit/
Prochlorococcussp. MED4 : http : //compbio.ornl.gov/PROSPECT/pmar med/

Overall, the PROSPECT pipeline identified structural folds in PDB with reasonable level
of confidence (through either PSI-BLAST with E-value less than 10−4 or PROSPECT with
Z-score 6.0 or above) for 54.8%-59.8% of all the open reading frames (ORFs) in each of
the three genomes, as shown in Table 33.2. As indicated in Table 33.1, these predictions
can be used to infer remote homologs. Based on the detection of remote homology, we can
further predict functional and evolutionary relationships for proteins of unknown functions.
Together with annotations of membrane proteins, about 80% of all the ORFs in each genome
are characterized.

33-16 Handbook of Computational Molecular Biology

ORF Template Template function Predicted ORF function
ccmk1 1ris Ribosomal protein S6 Metallochaperone
csoS2-1 1iir-A Glycosyltransferase Structural protein
csoS2-2 1fnf Fibronectin Structural protein
csoS3 1qlt-A Vanillyl-alcohol oxidase Oxidase
ORFA 1kt9 Diadenosine tetraphosphate hydrolase Phosphate hydrolase
ORFB 1kt9 Diadenosine tetraphosphate hydrolase Phosphate hydrolase
ccmK2 1ris Ribosomal protein S6 Metallochaperone

Or459(MIT9313) 1dcp Pterin-4a-carbinolamine dehydratase Dehydratase

TABLE 33.3 Structure, remote homolog (selected template), and function predictions for carboxysome
proteins. The table lists the ORF name, the PDB code (and chain name) of the template (remote homolog)
used, the function of the template, and the predicted function based on most remote homolog under the
context of carboxysome. csoS2-1 and csoS2-2 are the N-terminal domain and C-terminal domain of the
csoS2 ORF, respectively. Other than Or459, which is specific to Prochlorococcus sp. MIT9313, all others
genes are homologous within the three genomes, and hence sharing the same structure template and remote
homolog

Computational analysis of predicted carboxysome proteins

The carboxysome is a polyhedral inclusion body found in a variety of microorganisms [15].
The components and the overall structure of the carboxysome is poorly understood although
it is known that an enzyme named ribulose1,5, bisphosphate carboxylase/oxygenase (Ru-
BisCO) – the major enzyme that converts carbon from an inorganic to organic form –
constitutes about 60% of the total carboxysomal proteins [29]. Aiding to the effort of elu-
cidating carboxysome structure and function, we analyzed the automated prediction, as
described above, for the proteins found in carboxysome. As shown in Table 33.3, we first
identified the structure fold for each ORF, and then found the superfamily with the highest
Z-score in the fold as structure template and the remote homolog. Based on the remote
homolog, functional information is inferred under the context of carboxysome. For exam-
ple, a template of csoS2-2 (1fnf) is fibronectin. This fibronectin fragment encompasses the
7th-10th type III repeat, whose presence is found in many proteins with a broad range of
biological function, and an RGD motif which is an intergrin-fibronectin interaction site.
Other information can be also used for functional inference from remote homology. For
example, from PSI-BLAST search, csoS2 are homologous to histones, which also play a
role as structural proteins, even though their molecular structure is unknown. Therefore,
the C-terminus of csoS2 could play a structural role, or it may be important for promot-
ing protein-protein interactions. Interestingly, it has been reported that antibodies raised
against CsoS2 label the edges of the carboxysome of Thiobacillus neapolitanus. Combined
with the experimental evidence, it may be expected that csoS2 is present in the carboxysome
shell.

33.4 Sequence-Independent Methods

Both the sequence-comparison methods and protein-structure predictions for remote-homolog
identification use the information from the query-protein sequence. In some cases, the infor-
mation about a remote homolog is also revealed in other sources, such as structure-structure
comparison, evolutionary footprints and gene expression. In this section, we will address
these sequence-independent methods for remote homolog identification.

In Search of Remote Homolog 33-17

FIGURE 33.3: Predicted structures for (a) ccmk1, (b) csoS2 N-terminal domain, (c) csoS2
C-terminal domain (d) csoS3, (e) ORFA, and (f) Or459 (Prochlorococcus sp.
MIT9313). (a-e) are 5 ORFs from Synechococcus sp. WH8102. (c) shows only
one of the repetitive domains of the predicted structure.

33.4.1 Protein structure comparison

When the structure of a protein is known, one can use the structure to identify its homologs
through comparing with other known structures. This is similar to the threading method
in the sense of using structural information, while the structure-structure comparison is
far more reliable than sequence-sequence comparison or sequence-structure comparison in
identifying remote homologs. Protein-structure comparison had limited use for remote
homolog identification in the past, as there were few protein structures available. With the
advent of new technologies such as synchrotron radiation sources and high-resolution nuclear
magnetic resonance (NMR), a great number of new protein structures have been determined
in recent years. In particular, in the recent effort of structural genomics [107, 10], where
protein structures are being determined in large scale, the structures of many proteins were

33-18 Handbook of Computational Molecular Biology

determined without knowing their function. Structure comparison provides a useful tool
to identify remote homologs for these proteins, and further predict functions based on the
homologs.

Thus, when the structure of a protein is available, one can use the structure to search
again the database of known protein structures, i.e., PDB, and the hits with similar struc-
tures are potential remote homologs of the query protein. A popular tool for comparing a
query protein structure against all the structures in the PDB is the DALI server [44]. A
much faster search engine for protein structure comparison, ProteinDBS [83], was developed
recently. Based on the alignment between the query protein structure and the hits in the
structure database, one may find biologically interesting similarities that are not detectable
by sequence comparison or threading. For example, common structural motifs between two
aligned structures can be found. Using such information, one can tell whether two proteins
of the same fold are remote homologs or merely analogs. Several protein-structure classifica-
tion databases, such as SCOP, CATH, and FSSP, as discussed in Section 33.3, can facilitate
the search for remote homolog using structure comparison. These structural databases pro-
vide a useful resource for systematically checking the common features of structural motifs
and sequence patterns among proteins in the same superfamily, and these features can help
to tell whether two proteins of the same structural fold are homologs or analogs.

33.4.2 Paralog relationship in high-throughput biological data

During evolution, some genes may be duplicated and then diverged (i.e., paralog as defined
in section 33.1). The paralogs often have some traces in various high-throughput biological
data, including genomic sequence data, gene expression data, and genetic interaction data.
Although these traces alone typically are insufficient for predicting paralog relationships,
they can help remote paralog identification in conjunction with other methods. In par-
ticular, when such traces occur, a paralog prediction from other methods would have an
increased confidence level. The following three types of traces can offer some support of
possible paralog relationships:

1. Adjacent genes in genomic sequence. Many gene duplications occur in tan-
dem. Hence, it is not surprising that many paralogs were also found in
adjacent positions of a genome [18, 94].

2. Correlated microarray gene expression patterns. The neighboring genes
due to this duplication mechanism often show similar expression pattern-
s, since these adjacent genes share a single upstream activating sequence
in many cases. The correlated gene expression pattern also relates to the
distance between the genes on the genomic sequence, as it was found that
the expression similarity was correlated to the physical distances in Sac-
charomyces cerevisiae and Arabidopsis thaliana [94]. The correlated gene
expression pattern among paralogs also extends to orthologs [47].

3. Genetic interactions based on synthetic lethality screening. The synthet-
ic lethality screening is a very powerful method for finding “genetic interac-
tion” between gene products [84]. It identifies lethal deletions of two genes
at the same time, while either deletion alone is not lethal. A systematic
high-throughput synthetic lethal analysis was carried out in yeast Saccha-
romyces cerevisiae for 4700 viable mutants [90]. Between two genes with
such a genetic interaction, one may be a backup of the other, and hence,
the two genes may be paralogs.

In Search of Remote Homolog 33-19

33.5 Assessment of Computational Methods

Given that so many methods are available for remote homolog identification, it is very im-
portant to compare these methods based on some benchmark tests. However, such a com-
parison is not trivial. If we look into any particular paper discussing an individual method,
typically the paper shows that the method outperforms others. The results depend on what
criteria are used and how the comparisons are performed. At least the following six criteria
can be considered when comparing different methods for remote homolog identifications:

1. Sensitivity of remote homolog identification, i.e., how many true remote homologs
can we identify as top hits among all remote homologs in the database? For
example, if k remote homologs are in the database of a query protein sequence,
how many of them rank as top n.

2. Specificity of remote homolog identification, i.e., among the top hits, how many
of them represent true homologs? For example, if top n hits in the database are
selected for a query protein sequence, how many of them are true homologs?

3. Reliable confidence assessment, i.e., to what extent can the prediction result of
homolog identification be trusted, in terms of either probability or Expectation
value?

4. Alignment accuracy, i.e., in an alignment between the query protein and the
correctly identified remote homolog, how many alignment positions are biologi-
cally true? A true biological alignment is typically represented by the structure-
structure alignment between the two proteins.

5. Applicability, i.e., what conditions does a method require? For example, for the
threading method, it requires that the structure of a remote homolog for the
query sequence is available in the database. Some methods do not have explicit
requirements, but they tend to work poorly in certain cases, e.g., HMMs do not
work well when the query protein does not have close homologs to build profiles.

6. Computational efficiency, i.e., the computing time and memory requirement, and
their dependence on the query protein size. This turns out to be very important
in practice, especially because many related computations are carried out in
large (genome) scale. For example, it is known that many other methods are
more accurate in identifying remote homologs, but PSI-BLAST is still the most
popular method for remote homolog identification, given that it is very fast and
computational time complexity is linear.

Even though there have been constant improvement of methods for discovering remote
homologs, there is still much more room for improvement along the six criteria. It has been
shown [11] that for close homolog identification (with sequence similarity over 30%), almost
all the methods work very well, with insignificant differences for criteria 1-4. However, when
predicting remote homologs, none of the methods consistently outperforms others in all of
the six criteria. Hence, although PSI-BLAST is the most popular method, many other
computational tools are also widely used at the same time.

Some systematic benchmarks between different sequence-comparison methods have been
constructed. These comparisons often use SCOP as the gold standard and focus on whether
a method can detect remote homologs in the same superfamily but in different families and
also how well the sequence alignment compares with the structural alignment. It was found
[11] that while comparing sequences below 30% identity (many of them are in the same fam-
ily), less than 50% of remote homologs could be detected using tools like gapped BLAST,
FASTA or the Smith-Waterman SSEARCH. However, even for these identified homologs,

33-20 Handbook of Computational Molecular Biology

the study [11] suggested that the P-values as produced by BLAST seem to underesti-
mate the errors and the alignments are often inaccurate. Another study [80] compared
the performance for sequence-alignment accuracy against structure-structure alignment a-
mong a pairwise alignment method (BLAST), a sequence-profile method (PSI-BLAST),
and an intermediate-sequence-search method (DOUBLE-BLAST). On sequence similarities
between 10% and 15%, BLAST, PSI-BLAST, and DOUBLE-BLAST correctly aligned 28%,
40%, and 46% of these sequences, respectively. This indicates that all methods have much
room for improvement of alignment accuracy.

Another set of benchmarks came from the protein-structure-prediction community. Al-
though protein structure prediction focuses on structure instead of homology, the dominant
method is to identify homologs in the protein structure database PDB and use the homologs
as templates to build protein tertiary structures. As a result, the structure-prediction as-
sessment also applies to remote-homolog prediction. To assess objectively the state of the
art in prediction tools for protein structures, the computational structural biology commu-
nity has agreed on an evaluation system called CASP (Community Wide Experiment on the
Critical Assessment of Techniques for Protein Structure Prediction). CASP was initiated
in 1994 and has been a biannual event since its inception. In each CASP, participants were
given tens of protein sequences whose experimental structures were being solved or had
been solved but not published. CASP participants then predicted their structures blindly,
either in an automated fashion or with manual adjustment. A group of invited assessors
evaluated how well each predicted structure matched the experimental structure. At the
end of the prediction season, the performance of each team was ranked. The CASP exercises
provide an objective way to assess related computational methods, particularly for Criteria
1, 4, and 5. The strengths and weaknesses of each method are often revealed. For exam-
ple, even though remote homolog identification methods have been consistently improved,
the alignment accuracy has very little improvement over the past few years [93, 91]. Two
observations from the CASPs are:

1. Manual process (the human knowledge) can help improve prediction significantly,
2. using consensus approach, i.e., to find common hits from different methods, can

outperform any individual method substantially [35].

Based on such findings, computational pipelines [98, 82, 34] or expert systems [37] have
been developed to incorporate various methods and human knowledge to improve the pre-
diction accuracy. Some hybrid methods using various types of information together were
also developed [89, 74].

Other than manual predictions and evaluations in CASP, some fully automated servers
for protein structure predictions and evaluations were developed. Such efforts complement
CASP and provide useful information for assessments of computational tools themselves
(instead of human experts). One of them is CAFASP [26], which was carried out in parallel
with CASP, using the same set of prediction targets. The third CAFASP in 2003 showed
that several best automated prediction servers using the consensus approaches achieved
comparable performance as human CASP predictors. This result shows that significant
progress has been achieved in automatic structure prediction. Another automated evalu-
ation server is MaxBench [59](http://www.sanger.ac.uk/Users/lp1/MaxBench/). This
system makes it easy for developers to both compare the performance of their methods to
standard algorithms and at the same time investigate the results of individual comparisons.
Two large-scale evaluation servers using updated PDB entries are LiveBench [78] and EVA
[55](http://cubic.bioc.columbia.edu/eva/). The evaluation is updated automatically
when sequences of newly available protein structures in PDB are sent to the servers and

In Search of Remote Homolog 33-21

their predictions are collected. The predictions are then compared to the experimental
structures automatically and the results are published on the Web pages. Over time, the
two servers have accumulated prediction results for a large number of proteins with various
prediction methods and they provide useful information to developers as well as users of
these methods.

33.6 Discussions

In summary, significant advances have made for computational identification of protein
remote homologs in the past decade. Various methods have pushed our limit to find dis-
tantly related homologs that are unidentifiable from simple pairwise sequence comparisons.
These methods often utilize the evolutionary information in the sequence database effec-
tively, in particular through building multiple sequence profiles or identifying evolutionary
intermediates. Many methods also use protein structural information, including integrating
protein secondary structure prediction into the process of sequence comparison, searching
through sequence-structure comparisons (threading), and performing structure-structure
alignments. More recently, mega-servers using multiple methods to find consensus solutions
have been developed. These servers often show significant improvement over any single
method. All these developments have a big impact on the field of post-genomic biology, es-
pecially for genome annotation, comparative genomics, structural genomics, and functional
genomics. Not only computational biologists but also experimentalists benefit tremendously
from these tools, which often provide useful information about the structure and function
of a protein through its (remote) homologs. The computational results can help develop
biological hypothesis for new experiments and also help the interpretation of experimental
data.

However, these computational tools may not be used blindly for inferring remote homolo-
gies. It should be noted that even when the sequence similarity between two proteins is
high, it might not always correspond to homology. There is always a possibility that the
sequence similarity is by chance rather than due to biological relationship. When more
sensitive methods for remote-homolog identification are used, the confidence level of a com-
parison result can be low, and it is not rare that false positive predictions are generated.
Also, homology may not imply function conservation. Many remote homologs, especially
paralogs, have divergent functions, although their functions are often related in a broader
category. To best take advantage of the available computational tools and reduce the chance
of wrong prediction, it is important to use multiple tools to check for consensus solutions
and differences between various results. It is also important to use other computational
approaches [99], such as prediction of signal peptide cleavage sites, subcellular localiza-
tion, protein domain prediction, prediction of transmembrane helices, and sequence motif
prediction, to predict the properties and functions of the proteins so that one can better
assess the potential homologous and functional relationships between proteins of interest.
Furthermore, when high-throughput data (e.g., gene expression data and protein-protein
interaction data) are available, it is very useful to utilize these experimental data to con-
firm and extend the homologous relationship identified from sequence or structure based
methods [17, 16]. An example of using various methods in conjunction with homolog iden-
tification is described in a recent paper [73]. Finally, additional experiments are generally
needed to confirm the predictions.

There are still many challenging problems in remote homolog identification and the related
research is very active. More sensitive methods are needed for difficult homolog identifi-
cations. Still in many cases, people know a homolog of protein X with well characterized

33-22 References

function in species A should be present in species B, since species B shows the same pheno-
type related to protein X as does species A. However, current methods may not be sensitive
enough to detect the homolog of protein X in species A. Another challenge is the opposite.
Sometimes there are many homologs detected in species X, but it is unknown which one
represents the true ortholog. Other than the sensitivity issues, current confidence assess-
ment methods of the homolog identification results need further improvement. Some tools,
such as BLAST, PSI-BLAST, and FASTA, have good confidence assessment methods, but
they often overestimate statistical significance. Many other tools have primitive assessment
methods or no assessment at all. As a result, generally, remote homolog identification has
poor prediction specificity, i.e., false positives are frequently predicted. In addition, the
current alignment accuracy between remote homologs is typically poor, and there is much
room for improvement.

Acknowledgments

We would like to thank Drs. Nickolai Alexandrov, Ying Xu, and Frank Larimer for
helpful discussions. This work is supported in part by the US Department of Energy’s
Genomes to Life program (http://www.doegenomestolife.org) under project, “Carbon
Sequestration in it Synechococcus Sp.: From Molecular Machines to Hierarchical Modeling”
(www.genomes-to-life.org). It was also supported by the Laboratory Directed Research
and Development Program of Oak Ridge National Laboratory, under Contract DE-AC05-
00OR22725, managed by UT-Battelle, LLC.

References

[1] R.A. Abagyan and S. Batalov. Do aligned sequences share the same fold? J Mol
Biol, 273(1):355–368, 1997.

[2] N.N. Alexandrov, R. Nussinov, and R.M. Zimmer. Fast protein fold recognition
via sequence to structure alignment and contact capacity potentials. Pac Symp
Biocomput, pages 53–72, 1996.

[3] S.F. Altschul, W. Gish, W. Miller, and E.W. Myers et al. Basic local alignment search
tool. J Mol Biol., 215(3):403–410, 1990.

[4] S.F. Altschul, T.L. Madden, A.A. Schäffer, and J. Zhang et al. Gapped BLAST and
PSI-BLAST: a new generation of protein database search programs. Nucleic Acids
Res., 25(17):3389–3402, 1997.

[5] L. Aravind and E.V. Koonin. Gleaning non-trivial structural, functional and evo-
lutionary information about proteins by iterative database searches. J. Mol. Biol.,
287(5):10231040, 1999.

[6] T. K. Attwood, D. R. Flower, A. P. Lewis, J. E. Mabey, S. R. Morgan, P. Scordis,
J. N. Selley, and W. Wright. Prints prepares for the new millennium. Nucleic Acids
Res., 27(1):220–225, 1999.

[7] C. Bahls, J. Weitzman, and R. Gallagher. Biology’s models. The Scientist, 17(1),
June 2 2003.

[8] N. Baumberger, M. Steiner, U. Ryser, and B. Keller et al. Synergistic interaction of
the two paralogous arabidopsis genes LRX1 and LRX2 in cell wall formation during
root hair development. Plant J., 35(1):71–81, 2003.

[9] J.U. Bowie, R. Luthy, and D. Eisenberg. A method to identify protein sequences that

References 33-23

fold into a known three-dimensional structure. Science., 253(5016):164–170, 1991.
[10] S.E. Brenner. A tour of structural genomics. Nat Rev Genet., 2(10):801–809, 2001.
[11] S.E. Brenner, C. Chothia, and T.J. Hubbard. Assessing sequence comparison methods

with reliable structurally identified distant evolutionary relationships. Proc Natl Acad
Sci U S A, 95(11):6073–6078, 1998.

[12] S.H. Bryant and S.F. Altschul. Statistics of sequence-structure threading. Curr.
Opin. Struct. Biol., 5(2):236244, 1995.

[13] S.H. Bryant and C.E. Lawrence. An empirical energy function for threading protein
sequence through the folding motif. Proteins, 16(1):92112, 1993.

[14] P. Bucher and A. Bairoch. A generalized profile syntax for biomolecular sequence
motifs and its function in automatic sequence interpretation. In ISMB-94, pages
53–61, Menlo Park, CA, 1994. AAAI/MIT Press.

[15] G.C. Cannon, S.H. Baker, F. Soyer, and D.R. Johnson et al. Organization of car-
boxysome genes in the thiobacilli. Curr Microbiol., 46(2):115–119, 2003.

[16] Y. Chen, T. Joshi, Y. Xu, and D. Xu. Towards automated derivation of biological
pathways using high-throughput biological data. In Proceeding of the 3rd IEEE
Symposium on Bioinformatics and Bioengineering, pages 18–25. IEEE/CS Press,
2003.

[17] Y. Chen and D. Xu. Computational analyses of high-throughput protein-protein
interaction data. Current Protein and Peptide Science., 4:159–181, 2003.

[18] B.A. Cohen, R.D. Mitra, J.D. Hughes, and G.M. Church. A computational analysis
of whole-genome expression data reveals chromosomal domains of gene expression.
Nat Genet., 26(2):183–186, 2000.

[19] F. Corpet, F. Servant, J. Gouzy, and D. Kahn. ProDom and ProDom-CG: tools
for protein domain analysis and whole genome comparisons. Nucleic Acids Res.,
28(1):267–269, 2000.

[20] O.H. Crawford. A fast, stochastic threading algorithm for proteins. Bioinformatics,
15(1):6671, 1999.

[21] M.O. Dayhoff, R.M. Schwartz, and BC. Orcutt. A model of evolutionary change in
proteins. matrices for detecting distant relationships. Atlas of Protein Sequence and
Structure(National Biomedical Research Foundation, Washington DC.), 5:345358,
1978.

[22] S.R. Eddy, G. Mitchison, and R. Durbin. Maximum discrimination hidden Markov
models of sequence consensus. J Comput Biol., 2(1):9–23, 1995. Spring.

[23] R.C. Edgar and K. Sjolander. COACH: profile-profile alignment of protein families
using hidden Markov models. Bioinformatics, 20(8):13091318, 2004.

[24] A.V. Finkelstein and O.B. Ptitsyn. Why do globular proteins fit the limited set of
folding patterns? Prog Biophys Mol Biol., 50(3):171–190, 1987.

[25] D. Fischer, A. Elofsson, J.U. Bowie, and D. Eisenberg. Assessing the performance
of fold recognition methods by means of a comprehensive benchmark. In L. Hunter
and T. Klein, editors, Biocomputing: Proceedings of the 1996 Pacific Symposium,
pages 300–318, Singapore, 1996. World Scientific Publishing Co.

[26] D. Fischer, L. Rychlewski, R.L. Jr. Dunbrack, and A.R. Ortiz et al. CAFASP3: the
third critical assessment of fully automated structure prediction methods. Proteins,
53(6):503–516, 2003.

[27] W.M. Fitch. Distinguishing homologous from analogous proteins. Syst Zool, 19(2):99–
113, 1970.

[28] H. Flockner, M. Braxenthaler, P. Lackner, and M. Jaritz et al. Progress in fold
recognition. Proteins, 23(3):376386, 1995.

[29] D. Friedberg, K.M. Jager, M. Kessel, and N.J. Silman et al. Rubisco but not Rubisco

33-24 References

activase is clustered in the carboxysomes of the cyanobacterium synechococcus sp.
PCC 7942: Mud-induced carboxysomeless mutants. Mol Microbiol., 9(6):1193–1201,
1993.

[30] The Gene Ontology Consortium. Gene ontology: Tool for the unification of biology.
Nature Genetics, 25:25–29, 2000.

[31] C. Geourjon, C. Combet, C. Blanchet, and G. Deleage. Identification of related
proteins with weak sequence identity using secondary structure information. Protein
Sci., 10(4):788–797, 2001.

[32] M. Gerstein. Measurement of the effectiveness of transitive sequence comparison,
through a third “intermediate” sequence. Bioinformatics, 14(8):707–714, 1998.

[33] K. Ginalski, A. Elofsson, D. Fischer, and L. Rychlewski. 3D-Jury: a simple approach
to improve protein structure predictions. Bioinformatics, 19(8):1015–1018, 2003.

[34] K. Ginalski, J. Pas, L.S. Wyrwicz, and M. von Grotthuss et al. ORFeus: Detection of
distant homology using sequence profiles and predicted secondary structure. Nucleic
Acids Res., 31(13):3804–3807, 2003.

[35] K. Ginalski and L. Rychlewski. Protein structure prediction of CASP5 comparative
modeling and fold recognition targets using consensus alignment approach and 3D
assessment. Proteins, 53(6):410–417, 2003.

[36] W.N. Grundy. Homology detection via family pairwise search. J Comput Biol.,
5(3):479–491, 1998.

[37] J.T. Guo, K. Ellrott, W.J. Chung, and D. Xu et al. PROSPECT-PSPP: An automatic
computational pipeline for protein structure prediction. Nucleic Acid Research,
32:W522 – CW525, 2004. Web Server issue.

[38] D. Haussler, A. Krogh, I. S. Mian, and K. Sjölander. Protein modeling using hidden
Markov models: Analysis of globins. In Proceedings of the Hawaii International
Conference on System Sciences, volume 1, pages 792–802, Los Alamitos, CA, 1993.
IEEE Computer Society Press.

[39] J.G. Henikoff, S. Henikoff, and S. Pietrokovski. New features of the blocks database
servers. Nucleic Acids Res., 27(1):226–228, 1999.

[40] S. Henikoff and J.G. Henikoff. Amino acid substitution matrices from protein blocks.
Proc. Natl. Acad. Sci. U.S.A., 89(22):1091510910, 1992.

[41] T. Hirokawa, S. Boon-Chieng, and S. Mitaku. SOSUI: classification and secondary
structure prediction system for membrane proteins. Bioinformatics, 14(4):378–379,
1998.

[42] U. Hobohm and C. Sander. A sequence property approach to searching protein
databases. J Mol Biol., 251(3):390–399, 1995.

[43] K. Hofmann, P. Bucher, L. Falquet, and A. Bairoch. The PROSITE database, its
status in 1999. Nucleic Acids Res., 27(1):215–219., 1999.

[44] L. Holm and C. Sander. Protein structure comparison by alignment of distance
matrices. J Mol Biol, 233(1):123–138, 1993.

[45] L. Holm and C. Sander. Mapping the protein universe. Science, 273(5275):595–603,
1996.

[46] R. Hughey and A. Krogh. Hidden Markov models for sequence analysis: extension
and analysis of the basic method. Comput Appl Biosci, 12(2):95–107, 1996.

[47] J.L. Jimenez, M.P. Mitchell, and J.G. Sgouros. Microarray analysis of orthologous
genes: conservation of the translational machinery across species at the sequence and
expression level. Genome Biol., 4(1), 2003. R4.

[48] B. John and A. Sali. Detection of homologous proteins by an intermediate sequence
search. Protein Sci., 13(1):54–62, 2004.

[49] D.T. Jones, W.R. Taylor, and J.M. Thornton. A new approach to protein fold recog-

References 33-25

nition. Nature, 358(6381):86–89, 1992.
[50] S. Karlin and S.F. Altschul. Methods for assessing the statistical significance of

molecular sequence features by using general scoring schemes. In Proc Natl Acad Sci
USA, volume 87, pages 2264–2268, 1990.

[51] S. Karlin, A. Dembo, and T. Kawabata. Statistical composition of high-scoring seg-
ments from molecular sequences. Ann. Statistics, 18:571–581, 1990.

[52] K. Karplus, C. Barrett, and R. Hughey. Hidden Markov models for detecting remote
protein homologies. Bioinformatics, 14(10):846–856, 1998.

[53] D. Kim, D. Xu, J.T. Guo, and K. Ellrott et al. PROSPECT II: protein structure
prediction program for genome-scale applications. Protein Eng., 16(9):641650, 2003.

[54] M.S. Kobor, S. Venkatasubrahmanyam, M.D. Meneghini, and J.W. Gin et al. A
protein complex containing the conserved Swi2/Snf2-related ATpase Swr1p Deposits
Histone Variant H2A.Z into euchromatin. PLoS Biol, 2(5):E131, 2004.

[55] I.Y. Koh, V.A. Eyrich, M.A. Marti-Renom, and D. Przybylski et al. EVA: Evaluation
of protein structure prediction servers. Nucleic Acids Res, 31(13):3311–3315, 2003.

[56] E.V. Koonin, K.S. Makarova, and L. Aravind. Horizontal gene transfer in prokaryotes:
quantification and classification. Annu Rev Microbiol, 55:709–742, 2001.

[57] R.H. Lathrop. The protein threading problem with sequence amino acid interaction
preferences is NP-complete. Protein Eng., 7(9):10591068, 1994.

[58] R.H. Lathrop and T.F. Smith. Global optimum protein threading with gapped align-
ment and empirical pair score functions. J. Mol. Biol., 255(4):641665, 1996.

[59] R. Leplae and T.J. Hubbard. MaxBench: evaluation of sequence and structure com-
parison methods. Bioinformatics, 18(3):494–495, 2002.

[60] M.A. Marti-Renom, M.S. Madhusudhan, and A. Sali. Alignment of protein sequences
by their profiles. Protein Sci., 13(4):1071–1087, 2004.

[61] D. Milburn, R.A. Laskowski, and J.M. Thornton. Sequences annotated by structure:
a tool to facilitate the use of structural information in sequence analysis. Protein
Eng., 11(10):855859, 1998.

[62] A.G. Murzin, S.E. Brenner, T. Hubbard, and C. Chothia. SCOP: a structural classi-
fication of proteins database for the investigation of sequences and structures. J Mol
Biol., 247(4):536–540, 1995.

[63] S.B. Needleman and C.D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48:443–453,
1970.

[64] C.A. Orengo, A.D. Michie, S. Jones, and D.T. Jones et al. Cath–a hierarchic classi-
fication of protein domain structures. Structure, 5(8):1093–1108, 1997.

[65] A.R. Panchenko. Finding weak similarities between proteins by sequence profile com-
parison. Nucleic Acids Res., 31:683689, 2003.

[66] J. Park and S.A. Teichmann. DIVCLUS: an automatic method in the GEANFAM-
MER package that finds homologous domains in single- and multi-domain proteins.
Bioinformatics, 14(2):144–150, 1998.

[67] J. Park, S.A. Teichmann, T. Hubbard, and C. Chothia. Intermediate sequences
increase the detection of homology between sequences. J Mol Biol., 273(1):349–354,
1997.

[68] F. Partensky, W.R. Hess, and D. Vaulot. Prochlorococcus, a marine photosynthetic
prokaryote of global significance. Microbiol Mol Biol Rev., 63(1):106–127., 1999.

[69] W.R. Pearson and D.J. Lipman. Improved tools for biological sequence comparison.
Proc. Natl. Acad. Sci. U. S. A., 85(8):24442448, 1988.

[70] M. Pellegrini and T.O. Yeates. Searching for frameshift evolutionary relationships
between protein sequence families. Proteins, 37(2):278–283, 1999.

33-26 References

[71] J. Prilusky, D. Hansen, T. Pilpel, and M. Safran. The protein Hydrophilici-
ty/Hydrophobicity search and comparison server. Technical report, Weizmann In-
stitute of Science, Rehovot, Israel, 1999.

[72] B. Qian and R.A. Goldstein. Detecting distant homologs using phylogenetic tree-
based HMMs. Proteins, 52(3):446–453, 2003.

[73] K. Qu, Y. Lu, N. Lin, and R. Singh et al. Computational and experimental studies
on human misshapen/NIK-related kinase MINK-1. Curr Med Chem, 11(5):569–582,
2004.

[74] A. Raval, Z. Ghahramani, and D.L. Wild. A bayesian network model for protein fold
and remote homologue recognition. Bioinformatics, 18(6):788–801, 2002.

[75] M. Rehmsmeier and M. Vingron. Phylogenetic information improves homology de-
tection. Proteins, 45(4):360–371, 2001.

[76] B. Rost. TOPITS: threading one-dimensional predictions into three-dimensional
structures. Proc. Int. Conf. Intell. Syst. Mol. Biol., 3:314321, 1995.

[77] R.B. Russell and C.P. Ponting. Protein fold irregularities that hinder sequence anal-
ysis. Curr Opin Struct Biol, 8(3):364–371, 1998.

[78] L. Rychlewski, D. Fischer, and A. Elofsson. LiveBench-6: large-scale automated
evaluation of protein structure prediction servers. Proteins, 53(6):542–547, 2003.

[79] R. Sadreyev and N. Grishin. COMPASS: a tool for comparison of multiple protein
alignments with assessment of statistical significance. J. Mol. Biol., 326(1):317336,
2003.

[80] J.M. Sauder, J.W. Arthur, and R.L. Dunbrack Jr. Large-scale comparison of protein
sequence alignment algorithms with structure alignments. Proteins, 40(1):6–22, 2000.

[81] A.A. Schäffer, Y.I. Wolf, C.P. Ponting, and E.V. Koonin et al. IMPALA: matching
a protein sequence against a collection of PSI-BLAST-constructed position-specific
score matrices. Bioinformatics, 15(12):1000–1011, 1999.

[82] M. Shah, S. Passovets, D. Kim, and K. Ellrott et al. A computational pipeline for pro-
tein structure prediction and analysis at genome scale. Bioinformatics, 19(15):1985–
1996, 2003.

[83] C.R. Shyu, P.H. Chi, G. Scott, and D. Xu. ProteinDBS: A real-time retrieval system
for protein structure comparison. Nucleic Acid Research, 32:W572 – CW575, 2004.
Web Server issue.

[84] A.H. Simons, N. Dafni, I. Dotan, and Y. Oron et al. Genetic synthetic lethality screen
at the single gene level in cultured human cells. Nucleic Acids Res., 29(20):E100.,
2001.

[85] M.J. Sippl and S. Weitckus. Detection of native-like models for amino acid sequences
of unknown three-dimensional structure in a data base of known protein conforma-
tions. Proteins, 13(3):258–271, 1992.

[86] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences.
J Mol Biol., 147(1):195–197, 1981.

[87] T.F. Smith, C.L. Lo, J. Bienkowska, and C. Gaitatzes et al. Current limitations to
protein threading approaches. J Comput Biol., 4(3):217–225, 1997.

[88] R. Spang, M. Rehmsmeier, and J. Stoye. A novel approach to remote homology
detection: jumping alignments. J Comput Biol., 9(5):747–760, 2002.

[89] C.L. Tang, L. Xie, I.Y. Koh, and S. Posy et al. On the role of structural information
in remote homology detection and sequence alignment: new methods using hybrid
sequence profiles. J Mol Biol, 334(5):1043–1062, 2003.

[90] A.H. Tong, M. Evangelista, A.B. Parsons, and H. Xu et al. Systematic genetic analysis
with ordered arrays of yeast deletion mutants. Science, 294(5550):23642368., 2001.

[91] A. Tramontano and V. Morea. Assessment of homology-based predictions in CASP5.

References 33-27

Proteins, 53(6):352–368, 2003.
[92] S. Veerassamy, A. Smith, and E.R. Tillier. A transition probability model for amino

acid substitutions from blocks. J. Comput. Biol., 10(6):9971010, 2003.
[93] C. Venclovas. Comparative modeling in CASP5: progress is evident, but alignment

errors remain a significant hindrance. Proteins, 53(6):380–388, 2003.
[94] W. Volkmuth and N. Alexandrov. Evidence for sequence-independent evolutionary

traces in genomics data. Pac Symp Biocomput, pages 247–258, 2002.
[95] N. von Ohsen, I. Sommer, and R. Zimmer. Profile-profile alignment: a powerful tool

for protein structure prediction. Pac Symp Biocomput., pages 252–263, 2003.
[96] A.C. Wallace, R.A. Laskowski, and J.M. Thornton. Derivation of 3D coordinate

templates for searching structural databases: application to Ser-His-Asp catalytic
triads in the serine proteinases and lipases. Protein Science, 5(6):10011013, 1996.

[97] J. Westbrook, Z. Feng, S. Jain, and T.N. Bhat et al. The protein data bank: unifying
the archive. Nucleic Acids Res., 30:245–248, 2000.

[98] D. Xu, D. Kim, P. Dam, and M. Shah et al. Characterization of protein structure and
function at genome scale using a computational prediction pipeline. In J.K. Setlow,
editor, Genetic Engineering, Principles and Methods, pages 269–293, New York,
2003. Kluwer Academic, Plenum Publishers.

[99] D. Xu, Y. Xu, and E.C. Uberbacher. Computational tools for protein modeling.
Current Protein and Peptide Science, 1:1–21, 2000.

[100] Y. Xu and D. Xu. Protein threading using PROSPECT: design and evaluation.
Proteins, 40(3):343–354, 2000.

[101] Y Xu, D. Xu, O.H. Crawford, and J.R. Einstein et al. Protein threading by
PROSPECT: a prediction experiment in CASP3. Protein Eng, 12(11):899–907, 1999.

[102] Y. Xu, D. Xu, and V. Olman. A practical method for interpretation of threading
scores: An application of neural network. Statistica Sinica, 12:159–177, 2002. special
issue in bioinformatics.

[103] Y. Xu, D. Xu, and E.C. Uberbacher. An efficient computational method for globally
optimal threading. J Comput Biol., 5(3):597–614, 1998.

[104] G. Yona and M. Levitt. Within the twilight zone: a sensitive profile-profile comparison
tool based on information theory. J Mol Biol, 315(5):1257–1275, 2002.

[105] G. Yona, N. Linial, and M. Linial. ProtoMap: automatic classification of protein se-
quences, a hierarchy of protein families, and local maps of the protein space. Proteins,
37(3):360–378, 1999.

[106] B. Zhang, L. Rychlewski, K. Pawlowski, and J.S. Fetrow et al. From fold predic-
tions to function predictions: automation of functional site conservation analysis for
functional genome predictions. Protein Sci., 8(5):1104–1115, 1999.

[107] C. Zhang and S.H. Kim. Overview of structural genomics: from structure to function.
Curr Opin Chem Biol., 7(1):28–32, 2003.

[108] J. Zhu, R. Luthy, and C.E. Lawrence. Database search based on bayesian alignment.
Proc Int Conf Intell Syst Mol Biol., pages 297–305, 1999.

34
Biomolecular Modeling using Parallel

Supercomputers

Laxmikant V. Kalé
University of Illinois

Klaus Schulten
University of Illinois

Robert D. Skeel
Purdue University

Glenn Martyna
IBM TJ Watson

Mark Tuckerman
New York University

James C. Phillips
University of Illinois

Sameer Kumar
University of Illinois

Gengbin Zheng
University of Illinois

34.1 Introduction . 34-1
34.2 Classical Molecular Dynamics . 34-5

Integration Methods • Long Range Forces •

Parallelization Strategies • NAMD Structure • NAMD
Performance

34.3 Quantum Mechanical Molecular Dynamics 34-16
Car-Parrinello Molecular Dynamics : CPAIMD •

PINY MD implementation of CPAIMD • Summary
of Available Codes • LeanCP Implementation of
CPAIMD • LeanCP Performance • Biological
Applications of CPAIMD

34.4 QM/MM. 34-28
Hybrid QM/MM Simulations

34.5 Conclusion . 34-38

34.1 Introduction

The processes of life are carried out at the molecular level by a few distinct categories of
biomolecules. The DNA sequences, which constitute the genome of an organism, can be
thought of as blueprints for making proteins, which constitute most of the “machinery of
life”. The translation from DNA to proteins is carried out via intermediate copies in the
form of RNA sequences. Membranes made up of lipid bilayers provide structural separation
for cells and other organelles. Short poly-peptide chains, made up of the same material as
proteins, serve as messengers between cells. Finally, of course, there are a wide variety
of molecules being created, transported, and consumed by the organism by means of the
proteins.

Among the biomolecules, the proteins are the most diverse group and are responsible for
the myriad specific functions carried out by organisms. Proteins carry out their functions
inside cells. Embedded in cell membranes, some proteins act as gate-keepers, allowing

34-1

34-2 Handbook of Computational Molecular Biology

specific substances to enter or leave the cells selectively, while other proteins act as signaling
receptors, recognizing a specific type of signaling agent on the outside of the cell, and then
either changing their own (e.g. gatekeeping) behavior or relaying the signal inside of the cell
by releasing specific substances. Inside cells, proteins assist in recognizing genes, translating
genes to proteins, and catalyzing biochemical reactions, among other activities.

Like DNA molecules, proteins are also polymers: they are made up of one or more
chains of amino acids. Typical proteins consist of fifty to several hundred amino acids.
Just as the genetic alphabet expressed in the DNA has four letters, a protein chain is
made up from an alphabet of size twenty. Indeed, a gene typically corresponds to one
protein, and the sequence of amino acids in a protein is determined by the DNA sequence
in the corresponding gene, with three DNA bases coding for each residue in the protein
sequence. However, unlike the DNA molecule, the 3-dimensional structure of a protein
(also called its conformation), is strongly determined by its sequence. In most proteins,
it is the conformation of the protein, along with the electrostatic properties at its surface
resulting from this conformation, that allows it to carry out its biological function.

All amino acids in the polymer have a common part (moiety) and a side chain. The
common moiety has a backbone chain made up of two carbon atoms and a nitrogen atom,
with associated oxygen and hydrogen atoms as shown in Figure 34.1. There are 20 different
kinds of side chains that distinguish the 20 amino acids. The atoms between consecutive Cα

atoms tend to stay in a single plane. The structural variation arises from the ability of the
two consecutive planes to vary their angle around the N — Cα and the Cα — C bonds. (As
an aside, these angles are conventionally called φ and ψ. Thus the structure of a protein can
be almost entirely specified by the successive φ−ψ angles. The three-dimensional structures
of the chain and the side-chains restrict the combination of angles around a Cα atom. The
“allowed regions” of the φ−ψ angles are plotted in the well-known Ramachandran plot for
each pair of amino acids.)

Si+2S

H

C

O

CN

O H

C C

Si+1i

H HH

CN

FIGURE 34.1: Amino acids form a polymer

The number of atoms in an amino acid side chain ranges from 1 (in glycine) to the high
teens in others. The 19 amino acids, excluding the simple glycine, can be further classified by
their electrical charge distributions: 7 uncharged ones, 4 with charged residues, and 8 that
have no net charge, but are polarized. The uncharged, nonpolar residues tend to be found
away from water (i.e. in the interior regions of the protein), and are called hydrophobic.
The others are hydrophillic.

What makes a protein, essentially consisting of one or more long chains, fold itself into a
specific structure (conformation)? The chain-forming covalent bonds are strong, and form
the backbone of the protein. Independent of the side groups (and therefore independent of
the sequence), the amino acids tend to form helices (called α helices) and strands or sheets

Biomolecular Modeling using Parallel Supercomputers 34-3

(called β sheets, formed by two or more portions of the chain lying parallel or antiparallel
to each other). Based on the side groups, weaker bonds can form between amino acids
that are not next to each other in the chain. In addition, proline, a cyclic amino acid,
causes the backbone to bend. The structure is further (and most significantly) determined
by the fact that some amino acids are hydrophobic while others are hydrophilic. Water
molecules are, of course, abundantly present in a cellular environment. The hydrophobic
side groups are repelled by water, and hence cluster in the dry “core” of a folded protein.
(Some proteins exist in the aqueous environment of the cell, while others are embedded in
the cell membranes, and thus exposed to water molecules only where they emerge from the
membrane.) Essentially, a protein folds into a particular shape because that shape presents
a minimum free energy configuration.

How do scientists know the structure of a protein? In principle, given the sequence of
amino acids, it should be possible to determine its most favorable conformation. But this
is an exceedingly difficult computational problem. In current practice, conformations of
proteins are determined by crystallizing them and analyzing them by x-ray diffraction.

Even when we know the structure of a protein, and have inferred its function via exper-
imental methods, an important scientific question remains: how exactly does the protein
carry out its function? If we understand how this happens, we will have a higher confi-
dence in our guessed function (that indeed it is this particular protein that is responsible
for this particular function). Secondly, the details of how this mechanism works may help
us understand functions of other similar proteins.

Understanding the relationships between structure and function is often the main objec-
tive of molecular dynamics (MD) simulations. For example, an important class of membrane
proteins called aquaporins allows the passage of water molecules across cellular membranes
in which they are embedded. This would be a simple task, except that energetic processes
in the cell are driven by maintaining a voltage gradient across the membrane that would be
depleted if protons (positively charged hydrogen atoms lacking their sole electron) leaked
through the aquaporin along with water. In many molecules that generate or utilize this
voltage gradient, a single-file chain of water molecules will form a proton “wire” in which
hydrogen atoms can quantum mechanically jump from one oxygen to the next. MD sim-
ulations of aquaporin revealed highly ordered water in the channel with specific charged
residues orienting water molecules to prevent proton conduction. (A detailed explanation
is in [83].)

FIGURE 34.2: (See color insert following page 20-4.) Aquaporin in lipid bilayer membrane,
water above and below membrane omitted for clarity.

34-4 Handbook of Computational Molecular Biology

MD also serves a purpose in the determination of protein structure itself. Crystallographic
(or other) data may only determine the structure of a protein at low resolution, leaving
several uncertainties. A simulation can be used to refine this structure by starting from the
approximate structure and letting the molecule settle into its lower energy conformation in
the natural course of simulation.

An MD simulation of a biological system typically involves one or more macromolecules,
such as proteins or DNA, and its environment, which consists of a cell membrane made
up of lipid bi-layers (in case of membrane proteins), a large number of individual water
molecules, and ions. Typically, the number of atoms in a simulation ranges from 10,000 to
100,000 (although simulations with as few as 1,000 atoms or as many as 1,000,000 atoms
are sometimes needed).

Cells and their organelles are encapsulated by membranes which are made up of lipid
molecules. Each lipid has a hydrophillic head and a hydrophobic tail. The lipids aggregate
to form two layers, in which the heads form the inner and outer surface while the tails form
the hydrophillic core of a membrane.

The computation itself is meant to capture the motions of individual atoms accurately.
This motion is determined by Newtonian mechanics. We assume that each atom in the
simulation has a fixed residual charge on it. The forces acting on each atom are

• electrostatic forces of attraction or repulsion due to other charged atoms,
• attractive and soft-core repulsive van der Waal’s forces due to all other atoms
• forces due to bonds between atoms, which are modeled analogous to springs.

In each time step we need to calculate these forces for each atom and use the net force on
each atom to calculate its acceleration, velocity, and new position. Due to the oscillation
frequency of the bonds, the time for each step needs to be exceedingly small: 1 femtosecond
(10−15 s) steps are the norm. The phenomenon of interest may take microseconds or even
milliseconds. But, due to computational limitations, it is currently practical to be able to
simulate only several tens of nanoseconds.

In most studies, MD is employed as an alternative to Markov Chain Monte Carlo (MCMC)
methods, to generate random configurations of the system in accordance with a physically
realistic probability distribution, e.g., generating positions x with a probability proportional
to the Boltzmann factor exp(−U(x)/kBT) where U(x) is the potential energy function, T
is temperature, and kB is Boltzmann’s constant. The goal is to explore the configuration
space as rapidly as possible, and this is more easily done with MD than with MCMC.
In this way the most common structures are found. Also, molecular mechanisms can be
inferred from computing relative probabilities of differing values of a reaction coordinate,
e.g., the progress of an ion through a membrane channel. Relative probabilities are normally
described logarithmically as free energy differences. In such sampling applications of MD
it is not necessary, nor probably even desirable, for the motion to be physically realistic
as long as the probabilities are accurate. In some studies, however, the computation does
aim to calculate realistic trajectories. However, accurate statistics can be gathered from an
ensemble of long-time trajectories, e.g., to estimate transition rates.

An MD simulation is computationally intensive: a large number of timesteps are needed
— 1 million steps simulate a nanosecond; yet, each timestep may take several seconds to
compute on a single processor. This suggests using parallel computers to solve this problem.
However, since each step depends on the previous one, parallelism is limited to within a
single timestep. To use hundreds or thousands of processors to parallelize each individ-
ual timestep, which only represents a few seconds of computation, is the parallelization
challenge.

Biomolecular Modeling using Parallel Supercomputers 34-5

In Section 34.2, we describe this classical molecular dynamics problem in some detail, and
summarize several approaches for parallelizing it. We then describe a particular approach,
developed by some of the authors, in additional detail to give the reader an idea of issues
involved.

The classical picture we painted above breaks down if the phenomenon we are interested
in involves making and breaking of bonds. We need a quantum mechanical simulation to
understand the phenomenon at the molecular level. We describe approaches for this in
Section 34.3. Quantum mechanical simulation is significantly more expensive (by several
orders of magnitude) than classical simulation. A hybrid technique (QM/MM) is then used
so that a portion of the system can be simulated in quantum mechanical detail, while the
atoms surrounding that center are simulated classically. This technique is described in
Section 34.4, with a detailed exposition of a particular code developed by several of the
authors.

34.2 Classical Molecular Dynamics

Purely classical MD simulations are useful for understanding molecular processes that do
not involve chemical reactions, i.e., those that occur entirely through changes in the confor-
mation or aggregation of small numbers of molecules. This approach is particularly useful
for biological systems because chemical reactions and electronic excitations in living cells are
localized to catalytic sites or photoreceptors. Classical MD is also applicable to the physics
of materials such as gels and liquid crystals where properties depend on the shape and
conformation of the constituent molecules rather than extended electronic wave functions
as in a metal or semiconductor.

Classical MD is based on the heuristic approximation of small-energy molecular defor-
mations and intermolecular repulsion and attraction. The accuracy and usefulness of a
simulation depends strongly on efficiency, i.e., can the simulation be performed at all given
available resources, how many atoms can be simulated, how much simulated time can elapse,
and how many independent sampling runs can contribute statistics. Therefore, the classical
force field is designed for speed of evaluation, using as much as possible one term per degree
of freedom for bonded (exclusively intramolecular) interactions, and simple pairwise forms
for nonbonded (both intra- and intermolecular) interactions.

For simplicity, particularly when dealing with long chain molecules such as proteins and
nucleic acids, special intramolecular energy terms are applied additively to every set of
up to four atoms separated by three or fewer chemical bonds. The functional form is the
simplest available. A bond between two atoms is treated as a simple spring with energy
1
2k(d− d0)2. To the angle θ between every pair of bonds with a common atom is assigned
an energy 1

2k(θ − θ0)2. The energy of a dihedral torsion angle between the planes of any
two angles on opposite ends of a common bond is represented as one or more sinusoids of
the form k cosn(φ − φ0). Finally, if an atom must be restrained to the plane of three
atoms to which it is bonded, an improper dihedral of the form 1

2k(φ − φ0)2 is applied to
the angle between the planes of two atoms with the central atom and with the fourth
atom. In all cases, the constants k, d0, θ0, n, φ0, etc. are specific to the particular
combination of atom types (e.g., carbon bonded to two hydrogens and two other single
bonds) present in that bond/angle/dihedral/improper. The above bonded terms are the
only interactions between directly bonded atoms or between atoms bonded to a common
atom; nonbonded interactions between such pairs of atoms are said to be excluded. All other
pairs of atoms in the simulation experience electrostatic, van der Waals, and electronic
exclusion interactions. Since the number of pairs of atoms scales as square of the number of

34-6 Handbook of Computational Molecular Biology

atoms in the simulation, nonbonded interactions are normally truncated at a cutoff distance
of, e.g., 12 Å. Full electrostatics interactions may be calculated via more efficient algorithms
as described below. Each atom in the simulation is assigned a partial charge corresponding
to the sum of the nuclear charge and the density of the nearby electronic cloud. For
example, the oxygen of a water molecule has a charge of -0.834 e while each hydrogen
bears 0.417 e, yielding a neutral molecule. Electrostatic interactions are calculated via the
standard Coulomb potential Cq1q2/r. The 1/r6 van der Waals interaction is combined
with atomic repulsion in the easy-to-evaluate Lennard-Jones potential 4ε((σ/r)12− (σ/r)6)
characterized by an attractive well of depth ε that ends with a potential of 0 at a distance σ
between the two atoms (there is no physical justification for the 1/r12 form of the repulsive
term). The parameters ε and σ depend again on the types of the interacting atoms, and
are typically derived for interactions between atoms of different types as εab =

√
εaεb and

σab = 1
2 (σa + σb).

The various constant parameters of the energy functions described above are derived from
experimental data on small analogous molecules as well as expensive quantum mechanical
calculations. These parameters are typically formulated by a small number of expert groups
and then used by an entire community with the expectation that, while not perfect, they
are the best available and will yield reasonable results for the typical simulations for which
they were developed. These parameters are specified to two or at most three significant
digits, and this level of accuracy certainly exceeds the error from the use of the simple
functional forms described above. The reader is again reminded that these potentials are
a compromise dictated by the need for simulations that are sufficiently long and large to
capture interesting phenomena at the expense of detailed accuracy. The transition from
the molecular mechanics embodied in the above potential function to dynamics is simply a
matter of combining initial coordinates and velocities for every atom in the simulation with
Newton’s second law of motion, F = ma. Initial coordinates are obtained by combining
known structures from crystallography with standard bond lengths and angles, and from
minimizing the energy function to eliminate unphysically strong interactions. Initial veloci-
ties are chosen at random from the Boltzmann distribution of classical statistical mechanics,
e−v2/2mkBT .

Biological molecules depend for their function and even their stable native structure on a
solvent environment of liquid water, or rather a mixture of water, sodium ions, and chloride
anions at physiological concentrations. Water is a notoriously complex substance, forming
an irregular network of hydrogen bonds with itself and hydrophilic solutes, while avoiding
greasy hydrophobic substances such as the tails of lipids. Many biological ion channels
have pores that are only wide enough for water molecules to pass through in single file, and
chains of water molecules can form “wires” that allow the rapid conduction of protons. For
these and other reasons most simulations employ explicit solvent, i.e., water and ions are
modeled in the same atomic manner as are proteins, lipids, and nucleic acids even though
the number of solvent atoms in a simulation may exceed the number of solute atoms by a
factor of ten. In order to minimize the amount of solvent in a simulation while avoiding
surface effects from a liquid-vacuum boundary, periodic boundaries are established for a
simulation, wrapping the six faces of a filled simulation cell into a three-dimensional torus.
Atoms leaving one side of the cell reappear on the opposite side, and atoms interact with
any image of another atom produced by translating its coordinates by integer multiples of
the three cell basis vectors.

The temperature of a simulation may be estimated from the atomic velocities via the
equipartition theorem of classical statistical mechanics, i.e., that every degree of freedom
will have an average energy of 1

2kBT . Hence, the temperature of a simulation of N atoms
is (

∑
i miv

2
i)/3NkBT . A similar formula (involving also the positions of and forces between

Biomolecular Modeling using Parallel Supercomputers 34-7

atoms) is used to estimate the pressure of a simulation in a periodic cell. Temperature is
controlled by modifying the equations of motion to manipulate the atomic velocities either
individually via stochastic terms or collectively via instantaneous or gradual rescaling to-
wards a desired average kinetic energy per atom of 3

2kBT . Pressure is then additionally
controlled by extending the equations of motion to include fluctuations of the periodic cell
volume, expanding or contracting the cell under high or low internal pressure, respective-
ly. Pressure control is particularly critical given the incompressibility of liquids and the
tendency of water to form “bubbles” of vacuum given an oversized periodic cell.

The basic protocol of a classical MD simulation begins with minimization (of the potential
function by adjusting atomic coordinates) so as to eliminate high-energy atomic contacts
left over from the assembly of proteins, lipids, solvent, etc. into the final simulated system.
While incapable of finding a global energy minimum, or even a nearby local one, this
minimization step is needed because of the stability requirements of the explicit integration
methods used. When dynamics are begun on the minimized system, the temperature will
be found to be near zero and the system must therefore be heated to 300K by a sequence of
velocity rescalings or reassignments to progressively higher temperatures. When the system
has stabilized at the target temperature, more gradual temperature and pressure control
algorithms are enabled to allow the cell size to equilibrate. Finally, the simulation is run
for an extended period of time to achieve the scientific goals of the simulation.

Running a simulation for an indeterminate period of time, hoping to observe a rare
barrier-crossing event is a horrible waste of computer resources. Fortunately, techniques
have been developed to force a simulation to follow a given reaction path while monitoring
the steering forces required to yield a free energy profile for the transition. It is even
possible to calculate the free energy difference of chemical change, e.g., of replacing one
ligand directly by another. Finally, conformational exploration may be accelerated by the
systematic raising and lowering of temperature as in simulated annealing, or more drastically
by the loose coupling of simultaneous replica simulations at a range of temperatures.

34.2.1 Integration Methods

Numerical integrators propagate the state variables of the biological system, e.g., positions
and velocities of atoms, as determined by equations of motion. These equations may be
either deterministic or stochastic. Deterministic models of molecular dynamics have no
dissipation, and due to the enormous number of time steps taken, all approximations must
be formulated with enormous care [79]. It is not so much a question of accuracy as ensuring
that numerical integrators and fast approximations to forces have the right properties,
e.g., energy conservation, among others. It is risky to tamper with the numerics of these
algorithms. Stochastic models do have dissipation and are more amenable to standard
numerical techniques.

Numerical integrators generate a trajectory xn ≈ x(n∆t) where ∆t is the size of the time
step. The Verlet method:

M
1

∆t2
(
xn+1 − 2xn + xn−1

)
= F (xn), vn =

1
2∆t

(
xn+1 − xn−1

)
, (34.1)

where F is the negative gradient of U , is the most natural approximation to the equations
of motion, and fortuituously has all the right properties. This and other typical numerical
integrators can be expressed as a mapping from xn, vn to xn+1, vn+1 of state variable values.

34-8 Handbook of Computational Molecular Biology

Expressing the Verlet method this way gives the velocity Verlet scheme:

xn+1 = xn + ∆tvn − 1
2
∆t2M−1F (xn),

vn+1 = vn +
1
2
∆tM−1F (xn) +

1
2
∆tM−1F (xn+1),

a form with significantly less accumulation of roundoff error than the form obtained by
solving eq. (34.1) for xn+1.

The appropriate step size depends on the force term being integrated, and savings in
CPU time are possible by using multiple time stepping — different step sizes for different
interactions. A suitable scheme for multiple time stepping (MTS) has become popular
under the name r-RESPA [85]. As an example, consider the use of two different step sizes
having a 3:1 ratio. First split F = F slow + F fast. Define an (outer) time step of MTS to be
3 Verlet steps, each with step size 1

3∆t:

1. at steps n = 0, 1, 2, . . ., use F slow + 1
3F

fast, and
2. at steps n = 1

3 ,
2
3 ,

4
3 ,

5
3 ,

7
3 ,

8
3 , . . ., use 1

3F
fast.

This scheme generalizes to more than two different step sizes. To maintain energy conserva-
tion, the splitting has to be done at the level of the potential energy function. MTS might
employ a short step size for bonded interactions and medium and long step sizes for non-
bonded interactions. There is a complication due to the fact that the distance between two
nonbonded atoms varies during the course of the simulation. This is handled by splitting
each nonbonded potential energy term into a sum of a short-range and a slowly varying
long-range part. There is a limit on the longest step size ∆t — appreciable energy drift
occurs due to 3:1 nonlinear resonance unless ∆t is less than a third of the period of the
fastest vibration (9 fs) [51]. This limit on ∆t rises to one half the period with the use of the
mollified impulse MTS method [43].

Larger step sizes are possible if the highest frequencies are removed by introducing rigid-
ity into the molecular model. This can be done for most biomolecular studies with little
loss of accuracy. In particular, freezing the lengths of covalent bonds to hydrogens approx-
imately doubles the period of the fastest vibration [76, p. 230]. Rigidity is accomplished by
appending a set of constraints gi(x) = 0 to the equations of motions and enforcing these by
adding constraint forces

∑
i λi∇gi(x) to the equations of motion where the λi are Lagrange

multipliers chosen so as to satisfy the constraints. The Verlet scheme can be extended to
handle constraints using the SHAKE [75] discretization:

M
1

∆t2
(
xn+1 − 2xn + xn−1

)
= F (xn) +

∑

i

λn
i ∇gi(x)

where the λn
i satisfy the system of equations gi(xn+1) = 0. Commonly, the constrain-

t equations are solved for the Lagrange multipliers iteratively by successive substitution
(Newton-Gauss-Seidel to be precise). An accurate solution is needed to avoid energy drift.
It is common to use all-rigid models for water and special methods like SETTLE [61] have
been developed to solve for the constraints for water non-iteratively.

Typically the computing time is dominated by the evaluation of energies and forces aris-
ing from water molecules. This has led to the development of implicit solvent models for
water [76]. One such model requires the solution of a nonlinear partial differential equation
— the Poisson-Boltzmann equation — for the electrostatic potential. For actual dynamics
simulations there is the addition of a friction term and a noise term containing a 3N by

Biomolecular Modeling using Parallel Supercomputers 34-9

3N tensor D(x) to account for contact of the solute with the solvent. The resulting modifi-
cation of Newtonian dynamics is called Langevin dynamics, and a representative temporal
discretization is the Brooks-Brünger-Karplus [11] scheme, which appends the terms

−kBTD(xn)−1 1
2∆t

(xn+1 − xn−1) +
√

2kBTD1/2(xn)−T 1√
∆t

Zn

to the right-hand side of eq. (34.1). Here Zn is a collection of independent random num-
bers from a Gaussian distribution with mean 0 and variance 1 and D1/2(x) is chosen to
satisfy D1/2(x)D1/2(x)T = D(x). There are significant challenges dealing with the inver-
sion and factorization of the diffusion tensor; see, e.g., [6]. A simplification of Langevin
dynamics, valid over long enough spatial scales, is to neglect inertia by setting masses to
zero, an approximation often called Brownian dynamics. The customary choice of numeri-
cal integrator is the Euler(-Maruyama) method, introduced in this context by Ermak and
McCammon [28]. This method advances coordinates for a time step ∆t by the simple recipe

1
∆t

(xn+1 − xn) =
1

kBT
D(xn)F (xn) +

√
2D1/2(xn)

1√
∆t

Zn.

For purposes of sampling, one can use nonphysical diagonal diffusion tensors, greatly sim-
plifying the computation. In particular, Langevin dynamics is appropriate for sampling
systems in thermal contact with their surroundings (NVT simulations).

Extensions to the equations of motion for the purpose of sampling systems in thermal and
mechanical contact with their surroundings (NPT simulations) require careful discretization.

34.2.2 Long Range Forces

Historically, the calculation of nonbonded interactions has been reduced from order N2

to order N by neglecting all contributions beyond a certain cutoff distance (e.g., 12Å).
While this is defensible, in most cases, for the rapidly decaying 1/r6 and 1/r12 terms of the
Lennard-Jones potential, the 1/r Coulomb potential has a longer effective range and may
play a significant role in the function of biomolecular machines through the positioning of
charged and polar residues in the native protein structure. Clearly it is possible to specify
arbitrary charge configurations for which truncation produces anomolous physical effects,
but this does not imply that such situations occur in bone fide simulations.

An effective argument can be made that ions present in solution will be attracted to,
migrate near, and thereby effectively screen significant concentrations of positive or negative
charge. Therefore, a cutoff distance larger than the effective screening distance should
be sufficient to capture scientifically interesting electrostatic effects. This reasoning flows
well for the small, globular proteins surrounded on all sides by water and a physiological
concentration of ions and anions that were the focus of early MD simulations.

The structure of nucleic acids is more challenging, with the charged DNA or RNA neu-
tralized by a complement of counter-ions. Any DNA-binding protein could be expected
to depend on this characteristic charge distribution for adhesion or activation at distances
beyond normal ion screening and cutoffs. Similarly, the aligned polar head groups of lipids
assembled into a bilayer membrane will induce an electrostatic potential profile across the
neutral lipid tails forming the core of the membrane. A protein embedded in a membrane
may be sensitive to and rely on this long-range electric field for alignment or function.
Therefore, for many biomolecular aggregates the full evaluation of electrostatic interactions
is a necessity.

For a simulation without periodic boundary conditions, the calculation of electrostatic in-
teractions between all pairs of atoms is straightforward. For a periodic simulation, however,

34-10 Handbook of Computational Molecular Biology

forces must be evaluated between each atom and all of the infinite periodic images of every
other atom. This infinite series is conditionally convergent, and the interaction with each set
of periodic images may be summed in order of increasing distance from the central cell. The
Ewald method [2, §5.5.2] allows this sum to be performed naively with order N2 operations,
or in a more sophisticated manner with order N3/2 at constant accuracy. To each atomic
point charge is added a cancelling Gaussian charge distribution, resulting in net interactions
that decay exponentially fast (due to the shell theorem of elementary physics) and can be
truncated (generally at the same cutoff used for van der Waals interactions) and summed
directly with virtually full accuracy. The negative of the cancelling Gaussian distribution
(with the same total charge as the original atomic point charge) is then sufficiently slowly
varying that its interaction with all periodic images of another such Gaussian may be eval-
uated as a truncated sum in reciprocal (Fourier) space. The particle-mesh Ewald (PME)
method [29] performs the Ewald reciprocal space sum by first spreading each atomic point
charge onto (typically a 4×4×4 portion of) a regular three-dimensional grid (typically of 1Å
resolution). A Fourier transform of the charge grid allows the sum over reciprocal vectors
can then be accomplished for all pairs of atoms simultaneously through a simple scaling of
each element of the transformed grid, after which reversing the Fourier transform results in
a potential map from which per-atom energies and forces can be extracted. Biomolecular
simulations typically have one atom per 10 Å3 of volume in the periodic cell, and therefore
the number of grid points is roughly ten times the number of atoms. The reciprocal-space
sum can then be accomplished in order N logN operations with the aid of the fast Fourier
transform (FFT) algorithm.

In practice, the runtime of the FFT (for which highly tuned libraries are available in
abundance) is tiny compared to the cutoff Lennard-Jones and Ewald direct (real-space)
force evaluations, or even to the gridding of atomic charges and extraction of forces in
the reciprocal-space sum. Therefore, the PME algorithm allows full electrostatics to be
evaluated in order N time for any size of simulation contemplated today. In addition, PME
allows the cutoff distance for the remaining short-range nonbonded force evaluation to be
reduced below what would be reasonable for a simulation with truncated electrostatics,
leading to the pleasant result that a simulation with full electrostatics may actually run
faster than without. As the long-range electrostatic interations calculated with PME are also
comparitively weak and slowly varying, additional performance may be obtained through
the use of multiple timestepping as described above.

34.2.3 Parallelization Strategies

The computations in MD simulations stem from calculating forces on each atom in each
time step, then integrating these forces to update the position and velocity of each atom.
In a parallel computation, the is local and accounts for a small fraction of the computation
time.

The force calculations comprise the majority of computational effort. There are two types
of force calculations, bonded and non bonded. Forces between bonded atoms are for only
two to four atoms total, whereas non bonded forces operate between more atoms and stem
from van der Waals and electrostatic forces. As described in Section 34.2.2 computation
may be minimized by choosing a cut off radius outside of which the non bonded forces are
not calculated. Multiple time-stepping (MTS, see Section 34.2.1) approaches are adopted
when the cumulative force of distant atoms cannot be entirely ignored. The other forces
must be calculated each time step. Therefore, this discussion will focus on decomposition
strategies for the non bonded forces with cut off.

Depending on the size of the cut off radius, non bonded forces consume between 80 and 95

Biomolecular Modeling using Parallel Supercomputers 34-11

percent of total computation time. The cut off may be as small as 8 Å when using an MTS
approach for distant interactions, or range from 12 Å to 18 Å in the non MTS case. The
dominance of the non bonded force calculation does not mean the bonded force calculation
can be ignored for the purposes of the parallel decomposition strategy. Leaving even as
little as 5% of the total calculation purely sequential would limit the maximum obtainable
speedup to 20.

The most straightforward parallelization technique is data replication. By copying the
data for all the atoms to each processor, the forces for any subregion can be independent-
ly calculated by any processor. For N atoms and P processors the O(N) forces must be
added up across the processors, resulting in a communication time proportional to N log
P . The amount of computation is proportional to N (assuming cut off), resulting in N/P
computation per processor. Total parallel execution time is the sum of the communication
time and computation time. Replicated data leads to a ratio of P log P as a ratio of com-
munication to computation time, which is entirely independent of the number of atoms N .
Thus replicated data is not a scalable strategy, for the fraction of time spent in communi-
cation grows with the number of processors. Despite this theoretical limit, replicated data
strategies work in practice for tens of processors and the implementation path to parallelize
an existing sequential application is straightforward. Replicated data therefore remains in
use by many MD applications. Another approach is to use a technique called atom decom-
position in which the array containing the atoms of the model is partitioned and divided
across processors. As the data array is partitioned continuously, atoms close in space may
not be nearby in the array. Therefore data from other processors is required, as many as all
of them in the worst case. This results in O(N) communication cost which again impedes
scalability.

Force decomposition distributes blocks of the sparse force matrix across processors. The
N×N force matrix is divided into blocks of size (N/

√
P)× (N/

√
P). A processor needs the

coordinates of 2N/
√
P atoms from

√
P different processors. This leads to a per processor

communication cost of O(N/
√
P) and a communication to computation cost ratio of

√
P .

Though better than the replicated data method, this fails to achieve ideal scalability because
the communication cost rises with the number of processors even if we increase the problem
size. It has been shown by Plimpton et al. [71] and Hwang et al. [41] that this scheme can
be used with good speedup for up to hundreds of processors.

The force matrix decomposition can result in a nonuniform distribution of work. This can
be redressed by randomizing the sequence of atoms in the array, and thus eliminating all
traces of spatial locality [41]. Alternatively one could exploit the spatial locality to co-locate
nearby atoms and handle the load imbalance explicitly [71]. The resulting communication
costs are smaller than for atom decomposition, but the latter scheme suggests a different
technique. Spatial decomposition divides the computation by assigning nearby atoms to the
same processor. Various techniques fall into three categories:

• Partitioning space into P regular boxes or other regions, one per processor.
• Partitioning space into boxes of fixed size slightly larger than the cut off distance,

thereby requiring communication only between neighboring boxes.
• Partitioning space into a very large number of small boxes, thereby requiring

each box to communicate with a large number of boxes to cover all atoms within
the cut off radius.

In the first case the communication cost is proportional to the surface of the box for
sufficiently large N and the computation cost is proportional to the volume, leading to a
highly scalable algorithm in theory. Although this works in larger materials science modeling

34-12 Handbook of Computational Molecular Biology

(involving millions of atoms), the number of atoms is not large enough in biomolecular
modeling to justify this approximation [45]. Additionally, this method is difficult to employ
when the number of processors cannot be factored (P = L×M ×N) into 3 roughly equal
integers.

The second case results in each box communicating with a constant 26 neighbor box-
es. The number of boxes is now independent of the number of processors. This requires
more boxes than processors, but leads to a communication cost of N/P and a constant
communication to computation ratio. The problem size can be doubled with a doubling of
the number of processors without loss of parallel efficiency. Early versions of NAMD [62]
used this technique and achieved good scalability. It is vulnerable to severe load imbalance
problems, particularly when simulating non-periodic systems. Recent versions of NAMD
use a hybrid combination of force and spatial decompositions, see Section 34.2.4 for details.

The third case results in boxes smaller than the cut off communicating with a larger
number of non-neighboring boxes. This was implemented in EulerGromos by Clark [20].
The number of messages (though not the total size of data) can be reduced using a multi-
stage algorithm known as “north-south-east-west” or the “shift algorithm” [70, 80]. This
produces good speedup if sufficient processors are available.

Another spatial decomposition approach is found in the FAMUSAMM algorithm as im-
plemented in recent versions of EGO [37]. This approach uses hierarchical decomposition
of space, based on structural features of biomolecules, to implement a structure-adapted
multipole algorithm.

LeanMD is a new experimental prototype [44] implemented in Charm++ which expands
on these ideas. It uses a “2-away” or “3-away” strategy where instead of using one box of
cut off size with neighbors “1-away”, the box is divided into cells where two cells would span
the cut off and communicate with all neighbors which are “2-away”, or three cells to span
the box communicating with all neighbor cells “3-away”. This divides the computation into
many small objects and communication between them can be optimized by a variety of
message consolidation techniques.

Summary of Parallel MD Applications

In addition to NAMD, the biomolecular modeling community sustains a variety of software
packages with overlapping core functionality but varying strengths and motivations. For
comparison, we select AMBER, CHARMM, GROMACS, NWChem, and TINKER.

AMBER [101] and CHARMM [10] are often considered the standard “community codes”
of structural biology, having been developed over many years by a wide variety of researcher-
s. Both AMBER and CHARMM support their own force field development efforts, although
the form of the energy functions themselves is quite similar. Both codes are implemented in
FORTRAN 77, although AMBER takes the form of a large package of specialized programs
while CHARMM is a single binary. GROMACS [49] claims the title of “fastest MD.” This
can be attributed largely to the GROMOS force field, which neglects most hydrogen atoms
and eliminates van der Waals interactions for those that remain. In contrast, the AMBER
and CHARMM force fields represent all atoms and new development has centered on in-
creasing accuracy via additional terms. Additional performance on Intel x86 processors
comes from the implementation of inner loops in assembly code. GROMACS is implement-
ed in C as a large package of programs and is released under the GNU General Public
License (GPL). NWChem [39] is a comprehensive molecular simulation system developed
by a large group of researchers at the PNNL EMSL, primarily to meet internal require-
ments. The code centers on quantum mechanical methods but includes an MD component.
Implemented in C and FORTRAN, NWChem is parallelized using MPI and a Global Arrays

Biomolecular Modeling using Parallel Supercomputers 34-13

library1 which automatically redistributes data on distributed memory machines. Parallel
scaling is respectable given sufficient workload, although published benchmarks tend to use
abnormally large cutoffs rather than the 12 Å (or PME) typically used in biomolecular simu-
lations. TINKER [72] is a small FORTRAN code developed primarily for the testing of new
methods. It incorporates a variety of force fields, in addition to its own, and includes many
experimental methods. The code is freely available, but is not parallelized, and is therefore
inappropriate for traditional large-scale biomolecular simulations. It does, however, provide
the community with a simple code for experiments in method development.

34.2.4 NAMD Structure

We now describe the design and performance of NAMD [69] as a case study. NAMD was
designed with three major goals — parallel scalability, maintainability and extensibility.
NAMD aimed at utilizing large parallel machines in a scalable manner. Due to the relatively
small amount of computation in each timestep of the simulation, effectively parallelizing
molecular dynamics simulation is very challenging. Such a strategy needs to generate enough
parallelism with fine-grained computation for parallel machines with a large number of
processors. Maintainability and extensibility are likewise essential for a parallel molecular
dynamics program. A well-motivated application-domain programmer should be able to
extend the parallel program to permit novel experiments. NAMD is parallelized using
the Charm++ object-oriented parallel language for extensibility as well as the parallel
scalability. A novel combination of force and spatial decomposition schemes is deployed,
which has been shown to be effective even for very large parallel machines. In this scheme,
atoms are partitioned into cubes whose dimensions are slightly larger than the cutoff radius.
For each pair of these neighboring cubes, we assign a non-bonded force compute object, which
can be independently mapped to any processor. Since each cube has at most 26 neighbors,
the number of such parallel objects is therefore 14 times (26/2 + 1 self-interaction) the
number of cubes. For a reasonably large molecular system, this scheme can easily produce
a sufficiently large number of parallel calculations for thousands of processors.

For extensibility and modularity, a class hierarchy that incorporates the structure of
molecular dynamics was designed. Objects called “patches” represent cubical regions of
space, and all the atoms within such a region. Patches are implemented as parallel objects
that are distributed to processors. Compute objects signify computation of different kinds of
forces on atoms in a set of patches. They are implemented as parallel objects in Charm++
that can be mapped to any processor and are free to migrate among processors. Based on
the basic functionality needed in MD computation, a programmer wishing to add features
to NAMD can often overload an existing class to add some particular functionality.

The hybrid spatial/force decomposition scheme described above provides the basis the
for scalability of NAMD. This scheme requires that a number of entities (multiple patches
and force computations) reside on each processor. Instead of a monolithic program that
orchestrates all these diverse actions on a single processor, we chose a message-driven object
paradigm offered in Charm++. Parallel objects are scheduled based on availability of
data needed for their continued execution, and different tasks can interleave based on the
availability of data needed. For example, a force computation is scheduled for execution only
when all the data it needs are available on the local processor, thus avoiding the possibility
that any particular entity will block the processor while waiting for specific data.

1http://www.emsl.pnl.gov:2080/docs/global/ga.html

34-14 Handbook of Computational Molecular Biology

The parallel structure of NAMD is shown in Figure 34.3. At the beginning of each
timestep, patches send their atom coordinate data to all compute objects whose computation
depends on them. These compute objects can be pairwise compute objects performing
non-bonded force computation; angle compute objects performing various bonded force
computation, or PME compute objects performing Particle Mesh Ewald force computation.
After compute objects finish their force computation, they send forces back to home patches,
which then integrate all the forces to calculate the new atom coordinates.

Reductions
Asynchronous

Compute Objects
Angle

Transposes

PME

Compute Objects
Pairwise

Patches : Integration

Patches : Integration

Point to Point
Multicast

Point to Point

FIGURE 34.3: Parallel structure of NAMD

In order to achieve high scalability over large parallel machines, it is very important
to carefully map the computation among processors so that load balance is achieved and
communication is minimized. Further, in a long simulation, the force computation tends to
change over time when atoms move, leading to new load imbalances. It is clearly impractical
to require a programmer to take care of load balance himself manually.

NAMD employs Charm++’s measurement-based load balancing strategy to perform au-
tomatic adaptive load balancing. When a simulation begins, only a reasonable distribution
is needed. Initially, patches are distributed according to a recursive coordinate bisection
scheme. All compute objects are then distributed to a processor owning at least one patch
they communicate with. During simulation, Charm++ measures the execution time of each
compute object. After the simulation runs for one hundred or so timesteps, the program
suspends the simulation to trigger the initial load balancing phase. The Charm++ load
balancing module retrieves the object load on each processor, computes an improved load
distribution taking into account communication between patches and compute objects, and
migrates compute objects to processors to improve load balance. The initial load balancing
step is aggressive. It computes a new object-to-processor distribution from scratch with a
greedy algorithm. Once a good balance is achieved, atom migration changes load very slow-
ly. Another load balancing phase is only needed after several thousand steps. An aggressive
algorithm is not necessary for the subsequent phases, instead, a less expensive refinement
scheme that only adjusts load by migrating a few objects from heavily loaded processors to
underloaded ones is sufficient.

Biomolecular Modeling using Parallel Supercomputers 34-15

34.2.5 NAMD Performance

In order to demonstrate the scalability of NAMD for the real problems of biomedical re-
searchers, we have drawn benchmarks directly from simulations being conducted by NIH-
funded collaborators. The smaller ApoA1 benchmark comprises 92K atoms of lipid, pro-
tein, and water, and models a high density lipoprotein particle found in the bloodstream.
The larger ATPase benchmark consists of 327K atoms of protein and water, and models
the F1 subunit of ATP synthase, a component of the energy cycle in all life. For both
benchmarks, short-range nonbonded interactions were cut off at 12 Å as specified by the
CHARMM force field. Full electrostatics interactions were calculated every four timesteps
and the PME grid was set at a spacing of approximately 1 Å 108× 108× 80 for ApoA1 and
192× 144× 144 for ATPase. Results are shown in Figures 34.5 and 34.4 respectively2.

 2

 4

 8

 1 2 4 8 16 32 64 128 256 512

P
ro

ce
ss

or
s

x
T

im
e

pe
r

S
te

p
(s

ec
on

ds
)

R
un

tim
e

fo
r

1
ns

 S
im

ul
at

io
n

(d
ia

go
na

l)

Number of Processors

NAMD 2.5 ApoA1 Benchmark (92K atoms, PME)

1wk 4dy 2dy 1dy 12hr 6hr 3hr

PSC Lemieux 4xev6/1.0GHz Quadrics
HPCx p690 32xPWR4/1.7GHz Federation

TCBG Linux 2xMP2600+ 1000bT
NCSA Tungsten 2xXeon/3.06GHz Myrinet

NCSA TeraGrid 2xIA64/1.5GHz Myrinet
NCSA Altix 2xIA64/1.6GHz

FIGURE 34.4: NAMD Performance on various platforms with ApoA1 benchmark illustrates the
portable scalability of NAMD on a variety of platforms employed for production
simulations by researchers. Each curve represents total resources (processors mul-
tiples by time per step) consumed per step for ApoA1 PME benchmark by NAMD
on varying numbers of processors for a specific parallel platform. Perfect linear
scaling is a horizontal line. Diagonal scale shows runtime per ns, representing
absolute performance — the time to solution as experienced by the user.

NAMD won the Gordon Bell award at 2002 Supercomputing Conference with unprece-
dented speedup on 3,000 processors on Pittsburgh Supercomputing Center’s Lemieux su-

2A more comprehensive performance comparisons on different platforms can be found at
http://www.ks.uiuc.edu/Research/namd/performance.html.

34-16 Handbook of Computational Molecular Biology

FIGURE 34.5: NAMD Performance on 327K atom ATPase PME benchmark, showing the scal-
ability of the ATPase NAMD simulation to 3000 processors on the PSC Lemieux
machine. Both step time and floating point performance are shown in the plot.
The best achieved step time is 12ms with a floating point performance of just
over one TF.

percomputer3 with teraflops level peak performance.

34.3 Quantum Mechanical Molecular Dynamics

It is now possible to study novel processes in the condensed phase at an atomistic level of
detail using modern theoretical techniques, software and supercomputers to provide new
insights into long standing problems in fields ranging from biophysics, condensed matter
physics, chemistry and biology. Phenomena such as the self-assembly of biomolecules to
form functional nanomachines, the structure and dynamics of the ubiquitous, universal
solvent, water, the behavior of minerals in the core of planets and the functionalization
of semiconductor surfaces have all been successfully explored [78, 65, 24, 57, 34, 90, 9, 17,
97, 32, 14, 1, 16, 42, 98]. Clearly, a great variety of different physical forces have to be
accurately modeled in order to achieve this wide range of applicability. Simulation studies
can roughly be divided into two classes, empirical force field based molecular dynamics (MD)
calculations described in the previous section [73, 2] and ab initio based molecular dynamics
simulations [13, 74, 66, 33, 93, 35, 64, 55, 12, 87] to be described here. Although simulation
studies performed using empirical potential models have contributed greatly to science

3750 Quad 1Ghz Compaq Alphaserver ES45 nodes connected by a Quadrics highspeed network.

Biomolecular Modeling using Parallel Supercomputers 34-17

and engineering, a large number of important processes, particularly those involving bond
making and bond breaking, are not treated properly. An empirical force field [52, 18, 21]
typically consists of a set of sites, usually the atoms, whose covalent bonding pattern is fixed
and special interactions are added to model this pattern (bonds, bends, torsions ...) which in
effect prevent the bonding from changing. The sites are assigned charges which are typically
fixed. Sites separated by more than 3 covalent bonds then interact in a pairwise fashion via
Coulomb’s law, a repulsive term with fixed parameters to prevent site interpenetration and
an effective dispersion interaction. The parameters in the force field are then fit to describe
a small number of high level ab initio calculations to set the covalent bonding parameters
and a small number of condensed phase experimental data sets to set the remainder of the
parameters. The great advantage of the empirical force field approach is its computational
simplicity and the speed with which atomic forces can be evaluated, allowing long times
and large distance scales to be explored when coupled to MD techniques. However, there
are significant disadvantages that need to be discussed.

Fixing the covalent bonding pattern precludes the study of chemistry, biochemistry and
geochemistry. Hence, acid-base chemistry cannot be examined, enzyme catalysis cannot
be treated nor can the rearrangement of complex minerals under high pressure be studied.
There are several ways to lift empirical force fields beyond this limit. Two popular methods
are empirical valence bond models [100] and dissociable force fields both of which are beyond
the current discussion. While more general, these methods add more empirical parameters
to the force field in order to extend it such that some chemistry of interest, for example the
breaking of one type of bond, can be described. If another chemical mechanism is present
(e.g. other than that hardwired into the more complex description), the investigation will
give rise to misleading results.

Similarly, the charge distribution of the molecules comprising a complex manybody sys-
tem is not fixed. The environment causes the electrons in the molecules to rearrange in a
phenomena referred to as manybody polarization [8]. For example, the dipole moment of a
typical water molecule in the liquid at T=300K is 1.7 times greater than that of an isolated
water molecule due to dipole manybody polarization. Changes also occur to the molecule’s
quadrupole, octopole electrostatic and higher moments due to appropriately higher order
polarization responses. Therefore, in a heterogeneous environment with complex interfaces,
for instance a protein in water solution, the solvent molecules at the interface will possess
different charge distributions from those in the bulk which possess different charge distribu-
tions from those that might penetrate into the interior of a large solute. Indeed, two similar
chemical moieties that form separate parts of a large solute will have different charge distri-
butions depending on whether the moiety in question resides on the surface or in the interior
of the solute. Neglecting manybody polarization gives rise to incorrect dielectric constants
(long range screening of Coulomb interactions), an incorrect number of water molecules
around an ion, ions collecting in the bulk as opposed to moving to an interface and a host
of other difficulties. As above, empirical force fields can be enhanced with additional terms
to treat manybody polarization [82, 81, 23, 15, 53] with the same drawbacks as above. The
parameterization is inherently self-limiting and, in present implementations, almost always
restricted to the dipole limit (dipole manybody polarization), neglecting the response of
higher moments to the environment.

Last, the dispersion or van der Waal’s force is the long range attractive interaction that
arises between charge distributions comprised of quantum particles, here the valence elec-
trons of the system [40]. If electrons behaved classically, obeying Newton’s equations of
motion, there would be no dispersion force [40]. Dispersion is not pairwise additive (e.g.
when more than three atoms are present). Like polarization, dispersion is a manybody phe-
nomena that depends on environment. Thus, fitting an effective pairwise additive potential

34-18 Handbook of Computational Molecular Biology

to yield correct results for a series of simple condensed phase systems will introduce signif-
icant error. For instance, modeling dispersion with an effective pair potential fit to bulk
properties of a liquid can underestimate the surface tension by up to 50 percent [4, 5]. Since
the behavior of complex interfaces depends on surface tensions, this error can seriously effect
important phenomena, particularly self-assembly, which relies on the wetting/dewetting of
interfacial structures that is directly controlled by surface tension. Relatively little research
has been done to augment standard force fields to account for manybody dispersion. The
ab initio based molecular dynamics (AIMD) method, a marriage between classical molec-
ular dynamics and ab initio electronic structure, was devised [13] to study the complex
systems that empirical force field based molecular dynamics fails to describe accurately. In
the AIMD method, all the valence electrons of the system are introduced along with the
corresponding ions. Ions consist of the core electrons plus the protons/neutrons of each
atom treated as a single point particle. (For example, oxygen has 6 valence electrons and
2 core electrons. The charge on the oxygen ion is Z=+6e, and its mass is M=16amu, 8
protons and 8 neutrons). In this way, liquid water consists of 8 electrons, 2 hydrogen ions
(protons) and one oxygen ion for every water molecule present in the system. For a fixed
configuration of the ions, the quantum mechanical ground state energy of the electrons is
determined. Forces on the ions are generated “on the fly” using a potential energy function
defined by the Coulomb interaction between the ions and the ground state electronic energy.
Given these forces, the ions can be evolved in time using standard MD methods and a new
set of forces generated at the new ionic position. In this way, the structure and dynamics
of complex systems at finite temperature and pressure can be examined. In a simulation
study performed using AIMD, manybody polarization, manybody dispersion and chemi-
cal bond making and breaking phenomena are described, perfectly, in principle. Indeed,
the method is exact provided the ground state energy is determined correctly, the Born-
Oppenheimer (BO) approximation is valid and the ions can be treated as classical point
particles. The BO approximation assumes that only the quantum mechanical ground state
energy of the electrons is required to describe the system and classical mechanics assumes
that the ions obey Newton’s equations of motion. Indeed, most chemical, biological and
geophysical systems fall within these restrictions. For example, liquid structure [78, 65, 24],
acid-base chemistry [57, 34, 90], industrial [9, 17, 97, 32] and biological catalysis [14], as
well as geophysical systems [1, 16] have all been successfully treated using AIMD. Examples
of systems that violate these requirements include: photochemical reactions important in
atmospheric chemistry which violate the BO approximation, and chemical reactions involv-
ing light atoms such as hydrogen atoms where the wave-like or quantum nature of the ions
becomes important as sometimes occurs in enzymatic reactions. Devising methods to treat
these more complex systems is a topic of current research [95, 86, 56, 58].

AIMD, as practically implemented, does not employ an exact solution of the electronic
ground state energy. One of the more common methods used to determine the ground state
energy is the Kohn-Sham formulation of Density Functional Theory (KS-DFT) [47, 63, 26].
Although KS-DFT is, in principle, exact, the density functional, itself, is not known and
approximations are employed. Furthermore, the KS electronic states employed in the KS-
DFT formalism are expanded in a finite basis set (as opposed to a complete basis set) which
introduces further error. Car-Parrinello AIMD or CPAIMD is a form of AIMD wherein a
plane basis set is used to described the KS states and the coefficients of the plane wave
basis set are introduced as a set of fictitious dynamical variables which move quickly at
low temperature along with the thermal but comparatively slowly evolving ions so as to
approximately minimize, for each instantaneous ion configuration, the density functional
to produce the ground state electronic energy. The error of a CPAIMD computation is
dominated by the functional employed, typically a generalized gradient approximated den-

Biomolecular Modeling using Parallel Supercomputers 34-19

sity functional or a GGA-DFT, given appropriate care is taken. The GGA-DFT class of
functional treats manybody polarization and bond making/bond breaking reasonably well
but fails to describe dispersion accurately, leading to limitations in the applicability of
technique.

Despite its limitations, the CPAIMD method is widely used and most of the AIMD
simulations in the scientific literature are, indeed, CPAIMD simulations. Summarizing the
discussion above, CPAIMD relies on three fundamental assumptions, the use of classical
mechanics to describe ionic motion, the BO approximation and the use of GGA-DFT.
However, as in any simulation, the system of interest must be evolved in time long enough
and must to be taken large enough that converged results are obtained. That is, appropriate
time and length scales must be sampled. Therefore, an additional limitation of the CPAIMD
method, is that due to the considerable computational cost of solving the electronic structure
problem, it is difficult to reach the time and length scales required to impact science and
technology routinely.

The CPAIMD method is a very numerically intensive technique whose serial computation-
al cost scales as the cube of the number of ions in the system, N3

I . Given CPAIMD’s ability
to generate new insights into complex systems, it is useful to improve its efficiency. Research
is currently being performed both to reduce the scaling with system size and to improve
scalar performance through the development of clever new algorithms. However, with the
advent of truly massively parallel hardware platforms, such as IBM’s BlueGene/L [31], with
over 50,000 processors, it is important to increase, significantly, the parallel efficiency of the
method. Developing a fine grained parallel CPAIMD algorithm is a non-trivial task
due to the CPAIMD’s reliance on a plane wave basis set which requires a large number of
three dimensional Fast Fourier Transforms (3D-FFT) to be performed. The inherently non-
local communication pattern of the 3D-FFT challenges traditional parallelization models,
limiting scaling to the number processors less the number of KS electronic states. Recent
progress using the Charm++ runtime system and the concept of processor virtualization
which it embodies, has, for the first time, yielded a fine parallel CPAIMD framework called
leanCP, complementary to the leanMD framework which is similar to NAMD, that exhibits
parallel scaling up to processors numbers an order of magnitude greater than the number
of KS states [96].

The remainder of this section is organized as follows: In order to better understand the
CPAIMD technique and the leanCP framework, the basic formulae underlying the CPAIMD
method are presented. Next, the flow chart of the basic algorithm is given followed by a brief
description of the multifaceted PINY MD software package with its basic parallelization
scheme. A summary of available CPAIMD freeware is then provided. Last, the leanCP
framework is discussed and its parallel performance demonstrated.

34.3.1 Car-Parrinello Molecular Dynamics : CPAIMD

In a CPAIMD simulation, the ground state electronic energy is calculated by minimizing a
functional of the electron density following the tenets of KS-DFT[47, 63, 26]. A generalized
gradient approximated density functional or a GGA-DFT, is employed because the exact
or true functional is not known. The KS electronic states, Ψi(r), are used to construct
the functional, and are closely related to the electronic states discussed in basic chemistry
and physics texts. The symbol r represents a position in space; remember, electrons are
not generally localized at a single point in space and, hence, are described by a function of
position. The GGA-DFT contains several terms, the quantum mechanical kinetic energy of
non-interacting electrons, the Coulomb interaction between electrons or the Hartree energy,
the correction of the Hartree and non-interacting kinetic energy energy to account for the

34-20 Handbook of Computational Molecular Biology

quantum nature of the electrons and their interactions or the exchange-correlation energy,
the interaction of the electrons with the ions in the system or the external energy, and finally
the interaction of the valence electrons which are treated explicitly and the core electrons
which are mathematically removed or the non-local energy. Since only two electrons are
permitted to occupy a single electronic state or the electron’s satisfy the “Pauli exclusion
principle”, the electronic states are taken to be “orthogonal”,

∫
drΨi(r)Ψj(r) = 2δij . The

“Fourier expansion coefficients” of the electronic states, Ψi(g), or the “expansion coefficients
of the states in a plane wave basis set”, are used to develop most of the formulas. The
symbol g represents the quantum mechanical momentum, p = �g, associated with a given
Fourier coefficient where � is Planck’s constant; remember, electrons do not have a a single
well defined momentum and hence are described as a function of momentum or, here,
g. The two representations of the states, Ψi(g) and Ψi(r), are not independent but are
related by a “Fourier series”. The GGA-DFT is minimized by finding the Ψi(r) that allow
the functional to take on its lowest possible value subject to the orthogonality constraint
at fixed ion positions. If the GGA-DFT was exact, this value would be the ground state
energy in the Born-Oppenheimer approximation. Once the GGA-DFT has been minimized,
the forces acting on the ions can be computed from the functional and the ion-ion Coulomb
interaction (via the negative gradient), and the positions and velocities of the ions evolved
in time according to a finite difference solution of Newton’s equations of motion. The
beauty of the Car-Parrinello method is that these two elements occur simultaneously using
a mathematical formulation called an “adiabatic principle”. Therefore, the saw tooth nature
of the naive method, in which the functional is minimized with the ions fixed, ion forces are
determined, and the ions are evolved to the next time step, is neatly avoided.

In the following, the CPAIMD methodology is described, briefly. First, the equations of
motion which embody the “adiabatic principle” and permit the naive saw-tooth algorithmic
structure to be abandoned, are described. The input to the equations of motion, forces
on the electronic states and ions from derived from GGA-DFT are discussed, next. The
computational structure of CPAIMD, in serial, is then presented along with a flow chart.

Equations of Motion : CPAIMD

The CPAIMD method is based on an “adiabatic principle” achieved by writing a modified,
slightly more complex version of Newton’s equations of motion. The Fourier coefficients of
the KS electronic states, Ψi(g), are introduced as a set of dynamical variables which are
assumed to evolve quickly compared to the slowly evolving ions. The ions have a temper-
ature or average kinetic energy that is typical of physical systems at room temperature.
The Ψi(g) are assigned a “fictitious” temperature that is very cold. In this way, as the ions
evolve slowly in time, the Ψi(g) adjust quickly because they are “fast” and instantaneously
minimize the GGA-DFT because they are “cold”. The forces on the ions are, therefore,
correctly reproduced, on average, and the Born-Oppenheimer approximation described in
the introduction is satisfied to very good approximation. The motion of the Ψi(g) in time
generated by the modified equations is not physically meaningful nor is their cold tem-
perature which should not be confused with “quantum kinetic energy”. The “fictitious”
dynamics of the Ψi(g) is designed solely to minimize the functional to good approximation.
The motion of the ions is physically meaningful and generating this motion is the goal of
CPAIMD simulations. In the limit that Ψi(g) are permitted to evolve very quickly and are
assigned a very low temperature, the exact, but inelegant and computationally inefficient
saw-toothed method is reproduced.

The equations of motion that generate the complex motion required to perform CPAIMD

Biomolecular Modeling using Parallel Supercomputers 34-21

simulations studies are

µ(g)Ψ̈i(g) = − ∂E

∂Ψ∗i (g)
+
∑

j

ΛijΨj(g) = FΨi(g) +
∑

j

ΛijΨj(g)

MIR̈I = − ∂E

∂RI
= FI (34.2)

which basically embody the axiom, force equals mass times acceleration. Here, the energy,
E, is the electronic energy plus the Coulomb interaction between the ions in the system;
the position of the Ith ion is denoted, RI . The second time derivative is expressed with
two dots and R̈I is the acceleration of ion, I. The Λij is a set of Lagrange multipliers
that enforce the orthogonality condition between the states and µ(g) is a mass-like pa-
rameter (having units of energy×time2) that controls the time scale of the motion of the
expansion coefficients which must be fast compared to the motion of the ions. The initial
conditions determine the fictitious temperature of the electronic states which must be very
small. The negative derivative of the energy functional with respect to the coefficients of
the plane wave expansion must be taken, which is denoted as FΨi(g), the “force” on the
coefficients. The equations can be evolved, approximately, in time using the standard inte-
grators of the previous section, Velocity Verlet or Verlet, and the Shake/Rattle procedures
to enforce the orthonormality condition which have been expressed as a set of holonom-
ic constraints [91, 92, 88]. Hence, CPAIMD uses the tools of classical molecular
dynamics to perform very elegantly ab initio molecular dynamics.

GGA-Density Functional Theory

Within the KS-DFT formulation of quantum mechanics, the total energy of an Ne electron
system in contact with NI ions at position R = {R1 . . .RNI} is given by

E[{Ψ}, {R}] = −1
2

Ns∑

i=1

〈Ψi|∇2|Ψi〉+
1
2

∫
dr dr′

ρ(r)ρ(r′)
|r− r′|

+ Exc[ρ] + Eext[ρ, {R}] + Vnucl({R}) (34.3)

where Planck’s constant, �, and the electron mass, me, are both taken to be unity for
simplicity or “atomic units” are used. Here Ψi(r) is the ith KS electronic state and electron
density, ρ(r), is

ρ(r) =
Ns∑

i=1

|Ψi(r)|2. (34.4)

The theory requires the states to satisfy an orthogonality condition of the form

〈Ψi|Ψj〉 =
∫
drΨi(r)Ψj(r) = fiδij . (34.5)

where
∑Ns

i=1 fi = Ne, the number of electrons. Typically, the occupations numbers are
fi = 2; that is, the states are doubly occupied by one spin up and one spin down electron
following the Pauli exclusion principle. Minimization of the energy functional in Eq. (34.3)
with respect to the states subject to the orthonormality condition yields both ground state
energy and electron density.

The density functional, Eq. (34.3), consists of several terms. The first term is the
quantum kinetic energy of a system of electrons which do not interact, and the second

34-22 Handbook of Computational Molecular Biology

term is the Hartree energy or the Coulomb interaction between electrons in the limit that
the quantum nature of the electrons is ignored. The third term, the exchange-correlation
functional, Exc[ρ], which must be approximated [67, 7, 48], accounts for the fact that the
electrons indeed both interact and are governed by the quantum mechanical principles.
The fourth term is external potential, Eext[ρ, {R}], which embodies the interaction of the
electrons with the ions. Since CPAIMD eliminates the core electrons, the external energy
becomes KS state-dependent and takes the form

Eext = Eext,loc[ρ, {R}] + Eext,non−loc[{Ψ}, {R}] (34.6)

where Eext,non−loc[{Ψ}, {R}] [3] takes care of the complexities involved in removing core
electrons from the system. It is simply more computationally efficient to treat fewer elec-
trons and introduce more complex terms. As described in basic chemistry and physics texts,
the valence electrons determine the chemical behavior of the elements and the periodic table
is divided into groups or columns of elements that behave similarly based simply on the
number of valence electrons. Thus, removing the core electrons speeds the calculations and,
yet, produces accurate results.

Plane Wave Based DFT

In order to minimize the KS-DFT functional, each KS state is expanded in a spherically
truncated plane wave basis (Fourier series)

Ψi(r) =
∑

g

Ψi(g)eig·r (34.7)

1
2
|g|2 < Ecut

Here, Ψi(g) is the plane wave expansion coefficient of the ith state for the plane wave, eig·r,
characterized by reciprocal lattice vector, g related to the quantum mechanical momentum,
p = g (Planck’s constant has been set to unity, here). The electrons and the ions are
assumed to lie inside a simulation cell or box. Given an simulation box of side Lx, Ly and
Lz, g = (gx, gy, gz) = (2πnx/Lx, 2πny/Ly, 2πnz/Lz). The truncation is viable because at
large lattice vectors, |g| >> 1, eig·r wildly oscillates and the expansion coefficient Ψi(g)
approaches zero. Equivalently, it is highly improbable for the electrons to have very large
momentum in a physical system. In chemical applications, the KS states can be chosen to
be real so that Ψ∗i (g) = Ψi(−g). Since the KS states are expressed as a linear combination
of a finite number of plane-waves, the density can also be so expressed,

ρ(r) =
∑

g

ρ(g)eig·r (34.8)

1
2
|g|2 < 4Ecut

where ρ(g) are the Fourier or plane wave expansion coefficients of the electron density.
Note, density cutoff is 4 times larger than the state cutoff because the density is related to
the square of the states. It is useful to define, G/2, the largest reciprocal lattice vector in
each direction in the expansion of the density. Of course, G/4 is then the largest reciprocal
lattice vector in the expansion of states. The density is always real, ρ∗(g) = ρ(−g).

The expansion coefficients of the density, ρ(g), can be obtained from the expansion coef-
ficients of the states, Ψi(g), exactly, using 3-D FFTs because the expansion is truncated or
finite. A complex-to-real 3-D FFT of size G (e.g {N×N×N} in cubic box) is performed on

Biomolecular Modeling using Parallel Supercomputers 34-23

on each Ψi(g) to produce Ψi(r) on a discrete real space mesh, the function is squared point
by point, |Ψi(r)|2, and the result summed over all states to produce the electron density,
ρ(r), on the discrete real space mesh (e.g {N × N × N} in cubic box). The function ρ(r)
can then be inverse transformed by a real-to-complex 3-D FFT to generate ρ(g), exactly.
The computational efficiency of the CPAIMD method is due to this clever use of highly
optimized 3-D FFTs.

In order to proceed, each term in the density functional must be expressed in the plane
wave basis:

The kinetic energy of non-interacting electrons, depends on the individual electronic
states. It can be expressed as

Ekin =
1
2

∑

i

∑

g

|Ψi(g)|2|g|2 (34.9)

in the plane wave basis. Remember g is related to the momentum and Ekin is simply
related the square of the momentum, |p|2, as might be expected. The quantum nature of
the system is reflected in the fact that more than a single value of the momentum is required
to described the kinetic energy of an electron. The orthogonality condition takes the simple
form

〈Ψi|Ψj〉 =
∑

g

Ψi(g)Ψ∗j (g) = fiδij . (34.10)

which, again, incorporates the Pauli exclusion principle into the functional.
In a plane wave basis set, the non-local energy is introduced to remove core electrons. The

very same notion from basic physics and chemistry is employed. There are two quantum
numbers l and m. The quantum number l = 0 is associated with “s”-states, l = 1 with
“p”-states and so on. If core electrons associated with states of type l = 0 to l̄, are to be
removed, the non-local energy, in the Kleinman-Bylander form [46], is given by

ENL =
Ns∑

i=1

nN∑

I=1

l̄−1∑

l=0

l∑

m=−l

NIlm|Zi,I,l,m|2 (34.11)

where NIlm is a normalization factor, and

Zi,I,l,m =
∑

g

Ψi(g)eig·RIhIl(|g|)Ylm(θg, ϕg). (34.12)

In Eq. (34.12), hIl(|g|) is the lth spherical Bessel function transform of the angular-momentum
dependent potential function, hIl(r), describing the interaction that replaces the core elec-
trons of ion, I, with quantum number l and Ylm(θg, ϕg) is a spherical harmonic. The former
function determines the “radial shape” of the interaction that replaces the core electrons
while the latter function determines the angular shape.

The local part of the external energy is

Eext,loc =
1
V

∑

g

ρ∗(g)
∑

I

φ̃loc,I(g)SI(g) (34.13)

SI(g) = exp(−ig ·RI)

where φ̃loc,I(g) is the Fourier transform of the local interaction, φloc,I(r), between an electron
and the Ith ion and SI(g) is the ion structure factor or the Fourier expansion coefficient of
ion, I.

34-24 Handbook of Computational Molecular Biology

The Hartree energy is given by

EHartree =
1

2V

∑

g �=(0,0,0)

4π
|g|2 |ρ(g)|2 (34.14)

where V is the volume of the system assuming three dimensional periodic boundary condi-
tions [54, 60]. It is the equivalent to the Coulomb energy of a classical charge density equal
to ρ(r).

Both Hartree and the non-interacting kinetic energy must be corrected by the exchange-
correlation energy which Exc[ρ,∇ρ] is not known exactly and must, therefore, be approx-
imated. In the generalized gradient approximation, the functional is taken to be of the
form

Exc[ρ] =
∫

dr ρ(r)εxc(ρ(r),∇ρ(r)). (34.15)

In practice, these integrals are evaluated on a set of equally spaced grid points defined by
the size of the 3-D FFT [102], using trapezoidal rule

Exc[ρ] = ∆3
∑

ijk

ρ(rijk).εxc(ρ(rijk ,∇ρ(rijk)) (34.16)

where ∆ is the grid spacing and ρ(rijk) is the electron density at a grid point and ∇ρ(rijk)
is its gradient [102]. Hereafter the indices, ijk, will be suppressed/understood. More details
are provided elsewhere [102].

The negative derivative of each term given above with respect to the coefficients of the
plane wave expansion must be taken. These are denoted FΨi(g), the “force” on the coef-
ficients. The forces on the ions, FI , which have physical meaning only when the density
functional is minimized, FΨi(g) ≡ 0, arise from three terms, the local energy external en-
ergy, the non-local energy and the ion-ion interaction, Vnucl(R). The ion-ion interaction is
general taken to be simply Coulomb’s law,

Vnucl(R) =
∑

S

∑

IJ

′ ZIZJ

|RI −RJ + Sh| , (34.17)

where S are the periodic replicas and the prime indicates I �= J when S = 0. This term is
typically evaluated using Ewald summation [38, 22] in periodic systems. The computation
of the ion forces takes negligible computer time and will not be discussed further.

Computational Structure of CPAIMD

The two key inputs to a CPAIMD calculation are the ion positions and the plane wave
expansion coefficients of the KS-states, the Ψi(g) of Eq. (34.7) which are assumed to be
orthonormal e.g. satisfy Eq. (34.10). The CPAIMD computation, itself, nicely bifurcates
into two branches, a KS state dependent branch and an electron density dependent branch,
as given in Fig. 34.6. The non-local pseudopotential energy, Eq. (34.12), and the kinetic
energy of the non-interacting electrons, Eq. (34.9) as well as their contribution to FΨi(g),
are determined in the left branch.

In order to create the electron density, the states are transformed into real space by 3-D
FFT, squared and summed to form the density, Eq. (34.4), in the right branch. Once the
density is formed in real space, the calculation can split again. The Exchange correlation
energy is computed using the density and its gradient in real space is computed along with
its contribution to FΨi(g). Independently, the density is transformed to g-space by 3-D

Biomolecular Modeling using Parallel Supercomputers 34-25

Setup Plane Wave Basis set

Wave function in g−space

Non−local component of
forces

Wave function in real−space

charge density

Hartree Energy
Exchange−Correlation

FFTs

Forces on Electrons

Move Electrons

Orthonormalization

wave function

Reuse transformed
wave function

Save transformed

FIGURE 34.6: Schematic flowchart of the implementation of the CP algorithm

FFT and the Hartree and local pseudopotential energy computed using Eq. (34.14) and
Eq. (34.14). The contribution of these terms to the force of these terms is computed in
g-space, transformed into real space by 3-D FFT and added into the contribution from
the exchange correlation function. This quantity which is referred to as the KS potential is
the same size as the density. Each state is then multiplied by the KS potential in real space
and a 3-D FFT is performed to complete the computation of the contribution to the force,
FΨi(g), from the Hartree, Exchange-Correlation and External Pseudopotential energies.

When both major branches are complete, the two force contributions are combined. The
KS states are, now, evolved using a numerical solver of the CPAIMD equations of motion
Eq. (34.2) or as part of an energy minimization procedure at fixed nuclear position. Due to
finite time step error in the solvers, the new states will not be perfectly orthonormal. This
is adjusted using a variety of methods, Shake/Rattle for CPAIMD, and Grahm-Schmidt or
Löwdin techniques for energy minimization.

34.3.2 PINY MD implementation of CPAIMD

PINY MD is a distributed memory software package parallelized using the Message Passing
Interface (MPI) extension. PINY MD performs CPAIMD simulation studies, standard MD
simulations and QM/MM calculations (see next section) as well as other types of compu-
tations that include quantum effects on the nuclei [94]. The PINY MD implementation of
CPAIMD follows Fig. 34.6. Each phase in the diagram is parallelized, in sequence, and
the layout of the data arranged to minimize communication between the sequences. This
rather basic parallelization scheme leads to an algorithm that scales well when the number
of states is less than or equal to the number of physical processorsNs ≤ Nproc. It was found
to be sufficient for the types of parallel machines available today (100s of processors) but
will not scale on BG/L type systems (except of course for large systems with many states).

34-26 Handbook of Computational Molecular Biology

34.3.3 Summary of Available Codes

There are a variety of plane wave based density functional theory software packages available
on the Web. These include

• PINY MD (http://homepages.nyu.edu/~mt33/PINY_MD/PINY.html)
• CPMD (http://www.cpmd.org/)
• ABINIT (http://www.abinit.org/)
• PWSCF (http://www.pwscf.org/)
• NWPW/NWCHEM (http://www.emsl.pnl.gov/docs/nwchem/)
• DACAPO (http://www.fysik.dtu.dk/campos/Dacapo/)
• OCTOPUS (http://www.tddft.org/programs/octopus/)
• FHI96MD (http://www.fhi-berlin.mpg.de/th/fhi96md.html)

The software packages have various strengths and weakness. Some concentrate on solid-state
physics applications, others on chemical applications, and others on applications of time
dependent density functional theory (TDDFT) to study excited state chemistry/physics,
a topic not discussed covered in this review. The parallel scaling of all, in general, is as
in PINY MD, although efforts are underway in all the groups to improve performance in
response to massively parallel computers such as IBM’s BG/L.

34.3.4 LeanCP Implementation of CPAIMD

In the LeanCP framework [96], the states in g-space and real-space which are sparse and
dense cubes of data, respectively, are each decomposed into planes. The work related to
each plane is performed by a Charm++ virtual processor (or chare). In accordance with the
philosophy of processor virtualization, the number of virtual processors depends only on
issues such as the work to communication ratio but is independent of the total number of
physical processors. A collection G holds objects G(i, p) corresponding to plane, p, of state,
i, in g-space. The plane index, p, is identical to the x coordinate in g-space, gx, and the
object G(i, gx) houses the coefficients Ψi(gx, gy, gz) for all values of gy and gz. Similarly,
another collection R holds real-space planes R(i, p) corresponding to plane p of state i.
However, the axis of decomposition is different for G and R, due to the way the parallel
FFTs are implemented (one transpose is required). In addition, there are 1-dimensional
chare arrays corresponding to the electron density in real-space, ρ(r) and in g-space, ρ(g)
as well as a chare array, P (i, p), associated with computing the non-local pseudopotential
interaction, is defined as the G(i, p).

It should be noted that the real-space planes are dense and each state has precisely the
same number of planes as the electron density, i.e. N . The g-space planes are sparse
and only g-space planes with non-zero elements are included in the calculation. There are
roughly twice as many non-zero g-space plane in the reciprocal space representation of the
electron density as in the corresponding reciprocal space representation of a state. The
non-local pseudopotential chare array is, again, akin to the states. The resultant parallel
decomposition of the problem is shown in Fig. 34.7. The algorithm was implemented using
the Charm++ runtime system which permits the independent portions of the calculation to
be interleaved effectively. For instance, the Ns parallel 3-D FFT’s of the KS states required
to create the electron density are performed, simultaneously. That is, a chare array for each
plane of each KS state is launched and as soon as the FFT related computation stage of
that plane is completed, and enters a communication phase (a transpose, for example), the
computation stage of a different state and plane can be rolled into the idle processor. In the

Biomolecular Modeling using Parallel Supercomputers 34-27

same manner, the non-local pseudopotential chare array is launched simultaneous to the 3-
D FFT computation and is, similarly, rolled into and out of the physical processors. There
is a barrier when the forces on the Ψi(gx, gy, gz) are collected from the various chare arrays,
including the non-local pseudopotential chare array, and the Ψi(gx, gy, gz) are evolved to
the next time step. Another barrier is required so that states can be reorthogonalized (due
to the finite time step error in the numerical solver) before the next time step commences.

S Matrix

T Matrix

Transpose

Transpose

Transpose

Transpose

I

I

VI

SUM

II

SUM

Transpose

IV

Transpose

MCAST
V

VII

IX

IX

III

ΨR
N

ΨR
11

ΨG

ΨG
N

VI

VIII

Energy

O
rt

ho
no

rm
al

iz
at

io
n

Non−local matrix computation

Non−local matrix computation

FIGURE 34.7: Parallel structure of our implementation. Roman numbers indicate phases

34.3.5 LeanCP Performance

In order to test the parallel efficiency of the new LeanCP framework, a 32 water molecule
system with 128 KS electronic states is examined; this system size has been used in seminal
studies published in prestigious journals such as Science and Nature [57, 34, 90]. Using
standard parameters (Ecut=70Ry), pseudopotentials [84] and exchange correlation func-
tional [7, 48] 32,000 g-space state coefficients per state, 260,000 g-space density coefficients,
and a real-space density grid of 1003 points are employed in the computation.

The scalability of the Charm++based LeanCP CPAIMD framework was studied on PSC-
Lemieux, a 750 node, 3000 1Ghz Alpha processor cluster connected via a high speed
Quadrics Elan interconnect with 4.5µs latency. Scaling up to 1500 processors is obtained,
over an order of magnitude greater than the number of electronic states (see Table 34.1).
Current work involves improving the scalar and parallel efficiency of the LeanCP framework
as well as studying a variety of system sizes.

34.3.6 Biological Applications of CPAIMD

The biological applications of pure CPAIMD simulations have had wide impact. Due to the
computational cost of the CPAIMD, much of the biological framework must be left out of
the simulation. However, interesting biologically relevant systems consisting of small parts
of large complex moeities of true interest have been examined. For example, polypeptides,

34-28 Handbook of Computational Molecular Biology

2 Processors per Node 3 Processors per Node
P t(sec) GFLOPS Speedup P t(sec) GFLOPS Speedup

16 13.26 4 16.0 129 2.20 22 96.4
32 6.17 8 34.3 258 1.30 37 163.2
64 3.11 15 68.2 513 0.68 71 312.0
128 2.07 23 102.5 768 0.60 80 353.6
256 1.18 41 179.8 1536 0.40 121 533.1
512 0.65 74 326.4
1024 0.48 100 442.0

TABLE 34.1 Execution times on PSC Lemieux, for 128 states. Using more processors, P, per node, N,
effects performance adversely as the bandwidth is a limited resource.

chains of amino acids too small to be called proteins, have been studied in water in order to
examine the conformations or shapes they take on and inferences drawn to larger systems.
Also, reactions involving amino acids, in particular, the acid base chemistry of histidine, a
key amino acid in many enzymatic reactions has been studied. More recently, small strands
of DNA have been examined. Here, oxidative damage of DNA via radical cation formation
is of interest as this is a key element in cancer. Finally, small models of active sites such
as the binding pocket of myoglobin, an oxygen carrier similar to hemoglobin, have been
studied using approximately 10-20 amino acids as opposed to studying the full system. In
the next section, the ability of CPAIMD to interface with molecular mechanics methods to
provide more of the biological framework is described.

34.4 QM/MM

34.4.1 Hybrid QM/MM Simulations

Empirical force field models are capable of describing complex systems accurately. In addi-
tion, calculations based on these models are quite computationally efficient allowing large
systems to be studied at long time scales as the computational effort increases only linearly
with system size. However, empirical force field models cannot treat processes involving
chemical bond forming and breaking which are of great interest. Ab initio methods are, in
contrast, more generally applicable. However, ab initio methods permit only small systems
to be studied at short time scales as the computational effort increases as the cube of the
system size and the prefactor is quite large so that even small systems require intensive
computation. It is, therefore, useful to consider a combination of the two techniques to
study a class of problems where the advantages of the two methods can be exploited.

An effective way to decompose a physical system in chemistry, physics and biology is
to consider part of the system as the reactants/products and the remainder of the system
as the “bath” (the environment in which the reactive portion is “bathed”). Typically,
the reactants/products are described at a high level of detail while the bath is treated
more approximately, even as a simply as a set of harmonic oscillators linearly coupled to
reactants/products. Clearly, this basic picture presents an opportunity for ab initio or
quantum mechanical treatments of the reactive region to be wed to empirical force field or
molecular mechanic treatments of the bath to form a hybrid or mixed method often referred
to as a QM/MM approach. The QM/MM approach has several advantages. First, the bath
can be made quite complex and, indeed, very large. In this way, the fluctuations of the bath
that drive the reactants to cross barriers and form products can be studied in detail. Now, if
the size of reactive part of the calculation is kept constant and the size of the bath is increased
so as to treat the reaction at infinite dilution which is typically desired, the hybrid method

Biomolecular Modeling using Parallel Supercomputers 34-29

scales only linearly with system size. That is, the ab initio or reactive part, alone, will be an
expensive but fixed part of the calculation, while the computation of the bath scales linearly
with size. This assumes that the serial computational cost of determining the interaction of
the bath with the reactive part of the system, scales linearly with increasing bath size. Thus,
hybrid methods are, in principle, quite desirable. There are several important cases that
the division of a system into a reactive region and a bath is desirable. Enzyme catalysis, for
instance, can be studied with quite reasonable accuracy by modeling the protein backbone
and the water solvent using an empirical force field and treating the valence electrons
of the amino acids and the water molecules near the active site, as well as those of the
substrate, with ab initio techniques [99, 30, 50, 27, 68, 104, 105, 103]. Similarly, organic
and inorganic chemical reactions in solution, for example, Diels Alder chemistry, most of the
solvent can be modeled using molecular mechanics while the electronic degrees of freedom
of the reactants/products and perhaps few solvent molecules near the reactive center can
be treated with quantum mechanical methods [99].

It is clear that hybrid-mixed-QM/MM models of chemistry and biochemistry can yield
important information about key processes for reduced computational cost. There are two
problems that must be resolved. The short range interaction between the ab initio region
and the empirical region must be treated so that there are no spurious edge effects. There
are several techniques that are under development which are quite promising. These include
link atoms, pseudobonds and frozen frontier molecular orbitals [30, 104, 68]. However, this
portion of the technique is under development and requires more research. Second, the long
range interaction of the bath with reactive region must be evaluated in order N computing
time where N is the total number of atoms/ions in the simulation.

In previous sections, the plane wave basis set in conjunction with the generalized gradient
approximation to density functional theory (GGA-DFT) ab initio method was studied in
detail [13, 33, 89, 25]. Here, the QM/MM version of this technique will be developed [103].
Applications of the plane wave based, GGA-DFT, QM/MM method is described and then
future work on its large scale parallelization is briefly outline.

The QM/MM method : GGA-DFT in a plane wave basis

A plane waves wave basis set naturally possess only a single length scale which has lim-
ited the applicability of the method to QM/MM calculations. For instance, let the re-
actants/products occupy a small simulation cell embedded within a large simulation cell
containing the bath. In order to compute the interaction of the electrons of the reactive
subsystem with the bath, it is, in principle, necessary to obtain the plane wave expansion
coefficients of the electron density in basis spanning the large cell using same large cutoff
required to describe the rapidly varying electron density in the small cell. Using this simple
scheme, memory requirements are prohibitively large and the calculation scales with the
cube of the number of particles in the bath (at fixed small cell size). However, such a scheme
does allow systems liquids and solids to be studied accurately using standard techniques
and clusters, wires and surfaces using recent extensions [54, 60, 59]. In order to remove the
difficulties associated with a employing GGA-DFT and a plane wave basis set to examine
QM/MM systems, a new dual length scale approach was developed which scales as Nlog N
with bath size and has low memory requirement [103].

Two terms in the electron energy have long range character, the Hartree, EHartree[ρ], and

34-30 Handbook of Computational Molecular Biology

local pseudopotential energies,

EH[ρ] =
e2

2

∑

Ŝ

∫

D(h)

dr
∫

D(h)

dr′
ρ(r)ρ(r′)

|r− r′ + hŜ|
(34.18)

Eloc[ρ] =
∑

Ŝ

NI∑

I=1

∫

D(h)

dr φloc,I(r−RI + hŜ)ρ(r) (34.19)

Here, NI ions/atoms in the system, RI is the Cartesian position of the Ith ion/atom, h
is the cell matrix defining the parallelepiped surrounding the system, the deth = V is
the volume (in a cubic box, the matrix is diagonal, h=diag(L,L,L), and V = L3), and
Ŝ = {ŝa, ŝb, ŝc} is a vector of integers which describe the periodic boundary conditions.
Solids and fluids are periodically replicated in all three directions while for clusters, only
Ŝ = {0, 0, 0} is permitted.

It is clear that the expressions for the Hartree and local external energies possess a single
length scale. A second length scale can be introduced using the identity erf(αr)+erfc(αr) =
1 where erf(αr) goes to zero at small r and unity at large r while erf(αr) goes to zero at
large r and unity at small r. Inserting the identity yields,

EH[ρ] =

e2

2

∑

Ŝ

∫

D(h)

dr
∫

D(h)

dr′
ρ(r)ρ(r′)erfc(α|r − r′ + hŜ|)

|r− r′ + hŜ|

+

e2

2

∑

Ŝ

∫

D(h)

dr
∫

D(h)

dr′
ρ(r)ρ(r′)erf(α|r − r′ + hŜ|)

|r− r′ + hŜ|

= E
(short)
H [ρ] + E

(long)
H [ρ] (34.20)

Eloc[ρ] =

∑

Ŝ

NI∑

I=1

∫

D(h)

dr ρ(r)

[
φloc,I(r −RI + hŜ) +

eqIerf(α|r−RI + hŜ|)
|r−RI + hŜ|

]

−

∑

Ŝ

NI∑

I=1

∫

D(h)

dr ρ(r)

[
eqIerf(α|r −RI + hŜ|)

|r−RI + hŜ|

]

= E
(short)
loc [ρ] + E

(long)
loc [ρ]. (34.21)

The first term in the curly brackets in each equation is short range while the second term
is long range. The sum over images can be neglected in the short range terms provided α
is selected sufficiently large because the new potential terms vanish exponentially quickly
at large distances.

As described above, the electrons are required to be localized in a small region of space
that can be surrounded by a small cell, hs, whose center lies at the point, Rc. The KS
states and, electron density are taken to vanish on the surface of hs. They can therefore
be expanded in the plane waves of the small box, (1/2)|g|2 < Eshort

cut , which must be taken
rather large, Eshort

cut ≈ 70Ry.
The short range components of the Hartree and local pseudopotential energies can be

Biomolecular Modeling using Parallel Supercomputers 34-31

evaluated straightforwardly using the locality assumption,

E
(short)
H [ρ] =

e2

2

∫

D(hs)

dr
∫

D(hs)

dr′
ρs(r)ρs(r′)erfc(α|r− r′|)

|r− r′|

=
e2

2Vs

∑

ĝs

′ρ̄s(−gs)ρ̄s(gs)
[
4π
g2

s

] [
1− exp

(
− g2

s

4α2

)]
+

e2π

2Vsα2
|ρs(0)|2 (34.22)

E
(short)
loc [ρ] =

NIs∑

J=1

∫

D(hs)

dr ρs(r)
[
φloc,J(r−RJ + Rc) +

eqJerf(α|r−RJ + Rc|)
|r−RJ + Rc|

]

=
1
Vs

∑

ĝs

′
NIs∑

J=1

ρ̄∗s(gs) exp(−igs · [RJ −Rc])
[
φ̃loc,J(gs) +

4πeqJ
g2

s

exp
(
− g2

s

4α2

)]

+
1
Vs

NIs∑

J=1

ρ̄s(0)
[
φ̃

(0)
loc,J −

eqJπ

α2

]
. (34.23)

where the J sum runs over the NIs ions within the small cell, the ĝs sum runs over the
large reciprocal-space grid of the small cell and Rc is position of the small cell inside the
large. The non-local pseudopotential energy is short range and is assumed to be evaluated
within the small cell (only, considering the NIs ions in the small cell and using the small cell
reciprocal space). Similarly, the exchange correlation and the electronic kinetic energies can
also be evaluated in the small cell using standard techniques [33, 74]. Again, a large g-space
or reciprocal space defined by the cutoff, Eshort

cut , is required to treat the rapid variation of
the electron density within the small box.

The long range contributions to Hartree and local pseudopotential energies are obtained
by expanding the electron density in the plane waves of the large cell, g = h−1ĝ,

E
(long)
H [ρ] =

e2

2

∑

Ŝ

∫

D(h)

dr
∫

D(h)

dr′
ρ(r)ρ(r′)erf(α|r − r′ + hŜ|)

|r− r′ + hŜ|

=
e2

2V

∑

ĝ

′ρ̄(−g)ρ̄(g)
[
4π
g2

exp
(
− g2

4α2

)
+ φ̂(screen,Coul)(g)

]

+
(
e2

2V

)[
φ̂(screen,Coul)(0)− π

α2

]
|ρ̄(0)|2 (34.24)

E
(long)
loc [ρ] = −

∑

Ŝ

N∑

I=1

∫

D(h)

dr ρ(r)

[
eqIerf(α|r −RI + hŜ|)

|r−RI + hŜ|

]

= − e

V

∑

ĝ

′ρ̄∗(g)S(g)
[
4π
g2

exp
(
− g2

4α2

)
+ φ̂(screen,Coul)(g)

]

− e

V
ρ̄(0)S(0)

[
φ̂(screen,Coul)(0)− π

α2

]
. (34.25)

where

S(g) =
∑

I

qI exp(ig ·RI) (34.26)

34-32 Handbook of Computational Molecular Biology

is the atomic charge density and

ρ̄(g) =
∫

D(h)

dr exp[−ig · r]ρ(r) (34.27)

=
∫

D(hs)

drs exp[−ig · rs]ρ(rs + Rc)

=
∫

D(hs)

drs exp[−ig · (rs −Rc)]ρs(rs)

The integral in Eq. (34.27) can be extended to cover the domain described by the large
cell without loss of generality because ρ(rs + Rc) ≡ 0 outside of the small cell. Note,
ρ̄(g) = ρ̄s(gs) if hs ≡ h and Rc = 0. The damping factor, exp[−g2/(4α2)], truncates the
sum such that only low Fourier coefficients of the electron density on the large cell reciprocal
space are required, Elong

cut << Eshort
cut , and makes the reciprocal or g-space associated with

the large box rather small. (Note, the plane wave cutoff of the density is 4Elong
cut as described

in the previous section). The atomic charge density can be evaluated in order NI logNI

using Particle Mesh Ewald methods while the sums given in Eq. (34.25) and Eq. (34.24)
can be evaluated in order NI . It remain to compute the ρ̄(g) on the small g-space defined
by Elong

cut << Eshort
cut . Indeed, Euler exponential spline interpolation [19, 77] can be employed

to obtain the small |g| coefficients, ρ̄(g), of an electron density ρ(r) that is assumed to be
nonzero only in the small cell described by hs in order NI logNI , accurately. The discrete
but dense real space representation ρs(r) generated from the KS states in the small box, is
Cardinal B-spline interpolated onto a sparse discrete real space grid which spans the large
box defined by h to generate a new function, ρ(conv)(r). This new function, ρ(conv)(r), is,
in turn, transformed into the reciprocal space of the large box via 3-D FFT where it is
multiplied by a g-dependent scaling factor derived by Euler to generate a controlled, differ-
entiable approximation to the function of interest, ρ̄(g). Now, ρ(conv)(r) can be evaluated
in order NIsm

3 where m is the order of the Cardinal B-spline interpolation and, again,
NIs is the number QM atoms. Thus, the overall computational cost of constructing ρ̄(g) is
NI log NI dominated by the 3-D FFT. The overhead of the calculation is small because
the g-space required is small, Elong

cut << Eshort
cut .

The basic tenets underlying a QM/MM calculation performed using GGA-DFT with a
plane wave basis set is now described [103]. Unlike the CPAIMD of the previous section
which uses two reciprocal space grids, one for the KS-states and one for the electron density,
and one real-space grid, CPAIMD-QM/MM calculations use three reciprocal space grids
and two real space grids. The two real-space grids, referred to as the MM-rspace-grid and
QM-rspace-grid, respectively, contain the real space representation of the electron density
in the large cell or MM-box (h) and the electron density in small cell or QM-box (hs),
respectively. The three reciprocal space grids are as follows: There are the two reciprocal
space grids used in standard calculations, the reciprocal space grid for the KS states, QM-
KSstate-gspace-grid, and the electron density, QM-e-density-gspace, in the QM-box. The
third reciprocal space grid, MM-e-density-gspace, contains the low Fourier components of
the electron density in the MM-box. The MM grids contain many fewer elements than the
QM grids because Elong

cut << Eshort
cut .

The short range electron-atom interactions are calculated using the QM-e-density-gspace
and the QM-KSstate-gspace-grid. The long range interactions using the MM-e-density-
gspace. Briefly,

1. Given Ns KS states on the QM-KSstate-gspace-grid, a set of Ns 3-D FFTs

Biomolecular Modeling using Parallel Supercomputers 34-33

is performed in order to generate the states on the QM-rspace-grid. These are
squared and used to generate the electron density, in real space, on the QM-
rspace-grid.

2. The electron density on the QM-rspace-grid is interpolated onto the MM-rspace-
grid using Cardinal B-splines.

3. Two 3-D FFT of the two representations of the electron density, QM-rspace-grid
and MM-rspace-grid, respectively are performed. The g-space representation of
the electron density on the QM-e-density-gspace and MM-e-density-gspace grid
are, thereby, generated.

4. The calculation now branches as in ordinary CPAIMD. The QM-rspace represen-
tation of the density is used to calculate the exchange and correlation potential,
while the two reciprocal-space densities are used to calculate the long and short
range parts of the Hartree and local pseudopotentials. The long range part in-
cludes the interaction of the electrons with the atoms in the MM region of the
system. The Kohn-Sham potential is collected.

5. The calculations are then brought back together as in standard CPAIMD. The
QM-e-density-gspace representation of the KS potential arising from short range
interactions is Fast Fourier transformed back to QM-rspace-grid where it is com-
bined with the exchange and correlation contributions. The MM-e-density-gspace
representation of the KS potential arising from long range interactions is trans-
formed back to the MM-rspace-grid and Cardinal B-Spline interpolated back to
the QM-rspace-grid and combined with the short range KS contributions. The
forces on KS states can then be evaluated in the usual way.

6. The calculation of the intra- and intermolecular MM forces arising from the
empirical force field is an independent calculation that can occur before, after,
or (preferably) during the dual grid electronic structure calculation.

Modeling the boundary : Pseudobond method

Much like parameterizing an empirical force field, developing a set of pseudopotentials and
intermolecular interactions for a mixed ab-initio/molecular mechanics system requires meld-
ing basic principles with approximations. There is no unique way to treat these interactions
and gaining experience through thorough testing for accuracy on various systems is the best
way to proceed. Therefore, the following reasonable procedure can be pursued: Define the
empirical model consisting of “MM atoms”. Define the ab initio model consisting of “QM
ions” and electrons. Define interactions when the QM/MM moieties are weakly coupled.
Define interactions when the QM/MM moieties are strongly coupled.

In order to handle weak coupling between QM/MM and MM regions consider a system
consisting of Ni chemically inert molecules and Na chemically active molecules with Ni >>
Na. That is, the scientist can clearly identify a complete set of molecules that will not
undergo chemistry. In this case, it is straightforward to merge QM and MM. Examples
include alkali metals in liquid ammonia, e.g. ammonia inert, alkali metals active [24].
Use the empirical model to describe the inert molecules, Ni. Use the ab initio model to
describe the active molecules, Na. Allow the ions comprising the active molecules to interact
with the inert molecules by Coulombs law (MM atoms in the inert molecules are assigned
partial charges). Introduce a short range intermolecular pair potential between the QM
ions and the MM atoms in the molecule. Introduce molecular pseudopotential(s) to treat
the interaction of the electrons in the system with the inert molecules. In order to fit the
molecular pseudopotentials it is useful to invoke a least squares fitting procedure. A one

34-34 Handbook of Computational Molecular Biology

electron “psuedo-atom” or an electron trap that can be moved around the inert molecule is
defined and an objective function consisting of deviations from a full QM treatment of the
trap plus the molecule and the one electron QM/MM model is minimized,

1. The deviation of the energy,
E(QM)=E(mol+trap,QM)-E(mol,QM)-E(trap,QM) versus
E(QM/MM) = E(mol+trap,QM/MM)-E(mol,QM/MM)-E(trap,QM).

2. The deviation of the forces on the atoms in the molecule,
−∇I E(QM) versus −∇IE(QM/MM).

A representative set of trap placements around the molecule is assumed to be included in
the fit. Finally, the molecular pseudopotential can be further tuned to work well in the
physical situation of interest, e.g. replacing the trap by a more realistic but still small ab
initio system.

Unfortunately, there are many systems that cannot be divided completely into sub-
systems of chemically active and inactive molecules. For example, biopolymers (proteins,
DNA, RNA) have active and inactive areas that are connected together by chemical bonds.
Nonetheless, a similar course of action can be applied as in the weakly interacting case. As
far as possible, divide the system into inert/active molecules. Next, divide large complex
biopolymers into inert/active polymeric subunits or residues. Use the empirical model to
describe the inert molecules, Ni and inert residues, Ri. Use the ab initio model to describe
the active molecules, Na and active residues, Ra. Allow the ions comprising the active
molecules/residues to interact with the inert molecules by Coulombs law (MM atoms in
the inert regions are assigned partial charges). Introduce intermolecular pair potentials be-
tween the QM ions and the MM atoms in the system. Introduce intramolecular potentials
between the QM ions and the MM atoms in the polymeric system as required. Introduce
pseudopotential(s) to treat the interaction of the electrons in the system with the inert
molecules and residues.

The only difference between the strongly interacting case and the weakly interacting case
is that active residues are chemically bonded to inert residues. This is a more delicate
case than treating separate molecules. Chemical bonds must be cut and replaced
by pseudopotentials and intramolecular terms. Therefore, allow a few more residues
than necessary to be active so that the effect of the bond-cleavage is down stream from the
chemistry. Choose the least polar bond possible as the cleavage site. Fit the pseudopoten-
tial(s) or “pseudobonds” to treat the cleavage site! Fit empirical bond, bend, torsion and
1-4 intramolecular terms around the cleavage site to correct for errors in geometry, energet-
ics etc. For a discussion of creating pseudobond-pseudopotentials, themselves, via a more
complex least squares procedure to relevant data sets, the reader is referred to [104, 105].

QM/MM using PINY MD : Model systems and HCA II in water

The order Nlog(N) hybrid empirical force field-ab initio dual grid algorithm based on the
GGA-DFT ab initio technique, a plane wave basis set and pseudobond/molecular pseudopo-
tentials, has been implemented in PINY MD [94]. In order to demonstrate the accuracy and
effectiveness of the dual grid approach three problems have been considered. The first, a
Gaussian charge density interacting with a point charge, demonstrates the correctness and
accuracy of the dual grid method on an analytically tractable system. The second system,
a single ab initio water molecule in a bath of empirical model water, can be treated by both
a brute force numerical solution and by the novel fast dual grid treatment described above.
The third system, an enzyme, Human Carbonic Anhydrase II, surrounded by water for a
total of 30,649 atoms with 320 valence electrons of 80 ab initio atoms, cannot be treated

Biomolecular Modeling using Parallel Supercomputers 34-35

using brute force, but only by a reduced order method such as that dual grid algorithm.
A comparison of analytical results to a dual grid treatment of a point charge interacting

with a Gaussian charge density are shown in Table 34.2. Although the small box containing
the Gaussian charge density is treated using a very large plane wave cutoff, E(short)

cut =120Ry,
the large box can be treated using a very small plane wave cutoff, E(long)

cut ≈8Ry without
loss of accuracy. Note, the small box is of side 4Å while the large box is of side 20Å.
The point charge can be positioned directly on the small box boundary with effecting the
results. Only a relative small Cardinal B-spline interpolation order is required for very high
accuracy.

r0 E
(long)
cut m Eext ∆Eext

(Å) (Rydberg) (Hartree) (Kelvin)

4 8 4 -0.132293 0
6 -0.132293 0

6 8 4 -0.088198 1
6 -0.088198 1

8 8 4 -0.066149 1
6 -0.066149 1

TABLE 34.2 The interaction of a Gaussian charge density, κ = 3.779454Å−1, with a point charge at
distance, r0 from its center is presented as a function of large cell plane wave cutoff and Cardinal B-Spline
interpolation order. The large cell size was fixed at Ll = 20Å on edge. The small cell size was fixed at
Ls = 4Å on edge and the small cutoff was fixed at Eshort

cut = 120Ry. The electrostatic division parameter

was set to be α = 6/Ls and ∆Eext = Eext − E(exact)
ext .

Next, a single ab initio water molecule in bath consisting of 31 TIP3P empirical model
water molecules is considered. The 8 valence electrons of the ab initio molecule interact
with the empirical model waters via a molecular pseudopotential. As in the model problem,
the small box surrounding the ab initio model is treated using a very large plane wave
cutoff, Eshort

cut =100Ry but the large box surrounding the full system requires a much more
modest number of plane waves to achieve full accuracy Elong

cut ≈ 8Ry. The Cardinal B-spline
interpolation order required for accuracy is also rather modest.

The HCA-II enzyme solvated by 8,859 waters, for a total of 30,649 atoms is, now, con-
sidered (see Fig 34.8). Only the catalytic zinc the side-chains of active site residues and
the five water molecules in the active site were described under GGA-DFT (320 valence
electrons of 80 atoms). Most of the system is simply the bath and is modeled using CHAR-
MM22 [52]. The electronic energy is shown versus the plane wave cutoff of the large cell
and the Cardinal B-spline interpolation order in Table 34.4. The results demonstrate that
convergenced results can be obtained with a small plane wave cutoff in the big box at small
Cardinal B-spline interpolation orders. This indicates that the dual grid method [103] is an
attractive way to study QM/MM systems. Future work is described below.

34-36 Handbook of Computational Molecular Biology

Ls Elong
cut m Etot ∆Etot

(Å) (Rydberg) (Hartree) (Kelvin)

6 8 6 -20.28133 2000
8 -20.28134 2000

8 8 6 -20.28718 150
8 -20.28718 150

9 8 6 -20.28790 -70
8 -20.28790 -70

TABLE 34.3 The total electronic energy of a single ab initio water molecule immersed in a bath of
TIP3P molecules as a function of large cell plane cutoff and Cardinal B-spline interpolation order. The
large cell size was fixed by the state point, Ll = 12.43Å, on edge. The small cell cutoff was fixed at

Eshort
cut =100Ry. The electrostatic division parameter was set to α = 6/Ls and ∆Etot = Etot − E(std)

tot

where E(std)
tot = −20.28767 is the result of a standard calculation with Ls = Ll = 12.43Å.

Elong
cut m Etot ∆Etot

(Rydberg) (Hartree) (Kelvin)

2 6 -2329.34896 32
8 -2329.34905 3

4 6 -2329.34905 3
8 -2329.34906 0

TABLE 34.4 The total electronic energy of the active site of HCA II immersed in a bath of TIP3P
molecules and CHARMM22 model amino acid residues as a function of large cell plane cutoff and Cardinal
B-spline interpolation order. The large cell size is fixed by the state point, 66.7Å, on edge. The small cell
size was fixed at 18Å on edge and the small cell cutoff was fixed at Eshort

cut =70Ry. The electrostatic division

parameter was set to be α = 9/Ls and the accuracy measure is defined to be ∆Etot = Etot(E
long
cut ,m)−

Etot(4, 8).

Other QM/MM approaches

There are other QM/MM approaches that form important alternatives to the techniques
described, in detail, above [99, 30, 50, 68, 27, 104, 105]. First, rather than using a plane
wave basis set, a Gaussian basis set can be employed. Second, the electronic structure
model need not be GGA-DFT but Hartree Fock, MP2 or even semiempirical methods such
as the empirical valence bond model, can be applied. Third, the method by which the
long range interaction of the bath with the ab initio region need not be treated using the
Euler exponential spline technique given here but can equally well be be evaluated using
Fast Multipole based methods [36]. Fourth, the pseudobond method can be replaced by
the “frozen frontier molecular orbital” method or the “link atom method”. The interested
reader is encouraged to read the substantial literature on these topics.

Biomolecular Modeling using Parallel Supercomputers 34-37

FIGURE 34.8: (See color insert following page 20-4.) Human carbonic anhydrase treated
using the mixed ab initio/empirical force field based approach described in the
text. The full enzyme wherein the wire frame represents atomic sites and the blue
cloud represents the electron density of the valence electrons associated with “ab
initio atoms”.

LeanQM/MM : Integrating LeanMD and LeanCP

At present, a fine grain parallel QM/MM framework is not available. Therefore, future work
will concentrate on combining the LeanMD framework with the plane wave GGA-DFT based
LeanCP framework of the previous sections. On next generation parallel supercomputers
such IBM’s BG/L, this powerful combination could permit studies of enzyme catalysis with
nanoseconds of sampling, allowing for the first time, the effects of the slow fluctuations
of the protein backbone on catalytic activity to be accessed. Computational challenges
involved in achieving high parallel efficiency for the leanQM/MM framework enabled by the
Charm++runtime system include mapping the QM and MM parts to appropriate processors,
managing the independent QM and MM communications patterns so they don’t interfere
and, of course, decomposing the problem so that QM/MM communication is minimized.
The opportunity to perform for both exciting computer science and biophysics in this area
is clearly available.

34-38 References

34.5 Conclusion

Our knowledge of molecular biology and the machinery of life has been increasing in leaps
and bounds. To coalesce this knowledge into a deeper understanding, we need to determine
the structure of a multitude of proteins with high resolution, and understand the relation-
ship between their structure and function. Molecular dynamics simulations help further
this understanding by allowing us to observe the phenomenon occurring at the scale of
picoseconds, and validate our understanding of the basic physical principles embodied in
simulations. Simulations based on classical mechanics, with some approximations of the
quantum-mechanical “reality” are adequate for many situations; however, for simulations
involving making and breaking of bonds, for example, a quantum mechanical simulation is
necessary. The Car-Parinello algorithm and the ability to combine classical and quantum
models in a single simulation are efficient ways of accomplishing this.

In either case, the computational power needed for carrying out the simulations over an
interesting interval of time of the biomolecular phenomena is so large that only parallel
computers offer the hope of completing such simulations in a realistic time. Although large
parallel computers are available now, it is quite challenging to parallelize the simulations
so as to scale to thousands of processors and beyond. This paper presented an overview of
strategies aimed at this problem, and presented in some detail the particular strategies the
authors have been pursuing.

The future research research agenda in this area will be shaped by two separated but
related phenomena. Our capabilities for building faster and larger parallel supercomputers
are constantly increasing. This creates newer challenges for parallelizing the simulations. At
the same time, as our scientific understanding improves, scientists will pose newer compu-
tational problems, and possibly newer algorithms for solving those. Experience from other
fields shows that this will typically lead to more efficient but more complex algorithms,
which will be further difficult to parallelize. Equipped with the right set of computational
tools and techniques, parallel computing experts, numerical analysts and physical scientists
can rise to meet this challenge, but only via intense collaborative efforts.

Acknowledgements

The authors would like to thank Eric Bohm, and Chee Wai Lee for their help in preparing
this manuscript. Much of the research in the author’s research groups reported in this paper
was carried out by several additional co-workers, including Emad Tajkhorshid, Yan Shi,
Ramkumar Vadali, and Vikas Mehta. The authors would also like to acknowledge support
from National Science Foundation (NSF) via grants ITR-0081307 and ITR-0121357, and
from National Institutes of Health (NIH) via grant PHS-5P41RR05969-04

References

[1] D. Alfe, M.J. Gillan, and G.D. Price. The melting curve of iron at the pressures of
the earth’s core from ab initio calculations. Nature, 401:462, 1999.

[2] M.P. Allen and D.J. Tildesley. Computer Simulations of Liquids. Claredon Press,
Oxford, 1989.

[3] G. Bachelet, D. Hamann, and M. Schluter. Pseudopotentials that work. Phys. Rev.
B, 26:4199, 1982.

References 34-39

[4] J.A. Barker. J. Chem. Phys., 61:3081, 1974.
[5] J.A. Barker. Phys. Rev. Lett., 57:230, 1986.
[6] D.A. Beard and T. Schlick. Inertial stochastic dynamics. I. Long-time-step methods

for Langevin dynamics. J. Chem. Phys., 112(17):7313–7322, May 1, 2000.
[7] A.D. Becke. Density-functional exchange-energy approximation with correct assymp-

totic behavior. Phys. Rev. A, 38:3098, 1988.
[8] J.D. Bernal and R.H. Fowler. J. Chem. Phys., 1:515, 1933.
[9] M. Boero, M. Parrinello, and K. Terakura. First principles molecular dynamics study

of ziegler-natta heterogeneous catalysis. J. Am. Chem. Soc., 120:2746, 1998.
[10] B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, and D.J. States et al. CHARMM: A

program for macromolecular energy, minimization, and dynamics calculations. J.
Comp. Chem., 4:187–217, 1983.

[11] A. Brünger, C.B. Brooks, and M. Karplus. Stochastic boundary conditions for molec-
ular dynamics simulations of ST2 water. Chem. Phys. Lett., 105:495–500, 1984.

[12] R. Car. Introduction to density-functional theory and ab initio molecular dynamics.
Quant. Struct. Act. Rel., 21:97, 2002.

[13] R. Car and M. Parrinello. Unified approach for molecular dynamics and density-
functional theory. Phys. Rev. Lett., 55:2471–2474, 1985.

[14] P. Carloni, P.E. Bloechl, and M. Parrinello. Electronic Structure of the Cu,Zn Super-
oxide dimutase active site and its interactions with the substrate. J. Phys. Chem.,
99:1338–1348, 1995.

[15] C.R.A. Catlow, C.M. Freeman, B. Vessal, and S.M. Tomlinson et al. Molecular
dynamics studies of hydrocarbon diffusion in zeolites. J. Chem. Soc. Far. Trans.,
87:1947, 1991.

[16] C. Cavazzoni, G.L. Chiarotti, S. Scandolo, and M. Parrinello et al. Superionic and
metallic states of water and ammonia at giant planet conditions. Science, 283:44,
1999.

[17] J. C. Charlier, A. De Vita, X. Blase, and R. Car. Microscopic growth mechanisms
for carbon nanotubes. Science, 275:646, 1997.

[18] B. Chen, M.G. Martin, and J.I. Siepmann. Thermodynamic properties of the williams,
OPLS-AA and MMFF94 all-atom force fields for normal alkanes. J. Phys. Chem. B,
102:2578, 1998.

[19] C.K. Chu. An Introduction to Wavelets. Academic Press, Boston,MA, 1992.
[20] T.W. Clark, R.V. Hanxleden, J.A. McCammon, and L.R. Scott. Parallelizing molec-

ular dynamics using spatial decomposition. Technical report, Center for Research
on Parallel Comutation, Rice University, P.O. Box 1892, Houston, TX 77251-1892,
November 1993.

[21] W.D. Cornell, P. Cieplak, C.I. Bayly, and I.R. Gould et al. AMBER95. J. Am.
Chem. Soc., 117:5179, 1995.

[22] S.W. deLeeuw, J.W. Perram, and E.R. Smith. Ewald. Proc. R. Soc. London A,
373:27, 1980.

[23] Z. Deng, M.L. Klein, and G.J. Martyna. Quantum simulation studies of metal-
ammonia solutions. J. Chem. Phys., 100:7590, 1994.

[24] Z. Deng, G.J. Martyna, and M.L. Klein. Structure and dynamics of bipolarons in
liquid ammonia. Phys. Rev. Lett., 68:2496–2499, 1992.

[25] M. Diraison, M.E. Tuckerman, and G.J. Martyna. Simulation studies of the struc-
tural properties of liquid ammonia by classical, ab initio and path integral molecular
dynamics. J. Chem. Phys., 110:1096–1103, 1999.

[26] R.M. Dreizler and E.K.U. Gross. Density Functional Theory. Springer-Verlag,
Berlin/Heidelberg, 1990.

34-40 References

[27] M. Eichinger, P. Tavan, J. Hutter, and M. Parrinello. A hybrid method for solutes
in complex solvents: DFT combined with empirical force fields. J. Chem. Phys.,
110:10452, 1999.

[28] D.L. Ermak and J.A. McCammon. Brownian dynamics with hydrodynamic interac-
tions. J. Chem. Phys., 69(4):1352–1360, August 15, 1978.

[29] U. Essmann, L. Perera, M.L. Berkowitz, and T. Darden et al. Particle mesh ewald.
J. Chem. Phys., 103:8577, 1995.

[30] K.P. Eurenius, D.C. Chatfield, B.R. Brooks, and M. Hodoscek. Enzyme mechanism
with hybrid quantum and molecular mechanical potentials I. theory. Int. J. Quant.
Chem., 60:1189, 1996.

[31] F. Allen et al. IBM Syst. J., 40:310, 2001.
[32] G. Galli, R. M. Martin, R. Car, and M. Parrinello. Melting of diamond at high

pressure. Science, 250:1547, 1990.
[33] G. Galli and M. Parrinello. Computer Simulation in Materials Science, 3:283, 1991.
[34] P. L. Geissler, C. Dellago, D. Chandler, and J. Hutter et al. Autoionization in liquid

water. Science, 291:2121, 2001.
[35] M.J. Gillan. Contemp. Phys., 38:115, 1997.
[36] L. Greengard and V. Rokhlin. Physica Scripta, 29A:139, 1989.
[37] H. Grubmüller, H. Heller, and P. Tavan. FAMUSAMM: A new algorithm for rapid

evaluation of electrostatic interaction in molecular dynamics simulations. J. Comput.
Chem., 18:1729–1749, 1997.

[38] J.P. Hansen. MD simulations of statistical mechanical systems. North Holland
Physics, Amsterdam, 1986.

[39] High Performance Computational Chemistry Group. NWChem, a com-
putational chemistry package for parallel computers, version 4.0.1.
http://www.emsl.pnl.gov:2080/docs/nwchem.

[40] J.O. Hirschfelder, C.F. Curtiss, and R.B. Bird. The Molecular Theory of Gases and
Liquids,. John Wiley and Sons, Inc., New York, NY, 1964.

[41] Y.-S. Hwang, R. Das, J.H. Saltz, and M. Hodoscek et al. Parallelizing Molecular Dy-
namics Programs for Distributed Memory Machines. IEEE Computational Science
& Engineering, 2(2):18–29, Summer 1995.

[42] C.L. Brooks III, M. Karplus, and B.M. Pettitt. Proteins: A theoretical perspective.
John Wiley and Sons, NY, 1988.

[43] J.A. Izaguirre, S. Reich, and R.D. Skeel. Longer time steps for molecular dynamics.
J. Chem. Phys., 110(20):9853–9864, May 22, 1999.

[44] L.V. Kale, G. Zheng, C.W. Lee, and S. Kumar. Scaling applications to massively
parallel machines using projections performance analysis tool. In Future Generation
Computer Systems Special Issue on: Large-Scale System Performance Modeling
and Analysis, number to appear, 2005.

[45] R.k. Kalia, T.J. Campbell, A. Chatterjee, and A. Nakano et al. Multiresolution
algorithms for massively parallel molecular dynamics simulations of nanostructured
material. Computer Physics Communications, 128(245), 2000.

[46] L. Kleinman and D.M. Bylander. Efficacious form for model pseudopotentials. Phys.
Rev. Lett., 48:1425, 1982.

[47] W. Kohn and L.J. Sham. Phys. Rev., 140:A1133, 1965.
[48] C. Lee, W. Yang, and R.G. Parr. Development of the Calle-Salvetti correlation energy

into a functional of the electron density. Phys. Rev. B, 37:785, 1988.
[49] E. Lindahl, B. Hess, and D. van der Spoel. GROMACS 3.0: a package for molecular

simulation and trajectory analysis. J. Mol. Mod., 2001.
[50] P.D. Lyne, M. Hodoscek, and M. Karplus. A hybrid QM-MM potential employing

References 34-41

HF or DFT methods. J. Phys. Chem. A, 103:3462, 1999.
[51] Q. Ma, J. Izaguirre, and R.D. Skeel. Verlet-I/r-RESPA is limited by nonlinear insta-

bility. SIAM J. Sci. Comput., 24(6):1951–1973, May 6, 2003.
[52] A. MacKerell Jr., D. Bashford, M. Bellott, and R. L. Dunbrack et al. CHARMM22.

J. Phys. Chem. B, 102:3586, 1998.
[53] P.A. Madden and M. Wilson. Chem. Soc. Rev., 25:339, 1996.
[54] G.J. Martyna and M.E. Tuckerman. A reciprocal space based method for treating

long range interactions in ab-initio and force-field-based calculations in clusters. J.
Chem. Phys., 110:2810, 1999.

[55] D. Marx and J. Hutter. Ab initio molecular dynamics: Theory and implementation.
in Modern methods and algorithms of quantum chemistry (J. Grotendorst (Ed.),
Forschungszentrum, Juelich, NIC Series), 1:301–449, 2000.

[56] D. Marx and M. Parrinello. Ab initio path integral molecular dynamics. Z. Phys. B,
95:143, 1994.

[57] D. Marx, M.E. Tuckerman, J. Hutter, and M. Parrinello. Nature, 367:601, 1999.
[58] D. Marx, M.E. Tuckerman, and G.J. Martyna. Comp. Phys. Comm., 118:166, 1999.
[59] P. Minary, J. Morrone, D. Yarne, and M.E. Tuckerman et al. A new reciprocal space

based treatment of long range interactions on surfaces. J. Chem. Phys., 121:5351,
2004.

[60] P. Minary, M.E. Tuckerman, K.A. Pihakari, and G.J. Martyna. A new reciprocal space
based treatment of long range interactions on surfaces. J. Chem. Phys., 116:5351,
2002.

[61] S. Miyamoto and P.A. Kollman. SETTLE: An analytical version of the SHAKE and
RATTLE algorithm for rigid water molecules. J. Comput. Chem., 13(8):952–962,
1992.

[62] M. Nelson, W. Humphrey, A. Gursoy, and A. Dalke et al. NAMD— A parallel,
object-oriented molecular dynamics program. J. Supercomputing App., 1996.

[63] R.G. Parr and W. Yang. Density Functional Theory of atoms and molecules.
Oxford University Press, Oxford, 1989.

[64] M. Parrinello. Solid State Commun., 102:107, 1997.
[65] A. Pasquarello, I. Petri, P.S. Salmon, and O. Parisel et al. First solvation shell of the

Cu(II) aqua ion: Evidence for fivefold coordination. Science, 291:856, 2001.
[66] M.C. Payne, M. Teter, D.C. Allan, and T.A. Aria et al. Rev. Mod. Phys., 64, 2002.
[67] J.P. Perdew and A. Zunger. Self-interaction correction to density functional theory.

Phys. Rev. B., 23:5048, 1981.
[68] D.M. Philipp and R.A. Friesner. Mixed ab initio QM/MM modeling using frozen

orbitals and tests with analnine peptides. J. Comp. Chem., 20:1468, 1999.
[69] J.C. Phillips, G. Zheng, S. Kumar, and L.V. Kalé. NAMD: Biomolecular simulation

on thousands of processors. In Proceedings of SC 2002, Baltimore, MD, September
2002.

[70] M.R.S. Pinches, D.J. Tildesley, and W. Smith. Large scale molecular dynamics on
parallel computers using the link-cell algorithm. Molecular Simulation, 6(1):51, 1991.

[71] S. J. Plimpton and B. A. Hendrickson. A new parallel method for molecular-dynamics
simulation of macromolecular systems. J Comp Chem, 17:326–337, 1996.

[72] J.W. Ponder and F.M. Richards. An efficient Newton-like method for molecular
mechanics energy minimization of large molecules. J. Comp. Chem., 8:1016–1024,
1987.

[73] A. Rahman. Correlations in the motion of liquid argon. Phys. Rev. A., 136:405,
1964.

[74] D.K. Remler and P.A. Madden. Mol. Phys., 70:921, 1990.

34-42 References

[75] J.P. Ryckaert, G. Ciccotti, and H.J.C. Berendsen. Numerical integration of the carte-
sian equation of motion of a system with constraints: molecular dynamics of n-alkanes.
J. Comput. Phys., 23:327–341, 1977.

[76] T. Schlick. Molecular Modeling and Simulation: An Interdisciplinary Guide, vol-
ume 21 of Springer Series in Interdisciplinary Applied Mathematics. Springer-
Verlag, New York, 2002.

[77] I.J. Schoenberg. Cardinal Spline Interpolation. Society for Industrial and Applied
Math, Philadelphia,PA, 1973.

[78] P. L. Silvestrelli and M. Parrinello. Water dipole moment in the gas and liquid phase.
Phys. Rev. Lett., 82:3308, 1999.

[79] R.D. Skeel. Integration schemes for molecular dynamics and related applications.
In M. Ainsworth, J. Levesley, and M. Marletta, editors, The Graduate Student’s
Guide to Numerical Analysis, volume 26 of Springer Series in Computational
Mathematics, pages 119–176. Springer-Verlag, 1999.

[80] M.M. Smith. Histone structure and function. Curr. Opinion Cell Biol., 3:429–437,
1991.

[81] M. Sprik. Polarizable water with double nose. J. Phys. Chem., 95:2283, 1991.
[82] F.H. Stillinger and C. David. Dynamics and ensemble averages for the polarization

models of molecular interactions. J. Chem. Phys., 71:1647, 1979.
[83] E. Tajkhorshid, P. Nollert, M.O. Jensen, and L.J.W. Miercke et al. Global orienta-

tional tuning controls the selectivity of the aquaporin water channel family. Science,
296:525–530, 2002.

[84] N. Troullier and J.L. Martins. Phys. Rev. B, 43:1993, 1991.
[85] M. Tuckerman, B.J. Berne, and G.J. Martyna. Reversible multiple time scale molec-

ular dynamics. J. Chem. Phys, 97(3):1990–2001, 1992.
[86] M. Tuckerman, G. Martyna, M.L. Klein, and B.J. Berne. Efficient Molecular Dynam-

ics and Hybrid Monte Carlo Algorithms for Path Integrals. J. Chem. Phys., 99:2796,
1993.

[87] M.E. Tuckerman. Ab initio molecular dynamics: Basic concepts, current trends and
novel applications. J. Phys. Condensed Matter, 14:R1297, 2002.

[88] M.E. Tuckerman, J. Hutter, and M. Parrinello. J. Chem. Phys., 102:859, 1995.
[89] M.E. Tuckerman, D. Marx, M.L. Klein, and M. Parrinello. On the quantum nature

of the shared proton in hydrogen bonds. Science, 275:817, 1997.
[90] M.E. Tuckerman, D. Marx, and M. Parrinello. The nature and transport mechanism

of hydrated hydroxide ions in aqueous solution. Nature, 417:925, 2002.
[91] M.E. Tuckerman and M. Parrinello. J. Chem. Phys., 101:1301, 1994.
[92] M.E. Tuckerman and M. Parrinello. J. Chem. Phys., 101:1316, 1994.
[93] M.E. Tuckerman, P. J. Ungar, T. von Rosenvinge, and M. L. Klein. Ab initio molec-

ular dynamics simulations. J. Phys. Chem., 100:12878, 1996.
[94] M.E. Tuckerman, D.A. Yarne, S.O. Samuelson, and A.L. Hughes et al. Exploiting

multiple levels of parallelism in molecular dynamics based calculations via modern
techniques and software paradigms on distributed memory computers. Comp. Phys.
Comm., 128:333, 2000.

[95] J.C. Tully. Molecular dynamics with electronic transitions. J. Chem. Phys., 93:1061,
1990.

[96] R. Vadali, Y. Shi, S. Kumar, and L.V. Kale et al. massively parallel cpaimd. J.
Comp. Chem., 25:2006, 2004.

[97] A. De Vita, G. Galli, A. Canning, and R. Car. A microscopic model for surface-
induced diamond-to-graphite transitions. Nature, 379:523, 1996.

[98] A. Warshel. Computer Modeling of Chemical Reactions in Enzymes and Solutions.

References 34-43

John Wiley & Sons, 1991.
[99] A. Warshel and M. Levitt. QM/MM first time. J. Mol. Biol., 103:227, 1976.

[100] A. Warshel and R. M. Weiss. J. Am. Chem. Soc., 102:6218, 1980.
[101] P.K. Weiner and P.A. Kollman. AMBER: Assisted model building with energy re-

finement. A general program for modeling molecules and their interactions. J. Comp.
Chem., 2(3):287–303, 1981.

[102] J.A. White and D.M. Bird. Implementation of gradient-corrected exchange-
correlation potentials in car-parrinello total-energy calculations. Phys. Rev. B,
50:4954, 1994.

[103] D.A. Yarne, M.E. Tuckerman, and G.J. Martyna. A dual length scale method for
plane-wave-based, simulation studies of chemical systems modeled using mixed ab
initio/empirical force field descriptions. J. Chem. Phys., 115:3531, 2001.

[104] Y. Zhang, T. Lee, and W. Yang. A pseudobond approach to combining quantum
mechanical and molecular mechanics methods. J. Chem. Phys., 110:46, 1999.

[105] Y. Zhang, T. Lee, and W. Yang. Free energy calculation on enzyme reactions with ef-
ficient iterative procedure to determine minimum energy paths on a combined surface.
J. Chem. Phys., 112:3483, 2000.

35
String Search in External Memory:

Data Structures and Algorithms

Paolo Ferragina
University of Pisa, Italy

35.1 Introduction . 35-1
35.2 Background and Terminology . 35-6
35.3 The Suffix Array . 35-8

I/O issues • Construction • Future directions of
research

35.4 The Suffix Tree . 35-18
I/O issues • Construction • Future directions of
research

35.5 The String B-tree . 35-32
Engineering • Construction • Future directions of
research

35.6 Final Comments . 35-39

35.1 Introduction

Data should be cheap to store and fast to retrieve or process. Unfortunately there are
fundamental reasons why we cannot design a computer memory that is at the same time
cheap, compact and fast. No signal can propagate faster than light, and wires reaching ev-
ery single memory cell would need too much room. As a result, given a storage technology
and a desired access latency, there is only a finite amount of data reachable within this
time limit. The simplest, and most widely used compromise to escape this problem is the
memory hierarchy.

Real memory hierarchies on current PCs and workstations are very complex because they
consist of multiple levels, all with their own technological specialties: L1 and L2 caches,
internal memory, one or more disks, other external storage devices (like CD-ROMs, DVDs
and tapes), and memories of multiple hosts over a network. Each of these memory levels
has its own cost, capacity, latency, bandwidth and access method. The closer a memory
level is to the CPU, the smaller, the faster and the more expensive it is. Currently few
nanoseconds suffice to access the processor caches, whereas milliseconds are yet needed to
fetch data from disks. Nonetheless, the power of this memory organization is in that it may
be able to offer the expected access time of the fastest level while keeping the average cost
per memory cell near the one of the cheapest levels, provided that data are properly cached
and delivered to the requiring algorithms.

Virtual memory systems work well if the working set of an algorithm (roughly speaking,
the set of pages it will reference in the near future) is small and most of it can be stored
in internal memory. In this case, the caching and delivering of data is simple and effective.

35-1

35-2 Handbook of Computational Molecular Biology

In many current applications, however, the avalanche of data is not accompanied by its
accurate organization over the hierarchical memory, so that the working set is not small
and the overall performance results very poor. In fact, the larger is the amount of data to
be processed, the wider is the amount of memory needed to store this data, the higher is
the number of memory levels involved in the data storage and hence, the more complicated
is the design of algorithms and data structures that cleverly map these data on the various
memory levels to access them efficiently. Neglecting questions pertaining to the cost of
memory references in a hierarchical system may even prevent the use of an algorithm on
large input data. Engineering research is trying nowadays to improve the input/output
subsystem to reduce the impact of these issues, but it is very well known [177] that the
improvements achievable by means of a proper arrangement of data and a properly structured
algorithmic computation abundantly surpass the best expected technology advancements.
Consequently, the design principles and data structuring tools presented in this chapter
should pervade the development of any modern data structure and algorithm devoted to
the processing of large (sequence, string) data.

In order to reason about algorithms and data structures for hierarchal memories, we need
a model of computation that grasps the essence of real situations so that algorithms that are
good in the model are also good in practice. Accurate disk models are complex [155], and it is
virtually impossible to exploit all the fine points of memory characteristics systematically,
either in practice or for algorithmic design. In this chapter we will refer to two models:
the external memory model [177] and the cache oblivious model [70]. The former received
much attention in the literature because of its simplicity and reasonable accuracy. Here a
computer is abstracted to consist of only two memory levels: the internal memory of size M ,
and the (unbounded) disk memory which operates by reading/writing data by blocks of size
B. This view is, however, not limited to identifying the external memory with the disk; in
fact, we are actually free to choose any two levels of the memory hierarchy to play the role
of the internal and the external memory of the model. The elegant cache-oblivious model
still assumes a two-level view of the computer memory but, on the other side, it allows
to prove results for an unknown multilevel memory hierarchy. Cache-oblivious algorithms
know only the existence of the memory hierarchy, but not its parameters which come into
play at analysis time. As a consequence such algorithms are designed for a two-level memory
hierarchy but tune automatically to hierarchies with arbitrarily many memory levels. While
these results seem impossible, a recent body of research has developed algorithms and data
structures that perform as well, or nearly as well, as standard external-memory solutions
which know all about the memory hierarchy (see [49, 109] and references therein).

The issues regarding the design of external-memory algorithms and data structures obvi-
ously pertain to the development of efficient computational biology applications. Numerous
and large databases holding DNA and protein sequences are now readily available over the
Web and are quickly becoming the “lifeblood of molecular biology” [179]. The volume of
these data is growing daily and seems to increase significantly: four years ago, Genbank
totalled around 10Gb of DNA sequences, now it approaches 40Gb; Swissprot and Trembl
stored a smaller volume of protein data that grew significantly in the last years. Whenever
a new gene is cloned and sequenced, visiting the appropriate database to search for some
patterns within its content is the next step for a molecular biologist. The search step is
usually carried out by sequentially scanning the entire database using a screening approach
that identifies the set of desired sequences (e.g. BLAST [5, 4], FASTA [117, 150, 149, 151],
FLASH [26], PatternHunter [31]). This approach inevitably suffers from a prolonged re-
sponse time when dealing with a large amount of database sequences, and its limitations
are especially evident when the result set is small compared with the overall database size.
Other bio-applications tend to introduce even more stringent performance requirements

String Search in External Memory: Data Structures and Algorithms 35-3

that lead the scan-based algorithms to further reach their limits. Consider, for example,
the comparison of an EST database to itself for the purpose of clustering, or the shotgun
sequencing where an all-against-all comparison of large amounts of data need to be com-
puted, or finally, the case of a database accessible over the Web that must support several
queries per second. Since many bio-queries can be expressed as pattern matching tasks [79],
string-matching data structures are key tools to support these queries efficiently by reducing
the portion of the database to be fully examined. Actually, despite the rapid growth in the
database size, the existing biological sequences are relatively stable (most updates concerns
the insertion of a new sequence). This further justifies the potential benefit of supporting
searches through a string data structure since the construction cost can be easily amortized
over many searches.

In this chapter with the term “index” we mean the class of full-text indexing data struc-
tures. Namely, string data structures that keep a compact but detailed picture of the full
content and structural properties of the string data they index thus allowing to support
powerful search operations, like substring searches or statistical, approximated or gener-
al fuzzy searches [79]. These data structures, and their several variants, constitute today
the “lifeblood” of any current computational biology algorithm. The hierarchical memory
setting we consider in this chapter poses many challenges in turning these indexes to be
efficient on disk, or multi-level memory, systems. These I/O-issues will be the seeds from
which the discussion of the next sections will depart from.

Space constraints prevent us to deal with the I/O-issues related to all full-text indexes
known in the literature. We content ourselves with three, yet significant, indexes: the
well-known Suffix Tree [181, 127] and Suffix Array [121] data structures, as well the less
famous String B-tree [59] born within the theoretic string-matching field but currently the
best data structure for supporting substring searches on a disk memory. Each of these
data structures offers interesting algorithmic and structural specialties that are worth of
investigation, especially in the I/O-setting. Therefore we will devote one section to each of
them, commenting on the following three main aspects of I/O-computations.

The first aspect concerns with the so called I/O-bottleneck in which a näıve index organiza-
tion might incur. If questions pertaining to the cost of memory references in a hierarchical
system are not properly taken into account, it may be the case that index update and
query operations might spend most of the time in transferring data to/from the disk (or
among the memory levels) with a consequent sensible slowdown of performance. Hence, we
will largely comment on the index scalability and the disk consciousness of index design,
nowadays hot research topics. They are important issues because they have been shown
to induce a positive effect not limited just to mechanical storage devices, but also to all
other memory levels. In this setting we will discuss two main approaches to cope with the
I/O-bottleneck: index packing and index design from scratch. The former approach aims
at devising strategies for packing known indexes onto disk pages, in order to minimize the
I/O-traffic induced by query and update operations executed over them. This is typical of
suffix trees and suffix arrays, for which we will resort also to the cache-oblivious model. The
latter approach explores innovative indexing data structures which are explicitly designed
to take advantage of the blocked access to the disk memory. This is the case of the String
B-tree and its variants.

The second aspect concerns with the efficient construction of indexes on very large text
collections: “We have seen many papers in which the index simply ‘is’, without discussion
of how it was created. But for an indexing scheme to be useful it must be possible for
the index to be constructed in a reasonable amount of time,” [186]. The construction
phase may be, in fact, a bottleneck that can prevent an index to be used even in medium-
scale applications [110, 58, 88, 156]. We will discuss state-of-the-art algorithms for index

35-4 Handbook of Computational Molecular Biology

construction, and detail many interesting techniques which have been published in the last
two years and have opened new interesting avenues of research.

Starting from the consideration that “space optimization is closely related to time opti-
mization in a disk memory” [106], we will also discuss in detail the third aspect: space-
succinct implementation of full-text indexes. Here, data compression appears as an attrac-
tive tool because it allows not only to squeeze the space occupancy of an index, but also
to improve the computing speed of its operations because they can better use the fast and
small memory levels close to CPUs, reduce the disk access time, virtually increase the disk
(memory and cache) bandwidth, and come at a negligible cost because of the significan-
t speed of current CPUs. Although it is very well known how compression may operate
at the string level (see e.g. [162]), the issues concerned with the compression of indexing
data structures is an interesting [33, 135, 132], and recently revitalized topic of research
(starting from [64, 77]). Succinct implementations of suffix trees and String B-trees will be
discussed in detail, whereas the recent advances onto suffix array compression will be men-
tioned briefly because they are too complicated to be included in this introductory chapter.
Every next section will be concluded with a description of challenging open problems and
possible future directions of research.

The present chapter naturally complements Chapter 5, where a RAM-based view of the
above full-text indexes has been provided. Additionally to the features highlighted above,
our chapter offers some distinguishing features with respect to other surveys present in the
literature. It dedicates a special attention to Suffix Arrays because of the recent scientif-
ic achievements that have shed new light on some fascinating structural and algorithmic
properties of this data structure (Section 35.3). Moreover it presents a deep analysis of I/O
issues in disk mapping and engineering of Suffix Trees (Section 35.4). Finally, it details
String B-trees and proposes a novel engineering solution that makes them appealing for
real sequence databases (Section 35.5). All of these issues and details are conveyed to the
reader with the aim of convincing him/her that the text indexing field has grown to such a
complicated stage that various issues come into play when studying it: data structure de-
sign, database principles, data compression techniques, architectural considerations, caching
policies. The expertise nowadays required to design a good index is therefore transversal
to many algorithmic fields and much more study on the orchestration of known, or novel,
techniques is needed to make progress in this fascinating topic. This chapter illustrates
some of the key ideas which should constitute, in our opinion, the current background of
every index designer. A large, but obviously not complete, literature will accompany our
discussion and should be the reference where an eager reader may find further technical
details and research hints.

Beyond the exact substring searches

Suffix tree, suffix array and string B-tree are very well-known data structures for supporting
substring searches, that is, the retrieval of all occurrences in an indexed string of an arbitrary
pattern sequence. In biological applications the goal is not only to find exact matches but
also to allow some search fuzziness [79, 111, 47, 125]: mismatches, gaps, regular expressions
or motif extraction, just to cite a few. In general the sensitivity to detect weak relationships
between the query sequence and the indexed sequence is linked to performance, equivalent to
the time required to satisfy the query. Known indexes try to balance these factors, however
provably efficient performances have still to be achieved [141]. Recently, many interesting
results have appeared in the literature shading some new light on this challenging problem.
Below we will sketch some of the most promising alternative approaches to fuzzy searches in

String Search in External Memory: Data Structures and Algorithms 35-5

the external memory setting, and refer the reader to Chapters 6 and 36, and our bibliography
for references and research material. At this point, and just for the sake of clarity, we state
that most of these sophisticated searches boil down to substring searches, so that full-text
indexes play a crucial role in that setting too.

Various similarity measures are known in the literature. Here we concentrate on the edit
distance between two strings, that is, the number of character edits (like insertion, deletion
and substitution of single characters) that allow one string to be transformed into the other.
This distance model is appropriate in computational genomics [164] and therefore widely
used. The edit distance computation between two strings of length n and m requires O(nm)
time by using dynamic programming [79].1 This quadratic bound is unacceptably high in
the case of large databases so that the goal of the fuzzy indexes is to improve it substantially.
Several proposals exist in the literature of computational biology and string matching to
design good indexes for efficient similarity-based searches. For the sake of clarity and brevity,
we classify those proposals into four groups [141, 145] and briefly comment on them.

Backtracking (see e.g. [14, 35, 97, 175]) uses the suffix tree, suffix array or DAWG [43]
built over the indexed string in order to factor out its repetitions. A scan-based algorithm
over the string is then simulated by backtracking on the data structure. These algorithms
take time exponential in the pattern length and the number of errors allowed, but turn out
to be in many cases independent of the indexed string length. This makes them attractive
when searching for short and very similar patterns.

Partitioning (see e.g. [15, 97, 168, 172, 173, 175]) divides the pattern into pieces to ensure
that some of these pieces occur exactly into the indexed string (these pieces are usually called
q-grams). Any index able to perform exact searches is used to detect the q-gram occurrences
which are then checked for a full match with a Dynamic Programming approach [145].
These algorithms work well when q is sufficiently long so as to reduce the false matches.
This implies that the error ratio between number of errors and pattern length should be low.
To obtain much faster and/or more efficient filtering we may use a variant of q-grams, called
gapped q-grams, consisting of a subset of q characters of a random [26] or best chosen [23]
arbitrary shape. The first application of those ideas to an external memory setting has
been proposed in [22], and we refer the interested reader there for further details and
references (see also [47, 48, 111]). Overall the partitioning approach achieves fast delivery
of approximate occurrences but it is suitable only for searching highly similar sequences.

The third class is a hybrid between the other two (see e.g. [140, 143]). The pattern is
divided into long pieces that can still contain errors, but they should be very few. These
pieces are then searched using backtracking, and the candidate occurrence positions are
checked as in the Partitioning method. The hybrid approach is more effective because it
can find the good balance between piece length to search and error level allowed. The time
complexity is O(nλ) for some positive λ < 1 that depends on the error level (here n is the
database size, or equivalently, the length of the indexed string(s)). This approach tolerates
moderate error ratios.

The fourth class is more recent and consists of sophisticated approaches that exploit
the metric properties of the edit distance and deal with arbitrarily error ratios. Its basic
component is the construction of a mapping f (called an embedding) which maps any string
s into a multi-dimensional vector f(s) such that, for any pair of strings s and s′, the lp

1Apart from some progress on problem relaxations (see e.g. [40, 137, 139] and references therein), the
result of [126] taking O(nm/ log n) time for computing the edit distance between two sequences of length
n and m, is the best to date (see also [44]).

35-6 Handbook of Computational Molecular Biology

distance ||f(s)− f(s′)||p is approximately equal to the edit distance between s and s′. The
approximation factor is called distortion of the embedding f . A low-distortion embedding
would be very useful because: (1) one could reduce a similarity search between sequences to
an analogous problem in normed spaces, thus exploiting many known solutions [92, 112, 113];
(2) if computing f(s) took subquadratic time, then the edit distance could be approximated
in subquadratic time as well. Unfortunately little is known on the embedability of the edit
distance into normed spaces, apart from some weak lower bounds [8] and some fascinating
theoretical achievements [91, 36], whose practical impact is yet to be fully investigated.

To circumvent this lack of “embedding results” various authors tried either to solve a
variation of the problem or to impose some relaxations to its performance guarantees.
For example, the concept of block edit distance has been introduced to model the case of
movements of arbitrarily long contiguous blocks of characters in one operation.2 This metric
can be embedded in l1 with distortion O(log log∗), where is the maximum length of the
strings in the database [137, 40, 138, 139]. If we are instead interested in efficient average
bounds, the metric index proposed in [27] can be a good candidate for efficient complex
searches (cfr. [183]). It allows to find the occ approximate matches of a pattern P [1, p] as a
substring of a text T [1, n] in O(p log2 n+ p2 + occ) average time, using O(n log n) space.

These strictly-algorithmic approaches have been recently complemented with interesting
techniques borrowed from the area of signal processing [99, 98] and speech recognition [2].
Their impact on computational biology still needs further validating experiments.

35.2 Background and Terminology

Let T [1, n] be a text string of length n drawn from an alphabet Σ. When not explicitly said
Σ is assumed to be of constant size ranging from 4 (DNA bases) to 20 (aminoacids) symbols.
The ith suffix Ti of the text T is the substring T [i, n] extending from the ith character of T
until its end. The operator • is used to denote the concatenation of strings, and lcp(α, β)
is used to indicate the longest common prefix between the two strings α and β, that is, the
largest k such that α[1, k] = β[1, k]. Since we will deal with rooted trees, the notion of
lowest common ancestor lca(u, v) between two nodes u, v will be largely exploited.

Text suffixes play a crucial role in the efficient implementation of (exact) substring search-
es and therefore in the definition of full-text indexes. Let P [1, p] be a pattern to be searched
as a substring of the text T [1, n], and let SUF(T) be the set of all text suffixes sorted lex-
icographically. If P occurs at text position i then P = T [i, i + p − 1]; or equivalently, P
is a prefix of Ti. As a consequence, there is a bijective correspondence between the text
suffixes prefixed by P and the pattern occurrences in T . This correspondence leads to t-
wo nice observations which are algorithmically useful: (1) the suffixes prefixed by P occur
contiguously into SUF(T), because of its ordering; (2) this contiguous portion occurs after
the lexicographic position of P in SUF(T). These two observations allow us to reduce the
substring-search problem between P and T to the prefix-search problem between P and the
ordered string set SUF(T). This latter problem is intuitively easier to deal with, and an
apparent algorithmic solution could be based on binary searching SUF(T). However the ar-
bitrarily long strings belonging to SUF(T) pose additional time-efficiency and space-coding
problems that make this problem challenging. Actually, all the data structures that we

2Block edit operations occur as a consequence of large scale inter or intra chromosomal genomic dupli-
cation, genome duplications or rearrangements [94]. We cannot allow any block operation because the
problem becomes NP-hard [118].

String Search in External Memory: Data Structures and Algorithms 35-7

CPU Cache
L1 and L2

Internal
Memory
(size M)

B Internet
few words

Electronic Devices Mechanical Devices The Net

Packets1
Disk(s)

Disk Page
(size B)

FIGURE 35.1: An example of memory hierarchy of a modern computer.

describe in the present chapter deploy the two basic observations above and differentiate
themselves in the way the set SUF(T) is implemented on the hierarchical memory, and in
the way the I/O-conscious prefix-searches are executed over this implementation.

To evaluate the performance of algorithms and data structures in hierarchal memories
we will deploy the external memory model [177] and the cache oblivious model [70]. In
the external-memory model the algorithm designer has to worry only about two memory
levels — internal memory and the disk(s) — and thus only of two parameters: disk-block
size B and internal-memory size M . Data between the internal memory and the disk are
transferred in blocks of size B (called disk pages). The algorithm performance is evaluated
by counting: (a) the number of disk accesses (hereafter I/Os), (b) the internal running
time (CPU time), and (c) the number of disk pages occupied by the data structure or used
by the algorithm as its working space. This simple model suggests, correctly, that a good
external-memory algorithm should exploit both spatial locality and temporal locality. The
former imposes a data organization onto the disk(s) that makes each accessed disk block
as much useful as possible; the latter imposes on the algorithms to execute as much useful
work as possible onto data fetched in internal memory, before they are written back to disk.
These are the two golden rules underlying the design of the efficient algorithms and data
structures described in the next sections. For the sake of clarity we also remark that the
term “I/O” and the two-level view must not suggest to the reader that the external memory
has to be identified with the disk memory; in fact, we are actually free to choose any two
levels of the memory hierarchy for the internal and external memory levels of the model,
with their M and B parameters properly set.

The cache oblivious model still assumes a two-level view of the computer memory but
its parameters are unknown to the algorithm designer. These parameters come into play
only at the time of algorithm analysis. The nice feature of this model is that its algorithms
are designed for a two-level memory hierarchy but tune automatically to hierarchies with
arbitrarily many memory levels [49, 109]. The literature concerning the design of cache-
oblivious string data structures is still poor in results. We will deal with the ones pertaining
with suffix tree design in the next sections.

35-8 Handbook of Computational Molecular Biology

35.3 The Suffix Array

The suffix array [121] (or PAT array [73]) is the simplest, the most succinct, easy to code,
and elegant data structure currently used to support substring searches. The suffix array
of a text T [1, n] is an array SA of n integers in the range [1, n] succinctly representing the
string set SUF(T). Namely, SA[1] is the starting position in T of the smallest suffix in
the lexicographic order, SA[2] is the starting position of the second one, and so on. For
example, the suffix array for the text T = GAGCT is SA = [2, 4, 1, 3, 5] since T [2, 5] = AGCT
is the suffix with the lowest lexicographic rank (hence SA[1] = 2), followed by T [4, 5] = CT
(hence SA[2] = 4), then by T [1, 5] = GAGCT (hence SA[3] = 1), and so on.

Notice that SA, coupled with the text T , provides a succinct encoding of the set SUF(T).
Since any integer can be encoded within O(log n) bits, O(n logn) bits suffice to store both
the suffix array and the text. In practice the integers are limited to be smaller than 232,
hence 5n bytes suffice to store SA (4 bytes per suffix pointer) and T (1 byte per character).
Notice that Ω(n logn) is not a lower bound to the storage complexity of SA since |Σ|n is
the number of existing suffix arrays for n-long strings drawn from the alphabet Σ, but it
is n! & |Σ|n. Hence the possible instances of SA[1, n] are much fewer than the number of
permutations of n integers. It is therefore not surprising mathematically, but challenging
algorithmically, that a much succinct [77], or even compressed [68, 64, 75, 76, 69], encodings
of SA and T do exist and can be built efficiently [86, 85, 24, 124]; however, we do not go
into further details because these results are too involved for this introductory chapter and
moreover they are designed so far only for internal-memory use. Hereafter we then assume
to encode SA in its raw form using one memory word per integer (i.e. 4 bytes per suffix
pointer).

Searching for the occ occurrences of an arbitrary pattern P [1, p] into T can be performed
via (an indirect) binary search over SA thus taking O(p log n + occ) time. Actually, the
counting of the occ occurrences does not need their retrieval and can thus be performed in
O(p logn) time: it suffices to determine the extremes of the subarray containing the suffixes
in SUF(T) prefixed by P . When SA is coupled with information about the longest com-
mon prefixes of some text suffixes, taking additional O(n logn) bits of storage (cfr. [158]),
substring searches can be speeded up to take O(p+ logn) time.

Given its simple array structure the mapping of, and the search into, a suffix array on
disk seems trivial. Just partition the array in B-sized blocks, and map them onto a con-
tiguous sequence of disk pages. But the coupling of SA and T in the pattern searches poses
challenging algorithmic problems whose investigation will start in this section, with simple
considerations and solutions, and will lead to precious ideas and non obvious developments
in Section 35.5.

35.3.1 I/O issues

Let us start from the previously sketched proposal. Partition SA[1, n] and T [1, n] into
disk pages of size B each, allocated contiguously on disk. The binary search, to retrieve the
subarray of SA containing suffixes which are prefixed by P , is now executed over the Θ(n/B)
disk pages containing SA. However every binary-search step, they are Θ(logn) in the worst
case, still needs to access T for retrieving the suffix to be compared with P . Thus a binary-
search step takes O(p/B) I/Os. Notice that the suffix retrieval is unavoidable, even if the
pattern is assumed to reside in internal memory. As a result the overall substring search
cost is O((p/B) logn+occ/B) I/Os, where the second additive term comes from the cost of
retrieving the pattern occurrences via a simple disk scan. Obviously the reduction from p to
�p/B� is a small improvement because, in practice, p is usually short compared to the page

String Search in External Memory: Data Structures and Algorithms 35-9

size B. The use of an additional lcp information would achieve O(p/B + logn + occ/B)
I/Os, which is again not enough to call this solution I/O-efficient. Another drawback of this
solution resides in its static nature: adding to, or removing from, SA some suffixes would
affect its contiguous storage thus requiring its complete reorganization.

THEOREM 35.1 A suffix array partitioned among disk pages of size B supports the
search for the occ occurrences of a pattern P [1, p] within a text T [1, n] in O((p/B) log n +
occ/B) I/Os. In the case that an additional lcp information is provided, the search cost
becomes O((p/B) + logn+ occ/B) I/Os. The space occupancy is of O(n/B) disk pages.

Our second proposal for the disk mapping of SA exploits the not negligible size M of
the internal memory of modern computers. In the case that T fits in internal memory, the
random accesses to the text suffixes induced by the binary search over SA would be not
much of a problem, thus turning the search cost to O(log(n/B)) I/Os. But in the more
general situation in which neither SA nor T fit into internal memory, only a portion of these
arrays could be cached and the on-line nature of the problem does not allow to predict what
portions of them would be better to prefetch. A solution to this dilemma is offered by the
use of the so called supra-index.

A supra-index over SA is obtained through a sampling process of parameters s and :
copy in internal memory the first characters of every other s suffix in SA. The result
is a coarser version of SA that can be fit in internal memory given a proper selection of
the parameters s and . The binary search now starts in the supra-index and exploits the
available characters to identify, without executing any I/Os, a pair of suffixes that delimit
the portion of SA containing the pattern occurrences. After that, the disk-based binary
search is executed over that portion of SA thus requiring some I/Os. Their actual number
depends on the effectiveness of the sampling process with respect to the queried pattern, and
this is obviously unpredictable in advance. In practice [13], a 25% to 30% reduction in the
search time has been observed. The expensive part of the search still remains the random
access to the text suffixes, in this case it may be useful to deviate from standard binary
search in order to achieve time reductions close to 60%, as reported in [144]. Although
variations on the sampling process may be proposed — dealing with, for example, a non
uniform sampling of the suffixes or a different number of characters copied from each suffix
— the designed solutions would be yet static and their performance would strongly depend
on the searched pattern and the indexed text structure thus resulting, in the worst case,
the same as the approach without supra-index.

Nonetheless the sampling idea appears intriguing and worthy of further investigation. In
fact, if we choose s = Θ(B) and = 0 (i.e. we do not copy any suffix character), and iterate
various times the sampling process, we obtain a hierarchy of supra-indexes that recalls in
its structure a classic B-tree [38, 106]. The specialty of this solution is that the keys stored
into the B-tree nodes are now the text suffixes ordered lexicographically and indexed via
their constant-sized pointers. As a result, we have that: (1) every B-tree node can store
Θ(B) suffix pointers, (2) the nodes of a B-tree level provide a paginated supra-index of
the suffixes stored in the level below, and (3) the leaf level consists of the paginated SA.
This data structure uses O(logs n) = O(logB n) sampling levels and occupies still O(n/B)
disk pages, if we assume to fit each B-tree node into one disk page. The search procedure
mimics the search into a B-tree. The only specialty is that each visited B-tree node consists
of a sampled suffix array, and can be (indirectly) binary searched taking O((p/B) logB)
I/Os. Given that the top-down traversal of the B-tree passes through O(logB n) nodes, the
overall search cost results O((p/B) log n+ occ/B) I/Os. This approach therefore takes the

35-10 Handbook of Computational Molecular Biology

same I/O-cost of the paginated SA, but nonetheless it offers two immediate advantages:
it is dynamic, as the B-tree does, and its engineering may benefit from the plethora of
algorithmic tricks and know-how available for classic B-trees.

An interesting variation on this theme, called the Prefix B-tree, has been devised in [17,
20].3 Here the sampled suffix array present in each B-tree node, is enriched with some
characters copied from the indexed suffixes (like the supra-index above). This way the
binary search within a B-tree node may benefit from these characters to not access the disk
(de-referencing is possibly avoided), and thus save some I/Os. But, on the other side, the
choice of how many characters to copy from each indexed suffix is empirical and it induces
a decrease in the B-tree fanout (thus augmenting the B-tree height). Various authors, see
e.g. [180, 51], have engineered this approach achieving interesting performance in practical
situations. And in fact the Prefix B-tree is a remarkable choice in the case of substring
(resp. prefix) searches over short patterns (resp. variable-length keys).

35.3.2 Construction

Since the Suffix Array is a sorted sequence of items, namely text suffixes, it is more natural
to address its construction by resorting to classical comparison-based sorting algorithms
(such as the function qsort in C, see below), and by specializing the comparison function
by means of string comparisons (Suffix cmp below). This is exactly what has been done
in [18] for teaching purposes.

Comparison Based Construction(char *T , int n, char **SA)

{ for(i = 0; i < n; i++) SA[i] = T + i;

qsort(SA, n, sizeof(char *), Suffix cmp); }

Suffix cmp(char **p, char **q){ return strcmp(*p,*q); }

FIGURE 35.2: An elegant C-coded algorithm to build the Suffix Array.

Although elegant, this algorithm presents various drawbacks which become more apparent
in the case of disk-based computations. In fact, qsort is effective in the presence of virtual
memory systems and atomic items. But here we are concerned with text suffixes and thus
strings of arbitrary lengths, which are represented within SA via indirect pointers. As a
result, every comparison executed by qsort induces two random accesses to the text T
and thus probably two random I/Os, with a possible subsequent scanning of contiguous
disk pages for comparing the corresponding suffix characters. Since the random I/Os are

3We point out that the original Prefix B-tree has been designed to index variable-length keys. The use
we make in this chapter is therefore a little bit unusual and borrowed from a solution provided in [59].
We propose this view of the Prefix B-tree because we think that it is an interesting algorithmic solution
to the dynamic version of the substring-search problem, and moreover because it is an intermediate step
useful to introduce the String B-tree data structure in Section 35.5.

String Search in External Memory: Data Structures and Algorithms 35-11

costly [155] and, in the best case, we execute Θ(n logn) comparisons, each taking Θ(n/B)
sequential I/Os, the overall time cost is dominated by the seek time of the disk with an
almost idle CPU (the so called thrashing). Actually this is the worst situation one can hope
for when designing an external-memory algorithm or, in general, an algorithm working in
a hierarchical memory.

THEOREM 35.2 The qsort-based algorithm constructs the suffix array of a string
T [1, n] taking O(� n

B �n logn) I/Os in the worst case. The space usage is O(n log n) bits.

The previous solution allowed us to point out the two main difficulties arising when we
try to build large suffix arrays: (1) we cannot implement suffix comparisons via the direct
brute-force scan of their constituting characters, some auxiliary data structures must be
built to exploit previously executed comparisons; (2) comparison-based algorithms extended
to manage string items are effective when the text length is small but show their limits as
soon as the text length grows to medium sizes (i.e. some Megabytes), here radix-based
approaches and disk-aware solutions are necessary to not result in many random I/Os.

The last five years have seen a revitalized interest in the design of efficient solutions for
suffix array construction. This is due to some interesting uses of this data structure as a
basic block of four novel applications: (i) the Burrows-Wheeler compression algorithm [25],
which is a practically effective compression tool [165]; (ii) the construction of succinct [77,
157, 158] or compressed [68, 64, 66, 65, 69, 75, 76, 142] indexes, which have among the
others interesting biological applications [84, 83, 160]; (iii) the clustering of documents
and pages in web applications and search engines [185, 184], and (iv) the extraction of
significant patterns in data mining applications [12, 81]. Among the plethora of scientific
results devised to efficiently solve the suffix-array construction task, it is possible to identify
a taxonomy composed of four main classes:

Tree based. To this class belong algorithms which derive the suffix array from the
suffix tree data structure. They deploy the simple fact that the in-order visit
of the leaves of the suffix tree actually gives the suffix array pointers. Internal-
memory [127, 176] and disk-conscious [55] solutions are known for suffix-tree
construction (as well for tree visits), but all of them use an excessive amount of
space which goes far beyond the 15n bytes for storing and manipulating the tree
topology [110].

String comparison. To this class belong comparison-based sorting algorithms spe-
cialized to deal with items of variable length. The algorithm of Figure 35.2 be-
longs to this class, as well the more effective Multikey Quicksort or Ternary Quick-
sort algorithms [19]. These algorithms sort the suffixes via a direct character-by-
character comparison so that they are efficient for strings in which their longest
repeated substring is short. In the worst case the number of character compar-
isons may be Θ(n2 logn). A recent development in this class has been achieved
by [93, 124, 166] where algorithms exploiting some sophisticated auxiliary data
structures have been proposed to skip some suffix comparisons during the or-
dering process. Indeed [124] presents a deep experimental analysis with respect
to the dichotomy cache/internal-memory, considering various CPU architectures.
At present the lightweight algorithm devised in [124] is the fastest choice if the
text fits in internal memory and the space issue is a primary concern.

Incremental construction. The algorithms of this class are mainly based on the
doubling technique introduced in [102]. They proceed per phases. At the be-

35-12 Handbook of Computational Molecular Biology

ginning they (radix-)sort the suffixes by their first character, or their first two
characters. In each further pass, they double the significant prefix length accord-
ing to which the suffixes are sorted. This way O(log n) phases suffice to obtain
the sorted sequence of text suffixes. The first algorithm in this class was proposed
in the seminal suffix-array paper [121]; subsequently, more engineered and tricky
variants have been devised in the scientific literature [116]. In [42] a taxonomy of
a large set of doubling-based algorithms has been provided, thus electing [73] as
the best choice whenever the text length goes beyond the internal-memory size.

Divide-and-Conquer. In this class fall most of the new proposals appeared in the sci-
entific literature during the last four years. After that the Divide-and-Conquer
approach proved useful in [55] for optimally building suffix trees on hierarchi-
cal memories (see Section 35.4.2), various researchers addressed the problem of
adapting this scheme to the direct construction of suffix arrays. This effort suc-
ceeded in the year 2003, when various papers [24, 86, 85, 107, 100, 105] simul-
taneously devised different solutions based on a Divide-and-Conquer approach.
Specifically, [107, 105] proposed linear-time suffix-array construction algorithms
for internal memory using O(n log n) bits of working space. [100] addressed this
issue in various models of computations, among which the external-memory mod-
el, and found a unifying solution for all of them (actually [24] showed that this
approach may achieve O(n/ logn) bits of additional working space). Finally [85]
showed how to achieve both time and space optimality on the unit-cost RAM.
We point out that the incremental construction of [73] might be also looked at
as a Divide-and-Conquer algorithm in which the partitions are mostly unbal-
anced. Under this view the Divide-and-Conquer approach results currently the
most promising not only from the theoretical point of view, but also in practice;
nonetheless, it is premature to be experimentally judged and therefore needs
further algorithmic engineering to prove its practical helpfulness.

In the light of these significant progresses in the design of suffix-array construction al-
gorithms, it is currently believed that it is more economical to build the suffix array first,
and then derive the suffix tree or other indexing data structures from it (rather than the
converse). However, in order to exploit this approach, one needs to compute the additional
longest common prefix information which is usually stored in an n-length array. Recent
papers [24, 103, 100, 122] showed that this computation does not induce any time- or I/O-
slowdown to the suffix-array construction process, so that this approach may be much more
efficient than managing directly a (suffix) tree topology [110, 158].

Given the importance assumed by suffix-array construction, we decided to describe in
this section two algorithms drawn from the Divide-and-Conquer class. The first choice
fell onto the Skew algorithm of [100]: it is deceptively elegant, implementable with just 50
lines of C++ code, flexible enough to achieve the best theoretical bounds in various models
of computations, and one among the algorithms proposed in the year 2003 that solves the
long standing open problem of linear-time suffix-array construction in the RAM model. Our
second choice fell onto the BYS algorithm of [73]: it is the best algorithm for constructing
in practice suffix arrays residing on disk, it is extremely simple and admits an efficient
theoretical variant [42].

Let us therefore start with the description of the Skew algorithm, whose pseudo-code is
given in Figure 35.3. The Skew algorithm builds upon the Divide-and-Conquer approach
originally proposed in [55] for the construction of suffix trees, here adapted in a novel way
to construct suffix arrays. The basic idea is to decompose the construction of a suffix array
in three main phases. The first phase is devoted to the (recursive) construction of the suffix

String Search in External Memory: Data Structures and Algorithms 35-13

Skew Algorithm

Phase one:

(1.1) Construct the string set S = {si = T [i, i+ 2] such that i mod 3 �= 1 }.
(1.2) Radix-sort S and assign lexicographic names s′i to the strings si.

(1.3) Construct the string s2,0 = [s′i : i mod 3 = 2] • [s′i : i mod 3 = 0].
(1.4) If the s′i are all distinct, then return.

(1.5) Recursively construct the suffix array SA2,0 of the string s2,0.

Phase two:

(2.1) Construct the suffix array SA1 by stably sorting the entries of SA2,0

that represent the suffixes Ti+1 with i mod 3 = 1.

Phase three:

Merge SA2,0 with SA1 by comparing Ti ∈ SA2,0 with Tk ∈ SA1 as follows:
(3.1) If i mod 3 = 2, compare 〈T [i], Ti+1〉 with 〈T [k], Tk+1〉.
(3.2) If i mod 3 = 0, compare 〈T [i], T [i+ 1], Ti+2〉 with 〈T [k], T [k + 1], Tk+2〉.

FIGURE 35.3: The elegant Skew algorithm that builds the suffix array of the string T [1, n] within
the time- and I/O-complexity of radix sort.

array for the suffixes which start at text positions having the form 3j + 2 or 3j + 3, for
j ≥ 0. This suffix array is called SA2,0 because the distance from multiple-of-3 positions is
2 or 0 (see Steps (1.1)–(1.5)). The second phase exploits SA2,0 to derive the suffix array
for the suffixes starting at text positions having the form 3j + 1, for j ≥ 0. This other
suffix array is called SA1 (see Step (2.1)). Finally, in the third phase, SA2,0 is merged with
SA1 via a linear pass. This pass exploits the carefully designed distribution of the suffixes
among the two suffix arrays (see Steps (3.1)–(3.2)). The key difference with the approach
in [55] is to recurse on the two thirds of the text suffixes instead that on the half of them
(see Section 35.4.2). This allows the Skew algorithm to compare in constant time the pairs
of suffixes involved in the merging process of Steps (3.1)–(3.2), without resorting to the use
of tries as occurred in [55]. As a result, the 2/3-recursion changes the constants hidden in
the big-O notation but not the overall complexity which is still proportional to the cost of
(radix) sorting a set of n integers in the range [1, n]. Hence it is optimal in various models
of computation.

Some more fine comments on the Skew algorithm are in order to better appreciate the
elegance of the approach. We invite the reader to follow these comments on the illustrative
example of Figure 35.4. First of all, in order to simplify the discussion, we assume that the
text string T has multiple-of-three length and number the character positions from 1. If this
is not the case, we logically pad T with the special character $ which is smaller than any other
alphabet character. The first phase of the algorithm is the most time consuming. In order
to build recursively the suffix array SA2,0 for the suffixes Ti starting at the text positions
i = 3j + 2 or i = 3j + 3, with j ≥ 0, the algorithm initially assigns lexicographic names s′i
to all substrings of length 3 that start at those positions (in Figure 35.4 these substrings
are indicated, above and below, by segments). These names are exploited to construct an
auxiliary (shrinked) string s2,0, whose length is 2n

3 . s2,0 is obtained by justaxposing the
string of lexicographic names [s′i : i mod 3 = 2, 1 ≤ i ≤ n] with the string [s′i : i mod 3 =

35-14 Handbook of Computational Molecular Biology

T=AAT GTG AGA TGA $$$
Substrings (mod 3 = 2)

Substrings (mod 3 = 0)

s2,0

SA2,0

ISA2,0

positions relative to s2,0

starting positions of suffixes (mod 3 = 1)

compact representation of these suffixes

positions relative to T

ATG TGA GAT GA$ TGT GAG ATG A$$

2 6 5 3 7 4 2 1 lexicographic names

8 7 1 4 6 3 2 5

3 7 6 4 8 5 2 1

A
3

G
7

A
6

T
4

1 4 7 10

ISA 2,0[1] ISA2,0[2] ISA 2,0[3] ISA2,0[4]

SA1 1 7 4 10

AA 8
A 3

AG 2
A 6

GT 5
G 7

TG 1
T 4

SA2,0 12 9 2 11 6 8 5 3

A$ 0 AT 4 A 8 G 1 GA 6 G 2 T 5 TG 7
Compact repr. of suffixes

for fast comparison

SA 12 1 7 9 2 11 6 8 4 10 5 3

P
h

ase 1

SA1 1 7 4 10 positions relative to T

P
h

a
se 2

P
h

ase 3

3-long substrings as macro-chars

FIGURE 35.4: A running example of the Skew algorithm on T = AATGTGAGATGA.

0, 1 ≤ i ≤ n]. Notice that the $s ensure that the suffixes starting in the first half of
s2,0 are not influenced by the structure of the second part of that string. The key idea
underlying the construction of s2,0 is that its suffixes are in a bijective correspondence with
the text suffixes we are interested in (i.e. the ones starting at i = 3j + 2 or i = 3j + 3).
Actually, s2,0[j+1, n/3] represents T3j+2; whereas s2,0[3j+3+n

3 , 2n
3] represents T3j+3. Given

this correspondence, the suffix array SA2,0 of s2,0 actually provides the sorted sequence of
text suffixes starting at positions i ≥ 1 such that i mod 3 is equal to either 2 or 0. We point
out that if the s′i are all distinct, then we already have the sorted suffixes for the current

String Search in External Memory: Data Structures and Algorithms 35-15

string s2,0, and thus the recursion may be stopped (Step (1.4)).
The correctness of the second phase is simpler to be established. Just observe that we

may write T3j+1 = T [3j+1] •T3j+2. Thus, the ordering of the suffixes starting at positions
i such that i mod 3 = 1 can be derived from the stable sorting of the entries of SA2,0 that
represent the suffixes T3j+2s via their preceding character T [3j+1]. This is the suffix array
SA1 in Figure 35.4.

The Skew algorithm is so simple because the third (merge) phase is also easy. Let
Ti ∈ SA2,0 and Tk ∈ SA1 be two suffixes which are compared during the merging of those
suffix arrays. Either i mod 3 = 2, and thus i = 3j+2 for some j; or it is i mod 3 = 0, and thus
i = 3j+3 for some j. In the former case, we can write Ti = T [i]•Ti+1 and Tk = T [k]•Tk+1,
with both suffixes Ti+1, Tk+1 occurring in SA2,0, so their order is known. In the latter case,
we can write Ti = T [i] • T [i+ 1] • Ti+2 and Tk = T [k] • T [k + 1] • Tk+2, with both suffixes
Ti+2, Tk+2 occurring in SA2,0, so their order is known. As a result, only characters of T
and suffixes in SA2,0 have to be compared. To this purpose we may compute in linear time
the inverse array ISA2,0[j] = i iff SA2,0[i] = j. Given ISA, each suffix comparison takes
constant time.

Overall the execution time of the Skew algorithm is T (n) = O(n) since it obeys the re-
currence T (n) = T (2n/3)+O(n). We point out that any step in the Skew algorithm can be
simulated via a sorting step applied on n atomic items in the range [1, n]. As a corollary, the
Skew algorithm can be seen as a reduction of the suffix-array construction problem to the
n-items sorting problem. The latter has been solved optimally in several models of compu-
tation, as for example, the external-memory model. Here sorting tuples, lexicographically
naming triples of characters and constructing ISA, takes overall Sort(n) = O(n

B logM/B
n
B)

I/Os by means of one of the many well-known I/O-optimal sorting algorithms [147, 148, 89].

THEOREM 35.3 The Skew algorithm builds the suffix array of a string T [1, n] in
O(Sort(n)) I/Os and O(n/B) disk pages. In the case that the alphabet Σ has size poly-
nomial in n, the CPU time is O(n logM/B

n
B).

Except for some very preliminary results [24], an extensive experimental analysis of the
Skew algorithm is yet missing. The current winner among the external-memory suffix-array
construction algorithms on real-world problems is the one proposed in [73]. It is again a
Divide-and-Conquer algorithm with the specialty that the Divide step is unbalanced, thus
inducing a cubic time complexity (i.e., quadratic number of suffix comparisons). Below we
first comment its algorithmic structure, and then discuss its practical efficiency.

Let < 1 be a positive constant properly fixed to build the suffix array of a text piece of
m = M characters in internal memory. The algorithm computes incrementally the suffix
array SA in Θ(n/M) stages (rather than the logarithmic number of stages of the Skew
algorithm). At the beginning of stage h, the algorithm maintains the following invariant:
on disk it is stored the array SAhm that contains the sorted sequence of the first hm suffixes
of T . The inner working of the generic hth stage is detailed in Figure 35.5. Actually
this stage updates SAhm by inserting into it the text suffixes which start in the substring
T [hm+ 1, (h+ 1)m]. This preserves the invariant above, and so ensures that after all the
stages we obtain SA.

Some comments are in order at this point. It is clear that the algorithm proceeds by
mainly executing two sequential disk scans: one is performed in Step (1), the other is
needed in Step (3) to compute C and merge SA′ with SAhm. In particular, Step (3.1) is
implemented by scanning rightward the text T (from its beginning) and by computing via
a binary search the lexicographic position pi of each text suffix T [i, n] in SA′, with i ≤ hm.

35-16 Handbook of Computational Molecular Biology

Incremental Algorithm

Stage h:

(1) Load the text substring t = T [hm+ 1, (h+ 1)m] into internal memory.
(2) Build SA′ by sorting lexicographically the text suffixes which start in t.

(3) Merge SA′ with SAhm as follows:

(3.1) Compute the counter array C[1,m+ 1] storing in C[j] the

number of suffixes of SAhm that are lexicographically greater than
the SA′[j − 1]-th text suffix and smaller than the SA′[j]-th text suffix.

(3.2) Merge SA′ with SAhm via a disk scan, by exploiting the array C.

FIGURE 35.5: The Incremental algorithm is effective in practice because it mainly executes
sequential disk scans and occupies reduced disk space.

The entry C[pi] is then incremented to record the fact that T [i, n] lexicographically follows
the SA′[pi − 1]-th text suffix, and precedes the SA′[pi]-th text suffix. Array C is then
deployed in Step (3.2) to merge the two arrays SA′ and SAhm: C[j] indicates how many
consecutive suffixes of SAhm lexicographically follow the SA′[j−1]-th text suffix and precede
the SA′[j]-th text suffix. Hence a sequential disk scan, as the one executed in Step (3.2), is
enough to build SA(h+1)m.

It goes without saying that the algorithm might incur many random I/Os during Steps (2)
and (3.1). In both cases we may need to compare a pair of text suffixes which share a long
prefix not entirely available in internal memory (i.e., it extends beyond T [hm+1, (h+1)m]).
In the pathological case that T = an, the comparison between two text suffixes takes Θ(n/B)
I/Os and thus O((n3 log2M)/MB) I/Os overall. The total auxiliary disk space used by the
algorithm is 4n bytes to store SAhm and 8m bytes for both C and SAint. The merging
step can be easily implemented using some extra space (indeed additional 4n bytes are
sufficient), or by employing just the space allocated for SA′ and SAhm via a more tricky
implementation.

Since the worst-case number of total I/Os is cubic, a purely theoretical analysis would
classify this algorithm as not much interesting. But there are some considerations that are
crucial to look at this algorithm from a different perspective. First of all, we must observe
that in practical situations it is very reasonable to assume that each suffix comparison finds
in internal memory all the characters needed to compare the two involved suffixes. Con-
sequently, the practical behavior is more reasonably described by the formula: O(n2/MB)
I/Os. Additionally, all I/Os in the analysis above are sequential and the actual number of
random seeks is only O(n/M) (i.e., at most a constant number per stage). Consequent-
ly, the algorithm takes fully advantage of the large bandwidth of current disks and of the
high speed of the current CPUs [155]. Moreover, the reduced working space facilitates the
prefetching and caching policies of the underlying operating system and finally, a careful
look to the algebraic calculations shows that the constants hidden in the big-O notation
are small. [42] has also shown how to make this algorithm no longer questionable from a
theoretical viewpoint by proposing a modification that achieves efficient performance in the
worst case.

String Search in External Memory: Data Structures and Algorithms 35-17

35.3.3 Future directions of research

A frequent statement in text indexing papers and talks is that: Word-based indexes4 occupy
less space than full-text indexes but they are limited to efficiently support poorer (i.e. word
based) search operations. Such statements have driven many authors to conclude that the
increased query power of suffix arrays has to be paid by some additional storage. It is
nonetheless challenging, from a scientific point of view, to ask ourselves if it is provable
that such a tradeoff does exist when designing an index. In this context data compression
appears as an attractive tool because it allows not only to squeeze the space occupancy but
also to improve the computing speed. It is therefore not surprising that IBM has recently
installed on the eServers x330 a novel memory chip (based on the Memory eXpansion
Technology [90]) that stores data in a compressed form thus ensuring a performance similar
to the one achieved by a server with double real memory but, of course, lower cost. All
these considerations have raised a renewed interest towards compression techniques within
the algorithmic and IR communities.

Compression may of course operate at the text level, or at the index level, or both. The
simplest approach consists of compressing the text via a lexicographic-preserving code [87]
and then build a suffix array upon it [131]. The improvement in space occupancy is however
negligible since the index is much larger than the text. A most promising and sophisticated
direction was initiated in [133, 135, 132], and lead [77] to show that a suffix-array imple-
mentation does exist that occupies Θ(n) bits of storage and supports the retrieval of SA[i]
in O(logε n) time, where ε is an arbitrarily small positive constant. This result has shown
that the apparently “random” lexicographic permutation of the text suffixes in suffix arrays
can be succinctly coded in optimal space in the worst case [50]. In [157, 158, 159] extensions
and variations of this result — e.g. an arbitrary large alphabet or new functionalities —
have been considered.

The above index, however, uses space linear in the size of the indexed text even in the
case that the text is highly compressible. The first step toward the design of a compressed
full-text index has been pursued in [64, 68]. The novelty of this approach resides in the
careful combination of the Burrows-Wheeler compression algorithm [25] with the suffix
array data structure thus obtaining a sort of compressed suffix array. More precisely, the
index of [64, 68] occupies 5nHk(T) + o(n) bits of storage, where Hk(T) is the kth order
empirical entropy of the indexed text T . Such index supports the search for an arbitrary
pattern P [1, p] as a substring of T in O(p+ occ logε n) time.

This line of research seems very promising for computational biology applications, as
shown in [84, 83, 160], where compressed suffix arrays have been used to approximately
search the human genome in the internal memory of a personal workstation. In this re-
spect, it would be interesting to improve the constants hidden in the big-O notation of
the compressed indexes, since they impact their engineering in the case of arbitrarily large
alphabets [75, 76, 74, 69, 74, 120, 142]. Experimental results [65, 76, 142] have shown
that these compressed indexes are much promising but more extensive tests are needed
to investigate their impact especially on biologically motivated applications. Additionally,
it would be worth to investigate the lightweight construction of the suffix array, because
it is true that 5n + o(n) bytes [24] seem a small amount of working memory, but this

4These indexes are also called Inverted Indexes and are widely used in the design of web search en-
gines [182]. They actually consists of a dictionary of words, and for each word, a list of document IDs
and positions where that word occurs. The query efficiently supported are restricted to operate on word
boundaries, which is the typical scenario of web search.

35-18 Handbook of Computational Molecular Biology

amount may still be too much if the space issue is a primary concern. The recent results
in [86, 85, 114] have shown that Θ(n)-bit of working space are enough to optimally build a
suffix array, but what about a space complexity that depends on the entropy of the string T
(à la [68, 64, 69, 75, 76])? This result would be interesting also in the data compression set-
ting because some effective compressors, like bzip [165], exploit a suffix-array construction
algorithm to work. Such a type of results could make these algorithms much more space
efficient (cfr. [67, 57, 63]).

Finally, various authors have started to freely distribute engineered, and sometimes well
documented, versions of their suffix-array construction algorithms [24, 124, 116, 93, 166].
For example in [123] you can download the fastest known internal-memory algorithms to
date, whereas for external memory you have to look at [42]. A bigger effort is clearly
needed by the theory and the software community to engineer those solutions and thus
offer efficient, publicly available, libraries to be used in suffix-array based software systems.
This effort is much more precious nowadays than before, in the light of the fascinating
results appeared recently in the literature and fully commented above. As it has happened
many times in the past, these engineering papers might raise challenging questions for the
theory community, thus “closing the cycle” of an effective technology from a stimulating
research!

35.4 The Suffix Tree

The suffix tree is the basic and ubiquitous data structure of combinatorial pattern matching
because of its elegant and efficient uses in a “myriad” of situations [10, 79]. A suffix tree of
a string T [1, n], denoted hereafter by STT , is a compressed trie that stores all text suffixes
SUF(T) in a compact form. A compressed trie is a rooted directed tree with exactly n leaves
numbered from 1 to n. Each internal node, other than the root, has at least two children
and each edge is labeled with a non empty substring of T . No two edges out of a node can
begin with the same character, and sibling edges are ordered lexicographically according
to that character (see Figure 35.6). The key feature of suffix trees is that, for any leaf i,
the concatenation of the edge labels from the root of STT to i spells out the text suffix Ti.
Hence all the substrings of T , which are Θ(n2), are represented in O(n) optimal space by
STT ’s structure. Furthermore, the rightward scan of the suffix tree leaves gives the suffix
array of T . These two properties allow to look at suffix trees as an index that fully exposes
the internal structure of a string in an easier way than suffix arrays do. 5

An attentive reader may have noticed that the bijection between text suffixes and suffix
tree leaves is possible only if it does not exist any text suffix that is the prefix of another
one. This is ensured, in case, by appending the endmarker # to the end of T . Figure 35.6
shows an example of a suffix tree.

If we store the edge labels explicitly we incur in a Θ(n2) space overhead which makes the
data structure unusable even for strings of moderate length. Implementations then usually
opt for a compact representation that adds a level of indirection to the retrieval of the
edge labels. Indeed, an edge label T [x, y] is represented by the pair 〈x, y〉 that occupies a

5Each subtree of the suffix tree corresponds to a subarray of the suffix array, namely the one containing
the suffixes descending from that subtree. Any suffix tree traversal operation can then be simulated via
a proper binary search of the suffix array, thus introducing a slowdown of O(log n) time [73]. Recent
results [64, 68] have shown that that slowdown can be avoided in some special cases, like the substring
search operation.

String Search in External Memory: Data Structures and Algorithms 35-19

0

31 425

8

76

2

4

A
C

G
C
C

A

A
C

C

G

1

3

C

C
A

C
C
A

G

C
G

C
G

G

0

31 425

8

7
6

2

4

<1,2>

1

3

v

<3,4>

<5,8> <7,8>

<7,8>

<2,2>

<8,8>

<3,4>

<7,8>

<8,8>

<5,8> <7,8>

C
G

G

FIGURE 35.6: The suffix tree for the string T = ACACACCG is showed to the left. The endmarker
is not shown. Node v spells out the string ACAC. Each internal node stores the
length of its associated string, edge labels are explicitly indicated, and each leaf
stores the starting position of its corresponding suffix. To the right of the figure,
we depict the suffix tree with the edge labels encoded by integer pairs.

constant number of memory cells, each of Θ(log2 n) bits (Figure 35.6). In the case of many
texts to be simultaneously indexed [80], an edge label is represented by the triple 〈T, x, y〉.
As a result, the overall space occupancy of the suffix tree is O(n), or O(n log2 n) bits.

This simple coding trick is not yet enough to turn the suffix tree into an efficient data
structure for indexing massive data sets. In fact, a careless pointer-based implementation
requires more than 20n bytes [121], and more sophisticated solutions [110, 71] achieve an
occupancy of at least 12n bytes in the worst case, and about 8.5n bytes in the average
case. For example, a suffix tree built upon 700Mb of DNA sequences may take 40Gb of
space [110]. Worse than this, real implementations based on persistent platforms (like
PJama [88, 163]) add to these figures a significant space overhead by requiring more than
60 bytes per indexed suffix. As repeatedly observed before, space optimization is closely
related to time optimization in a disk-memory system [106], thus the design of succinct
suffix-tree implementations is a key issue in the indexing of massive textual collections.
This topic is an active area of research, full of fascinating solutions which allow to squeeze
the suffix tree in a space occupancy much close to the one required by the suffix array (see
e.g. [77, 76, 134, 136, 132, 159, 63]). These results, however, are too involved and mainly
designed for internal memory use to deserve some room in this introductory chapter. In
the following subsections we will detail one specific technique [33] that achieves the best
compacting and I/O-results to date.

The search for a pattern string P [1, p] in STT consists of a downward traversal starting
from the root and proceeding downward as pattern characters are matched against edge
labels. Only one path is followed because at each visited node the first characters of the
outgoing edges are distinct. If a mismatch character is found during this traversal, the
pattern P does not occur in T (case P = CT in Figure 35.6). In the case that the pattern is
fully matched (case P = ACA in Figure 35.6), the leaves descending from the final matched
edge provide the list of all pattern occurrences in T (leaves descending from v in Figure 35.6).
Therefore the cost of pattern searching is O(p log |Σ| + occ) time in the worst case, where
Σ is the alphabet and occ is the number of pattern occurrences in T . The factor O(log |Σ|)
takes into account the cost of choosing, at each visited node of the downward traversal, the
next edge label to match against the pattern.

So far so easy is the design and use of the suffix tree data structure, and actually this

35-20 Handbook of Computational Molecular Biology

information is enough to engineer a good in-memory implementation for it. In fact, in the
RAM model every memory access takes O(1) time and retrieves just one item; hence, there
is nothing to be “packed”. Conversely, various issues deserve attention when dealing with
the problem of mapping a suffix tree onto disk (or onto a hierarchical memory, in general).
Here, the blocked access to disk pages poses new difficulties that, if underestimated, may
even prevent the use of suffix trees on moderately sized data sets. A careful analysis of
these issues is presented in the next section.

35.4.1 I/O issues

The first issue to take care of is the unbalanced tree topology of suffix trees. It is text
dependent because the internal nodes are in correspondence with the repeated substrings
of T . Consequently, suffix trees inherit the difficulties pointed out in the literature with
regard to paging unbalanced trees on disk. For example [3] showed that paging heuristics
based on a Depth-First visit or a Breadth-First visit of the suffix tree can be far from
optimality of a Ω(logB/ log logB) factor. Conscious of this difficulty, various authors [37,
101, 136] circumvented the problem above by exploiting a two-level indexing structure:
one level consists of a suffix tree built on a sampled subset of the text suffixes stored in
internal memory; the other level is just a suffix array built over all the text suffixes. The
sampled suffix tree is used to route the search on a small portion of the suffix array, by
exploiting the efficient random-access time of internal memory; an external binary search
is subsequently performed on a restricted part of the suffix array thus requiring a reduced
number of I/Os [13]. Obviously the choice of the proper suffixes to sample is difficult, and
overall the resulting data structures loosely remind the suffix tree and many of its good
structural properties (cfr. the supra-index of Section 35.3.1).

The second issue to cope with is related to the indirect encoding of the edge labels by
integer pairs (or triples, see Figure 35.6). Branching from a node to one of its children
requires indeed further I/Os in a disk memory because of the retrieval of the disk pages
containing the substring that labels the traversed edge and must be matched against the
pattern to be searched. This issue turns the disk mapping of the suffix tree into not just a
disk-mapping problem of an unbalanced tree.

The third issue is related to a good engineering and implementation of the data structure.
The encoding of the tree topology and of the edge labels must be as more succinct as possible
in order to squeeze them into few disk pages, and thus exploit at the best the caching and
prefetching policies of the underlying operating system. Any engineered solution should
exploit the interplay between these two types of information — topological versus textual
— as well the fact that suffix-tree accesses are constrained to occur via root-to-leaf paths.
Another key point to take care in the suffix-tree engineering is the disk-page occupancy.
In fact it turns out to be rather complicated to keep it above a given ratio under string
insertions or deletions [6, 80, 72]. Moreover, the Θ(|Σ|) fanout of the suffix-tree nodes may
prevent the children pointers to be fitted into O(1) disk pages, so requiring a separate B-
tree to store them. This may appear not so crucial for biological sequences, being |Σ| ≤ 20,
but a character-packing approach for suffix-tree compaction might virtually enlarge Σ thus
making this problem evident even in the bio-context. A final observation is that a clever
implementation should also take into account the CPU cost of the supported operations
because it impacts unfavorably on the (logical) size of the disk pages fetched at each I/O.
The lighter is a page processing, the larger a page can be, thus reducing the wasting of
disk space because of a possible poor page-fill ratio. This fact constraints the suffix-tree
encoding to exploit lighter compression techniques (cfr. [33, 58]). All these specialties
and difficulties make not surprising the fact that the suffix-tree engineering is an almost

String Search in External Memory: Data Structures and Algorithms 35-21

unexplored field [169].
In the rest of this section we deal with all of these three I/O-issues by discussing state-

of-the-art solutions for the uneasy problem of suffix-tree mapping onto disk.
Let us start by dealing with the problem of mapping to disk the suffix tree topology,

and introduce the so called tree packing problem. Here the tree has a fixed topology and
this is unbalanced. We point out that the advantage of finding a good tree packing may
be unexpectedly large and must be therefore not underestimated. In fact, while balanced
trees save a factor O(logB) when mapped to disk (think at the B-trees), the mapping
of unbalanced trees grows with non uniformity and approaches, in the extreme case of a
linear-height tree, a saving factor of Θ(B) over a näıve memory layout. Formally, in the
tree packing problem the goal is to find an allocation of the (suffix) tree nodes on the disk
pages that minimizes either the total number of pages loaded in internal memory (i.e. page
faults) during a pattern search, or the number of distinct pages visited (i.e. working-set
size) during a pattern search. These two parameters model two extreme situations: the
case of a one-page internal memory, or the case of an unbounded internal memory. In other
words, they model the two cases in which we have either a small buffer or an unbounded
buffer to support the pattern searches via root-to-leaf paths. Surprisingly [72], the optimal
solution to the tree packing problem is independent of the available buffer size because no
disk page is visited twice when page faults are minimized or the working set is minimum.
Moreover, the optimal solution shows a nice decomposability property: the optimal tree
packing forms in turn a tree of disk pages. These facts allow to restrict our attention to the
page-fault minimization problem, and to the design of recursive approaches to the optimal
tree decomposition among the disk pages.

In the literature we find three nice solutions to the tree packing problem of increasing
sophistication:

• The first solution [33] operates greedily and bottom-up onto the suffix tree topol-
ogy by devising a tree packing that minimizes the maximum number of page
faults executed during a pattern search.

• The second solution [72] assumes a known access distribution over the suffix-tree
leaves (nodes), and finds the optimal tree packing via a dynamic-programming
approach. This solution may be also extended to achieve space optimality, i.e.
� n

B � disk-page occupancy, at the cost of only one additional I/O per search.
• The third solution [3] is much sophisticated in that it assumes an access dis-

tribution over the suffix-tree leaves and adopts the cache-oblivious model. This
solution has two nice features: it is within a constant factor of the query perfor-
mance of the optimal known-block-size layout, although it does not know M and
B; and it is computed by deploying one of the two algorithms above [33, 72] as
a basic-algorithmic tool. The use of the cache-oblivious model then ensures that
it is optimal on every memory hierarchy!

Now we go into the details of each solution. We start with the greedy algorithm of [33]
that minimizes the maximum number of I/Os executed to visit any root-to-leaf path in the
suffix tree (hereafter called the Min-Max algorithm). This algorithm proceeds bottom up
over the suffix tree, starting with each leaf assigned to its own disk page whose height is set
to 1 (see also [39, 129, 128]). Working upward, the algorithm applies the steps illustrated
in Figure 35.7 thus producing a Min-Max optimal partitioning of the (binary) tree such
that no other partitioning has a smaller root-page height. The proof of optimality parallels
the partitioning rules. An attentive reader may notice that these rules may induce a poor
page-fill ratio. This is true in the worst case, even if there are several changes that can

35-22 Handbook of Computational Molecular Biology

Min-Max Algorithm

General step on a (binary) node

(1) If both children have the same page height d:
(1.1) If the number of nodes in both children’s pages is less than B, then
(1.1.1) Merge the two disk pages and add the current node.
(1.1.2) Set the height of this new page to d. Exit

(1.2) Else
(1.2.1)Close off the pages of the children.
(1.2.1)Create a new page for the current node and set its height to d+ 1. Exit

(2)Else
(2.1)Close off the page of the child with the smaller height.

(2.2)If possible, merge the page of the other child with the current node
and leave its height unchanged.

(2.3)Otherwise, create a new page for the current node with height d+ 1
and close off the child page.

FIGURE 35.7: The Min-Max algorithm used to optimally partition an unbalanced tree among
disk pages of size B. The tree is assumed binary, by binary encoding each char-
acter.

alleviate this problem in real situations:

1. When a page is closed off, scan its children from the smallest to the largest to
determine if they can be merged with the parent.

2. Modify the rules to ensure a certain minimum page-fill ratio.
3. Design logical disk pages and pack many of them into one physical disk page;

possibly ignore physical page boundaries when placing logical pages onto disk.

Change one should be a part of any implementation of these rules. Change two may result
in a non-optimal partition, but should be worthwhile in a practical setting. The last change
is interesting but introduces some complications in the management of the external-memory
storage. In [33] it was proved the following result:

THEOREM 35.4 The Min-Max algorithm of Figure 35.7 solves the suffix-tree packing
problem in such a way that every root-to-leaf path traverses less than 1 + � H√

B
�+ �2 logB n�

disk pages, where H is the height of the suffix tree.

It is known [174] that H is logarithmic in n with high probability, under very reasonable
conditions on the indexed text T . In [33] it has been also experimentally shown that
any root-to-leaf path of a suffix tree built over a 500Mb text collection, restricted only to
suffixes starting at word boundaries, is mapped to less than 4 disk pages. This is much
significant even if we have to still count the I/O-cost for accessing the edge-labels: indeed
a suffix array would need 40 ÷ 50 I/Os per pattern search. In that paper the problem of
dynamically maintaining the tree packing under the insertion/deletion of strings was also
addressed by showing that the Min-Max algorithm experiences unfortunately a low page-fill

String Search in External Memory: Data Structures and Algorithms 35-23

ratio (around 35÷ 45%).

Usually the distribution of the strings to be searched in STT is far from being uniform;
in fact it is often skewed towards some root-to-leaf paths that are accessed more frequently
than others. In this situation, it would be better to pack the tree nodes in such a way that
the more frequently accessed nodes come close to the root page, whereas rarely accessed
nodes lie in pages which are far from the root. As we observed above, the advantage of a
good tree packing for unbalanced trees under skewed distributions might be close to a factor
Θ(B), but difficult to be devised. In fact an obvious algorithm to solve this problem would
be to incrementally grow a root page and repeatedly add the maximum probability node
not already packed into that page. When the root page contains B nodes, it is written onto
disk and the algorithm lays out the remainder of the tree recursively. Surprisingly enough,
the obtained packing is far from optimality of a factor Ω(log B

log log B), but it is surely within a
factor O(logB) from the optimal [3].

The first optimal algorithm for the case of skewed distributions was proposed in [72].
The authors devised a Dynamic Programming scheme that optimizes the expected number
of I/Os incurred by any traversal of a root-to-leaf path. Figure 35.8 illustrates the dynamic-
programming computation for the case of a binary tree. The general case of an f -ary tree
can be solved by first transforming the tree into a binary one (this is standard!), and by then
assigning probability and space-occupancy zero to the nodes added by this transformation.
Let us now go into the algorithmic details, by using T to denote the binary tree to be
packed, and τ to indicate the optimal tree packing we are searching for. Since initially all
pages are isomorphic, we may assume that the root r of T is always mapped to a fixed
page τ(r) = R. Consider now the set V of tree nodes that descend from R’s nodes but
are not themselves in R. Formally, V = {v ∈ T | τ(v) �= R, τ(parent(v)) = R}. We
observed above that the optimal packing τ induces a tree of disk pages [72]. Consequently,
if τ is an optimal packing for T , then τ is an optimal packing for the subtree Tv rooted
at any node v ∈ V . This result allows to state a recursive computation for τ that first
determines which nodes reside in R, and then continues recursively with all subtrees Tv

for which v ∈ V . Dynamic programming provides an efficient implementation of this idea,
based on the following definition: An i-confined packing of a tree T is a packing in which
the page R contains exactly i nodes (clearly i ≤ B). Now, in the optimal packing τ , the
root page R will contain i∗ nodes from the left subtree Tleft(r) and (B − i∗ − 1) nodes
from the right subtree Tright(r), for some i∗. The consequence is that τ is both an optimal
i∗-confined packing for Tleft(r) and an optimal (B − i∗ − 1)-confined packing for Tright(r).
This property is at the basis of the Dynamic-Programming rule stated in Figure 35.8 for a
generic node v: A[v, i] denotes the cost of an optimal i-confined packing of the subtree Tv.
There, the value w(Tv) denotes the probability to access the node v. Rule (1) accounts for
the (unbalanced) case in which the i-confined packing is obtained by storing i−1 nodes from
Tleft(v) into the v’s page; Rule (2) is the symmetric of Rule (1); whereas Rule (3) accounts
for the case in which j nodes from Tleft(v) and i− j− 1 nodes from Tright(v) are stored into
the page of v to form the optimal i-confined packing of Tv. The special case i = 1 is given
by A[v, 1] = w(Tv) + A[left(v), B] + A[right(v), B]. It is easy to check that the algorithm
runs in O(nB2) time, and uses O(nB) space by means of a näıve implementation. Look
at [72] for a more space efficient solution.

THEOREM 35.5 An optimal packing for a f -ary tree of n nodes can be computed in
O(nB2 log f) time and O(B log n) space. The packing maps the tree into at most 2� n

B � disk
pages.

35-24 Handbook of Computational Molecular Biology

Dynamic-Programming Computation

Compute A[v, i] as w(v) plus the minimum among the following three quantities:

(1) A[left(v), i− 1] + w(Tright(v)) +A[right(v), B]
(2) w(Tleft(v)) +A[left(v), B] +A[right(v), i− 1]
(3) min1≤j<i−1{ A[left(v), j] +A[right(v), i− j − 1] }

FIGURE 35.8: The Dynamic-Programming step used to compute the (page-fault and working-
set) optimal packing of a binary tree. Given that w(v) denotes the probability to
access the node v, we define the probability to access the subtree Tv as w(Tv) =∑

u∈Tv
w(u).

In that elegant paper it is also shown that optimizing both space and I/O performance is
NP-complete. Nonetheless an approximation algorithm is additionally provided that uses
the minimum number of pages to fit the tree nodes, i.e. � n

B � disk pages, but slows down
the root-to-leaf tree traversal by (only) one additional I/O.

It goes without saying that the packing algorithm above must know the block size B in
order to compute the optimal tree packing. The value B is sometimes difficult to establish
(think of a software library) and varies according to the disk features. This limitation has
been recently overcome in [3] where a general technique, called Split-and-Refine, has been
devised for converting a family of packing algorithms working with known block-size (like
the ones we commented before) into a packing algorithm with unknown block size, currently
called cache-oblivious algorithm. This transformation comes at the cost of a constant-
factor increase in the number of (expected) I/Os needed for a tree traversal. But it tunes
automatically to arbitrary memory hierarchies with arbitrarily many memory levels.

For the sake of simplicity we describe only the basic ideas underlying that packing al-
gorithm and refer the reader to [3] for technical details. Since we are assuming that the
features of the memory hierarchy are unknown, we have to talk about memory layout in-
stead of disk mapping, and assume to have an unbounded array of memory cells (it is then
the system that will map those cells onto disk pages or other external storage devices).
The basic idea of the cache-oblivious layout is to recursively combine optimal layouts for
several carefully chosen block sizes. Each layout is computed independently, and the block
size is chosen so that the access cost to each of them grows exponentially. The layouts may
be radically different; all we know is their order from the coarser (larger B) to the finer
(smaller B). To define the layouts recursively we require that the blocks into which they are
decomposed, form a recursive structure: a block at one level of detail should be made up
of subblocks at the next finer level of detail. To achieve this, the Split-and-Refine algorithm
refines a level of detail by splitting two nodes in two different subblocks if they occur into
different blocks at any coarser level of detail. Given this, each block at any refined level
of detail is stored in a contiguous segment of memory (i.e. sequence of disk pages). The
subblocks of a block can be stored in any order as long as they are stored contiguously. An
elegant, yet sophisticated, expected analysis [3] shows that

THEOREM 35.6 The Split-and-Refine algorithm produces a cache-oblivious tree layout
whose expected I/O-cost for a random root-to-leaf traversal is within a constant multiplica-
tive factor of the optimal.

String Search in External Memory: Data Structures and Algorithms 35-25

Finding a good packing for the suffix tree topology is just the first key ingredient to
efficiently use this data structure in a hierarchical memory. In fact, as we stressed before,
another key ingredient is the labeling of suffix-tree edges which may consist of arbitrarily
long substrings. Since the edge labeling is indirect, any tree traversal may incur in as
many I/Os as there are edges onto the path traversed by a pattern search. This would
clearly waste the effort we made above to find an efficient (or, optimal) tree packing. A
simple, yet effective, solution to this problem is obtained by adopting the Patricia search
method [130, 33] over a suffix tree, and by storing explicitly the first character of every edge-
label together with its integer pair. Given this additional (and constant space) information,
the access to the text can be delayed as long as possible by proceeding initially only over
the suffix-tree structure. Namely, the pattern search proceeds blindly by matching just the
first character of each traversed edge against the corresponding pattern character, and by
assuming that all of the other skipped characters are magically identical. As soon as the tree
traversal stops, we pick one leaf within the subtree descending from the lastly matched edge
and verify that the corresponding suffix is prefixed by the searched pattern. If the match is
successful, it is possible to prove that the pattern occurs in T and all the suffixes belonging
to that subtree are pattern occurrences; otherwise, we can conclude that the pattern does
not occur in T . We observe that, from one side, this approach can exploit any optimal tree
packing to obtain an I/O-efficient pattern search on suffix trees, for example it achieves
O(p

B + H√
B

+ logB n) I/Os using Theorem 35.4. But, from the other side, this approach
seems unusable for more sophisticated operations (like approximate searches) which need
to indirectly access the whole edge labels. Here, more research is needed!

We are finally left with the problem of engineering the suffix-tree data structure because,
as we repeatedly said in this chapter, space optimization is closely related to performance
optimization in a disk memory system [106] and furthermore, we cannot neglect the fact
that a space-consuming data structure may become unusable even for moderately sized data.
Various papers in the literature dealt theoretically with this problem (see e.g. [134, 136, 50,
64, 68, 77, 75, 69, 76, 142]) or presented heuristics validated through experimentation (see
e.g. [7, 9, 13, 46, 71, 110, 128]). In this context, one of the best results to date is the Compact
PAT-tree [33]. The authors address all I/O-issues by showing that the Compact PAT-tree
is a unifying, elegant and practical solution to the (static) suffix tree packing problem.
The Compact PAT-tree achieves space occupancy close to that of suffix arrays (about 5n
bytes of disk space) and efficient performance on exact searches (about 5 I/Os on hundreds
of Megabytes). Due to space limitations we briefly mention below the main engineering
features of this data structure, and refer the greedy reader to [33] and to two other crucial
references [110, 71] for other details. We also point out that, unfortunately, there does not
exist any publicly available implementation of the Compact PAT-tree, and that this data
structure is mainly designed for exact searches, thus it waits for implementation, extensions
or new proposals (cfr. [76, 69]).

Given the binary encoding of the alphabet Σ, the Compact PAT-tree is defined as the
suffix tree STT built over the binary encoding of T [1, n]. Each internal node of this suffix
tree is therefore binary and its two outgoing edges have a label starting with 0 (the left
one) and 1 (the right one), respectively. Each internal node contains a number that denotes
the offset of the bit used to distinguish the suffixes which descend from it. In practice, the
offset information stored into each node is a skip value, one less than the difference between
the offset value of the node and its parent. The actual offset is accumulated as the tree
is traversed during a search operation. An exact search for a pattern P [1, p] can proceed
in the Compact PAT-tree as much like as we described above for the Patricia tree data
structure [130]. For engineering reasons, the information stored in the Compact PAT-tree

35-26 Handbook of Computational Molecular Biology

is broken into three categories: the tree structure, the skip values (stored in the internal
nodes), and the suffix offsets (stored in the leaves). In what follows we concentrate on the
succinct encoding of each class of information, the final result is reported in Theorem 35.7.
In order to implement the search operations,6 the encoding of the tree structure must
provide the following functionalities:

• efficient selection of the left and right children of a node;
• support for the inclusion of the skip value in the internal nodes, and the suffix

offset in the leaves. Given a node, we need to be able to efficiently determine
these values;

• given a node, efficiently retrieve the suffix offset information from some leaf de-
scendent from that node.

In each case we require that the operations be performed in constant time. Finally we
want an encoding that is as compact as we can find. The survey papers of [104, 119]
present many techniques for binary representations of binary trees that attain 2n bits of
space occupancy, however none meets the criteria above. The Compact PAT-tree uses a
slightly larger encoding developed by [95] that allows the direct implementation of tree
traversals on the encoded form of the tree. Specifically, the tree topology is represented as
a bit string being the juxtaposition of an header, the recursive encoding of the left subtree,
and the recursive encoding of the right subtree. The header contains two subfields: a single
bit indicating which among the left or right subtree is the smaller, and a prefix coded integer
indicating the size of that smaller subtree.

Compressing the skip information in Compact PAT-trees requires an understanding of
the distribution of the skip values. In practice, it has been verified [33, 128, 167] that the
majority of the skip values are zero and that the probability of higher values decreases
geometrically. This distribution leads to a simple encoding of these numbers: just reserve a
small fixed number of bits to hold the skip value (usually 6 bits), and introduce an escape
strategy to deal with the rare cases in which this space is not sufficient. In [136] an intriguing
method that avoids even the storage of skip values is presented, but the operations allowed
onto the suffix tree are limited.

The suffix offsets take up the bulk of the storage used by the Compact PAT-tree. We
might adopt the sophisticated techniques devised in [68, 64, 77, 75, 69, 76], but in order to
keep the discussion easier we present the approach proposed in [167]. If k low order bits in
the suffix offsets are omitted, nk bits are saved in the final Compact PAT-tree. This change
incurs, however, in a 2k search time (and I/O) slowdown because each offset value needs a
search through 2k bits to locate the exact occurrence of the pattern.

In summary, under the hypothesis that the indexed text is generated by a binary memo-
ryless source, [33] proves the following:

THEOREM 35.7 The expected size of the Compact PAT-tree is less than 3.5 + logn +
log logn + O(log log log n

log n) bits per node. The search for an arbitrary pattern P [1, p] takes
O(p

B + H√
B

+ logB n) I/Os, where H is the height of the Compact PAT-tree.

6We notice that the Compact PAT-tree does not offer the suffix links. A suffix link from node u to node
v is defined if the string spelled out by u is aα and the string spelled out by v is just α. These links are
particularly useful to implement efficiently more complicated searches [79].

String Search in External Memory: Data Structures and Algorithms 35-27

35.4.2 Construction

Although the suffix tree data structure is thirty years old, the problem of constructing it
efficiently in various models of computations remains an active area of research (see e.g.
RAM [28, 52, 85, 108, 127, 176, 181], PRAM [82, 53, 161] and BSP [62, 34] models were in-
vestigated). Designing a disk-conscious approach to suffix-tree construction is a challenging
problem that has found efficient solutions only in the last years. In fact, almost all previous
algorithms inserted one suffix at a time into a growing suffix tree thus exhibiting a marked
absence of locality of reference. These algorithms elicit many random I/Os when the size
of the indexed text is too large to be fit into the internal memory of the computer. This
may be obviously a serious problem that, until recently, has prevented this data structure
to be built for text collections of even moderate size. The experiments of [33, 110] have
shown that classical in-memory approaches need several hours to build a suffix tree lying
on disk and, in the case of a 512Mb internal memory, at most 60 million characters could
be indexed in reasonable time [110].

In this section we pose attention on the I/O-bottleneck issue arising in the suffix tree
construction process, and present three different approaches that carefully structure their
pattern of accesses to the disk in order to reduce the number of executed I/Os. Two
approaches are mainly theoretical to date, the third one is the best known in the practical
setting. A full experimental comparison is still needed in order to establish their comparative
performance in the practical setting and, hopefully, achieve a robust suffix-tree construction
algorithm for managing Gigabytes of real texts.

• The first algorithm we describe next was the first to achieve I/O-optimality in the
external memory setting [55]. It adopted for the first time a Divide-and-Conquer
approach to suffix tree construction, and showed how to reduce the construction
process to external-memory sorting and few low-I/O primitives.

• The second algorithm is the simplest and the most elegant, yet I/O-optimal. It
builds the suffix tree indirectly, by exploiting the I/O-effective construction of a
suffix array obtained via the Skew algorithm (see Section 35.3). This algorithmic
scheme applies successfully also to other indexing data structures, like the String
B-tree (see Section 35.5).

• The last algorithm we present achieves the best performance to date in the prac-
tical setting [88, 163] and currently is the one to have built the largest suffix tree
in reasonable time and internal-memory consumption (i.e. 286Mbps using 2Gbs
of internal memory). Surprisingly it is based on the inefficient scheme: one-suffix
insertion at a time; but, it alleviates the I/O-bottleneck of this approach by prop-
erly selecting the insertion order of the suffixes and by carefully exploiting the
internal memory as a buffer.

The Divide-and-Conquer algorithm of [55] builds the suffix tree STT of the string T [1, n]
by executing four (macro)steps, detailed in Figure 35.9 and commented below.

It is not difficult to implement the first three steps I/O-efficiently. Actually the first step
maps pairs of characters to their lexicographic names via a sorting process. The second
step derives the odd tree STo from STT ′ by exploiting the observation that each suffix of T ′

is indeed a compacted odd suffix of T , that is, a suffix starting at an odd position because
two characters of T are squeezed into one character of T ′. Hence, the lcp of any two
suffixes of T ′ differs from the corresponding lcp in T by at most one unit. Just a character
comparison is enough to fix that, and thus all the O(n) nodes in STo can be fixed via a batch
of O(n) character-comparison queries. Overall the I/O-cost of these two steps is dominated
by the sorting process, taking Sort(n) = O(n

B logM/B
n
B) I/Os [1, 178]. The third step

35-28 Handbook of Computational Molecular Biology

Divide-and-Conquer algorithm

(1) Construct the string T ′[j] = rank of 〈T [2j], T [2j + 1]〉, and recursively compute STT ′ .

(2) Derive from STT ′ the compacted trie STo of all suffixes of T beginning at odd positions.

(3) Derive from STo the compacted trie STe of all suffixes of T beginning at even positions.

(4) Merge STo and STe into the whole suffix tree STT , as follows:

(4.1) Find the anchor pairs and the side trees.

(4.2) For each side tree, find a pair of pull leaves.

(4.3) Overmerge STo and STe into the tree STM .

(4.4) Partially unmerge STM to get STT .

FIGURE 35.9: The Divide-and-Conquer algorithm for suffix tree construction.

has an elegant implementation based on the following observation: Each suffix starting at
an even position (even suffix) is a single character followed by an odd suffix. Then the
lexicographic order of the even suffixes of T can be obtained by stably sorting pairs of the
form 〈T [2i], rank(T2i+1)〉, where rank(T2i+1) is the lexicographic position of T2i+1 among
the odd suffixes. Nonetheless, this information is not enough to build the even tree STe;
we further need the lcp-information between pairs of adjacent suffixes. The lcp of two
adjacent even suffixes is zero if their first characters do not match, and one plus the lcp of
the following odd suffixes otherwise. However, since these odd suffixes may not be adjacent
in STo, their lcp is computed via a batch of O(n) lca-queries between the corresponding
STo’s leaves. The I/O-cost of this step is still O(Sort(n)).

The last merging step is recognized as being difficult, so that the efficiency of the overall
approach boils down to the effective implementation of the merging between the odd and
even trees. We will only outline it here, and refer the reader to the seminal paper [55] for
further technical details and proofs of the observations and properties reported below. For
a running example, please have a look at Figure 35.10.

A key concept for the following discussion is the one of overmerged tree STM . If STo and
STe were uncompacted tries, their merging would be simple: it would be enough to perform
a coupled Depth-First visit along their labeled edges, and merge those edges being equal
or split those edges sharing a prefix. The difficulty here is that STo and STe are compact
tries (to occupy linear space), and thus the coupled DFS-visit would execute Ω(1) I/Os per
edge-match test (recall the indirect encoding of the edge labels). In [55] the authors propose
an elegant and I/O-optimal solution that proceeds in two steps: (i) it temporarily relaxes
the requirement of getting STT in one shot, and thus it blindly (over)merges the paths of
STo and STe into the tree STM ; (ii) it finally re-fixes STM by detecting and undoing in an
I/O-efficient manner the (over)merged paths to obtain STT . The (over)merging approach
recalls in some way the Patricia search method used before onto Compacted PAT-trees, in
that it (over)merges two edges if their first characters match.

We note that in the final suffix tree STT there exists an important subset of nodes, called
odd/even nodes: They are nodes having both odd and even descendent leaves. Clearly
odd/even nodes occur either in STo or in STe, or in both. The root of STT is trivially an
odd/even node that occurs in both trees. The construction of STM is crucially based on the
identification of a superset of the odd/even nodes. To this aim, we need to detect anchor

String Search in External Memory: Data Structures and Algorithms 35-29

0

1

2 2 2

3 7 13 5 1 9 11

A

G
A

G T

A
A G A T

T

0

1
1

2 10 12 4 8 14 6

A

G

A T

#

A

A

T

T

STo STe

STM

G

3

1

[GAT#]

[GAT..] [GAT#][TAGG..] [ATGA..]
[GGA..]

[GATAG..] [GAT#]

A

[GGA..]

[ATGAT#]

[GGAT..]

0

1

2

1

2

3 7

13

4

8

14

A G

G

T

#A

A G

A

T

T

2
2

5 10

1

12

6

11

A

G

#

A

G

3

1

A

#

G

A

9

G

T= G A A G A T A G G A T G A T #
1 4 7 10 13

FIGURE 35.10: A running example of the Divide-and-Conquer algorithm on the text string
T = GAAGATAGGATGAT. Leaves are squares and pull leaves are bold faced. Edge
labels are represented with their first character, the remaining string is indicated
between square brackets. Bold circles denote the anchor nodes. In STM bold
paths denote the paths merged by the coupled-DFS. We show via dotted arrows
the d-path for the node spelling out the string GAT: this has length three as
the string length. So the corresponding node in not unmerged. Actually no
overmerge occurs in this example.

pairs and side trees in STe and STo.

DEFINITION 35.1 A pair of nodes uo ∈ STo and ue ∈ STe is called an anchor pair, if
uo and ue denote the same string.

All anchor nodes and their ancestors are odd/even nodes. Consequently the part of STo

and STe lying above the anchor nodes is formed by odd/even nodes only. The part of STo

and STe below the anchor pairs is structured nicely.

DEFINITION 35.2 A side tree is defined to be a subtree of STo or STe that does not
contain an anchor node. A side tree pair is defined to be a pair of side trees, one in STo

and the other in STe, such that the parents of their roots form an anchor pair, and the first
character on the edge from the anchor pair to the roots is the same.

35-30 Handbook of Computational Molecular Biology

The nice property about side tree pairs is that the rest of the odd/even nodes in them
adhere to a simple pattern: they form two downward paths that leave the roots of the side
trees and will interdigitate in the final merged path of STT . Since path merging can be
performed I/O-efficiently, the merging of side tree pairs is reduced to the merging of those
downward paths. Actually we first detect a pair of, so called, pull leaves descending from
those paths, and then merge the paths in the side trees leading to these pull leaves (hence
the overmerging). The latter merging step implements a coupled Depth-First merge over
paths, hence it is I/O-efficient. In [55] it is shown how to compute the anchor nodes and
the pull leaves, and how to merge the part of STo and STe above the anchor nodes, and how
to overmerge the side tree pairs via their pull leaves, in overall O(Sort(n)) I/Os.

The last substep (4.4) deals with the detection of some nodes in STM that do not occur
in STT and must be therefore unmerged. Since an overmerged node u is a node uncorrectly
forced to be odd/even, we check its status as follows. Let 2j−1 and 2i be a pair of odd
and even leaves descending from u in STM , and such that u = lca(2j−1, 2i). Let us define
the pointer d(u) = lca(2j , 2i+1). In [55] it is shown that a node u is properly merged if,
and only if, the depth of u in STM is equal to the depth of u in the tree formed by the
d-pointers. Depth information can be computed in O(Sort(n)) I/Os, as well the d-tree, via
a batch of O(n) lca-queries. As a result, the overall I/O-cost of the Divide-and-Conquer
algorithm follows the nice recursive relation T (n) = T (n/2) +O(Sort(n)).

THEOREM 35.8 Given an arbitrary string T [1, n], its suffix tree STT can be constructed
in O(Sort(n)) I/Os, O(n log n) time, and using O(n/B) disk pages.

The second algorithm we propose for building large suffix trees is based on the following
observation: constructing suffix arrays and suffix trees is equivalent modulo external-memory
sorting or scanning primitives. In fact, the suffix array can be derived from a rightward scan
of the leaves of the suffix tree. The opposite needs little more information, namely the array
LCPT that stores at position i the lcp between the (i−1)th and the ith suffix of SAT . This
second proposal builds a suffix tree indirectly through the elegant Skew algorithm of [100].
The algorithm is deceptively simple, elegant and I/O-optimal, thus a good candidate to
build large suffix trees in the practical setting. The first step of this algorithm consists
of computing SAT and LCPT in O(Sort(n)) I/Os (see Theorem 35.3). After that, the
construction of STT proceeds by inserting the suffixes of T one at time in lexicographic
order, i.e. inserting the leaves in the suffix tree from left to right. A new leaf i always
becomes the rightmost child of a node on the rightmost path of the tree we are currently
building. This path is managed I/O-efficiently by using a stack with the (lastly inserted)
leaf i−1 on its top. To insert the next leaf i, nodes are popped from the stack until the
insertion depth LCPT [i] is reached. If there is a node u at that depth, i is attached to u
and pushed onto the stack. If u is absent, then u is created by splitting the edge at that
depth, and i is attached to u, and both nodes are pushed onto the stack. This preserves
the invariant and thus ensures that the overall I/O, time and space complexities are the
ones stated in Theorem 35.8.

It is not evident which one of the two construction algorithms above is better in prac-
tice. The Divide-and-Conquer algorithm exploits a recursion with parameter 1/2 but it
incurs in a large space-overhead because of the explicit management of the tree topology.
The Skew algorithm is more space efficient and clearly more easy to implement, but it ex-
ploits a recursion with parameter 2/3. Experiments are needed to compare their practical
performance.

We are left with the description of the best algorithm known for the practical setting. Of

String Search in External Memory: Data Structures and Algorithms 35-31

course, we may expect this ranking to change in the near future in the light of the active
research in this field. In any case, the Incremental algorithm of [88] is an example of good
algorithmic engineering that turns an I/O-inefficient algorithm into a good one for real
data. This algorithm trades the ideal O(n) performance of classical incremental approach-
es [127, 176, 181] for locality of references on the basis of two decisions: (i) it abandons
the use of suffix links (see footnote 6), and (ii) it performs multiple passes over the text T
and constructs the suffix tree for a subrange of suffixes at each pass (partition). These deci-
sions result in a fan-like tree structure in which partitions can be built independently, and
evicted from internal memory as they are completed. The partitions are based on a simple
observation: fix a length q, each q-long string identifies at most one subtree in STT , the one
descending from the path spelling out that string. We can thus form the partitions by clus-
tering together the subtrees of more than one q-long string, provided that these trees can be
fit into the available internal memory. Actually the authors of [88] propose two approaches
to determine this clustering. One way is to fix q = 3, count the number of occurrences of
any 3-long string within T via a sequential scan, and finally find the best clustering using a
bin-packing algorithm. Alternatively, given the pseudo-random nature of DNA that makes
STT uniformly populated, the authors propose to choose a uniform partition that exploits
the lexicographic order among the q-long prefixes, and possibly refine it if much-populated
clusters occur. Once the clustering has been computed, we perform as many scanning of
T as there are partitions, and for each of them we build the (forest of) subtree(s) for the
suffixes belonging to that partition. At the end, all subtrees are put together by exploiting
the knowledge about the prefixes that have driven to their construction. We point out that
the algorithm is much efficient in practice because of two facts: (1) I/Os are mainly sequen-
tial and (2) the random pattern of accesses, incurred by the incremental construction of the
subtrees, does not induce many random I/Os because the subtrees are expected to reside
in internal memory during their construction. The experiments reported in [88] present a
rough implementation of the suffix-tree structure requiring about 65 bytes per indexed suf-
fix! Further compression could be obviously obtained by using techniques similar to those
ones proposed for Compact PAT-trees or [110], as well better memory exploitation might
be possible to make the algorithm robust against data skewness. Yet other open issues to
investigate!

35.4.3 Future directions of research

Because of the recent theoretical [136, 77, 69, 76, 63] and practical achievements [71, 76,
88, 110], we believe that it is no longer the time that “suffix trees are not practical except
when the text size to handle is so small that the suffix tree fits in internal memory” [143].
Many sophisticated techniques are around and most of them wait for engineering and ex-
perimentation. It is not surprising that [169] claims that suffix trees are the data structure
with the highest need for better implementations. Hopefully the previous section pointed
out some enlightening proposals for achieving that and raised open problems that deserve
much attention in the near future.

Before concluding the discussion on suffix trees we would like to address one of the most
fascinating issues considered before, that is, the management of skewed query distributions
on massive data. We observe that, in practice, we have commonly no knowledge about
the actual distribution of the queries so that some sort of self-adjusting strategy has to be
devised. As far as string data structures for RAM are concerned, an optimal solution is
known, called the lexicographic tree [170]. Recently, this result has been extended to the
external-memory setting [32] by proposing a novel self-adjusting index based on a variant of
the Skip List data structure [153], called Sasl. A technical novelty of Sasl is a simple ran-

35-32 Handbook of Computational Molecular Biology

domized strategy to implement the self-adjusting feature that overcomes the I/O-bottleneck
on expectation both for the search and the update operations. We will come back to the
features of this data structure when dealing with String B-trees (Section 35.5). We wish
here to point out only the fact that the incremental construction approach detailed above
actually consists of a set of query/insertion operations made on strings of variable length
(i.e. the text suffixes) with possibly long-shared prefixes (that depend on T ’s structure). In
this scenario Sasl might turn out to be useful because it could avoid the need of clustering
similar suffixes and of scanning multiple times the text T to insert them. An engineering of
Sasl is therefore worth to be proposed, experimented, and checked against real biological
sequences.

35.5 The String B-tree

If we open any textbook on algorithmics we find that an optimal solution to the management
of large data sets of atomic keys (e.g. numerical values) is provided by the B-tree data
structure [38, 106]. And indeed any current DBMS uses B-trees to provide persistent storage
capabilities. In Section 35.3 we introduced the Prefix B-tree [17] as an I/O-efficient extension
of B-trees to the management of string keys. This B-tree variant stores a prefix of each key
in the B-tree nodes, providing overflow nodes for the remainder. Unfortunately, these
overflow nodes not only introduce extra latency into database accesses, but also provide the
user with little a priori information about the time required to complete an operation (i.e.
bad I/O-performance in the worst case), and finally, they introduce some space overhead
that may impact on the practical I/O-performance. In the string setting we are dealing
with, the strings are actually suffixes of very long texts so that Prefix B-trees offer very
poor performance guarantee. This is the main reason why nobody in the literature has tried
to use standard DBMS for string indexing applications!

Despite this scenario, the B-tree scheme is naturally appealing for designing an effective
string data structure. This argument has been successfully concretized by the String B-
tree [59] that overcomes the limitations above working well on any set of arbitrarily long
keys. Briefly, the String B-tree is a hybrid data structure that plugs a Patricia tree [130] into
the nodes of the B-tree in order to provide a routing tool that efficiently drives the string
searches and, more importantly, occupies a space proportional to the number of indexed
strings instead of their total length. This allows us to fit many strings into a single node of
the B-tree, independently of their length. As a result, unlike suffix trees and suffix arrays,
the String B-tree achieves optimal I/O-bounds for searching arbitrary patterns (drawn from
unbounded alphabets) and attractive update performance (cfr. Theorems 35.1 and 35.4).7

In practice it requires a negligible, guaranteed number of disk accesses to search for an
arbitrary substring of the indexed string, independently of the character distribution [58].
Consequently it solves the long-standing open problem of dynamically managing arbitrary
long keys in the worst-case setting.

For the sake of generality, we extend the notation as follows. We denote by ∆ a set of
arbitrarily long strings which we wish to index by means of the String B-tree data structure.
The parameter n denotes their total length. We let SUF(∆) denote the lexicographically
ordered set of all suffixes of ∆’s strings (cfr. T and SUF(T) in Section 35.2). It should

7We remark that the String B-tree supports exact substring searches like suffix trees and suffix arrays.
It remains an interesting area of research the resolution of more sophisticated queries, like regular
expressions and approximated searches (cfr. [16]).

String Search in External Memory: Data Structures and Algorithms 35-33

be clear to the reader that, in order to support substring searches inside the strings of ∆,
a data structure must efficiently store SUF(∆). This is what the String B-tree does, with
the additional feature that it supports dynamic changes to ∆, like insertion and deletion of
individual strings. In what follows we will review the basics of String B-trees and discuss
an engineered variant worthy of further experimental investigation. For details on the
data structure we refer the reader to the seminal paper [59], and to some of its practical
variants [21, 58, 154].

The String B-tree built over the set ∆, and denoted hereafter by SB∆, has a structure
similar to the B+-tree [38]: The leaves contain all the indexed keys, while the internal nodes
store copies of some keys for routing the subsequent traversals. The definition of key is a
crucial issue in the context of String B-trees.

DEFINITION 35.3 A key in SB∆ is a pointer to a string of SUF(∆), and therefore it is
a pointer to a suffix of some string of ∆.

Consequently SB∆ indexes indirectly SUF(∆). Its content is therefore different from that
of a Prefix B-tree, since the keys are pointers to strings instead of the strings themselves.
The order between any two keys is then defined to be the lexicographic order among the
corresponding pointed strings. The crucial fact about String B-trees is that by storing just
the string pointers into their nodes, they allow the indexing of strings of arbitrary length
and they are so able to store Θ(B) keys (pointers to strings) in every disk page.

The mapping of the keys to String B-tree nodes is done as follows. Let us assume that
each disk page can contain up to 2b keys, where b = Θ(B) is a parameter depending on
the actual space occupancy of a node (this will be discussed in Section 35.5.1). SUF(∆) is
partitioned into groups of at most 2b strings each, except the last group which may contain
fewer strings. Every group is stored into a leaf of SB∆ in such a way that the left-to-right
scanning of these leaves gives the ordered set SUF(∆) (i.e. the suffix array of all suffixes of
∆’s strings). Each internal node π has n(π) children, with b

2 ≤ n(π) ≤ b, except the root
which has less than b children. Node π also stores the string set Sπ formed by copying the
leftmost and the rightmost strings contained in each one of π’s children. As a result, set
Sπ consists of 2n(π) strings. Since the fan-out of each node is Θ(B), the height of SB∆ is
O(logB n). An example of String B-tree is shown in Figure 35.11.

Since the leaves of the String B-tree form a suffix array on SUF(∆), the search for a pattern
P [1, p] as a substring of ∆’s strings must identify foremost the lexicographic position of P
among the string suffixes in SUF(∆), and thus, among the string pointers in the String
B-tree leaves. Once this position is known, all the occurrences of P as a substring of ∆’s
strings are given by the consecutive string suffixes which are stored from that position and
have P as a prefix. Their retrieval takes O((p/B)occ) I/Os, in case of a brute-force match
between the pattern P and the checked suffixes; or the optimal O(occ/B) I/Os, if some
additional information about the lcp-length shared by adjacent suffixes is kept into each
String B-tree leaf. In the example of Figure 35.11 the search for the pattern P = CT traces
a downward path of String B-tree nodes and identifies the lexicographic position of P into
the fourth leaf (counting from the left) and before the suffix 42. The pattern occurrences
are then retrieved by scanning the String B-tree leaves from that position until the suffix
32 is encountered, because it is not prefixed by P . The positions {42, 20, 13, 24, 16} denote
the five occurrences of P as a substring of ∆’s strings.

Therefore the efficient implementation of substring searches in String B-trees boils down
to the efficient routing of the pattern search among the String B-tree nodes. In this respect
it is clear that the way a string set Sπ is organized, in each traversed node π, plays a crucial

35-34 Handbook of Computational Molecular Biology

∆

1 8 17 18 19 20 21 22 2316964 532

292827262524 30 31 33 37 38 39 40 42 43 44 45 46

1514131211107

32 34 35 36 41

A A AT C

T T T T

T T

T

G G G G

GGG C CC

C

C A A

C C

G AA

A T T

T

A TC A

pattern
position

9 35

22

PTPTPTPT

PT

PT PT PT PT

PT PT PTPT

10

522 33 1 37 2 30 10 39 4 41 7 6 12 15 26 18 43 21 38 3 31 28 11 14 25 17 27

5 37 10 39 7 42 24 16 29 6 18 43 28 11 27

2718 4339 24 1622

42 20 13 24 16 32 8 36 29

5 occurrences

FIGURE 35.11: An illustrative example depicting a String B-tree built on a set ∆ of DNA
sequences. ∆’s strings are stored in a file separated by special characters, here
denoted with black boxes. Notice that SB∆ indexes the whole SUF(∆) and thus
supports substring searches. The triangles labeled with PT depict the Patricia
trees stored into each String B-tree node. The figure also shows in bold the
nodes traversed by the substring search for a pattern P = CT within ∆’s strings.
The circled pointers denote the suffixes, one per level, explicitly checked during
that search. In the leaf level are indicated the five suffixes prefixed by P , and
thus the five positions where P occurs as a substring of ∆’s strings.

role. The innovative idea in String B-trees is to use a Patricia tree PTπ to organize the
string pointers of Sπ [130]. Patricia trees preserve the searching power and properties of
compacted tries, although in a reduced space occupancy and reduced I/O-cost, since they
defer the access to the disk as long as possible (see Section 35.4). When SB∆ is traversed
downward starting from the root, the traversal is routed by using the Patricia tree PTπ

stored in each visited node π. The goal of PTπ is to help finding the lexicographic position
of the searched pattern P within the ordered set Sπ , so that we can detect the next child to
proceed in. By assuming that the strings are binary encoded, we can exploit the Patricia
search method described for the Compact PAT-trees in Section 35.4, and thus access the
disk just when a leaf l of PTπ has been reached. Actually, the difference with that approach
is that, now, we need to find the lexicographic position of P , and not just if P is a prefix of
the suffix pointed to by that leaf. We solve this problem by comparing the string pointed by
l with P in order to determine their longest common prefix. A useful property holds [59]:
the leaf l stores one of the strings in Sπ that share the longest common prefix with P . The

String Search in External Memory: Data Structures and Algorithms 35-35

A

A A

G

G G G

GC
[G] [G]

A

0

3 4

5 6 6

u

[T]

 [C G C]

correct position
for P = GCACGCAC

for P = GCACGCAC
checked string

A
G
A
A
G
A

A
G
A
A
G
G

A
G
A
C

G
C
G
C
A
G
A

G
C
G
C
A
G
G

G
C
G
C
G
G
A

G
C

C
G
G
G
A

G

[G]
A

[G A]
A

FIGURE 35.12: An example of Patricia tree built on a set of k = 7 DNA strings. We do not use
the binary encoding because the tree is already binary. Each leaf points to one
of the k strings; each internal node u (they are at most k − 1) is labeled with
one integer len(u) which denotes the length of the common prefix shared by all
the strings pointed by the leaves descending from u; each edge is labeled with
only one character. The characters between square-brackets are not explicitly
stored, and denote the other characters labeling an edge.

length of this common prefix and the mismatch character P [+ 1] are used in two ways:
first to determine the shallowest ancestor of l spelling out a string longer than , and then
to select the leaf descending from that ancestor which identifies the lexicographic position
of P in Sπ. An illustrative example of a search in a Patricia tree is shown in Figure 35.12.

We remark here that PTπ requires space linear in the number of strings of Sπ , therefore
the space usage is independent of their total length. Consequently, the number of strings
in Sπ can be properly chosen to fit PTπ in the disk page allocated for π. An additional
nice property of PTπ is that it allows to find the lexicographic position of P in Sπ by
exploiting the information available in π’s page and by fully comparing P with just one of
the strings in Sπ . This clearly allows to reduce the number of I/Os needed in the routing
step. By counting the number of I/Os required for searching P [1, p], and recalling that ∆’s
strings have overall length n, we get the I/O-bound O(p

B logB n). In fact, SB∆ has height
O(logB n), and at each traversed node π we may need to fully compare P against one string
of Sπ thus taking O(p

B + 1) I/Os.
A further refinement to this idea is possible by observing that we do not necessarily need

to compare the two strings, P and the candidate string of Sπ, starting from their first
character. Indeed we can take advantage of the comparisons executed on the ancestors of
π in order to skip some character comparisons. An incremental accounting strategy allows
to prove that O(p

B + logB n) I/Os are indeed sufficient, and this bound is optimal in the
case of an unbounded alphabet. A more complete analysis and description of the search

35-36 Handbook of Computational Molecular Biology

and update operations is given in [59] where it is formally proved the following:

THEOREM 35.9 String B-trees support the search for all the occ occurrences of an
arbitrary pattern P [1, p] as a substring of the strings in ∆ taking O(p+occ

B + logB n) I/Os,
where n is the overall length of ∆’s strings. The insertion in, or the deletion from, the set
∆ of a string of length m takes O(m logB(n+m)) I/Os. The required space is the optimal
Θ(n

B) disk pages.

Some authors have successfully used String B-trees in other settings: multi-dimensional
prefix-string queries [96], conjunctive boolean queries on two substrings [60], dictionary
matching problems [61], distributed search engines [62], indexing of XML texts [41] or
temporal series [152]. All of these applications show the flexibility of this full-text index, its
efficiency in external memory, and foretell engineered implementations. Up to now String
B-trees have been confined mainly to the theoretical realm perhaps because of their space
occupancy: the best known implementation uses about 12 bytes per indexed suffix [58]
(see also [21, 154]). In what follows we try to overcome this limitation by proposing an
engineered version of String B-trees suitable for practical implementations.

35.5.1 Engineering

String B-trees have the characteristic that their height decreases exponentially as the node
fan-out increases. This value is strictly related to the number of strings contained in each
node π (actually it is the half). So that, if the disk page size B increases, we can store
more suffixes in Sπ, and thus we can increase the fan-out of each node π. However, since
B is typically chosen to be proportional to the size of a physical disk page, we need a
technique that maximizes |Sπ | for a fixed B. This is actually the problem solved for the
Compact PAT-tree, so that the compaction techniques deployed there might be also used
on Sπ. Rather than do this here, we comment on a more elegant solution that exploits the
specialties of the problem we have in our hands. The key observation is that Sπ occupies
one disk page, so that a CPU cost of O(|Sπ |) cannot be considered as a bottleneck, because
it is surely dominated by the cost of fetching that page from disk. Hence, what about a
slightly slower solution for P ’s searching within Sπ , that however offers a more succinct
space encoding for that set?

The approach we discuss here surprisingly throws away the Patricia tree topology. It
keeps just the string pointers and the offset values stored in the nodes of the Patricia tree,
and it is still able to support pattern searches in a constant number of I/Os per visited
String B-tree node. As a result, the asymptotic I/O-bounds stated in Theorem 35.9 still
hold with a significant space improvement in the constants hidden in the big-O notation.
The starting point is the beautiful result of [56] that we briefly recall here.

Let us be given the lexicographically ordered array of pointers to the strings in Sπ, called
Aπ, and the array LCPπ of longest-common-prefixes shared by strings adjacent in Aπ. We
can look at Aπ and LCPπ as the sequence of string pointers and offset values encountered
during an in-order traversal of PTπ. Substitute then PTπ with Aπ and LCPπ into each
String B-tree node π. Since Aπ is ordered, we might implement the search for P [1, p] via
the classical binary search within a logarithmic number of string accesses (see Section 35.3).
Instead we deploy here the elegant result of [56] that executes only one string access on the
disk, Θ(p+ |Sπ|) bit comparisons, and one full scan of the arrays Aπ and LCPπ. Since these
arrays reside in internal memory when the search is performed on π (i.e. their disk page
has been fetched) and they consist of few thousands of items, a CPU cost linear in their size

String Search in External Memory: Data Structures and Algorithms 35-37

is negligible with respect to the cost of fetching π’s page from disk. Hence this solution is
I/O-efficient in that it requires just one sequential string access, it is CPU-efficient because
the array-scan can benefit from the reading-ahead policy of the internal cache, and it is
space efficient because it avoids the storage of PTπ’s topology.

Let us therefore detail the search algorithm which assumes a binary pattern P and consists
of two phases (see [56] for the uneasy proof of correctness). In the first phase, the algorithm
scans rightward the array Aπ and inductively keeps x as the position of P in this array
(initially x = 0). At a generic step i, it computes = LCPπ[i + 1] + 1 as the mismatching
position between the current string Aπ[i] and the next string Aπ[i + 1]. Notice that the
th bit of the string Aπ [i] is 0, whereas the th bit of the string Aπ[i+ 1] is 1 because they
are binary and lexicographically ordered. If P [] = 1, the algorithm sets x = i + 1 and
increments i; otherwise (it is P [] = 0), the algorithm leaves x unchanged and increments i
until it is LCPπ[i + 1] < . In this latter case the algorithm is jumping all the succeeding
strings which have the th bit set to 1 (since P [] = 0). The first phase ends when Aπ has
been completely scanned. It is possible to prove that Aπ[x] is one of the strings in Sπ sharing
the longest common prefix with P . The second phase of the search algorithm initiates by
computing the length ′ of the longest common prefix between P and the candidate string
Aπ[x]. Then, the algorithm starts from position x a backward scanning of Aπ if P [′+1] = 0,
or a forward scanning if P [′+1] = 1. This scan searches for the lexicographic position of P
in Aπ and proceeds until it meets the position x′ such that LCPπ [x′+1] < ′. The searched
position lies between the two strings Aπ [x′] and Aπ[x′ + 1]. This is the correct position of
P among the strings of Sπ.

Notice that the algorithm needs to access the disk just for fetching the string Aπ[x] and
comparing it against P . Hence O(p/B) I/Os suffice to route P through the String B-tree
node π. An incremental accounting strategy, as the one devised in [59], allows to prove
that we can skip some bit comparisons and therefore require O(p+occ

B + logB n) I/Os to
search for the occ occurrences of a pattern P [1, p] as a substring of ∆’s strings. Preliminary
experiments have shown that searching few thousands of strings via this approach needs a
negligible time compared to the cost of a single I/O on modern disks. Furthermore, the
incremental search strategy allows sometimes to avoid the I/Os needed to access Aπ[x].

35.5.2 Construction

Given that the leaves of a String B-tree form a paged suffix array on the string set ∆, it
is natural to adopt any of the construction algorithms devised for suffix arrays in order to
build a String B-tree (see Section 35.3.2). We are left therefore with the problem of building
the internal nodes of SB∆ and we will do it in O(n/B) I/Os.

For the sake of presentation, assume to indicate by SAi the array of suffix pointers stored
in the ith level of SB∆ (SA0 is the leaf level) and let LCPi the corresponding array of lcp
information between adjacent strings in SAi. It goes without saying that SAi and LCPi are
enough to build the Patricia tree PTπ for the String B-tree nodes at level i, or to build
the arrays used in the engineered solution (actually they are the same). To build the next
level of SB∆, we scan rightward SAi and take the leftmost string L(π) and the rightmost
string R(π) from each node π. This gives the new array SAi+1 whose length is a factor
Θ(1/B) smaller than SAi. Each pair of adjacent strings is either a 〈L(π), R(π)〉 pair or a
〈R(π), L(π′)〉 pair (derived from consecutive nodes π and π′). In the former case, the lcp of
the two strings is obtained by taking the minimum of all the lcp s stored in π; in the latter
case, the lcp is directly available in the array LCPi since R(π) and L(π′) are contiguous
there. After that SAi+1 and LCPi+1 have been constructed, we partition the arrays into
disk pages to form a new level of internal nodes of the String B-tree. The process continues

35-38 Handbook of Computational Molecular Biology

for O(logB n) iterations until the whole SA and LCP fit into one disk page, in which case
the root of the String B-tree is formed and the construction process stops. Since the size
of the arrays shrinks by a factor B at each level, the overall I/O-cost is just the cost of
scanning the String B-tree leaves, hence O(n/B) I/Os. Preliminary experiments [58] have
shown that the time taken to build a String B-tree from its suffix array is negligible with
respect to the time taken for the construction of the suffix array itself.

We conclude this section by recalling that one of the key features of String B-trees is their
dinamicity, which makes them more appealing than suffix trees and arrays. While handling
deletions is not really a problem as we have a plethora of tools inherited from standard
B-trees [38], implementing the addition of a new string in ∆ requires significantly new
techniques. This asymmetry is better understood if we observe that the insertion of a new
string X [1, x] into ∆ requires the insertion of all of its x suffixes into the lexicographically
ordered set SUF(∆). Since string X can be of few Megabytes (or even more), the rescanning
of its characters might be a computational bottleneck. On the other hand, the deletion of
a string Y [1, y] from ∆ consists of a sequence of y standard deletions of pointers to suffixes
of Y , and hence it can exploit standard B-tree techniques.

The approach proposed in [59] to avoid the “rescanning” in string insertions is mainly
theoretical in its flavor and considers an augmented String B-tree where some pointers are
added to its leaves. The counterpart for this I/O improvement is that a larger space occu-
pancy is needed and, when rebalancing the String B-tree, the redirection of some of these
additional pointers may cause the execution of random I/Os. Therefore, it is questionable
if this approach is really attractive from a practical point of view. Starting from these
considerations [58] proposed an alternative approach based on a batched insertion of the
x suffixes of the new string X . This approach exploits the LRU buffering strategy of the
underlying operating system and proves to be effective in the case of a large x. In the
case of a small x, a different approach must be adopted which is based on the suffix-array
merging procedure of [73] (see Section 35.3.2): here X plays the role of the new text piece to
be indexed, ∆ provides the part of the text already indexed, and SB∆’s leaves provide the
suffix array of ∆ (the one stored on disk). The merge of SAX (commonly built in memory)
and SB∆ (and their corresponding LCP arrays) gives the new set of String B-tree leaves.
The internal nodes are constructed within O((n+ x)/B) I/Os as shown above.

An extensive experimental analysis of these approaches is still needed to validate these
appealing theoretical I/O-bounds.

35.5.3 Future directions of research

An important advantage of String B-trees is that they are a variant of B-trees and con-
sequently most of the technological advances and know-how acquired on B-trees can be
smoothly applied to them. For example, split and merge strategies ensuring good page-
fill ratio, node buffering techniques to speed up search operations, B-tree distribution over
multi-disk systems, as well adaptive overflow techniques to defer node splitting and B-tree
re-organization, can be applied on String B-trees without any significant modification. Sur-
prisingly enough, there are no publicly available implementations of the String B-tree data
structure, whereas some softwares are based on it [21, 41, 96], or some ideas have been
tested in [154, 58]. We foretell an engineered and publicly available software library for
full-text indexing based on String B-trees. This library should be designed to follow the
API of the Berkeley DB [171], thus facilitating its use in well-established applications. The
String B-tree could also be adopted in place of the suffix tree for many bio-applications [79],
and its support to more sophisticated searches (e.g. regexp or approximate) still waits for
theoretical and experimental investigations.

String Search in External Memory: Data Structures and Algorithms 35-39

Finally, we wish to make a comment on the case of a skewed query distribution. It is appar-
ent that the String B-tree (like the B-tree) is insensible to the frequency with which strings
are queried, because string pointers reside on leaves and the String B-tree structure is fixed
along the query time. Conversely, the Sasl data structure introduced in Section 35.4.3 ad-
justs itself as the query and update operations are executed. Actually, [32] showed that given
k strings Sis of total length n, the data structure Sasl built on these strings is able to sup-
port a sequence of z searches for Si1 , Si2 , . . . , Siz in O

(∑z
j=1

(|Sij
|

B

)
+
∑k

i=1

(
ni logB

z
ni

))

expected I/Os, where ni is the number of times the string Si is queried. If the strings to
be indexed in the Sasl are taken to be SUF(∆), then the corresponding Sasl provides a
self-adjusting version of the String B-tree. The advantage of SASL is not only theoretical
but also practical in that it is simple and, with high probability, significantly better than
String B-trees when the sequence of queries is highly skewed and changes over the time.
More research is still needed into this fascinating topic which actually introduces a new way
of accounting the cost of string searches for the case of a transactional framework, like the
one we are faced with genomic databases.

35.6 Final Comments

The reader who has reached this last section has probably grasped a lot of hints and open
problems that deserve careful thinking and deep experimental analysis. The latter is actually
a crucial point we wish to stress here. As far as we know (and apart of a tentative feasibility
project [45]), no public software library does exist that makes available the basic data
structures discussed in this chapter in a unifying framework. This would be very valuable
because it could allow researchers to “not rediscover the hot water” over and over again,
not throw away precious research time to re-implement known things in a bad way, not to
perform useless comparisons among known and new solutions, but rather concentrate on
significant research and technological improvements.

There are actually many other avenues to investigate in the context of processing large
genomic datasets, and here we comment one of them: compressed full-text indexes (see
e.g. [68, 64, 69, 74, 75, 76, 142]). These indexes allow to fit within (almost) the space needed
by the best known compressors both the original text and its suffix array (or suffix tree).
Although the compression ratios of genomic sequences are yet poor [11, 29, 30, 54, 78, 115,
146]. we believe that these compressed indexes may be useful in the genomic context because
they may turn into in-memory some computations which now require the use of the disk.
This line of research has been pioneered in the experimental setting by [84, 83, 160] showing
that compressed suffix arrays can be used as filtering data structures to speed up similarity-
based searches on large genomic databases. Actually [160] was able to build a compressed
suffix array on the entire human genome within two Gigabytes of internal memory. From
the theoretical point of view, it is fascinating the paper [44] that proposed another use
of compression for speeding up similarity computations based on a dynamic-programming
scheme. We would like to combine these ideas with those developed in [68, 64, 57, 67, 69]
in order to reduce the space requirements of these algorithms without impairing their time
complexity (which is conjectured in [44] to be close to optimal).

Acknowledgements

I dedicate this chapter to the memory of my father. I thank Valentina Ciriani, Antonio
Gull̀ı and Nadia Pisanti for their comments on early versions of this chapter. This work

35-40 References

was partially supported by Italian MIUR projects ECD and ALGO-NEXT.

References

[1] A. Aggarwal and J.S. Vitter. The Input/Output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116–1127, 1988.

[2] A. Aghili, D. Agrawal, and A.E. Abbadi. Filtration of string proximity search via
transformation. In IEEE International Symposium on BioInformatics and Bio-
Engineering, pages 149–157, 2003.

[3] S. Alstrup, M.A. Bender, E.D. Demaine, and M. Farach-Colton et al. Efficient tree
layout in a multilevel memory hierarchy, 2003. Personal Communication, corrected
version of a paper appeared in the European Symposium on Algorithms 2002.

[4] S. Altschul, T. Madden, A. Schäffer, and J. Zhang et al. Gapped BLAST and PSI-
BLAST: a new generation of protein database search programs. Nucleic Acid Re-
search, 25:3389–3402, 1997.

[5] S.F. Altschul, W. Gish, W. Miller, and E.W. Myers et al. Basic local alignment search
tool. Journal of Molecular Biology, 215:403–410, 1990.

[6] A. Amir, M. Farach, R. Idury, and J. La Poutré et al. Improved dynamic dictionary
matching. Information and Computation, 119(2):258–282, 1995.

[7] A. Andersson and S. Nilsson. Efficient implementation of suffix trees. Software–
Practice and Experience, 25(3):129–141, 1995.

[8] A. Andoni, M. Deza, A. Gupta, and P. Indyk et al. Lower bounds for embedding of
edit distance in normed spaces. In ACM-SIAM Symposium on Algorithms, pages
523–526, 2003.

[9] J. Aoe, K. Morimoto, M. Shishibori, and K. Park. A trie compaction algorithm
for a large set of keys. IEEE Transactions on Knowledge and Data Engineering,
8(3):476–491, June 1996.

[10] A. Apostolico. The myriad virtues of suffix trees. In A. Apostolico and Z. Galil, edi-
tors, Combinatorial Algorithms on Words, volume 12 of NATO Advanced Science
Institutes, Series F, pages 85–96. Springer-Verlag, Berlin, 1985.

[11] A. Apostolico and S. Lonardi. Compression of biological sequences by greedy off-line
textual substitution. In IEEE Data Compression Conference, pages 143–152, 2000.

[12] H. Arimura, J. Abe, H. Sakamoto, and S. Arikawa et al. Text data mining: Discovery
of important keywords in the cyberspace. In Kyoto International Conference on
Digital Libraries, pages 121–126, 2000.

[13] R.A. Baeza-Yates, E.F. Barbosa, and N. Ziviani. Hierarchies of indices for text
searching. Information Systems, 21(6):497–514, 1996.

[14] R.A. Baeza-Yates and G.H. Gonnet. Fast text searching for regular expressions or
automaton searching on tries. Journal of the ACM, 43(6):915–936, 1996.

[15] R.A. Baeza-Yates and C.H. Perleberg. Fast and practical approximate string match-
ing. Information Processing Letters, 59(1):21–27, 1996.

[16] M. Bawa, T. Condie, and P. Ganesan. LSH forest: self-tuning indexes for similarity
search. In International Conference on the World Wide Web, pages 651–660, 2005.

[17] R. Bayer and K. Unterauer. Prefix B-trees. ACM Transactions on Database Sys-
tems, 2(1):11–26, 1977.

[18] J. Bentley. Programming Pearls. Addison-Wesley, USA, 1989.
[19] J.L. Bentley and M.D. McIlroy. Engineering a sort function. Software – Practice

and Experience, 23(11):1249–1265, 1993.

References 35-41

[20] P. Bohannon, P. McIlroy, and R. Rastogi. Main-memory index structures with fixed-
size partial keys. SIGMOD Record, 30(2):163–174, 2001.

[21] P. Bumbulis and I.T. Bowman. A compact B-tree. In ACM SIGMOD, pages 533–541,
2002.

[22] S. Burkhard, A. Crauser, H.P. Ferragina, and P. Lenhof et al. Q-gram based database
searching using suffix array. In International Conference on Computational Molec-
ular Biology, pages 77–83, 1999.

[23] S. Burkhardt and J. Kärkkäinen. Better filtering with gapped q-grams. Fundamenta
Informaticae, 23:1001–1018, 2003.

[24] S. Burkhardt and J. Kärkkäinen. Fast lightweight suffix array construction and check-
ing. In Symposium on Combinatorial Pattern Matching, volume 2676 of Lecture
Notes in Computer Science, pages 55–69. Springer-Verlag, 2003.

[25] M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, 1994.

[26] A. Califano and I. Rigoutsos. FLASH: A fast lookup algorithm for string homology.
In International Conference on Intelligent Systems for Molecular Biology, pages
56–64, 1993.

[27] E. Chávez and G. Navarro. A metric index for approximate string matching. In Latin
American Symposium on Theoretical INformatics, volume 2286 of Lecture Notes
in Computer Science, pages 181–195. Springer-Verlag, 2002.

[28] M.T. Chen and J. Seiferas. Efficient and elegant subword tree construction. In
Combinatorial Algorithms on Words, chapter 12, pages 97–107. NATO ASI Series
F: Computer and System Sciences, 1985.

[29] X. Chen, S. Kwong, and M. Li. A compression algorithm for DNA sequences and its
applications in genome comparison. In International Conference on Computational
Molecular Biology, page 107, 2000.

[30] X. Chen, M. Li, B. Ma, and J. Tromp. DNACompress: Fast and effective DNA
sequence compression. Bioinformatics, 18(12):1696–1698, 2002.

[31] X. Chen, M. Li, B. Ma, and J. Tromp. PatternHunter—fast and more sensitive
homology search. Bioinformatics, 18:440–445, 2002.

[32] V. Ciriani, P. Ferragina, F. Luccio, and S. Muthukrishnan. Static optimality the-
orem for external-memory string access. In IEEE Symposium on Foundations of
Computer Science, pages 219–227, 2002.

[33] D.R. Clark and I. Munro. Efficient suffix trees on secondary storage. In ACM-SIAM
Symposium on Discrete Algorithms, pages 383–391, 1996.

[34] R. Clifford and M. Sergot. Distributed and paged suffix trees for large genetic databas-
es. In Symposium on Combinatorial Pattern Matching, volume 2676 of Lecture
Notes in Computer Science, pages 70–82. Springer-Verlag, 2003.

[35] A.L. Cobbs. Fast approximate matching using suffix trees. In Symposium on Com-
binatorial Pattern Matching, volume 937 of Lecture Notes in Computer Science,
pages 41–54. Springer-Verlag, 1995.

[36] R. Cole, L. Gottlieb, and M. Lewenstein. Dictionary matching and indexing with
errors and don’t cares. In ACM Symposium on Theory of Computing, 2004.

[37] L. Colussi and A. De Col. A time and space efficient data structure for string searching
on large texts. Information Processing Letters, 58(5):217–222, 1996.

[38] D. Comer. Ubiquitous B-tree. ACM Computing Surveys, 11(2):121–137, June 1979.
[39] B. Cooper, N. Sample, M.J. Franklin, and G.R. Hjaltason et al. A fast index for

semistructured data. In The VLDB Journal, pages 341–350, 2001.
[40] G. Cormode and S. Muthukrishnan. The string edit distance problem with moves.

In ACM-SIAM Symposium on Discrete Algorithms, pages 667–676, 2002.

35-42 References

[41] F. Corti, P. Ferragina, and M. Paoli. TReSy: An XML-indexing tool. CRiBeCu –
Scuola Normale Superiore (Pisa, Italy), http://www.cribecu.sns.it/, 1999.

[42] A. Crauser and P. Ferragina. A theoretical and experimental study on the construc-
tion of suffix arrays in external memory. Algorithmica, 32(1):1–35, 2002.

[43] M. Crochemore. Transducers and repetitions. Theoretical Computer Science,
45(1):63–86, 1986.

[44] M. Crochemore, G.M. Landau, and M. Ziv-Ukelson. A sub-quadratic sequence align-
ment algorithm for unrestricted scoring matrices. SIAM Journal on Computing,
32(2):1654–1673, 2003.

[45] A. Czumaj, P. Ferragina, L. Ga̧sieniec, and S. Muthukrishnan et al. The architecture
of a software library for string processing. In Workshop on Algorithm Engineering,
pages 166–176, 1997.

[46] W. DeJonge, A.S. Tanenbaum, and R.P. VanDeRiet. Two access methods using
compact binary trees. IEEE Transactions on Software Engineering, 13(7), 1987.

[47] A.L. Delcher, S. Kasif, R.D. Fleischmann, and J. Peterson et al. Alignment of whole
genomes. Nucleic Acid Research, 27(11):2369–2376, 1999.

[48] A.L. Delcher, A. Phillippy, J. Calton, and S.L. Salzberg. Fast algorithms for large-
scale genome alignment and comparison. Nucleic Acid Research, 30(11):2478–2483,
2002.

[49] E. Demaine. Cache-oblivious algorithms and data structures. In Gerth Brodal, editor,
Lecture Notes from the EEF Summer School on Massive Data Sets. Springer-
Verlag, 2006.

[50] E. Demaine and A. Lopez-Ortiz. A linear lower bound on index size for text retrieval.
In ACM-SIAM symposium on Discrete algorithms, pages 289–294, 2001.

[51] G. Diehr and B. Faaland. Optimal pagination of B-trees with variable-length items.
Communications of the ACM, 27(3):241–247, 1984.

[52] M. Farach. Optimal suffix tree construction with large alphabets. In IEEE Sympo-
sium on Foundations of Computer Science, pages 137–143, 1997.

[53] M. Farach and S. Muthukrishnan. Optimal logarithmic time randomized suffix tree
construction. In International Colloquium on Automata, Languages and Program-
ming, volume 1099 of Lecture Notes in Computer Science, pages 550–561. Springer-
Verlag, 1996.

[54] M. Farach, M.O. Noordewier, S.A. Savari, and L.A. Shepp et al. On the entropy of
DNA: Algorithms and measurements based on memory and rapid convergence. In
ACM-SIAM Symposium on Discrete Algorithms, pages 48–57, 1995.

[55] M. Farach-Colton, P. Ferragina, and S. Muthukrishnan. On the sorting-complexity
of suffix tree construction. Journal of the ACM, 47(6):987–1011, 2000.

[56] D.E. Ferguson. Bit-Tree: a data structure for fast file processing. Communications
of the ACM, 35(6):114–120, 1992.

[57] P. Ferragina, R. Giancarlo, G. Manzini, and M. Sciortino. Boosting textual compres-
sion in optimal linear time. Journal of the ACM, 52(4):688–713, 2005.

[58] P. Ferragina and R. Grossi. Fast string searching in secondary storage: Theoretical
developments and experimental results. In ACM-SIAM Symposium on Discrete
Algorithms, pages 373–382, 1996.

[59] P. Ferragina and R. Grossi. The string B-tree: A new data structure for string search
in external memory and its applications. Journal of the ACM, 46(2):236–280, 1999.

[60] P. Ferragina, N. Koudas, S. Muthukrishnan, and D. Srivastava. Two-dimensional
substring indexing. Journal of Computer System Science, 66(4):763–774, 2003.

[61] P. Ferragina and F. Luccio. Dynamic dictionary matching in external memory. In-
formation and Computation, 146(12), 1998.

References 35-43

[62] P. Ferragina and F. Luccio. String search in coarse-grained parallel computers. Al-
gorithmica, 24(3–4):177–194, 1999.

[63] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Structuring labeled
trees for optimal succinctness, and beyond. In IEEE Symposium on Foundations
of Computer Science, 2005.

[64] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
IEEE Symposium on Foundations of Computer Science, pages 390–398, 2000.

[65] P. Ferragina and G. Manzini. An experimental study of a compressed index. Infor-
mation Sciences: special issue on “Dictionary Based Compression”, 135:13–28,
2001.

[66] P. Ferragina and G. Manzini. An experimental study of an opportunistic index. In
ACM-SIAM Symposium on Discrete Algorithms, pages 269–278, 2001.

[67] P. Ferragina and G. Manzini. Compression boosting in optimal linear time using the
Burrows-Wheeler transform. In ACM-SIAM Symposium on Discrete Algorithms
(SODA ’04), pages 648–656, 2004.

[68] P. Ferragina and G. Manzini. Indexing compressed text. Journal of the ACM,
52(4):552–581, 2005.

[69] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. An alphabet-friendly
FM-index. In International Symposium on String Processing and Information
Retrieval, volume 3246 of Lecture Notes in Computer Science, pages 150–160.
Springer-Verlag, 2004.

[70] M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algo-
rithms. In IEEE Symposium on Foundations of Computer Science, pages 285–298,
1999.

[71] R. Giegerich, S. Kurtz, and J. Stoye. Efficient implementation of lazy suffix trees.
Software Practice & Experience, 33:1035–1049, 2003.

[72] J. Gil and A. Itai. How to pack trees. Journal of Algorithms, 32(2):108–132, 1999.
[73] G.H. Gonnet, R.A. Baeza-Yates, and T. Snider. New indices for text: PAT trees and

PAT arrays. In B. Frakes and R.A. Baeza-Yates, editors, Information Retrieval:
Data Structures and Algorithms, chapter 5, pages 66–82. Prentice-Hall, 1992.

[74] Sz. Grabowski, V. Mäkinen, and G. Navarro. First Huffman, then Burrows-Wheeler:
an alphabet-independent FM-index. In International Symposium on String Pro-
cessing and Information Retrieval, volume 3246 of Lecture Notes in Computer
Science, pages 210–211. Springer-Verlag, 2004.

[75] R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes. In
ACM-SIAM Symposium on Discrete Algorithms, pages 841–850, 2003.

[76] R. Grossi, A. Gupta, and J. Vitter. Indexing equals compression: Experiments on
suffix arrays and trees. In ACM-SIAM Symposium on Discrete Algorithms, 2004.

[77] R. Grossi and J.S. Vitter. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. In ACM Symposium on Theory of Computing,
pages 397–406, 2000.

[78] S. Grumbach and F. Tahi. A new challenge for compression algorithms: genetic
sequences. Information Processing and Management, 30(6):875–886, 1994.

[79] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

[80] D. Gusfield, G.M. Landau, and B. Schieber. An efficient algorithm for the all pairs
suffix-prefix problem. Information Processing Letters, 41(4):181–185, 1992.

[81] S. Arikawa H. Arimura, H. Sakamoto. Efficient data mining from large text databases.
In Progress in Discovery Science, pages 123–139, 2002.

[82] R. Hariharan. Optimal parallel suffix tree construction. Journal of Computer and

35-44 References

System Sciences, 55(1):44–69, 1997.
[83] J. Healy, E.E. Thomas, J.T. Schwartz, and M. Wigler. Annotating large genomes

with exact word matches. Genome Research, 13:2306–2315, 2003.
[84] W. Hon, T. Lam, W. Sung, and W. Tse et al. Practical aspects of compressed

suffix arrays and FM-index in searching DNA sequences. In Workshop on Algorithm
Engineering and Experiments, pages 31–38, 2004.

[85] W. Hon, K. Sadakane, and W. Sung. Breaking a time-and-space barrier in construct-
ing full-text indices. In IEEE Symposium on Foundations of Computer Science,
pages 251–260, 2003.

[86] W.K. Hon, T.W. Lam, K. Sadakane, and W.K. Sung. Constructing compressed
suffix arrays with large alphabets. In International Symposium on Algorithms and
Comuptation, volume 2906 of Lecture Notes in Computer Science, pages 505–516.
Springer-Verlag, 2003.

[87] T.C. Hu and A.C. Tucker. Optimal computer search trees and variable length alpha-
betic codes. SIAM Journal of Applied Mathematics, 21:514–532, 1971.

[88] E. Hunt, M.P. Atkinson, and R.W. Irving. Database indexing for large DNA and
protein sequence collections. The International Journal on Very Large Data Bases,
11(3):256–271, 2002.

[89] D.A. Hutchinson, P. Sanders, and J.S. Vitter. Duality between prefetching and queued
writing with parallel disks. In European Symposium on Algorithms, volume 2161 of
Lecture Notes in Computer Science, pages 62–73. Springer-Verlag, 2001.

[90] IBM Journal on Research and Development. The Memory eXpansion Technology
for xSeries servers, March 2001.

[91] P. Indyk. Approximate nearest neighbor under edit distance via product metrics. In
ACM-SIAM Symposium on Discrete Algorithms, pages 646–650, 2004.

[92] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the
curse of dimensionality. In ACM symposium on Theory of computing, pages 604–
613, 1998.

[93] H. Itoh and H. Tanaka. An efficient method for in memory construction of suffix
arrays. In Symposium on String Processing and Information Retrieval, pages 81–
88, 1999.

[94] M. Jackson, T. Strachan, and G. Dover. Human Genome Evolution. Bios Scientific
Publisher, 1996.

[95] G. Jacobson. Space-efficient static trees and graphs. In IEEE Symposium on Foun-
dations of Computer Science, pages 549–554, 1989.

[96] H.V. Jagadish, N. Koudas, and D. Srivastava. On effective multi-dimensional indexing
for strings. ACM SIGMOD Record, 29(2):403–414, 2000.

[97] P. Jokinen and E. Ukkonen. Two algorithms for approximate string matching in static
texts. In Matematical Foundations of Computer Science, number 520 in Lecture
Notes in Computer Science, pages 240–248. Springer-Verlag, 1991.

[98] T. Kahveci and A. Singh. MAP: searching large genome databases. In Pacific Sym-
posium on Biocomputing, pages 303–314, 2003.

[99] T. Kahveci and A.K. Singh. Efficient index structures for string databases. In Inter-
national Conference on Very Large Data Bases, pages 351–360, 2001.

[100] J. Kärkkäinen and P. Sanders. Simple linear work suffix array construction. In In-
ternational Colloquium on Automata, Languages and Programming, volume 2719
of Lecture Notes in Computer Science, pages 943–955. Springer-Verlag, 2003.

[101] J. Kärkkäinen and E. Ukkonen. Sparse suffix trees. In International Conference
on Computing and Combinatorics, volume 1090 of Lecture Notes in Computer
Science, pages 219–230. Springer-Verlag, 1996.

References 35-45

[102] R. Karp, R. Miller, and A. Rosenberg. Rapid Identification of Repeated Patterns in
Strings, Arrays and Trees. In ACM Symposium on Theory of Computation, pages
125–136, 1972.

[103] T. Kasai, G. Lee, H. Arimura, and S. Arikawa et al. Linear-time longest-common-
prefix computation in suffix arrays and its applications. In Symposium on Combi-
natorial Pattern Matching, volume 2089 of Lecture Notes in Computer Science,
pages 181–192. Springer-Verlag, 2001.

[104] J. Katajainen and E. Makinen. Tree compression and optimization with applications.
International Journal of Foundations of Computer Science, 1(4):425–447, 1990.

[105] D.K. Kim, J.S. Sim, H. Park, and K. Park. Linear-time construction of suffix arrays.
In Symposium on Combinatorial Pattern Matching, volume 2676 of Lecture Notes
in Computer Science, pages 186–199. Springer-Verlag, 2003.

[106] D.E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Program-
ming. Addison-Wesley, Reading, MA, USA, second edition, 1998.

[107] P. Ko and S. Aluru. Linear time construction of suffix arrays. In Combinatorial
Pattern Matching Conference, volume 2676 of Lecture Notes in Computer Science,
pages 200–210. Springer-Verlag, 2003.

[108] S. Kosaraju. Real-time pattern matching and quasi-real-time construction of suffix
trees. ACM Symposium on Theory of Computing, pages 310–316, 1994.

[109] P. Kumar. Cache-oblivious algorithms. In U. Meyer, P. Sanders, and J.F. Sibeyn,
editors, Algorithms for Memory Hierarchies, volume 2625 of Lecture Notes in Com-
puter Science, pages 193–212. Springer-Verlag, 2003.

[110] S. Kurtz. Reducing the space requirement of suffix trees. Software—Practice and
Experience, 29(13):1149–1171, 1999.

[111] S. Kurtz and C. Schleiermacher. REPuter: Fast computation of maximal repeats in
complete genomes. Bioinformatics, 15(5):426–427, 1999.

[112] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest
neighbor in high dimensional spaces. In ACM symposium on theory of computing,
pages 614–623, 1998.

[113] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest
neighbor in high dimensional spaces. SIAM Journal on Computing, 30(2):457–474,
2000.

[114] T.W. Lam, K. Sadakane, W.K. Sung, and S.M. Yiu. A space and time efficient
algorithm for constructing compressed suffix arrays. In International Conference
on Computing and Combinatorics, volume 2387 of Lecture Notes in Computer
Science, pages 401–410. Springer-Verlag, 2002.

[115] J.K. Lanctot, M. Li, and E. Yang. Estimating DNA sequence entropy. In ACM-SIAM
Symposium on Discrete Algorithms, pages 409–418, 2000.

[116] N.J. Larsson and K. Sadakane. Faster suffix sorting. Technical Report LU-CS-TR:99-
214, Department of Computer Science, Lund University, 1999.

[117] D.J. Lipman and W.R. Pearson. Rapid and sensitive protein similarity searches.
Science, 227:1435–1441, 1985.

[118] D.P. Lopresti and A. Tomkins. Block edit models for approximate string matching.
Theoretical Computer Science, 181(1):159–179, 1997.

[119] E. Mäkinen. A survey on binary tree codings. The Computer Journal, 34(5):438–443,
1991.

[120] V. Mäkinen, G. Navarro, and K. Sadakane. Advantages of backward searching—
efficient secondary memory and distributed implementation of compressed suffix ar-
rays. In International Symposium on Algorithms and Computation, Lecture Notes
in Computer Science. Springer-Verlag, 2004.

35-46 References

[121] U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, 1993.

[122] G. Manzini. Two space saving tricks for linear time LCP array computation. In
Scandinavian Workshop on Algorithm Theory, pages 372–383, 2004.

[123] G. Manzini and P. Ferragina. Lightweight suffix sorting home page.
http://www.mfn.unipmn.it/~manzini/lightweight, 2003.

[124] G. Manzini and P. Ferragina. Engineering a lightweight suffix array construction
algorithm. Algorithmica, 40:33–50, 2004.

[125] L. Marsan and M.F. Sagot. Algorithms for extracting structured motifs using a suffix
tree with an application to promoter and regulatory site consensus identification.
Journal of Computational Biology, 7:345–360, 2000.

[126] W. J. Masek and M. S. Paterson. A faster algorithm for computing string edit
distances. Journal of Computer System Science, 20(1):18–31, 1980.

[127] E.M. McCreight. A space-economical suffix tree construction algorithm. Journal of
the ACM, 23(2):262–272, 1976.

[128] T.H. Merrett and H. Shang. Trie methods for representing text. In International
Conference on Foundations of Data Organization and Algorithms, volume 730 of
Lecture Notes in Computer Science, pages 130–145. Springer-Verlag, 1993.

[129] H.W. Mewes and K. Heumann. Genome analysis: Pattern search in biological macro-
molecules. In Symposium on Combinatorial Pattern Matching, volume 937 of Lec-
ture Notes in Computer Science, pages 261–285. Springer-Verlag, 1995.

[130] D.R. Morrison. PATRICIA - practical algorithm to retrieve coded in alphanumeric.
Journal of the ACM, 15(4):514–534, 1968.

[131] E. Moura, G. Navarro, and N. Ziviani. Indexing compressed text. In South American
Workshop on String Processing, pages 95–111, 1997.

[132] I. Munro. Succinct data structures. In Workshop on Data Structures, within the
Conference on Foundations of Software Technology and Theoretical Computer
Science, pages 1–6, 1999.

[133] I. Munro and V. Raman. Succinct representation of balanced parentheses, static
trees and planar graphs. In Proceedings of IEEE Symposium on Foundations of
Computer Science, pages 118–126, 1997.

[134] I. Munro and V. Raman. Succinct representation of balanced parentheses and static
trees. SIAM Journal on Computing, 31(3):762–776, 2001.

[135] I. Munro, V. Raman, and S. Srinivasa Rao. Space efficient suffix trees. In Proceeding
of Conference on Foundations of Software Technology and Theoretical Computer
Science, pages 186–195. Springer-Verlag LNCS n. 1530, 1998.

[136] I. Munro, V. Raman, and S. Srinivasa Rao. Space efficient suffix trees. Journal of
Algorithms, 39(2):205–222, 2001.

[137] S. Muthukrishnan and S.C. Sahinalp. Approximate nearest neighbors and sequence
comparison with block operations. In ACM symposium on Theory of computing,
pages 416–424, 2000.

[138] S. Muthukrishnan and S.C. Sahinalp. Simple and practical sequence nearest neighbors
with block operations. In Symposium on Combinatorial Pattern Matching, volume
2373 of Lecture Notes in Computer Science, pages 262–278. Spring-Verlag, 2002.

[139] S. Muthukrishnan and S.C. Sahinalp. An efficient algorithm for sequence comparison
with block reversals. Theoretical Computer Science, 321(1):95–101, 2004.

[140] E.W. Myers. A sublinear algorithm for approximate keyword searching. Algorithmi-
ca, 12(4/5):345–374, 1994.

[141] G. Navarro. A guided tour to approximate string matching. ACM Computing Sur-
veys, 33(1):31–88, 2001.

References 35-47

[142] G. Navarro. Indexing text using the Ziv-Lempel trie. Journal of Discrete Algorithms,
2(1):87–114, 2004.

[143] G. Navarro and R. Baeza-Yates. A hybrid indexing method for approximate string
matching. Journal of Discrete Algorithms, 1(1):21–49, 2000.

[144] G. Navarro, E. Barbosa, R. Baeza-Yates, and W. Cunto et al. Binary searching with
non-uniform costs and its application to text retrieval. Algorithmica, 27(2):145–169,
2000.

[145] G. Navarro, E. Sutinen, J. Tanninen, and J. Tarhio. Indexing methods for approxi-
mate string matching. IEEE Data Engineering Bulletin, 24(4):19–27, 2001.

[146] C.G. Nevill-Manning and I.H. Witten. Protein is incompressible. In IEEE Data
Compression Conference, pages 257–266, 1999.

[147] M.H. Nodine and J.S. Vitter. Deterministic distribution sort in shared and dis-
tributed memory multiprocessors. In ACM Symposium on Parallel Algorithms and
Architectures, pages 120–129, 1993.

[148] M.H. Nodine and J.S. Vitter. Greed sort: optimal deterministic sorting on parallel
disks. Journal of the ACM, 42(4):919–933, 1995.

[149] W.R. Pearson. Rapid and sensitive sequence comparison with FASTP and FASTA.
Methods Enzymology, 183:63–98, 1990.

[150] W.R. Pearson. Flexible sequence similarity searching with the FASTA3 program
package. Methods in Molecular Biology, 132:185–219, 2000.

[151] W.R. Pearson and D.J. Lipman. Improved tools for biological sequence comparison.
Proc. National Academy of Science USA, 85:2444–2448, 1988.

[152] C.S. Perng. Indexing temporal series with String B-trees. Manuscript (personal
communication), University of California, Los Angeles., 1999.

[153] W. Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees. Communica-
tions of the ACM, 33(6):668–676, 1990.

[154] K.R. Rose. Asynchronous generic key/value database. Master’s thesis, Massachusetts
Institute of Technology, September 2000.

[155] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. IEEE Com-
puter, 27(3):17–29, 1994.

[156] K. Sadakane. A fast algorithms for making suffix arrays and for Burrows-Wheeler
transformation. In IEEE Data Compression Conference, pages 129–138, 1998.

[157] K. Sadakane. Compressed text databases with efficient query algorithms based on the
compressed suffix array. In International Symposium on Algorithms and Computa-
tion, volume 1969 of Lecture Notes in Computer Science, pages 410–421. Springer-
Verlag, 2000.

[158] K. Sadakane. Succinct representations of LCP information and improvements in the
compressed suffix arrays. In ACM-SIAM Symposium on Discrete Algorithms, pages
225–232, 2002.

[159] K. Sadakane. New text indexing functionalities of compressed suffix arrays. Journal
of Algorithms, 48(2):294–313, 2003.

[160] K. Sadakane and T. Shibuya. Indexing huge genome sequences for solving various
problems. Genome Informatics, 12:175–183, 2001.

[161] S.C. Sahinalp and U. Vishkin. Symmetry breaking for suffix tree construction. In
ACM Symposium on Theory of Computing, pages 300–309, 1994.

[162] D. Salomon. Data Compression: the Complete Reference. Springer Verlag, 1997.
[163] K.B. Schürmann and J. Stoye. Suffix tree construction for large strings. In Workshop

of Fundamentals of Databases, 2002.
[164] P.H. Sellers. The theory and computation of evolutionary distances: Pattern recog-

nition. Journal of Algorithms, 1(4):359–373, 1980.

35-48 References

[165] J. Seward. bzip2 home page, 1997. http://sources.redhat.com/bzip2.
[166] J. Seward. On the performance of BWT sorting algorithms. In IEEE Data Com-

pression Conference, pages 173–182, 2000.
[167] H. Shang. Trie methods for text and spatial data structures on secondary storage.

PhD thesis, McGill University, 1995.
[168] F. Shi. Fast approximate string matching with q-blocks sequences. In South Ameri-

can Workshop on String Processing, pages 257–271, 1996.
[169] S. Skiena. Who is interested in algorithms and why? Lessons from the stony brook

algorithm repository. In Workshop on Algorithmic Engineering, pages 204–212,
1998.

[170] D.D. Sleator and R.E. Tarjan. Self-adjusting binary search trees. Journal of the
ACM, 32(3):652–686, July 1985.

[171] Sleepycat Software. The Berkeley DB. http://www.sleepycat.com/.
[172] E. Sutinen and J. Tarhio. On using q-gram locations in approximate string matching.

In European Symposium on Algorithms, volume 979 of Lecture Notes in Computer
Science, pages 327–340. Springer-Verlag, 1995.

[173] E. Sutinen and J. Tarhio. Filtration with q-samples in approximate string matching.
In Symposium on Combinatorial Pattern Matching, volume 1075 of Lecture Notes
in Computer Science, pages 50–63. Springer-Verlag, 1996.

[174] W. Szpankowski. A generalized suffix tree and its (un)expected asymptotic behaviors.
SIAM Journal on Computing, 22(6):1176–1198, 1993.

[175] E. Ukkonen. Approximate string matching over suffix trees. In Symposium on Com-
binatorial Pattern Matching, volume 684 of Lecture Notes in Computer Science,
pages 228–242. Springer-Verlag, 1993.

[176] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249–260, 1995.
[177] J.S. Vitter. External memory algorithms and data structures: Dealing with MAS-

SIVE DATA. ACM Computing Surveys, 33(2):209–271, 2002.
[178] J.S. Vitter and E. Shriver. Algorithms for parallel memory: Two-level memories.

Algorithmica, 12:110–147, 1994.
[179] M.M. Waldrop. On-line archives let biologists interrogate the genome. Science,

269:1356–1358, 1995.
[180] P.J. Weinberger. Unix B-trees. Technical report, AT&T Bell Laboratories, 1995.
[181] P. Weiner. Linear pattern matching algorithm. In IEEE Symposium on Switching

and Automata Theory, pages 1–11, 1973.
[182] I.H. Witten, A. Moffat, and T.C. Bell. Managing Gigabytes: Compressing and

Indexing Documents and Images. Morgan Kaufmann Publishers, second edition,
1999.

[183] J. Yang, W. Wang, Y. Xia, and P.S. Yu. Accelerating approximate subsequence search
on large protein sequence databases. In IEEE Computer Society Bioinformatics
Conference, pages 207–218, 2002.

[184] O. Zamir and O. Etzioni. Grouper: a dynamic clustering interface to Web search
results. Computer Networks, 31(11–16):1361–1374, 1999.

[185] D. Zhang and Y. Dong. Hierarchical, online clustering of web search results. In
International Workshop on Web information and data management, 2001.

[186] J. Zobel, A. Moffat, and K. Ramamohanarao. Guidelines for presentation and com-
parison of indexing techniques. SIGMOD Record, 25(3):10–15, 1996.

36
Index Structures for Approximate
Matching in Sequence Databases

Tamer Kahveci
University of Florida, Gainesville

Ambuj K. Singh
University of California, Santa Barbara

36.1 Why do we Need Index Structures? 36-1
36.2 K-gram Indexing . 36-2

Hash tables • ed-trees
36.3 Direct Indexing . 36-7

Suffix trees • VP-trees
36.4 Vector Space Indexing . 36-12

SST • Frequency vectors
36.5 Concluding Remarks and Future Directions 36-22

36.1 Why do we Need Index Structures?

Approximate sequence searching is crucial in many problems. Pairwise sequence compar-
ison, multiple sequence alignment, motif finding, shotgun sequence assembly are only a
few of countless examples. Hundreds of thousands of approximate sequence search queries
are performed daily around the world by scientists. Approximate searches are widely used
for evolutionary analysis, identification of coding regions, phylogenetic analysis, structural
analysis and classification. Pairwise comparison of sequences is a well studied problem.
A number of exhaustive search methods have already been devised to find both local and
global alignments such as dynamic programming [48, 56] or finite automata [5]. Why does
one need an index structure to find sequence alignments given these powerful tools? In
order to understand the need for an index structure, consider the following three examples.

Example 36.1

(Sequence search) One of the elementary problems on sequence databases is searching simi-
larities to a query sequence. This problem involves comparison of two sequences. This type
of search is useful for many purposes such as finding related genes, evolutionary analysis,
and identification of repeat regions. Exhaustive search methods consider all possible com-
binations of insertions, deletions and matches/mismatches through dynamic programming.
The costs of these methods are determined as the product of the length of the sequences
compared. Assume that a user has a query sequence of 104 base pairs and searches for
similarity in chromosome 22 of homo sapiens, one of the shortest chromosomes, that con-
tains 33·106 base pairs. Such a comparison requires approximately 33·1010 operations. On
a 1 Ghz computer, this search completes in approximately three hours. If the same query is
posed on the entire human genome, with more than 3 billion base pairs, then it will require
more than 3·1013 operations. In this case, the search takes more than one week. If the

36-1

36-2 Handbook of Computational Molecular Biology

search is done against the entire GenBank database, containing 30 billion base pairs (at the
end of 2002), the search will complete in more than two months.

Example 36.2

(Multiple alignment) Often, alignment of multiple genomes is needed to understand the
structural, functional, and evolutionary relationship across different organisms. Unlike
pairwise sequence comparison, multiple alignment brings similar letters of more than t-
wo sequences together. This problem is computationally harder than pairwise comparison
for it considers all possible combinations of sequences and letters. Assume that each se-
quence has approximately 103 letters. If the multiple alignment involves three sequences,
then the alignment involves O(103 × 103 × 103) = O(109) comparisons, which is still feasi-
ble. However, as the number of sequences increases beyond four, multiple alignment using
exhaustive search becomes impractical.

Example 36.3

(Shotgun sequencing) Another time-consuming problem on sequence databases is the shot-
gun sequencing problem. This problem requires an all-to-all sequence comparison for repeat
and overlap detection. PCAP [26], one of the most recent sequencing tools, assembled the
entire mouse genome from 30 Gbp unsequenced database in more than one week using 80
parallel computers. On a single computer, the same problem takes almost two years.

The size of genome databases is increasing exponentially [8]. Statistics show that the size
of GenBank has doubled every 15 months. This makes the classic exhaustive search methods
impractical due to extensive time requirements. The search time can be reduced by using
faster computers or distributing the job to parallel computers. However, this is not feasible
for several reasons. First, the speed of computers is growing slower than the size of the
sequence databases. Second, many companies or individual researchers prefer to store and
search their databases locally for various reasons. Parallel computers are still not affordable
for such personal use. The alternative way to reduce the search time is to reduce the amount
of data to be searched by ignoring the irrelevant parts of the database for a given query.
Usually, only a small percentage of the database matches to a given query segment. If the
dissimilar sequences can be determined quickly, the similarity search can avoid inspecting
them. A number of index structures have been devised to find such similarities. They can
be classified under three categories: k-gram indexing, direct indexing, and vector space
indexing. We will discuss the index structures and several tools that employ them for each
of these categories.

36.2 K-gram Indexing

One of the features used commonly for sequence searching is a k-gram, also called a k-mer.
A k-gram is a sequence of length k, where k is a positive integer. For example, TATGGCAA
is an 8-gram. A k-gram is usually considered as the shortest subsequence that should match
exactly for meaningful alignments. Such matches are then combined or extended to find
longer alignments with mismatches and indels.

A variant of k-gram is the non-sequential k-gram. A non-sequential k-gram is a subse-
quence of length k′, k′ > k, where k′−k letters are wild cards. For example, TA**GCA*T*AA
is an 8-gram with 4 wild cards shown using the symbol *. The wild card letters are ignored
when k-grams are matched.

Index Structures for Approximate Matching in Sequence Databases 36-3

We classify index structures according to how they store k-grams. Throughout this
section, we will use sequential k-grams.

36.2.1 Hash tables

One of the most widely used index for sequence search is the hash table (also called the
lookup table). Hash tables enable quick lookup for a set of prespecified sequences. For a
given query sequence, once the matches from this set of sequences are determined with the
help of a hash table, they are used to find better matches. Both lossless [46] and lossy [38]
search tools have been developed with the help of hash tables. Two of the most well known
genome search tools that use hash table are FASTA [51] and BLAST [2]. Next, we discuss
the hash tables in more detail.

The hash table of a sequence is defined using two parameters: alphabet and word length.
Let Σ = {α1, α2, · · · , ασ} be the alphabet that defines the sequences, where σ is the alphabet
size. The ith letter, αi, is encoded with binary representation of i−1 using �log2 σ� bits. For
example, the letters in the DNA alphabet {A, C, G, T} are encoded as A = 00, C = 01, G =
10, and T = 11. A sequence is encoded as the concatenation of the binary representations
of the letters that constitute that sequence. For example, the DNA sequence GGCA is
represented as 10100100.

Word length defines the length of the subsequence that will be indexed by the hash table.
A word is defined as a sequence of length w, where w is the word length. There are σw

distinct words of length w. This is because each of the w letters can take σ possible distinct
values. For a given alphabet Σ and word size w, the hash table for a sequence s is defined
as an array H of length σw. The entries of this array correspond to the distinct words
of length w constructed from Σ (i.e., H [i] stands for the ith word of length w). For all
i ∈ {0, · · · , σw}, H [i] contains the starting positions of all the occurrences of the ith word
in s. Figure 36.1 shows the hash table built on a 20 letter DNA sequence for w = 2. In this
example, the hash table contains 42 entries since σ = 4.

The hash table for s can be constructed by sequentially sliding a window of length k on
it. Every positioning of this window corresponds to a k-gram. Sliding this window by one
includes a new letter and excludes an existing letter. The index of the new k-gram in the
hash table can be determined in O(k log2 σ) time by removing the preceding log2 σ bits and
appending new log2 σ bits at the end of the previous k-gram. For example, in Figure 36.1,
the first window contains the subsequence AG. The index of this window is 0010. The next
window contains GC. Therefore, the preceding two bits (00) for A are removed and two
new bits are appended (01) for C. The resulting index is 1001. The total time required to
build a hash table on s is

O((n − k + 1) · (k log2 σ)),

where n is the length of s, since it contains n− k + 1 k-grams.
A hash table enables fast lookup for k-grams. For a given k-gram, its position in the hash

table is computed in O(k) time. If the hash table is built on a sequence s, then a given
query k-gram matches (n − k + 1)/σk k-grams of s on the average. This is because s has
n−k+1 k-grams, and each k-gram matches to a given random k-gram with probability 1/σk.
Therefore, the total cost of returning the hits for a single k-gram is O(k + (n− k+ 1)/σk).
If a given query sequence contains m letters, then looking up all the k-grams of that query
sequence costs

O((m− k + 1) · (k + (n− k + 1)/σk)).

A good index structure for sequences needs to be dynamic. This is because, as the
genomes of new organisms are sequenced, new sequences will be added into existing databases.

36-4 Handbook of Computational Molecular Biology

A G C T T T T C A T T C T G A C T G C A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

AA (0000)

AC (0001) 14

AG (0010) 0

AT (0011) 8

CA (0100) 7, 18

TT (1111) 3, 4, 5, 9

TG (1110) 12, 16

TC (1101) 6, 10

GT (1011)

TA (1100)

GG (1010)

GC (1001) 1, 17

GA (1000) 13

CT (0111) 2, 11, 15

CG (0110)

CC (0101)

FIGURE 36.1: A DNA sequence and the hash table constructed on it when word size is 2. The
numbers in parenthesis show the binary code of the corresponding sequence.

Also one may need to modify or remove an existing sequence, or a part of a sequence. In-
sertions of a new k-gram into an existing hash table is trivial. First, the bit representation
of this k-gram is computed in O(k log2 σ) time. Next, it is appended at the end of the
corresponding hash table entry in constant time. In order to remove an existing k-gram,
first, its is located by a hash table lookup. Next, it is removed from the hash table. An
existing k-gram is modified by a deletion followed by an insertion. Note that modification
or removal of an existing letter in a sequence alters k k-grams of that sequence since a letter
is a part of k different k-grams. Similarly, insertion of a new letter alters k − 1 k-grams.

Now, consider the space requirement of the hash tables. Hash table contains σk entries.
Each of these entries contain one pointer to show the first k-gram for that entry (4 bytes).
Each k-gram in the hash table requires one integer to store its location on the sequence
and one pointer for the next k-gram (8 bytes). If the hash table is built on more than
one sequence simultaneously, then each k-gram also needs to store the identification of its
source sequence. Let B be the total number of bytes required for a single k-gram. The total
memory consumption of a hash table for a sequence of length n is

O(4σk +B(n− k + 1)).

Next we consider some search tools based on hash tables.

FASTP: a case study

FASTP [38], one of the earliest hash table-based sequence search tools, looks for simi-
larities between amino acid sequences. FASTP is a heuristic for finding local alignments.
That is, it does not guarantee to return the actual best local alignments. Given two protein
sequences q and s of lengths m and n respectively, FASTP runs in 3 phases:

Index Structures for Approximate Matching in Sequence Databases 36-5

• Phase 1: A hash table is created on q for word size of w = 1 or 2. Each word
of length w in s is extracted by sequentially scanning. Let si be the word in s
starting at position i ∈ [0, n−w]. The positions of all exact occurrences of si in q
are found by a hash table lookup. Let j be one such starting position. Then the
offset for (si, j) pair is computed as i− j. The offset can take values anywhere in
[1−m, n− 1]. The frequency of an offset shows the number of amino acids that
exactly match in the gapless alignment of q and s when s is shifted by that offset.
Each offset is scored as the number of matches minus the number of mismatches.
The offsets with high scores show the locally similar regions.

• Phase 2: The five offsets with highest scores are inspected to locate the beginning
and end positions of the alignments. These regions are then re-scored using an
amino acid substitution matrix. The default matrix used is PAM250. The score
obtained at this phase is called the initial score.

• Phase 3: For each of the alignments in Phase 2, an optimized score is computed
using the Needleman-Wunsch dynamic programming algorithm [48]. The results
are reported in decreasing order of initial scores.

FASTA: an improvement over FASTP

Pearson and Lipman [51] developed a more sensitive version of FASTP, called FASTA,
which can be used to find similarities between DNA sequences as well as protein sequences.
FASTA can also find similar regions between a DNA and a protein sequence by translating
the DNA sequence. FASTA has one additional phase, squeezed between the phases 2 and 3
of FASTP, say phase 2.5. Another difference between FASTA and FASTP is that FASTA
chooses 10 best alignments at phase 2 instead of five. The additional phase in FASTA is as
follows:

• Phase 2.5: Given the beginning and end locations of the alignments that have
a score above a certain cutoff, they are checked to see if several of them can be
joined together to find better alignments. Joining two alignments incurs a joining
penalty, which is similar to the gap penalty. FASTA finds the optimal alignment
by attaching the alignments with maximal score that are close together.

Other tools based on hash tables

A number of tools employ hash tables for finding sequence similarities. Altschul, Gish,
and Miller developed one of the most popular sequence alignment tools, called BLAST [2].
A number of BLAST derivatives have also been developed. Some of them are BL2SEQ [60],
PSI-BLAST [3], PHI-BLAST [65], MegaBLAST [66], BLASTZ [54], WU-BLAST (http:
//blast.wustl.edu), BLAT [32], SSAHA [49], and SENSEI [57]. Unlike these tools,
FLASH [14], WABA [34] and PatternHunter [39] build hash table on non-sequential k-
grams. GLASS [7] finds initial anchors for global alignment using a fixed value of k for
k-grams, and recursively reduces the value of k in order to find the matches between an-
chors.

The CAP3 algorithm [25], developed by Huang and Madan, uses a hash table for finding
repeats and overlaps for sequence assembly. Given a set of nucleotide sequences, called reads,
CAP3 creates a single sequence by gluing these sequences with a special letter which is not
in the alphabet. Next, a hash table is built on this sequence for its 12-grams. The combined
sequence is then sequentially scanned, and the number of exact matches to the 12-grams of
each read are accumulated with the help of the hash table. If the number of such matches is
greater than a threshold for a letter in a read, then that letter is considered as a repeat. A
number of other methods have also been developed for shotgun sequencing. Some of them

36-6 Handbook of Computational Molecular Biology

Root

ACGA AGGA

CGAC
CGAG GGAC

GACGCTCT GAGC

T C A C G A G G A C G A C G A G C T C T

9 63

FIGURE 36.2: The ed-tree on a sequence for k = 12, ∆ = 3, and H = [4, 4, 4].

are GigAssembler [33], RePS [63], Arachne [6, 28], AMASS [35], TIGR assembler [18, 58]
Phusion [45], two generations of CAP [23, 24], and JAZZ [4]

36.2.2 ed-trees

The ed-tree enables subsequence searches with the help of k-grams [59]. Similar to BLAST-
like searches, the ed-tree runs in two phases. In phase 1, the index is searched for short
seeds. In phase 2, the seeds are extended for longer matches. The ed-tree differs from
BLAST only in the first phase; the seeds of the ed-tree are longer than that of BLAST.
Furthermore, the ed-tree allows some error for seed matches while BLAST’s seeds are exact
matches. Next, we discuss the construction of the ed-tree.

The ed-tree is defined by three parameters: 1) The gram size, k. 2) The skip interval,
∆. 3) The segment length vector, H = [h1, · · · , ht], where

∑t
i=1 hi = k, and t is the size

of the segment length vector. The value of k defines the length of the k-grams that will
be indexed. The skip interval, ∆, defines the locations of the k-grams extracted from the
database sequence: Let s be a database sequence. Only the k-grams of s starting at positions
∆, 2∆, · · · , �(|s| − k+ 1)/∆�∆ are indexed. The last parameter H defines the partitioning
of each k-gram. Each k-gram, x, is partitioned into t non-overlapping subsequences xH

1 , · · ·
xH

t of length h1, · · · , ht respectively. For example, if x = GAATTCGTCGAC is a 12-gram
and H = [3, 5, 4], then xH

1 = GAA, xH
2 = TTCGT, and xH

3 = CGAC.
The tree construction algorithm takes the database D, gram size k, skip interval ∆, and

the segment length vector H as input. Initially it creates an empty root node. For each
sequence in D, the algorithm generates all the k-grams with ∆ skips. Later, each gram is
partitioned according to H . The partitions are then sequentially inserted into the ed-tree.
Figure 36.2 shows an ed-tree constructed on a sequence for k = 12, ∆ = 3, and H = [4, 4,
4]. The typical values of the parameters for the actual ed-trees are k = 18, ∆ = 2, and H
= [6, 6, 6].

The queries on ed-trees use the following observation: ED(x, y) ≥ ||x| − |y||, where
ED(x, y) is the edit distance between sequences x and y. This is true since the optimal
alignment of x and y requires at least ||x| − |y|| indels. Let xH

1 , · · · , xH
t and yH′

1 , · · · , yH′
t

be the partitioning of x and y respectively such that xH
i is aligned to yH′

i for 1 ≤ i ≤ t

Index Structures for Approximate Matching in Sequence Databases 36-7

in the optimal alignment of x and y Let δi = |xH
i − yH′

i |, for 1 ≤ i ≤ t. It follows that
ED(x, y) ≥

∑
i |δi|. The vector δ = [δ1, · · · , δt] is defined as the length difference vector.

Given a query k-gram, q, and a query radius, r, all possible length difference vectors,
δ, for which

∑
i |δi| ≤ r are created. Every δ defines a new segment length vector H ′ =

H + δ that partitions q into qH′
1 , · · · , qH′

t . Starting from the root node of the ed-tree, qH′
1

is aligned to all the children of the root. If the edit distance, ed, to a child is more than
r, then that child is discarded. Otherwise, the radius is refined as r′ = r − ed and qH′

2 is
aligned to all the children of that child. The search proceeds top down similarly for the
rest of q. As the value of r decreases, the search becomes faster at the expense of reduced
sensitivity. Typically r is set to 2 for good performance and sensitivity.

Some important aspects of ed-trees are: 1) The k-grams are usually longer than that of
BLAST. 2) They allow inexact k-gram matches. 3) Only one k-gram out of ∆ k-grams is
indexed. This reduces the index size at the expense of reduced sensitivity.

The ed-tree is constructed in O(|D|t/∆) time, where |D| is the database size. The space
consumption of the ed-tree is O(|D|). For a dataset of 2 Gbp, the size of the ed-tree varies
from 2.3 to 3.0 GB.

The ed-tree is a dynamic data structure. New k-grams can be inserted in O(k) time.
Removal and modification of an existing k-gram is also done in O(k) time.

CHAOS [12] finds local similarities between two sequences using threaded trie, a variation
of the ed-tree. Threaded trie has parameters ∆ = 1 and H = [1, 1, · · · , 1]. LAGAN [10]
and DIALIGN [43, 44] employ CHAOS to find anchors for global alignment. Brudno et
al. also use CHAOS to find glocal alignment which is a combination of global and local
alignments [11].

36.3 Direct Indexing

An important set of index structures indexes sequences directly. Unlike k-gram–based
indexes, these techniques index subsequences of varying sizes. As a result of this, longer
matches can be found using these index structures. On the other hand, k-gram indexes
require an additional step to combine k-gram matches to find longer matches.

36.3.1 Suffix trees

Let s = s[0]s[1]· · · s[n] be a sequence with n letters, where s[i] is the ith letter, 1 ≤ i ≤ n.
Let s[i : j] indicate the subsequence of s that starts from position i and ends at position
j for 1 ≤ i ≤ j ≤ n. As the name indicates, the suffix tree of s is a tree structure that
contains all suffixes s[i : n]. Suffix trees have been useful in sequence searches since they
can be used to locate exact subsequence matches quickly.

Suffix trees were first proposed by Weiner [52] under the name position tree. McCreight
proposed a space efficient technique for the construction of the suffix trees [41]. Later,
Ukkonen developed an on-line construction method [62]. A variety of other suffix tree
implementations have also been proposed such as implicit suffix tree [62], dynamic suffix
tree [15], suffix tree without suffix links [27], string B-tree [17], suffix cactus [31], suffix
array [40] and their compressed versions [21]. We will discuss several variations of suffix
trees without implementation details. We refer the interested reader to Chapter 35 by
Ferragina.

Figure 36.3 shows the suffix tree built on sequence s = TGAGTGCGA$. A dummy letter,
$, marks the end of the sequence. Every path from the root node to a leaf node through
the solid arrows defines a suffix of s. The numbers at the leaf nodes show the starting

36-8 Handbook of Computational Molecular Biology

10

Root

A

$

G

$

CGA$

TG
CGA$

TGCGA$

CGA$

GTGCGA$

$

GTGCGA$

AGTGCGA$

T G A G T G C G A $
1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

A

FIGURE 36.3: Suffix tree built on sequence TGAGTGCGA. The dashed arrows are the suffix
links. A dummy letter, $, marks the end of the sequence.

position of the suffix denoted by that leaf. The dashed arrows in the figure are the suffix
links. There is a suffix link from an internal node u to another internal node v if u and v
are labeled with suffixes cα and α respectively for a given letter c. Suffix links enable faster
construction of suffix trees.

Implicit suffix trees [27] do not mark the end of the sequence with a dummy letter. In
addition to this, they do not contain the nodes that have only one children node. Instead,
each such node collapses with its parent. Figure 36.4 shows the implicit suffix tree for the
sequence s = TGAGTGCGA. Compared to the Figure 36.3, the implicit suffix tree in this
figure does not have the leaf node 9. Since removal of node 9 leaves its parent with a single
child, that parent is replaced with node 3, and the edges A and GTGCGA are appended.
Although all the suffixes of s are embedded into the implicit suffix tree, there may not be
a leaf node for some of the suffixes. For example, there is no leaf node for the suffix A in
Figure 36.4. It is rather detected by the branch that goes from the root node to the node
2.

A suffix cactus [31] reduces the space consumption of the suffix tree by reducing the
number of pointers: It collapses the path from a node to a leaf node into a single branch.
Each sibling of the nodes on this path creates a new branch. Figure 36.5 depicts the suffix
cactus built on the sequence s = TGAGTGCGA.

The naive construction method builds the suffix tree by inserting each suffix into the suffix
tree iteratively. This method takesO(n2) time: O(m) time for suffix of lengthm, 1≤ m ≤ n.
However, suffix trees can be constructed in O(n) time with a careful implementation [62].

Suffix trees are notorious for their excessive memory usage [47]. Although the space com-
plexity is O(n), the constant in the big-Oh may be large. The size of the suffix tree depends
on the alphabet and the distribution of the letters in the database sequence. Kärkkäinen
reports 10 bytes per letter [31]. Meek et al. uses 12.5 bytes per letter for SWISSPROT
database [42]. Hunt et al. states 21 bytes per letter for DNA databases [27]. Delcher et

Index Structures for Approximate Matching in Sequence Databases 36-9

Root

T G A G T G C G A
1 2 3 4 5 6 7 8 9

G

TG

1

4

5

6

7

AGTGCGA
2

3
AGTGCGA

TGCGA

CGA

AGTGCGA

CGA

CGA

FIGURE 36.4: Implicit suffix tree built on sequence TGAGTGCGA.

T G C G A $

A G T G C G A $

C G A $

G T G C G A $

A $

T G C G A $

G C G A $

A G T G C G A $

$

T G A G T G C G A
1 2 3 4 5 6 7 8 9 1

FIGURE 36.5: Suffix cactus built on sequence TGAGTGCGA. A dummy letter, $, marks the
end of the sequence. Rotate the figure by 90◦ in counterclockwise direction to
see why it is called a cactus tree.

al. bounds the memory usage by 37 bytes per letter [16]. Navarro and Baeza-Yates report
that the suffix tree is 12 to 70 times larger than the input sequence [47]. Based on these
numbers, the suffix tree for a 3 Gbp database, such as the entire human genome takes 30
to 210 GB space. Such an index will be inefficient for main memory search algorithms due
to its excessive size.

Suffix tree enables efficient lookup for exact matches of any size. Given a query sequence,
q, it can be searched in O(|q|) time by traversing the tree starting from the root. At each

36-10 Handbook of Computational Molecular Biology

9
3
7
8
2
6
4
1
5

A
A G T G C G A
C G A
G A
G A G T G C G A
G C G A
G T G C G A
T G A G T G C G
T G C G A

T G A G T G C G A
1 2 3 4 5 6 7 8 9

Suffix array

FIGURE 36.6: Suffix array built on sequence TGAGTGCGA.

node, the child node that is labeled with the same letter as that of q is chosen as the next
node.

A new sequence, s, can be inserted to a suffix tree in O(|s| log(|D|+ |s|)) time, where D is
the size of the database that is currently indexed by that suffix tree. An existing sequence,
s can be removed from a suffix tree in O(|s| log |D|) time [15]. However, we are not aware
of efficient algorithms for updating, inserting, or deleting individual letters in a sequence
that already exists in a suffix tree.

Suffix arrays reduce the space consumption of suffix trees to 5 bytes per letter at the
expense of increased search time complexity [40]. The suffix array of a sequence s is an
array of integers that shows the alphabetical order of all suffixes of s. Figure 36.6 shows
the suffixes of TGAGTGCGA and the suffix array constructed on it. The look up time for
a query sequence, q, is O(|q| log |D|) using suffix arrays.

Next, we discuss a search tool based on suffix trees.

MUMmer: a case study

MUMmer employs suffix trees for global alignment of sequences. Given two sequences x
and y, MUMmer aligns them in three steps:

1. Detecting MUMs: A MUM (Maximal Unique Match) for x and y is a pair of
subsequences (x′, y′) that exactly match and there is no other matching subse-
quence pair that contains x′ and y′ simultaneously. MUMmer first constructs a
suffix tree for x. Later, the suffixes of y are also inserted to the same tree. All
the MUMs are then detected by traversing this suffix tree.

2. Finding the backbone of the alignment: All the MUMs (x′, y′) are sorted in
increasing order of the position of x′ in x. Next, the longest sequence of MUMs
whose subsequences from x and y are in sorted order are found. These MUMs
define the backbone of the alignment.

3. Closing gaps: The gaps between consecutive MUMs of the backbone are aligned
with the help of the Smith-Waterman method [56].

Other tools that use suffix tree and its variations

A number of tools employ suffix tree and its variations for various sequence problems.
Similar to MUMmer, AVID [9] performs global alignment using suffix trees. REPuter [37]
uses suffix trees for detecting repeats in a sequence. MGA [22] finds multiMEMs for multiple
alignment with the help of suffix trees. A recent paper by Meek et al. [42] uses suffix trees

Index Structures for Approximate Matching in Sequence Databases 36-11

for accurate online searches with short query sequences. QUASAR [13] uses suffix arrays
for aligning sequences.

36.3.2 VP-trees

The original VP-tree (Vantage Point tree) [64] indexes the data in general metric space.
Şahinalp et al. [53] adapted the VP-tree to sequence databases where the distance is defined
as the edit distance or the block edit distance. This technique can also be adapted to other
sequence distance functions as long as they are almost metric. A distance measure is defined
as almost metric if it can be bounded by a metric distance function. VP-tree is a binary
tree structure that indexes a database of sequences based on their distances to a vantage
point (i.e., a pivot sequence selected from the database). Next, we discuss the construction
of VP-trees.

Let d(x, y) be an almost metric distance function, where x and y are two sequences. For
example, d(x, y) can be the edit distance between x and y. The tree construction algorithm
takes a database of sequences, D = {s1, s2, · · · , sn}. It starts by choosing a random vantage
sequence s as the root. Later, the median of the distances of the database sequences to
s is computed. The database is then partitioned into two equi-sized sets. One of the sets
contains the sequences that are closer to s than the median, and the other one contains the
rest of the sequences. Each of these sets are then defined as left and right children of the
root and recursively partitioned until all the sequences are indexed.

Given a query q, the sequences that are within a distance of r to q are found as follows.
First, q is compared to the vantage sequence, s, at the root node. Let M be the median
distance of the sequences in the index to the root node.

1. If d(q, s) ≤ r then s is inserted to the result set.
2. If d(q, s) ≤ r +M then the left child of the root is searched recursively. This is

because, by triangle inequality, the distance of a sequence contained in the left
sub-tree of the root to the query can be as small as d(q, s)−M .

3. If d(q, s) ≥M − r then the right child of the root is searched recursively. This is
because, by triangle inequality, the distance of a sequence contained in the right
sub-tree of the root to the query can be as small as M − d(q, s).

Depending on the query, either of the following three cases are possible: Case 1: Left sub-
tree is pruned (q1 in Figure 36.7(b)). Case 2: Right sub-tree is pruned (q2 in Figure 36.7(b)).
Case 1: Neither left nor right sub-tree is pruned (q3 in Figure 36.7(b)). Note that Figure 36.7
is an illustration of the problem drawn on a 2-D plane just for visualizing purposes. The
actual sequences are not on a Euclidean space nor the distances are Euclidean as shown in
this figure.

There are several important aspects to note about VP-trees. First, the VP-tree is built
using sequences. Therefore, the VP-tree enables only global alignment queries. Second, the
sequences in the result set are candidates. These sequences still need to be aligned using
an existing method such as the dynamic programming technique [48]. Third, the VP-tree
can be generalized to higher fanout by using multiple vantage points at each step of the
index construction algorithm. Fourth, nearest neighbor queries can also be implemented on
the VP-tree by adapting existing methods for multi-dimensional index structures. Fifth,
the VP-tree is a static data structure. Therefore, insertions, deletions, and modifications of
sequences require reconstruction of the index. However, it can be made dynamic by relaxing
the restriction that the VP-tree is balanced.

The VP-tree can be constructed in O(Tn logn) time where n is the number of sequences

36-12 Handbook of Computational Molecular Biology

Ms

D1
D2

(a)

M

s

q2

q3 q1

(b)

FIGURE 36.7: (a) The vantage sequence s and partitioning of the database into two subsets D1

and D2. M is the median distance to s. (b) An illustration of the three cases
for querying the VP-tree: Prune left sub-tree for q1, and right sub-tree for q2.
Search both left and right sub-trees for q3.

in the database, and T is the time required for pairwise sequence comparison. This is
because O(n) pairwise sequence comparisons are conducted for each level of the VP-tree,
and there are O(log n) such levels.

36.4 Vector Space Indexing

The index structures we have discussed so far are built directly on the sequences. One
disadvantage of such index structures is that they are good for finding exact matches, but
inefficient for finding approximate matches. Approximate similarities are usually deter-
mined in one of the two ways. 1) Shorter exact matches are combined and extended (e.g.
FASTA [51]). 2) A set of inexact neighborhood of the query sequence is generated. Exact
matches to this set is then found (e.g. [46]).

A number of index structures have been developed in vector space. These index structures
compute approximate similarities directly by mapping sequences or subsequences to vectors
in a vector space. The distance between two vectors shows the difference between their
sequence counterparts. This enables faster detection of approximate matches.

We will discuss two important index structures for sequences in vector space: SST and
the MRS index structure.

36.4.1 SST

Sequence Search Tree (SST) [20] enables near-exact searches for sequence databases, where
the distance between two sequences is defined as the edit distance between them. The SST
algorithm partitions the database sequences into overlapping subsequences. Later, it maps
each of these subsequences to vectors in a multi-dimensional integer space, and builds an
index structure using k-means clustering [19]. We discuss each of these steps and how to
perform queries in detail next.

Vector space mapping

The vector space mapping of a database sequence s is determined by three parameters: 1)
window size w 2) shift amount ∆ and 3) tuple size k. Window size is the length of shortest
meaningful query that a user can pose on the database. The window is initially placed at
the beginning of s (i.e., the first subsequence is the first w letters of s). The window is then

Index Structures for Approximate Matching in Sequence Databases 36-13

= 2

A G C T T T T C A T T C T G A C T G C A

A G C T T T T C A T T C T G A C T G C A

A G C T T T T C A T T C T G A C T G C A

AA 0
AC 0
AG 1
AT 0
CA 0
CC 0
CG 0
CT = 1
GA 0
GC 1
GG 0
GT 0
TA 0
TC 0
TG 0
TT 2

w = 6

FIGURE 36.8: A DNA sequence and the subsequences extracted from it by the SST algorithm
for w = 6, and ∆ = 2, and the vector computed for the first subsequence for k
= 2.

shifted by ∆ letters to find the next subsequence until the end of s is reached. Figure 36.8
shows a database sequence and the subsequences extracted from it by the SST algorithm
for w = 6, and ∆ = 2. Here, the sequence contains 20 letters. The SST algorithm extracts
8 subsequences from this sequence.

The last parameter, k, determines the size of the vector computed for a subsequence of
s. For each subsequence, the number of k-grams of each type is counted for all possible
k-grams. There are σk such k-grams for alphabet size σ. These counts are then stored
in a vector of size σk. SST uses this vector to represent each subsequence. For example,
Figure 36.8 shows the vector of the first subsequence, AGCTTT, for k = 2. Since this
is a DNA sequence, the alphabet contains four letters. Thus, the vector size is 42. The
subsequence contains one AG, CT, and GC, and two TTs.

The L1 distance between the vectors of two subsequences denotes the number of k-grams
that are not common to both of them. Obviously, if two subsequences are equivalent,
then their vectors are equal, making the L1 distance zero. If two sequences differs by only
one letter, then the L1 distance between their vectors differ by at most k since a letter
overlaps with up to k k-grams. As the edit distance between two sequences increases, the
L1 distance between their vectors usually increases as well. The SST algorithm is based on
this assumption. However, it is also possible that two sequences with a large L1 distance
may have a smaller edit distance. Consider the following example.

Example 36.4

Let L1(u, v) be the L1 distance between vectors u and v. Let Σ = {A, B} be the alphabet.

36-14 Handbook of Computational Molecular Biology

Let x = AAA, y = ABA, and z = BAB be three sequences defined on Σ. The edit distance
between x and y, ED(x, y), is 1, and ED(y, z) = 2. This means that y is closer to x than
z. Now, let us take a closer look at their vector counterparts. For w = 3, ∆ = 1, and
k = 2, the vectors of x, y, and z are vx = [2, 0, 0, 0], vy = [0, 1, 1, 0], and vz = [0, 1,
1, 0] respectively. Here, the vector is computed as [#AAs, #ABs, #BAs, #BBs]. The
vector distances are L1(x, y) = 4 and L1(y, z) = 0. This means that y is closer to z than x,
contradicting the fact. This example shows that L1 distance may not reflect the distance
between two sequences.

Index structure construction and querying

The vector space mapping of a sequence produces a number of vectors for a given database
sequence. These vectors can be considered as points in a σk-dimensional integer space. Once
the mapping is done, these points can be indexed using any existing multi-dimensional index
structure. Here, we will discuss the k-means clustering method since the SST algorithm
employs it to create a binary tree index structure.

The index construction algorithm takes a set of vectors, D, and the root of the index
structure, R, as input. It starts by choosing two centroids randomly. The set D is parti-
tioned into two sets, one for each centroid, by assigning each vector to the set corresponding
to the closest centroid. Next the centroids for each of these sets are re-computed as the
average of the vectors in these sets. The algorithm updates the sets using the new centroids
until the total distance of the vectors in each set to its centroid does not change too much.
Once the sets are determined, they form the two children nodes of the binary search tree.
Later, each set is partitioned recursively until the set size drops below a threshold.

A query sequence is first divided into subsequences of window size w obtained using a shift
amount of ∆ = w/2. These query subsequences are mapped to vectors using the same value
for k as the SST. Each of the query vectors is then searched on the index structure starting
from the root node as follows: The L1 distances of the query vector to the centroid of the
two child node are computed. The child node with the larger L1 distance is discarded, and
the other child node is searched recursively until a leaf node is reached. The subsequences
contained in the leaf node are returned as the nearest neighbors of that query subsequence.

The SST algorithm incurs false dismissals for three reasons. First, the L1 distance between
two vectors is not a lower bound to the edit distance (see example 36.4). Second, the search
algorithm always chooses the children node whose centroid is closer to the query vector.
However, it does not guarantee that all the vectors in that node are closer to the query
vector than the vectors in the other node. Third, since the database and query vectors
are computed by shifting a window by ∆, ∆− 1 out of ∆ subsequences are ignored during
similarity search.

The time required to construct the vectors from raw sequences is O(n), where n is the
total length of the sequences in the database. The total time to construct the entire tree is
O(Cn log n) if the partitions are of similar size, where C is the number of iterations required
to partition a dataset. However, the worst case time complexity is O(Cn2). This happens
when the vector set partitions are unbalanced (e.g., when one partition contains one vector
and the other one contains n − 1.) The index construction time can be improved by a
constant factor by sampling the database.

The look up cost of the SST algorithm is O(log n) per query vector. This is because the
index contains O(n) vectors, and the binary search algorithm eliminates half of the search
tree at each step. Let m be the length of the query sequence. The number of query vectors
is then O(m/∆). Thus, the total time complexity of the index search is O(m log n/∆).

SST is not a dynamic index structure. Insertions, deletions, or modifications require a

Index Structures for Approximate Matching in Sequence Databases 36-15

reconstruction of the entire index structure. However, it can be made dynamic by relaxing
the restrictions imposed on the centroids. However, this will further reduce the true positive
rate of the index structure.

The database consists �1+(n−w)/∆� vectors. Each vectors contains σk entries. Each en-
try can be encoded using logw bits. Thus, the total space needed is σk�1+(n−w)/∆� logw
bits. However, this space can be reduced by two observations. First, the entries of the vec-
tors are sparse. Second, many vectors overlap. Using these two observations Giladi et
al. [20] reduces the space consumption to two bytes per nucleotide.

36.4.2 Frequency vectors

The MRS (Multi Resolution String) index structure enables both global alignment [29] and
local alignment [30] of sequences. It supports both edit distance and BLAST-like scores for
similarity. The MRS index structure maps subsequences of the database sequences into an
ordered set of points in a vector space for different subsequence lengths. Later, these points
are indexed with the help of MBRs (Minimum Bounding Rectangles). We discuss each of
these steps and how to run global and local alignment queries on the MRS index structure
next.

Vector space mapping

Let s be a sequence from the alphabet Σ = {α1, α2, · · · , ασ}. Let ni be the number
of occurrences of the character αi in s for 1 ≤ i ≤ σ. The vector space mapping of s is
computed as

f(s) = [n1, n2, ..., nσ].

The vector, f(s) is called the frequency vector, of s. For example, let s= AGCTTTTCATTCT-
GAC be a DNA sequence. The frequency vector of s is f(s) = [3, 4, 2, 7] ([#As,#Cs,#Gs,#Ts]),
since the DNA alphabet contains the letters A, C, G, and T. For simplicity, the letters in
the vector are sorted in alphabetical order.

The frequency vectors have three important properties:

1. The size of the frequency vector is equal to the alphabet size. That is, it is
independent of the size of the input sequence.

2. The sum of the entries of a frequency vector is equal to the length of the input
sequence.

3. An edit operation on the input sequence does not alter its frequency vector too
much. We will elaborate on this later.

Properties 1 and 2 follow from the definition of the frequency vectors. The third property
is obtained by inspecting the effects of each individual edit operation. Let f(s) = [v1, · · · , vσ]
be the frequency vector of sequence s.

• Insertion of the letter αi increases vi by 1.
• Deletion of the letter αi decreases vi by 1.
• Replacement of the letter αi with αj decreases vi by 1 and increases vj by 1.

Each frequency vector maps to a point in σ dimensional integer space. Each edit operation
moves the frequency vector to one of the neighboring points in that space. For example,
Figure 36.9(a) shows the movement of the frequency vector for sequence s = YUUUY for
three different edit operations (the letters U and Y stand for Purine (A, G) and Pyrmidine
(C, T)). Given two sequences x and y, the sequence of edit operations that transforms x
into y defines a path between f(x) and f(y) in the frequency space, where each edge on

36-16 Handbook of Computational Molecular Biology

Y

12

3

v
2

2 3 4

U

v = f(YUUUY)

(a)

2

2 3

1
2

3

Y

U

3

f(x) = f(YUUUY)

f(y) = f(UUYYY)

(b)

FIGURE 36.9: (a) The frequency vector, v, of the sequence YUUUY and its movement in the
frequency space for (1) insertion of a letter U, (2) deletion of a letter U, and (3)
replacement of a letter U with letter Y. (b) The solid arrows show a path that
translates the frequency vector x to y in three steps. The shortest path is shown
by the dashed arrow.

this path is a directed edge from the last visited point to one of its neighbors. For example
let x = YUUUY, and y = UUYYY. One possible transformation of x into y is using three
operations: x = YUUUY → UUUY → UUYY → UUYYY = y. Figure 36.9(b) shows the
path for this sequence of edit operations in the frequency domain. The length of a path is
defined as the number of edges on that path. Given the frequency vectors, f(x) and f(y),
of two sequences, x and y, there are infinitely many paths that move from f(x) to f(y) by
visiting neighboring edges. The frequency distance, FD(f(x), f(y)), between two frequency
vectors f(x) and f(y) is defined as the length of the shortest of such paths. The path
in Figure 36.9(b) shown by the dashed arrow is the shortest path between the two given
frequency vectors. Therefore, FD(f(YUUUY), f(UUYYY)) = 1.

Two important properties of the frequency distance that follow from its definition are

1. Lower bounding property: FD(f(x), f(y)) ≤ ED(x, y), ∀x, y, where ED(x, y) is
the edit distance between x and y. For example, in Figure 36.9(b), ED(x, y)
= 3 and FD(f(x), f(y)) = 1. This is a desirable property. This is because if
r < FD(f(x), f(y)), for some similarity cutoff r, then r < ED(x, y). Thus, one
can conclude that x and y are not similar without actually computing the edit
distance between them.

2. Tightness of the frequency distance: ∀x, y, ∃x′, y′ : f(x) = f(x′) ∧ f(y) = f(y′)∧
FD(f(x), f(y)) = ED(x′, y′). For example, in Figure 36.9(b), f(x) = [3, 2] and
f(y) = [2, 3]. For y′ = YUUYY, f(y′) = f(y) and ED(x, y′) = 1. This property
implies that the frequency distance is a tight lower bound to the edit distance.

Figure 36.10 shows the algorithm that computes the frequency distance between two
frequency vectors u and v. The algorithm computes the minimum number of increment
and decrement operation that need to be applied to u to translate it on to v. Since an
increment and a decrement can be overlapped due to a replace type of edit operation, the
maximum of these two values is returned as the frequency distance. The frequency distance,
FD(f(x), f(y)), between two frequency vectors, f(x) and f(y), can be computed in O(σ)
time. This is much faster compared to the O(|x| · |y|) time required to compute the edit
distance between their sequences.

Index Structures for Approximate Matching in Sequence Databases 36-17

/* Let u and v be frequency vectors */
/* Let σ be the number of dimensions */
/* Returns the frequency distance between u and v */
Function FD(u, v)

inc := dec := 0;
For i := 1 to σ

If ui < vi then
inc := inc + 1;

else
dec := dec + 1;

Return Max{inc, dec};

FIGURE 36.10: The function that computes the frequency distance between two frequency vec-
tors u and v.

Index structure construction and querying

Let S = {s1, s2, ..., sd} be a database consisting of potentially long sequences from al-
phabet Σ = {α1, α2, ..., ασ}. Let w1 = 2a be the length of the shortest possible query
sequence. The MRS index structure stores a grid of structures Ti,j, a ≤ i ≤ a + L − 1,
and 1 ≤ j ≤ d. The parameter L represents the number of resolution levels in the index
structure. Structure Ti,j is the index structure for the jth sequence for window size 2i.

In order to obtain Ti,j , a window of length w = 2i is placed at the leftmost point of
sj . Later, this window is slid by one until it reaches to the end of sj . Each placement
of this window produces a subsequence of sj . The frequency vectors of all those windows
are computed. First, the minimum box, called Minimum Bounding Rectangle (MBR),
that covers the frequency vector of the first subsequence is computed. This box is later
extended to cover the frequency vectors of the first c subsequences, where c is the box
capacity. Typically, c is set to 1000 to achieve good performance result. (We will later
discuss different strategies for choosing box capacity.) After the first c subsequences are
indexed, a new MBR is created to cover the next c subsequences. This process continues
until all subsequences are transformed. Note that only the lower and higher end points of
the MBRs along with the starting locations of the first subsequence contained in that MBR
are stored for each MBR. Figure 36.11 shows the construction of the MBRs for a DNA
sequence for w = 16 and c = 4. Sliding the window by one letter includes a new letter
to the end of the old window and excludes its first letter. As a result of this, consecutive
frequency vectors change only by one in at most two dimensions. Thus, they appear very
close in the frequency space. Figure 36.12 shows the first 500 frequency vectors computed
from the E.coli bacteria for w = 128 in 3-dimensions (number of As, Cs, and Gs).

Let q be a query sequence of length 2i, where a ≤ i ≤ a + L − 1. Let B be an MBR of
the MRS index structure for resolution 2i. The frequency distance between f(q) and B,
FD(q,B), is defined as the length of the shortest path that translates f(q) into B. From
the definition of FD(q,B), one can prove that if r ≤ FD(q,B) then r ≤ FD(f(q), f(s)) ≤
ED(q, s), ∀s ∈ B.

A range query on the index structure takes a query sequence, q, and a query radius r as
input, and returns all the subsequences in the database whose edit distance to q are less
than r. The search algorithm runs in two phases:

36-18 Handbook of Computational Molecular Biology

AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGA

w = 16

AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGA

H = [3, 5, 3, 7]

L = [3, 4, 2, 4]
[3, 4, 2, 7]

[3, 4, 2, 7]
L = [2, 4, 2, 7]

H = [3, 4, 2, 8]

[4, 4, 2, 6]
[4, 5, 2, 5]

[4, 5, 3, 4]

[2, 4, 2, 8]
[2, 4, 2, 8]

[2, 4, 2, 8]

FIGURE 36.11: The construction of the first two MBRs of the MRS index structure for w = 16
and c = 4 on a DNA sequence.

 25
 30

 35
 40

 45
 50

 55
Number of As 15

 20
 25

 30
 35

 40
 45

Number of Cs

 10

 15

 20

 25

 30

 35

 40

 45

Number of Gs

FIGURE 36.12: The path constructed by the first 500 frequency vectors computed from the
E.coli bacteria for resolution 128 in 3-dimensions (number of As, Cs, and Gs).

Index Structures for Approximate Matching in Sequence Databases 36-19

• Pruning Phase: The query sequence is partitioned into a number of subqueries
at various resolutions available in the MRS index structure. A partial range
query is performed for each of these subqueries on the appropriate row of the
index structure. This is called a partial range query because it only computes
frequency distance of the frequency vector of the subquery to the MBRs, not the
distance of the query subsequence to the subsequences contained in the MBRs.
At the end of this phase, a set of candidate MBRs are determined.

• Postprocessing Phase: The database subsequences in the candidate MBRs are
read, and their edit distance to the entire query sequence is computed to find the
subsequences similar to q.

The second phase can use any lossless sequence alignment method such as Smith-Waterman [56].
We elaborate on the first phase.

Given any query q of length k2a and a range ε, there is a unique partitioning, q = q1q2...qt,
with |qi| = 2ci and a ≤ c1 < ... < ci ≤ ci+1 ≤ ...ct ≤ a+ l − 1. This partitioning technique
chooses the longest possible suffix of q, such that its length is equal to one of the resolutions
available in the index, as the last query subsequence. Later, it recursively partitions the rest
of the sequence to find the other query subsequences. If the length of the query sequence is
not a multiple of 2a, then the longest prefix of the query whose length is a multiple of the
minimum window size can be used. The remaining prefix is ignored.

First, q1 is searched on row Rc1 of the MRS index structure. As a result of this search,
a set of MBRs that lie within a distance of r = ε × |q| from q1 are returned. Using the
frequency distances, FD(q1, B) to these MBRs, the value of r is refined as r− FD(q1, B)
for each MBR. Later, the second query, q2, is searched on row Rc2 only for the MBRs that
are returned using the new value of r. This process continues for the remaining rows Rc3

... Rct . The final set of MBRs is defined as the candidate MBRs.
A nearest neighbor search can be implemented on the MRS index structure using the

range query algorithm. This can be done by exploiting either the two-phase [36] or the
multi-phase [55] nearest neighbor strategy.

Some important aspects of the MRS index structure are as follows:

• The range and the nearest neighbor search on the MRS index structure are
lossless. That is, the candidate set has 100% recall.

• The searches on the MRS index structure can be parallelized easily since searches
on each sequence can be conducted independently.

The time complexity of index construction is O(L|D|). This is because the MRS index
structure can be constructed by a single sequential scan of the database sequences, and each
letter in the database is counted only twice for each level of the index structure (one when
it enters the window and one when it exits the window).

The MRS index stores the following information for each MBR: two (σ − 1)-dimensional
vectors, one for lowest and one for highest coordinates, the id of the sequence to which the
MBR belongs and the starting position. Each of the vectors requires (σ − 1)�log2(w + 1)�
bits. The id and the starting position are stored in one word. For example for w = 128,
one MBR can be stored using 10 bytes. Since there are O(|D|/c) MBRs for each resolution,
the total space consumption of the MRS index structure is

O((σ − 1)�log2(w + 1)�L|D|/c).

For DNA sequences, the typical values are c = 1000 and L = 4. In this case, the size of the
MRS index structure for a 1 Gbp DNA sequence database is only 10 kB for w = 128.

36-20 Handbook of Computational Molecular Biology

The time for searching the MRS index for candidate MBRs depends on the pruning rate
of the index. The query time is

O(
σ|D|
c

L∑

i=1

µi),

where µi is the ratio of the number of unpruned MBRs at ith resolution to the number of
MBRs at that level.

Insertion of a new letter to the end of a sequence costs O(L) since this can be done by ex-
tending the last MBR at each resolution. However, insertion of a new letter into a sequence
requires reconstruction of one MBR. Therefore, it costs O(cL) time. Similarly, deletion or
modification of an existing letter incurs O(cL) time. Usually, in sequence databases, entire
sequences are inserted to or removed from the database. The time requirement for such an
operation is O(L|s|), where s is the sequence to be inserted or removed.

Variations of the MRS index structure

Each MBR of the MRS index structure contains a fixed number of frequency vectors,
denoted by the box capacity c. The performance of the MRS index structure can be
improved by adaptively varying the capacity of each MBR. The motivation behind this is
as follows. Let B be an MBR of the MRS index structure obtained by sliding a window
from position i to j. If the frequency vector for position j + 1 is located inside B, then this
frequency vector can be inserted into B without increasing its size. Inserting such frequency
vectors into B increases the capacity of B without growing it. Thus, the number of MBRs
in the index structure is reduced. This reduces the index search time as well as the memory
usage. A number of such adaptive strategies can be applied to the MRS index structure:

• Fixed volume. Keep adding points to an MBR until its volume exceeds a certain
threshold.

• Fixed density. Keep adding points until n/V , the number of points divided by
the volume of the box, falls below a certain threshold.

• MHIST–Volume. Start with one big MBR containing all the points. Find the
position to split the MBR such that the sum of the volumes of two new MBRs is
minimized, but the points in each MBR still correspond to consecutive positions
of the sliding window on the sequence. Keep splitting the MBR with the largest
volume to get the desired number of MBRs.

• MHIST–Density. Like MHIST–Volume, but split an MBR in to two new MBRs
i and j such that the total density, ni/Vi + ni/Vj , is maximized. Keep splitting
the MBR with lowest density.

The frequency vector of a sequence denotes the number of letters of each type in that
sequence. However, it does not reflect the distribution of the letters in that sequence.
Wavelet decomposition of frequency vectors can be used to extract the distribution of the
letters at the expense of increased index space [29]. As the number of wavelet coefficients
increases, the original sequence can be reconstructed more precisely from the frequency
vector.

The MRS index search returns false positives in the candidate set since there more than
one sequence may have the same frequency vector. The number of false positives can be
reduced by scaling the frequency distance [50] or by using lossy transformation methods,
such as DFT [1]. However, these methods will reduce the sensitivity of the MRS index
structure.

Index Structures for Approximate Matching in Sequence Databases 36-21

Score computation with the MRS index structure

In many biological applications, the similarity between two sequences is defined as the
score of their best alignment. The score is defined in terms of four parameters:

1. Smatch: Score for each matching letter.
2. Smismatch: Penalty for each mismatching letter.
3. Sgap-open: Penalty for starting a gap.
4. Sgap-extend: Penalty for extending an existing gap by one.

For example, BLAST (for nucleotides) uses a scoring scheme with values Smatch = 1,
Smismatch = −3, Sgap-open = −5, and Sgap-extend = −2. Usually, the magnitude of Sgap-open

is much larger than the rest since the likelihood that a nucleotide is chopped in mutation is
very small. This kind of similarity is usually more relevant to biological applications since
it reflects the mutation process better than the edit distance. It is also possible to replace
Smatch and Smismatch with a score matrix, such as PAM or BLOSUM. A score matrix de-
fines the score/penalty of matching two letters for every possible pairs of letters. Frequency
vectors can also be employed to find an upper bound on the score of the best alignment of
two sequences. We discuss the simpler case of (Smatch, Smismatch) next.

Figure 36.13 shows the procedure, FSw(v,B), that computes the frequency score between
a frequency vector v and an MBR B. This is an upper bound to the score of the best
alignment of a query sequence, q, with frequency vector v and a sequence, s, whose frequency
vector is in B. The procedure computes the number of increments and decrements needed
to translate v into B. The minimum of these two values show the number of mismatches
(i.e., modifications) and the difference between them shows the total size of the gap (i.e.,
indels). The number of matches is found by subtracting the number of mismatches from
length of the shorter sequence. The score is found by accumulating the score and penalties
for these parameters.

Local alignment with the MRS index structure

Local alignment between two sequences q and s can be carried out using the MRS index
structure as follows.

• Step 1: (Vector space mapping) Partition q into subsequences of length w, where
w is the length of the shortest local match needed. Compute the frequency vector
for each of these subsequences. Construct an MRS index on s for resolution w.
Figure 36.14 shows the partitioning of q and the MBRs constructed on s.

• Step 2: (Coarse grain alignment) Construct a boolean match table: Each row
and column corresponds to a page from q and s respectively. Mark the entries
mi,j of the match table if the frequency score between a subsequence contained
in the ith page of q and a subsequence contained in the jth page of s exceeds a
score threshold.
Conceptually, each sequence is divided into pages, i.e., non-overlapping blocks of
a fixed size. This is because a page is the minimum I/O unit, i.e. at least one page
is read from the disk at a time. Note that there is a many-to-many relationship
between boxes and pages: The subsequence corresponding to a box may span
more than one page, and (parts of) a page may occur in the subsequences of
more than one box.
The similarity between a pair of pages is defined as the highest frequency score
of the (frequency vector, MBR) pair intersecting with those pages. Figure 36.14
depicts the concept of pages and the match table for sequences q and s. Here,
the black dots represent the marked entries of the match table. For example, q1

36-22 Handbook of Computational Molecular Biology

/* v : σ-dimensional integer point
B : σ-dimensional integer box of lower and
higher coordinates B.L and B.H .
w : window size used to construct B */
Procedure FSw(v,B)
1. inc := dec := sum := 0;
2. for i from 1 to σ − 1:

if v[i] < B.L[i] then
inc += B.L[i]− v[i];
sum += B.L[i];

else if B.H [i] < v[i] then
dec += v[i]−B.H [i];
sum += B.H [i];

else
sum += v[i];

3. ScoreInc := (min{sum, w} − inc) · Smatch + inc · Smismatch;
4. ScoreDec := (min{sum, w} − dec) · Smatch + dec · Smismatch;
5. if w < sum then

ScoreInc += SN · (sum− w);
else if sum < w then

ScoreDec += SN · (w − sum);
6. return min{ScoreInc,ScoreDec};

FIGURE 36.13: Procedure FSw(v, B) for computing the best score of the alignment between a
sequence x and a set of sequences X , where v is the frequency vector of s and
B is the box that covers the frequency vectors of the sequences in X .

is similar to B6. Therefore, both m1,3 and m1,4 are marked.
• Step 3: (Fine grain alignment) Align the page pairs whose entries in the match

table are marked using an existing alignment tool such as BLAST. Partition
the match table if the input sequences are too large to align using the available
memory. One strategy for partitioning is as follows: Let r and c be the number
of marked rows and columns of the match table. If r < c, then the match
table is split vertically to obtain a slice big enough to fit into available memory.
Otherwise, the match table is split horizontally. This process is carried out
recursively for the remaining match table.

36.5 Concluding Remarks and Future Directions

A number of index structures have been proposed to speed up various problems on sequence
databases, such as pairwise alignment, multiple alignment, motif finding, shotgun sequenc-
ing, and repeat finding. These index structures have been proven to be useful in eliminating
less important parts of the database, thus avoiding exhaustive database access. We have
discussed these index structures under three categories: k-gram indexing, direct indexing,
and vector space indexing.
k-gram indexing enables quick lookups for sequences of length k. Longer matches are

Index Structures for Approximate Matching in Sequence Databases 36-23

q1

q2

q3

q4

q5

q8

q7

q6

Page 1

Page 2

Page 3

Page 4

B1

B5

B7

Page 1 Page 2 Page 3 Page 4

B3

B2

B4

B6

q
s

FIGURE 36.14: The match table created on sequences q and s. q is partitioned into 8 subse-
quences q1, · · · , q8. The MRS index structure built on s contains 7 MBRs B1,
· · · , B7. Both q and s fit into 4 pages. The black dots represent the marked
entries of the match table.

found either by extending or stitching these exact matches. Finding inexact matches require
additional processing.

Direct indexing is helpful for exact matches of arbitrary lengths. Inexact matches are
found either by stitching short exact matches or by finding exact matches to sequences in
a specific neighborhood of the query sequence.

Vector space indexing transforms information from sequence domain to a vector space.
This enables inexact searches directly on the index structure since the approximate sim-
ilarities in the vector space can be found by adapting existing search methods for multi-
dimensional index structures. Another advantage of vector space indexes such as the MRS
index structure is that their sizes are substantially smaller than the other ones. This makes
in-memory searches viable for large sequence databases.

A number of open problems remain for indexing sequence databases. Chapter 35 discusses
the future directions for suffix tree and its derivatives. Here, we will discuss several open
problems for k-grams and vector space indexing.

The speed and the sensitivity of the k-gram–based index structures, depends highly on
the choice of k. Large values of k usually improves running time at the expense of reduced
sensitivity. Therefore, k must be chosen carefully. Furthermore, the optimal choice of k
may also depend on the distribution of the data. For example, if the database contains
repeats of length 10, then 11-grams may fail to detect these repeats.

Two other important choices for k-grams are 1) gapped versus ungapped versions of the
k-grams, and 2) single versus multiple values of k. These choices also depend on the data
distribution.

If the input databases are too large, then each access to a k-gram may cause a page miss.
This is because a k-gram may be present at different locations of the database. In this

36-24 References

case, every k-gram access incurs a costly random seek. This requires development of novel
methods for storing database on disk and in main memory to reduce the amount of random
seeks required. Also, new page replacement policies are needed to minimize the number of
page faults.

The cost of finding the optimal multiple alignment of more than two sequences is expo-
nential in the number of sequences. Available heuristics, such as CLUSTALW [61], usually
employ pairwise alignment to reduce this cost. However, the quality of these methods
depend on the order of the sequences aligned. Vector space indexing is shown useful or
pairwise sequence comparisons and for searching a query (sub)sequence in a database of
sequences. One of the possible future uses of vector space mapping is multiple alignment
and motif finding. The data points from more than two sequences that form a cluster in
the vector space may define a backbone for the multiple alignment of these sequences, thus
reducing the alignment cost.

Existing vector space mapping methods assume that the database is error free. However,
the data may be inaccurate due to a number of reasons. One possible extension for vector
space mapping methods is the development of statistics–based index structures. This kind of
index structures assume that each letter is actually a vector that represents the probability
distribution for that letter. Vector space indexing is better suited for this type of databases
than k-grams or direct indexing.

Shotgun sequence assembly is one of the hardest problems for sequence databases. Overlay–
layout–consensus methods such as PCAP [26] run in three phases. First, low-quality regions
at the end of reads are trimmed and the overlaps between reads are computed. Second,
reads are joined to form contigs. Finally, a consensus sequence is computed from contigs
using multiple alignment. The first phase usually constitutes ≈ 85% of the total running
time. Vector space mapping can be utilized to detect overlaps and repeats for shotgun
sequence assembly. The overlapping segments traverse similar paths in the vector space,
thus, can be used for accelerating the sequence assembly problem.

References

[1] S.A. Aghili, D. Agrawal, and A. El Abbadi. Filtration of string proximity search
via transformation. In IEEE Symp. on BioInformatics and BioEngineering, pages
149–157, 2003.

[2] S. Altschul, W. Gish, W. Miller, and E.W. Meyers et al. Basic local alignment search
tool. Journal of Molecular Biology, 215(3):403–410, 1990.

[3] S.F. Altschul, T.L. Madden, A.A. Schaffer, and J. Zhang et al. Gapped BLAST and
PSI-BLAST: A new generation of protein database search programs. Nucleic Acids
Res., 25(17):3389–3402, 1997.

[4] S. Aparicio, J. Chapman, E. Stupka, and N. Putnam et al. Whole-Genome Shotgun
Assembly and Analysis of the Genome of Fugu rubripes. Science, 297(5585):1301–
1310, 2002.

[5] R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorithmica,
23(2):127–158, 1999.

[6] S. Batzoglou, D.B. Jaffe, K. Stanley, and J. Butler et al. ARACHNE: A whole-genome
shotgun assembler. Genome Research, 12(1):177–189, 2002.

[7] S. Batzoglou, L. Pachter, J.P. Mesirov, and B. Berger et al. Human and mouse
gene structure: Comparative analysis and application to exon prediction. Genome
Research, 10(7):950–958, 2000.

References 36-25

[8] D.A. Benson, I. Karsch-Mizrachi, D.J. Lipman, and J. Ostell et al. GenBank. Nucleic
Acids Res., 28(1):15–18, January 2000.

[9] N. Bray, I. Dubchak, and L. Pachter. AVID: A global alignment program. Genome
Research, 13(1):97–102, 2003.

[10] M. Brudno, C.B. Do, G.M. Cooper, M.F. Kim, E. Davydov, NISC Compara-
tive Sequencing Program, E.D. Green, A. Sidow, and S. Batzoglou. LAGAN and
Multi-LAGAN: Efficient Tools for Large-Scale Multiple Alignment of Genomic DNA.
Genome Research, 13(4):721–731, 2003.

[11] M. Brudno, S. Malde, A. Poliakov, and C.B. Do et al. Glocal alignment: Finding
rearrangements during alignment. Bioinformatics, 19(90001):54i–62, 2003.

[12] M. Brudno and B. Morgenstern. Fast and sensitive alignment of large genomic se-
quences. In Proc. of the IEEE Computer Society Bioinformatic, 2002.

[13] S. Burkhardt, A. Crauser, P. Ferragina, and H.-P. Lenhof et al. q-gram based database
searching using a suffix array (QUASAR). In Research in Computational Molecular
Biology, Lyon, April 1999.

[14] A. Califo and L Rigoutsos. Flash: Fast look-up algorith for string homolgy. Intelligent
Systems for Molecular Biology (ISMB), 1993.

[15] Y. Choi and T.W. Lam. Dynamic suffix tree and two-dimensional texts management.
Information Processing Letters, 61(4):213–220, 1997.

[16] A.L. Delcher, S. Kasif, R.D. Fleischmann, and J. Peterson et al. Alignment of whole
genomes. Nucleic Acids Res., 27(11):2369–2376, 1999.

[17] P. Ferragina and R. Grossi. The string b-tree: A new data structure for string search
in external memory and its applications. Journal of the ACM, 46(2):236–280, 1999.

[18] R.D. Fleischmann. Whole-genome random sequencing and assembly of haemophilus
influenzae Rd. Science, 269(5223):496–498+507–512, 1995.

[19] A. Gersho and R.M. Gray. Vector Quantization and Signal Compression. Kluwer
Academic Publishers, 1991.

[20] E. Giladi, M.G. Walker, J.Z. Wang, and W. Volkmuth. SST: An algorithm for finding
near-exact sequence matches in time proportional to the logarithm of the database
size. Bioinformatics, 18(6):873–877, 2002.

[21] R. Grossi and J.S. Vitter. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. In ACM SYMP THEORY COMPUT, pages
397–406, 2000.

[22] M. Höhl, S. Kurtz, and E. Ohlebusch. Efficient multiple genome alignment. Bioinfor-
matics, 18(90001):312S–320, 2002.

[23] X. Huang. A contig assembly program based on sensitive detection of fragment over-
laps. Genomics, 14:18–25, 1992.

[24] X. Huang. An improved sequence assembly program. Genomics, 33:21–31, 1996.
[25] X. Huang and A. Madan. CAP3: A DNA sequence assembly program. Genome

Research, 9(9):868–877, 1999.
[26] X. Huang, J. Wang, S. Aluru, and S.-P. Yang et al. PCAP: A whole-genome assembly

program. Genome Research, 13(9):2164–2170, 2003.
[27] E. Hunt, M.P. Atkinson, and R.W. Irving. A database index to large biological se-

quences. In Proc. of the Conference on Very Large Databases, pages 139–148, Roma,
Italy, September 2001.

[28] D.B. Jaffe, J. Butler, S. Gnerre, and E. Mauceli et al. Whole-genome sequence assembly
for mammalian genomes: Arachne 2. Genome Research, 13(1):91–96, 2003.

[29] T. Kahveci and A. Singh. An efficient index structure for string databases. In Proc.
of the Conference on Very Large Databases, pages 351–360, Roma, Italy, September
2001.

36-26 References

[30] T. Kahveci and A.K. Singh. MAP: Searching large genome databases. In Pacific
Symposium on Biocomputing, pages 303–314, January 2003.

[31] J. Kärkkäinen. Suffix cactus: A cross between suffix tree and suffix array. In CPM,
1995.

[32] W.J. Kent. BLAT—the BLAST-like alignment tool. Genome Research, 12(4):656–
664, 2002.

[33] W.J. Kent and D. Haussler. Assembly of the working draft of the human genome with
gigassembler. Genome Research, 11(9):1541–1548, 2001.

[34] W.J. Kent and A.M. Zahler. Conservation, regulation, synteny, and introns in a large-
scale C. briggsae-C. elegans genomic alignment. Genome Research, 10(8):1115–1125,
2000.

[35] S. Kim and A.M. Segre. AMASS: A structured pattern matching approach to shotgun
sequence assembly. J. of Comp. Biol., 6(2):163–186, 1999.

[36] F. Korn, N. Sidiropoulos, C. Faloutsos, and E. Siegel et al. Fast nearest neighbor
search in medical databases. In Proc. of the Conference on Very Large Databases,
pages 215–226, India, 1996.

[37] S. Kurtz and C. Schleiermacher. REPuter: Fast computation of maximal repeats in
complete genomes. Bioinformatics, 15(5):426–427, May 1999.

[38] D.J. Lipman and W.R. Pearson. Rapid and sensitive protein similarity searches. Sci-
ence, 227(4693):1435–1441, 1985.

[39] M. Ma, J. Tromp, and M. Li. PatternHunter: Faster and more sensitive homology
search. Bioinformatics, 18(0):1–6, 2002.

[40] U. Manber and E. Myers. Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, 1993.

[41] E.M. McCreight. A space-economical suffix tree construction algorithm. Journal of
the ACM, 23(2):262–272, 1976.

[42] C. Meek, J.M. Patel, and S. Kasetty. OASIS: An online and accurate technique for
local-alignment searches on biological sequences. In Proc. of the Conference on Very
Large Databases, 2003.

[43] B. Morgenstern. DIALIGN 2: Improvement of the segment-to-segment approach to
multiple sequence alignment. Bioinformatics, 15(3):211–218, 1999.

[44] B. Morgenstern, K. Frech, A. Dress, and T. Werner. DIALIGN: Finding local similar-
ities by multiple sequence alignment. Bioinformatics, 14(3):290–294, 1998.

[45] J.C. Mullikin and Z. Ning. The phusion assembler. Genome Research, 13(1):81–90,
2003.

[46] E. Myers. A sublinear algorithm for approximate keyword matching. Algorithmica,
pages 345–374, 1994.

[47] G. Navarro and R. Baeza-Yates. A hybrid indexing method for approximate string
matching. J. Discret. Algorithms, 1(1):205–239, 2000.

[48] S.B. Needleman and C.D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48:443–53, 1970.

[49] Z. Ning, A.J. Cox, and J.C. Mullikin. SSAHA: A fast search method for large DNA
databases. Genome Research, 11(10):1725–1729, 2001.

[50] Ö. Öztürk and H. Ferhatosmanoğlu. Effective indexing and filtering for similarity
search in large biosequence databases. In IEEE Symp. on BioInformatics and Bio-
Engineering, pages 359–366, 2003.

[51] W.R. Pearson and D.J. Lipman. Improved tools for biological sequence comparison.
Proc. of National Academy of Sciences, 85:2444–2448, April 1988.

[52] P.Weiner. Linear pattern matching algorithms. IEEE Symposium on Switching and

References 36-27

Automata Theory, pages 1–11, 1973.
[53] S.C. Sahinalp, M. Taşan, J. Macker, and Z.M. Özsoyoğlu. Distance based indexing for

string proximity search. In International Conference on Data Engineering, 2003.
[54] S. Schwartz, Z. Zhang, K.A. Frazer, and A. Smit et al. PipMaker—a web server for

aligning two genomic DNA sequences. Genome Research, 10(4):577–586, April 2000.
[55] T. Seidl and H.P. Kriegel. Optimal multi-step k-nearest neighbor search. In SIGMOD,

1998.
[56] T.F. Smith and M.S. Waterman. Identification of common molecular subsequences.

Journal of Molecular Biology, March 1981.
[57] D.J. States and P. Agarwal. Compact encoding strategies for DNA sequence similarity

search. In ISMB, 1996.
[58] G. Sutton, O. White, M. Adams, and A. Kerlavage. TIGR assembler: A new tool

for asembling large shotgun sequencing projects. Genome Science and Technology,
1:9–19, 1995.

[59] Z. Tan, X. Cao, B.C. Ooi, and A.K.H. Tung. The ed-tree: An index for large D-
NA sequence databases. In International Conference on Scientific and Statistical
Database Management, 2003.

[60] T.A. Tatusova and T.L. Madden. BLAST 2 sequences, a new tool for comparing
protein and nucleotide sequences. FEMS Microbiology Letters, pages 247–250, 1999.

[61] J.D. Thompson, D.G. Higgins, and T.J. Gibson. CLUSTAL W: improving the sensitiv-
ity of progressive multiple sequence alignment. Nucleic Acids Res., 22(22):4673–4680,
1994.

[62] E. Ukkonen. On-line construction of suffix-trees. Algorithmica, 14:249–260, 1995.
[63] J. Wang, G.K.S. Wong, P. Ni, and Y. Han et al. RePS: A sequence assembler that

masks exact repeats identified from the shotgun data. Genome Research, 12(5):824–
831, 2002.

[64] P.N. Yianilos. Data structures and algorithms for nearest neighbor search in general
metric spaces. In ACM-SIAM Symposium on Discrete Algorithms, pages 311–321,
1993.

[65] Z. Zhang, A.A. Schaffer, W. Miller, and T.L. Madden et al. Protein sequence similarity
searches using patterns as seeds. Nucleic Acids Res., 26(17):3986–3990, 1998.

[66] Z. Zhang, S. Schwartz, L. Wagner, and W. Miller. A greedy algorithm for aligning
DNA sequences. Journal of Computational Biology, 7(1-2):203–214, 2000.

37
Algorithms for Motif Search

Sanguthevar Rajasekaran
University of Connecticut

37.1 Introduction . 37-1
37.2 Algorithms for Planted Motif Search 37-2

A Probabilistic Analysis • The WINNOWER and
SP-STAR Algorithms • Pattern Branching • Random
Projection Algorithm • Algorithm PMS1 • Algorithm
PMS2 • Algorithm PMS3 • Saving Memory •

Extensions
37.3 Techniques for Edited Motif Search 37-10

An Algorithm Similar to PMS1 • A Randomized
Algorithm

37.4 Algorithms for Simple Motif Search 37-14
A Simple Sorting Based Algorithm • Simple Motif
Search (SMS) • Parallelism • TEIRESIAS Algorithm

37.5 Random Sampling . 37-17
37.6 Conclusions . 37-18

37.1 Introduction

The problem of identifying meaningful patterns (i.e., motifs) from biological data has been
studied extensively due to its paramount importance. This problem in general requires
finding short patterns of interest from voluminous data. Several variants of this motif
search problem have been identified in the literature. In this chapter we survey some of the
algorithms that have been proposed for these problems. We are interested in the following
three versions:

Problem 1. Input are n sequences of length m each. Input also are two integers l and
d. The problem is to find a motif (i.e., a sequence) M of length l. It is given that each
input sequence contains a variant of M . The variants of interest are sequences that are at
a hamming distance of d from M . (This problem is also known as the planted (l, d)-motif
search problem.)

Problem 2. The input is a database DB of sequences S1, S2, . . . , Sn. Input also are integers
l, d, and q. Output should be all the patterns in DB such that each pattern is of length l
and it occurs in at least q of the n sequences. A pattern U is considered an occurrence of
another pattern V as long as the edit distance between U and V is at most d. We refer to
this problem as the edited motif search problem.

Problem 3. A pattern is a string of symbols (also called residues) and ?’s. A “?” refers to
a wild card character. A pattern cannot begin or end with ?. AB?D, EB??DS?R, etc. are

37-1

37-2 Handbook of Computational Molecular Biology

examples of patterns. The length of a pattern is the number of characters in it (including
the wildcard characters). This problem takes as input a database DB of sequences. The
goal is to identify all the patterns of length at most l (with anywhere from 0 to �l/2� wild
card characters). In particular, the output should be all the patterns together with a count
of how many times each pattern occurs. Optionally a threshold value for the number of
occurrences could be supplied. We refer to this problem as the simple motifs search problem.

In this chapter we consider mainly motif search in DNA sequences. These motif search
algorithms could be extended to protein sequences as well. Detecting motifs in amino acid
sequences requires accounting for the strong, but complex, chemical similarity relationships
among the amino acid residues. These complex relationships are quantified and summarized
in substitution matrices such as PAM and BLOSUM.

37.2 Algorithms for Planted Motif Search

Though the planted motif search problem (Problem 1) is defined for arbitrary sequences,
in the literature it is usually assumed that the input consists of DNA sequences (and hence
the alphabet size is 4). We also make this assumption. Numerous papers have been written
in the past on the topic of Problem 1. Examples include Bailey and Elkan [4], Lawrence
et al. [21], Rocke and Tompa [35]. These algorithms employ local search techniques such
as Gibbs sampling, expectation optimization, etc. These algorithms may not output the
planted motif always. We refer to such algorithms as approximation algorithms . Algorithms
that always output the correct answer are referred to as exact algorithms .

More algorithms have been proposed for Problem 1 by the following authors: Pevzner
and Sze [30], Buhler and Tompa [8]. The algorithm in [30] is based on finding cliques in a
graph and the algorithm of [8] employs random projections. These algorithms have been
experimentally demonstrated to perform well. These are approximation algorithms as well.
Details of these algorithms are given in this chapter.

Algorithms for Problem 1 can be categorized into two depending on the basic approach
employed, namely, profile-based algorithms and pattern-based algorithms (see e.g., [31]).
Profilebased algorithms predict the starting positions of the occurrences of the motif in each
sequence. On the other hand, pattern-based algorithms predict the motif (as a sequence of
residues) itself.

Several pattern based algorithms are known. Examples include PROJECTION [8], MUL-
TIPROFILER [19], MITRA [11], and PatternBranching [31]. PatternBranching (due to
Price, Ramabhadran and Pevzner [31]) starts with random seed strings and performs local
searches starting from these seeds. More details on this algorithm are provided later.

Examples of profile-based algorithms include CONSENSUS [17], GibbsDNA [21], MEME
[3], and ProfileBranching [31]. The performance of profile-based algorithms are specified
with a measure called “performance coefficient”. The performance coefficient gives an indi-
cation of how many positions (for the motif occurrences) have been predicted correctly. For
the (15, 4) challenge problem, these algorithms have the following performance coefficients
(respectively): 0.2, 0.32, 0.14, and 0.57. The run times of these algorithms for this instance
are (respectively, in seconds): 40, 40, 5, and 80.

A profile-based algorithm could either be approximate or exact. Likewise a pattern-based
algorithm may either be exact or approximate. Algorithms that are exact are also known
as exhaustive enumeration algorithms in the literature.

Many exact algorithms are known. (See e.g., [23, 7, 12, 37, 38, 40, 42, 32].) However,
as pointed out in [8], these algorithms “become impractical for the sizes involved in the

Algorithms for Motif Search 37-3

challenge problem”. Exceptions are the MITRA algorithm [11] and the PMS algorithms
of Rajasekaran, Balla and Huang [32]. These algorithms are pattern-based and are exact.
MITRA solves for example the (15, 4) instance in 5 minutes using 100 MB of memory [11].
This algorithm is based on the WINNOWER algorithm [30] and uses pairwise similarity
information. A new pruning technique enables MITRA to be more efficient than WIN-
NOWER. MITRA uses a mismatch tree data structure and splits the space of all possible
patterns into disjoint subspaces that start with a given prefix. The same (15, 4) instance is
solved in 3.5 minutes by PMS [32].

It is noteworthy here that the profile-based algorithms such as CONSENSUS, GibbsDNA,
MEME, and ProfileBranching take much less time for the (15, 4) instance [31]. However
these algorithms fall under the approximate category and may not always output the correct
answer. Some of the pattern-based algorithms (such as PROJECTION, MULTIPROFILER,
and PatternBranching) also take much less time [31]. However these are approximate as
well (though the success rates are close to 100%).

Another class of motif finding algorithms, based on the concept of ”profiles” can also
be found in the literature. Profiles are matrices (also referred to as PSSMs) often used to
describe motifs. They are also closely related to Profile-HMMs. Construction of a profile or
a profile-HMM is equivalent to capturing the essence of a motif. These algorithms are used
in the context of protein sequences as well as nucleotide motifs (see e.g., [15], [16], [39], and
[29]).

37.2.1 A Probabilistic Analysis

The problem of planted motif search is complicated by the fact that, for a given value of d,
if the value of l is small enough, then the expected number of motifs that occur by random
chance could be enormous. For instance, when n = 20,m = 600, l = 9, d = 2, the expected
number of spurious motifs (that occur in each input sequence at a hamming distance of
d) is 1.6. On the other hand for n = 20,m = 600, l = 10, d = 2, the expected number of
spurious motifs is only 6.1× 10−8. A probabilistic analysis to this effect can be conducted
as follows.

Let Sk be any input sequence 1 ≤ k ≤ n and let u be any l-mer. Call the positions
1, l + 1, 2l + 1, . . . ,

⌈
m−l+1

l

⌉
l + 1 special positions. Probability that u occurs in Sk at a

hamming distance of d starting from a specific special position is p =
(

l
d

) (
3
4

)d (1
4

)l−d.
Thus, probability that u occurs in Sk starting from at least one of the special positions is
1 − (1 − p)m′

where m′ =
⌈

m−l+1
l

⌉
+ 1. As a result, probability that u occurs somewhere

in Sk is at least 1 − (1 − p)m′
. This means that the expected number of l-mers that occur

in each of the input sequences (at a hamming distance of d) is ≥ 4l
[
1− (1− p)m′

]n

.

37.2.2 The WINNOWER and SP-STAR Algorithms

The algorithm of Pevzner and Sze [30] (called WINNOWER) works as follows. If A and B
are two instances (i.e., occurences) of the motif then the hamming distance between A and
B is at most 2d. In fact the expected hamming distance between A and B is 2d− 4d2

3l . The
algorithm constructs a collection C of all possible l-mers in the input. A Graph G(V,E) is
then constructed. Each l-mer in C will correspond to a node in G. Two nodes u and v in
G are connected by an edge if and only if the hamming distance between the two l-mers is
at most 2d and these l-mers come from two different sequences.

Clearly, the n instances of the motif M form a clique of size n in G. Thus the problem

37-4 Handbook of Computational Molecular Biology

of finding M reduces to that of finding large cliques in G. Unfortunately, there will be
numerous ’spurious’ edges (i.e., edges that do not connect instances of M) in G and also
finding cliques is NP-hard. Pevzner and Sze [30] employ a clever technique to prune
spurious edges.

Pevzner and Sze [30] observe that the graph G constructed above is ’almost random’ and
is multipartite. They use the notion of an extendable clique. If Q = {v1, v2, . . . , vk} is any
clique, node u is called a neighbor of Q if {v1, v2, . . . , vk, u} is also a clique. In other words,
Q can be extended to a larger clique with the inclusion of u. A clique is called extendable
if it has at least one neighbor in every part of the multipartite graph G. The algorithm
WINNOWER is based on the observation that every edge in a maximal n-clique belongs to
at least

(
n−2
k−2

)
extendable cliques of size k. This observation is used to eliminate edges.

WINNOWER is an iterative algorithm where cliques of larger and larger sizes are con-
structed. The run time of the algorithm is O(N2d+1) where N = nm. But in practice
the algorithm runs much faster. In [30] another algorithm called SP-STAR has also been
given. This algorithm is faster than WINNOWER and uses less memory. WINNOWER
algorithm treats all the edges of G equally without distinguishing between edges based on
similarities. SP-STAR scores the l-mers of C as well as the edges of G appropriately and
hence eliminates more edges than WINNOWER in any iteration.

37.2.3 Pattern Branching

A local searching algorithm called PatternBranching has been proposed in [31]. If u is any
l-mer, then there are

(
l
d

)
3d l-mers that are at a hamming distance of d from u. Call each

such l-mer a neighbor of u. One way of solving the planted motif search problem is to start
from each l-mer in the input, search the neighbors of this l-mer, score them appropriately
and output the best scoring neighbor. There are a total of n(m− l+1) l-mers in the input.
Each of these l-mers has

(
l
d

)
3d neighbors. For each such neighbor, a score can be computed.

Having computed the scores of all of these n(m − l + 1)
(

l
d

)
3d neighbors, the best scoring

neighbor is output. A similar approach has been employed by [43, 12].
Let S = S1, S2, . . . , Sn be the collection of n given input sequences. The algorithm of

[31] only examines a selected subset of neighbors of any l-mer u of the input and hence is
more efficient. For any l-mer u, let Di(u) stand for the set of neighbors of u that are at
a hamming distance of i (for 1 ≤ i ≤ d). For any input sequence Sj let d(u, Sj) denote
the minimum hamming distance between u and any l-mer of Sj (for 1 ≤ j ≤ n). Let
d(u, S) =

∑n
j=1 d(u, Sj). For any l-mer u in the input let BestNeighbor(u) stand for the

neighbor v in D1(u) whose distance d(v, S) is minimum from among all the elements of
D1(u).

The PatternBranching algorithm starts from a u, identifies u1=BestNeighbor(u); Then it
identifies u2=BestNeighbor(u1); and so on. It finally outputs ud. The best ud from among
all possible u’s is output.

A pseudocode for this algorithm is given next. In this pseudocode u and u0 are the same.

Algorithm PatternBranching(S, l, d)

Let M be an arbitrary l-mer;
for each l-mer u in S do

for j := 0 to d do
if d(uj , S) < d(M,S) then M := uj;
uj+1 :=BestNeighbor(uj);

output M ;

Algorithms for Motif Search 37-5

The above algorithm has been shown to perform well in practice [31]. Also, the above
algorithm keeps only one best neighbor for each l-mer. Instead, it is possible to keep more
than one best neighbors. In other words, BestNeighbor(uj) could be a set of l-mers instead
of a single l-mer.

In [31] a profile-based version of PatternBranching has been given as well. This version is
called ProfileBranching.

37.2.4 Random Projection Algorithm

The algorithm of Buhler and Tompa [8] is based on random projections. Let the motif M of
interest be an l-mer. Let C be the collection of all the l-mers from all the n input sequences.
Project these l-mers along k randomly chosen positions (for some appropriate value of k).
In other words, for every l-mer u ∈ C, generate a k-mer u′ which is a subsequence of u
corresponding to the k random positions chosen. (The random positions are the same for
all the l-mers). We can think of each k-mer thus generated as an integer. We group the
k-mers according to their integer values. (I.e., we hash all the l-mers using the k-mer of
any l-mer as its hash value).

If a hashed group has at least a threshold number s of l-mers in it, then there is a good
chance that M will have its k-mer equal to the k-mer of this group. There are n(m− l+ 1)
l-mers in the input and there are 4k possible k-mers. Thus the expected number of l-mers
that hash into the same bucket is n(m−l+1)

4k . The threshold value s is chosen to be twice
this expected value. The value of k is chosen such that n(m − l + 1) < 4k. This ensures
that the expected number of random l-mers that hash into the same bucket is less than
one. It should also be the case that k < l− d. Typical values used for k and s are 7 and 3,
respectively.

The process of random hashing is repeated r times (for some appropriate value of r) so as
to be sure that a bucket of size ≥ s is observed at least once. The value of r can be calculated
as follows. Probability p that a given planted motif instance hashes to the planted bucket

is given by (l−d
k)

(l
k)

. There are n instances of the planted motif and hence the probability that

fewer than s of them hash into the planted bucket is given by p′ =
∑s−1

i=1

(
n
i

)
pi(1 − p)n−i.

As a result, probability that fewer than s instances hash into the planted bucket in each of
the r trials is P = (p′)r. The value of r is thus

⌈
log P
log p′

⌉
. In [8], a value of 0.05 is used for P .

We collect all the k-mers (and the corresponding l-mers) that pass the threshold and
these are processed further to arrive at the final answer M . Processing is done using the
expectation maximization (EM) technique of Lawrence and Reilly [22]. The EM formulation
employs the following model. Each input sequence has an instance of a length l motif such
that these instances are characterized by a 4× l weight matrix W . In particular, W [i, j] is
the probability that base i occurs in position j (1 ≤ i ≤ 4 and 1 ≤ j ≤ l). Occurrences of
bases in the different positions are independent. Bases for the remaining m − l positions
in each sequence are governed by a background distribution B. If S is the set of input
sequences then the EM-based technique of [22] determines a weight matrix model W ∗ that
maximizes the likelihood ratio Pr(S|W∗,B)

Pr(S|B) .

37.2.5 Algorithm PMS1

In this section we present details on the algorithm PMS1 of [32]. Consider the following
simple algorithm for the planted motif problem: 1) Let the input sequences be S1, S2, . . . , Sn.
The length of each sequence is m. Form all possible l-mers from out of these sequences.

37-6 Handbook of Computational Molecular Biology

The total number of l-mers is ≤ nm. Call this collection of l-mers C. Let the collection of
l-mers in S1 be C′; 2) Let u be an l-mer in C′. For all u ∈ C′ generate all the patterns
v such that u and v are at a hamming distance of d. The number of such patterns for a
given u is

(
l
d

)
3d. Thus the total number of patterns generated is O

(
m
(

l
d

)
3d
)
. Call this

collection of l-mers C′′. Note that C′′ contains M , the desired output pattern (assuming
that M does not occur in any of the input sequences); 3) For every pair of l-mers (u, v)
with u ∈ C and v ∈ C′′ compute the hamming distance between u and v. Output that
l-mer of C′′ that has a neighbor (i.e., an l-mer at a hamming distance of d) in each one of
the n input sequences. The run time of this algorithm is O

(
nm2l

(
l
d

)
3d
)
. If M occurs in

one of the input sequences, then this algorithm will run in time O(n2m2l).
Another equally simple algorithm considers every possible l-mer one at a time and checks

if this l-mer is the correct motif M . There are 4l possible l-mers. Let M ′ be one such l-mer.
We can check if M ′ = M as follows. Compute the hamming distance between u and M ′ for
every u ∈ C. (Note that C is the collection of all possible l-mers in the input sequences.)
As a result we can check if M ′ occurs in each input sequence (at a hamming distance of
d). Thus we can identify all the motifs of interest in a total of O

(
nml4l

)
time. We get the

following Lemma.

LEMMA 37.1 We can solve the planted (l, d)-motif problem in O(nml4l) time.

Algorithm PMS1 is based on sorting and takes the following form.

Algorithm PMS1

1. Generate all possible l-mers from out of each of the n input sequences. Let Ci

be the collection of l-mers from out of Si for 1 ≤ i ≤ n.
2. For all 1 ≤ i ≤ n and for all u ∈ Ci generate all l-mers v such that u and v are

at a hamming distance of d. Let the collection of l-mers corresponding to Ci be
C′i, for 1 ≤ i ≤ n. The total number of patterns in any C′i is O

(
m
(

l
d

)
3d
)
.

3. Sort all the l-mers in every C′i, 1 ≤ i ≤ n and eliminate duplicates in every C′i.
Let Li be the resultant sorted list corresponding to C′i.

4. Merge all the Li’s (1 ≤ i ≤ n) and output the generated (in step 2) l-mer that
occurs in all the Li’s.

The following theorem results.

THEOREM 37.1 Problem 1 can be solved in time O
(
nm

(
l
d

)
3d l

w

)
where w is the word

length of the computer. A run time of O
([
nm+m

(
l
d

)2
32d

]
l
w

)
is also achievable.

37.2.6 Algorithm PMS2

An improved algorithm called PMS2 has also been given in [32]. LetM be the planted motif.
Note that if M occurs in every input sequence, then every substring of M also occurs in
every input sequence. In particular, there are at least l− k + 1 k-mers (for d ≤ k ≤ l) such
that each of these occurs in every input sequence at a hamming distance of at most d. Let
Q be the collection of k-mers that can be formed out of M . There are l − k + 1 k-mers in

Algorithms for Motif Search 37-7

Q. Each one of these k-mers will be present in each input sequence at a hamming distance
of at most d.

In addition, in every input sequence Si, there will be at least one position ij such that a
k-mer of Q occurs starting from ij ; another k-mer of Q occurs starting from ij + 1;. . .; yet
another k-mer occurs starting from ij + l − k. We can get an l-mer putting together these
k-mers that occur starting from each such ij .

Possibly, there could be many motifs of length k that are in the positions starting from
each of ij , ij + 1, . . . , ij + l − k such that all of these motifs are present in all of the input
sequences (with a hamming distance of at most d). Assume that Mij+r is one motif of
length k that starts from position ij + r of Si that is also present in every input sequence
(for 0 ≤ r ≤ l−k). If the last k−1 residues of Mij+r are the same as the first k−1 residues
of Mij+r+1 (for 0 ≤ r ≤ l − k − 1), then we can obtain an l-mer from these motifs in the
obvious way. This l-mer is potentially a correct motif. Also, note that to obtain potential
motifs (of length l), it suffices to process one of the input sequences (in a manner described
above). Now we are ready to describe the improved algorithm.

There are two phases in the algorithm. In the first phase we identify all (d + c)-mers
Md+c (for some appropriate value c) that occur in each of the input sequences at a hamming
distance of at most d. We also collect potential l-mers (as described above) in this phase. In
the second phase we check, for each l-mer M ′ collected in the first phase, if M ′ is a correct
answer or not. Finally we output all the correct answers.

First we observe that the algorithm PMS1 can also be used for the case when we look
for a motif M that occurs in each input sequence at a hamming distance of at most d. The
second observation is that if c is large enough then there will not be many spurious hits. A
suggested value for c is the largest integer for which PMS1 could be run (without exceeding
the core memory of the computer and within a reasonable amount of time).

We present more details on the two phases.

Algorithm PMS2

Phase I

Solve the planted (d+ c, d)-motif problem on the input sequences (with a ham-
ming distance of ≤ d, using e.g., a modified PMS1). Let R be the set of all
motifs found. Let Sk be one of the input sequences. (Sk could be an arbitrary
input sequence; it could be chosen randomly as well.) Find all the occurrences
of all the motifs of R in Sk (with a hamming distance of up to d). This can
be done, e.g., as follows: form all the (d + c)-mers of Sk (keeping track of the
starting position of each in Sk); For each (d+ c)-mer u ∈ Sk, find all the (d+ c)-
mers v such that u and v are at a hamming distance of at most d. If R′ is the
collection of these (d + c)-mers, sort R and R′ and merge them; and figure out
all the occurrences of interest.
Let Sk be of length m. For every position i in Sk, let Li be the list of all motifs
of R that are in Sk (with a hamming distance of ≤ d) starting from position i.
Let A be the l-mer of Sk that occurs starting from position i. Let M1 be a
member of Li. If M2 is a member of Li+l−(d+c) such that the last 2(d + c) − l
characters of M1 are the same as the first 2(d + c) − l characters of M2, then
we could get an l-mer B by appending the last l− (d+ c) residues of M2 to M1

(at the end). If the hamming distance between A and B is d, then B is retained
as a candidate for the correct motif. We gather all such candidates and check if
any of these candidates are correct motifs. Details are given below.

37-8 Handbook of Computational Molecular Biology

for i := 1 to m− l + 1 do
for every u ∈ Li do

for every v ∈ Li+l−(d+c) do
Let the l-mer of Sk starting from position i be A. If the last
2(d+ c)− l residues of u are the same as the first 2(d+ c)− l
residues of v, then form an l-mer B by appending the last
l − (d+ c) residues of v to u. If the hamming distance between
A and B is d, then add B to the list C of candidates.

Phase II

for every v ∈ C do

Check if v is a correct motif in O(nml) time.

For any node u of Li there can be at most 4l−(d+c) candidate motifs. Thus the time
needed to get all the candidate motifs is O

(∑m−l+1
i=1 |Li|4l−(d+c)l

)
.

We arrive at the following Theorem.

THEOREM 37.2 Problem 1 can be solved in time
O
(
nm

∑d
i=0

(
d+c

i

)
3i d+c

w + znml+
∑m−l+1

i=1 |Li|4l−(d+c) l
)

where z is the number of po-
tential l-mers collected in the first phase and w is the word length of the computer. If
d ≤ �l/2�, then the run time is O

(
mn

(
d+c

d

)
3d d+c

w + znml+
∑m−l+1

i=1 |Li|4l−(d+c) l
)
.

An Alternative Algorithm. We can modify the above algorithm as follows. We first find
the collection R of all the (d+c)-mers that are present in every input sequence at a hamming
distance of at most d as before. In the above version, we pick only one sequence Sk and find
all the candidate motifs arising out of Sk. An alternative is to find the candidate motifs
from each sequence and get the intersection of these sets. Let Ai be the set of candidates
from Si (1 ≤ i ≤ n). Let A =

⋂n
i=1 Ai. We output A.

37.2.7 Algorithm PMS3

A third algorithm called PMS3 has been given in [32]. This algorithm enables one to handle
large values of d. Let d′ = �d/2�. Let M be the motif of interest with |M | = l = 2l′ for some
integer l′. Let M1 refer to the first half of M and M2 to the second half. We know that
M occurs in every input sequence. Let S = s1, s2, . . . , sm be an arbitrary input sequence.
Let the occurrence of M (with a hamming distance of d) in S start at position i. Let
S′ = si, si+1, . . . , si+l′−1 and S′′ = si+l′ , . . . , si+l−1.

Then, clearly, either 1) the hamming distance between M1 and S′ is at most d′ or 2)
the hamming distance between M2 and S′′ is at most d′. Also, note that in every input
sequence either M1 occurs with a hamming distance of at most d′ or M2 occurs with a
hamming distance of at most d′. As a result, in at least t′ sequences (where t′ = �t/2�)
either M1 occurs with a hamming distance of at most d′ or M2 occurs with a hamming
distance of at most d′. PMS3 exploits these observations. More details can be found in [32].

Algorithms for Motif Search 37-9

37.2.8 Saving Memory

The way PMS1 is described, we first form all possible l-mers from out of all the input
sequences, generate all relevant neighbors of these l-mers, sort and merge all of them to
identify the generated l-mer(s) found in all the sequences. We can modify the algorithm as
follows so as to reduce the memory used.

Algorithm PMS1A

Generate all possible l-mers from out of the first input sequence S1. Let C1 be the collection
of these l-mers. For all u ∈ C1 generate all l-mers v such that u and v are at a hamming
distance of d. Sort the collection of these l-mers and eliminate duplicates. Let L be the
resultant sorted collection.
for i := 2 to n do

1. Generate all possible l-mers from out of the input sequence Si. Let Ci be the
collection of these l-mers.

2. For all u ∈ Ci generate all l-mers v such that u and v are at a hamming distance
of d. Let the collection of these l-mers be C ′i.

3. Sort all the l-mers in C′i and eliminate duplicates. Let Li be the resultant sorted
list.

4. Merge Li and L and keep the intersection in L. I.e., set L := L ∩ Li.

L now has the motif(s) of interest.

37.2.9 Extensions

The planted (l, d)-motif problem as has been defined (in [30] for example) requires discov-
ering a motif M that occurs in every input sequence at a hamming distance of exactly d.
Varitations of this problem can be conceived of. We cosider two variants in this section.

Problem 1(a). Input are n sequences each of length m. The problem is to identify a motif
M of length l. It is given that each input sequence has a substring of length l such that the
hamming distance between this substring and M is at most d.

THEOREM 37.3 Problem 1(a) can be solved in time O
(
nm

∑d
i=0

(
l
i

)
3i l

w

)
. If d ≤ �l/2�,

then this run time is O
(
nm

(
l
d

)
3d l

w

)
.

Proof. An algorithm similar to PMS1 can be devised.

1. Generate all possible l-mers from out of each of the n input sequences. Let Ci

be the collection of l-mers from out of Si for 1 ≤ i ≤ n.
2. For all 1 ≤ i ≤ n and for all u ∈ Ci generate all l-mers v such that u and v are at

a hamming distance of at most d. Let the collection of l-mers corresponding to Ci

be C′i, for 1 ≤ i ≤ n. The total number of patterns in any C′i is O
(∑d

i=0m
(

l
i

)
3i
)
.

3. Sort all the l-mers in every C′i and eliminate duplicates, 1 ≤ i ≤ n. Let Li be
the resultant sorted list corresponding to C′i.

4. Merge all the Li’s (1 ≤ i ≤ n) and output the generated (in step 2) l-mer that
occurs in all the Li’s.

37-10 Handbook of Computational Molecular Biology

Problem 1(b). Input are n sequences each of length m. The problem is to find all motifs
M of length l. A motif M should be output if it occurs in at least εn of the input sequences
at a hamming distance of d. Here ε is a fraction specified as a part of the input. (This
variant has been considered in [8]. They use a value of 1/2 for ε).

THEOREM 37.4 Problem 1(b) can be solved in time O
(
nm

(
l
d

)
3d l

w

)
.

Proof. The algorithm to be used is the same as PMS1. The only difference is that step 4
now becomes: “Merge all the Li’s (1 ≤ i ≤ n) and output the generated (in step 2) l-mers
that occur in at least εn of the Li’s”. The run time remains the same asymptotically.

One could also refine Problem 1(b) to look for motifs that occur at a hamming distance
of at most d.

37.3 Techniques for Edited Motif Search

In this section we consider edited motif search (Problem 2). Here the input is a database
DB of sequences S1, S2, . . . , Sn. Input also are integers l, d, and q. The output should be
all the patterns in the DB such that each pattern is of length l and it occurs in at least q of
the n sequences. A pattern U is considered an occurrence of another pattern V as long as
the edit distance between U and V is at most d.

An algorithm for the above problem has been given by Sagot [36] that has a run time of
O(n2mld|Σ|d) where m is the average length of the sequences in DB and Σ is the alphabet
from which the input sequences are generated. It uses O(n2m/w) space where w is the
word length of the computer. This algorithm can be used to solve Problem 1 as well as
Problem 2. Consider the case of Problem 1. This algorithm builds a suffix tree on the given
sequences in O(nm) time using O(nm) space. Some preprocessing is done on the suffix tree
that takes O(n2m/w) time and O(n2m/w) space. If u is any l-mer present in the input,
there are O

(
ld(|Σ| − 1)d

)
possible neighbors for u. (A neighbor of u is any word v such that

the hamming distance between u and v is d). Any of these neighbors could potentially be a
motif of interest. Since there are O(nm) l-mers in the input, the number of such neighbors
is O

(
nmld(|Σ| − 1)d

)
. The algorithm of [36], for each such neighbor v, walks through the

tree to check if v is a possible answer. This walking step is referred to as ’spelling’. The
spelling operation takes a total of O(n2mld(|Σ|−1)d) time using an additional O(nm) space.
When employed for solving Problem 2, the same algorithm takes O(n2mld|Σ|d) time.

An algorithm with an expected run time of O(nm+d(nm)1+pow(ε) lognm) where ε = d/l
and pow(ε) is an increasing concave function has been given in [2]. The value of pow(ε) is
roughly 0.9 for protein and DNA sequences. This algorithm is also suffix-tree based.

37.3.1 An Algorithm Similar to PMS1

In this section we describe a sorting based algorithm that has the same run time as that of
[36]. From hereon the word occurrence is used to denote occurrence within an edit distance
of d, and the word presence is used to denote exact occurrence (i.e., occurrence within an
edit distance of zero).

The basic idea behind the algorithm is: We generate all possible l-mers in the database.
There are at most mn such l-mers and these are the patterns of interest. For each such
l-mer we want to determine if it occurs in at least q of the input sequences. Let u be one of
the above l-mers. If v is a string such that the edit distance between u and v is at most d,

Algorithms for Motif Search 37-11

then we say v is a neighbor of u. We generate all the neighbors of u. For each neighbor v of
u we determine a list of input sequences in which v is present. These lists (over all possible
neighbors of u) are then merged to obtain a list of input sequences in which u occurs (within
an edit distance of d).

Note that if u is an l-mer, then its neighbors will have a length in the interval [l−d, l+d].
In other words, there are (2d+1) possible values for the lengths of the neighbors of u. Also
note that more than one neighbor of u could have the same length. Corresponding to each
r-mer x (where r is an integer in the interval [l − d, l + d]) present in the input, we keep
a 4-tuple: (x, SeqNum,Pos, 0). Here SeqNum is an index of the input sequence I that x
belongs to. There are O(nmd) such 4-tuples. The indexing of the input sequences can be
done arbitrarily (e.g., in the order in which they appear in the input). Pos is the starting
position of x in I. The fourth entry (0) indicates that x is an r-mer present in one of the
input sequences. For every neighbor v of u (u being an l-mer present in the input), we keep
a 4-tuple as well: (v, SeqNum,Pos, 1). Here SeqNum is the index of the sequence I that
u belongs to and Pos is the starting position of u in I. The fourth entry (1) indicates that
this 4-tuple corresponds to a neighbor. We provide details of the algorithm next.

Note that each l-mer present in the input could be represented as a pair (SeqNum,Pos)
where SeqNum is the index of the sequence in which the l-mer is present and Pos is
the starting position of the l-mer in this sequence. We make use of an array A[1 :
n, 1 : m, 1 : n]. At the end of the algorithm this array will have the following proper-
ty: A[SeqNum,Pos, j] = 1 if and only if the l-mer (SeqNum,Pos) occurs in the input
sequence with index j (1 ≤ j ≤ n).

1. . Generate 4-tuples for all r-mers present in DB where r ∈ [l − d, l + d]. Each
of these 4-tuples has a 0 as its fourth entry. Call this collection C. Sort C in
lexicographic order and eliminate duplicates among these 4-tuples for which the
first two entries are the same to get L1. Note that the first entries of the 4-tuples
in C could be of different lengths. A simple way of sorting these 4-tuples is to
group them into (2d+1) groups one corresponding to each possible length of the
first entry and handle the groups separately. L1 has O(nmd) entries. Now sort
the 4-tuples of L1 with respect to their first and fourth entries (in lexicographic
order) to get L2.

2. For every distinct l-mer u present in DB generate all the patterns v such that u
and v are at an edit distance of at most d. The number of such neighbors for a
given u is O(ld|Σ|d) (a proof follows). This generation is done using the algorithm
of Myers [26]. Form the 4-tuples corresponding to all possible neighbors of all
the distinct l-mers in DB. Each of these 4-tuples has 1 as its fourth entry.

3. Sort all the 4-tuples generated in step 2 with respect to their first and fourth
entries. The total number of 4-tuples is O(nmld|Σ|d). Let L3 be the sorted
sequence.

4. Merge L3 with L2 to get L4. We can think of L4 as consisting of groups where a
group has 4-tuples with the same first entry. A group itself can be thought of as
consisting of two subgroups. The 4-tuples of the first subgroup have 0 as their
fourth entry. The 4-tuples of the second subgroup have 1 as their fourth entry.

for each group G of L4 do
Let G1 and G2 be the two supgroups of G. Identify the distinct
sequence indices (i.e., second entries) in the 4-tuples of G1. Let
these indices be i1, i2, . . . , ik. Note that k ≤ n.
for each 4-tuple (v, SeqNum,Pos, 1) in G2 do

37-12 Handbook of Computational Molecular Biology

A[SeqNum,Pos, aj] := 1, for 1 ≤ j ≤ k. (I.e., the l-mer
(SeqNum,Pos) occurs in the input sequences Saj , for 1 ≤ j ≤ k.

Scan through the array A to output the right l-mers. In particular, output
(SeqNum,Pos) if A[SeqNum,Pos, j] is 1 for 1 ≤ j ≤ n.

THEOREM 37.5 The above algorithm runs in time O
(
n2mld|Σ|d

)
. The space used is

O(nmld|Σ|d). The space used can be reduced to O(nmd+ ld|Σ|d).

Proof. The run time of step 1 is O
(
nmd l

w

)
using radix sort algorithm.

Let u be any l-mer. Then the number of patterns v such that the edit distance between
u and v is at most d is O(ld|Σ|d) as argued next. The same fact has been proven by
Crochemore and Sagot as well [10]. Let N(t) be the number of patterns obtainable from
u by performing t operations (inserts, deletes, and substitutions) on u. The number of
patterns of interest is then

∑d
t=0N(t). Of the t operations let the number of inserts,

deletes, and substitutions be i, del, s, respectively with i+ del+ s = t. For a given choice of
i, del, s, it is easy to see that the number of patterns obtainable is

(
l+i
i

)(
l

del

)(
l
s

)
|Σ|s+i. As a

result, N(t) ≤ (t+1)(t+2)
2

(
(l+t)e

t

)t

using the fact that
(
a
b

)
≤
(

ae
b

)b. Finally, summing N(t)
over all t’s, we see the result (as long as d ≥ 6).

Thus the generation of all the patterns in step 2 takes O(nmld|Σ|d) time (using the
algorithm in [26]).

In step 3 sorting takes time O
(
nmld|Σ|d l

w

)
.

Merging in step 4 also takes time O
(
nmld|Σ|d l

w

)
. For each 4-tuple of a given G2 the

time spent is O(k) where k is the number of distinct sequence indices in the corresponding
G1. Since k ≤ n, the total time in processing all the G2’s is O(n2mld|Σ|d).

These observations prove the theorem (assuming that l
w = O(n)).

The above algorithm is simpler than the ones in [36, 2]. The algorithms in [36, 2] employ
suffix trees. In comparison the above algorithm uses only arrays. The above algorithm can
be expected to perform better than that of [36, 2] in practice.

In practice the above algorithm is expected to run much faster. It is easy to see that the
run time of the above algorithm is O(nmld|Σ|dz) where z is the maximum number of distinct
sequence indices in the 4-tuples of any G1. The expected value of z can be calculated as
follows. Let x be any r-mer present in DB. The expected number of sequences that x occurs
in is the same as the expected value of z. If I is any input sequence and j is a fixed position
in I, probability that x is present in I starting from j is

(
1
4

)r. Thus, probability that x
is present somewhere in I is ≤ m

(
1
4

)r. As a result, the expected number of sequences in

which x is present is ≤ nm
(

1
4

)r. Thus the expected value of z is ≤ nm
(

1
4

)l−d.
As an example, if n = 20,m = 600, l− d = 10, the expected value of z is less than 1.

37.3.2 A Randomized Algorithm

In this section we describe a simple randomized algorithm (due to [33]) that has the potential
of performing better than the algorithms of [36, 2]. The algorithms in [36, 2] employ suffix
trees and the algorithm to be discussed uses arrays.

Before presenting the randomized algorithm we present a very simple algorithm. The
randomized algorithm is based on this simple algorithm. This algorithm works as follows.

1. Generate all possible l-mers in DB. Let the collection of these l-mers be C. There
are at most mn elements in C. Duplicates in C could be eliminated by a simple

Algorithms for Motif Search 37-13

radix sort.
2. For every l-mer u in C, compute the number of occurrences of u in DB. This can

be done in time O(nmd) using the algorithm of Galil and Park [13]. (See also
[1, 6, 20, 25, 26, 41]).

Thus we get the following Theorem.

THEOREM 37.6 Problem 2 can be solved in time O(n2m2d).

A Randomized Algorithm. A randomized algorithm can be developed based on the
above algorithm.

1. Generate all possible l-mers in DB. Let C the collection of these l-mers. C has
at most nm elements.

2. For each element u in C, pick a random sample Su from DB of 16αn ln n
q sequences

where α is the probability parameter (assumed to be a constant). Count the
number of occurrences Nu of u in the sample. This will take time |Su|md (using
the algorithm of Galil and Park [13]) for a single u.

3. For each u in C such that Nu > 10.34α lnn, compute the occurrences of u in
the entire input DB. If the number of occurrences of u in DB is q or more, then
output u.

THEOREM 37.7 The above algorithm runs in time O
(

n2m2 log n
q d+ gmnd

)
where g is

the number of l-mers that pass the test in step 3. Also, the probability of an incorrect answer
is no more than n−αnm. The space used is linear in the input size.

Proof. The run time is easy to see. Note that if an l-mer occurs in less than q input
sequences, it will never be output. If an l-mer u occurs in at least q sequences of DB, then
the number of occurrences of u in Su (i.e., the value of Nu) is lower bounded by a bino-
mial random variable with mean 16α lnn. An application of the Chernoff bounds (second
equation) with ε = 1/(2

√
n) shows that the probability that Nu is less than 10.34α lnn is

no more than n−α. On the same token, let u′ be an l-mer that occurs in at most (3/8)q
of the input sequences. The number of occurrences Nu′ of u′ in the sample is a binomial
with mean 6α lnn. Using Chernoff bounds equation 3 with ε = 1/

√
2, probability that Nu′

exceeds 10.25α lnn is at most n−α.
In summary, if a pattern occurs in q or more input sequences, it will pass the test of step

3 with high probability. Moreover, not many spurious patterns will pass the test of step
3. If a pattern has to pass the test of step 3, then it has to occur in at least (3/8)q of the
input sequences (in a high probabilistic sense). Therefore a high probability upper bound
on g is the number of patterns that occur in (3/8)q or more of the input sequences. Also
note that there at most nm patterns of interest.

Note that this algorithm has the potential of performing better than those of [36, 2], espe-
cially for large values of q. When q is large (εn for some constant fraction ε, for instance), g
can be expected to be small and hence the entire run time could be o(d(nm)1+pow(ε) lognm).
Next we show that the expected value of g is very small.

Assume that every residue in each input sequence is picked randomly (from an alphabet
of size 4). Let the input consist of n sequences of length m each. Let v be an l-mer and

37-14 Handbook of Computational Molecular Biology

Sk be any input sequence. Let i be any position in Sk. Probability that v is present in
Sk starting from position i is (1/4)l. Thus, the probability that v is present in Sk starting
from some position is ≤ (m− l + 1)(1/4)l. For every l-mer u there are ≤ cld|Σ|d (for some
constant c) neighbors (as has been shown above). The length of any sych neighbor x is in
the interval [l − d, l + d].

In Problem 2, we are supposed to do the following: For every l-mer u in the input, check
if it occurs in at least q of the input sequences. Therefore, probability that either u or any
of its neighbors is present in Sk is at most p1 = (m− l+ d+ 1)c|Σ|dld(1/4)l−d. As a result,
probability that u occurs in q or more of the input sequences is at most p2 =

∑n
i=q

(
n
i

)
pi
1(1−

p1)n−i ≤
∑n

i=q

(
n
i

)
pi
1. Using Stirling’s approximation, we see that p2 ≤ 2n

√
2√

πn

∑n
i=q p

i
1. By

simple arithmetic we see that p2 ≤ 1/(mn) whenq ≥ (n+1)−log(mn)−(1/2) log(πn)
2(l−d)−log(m−l+d+1)−log c−d log |Σ|−d log l .

If p2 ≤ 1/(mn), then the expected number of patterns that occur in q or more of the input
sequences is ≤ 1. Thus indeed the value of g will be small even if q is not this high!

As a numerical example, consider the case: l = 20, d = 2,m = 256, n = 500. In this case,
the condition on q becomes: q ≥ 36. Also, if α is 4, the probability of an incorrect answer
is 2.048× 10−6. This is also an upper bound on the expected number of patterns that will
be missed by the algorithm! (A pattern is missed by the algorithm if it occurs in at least q
of the input sequences but the algorithm fails to detect this).

The above analysis could be tightened further.

37.4 Algorithms for Simple Motif Search

Simple motifs search (Problem 3) takes as input a database DB of n sequences. The goal
is to identify all the patterns of length at most l (with anywhere from 0 to �l/2� wild card
characters). The output should be all the patterns together with a count of how many times
each pattern occurs.

The motif model for Problem 3 has been derived as follows [33]. Rajasekaran, et. al.
[33] have generated a list of 312 minimotifs (i.e., motifs of short length) that have defined
biological functions. They have used this list to select parameters for a de novo analysis of
novel minimotifs in the human proteome. They have chosen to analyze novel motifs with
a length (l) of 10 amino acids because 92% of the previously characterized minimotifs in
their list are less than 10 amino acids in length. Another reason for choosing a length of 10
amino acids is based on the function of minimotifs. Most minimotifs are in binding domains
or substrates of enzymes. The peptide ligand binding surfaces on proteins in the Protein
Data Bank is usually no longer than 35 angstroms. A 10 amino acid peptide would achieve
a maximum of 35 angstroms in length if it were in a random coil or a beta-sheet structure.
Thus, the selection of a length of 10 amino acids is consistent with the length of peptides
that interact with binding surfaces on protein domains.

The average minimotif in their list has 2.1 wildcard positions for any amino acid. Wild-
cards signify any of the 20 amino acids. Since only 13% of minimotifs in their list have
more than 50% wild card positions, they chose l/2 or 5 wild cards as the maximal number
in the algorithm.

In Problem 3 an optional threshold value for the number of occurrences could be supplied.
Determining this threshold is a challenging task. One way of determining this threshold is to
rank the motifs in the order of the number of their occurrences and choosing certain number
of them (either because they are over-represented or because they are under-represented).
Another way of determining the threshold is by analyzing the table of occurrences of all the
patterns in the database together with a model for the biological sequences under concern.

Algorithms for Motif Search 37-15

This differs from the first way in that here the number of occurrences of any motif will
be weighted as dictated by the model. A typical value for l is 10. A simple sorting based
algorithm for Problem 3 (called Simple Motif Search or SMS) is given in [33]. The run time
of this algorithm is O(ll/2N) for a given pattern length l, the number of wild cards being
at most �l/2�. The number of residues in the database is N .

37.4.1 A Simple Sorting Based Algorithm

The algorithm of Martinez [23] addresses a variant of Problem 3. In particular, the input
is just one sequence. The output consists of all repeated patterns. The matches of interest
are exact. Even if the input has many sequences, they can be concatenated to get a single
sequence.

The algorithm of [23] works as follows. Let S = x1, x2, . . . , xn be the input sequence. This
sequence can be thought of as n sequences where each sequence corresponds to a ‘suffix’ of
S. I.e., S1 is the same as S; S2 = x2x3 · · ·xn; and so on. These n sequences are then sorted
one residue at a time. At any level of the sorting we have groups of sequences. In particular,
after k levels of sorting, two sequences are in the same group, if the first k residues are the
same in these two sequences. Sorting at any level is local to groups. A group will not be
sorted further if it has only one element.

The expected run time of the above algorithm is O(n log n) whereas its worst case run
time is Ω(n2).

The above algorithm can be modified to have an expected run time of O(n) by performing
radix sorting with respect to the first Ω(log n) residues of the n sequences (see e.g., [18]).

As another variant consider a problem where the input are a sequence S and an integer
k. The goal is to report all repeats of length k. This variant can be solved in the worst
case in time O(nk/w), w being the word length of the computer as follows. 1) Form all
k-mers of S. There are less than n such k-mers; 2) Sort these k-mers lexicographically in
time O(nk/w) and 3) Scan through the sorted list to identify the repeats.

Instead of the above algorithm one could also employ a prefix tree or a suffix array to get
a run time of O(n). Depending on the underlying constant and the values of k and w, the
above algorithm could be faster.

37.4.2 Simple Motif Search (SMS)

As has been pointed out before, we are interested in identifying all the patterns of length at
most l (with anywhere from 0 to �l/2� wild card characters). For every pattern, the num-
ber of occurrences should be output. How does a biologist identify biologically important
patterns? This is a challenging task for biologists and will not be addressed in this chapter.

Define a (u, v)-class as a class of patterns where each pattern has length u and has exactly
v wild card characters. For example, GA??C?T belongs to (7, 3)-class. Note that there are(
u−2

v

)
|Σ|u−v patterns in a (u, v)-class.

To identify the patterns in a (u, v)-class, we perform
(
u−2

v

)
sorts. More specifically, for

each possible placement of v wild card characters (excluding at the end positions) in a
sequence of length u, we perform a sorting. As an example, consider a case where u = 5
and v = 2. There are three possible placements: C??CC, CC??C, and C?C?C, where
C corresponds to any residue. Call every placement as a (u, v)-pattern type. For every
(u, v)-pattern type, we perform the following steps.

37-16 Handbook of Computational Molecular Biology

Algorithm SMS

For every (u, v)-pattern type do

1. If R is a pattern type in (u, v)-class, we generate all possible u-mers in all the se-
quences of DB. If the sequences in DB have lengths m1,m2, . . . ,mn, respectively,
then the number of u-mers from Si is mi − u+ 1, for 1 ≤ i ≤ n.

2. Sort all the u-mers generated in step 1 only with respect to the non-wild card
positions of R. For example, if the pattern type under concern is CC??C?C, we
generate all possible 7-mers in DB and sort the 7-mers with respect to positions
1, 2, 5, and 7. Employ radix sort (see e.g., [18]).

3. Scan through the sorted list and count the number of occurrences of each pattern.

The run time of the above algorithm is O
((

u−2
v

)
N u

w

)
for a (u, v)-class, where N is the

total number of residues in DB and w is the word length of the computer.
Now we consider the problem of identifying all of the following patterns: The maximum

length is 10. Pattern lengths of interest are: 3, 4, 5, 6, 7, 8, 9 and 10. The maximum number
of wild cards are 1, 2, 2, 3, 3, 4, 4 and 5, respectively. In other words we are interested in:
(10, 5)-class, (10, 4)-class, . . ., (10, 1)-class, (9, 4)-class, (9, 3)-class, . . ., (9, 1)-class, . . ., (4,
2)-class, (4, 1)-class, and (3,1)-class. Thus the total number of sorts done is

5∑

i=0

(
8
i

)
+

4∑

i=0

(
7
i

)
+

4∑

i=0

(
6
i

)
+

3∑

i=0

(
5
i

)
+

3∑

i=0

(
4
i

)
+

2∑

i=0

(
3
i

)
+

2∑

i=0

(
2
i

)
+

1∑

i=0

(
1
i

)
= 429.

THEOREM 37.8 SMS algorithm runs in time O(ll/2N).

37.4.3 Parallelism

SMS is amenable to parallel implementations [33]. One possibility is to partition the number
of sorts equally among the processors. For example, if there are two processors, then a
reasonable partition is for the first processor to work on a maximum pattern length of 10
and the second processor to work on the remaining maximum pattern lengths. Processor 1
will perform 219 sorts and the second processor will do 210 sorts.

A second possibility is to partition the sequences as equally among the processors as
possible and finally merge the occurrence numbers of patterns.

A third possibility is to treat each sort as a job. To begin with all the jobs are available.
To begin with, each processor takes up an available job. As soon as a job is taken up (by
some processor) it is marked unavailable. When a processor completes its job, it takes up
another available job. Computation stops when there are no more available jobs. This third
technique has been employed in [33] and the speedups obained are close to linear.

37.4.4 TEIRESIAS Algorithm

The TEIRESIAS algorithm [34] addresses a problem similar to Problem 3. Here we define
a pattern to be a string of symbols (also called residues) and ?’s. A “?” refers to a wild card
character. A pattern cannot begin or end with ?. AB?D, EB??DS?R, etc. are examples of
patterns. The length of a pattern is the number of characters in it (including the wildcard
characters). If P is a pattern, any substring of P that itself is a pattern is called a subpattern
of P . For instance AB is a subpattern of AB?D. A pattern P is called a < l,W > pattern

Algorithms for Motif Search 37-17

if every subpattern of P of length W or more contains at least l residues. A pattern P ′ is
said to be more specific than a pattern P if P ′ can be obtained from P by changing one
or more wild card characters of P into residues and/or by adding one or more residues or
wild card characters to the left of P or to the right of P . ABCD and E?AB?D are more
specific than AB?D. A pattern P is said to be maximal if there is no pattern P ′ that is
more specific than P and which occurs the same number of times in a given database DB
as P . The problem TEIRESIAS addresses takes as input a database DB of sequences, the
parameters l,W , and q and outputs all < l,W > maximal patterns in DB that occur in at
least q distinct sequences of DB.

The run time of TEIRESIAS is Ω(W lN logN), where N is the size of the database (i.e.,
the number of characters (or residues) in the database). In this section we describe the
TEIRESIAS algorithm in some detail.

The algorithm consists of two phases. In the first phase elementary < l,W > patterns
are identified. An elementary < l,W > pattern is nothing but a pattern which is of length
W and which has exactly l residues. This phase runs in time O(NW l) [34].

In the second phase (known as the convolution phase), elementary patterns are combined
(i.e., convolved) to obtain larger patterns. For example, AS?TF and TFDE can be combined
to obtain AS?TFDE. All the convolved patterns that pass the support level and which are
maximal will be output. The run time of this phase is O(W lN logN) [34].

A problem similar to the one of [34], as applied to protein sequences, can also be found
in the literature (see e.g., [27], [14], [24], [28]). These authors use a variant of the APRI-
ORI algorithm (employed in the field of Data Mining) and incorporate substitution matrix
information as part of their detection strategy.

37.5 Random Sampling

Random sampling can be employed to speedup computations. In this section we describe a
simple form of sampling (presented in [33]) as it applies to Problem 3.

Let the input database DB consist of the sequences S1, S2, . . . , Sn. Assume that the
problem is to determine how frequent are certain patterns. In particular, for each pattern
we want to determine if the number of sequences in which it occurs is at least q, where q is a
given threshold. We can use the following strategy to solve this problem. Randomly choose
a sample S′ of εn sequences (for some appropriate value ε), identify the patterns that are
frequent in this sample (with an appropriately modified threshold value), and output these
patterns.

Analysis. Let U be a pattern that occurs q times in DB. Then the number of occurrences
q′ of U in S′ is Binomially distributed with a mean of εq. Using Chernoff bounds, Pr[q′ ≤
(1−α)εq] ≤ exp(−α2εq/2). If q ≥ 2β ln n

α2ε , then this probability is n−β. Refer to a probability
of ≤ n−β as low probability as long as β is any constant ≥ 1. I.e., if a pattern U occurs q
times in DB then its occurrence in S′ will be at least (1 − α)εq with high probability. Let
N =

∑n
i=1 |Si|. I.e., N is the number of residues in DB. The total number of patterns that

pass the threshold is clearly < N . If q ≥ 2
α2ε (β lnn+ lnN), then each pattern that occurs

at least q times in DB will occur at least (1− α)εq times in the sample.
Also, if a pattern U occurs at most 1−α

1+αq times in DB, then the expected number of
occurrences of U in the sample is 1−α

1+α εq. Using Chernoff bounds, this number will be

≤ (1 − α)εq with probability ≥ 1 − exp
(
−α2 1−α

1+α
ε
3q
)
. Thus if q ≥ 3

α2ε
1+α
1−α (β lnn + lnN),

then every pattern that occurs at most 1−α
1+αq times in DB will occur at most (1−α)εq times

in S′. We arrive at the following

37-18 Handbook of Computational Molecular Biology

LEMMA 37.2 Consider the problem of identifying patterns in a database of n sequences.
Each pattern of interest should occur in at least q of the input sequences. To solve this
problem it suffices to use a random sample of size εn and a sample threshold of (1− α)εq.
In this case, with high probability, no pattern that has an occurrence of less than 1−α

1+αq in
DB will pass the sample threshold, provided q ≥ 3

α2ε
1+α
1−α (β lnn+ lnN).

Examples: We present two examples to llustrate the usefulness of sampling. In particular,
we want to see how small could ε be. For a given n,N, q, we fix suitable values for β and α
and use the above constraint on q to evaluate the value of ε. The value of α that minimizes
1

α2
1−α
1+α is approximately 0.6. Thus we use this value for α. We fix the value of β to be 1.
Consider the case of n = 1000,m = 200, N = 200000, α = 0.6, β = 1. Here m refers to

the length of each sequence. The condition on q becomes: q ≥ 666.6
ε . If q = 800, then it

means that ε could be as small as 0.833.
As another example, consider the case where: n = 10000,m = 200, N = 2000000, α =

0.6, β = 1. The condition on q becomes: q ≥ 833.25
ε . If q = 5000, the value of ε could be as

small as 0.167.

Appendix A: Chernoff Bounds

A Bernoulli trial is an experiment with two possible outcomes viz. success and failure. The
probability of success is p. A binomial random variable X with parameters (n, p) is the
number of successes in n independent Bernoulli trials, the probability of success in each
trial being p.

We can get good estimates on the tail ends of binomial distributions (see e.g., [9]). In
particular, it can be shown that

Lemma A.1. If X is binomial with parameters (n, p), and m > np is an integer, then

Pr[X ≥ m] ≤ (np/m)m exp(m− np).

Also,
Pr[X ≤ (1 − ε)np] ≤ exp(−ε2np/2)

and
Pr[X ≥ (1 + ε)np] ≤ exp(−ε2np/3)

for all 0 < ε < 1.

37.6 Conclusions

In this chapter we have addressed three versions of the motif search problem. We have also
surveyed many deterministic and randomized algorithms that have been proposed for these
problems. Developing more efficient algorithms will be an important open problem, given
the significance of motif search.

Acknowledgements

The author thanks S. Balla, C.-H. Huang, V. Thapar, M. Gryk, M. Maciejewski, and M.
Schiller for many stimulating discussions. This work has been supported in part by the

References 37-19

NSF Grants CCR-9912395 and ITR-0326155.

References

[1] E.F. Adebiyi, T. Jiang and M. Kaufmann, An efficient algorithm for finding short
approximate non-tandem repeats, Bioinformatics 17, Supplement 1, 2001, pp. S5-
S12.

[2] E.F. Adebiyi and M. Kaufmann, Extracting common motifs under the Levenshtein
measure: theory and experimentation, Proc. Workshop on Algorithms for Bioinfor-
matics (WABI), Springer-Verlag LNCS 2452, 2002, pp. 140-156.

[3] T.L. Bailey and C. Elkan, Fitting a mixture model by expectation maximization to
discover motifs in biopolymers, Proc. Second International Conference on Intelligent
Systems for Molecular Biology, 1994, pp. 28-36.

[4] T.L. Bailey and C. Elkan, Unsupervised learning of multiple motifs in biopolymers
using expectation maximization, Machine Learning 21(1-2), 1995, pp. 51-80.

[5] M. Blanchette, Algorithms for phylogenetic footprinting, Proc. Fifth Annual Inter-
national Conference on Computational Molecular Biology, 2001.

[6] M. Blanchette, B. Schwikowski, and M. Tompa, An exact algorithm to identify motifs
in orthologous sequences from multiple species, Proc. Eighth International Confer-
ence on Intelligent Systems for Molecular Biology, 2000, pp. 37-45.

[7] A. Brazma, I. Jonassen, J. Vilo, and E. Ukkonen, Predicting gene regulatory elements
in silico on a genomic scale, Genome Research 15, 1998, pp. 1202-1215.

[8] J. Buhler and M. Tompa, Finding motifs using random projections, Proc. Fifth Annual
International Conference on Computational Molecular Biology (RECOMB), April
2001.

[9] H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations, Annals of Math. Statistics 23, 1952, pp. 493-507.

[10] M. Crochemore and M.-F. Sagot, Motifs in sequences: localization and extraction,
in Handbook of Computational Chemistry, Crabbe, Drew, Konopka, eds., Marcel
Dekker, Inc., 2001.

[11] E. Eskin and P. Pevzner, Finding composite regulatory patterns in DNA sequences,
Bioinformatics S1, 2002, pp. 354-363.

[12] D.J. Galas, M. Eggert, and M.S. Waterman, Rigorous pattern-recognition methods for
DNA sequences: Analysis of promoter sequences from Escherichia coli, Journal of
Molecular Biology 186(1), 1985, pp. 117-128.

[13] Z. Galil and K. Park, An improved algorithm for approximate string matching, SIAM
Journal of Computing 19(6), 1990, pp. 989-999.

[14] Y. Gao, M. Yang, X. Wang and K. Mathee et al, Detection of HTH Motifs via Data
Mining, Proceedings of SPIRE99: String Processing and Information Retrieval,
1999, pp. 63-72.

[15] M. Gribskov, R. Luthy, and D. Eisenberg, Profile anlysis, in R. F. Doolittle (Ed.),
Molecular Evolution: Computer Analysis of Protein and Nucleic Acid Sequences,
volume 183 of Methods in Enzymology, Academic Press, 1990, pp. 146-159.

[16] M. Gribskov and S. Veretnik, Identification of sequence pattern with profile analysis,
Methods Enzymol. 266, 1996, pp. 198-212.

[17] G. Hertz and G. Stormo, Identifying DNA and protein patterns with statistically
significant alignments of multiple sequences, Bioinformatics 15, 1999, pp. 563-577.

[18] E. Horowitz, S. Sahni, and S. Rajasekaran, Computer Algorithms, W.H. Freeman

37-20 References

Press, 1998.
[19] U. Keich and P. Pevzner, Finding motifs in the twilight zone, Bioinformatics 18, 2002,

pp. 1374-1381.
[20] G.M. Landau and U. Vishkin, Introducing efficient parallelism into approximate string

matching and a new serial algorithm, Proc. ACM Symposium on Theory of Com-
puting, 1986, pp. 220-230.

[21] C.E. Lawrence, S.F. Altschul, M.S. Boguski and J.S. Liu et al, Detecting subtle se-
quence signals: a Gibbs sampling strategy for multiple alignment, Science 262, 1993,
pp. 208-214.

[22] C.E. Lawrence and A.A. Reilly, An Expectation Maximization (EM) Algorithm for
the Identification and Characterization of Common Sites in Unaligned Biopolymer
Sequences, Proteins: Structure, Function, and Genetics 7, 1990, pp. 41-51.

[23] H.M. Martinez, An efficient method for finding repeats in molecular sequences, Nucleic
Acids Research 11(13), 1983, pp. 4629-4634.

[24] K. Mathee and G. Narasimhan, Detection of DNA-binding helix-turn-helix motifs in
proteins using the pattern dictionary method, Methods Enzymol., 370, 2003, pp. 250-
264.

[25] E.W. Myers, Incremental alignment algorithms and their applications, Technical Re-
port 86-22, Department of Computer Science, University of Arizona, Tucson, AZ 85721,
1986.

[26] E.W. Myers, A sublinear algorithm for approximate keyword searching, Algorithmica
12, 1994, pp. 345-374.

[27] G. Narasimhan, C. Bu, Y. Gao and X. Wang et al, Mining Protein Sequences for
Motifs, Journal of Computational Biology, 9(5), 2002, pp. 707-720.

[28] C.G. Nevill-Manning, T.D. Wu, and D.L. Brutlag, Highly-specific protein sequence
motifs for genome analysis, Proc. Natl. Acad. Sci. USA, 95, 1998, pp. 5865-5871.

[29] G. Pavesi, G. Mauri, and G. Pesole, In silico representation and discovery of transcrip-
tion factor binding sites, Brief Bioinform., 5(3), 2004, pp. 217-36.

[30] P. Pevzner and S.-H. Sze, Combinatorial approaches to finding subtle signals in D-
NA sequences, Proc. Eighth International Conference on Intelligent Systems for
Molecular Biology, 2000, pp. 269-278.

[31] A. Price, S. Ramabhadran and P.A. Pevzner, Finding subtle motifs by branching from
sample strings, Bioinformatics 1(1), 2003, pp. 1-7.

[32] S. Rajasekaran, S. Balla, C.-H. Huang, Exact Algorithms for Planted Motif Challenge
Problems, Proc. Third Asia-Pacific Bioinformatics Conference, Singapore, 2005.

[33] S. Rajasekaran, S. Balla, C.-H. Huang and V. Thapar et al, Exact Algorithms for Motif
Search, Proc. Third Asia-Pacific Bioinformatics Conference, Singapore, 2005.

[34] I. Rigoutsos and A. Floratos, Combinatorial pattern discovery in biological sequences:
The TEIRESIAS algorithm, Bioinformatics, 14(1), 1998, pp. 55-67. Erratum in:
Bioinformatics 14(2), 1998, p. 229.

[35] E. Rocke and M. Tompa, An algorithm for finding novel gapped motifs in DNA se-
quences, Proc. Second International Conference on Computational Molecular Bi-
ology (RECOMB), 1998, pp. 228-233.

[36] M.F. Sagot, Spelling approximate repeated or common motifs using a suffix tree,
Springer-Verlag LNCS 1380, pp. 111-127, 1998.

[37] S. Sinha and M. Tompa, A statistical method for finding transcription factor binding
sites, Proc. Eighth International Conference on Intelligent Systems for Molecular
Biology, 2000, pp. 344-354.

[38] R. Staden, Methods for discovering novel motifs in nucleic acid sequences, Computer
Applications in the Biosciences 5(4), 1989, pp. 293-298.

References 37-21

[39] G.D. Stormo, DNA binding sites: representation and discovery, Bioinformatics, 16(1),
2000, pp. 16-23.

[40] M. Tompa, An exact method for finding short motifs in sequences, with application
to the ribosome binding site problem, Proc. Seventh International Conference on
Intelligent Systems for Molecular Biology, 1999, pp. 262-271.

[41] E. Ukkonen, Finding approximate patterns in strings, Journal of Algorithms 6, 1985,
pp. 132-137.

[42] J. van Helden, B. Andre, and J. Collado-Vides, Extracting regulatory sites from the
upstream region of yeast genes by computational analysis of oligonucleotide frequen-
cies, Journal of Molecular Biology 281(5), 1998, pp. 827-842.

[43] M. Waterman, R. Arratia, and E. Galas, Pattern Recognition in Several Sequences:
Consensus and Alignment, Bulletin of Mathematical Biology 46, 1984, pp. 515-527.

38
Data Mining in Computational

Biology

Mohammed J. Zaki
Rensselaer Polytechnic Institute

Karlton Sequeira
Rensselaer Polytechnic Institute

38.1 Introduction . 38-1
38.2 Data Mining Process . 38-2

Data Mining Tasks • Steps in Data Mining
38.3 Mining 3D Protein Data . 38-4

Modeling Protein Data as a Graph • Graph-based
Structural Motif Mining • Alternate Approaches for
Structural Motif Mining • Finding Sites of
Non-bonded Interaction

38.4 Mining Microarray Gene Expression Data 38-11
Challenges of Mining Microarray Data • Association
Rule Mining • Clustering Algorithms

38.5 Determining Normal Variation in Gene
Expression Data . 38-16
Fold-Change Ratio • Elimination of Experimental
Noise • Gene Expression Profile • Entropy-based
Variability Ranking • Weighted Expression Profiles •

Application Study
38.6 Summary . 38-23

38.1 Introduction

Data Mining is the process of automatic discovery of valid, novel, useful, and understandable
patterns, associations, changes, anomalies, and statistically significant structures from large
amounts of data. It is an interdisciplinary field merging ideas from statistics, machine
learning, database systems and data-warehousing, high-performance computing, as well as
visualization and human-computer interaction. It has been engendered by the phenomenal
growth of data in all spheres of human endeavor, and the economic and scientific need to
extract useful information from the collected data.

Bioinformatics is the science of storing, extracting, analyzing, interpreting, and utiliz-
ing information from biological data such as sequences, molecules, pathways, etc. Genome
sequencing projects have contributed to an exponential growth in complete and partial se-
quence databases. The structural genomics initiative aims to catalog the structure-function
information for proteins. Advances in technology such as microarrays have launched the
subfields of genomics and proteomics to study the genes, proteins, and the regulatory gene
expression circuitry inside the cell. What characterizes the state of the field is the flood of
data that exists today or that is anticipated in the future; data that needs to be mined to
help unlock the secrets of the cell. Data mining will play a fundamental role in understanding

38-1

38-2 Handbook of Computational Molecular Biology

these rapidly expanding sources of biological data. New data mining techniques are needed
to analyze, manage and discover sequence, structure and functional patterns/models from
large sequence and structural databases, as well as for structure prediction, gene finding,
gene expression analysis, biochemical pathway mining, biomedical literature mining, drug
design and other emerging problems in genomics and proteomics.

The goal of this chapter is to provide a brief introduction to some data mining tech-
niques, and to look at how data mining has been used in some representative applications
in bioinformatics, namely three-dimensional (3D) or structural motif mining in proteins
and the analysis of microarray gene expression data. We also look at some issues in data
preparation, namely data cleaning and feature selection via the study of how to find nor-
mal variation in gene expression datasets. We first begin with a short introduction to the
data mining process, namely the typical mining tasks and the various steps required for
successful mining.

38.2 Data Mining Process

Typically data mining has the two high-level goals of prediction and description. The former
answers the question “what”; while the latter the question “why”. That is, for prediction the
key criteria is that of accuracy of the model in making future predictions; how the prediction
decision is arrived at may not be important. For description, the key criteria is that of clarity
and simplicity of the model describing the data, in human-understandable terms. There is
sometimes a dichotomy between these two aspects of data mining in the sense that the most
accurate prediction model for a problem may not be easily understandable, and the most
easily understandable model may not be highly accurate in its predictions. It is crucial that
the patterns, rules, and models that are discovered are valid not only in the data samples
already examined, but are generalizable and remain valid in future new data samples. Only
then can the rules and models obtained be considered meaningful. The discovered patterns
should also be novel, and not already known to experts; otherwise, they would yield very
little new understanding. Finally, the discoveries should be useful as well as understandable.

38.2.1 Data Mining Tasks

In verification-driven data analysis the user postulates a hypothesis, and the system tries
to validate it. The common verification-driven operations include querying and reporting,
multidimensional analysis, and statistical analysis. Data mining, on the other hand, is
discovery-driven, i.e., it automatically extracts new hypotheses from data. The typical data
mining tasks include:

• Association Rules: Given a database of transactions, where each transaction con-
sists of a set of items, association discovery finds all the item sets that frequently
occur together, and also the rules among them. For example, a rule could be as
follows: 90% of the samples that have high expression levels for genes {g1, g5, g7}
have high expression levels for genes {g2, g3}, and further 30% of all samples
support this rule.

• Sequence Mining: The sequence mining task is to discover sequences of events
that commonly occur together. For example, 70% of the DNA sequences from
a family have the subsequence TATA followed by ACG after a gap of, say, 50
bases.

Data Mining in Computational Biology 38-3

• Similarity Search: An example is the problem where we are given a database of
objects and a “query” object, and we are then required to find those objects in the
database that are similar to the query object. Another example is the problem
where we are given a database of objects, and we are then required to find all
pairs of objects in the databases that are within some distance of each other. For
example, given a query 3D structure, find all highly structurally similar proteins.

• Deviation Detection: Given a database of objects, find those objects that are the
most different from the other objects in the database, i.e., the outliers. These
objects may be thrown away as noise, or they may be the “interesting” ones,
depending on the specific application scenario. For example, given microarray
data, we might be able to find a tissue sample that is unlike any other seen, or
we might be able to identify genes with expression levels very different from the
rest of the genes.

• Classification and Regression: This is also called supervised learning. In the
case of classification, we are given a database of objects that are labeled with
predefined categories or classes. We are required to learn from these objects a
model that separates them into the predefined categories or classes. Then, given
a new object, we apply the learned model to assign this new object to one of
the classes. In the more general situation of regression, instead of predicting
classes, we have to predict real-valued fields. For example, given microarray
gene expression data, with tissues from cancerous and non-cancerous patients, a
classification model might be able to predict for a new tissue sample, whether it
is cancerous or not.

• Clustering: This is also called unsupervised learning. Here, we are given a
database of objects that are usually without any predefined categories or class-
es. We are required to partition the objects into subsets or groups such that
elements of a group share a common set of properties. Moreover the partition
should be such that the similarity between members of the same group is high
and the similarity between members of different groups is low. For example, giv-
en a set of protein sequences, clustering can group them into similar (potentially
homologous) families.

38.2.2 Steps in Data Mining

Data mining refers to the overall process of discovering new patterns and building models
from a given dataset. There are many steps involved in the mining enterprise such as data
selection, data cleaning and preprocessing, data transformation and reduction, data mining
task and algorithm selection, and finally post-processing and interpretation of discovered
knowledge:

• Collect, clean and transform the target dataset: Data mining relies on the avail-
ability of suitable data that reflects the underlying diversity, order, and structure
of the problem being analyzed. Therefore, the collection of a dataset that cap-
tures all the possible situations that are relevant to the problem being analyzed is
crucial. Raw data contain many errors and inconsistencies, such as noise, outliers,
and missing values. An important element of this process is to remove duplicate
records to produce a non-redundant dataset. Another important element of this
process is the normalization of data records to deal with the kind of pollution
caused by the lack of domain consistency.

38-4 Handbook of Computational Molecular Biology

• Select features, reduce dimensions: Even after the data have been cleaned up in
terms of eliminating duplicates, inconsistencies, missing values, and so on, there
may still be noise that is irrelevant to the problem being analyzed. These noise
attributes may confuse subsequent data mining steps, produce irrelevant rules
and associations, and increase computational cost. It is therefore wise to perform
a dimension reduction or feature selection step to separate those attributes that
are pertinent from those that are irrelevant.

• Apply mining algorithms and interpret results: After performing the pre-processing
steps apply appropriate data mining algorithms – association rule discovery, se-
quence mining, classification tree induction, clustering, and so on – to analyze
the data. After the algorithms have produced their output, it is still necessary
to examine the output in order to interpret and evaluate the extracted patterns,
rules, and models. It is only by this interpretation and evaluation process that
we can derive new insights on the problem being analyzed.

38.3 Mining 3D Protein Data

Protein structure data has been mined to extract structural motifs [29, 22, 31], analyze
protein-protein interactions [55], protein folding [65, 40], protein thermodynamic stabili-
ty [5, 38], and many other problems. Mining structurally conserved motifs in proteins is
extremely important, as it reveals important information about protein structure and func-
tion. Common structural fragments of various sizes have fixed 3D arrangements of residues
that may correspond to active sites or other functionally relevant features, such as Prosite
patterns. Identifying such spatial motifs in an automated and efficient way, may have a
great impact on protein classification [13, 3], protein function prediction [20] and protein
folding [40]. We first describe in detail a graph-based method for mining structural motifs,
and then review other approaches.

38.3.1 Modeling Protein Data as a Graph

An undirected graphG(V,E) is a structure that consists of a set of vertices V = {v1, · · · , vn}
and a set of edges E ⊆ V ×V , given as E = {ei = (vi, vj)|vi, vj ∈ V }, i.e., each edge ei is an
unordered pair of vertices. A weighted graph is a graph with an associated weight function
W : E → �+ for the edge set. For each edge e ∈ E, W (e) is called the weight of the edge e.
Protein data is generally modeled as a connected weighted graph where each vertex in the
graph may correspond to either a secondary structure element (SSE) (such as α-helix or
β-strand) [22, 66], or an amino acid [29], or even an individual atom [31]. The granularity
presents a trade-off between computation time and complexity of patterns mined; a coarse
graph affords a smaller problem computationally, but runs the risk of oversimplifying the
analysis. An edge may be drawn between nodes/vertices indicating proximity, based on
several criteria, such as:

• Contact Distance (CD) [29, 66]: Given two amino acids ai and aj along with the
3D co-ordinates of their α-Carbon atoms (or alternately β-Carbon), (xi, yi, zi)
and (xj , yj, zj), resp., define the Euclidean distance between them as follows:

δ(ai, aj) =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

We say that ai and aj are in contact, if δ(ai, aj) ≤ δmax, where δmax is some
maximum allowed distance threshold (a common value is δmax = 7Å). We can

Data Mining in Computational Biology 38-5

add an edge between two amino acids if there are in contact. If the vertices are
SSEs then the weight on an edge can denote the number of contacts between the
two corresponding SSEs.

• Delaunay Tessellation (DT)[29, 54, 62]: the Voronoi cell of x ∈ V (G) is given by

V(x) = {y ∈ �3|d(x, y) ≤ d(x′, y) ∀x′ ∈ V (G)\{x}}

An edge connects two vertices if their Voronoi cells share a common face.
• Almost Delaunay (AD) [29]: to accommodate for errors in the co-ordinate values

of the points in the protein structure data, we say that a pair of points vi, vj ∈
V (G) are joined by an almost-Delaunay edge with parameter ε, or AD(ε), if by
perturbing all points by at most ε, vi, vj could be made to have Voronoi cells
sharing a face.

38.3.2 Graph-based Structural Motif Mining

We now describe our graph-based structural motif mining approach. We represent each
protein as an undirected graph; the vertices correspond to the secondary structures, α-
helix or β-strands. The vertex numbers increase in the sequence order from N-terminus to
C-terminus. The edges correspond to the contacts between two structures. If two SSEs
have no contacts between them, there is no edge between them. Each one of the vertices
and edges has a label associated with it. The labels on the vertices correspond to the
type of secondary structure, and the labels on the edges correspond to the contact types
which are defined by the number of contacts between the two SSEs. We use four types of
edges E1, E2, E3 and E4 depending on the number of contacts between two structures:
E1 ∈ [1, 5), E2 ∈ [5, 10), E3 ∈ [10, 15), E4 ∈ [15,+∞). The graph representation of the
protein 2IGD with contact cutoff 7Å is shown in Figure 38.1. There are 5 secondary
structures in 2igd: β0, β1, α2, β3, β4 and 7 edges between β1 − β0, α2 − β0, α2 − β1,
β3− β1, β3− β2, β4− β2, and β4− β3.

(a) 2IGD Structure (b) 2IGD Graph

FIGURE 38.1: (a) 3D structure for protein G (PDB file 2IGD, Length 61). (b) Graph for 2IGD:
graph input format (left) and graph representation (right). The input format
lists the vertices (’v’) followed by the edges (’u’). A vertex is a tuple (v n l),
where v denotes a vertex, n gives the vertex number and l its label. An edge is
a tuple (u n1 n2 l), where u denotes an edge, n1, n2 are the two vertices making
the edge, and l is the edge label.

38-6 Handbook of Computational Molecular Biology

Discovering Frequent Subgraphs

To mine the frequent structural motifs from the database of proteins represented as graphs
we used the FSG algorithm for frequent subgraph discovery [44]. The input is a database
D of protein graphs and a minimum support threshold σ. The output is the set of all
connected subgraphs that occur in at least σ% of the proteins.

There are three considerations when FSG are applied to the database of protein struc-
tures. Firstly, we are interested in subgraphs that are composed of all secondary structures
in contact, whether or not they are consecutive. A protein sequence or subsequence is
naturally connected from N -terminal to C-terminal, thus any two successive structures
are connected with each other. Contacts between two non-successive structures can form
tertiary structure as well. Secondly, we used labeled graphs, where different graphs can
contain vertices and edges with the same label. We classified edges in four types according
to the range of contacts. We chose this classification range heuristically to allow us to find
patterns containing multiple occurrences of the same structures and contact ranges. A finer
classification of edge types will decrease the frequency of common patterns and make the
running time extremely slow. Thirdly, we are interested in the subgraphs with at least σ%
frequency in the database. This makes sure that the generated subgraphs are the dominant
motifs.

FSG uses a level-by-level approach to mine the connected subgraphs. It starts with the
single edges and counts their frequency. Those that meet the support threshold are extended
by another frequent edge to obtain a set of candidate edge pairs. The counting proceeds
by extending a frequent edge-set by one more edge. The process stops when no frequent
extension is possible. For a detailed description of FSG see [44].

We ran the FSG algorithm on a dataset of 757 protein graphs obtained from the non-
redundant proteins in PDBselect database [27]. The results with different frequency thresh-
olds ranging from 10% to 40%, and with contact cutoff 7Å are shown in Table 38.1.Fig-
ure 38.2 shows some mined subgraphs with different number of edges using support 10%.

10% 20% 30% 40%
1-edge graphs 12 10 8 4
2-edges graphs 34 23 8 6
3-edges graphs 144 42 17 6
4-edges graphs 420 72 22 2
5-edges graphs 1198 142 23 0
6-edges graphs 2920 289 4 0
7-edges graphs 6816 32 0 0
8-edges graphs 14935 114 0 0

TABLE 38.1 Frequent subgraphs.

We mapped the mined graph patterns back to the PDB structure to visualize the mined
results. Two such frequent tertiary motifs are shown in Figure 38.3. The top one has
6 edges, and frequency 157. This motif shows four alpha helices and three beta strands.
Two proteins where this pattern occurs are also shown: PDB files 1AD2 and 1KUH . The
bottom motif has 8 edges and frequency 153. It is an all alpha motif. Two occurrences in
PDB files 1BG8 and 1ARV are shown. The results obtained from graph mining are quite
encouraging. We found that most of the highest scoring patterns match part of the whole
protein structures, and we were able to find remote interactions as well.

Data Mining in Computational Biology 38-7

FIGURE 38.2: Highest Frequency Tertiary Motifs: Edge Size 1 to 8. The notation “t #1, 523”
in the graph input format denotes edge size = 1, support = 523.

FIGURE 38.3: (See color insert following page 20-4.) Top: Alpha-Beta Motif and its Oc-
currence in PDB files: 1ad2, 1kuh. Bottom: All Alpha Motif and its Occurrence
in PDB files: 1bg8, 1arv.

Comparison with SCOP Database

The SCOP protein database [50], categorizes proteins into all-α, all-β, α and β (inter-
spersed), α plus β (isolated), and multi-domain according to their structure and functional
similarity. We applied the graph-mining method to protein families classified in SCOP
database. In order to find out whether our method matches with SCOP in mining and
categorizing common domains, several protein families were chosen randomly from SCOP
and represented as graphs. Within one protein family, we used 100% support to find the
largest frequent patterns that appear in every protein in that family.

38-8 Handbook of Computational Molecular Biology

FIGURE 38.4: Largest pattern in 100% of DNA polymerase processivity factor proteins.

(a) 1PLQ (b) 1CE8 (c) 1CZD

FIGURE 38.5: Some occurrences of the pattern in PDB files: 1PLQ, 1CE8, 1CZD.

To test retrieval rate, we can create a mixed database from several families within the same
superfamily. Mining this database, frequent patterns, could only be found with less than
100% support. If we add to the database some other proteins outside of the superfamily,
the maximum size pattern was only found at very small support and it is not frequent
any more. This demonstrates that our graph mining method could be used to classify
proteins into families based on their shared motifs. For example, consider the DNA clamp
superfamily, which is made up of two families: DNA polymerase III, beta subunit and DNA
polymerase processivity factor. DNA polymerase III beta subunit family has three E. coli
proteins: 2POL, 1JQL and 1JQJ. The DNA polymerase processivity factors family has eight
proteins: Bacteriophage RB69 (1B77, 1B8H) and Bacteriophage T4 (1CZD), human herpes
virus type 1 (1DML), proliferating cell nuclear antigens (1PLQ, 1PLR, 1AXC, 1GE8). The
following pattern, shown in Figure 38.4 and its corresponding occurrences in PDB files,
shown in Figure 38.5, appears in every protein of DNA polymerase processivity factors.
The graph-based method has the potential to become a powerful tool in structure analysis.
It is a rapid, intuitive method to identify and find proteins that display structure similarities
at the level of residues and secondary structure elements.

38.3.3 Alternate Approaches for Structural Motif Mining

Data Mining in Computational Biology 38-9

Another graph based approach to motif discovery was proposed in [29], where they search
for frequent subgraphs in proteins belonging to the same structural and functional family
in the SCOP database; they propose these subgraphs as family-specific amino acid residue
signatures of the underlying family. They represent the protein structures as graphs, using
CD, DT and AD representations (see section 38.3.1). They represent each protein graph
by an adjacency matrix in which each entry is either a 0 (if there is no edge), a vertex label
(if it is a diagonal element), or an edge label (if an edge exists). They define the code of
this adjacency matrix as the sequence of the entries in the lower triangular matrix read
going left to right and then top to bottom. They use the lexicographic order to impose an
ordering on the codes obtained by rearranging the rows of the matrix. Using a novel graph
representation such as this, they construct a rooted, ordered tree for each graph and then
search for frequent graphs. They then discard those which have a low mutual information
score. They conclude that in order to achieve the highest accuracy in finding protein
family specific signatures, AD graphs present the best choice both due to their relative
computational efficiency and their robustness in taking into account possible experimental
errors in determining protein atomic coordinates.

In a different approach, Jonassen et al. [35] represent the neighborhood of each residue r
as a neighbor string NSr of which r is called the anchor. NSr encodes all residues within a
d angstrom radius of r. Each residue is encoded by its amino acid type, secondary structure
type and a coordinate set (x, y, z) calculated as the mean of the r’s side chain atoms. The
order of residues in NSr is governed by their order along the protein’s backbone. They then
define a packing pattern against which the neighbor strings are matched. A packing pattern
consists of a list of elements where each element defines a match set (a set of allowed amino
acids), a set of allowed SSE types and one set of coordinates. NSr = r1, . . . , rk, . . . , rl,
where rk is the anchor residue, is said to match packing pattern P = p1, . . . , pl, . . . , pn if
NSr contains a subsequence ri1, . . . , rin, such that residues have amino acids and SSE types
included in the match sets of the corresponding pattern elements and the anchors of the
neighbor string and pattern string are aligned. Also, NSr is said to structurally match P
within φ, if it is possible to superimpose the coordinates of NSr onto those of P with a
root mean square deviation of maximum φ. A neighbor string that structurally matches
a packing pattern with a threshold φ describes an occurrence of the pattern. A pattern
having occurrences in k structures is said to have support k. Thus, they seek packing
patterns having support k in a dataset of N structures. For each of the N structures, a
packing pattern is generated for the generalization of each neighbor string. There may exist
many generalizations of the match sets and hence pruning based on geometrical constraints
is used to constrain the length of the neighbor strings. The packing pattern inherits its
coordinates and SSE types from the neighbor string. Further, neighbor strings with fewer
than 4 elements are discarded. Using depth-first search, they search for all generalizations
of a neighbor string having support k moving from simple (short generalizations) to complex
(long ones) as the depth of the search increases. For every pattern thus found, they compute
a score measuring the pattern’s information content divided by its maximum root mean
square deviation.

The 3D conformation of a protein may be compactly represented in a symmetrical, square,
boolean matrix of pairwise, inter-residue contacts, or “contact map”. The contact map
provides a host of useful information about the protein’s structure. In [28] Hu et al. describe
how data mining can be used to extract valuable information from contact maps. For
example, clusters of contacts represent certain secondary structures, and also capture non-
local interactions, giving clues to the tertiary structure. They focus on two main tasks: 1)
Given the database of protein sequences, discover an extensive set of non-local (frequent)
dense patterns in their contact maps, and compile a library of such non-local interactions.

38-10 Handbook of Computational Molecular Biology

2) Cluster these patterns based on their similarities and evaluate the clustering quality. To
enumerate all the frequent dense patterns they scan the database of contact maps with a
2D sliding window of a user specified size W ×W . Across all proteins in the database,
any sub-matrix under the window that has a minimum “density” (the number of contacts)
is captured. The main complexity of the method stems from the fact that there can be a
huge number of candidate windows. Of these windows only relatively few will be dense,
since the number of contacts is a lot less than the number of non-contacts. They propose a
fast hash-based approach to counting the frequency of all dense patterns. Finally they use
agglomerative clustering to group the mined dense patterns to find the dominant non-local
interactions.

Several methods for secondary level motif finding have also been proposed. SPASM
can find the motifs consisting of arbitrary main-chain and/or side-chains in a protein
database[39]. An algorithm based on subgraph isomorphism was proposed in [49]; it searches
for an exact match of a specific pattern in a database. Search for distantly related protein-
s using a graph to represent the helices and strands was proposed in [42]. An approach
based on maximally common substructures between two proteins was proposed in [23]; it
also highlights areas of structural overlap between proteins. SUBDUE [15] is an approach
based on Minimum Description Length and inexact graph matching for finding patterns in
proteins. Another graph based method for structure discovery, based on geometric hashing,
was presented in [61]. Most of these methods either focus on identifying predefined patterns
in a group of proteins, or find approximate/inexact matches.

38.3.4 Finding Sites of Non-bonded Interaction

Sites of non-bonded interaction are extremely important to find, as they cannot be deter-
mined from primary structure and give clues about the higher-order structure of the protein.
Side chain clusters in proteins aid in protein folding and in stabilizing the three-dimensional
structure of proteins [25]. Also, these sites may be occurring in structurally similar proteins
with very low sequence homology [37]. Spectral methods have been gaining favor in finding
clusters of non-bonded interaction as they use global information of non-bonded interactions
in the protein molecule to identify clusters.

In [11], Brinda et al. construct a graph, where each vertex is a residue and they connect
vertices if they are in contact (using cut-off 4.5Å). They represent the protein graph in
terms of an adjacency matrix A, where ap,q = 1/dp,q, if p, q ∈ V (G) are connected and
1/100, otherwise, dp,q = distance between p and q. The degree matrix, D, is a diagonal
matrix obtained by summing up the elements of each column. Then, the Laplacian matrix,
L = D − A, is of dimension |V | × |V |. Using eigen decomposition on L, they get the
eigenvalues and the eigenvectors. The Fiedler eigenvector, corresponding to the second
lowest eigenvalue, gives the clustering information [24]. The centers of the clusters can
be identified from the eigenvectors of the top eigenvalues. The cluster centers identified
correspond to the nodes with the highest connectivity (degree) in the cluster, which generally
correspond to the geometric center of the cluster. They consider clusters with at least three
residues. The residues with the same vector component in the second lowest eigenvalue
form a cluster. The residue with the highest magnitude of a vector component in the
corresponding top eigenvalue is the center of the cluster.

The α/β barrel proteins are known to adopt the same fold in spite of very low sequence
similarity. This could be possible only if the specific stabilizing interactions important in
maintaining the fold are conserved in topologically equivalent positions. Such stabilization
centers are usually identified by determining the extent of long-range contacts made by the
residue in the native structure. In [36], Kannan et al. use a data set of 36 (α/β) barrel

Data Mining in Computational Biology 38-11

proteins having average pair-wise sequence identity less than 10%. They represent each
protein by a connected graph using contact distance approach to connect vertices/residues
with δ = 6.5Å. The representation chosen causes high connectivity among the vertices of
the graph and hence operating on the Laplacian of the graph is ineffective. Hence they
operate on the adjacency matrix corresponding to the proteins. On eigen decomposition,
they get a set of eigenvalue-eigenvector pairs. They sort this set based on the eigenvalues.
They consider the set of largest eigenvalue-eigenvector pairs. Those residues having a large
vector component magnitude in the direction of any of these eigenvectors are believed to
belong to the cluster corresponding to that eigenvector. Thus, they cluster the residues.
In each cluster, the residue having largest vector component magnitude in the direction of
the corresponding eigenvector is the center of that cluster. Using eigenvalue analysis, they
infer the degree of each vertex. The residues with the largest degree (typically the cluster
centers) correspond to the stabilization centers. They found that most of the residues
grouped in clusters corresponding to the higher eigenvalues, typically occur in the strand
regions forming the β barrel and were found to be topologically conserved in all 36 proteins
studied.

38.4 Mining Microarray Gene Expression Data

High-throughput gene expression has become an important tool to study transcriptional
activity in a variety of biological samples. To interpret experimental data, the extent and
diversity of gene expression for the system under study should be well characterized. A
microarray [59] is a small chip (made of chemically coated glass, nylon membrane or silicon),
containing a (usually rectangular) grid into which tens of thousands of DNA molecules
(probes) are attached. Each cell of the grid relates to a fragment of DNA sequence.

Typically, two mRNA samples (a test sample and a control sample) are reverse-transcribed
into cDNA (targets) and labeled using either fluorescent dyes or radioactive isotopes. They
are then hybridized by base-pairing, with the probes on the surface of the chip. The chip
is then scanned to read the signal intensity that is emitted from the labeled and hybridized
targets. The ratio of the signal intensity emitted from the test target to that emitted from
the control target is a measure of the gene expressivity of the test target with respect to
the control target.

Typically, each row in the microarray grid corresponds to a single gene and each column,
to either an experiment the gene is subjected to, or a patient the gene is taken from. The
corresponding gene expression values can be represented as a matrix of real values where the
entry (i, j) corresponds to the gene expression value for gene i under experiment j or from
patient j. Formally, the dataset is represented as Y = {y(i, j) ∈ �+|1 ≤ i ≤ n, 1 ≤ j ≤ m}
where n,m are the number of rows (genes) and columns(experiments) and �+ is the set of
positive real numbers. We represent the vector of expression values corresponding to gene i
by y(i, ·) and that corresponding to experiment/patient j by y(· , j). A microarray dataset
is typically tens of thousands of rows (genes) long and as many as one hundred columns
(experiments/patients) wide. It is also possible to think of microarray data as the transpose
of Y, i.e., where the rows are experiments and the columns are genes.

The typical objectives of a microarray experiment is to:

1. Identify candidate genes or pathological pathways: We can conduct a microarray
experiment, where the control sample is from a normal tissue while the test
sample is from a disease tissue. The over-expressed or under-expressed genes
identified in such an experiment may be relevant to the disease. Alternatively, a
gene A, whose function is unknown, may be similarly expressed with respect to

38-12 Handbook of Computational Molecular Biology

another gene B, whose function is known. This may indicate A has a function
similar to that of B.

2. Discovery and prediction of disease classes: We can conduct a microarray exper-
iment using genes from patients known to be afflicted with a particular disease
and cluster their corresponding gene expression data to discover previously un-
known classes or stages of the disease. This can aid in disease detection and
treatment.

38.4.1 Challenges of Mining Microarray Data

One of the main challenges of mining microarray data is the high dimensionality of the
dataset. This is due to the inherent sparsity of high-dimensional space. It has been proven
[8], that under certain reasonable assumptions on the data distribution and for a variety of
distance functions, the ratio of the distances of the nearest and farthest points to a given
point in a high-dimensional dataset, is almost 1. The process of finding the nearest point
to a given point is instrumental in the success of algorithms, used to achieve the objectives
mentioned above. For example, in clustering, it is imperative that there is an acceptable
contrast in distances between points within the same cluster and distances between points
in different clusters.

Another difficulty in mining microarray data arises from the fact that there are often
missing or corrupted values in the microarray matrix, due to problems in hybridization or
in reading the expression values. Finally, microarray data is very noisy. A large number of
the genes or experiments may not contribute any interesting information, but their presence
in the dataset makes detection of subtle clusters and patterns harder and increases the
motivation for highly scalable algorithms.

38.4.2 Association Rule Mining

In order to achieve the objective of discovery of candidate genes in pathological pathways,
there has been an attempt to use association rules [2]. Association rules can describe how
the expression of one gene may be associated with the expression of a set of genes. Given
that such an association exists, one might easily infer that the genes involved participate in
some type of gene network.

In order to apply association mining, it is necessary that the data be nominal. In
[16], Creighton et al. first discretize the microarray data, so that each y(a, b) is set to
{high, low, moderate} depending on whether it is up-regulated, down-regulated and nei-
ther considerably up nor down regulated, respectively. Then, the data corresponding to
each experiment, i.e., (y(· , a)) can be thought of as a transaction from the market-basket
viewpoint. They then apply the standard Apriori algorithm to find the association rules
between the different genes and their expression levels. This yields rules of the form
g1(↑) ∧ g3(↓) ⇒ g2(↑), which means that if gene g1 is highly expressed and g3 is under-
expressed, then g2 is over-expressed. Such expression rules can provide useful insight into
the expression networks.

38.4.3 Clustering Algorithms

In order to achieve the objective of discovery of disease classes, there are three types of
clustering algorithms:

1. Gene-based clustering: the dataset is partitioned into groups of genes having

Data Mining in Computational Biology 38-13

similar expression values across all the patients/experiments.
2. Experiment-based clustering: the dataset is partitioned into groups of experi-

ments having similar expression values across all the genes.
3. Subspace clustering: the dataset is partitioned into groups of genes and experi-

ments having similar expression values.

If the algorithm searches for clusters, which have elements which are similar across all
dimensions, it can be called a “full dimensional” one.

Similarity Measures

Before delving into the specific clustering algorithms used, we must discuss the measures
used to express similarity between the expression values. Although, formulae mentioned
in this section describe similarity between rows of the gene expression matrix, they can,
without loss of generality be applied, to describe similarity between the columns of the gene
expression matrix as well.

One of the most used classes of distance metrics is the Lp distance where

||y(a, ·)− y(b, ·)||p∈�+ =

(
m∑

t=1

|y(a, t)− y(b, t)|p
)1/p

In this family, the L1, L2 and L∞ metrics, also called the Manhattan, Euclidean and Cheby-
shev distance metrics, respectively, are the most studied; the Euclidean distance metric is
the most commonly used [21, 47, 12]. However, these measures do not perform too well
in high-dimensional spaces. Note that this class of metrics treats all dimensions equally,
irrespective of their distribution. This is remedied to some extent, by standardizing the
data, i.e. normalizing the data in each row to the range [0,1] having mean 0 and standard
deviation 1 [17, 58]. Note that standardization assumes the underlying data is multivariate
normal. Alternatively, researchers [18, 19, 12, 63] have used Pearson’s correlation coefficient
as a similarity measure, where

r(y(a, ·), y(b, ·)) =
∑m

t=1(y(a, t)− µ(y(a, ·)))(y(b, t) − µ(y(b, ·)))√
(
∑m

t=1(y(a, t)− µ(y(a, ·)))2)(
∑m

t=1(y(b, t)− µ(y(b, ·)))2)

where µ(y(a, ·)) =
∑m

t=1
y(a,t)

N and µ(y(b, ·)) =
∑m

t=1
y(b,t)

N .
Note that r assumes the two vectors are approximately normally distributed and jointly

bivariate normal. In this case there is a strong relationship between r and standardized
Euclidean distance, since if y(a, ·) and y(b, ·) are standardized,

||y(a, ·)− y(b, ·)||2 =
√

2m(1− r(y(a, ·), y(b, ·)))

If µ(y(a, ·)) = µ(y(b, ·)) = 0, i.e. the vectors are translated so their mean is 0, then
r is identical to the cosine similarity between the vectors, which is a similarity measure
known to be highly effective in high-dimensional spaces. Other distance measures tested in
microarray data analysis include Kullback-Leibler distance or mutual information [47].

Gene-based Clustering

A number of traditional clustering algorithms like k-means [58] and hierarchical clustering
[19] have been used to find full-dimensional clusters in microarray data.

38-14 Handbook of Computational Molecular Biology

K-means(Y,sim,k)
1. select k points(genes) from Y randomly as cluster centers
2. repeat until convergence
3. for s=1 to n
4. assign y(s, ·) to the cluster whose center is most similar to it using sim
5. for j=1 to k
6. recalculate center of cluster cj as mean of all rows(genes) assigned to it

The k-means algorithm, shown above, is a partitional, iterative clustering algorithm. It
takes as input the n×m dataset Y, the similarity measure sim, and the number of clusters
to mine k. K-means runs very quickly in O(nmt) time (t is the number of iterations, and
k is a small constant), but suffers from the disadvantage that it requires a parameter k to
be supplied, indicating the number of clusters to be found. This parameter is hard to set.
Also, k-means is highly sensitive to noise and outliers, because it assigns every point in the
dataset to some cluster. K-means converges to a local optima and theoretical guarantees of
its accuracy are yet to be proven. The practical accuracy of k-means is noted to improve
considerably, if the initial assignment of points to clusters is not so arbitrary [10].

A Self-Organizing Map (SOM)[43] is based on a single-layered neural network which maps
vectors(rows/genes) in the microarray data to a two-dimensional grid of output nodes. Each
input node is a row from the microarray dataset and each output node corresponds to a
vector in the high-dimensional space.

SOM(Y,sim, k, g, r)
1. select k vectors(genes) from Y randomly as output nodes
2. repeat until convergence
3. For s=1 to n
4. find output node most similar to y(s, ·) using sim
5. update all nodes in the r-neighborhood of that output node

As shown above, a SOM trains on the input microarray dataset to adjust its output
nodes (line 5), so that they move toward the denser regions of the high-dimensional feature
space. The algorithm uses a number of user-specified parameters like the learning rate (g)
and the neighborhood size(r). Also, SOM converges slower than k-means but is far more
robust than k-means. SOM [56] and related algorithms [26] have been used for gene-based
clustering.

Hierarchical clustering has two flavors: agglomerative (bottom-up) and divisive (top-
bottom). In agglomerative gene-based clustering (shown below), each gene is initially
assigned to its own cluster (line 1). In each iteration the two clusters with the highest
inter-cluster similarity (line 3) are merged to form a single one (line 4), until some con-
vergence criterion is satisfied e.g., the desired number of clusters remain, only one cluster
remains, etc. The inter-cluster similarity may be computed by a number of methods such
as:

• single linkage, where Sim(a,b) = maxi∈a,j∈b sim(i, j).
• complete linkage, where Sim(a,b) = mini∈a,j∈b sim(i, j).

• average linkage, where Sim(a,b) =
∑

i∈a,j∈b
sim(i,j)

|a||b| .

• average group linkage, where Sim(a,b) =
∑

i∈a∪b,j∈a∪b
sim(i,j)

|a∪b|2 .

Data Mining in Computational Biology 38-15

Here Sim is the inter-cluster similarity of clusters a and b, each having |a| and |b| genes
assigned to them respectively and sim is the similarity measure between two genes. This
merging of clusters gives rise to a tree called a dendrogram. This algorithm is greedy and
susceptible to noise. Also, it has time complexity O(n2 logn) [32] implying it converges
slower than K-means.

Agglomerative(Y,Sim)
1. Assign each y(1, ·), i ∈ [1, n] to its own cluster to form set of clusters C
2. repeat until convergence
3. {a∗,b∗} = argmin(a,b)∈C×CSim(a,b)
4. a∗ = a∗ ∪ b∗,C = C\b∗

In divisive clustering, all the genes are initially assigned to the same cluster. Then iterative-
ly, one of the clusters is selected from those existing, and is split into two clusters based on
some splitting criterion. This continues, until some convergence criterion is achieved e.g.,
each gene has its own cluster, desired number of clusters remain, etc.

Experiment-based Clustering

For experiment-based clustering, the dimensionality (i.e. the number of genes) of the space
is extremely high. Solutions proposed to remedy the failure of distance metrics in such
high-dimensional spaces include, designing new distance metrics [1] and dimensionality re-
duction [4, 52]. Dimension reduction techniques, such as the Karhunen-Loeve tranformation
(KLT), and singular value decomposition (SVD) [4, 52] are applied as a preprocessing step
to reduce the number of dimensions prior to the application of a clustering algorithm. In
such dimension reduction techniques, the entire database is projected onto a smaller set of
new dimensions, called the principal components, which account for a large portion of the
variance in the dataset. These new dimensions are mutually uncorrelated and orthogonal.
Each of them is a linear combination of the underlying dimensions. Once the data has been
projected to a lower-dimensional space, any of the clustering algorithms can be applied.

Subspace Clustering

The strategy of dimension reduction using KLT may be inappropriate as the clusters in-
volving the transformed dimensions may be hard to interpret for the user. Also, data is
only clustered in a single subspace. [2] cites an example, in which KLT does not reduce the
dimensionality without trading off considerable information, as the dataset contains subset-
s of points which lie in different and sometimes overlapping lower dimensional subspaces.
Hence, the focus of much recent microarray data analysis focuses on subspace clustering
[6, 14, 21, 45, 57, 60, 63].

Ben-Dor et al. [6], seek to identify large order-preserving submatrices (OPSMs) in Y.
A submatrix is order-preserving if there is a permutation of its columns under which the
sequence of values in every row is strictly increasing. They prove that the problem is NP-
hard. In that paper, they discuss two methods to discover clusters: a complete model and
a partial model. The complete model is simply to enumerate every combination, which is
unacceptable in reality. The partial model is a stochastic model.

Getz et al. [21] alternate between gene-based and experiment-based clustering. They
cluster using super-paramagnetic clustering (SPC), a divisive hierarchical clustering based
on the analogy to the physics of inhomogeneous ferromagnets [9], which is robust against
noise and searches for “natural” stable clusters. They partition the microarray dataset into
gene-based and experiment-based clusters. The gene(experiment)-based clusters specify the

38-16 Handbook of Computational Molecular Biology

group of genes(experiment) which are similar. They then cluster the set of genes reported by
each gene-based clustering over the set of experiments specified by each experiment-based
cluster. This continues until SPC clustering produces no new robust clusters.

Cheng et al. [14] proposed the biclustering algorithm which seeks to group subsets of
microarray data rows and columns having a high similarity score. They use the mean
squared residue score as a similarity measure for a cluster. If O ⊆ [1, n], C ⊆ [1,m], the
mean square residue of (O,C) is defined as :

H(O,C) =
1

|O||C|
∑

i∈O,j∈C

(y(i, j)− µC(y(i, ·))− µO(y(· , j)) + µO,C(y(· , ·)))

where, µC(y(i, ·)) = 1
|C|

∑
j∈C y(i, j), µO(y(· , j) = 1

|O|
∑

i∈O y(i, j), µO,C(y(· , ·)) =
1

|O||C|
∑

i∈O,j∈C y(i, j). If H(O,C) ≤ δ, a user-specified threshold, the cluster (O,C) is
retained. This definition imposes a constraint on the variation of gene expression values in
the genes in O across the experiments in C. Their algorithm aims to greedily find multiple
δ-biclusters, one in each iteration. After discovering a cluster, the values in that cluster are
replaced by random data, so that partially overlapping biclusters may be found. However,
if clusters naturally overlap, such random data may obstruct the detection of the overlap
[60].

The p-clustering algorithm [60] is designed to solve this problem. Unlike biclustering, it is
a deterministic algorithm. It defines a pScore of a 2×2 matrix X =

(
a b
c d

)
as: pScore(X) =

|(a− b)− (c− d)|. A sub-matrix (O,C) is a δ-pCluster iff ∀X2×2 ∈ (O,C) pScore(X) ≤ δ, a
predefined threshold. The intuition is that δ constrains the variation in the gene expression
values ((a − b), (c − d)), across the conditions (columns in X) over which the genes (rows
in X) cluster. They use the implicit recursivity in the definition of a δ-pCluster to design
a depth-first algorithm that searches for maximal δ-pClusters. The pCluster algorithm can
discover every δ-pCluster in a data set, no matter whether the clusters are overlapping or
not. It has time complexity O(nm2log(n) +mn2log(m)).

38.5 Determining Normal Variation in Gene Expression Data

Having looked at the application of data mining to the problems of motif discovery and
microarray gene expression analysis, we now highlight some issues in data pre-processing.
We illustrate this with the problem of finding normal variation in gene expression data.

A ubiquitous and under-appreciated problem in microarray analysis is the incidence of
microarrays reporting non-equivalent levels of an mRNA or the expression of a gene for a
system under replicate experimental conditions. In ideal conditions, the gene expression
values for each gene should be the same across all array experiments. But due to the
technical limitations the data contains lot of inherent noise, which could also be due to
normal variation in expression of the genes across the genetically identical male mice. Our
goal is to extract those genes which are contributing to the noise due to their biological
variance. This kind of analysis should be done prior to mining, since otherwise, we might
come to a wrong conclusion about co-expressed genes or genes that correlate well with a
pathological condition.

We try to capture the genes which show variance among the identical mice by trying to
eliminate the variations which come in due to experimental errors and fluctuations. We use
a very robust method to exclude genes, which would eliminate any considerable variance in
the replicates. Our approach is based on the following steps: 1) Calculation of fold-change
ratio and discretization of expression levels for each gene, 2) Elimination of experimental

Data Mining in Computational Biology 38-17

noise, 3) Constructing an expression profile for each gene, and 4) Calculating and raking
by gene variability via entropy calculation. We describe the steps in more detail below.

38.5.1 Fold-Change Ratio

We assume that we have n genes, in m mice, with r replicates for each mouse, for a given
tissue. We denote gene i as gi. Let Si

t denote the expression level for gene gi in the test
sample and Si

r the expression of gi in the reference microarray samples. We define fold-
change ratio as the log-odds ratio of the expression intensities of the test sample over the
reference sample, given as log2(

Si
t

Si
r
). To analyze the variability, we discretize the fold-change

into k bins ranging from very low expression levels to very high expression levels. The data
is normalized in such a way that the median of the deviation from the median was set to
the same value for the distribution of all the log-ratios on each array [51]. Similar analysis
was done for the Affymetrix data. The raw data containing the intensities was median
centered and scaled by the standard deviation. This normalization technique was chosen
after experimenting with other methods like linear regression and mean centering. Though
none of these methods yielded a normal distribution for the histogram plot of the gene
expression values of all clones in a sample, the median centered normalization technique
performed the best and also provided a uniform distribution for our binning method.

If the number of bins for expression level discretization is too small or too high, then it
leads to problems in analysis. In coarse binning, the information about the values is ignored,
and in a very fine binning, the patterns are lost. We tried several values of k and found that
k = 5 works well. The bin intervals are determined using the uniform frequency binning
method. Other popular methods like discriminant discretization, boolean reasoning based
and entropy based discretization can be considered [48]. In frequency binning method we
discretized the relative expression (fold-change) into 5 levels depending on their expression
value. The values of −1.5, −0.5, 0, 0.5, and 1.5 for the fold change ratio were taken as
thresholds for very low (VL), low (L), normal (N), high (H), and very high (VH) expression,
respectively. That is, V L ∈ (−∞,−1.5], V ∈ (−1.5,−0.5], N ∈ (−0.5, 0.5), H ∈ [0.5, 1.5),
and V H ∈ [1.5,+∞). We use the notation gi

e to denote the expression level for gene gi

in a given replicate, where e ∈ {V L,L,N,H, V H}. Table 38.2 shows an example of the
expression of 4 genes in six mice with 4 array replicates for each mouse.

38.5.2 Elimination of Experimental Noise

In order to eliminate the noise due to experimental fluctuations, we process the data taking
one mouse at a time. For each mouse the genetic expression signature is obtained and com-
pared across all r replicates. Only those genes which show consistent expression signature in

Rep1 Rep2 Rep3 Rep4

Mouse1 {g1
V H , g2

V L, g3
V H , g4

L} {g1
V H , g2

V L, g3
V H , g4

N} {g1
V H , g2

V L, g3
V H , g4

N} {g1
V H , g2

V L, g3
V H , g4

N}
Mouse2 {g1

V H , g2
V L, g3

L, g4
N} {g1

V H , g2
V L, g3

L, g4
N} {g1

V H , g2
V L, g3

L, g4
N} {g1

V H , g2
V L, g3

H , g4
N}

Mouse3 {g1
V H , g2

N , g3
V H , g4

N} {g1
V H , g2

N , g3
V H , g4

N} {g1
V H , g2

N , g3
V H , g4

N} {g1
V H , g2

N , g3
V H , g4

L}
Mouse4 {g1

V H , g2
N , g3

V L, g4
L} {g1

V H , g2
N , g3

V L, g4
N} {g1

V H , g2
N , g3

V L, g4
N} {g1

V H , g2
N , g3

V L, g4
N}

Mouse5 {g1
V H , g2

H , g3
L, g4

L} {g1
V H , g2

H , g3
L, g4

L} {g1
V H , g2

H , g3
L, g4

L} {g1
V H , g2

H , g3
L, g4

L}
Mouse6 {g1

V H , g2
H , g3

V H , g4
L} {g1

V H , g2
H , g3

V H , g4
L} {g1

V H , g2
H , g3

V H , g4
N} {g1

V H , g2
H , g3

V H , g4
N}

TABLE 38.2 The gene expression states of 4 genes in 24 (6 mice, 4 replicates) assays, with five
possible levels: Very High (VH), High (H), Very Low (VL), Low (L) or Normal (N).

38-18 Handbook of Computational Molecular Biology

all r replicates are chosen and the ones which show even a slight deviation in any of the repli-
cates are eliminated. This methodology takes a very stringent approach toward eliminating
even the slightest errors due to technical noise. One shortcoming of this approach is that it
would not eliminate any genes which show high fluctuations in the range (−0.5, 0.5). In our
study of normal variance to identify genes which have been falsely reported as differentially
expressed, the genes which we might fail to eliminate do not contribute to the databank
anyway, because they lie in the normal expression range. So, our approach would eliminate
most of the noise which comes due to technical/experimental issues. This operation is done
on all m mice, as a result of which we have gene expression signatures in all the mice with
minimal experimental noise.

Gene Expression

Mouse 1 (F1) {g1
V H , g2

V L, g3
V H}

Mouse 2 (F2) {g1
V H , g2

V L, g4
N}

Mouse 3 (F3) {g1
V H , g2

N , g3
V H}

Mouse 4 (F4) {g1
V H , g2

N , g3
V L}

Mouse 5 (F5) {g1
V H , g2

H , g3
L, g4

L}
Mouse 6 (F6) {g1

V H , g2
H , g3

V H}

TABLE 38.3 Gene expressions after elimination of experimental noise.

Table 38.3 illustrates this process on our example data. For example consider Mouse 1.
Since gene g4 is differentially expressed as L in replicate 1, but as N in the other three
replicates, we eliminate g4 from further consideration. The resulting expression signatures
for Mouse1 and other mice from our example are shown in Table 38.3.

38.5.3 Gene Expression Profile

Let Fj represent the gene expressions of the j-th mice after the elimination of experimental
noise. The Fj ’s contain the expression level (very high, high, normal, low, very low) infor-
mation of each gene in each of the m mice in our example. Some values could be missing
due to elimination in the first stage. The Fj values, for our example of six mice, are shown
in Table 38.3.

From the Fj values we construct a frequency table, which contains the number of occur-
rences of each gene for each discretized expression level (VH, H, N, L, VL). The frequency
of every distinct (gene gi, expression level e) pair across all Fj , is used to populate the fre-
quency table. The frequency for gene gi and expression level e is given as f i

e =
∑m

j=1 δ
i
e(j),

where m is the number of mice, and δi
e(j) is a characteristic function that notes the pres-

ence/absence of gene gi at level e in mouse j, defined as: δi
e(j) = 1, if gi

e ∈ Fj , and δi
e(j) = 0,

if gi
e �∈ Fj . The frequency table obtained for our example is shown in Table 38.4. As an

example, g2, has expression level V L in mice 1 and 2, level N in mice 3 and 4, and level H
in mice 5 and 6. Thus the expression profile for g2 is given by the vector (0, 2, 2, 0, 2), as
shown in the table below.

38.5.4 Entropy-based Variability Ranking

The genes that show presence in more than one discrete level are of interest to us. The
frequency table is analyzed further to identify those genes which show considerable variance

Data Mining in Computational Biology 38-19

fi
V H fi

H fi
N fi

L f i
V L

Gene g1 6 0 0 0 0
Gene g2 0 2 2 0 2
Gene g3 3 0 0 1 1
Gene g4 0 0 1 1 0

TABLE 38.4 Expression Profile: Frequency table for the four genes.

by their presence in more than one state. To capture the variance in a gene’s expression
level, the entropy measure was used. Entropy gives us the amount of disorder in the
expression values of a gene, and thus is a measure of the normal variance, since the noise
due to experimental variation is eliminated prior to this step. The entropy measure for a
gene gi is given as follows, E(gi) = −

∑k
e=1 p

i
e log2(p

i
e), where k is the number of discrete

expression levels, and pi
e is the probability of gene gi having expression level e, which is

given as pi
e = fi

e∑
k

j=1
fi

j

.

By definition of entropy, if a gene has only one expression level (say j), then pi
j = 1

and E(gi) = 0. On the other hand, if a gene has the most variance (i.e., equal occur-
rence at each expression level), then P i

j = 1/k for all expression levels j, and E(gi) =
−
∑k

j=1 1/k log2(1/k) = − log2(1/k) = log2(k). In our approach genes with entropy 0, i.e.,
those having no variance in expression across the mice, are discarded, and the remaining
genes are ranked in descending order of their entropy (and thus variance). The entropy
ranking for the four genes (along with the probability of each expression level) in our exam-
ple are shown in Table 38.5. Gene g2 and g3 are of most interest to us because they show
variation in expression states across the six mice. On the other hand gene g1 is always high
in all six mice, showing no variance.

pi
V H pi

H pi
N pi

L pi
V L Entropy

Gene g2 0 0.33 0.33 0 0.33 1.59
Gene g3 0.6 0 0 0.2 0.2 1.37
Gene g4 0 0 0.5 0.5 0 1
Gene g1 1.0 0 0 0 0 0

TABLE 38.5 Entropy-based gene variability ranking.

38.5.5 Weighted Expression Profiles

In our approach to experimental noise elimination, any gene with varying expression level
among the replicates is considered experimental noise, and eliminated. Instead of such a
stringent approach, we can choose to retain a gene provided it has the same expression level
in a given fraction of the replicates. For instance, gene g4 has expression level N in three
out of the four replicates for Mouse 1. If we set our threshold to 75%, then we would retain
g4

N in the gene expression for Mouse 1 in Table 38.3.
Another approach is to construct a weighted expression signature, as follows: For every

gene we record the fraction of the replicates in which it takes a particular value. For
instance, for Mouse 1, gene g1 always takes the value V H , so its weighted expression is

38-20 Handbook of Computational Molecular Biology

g1
V H(1.0). On the other hand, gene g4 is N in three and L in one out of the four replicates;

we record its weighted expression as g4
N(0.75),L(0.25). We denote by wi

e(j) the weight of gene
gi at expression level e in Mouse j. Table 38.6 shows the weighted expression signatures
for all the six mice (note: if the weight is 1.0 we omit the weight; we write g1

V H instead of
g1

V H(1.0)).

Gene Expression

Mouse 1 (F1) {g1
V H , g2

V L, g3
V H , g4

N(0.75),L(0.25)}
Mouse 2 (F2) {g1

V H , g2
V L, g3

H(0.25),L(0.75) , g4
N}

Mouse 3 (F3) {g1
V H , g2

N , g3
V H , g4

N(0.25),L(0.75)}
Mouse 4 (F4) {g1

V H , g2
N , g3

V L, g4
N(0.75),L(0.25)}

Mouse 5 (F5) {g1
V H , g2

H , g3
L, g4

L}
Mouse 6 (F6) {g1

V H , g2
H , g3

V H , g4
N(0.5),L(0.5)}

TABLE 38.6 Weighted gene expressions.

From the weighted gene expressions, we can construct a weighted profile using the ap-
proach in Section 38.5.3. The weighted frequency for gene gi and expression level e is given
as f i

e =
∑m

j=1 w
i
e(j), where m is the number of mice. The weighted frequency table obtained

for our example is shown in Table 38.7. As an example, g4, has expression levels N(0.75)
in Mouse 1, N(1.0) in Mouse 2, N(0.75) in Mouse 3 and Mouse 4, and N(0.5) in Mouse 6.
Thus f4

N = 0.75 + 1.0 + 2 × 0.75 + 0.5 = 3.75, and similarly f4
L = 2.25. Thus the weighted

expression profile for g4 is given by the vector (0, 0, 3.75, 2.25, 0), as shown in the table.

f i
V H fi

H fi
N fi

L fi
V L

Gene g1 6 0 0 0 0
Gene g2 0 2 2 0 2
Gene g3 3 0.25 0 1.75 1
Gene g4 0 0 3.75 2.25 0

TABLE 38.7 Weighted Expression Profile.

From the weighted expression profile, we can derive the entropy-based variability ranking
for each gene as shown in Table 38.8. Comparing with Table 38.5, we find that g3 is ranked
higher in terms of variability than g2, but the overall trend is similar.

pi
V H pi

H pi
N pi

L pi
V L Entropy

Gene g3 0.5 0.04 0 0.29 0.17 1.64
Gene g2 0 0.33 0.33 0 0.33 1.59
Gene g4 0 0 0.62 0.38 0 0.95
Gene g1 1.0 0 0 0 0 0

TABLE 38.8 Entropy-based gene variability ranking.

Data Mining in Computational Biology 38-21

38.5.6 Application Study

We applied our entropy-based method to detect normal variance in gene expression for
the two datasets taken from [51] and [46]. We used three datasets of kidney, liver and
testis provided by [51]. Six genetically identical male C57BL6 mice were used to compare
the expression values of 5,406 unique mouse genes. Four separate microarray assays were
conducted for each organ from each animal, for a total of 24 arrays per organ. Also the
dataset of [46] was used which contained the expression values for three mice across the
four organs of liver, heart, lung and brain. Each experiment was replicated three times.
Affymetrix oligo-chips were used in these experiments.

Using our entropy-based approach, in kidney tissue around 3.5% of the 3088 genes showed
considerable variance across the six mice. As reported by [51] we found several immune
modulated and stress responsive genes. In liver tissue, 23 out of 2513 genes show significant
variation in their expression levels among the six mice. Out of the 3252 genes analyzed in
the testis tissue, 63 showed differential expression levels across the six mice. Importantly,
many of the genes that we found to vary normally have been reported previously to be
differentially expressed because of a pathological process or experimental intervention. One
recent study used microarrays to investigate the differential gene expression patterns during
pre-implantation mouse development [41]. Rpl12 was reported to be differentially expressed
while we found it to be normally varying in the testis tissue. PUFA (polyunsaturated fatty
acids) feeding can influence Protein Kinase C (PKC) activity [7]. Itrp1 is another gene which
has been reported as differentially expressed [30] in papillary thyroid carcinoma, while we
found this gene to be normally varying in kidney tissues. Another study investigated the
effects of acetaminophen on gene expression in the mouse liver [53]. Eight of the genes
reported to differ in response to acetaminophen, including CisH2, and Hsp40, were genes
we found to vary normally.

Principal Component Analysis (PCA) [34] is a classical technique to reduce the dimen-
sionality of the data set by transforming to a new set of variables (the principal components).
It has been used in the analysis of gene expression studies. Principal components (PC’s)
are uncorrelated and ordered such that the k-th PC has the k-th largest variance among
all PC’s. The k-th PC can be interpreted as the direction that maximizes the variation of
the projections of the data points such that it is orthogonal to the first k − 1 PC’s. PCA
is sometimes applied to reduce the dimensionality of the data set prior to clustering. Using
PCA prior to cluster analysis may aid better extraction of the cluster structure in the data
set. Since PC’s are uncorrelated and ordered, the first few PC’s, which contain most of
the variations in the data, are usually used in cluster analysis. Unless external information
is available, [64] recommend cautious interpretation of any cluster structure observed in
the reduced dimensional subspace of the PC’s. They observe no clear trend between the
number of principal components chosen and the cluster quality. [33] use PCA analysis for
extracting tissue specific signatures.

We used PCA to analyze how well the genes we have extracted capture the normal vari-
ance between the mice, eliminating the variance due to any other sources to the maximum
possible extent. Projection on to a 3-dimension space (the top three PCs) allows for better
visualization of the entire data set. Figure 38.6 shows the arrangement of the samples by
plotting them on the principal components derived from: 1) PCA analysis of all the genes
in the dataset, and 2) PCA analysis of only those genes which were found to have normal
variance across mice. These plots are shown for all the three tissues under study. Kidney
and testis show non-random arrangement of the assay points while liver has less discernible
patterns. In the case of the kidney tissue for genes with normal variance, the assays arrange
into two clusters. One of the clusters has assays which include the replicates from four mice

38-22 Handbook of Computational Molecular Biology

Kidney (All Genes)

M1
M2
M3
M4
M5
M6

-15-10-5
0510

PC2 -10
-5

0
5

10
15

20
25

PC1

-8
-6
-4
-2
0
2
4
6
8

10
12

PC3

Kidney (Varying Genes)

M1
M2
M3
M4
M5
M6

-4-3-2-10123

PC2 -4-3-2-10 1 2 3 4 5 6

PC1

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

PC3

Testis (All Genes)

M1
M2
M3
M4
M5
M6

-30-25-20-15-10-50510

PC2 -15
-10

-5
0

5
10

15

PC1

-20

-15

-10

-5

0

5

10

PC3
Testis (Varying Genes)

M1
M2
M3
M4
M5
M6

-2-1.5-1-0.500.511.522.53

PC2 -5
-4

-3
-2

-1
0

1
2

3

PC1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

PC3

Liver (All Genes)

M1
M2
M3
M4
M5
M6

-20-15-10-5051015

PC2 -10
-5

0
5

10
15

20
25

PC1

-10
-8
-6
-4
-2
0
2
4
6
8

10
12

PC3
Liver (Varying Genes)

M1
M2
M3
M4
M5
M6

-2.5-2-1.5-1-0.500.511.52

PC2 -4
-3

-2
-1

0
1

2
3

PC1

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2
2.5

PC3

FIGURE 38.6: Principal component analysis of all genes (left column) and genes with normal
variance (right column). Three tissues were studied: Kidney (top row), Testis
(middle row), and Liver (bottom row). Results for all 6 mice and 4 replicates are
shown.

(M1, M2, M5, M6), while the other cluster has mice M3 and M4. This indicates that there
is a high similarity among these mice in kidney tissue. In the testis, the first two mice are
systematically different from the last four mice. No pattern was observed in liver. PCA can
be additionally used as a platform to compare the performance of different methodologies
to determine normal variance. The performance can be judged visually on the basis how
well the replicates cluster together or measure the goodness of the clusters. We observe
that 1) the experimental replicates belonging to any single mice cluster close to each other,
and 2) the mice (biological replicates) are also grouped into visible clusters. Pathologically
similar mice are clustered together.

References 38-23

38.6 Summary

The goal of this chapter was to provide a brief introduction to some data mining tech-
niques, and to look at how data mining has been used in some representative applications
in bioinformatics, namely three-dimensional (3D) or structural motif mining in proteins
and the analysis of microarray gene expression data. We also looked at some issues in data
preparation, namely data cleaning and feature selection via the study of how to find normal
variation in gene expression datasets.

It is clear that data mining is playing a fundamental role in understanding the rapidly
expanding sources of biological data. It is equally clear that new data mining techniques are
needed to analyze, manage and discover sequence, structure and functional patterns/models
from large sequence and structural databases, as well as for structure prediction, gene
finding, gene expression analysis, biochemical pathway mining, biomedical literature mining,
drug design and other emerging problems in genomics and proteomics.

Acknowledgment

This work was supported in part by NSF CAREER Award IIS-0092978, DOE Career Award
DE-FG02-02ER25538, and NSF grant EIA-0103708. We thank Jingjing Hu and Vinay
Nadimpally for work on contact map mining and determining normal variations in gene
expression data, respectively.

References

[1] C. Aggarwal. Towards systematic design of distance functions for data mining appli-
cations. In 9th ACM SIGKDD Conference, 2003.

[2] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering
of high dimensional data for data mining applications. In ACM SIGMOD Conference,
pages 94–105, 1998.

[3] N. Alexandrov and N. Go. Biological meaning, statistical significance and classification
of local spatial similarities in non-homologous proteins. Protein Sci., 3:866–875, 1994.

[4] O. Alter, P. Brown, and D. Botstein. Singular value decomposition for genome-wide
expression data processing and modeling. Proceedings of the National Academy of
Sciences, 97:10101–10106, 2000.

[5] I. Bahar, A. Atilgan, and B. Erman. Direct evaluation of thermal fluctuations in
proteins using a single parameter harmonic potential. Folding and Design, 2:173–181,
1997.

[6] A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini. Discovering local structure in gene ex-
pression data: The order-preserving submatrix problem. In 6th Annual International
Conference on RECOMB, pages 49–57, 2002.

[7] A. Berger, D.M. Mutch, J. Bruce, and G. Matthew et al. Dietary effects of
arachidonate-rich fungal oil and fish oil on murine hepatic and hippocampal gene
expression. Lipids in Health and Disease, 1:2–10, 2002.

[8] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is nearest neighbors
meaningful? In ICDT Conference, 1999.

[9] M. Blatt, S. Wiseman, and E. Domany. Data clustering using a model granular magnet.
Neural Computation, 9:1805–1842, 1997.

38-24 References

[10] P. Bradley and U. Fayyad. Refining initial points for kmeans clustering. In 15th
International Conference on Machine Learning, pages 91–99. Morgan Kaufmann,
1998.

[11] K. Brinda, N. Kannan, and S. Vishveshwara. Analysis of homodimeric protein inter-
faces by graph-spectral methods. Protein Engineering, 15:265–77, April 2002.

[12] Tang C., Zhang L., Zhang A., and Ramanathan M. Interrelated two-way clustering: An
unsupervised approach for gene expression data analysis. In 2nd IEEE International
Symposium on Bioinformatics and Bioengineering, pages 41–48, November 2001.

[13] S. Chakraborty and S. Biswas. Approximation algorithms for 3-d common substructure
identification in drug and protein molecules. In Workshop on Algorithms and Data
Structures, pages 253–264, 1999.

[14] Y. Cheng and G. Church. Biclustering of expression data. In 8th International
Conference on Intelligent Systems for Molecular Biology, volume 8, pages 93–103,
2000.

[15] D.J. Cook, L.B. Holder, R. Maglothin S. Su, and I. Jonyer. Structural mining of
molecular biology data. IEEE Engineering in Medicine and Biology, 20(4):67–74,
2001.

[16] C. Creighton and S. Hanash. Mining gene expression databases for association rules.
Bioinformatics, 19:79–86, 2003.

[17] F. DeSmet, J. Mathys, K. Marchal, and G. Thijs et al. Adaptive quality-based clus-
tering of gene expression profiles. Bioinformatics, 18:735–746, 2002.

[18] P. D’haesleer, X. Wen, S. Fuhrman, and R. Somogyi. Information Processing in Cells
and Tissues. Plenum Press, New York, 1998.

[19] M. Eisen, P. Spellman, P. Brown, and D. Botstein. Cluster analysis and display of
genome-wide expression patterns. Proceedings of the National Academy of Sciences,
95:14863–8, 1998.

[20] D. Fischer, H. Wolfson, S. Lin, and R. Nussinov. Three-dimensional, sequence order-
independent structural comparison of a serine protease against the crystallographic
database reveals active site similarities: potential implication to evolution and to pro-
tein folding. Protein Science, 3:769–778, 1994.

[21] G. Getz, E. Levine, and E. Domany. Coupled two-way clustering analysis of gene
microarray data. Proceedings of the National Academy of Sciences, 97:12079–12084,
October 2000.

[22] H. Grindley, P. Artymiuk, D. Rice, and P. Willet. Identification of tertiary structure
resemblance in proteins using a maximal common subgraph isomorphism algorithm.
Journal of Molecular Biology, 229:707–721, 1993.

[23] H.M. Grindley, P.J. Artymiuk, D.W. Rice, and P. Willett. Identification of tertiary
resemblence in proteins using a maximal common subgraph isomorphism algorithm.
J. of Mol. Biol., 229(3):707–721, 1993.

[24] K. Hall. An r-dimensional quadratic placement algorithm. Management Sciences,
17:219–229, November 1970.

[25] J. Heringa and P. Argos. Side-chain clusters in protein structures and their role in
protein folding. Journal of Molecular Biology, 220:151–171, 1991.

[26] J. Herrero, A. Valencia, and J. Dopazo. A hierarchical unsupervised growing neural
network for clustering gene expression patterns. Bioinformatics, 17:126–136, 2001.

[27] U. Hobohm and C. Sander. Enlarged representative set of protein structures. Protein
Science, 3(3):522–524, 1994.

[28] J. Hu, X. Shen, Y. Shao, and C. Bystroff et al. Mining protein contact maps. 2nd
BIOKDD Workshop on Data Mining in Bioinformatics, July 2002.

[29] J. Huan, W. Wang, D. Bandyopadhyay, and J. Snoeyink et al. Mining spatial motifs

References 38-25

from protein structure graphs. In 8th Annual International Conference on RECOM-
B, 2004.

[30] Y. Huang, M. Prasad, W.J. Lemon, and H. Hampel et al. Gene expression in papillary
thyroid carcinoma reveals highly consistent profiles. PNAS, 98:15044–15049, October
2001.

[31] D. Jacobs, A. Rader, L. Kuhn, and M. Thorpe. Graph theory predictions of protein
flexibility. Proteins: Struct. Funct. Genet., 44:150–155, 2001.

[32] A. Jain, M. Murty, and P. Flynn. Data clustering: a review. ACM Computing
Surveys, 31:254–323, September 1999.

[33] M. Jatin, W. Schmitt, D. Hwang, and L.-L. Hsiao et al. Interactive exploration of
microarray gene expression patterns in a reduced dimensional space. Genome Res,
12:1112–1120, 2002.

[34] I.T. Jolliffe. Principal Component Analysis, Springer Series in Statistics. Springer
Verlag, New York, 1986.

[35] I. Jonassen, I. Eidhammer, D. Conklin, and W. Taylor. Structure motif discovery and
mining the pdb. Bioinformatics, 18:362–367, 2002.

[36] N. Kannan, S. Selvaraj, M. Michael Gromiha, and S. Vishveshwara. Clusters in α/β
barrel proteins: Implications for protein structure, function and folding: A graph
theoretical approach. Proteins: Struct., Funct., Genet., 43:103–112, May 2001.

[37] N. Kannan and S. Vishveshwara. Identification of side-chain clusters in protein struc-
tures by graph spectral method. Journal of Molecular Biology, 292:441–464, Septem-
ber 1999.

[38] N. Kannan and S. Vishveshwara. Aromatic clusters: a determinant of thermal stability
of thermophilic proteins. Protein Engineering, 13:753–761, November 2000.

[39] G.J. Kleywegt. Recognition of spatial motifs in protein structures. J. Mol. Biol,
285:1887–1897, 1998.

[40] G.J. Kleywegt. Recognition of spatial motifs in protein structures. Journal of Molec-
ular Biology, 285:1887–1897, 1999.

[41] M.S.H Ko, J.R. Kitchen, X. Wang, and T.A. Threat et al. Large-scale cDNA analysis
reveals phased gene expression patterns during preimplantation mouse development.
Development, 127:1737–1749, 2000.

[42] I. Koch, T. Lengauer, and E. Wanke. An algorithm for finding maximal common
subtopologies in a set of protein structures. J. of Comp. Biol., 3(2):289–306, 1996.

[43] T. Kohonen. Self-Organization and Associative Memory. Spring-Verlag, Berlin,
1988.

[44] M. Kuramochi and G. Karypis. Frequent subgraph discovery. 1st IEEE Int’l Conf.
on Data Mining, November 2001.

[45] L. Lazzeroni and A. Owen. Plaid models for gene expression data. Statistica Sinica,
12:61–86, 2002.

[46] P.D. Lee, R. Sladek, C. Greenwood, and T. Hudson. Control genes and variability:
Absence of ubiquitous reference transcripts in diverse mammalian expression studies.
Genome Research, 12(2):292–297, February 2002.

[47] G. Michaels, D. Carr, M. Askenazi, and S. Fuhrman et al. Cluster analysis and data
visualization of large-scale gene expression data. In Pacific Symposium on Biocom-
puting, volume 3, pages 42–53, 1998.

[48] H. Midelfart, J. Komorowski, K. Norsett, and F. Yadetie et al. Learning rough set
classifiers from gene expression and clinical data. Fundamenta Informaticae, 53:155–
183, November 2002.

[49] E.M. Mitchell, P.J. Artymiuk, D.W. Rice, and P. Willett. Use of techniques derived
from graph theory to compare secondary structure motifs in proteins. J. Mol. Biol.,

38-26 References

212:151–166, 1990.
[50] A.G. Murzin, S.E. Brenner, T. Hubbard, and C. Chothia. SCOP: a structural classi-

fication of proteins database for the investigation of sequences and structures. J. of
Mol. Biol., 247:536–540, 1995.

[51] C.C. Pritchard, L. Hsu, J. Delrow, and P.S. Nelson. Project normal: Defining normal
variance in mouse gene expression. PNAS, 98:13266–13271, 2001.

[52] S. Raychaudhuri, J. Stuart, and R. Altman. Principal components analysis to sum-
marize microarray experiments: Application to sporulation time series. In Pacific
Symposium on Biocomputiing, pages 455–66, 2000.

[53] T.P. Reilly, M. Bourdi, J.N. Brady, and C.A. Pise-Masison et al. Expression profiling of
acetaminophen liver toxicity in mice using microarray technology. Biochem. Biophys.
Res. Commun, 282:321–328, 2001.

[54] R. Singh, A. Tropsha, and I. Vaisman. Delaunay tessellation of proteins. J. Comput.
Biol., 3:213–222, 1996.

[55] M. Sternberg, H. Gabb, and R. Jackson. Predictive docking of protein-protein and
protein-DNA complexes. Current Opinion in Structural Biology, 8:250–256, 1998.

[56] P. Tamayo, D. Solni, J. Mesirov, and Q. Zhu et al. Interpreting patterns of gene
expression with self-organizing maps: Methods and application to hematopoietic dif-
ferentiation. Proceedings of the National Academy of Sciences, 96:2907–2912, March
1999.

[57] A. Tanay, R. Sharan, and R. Shamir. Discovering statistically significant biclusters in
gene expression data. Bioinformatics, 18(suppl.1):S136–S144, 2002.

[58] S. Tavazoie, D. Hughes, M. Campbell, and R. Cho et al. Systematic determination of
genetic network architecture. Nature Genet, pages 281–285, 1999.

[59] A. Tefferi, M. Bolander, S. Ansell, and E. Wieben et al. Primer on medical genomics.
part iii: Microarray experiments and data analysis. Mayo Clin Proc., 77:927–40,
September 2002.

[60] H. Wang, W. Wang, J. Yang, and P. S. Yu. Clustering by pattern similarity in large
data sets. In ACM SIGMOD Conference, 2002.

[61] X. Wang, J.T.L. Wang, D. Shasha, and B.A. Shapiro et al. Finding patterns in three-
dimensional graphs: Algorithms and applications to scientific data mining. IEEE
Transactions on Knowledge and Data Engineering, 14(4):731–749, July/August
2002.

[62] L. Wernisch, M. Hunting, and S. Wodak. Identification of structural domains in pro-
teins by a graph heuristic. Proteins, 35:338–352, 1999.

[63] J. Yang, W. Wang, H. Wang, and P. Yu. δ-cluster: Capturing subspace correlation
in a large data set. In 18th International Conference on Data Engineering, pages
517–528, 2002.

[64] K.Y. Yeung and W.L. Ruzzo. Principal component analysis for clustering gene expres-
sion data. Bioinformatics, 17:763–774, 2002.

[65] M. J. Zaki, S. Jin, and C. Bystroff. Mining residue contacts in proteins using local
structure predictions. IEEE Transactions on Systems, Man and Cybernetics – B,
33(5), October 2003.

[66] M.J. Zaki, V. Nadimpally, D. Bardhan, and C. Bystroff. Predicting protein folding
pathways. 12th Int’l Conference on Intelligent Systems for Molecular Biology, July
2004.

Index

α-helix, 29-3
β hairpin prediction, 29-14
β-sheet, 29-3, 32-10
β-strand, 29-3
β-turn prediction, 29-13–29-14
β hairpin prediction, 29-15
1-CSR problem

approximation algorithm, 10-12–10-
13

definition, 10-10
exact algorithm, 10-14–10-15
heuristic, 10-15–10-19

2-opt heuristic, 11-10
3-state accuracy, 29-5

A∗ algorithm, 3-10
absolute fast converging phylogenetic re-

construction methods, 21-6–21-
7, 21-20

aCGH, 23-3
acid-base chemistry, 34-18
Adams consensus, 20-5, 20-6
adiabatic principle, 34-20
affected relative methods, 17-21
affected sibling pairs, 17-21
affine gap penalty, 1-13

local, 1-15
semiglobal, 1-14

Affymetrix, 23-2
Agilent, 23-2
AIMD, 34-18
alignment, 7-7, 7-13, 13-5, 13-11

k-band, 1-11
affine gap penalty, 1-13

local, 1-15
semiglobal, 1-14

anchor-based, 15-2
anchored, 7-7, 7-11, 7-13
anchoring on maximal match, 13-12,

13-13
anchors, 14-5–14-6, 14-9
distance, 1-19
DNA-protein, 13-26
dynamic programming, 1-4, 13-5, 13-

13
general gap penalty, 1-13

global, 1-3, 3-1, 15-1
Hirschberg technique, 1-8
invariant, 1-19
linear space

global, 1-8
local, 1-10

local, 1-7, 3-17, 13-5, 14-2, 15-3
multiple, 3-1, 14-7
normalized local alignment, 1-20
pairwise, 3-1
path construction, 1-5
progressive, 14-8
scoring, 14-8
scoring function, 1-3
seeds, 14-2–14-4
semiglobal, 1-6
space requirements, 1-8
spliced, 13-26
subquadratic, 1-22
suffix-prefix, 13-5, 13-13
visualization, 14-13–14-17
whole genome, 14-11–14-12

alignment invariant, 1-19, 1-20
allele, 17-2, 17-8, 19-8
AllTree, 20-7
alpha helix, 32-10
alphabet, 7-3

arbitrary, 5-8
fixed, 5-8
integer, 5-8, 5-15

alternative polyadenylation, 12-6, 12-11
alternative splicing, 2-6, 2-7, 2-13–2-16,

12-5, 13-21, 13-25, 16-1–16-22
conservation, 16-13–16-14
elementary alternatives, 16-2, 16-5,

16-12, 16-14
alternative acceptor site, 16-2, 16-

17
alternative donor site, 16-2
alternative mutually exclusive ex-

ons, 16-3, 16-17–16-18
cassette exon, 16-2, 16-14, 16-17–

16-18
retained intron, 16-2, 16-14

elementaryalternatives
alternative donor site, 16-17

A-1

A-2 INDEX

cassette exon, 16-17, 16-18
regulation, 16-6, 16-18–16-21

Alu-repeat, 16-18
AMBER, 34-12
ambiguous site, 18-3
analogs, 33-2
ancestor, 20-3

proper, 20-3
ancestral divergence, 20-7
anchor points, 3-14
angle

dihedral, 34-5
improper dihedral, 34-5

anisotropic filtering, 32-4
anisotropic vector diffusion, 32-5
APOE, 18-6
apparent multifurcation, 20-9
approximation algorithms, 37-2
array-CGH, 23-3
ArrayExpress, 23-10, 23-11
assembly, 13-2

clone pair information, 13-17
cluster-then-assemble, 13-4, 13-19
Lander-Waterman, 13-4
overlap-layout-consensus, 13-3
parallel, 13-19
repeat masking, 13-19–13-20
scaffolding, 13-18

assessing support for a phylogeny, 19-16–
19-18

Bayesian MCMC posterior probabil-
ities, 19-18

bootstrap support, 19-17–19-18
consensus methods, 19-16–19-17
jackknife support, 19-18

association analysis, 17-2
association mapping, 18-13
asteroidal triple, 9-9
asymmetric unit, 32-8
atom, 31-2

atomic number, 31-2
isotope, 31-2
mass number, 31-2
nucleus, 31-2

automatic segmentation, 32-8
AVID, 14-5

B-spline interpolation, 34-32
Bacterial Artificial Chromosome, 9-2–9-7,

13-17

clone, 9-6
draft, 9-7
finished, 9-6
library, 9-6
overlap, 9-13

consistent, 9-14
contained, 9-14
dovetail, 9-14

phase, 9-6
BAliBASE, 3-29
BASE, 23-11
Baum-Welch algorithm, 3-24
Bayesian networks

definition, 27-12
interpretation, 27-14
learning, 27-12

Bayesian networks in linkage analysis, 17-
28

Bayesian-inference, 18-20
Berkeley Drosophila Genome Project, 12-

5, 12-8
beta sheet, see β-sheet
bicluster

definition, 26-3
biclustering, 26-1

Cheng and Church, 26-3
Coupled two-way clustering (CTWC),

26-5
Iterative signature algorithm (ISA),

26-6
plaid models, 26-12
SAMBA, 26-8
Spectral, 26-10

biclusters, 38-16
bifurcation, 20-3
binding domains, 37-14
biological catalysis, 34-18
Bipartite graphs

representation of a gene expression
matrix, 26-8

bisection search, 4-11, 4-12
BLAST, 1-17, 9-2, 12-13, 13-26, 14-2, 33-

5, 36-3, 36-5, 36-21, 36-22
PSI-BLAST, 33-5

BLASTZ, 14-5
BLOSUM matrix, 1-16
Boltzmann function, 11-9
boolean function, 27-16
Boolean networks

definition, 27-15

INDEX A-3

boolean networks
attractor, 27-16
reverse engineering, 27-16
state transition, 27-16
trajectory, 27-16

branch-and-bound method, 18-10
branching tandem repeat, see repeat
breadth first search

LBFS∗, 9-11
lexicographic (LBFS), 9-10

breakpoint
distance, 22-5
phylogeny, 22-5

breakpoint analysis (BPAnalysis), 22-5
Build algorithm, 20-2, 20-5, 20-6
Build-Graph-Representation algorithm, 20-

7
Burrows and Wheeler table, see enhanced

suffix array
bwttab, see Burrows and Wheeler table

Cancer Genome Anatomy Project, 12-8
cancer specificity, 16-5, 16-12–16-13, 16-

15, 16-16, 16-21
candidate list paradigm, 3-18
CAP3, 12-13, 13-19, 13-23, 13-24
Car-Parrinello, 34-18
carboxysome, 33-15
Cartesian product, 13-9
CASP, 33-20
causal networks, 27-11
cDNA, 12-1, 13-5
cDNA mapping, 15-9
cDNA sequencing, 12-1, 12-2
cDNA-protein alignment, 12-10
Celera, 9-1
chain, 15-4

optimal global, 15-4
optimal local, 15-14
significant local, 15-16

chaining algorithms, 15-1–15-26
CHAOS, 14-4
character, 19-2, 20-4
character

complete, 20-4
completion, 20-4

Charm++, 34-12, 34-13
Charm++ Runtime System, 34-19
CHARMM, 34-12
Checkboard clustering, 26-10

chemical bond breaking, 34-18
Chernoff bounds, 37-18
child interval, see lcp-interval
child-table, see enhanced suffix array
childtab, see child-table
chimeric cDNA, 12-3, 12-11
chimeric read, 8-3
chip-ChIP, 23-4
chromatin immunopreciptiation, 23-4
chromosomal rearrangements, 10-2
Cibex, 23-11
Clark’s algorithm, 18-3

genetic model, 18-4
inference rule, 18-3
maximum resolution, 18-4
MR problem, 18-5
multiple solutions, 18-6
stochastic behavior, 18-6

clique tree, 9-10
cliques, 37-2, 37-4
clone, 10-4
clone library, 10-4
clone map, 10-4

sequence ready, 10-4
clone or mate pairs, 13-12, 13-17
clone pairs, 12-4
Clustal, 19-12
ClustalW, 3-12
cluster, 20-4
cluster

graph, 20-14
matrix, 20-11
preservation, 20-6
proper, 20-4

cluster analysis, 25-14
cluster matrix, 20-11
cluster matrix

compatibility, 20-12
compatible completion, 20-12
complete, 20-11
completion, 20-12
incomplete, 20-11
profile, 20-12

cluster number, 25-6
cluster of orthologous bases, see syntenic

anchor
Cluster software, 23-2
clustering, 25-5

vs. biclustering, 26-2
co-expression networks, 27-9

A-4 INDEX

coalescent, 18-13
coiled coil prediction, 29-15–29-22

oligomerization, 29-19–29-20
protein interactions, 29-20–29-22
recognition, 29-15–29-19

colinear, 15-2
collapsing edges, 20-10
column score, 3-29
combinable component tree, 20-6
combinatorial complexity, 4-2, 4-8
combinatorial methods, 18-3
combined dataset, 19-8, 19-13, 19-30
comparative genomics, 7-6, 15-1–15-4
CompareProspector, 14-18
compatibility problem, 20-1
compatible, 20-1, 20-4
complementary DNA, 12-1
COMPONENT, 20-18
concerted evolution, 19-8
conflict, 20-4
conflict-free, 20-4
conformation, 34-2
conjugate gradient descent search, 11-7
CONREAL, 14-6
consecutive ones problem, 18-17
CONSENSUS, 37-2, 37-3
consensus

majority rule, 20-6
rule, 20-6
semi-strict, 20-6
strict, 20-6

consensus solution, 18-6, 18-21
consensus tree, 19-16–19-17, 20-2
consensus tree

preservation, 20-5
methods, 20-2

conserved segments, 10-2
consistency, 3-14
consistent, 20-4
consistent genotypes, 17-9
CONSITE, 14-18
constrained, 20-4
constraint trees, 22-3
construction problem, 4-2
contaminant, 8-3
contig, 8-3, 9-14, 11-22
contigs, 13-3, 13-18
convergence rate, 21-4
convergent evolution, 19-12
COSA, 3-10

cosegregation, 17-4
cost function, 25-7
Coulomb interaction, 34-21
Coulomb potential, 34-9
CPAIMD, 34-18
CRCW/CREW PRAM, 13-14
critical points, 32-5, 32-7, 32-9, 32-11
cross correlation, 32-13
crossing over, 17-5
cryo-electron microscopy, 32-1
CTWC, 26-5
cutoff

electron density, 34-22
electron state, 34-22

cutoff distance, 34-9
cyanobacteria, 33-14

prochlorococcus, 33-14
synechococcus, 33-14

d2 distance, 12-14
d2 measure, 13-6
d2 cluster, 12-14
DAG, 3-13
data analysis tools, 23-10
data integration, 27-25
data mining, 38-1

association rules, 38-2
classification, 38-3
clustering, 38-3
deviation detection, 38-3
regression, 38-3
sequence mining, 38-2
similarity search, 38-3

data repository, 23-11
data types, 25-5
database, 23-4, 23-7–23-9, 23-11–23-16
databases, 16-4–16-6

ASD/AED, 16-6
ASDB, 16-6
EASED, 16-5
EDAS, 16-5
EMBL, 16-4
feature table, 16-4
FlyBase, 16-6, 16-10
GenBank, 16-4
Intronerator, 16-10
MAASE, 16-10
PASDB, 16-6
PFAM, 16-16, 16-18
PubMed, 16-6

INDEX A-5

SCOP, 16-16
SMART, 16-18
SWISS-PROT, 16-4
SwissProt, 16-16
TIGR gene index, 16-6
UniGene, 16-4

dbEST, 12-2, 13-24
decision tree, 2-6
degree preserving random graphs, 26-8
dendrogram, 25-17
Density Functional Theory

Kohn-Sham, 34-18
descendant, 20-3
descendant

proper, 20-3
designing a phylogenetic study, 19-5–19-9

marker selection, 19-7–19-9
taxon selection and sampling, 19-5–

19-7
DIALIGN, 3-16, 14-6, 14-8
differential equation models, 27-19
Dijkstra’s algorithm, 3-9
dimensionality

curse, 27-6, 27-14
reduction, 25-3

diploid organism, 18-2
directed acyclic graph, 3-13
Dirichlet distribution, 18-20
disk

latency, 13-14
transfer rate, 13-14

Disk Covering Methods, 21-2–21-21
displayed, 20-4
distance, 25-6

breakpoint, 22-5
inversion, 22-4

DNA Arrays, 25-18
DNA clones, 24-1
dominant inheritance, 17-3
dot-matrix plot, 3-15
drosophila, 16-5, 16-6, 16-10, 16-17–16-19,

16-22
duplication, 20-17
duplication

cost, 20-17, 20-18
function, 20-17
problem, 20-18
set, 20-17
supertree, 20-18
tree, 20-17

duplication-loss
problem, 20-18
supertree, 20-18

dynamic programming, 2-2, 2-9, 2-10, 2-
12, 2-13, 3-7, 3-25, 3-27, 7-7, 36-
1, 36-5

sparse, 15-2
string alignment, 1-4

ed-tree, 36-6
construction, 36-6
querying, 36-7

edit distance, 36-6
edited motif search, 37-1, 37-10–37-14
eigenvector analysis, 32-11
eigenvectors

in biclustering, 26-10
electron microscopy, 32-1
electron tomography, 32-1
electrostatic potential, 34-8
EM algorithm, 25-9, 25-10
embedded -interval, see lcp-interval
empirical model, 34-33
enclosing -interval, see lcp-interval
energy minimization, 31-4
enhanced suffix array

Burrows and Wheeler table, 7-4
child table, 7-16
lcp-table, 7-4
suffix link table, 7-23

Enzyme catalysis, 34-29
EST (Expressed Sequence Tag), 2-3, 2-5,

2-16, 12-1, 16-1, 16-4–16-22
filtering of artifacts, 16-4, 16-12

EST clustering, 13-5, 13-21
rat, 13-23

EST-genomic DNA alignment, 12-5
EST-protein alignment, 12-5
ESTs

applications, 12-4–12-8
clustering, 12-9–12-17

algorithms, 12-12–12-17
databases, 12-8
sequencing, 12-2–12-4

eukaryotes, 20-16
evaluator, 4-4, 4-11
evolutionary diameter, 21-1, 21-2, 21-6,

21-13, 21-17, 21-19
exact algorithms, 37-2
exact match, see match, 13-5

A-6 INDEX

exact pattern matching, 7-14
exchange-correlation functional, 34-21
exhaustive enumeration algorithms, 37-2
exhaustive local search, 11-10
exon, 9-8, 13-21, 16-2–16-22

alternative mutually exclusive exons,
16-3, 16-17–16-18

cassette exon, 16-2, 16-14–16-18, 16-
21

cassetteexon, 16-17
expectation maximization, 37-5
expectation optimization, 37-2
Expectation-Maximization (EM), 18-19
expectation-maximization algorithm, 3-25
explanation tree, 20-17
Expressed Sequence Tags, 12-1
Expressed Sequence Tags (ESTs), 13-3,

13-5, 13-21
clustering, 13-15

external potential, 34-22

false negative rate, 21-4
false positive rate, 21-4
Farris Interval, 22-9
Fast Fourier Transform, 34-10, 34-19
Fast Fourier transform, 3-19
fast marching method, 32-8
FASTA, 14-2, 36-5
FASTP, 36-4
feedback edge set, 9-11
Fitch’s operation, 22-13
Fitch-Hartigan algorithm, 21-5, 21-12
fold recognition, 33-10
FORESTER, 20-18
forward algorithm, 4-27
fosmid, 13-24
founder, 17-2
Fourier transformation, 32-12
fractional cascading, 15-20
fragment, 15-4

exact, 15-4
fragment-chaining problem

global, 15-4
local, 15-14

frameshift, 16-15–16-17, 16-21
Frequency Distance, 36-16
Frequency Score, 36-21
frequent subgraphs, 38-6
Friedman test, 3-29
fugu, 16-18

full-length cDNA, 16-7, 16-10, 16-11
full-length cDNAs, 12-8
functional genomics

and biclustering, 26-3
fundamental properties, 20-4

gap, 3-2
gap cost, 15-4
gap penalty

affine, 3-5
proportional, 3-6
quasi-natural, 3-9

GECKO, 23-12
GenBank, 10-1, 12-2, 12-8, 13-23
gene, 13-1, 13-25

duplication, 20-16
expression, 13-23
identification, 13-25
losses, 20-16
structure prediction, 13-25

gene annotation, 12-5
gene clustering, 25-14
gene counting, 12-7
gene discovery, 12-4
gene expression, 25-14

biclustering, 26-1
gene expression data, 38-11

normal variation, 38-16
gene expression matrix, 27-6
gene expression profile, 27-6, 38-18
gene expression studies, 12-7
gene filtering, 25-15
gene network properties, 27-3

noise, 27-5
robustness, 27-4
topology, 27-3
transcriptional control, 27-4

gene networks, 27-1, 27-2
combinatorial models, 27-6
deterministic models, 27-8
dynamic models, 27-7
examples, 27-2
identification, 27-1
inference, 27-1
model comparison, 27-24
model properties, 27-6
physical models, 27-6
reverse engineering, 27-1
static models, 27-7
stochastic models, 27-8

INDEX A-7

synchronous models, 27-8
gene order phylogeny, 21-14, 21-21
gene order phylogeny reconstruction, 19-

32–19-34
gene recognition, 2-1–2-16

similarity-based algorithms, 2-1–2-16
statistical algorithms, 2-1–2-16

gene regulation system, 27-2
gene selection, 25-15
gene silencing, 16-16, 16-22
gene tree, 20-15
gene tree

parsimony (GTP), 20-16
reconciliation, 20-16

gene tree/species tree problem, 19-7, 19-
11

generalized gradient approximated densi-
ty functional, 34-19

generalized suffix array, 5-6
generalized suffix tree, 5-5, 12-16, 13-8,

13-11, 13-12, 13-14
construction, 5-13
deletion, 5-14
insertion, 5-14

genetic algorithm, 11-8
genetic linkage, 17-7
genetic map, 11-1
genetic marker, 9-2, 17-8
genetic model, 18-3, 18-10, 18-18

Clark’s algorithm, 18-4
coalescent, 18-12
Hardy-Weinberg, 18-19
infinite sites, 18-4, 18-12, 18-20
perfect phylogeny, 18-12, 18-14, 18-

19
pure parsimony, 18-7
random mating, 18-19

genetic operators, 11-11
genetic recombination, 17-5
genetic variations, 12-11
GeneX, 23-13
genome, 13-1

assembly, 13-2–13-5
colinearity, 13-16
genomic islands, 13-4
human, 13-2, 13-4
maize (corn), 13-2, 13-15–13-21
reduction, 13-2, 13-4, 13-17–13-19
rice, 13-16
sequencing projects, 13-1, 13-4

genome assembly, 8-1, 9-1
genome browser

UCSC, 14-16
VISTA, 14-16

genome comparison, 7-6
genome rearrangements, 15-3
genotype, 17-2, 18-1, 18-2
GEO, 23-10, 23-11
GGA-DFT, 34-19, 34-21, 34-32
Gibbs sampler, 2-14–2-16, 18-20
Gibbs sampling, 37-2
GibbsDNA, 37-2, 37-3
Gibbssampler, 16-19
GigAssembler, 9-4
GLASS, 14-5
global symmetry, 32-7
globins, 20-16
gradient descent, 4-11, 4-15
gradient tensor, 32-11
gradient vector diffusion, 32-5
graph, 9-8

acyclic, 9-9
chordal, 9-9
clique, 9-10
connected, 9-9
degree, 9-8
directed, 9-8
directed acyclic subgraph, 9-11
edge, 9-8
interval, 9-9

maximal clique ordering, 9-10
node oredering, 9-10

node, 9-8
path, 9-9
singleton, 9-8
subgraph, 9-9
undirected, 9-8

graph mining, 38-6
graph theoretical models, 27-9
graph-realization, 18-13, 18-14, 18-17
GRAPPA, 21-14, 21-21, 22-6
GROMACS, 34-12
GST, see generalized suffix tree
GUS, 23-14

Hannenhalli-Pevzner Theory, 22-4
HAP, 18-18
haplotype, 18-1, 18-2

common, 18-5, 18-18, 18-19
evolution, 18-3

A-8 INDEX

inference, 18-1, 18-2
infrequent, 18-18

haplotype block, 18-17, 18-18
dispersed, 18-14

haplotype map, 18-1
Haplotyper, 18-20
Hardy-Weinberg equilibrium, 18-19
Hartree energy, 34-19, 34-21
hash table, 24-5–24-7, 36-3

construction, 36-3
querying, 36-3

heat map, 25-17
heaviest increasing subsequence, 15-10
Heaviest subgraph in a bipartite graph prob-

lem, 26-9
heterozygosity, 17-9
heterozygous, 17-3
heuristic crossover operator, 11-12
hidden Markov model, 3-22–3-28, 33-6

profile, 3-22
Hidden Markov Model (HMM), 2-2–2-6,

2-10–2-16
the Viterbi algorithm, 2-3, 2-13

hidden Markov models, 4-22
for sequence alignment, 4-1, 4-2
full probability estimation, 4-26
Inverse optimization, 4-26
log transform, 4-26
maximum likelihood alignment, 4-25
pair HMM, 4-24
parametric inference, see parametric

inference
parametric problems, 4-8, 4-22–4-27
sensitivity analysis, 4-25

hierarchical clustering, 25-7
hill climbing, 11-8
Hirschberg technique, 1-8
HIS problem, 15-10
HomoloGene, 16-17
homology, 33-1

remote homolog, 33-1
homozygous, 17-3
horizontal gene transfer, 20-19
HP model, 30-3
human, 16-1, 16-2, 16-4–16-22
human genome, 7-1

Celera, 13-4
dispersed repeats, 7-5
public, 13-2
tandem repeats, 7-5

Human Genome Project, 9-1–9-4
initial goals, 9-2
revised goals, 9-3

hybrid speciation, 19-2
hybridization, 11-2
hybridization matrix, 11-2

IBM Bluegene/L, 34-19
icosahedral symmetry, 32-7
icosahedral virus, 32-7
identical by descent, 17-21
identical by state, 17-21
identifiability, 19-14
image contrast enhancement, 32-2
image noise reduction, 32-4
image segmentation, 32-7
implicit solvent model, 34-8
Implicit Suffix Tree, 36-8
incremental EST clustering, 12-14
indel, 3-2
independent set, 15-18

maximum weight, 15-18
inference rule, 18-3
infinite sites model, 18-4, 18-12
ingroup, 19-6
integer linear programming, 3-10, 18-5, 18-

7, 18-8
hybrid formulation, 18-11
polynomial size formulation, 18-10
RTIP, 18-9
TIP, 18-9

integer quadratic programming, 18-12
integrality relaxation

in plaid models, 26-13
integration phase, 34-10
interference in meiosis, 17-11
intron, 9-8, 13-21, 16-2–16-22

GC–AG intron, 16-2, 16-19
GC–AGintron, 16-19
retained intron, 16-2, 16-4, 16-14, 16-

15
inverse alignment, 4-1, 4-17
inverse suffix array, see suffix array
inversion, 15-3, 22-4

distance, 22-4
phylogeny, 22-4

inversion phylogeny, 22-6
invert suffix array, 24-6, 24-7
ion channels, 34-6
IS problem, 15-18

INDEX A-9

ISA
see biclustering, 26-6

isoform, 16-4–16-22
conservation, 16-13–16-14

iterative refinement, 3-17

jumping alignment, 3-14

k-band, 1-11
k-gram, 36-2
k-means, 25-9
Kane’s first and second conditions, 24-15
kd-tree, 15-19
KS State, 34-22
KS-DFT, 34-18

Löfgren’s method, 18-13, 18-15
Laboratory Information Management Sys-

tem, 23-4–23-6, 23-11, 23-15
LAD, 23-16
LAGAN

Multiple, 14-9
Shuffle, 14-10

Lagrange multipliers
in plaid models, 26-13

Lander-Waterman equation, 13-4
Langevin dynamics, 34-9
large step Markov chain, 11-8
lattice models, 30-3
Lcp array, 5-4
lcp-interval, 7-5

child interval, 7-8, 7-16, 7-20
embedded interval, 7-8
enclosing interval, 7-8
lcp-interval tree, 7-9
singleton interval, 7-9
suffix link interval, 7-22

lcp-table, see enhanced suffix array
lcptab, see lcp-table
LD, 18-14, 18-17
LeanCP, 34-19, 34-26
LeanMD, 34-12, 34-19
LeanQM/MM, 34-37
least common ancestor, 20-4
Lempel-Ziv parsing, 1-22
Lennard-Jones potential, 34-6, 34-9
LIMS, 23-4–23-6, 23-11, 23-15
line-sweep paradigm, 15-5
lineage sorting, 20-19
linear algebra, 18-16

linear time local alignment algorithm, 24-
16

linearized additive models, 27-20
linkage disequilibrium (LD), 18-14
liquid structure, 34-18
LIS problem, 15-10
local cross correlation, 32-13
local maximum in the lcp-table, 7-6
local structure tensor, 32-11
local symmetry, 32-7
locus heterogeneity, 17-13
LOD score, 17-12
long oligo, 24-4, 24-10
longest common prefix, 24-6, 24-15
longest common substring, 5-6
longest increasing subsequence, 15-10
Longhorn Array Database, 23-16
lookup table, 5-2, 12-13, 13-6
loops in pedigrees, 17-15
losses, 20-17
lower envelope, 4-2
lowest common ancestors, 5-21–5-23
Lucy, 13-19
LZ parsing, 1-22

M-free, 20-14
M-free graph

deletion problem, 20-15
insertion problem, 20-15
problem, 20-15

M-graph, 20-14
MADAM, 23-16
MAFFT, 3-19
MAGE-ML, 23-10, 23-11
maize genome, 13-2

assembly, 13-3, 13-15–13-21
cluster-then-assemble, 13-19
inbred line B73, 13-16

majority rule consensus, 20-6
manybody dispersion, 34-18
manybody polarization, 34-17
map function, 17-10
MAPMAKER software for linkage analy-

sis, 17-16
maps

genetic, 9-5
physical, 9-5

Markov assumption, 27-12
Markov chains in linkage analysis, 17-28
Markov model, 4-23

A-10 INDEX

match
exact, 7-11
infrequent maximal exact, 7-13
left maximal exact, 7-11
maximal exact, 7-11
maximal multiple exact, 7-13
maximal unique, 7-7
right maximal exact, 7-11

mate pair, 9-7
mate pairs, 12-4
matrix representation, 20-10
Mauve, 14-11
maxdSQL, 23-14
maximal exact match, see match
maximal match, 12-16, 13-7, 13-8, 13-12,

13-13
anchoring alignments, 13-12, 13-13
left-maximality, 13-8
pair generation, 13-7, 13-9
right-maximality, 13-8

maximal matches, 12-16
maximal patterns, 37-17
maximization diagram, 4-3, 4-5, 4-7, 4-9,

4-20
breakpoint, 4-3, 4-20

maximum entropy, 3-6
maximum likelihood, 3-5, 18-19, 21-2, 21-

4, 21-12–21-14, 21-19, 21-21, 22-
1

two sites, 18-19
maximum likelihood alignment, 4-25
maximum likelihood estimator, 11-4
maximum parsimony, 3-4, 21-2, 21-5, 21-

12–21-20, 22-2
maximum weight trace problem, 3-15
Mean square residue score, 26-3
median axis, 32-11
median surface, 32-11
megablast, 12-15, 13-6
Megiddo’s method, 4-11, 4-13
meiosis, 17-6
melting temperature, 24-3, 24-4, 24-8–24-

14, 24-16–24-19
MEME, 37-2, 37-3
MERLIN software for linkage analysis, 17-

27
messenger RNA, 12-1
messenger RNA (mRNA), 13-21
methods of phylogenetic reconstruction

distance-based, 19-15

methods of phylogenetic reconstruction
distance-based, 19-15
Markov Chain Monte Carlo, 19-15
maximum likelihood, 19-15
maximum parsimony, 19-15
neighbor joining, 19-15

Metropolis function, 11-9
MGA, 7-14, 14-8
MGED, 23-9, 23-10
MGED Ontology, 23-10
MGuide, 23-2
MIAME, 23-9, 23-10
Microarray Data Analysis System, 23-17
MicroArray Data Manager, 23-16
microarray mining, 38-11
microarrays, 13-1, 25-14
microsatellite, 17-9
MIDAS, 23-17
MinCutSupertree algorithm, 20-2, 20-7–

20-9
minimal separator, 9-10
Minimotifs, 37-14
minimum cut, 20-9
mismatch, 24-3, 24-10, 24-15, 24-16
mismatch hybridizations, 24-10
mixture models, 25-9, 25-10
MM-rspace-grid, 34-32
MO, 23-10
Modified MinCutSupertree algorithm, 20-

7
moiety, 34-2
molecular dynamics, 31-4, 34-6

simulation, 31-4
torsion angle dynamics, 31-21

molecular dynamics simulation
ab initio, 34-16
classical, 34-5–34-16
hybrid, 34-28–34-37
quantum, 34-16–34-28

molecular interactions
electronic exclusion, 34-5
electrostatic, 34-5
nonbonded, 34-9
van der Waals, 34-5

molecular interations
bonded, 34-5
intermolecular, 34-5
intramolecular, 34-5
nonbonded, 34-5
pairwise, 34-5

INDEX A-11

molecular mechanics, 34-6
molecular pseudopotential, 34-33
Moore-Penrose pseudo-inverse, 27-22
Morgan, as unit of genetic distance, 17-10
motif search

algorithm PMS1, 37-5–37-6
algorithm PMS2, 37-6–37-8
algorithm PMS3, 37-8
algorithm SMS, 37-15–37-16

mouse, 16-2, 16-5, 16-7, 16-10, 16-11, 16-
13–16-20

Mouse Gene Encyclopedia Project, 12-8
MPI, 11-14
MRF

decsion problem, 20-14
deletion flip, 20-13
deletion problem, 20-13
fixed-parameter tractable, 20-15
flip, 20-13
insertion flip, 20-13
insertion problem, 20-13
problem, 20-13
supertree, 20-13
weighted problem, 20-13

mRNA, 12-1
mRNA isolation, 12-2
MRP supertrees, 20-12
MRS Index Structure, 36-15

construction, 36-17
querying, 36-17
vector space mapping, 36-15

MSA, 3-8
MSF format, 3-3
multifurcation, 20-3, 20-18
multifurcation

aparent, 20-3
true, 20-3

MULTIMAP software for linkage analysis,
17-16

multiple sequence alignment, 3-1–3-30, 19-
11–19-13, 21-2, 21-12, 21-21

multiple solutions, 18-6, 18-20
multiple time stepping, 34-8
MULTIPROFILER, 37-2, 37-3
multithreaded programming, 11-3, 11-15
MULTIZ, 14-12
MUMmer, 7-7, 36-10
MUSCLE, 3-21
mutation, 13-5
mutation cost, 20-18

mutation matrix, 33-4
MWIS problem, 15-18, 15-23
MySQL, 23-11, 23-14

NAMD, 34-12–34-16
ApoA1 Benchmark, 34-15
ATPase Benchmark, 34-15
compute object, 34-13
Gordon Bell Award, 34-15
hybrid spatial force decomposition, 34-

13
load balance, 34-14
parallel objects, 34-13
patches, 34-13

natural variations, 12-11, 12-12
near-perfect phylogeny haplotyping, 18-

18
HAP, 18-18

nearest neighbor, 24-8
negative log-likelihood function, 11-5
neighbor joining, 21-2, 21-4–21-6, 21-12,

21-13, 21-17–21-20
neighbor-joining, 3-11, 22-2
nematode, 16-5, 16-10, 16-17–16-19, 16-22
nesting, 20-4, 20-6
nesting

preservation, 20-6
true, 20-9
uncontradicted, 20-9

neural networks, 29-8–29-10
Newton’s method, 4-11, 4-14
Nimblegen, 23-2
NK-Boolean networks, 27-15
non-local pseudopotential energy, 34-24
non-overlapping, 15-2
non-uniform sampling, 12-10, 12-11, 13-2
nonfounder, 17-2
nonsense-mediate decay, 16-22
nonsense-mediated decay, 16-15, 16-21
nontarget, 24-1, 24-3, 24-10, 24-11, 24-13,

24-14, 24-16, 24-19
Notung, 20-18
Nuclear Magnetic Resonance (NMR), 31-

2, 32-1
chemical shift, 31-3
in resonance, 31-3
precess, 31-2
relaxation, 31-3
saturated, 31-3
shielding, 31-3

A-12 INDEX

Numerical Integrator, 34-7
NWChem, 34-12

oligo, 24-1
oligonucleotide arrays, 16-10
oligonucleotide microarrays, 16-8–16-12

exon probes, 16-8
high-density arrays, 16-8
junction probes, 16-8, 16-9
tiling arrays, 16-10

OneTree, 20-7
optimal duplication cost, 20-18
optimal mutation cost, 20-18
optimality region, 4-2, 4-3, 4-9
Oracle, 23-12, 23-14, 23-15
oracle, 4-12
order/orient problem

complexity, 10-10
example, 10-8
origin, 10-5

orthogonality condition, 34-23
ortholog, 33-2
orthologous landmark, see syntenic anchor
outgroup, 19-6
overlap, 8-3

forest, 22-5
graph, 22-4

overlap detection, 12-9–12-12
OWEN, 14-6

PaCE, 12-16, 13-3, 13-6, 13-19, 13-23, 13-
24

pair HMM, see hidden Markov models
PAM matrix, 1-16
parallel computation, 34-10
parallel EST clustering, 12-15, 12-16
parallel processing, 13-13

communication latency, 13-14
communication transfer rate, 13-14
master-worker paradigm, 13-15

parallel SMS, 37-16
parallelization

atom decomposition, 34-11
computation communication ratio, 34-

11
data replication, 34-11
force decomposition, 34-11
spatial decomposition, 34-11
state plane decomposition, 34-26

paralog, 33-2

parameter fitting, 27-12
parametric alignment, see parametric se-

quence alignment
parametric inference, 4-26
parametric problems

construction, 4-19
parametric complexity, 4-9–4-11
parametric construction, 4-22
parametric problems in HMM, 4-27
parametric problems in HMMs, 4-25
parametric search, see bisection search,

gradient descent, Megiddo’s method,
Newton’s method, 4-11

parametric search, 4-11, 4-17
parametric sequence alignment, 4-1, 4-5

combinatorial complexity, 4-1
construction, 4-1
global alignment, 4-9
local alignment, 4-10
multiple sequence alignment, 4-11
parametric problems, 4-6–4-8

hidden Markov models, 4-8
parameter space decomposition, 4-

7
parametric complexity, 4-8
ray shooting, 4-6
sensitivity analysis, 4-7

parametric search, 4-1, 4-2, 4-11
parametric vs. non-parametric linkage anal-

ysis, 17-21
parent tree, 20-1, 20-4
parsimony criterion, 18-6, 18-7
partial order alignment, 3-13
particle, 31-2

electron, 31-2
neutron, 31-2
proton, 31-2

Particle Mesh Ewald, 34-32
Particle Mesh Ewald method, 34-10
path label, 5-4
pattern based algorithms, 37-2
pattern branching, 37-4–37-5
pattern matching, 5-6, 6-2
PatternBranching, 37-2, 37-3
PatternHunter, 14-3
patterns, 37-1, 37-6, 37-10, 37-18
PAUP, 21-2
peak assignment, 31-6

adjacency determination, 31-8
peak grouping, 31-7

INDEX A-13

spin system assignment, 31-9
peak picking, 31-4
PedCheck software for linkage analysis, 17-

10
pedigree, 17-3
peeling algorithm in linkage analysis, 17-

14
penetrance function, 17-3
peptide mass fingerprinting, 16-6
perfect match, 24-3
perfect phylogeny, 18-12
perfect phylogeny haplotyping, 18-12, 18-

13
boolean matrix multiplication, 18-16
incomplete data, 18-16
linear time algorithm, 18-14
near-perfect phylogeny, 18-18
phase transition, 18-15
related results, 18-16
uniqueness, 18-15, 18-17
XOR problem, 18-17
yin-yang haplotypes, 18-16

performance analysis of algorithms, 19-
19–19-20

benchmark datasets, 19-19
Robinson-Foulds metric, 19-20
simulation studies, 19-20

performance coefficient, 37-2
periodic boundary condition, 34-6
perturbation experiments, 27-11
Phase, 18-7, 18-10, 18-20, 18-21
phase of a genotype, 17-2
Phrap, 12-13
PhyloCon, 14-18
phylogenetic analysis, 33-7
phylogenetic markers, 19-7
phylogenetic reconstruction on molecular

sequences, 19-21–19-26
heuristic searches, 19-21

phylogenetic tree
quartet, 20-3
rooted, 20-3
triplet, 20-3
unrooted, 20-3

phylogeny, 22-1
inversion, 22-6
reconstruction, 22-1

physical map, 11-1
physical mapping, 10-4

comparative, 10-5–10-7

protocol, 11-2
piecewise linear algorithm, 4-13, 4-19
PINY MD, 34-19, 34-25
PipMaker, 14-13
plane wave basis set, 34-19, 34-22, 34-32
planted motif search, 37-1–37-10
PlantGDB, 12-16, 13-24
plants, 16-5, 16-10, 16-16, 16-22

Arabidopsis, 16-10
plasmid, 9-5

paired reads, 9-6
PMS, 37-3
POA, 3-13
point mutations, 19-13
polyA tail, 12-11
polyadenylation

alternative, 16-3, 16-11
population-genetic methods, 18-3
positional cloning, 17-2
positional homology, 19-11
POSIX, 11-16
PostgreSQL, 23-13, 23-14, 23-16
PPH programs, 18-13
PRAM models, 13-14
preservation properties, 20-5
primary structure, 29-2
Principal Component Analysis, 25-3
priority search tree, 15-6
probabilistic analysis, 37-3
probe, 24-1, 24-3, 24-6
processor virtualization, 34-26
profile, 3-2, 3-22, 20-3

binary, 20-3
compatible, 20-4
complete, 20-3
constrained by, 20-4

profile based algorithms, 37-2
ProfileBranching, 37-2, 37-3, 37-5
programs

BLAST, 2-2, 2-7
blastN, 2-11, 2-13
blastX, 2-10, 2-11
BLAT, 2-7–2-8
CEM, 2-12
DOUBLESCAN, 2-12–2-15
EST (Expressed Sequence Tag), 2-8
EST GENOME, 2-3–2-4, 2-6
GENCAN, 2-11
GENEID, 2-11
GeneSeqer, 2-4–2-6, 2-13

A-14 INDEX

GeneWise, 2-10
GenomeScan, 2-10–2-11
GENSCAN, 2-3, 2-10, 2-11
Pro-EST, 2-4, 2-6
Pro-Frame, 2-4, 2-9–2-10
Pro-Gene, 2-4, 2-12–2-13
Procrustes, 2-4, 2-8–2-9
Projector, 2-13
ROSETTA, 2-11
SGP-1, 2-11
SGP-2, 2-11
sim4, 2-6–2-8
SLAM, 2-12, 2-14
Spidey, 2-7
SplicePredictor, 2-4, 2-5
Squall, 2-7–2-8
TAP, 2-6
TblastX, 2-11, 2-12
TWINSCAN, 2-11
WU-BLAST, 2-11

progressive method, 3-11
PROJECTION, 37-2, 37-3
prokaryotes, 20-16
promising pair, 12-10, 12-13, 12-16, 13-6,

13-11
pair generation, 13-7, 13-23

promoter
alternative, 16-3, 16-11, 16-22

proper cluster, 20-11
PROSPECT, 33-13
Prostate Expression Database, 12-8
protein

domain, 16-16, 16-21–16-22
signal peptide, 16-22
signalpeptide, 16-16
transmembrane segment, 16-22
trnasmembrane segment, 16-16

protein sequences, 13-5
protein structure

secondary, 3-2
tertiary, 3-2

proteins, 38-4
structural motifs, 38-5

proteome, 16-1, 16-21–16-22
Prrn, 3-18
Pseudobond method, 34-33
pseudocount, 3-24
Pure-Parsimony problem, 18-7, 18-10

QM-e-density-gspace, 34-32

QM-KSstate-gspace-grid, 34-32
QM-rspace-grid, 34-32
QM/MM, 34-28
quality value, 12-13
quantum kinetic energy, 34-21
Quantum Mechanic/Molecular Mechanic,

34-28
quantum mechanics, 34-16
quartet, 20-3
quartet-based phylogeny reconstruction, 21-

20, 21-21

r-RESPA, 34-8
RAD, 23-14
radix sort, 37-13
random projection, 37-5
random projections, 37-2
random sampling, 37-17–37-18
randomized algorithm, 37-12–37-14
range maximum query, 15-5
range query, 15-19
range tree, 15-19
range-searching

orthogonal, 15-5
rat, 16-5, 16-9, 16-10, 16-13, 16-14, 16-17
rate equations, 27-19
rates across sites, 19-14
rates-across-sites assumption, 21-3
ray shooting, 4-2, 4-6, 4-11, 4-14, 4-15, 4-

17
read, 8-1
read pair, 8-1
rearrangements, 14-9
recessive inheritance, 17-3
recombination, 18-9, 18-10, 18-12–18-14,

19-7
recombination fraction, 17-7
reconciled tree, 20-16, 20-17
regions of conserved synteny, 15-1
regulator

hnRNP (heterogeneous nuclear ribonu-
cleoprotein), 16-2

SR protein, 16-2
regulatory regions, 25-18
repeat

branching tandem, 7-20
left maximal, 7-5
maximal, 7-5
repeated pair, 7-5
right maximal, 7-5

INDEX A-15

supermaximal, 7-5
tandem, 7-20

repeat masking, 13-19–13-20, 13-25
repeated pair, see repeat
repetitive elements, 19-9, 19-12
repetitive region, 8-3
REPuter, 7-9
research database, 23-4, 23-7–23-9, 23-11–

23-16
resolved site, 18-3
restriction fragment length polymorphis-

m, 17-9
results database, 23-4, 23-7–23-9, 23-11–

23-16
reticulate evolution, 19-2, 19-11
reverse complement of a DNA sequence,

13-13
RFLP, 17-9
rhodopsins, 20-16
right maximal, 5-4
RIKEN, 12-8
RNA Abundance Database, 23-14
RNAi

detection using suffix tree, 6-4–6-6
Robinson-Foulds (RF) distance, 21-4
robust regression, 27-22
rule-based methods, 18-6

SAGE, 12-7
SAMBA, 26-8
sample clustering, 25-16
scaffold, 8-3
scaffolding, 13-18, 13-25
ScanAlyze, 23-2
SCOP, 38-7
score, 15-4
secondary structure prediction

nearest-neighbor, 29-8
secondary structure, 29-3, 32-10
secondary structure prediction, 29-5–29-

13
Chou-Fasman, 29-6–29-7
GOR, 29-7
multiple sequence alignment, 29-10–

29-12
nearest-neighbor, 29-8
neural networks, 29-8–29-10

self-organizing maps, 25-12
semi-global alignment, 12-10
semistrict consensus tree, 20-6

sensitivity analysis, 4-1, 4-2, 4-7, 4-12, 4-
17

in HMMs, see hidden Markov models
sentinel $, 7-3
sequence, 24-1
sequence alignment, 4-1, 4-4

k-band, 1-11
affine gap penalty, 1-13

local, 1-15
semiglobal, 1-14

alignment invariant, 1-19
distance, 1-19
dynamic programming, 1-4
edit distance score, 4-4
features of, 4-3
gaps, 4-4
general gap penalty, 1-13
global, 1-3
global alignment, 4-9
hidden Markov models for, see hid-

den Markov models
Hirschberg technique, 1-8
indels, 4-4
inverse alignment, 4-13
inverse alignment problem, see inverse

alignment
linear space

global, 1-8
local, 1-10

local, 1-7
local alignment, 4-10
matches, 4-4
maximum likelihood alignment, 4-25
mismatches, 4-4
multiple alignment, 4-11
normalized local alignment, 1-20
parametric alignment, see paramet-

ric sequence alignment
path construction, 1-5
score, 4-4
score function, 4-4
scoring function, 1-3
scoring scheme, 4-4

alphabet-dependent, 4-5, 4-10
alphabet-independent, 4-5
feature based, 4-4, 4-9
non-zero gap penalty, 4-10
simple, 4-5
zero gap penalty, 4-10

semiglobal, 1-6

A-16 INDEX

sensitivity analysis, 4-2, 4-7
similarity score, 4-4
space requirements, 1-8
subquadratic, 1-22

sequence analysis, 7-7
sequence clustering, 13-3–13-15

cross-type sequence analysis, 13-26
ESTs, 13-15
greedy heuristic, 13-6, 13-7, 13-23, 13-

24
incremental, 13-25
parallel, 13-13, 13-15
rule-based approach, 13-26
transitive closure, 13-5

sequence comparison, 33-4
multiple sequence alignment, 33-4
pairwise sequence alignment, 33-4
profile-profile alignment, 33-4
sequence-profile alignment, 33-4

sequence conservation
extent of, 10-2

Sequence Tag Alignment and Consensus
Knowledgebase, 12-14

sequence tagged site, 17-9
sequence variation, 18-2
sequence-structure comparison, 33-10
Sequence-Tagged Sites, 12-8
sequencing, 13-2

BAC-based, 13-17
clone or mate pairs, 13-17
comparative genome, 13-15
cost of, 10-1
coverage, 13-3
errors, 13-5
hierarchical, 10-3
high C0t, 13-2, 13-4, 13-18–13-19
hypomethyl filtration, 13-2, 13-4, 13-

18
non-uniform sampling, 13-23
shotgun, 10-4
WGS, 13-2, 13-17, 13-19

sequencing artifacts, 12-10
sequencing errors, 12-10, 12-12
Serial Analysis of Gene Expression, 12-7
shadow tree, 18-15
shared-memory multiprocessor, 11-14
short oligo, 24-1, 24-3, 24-4
shotgun, 9-6

depth of coverage, 9-6
whole genome, 9-7

SimIBD software for linkage analysis, 17-
26

similarity, 25-6
SIMLINK software for linkage analysis, 17-

24
simple motifs search, 37-2, 37-14–37-17
simulated annealing, 3-21, 3-27, 11-8
simulation

molecular dynamics, 34-3
simulation in linkage analysis, 17-23
simulation studies, 21-1, 21-5, 21-6, 21-

19–21-21
SIMWALK2 software for linkage analysis,

17-27
single coverage problem, 15-16
single nucleotide polymorphism, 17-9
Single Nucleotide Polymorphisms, 12-7
Single Nucleotide Polymorphisms (SNPs),

13-5, 13-22, 13-25
single particle reconstruction, 32-1
single tandem repeat polymorphism, 17-9
singleton interval, see lcp-interval
Singular Value Decomposition, 27-22
SLINK software for linkage analysis, 17-

24
small nuclear ribonucleoprotein (snRNP),

16-2
SMAWK algorithm, 1-25
SMD, 23-15
SNP, 12-7, 17-9, 18-1, 18-2

tag, 18-17
Southern, E., 23-1
SP-STAR, 37-3, 37-4
speciation, 20-17
species tree, 20-1, 20-15
Spectral biclustering, 26-10
spectroscopy, 31-3

NMR spectroscopy, 31-3
spelling operation, 37-10
spin, 31-2

state, 31-2
spin system, 31-6

adjacent, 31-6
assignment, 31-9

splice site, 9-8
spliced alignment, 2-2–2-10, 2-12–2-13, 12-

5, 16-4
spliceosome, 16-2

U12-spliceosome, 16-2
splicing, 16-1–16-4, 16-10

INDEX A-17

aberrant, 16-15–16-16, 16-20
regulation, 16-12

splicing graph, 16-6
splicing site, 16-2

acceptor site, 16-2, 16-18
alternative, 16-2

acceptorsite, 16-20
alternative, 16-15

cryptic sites, 16-4, 16-17, 16-18
donor site, 16-2, 16-18–16-20

alternative, 16-2, 16-15
enhancer, 16-2, 16-19–16-21

recognition, 16-19
silencer, 16-2

spot, 24-1
squashing functions, 27-20
SST, 36-12

construction, 36-14
querying, 36-14
vector space mapping, 36-12

STACK, 12-14
stack, 7-9, 7-11, 7-17
Stanford Microarray Database, 23-15
star alignment, 3-5
statistical consistency, 19-15, 21-4, 21-5,

21-19, 21-20
statistical methods, 18-19
statistically-defined repeats (SDRs), 13-

19
steepest descent, see gradient descent
steepest descent search, 11-6
stochastic models of evolution, 19-13–19-

16, 21-1–21-4
General Markov model, 21-3
Generalized Time Reversible, 19-13,

19-15
Hasegawa-Kishino-Yano(HKY) , 21-

4
Jukes-Cantor, 19-13, 19-15, 19-23, 21-

3
Kimura 2-parameter (K2P), 21-4, 21-

20
Kimura 3-ST (K3ST), 21-4

strict consensus tree, 20-6
string alignment

k-band, 1-11
affine gap penalty, 1-13

local, 1-15
semiglobal, 1-14

alignment invariant, 1-19

distance, 1-19
dynamic programming, 1-4
general gap penalty, 1-13
global, 1-3
Hirschberg technique, 1-8
linear space

global, 1-8
local, 1-10

local, 1-7
normalized local alignment, 1-20
path construction, 1-5
scoring function, 1-3
semiglobal, 1-6
space requirements, 1-8
subquadratic, 1-22

String B-tree, 35-32
construction, 35-37

batch of insertions, 35-38
from suffix array, 35-37
single insertions, 35-38

engineering, 35-36
string compression, 1-22
string containment, 6-7
string depth, 5-4
STRP, 17-9
Structural Constraint

distance constraint, 31-17
structural constraint, 31-17

orientation constraint, 31-17
torsion angle constraint, 31-17

Structural Genomics Initiative, 31-1
structural motif, 29-4
structure calculation, 31-17

secondary structure prediction, 31-19
structural constraint extraction, 31-

17
tertiary structure calculation, 31-19

structure fitting, 32-12
structured motif identification, 6-18
STS, 17-9
subgradient, 4-16
subspace clustering, 38-15
substring, 7-3

pair of positions, 7-3
subtree compatibility, 21-7, 21-8
subtree pruning and re-grafting (SPR), 22-

2, 22-3, 22-11, 22-13
Suffix Array, 36-10
suffix array, 5-4, 7-2, 7-3, 24-5–24-7, 24-

13, 24-15, 24-16, 35-8

A-18 INDEX

construction, 5-14, 35-10
incremental, 35-15
Skew algorithm, 35-12

enhanced, 7-2
inverse, 7-4
Supra index, 35-9

suffix arrays, 12-16
Suffix Cactus, 36-8
suffix link, 5-4, 5-9–5-11
suffix link interval, see lcp-interval
suffix link table, see enhanced suffix array
suflink, see suffix link table
Suffix Tree, 36-7

construction, 36-8
querying, 36-9

suffix tree, 5-4, 7-1, 7-3, 7-6, 7-9, 7-18,
24-5, 24-7, 35-18

construction, 5-9, 35-27
divide-and-conquer, 35-27
incremental, 35-30
Skew algorithm, 35-30

engineering
compact PAT-tree, 35-25
Patricia tree, 35-25
skip compression, 35-26
suffix-pointers compression, 35-26

suffix link, 7-22
tree packing, 35-21

dynamic programming, 35-23
Min-max algorithm, 35-21
Split and Refine, 35-24

virtual, 7-2
suffix-prefix overlaps, 6-7–6-8
suftab, see suffix array
suftab−1, see inverse suffix array
sum-of-pairs, 3-5
sum-of-pairs score, 3-29
Superb, 20-7
Superlink software for linkage analysis, 17-

29
supermatrix methods, 19-29
supersecondary structure, 29-4
supertree, 20-1
supertree method, 20-1
supertree methods, 19-9, 19-29–19-32, 21-

2, 21-7, 21-8, 21-14, 21-21
supervised clustering, 25-6
symmetry detection, 32-6
syntenic anchor, 10-2
system of linear equations, 27-22

T-Coffee, 3-16
Tag genotype SNP, 18-18
tag SNP, 18-17
tandem array, 6-10
tandem repeat, 6-10–6-17, see repeat

left rotation, 6-11
leftmost-covering set, 6-13
non-primitive, 6-10
primitive, 6-10
right rotation, 6-11

target, 24-1, 24-3, 24-4, 24-6, 24-11, 24-
13–24-16, 24-19

taxa, 22-2
taxa addition order, 22-8–22-10, 22-16

max cross mini, 22-10
max mini, 22-10

TEIRESIAS, 37-16–37-17
temperature landscape, 24-16
testing models of evolution, 19-15
text compression

Lempel-Ziv, 6-12–6-13
TGICL, 12-15, 13-3, 13-6
threading, 33-10
three-partition, 18-15
TIGR, 23-16
TIGR Assembler, 12-13
TIGR Gene Indices, 12-14
TIGR Gene Indices (TGI), 13-24
tiling path, 9-3
time-series expression data, 27-10
TINKER, 34-13
tissue specificity, 16-5, 16-6, 16-9, 16-11–

16-13, 16-16–16-21
TM4, 23-16
TNT, 21-2
topological sort, 9-11
trace, 3-14
transcriptome, 12-2, 12-4, 13-24
transcripts, 9-7

cDNA, 9-7
EST, 9-7
mRNA, 9-7

transformation distance, 15-17
transitive closure, 27-11
transitive reduction, 27-11
transmission probability, 17-14
transposable elements, 13-16
transposition, 15-3
trapezoid graph, 15-23
traversal

INDEX A-19

bottom-up, 7-1, 7-9, 7-10, 7-17, 7-21
top-down, 7-1, 7-18, 7-20

tree
gene, 20-15
phylogenetic, 3-2
reconciled, 20-16
species, 20-15

tree alignment, 3-5
tree bisection and reconnection (TBR), 22-

2, 22-3, 22-11, 22-13
tree depth, 5-4
tree of life, 20-1
tree visualization, 25-8
TreeView, 23-2
triangle constraint in linkage analysis, 17-

22
triangulated graphs, 21-2, 21-7–21-12
tries, 1-23
triplet, 20-3
true nestings, 20-9
two-dimensional clustering, 25-16

UIcluster, 12-15
ultrastructure elucidation, 32-1
UML, 23-10
uncontradicted

edges, 20-9
nestings, 20-9

Unified Modeling Language, 23-10
uniform sampling, 13-2
UniGene, 12-14, 13-24
unobserved subtree, 20-18
unrooted input trees, 20-1
unsupervised clustering, 25-6
UPGMA, 3-11
upper envelope, 4-2
uses of phylogenies, 19-2–19-4

biogeography, 19-3
comparative method, 19-3
disease evolution, 19-4
modes of speciation, 19-4
protein reconstruction, 19-4
tempo of speciation, 19-4

validation of
gene clusters, 25-15
sample clusters, 25-16

variable length tandem repeat, 17-9
vector, 13-19, 13-25
vector quantization, 32-14

Velocity Verlet, 34-21
Verlet: method, 34-8
Verlet: velocity scheme, 34-8
VISTA, 14-13

regulatory (rVISTA), 14-17
visualization, 25-3
Viterbi algorithm, 3-27, 4-26
VLTR, 17-9
VP-tree, 36-11

construction, 36-11
querying, 36-11

WABA, 14-6
weight

pair, 3-18
weighted sum-of-pairs, 3-5
WGS, 8-1, 13-2, 13-17, 13-19
Whitney’s theorem, 18-15
whole-genome shotgun sequencing, see WGS
Wilcoxon test, 3-29
WINNOWER, 37-3, 37-4

X-ray crystallography, 32-1
xenolog, 33-2
XML, 23-10
XOR PPH problem, 18-17
XPARAL, 4-28
xsact, 12-16

yeast, 16-10
Yeast Artificial Chromosome, 9-2

z-score, 33-13
zebrafish, 16-5, 16-17

COLOR FIGURE 13.11: Graphical representation of MAGI–3. 1–4593. The first two rows
above, as illustrated in the key, correspond to HC and MF sequences, respectively. The next two
rows correspond to genes predicted using either EST-based or ab initio prediction approaches
and include introns. The last row are annotated protein matches. It follows that this single con-
tig shows a case where there are three genes on a genomic island; however, notice how the sam-
pling sources differ in the different intervals above. Some regions are only captured using HC
reads (3–5KB) while others are only captured using MF (8-–10KB).

COLOR FIGURE 14.6: UCSC browser [36] with custom-built VISTA tracks showing conser-
vation between the human chr. 9 interval aligned with orthologous mouse and rat sequences.

C061_Color.qxd 10/21/05 4:55 PM Page 1

COLOR FIGURE 15.5: cDNA mapped to a genomic sequence.

exon 1 exon 3exon 2

exon 2 exon 3

intron intron

exon 1
cDNA

Genome

COLOR FIGURE 23.1: Conversion of image data to raw and false color data. A. The inten-
sities in each channel in the scanned image are converted to the raw numeric values, and then
used to produce a log ratio. Log ratios above zero are then represented as red, with the intensi-
ty being proportional to the value, while green is used to represent negative log ratios. A log ratio
of zero is represented by black. B. Data for multiple genes across multiple experiments are rep-
resented by block of color, one block per measurement, as suggested in [8].

C061_Color.qxd 10/21/05 4:55 PM Page 2

773 778 783 788 793
798

803
808 50

55

60

65
70

45

50

55

60

65

70

75

80

85

(a
)

T
ar

g
et

 t
em

p
er

at
u

re
 (

°C
)

Oligo length

773 778 783 788
793

798
803

808
50

55

60

65
70

45

50

55

60

65

70

75

80

85

(b
)

N
o

n
ta

rg
et

 t
em

p
. (

°C
)

Oligo length

773 778 783 788 793
798

803
808

50

55

60

65
700

5

10

15

20

25

30

(c
)

T
em

p
. d

if
fe

re
n

ce
 (

°C
)

Oligo length

Target location

Target location

Target location

COLOR FIGURE 24.7: Temperature landscapes and the selection of oligo target regions.
The (a) target, (b) nontarget and (c) difference melting temperature landscapes are drawn
against different sequence locations and oligo lengths. Red circles indicate oligos that might be
chosen under different design strategies.

C061_Color.qxd 10/21/05 4:55 PM Page 3

COLOR FIGURE 25.6: Two-dimensional hierarchical clustering of the microarray gene
expression data on small round blue cell tumors with selected genes. The dendrograms for gene
clusters and sample clusters are shown on top and right of the map, respectively.

COLOR FIGURE 27.1: A hypothetical gene network. Shown on the left (redrawn from
[10]) are the multiple levels at which genes are regulated by other genes, proteins and metabo-
lites. On the right is a useful abstraction subsuming all the interactions into ones between genes
only. The cis-regions are shown next to the coding regions, which are marked with pattern and-
start at the bent arrows. The edges are marked with the name of the molecule that carries the
interaction. Some reactions represent trans-factor – DNA binding, happen during transcription,
and are localized on the cis-regions. In those cases the corresponding protein-specific binding
sites, or cis-elements, on the cis-regions are shown (colored polygons). Otherwise, the interac-
tions can take placeduring transcription or later (e.g. post-translational modications) as maybe
the case with Metabolite 2 interacting with Gene 4. The nature of the interactions is
inducing(arrow) or repressing (dull end).

P
ro

te
in

 3

P
ro

te
in

 4

Gene 2

P
ro

te
in

 1

Gene 3

Gene 2ʼs cis−region

Gene 1

G
en

e
Sp

ac
e

Pr
ot

ei
n

Sp
ac

e

M
et

ab
ol

ic
 S

pa
ce

Protein 2

Protein 4

Gene 2

Protein 1

Protein 3

Complex 3−4

Gene 4

Gene 4

M
et

ab
ol

ite
 2

Metabolite 1 Metabolite 2

Gene 1 Gene 3

C061_Color.qxd 10/21/05 4:55 PM Page 4

(a) (b) (c)

COLOR FIGURE 32.4: Detection of Symmetry axes and construction of global icosahedral
symmetry as well as local n-fold symmetry. (a) scoring function. (b) global icosahedral symme-
try. (c) local 6-fold symmetry.

(a) (b) (c)

(d) (e) (f)

COLOR FIGURE 32.5: Visualization of the architecture of the Rice Dwarf Virus (RDV) 3D
map (a) segmented outer and inner icosahedral capsid boundaries (b) segmented asymmetric
subunits of the outer capsid (60 subunits in total). Each asymmetric subunit consists of four and
one third trimers. (c) & (d) segmented trimeric subunits (260 in total), where (c) shows the
view from the outside while (d) shows the view from inside. (e) each segmented trimeric sub-
unit consists of three monomeric sub-subunits. (f) segmented monomeric subunitre presents
the 3D density map of a single P8 protein. The RDV 3D map data is courtesy Dr. Wah Chiu,
NCMI, BCM, Houston

C061_Color.qxd 10/21/05 4:55 PM Page 5

(a) (b) (c) (d)

COLOR FIGURE 32.6: Illustration of secondary structural identification using local struc-
ture tensor at critical points of the 3D Map (a) The X-ray atomic structure representation of
cytochrome c’ (PDB-ID = 1bbh). (b) The volumetric representation of a Gaussian blurred 3D
map generated from the X-ray structure (c) The detected skeletons of the 3D map. (d) Four
helices are finally constructed fromthe skeletons, while the two on the bottom are discarded as
being too small for being helices.

(a) (b) (c)

COLOR FIGURE 32.7: Example of structural fitting in the segmented P8 monomeric pro-
tein of RDV. (a) P8 monomeric protein iso-surface visualization (b) X-ray atomic structure of
the P8 monomeric protein represented in ways of balls & sticks and cartoons. One beta sheet
(top) and two alpha helices (middle and bottom) are highlighted and used as a fitting model.
(c) By maximizing the correlation between the X-ray atomic model and the 3D map of the P8
monomer, one builds a pseudo-atomic model of the 3D map.

C061_Color.qxd 10/21/05 4:55 PM Page 6

COLOR FIGURE 33.2: A comparison between the predicted structure (left) and the exper-
imental one (right) for the CASP-3 target t0053.The cylinders indicate α-helices, the strands
indicate β-sheets, and the lines indicate loops.

COLOR FIGURE 34.2: Aquaporin in lipid bilayer membrane, water above and below mem-
brane omitted for clarity.

C061_Color.qxd 10/21/05 4:55 PM Page 7

COLOR FIGURE 34.8: Human carbonic anhydrase treated using the mixed ab initio/
empirical force field based approach described in the text. The full enzyme where in the wire
frame represents atomic sites and the blue cloud represents the electron density of the valence
electrons associated with “ab initio atoms”.

COLOR FIGURE 38.4: Top: Alpha-Beta Motif and its Occurrence in PDB files: 1ad2, 1kuh.
Bottom: All Alpha Motif and its Occurrence in PDB files: 1bg8, 1arv.

C061_Color.qxd 10/21/05 4:55 PM Page 8

