

Patterns, Programming and Everything

Karin K. Breitman � R. Nigel Horspool
Editors

Patterns,
Programming
and Everything

Editors
Karin K. Breitman
Informatics Department
PUC-Rio
Rio de Janeiro, RJ, Brazil

R. Nigel Horspool
Department of Computer Science
University of Victoria
Victoria, BC, Canada

ISBN 978-1-4471-2349-1 ISBN 978-1-4471-2350-7 (eBook)
DOI 10.1007/978-1-4471-2350-7
Springer London Heidelberg New York Dordrecht

Library of Congress Control Number: 2012938227

© Springer-Verlag London 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

I was absolutely delighted to be asked to write the forward to this book, which is a
tribute to a friend, a colleague and a great computer scientist.

I have known Judith since we did our PhDs together at the University of
Southampton. We both graduated in 1977 from the Department of Mathematics.
I was studying Pure Mathematics, Judith was one of the minority in the Department
studying the new subject of Computer Science and she has been a pioneer of the
subject ever since.

She came to Southampton from South Africa to work with David Barron. In
those days they were breaking new ground by developing new compiler techniques
to overcome the disastrous performance issues of the computers of that era. The
significance of the work was demonstrated through its take up by industry. After
her PhD was finished, Judith quickly grasped the significance of the newly emerg-
ing Ada programming language for distributed programming—a topic which few
were ready to recognise or grapple with at the time—and became an international
expert in the development of the language in no time at all. Her book writing career
started around this time with her monograph on Data Abstraction in Programming
Languages.

She continued to develop her ideas about distributed programming and paral-
lel computing throughout the 1980’s during which time we both found ourselves
back at Southampton working in the Department of Computer Science. Judith was
a tremendous help to me at the time because of her wealth of experience in research
and teaching computer science. I was a new comer to the field and found her books
on programming, particularly Pascal which was the standard teaching language of
the time, both easy to read and incredibly rich in practical examples. She managed
to bring the language alive to her readers, which is something that seems to elude
most authors of computer science texts.

Always ahead of the crowd, she spotted the importance of Java in the post-Web
era, and wrote the first Java text-book. Her work on Java web-frameworks was taken
up by industry and put her and her team at Pretoria firmly on the international map.
She then moved onto the world of .NET and C#. Her work in this area was very

v

vi Foreword

highly valued by Microsoft, and she was frequently asked to speak at meetings or-
ganised by the company—a portent of things to come.

Through her books, her frequent appearance at conferences and her work on
international committees such as IFIP, Judith became very well known on the in-
ternational stage. Her books have been translated into five other languages and sold
around the world. She is always one of the first to spot new trends in computer sci-
ence and to both apply them in her research and introduce them to her students and
the wider world through her books.

As one would expect from reading her textbooks, Judith is a wonderful teacher.
She really cares about her students and works to instil in them the love for computer
science she has herself. She is also a very experienced research supervisor and her
students can now be found in any number of research laboratories around the world.
Over the years, her work has been taken up and used by industry and she was a
valued industrial consultant. Building on this and ever ready for a challenge, Judith
moved both continents and career paths to join Microsoft Research as Director of
Computer Science in 2009. She has thrown herself into this new role with her usual
mix of enthusiasm and professionalism and has made the role very much her own.

Having talked so much about her career and the impact she has had on the in-
ternational computer science community, I must also add that Judith is one of the
kindest most generous people it has been my privilege to work with and I am proud
to be able to call her one of my closest friends. She gives far more than she takes
from her interactions with everyone she meets.

The list of authors of the papers in this book is testament to the fact that so many
leading computer scientists around the world feel the same way as I do.

Wendy HallSouthampton, UK

Preface

This volume contains contributions written by authors who have all worked in some
capacity with Judith Bishop during her distinguished career. When Judith reached
a certain milestone in her age (and we will leave the reader to figure out which
one), we had the idea of putting together this book in recognition of her career
and her accomplishments. We contacted various researchers and industry profes-
sionals who have worked with Judith and asked them if they would be willing to
contribute material for this book. Their responses were overwhelmingly positive.
Please note that we made a deliberate decision not to invite any colleagues from her
current employer, Microsoft Research, to contribute material as this might have led
to conflict of interest issues. However we made an exception for Tony Hey who is
Judith’s superior at Microsoft Research; he graciously agreed to provide an After-
word for this volume. Since Tony represents the last place where Judith has worked,
we thought that it would be symmetric to have a Foreword from someone at the
first place where she worked. That someone is Wendy Hall from the University of
Southampton. We are grateful to her too.

The material in this book spans a wide variety of research areas. The variety
reflects the many research interests of Judith and her collaborators, and also reflects
her transitions from one important research area to another over the course of her
career. We have also included two contributions which are anything but Patterns (or
Programming). We leave it to the reader to discover which ones these are. We hope
you will find them to be as amusing as we did.

We thank every author for contributing their time and energy into helping this
book come to fruition. We also thank Springer for publishing this volume and for
providing their help.

R. Nigel Horspool
Karin Breitman

Victoria, Canada
Rio de Janeiro, Brazil

vii

Contents

Assessing Dependability for Mobile and Ubiquitous Systems: Is There a
Role for Software Architectures? . 1
Marco Autili, Paola Inverardi, and Massimo Tivoli

A Bestiary of Overlooked Design Patterns 13
John Aycock

End User Programming in Smart Home 19
Vilmos Bilicki, Zoltán Rak, Miklós Kasza, Ádám Végh, Róbert Béládi,
and Tibor Gyimóthy

Reconceptualizing Bottom-Up Tree Rewriting 31
K. John Gough

Automated Adaptation of Component Interfaces with Type Based
Adaptation . 45
Thomas Gschwind

The Benefits of Bad Teaching . 63
Derrick G. Kourie

SSA-Based Simulated Execution . 75
Jonas Lundberg, Mathias Hedenborg, and Welf Löwe

Towards a Calculus of Object Programs 91
Bertrand Meyer

Formal Specification as High-Level Programming: The ASSL Approach . 129
Emil Vassev and Mike Hinchey

Atomicity in Real-Time Computing . 147
Jan Vitek

ix

x Contents

Tuning Keyword Pattern Matching . 167
Bruce W. Watson

An Afterword for Judith: The Next Phase of Her Career 173
Tony Hey

Author Index . 175

Contributors

Marco Autili Dipartimento di Informatica, Università degli Studi di L’Aquila,
L’Aquila, Italy

John Aycock Department of Computer Science, University of Calgary, Calgary,
Alberta, Canada

Róbert Béládi Department of Software Engineering, University of Szeged, Szeged,
Hungary

Vilmos Bilicki FrontEndART Software Ltd, Szeged, Hungary

K. John Gough School of Computer Science, Queensland University of Technol-
ogy, Brisbane, Australia

Thomas Gschwind Zurich Research Laboratory, IBM, Rüschlikon, Switzerland

Tibor Gyimóthy Department of Software Engineering, University of Szeged,
Szeged, Hungary

Mathias Hedenborg School of Computer Science, Mathematics, and Physics, Lin-
naeus University, Växjö, Sweden

Mike Hinchey Lero–the Irish Software Engineering Research Centre, University
of Limerick, Limerick, Ireland

Paola Inverardi Dipartimento di Informatica, Università degli Studi di L’Aquila,
L’Aquila, Italy

Miklós Kasza Department of Software Engineering, University of Szeged, Szeged,
Hungary

Derrick G. Kourie Fastar Research Groups, Department of Computer Science,
University of Pretoria, Pretoria, South Africa

Welf Löwe School of Computer Science, Mathematics, and Physics, Linnaeus Uni-
versity, Växjö, Sweden

xi

xii Contributors

Jonas Lundberg School of Computer Science, Mathematics, and Physics, Lin-
naeus University, Växjö, Sweden

Bertrand Meyer ITMO & Eiffel Software, ETH Zurich, Zürich, Switzerland

Zoltán Rak FrontEndART Software Ltd, Szeged, Hungary

Massimo Tivoli Dipartimento di Informatica, Università degli Studi di L’Aquila,
L’Aquila, Italy

Emil Vassev Lero–the Irish Software Engineering Research Centre, University of
Limerick, Limerick, Ireland

Ádám Végh Department of Software Engineering, University of Szeged, Szeged,
Hungary

Jan Vitek Computer Science Faculty, Purdue University, West Lafayette, USA

Bruce W. Watson FASTAR Research Group, Center for Knowledge Dynamics and
Decision-Making, Stellenbosch University, Stellenbosch, Republic of South Africa

Assessing Dependability for Mobile
and Ubiquitous Systems: Is There a Role
for Software Architectures?

Marco Autili, Paola Inverardi, and Massimo Tivoli

Abstract A traditional research direction in Software Architecture (SA) and de-
pendability is to deduce system dependability properties from the knowledge of the
system SA. This well reflects the fact that traditional systems are built by using the
closed world assumption. In mobile and ubiquitous systems this line of reasoning
becomes too restrictive to apply due to the inherent dynamicity and heterogeneity
of the systems under consideration. Indeed, these systems need to relax the closed
world assumption and to consider an open world where the system context is not
fixed. In other words, the assumption that the system SA is known and fixed at an
early stage of the system development might be a limitation. On the contrary, the
ubiquitous scenario promotes the view that systems are built by dynamically assem-
bling available components. System dependability can then at most be assessed in
terms of components’ assumptions on the system context. This requires the SA to
be dynamically induced by taking into consideration the specified dependability and
the context conditions. This paper will illustrate this challenge and, by means of an
illustrative scenario, will discuss a possible research direction.

1 Introduction

A traditional research direction in Software Architecture (SA) and dependability is
to deduce system dependability properties from the knowledge of the system SA.
Taking into account characteristics and properties (e.g., failure rate, performance in-

This work is supported by the European Community’s Seventh Framework Programme
FP7/2007-2013 under grant agreement number 231167 (project
CONNECT—http://connect-forever.eu/).

M. Autili (�) · P. Inverardi · M. Tivoli
Dipartimento di Informatica, Università degli Studi di L’Aquila, L’Aquila, Italy
e-mail: marco.autili@di.univaq.it

P. Inverardi
e-mail: paola.inverardi@di.univaq.it

M. Tivoli
e-mail: massimo.tivoli@di.univaq.it

K.K. Breitman, R.N. Horspool (eds.), Patterns, Programming and Everything,
DOI 10.1007/978-1-4471-2350-7_1, © Springer-Verlag London 2012

1

2 M. Autili et al.

dexes, responsiveness, etc.) of the components constituting the system and how they
are assembled together, the goal of the dependability analysis is to predict the values
of dependability attributes. Following this line of research, architects, designers and
developers usually realize dependable systems by adopting a software development
process where models for dependability analysis are generated by considering the a
priori specified systems SA. This well reflects the fact that traditional systems are
built by using the closed world assumption which says that (at least part of) the sys-
tem context is a priori known and the information concerning the overall structure
of the system can be taken into account early at design time [8]. In Mobile And
Ubiquitous Systems (MAUS) [10, 11] this line of reasoning becomes too restric-
tive to apply due to the inherent dynamicity and heterogeneity of the systems under
consideration.

During the last few years, the distribution of communicating mobile devices is
accelerating, and the ever growing ubiquity of software is fostering the possibility
for the dynamic connection to “almost everything”, anywhere, anytime. This means
that heterogeneous components (everything) can be put together in unknown con-
texts (anywhere) at an unforeseen point in time (anytime). That is, MAUS need to
relax the closed world assumption and to consider an open world where the sys-
tem context is not fixed. In other words, the assumption that the SA is known and
fixed at an early stage of the system development might be a limitation. On the
contrary, mobility and ubiquity shift the focus of systems development from coding
and statically assembling components (according to a preestablished SA) to dy-
namically composing systems out of available components. System dependability
can then at most be assessed in terms of components’ assumptions on the system
context. This requires the SA to be dynamically induced by taking into consider-
ation the specified dependability and the context conditions. Furthermore, the as-
sembling process of MAUS can be no longer assumed to be handled by IT experts
only. Rather, end users play a crucial role prior to and after the composition pro-
cess, and changes to their needs, as much as in context of use, should be adequately
handled. Note that, in principle, it might be possible to build self-contained appli-
cations that embed the adaptation logic as a part of the application itself. Therefore,
while conforming to a fixed SA, these applications are a-priori instructed on how
to handle dynamic changes in the context and user needs, hence reacting to them
at run time. However, because of the open nature of MAUS, it is not feasible to
predict all the possible changes in the context and user needs, which are unfore-
seen by their very nature. This paper discusses the above challenges and, by means
of an illustrative scenario, shows how the role of SA is inverted in the context of
MAUS.

The paper is organized as follows: Sect. 2 introduces the terminology and briefly
provides background notions concerning MAUS. Section 3 discusses the challenge
of assessing dependability for MAUS. Section 4 illustrates this challenge by means
of a sample scenario in the e-learning domain. Section 5 gives concluding remarks
discussing possible future research directions.

Assessing Dependability for Mobile and Ubiquitous Systems 3

2 MAUS: Mobile And Ubiquitous Systems

When building a traditional closed system the system’s context is determined and
the (non-functional) requirements (operational, social, organizational constraints)
take the context into account. On the contrary, MAUS [10, 11] are open systems in
the sense that they have to deal with both possible changes in the context and user
needs. Examples of context can be the network context conditions and the execution
environment offered by the mobile devices. User needs can be expressed in terms of
dependability requirements (i.e., availability, reliability, safety, and security require-
ments). For example, availability can be expressed in terms of performance indexes
such as responsiveness, throughput, service utilization. If the context and user needs
change, then the system requirements change and, hence, the system itself needs
to change accordingly. Thus changes in the context and user needs might imply
system evolution, e.g., architectural configuration changes (e.g., addition/arrival, re-
placement, removal/departure of system components). The system needs to change
at run-time, while it is operating. This can be achieved through (self-) adaptive-
ness. For instance, Sect. 4 gives an example on how the throughput, considered as a
dependability attribute, can affect the way available software components should be
assembled in order to make a system up while fitting the dependability requirements
according to the user preferences and context of use.

Different kinds of changes at different levels of granularity, from SA to code,
can occur. In this paper we focus on architectural configuration changes. We will
show that, by considering context changes in conjunction with the user needs, it is
unfeasible to fix/choose a specific architectural configuration at an early stage in
order to fulfill the dependability requirements and retain the configuration during
the system execution. On the contrary, the ubiquitous scenario promotes the view
that systems can be dynamically composed out of available components possibly
accounting for dependability requirements. This view is promoted because depend-
ability can at most be assessed in terms of components’ assumptions on the system
context and the “best” (w.r.t. dependability requirements) architectural configura-
tion can only be dynamically induced by taking into consideration the respective
assumptions of the system components’. That is, for MAUS, it can be unfeasible to
fix a priori the SA and, then, deduce dependability since, e.g., due to changes in the
context, the experienced dependability might be not the wished one. A scenario in
which this phenomenon can occur is discussed in Sect. 4. Then our thesis is that for
MAUS the role of the SA is to provide the dynamic composition rules that dictate
how to compose (resp., reconfigure) the system in order to achieve (resp., keep) the
wished dependability, despite the context changes. That is, the SA is induced by a
high-level specification of the wished dependability degree. As discussed in more
detail in the following section, this introduces a new challenge concerning how to
assess dependability for MAUS by the dynamic induction of the SA that fulfills as
best as possible the specified dependability.

4 M. Autili et al.

3 The Challenge of Assessing Dependability for Mobile and
Ubiquitous Systems

MAUS are supposed to execute in an ubiquitous, heterogeneous infrastructure with
no mobility constraints. This means that the software must be able to carry on op-
erations while changing different execution environments or contexts. Execution
contexts offer a variability of resources that can affect the software operation. Con-
text awareness refers to the ability of an application to sense the context in which
it is executing and therefore it is the base to consider (self-)adaptive applications,
i.e., software systems that have the ability to change their behavior in response to
external changes.

It is worthwhile stressing that although a change of context is measured in quan-
titative terms, an application can only be adapted by changing its behavior, i.e.,
its functional/qualitative specification. Section 4 shows an example indicating how
context changes can lead to changes in the system’s functionalities when trying to
bind quantitative aspects of the system. For instance, (physical) mobility allows a
user to move out of his proper context, traveling across different contexts and, to
our purposes, the difference among contexts is determined in terms of available
resources like connectivity, energy, software, etc. (see Sect. 4). However, other di-
mensions of contexts can exist relevant to the user, system and physical domains,
which are the main context domains identified in the literature [9]. In standard soft-
ware systems the pace at which context changes is slow and the changes are usually
taken into account as evolutionary requirements. As already mentioned in Sect. 2,
for MAUS, context changes occur due to physical mobility while the system is in
operation. This means that if the system needs to change this should happen dynam-
ically.

MAUS need also to be dependable. Dependability is an orthogonal issue that
depends on QoS attributes, like performance and all other -bilities. Dependability
impacts all the software life cycle. In general dependability is an attribute for soft-
ware systems that operate in specific application domains. For MAUS, we consider
dependability in its original meaning as defined in [7], that is the trustworthiness of
a computing system which allows reliance to be justifiably placed on the service it
delivers . . . Dependability includes such attributes as reliability, availability, safety,
security. MAUS encompass any kind of software system that can operate in the fu-
ture ubiquitous infrastructure. The dependability requirement is therefore extended
also to applications that traditionally have not this requirement. Dependability in this
case represents the user requirement that states that the application must operate in
the unknown world (i.e., out of a confined execution environment) with the same
level of reliance it has when operating at home. At home means in the controlled
execution environment where there is complete knowledge of the system behav-
ior and the context is fixed. In the unknown world, the knowledge of the system
is undermined by the absence of knowledge about contexts, thus the dependability
requirement arises also for conventional applications. Traditionally, dependability is
achieved with a comprehensive approach all along the software life cycle from re-
quirements to operation to maintenance by analyzing models, testing code, monitor

Assessing Dependability for Mobile and Ubiquitous Systems 5

and repair execution. Traditionally, SA is considered as the earliest comprehensive
system model along the software lifecycle built from requirements specification. It is
increasingly part of standardized software development processes because it repre-
sents a system abstraction in which design choices relevant to the correctness of the
final system are taken. This is particularly evident for dependability requirements
like security and reliability, and quantitative ones like performance. As already said,
for MAUS, the assumption that the system SA is known and fixed at an early stage of
the system development might imply that, in given contexts, it is not possible to ob-
tain a dependable application without changing the SA. Thus, the overall challenge,
in assessing dependability for MAUS, concerns the problem of making systems up
by assembling available components whose dependability can at most be assessed
in terms of their assumptions on the system context. In this setting, it is crucial to
dynamically and efficiently induce the SA by taking into consideration the respec-
tive assumptions of the system components. The following section illustrates this
challenge by means of an example concerning the development of MAUS for the
e-learning domain.

4 An e-Learning Scenario

In the scenario of MAUS, service mash-up and widget User Interfaces (UIs) repre-
sent technologies attempting to shift system composition activities, out of a set of
ready-to-use components and underlying composition mechanisms, from static time
to run time, and from the developer level to the end-user level. Thus, they might be
considered promising technologies to ease the consideration of user-level depend-
ability requirements during system composition. However, the current limitation of
these technologies is that, even though they provide higher-level composition mech-
anisms (e.g., widget drag-and-drop), they do not allow one to deduce the “best pos-
sible” architectural configuration from dependability requirements. On the contrary,
what currently happens is that the user chooses the architectural configuration (i.e.,
the set of widgets and the way they have to be connected) and then experiences
the resulting “offered dependability”. Thus, service mash-up and widget UIs are
technologies still conceived to be used by deducing system dependability proper-
ties from the system architectural configuration chosen/fixed a priori. Indeed, while
keeping a high-level composition mechanism, those technologies should (i) allow
the user to specify the dependability requirements, and (ii) propose the composition
that fulfills, as best as possible, dependability and keep it despite possible context
changes.

In the following, by considering widget UIs in an e-learning application context,
we sketch two possible scenarios illustrating: (a) how an architectural configuration
fixed a priori can imply a, possibly unexpected, problem and (b) how, instead, a de-
pendability requirement can induce the “best possible” architectural configuration.

Marco is a student traveling from Italy to Canada. While on the train to the air-
port, he wants to start an e-learning session through his stand-alone e-learning client,
as deployed upon registration to the e-learning service.

6 M. Autili et al.

Fig. 1 e-learning scenario (a)

� Scenario (a): The e-learning client allows Marco to directly mash up widgets
to create lesson structure and add powerful online-test widgets, communication wid-
gets (chat, forum and personal messages), content scheduling widgets, and activity
tracking, announcements, content flows, cooperative content building widgets.

Foreground: Marco takes up his smartphone and connects, through his e-
learning client, to the e-learning service to get the latest available lesson of the
Computer Science course. Marco wishes to directly mash-up widgets to experience
a fully featured lesson. Thus, acting with his smartphone, Marco drags from the
widget repository and drops into the e-learning client UI all the widgets needed
for providing video, audio and other multimedia content (Fig. 1(1)). Unfortunately,
while in the train, Marco realizes that slides are correctly shown (by the slide dis-
playing widget), but video and audio are stuttered and not synchronized with the
current slide (Fig. 1(2)). Upon reaching the airport Marco recharges his smartphone
and he tries again to use the previously built widget mash-up and he is surprised to
be able to enjoy video, audio and other multimedia content of the fully featured ver-
sion (Fig. 1(3)). As a result, Marco does not trust the e-learning service and judges
it as non-dependable since it is not as trustworthy as wished.

Behind the scenes: The system configuration (i.e., the widget components mash-
up) that Marco has directly built, requires a high level battery state-of-charge and a
fast connection speed to properly work. Unfortunately, considering the current net-
work condition, only a (low-speed) GPRS connection can be established and, hence,
the built system is able to only display slides with stuttered audio and video, and not
synchronized video and audio. Upon reaching the airport, the system Marco is us-
ing relies on the same architectural configuration but, since now the battery is fully
charged and a fast WiFi network is in range, the configuration is able to properly
show video, reproduce audio and show other multimedia content. This highlights
that an architectural configuration chosen a priori might ensure a certain degree of

Assessing Dependability for Mobile and Ubiquitous Systems 7

Fig. 2 e-learning scenario (b)

dependability only under specific context conditions and, hence, it is not suitable for
an open environment.

� Scenario (b): The e-learning client allows Marco to specify dependability re-
quirements in terms of a notion of cost of the chosen solution depending on both
the network connection speed, i.e., throughput, and lesson content, i.e., size. We
recall that availability, as dependability attribute, can be expressed in terms of per-
formance indexed such as throughput. The client lets the e-learning service pro-
pose the widget components and their composition that represent the “best possible”
mash-up with respect to the specified cost, the current network context (e.g., type
of network in reach), and the execution environment context (e.g., battery state-of-
charge). This scenario is inspired by the scenario presented in [1] where we use the
CHAMELEON framework [1, 2] for implementing the e-learning client and server
components. This framework is fully implemented in Java [4, 5] and allows for de-
veloping context-aware applications that are adaptable to the resources offered by
the execution environment and network, and to some (a priori specified) depend-
ability requirements of the user.

Foreground: Marco takes up his smartphone and connects, through his e-
learning client, to the e-learning service to get the latest available lesson of the
Computer Science course. Since Marco wants to obtain a fully featured lesson, he is
willing to invest considerably in the process. When the e-learning client asks for the
cost by displaying a multiple-choice control with both high and low cost options,
he will opt for a high cost solution delivering the fully featured version (Fig. 2(1)).
After processing the choice, the e-learning service will inform Marco, via a pop-up
message, that the fully featured lesson is not obtainable since a high-speed connec-
tion cannot be established and his battery state-of-charge is insufficient to support
the energy demands for the duration of the fully featured solution. As an alterna-
tive, the e-learning service proposes a low-cost version of the lessons in which only
slides will be provided. The system also informs Marco that as soon the condi-

8 M. Autili et al.

tions exist, it will automatically switch to the fully featured version. Marco accepts
and, while in the train, only slides are shown (Fig. 2(2)). Upon reaching the airport
Marco recharges his smartphone and, after awhile, he is able to enjoy video, audio
and other multimedia content of the fully featured version (Fig. 2(3)).

Behind the scenes: Initially, the e-learning client can only establish a (low-speed)
GPRS connection and, hence, gets (from the widget repository) the widget that is
able only to display slides, i.e., the low-size lesson. In other words, this widget guar-
antees slide displaying having a low speed connection as assumption. Indeed, the
current architectural configuration of the e-learning client also comprises a hidden
(to Marco) widget that monitors the battery state-of-charge and WiFi connection
availability. Upon reaching the airport, the widget monitor detects that the battery is
fully charged and a WiFi network is in range. Thus, additional widgets (that have an
high speed connection as assumption) are selected (from the widget repository) and
added to the current architectural configuration for providing video, audio and other
multimedia contents. This allows Marco to enjoy a widget mash-up representing
the fully featured lesson. This means that the architectural configuration, initially
proposed, evolved to fully satisfy the specified dependability.

In order to give a more concrete flavour to the scenario it might be useful to
briefly introduce the CHAMELEON framework and to see how it can be regarded
as a possible approach to be exploited for solving the issue of dynamically induc-
ing the “best” possible architectural configuration from user-specified dependability
requirements.

Roughly, the approach offers a programming model [3] for adaptable applica-
tions. The programming model provides developers with a set of agile and user-
friendly extensions to Java for easily specifying generic code in a flexible and
declarative way, while being close to the Java programming language. The generic
code consists of two parts, the core code and the adaptable code, and allows for
specifying both the invariant semantics and the degree of variability of the applica-
tion, respectively. Concretely, the adaptable code provides developers with extended
Java constructs to specify variability in terms of adaptable classes that define adapt-
able methods, and alternative classes that define them (see Fig. 4). Then, an ad-hoc
preprocessor resolves variability by generating standard Java methods within stan-
dard Java classes that, opportunely combined, make-up different application alter-
natives, i.e., different ways of implementing an adaptable application specification.

In the setting of the widget-based e-learning scenario here presented, the e-
learning client can be implemented as an adaptable midlet and different alterna-
tives, i.e., different architectural configurations using/assembling different widgets,
are declaratively (i.e., implicitly without having the full knowledge of all the pos-
sible architectural configurations) specified for it in terms of generic code. Each
alternative guarantees some dependability requirements according to the specific
context of use (i.e., the resources offered by the execution environment provided
by the Marco’s device and the network condition). Furthermore, each alternative
represents a possible architectural configuration (different from the others) given in
terms of the widgets that are assembled and made interoperable in order to imple-
ment the client application’s SA. For instance, as it is shown in Fig. 3, at a higher

Assessing Dependability for Mobile and Ubiquitous Systems 9

Fig. 3 Two different SAs for the e-learning scenario’s client application

level, i.e., at the SA level, the client application can be described by two differ-
ent architectural configurations. One configuration, see Fig. 3(a), is related to the
SA that properly works with a slow network connection, e.g., GPRS. The other
configuration, see Fig. 3(b), concerns the SA that properly works for a faster net-
work connection, e.g., WiFi, and a good battery state-of-charge. As it is shown in
Fig. 4, the adaptable e-learningMidlet has two alternatives to accommodate this at
a lower level (i.e., code level). Each alternative provides implementation for all the
adaptable methods. The GPRS alternative connects via GPRS and, considering the
limited speed of this connection, allows for streaming (via the getLesson method)
the lesson slides only, i.e., only the slides’ content given into a textual format by
means of the SlideContentWidget. The WiFi alternative connects via WiFi
and, exploiting the higher connection speed, allows for streaming the high-quality
video lesson with all its multimedia content (slides plus other interactive multimedia
objects) by means of an assembly of the three widgets: SlideContentWidget,
VideoStreamingWidget, and AudioStreamingWidget.

The programming model permits the specification of Annotations that allows for
adding information about particular code instructions (see the keyword Annotation).
They are specified at the generic code level by means of calls to the “do nothing”
methods of the dedicated Annotation class. In this way, after preprocessing, anno-
tations are encoded in the standard Java code through well recognizable method
calls to allow for easy processing. For instance, in Fig. 4, the method call Annota-
tion.slsAnnotation (“Cost(high), Features(full)”), first line of the connect method in
the WiFi alternative, specifies that the WiFi connection, and hence the WiFi alterna-
tive, bears a high cost, but provides a high quality e-learning lesson. On the other
hand, the method call Annotation.resourceAnnotation (“Battery(high)”), first line of
the getLesson method, demands for a high battery state-of-charge, since the stream-
ing of the video lesson along with its multimedia content calls for a considerable
amount of energy to be consumed.

The scenario presented above clearly shows that for MAUS the architectural con-
figuration cannot be assumed a priori (to assess dependability) but it is dynamically
induced. As it is shown above, this can be done by exploiting information about the
single components and their context of use, and the desired dependability.

10 M. Autili et al.

adaptable public class e−l e a r n i n g M i d l e t extends MIDlet
implements CommandListener {

/∗ l i f e −cyc le management methods ∗ /
. . .

/∗ CHAMELEON s p e c i f i c management methods ∗ /
. . .

/∗ e−l ea r n i ng s p e c i f i c methods ∗ /
adaptable vo id connect () ;
adaptable vo id getLesson () ;
. . .

}

a l te rna t ive class GPRS adapts e−l e a r n i n g M i d l e t {
Widget s l ideContentWidget = WidgetFactory . getWidgetStub (. . .) ;
. . .
vo id connect () {

Annotation . s l sAnno ta t i on (" Cost (low) , Features (l i m i t e d) ") ;
connectViaGPRS () ;

}

/∗ streaming o f the lesson s l i d e s ∗ /
vo id getLesson () {

. . .
/ / C a l l i n g Sl ideContentWidget i n t e r f a c e s
r e s u l t = ((Sl ideContentWidget) s l ideContentWidget) .

getTextLevel7 (userName , t e x t F i l e) ;
. . .
con ten tF ie l d . s e t S t r i n g (r e s u l t) ;
c l ien tForm . append (con ten tF ie l d) ;
. . .

}
}

a l te rna t ive class WiFi adapts e−l e a r n i n g M i d l e t {
Widget s l ideContentWidget = WidgetFactory . getWidgetStub (. . .) ;
Widget videoStreamingWidget = WidgetFactory . getWidgetStub (. . .) ;
Widget audioStreamingWidget = WidgetFactory . getWidgetStub (. . .) ;
. . .
vo id connect () {

Annotation . s l sAnno ta t i on (" Cost (high) , Features (f u l l) ") ;
connectViaWiFi () ;

}

/∗ streaming o f the video lesson wi th i t s mul t imedia content ∗ /
vo id getLesson () {

Annotation . resourceAnnotat ion (" Ba t te ry (high) ") ;
. . .
/ / C a l l i n g Sl ideContentWidget , VideoStreamingWidget ,

/ / and AudioStreamingWidget i n t e r f a c e s
r e s u l t = ((Sl ideContentWidget) s l ideContentWidget) .

getImageLevel2 (userName , imageFi le) ;

i n t len = r e s u l t . l eng th () ;
byte [] data = new byte [len] ;
img = n u l l ;
data = Base64 . decode (r e s u l t) ;

/ / Create an image from the raw data
img = Image . createImage (data , 0 , data . leng th) ;
show (img) ;
. . .

VideoPlayer . I n i t i a l i z e (c l ientForm ,
((VideoStreamingWidget) videoStreamingWidget) .

getVideoSource (userName , mpegFile)) ;

AudioPlayer . I n i t i a l i z e (c l ientForm ,
((AudioStreamingWidget) audioStreamingWidget) .

getAudioSource (userName , mp3File)) ;
. . .

}
}

Fig. 4 An adaptable Midlet

Assessing Dependability for Mobile and Ubiquitous Systems 11

Even though the CHAMELEON framework has been developed in and for
Java [4, 5], other languages are eligible. To this end, we now discuss the portability
of the framework on some of the well known platforms in the market: (i) Devices
powered with Symbian Operating System (OS) can be programmed using differ-
ent languages, among which Java Micro Edition. Applications are developed and
deployed by using standard techniques and tools, such as the Sun Java Wireless
Toolkit. CHAMELEON can be used as it is; (ii) The Google’s Android OS uses the
Dalvik virtual machine to run applications that are commonly written in a dialect of
Java and compiled to the Dalvik bytecode. Even though different, the Dalvik byte-
code and the J2ME bytecode present many similarities that make the portability of
CHAMELEON straightforward; (iii) Concerning proprietary operating systems, such
as the iPhone OS and the BlackBerry OS, applications are developed by following
a close philosophy that does not require the flexibility of the CHAMELEON devel-
opment process. In fact, for such OSs the exploitation of CHAMELEON might make
no sense to address heterogeneity and resource limitation of the different execution
environments. These issues can be a priori addressed since applications run on a
priori known execution environments for which resource constraints can be tackled
by using explicit hard-coded conditionals.

5 Concluding Remarks: Is There a Role for Software
Architectures?

In light of the above, future research directions should address the challenges related
to mobility and ubiquity by devising a dynamic composition process (from user re-
quired dependability to system composition) for the endless openness of MAUS.
The process, possibly supported by a middleware for ubiquitous computing [6], has
to sustain the dynamic connection of system components “best suited” according
to the user-specified dependability. Indeed, the open and dynamic nature of MAUS
makes requirements continuously evolve, especially regarding the context of use and
the desired dependability. This calls for an approach that enables seamless and con-
tinuous software composition and adaptation. The dependability of the composed
system can be then assessed in terms of its components’ assumptions on the system
context.

In this paper, by describing an e-learning scenario, we have shown that the role
of the SA is to provide the dynamic composition rules that dictate how to compose
(resp., reconfigure) the system in order to achieve (resp., keep) the wished depend-
ability, despite the context changes.

Last but not least, the assembling process of MAUS can be no longer assumed
to be handled by IT experts only. Rather, end users should be able to play an ac-
tive role in the overall composition process, so that changes in requirements, as
much as in context of use, can be adequately handled. In this direction, the goal

12 M. Autili et al.

of the CHOReOS project1 (Large Scale Choreographies for the Future Internet),
we are involved in, is to address these challenges—in the domain of Service Ori-
ented Architectures—by devising a dynamic reuse-based development process, and
associated methods, tools and middleware, to sustain the composition of services in
the Future Internet and to move it closer to the end users. This again stresses the
required move from static assembling to dynamic composition, effectively calling
for adequate support for the dynamic reuse of components/services according to the
user-specified dependability.

References

1. Autili, M., Di Benedetto, P., Inverardi, P., Tamburri, D.A.: Towards self-evolving
context-aware services. In: Proc. of Context-Aware Adaptation Mechanisms for Perva-
sive and Ubiquitous Services (CAMPUS), DisCoTec’08, vol. 11 (2008). http://eceasst.cs.tu-
berlin.de/index.php/eceasst/issue/view/18

2. Autili, M., Benedetto, P.D., Inverardi, P.: Context-aware adaptive services: The plastic ap-
proach. In: Chechik, M., Wirsing, M. (eds.) Proceedings of the International Conference on
Fundamental Approaches to Software Engineering (FASE’09). LNCS, vol. 5503, pp. 124–
139. Springer, Berlin (2009)

3. Autili, M., Benedetto, P.D., Inverardi, P.: A programming model for adaptable java applica-
tions. In: Proceedings of the 8th International Conference on the Principles and Practice of
Programming in Java (PPPJ 2010) (2010, to appear)

4. Autili, M., Benedetto, P.D., Inverardi, P.: CHAMELEON project—SEA group. http://
sourceforge.net/projects/uda-chameleon/

5. Autili, M., Benedetto, P.D., Inverardi, P.: CHAMELEON project—SEA group. http://di.univaq.
it/chameleon/

6. Caporuscio, M., Raverdy, P.-G., Moungla, H., Issarny, V.: ubiSOAP: A service oriented mid-
dleware for seamless networking. In: Proc. of 6th ICSOC (2008)

7. IFIP WG 10.4 on Dependable Computing and Fault Tolerance: http://www.dependability.
org/wg10.4/

8. Issarny, V., Zarras, A.: Software architecture and dependability. In: Bernardo, M., Inverardi,
P. (eds.) Formal Methods for Software Architecture. LNCS, vol. 2804 (2003)

9. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: IEEE Workshop
on Mobile Computing Systems and Applications, Santa Cruz, CA, US (1994)

10. Weiser, M.: Open house. http://www.ubiq.com/hypertext/weiser/wholehouse.doc (1996)
11. Weiser, M., Brown, J.S.: Designing calm technology. http://www.ubiq.com/hypertext/weiser/

calmtech/calmtech.htm (1996)

1EU project CHOReOS No: 231167 of the Integrated Project (IP) programme within the ICT
theme of the Seventh Framework Programme for Research of the European Commission. Call
(part) identifier: FP7-ICT-2009-5. Start date: October 1st, 2010.

A Bestiary of Overlooked Design Patterns

John Aycock

Abstract Designing effective software is good. Nowadays, patterns are touting
tremendous efficacy. Regardless, naturally people always regret overlooked design
yardsticks.

To this end, we collect some overlooked design patterns together for considera-
tion.

1 Introduction

Ever since Gamma et al. radiated onto the software scene with design patterns [1],
there has been a veritable gold rush of efforts to catalog all possible design patterns.1

This can be seen to enhance the discipline of software engineering and act as an aid
to both aspiring software designers as well as those trying to divert attention from
the more egregious aspects of a steaming pile of software, e.g., “But look! It uses
a Chain of Responsibility right there!” Design patterns have also allowed software
developers to make statements aloud that were formerly restricted to runways in
Milan: “Is that pattern a genuine Gamma?”

However, some design patterns that draw on observed human behavior for their
inspiration have yet to be documented in the literature, a tragic oversight that we
correct in the remainder of this paper.

2 List of Patterns

2.1 Unwanted Visitor Pattern

Any visitor which originally claims to be visiting “just a little while” but ends up
grossly overstaying their welcome. Unwanted visitors often spend excessive time

1Ignoring the fate of many catalogs during the days of the Gold Rush.

J. Aycock (�)
Department of Computer Science, University of Calgary, 2500 University Drive N.W., Calgary,
Alberta, Canada T2N 1N4
e-mail: aycock@ucalgary.ca

K.K. Breitman, R.N. Horspool (eds.), Patterns, Programming and Everything,
DOI 10.1007/978-1-4471-2350-7_2, © Springer-Verlag London 2012

13

14 J. Aycock

in critical sections—like the living-room couch in front of the television—and are
seemingly oblivious to all attempts to remove them short of force majeure. They
consume massive resources, especially beer, and while the resources are eventually
released, they are not released in a form that anyone cares to reuse.

2.2 False Facade Pattern

False Facade patterns are the slimy salesmen of software development. A triumph of
form over functionality, False Facades are often found in software cobbled together
for demos. These patterns give all appearances of rich, robust software, but behind
this exterior lies mostly hardcoded values, crossed fingers, and duct tape. Successful
execution of software containing a False Facade demands the script of a Hollywood
production and more precision than an aerobatic stunt team.

2.3 Desperate Singleton Pattern

A Desperate Singleton pattern is not polymorphic so much as polyester, and is gen-
erally found at the well-known Foo Bar. Unfortunately, interest in the Desperate
Singleton’s now-legacy code has waned substantially; it is painfully aware of its
countdown timer and the limited remaining opportunities to spawn children.

2.4 Biased Observer Pattern

A Biased Observer is seemingly open-minded and keen to observe all state change
events, but it becomes increasingly clear from continued interaction with a Biased
Observer that it selectively accepts events that agree with its worldview and ignores
those that don’t. Granted, some state changes are less exciting than others—crossing
between Nebraska and South Dakota, for example. A conglomeration of Biased
Observers in a system often drives it into a red state.

2.5 Interior Decorator Pattern

Interior Decorators tend to consume many resources in their quest to inject non-
functional yet aesthetically pleasing elements into a design. The result of an Interior
Decorator instantiation is a tasteful mélange of an execution environment that is no-
tably unsuited to the code running within it. Exceptions are bound to be raised, as
throw pillows crop up seemingly from nowhere.

A Bestiary of Overlooked Design Patterns 15

2.6 Useless Adapter Pattern

Useless Adapters are not so much allocated as accumulated, often in the detritus of
kitchen junk drawers. They initially appear to be useful to adapt one interface into
another, but practical usage is invariably denied due to some inexplicable corkscrew-
shaped protuberance. Rare triumphs in applying a Useless Adapter to one interface
are short-lived, by the discovery that the opposing end of the adapter suffers from
gender identity disorder.

2.7 Lazy-Spouse Initialization Pattern

This pattern is typically characterized by a stubborn refusal to do anything with
garbage, or to fix pointers that have been dangling for “some time now.” Instances
take one another for granted, and seldom exchange messages, preferring instead to
use default arguments. Lazy Spouses usually use base 10; hex is infrequent.

2.8 Disreputable Builder Pattern

Disreputable Builder patterns are usually found in Design by Contractor method-
ologies. When Disreputable Builders finally begin computation, the resulting work
is questionable at best—assuming the work is ever completed at all—and the caller
will soon discover that the original time bounds they had been given were more
of a fiction than Moby Dick. To their credit, Disreputable Builders do seem to have
cracked the Halting Problem, as they have no problem stopping work at the slightest
provocation.

2.9 “Wanna-buy-a?” Bridge Pattern

There is a sucker object instantiated every minute, as the Wanna-buy-a Bridge Pat-
tern well knows. This pattern is notorious for giving away pointers to objects it
doesn’t own; comic hijinks ensue when the unsuspecting recipient of such a pointer
tries to access it.

2.10 Former Flyweight Pattern

A Former Flyweight pattern was bullied by other, larger patterns while it was still
young, pre-alpha software. This is reflected in its licensing, as the Former Flyweight

16 J. Aycock

was pantsed in front of the entire class one time, making it suddenly and reluctantly
open source. A mature Former Flyweight pattern compensates for past injustices by
allocating excessively large amounts of resources and doing lots of computation.

2.11 Industrial Mediator Pattern

An Industrial Mediator pattern is handy for resolving disputes between factory pat-
terns, especially when it comes to deciding which variable refers to which value,
i.e., binding arbitration. The destructor of a class implementing an Industrial Me-
diator is guaranteed to be called eventually, once the work of factory patterns is all
offshored.

2.12 Failed State Pattern

Making use of a Failed State pattern in a project is somewhat of a coup. A typical
application sees one corrupt, bloated design replaced by a leaner, more idealistic
design that will itself become equally corrupt and bloated as its predecessor in the
fullness of time. Some variants give at least lip service to processes being peers
rather than hierarchically organized, and are usually accompanied by ranting, hours-
long output streams.

2.13 Childproof Container Pattern

A Childproof Container is a container holding data that is impervious to all reason-
able attempts to access it. The data may be extracted by multithreaded applications,
where one thread pushes on the container and another twists the container simulta-
neously. The threads will at first seize up, in a manner reminiscent of severe consti-
pation, before the container finally relinquishes its bounty. A far easier approach to
accessing data in the container is to pass it off to a child process, which can get the
container open instantly.

2.14 Unionized Factory Pattern

Unionized Factories are the jealous mistress in the producer/consumer relation-
ship, not terribly interested in consumer choice or efficient production. They exhibit
tremendous concern over imported objects, and they can output an endless stream of
grievance objects if a worker thread in a Unionized Factory is terminated. Livelock

A Bestiary of Overlooked Design Patterns 17

is the preferred state of a Unionized Factory, because it assures an infinite amount of
work. Ironically, a union construct is never used in a Unionized Factory because
it implies that something can perform more than one role, which is strictly against
union rules.

3 Conclusion

That the author should not be permitted within several hundred meters of software
development activity went without saying beforehand, and really counts more as a
passing observation than a bona fide conclusion. We can, however, conclude that
the delicious potpourri that is the human experience is a wealth of untapped design
pattern potential.

Acknowledgements Mike Zastre suggested the original design pattern names.

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley, Reading
(1995)

End User Programming in Smart Home

Vilmos Bilicki, Zoltán Rak, Miklós Kasza, Ádám Végh, Róbert Béládi,
and Tibor Gyimóthy

Abstract In the field of ubiquitous computing, one of the most important chal-
lenges is the proper involvement of end users in the control of the system. They
should be aware of what is happening and why in the smart environment. A well
known approach for end user involvement in the controlling of IT systems is end
user programming. There are numerous approaches for enabling the end users to
define the business logic starting with decision trees and ending with domain spe-
cific languages.

In order to enable the end user to program in the smart home we have ported the
Drools toolkit and runtime, a well-known open source environment, to the Android
platform, and we have integrated it with the PECES middleware. With the help of
a smart home simulator, we benchmarked the response time of the solution. We
have found that even in the case of an intensive data source such as a 3D move-
ment sensor, the ADL (Activity of Daily Life) detecting DSL based algorithms are
performing very well.

V. Bilicki (�) · Z. Rak
FrontEndART Software Ltd, Zászló u. 3, 6722 Szeged, Hungary
e-mail: bilickiv@frontendart.hu

Z. Rak
e-mail: rakz@frontendart.hu

M. Kasza · Á. Végh · R. Béládi · T. Gyimóthy
Department of Software Engineering, University of Szeged, Dugonics tér 13, 6703 Szeged,
Hungary

M. Kasza
e-mail: kaszi@inf.u-szeged.hu

Á. Végh
e-mail: azvegh@inf.u-szeged.hu

R. Béládi
e-mail: brobi@inf.u-szeged.hu

T. Gyimóthy
e-mail: gyimi@inf.u-szeged.hu

K.K. Breitman, R.N. Horspool (eds.), Patterns, Programming and Everything,
DOI 10.1007/978-1-4471-2350-7_3, © Springer-Verlag London 2012

19

20 V. Bilicki et al.

1 Introduction

M2M (Machine-to-Machine) systems have recently gained new momentum thanks
to the increasing availability of low-cost components, and to the growing demand
for more automated and advanced user interaction with the surrounding environ-
ments. As the currently available solutions for intelligent places (e.g. home, work-
place, etc.) are designed as the evolutions of traditional electric plants, they suffer
from two main drawbacks: lack of interoperability and lack of intelligence beyond
simple automation. There are a few commercial systems that are built from different
sets of proprietary elements [13] but these systems are also closed and their intelli-
gence is very limited. It is not easy to argue for a given customer installing a given
sensor type twice because of the lack of interoperability of the domain specific ser-
vice providers. This situation is evolving. The trend we are envisioning is similar
to the trend we have seen in telecommunication. The so called last mile is now a
service which is shared between the different service providers. In the same way,
the M2M provider may provide an intelligent last mile offering controlled access
to the shared M2M infrastructure. This way, the total cost of ownership could be
reduced as the infrastructure could be shared between the different domain specific
service providers. As an example, one can imagine a solution where the information
coming from the wall mounted movement sensors is shared between the security
and the telemedicine providers. From the business point of view, the intelligent last
mile could be done via appliance or via utility model [6]. The service model is easier
to implement, as in this case intelligence could be centralized and implemented in
a dedicated place. The appliance model is trickier, as in this case the small atomic
appliances should interact with each other and the intelligence of the system is dis-
tributed among them. We apply a hybrid model which provides the technological
capability to cover both approaches. Due to the distributed nature of the M2M sys-
tem (in the case of the appliance model), different middleware solutions are utilized
by the M2M community in order to provide the necessary abstraction level for soft-
ware developers. There is a wide variety of issues that a middleware should take care
of. In the PECES FP7 project, we took part in the development of a role and rule
based location neutral middleware. In this article, we will describe our reference
software architecture based on the PECES middleware designed for M2M service
providers. the middleware provides the following capabilities:

• Context based group forming and group based data oriented communication. The
groups are tied to physical location of the sensors, the solution enables group
communication among devices placed in different locations.

• End user capability of reviewing and defining the logic of the different ways of
group forming.

• Seamless and secure integration of the dumb sensor and the sharing of sensors
among multiple service providers.

The article has the following structure: in the second section, we describe the high
level requirements that a M2M framework should fulfill, then based on the require-
ments several state of the art middleware solutions are analyzed. The third section

End User Programming in Smart Home 21

describes the innovation content of the solution we have developed. In the next sec-
tion, the high level software architecture and the utilized technologies are described.
In the fifth section, we describe the implemented use-case which is then bench-
marked and analyzed. The last section summarizes the key aspects of the reference
software architecture.

2 High-Level Requirements and State of the Art

A significant percentage of the M2M solutions implements the so called smart envi-
ronment or smart home service. There are several articles [6, 11, 13] discussing the
challenges that a smart environment could face. In the followings, we will summa-
rize the requirements described by the authors of articles [6, 11, 13, 14]:

• The end users are not expert IT programmers, but they should be able to under-
stand and control the smart home (there is no system administrator, etc.). The sys-
tem should be designed for domestic use. A significant number of the end users
prefer a conditional logic like formalism (if/then) for describing the behavior of
the system [11].

• The devices need to be rendered interoperable. (For example, middleware is re-
quired for dumb devices; proprietary protocols are used to provide for interoper-
ability, etc.).

• Software developers require a notation that offers a high level of abstraction. One
such abstraction is intelligent group forming which, based on the context, pro-
vides data oriented interaction among the group members.

There are few M2M middleware approaches focusing on the ability of the end user
to review and control the behavior of the system. In most cases the end user is
able only to tune the parameters but the business logic is hidden from him/her [1].
An ontology and SPARQL are commonly used to model and define business logic.
The popular Hydra middleware [7] for example is based on self-managing compo-
nents which are based on SPARQL rules. The middleware itself mostly focuses on
the interaction between the sensors and the data and there is no real context based
grouping capability. The authors of the article [18] are going one step forward; they
envision a genetic algorithm based security optimization layer on the top of the Hy-
dra platform. It is clear that these solutions could not provide the necessary trans-
parency for the end user to review the system and control its behavior. The authors
of the article [4] describe a similar ontology and a SPARQL based solution. Here,
the ADL (activity of the daily life) algorithms are encoded into SPARQL queries.
As a summary we can conclude that the ontology based modeling and SPARQL
based rule definition is popular among the middleware developers but this approach
cannot provide the necessary capability to the end user to overview and control the
system.

22 V. Bilicki et al.

3 Proposed Solution

We have seen in the previous section that the ontology based modeling and the
SPARQL based filtering are popular approaches among the different middleware
providers. Our solution also utilizes these technologies but in a novel way. Our soft-
ware reference architecture is built on the PECES middleware which provides an
easy to use low complexity context based grouping facility. The grouping service
is based on roles and rules. The rules could be defined in SPARQL or in a do-
main specific language. With the domain specific languages one can support end
user programming. This way, all the four dimensions of the ubiquitous system (de-
vice, security, application, and application logic configuration) could be overseen
and managed by the end user. The support of the dumb sensor that cannot run the
middleware (e.g. wall mounted movement sensors) is solved with the help of a local
coordinator which uses the virtual sensor concept. As the context based groups are
not limited by the local connectivity, multiple sites could be involved in the same
context, and this way, multiple sites could take part in a data oriented group commu-
nication process. The security framework uses the same role and rule engine, and it
enables the same abstractions. With the help of location neutral context aware and
secure group forming the dumb sensor could be shared among different domain spe-
cific service providers in a secure way. As a summary, the novelty of this solution
is:

• Domain Specific Language based rule definition of the context
• Support for context based data oriented communication between entities that need

not necessarily be geographically close
• Boxing the dumb sensor into a virtual sensor, and this way, sharing it among

different service providers

4 Architecture and Technologies

The abstract physical overview of the target M2M system is shown in Fig. 1. The
ecosystem consists of different smart spaces implementing the intelligent last mile
for the M2M service provider, and several domain specific service providers. Our
goal is to enable the secure sharing of the raw and the processed information coming
from different dumb sensors based on the context. In the figure, the devices inside
the orange boxes with dotted lines show a given context where the participants of
the context can use data oriented communication.

The telemedicine provider can receive the data coming from different movement
sensors. An important abstraction shown in the figure is the coordinator of the smart
spaces. This device acts as a gateway and enables the interaction among the differ-
ent smart spaces and the central repository. In order to implement the ecosystem
shown in Fig. 1 and the requirements described in Sect. 3, we elaborated the ref-
erence software architecture shown in Fig. 2. There are many different approaches
for implementing end user programming [8, 12, 15–17]. We selected the Domain

End User Programming in Smart Home 23

Fig. 1 M2M ecosystem

Fig. 2 Software stack

Specific Language approach, which has the capability to define the business logic
with high-level tailored graphics or text based constructs. We applied the Drools
toolkit which provides a rule engine with complex event processing capability and
flow based logic description. As a basic runtime we selected the Android on the user
side, while the central platform is based on the JEE container. Using the Android
as a runtime in a smart home is a plausible idea as there are cheap and powerful em-
bedded devices running this operating system. Selecting Domain Specific Language
as a tool for implementing end user programming was motivated by the included
complex event processing and the integrated flow and rule based logic engine. The
template based DSL integrates these tools tightly enabling the customization of the

24 V. Bilicki et al.

syntax of the applied rules. Currently, the Drools environment is utilized mainly on
the server side. We were able to port the framework to the Android platform enabling
DSL based programming on tablets and even on high-level embedded devices. The
runtime enables the remote deployment and monitoring of the DSL entities. With
this solution in hand, one can manage the deployed business logic from a central
location. The ported DSL framework itself is not enough for implementing smart
home functionality. A framework which enables the seamless integration of the sen-
sors and actuators placed in different locations with the tight security and high-level
interaction capabilities is needed. Here, we applied the middleware developed in
the PECES project. It provides ontology based modeling with SPARQL based logic
description for defining the different configuration dimensions of a ubiquitous sys-
tem. The details of the configuration handling capability are described in articles
[2, 9, 10], here we would like to provide only a high level overview. The configu-
ration capabilities of different ubiquitous systems are divided into three areas. En-
vironment configuration defines the scope and the management mechanism of the
middleware. Application configuration describes the configuration of the application
using the middleware itself. Here, we can think about selecting the components of a
component-oriented application based on the set of sensors. The goal of access con-
figuration is to restrict the communication provided by environment configuration
in order to fulfill security policies. PECES deals with these issues uniformly with
the Generic Role Mechanism. Roles are assigned tags based on the evaluation of the
rules defined in the SPARQL language on the background ontology model. With the
help of the SPARQL logic definition, different rules could be described, and based
on the rules roles for a given context could be assigned. Among the devices having
the same role assigned, data oriented communication could be initiated. Due to the
high costs of the SPARQL language, it is not suitable to provide the end user with a
programming capability. Here, DSL comes into the picture.

5 Evaluation

The data intensity of the data sources found in a M2M system varies from a sin-
gle measurement per month to several dozen measurements per second. Here, we
introduce a real life scenario that we implemented in order to validate the feasibil-
ity of the reference software architecture described in the previous section. The use
case scenario is based on the real life monitoring of the daily habits of an elder pa-
tient. The habits and daily activities are detected with the help of movement sensors
mounted on the walls and 3 dimensional acceleration sensors built into the smart
phone. We implemented two applications on the top of the infrastructure. The first
one is in the field of telemedicine where the goal of the application is to monitor
the activity of daily life (ADL). The second application is in the field of personal
security. If the monitored person leaves the flat and motion is sensed, the application
sends an alarm to the closest relative or friend. Both applications utilize a hierarchy
of rules implemented in a DSL designed for this field. The hierarchy is built from

End User Programming in Smart Home 25

Fig. 3 DSL flow and DSL rule

rules detecting atomic events such as movement from one room to another, and from
complex rules such as measuring the length of being in one room or measuring the
number of visits in a room. The temporal reasoning engine of the Drools framework
uses memory intensive data structures in order to minimize the processor utilization.
In a server environment this could be a good strategy but on an embedded device
can easily run out of the memory. In order to avoid this we applied a dynamic object
based state transfer between the first and the second tier. In this solution the result of
the first tier is boxed into dynamic objects and the rules of the second tier are based
on these objects. On the top of this two tier rule structure there are the flows which
describe the actions and workflows based on the events are rules shown on Fig. 3.
We can notice the custom syntax for both the flow and rule. A simple end user can
better understand these construct than a SPARQL query.

During our measurements, we used a simple java based simulator to simulate a
test environment. It was a realistic flat with preinstalled motion sensors, door sen-
sors, and an accelerometer which was bundled in the private mobile device of the
monitored person. The accelerometer and the sensors were implemented to act like
in real-life, i.e. detect the magnitude and direction of a proper acceleration (g-force)
as a vector quantity. When at rest, they measured a downward force of 1 g upwards
(−9,81 m/s2 or [0,0,−9,81] as represented within the Simulator). The movement
of the Actor was attached to alter this vector by obeying the following relation:
“acceleration = gravity + linear acceleration”. Motion sensors had the following

26 V. Bilicki et al.

Fig. 4 Runtime values and details for 1 s measurement

properties: coordinate within the Scene, the angle of the sensor (i.e. which direc-
tion they are looking at, in degrees, with 0° facing East), the range of the sensor
(in meters) and the field of view (in degrees). They also held a Boolean property—
cleared before each frame—on whether a motion was detected by them (0 for no
movement, 1 for any movement). Door sensors also had their coordinates and a
state: whether they are open or closed. Upon running the simulator an output file
was generated for 24 minutes (1/60th of a day). The use cases were shrunk down
to this magnitude, i.e. a condition for a daily use case was set to 30 seconds instead
of 30 minutes. The actor in the simulation followed a pre-set routine: 3 visits to
the kitchen, 3 visits to the toilet afterwards and leaving the house once for 5 min-
utes. Each line of the generated data file held the events generated by the sensors in
200 ms resolution. Each event had the timestamp it occurred, the type of the event
and data related to that type (e.g. in case of a motion sensor the three-dimensional
vector values). This data file was parsed on an Android device (Samsung Galaxy
Tab, Android 2.2, 592 MByte RAM, C110, 1 GHz, Cortex A8 Hummingbird Ap-
plication processor) that was used to conduct the measurements. The events were
fed to the Drools knowledge session with several approaches: real-time (i.e. every
200 ms) and batched (every 1 s, 30 s, 1 m, 5 m, 10 m and all at once (24 m)). The
elapsed time was measured for both inserting the data to the session and firing all
rules. Figure 4 shows a detailed chart for the 1-second interval measurement. The x

axis shows the logical time in the simulator. The green dots are the movements in a
given point of time. The red squares are the atomic events (mainly movement from
one room to another). Atomic events, second-level events and high-level events (use
case completions) are shown with description. Spikes in run time are clearly visible
near higher-level events. The description of the event is shown on the vertical lines.
The blue × symbols show the insert delay of the environment the y axis show this
value in milliseconds. We can notice that it Standalone high values are the result of

End User Programming in Smart Home 27

Fig. 5 Runtime values

Garbage Collecting. In all circumstances the maximum run times were way below
the batch interval times meaning all intervals are feasible for executing the rules.
The energy consumption of the wireless devices is influenced significantly by the
usage of the wireless interface. In most cases the best strategy is to make periodic
transfers with short data bursts and long sleeping periods (or periods with wireless
interface turned off). In our second experiment we studied the effect of the burst
on the performance of the Drools runtime. Figure 5 shows the results of the mea-
surements. We use the same data set we have previously described but instead of
inserting the events one-by-one we simulated the burst with a time window. This
time window contained the events from 1 second to half hour. The red plot on the
chart shows the maximal insertion time for a given window, the red and the yel-
low plots show the average and the minimum delay respectively. We can notice a
threshold around ten minutes where the delay increases significantly. In this case
the memory consumption reaches a given limit and the garbage collector runs very
frequently.

6 Conclusions

In this article we have described a reference software architecture for an M2M ser-
vice provider infrastructure which enables the end users to overview and to control
the system. Beside this capability we have shown a solution how to integrate the
already existing dumb sensors and how to share the data among different service
providers in an easy and secure way. In order to properly benchmark the proposed
architecture we defined real life use cases and ADL detecting rules. The results
show that the solution is feasible, the delay was lower than 100 ms. We believe that
there is huge potential in the DSL based M2M solutions. One potential field is the
telemedicine where one can describe the recommendations applied by the general

28 V. Bilicki et al.

practitioners by domain specific rules [3]. We would like to focus on the author-
ing capability of the end users in our next R&D project. Currently Guvnor [5] (an
opensource web based framework for rule storage and management) is used for this
purpose but it is not suitable for non-programmer end users.

Acknowledgement The work presented was partly funded by the National Innovation Office,
Hungary (project No. OMFD-00735/2005 BELAMIH), and PECES (Pervasive Computing in Em-
bedded Systems), funded by the European Commission under FP7 with contract number FP7-
224342-ICT-2007-2.

References

1. Allerding, F., Schmeck, H.: Organic smart home: architecture for energy management in in-
telligent buildings. In: Proceedings of the 2011 Workshop on Organic Computing, pp. 67–76.
ACM, New York (2011)

2. Apolinarski, W., Handte, M., Marrón, P.J.: A secure context distribution framework for peer-
based pervasive systems. In: Pervasive Computing and Communications Workshops (PER-
COM Workshops), 2010 8th IEEE International Conference on, pp. 505–510. IEEE, New
York (2010)

3. Bilicki, V., Végh, A.Z., Szűcs, V.: Klinikai döntéstámogató rendszerek és a telemedicina. IME:
Inform. Menedzsment Egészségügyben X(7), 50–54 (2011)

4. Bonino, D., Corno, F.: Rule-based intelligence for domotic environments. Autom. Constr.
19(2), 183–196 (2010)

5. Drools Guvnor—JBoss Community. http://www.jboss.org/drools/drools-guvnor.html
6. Edwards, W., Grinter, R.: At home with ubiquitous computing: Seven challenges. In: Ubicomp

2001: Ubiquitous Computing, pp. 256–272. Springer, Berlin (2001)
7. Eisenhauer, M., Rosengren, P., Antolin, P.: A development platform for integrating wireless

devices and sensors into ambient intelligence systems. In: Sensor, Mesh and Ad Hoc Commu-
nications and Networks Workshops, 2009. SECON Workshops’ 09. 6th Annual IEEE Com-
munications Society Conference on, pp. 1–3. IEEE, New York (2009)

8. Günther, S.: Agile dsl-engineering and patterns in ruby. Otto-von-Guericke-Universität
Magdeburg, Technical report (Internet) FIN-018-2009 (2009)

9. Handte, M., Wagner, S., Schiele, G., Becker, C., Marrón, P.J.: The base plug-in architecture-
composable communication support for pervasive systems. In: 7th ACM International Con-
ference on Pervasive Services (July 2010) (2010)

10. Haroon, M., Handte, M., Marrón, P.J.: Generic role assignment: A uniform middleware ab-
straction for configuration of pervasive systems. In: Pervasive Computing and Communi-
cations, 2009. PerCom 2009. IEEE International Conference on, pp. 1–6. IEEE, New York
(2009)

11. Holloway, S., Julien, C.: The case for end-user programming of ubiquitous computing en-
vironments. In: Proceedings of the FSE/SDP Workshop on Future of Software Engineering
Research, pp. 167–172. ACM, New York (2010)

12. Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaffidi, C.,
Lawrance, J., Lieberman, H., Myers, B., et al.: The state of the art in end-user software engi-
neering. ACM Comput. Surv. 43(3), 21 (2011)

13. Nikayin, F., Skournetou, D., De Reuver, M.: Establishing a common service platform for smart
living: Challenges and a research agenda. In: Toward Useful Services for Elderly and People
with Disabilities, pp. 251–255 (2011)

14. Solaimani, S., Bouwman, H., Baken, N.: The smart home landscape: A qualitative meta-
analysis. In: Toward Useful Services for Elderly and People with Disabilities, pp. 192–199
(2011)

End User Programming in Smart Home 29

15. Tuchinda, R., Szekely, P., Knoblock, C.A.: Building mashups by example. In: Proceedings
of the 13th International Conference on Intelligent User Interfaces, pp. 139–148. ACM, New
York (2008)

16. Van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: An annotated bibliography.
ACM SIGPLAN Not. 35(6), 26–36 (2000)

17. Vasudevan, N., Tratt, L.: Comparative study of dsl tools. Electron. Notes Theor. Comput. Sci.
264(5), 103–121 (2011)

18. Zhang, W., Schütte, J., Ingstrup, M., Hansen, K.: A genetic algorithms-based approach for
optimized self-protection in a pervasive service middleware. In: Service-Oriented Computing,
pp. 404–419 (2009)

Reconceptualizing Bottom-Up Tree Rewriting

K. John Gough

Abstract Bottom-up tree rewriting is a widely used method for code selection in
programming language compilers. The use of dynamic programming allows such
rewriters to emit code sequences that are optimal with respect to some prescribed
cost metric, at least for tree-structured computations. The semantics of rewriting
are specified by the production rules of a tree grammar. In this paper, it is shown
that a suitable reinterpretation of the meaning of the non-terminal symbols of such
grammars provides a significant increase in the expressivity of the rewriting system.
In particular, the generation of instructions for flow of control may be subsumed
into the rewriter. Likewise, transformation rules normally associated with peephole
optimization are also conveniently expressible.

1 Background

Bottom-up tree rewriting is a general mechanism for tree-to-tree transformation. In
this paper we restrict consideration to the use of rewriting for instruction selection
in a programming language compiler.

The context in which instruction selection by bottom-up tree rewriting is framed
is as follows: we are given a set of production rules of a tree grammar, each of which
has some known application cost. Each application has a “semantic action” which
leads to the emission of zero or more machine instructions. Given some expression
tree, the goal of rewriting is to find a sequence of rule applications that emits instruc-
tions to evaluate the expression with minimal cost relative to the given cost metric.
The “rewriting” aspect of the transformation is clear if the resulting instruction se-
quence is represented as a tree, with the dependencies between instructions explicit
rather than being implied by the use-definition relation between instructions in the
linear sequence.

By analogy with context-free string grammars we define the patterns of the rules
using terminal symbols and non-terminal symbols. Terminal symbols correspond

K.J. Gough (�)
School of Computer Science, Queensland University of Technology, Brisbane, Australia
e-mail: j.gough@qut.edu.au

K.K. Breitman, R.N. Horspool (eds.), Patterns, Programming and Everything,
DOI 10.1007/978-1-4471-2350-7_4, © Springer-Verlag London 2012

31

32 K.J. Gough

Fig. 1 Example rule patterns, and corresponding “tree tiles”

to the kind of the nodes. For an expression tree grammar this would be a finite
alphabet of operator tags such as “literal”, “add” and “assign”. Non-terminal sym-
bols correspond to syntactic categories of the tree. Each non-terminal expresses
an assertion on a node. For an expression tree grammar two non-terminal sym-
bols might be “Reg” and “Imm13” encapsulating the assertions “the tree rooted
at this node has been evaluated into an integer register” and “the tree rooted at this
node is an integer literal that fits in 13 bits” respectively. In the context of expres-
sion trees we may refer to the non-terminal symbols as forms since they are often
named to indicate the form or storage class of the location into which the tree is
deposited.

Figure 1 shows some examples of production rules (without semantic actions)
for some instructions for the SPARC architecture.

In this figure the comments given with each pattern give the textual meaning of
the rule. In the graphic, each pattern is shown as a tree fragment of one or more
nodes. The leaf nodes marked “any” may have any operator tag at all, provided that
the value of the tree rooted at that node may be put in the form stated under the
node1. The result form of the pattern is written above the root of the pattern.

The last two rules have a non-terminal symbol on both sides of the rule. We call
such rules chain-rules, since they are rules that allow a tree in some particular form
to be transformed into a different form.

The actions associated with these rules have not been shown. However, it should
be clear that the action for the first and second rules would be to emit a single “add”
instruction (after performing some housekeeping actions to define a destination reg-
ister). The action for the third rule would be to emit either one or two instructions to
load the immediate value, the required number depending on the size of the immedi-

1Of course, in some cases this constraint may lead to a very small choice. For example, probably
nothing but a “literal” node can be put into one of the immediate forms.

Reconceptualizing Bottom-Up Tree Rewriting 33

Fig. 2 Tree-tile for the
SPARC “stw” instruction
with a two-register lvalue

ate value. Finally, the last rule requires no action: it simply states that an immediate
value that fits into 13-bits also fits in 32-bits.

Given the representation of production rules as “tree-tiles” we may think of the
instruction selection problem as finding an optimal tiling which covers the given
tree subject to the following constraint: the form of each tile leaf must match the
form of the sub-tree rooted at that node.

The applicability of a particular pattern at a particular tree node depends on suc-
cessfully matching the terminal symbol of the node, and being able to put the sub-
trees rooted at the leaves into the specified form. Thus the applicability of a pattern
depends recursively on the applicability of other patterns further down the tree. This
is the reason that trees are matched “bottom up”.

From this perspective selection of a derivation may be thought of as an attempt
to cover the given tree with “tiles” corresponding to each rule. The tree must be
completely covered, and the points of contact between the tiles must have matching
non-terminal labels.

Tiles may be more complicated than the examples in Fig. 1. For example, the tile
corresponding to one variant of the SPARC “stw” (store word) instruction is shown
in Fig. 2.

In this pattern the lvalue which denotes the destination of the assignment is
formed from the sum of two register values. The “Void” form asserts “the tree has
been evaluated and all side-effects executed”. The declaration of this production
would state the pattern thus—

Void = assign(add(Reg a1, Reg a2), Reg src)

This example introduces another feature of the specification metalanguage
adopted here: each leaf of a pattern has a declared form, but may also be given
an optional name. If leaves are given meaningful names the pattern is more readily
understood, and semantic actions may refer to leaves by name rather than by the
positional references used by many other rewriter-generators.

34 K.J. Gough

1.1 Dynamic Programming

Almost all tree grammars have multiple derivations for even the most simple ex-
pression trees. The choice of derivation is thus driven by the cost metric. According
to circumstance this might be (some estimate of) least execution time, smallest code
size or least power consumption.

As it turns out, the selection of the productions from a given tree grammar to
discover a minimal cost covering of any given tree may be performed by dynamic
programming [1, 3].

It is worth noting that the availability of an efficient algorithm that solves the
minimal cover problem applies only to trees. The corresponding problem for an
arbitrary directed acyclic graph (DAG) is known to be NP-hard [2, 13]. Thus, for
code selection, the choice and placement of shared subexpressions must rely on
heuristic considerations. See Koes and Goldstein [12] for a more recent approach to
this problem.

The underlying principle that allows dynamic programming to work for tree
rewriting is the principle of optimality. A statement of the principle is as follows—

Suppose we have a tree T rooted at some node R, and we have a covering of the tree that
rewrites T into the non-terminal form F with minimal cost. Now, if P is the production
rule that is applied at the root R, then at each leaf of the P pattern the sub-tree rooted at that
leaf must have been rewritten into the required form at minimal cost.

As a rough approximation of the principle we may say “every part of a least-cost
covering must itself be least-cost”.

The principle gives us the possibility to perform a bottom-up computation on the
tree which is relatively economical. Starting from the leaves of the tree we find the
minimal cost of rewriting the node into any of the forms that are feasible. Recursing
up the tree we compute the minimal cost of rewriting other nodes in terms of the
known, minimal costs for the lower sub-trees, together with the cost of application
of the matching rule.

Rewriter generators are software tools that take a tree-grammar specification and
emit a compiler module that performs instruction selection. The dynamic program-
ming may take place at rewriter-generation time [8], or at compiler runtime. The
former method is faster, but less flexible. In this paper we consider only the second
possibility.

1.2 Labelling and Reducing

Rewriter generators which perform dynamic programming at compiler runtime in-
clude iburg [7], lburg [6] and mburg [9, 11].

In such rewriters the rewriting of each tree takes place in two steps. First, all the
nodes of the tree are labelled, then the tree is reduced to the required non-terminal
form.

Reconceptualizing Bottom-Up Tree Rewriting 35

The labelling phase visits every node in the tree in a bottom-up order. Labelling
computes, for every non-terminal form of the grammar, the least cost of rewriting
into that form. This step requires matching the tree structure immediately below the
current node against all the rule patterns to see which rules match the structure. If
a structure matches, and if the sub-trees of the pattern are able to be rewritten into
the required form then the pattern is applicable. If the pattern is applicable, and if
the cost of the rewriting is less than any previous cost of rewriting the tree to the
same form then the new minimal cost is recorded. The index of the production that
achieves the new minimum is recorded also.

Reduction is performed on a labelled tree by invocations of a Reduce method.
Typically this method takes two arguments. The first is a reference to the root-node
of the tree, the second is the form that is required. The computation proceeds by
examining the labels of each node starting at the root. Each label has a list of the
minimal cost of rewriting for every feasible form, and the rule that must be used to
achieve that best rewriting. Thus the rewriter fetches the rule that is used to achieve
the demanded form, and executes the reduction action of the rule.

The reduction action of each rule has two parts: the reduction must recurse to the
sub-trees so that they get rewritten also, and the user-specified semantic action of
the rule must be executed. Thus Reduce is called on every node that corresponds to
a leaf of the selected pattern, with the form demanded in the recursive call specified
by the leaf form of that rule. For a tree node that is being rewritten using the first
rule of Fig. 1 each sub-tree of the current node will be passed to a recursive call
of Reduce together with the demanded form “Reg”. For the chosen production the
user-specified semantic action would be to allocate a destination register and emit
an instruction that adds the two source registers together. The identity of the two
source registers is determined by the semantic actions of the sub-tree rewritings.

Most bottom up tree rewriter-generators restrict the structure of the semantic ac-
tions that may be declared in the grammar. Traditionally the semantic action is exe-
cuted after an implicit recursion to the sub-trees. As shown below, in order to gain
the greater expressivity proposed here it is necessary to allow arbitrary interleavings
of sub-tree recursion and user-specified semantic actions.

2 Predicated Patterns

An innovation in mburg was a facility for attaching predicates to patterns. A pred-
icated pattern is one that has a an auxiliary condition attached to its applicability.
A typical use of predicated patterns is to specify special-case translations, applicable
only if certain algebraic conditions are met.

Some other rewriter generators achieve the same effect by disallowing the use
of particular productions in undesired cases. This is achieved by declaring a cost
function that returns “infinite” cost for the undesired cases. It is not that the pattern
is held to be non-applicable, it is just that the infinite cost means that the undesired
production can never be part of a minimal cost cover of a tree. The use of explicit
predicates seems rather more natural.

36 K.J. Gough

Here is a simple example, specifying a strength reducing rewriting. Remember-
ing that (non-trapping) multiplication by powers of two may be implemented by
shifting, we declare—

Reg = mult(Reg lhs, Imm lit) &(IsPowerOfTwo(lit.value))

where the semantic action (not shown in the figure) would be to emit a left-shift,
rather than a multiplication instruction.

An ampersand in a rule introduces a parenthesised predicate. The predicate, in
this example, declares that this rule is applicable not just when the sub-trees are
available in the required form but when, in addition, the value of the immediate
expression denoted lit is a power of two.

In other cases predicates simply give an alternative to introducing an additional
non-terminal form. For example, in the grammar fragment given in Fig. 1, instead of
having separate forms for immediate values of different sizes (Imm13 and Imm32)
we might have chosen to declare a single form Imm and constrain the patterns with
a predicate when required. Thus the second rule in Fig. 1 would be expressed as—

Reg = add(Reg lhs, Imm lit) &(-4096 <= lit.value && lit.value <= 4095)

However, in the case of the SPARC instruction set the use of the “fits in 13-bits”
constraint is so widespread that it is almost certainly better to directly model these
values as a separate form.

Predicates are evaluated during the labelling pass, as part of the applicability
computation for a predicated rule. Thus the predicate may only depend on data that
is available during the labelling traversal.

2.1 Using Predicated Patterns

Predicated patterns may be used to produce a variety of special case translations
that are only applicable when particular properties hold. Here is a simple example,
to demonstrate the general idea.

A programming idiom of Pascal family languages involves integer expressions
of the form

(x + n)divm × m, where m = n + 1,

where div is integer division, x is an integer variable, and n and m are integer literals.
This expression rounds up x to the next higher multiple of m.

In the common case that m is a power of two, say 8, many C-programmers would
write (x + 7) & (-8) without a second thought. It is less obvious in the case
that m is an arbitrary number, 13 say, that the following C code returns the required
result—

int tmp = x + 12; result = tmp - tmp % 13;!

In both cases, the C computation is better than the Pascal idiom, even if the division
and multiplication are strength-reduced.

Reconceptualizing Bottom-Up Tree Rewriting 37

In any case, a predicated production may recognize the rounding idiom, with the
semantic action emitting whichever optimized instruction sequence is applicable—

Reg = mul(div(Reg t, Imm m1), Imm m2)
&(m1.value == m2.value)
{Emit “mask by –m” or “subtract remainder” code}.

This production replaces the Pascal idiom and a number of other related rounding
operations with an equivalent but faster computation.

3 What Are Forms?

In the traditional use of bottom-up tree rewriting for code selection the forms that are
represented by the non-terminal symbols of the tree grammar denote the “location-
kind” of the value computed at a node. In some cases there is some property of the
value that is also indicated by the naming of the form. Thus we have forms such
as: “IReg” denoting that the expression has been evaluated into an integer register;
“DReg” denoting that the expression has been evaluated into a floating point double
register; “Void” denoting that the expression has been evaluated for its side effects.

3.1 Forms and Post-Conditions

There is nothing about the use of dynamic programming or the principle of optimal-
ity that requires such a narrow view of the role of the non-terminal symbols. Indeed,
the role of the non-terminals is simply to introduce an additional finite-cardinality
dimension into the state space within which the optimization proceeds. A much
more useful way to attach meaning to the form enumeration is to identify each form
with a quite general post-condition that is asserted by the corresponding node of the
rewritten form of the tree. All of the forms used as examples above clearly fit easily
into such a conceptualization of the role of the forms.

The reconceptualization of forms as post-conditions allows a wider range of ex-
pressions to be rewritten by the technique, and fits easily with the way that program-
mers think about hand-written code.

The first step in generalizing the kind of post-condition that a form may assert
might be to include some property of the value computed, or some invariant of the
computation. We have already used a form, Imm13, to assert a value range limit.
Consider however the possibility of introducing a form that guarantees that all in-
stances of the expression will be evaluated into a register without observable side-
effect and, in particular, without raising an exception. Let us call this form SafeReg.

A sketch of the productions that might conservatively generate such a form is as
follows. Loading scalar local variable values, value parameters, static scalars and
immediate values are all trap-free. Non overflow-tested add, subtract, multiply and

38 K.J. Gough

all the bit-wise logical operations on trap-free operands are also trap-free. And so
on.

Having defined evaluations that assert such a post-condition, we next consider an
example use for such a form.

3.2 Full Evaluation of Boolean Expressions

It has been known since the 1960s that short-circuit evaluation of Boolean expres-
sions is not always optimal [14]. In the last fifty years, as branch penalties have
grown relative to machine cycle times this venerable observation is even more rele-
vant.

The full evaluation of a short-circuit Boolean expression will be computationally
equivalent to the short-circuit evaluation provided that each speculative operation
is trap-free and has no observable side-effect. In the manner of the SafeReg form
introduced above we define two new forms. RegBool asserts the post-condition “the
expression has been evaluated into a machine register, and is known to be a Boolean
value”. SafeBool is a refinement of RegBool and asserts, in addition, that the evalu-
ation is trap-free and has no observable side-effects.

Given such post-conditions, we may immediately add rules—

RegBool = orElse(RegBool, SafeBool)
{“Evaluate both terms, then do bitwise OR” }.

SafeBool = orElse(SafeBool, SafeBool)
{“Evaluate both terms, then do bitwise OR” } .

Here, the “semantic actions” just contain a description of the operational semantics.
Notice that in the first production the evaluation of the first disjunct does not need to
be safe. This is correct, since the first expression is always evaluated in the canoni-
cal, branching evaluation. The second disjunct is speculatively evaluated and hence
must be safe. The second production states that if both disjuncts are safe the entire
expression is safe.

There are corresponding productions for evaluating the “short circuit” AND in a
jump-free manner.

These productions compute when it is safe to emit jump-free code. However,
when is it profitable to do so? The answer is simple: if the cost metric is accurate,
dynamic programming will choose precisely those cases where the jump-free case
is superior.

Having introduced the notion of trap-free evaluation, there are a whole raft of
special, peephole-style patterns that may be defined. Here is just the simplest such
rule, for a special case of the (ternary) conditional expression p ? e : 0 where e

is trap-free, and the value of the expression when p is false is zero (or null)—

Reg = cndExp(RegBool p, SafeReg t, Imm f) &(f.value == 0) .

The semantic action for this rule is amusing. The Boolean value p is arithmetically
negated, transforming it into a mask word of either all ones or all zeros. This mask

Reconceptualizing Bottom-Up Tree Rewriting 39

is bitwise and-ed with the register value computed by the speculative evaluation of
the “true” sub-tree t .

3.3 Conditional Execution

In the same vein, the elimination of branch penalties, we may consider instruc-
tion selection for those machine architectures that provide for conditional execution,
such as ARM [4]. Dynamic programming seems to promise a quantitative basis to
choose between branching and conditional execution in such cases.

In the previous example we speculatively executed an evaluation, only to some-
times nullify the result with a masking operation in the semantic action. With condi-
tional execution the machine fetches and decodes instructions, but does not perform
any evaluation if the specified condition is not met. Such conditional code is more
widely applicable than our result-nullifying trick, since the evaluations need not
meet the rather stringent requirement of freedom from side-effects or traps.

Nevertheless, for ARM there is still a constraint on the computations that can
be made conditional. ARM has only one set of condition code registers, so that
(generally speaking) conditional code sequences may not be nested, and should not
modify the condition codes.2

The extent to which such a formulation will explode the number of non-
terminals for an ARM instruction selector is still under evaluation. Here however
is a simple case following from the previous example of evaluation of conditional
expressions—

Reg = cndExp(Flag cc, Nullable t, Nullable f) .

Instead of the constraint that the expressions must be “safe”, that is, trap-free, we
have the milder constraint that each instruction of the evaluation must be eligible for
conditional execution. The semantic action makes the first evaluation conditional on
the true value of the flag, with the inverse condition on the second evaluation.

In the example, the Flag form asserts that the predicate has been evaluated into
the condition code flags. The Nullable form asserts that every instruction in the
evaluation of the expression is eligible for conditional execution.

3.4 Emitting Jumping Code

Consider the problem of honoring the semantic demand “Evaluate Boolean expres-
sion E and branch to some given label if the value is true, otherwise control must
fall through to the following instruction”. We see that the semantic demand calls for
the establishment of the evaluation post-condition “If true, control has passed to the

2There are actually some special case exemptions, but we do not treat these here.

40 K.J. Gough

Fig. 3 Control flow for JumpFalse of a Boolean OR

given label, otherwise control has fallen through”. Let us denote this post-condition
“JumpTrue” where the target label is an inherited3 attribute of the evaluation. We
assume the existence of a corresponding “JumpFalse” denotation.

Now let us further suppose that in some particular case the Boolean expres-
sion is (E1||E2) where “||” denotes short-circuit evaluation of Boolean OR. Ev-
ery experienced programmer would immediately decompose this problem as the
prescription—

• Emit code to evaluate E1 and conditionally branch to the given label if the value
is true, otherwise fall through to the next instruction.

• Emit code to evaluate E2 and conditionally branch to the given label if the value
is true, otherwise fall through to the next instruction.

Notice how the natural description of the decomposition is phrased in terms of ex-
actly the kind of post-conditions that we associate with non-terminal symbols. The
prescription appears to be simply a repetition of the “jump if true” pattern for each
sub-expression in turn.

The natural decomposition of this problem corresponds to the rewriting pattern—

JumpTrue = orElse(JumpTrue lOp, JumpTrue rOp)

where orElse is the node-tag for the “||” operator.
Of course, this description has glossed over the manipulation of the “given” label

values. The given label is an inherited attribute of the orElse node that is the root of
expression E. This same label must be passed on to both of its child nodes prior to
the recursive reduction of the two sub-trees. These label manipulations are part of
the semantic actions of the rules. Such manipulations require no action during the
labelling traversal and have no influence on the determination of minimality.

The logically reversed branch for the same operator decomposes into a similar
rewriting pattern—

JumpFalse = orElse(JumpTrue Exp1, JumpFalse Exp2)

in this case the label manipulations are slightly more complicated. Figure 3 has a
representation of the control flow. We wish for control to end up at the “given”
label only if both expressions evaluate to false. In the event that the first expression
evaluates to true we should immediately jump to the next instruction following the

3In the language of attribute grammars, an inherited attribute is one that is passed down the tree
from an ancestor node.

Reconceptualizing Bottom-Up Tree Rewriting 41

entire evaluation. Since this “next instruction” location is the target of a jump from
the evaluation of the first disjunct, it is necessary to allocate and name a new label
for this location. In the figure this label has been named “fall”.

The first disjunct is evaluated to establish the “JumpTrue” post-condition with
the “fall” label as the target. If control falls through to the evaluation of the second
disjunct the “JumpFalse” post-condition is established with our original inherited
label as target.

The dual problem, where the expression E is (E1 && E2) and where “&&” de-
notes short-circuit evaluation of Boolean AND decomposes in similar ways—

JumpTrue = andThen(JumpFalse lOp, JumpTrue rOp)
JumpFalse = andThen(JumpFalse lOp, JumpFalse rOp)

where andThen is the node-tag for the “&&” operator.
Just to complete the Boolean rewriting overview, consider the following patterns

for the Boolean negation “not” operator—

JumpFalse = not(JumpTrue child)
JumpTrue = not(JumpFalse child) .

Of course! We evaluate the same child expression, but reverse the sense of the
branch. These two rules will have zero application cost, since they require no run-
time action. In both cases the only semantic action of the rule will be to copy the
destination label from the root node to the child node at compiler runtime.

It should be noted that the derivation of branching control flow for arbitrary (short
circuit) Boolean expressions is unambiguous. Indeed, the instructions generated by
these productions exactly duplicate those generated by the (deterministic) recursive
FallTrue/FallFalse encoding pattern. See Gough [10, Chap. 9] for an example.

There is no need for dynamic programming to generate the code in this partic-
ular case. Nevertheless, the generation of control flow by a tool-generated rewriter
has some advantages. In particular, it provides a uniform mechanism for instruc-
tion selection, including the fall-back code generation that is necessary when some
otherwise profitable optimization of a Boolean evaluation is stubbornly unsafe.

4 Consequential Changes

The small example of the previous section hints at a radical expansion of the tasks
that tree rewriting might be used to perform. However, any such expansion requires
a few other generalizations of the framework.

4.1 Computing the Cost

In order to compute the cost of evaluation of a particular expression tree rooted at
some node N we start with two pieces of information: the minimal costs of evalu-
ation of each sub-tree into the form required by the specified rule, plus the cost of

42 K.J. Gough

application of the rule that we are considering using at node N . The way in which
these values are aggregated together is trivial in the case of a fully evaluated expres-
sion: we simply add the cost of application to the sum of the known costs of the
sub-expressions.

However, if the expression is not fully evaluated in every execution of the emitted
code, then we shall need a different way of aggregating the known cost values, at
least for metrics that seek to model runtime execution cost.

In the case of a short-circuit expression evaluation the first sub-expression is
always evaluated, and hence always exacts its full cost. However, the second sub-
expression is only sometimes evaluated. Thus the aggregated cost will be the full
cost of the first sub-expression, together with some discounted cost for the second
sub-expression. Of course, each of the sub-expressions may themselves be subject
to partial discounting.

In summary, the notion of the cost of a rewritten tree must be understood in
a statistical sense, rather than the absolute sense that applies for fully evaluated
expressions. In such cases the simple additive aggregation of sub-tree costs must
be replaced by either a heuristic discounting factor or perhaps a profile-directed
weighting.

4.2 Handling Inherited Attributes

For fully evaluated expressions the use of synthesized4 attributes of the rewriting is
sufficient. For example, if a rule calls for the emission of a register to register add
the source registers of the instruction will have been allocated during the rewriting
of the sub-trees, and thus will be available when the “add” instruction needs to be
emitted.

By contrast the examples in the previous section show that when flow of control
instructions are generated, label values need to be copied and/or allocated prior to
the recursive call of Reduce which triggers the emission of the sub-expression eval-
uation code. For these examples label values are inherited attributes, source registers
are synthesized attributes.

Thus, in order to support the wider range of possible rewritings the way in which
semantic actions are specified for rules must be generalized. In particular the prop-
agation of both inherited and synthesized attributes must be supported. Allowing
arbitrary interleaving of user-specified computations and reduction recursions pro-
vides an easy path to handle both cases.

Previous rewriter-generators have supported rewriting patterns where Reduce()
is implicitly called on the sub-trees rooted at the pattern leaves prior to the emission
of the code explicit in the semantic action of the active production rule. In the new

4In the language of attribute grammars, a synthesized attribute is one that is passed up the tree from
a descendant node.

Reconceptualizing Bottom-Up Tree Rewriting 43

framework actions may need to be performed before, after and even between reduc-
tions of the sub-trees. If follows that the positions of the recursions must be explicit
in the semantic actions.

The work described in this paper began as a project to reimplement the 1997
program mburg [11] so as to generate C#. However, as the ideas described here have
evolved, so the new tool has passed through several iterations. The current version,
“GPBurg”, is written in C#, and produces rewriters targetting the .NET framework.

Compared to other rewriters, GPBurg adds the following new features to its input
metalanguage—

• Support for predicated productions.
• Explicit markers locating sub-tree recursion within semantic actions.
• Support for overriding the default cost aggregation rule.
• Support for productions with variable arity.

The rewriter has been used in a code emitter for an experimental C# version 3
compiler with an extensible type system [5]. The emitter output is standard .NET
ILASM. Most of the concepts introduced here, such as substitution of alternate en-
coding patterns and safe full-evaluation of Boolean expressions, have been tested.
For the experimental emitter all flow of control is generated by the rewriter, validat-
ing the claims of Sect. 3.4.

4.3 Future Work

The demonstration of these ideas in a framework that emits virtual machine code
has an obvious limitation: since the JIT has still to work its magic, the cost met-
ric is necessarily imprecise. A new implementation, still under construction, will
emit ANSI-C and will be tested with a rewriting grammar targetting ARM. This will
provide a flexible framework for rapid experimentation with grammar variants and
standard embedded benchmarks. We will quantify the gains that are possible using
conditional execution, and the compile-time costs of the additional complexity of
the grammar.

5 Conclusions

The key concept in the reconceptualization of bottom-up tree rewriting is the recog-
nition of forms as being a finite set of rather general postconditions on the emitted
code. This concept has been validated by preliminary experiments. The quantitative
utility of this insight is a matter that is still being explored.

The consequences of such a reconceptualization can also be seen, at least in out-
line. If rewriting is used to generate (or replace) flow of control, then the meaning
of the cost metric must also be radically reconsidered. Costs must be now under-
stood in a statistical sense, and take into account the execution probabilities of each

44 K.J. Gough

instruction path. Furthermore, the simple rule for aggregation of costs by addition
of sub-tree costs must also become more nuanced.

It should be noted however that if tree-rewriting is used to generate flow of con-
trol, but not to choose between branching and non-branching implementations the
situation is much simpler. As remarked earlier, the branching flow of control gen-
erated for short-circuit Boolean evaluation is deterministic. Therefore the allocation
of costs and the cost aggregation strategy cannot influence the outcome, and may be
chosen arbitrarily.

Finally it should be reiterated that the implementation of these ideas requires a
generalization of the mechanisms for specifying semantic actions in the grammar.
The specification must be able to compute inherited as well as synthesized attributes,
and must thus be able to specify the position of the sub-tree recursions in each
semantic action.

References

1. Aho, A.V., Johnson, S.C.: Optimal code generation for expression trees. J. ACM 23(3) (1976)
2. Aho, A.V., Johnson, S.C., Ullman, J.D.: Code generation for expressions with common subex-

pressions. J. ACM 24(1) (1977)
3. Aho, A.V., Ganapathi, M., Tjiang, S.W.K.: Code generation using tree matching and dynamic

programming. ACM Trans. Program. Lang. Syst. 11(4) (1989)
4. ARM: ARM Architecture Reference Manual. ARM Limited. http://infocenter.arm.com/help/

index.jsp?topic=/com.arm.doc.ddi0406b/index.html
5. Craik, A.J., Kelly, W.A.: Using ownership to reason about inherent parallelism in object-

oriented programs. In: Gupta, R. (ed.) CC 2010, 19th International Conference on Compiler
Construction, Paphos, Cyprus. LNCS, vol. 6011 (2010)

6. Fraser, C.W., Hanson, D.R.: A Retargetable C Compiler: Design and Implementation. Ben-
jamin/Cummings, Redwood City (1995)

7. Fraser, C.W., Hanson, D.R., Proebsting, T.A.: Engineering a simple, efficient code generator
generator. Lett. Program. Lang. Syst. 3, 213–226 (1992)

8. Fraser, C.W., Henry, R.R., Proebsting, T.A.: BURG—Fast optimal instruction selection and
tree parsing. SIGPLAN Not. 27(4) (1992)

9. Gough, K.J.: Bottom-up tree rewriting tool MBURG. SIGPLAN Not. 31(1) (1996)
10. Gough, J.: Compiling for the NET Common Language Runtime. Prentice-Hall PTR, Upper

Saddle River (2002)
11. Gough, K.J., Ledermann, J.: Optimal code-selection using MBURG. In: ACSC 20, Aus-

tralasian Computer Science Conference, Sydney (1997)
12. Koes, D.R., Goldstein, S.C.: Near-optimal instruction selection on DAGs. In: CGO’08,

Boston, Massachusetts, April 2008
13. Proebsting, T.: Least-cost instructions selection in dags is NP-complete. http://research.

microsoft.com/~toddpro/papers/proof.htm
14. Wulf, W.A., et al.: The Design of an Optimizing Compiler. American Elsevier, New York

(1975)

Automated Adaptation of Component Interfaces
with Type Based Adaptation

Thomas Gschwind

Abstract The construction of software can be improved by building software from
reusable parts, which are typically referred to as software components. Software
components can be developed independently from each other, thus decreasing the
overall development time of a project. A disadvantage of software components,
however, is that due to their independent development, component interfaces do
not necessarily match and thus need to be adapted. In this paper, we present type
based adaptation an adaptation technique that, unlike other techniques, supports the
automated adaptation of component interfaces by relying on the component’s type
information and without requiring knowledge about the component’s implementa-
tion. In this paper, we describe how we have achieved this kind of functionality and
we will show how we have applied type based adaptation in practice.

1 Introduction

The essential idea of software engineering is to systematically construct software
out of parts that we call components [14]. A key benefit of software components
is that they can be developed independently from each other. Components may be
developed by different groups who may be working on different parts of the same
application or even by groups that may not even know about each other’s efforts.
Only this independent development enables the construction of large software sys-
tems.

Most component models available today, such as the CORBA Component Model
(CCM) [19–21], the JavaBeans component model [7], the Enterprise JavaBeans
(EJB) component model [3, 18], or COM [4] rely on black box components
with well-defined and publicly available interfaces, a contract that the component
promises to fulfill. Components only interact through the use of these component
interfaces and do not require any knowledge of the implementation of the compo-
nent itself. Software components are perfectly suited for object-oriented software

T. Gschwind (�)
Zurich Research Laboratory, IBM, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
e-mail: thg@zurich.ibm.com

K.K. Breitman, R.N. Horspool (eds.), Patterns, Programming and Everything,
DOI 10.1007/978-1-4471-2350-7_5, © Springer-Verlag London 2012

45

46 T. Gschwind

development since their interfaces integrate nicely with the type system provided
by object-oriented programming languages. As a result, software components have
gained especial importance for the development of object-oriented software appli-
cations.

Although software components provide several benefits new problems arise with
the use of software components. One such issue is the adaptation of software com-
ponents that conceptually may interact with each other but which cannot due to
syntactical incompatibilities between their component interfaces. In the context of
distributed object technologies where the components that need to interact with each
other cannot be known a-priori, the adaptation of components is of major impor-
tance. To solve these adaptation problems, we have developed type based adapta-
tion.

The design goal of type based adaptation is to provide a means for the auto-
mated adaptation of software components and to be usable in combination with the
component models available today. Except for the type information of the compo-
nent interfaces today’s component models do not provide any additional semantic
or formal description. As we will show in this paper, it is sufficient to use the type
information of the component-interfaces expected and those provided by a compo-
nent, information provided by any modern component model. Information about the
provided interfaces can be obtained from the component model’s environment. The
extraction of the information about the expected interfaces, will be shown later in
this paper.

The remainder of this paper is structured as follows. Section 2 presents a set of
application domains that can benefit from using type based adaptation. In Sect. 3, we
describe component adapters the basis of our adaptation approach. These adapters
are able to convert between different component interfaces or just individual parts
thereof. In Sect. 4 we explain how these adapters can be composed to form more
powerful adapters. By storing component adapters in a repository that enables them
to be retrieved and combined, the process of adaptation can be automated. The re-
quirements for such a repository are given in Sect. 5. In Sect. 6 we present our
implementation of type based adaptation and how we have applied it to an Internet
Bookstore application. We have also used this implementation to empirically verify
our adaptation technique. In Sect. 7, we discuss the limitations of our approach and
how we plan to eliminate them in future versions. We discuss related work in Sect. 8
and draw our conclusions in Sect. 9.

2 Application Domains

Distributed systems are one application domain for type based adaptation. In a
distributed system, clients look up the components they need to interact with at a
naming or trading service [5]. Only if the component required is available and pro-
vides the interface expected by the client intercommunication is possible. Using type
based adaptation, however, it is also possible to communicate with a component that
uses a syntactically different interface.

Automated Adaptation of Component Interfaces with Type Based Adaptation 47

One application where such functionality might be useful is an Internet store that
allows users to browse through the products available and to select and buy those of
interest. At the checkout phase the user is asked to select a shipping address from an
address book component which typically is a part of the Internet store. Using type
based adaptation it is possible to let the user specify an address book component
of his choice and to adapt the component interface of this component to the one
required by the Internet store. Now, the user may select the shipping address from
those addresses managed by his address book component.

Type based adaptation is also ideal for maintaining compatibility to older ver-
sions of a system whenever the interface of a component changes. In the Java Pro-
gramming Language, this problem has been solved by allowing developers to de-
clare a method as deprecated [2]. When the developer uses a deprecated method, the
Java compiler emits a warning message. Although this approach allows the depre-
cated methods to access the component’s internal state, the legacy code necessary
to maintain compatibility to older systems is still part of the component.

The advantage of type based adaptation is that it allows the decoupling of the
component’s legacy code from its implementation by providing a separate adapter
that implements the legacy code. Now, the old and new versions of the interface
can be used simultaneously without the user noticing it. After all the users have
upgraded to the new interface, the adapter providing the old component interface
can be discarded easily without having to change the component again. Hence, the
developer can focus on the new version of a component without having to deal with
legacy code that only provides compatibility to older versions of the system.

Another application domain is pervasive computing where the components are
installed on the individual pervasive computing devices which need to interact with
each other. Since new devices are constantly entering and leaving the environment,
it is necessary to be able to interact with a large number of software components,
even if they use syntactically differing interfaces.

The user of a PDA, for instance, that frequently has to make appointments with
other people might want the calendar component of his PDA to contact that of an-
other PDA to come up with a possible date for an appointment. Since it is likely
that not every PDA user will be using the same calendar component and that the
calendar components will use different component interfaces to query for available
dates, the component of the other PDA needs to be adapted to meet the requirements
of the expected component interface.

The intercommunication of software components of large software systems that
are composed by components contributed by different vendors is also a perfect
choice for type based adaptation.

Consider a hospital system where the patient management system is bought from
one vendor, the blood analysis system from another one, and the accounting soft-
ware is bought from a third one. When certain blood tests are requested using the
patient management system, they need to be forwarded to the blood analysis system
and the test results need to be returned to the patient management system. Addition-
ally, a record for the accounting software has to be generated. Unfortunately, there
are a lot of different component interfaces used by such software. This is due to

48 T. Gschwind

the large number of systems available and due to different regulations in different
countries. So far, these systems are being adapted on an individual basis; a solution
that is cumbersome for clients and vendors.

3 Adapters

Today’s component models allow a program to query for the interfaces implemented
by a given software component and for the component features defined by the com-
ponent interfaces. Depending on the component model, this information can be pro-
vided using an interface repository [21], a type library [4], or reflection [13].

With the term feature, we refer to the externally visible interaction points of a
component [19] such as the methods that may be invoked, the properties a com-
ponent provides, and the events it may trigger. Since most component models map
component interfaces onto a corresponding interface in an object-oriented program-
ming language, properties and events are frequently realized using methods adher-
ing to a certain naming convention. For instance, a property x is specified using
a getX() and setX() method. This due to the fact that many type systems limit the
definition of an interface to a set of methods.

In the following discussion, we will first focus on the interfaces provided by a
software component and subsequently extend our approach to be applied to the in-
dividual features of a component. Like an interface in an object-oriented program-
ming language, an interface of a software component represents a contract that the
component promises to abide to [16]. Thus, the knowledge of the component inter-
face provides already information to reason about the component’s semantics. The
missing information, however, is how to adapt one component interfaces to another
conceptually compatible but syntactically different component interface.

Today’s component models do not provide any semantic description of the com-
ponents. Additionally, it is unclear whether it is possible to derive the algorithm to
adapt a component on the basis of such a description alone. Hence, we have chosen a
different approach to component adaptation. Instead of dealing with the description
of the component’s semantics, we focus on the specification of how one component
interface can be adapted to another semantically compatible component interface.
As we will show our approach can use this information to build more complex com-
ponent adaptations and to infer on the basis of this information whether a component
can be replaced with another component.

To provide this adaptation information, type based adaptation uses component
adapters. These adapters algorithmically describe how to translate different com-
ponent interfaces, and thus types, into each other. An adapter that sits between two
components provides on the one side the interface expected by a component A and
on the other side makes use of the interface provided by another component B that
A wishes to interact with. An adapter translating between component interfaces, we
write as shown in equation 1 where Tto represents the component interface expected
by a component A and Tfrom that provided by a component B .

Γ � a : Tfrom � Tto (1)

Automated Adaptation of Component Interfaces with Type Based Adaptation 49

Fig. 1 Sample application
requiring an address book
component

Using this approach, we can compose two adapters a and b if the type translated
to by adapter a matches that expected by adapter b. More details on the composition
of adapters will be shown in Sect. 4.

So far, we have focused on entire component interfaces. In some cases, however,
it will not be possible to implement an adapter that provides the functionality of the
entire component interface Tto on the basis of Tfrom. In addition, many applications
that require a component with the component interface Tto will not make use of all
of the functionality provided by the component interface. This is due to the fact that
components try to be highly versatile and thus will typically provide much more
functionality than required by a single application.

Consider the shopping application of Fig. 1 for example. This application has
been programmed with a specific address book component in mind but only uses
two of the component’s methods. Hence, an adapter that is only able to provide the
functionality of the getAllAddresses() and getAddress(id) methods of
the AddressBook component would be sufficient.

To support such cases we can break a component interface up into its individ-
ual component features (e.g., methods, properties, and events). Subsequently, type
based adaptation supports adapters that do not translate the whole component inter-
face but that only provide specific features of a component interface on the basis
of specific features of another component interface. An adapter that translates one
set of features into another set of features, we write as shown in Eq. (2). Again, the
features required by an adapter are written on the left hand side and those provided
on the right hand side. The name of a feature is represented by fi and its type by Ti .
I and J represent index sets.

Γ � a : {fi : Ti}i∈I � {fi : Ti}i∈J (2)

It is important to note that the semantics of a feature is only well defined if the
name of the feature includes the name of the given component. For example, just
specifying that an adapter provides the saveAs() feature is not sufficient since
different components will have such a feature but with different semantics attached
to it. Only if we say the adapter provides the saveAs() feature as provided by the
Microsoft Word component, the semantics of the adapter is well defined.

One problem that needs to be solved with this approach is that from the com-
piler’s point of view, the type safety of an application is judged on the basis of the
component interface alone and not on the basis of the features used. Thus, from a
compiler’s point of view any substitute has to provide the complete interface even
if the application uses only a subset of its functionality. We will show in Sect. 6

50 T. Gschwind

how our implementation deals with this problem, its possible solutions, and their
advantages and disadvantages.

Currently, we require a developer to implement component adapters. Unlike a
computer, a developer easily understands two component interfaces Tto and Tfrom

and is able to define the necessary adaptations. Since our approach is able to auto-
matically combine component adapters, developers only need to implement a small
number of such adapters.

Code similar to the one that needs to be written for such adapters exists already
in many of today’s software systems in the form of wrappers or in the form of
subclasses. One drawback is that such wrappers are usually part of a bigger compo-
nent and thus cannot exist on their own, especially when subclassing is being used.
Sometimes, these wrapper classes provide more functionality than is necessary for
the sole purpose of adaptation. In this case, the adaptation functionality could be
factored out into a separate adapter class to be usable as a component adapter.

For the implementation of a component adapter we could have defined a mapping
language similar to the one used by the Polylith system [22, 23], the Object-Oriented
Interoperability approach [10]. Unfortunately, many of these languages are hard to
read or lack expressiveness. To alleviate this problem some of these languages allow
functions to be defined using traditional programming languages such as C and to
use these functions as part of the mapping language.

For our approach we consider the choice of such a language to be of lesser impor-
tance since we focus on the combination of adapters and not on their construction.
Hence, we allow developers to define such adapters in whatever language is conve-
nient for them provided that we can determine the component interfaces Tfrom and
Tto that an adapter translates. In the prototype we have developed, we have success-
fully used the Java programming language for the definition of component adapters.

4 Adapter Composition

An important aspect of type based adaptation is the ability to combine component
adapters to build more powerful adapters. To do that, we define the composition (◦)
and the combination (∪) of two adapters a and b. Before we can do this, however,
it is necessary to define the subtype relation (<:) between types (component inter-
faces). This relation indicates that any variable of type A can be viewed as type B

if A is a subtype of B (A <: B). According to [1], the subtype relation is reflexive,
antisymmetric, and transitive. The basic rules of subtyping are for an environment
Γ that consists of typing assumptions for variables (v), each of the form v : T , are
as follows:

Reflexiveness:

Γ � A

� A <: A

Automated Adaptation of Component Interfaces with Type Based Adaptation 51

Fig. 2 Pseudo code of two
adapters

class Adaptera implements TTo {
Ty componentToBeAdapted;
// ... provide Ty on the basis of
// componentToBeAdapted ...

}

class Adapterb implements Tx {
Tfrom componentToBeAdapted;
// ... provide Tx on the basis of
// componentToBeAdapted ...

}

Transitivity:

Γ � A <: B Γ � B <: C
Γ � A <: C

Subsumption:

Γ � v : A Γ � A <: B
Γ � v : B

In typical object-oriented programming languages as used by today’s component
models, a type is identified by a name. This name identifies the contract, and thus the
semantics, the component is bound to [16]. For two types to be equal not only their
structure but also their names have to be equal. Additionally, the subtype relation is
defined explicitly. Thus, A is only a subtype of B if it has explicitly been defined
that way.

Using the rule of subsumption we can identify that a subtype of a component
has to fulfill the same requirements as its supertype. This rule leads to the Liskov
substitution principle [11, 12] that states that a program accepting a type B has
to exhibit the same behavior when operating on a type A if it is a subtype of B

(A <: B).
Using the same rule, we can define the composition of component adapters.

Given an adapter b that is able to translate a type Tfrom to Tx and an adapter a

that is able to translate a type Ty to Tto, it is possible to first apply adapter b and than
adapter a given that Tx can be substituted by Ty. The result of this combination is
an adapter that translates Tfrom into Tto, as shown in Eq. (3).

Γ � a : Ty � Tto Γ � b : Tfrom � Tx Γ � Tx <: Ty

Γ � a ◦ b : Tfrom � Tto
(3)

To illustrate this adapter composition, Fig. 2 shows some pseudo code of two
adapters a and b. Adapter a can use any component (or component adapter) of
type Ty or a subtype thereof. Otherwise, it would not be possible to assign the ref-
erence of that component interface to the adapter’s componentToBeAdapted
attribute. Thus, for adapter a to use a component that has been adapted by adapter b,
the component interface Tx has to be a subtype of Ty.

52 T. Gschwind

Γ � a : {fi : Ti}i∈I � {fi : Ti}i∈J Γ � b : {fi : Ti}i∈K � {fi : Ti}i∈L

Γ � a ∪ b : {fi : Ti}i∈I∪K � {fi : Ti}i∈J∪L
(4)

Since we also want to be able to form composite adapters operating on individual
component features, we can define the composition of such adapters analog to those
operating on component interfaces. Since we have only defined the subtype rela-
tion for component interfaces so far, we extend this definition to sets of component
features.

A set of features F := {fi : Ti}i∈I can be substituted with another set of features
F ′ := {fi : Ti}i∈J if F ′ provides at least the functionality provided by F . This is the
case if I is a subset of J (I ⊂ J). This looser definition is probably more restrictive
than necessary since it might be sufficient if for every component feature fi in F

a component feature in F ′ can be located that is a supertype of fi . This definition
would require to define a subtype relation between individual component features.
Before we can adopt this looser definition, however, it is necessary to gain more
experience with our current adaptation approach.

The combination operator specifies that we can apply two adapters a and b that
translate between two sets of component features at the same time. As shown in
Eq. (4), the combined adapters then translate from the union of the feature sets
required by the adapters to the union of the feature sets provided by them. If a feature
is provided by both adapters we can use the one provided by either implementation.
One approach to determine which implementation to favor over the other is to use
some kind of performance estimates. This decision, however, is an implementation
detail. Our current implementation uses for reasons of simplicity the implementation
of the feature of the first component adapter.

5 Adapter Repository

An important aspect of type based adaptation is that the adapters are stored in a
repository with meta information about the individual adapters. This meta informa-
tion comprises the types (features) that the adapters translate and may also contain
performance characteristics and other properties of an adapter.

On the basis of the component interfaces and features required by an application,
those provided by the available components, and the adapter repository we can auto-
matically determine whether it is possible to adapt a component to the requirements
of the application. The algorithm to determine how the existing adapters need to be
composed and combined can be described as follows.

1. We start out with the component interface or features required by the application
and place this set of requirements together with an empty adapter into a queue.

2. If any component or set of component fullfills the set of requirements of the
element at the head of the queue, the algorithm returns the corresponding adapter
and terminates.

3. We take the first set of requirement off the queue and try to apply each adapter
(either by composition or combination) that is stored in the adapter repository. If
no adapter can be applied, no adaptation is possible and the algorithm terminates.

Automated Adaptation of Component Interfaces with Type Based Adaptation 53

Fig. 3 A sample adapter
repository

4. For each adapter a that can be applied, we do the following: The component
interfaces and features provided by a and listed in the set of required ones are
replaced with those provided by a. The new set of requirements together with
the new composite adapter is added to the end of the queue.

5. Continue with step 2.

To illustrate a simplified version of the above algorithm, Fig. 3 shows a simplified
version of an adapter repository which is restricted to manage adapters operating on
component interfaces only. This repository consists of the adapters AD, DA, AE,
and EA which are able to convert between the component interfaces A, D, and E
and the adapters CB and FC, that translate between the component interfaces B, C,
and F.

This adapter repository can be seen as a directed graph where the component
interfaces are represented by the vertices and the adapters by the edges. The com-
position of adapters can be compared to the concatenation of neighbouring edges.
Thus, given this adapter repository, we can use a shortest path algorithm to deter-
mine whether one component interface can be adapted to another one. The path
between the two component interfaces indicates the adapters that need to be com-
posed. For instance to adapt the component interface D into E, we the algorithm
would compose the adapters AE and DA (AE ◦ DA). Since our implementation also
supports adapters that operate on individual component features, our algorithm is
more complicated.

Our algorithm can be tuned to only consider adapters that have specific prop-
erties. In some cases for instance, it might be sufficient, if an adapter provides an
approximation of the required component interface. For example, consider an ad-
dress book component that stores the name of a person in a single string. If that
component needs to be converted into one that uses separate strings for the first
name and last name, an adapter might assume that the first component stores names
in the form firstname lastname or in the form last name, first name. Depending on
the application domain, such heuristics may be sufficient or not. In other cases it
might be adequate for an adapter to query the user for additional information if
necessary but not provided by any of the available components.

54 T. Gschwind

<adapters>
<adapter>
<requires interface="java:at.ac.tuwien.infosys.vcard.IVCard" />
<provides interface="java:at.ac.tuwien.infosys.bookstore.AddressBook" />
<implementation class="at.ac.tuwien.infosys.adapters.IVCard2BookstoreAddressBook" />
<description>Translates a IVCard interface into a bookstore AddressBook component</description>

</adapter>
<adapter>
<requires interface="iostream:org.gnome.GnomeCard" />
<provides interface="java:at.ac.tuwien.infosys.vcard.IVCard" />
<implementation class="at.ac.tuwien.infosys.adapters.GnomeCard2IVCard" />
<description>Translates a GnomeCard interface into a IVCard interface</description>

</adapter>
<adapter>
<requires interface="java:at.ac.tuwien.infosys.ejb.AddressBook" feature="getAllAddresses" />
<requires interface="java:at.ac.tuwien.infosys.ejb.AddressBook" feature="getAddress" />
<provides interface="java:at.ac.tuwien.infosys.bookstore.AddressBook" feature="getListOfAddresses" />
<provides interface="java:at.ac.tuwien.infosys.bookstore.AddressBook" feature="getAddress" />
<implementation class="at.ac.tuwien.infosys.adapters.EJBAddressBook2BookstoreAddressBook" />
<description>Provides a list of addresses and addresses on the basis of an EJB address book component
interface</description>

</adapter>
<!-- Other adapters we have implemented translate between
-- * an Enterprise JavaBeans address book and the I/O stream based GnomeCard interface (this adapter
-- only translates the EJB component’s getAllAddresses and getAddress features),
-- * an Microsoft’s Outlook address book and GnomeCard’s component interface, and
-- * a component using the alias database of the mutt email client to our bookstore’s address book
-- component.
-->

</adapters>

Fig. 4 Meta description of an adapter

6 Evaluation

We have implemented the approach presented in this paper and verified it empir-
ically by applying it to an Internet Bookstore. Using our approach, we were able
to extend the application in a way that allows it to interact with different address
book components. The advantage of using type based adaptation is that the appli-
cation does not have to be changed to interact with other address book components
since the components are automatically adapted to match the requirements of the
application.

For our implementation we have used the Java programming language. Before
we started with the implementation, however, we defined how the adapters used by
our system need to be described. For the description of the adapters we have chosen
to use an XML based syntax because of the tools available to parse such files. As we
have explained in the previous sections, it is necessary to describe the component
interfaces or features required by an adapter, those provided, its properties, and its
implementation.

Two sample adapter descriptions are shown in Fig. 4. The first description shows
an adapter that translates the IVCard interface implementing the VCard standard
to an AddressBook interface used internally by our bookstore application. The
“java:” in front of the name of the interface indicates the name of the type system.
This allows developers to implement adapters that are at the same time able to bridge
between different component models.

Since the type system is part of the name of a component adapter, adapters may
also bridge between different component models. To verify this functionality, we
have implemented adapters that allow the adaptation between Java types and com-
ponents using a stream based communication mechanism. Although such services
do not provide interfaces in a pure object-oriented sense they are used by many

Automated Adaptation of Component Interfaces with Type Based Adaptation 55

components available today. Such components wait for commands on one stream
and return the results on another stream. The format of the requests and answer is
defined in a protocol which can be regarded as the component’s interface. Sample
such well known protocols are IMAP, or SMTP. In our adapter description, such
components are prefixed by “iostream:”.

The third adapter specifies an adapter that translates some of the features of an
EJB address book component to some of the features of the component interface
used by our bookstore application. Using such adapters, we can loosen the substi-
tutability requirements. For the adaptation process, it is sufficient if we provide only
those features from a component used by the application itself. Hence, it is not nec-
essary to provide all the features, even if they are not being used by the application.

To be able to use this looser definition of substitutability, however, we need to
solve the following two challenges. The first is to identify the actual features used
by the application since the component lookup operations only allow us to derive
the name of the component interface required. To solve this problem, we have ex-
tended our component infrastructure to allow the application to explicitly state the
features it requires from a given component interface. Since this approach introdues
additional redundancy that might lead to software errors, we plan to analyze the byte
code of an application to derive the set of features used. Another approach would be
the use Architectural Description Languages (ADLs) [15]. ADLs explicitly lists the
connectors and thus the features used by an application.

The second, bigger challenge is Java’s type system. Java’s type system requires a
substitute component to implement all the features provided by the component inter-
face, even if they are not being used by the application. Although the introduction of
a separate interface for each individual component feature might solve this problem
from a theoretical point no programmer would adopt this solution. Unfortunately,
we have not yet found a clean solution to this problem that does not introduce too
much overhead. Hence, we are currently supplying dummy implementations for the
component features not being used by the application.

After we have implemented the infrastructure for type-based adaptation, we have
implemented the six adapters shown in Fig. 4. If combined using our adaptation
technique, these adapters enable the adaptation of the following component inter-
faces.

Bookstore’s Address Book: This is the component interface internally expected by
the bookstore application we have implemented.

EJB Address Book: This is the component interface of an Enterprise JavaBean ad-
dress book component that we have downloaded from the Internet.

VCard Interface: This interface allows to retrieve business cards stored using the
VCard standard.

GnomeCard I/O Stream Interface: GnomeCard provides an I/O stream based proto-
col that allows a VCard database to be queried for its business cards via a network
socket. The protocol used is somewhat similar to HTTP.

Outlook I/O Stream Interface: This is an I/O stream based server that allows for the
access of contact information stored within Microsoft’s Outlook application. Orig-

56 T. Gschwind

inally, Outlook is a COM component but since we cannot access COM components
from UNIX we have added a simple socket based interface to it.

Mutt’s Alias Database: This is simple Java component that allows us to access the
alias database maintained by the mutt email client. We have added this component
interface to allow us to experiment with a component that only provides a subset
of the required information.

It is interesting to note that Microsoft Outlook and the GnomeCard application
have a similar component interface. It seems that Microsoft Outlook is, like Gnome-
Card, roughly based on the VCard standard for the representation of business cards.
As a side-effect, the implementation of the Outlook to GnomeCard and the Gnome-
Card to IVCard adapters were straight-forward.

The implementation of the IVCard to our application’s internal address book
component interface was a little bit more complicated because the VCard standard
supports to store several types of addresses for a given person whereas our applica-
tion only supports to store a single address per entry. This problem was solved by
storing the person multiple times and including the type of address as part of the
entry’s identifier.

As the next step, we have implemented the bookstore application. We imple-
mented the application as a web store that allows users to browse through the avail-
able books and to put books of interest into a shopping basket. When the user de-
cides to buy the books, he is asked to supply the shipping address and payment
information. By default, our application uses its internal address book component
but also allows users to specify their own address book component to use. After
the user has specified the reference of the address book component to be used, the
web application contacts the user’s addressbook service and presents a list of the
mailing and shipping addresses to the user. Additionally, the component’s reference
is stored in the user’s profile and the corresponding component will be used during
subsequent visits to the store.

A component reference looks similar to a web URL. It consists of three parts
separated by a colon. The first part specifies the name of the component model. The
second represents the name of the component interface (or the protocol used by the
component). The third one indicates which instance of the component to use and is
specific to the component. This last part is used by the component adapter that is
able to adapt the corresponding type of component. The component reference of the
EJB address book component, for instance, looks as follows:

java:
at.ac.tuwien.infosys.ejb.AddressBook:
sequ.infosys.tuwien.ac.at:1099/AddressBookEJB

Using the adapters we have implemented, our system was able to transparently
adapt between the different address book components we have presented. This was
the case no matter whether the adapters were translating the whole component in-
terface or just some features thereof.

Automated Adaptation of Component Interfaces with Type Based Adaptation 57

Since the adapter translating from mutt’s email database was only able to pro-
vide the person’s name and email address, the adapter had to query interactively
for the missing address information. The problem we encountered here was that the
adapter was trying to query the user sitting on the server machine for the address
information. Hence, a better approach would be to execute the code responsible for
the adaptation on the client machine using an applet for instance.

7 Future Work

One limitation of our current approach is that an application that uses type based
adaptation may have to list the component features it relies on. Otherwise type based
adaptation has to assume that the application uses all of the features provided by
the component which typically is not the case. Explicitly listing all the component
features, however, introduces a source of programming errors. If a developer forgets
to list one of the component features used, this might lead to a runtime error since
type based adaptation is free to select an adapter that does not provide this feature.

In future versions, we will try to analyse the program to infer the required com-
ponent features. Another approach would be the use of an Architectural Description
Language (ADL). ADLs have the advantage of explicitly listing the component con-
nectors [15] and thus the features required.

Another focus today is to verify whether a component adheres to its specification.
This can be done by stating the pre- and postcondition of the methods defined in
the component interface with a formal description language. On the basis of these
conditions and the component’s implementation [28], it is possible to infer whether
the specification is met. Since these conditions also have to be met by an adapter that
is able to provide the same component interface on the basis of another component,
it must be possible to use this information to prove the correctness of an adapter and
subsequently a composition of adapters.

8 Related Work

The problem of software adaptation is not new and hence several other techniques
have been developed that try to tackle this issue. A comparison of such techniques
that require the manual adaptation by software developers can be found in [8]. The
most prominent of these techniques is wrapping where a wrapper encapsulates the
original component and thus may alter the component interface. In [6], wrapping is
also referred to as Adapter or Decorator design patterns.

Our approach can be seen as an extension of the adapter pattern [6, 17]. The
difference, however, is that in our approach the adapters are first-class objects de-
scribed on their own and that there is an adapter repository which has full knowledge
about the adapters available and the transformations they describe. On the basis of
this information the adaptation process can be automated.

58 T. Gschwind

Bridging [26] is another manual adaptation technique. Bridging does not address
the adaptation of the interface itself but maps the protocol used by one component
technology to that of another component technology. Such a bridge, for instance,
might allow to interact with CORBA components like they were COM components.
One disadvantage of bridging, however, is that a different bridge is required for
every different pair of component models.

The interworking problem between different components has already been iden-
tified with the NIMBLE [23] language which is part of the Polylith [22] system as
well as by the Conciliation approach presented in [24]. Unlike Conciliation, NIM-
BLE does not take the object-oriented view into account and solely operates on a
procedural level. Compared to type-based adaptation, however, both of these ap-
proaches are static and their adaptations cannot be combined to form more complex
adapters. In dynamic distributed systems, however, it is important that the adapta-
tion is performed at run-time since the components that need to interoperate with
each other cannot be known a-priori.

A semi-automated approach for the adaptation of component interfaces is pre-
sented in [27]. This approach does not make use of the name of the component
interface but instead augments component interfaces with an additional description
of the protocol underlying the interface. It describes the legal orderings of the mes-
sages that may be sent and received by the component by means of a finite state
grammar. Additionally, this approach uses an interface mapping language that al-
lows developers to describe mappings from one interface to another. Based on the
description of the component interface’s protocol and the interface mapping it can
be verified that the adaptation is safe and hence that the communication protocols
used by the components are compatible.

The advantage of type based adaptation, however, is that the interface mappings
define how the protocol of component interface A communicating with component
interface B has to be adapted and hence such a description has been provided for
every two components that possibly need to interact with each other. The adapters
used by type based adaptation, however, define how a component interface B ′ can
be simulated on the basis of a component interface B . Since our adapters do not
depend on the knowledge of how B ′ is used by component A our adapters may be
combined to form more complex adapters. With regards to safety, we rely on the
component adapters to be implemented such that they abide to the contract defined
by the component interface in a way similar that [27] relies on the correctness of the
component’s protocol description.

An approach that supports the automated synthesis of interface adapters has been
presented in [25]. This approach, however, is purely syntactic and is only concerned
with the structure of interface signatures and ignores semantic issues. Given a com-
ponent type B that has to be used to emulate a component type B ′, this approach
analyses the structure of B and B ′ and finds a mapping of B’s structure to that
of B ′. If ambiguities due to the existance of multiple such mappings arise or due to
additional attributes, they require user intervention.

The disadvantage of this approach is that it requires the availability of the original
and the substitute component in order to derive the component adapter. Additionally,

Automated Adaptation of Component Interfaces with Type Based Adaptation 59

it cannot derive an adapter for structurally different but semantically compatible
components. For instance, a component that uses a tree structure for data storage
cannot be adapted to one that uses a linear list even though they provide the same
functionality.

The adaptation of software components is not restricted to the adaptation of com-
ponent interfaces. Aspect-oriented programming [9], for instance, allows the adap-
tation of components to add new functionality to a component itself. This kind of
adaptation is useful in the presence of cross cutting concerns such as security or
logging. Aspect-oriented programming allows to encapsulate these concerns into a
separate module and to weave these concerns into the necessary software compo-
nents during compile time.

9 Conclusions

The contribution of this paper is type based adaptation, a simple but flexible and
powerful adaptation technique. Type based adaptation enables the automated adap-
tation of a software component that provide a syntactically different but semanti-
cally compatible component interface. Such adaptations are necessary for compo-
nents that have been developed independently and only match on a semantical level.

The basis of type based adaptation are component adapters. These adapters define
how two component interfaces or individual parts thereof can be adapted. The prob-
lem of typical other such approaches is that they require O(n2) different adapters.
Our approach, however, requires a much smaller number of adapters since it sup-
ports the composition of component adapters to enable more powerful adaptations
than those provided by each individual adapter.

As we have shown in this paper, the adaptation can be automated by placing
such simple component adapters into a repository together with a description of the
adaptation they perform. On the basis of this repository, the component interface
required by an application and those provided by the components an algorithm can
determine which adapters that need to be composed. This kind of type information is
already maintained by today’s component models. Thus, our adaptation technique
can be used in combination with today’s software systems as we have shown in
Sect. 6.

Since the adaptation can be performed automatically during run-time, it is an
ideal adaptation approach for systems were the components that need to interact
cannot be known a-priori. Additionally, our adaptation technique enables the def-
inition of adapters that adapt between components that have been developed for
different component models which increases the number of components that may
be used in combination with such systems.

Finally, we have demonstrated the feasibility of type based adaptation for the use
in web applications. Our results, however, indicate that it can be used in a variety of
other application domains as well. As we have shown with our example automatic
adaptation is important since it adds more flexibility to component based software
applications and does not require all of the components to be known at development
time.

60 T. Gschwind

Acknowledgements This work was performed while the author was Technische Universität
Wien as part of his PhD thesis. The author gratefully acknowledges the financial support provided
by the European Union as part of the EASYCOMP project (IST-1999-14151).

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer, Berlin (1996)
2. Arnold, K., Gosling, J.: The Java Programming Language (Java Series), 2nd edn. Addison-

Wesley, Reading (1997)
3. DeMichiel, L.G., Yalçinalp, L.Ü., Krishnan, S.: Enterprise JavaBeans Specification, Ver-

sion 2.0. Sun Microsystems, April 2001. Proposed Final Draft 2
4. Eddon, G., Eddon, H.: Inside Distributed COM. Microsoft Press, Redmond (1998)
5. Emmerich, W.: Engineering Distributed Objects. Wiley, New York (2000)
6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software, 1st edn. Addison-Wesley, Reading (1995)
7. Hamilton, G.: JavaBeans. Sun Microsystems, August 1997. Version 1.01-A
8. Heineman, G.T.: Adaptation of software components. Technical Report WPI-CS-TR-99-04,

Worcester Polytechnic Institute, Computer Science Department, February (1999)
9. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-M., Irwin, J.:

Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) Proceedings of the 11th
European Conference on Object Oriented Programming (ECOOP’97), pp. 220–242. Springer,
Berlin (1997)

10. Konstantas, D.: Object oriented interoperability. In: Nierstrasz, O. (ed.) Proceedings of the 7th
European Conference on Object Oriented Programming (ECOOP’93), pp. 80–102. Springer,
Berlin (1993)

11. Liskov, B.H., Wing, J.M.: Specifications and their use in defining subtypes. In: Paepcke, A.
(ed.) Proceedings of the Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPLSA’93), pp. 16–28. ACM Press, New York (1993)

12. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program. Lang.
Syst. 16(6), 1811–1841 (1994)

13. Maes, P.: Concepts and experiments in computational reflection. In: Meyrowitz, N.K. (ed.)
Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA’87), pp. 147–155. ACM Press, New York (1987)

14. McIlroy, M.D.: Mass produced software components. In: Proceedings of the Nato Software
Engineering Conference, pp. 138–155 (1968)

15. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for software archi-
tecture description languages. IEEE Trans. Softw. Eng. 26(1), 70–93 (2000)

16. Meyer, B.: Applying “Design by Contract”. IEEE Comput. 25(10), 40–51 (1992)
17. Mezini, M., Seiter, L., Lieberherr, K.: Component integration with pluggable composite

adapters. In: Aksit, M. (ed.) 2000 Symposium on Software Architectures and Component
Technology: The State of the Art in Research and Practice. Kluwer Academic, Dordrecht
(2000)

18. Monson-Haefel, R.: Enterprise JavaBeans, 2nd edn. O’Reilly & Associates, Sebastopol
(2000)

19. OMG: CORBA Components—Volume I, August 1999. OMG TC Document orbos/99-
07-01

20. OMG: CORBA Components—Volume II: MOF-Based Metamodels, August 1999. OMG TC
Document orbos/99-07-02

21. OMG: CORBA Components—Volume III: Interface Repository, August 1999. OMG TC Doc-
ument orbos/99-07-03

22. Purtilo, J.M.: The Polylith software bus. ACM Trans. Program. Lang. Syst. 16(1), 151–174
(1994)

Automated Adaptation of Component Interfaces with Type Based Adaptation 61

23. Purtilo, J.M., Atlee, J.M.: Improving module reuse by interface adaptation. In: Proceedings of
the International Conference on Computer Languages, pp. 208–217 (1990)

24. Smith, G., Gough, J., Szyperski, C.: Conciliation: The adaptation of independently developed
components. In: Gupta, G., Shen, H. (eds.) Proceedings of the 2nd International Conference
on Parallel and Distributed Computing and Networks. IASTED, Calgary (1998)

25. Thatté, S.R.: Automated synthesis of interface adapters for reusable classes. In: Proceedings
of the Symposium on Principles of Programming Languages (POPL’94), pp. 174–187. ACM
Press, New York (1994)

26. Wegner, P.: Interoperability. ACM Comput. Surv. 28(1) (1996)
27. Yellin, D.M., Strom, R.E.: Interfaces, protocols, and the semi-automatic construction of soft-

ware adaptors. In: Proceedings of the Ninth Annual Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA’94), pp. 176–190. ACM Press, New
York (1994)

28. Zaremski, A.M., Wing, J.M.: Specification matching of software components. ACM Trans.
Softw. Eng. Methodol. 6(4), 333–369 (1997)

The Benefits of Bad Teaching

Derrick G. Kourie

Abstract It is proposed that IT academics are inclined to put too much time and
effort into teaching well. The result need not necessarily redound to the benefit of
either the teacher or the student. It may rob the teacher of time that could be more
valuably spent on other academic activities. It tends to deprive the student of the
benefits of self-discovery, intellectual ownership and responsibility.

1 Prologue

This somewhat notorious bad teaching talk was presented as a keynote address at
the 2001 Southern African Computer Lecturers Association (SACLA) conference.
SACLA conferences have been held annually in South Africa since 1971. Although
recent conferences incorporate formal refereed tracks and produce formal proceed-
ings, this was not the case in 2001. On the contrary, SACLA has a tradition of
being an informal forum for exchanging educational ideas about Computer Science
and Information Systems. Because of this informality, this bad teaching talk never
found an ISSN or ISBN publication home.

Nevertheless, electronic copies of the talk spread, and as a result it has been
read and discussed more widely than most of my technical publications. A hard-
copy version mailed to me by an educationalist colleague was amply annotated with
comments of agreement and disagreement. A deputy vice-chancellor dismissed it
as merely the opinion of a disaffected staff member. Numerous colleagues have ap-
plauded it, even to the extent of advocating it as obligatory induction material for
new faculty members. It was mentioned in at least two subsequent SACLA talks;
it has been cited by IT educationalists in New Zealand [4, 5]; and a PhD thesis in
Education offers it as an example of how “ . . . academics are suffering under the
burden of additional loads, and often resent the ‘quality burden’ thrust on them” [2].

Judith Bishop, too, has referenced the bad teaching talk. This she did in her de-
lightful contribution to a festschrift in my honour. In a playful yet thought-provoking

D.G. Kourie (�)
Fastar Research Groups, Department of Computer Science, University of Pretoria, Pretoria,
South Africa, 0001
e-mail: dkourie@cs.up.ac.za

K.K. Breitman, R.N. Horspool (eds.), Patterns, Programming and Everything,
DOI 10.1007/978-1-4471-2350-7_6, © Springer-Verlag London 2012

63

64 D.G. Kourie

article entitled “The Lazy Programmer” [1], she points to my laziness “in the Di-
jkstrasian sense: if a program can be written correctly the first time, surely we can
save a lot of trouble in debugging, and all go home early?” She then cites the bad
teaching talk as further evidence of my proclivity towards measured laziness. I plead
guilty as charged! Indeed, republishing the talk in this festschrift dedicated to Judith
reinforces the charge. In mitigation, I appeal to the widely commended software
engineering practice of reuse.

In a more profound sense, however, it is singularly appropriate that one of my
best-known efforts at writing should find a home in a festschrift for Judith—a deeply
cherished longstanding friend and colleague. For Judith has played a singularly im-
portant role in my academic life (and, indeed, in much of my personal life). She
has pushed and shoved and jostled my natural proclivity towards laziness, never al-
lowing me to rest on my laurels, and continually urging me on. She has roped me
into various committees; she has introduced me to a steady stream of international
academics; she has shifted and shaped my efforts at managing an academic depart-
ment; she has influenced the character and content of courses I have taught; and
she leveraged me into a twenty year spell as editor of the South African Computer
Journal.

My first encounter with Judith was at a student conference in the early 1970s.
The mind-image of her that has remained vividly with me ever since is of a bouncy
lass whose rapid, resolute, fixed step betrayed her personality: an ordered, strong
character, constantly and firmly en route to some well-considered objective. That
resolute, ordered, ever-advancing nature continues to characterise her. It is said of
the controversial Victorian author, Hillaire Belloc, that he had no opinions, only
convictions! That, in part, is how I experience Judith. (I recall making this point to
Niklaus Wirth on one of his several Judith-arranged visits to South Africa. Though
he laughed heartily at the aphorism, he concurred with the description, repeating
several times to himself: “She has no opinions, only convictions!”)

However, that is only part of Judith. There is another very soft side to this pow-
erful lady, a side that embodies so many archetypally feminine attributes: attention
to the detail, person-centred, feeling-aware, service-oriented, sometimes even dis-
armingly vulnerable. Her friends and colleagues, her students, her sons and family
know these attributes well, for Judith’s richly contrasting personality is also largely
an extroverted one.

We have seen her working furiously to meet a deadline for the next new book; and
we have seen her preparing jelly in moulds of hollowed out orange skins for a child’s
birthday party. We have listened to her strategising about the optimal sequence of
moves to get the dean to agree to her latest academic proposal; and we have seen
her as a Miss Marple-like figure in a hat and blue Cub Mistress uniform with lit-
tle ten-year old boys scampering about her feet as they dib-dib-dib and promise to
do their best. We have watched as she confidently orchestrates the logistics of ma-
jor international conferences; and we have overheard her speaking quiet words of
encouragement to a floundering and disheartened student as we pass by her office
door. Most of all, so many of us have been the beneficiaries of Judith’s abundantly
exuberant generosity in respect to her time, energy, contacts and resources.

The Benefits of Bad Teaching 65

It is therefore a joy, an honour and an irony that my bad teaching talk should
finally find a more formal home in the festschrift of one who is so incorrigibly
energetic, thorough and productive. But for the occasional contextualising footnote,
the talk is lazily reproduced in its original form.

If a thing is worth doing, it’s worth doing badly.

G. K. Chesterton

2 Introduction

The theme of this presentation derives from the widely held perception that the var-
ious IT-related academic disciplines at universities (Computer Science, Information
Systems, Information Science, Computer Engineering, etc.) are under severe stress.
On the one hand, the courses are more popular and are growing at a faster rate than
other fields. On the other hand, university bureaucracies and policies are not merely
ill-equipped to respond to fast growth, but actually benefit financially by delaying
a response to the growth for as long as possible. Furthermore, the popularity of IT
courses stems precisely from the fact that IT qualifications are in high demand in
industry, which leads in turn to a shortage of IT academic staff to teach the courses,
even when posts are available.

The net result is that fewer people teach more courses, so that IT departments
rake in ever-increasing amounts of state subsidy for their universities. These profits,
euphemistically labeled “contribution to overhead costs”, are deployed in various
ways: cross-subsidization of non-profitable departments; maintenance of general
facilities; salaries for administrative personnel, etc. Sweeteners of generous phys-
ical resources for the IT departments may be provided. But I know of no university
in South Africa where significant concessions have been made in terms of industry-
related remuneration. At best, small subventions are provided. As a result, shortages
of quality staff remain acute in most IT departments.1

Simultaneously, universities are in strong competition to raise their so-called re-
search profiles. The public measure of a South African university’s research prowess
has become the number of publications on the list (of journals used by the Depart-
ment of National Education for subsidy purposes). Academics who produce publi-
cations on the list are looked upon favourably for promotion, while those who do
not, tend to be treated in a concessionary, if not condescending fashion. They have
to motivate vigorously the value of their conference contributions and other IT out-
puts to selection committees, often dominated by skeptical academic power brokers

1Readers will recall the wildly frenetic nineties. Student numbers were exploding as the computer
gaming industry took off, as the web became ever-more popular, and as Y2K doomsday scenarios
focussed attention on IT as a lucrative area of specialisation. Even though now, a decade after
the 2001 bad teaching talk, the hump of the so-called hype-curve has long been crossed, IT in
academia remains under pressure, albeit somewhat less severe than before.

66 D.G. Kourie

from the more traditional departments whose continued survival is underwritten by
IT’s contribution to overhead costs.

For there should be no doubt about the following—that the value of research in
South African universities is primarily at the level of prestige and image-building,
not of direct income generation. This claim does not deny the link between image
and income, nor that patented research may sometimes pay handsome dividends.
But, from a subsidy point of view, research only brings in something like 2 % of
total subsidy income. It is an abiding irony, but an academic reality, that promotion
is based not on one’s contribution to income generation but on the contribution to
image advancement.2 It cuts no ice to argue the case for promotion based on a good
teaching track record. This is usually dismissed with a dogmatic assertion that one
cannot be a good teacher without being a good researcher (a highly dubious notion,
in my opinion).

Thus, the IT academic wishing for promotion is on an Homeric journey. She has
to navigate between the Scylla and Charybdis—between the six-headed monster of
academic purism continually snapping: “Where are your journal publications?” and
the lure of being sucked deeper into the vortex of ever increasing teaching commit-
ments. (The use of the feminine pronoun is here not only politically correct. It is
probably also more appropriate. It would seem that women tend to be the ones who
most often rescue departments where new teaching needs arise. They do so either
voluntarily—having an affinity for the human-centered activity that is implied—or
succumb more readily than their male counterparts to pressure from authority.)

There are many strategies that could facilitate the journey. For example, IT de-
partments could limit both student intake and range of courses presented. Here, a
complimentary strategy is offered: teach less well. I contend that “bad” teaching
not only improves one’s research and therefore one’s promotional opportunities, but
that it might, paradoxically, result in better educated students.

3 A Personal Historical Perspective

Permit a brief and personal historical perspective on the notion that universities
should teach well. (It is personal, in the sense of being the truth as I see it, without
purporting to be the full and complete truth. In our post-modern world, I am under
the impression that giving such a perspective is a perfectly respectable academic
thing to do.) The emphasis on good teaching is a relatively recent one. It is a product
of mass education that came about in the second half of the twentieth century. Prior
to that, the emphasis was on the knowledge of the professor, not on how well he got

2Note that the figure of 2 % refers to research income due to state subsidy of publications in ap-
proved journals. Because the subsidy amount per publication has been increased quite considerably
in recent times, this figure now stands at approximately 10 % of subsidy income. Research income
from the state therefore continues to lag behind tuition income, notwithstanding the more generous
state subsidy of research publications.

The Benefits of Bad Teaching 67

across the knowledge. That would often take place on a one to one basis, as in the
Oxbridge model still existing today. The ancient universities of Europe were places
where small elite groups of truth-seekers gathered at the feet of luminaries to imbibe
their wisdom and follow their prescription about what to read and study. Pedagogy
and didactics were secondary matters.

Even in the sixties and seventies, when some of us were students, there did not
seem to be too much of a premium on good teaching. Large numbers of students
were admitted into popular degrees such as civil engineering, medicine and physics.
Gray-haired professors taught large first year chemistry, mathematics and physics
classes with relatively little concern for the ability of students to cope. They seemed
blithely unconcerned about high failure rates. Some naturally taught well, and oth-
ers less so. For students, it was a case of sink or swim. External examiners (an
outmoded British notion carried over from a yet earlier era) were appointed to pre-
vent flagrant injustices but whether they ever seriously intervened, we will never
know. It was a time when universities were subsidized on the basis of intake, rather
than throughput. It was a time when the bald and brawny 25-year old rugby player
who sat (sometimes!) in my Chemistry 1 class could cheerfully countenance his fifth
failure of the subject while continuing his respected rugby career in the university’s
first team.

Then, at the start of the eighties, the subsidy formula changed. It now rewarded
throughput rather than intake. The attitude of university authorities changed accord-
ingly. Students who failed too often were either excluded or had to pay higher fees.
In an effort to improve teaching, staff members were sent on courses, run by edu-
cationalists. We were shown how to design courses, partition them into study units
and specify learning objectives for each study unit. Study notes were required to
illuminate study units. Continual assessment was emphasized and re-examination
procedures strengthened to improve the chances of marginal students. While good
researchers were always valued, academics who acquired qualifications in educa-
tion were also rewarded. Indeed, some people seemed to move quite high up into
the academic hierarchy on the basis of their teaching ability alone (although—in the
case I have in mind—it might have been that Broederbond3 affiliations also played
a role).

As we marched into the New South Africa, there was renewed interest from the
state in improved tertiary teaching. The beneficiaries were to be the growing num-
ber of historically disadvantaged students who were entering universities. It was felt
that courses should be standardized, structured and refashioned to produce specific
outcomes. We were told to submit to organs of the state (SAQA) a list of our de-
gree programs, their courses, their contents and their expected outcomes in terms
of skills and values. Somehow this would all redound to the benefit of the histori-
cally disadvantaged. We are not sure what happened to all these carefully drawn up
submissions. Mercifully, individual universities have retained their freedom to teach

3The Broederbond was the secret Afrikaner organisation that served as a brains trust and the strate-
gic underpinning for the Nationalist Government during South Africa’s Apartheid years.

68 D.G. Kourie

what they please, and we even seem free to change what we teach without revising
our erstwhile SAQA submissions.

Latterly the minister of education has set the cat amongst the pigeons. He has
announced measures to differentiate universities into five categories, based primarily
on their research output. Once again research prowess—never really lost as a value
in most universities—has shifted to center stage.4 SAQA and all its outcomes-based
requirements seem to have faded slightly into the background. This, then, seems to
be a good moment to reassess the meaning and value of good teaching!

4 Good Teaching

Broadly, a well-taught course may be characterized by the selection of appropriate
course material, good organization, good delivery, good reinforcement procedures
and good assessment procedures. A brief elaboration of these characteristics fol-
lows.

4.1 Appropriate Course Material

It is important to select course material that is consistent with international trends.
It should build on prior knowledge of students and avoid repetition. While some
might argue on the extent to which course material should directly address industry
needs, we would agree that the knowledge acquired should empower the student. Of
course, the prescribed book should be selected with utmost care: it should be well
written; should cover the relevant topics; should be pedagogically sound; etc.

4.2 Good Organization

The times and venues for lectures, tests and examinations should be pre-announced,
and a lecturing schedule should be provided. The weighting of marks for tests, as-
signments, practical classes, examinations, etc should also be known in advanced.
To assist students in their time-management, the number of assignments and projects
and their respective due dates should be prespecified. The prescribed book should
have been chosen well in advance of the course and should be available at book-
stores before the start of the course. Supporting notes (either in hardcopy format or
on an intranet) should be made available, if not in advance, then at least in synchrony
with material delivered in lectures.

4It is worth noting the original model proposed by the late minister of education, Kadar Asmal,
for differentiating universities in relation to their research output never really took off. Neither has
pressure to publish abated. If anything, it has increased as high-ranking research universities vie
for position, and lower ranking universities aspire for recognition.

The Benefits of Bad Teaching 69

4.3 Good Delivery

The lecturer ought to make full use of existing technologies—especially visual
technologies—available for teaching. A minimum requirement seems to be to rely
on printed (as opposed to hand-written) transparencies—coloured, if possible. An
even better option is to rely on a slide show presentation (Power Point or equiva-
lent), tastefully designed to use sound, colour, and animation. While the lecturer’s
personal style of speaking is not readily changed (actually, more can be done here
than most people imagine!), the lecturer should be thoroughly familiar with the ma-
terial and should not be caught out by unexpected questions. Each lecture should
be carefully structured; it should start with a statement of what was covered in the
previous lecture and give an indication the material to be covered in this lecture; it
should end with a brief recapitulation of the lecture’s main points and a pointer to
what will be coming in the next lecture.

4.4 Good Reinforcement Procedures

The material covered in the lectures should be reinforced by carefully selected
homework and practical assignments. The statement of work to be done should be
clear and unambiguous. Completed work should be promptly handed in at the due
date, speedily and conscientiously marked and should be accompanied by thought-
ful and encouraging comments indicating where and why the student has gone
wrong. Students should be given access to memoranda of the marking schemes
and/or to model answers of all assignments.

4.5 Good Assessment Procedures

The student should have access to self-test procedures. All tests (class, semester,
practical and final examinations) should be fair and unambiguous. Questions should,
as far as possible, examine all aspects of the syllabus in a balanced and uniform
fashion. Time allotted for the testing should be reasonable. Marks allotted to ques-
tions should be balanced and fair. An external examiner should moderate the final
examinations.

The above does not purport to fully characterize good teaching. No doubt one
could add many other features: a friendly and approachable lecturer disposition,
regular solicitation of student opinion, mechanisms to enhance class participation,
etc.

70 D.G. Kourie

5 Bad Teaching

For the present purpose, which is to sing the praises of bad teaching, there is no need
to itemize in detail the notion of bad teaching. Logically, one could merely say that
the further one moved from the prescriptions above, the worse one would be teach-
ing. Now, I am not so naïve as to propose that one should deliberately aim to teach
as badly as possible. But I do claim that many of the kinds of prescriptions listed
above are unnecessary. They are time-cost inefficient. They may be underplayed,
neglected or ignored without causing great harm to your students. In fact, you might
actually be advancing your students’ academic maturity by not paying too much
attention to good teaching. Allow me to pick up on some of the prescriptions given
above.

5.1 Appropriate Course Material

Of course it is advisable to select material that is appropriate. However, the long term
impact of any given course on the efficacy of our graduates in the IT marketplace is
open to wide debate. There is a case to be made for the claim that the critical factor
is the process of learning rather than the content of what is learnt. Graduates should
be people who can learn and adapt. I contend that the primary quality that is certified
by any degree, IT-based or otherwise, is the ability of the graduate to draw on her
own internal resources to learn and find ways to solve problems. It is therefore not
an unmitigated disaster if one occasionally includes inappropriate material into a
course.

Neither is it such a bad thing to occasionally get it wrong by prescribing a bad
book for a course. If this happens, students should be helped to see where the book
falls short. It should be used as an occasion to hone the student’s skills in adjudi-
cating between good and bad. Students should be encouraged to critique written
material, both good and bad. This is especially necessary for students from disci-
plinarian (Afrikaner) or disadvantaged (Black) backgrounds. Such students are in-
clined to believe that if it is written down, if it is published, then it must be good.
If they don’t understand something, they are inclined to believe in their own inad-
equacy or stupidity, rather than in the possibility that some illustrious author might
have explained poorly or even made an error. To show them that authors sometimes
fall short is good for their morale and develops their critical skills.

5.2 Good Organization

Once again, one could hardly criticize someone who makes all the arrangements re-
lating to a course before its delivery, as indicated in the paragraph above. However,
one should be wary of turning such pre-organization into absolute prescriptions. It

The Benefits of Bad Teaching 71

might be perfectly reasonable to have JIT cut-backs or augmentations of the syl-
labus, rather than to stick rigidly to a pre-arranged schedule. Sometimes it might
be reasonable to be forgiving about slippages on hand-in times or to cancel assign-
ments. At other times it might make sense to add in additional assignments, even
though the poor students will be put under greater stress. I personally particularly
dislike the notion that one should rigidly stick to pre-assigned weightings for vari-
ous categories of deliverables. Who has not experienced the disastrous semester test
where one has misjudged the students’ knowledge and—for whatever reason—they
fail in large numbers? I prefer to have the flexibility to re-assign weightings should
they appear ex post facto to be inappropriate.

5.3 Good Delivery

Most of us academics are not gifted performers. We tend to be a little shy and in-
troverted. Despite our best efforts and intentions, we do not sparkle in the lecture
room but drone on and bore the students to tears. It is an illusion to think that the
use of transparencies or slide show presentations changes this. I believe that these
media, now regarded as baseline requirements for any lecture, can be, and in fact
often are, counter-productive. They tend to serve primarily as notes for the speaker.
They let us off the hook. I do not wish to be dogmatic about this point. I merely
ask: are we not wasting an awful lot of time in preparing slide and projection-based
presentations in the belief that they enhance our teaching when they do not? Are
the time-cost/benefits really worth it? I remark, additionally, that some people (I am
one such) find transparency lighting rather sharp and unpleasant. And we should
note that the dimmed lights in a boring slide show can be deliciously soporific.5

5.4 Good Reinforcement Procedures

Part of my skepticism about emphasizing delivery too strongly is that the lecture is
merely the introductory part of the learning process (albeit a more important part
than many students seem to believe). Most learning takes place thereafter. We learn
by doing, studying and reflecting more than by merely listening. To this extent, do-
ing various kinds of assignments can importantly aid a student in assimilating the
material. However, one should beware of misplacing responsibilities in the learn-
ing process: the lecturer’s primary responsibility is to specify what is to be learnt
and to certify that this has happened; the student’s primary responsibility is to do
the learning. Explaining the material lies closer to the lecturer’s core responsibility.

5It is interesting that the injudicious use of slide shows has come under increasing fire in recent
times. See, for example, [3] for one of many scholarly works on the topic. A Google search of the
string “powerpointless” in the past year yielded 11700 hits.

72 D.G. Kourie

Doing other things (such as homework exercises) to facilitate the learning process
seems closer to the student’s core responsibility. In this sense, it is something of a
concession that lecturers should spend time selecting and marking assignments so
that students may better understand the material. Ultimately, the student should take
responsibility for getting to know the material, even if no assignments were to have
been specified.

5.5 Good Assessment Procedures

No-one would dispute that assessment should be fair, balanced and thorough. The
real question is: have we not gone overboard? We know fairly early on that Jones is a
distinction candidate and that Smith will be lucky to pass. Yet we have a plenitude of
assessment procedures, which constantly reassert and reaffirm Jones to be good and
Smith to be poor. At great cost to ourselves, we set and grade class and semester test
after class and semester test, homework and practical assignment after homework
and practical assignment, project after project. The correlation between a student’s
marks from one grading to the next remains very high indeed. And then we set and
mark a final examination, asking an external examiner to check our efforts lest we
have made a mistake. At the end of it all, we congregate in committees to agonize
over whether Smith’s final mark of 48 % should be condoned to 50 %—after all he
did have a semester mark of 52 %! Perhaps he should be re-examined. It is perfectly
reasonable to ask whether the quality and fairness of our assessment would decrease
if we did it less frequently? I sincerely doubt that it would. I believe that the final
outcome—who passes, who gains distinctions, who fails—would remain very close
to what we have today.6

6 Conclusion

In summary, it seems to me that we have bought into a plethora of prescriptions, im-
posed on us by higher authorities or by our own sense of diligence and commitment,
about what should be done in order to teach a course well. These prescriptions have

6Educationalists have critiqued this paragraph because it fails to recognise that assessment instru-
ments in general, and tests / examinations in particular, serve an important educational role other
than mere assessment. It has been impressed upon me that the very act of taking the test engages
the student in a learning activity which serves to consolidate and reinforce concepts. While I grant
the point, it does not undermine the broader argument: that we are in danger of over-examining
students, and of being too literal about the meaning of a mark. In some sense, the consequences of
narrowly interpreting marks have become more dire. This is because there has been a drift to slice
and dice larger courses into ever-smaller course units. Each of these fine-grained courses is now
individually examined and needs to be individually passed. If I am ever asked to give a keynote
address at SACLA again, I am likely to zoom in on the evils of the fashion for such micro-courses.

The Benefits of Bad Teaching 73

become a stumbling block for the lecturer who has to do research to be promoted.
They also tend to spoon-feed students; they provide an unrealistic but neat shrink-
wrapped context for problem solving; and they underemphasize the importance of
taking responsibility for ones own learning.

This leads me to the iconoclastic conclusion that some of us should sometimes
take the liberty of teaching less well. That will ensure that graduates are exposed to
and survive a multiplicity of learning situations. They will be men and women of
proven initiative and responsibility. We should avoid being gray ISO9000 teaching
units producing monotone ISO9000 graduates. We may safely leave that task to the
burgeoning e-learning institutions. Let us differentiate ourselves as universities by
being the places of freedom, responsibility, challenge, variety and colour that we
should be.

References

1. Bishop, J.: The lazy programmer. In: Gruner, S., Watson, B.W. (eds.) Colloquium and
Festschrift at the Occasion of the 60th Birthday of Derrick Kourie (Computer Science), March
2009, University of Pretoria (2009). http://137.215.9.22/handle/2263/9222

2. Fresen, J.W.: Quality assurance practice in online (web-supported) learning in higher education:
An exploratory study. PhD thesis, Faculty of Education, University of Pretoria, Pretoria, South
Africa (2005)

3. Klemm, W.R.: Computer slide shows: A trap for bad teaching. Coll. Teach. 55(3), 121–124
(2007)

4. Potgieter, C., Burrell, C.: Perfect storm of literature studies by international students. In: Mann,
S., Verhaart, M. (eds.) Proceedings of the 1st Annual Conference of Computing and Infor-
mation Technology Education and Research in New Zealand (CITRENZ): Incorporating the
23rd Annual Conference of the National Advisory Committee on Computing Qualifications,
pp. 356–357. National Advisory Committee on Computing Qualifications (NACCQ), Hamil-
ton (2010). URL http://researcharchive.wintec.ac.nz/927/. Conference held 6–9 July, 2010, in
Dunedin, New Zealand

5. Potgieter, C., Ferguson, B.: Managing international students attendance with consideration of
completion and satisfaction. In: Mann, S., Verhaart, M. (eds.) NACCQ 2009: Proceedings of
the 22nd Annual National Advisory Committee on Computing Qualifications. National Ad-
visory Committee on Computing Qualifications, Hamilton, pp. 87–90. (2009). URL http://
researcharchive.wintec.ac.nz/242/. Conference held 10–13 July, 2009, in Napier, New Zealand

SSA-Based Simulated Execution

Jonas Lundberg, Mathias Hedenborg, and Welf Löwe

Abstract Most scalable approaches to inter-procedural dataflow analysis do not
take into account the order in which fields are accessed, and methods are executed,
at run-time. That is, they have no inter-procedural flow-sensitivity. In this chapter
we present an approach to dataflow analysis named Simulated Execution. It is flow-
sensitive in the sense that a memory accessing operation (call or field access) will
never be affected by another memory access that is executed thereafter in all runs
of a program. This makes Simulated Execution strictly more precise than the most
frequently used flow-insensitive approaches. We also outline a proof of correctness
using abstract interpretation. Finally, although we present Simulated Execution as
a dataflow algorithm applied to context-insensitive Points-to Analysis, it can be ap-
plied on any inter-procedural dataflow problem and in a context-sensitive manner.

1 Introduction

The theoretical basis for static program analysis is the theory of monotone dataflow
frameworks [15, 20]. A program is represented by a program graph, its nodes cor-
respond to operations in the program and its edges to control and data dependencies
between them. For each node, the analysis computes an analysis value, in our case
a set of references to abstract objects. Starting with an appropriate initialization, the
analysis iteratively updates the analysis values in each node by (i) merging analysis
values from predecessor nodes and (ii) applying transfer functions representing the
abstract program behavior at these nodes wrt. the analysis problem. Provided the
transfer functions are monotone, this approach is guaranteed to terminate in a fix

J. Lundberg (�) · M. Hedenborg · W. Löwe
School of Computer Science, Mathematics, and Physics, Linnaeus University,
351 95 Växjö, Sweden
e-mail: jonas.lundberg@lnu.se

M. Hedenborg
e-mail: mathias.hedenborg@lnu.se

W. Löwe
e-mail: welf.lowe@lnu.se

K.K. Breitman, R.N. Horspool (eds.), Patterns, Programming and Everything,
DOI 10.1007/978-1-4471-2350-7_7, © Springer-Verlag London 2012

75

76 J. Lundberg et al.

point. Furthermore, a dataflow analysis is considered to be flow-sensitive if it takes
control-flow information into account [8].

Points-to analysis is a static program analysis that extracts reference information
from a given input program, e.g., possible targets of a call and possible objects refer-
enced by a field. Throughout the chapter, we use Points-to analysis as an example to
explain simulated execution and to discuss differences to classic dataflow analysis.

In Sect. 2 we present the foundations of Points-to analysis. Section 3 presents
our simulated execution approach. In Sect. 4, we discuss the flow-sensitivity of our
approach, and, in Sect. 5, we outline how abstract interpretation can be used to proof
the correctness of Simulated Execution. Section 6 presents related works and Sect. 7
concludes the chapter and discusses issues for future work.

2 Foundations of SSA-Based Points-to Analysis

In this section, we introduce the representation of analysis values, which are sets
of abstract objects and a heap-memory abstraction, and our program representation
called Points-to SSA. They are then used in the actual analysis algorithm, which is
described in Sect. 3.

2.1 Analysis Values

In points-to analysis, we need to represent references to abstract objects and an
abstraction of the heap-memory.

An abstract object o is an analysis abstraction that represents one or more run-
time objects. In this chapter, we use the following abstraction: each syntactic cre-
ation point s corresponds to a unique abstract object os . Thus, the set of all alloca-
tion sites in a program defines a finite set of abstract objects denoted O , and every
abstract object os ∈ O can be seen as an analysis abstraction representing all run-
time objects created at the corresponding allocation site s in any execution of the
analyzed program.

In the analysis, reference variables will in general hold references to more than
one abstract object. Hence, we assume that each points-to value v in the analysis of
a program is an element in the points-to value lattice LV = {V,�,�,�,⊥} where
V = 2O is the power set of O , � = O , ⊥ = ∅, and �,� are the set operations ∪
(union) and ∩ (intersection). The height of the points-to value lattice is ho = |O|.
We use the notation Pt(a) to refer to the points-to value that is referenced by the
expression a.

Each abstract object o ∈ O has a unique set of object fields [o,f] ∈ OF where
f ∈ F is a unique identifier of a field (capturing references). Each object field [o,f]
is in turn associated with a memory slot ([o,f], v) where v represents the abstract
object references stored in object field [o,f].

SSA-Based Simulated Execution 77

The abstraction of the heap-memory associated with an analyzed program, re-
ferred to as abstract memory, Mem, is defined as the set of all memory slots
([o,f], v). We think of the abstract memory as a mapping from object fields
to points-to values. The memory is therefore equipped with two operations
Mem.get(OF) → V and Mem.addTo(OF,V) with the interpretation of reading
the points-to value stored in an object field [o,f] ∈ OF , and merging the points-to
value v ∈ V with the points-to value already stored in an object field [o,f] ∈ OF ,
respectively. Note that we never override previously stored object field values in
memory store operations, i.e., we never execute strong updates. Instead, we merge
the new value with the old one using the points-to value lattice’s join operation, i.e.,
we perform weak updates.

The abstract memory is updated as a side effect of the analysis. In order to
quickly determine the fixed point, we use memory sizes indicating whether or not
the memory has changed. In what follows, we refer to the size of the abstract mem-
ory as a memory size x ∈ X = [0, hm] where hm is the maximum memory size. It
corresponds to the case where all object fields contain all abstract objects, hence,
hm = |OF | · |O|.

In order to apply the theory of monotone dataflow frameworks to memory size
values as well, we introduce a lattice LX referred to as the memory size lat-
tice. The memory size lattice LX is a single ascending chain of integers, i.e.,
LX = {X,�,�,�,⊥} where X = {0,1,2, . . . , hm} , � = hm, ⊥ = 0, x1 � x2 =
max(x1, x2), and x1 � x2 = min(x1, x2). The height of LX is hm.

2.2 Points-to SSA

Points-to SSA is our graph-based program representation. In Points-to SSA, local
variables are resolved to dataflow edges connecting operations (nodes) that define
variables to operations (nodes) that use these variables. As a result, every def-use
relation via local variables is explicitly represented as an edge between the defin-
ing and using operations. Join-points in the control flow where several definitions
may apply are modeled with special ϕ-nodes using possible definitions valid in the
different branches and introducing new definitions.

Figure 1 shows a simple “Linked List” implementation (class L) and the corre-
sponding Points-to SSA graphs. Each method is represented by a graph and each
node in the graph represents an operation in the method. We have for example
Entry and Exit nodes representing method entry/exit points, and Store and
Load nodes representing field write/read operations. The ports at the top of a node
represent operation input values (e.g., memory size x, target address values a, and
the values v to store in the Store nodes) and the ports at the bottom represent op-
eration results (e.g., a new memory size x in the Store nodes). Edges connecting
node ports represent the flow of values from defining nodes (operation results) to
using nodes (operation input values). An out-port outi (n) may be connected to one
or more outgoing edges. An in-port is always connected to a single incoming edge.

78 J. Lundberg et al.

Fig. 1 Source code fragment and corresponding Points-to SSA graphs

The last property reflects our underlying SSA approach—each value has one, and
only one, definition.

The constructor L.init starts by calling its super constructor Object.init
and notice that object creation, in method L.append, is done in two steps: we first
allocate an object of class L and then call the constructor L.init. ϕ-nodes are used
in L.append to merge the memory size values from the two selective branches,
and in L.putAt as the loop head of the iteration.

A Points-to SSA method graph can be seen as an abstraction of a method’s se-
mantics, an SSA graph representation specially designed for points-to analysis. It is
an abstraction since we have removed all operations not directly related to reference
computations, e.g., operations related to primitive types. Moreover, we abstracted
from the semantics of the remaining operations by giving them an abstract analysis
semantics.

Another feature of Points-to SSA is the use of memory edges to explicitly model
(direct, indirect, and anti-) dependencies between different memory operations. An
operation that may change the memory defines a new memory size value, and op-
erations that may access this updated memory use the new memory size value.
Thus, memory sizes are considered as data, and memory size edges have the same
semantics—including the use of ϕ-nodes at join points—as def-use edges for other
types of data. The introduction of memory size edges in Points-to SSA is impor-
tant since they also imply a correct order in which the memory accessing operations
are analyzed, which ensures that the analysis is a flow-sensitive abstraction of the
semantics of the program. Flow-sensitivity will be discussed in Sect. 4.

Certain node types have attributes that refer to node specific, static information.
For example, each AllocC node is decorated with a class identifier C that identifies
the class of the object to be created.

SSA-Based Simulated Execution 79

Finally, each type of node is associated with a unique analysis semantics (or
transfer function) which can be seen as a mapping from in-ports to out-ports that
may have a side-effect on the memory. As an example, Algorithm A1 shows the
analysis semantics for the Storef node, which abstracts the actual semantics of a
field write statement a.f = v.

A1 Storef : [xin, a, v] �→ xout

xout = xin

for each o ∈ Pt(a) do
prev = Mem.get([o,f])
if v �
 prev then

Mem.addTo([o,f], v)

xout = Mem.getSize()
end if

end for
return xout

For each abstract object o in the address reference a, we look up the points-to
value previously stored in object field [o,f]. If the new value to be stored changes
the memory (i.e., if v �
 prev), we merge v with the previous value and save the
result. Notice also that we compute a new memory out-port value (a new memory
size) if the memory has been changed during this operation.

3 Simulated Execution

Our dataflow analysis technique, called simulated execution, is an abstract interpre-
tation of the program based on the abstract analysis and program representation dis-
cussed in the previous section. It simulates the actual execution of a program where
the analysis of a method is interrupted when a call occurs, and later resumed when
the analysis of the called method was completed. This analysis approach would be
very costly if we could not find a way to interrupt a large number of all call se-
quences. In fact, it would never terminate in case of recursive calls.

The simulated execution approach can be seen as a recursive interaction between
the analysis of an individual Points-to SSA method graph and the transfer function
associated with monomorphic calls, which handle the transition from one method
to another. Polymorphic calls are handled as selections over possible target methods
mi , which are then processed as a sequence of monomorphic calls targeting mi .

3.1 Method Graph Processing

For each method graph, we have a pre-computed node order that is determined by
the data and memory dependencies between the nodes. We compute a topological

80 J. Lundberg et al.

sorting for forward edges. To order the nodes in loops, we use a so-called interval
analysis [1, 19] where we identify inner and outer loops and their loop heads (always
ϕ-nodes).

The method processing starts in the method entry node, follows the node or-
dering, and iterates over loops until a fixed point is reached. Inner loops are stabi-
lized before their outer loops. Consequences of this approach are: (1) All nodes in
a method graph gm are analyzed at least once every time method m is analyzed.
(2) All nodes, except the loop head ϕ-nodes, have all their predecessor nodes up-
dated before they are analyzed themselves. (3) The order in which the nodes are
analyzed respects all control and data dependencies and is therefore an abstraction
of the control-flow of an actual execution. The final point is a crucial step to assure
flow-sensitivity in the SSA-based simulated execution technique.

The above properties of analyzing single method graphs is taken into considera-
tion by processMethod as given in Algorithm A2. It should only be considered as a
rough outline of the approach actually implemented. The idea is simple: We start by
initializing the method entry node with the method input to be used in this particular
method activation. We then analyze the method nodes repeatedly until we reach the
method exit node. Therefore, we compute a node’s transfer function given by the
node type, update the successor in-ports, and determine the next node to analyze to
get its values stable.

A2 processMethod : (m, [xin, a, v1, . . . , vn]) �→ [xout , r]
n = m.entryNode
in(n) = [xin, a, v1, . . . , vn]
do

n.computeTransferFunction()

n.updateSuccs()
n = n.next()

while n �= m.exitNode
return in(n)

The statement n.computeTransferFunction() makes a transition from one method
to another if the node n is of a monomorphic call type (MCallm,csi). Note that the
processing of a call in turn may lead to the analysis of the call target method m as
defined in processMethod.

3.2 Call Processing

Our approach to analyzing individual calls (see Algorithm A3) describes the han-
dling of a call to method m in a context ctxm. For the understanding of our call
processing, it is safe to assume that all calls to m are associated with only one con-
text ctxm, i.e., that we perform a context-insensitive analysis. This is generalized to
more contexts in [14].

SSA-Based Simulated Execution 81

A3 processCall(ctxm, [xin, a, v1, . . . , vn]) �→ [xout , r]
- - if ctxm was already analyzed with larger parameters before
if [xin, a, v1, . . . , vn]
 ctxm.prev_args then

return ctxm.prev_return
end if
ctxm.prev_args = ctxm.prev_args � [xin, a, v1, . . . , vn]
- - if ctxm is on the analysis stack
if ctxm.is_active then

ctxm.is_recursive = true
return ctxm.prev_return

end if
ctxm.is_active = true
[xout , r] = processMethod(m, ctxm.prev_args)
- - if ctxm was not recursively called within processMethod
if ¬ ctxm.is_recursive then

ctxm.prev_return = [xout , r]
ctxm.is_active = false
return [xout , r]

end if
- - while ctxm’s recursive call results haven’t reached fixed point
while ctxm.prev_return � [xout , r] do

ctxm.prev_return = [xout , r]
[xout , r] = processMethod(m, ctxm.prev_args)

end while
ctxm.is_recursive = false
ctxm.is_active = false
return [xout , r]

The processing of (recursive) method calls must guarantee that the analysis ter-
minates and that the analysis values reach a global fixed point.

The crucial step to ensure termination is that each context ctxm is associated with
two attributes prev_args and prev_return where we store previous input and return
values of the calls to m in that context ctxm. The former of these attributes is used
to decide whether we have seen a more general call targeting m in the same context
ctxm before, i.e., if [xin, a, v1, . . . , vn]
 prev_args, in which case we interrupt the
call processing and reuse the previous result from prev_return.

The alternative, a call targeting m in ctxm with new arguments, leads to
a new method activation where we process the target method m by invoking
processMethod using the merged input prev_args � [xin, a, v1, . . . , vn]. We also
update the two attributes prev_args and prev_return in preparation for the next call
targeting m in ctxm.

Termination of our analysis is ensured since we incrementally merge our argu-
ments prev_args � [xin, a, v1, . . . , vn] before we start processing a method m. Thus,
the sequence of arguments argsi used for a given context ctxm forms an ascending
chain satisfying args0 � args1 � · · · � argsn.

82 J. Lundberg et al.

Each such chain must have finite length since our value lattices have finite heights
(both LX and LV are finite). Thus, each method can only be processed a finite
number of times, and analysis termination is guaranteed. This argument also holds
for calls involving recursion; terminations is guaranteed for these programs as well.

In order to guarantee that the fixed point is reached, especially in loops induced
by recursive method calls, we need a few more attributes associated with each con-
text: is_active is used to check if we are processing a call in a context that is cur-
rently being analyzed, i.e., if m is called recursively in ctxm. In this case, we di-
rectly return prev_return for the recursive call (or undefined [0,⊥] if we have no
previous results). Also we set is_recursive = true which indicates, upon return from
processMethod, that we have seen a recursive call during processMethod. In this
case, we need to stabilize the results by iteratively reinvoking processMethod until
the fixed point is reached.

4 Flow-Sensitivity

An analysis is flow-sensitive if it takes into account the order in which statements
in a program are executed [23]. However, there does not seem to exist a consensus
about the precise definition of flow-sensitivity [16]. Many people require so-called
strong updates as a criteria for flow-sensitivity [23]. Strong updates occur when an
assignment supersedes (or kills the results of) an earlier assignment. The problem
with strong updates is that they are only permitted if the ordering of the reads and
writes of a given variable is sure and if the variable identifies a unique memory lo-
cation. For local variables, these cases can be detected using a def-use analysis, i.e.,
an analysis that computes for every definition of a variable all uses of that variable
along a definition free control-flow path.

The flow-insensitivity leads to an intra-procedural (local) precision loss when-
ever we have multiple definitions of a reference variable v. Each definition adds new
values to the point-to set Pt(v) and every use of v will transport all values stored
in Pt(v). This problem is solved in our SSA-based analysis by the introduction of
reference edges connecting the operations (nodes) where values are defined to oper-
ations where they are used. Thus, every use of a variable has exactly one definition
and the mixing of points-to values due multiple definitions is avoided. It is not a new
idea that using an SSA-based program representation implies an intra-procedural
flow-sensitivity, it has been demonstrated in [7] in a points-to analysis for C.

We might also have a precision loss due to inter-procedural flow-insensitivity,
i.e. taking into account certain inter-procedural control-flow paths that never can
occur at run-time.

To demonstrate the effects, in Fig. 2, we show a scenario with a sequence of three
calls ri = ai .m(vi) targeting the same method m

m(V v) {return v; } �→ V

(which just returns the argument). A classic data-flow approach which neglects the
call order would, in addition to the three correct control-flow paths starti → m →

SSA-Based Simulated Execution 83

Fig. 2 A flow-insensitive
scenario

endi , i = 1,2,3, utilize the following six non-correct paths starti → m → endj ,
i �= j . These additional paths come with a precision loss since the return value re-
ceived at each call site is the union of all return values induced by the different
call-sites. For example, all call sites in Fig. 2 will receive the same value

Pt(r1) = Pt(r2) = Pt(r3) = Pt(v1) ∪ Pt(v2) ∪ Pt(v3)

It should be noted that the problem of mixed return values can be reduced (not
removed) by adding a finite depth context-sensitivity.

A similar problem occurs whenever we have multiple field accesses targeting
the same object field [o,f]. All read operations will receive the union of all values
added by the different store operations targeting the same object field.

Our SSA-based simulated execution approach has two important ingredients that
add flow-sensitivity to the analysis:

1. We have intra-procedural memory edges imposing an ordering among all mem-
ory accessing operations (calls and field accesses) within a method. This ordering
is strictly obeyed by our method graph processing algorithm. The result is that a
memory access a1.x will never be affected by another memory access a2.x that
is processed strictly after a1.x in all program runs.

2. We have the simulated execution technique that follows the inter-procedural
control-flow from one method to another. This will extend the above mentioned
ordering of memory accessing operations to hold between any two operations in
the program.

The major advantage of our approach is the reduced mixing of values returned by
calls targeting the same method. Since each call is treated separately, each return
only contains contributions from previously processed calls. That is, the first call to
a method has no mixing of the return values and only the final call has the same
degree of mixing as the classic data-flow approach. For example, the call sites in
Fig. 2 will receive values that are unaffected by calls that take place later on:

Pt(r1) = Pt(v1),

Pt(r2) = Pt(v1) ∪ Pt(v2),

Pt(r3) = Pt(v1) ∪ Pt(v2) ∪ Pt(v3)

Another interesting (but rather strange) effect is the result of multiple calls targeting
the same method that take place in different branches of a selective statement. The
result will in these cases depend on the order in which we process the different

84 J. Lundberg et al.

branches. The branch first processed will have no mixing and the final branch will
be completely mixed. This is still a conservative result since only one branch will
be executed in reality, and the precision is still better than in the classic data-flow
approach where all calls will be completely mixed.

The same idea of progressively increased mixing holds also for multiple field
accesses targeting the same object field [o,f]. A read operation targeting [o,f]
will receive all values stored in [o,f] up to this point, but will be unaffected by
store operations that we still have not processed.

In summary, our SSA-based simulated execution approach is flow-sensitive in
the meaning that a memory accessing operation (call or field access) a1.x will never
be affected by another memory access a2.x that is executed after a1.x in all pro-
gram runs. This makes our approach strictly more precise than the classic data-flow
approach where the analysis follows more non-correct control-flow paths.

5 Correctness of Simulated Execution

In this section we will outline a proof of correctness based on abstract interpreta-
tion [3, 20]. Within this framework, it is sufficient to show that the analysis correctly
abstracts the data (references and heap and stack memory), that the analysis transfer
functions correctly abstracts the concrete semantics, and that fixed-point iteration
over-approximates the concrete execution traces. The subsequent sections will dis-
cuss these proof obligations.

5.1 Data Abstraction

The analysis abstracts from all value data types like Integer and Boolean.
In Sect. 2, we stated that each syntactic object creation point s corresponds to

a unique abstract object (reference) os . This defines a many-to-one abstraction (α)
where each object oi

s created at run-time at s is mapped to a unique analysis ab-
straction os . We have also implicitly defined a reverse concretization mapping (γ)
that associates each abstract object os to all run-time objects created at site s in any
execution of the analyzed program. The two mappings α and γ obviously form
a Galois connection satisfying {oi

s} ⊆ γ (α(oi
s)) for each run-time object oi

s and
α(γ (os)) = {os} for each abstract object os .

Similarly for the heap memory, each run-time memory slot ([oi
s, f], oj

p) is

mapped (α) to an abstract memory slot ([os, f], v) where os = α(o
j
s) and α(ok

p) ∈ v.
The reverse mapping γ (([os, f], v)) is defined by the set of all run-time memory
slots {([oi

s, f], oj
p) | oi

s ∈ γ (os) ∧ ∃op ∈ v : o
j
p ∈ γ (op)}. The two mappings α and

γ again form a Galois connection satisfying {([oi
s, f], oj

p)} ⊆ γ (α(([oi
s, f], oj

p)))

for each run-time memory slot ([oi
s, f], oj

p) and α(γ (([os, f], v))) = ([os, f], v)

for each abstract memory slot ([os, f], v).

SSA-Based Simulated Execution 85

The final part of run-time memory that needs to be abstracted is the activation
frames in the call stack. At run-time the frames represent the target object ref-
erence and the actual parameters associated with a method call. We deliberately
omit the discussion of return address (represented by back-edges in the method
call graph) and local variables (represented by the method’s SSA graph edges). In
our context-insensitive analysis, all activation frames (addresses) created for any
method call a.m(. . .) targeting method m are mapped to a context ctxm. And in
reverse, a context ctxm represents any call targeting m, in any execution of the
program. Let oi

s .m(o
j
p, . . . , ok

q) be a concrete call (frame). It is abstracted (α) by

(m, {os}, {op}, . . . , {oq}) where os = α(oi
s) and op = α(o

j
p), . . . , oq = α(ok

q). An
abstract frame (m, s,p, . . . , q) is mapped (γ) to a set of concrete frames

{
oi
s .m

(
o

j
p, . . . , ok

q

) | os ∈ s, oi
s ∈ γ (os)

∧ op ∈ p,o
j
p ∈ γ (op) . . . oq ∈ q, ok

q ∈ γ (oq)
}
.

Again α and γ form a Galois connection: α(γ ((m, s,p, . . . , q))) = (m, s,p, . . . , q)

and {oi
s .m(o

j
p, . . . , ok

q)} ⊆ γ (α(oi
s .m(o

j
p, . . . , ok

q))).

5.2 Transfer Functions

The analysis abstracts from all operations that are related to value data types.
Object allocation operations are taken care of by the analysis abstraction leading

to abstract objects, which we discussed already. Field store and method call are the
only operations that have an effect on the memory. We show the correctness of the
store (call) transfer functions wrt. the concrete semantics of store (call).

The Algorithm A1 defines the transfer function for Storef nodes as a weak update
of abstract heap memory slots. Let a = {o1, . . . , ok} and v be two sets of abstract
objects and let ([oi, f], vi), oi ∈ a denote abstract heap slots before the execution of
a update Storef (a, v). Then the abstract heap slots after this update are defined by
([oi, f], vi ∪ v), oi ∈ a.

In a concrete run, Storef performs a strong update of heap memory slots.
Let ([oi

s, f], oj
p) be a heap memory slot before the execution of an operation

Storef (oi
s, o

k
q). Then ([oi

s, f], ok
q) is the memory slot after its execution.

The transfer function of Storef is a correct abstraction of its concrete semantics:
Let ([oi

s, f], oj
p) be a concrete heap memory slot and ([a,f], v) an abstract one with

{([oi
s, f], oj

p)} ⊆ γ (([a,f], v)). Then Storef (oi
s, o

k
q) and Storef (a, v′) lead to slots

hs = ([oi
s, f], ok

q) and hsa = ([a,f], v′ ∪ v), resp., and {hs} ⊆ γ (hsa).
Algorithm A3 defines the transfer function for Callm nodes. We discuss the con-

trol flow associated with calls in Sect. 5.3. Here, we focus on their effect on concrete
and abstract stack frames.

For each concrete call oi
s .m(o

j
p, . . . , ok

q), a corresponding stack frame is cre-
ated. The abstract transfer function of Callm updates an abstract stack frame

86 J. Lundberg et al.

(m, s,p, . . . , q). The transfer function of Callm is a correct abstraction of its
concrete semantics: Let (m, s,p, . . . , q) be an abstract stack frame and trivially
∅ ⊆ γ ((m, s,p, . . . , q)). Then Callm(oi

s, o
j
p, . . . , ok

q) and Callm(m, s,p, . . . , q) lead

to stack frames sf = oi
s .m(o

j
p, . . . , ok

q) and sfa = (m, s ∪ α(oi
s),p ∪ α(o

j
p), . . . , q ∪

α(ok
q)), resp., and {sf } ⊆ γ (sfa).

5.3 Execution Traces

An execution trace is a sequence of program states, i.e., the initial memory (empty
heap and stack) and its stepwise updates caused by the operations of a program.
Each concrete trace tr = (m0,m1, . . . ,mi, . . .), i.e., each sequence of memory states
induced by the concrete semantics of operations in a concrete program run, is cor-
rectly abstracted by an abstract trace tra = (M0,M1, . . . ,Mj , . . .), i.e., by a se-
quence of abstract memory states induced by updates according to the transfer func-
tions of operations in a simulated execution. This means that for each such pair of
traces and corresponding memory state contained, we require that Mj is a correct
abstraction for mi .

For individual memory state transitions, this correctness has been discussed for
each individual operation in Sect. 5.2. As the sequences of operations visited in sim-
ulated executions is still an over-approximation of operation sequences that possibly
occur in any concrete execution as discussed in Sect. 4, the correctness argumenta-
tion is complete.

6 Related Work

In this section we present current research related to flow-sensitive dataflow anal-
ysis in general, and to points-to analysis of object-oriented programs in particular.
For brevity we focus our efforts on works explicitly dealing with the analysis of
object-oriented programs. However, it should be noted that most works targeting
object-oriented programs have an “imperative counterpart” which often pre-dates
the object-oriented work. People interested in more general reviews of the area
should take a look at [6, 8, 21, 23].

First of all, Simulated Execution has been implemented, briefly presented, and
used in [14]. Although focusing on presenting a new approach to context-sensitive
points-to analysis, that paper demonstrates that Simulated Execution scales to pro-
grams containing hundreds of classes.

An analysis is flow-sensitive if it takes into account the order of execution of
statements in a program. Only a few papers report on flow-sensitive approaches to
points-to analysis for object-oriented programs [2, 5, 27]. The major theoretical ob-
stacle in a flow-sensitive analysis is the question when it is safe to perform strong

SSA-Based Simulated Execution 87

updates. A strong update occurs when an assignment supersedes (or kills) all pre-
vious assignments. The alternative, weak update, uses incremental updates of all
values.

Both [5] and [27] use weak updates for every assignment involving fields and
method parameters. The more recent of the two works [27] reports increased preci-
sion at a reasonable cost. A more ambitious approach is taken in [2]. They compute
inter-procedural def-use information, which is later used to decide whether strong
updates are safe or not. They report high precision but at an unacceptable cost. Our
approach is flow-sensitive but restricted to weak updates.

Most approaches to points-to analysis of object-oriented programs are based on a
sparse whole program points-to graph (WPP2G), [6, 9, 11, 12, 18, 24, 28]. WPP2Gs
contain three different node types: abstract objects, reference variables, and object
fields. Edges represent assignments of abstract objects, variables and fields to (other)
variables and fields. To handle calls, edges are added that correspond to assignments
of address, arguments (and return values) to the implicit variable this, formal param-
eters (and receiving variable). The result is one large graph representing the whole
program.

A straight forward dataflow analysis applied on this type of whole program graph
would result in a flow-insensitive analysis. And, as pointed out in Sect. 4, they have
an intra-procedural precision loss in case of multiple variable definitions, and an
inter-procedural precision loss since they take into account certain inter-procedural
control flow paths that never can occur at run-time. Our SSA-based Simulated Ex-
ecution approach has no such intra-procedural precision loss, and reduces the inter-
procedural precision loss.

In a context-insensitive program analysis, call arguments of different calls to the
same method are propagated and mixed there. The analysis result for a given method
is then the merger of all calls targeting that method. A context-sensitive analysis ad-
dresses this source of imprecision by distinguishing between different calling con-
texts of a method. It analyzes a method separately for each calling context [23]. The
above mentioned sources of flow-insensitivity can be reduced (but not removed) by
adding a finite depth context-sensitivity.

The number of papers explicitly dealing with context-sensitive points-to analysis
of object-oriented programs is continuously growing [2, 11, 14, 18, 22, 28, 29]. The
papers experiment with different context definitions and techniques to reduce the
memory cost associated with having multiple contexts for a given method. New
context-sensitive analysis techniques designed for object-oriented programs are:
object-sensitivity [17, 18], this-sensitivity [14], and a k-call-string based analysis
with no fixed upper limit (k) that only takes acyclic call paths into account [28, 29].
These new approaches have been compared in a number works [10, 11, 14, 18].
They found that 1-this-sensitivity is similar in precision, but much faster, than 1-
object-sensitivity [14], which was found to be “clearly better” both in terms of pre-
cision and scalability than the k-call-string approach [11]. Many papers use approx-
imative method summaries to reduce the cost of having multiple contexts [2, 22].
Sometimes, ordered binary decision diagrams (OBDD) are used to efficiently ex-
ploit commonalities of similar contexts [11, 25, 28], which allows handling of a
very large number of contexts at a reasonable memory cost.

88 J. Lundberg et al.

Our program representation Points-to SSA is closely related to Memory SSA [25,
26]. Memory SSA is an extension to the traditional approach to SSA, as presented
in [4, 19]. Memory SSA is a low intermediate representation capturing the complete
program semantics whereas in Points-to SSA we deliberately abstract from the exact
program semantics. We have removed all features that are related to primitive types
and raised the abstraction level by merging patterns of primitive RISC operations
into single complex operations. Another difference is that we use memory sizes
instead of memory configurations as our memory values making our approach scale
to a few hundreds of classes as opposed to a few hundreds of lines of code for
points-to analyses based on Memory SSA [13].

7 Summary, Conclusion and Future Work

In this chapter we present a novel flow-sensitive approach to dataflow analy-
sis named Simulated Execution. Although we present Simulated Execution as a
dataflow algorithm applied to context-insensitive Points-to Analysis, it can be ap-
plied on any inter-procedural dataflow problem and in a context-sensitive manner.
Simulated Execution is based on Points-to SSA, a sparse SSA-based program repre-
sentation that explicitly models dependencies, direct or indirect, between different
memory store and load operations. Points-to SSA has def-use information for lo-
cal variables encoded from the start and adds therefore local flow-sensitivity to the
analysis.

Our dataflow algorithm simulates an abstract execution of the program where the
processing of a method is interrupted when a call occurs, and later resumed when the
processing of the called method is completed. The fact that we follow the control-
flow from one method to another adds a global flow-sensitivity to the analysis. This
added flow-sensitivity makes Simulated Execution strictly more precise than the
classic data-flow approach where the analysis follows more non-correct control-
flow paths.

In the future we will continue the work with the outline of the proof of our theo-
rem. This will then include a more detailed look into simpler models for simulated
execution and also an exploration of the details about the SSA graph modelling and
more general models. We also plan an experimental evaluation comparing Simu-
lated Execution with flow-insensitive approaches to see if the added analysis preci-
sion due to flow-sensitivity is significant also in practise.

References

1. Aho, A., Sethi, R., Ullman, J.: Compilers: Principles, Techniques, and Tools. Addison-Wesley
Reading (1986)

2. Chatterjee, R., Ryder, B., Landi, W.: Relevant context inference. In: Symposium on Principles
of Programming Languages (POPL’99), pp. 133–146 (1999)

SSA-Based Simulated Execution 89

3. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction of approximations of fixed points. In: Conference Record of the
Fourth Annual ACM SIGACT/SIGPLAN Symposium on Principles of Programming Lan-
guages, January, pp. 238–252 (1977)

4. Cytron, R., Ferrante, J., Rosen, B., Wegman, M., Zadeck, K.: Efficiently computing static
single assignment form and the control dependence graph. ACM Trans. Program. Lang. Syst.
13(4), 451–490 (1991)

5. Diwan, A., Moss, J.E.B., McKinley, K.S.: Simple and effective analysis of statically typed
object-oriented programs. In: Proceedings of the Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA’96), October (1996)

6. Grove, D., DeFouw, G., Dean, J., Chambers, C.: Call graph construction in object-oriented
languages. In: Proceedings of the Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA’97), pp. 108–124 (1997)

7. Hasti, R., Horwitz, S.: Using static single assignment form to improve flow-insensitive pointer
analysis. In: Proceedings of the Conference on Programming Language Design and Imple-
mentation (PLDI’98), June, pp. 97–105 (1998)

8. Hind, M.: Pointer analysis: Haven’t we solved this problem yet? In: Workshop on Program
Analysis for Software Tools and Engineering (PASTE’01), pp. 54–61 (2001)

9. Lhoták, O., Hendren, L.: Scaling Java points-to analysis using spark. In: Proceedings of the
International Conference on Compiler Construction (CC’03), April, pp. 153–169 (2003)

10. Lhoták, O., Hendren, L.: Context-sensitive points-to analysis: Is it worth it? In: Mycroft, A.,
Zeller, A. (eds.) International Conference on Compiler Construction (CC’06). LNCS, vol.
3923, pp. 47–64. Springer, Berlin (2006)

11. Lhoták, O., Hendren, L.: Evaluating the benefits of context-sensitive points-to analysis using
a BDD-based implementation. ACM Trans. Softw. Eng. Methodol. 18(1), 1–53 (2008)

12. Liang, D., Pennings, M., Harrold, M.: Extending and evaluating flow-insensitive and context-
insensitive points-to analysis for Java. In: Proceedings of the Workshop on Program Analysis
for Software Tools and Engineering (PASTE’01), June, pp. 73–79 (2001)

13. Liekweg, F.: Compiler-directed automatic memory management. In: 3rd Workshop on Seman-
tics, Program Analysis, and Computing Environments for Memory Management (SPACE).
ACM/SIGPLAN, New York (2006)

14. Lundberg, J., Gutzmann, T., Edvinsson, M., Löwe, W.: Fast and precise points-to analysis. J.
Inf. Softw. Technol. 51(10), 1428–1439 (2009)

15. Marlowe, T., Ryder, B.: Properties of data flow frameworks: A unified model. Acta Inform.
28, 121–163 (1990)

16. Marlowe, T.J., Ryder, B.G., Burke, M.G.: Defining flow sensitivity for data flow problems.
Laboratory of Computer Science Research Technical Report, Number LCSR-TR-249 (1995)

17. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for points-to and
side-effect analyses for Java. In: Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA’02), July, pp. 1–11 (2002)

18. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for points-to analysis
for Java. ACM Trans. Softw. Eng. Methodol. 14(1), 1–41 (2005)

19. Muchnick, S.S.: Advanced Compiler Design Implementation. Morgan Kaufmann, San Fran-
cisco (1997)

20. Nielsen, F., Nielsen, H.R., Hankin, C.: Principles of Program Analysis, 2nd edn. Springer,
Berlin (2005)

21. Palsberg, J.: Object-oriented type inference. In: Proceedings of the Workshop on Program
Analysis for Software Tools and Engineering (PASTE’01), July, pp. 20–27 (2001)

22. Ruf, E.: Effective synchronization removal for Java. In: Proceedings of the Conference on
Programming Language Design and Implementation (PLDI’00), pp. 208–218 (2000)

23. Ryder, B.G.: Dimensions of precision in reference analysis of object-oriented programming
languages. In: International Conference on Compiler Construction (CC’03). LNCS, vol. 2622,
pp. 126–137. Springer, Berlin (2003)

90 J. Lundberg et al.

24. Streckenbach, M., Snelting, G.: Points-to for Java: A general framework and an empirical
comparison. Technical report, Lehrstuhl für Softwaresysteme, Universität Passau, Germany,
November (2000)

25. Trapp, M.: Optimierung objektorientierter programme. PhD thesis, Universität Karlsruhe, De-
cember (1999)

26. Trapp, M., Lindenmaier, G., Boesler, B.: Documentation of the intermediate representation
Firm. Technical report 1999-14, Fakultät für Informatik, Universität Karlsruhe, Germany
(1999)

27. Whaley, J., Lam, M.S.: An efficient inclusion-based points-to analysis for strictly-typed lan-
guages. In: Proceedings of the Static Analysis Symposium (SAS’02) (2002)

28. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using binary
decision diagrams. In: Proceedings of the Conference on Programming Language Design and
Implementation (PLDI’04), June, pp. 131–144 (2004)

29. Zhu, J., Calman, S.: Symbolic pointer analysis revisited. In: Proceedings of the Conference on
Programming Language Design and Implementation (PLDI’04), June, pp. 145–157 (2004)

Towards a Calculus of Object Programs

Bertrand Meyer

Abstract Verifying properties of object-oriented software requires a method for
handling references in a simple and intuitive way, closely related to how O-O pro-
grammers reason about their programs. The method presented here, a Calculus of
Object Programs, combines four components: compositional logic, a framework for
describing program semantics and proving program properties; negative variables
to address the specifics of O-O programming, in particular qualified calls; the alias
calculus, which determines whether reference expressions can ever have the same
value; and the calculus of object structures, a specification technique for the struc-
tures that arise during the execution of an object-oriented program.

The article illustrates the Calculus by proving the standard algorithm for revers-
ing a linked list.

1 Addressing the Specifics of Object-Oriented Software

Object-oriented programming predominates today; the verification methods we ap-
ply should reflect its distinctive properties. Much of the available work, however,
fails to take into account the specifics of the object-oriented approach, in particular
the “general relativity” principle which makes every operation dependent on a “cur-
rent object” known only at run time and potentially different for every execution or
evaluation.

The most critical obstacle, for the practice of verification, is that there is still
no easily applicable approach to handle the manipulation of references (pointers),
which plays a central role in the practice of O-O development. Separation logic, the
method that has attracted the most attention, rests on an extensive model of the heap,
requires extensive program annotations, and fails to take advantage of the abstrac-
tion mechanisms that define object technology. A typical example is Bornat’s impor-
tant work on “proving pointer programs” [1], which does not consider any object-
oriented mechanisms—in fact not even routine calls, O-O or not—and focuses its
discussion on modeling remote field assignments, x.a := c, a mechanism that no

B. Meyer
ITMO & Eiffel Software, ETH Zurich, Zürich, Switzerland
se.ethz.ch

K.K. Breitman, R.N. Horspool (eds.), Patterns, Programming and Everything,
DOI 10.1007/978-1-4471-2350-7_8, © Springer-Verlag London 2012

91

92 B. Meyer

careful object-oriented programmer would use. (The appropriate idiom, whether or
not the language imposes it, is to go through a call to a setter procedure x.set_a(c),
or a semantically equivalent variant such as a property setter in C#.)

The present discussion describes an approach to verifying object-oriented pro-
grams with particular emphasis on the handling of references as required for linked
data structures. The techniques closely follow the way object-oriented programmers
think about their programs; it uses standard annotations (contracts) of the form al-
ready present in Eiffel, Spec# or JML, with only small extensions to the concepts
of axiomatic (Hoare-style) specification. It retains the possibility of evaluating as-
sertions at run time, for testing purposes, in addition to using them for static verifi-
cation. Although the present paper presents the concepts only, the integration into a
state-of-the-art proof seems within reach.

The approach includes four components:

• Compositional logic (Sect. 3), which describes the semantics of program elements
in terms of their effects on program values, generalizing the assertions of Hoare-
Dijkstra semantics to expressions of arbitrary types.

• The notion of negative variable (Sect. 4), which provides a simple machinery
to model the distinctive properties of object-oriented programming, making it
possible in particular to reason on properties of the fundamental operation of
object-oriented programming, the call x.f (args).

• The alias calculus, an automatic approach (not relying on annotations) to deter-
mine that two given expressions in a program can never denote the same object.
The alias calculus was presented in an earlier paper [15]; Sect. 5 summarizes its
results and its application to the present work.

• The calculus of object structures (Sect. 6), a set of techniques for describing prop-
erties of run-time structures involving references. Reasoning effectively about
object structures requires suitably abstract models; the calculus defines these ab-
stractions, in particular through the integral operator

∫
, and the associated seman-

tic rules.

The “Calculus of Object Programs” is the combination of these four techniques.
It yields, as an example, a simple proof of a program known to be challenging for
verification: linked list reversal. To enable the reader to understand right away how
the techniques work, this proof appears in Sect. 2, where each step includes a for-
ward reference to the formal rule that justifies it. Sections 3 to 6 detail these rules;
Sect. 7 is a comparison with other approaches, Sect. 8 concludes, and Appendix
provides some supplementary theoretical background.

Starting with the example should enable the reader to see the simplicity of the
method, and encourage the study of the theory in the remainder of the paper.

The approach has limitations, detailed in Sect. 8; for example, it does not yet ad-
dress inheritance. Also, the ideas have not yet been implemented; integrating them
into a practical verification environment [30] will, we hope, show their practicabil-
ity and scalability. Another possible criticism is that not much attention has been
devoted so far to modular provability. In spite of these limitations, the Calculus of
Object Programs presented here may hold some of the elements of a simple method
for verifying programs that routinely manipulate sophisticated object structures.

Towards a Calculus of Object Programs 93

2 A Proof: Linked List Reversal

The example proof addresses an important and typical problem involving somewhat
intricate manipulations of references: the in-place reversal of a linked list.

As evidence that many people consider this problem tricky, we note that it is a
staple interview question for programmers; dozens of Web pages, which one will
readily find through a search for terms such as “list reversal algorithm”, present
variants of the solution, for the benefit of job candidates preparing such interviews.
(A blog article [16] discusses some of these pages, noting that they typically fail to
mention the loop invariant even though it is the key to understanding the algorithm.)

Although the steps are simple, we will perform the key part of the proof in al-
most full detail, in the way one would present a proof of Euclid’s algorithm in an
introductory course on axiomatic semantics. The intent is to demonstrate that the
techniques presented here allow programmers to reason formally about programs
manipulating linked data structures as simply and naturally as about traditional pro-
grams involving just integers and booleans.

Terminology note: an object is made of a number of elementary values known
as fields. Of direct interest for the present discussion are fields of reference types
(rather than of basic types such as integers). Every field in an object corresponds
to an attribute of the associated class. Attributes are also called “member variables”
(or “fields”, although this term may cause confusion between the static and dynamic
views).

2.1 Algorithm Idea

The goal is to reverse a list of cells (of type LINKABLE) linked to each other through
fields labeled right; the first cell is accessed through the field first of the list class:

(The figures and part of the discussion are taken from an introductory programming
textbook [14].) As illustrated, each cell contains both a right link and some other
information, shown here as just an integer. We will assume that the structure induced
by the right links is acyclic; this property, formalized below, must remain invariant
throughout the algorithm. The desired final situation is:

94 B. Meyer

By convention, the algorithm reorders the cells by changing their right fields, but
does not change the rest of the cell’s contents (so that in this example each cell in
the final picture is the same object as the one that had the same integer identifier in
the original). Other variants are of course possible.

The best way to understand the basic idea of the algorithm, which relies on a
loop, is to consider the state of the data structure after a typical iteration of the loop:

In this intermediate state, we actually have two lists, accessible through the local
variables previous and next. The key property, as illustrated, is that the first list
contains an initial subset of the original sequence, but now in reversed order, and
the second list contains the remaining elements, in their original order. Then the
task of the loop body is to preserve this property but move the boundary between
the two lists by one position to the right:

To achieve this change, the loop body will perform a short pointer ballet, which will
be detailed below. Note in particular that it must change the right field of the first
item to the right of the border (in the example, the one with value 4).

Repeating this process, we will eventually reach a state where next is void (null)
and previous points to the last element of the original list, giving us the desired result
if we then set first to previous. The process is easy to initialize: just set previous to
void and next to first.

2.2 Algorithm Text

All common forms of linked list reversal use the scheme just described, with small
variations. We will work with the following form:

Towards a Calculus of Object Programs 95

reverse
– Rearrange cells into the reverse of their original order.

local
previous, next, temp: detachable LINKABLE

do
from

previous := Void ; next := first
until

next = Void
loop

temp := previous – i1
previous := next – i2
next := next.right – i3
previous.set_right(temp) – i4

end
first := previous

end

The procedure set_right sets the right field of its target to the value of its argument.
A Java or C# programmer might write the call previous.set_right (temp) as a remote
assignment previous.right := temp, but we restrict ourselves to a proper form of O-
O programming which rules out such violations of information hiding: the only way
to set a field of another object is through a setter procedure such as set_right. The
detachable declaration marks variables whose value might be void [18].

Some simplifications are possible: the initial assignment of Void to previous is
not necessary thanks to default initialization rules; we can get rid of the variable
previous altogether, and of the final assignment to first, by working directly with
first. We omit these simplifications in the interest of clarity.

For ease of reference in the proof, the four instructions of the loop body have
been given names, i1 to i4.

2.3 Specification

The first step in verifying software is to specify what must be verified. Proper no-
tations are essential: concise, clear, and applicable to a wide class of problems. We
need to equip the routine reverse with a postcondition stating the property illus-
trated informally in the preceding figures: that the original list is the concatenation
of the list starting at previous, reversed, and the list starting at next. We express this
postcondition as:

first.
∫

right = −old first.
∫

right (1)

96 B. Meyer

The expression old e denotes, as usual, the value of e on entry to the routine. If s is
a sequence (a mathematical object, not a list from programming), −s is the reverse
sequence. The “integral” operator

∫
is a new notation: starting from the current

object,
∫

b denotes the sequence containing that object, then the objects attached to
b, b.b, b.b.b and so on, for as long as it makes sense (and stopping at any cycle,
although here we are dealing with acyclic structures). The sequence p.

∫
b similarly

contains the objects attached to p, p.b, p.b.b and so on. The integral notation allows
us to express the goal of the routine as (1).

It similarly enables us to express the fundamental invariant property of the loop
algorithm. Considered the typical intermediate step, which was illustrated as fol-
lows:

We may express the invariant property that this figure represents as:

−previous.
∫

right + next.
∫

right = old
∫

first.
∫

right (2)

where “+” denotes sequence concatenation. Proving this property to be a loop
invariant is the key step of proving the program. Once we establish this re-
sult, it remains only to prove that the invariant is ensured by the initialization
(previous := Void ; next := first), and that when combined with the loop exit con-
dition (next = Void) and the property previous = first it yields the desired postcon-
dition (1). Both of these properties are obvious and any good proof machinery will
discharge them easily; so the rest of this discussion limits itself to proving that the
loop body (when next /=Void) preserves (2) and that the loop terminates.

We can in fact simplify the proof further since compositional logic generalizes
the notion of loop invariant from boolean expressions to expressions of arbitrary
type. We say that an expression e is an invariant of a loop simply to mean that an
execution of the loop body, performed when the loop exit condition does not hold,
preserves its value. (In addition, an invariant of boolean type must have value true
after the initialization, and hence will remain true, in keeping with the semantics of
traditional invariants.) With this convention the property to prove is that the follow-
ing expression, which we call INV

−previous.
∫

right + next.
∫

right (INV)

Towards a Calculus of Object Programs 97

is an invariant of the loop; it no longer needs the old operator. (In Eiffel the loop
itself would be written

from . . .until . . . invariant –Other clauses as above

− previous.
∫

right + next.
∫

right

loop . . . end

assuming a suitable extension of the language to accept arbitrary expression types
in invariant clauses.)

A point of notation: in (1), (2) and all later assertions involving sequences, the
“=” symbol represents mathematical equality, here between two sequences. In an
O-O programming language, such assertions will have to use the notation for ob-
ject equality (“∼” in Eiffel, where “=”, applied to references, represents reference
equality).

2.4 Proof Approach

In compositional logic, the property expressing that INV is an invariant is

(b ; INV) = INV –Where b is the loop body : i1 ; i2 ; i3 ; i4

(under the assumption that the exit condition next = Void does not hold). The no-
tation i ; e, for an instruction i and an expression e, denotes the value of e after
execution of i, stated as an expression in the state preceding that execution. Note
that the semicolon is also used in its traditional role as separator of sequentially
executed instructions, as in i1 ; i2; the two uses reflect, as we will see, the same
mathematical operator. If an expression is present, as INV here, it must be the last
element. (We may think of programming languages such as Algol W and C where
a block may end with an expression, following a sequence of instructions, and then
evaluates to the value of the expression after execution of the instructions.)

INV is the sum (concatenation) −previous.
∫

right + next.
∫

right. Since the
semicolon distributes over “+” as over most operators, the proof that b ; INV = INV
can be split into three parts:

• Computing b ; previous.
∫

right (Sect. 2.5); call the result bp.
• Computing b ; next.

∫
right (Sect. 2.6); call the result bn.

• Computing −bp + bn and showing that it is equal to INV (Sect. 2.7).

In addition, Sect. 2.8 will prove loop termination.
The semicolon is right-associative: (i ; j) ; e is i ; (j ; e). As a consequence, since

b is i1 ; i2 ; i3 ; i4, the computation of b ; e4 (where e4 is previous.
∫

right in 2.5
and next.

∫
right in 2.6) will proceed as the computation of e3 = (i4 ; e4), then of

e2 = (i3 ; e3), then of e1 = (i2 ; e2), then of the result as i1 ; e1. The basic form

98 B. Meyer

i ; e of compositional logic leads to this backward order, recalling how the Hoare
assignment axiom leads to backward reasoning.

For ease of reference here is the loop body b again:

temp := previous – i1
previous := next – i2
next := next.right – i3
previous.set_right(temp) – i4

One of the attractions of the style of proofs presented in this work is that it closely
matches the intuitive semantics of object-oriented programs and the way program-
mers think about their execution. To take advantage of this property, the reader may
find it useful to relate intermediate steps of the proofs to intermediate steps of the
computation, as reflected in the illustration of the pointer ballet (on the next page).
Going from the bottom up in the figure, the successively computed expressions e4,
e3, e2 and e1 correspond to the states S4, S3, S2 and S1.

2.5 Handling the Previous Part

We first compute i4 ;p where p is previous.
∫

right and i4 is a call to a setter proce-
dure: previous.put_right(t). By coincidence this first step of the proof uses one of
the most powerful rules to be seen below, ICX (34), which states that with a setting
procedure set_a that sets the value of an attribute a in the target object x, then

x.set_a(c) ; x.
∫

a = 〈x〉 + c.
∫

a

where 〈x〉 denotes the sequence consisting of the single element x. We get:

i4 ; p = 〈previous〉 + temp.
∫

right (p3)

We can indeed see at the bottom of the figure how p from state S4, that is to say
the sequence starting at previous, corresponds in state S3 to the element 〈previous〉
followed by the sequence starting at temp.

Next we compute i3 ; p3 where i3 is next := next.right. (In this proof the label
given for each new step, here (p3), will also denote the value of the expression
obtained at that step.) We apply distributivity to compute the effect of the assignment
on the two operands of the “+” expression. In both cases, the assignment affects
none of the elements in the given expressions, and no cycles are involved; these
conditions enable us to apply a theorem seen below, IAY (30), which indicates that
both sides are untouched:

i3 ; p3 = p3 = 〈previous〉 + temp.
∫

right (p2)

Towards a Calculus of Object Programs 99

The figure indeed suggests that the assignment i3 only affects the “next” part of
the structure and that the “previous” and “temp” parts are unchanged between S2
and S3.

Continuing up the loop body b, we compute i2 ; p2 where i2 is the assignment
previous := next. We again consider the two operands separately. The assignment
axiom of compositional logic tells us that:

• ((x := e) ; x) = e; this will be rule AX (5). It applies here to the first operand
since previous is the assignment’s target.

• For a variable y other than x, ((x := e) ; y) = y; this will be rule AY (6), which
IAY (30) generalizes to expressions, under conditions of acyclicity satisfied here.
It tells us that the assignment has no effect on the second operand.

100 B. Meyer

As a consequence

i2 ; p2 = 〈next〉 + temp.
∫

right (p1)

We may again perform a visual check on the figure: the sequence that starts with
previous in state S4 was, in state S1, the concatenation of the next element and the
sequence starting with temp.

In the last proof step, the instruction i1 is the loop’s initial assignment, temp :=
previous. Axiom AY (6) tells us that has no effect on the next operand, but axiom
IAX (29) tells us that (x := y) ; x.

∫
a is (in the absence of cycles) y.

∫
a. We get as

a result the value of b ; p on entry to the loop:

b ; (previous.
∫

right) = 〈next〉 + previous.
∫

right (bp)

which can again be checked for reasonableness in the figure, by looking at the coun-
terpart in state S0 of the sequence starting with previous in state S4. This completes
the computation of the effect of b on the first operand of our conjectured invariant
expression.

2.6 Handling the next Part

We now apply the same process to compute b ; n where n is the second operand,
next.

∫
right. The reader is invited to follow the intermediate steps in the figure as

was done for the first part.
The frame theorem ICY (36) indicates that the final instruction i4 of the loop,

call previous.put_right(t), has no effect on next.
∫

right:

i4 ; n = n

– where i4 is “call previous.put_right(t)”

– and n is “next.
∫

right”.

AX (1)

The condition for the rule to be applicable is that previous must not be aliased to
next; the alias calculus yields it here automatically (although we could also establish
it through classical techniques).

For i3, the assignment next := next.right, theorem IAX (29) gives the next step:

i3 ; n3 = next.right.
∫

right AX (2)

The initial assignments, i1 and i2, have previous and right as their respective targets.
Rule IAY (30) tells us that they have no effect on the right side of the above: the
next two steps n1 = (i2 ; n2) and bn = (i1 ; n1) give the same result as n2. As a
consequence, we get the final answer for the second operand:

Towards a Calculus of Object Programs 101

b ; (next.
∫

right) = bn = next.right.
∫

right (bp)

2.7 Combining the Results

The value we are computing (the value of the conjectured invariant in the initial
state of the loop) is −bp + bn, or, from the preceding computations

−(〈next〉 + previous.
∫

right) + next.right.
∫

right

Three simple properties of mathematical sequences are that −(s1 + s2) is (−s2) +
(−s1); that concatenation “+” is associative; and that a one-element sequence is its
own inverse: −〈a〉 = 〈a〉 for any element a. We can use them to simplify the result
into

−previous.
∫

right + 〈next〉 + next.right.
∫

right (bp1)

Theorem SIE (25), which follows directly from the definition of the integral opera-
tor

∫
, states that for any attribute a

∫
a = 〈a〉 + a.

∫
a

indicating that the last two terms in bp1 combine into next.
∫

right, and finally giving
us, for the entire expression:

−previous.
∫

right + next.
∫

right

This is the original expression, completing the proof that the expression is a loop
invariant.

2.8 Termination

So far the proof has not addressed termination. Informally: since the loop’s exit
condition is next = Void, we must make sure that the repeated applications of the
loop body finitely reach a void link, thanks in particular to the instruction i3: next :=
next.right. This would not be the case with a cyclic structure; indeed, the routine
needs a precondition and should be written as:

reverse
– Reverse order of the cells.

require
first. ✕! right

. . .The rest as above . . .

102 B. Meyer

where the property ✕!a, for an attribute a, states that the structure induced by a

starting from the current object has no cycle; more generally, p. ✕! a states that the
structure induced by a starting from p has no cycle.

As a consequence of the precondition, the program will maintain the properties
previous. ✕! right and next. ✕! right. In other words, the figures showing both the
previous and next lists as acyclic do not lie. This property is proved automatically
by application of the alias calculus to the program.

To prove termination formally we need, as usual, a loop variant. If p. ✕! a holds,
there is an integer n, the “depth of a after p”, written p.↓a, such that following the
a links n times from p leads to an object whose own a link is Void. In the example
next.↓right is a variant for the loop, guaranteeing termination.

This step completes the example proof, which demonstrates the method devel-
oped in this article. We will now review the basis for the properties on which the
proof has relied.

3 Compositional Logic

The first step is to define a proof framework appropriate for reasoning about com-
plex programs. Compositional logic is a variation on the familiar forms of program-
ming language semantics; its main advantage over axiomatic techniques—an advan-
tage of style rather than substance—is that it does not rely on textual substitutions,
except in the case of modeling argument passing.

3.1 Basics

Compositional logic works with formulae of the following form, for an instruction
i and an expression e:

i ; e

denoting the value of e after the execution of i. For the various kinds of instruction
and expression, the rules of compositional logic define i ; e in terms of expressions
evaluated in the state preceding that execution.

As an example, the following axiom applies to any instruction i if c is a constant:

i ; c = c – For any instruction i CUR (3)

(For ease of reference, all rules appear in shaded boxes and are given both a name
and a number.) If we extend this property of constants to arbitrary expressions, we
get a generalized version of the concept of “relative purity” of an instruction i for

Towards a Calculus of Object Programs 103

an assertion P , defined in [31] as {P }i{P }: we may say that i is relatively pure for
an expression e of any type if (i ; e) = e.

In object-oriented programming, a particularly important constant is Current
(also called this or self in various O-O languages), denoting the current object. No
construct can ever change the value of Current:

i ; Current = Current – For any instruction i AX (4)

This rule is our first encounter with the O-O principle of general relativity: as an
observer traveling in a spacecraft can change the contents of that vessel but not
move to another spacecraft, the execution of an operation on an object can change
the contents of that object but not make another object current. (Another analogy
is that although you can change some of your own properties you cannot become
someone else.)

The CUR property holds of all basic instructions and must be preserved by rules
for composite instructions such as calls.

The next two axioms define assignment; for variables x and y and an arbitrary
expression e:

(x := e) ; x = e AX (5)

(x := e) ; y = y AY (6)

Here, and elsewhere unless explicitly noted otherwise, different variable names in
the axioms, such as x and y, denote different variables. (The values of the variables
could, of course, be equal at run time.)

AX and AY replace the usual assignment axiom of axiomatic semantics. They
apply to individual variables rather than arbitrary expressions; to determine the ef-
fect of an assignment on a composite expression, we need a distributivity theorem.

3.2 Distributivity and Associativity

The distributivity theorem

i ; (e § f) = (i ; e) § (i ; f) DIST (7)

is applicable to all ordinary operators § on basic types and references. An example
proof using this property and some of the previous ones is:

(x := e) ; (x + 1) = ((x := e) ; x) + ((x := e) ; 1) – by DIST (7)
= ((x := e) ; x) + 1 – by CUR (3)
= e + 1 – by AX (5)

104 B. Meyer

In words: the value of x + 1 after the assignment x := e is the value that e + 1 had
in the initial state.

An associativity rule applies, where the semicolon is also used in its traditional
role as instruction sequencer:

(i ; j) ; e = i ; (j ; e)

– If e does not involve old (see next)
ASSOC (8)

3.3 Rule for “old”

The operator old makes it possible to refer to the original value of an expression.
The corresponding axiom reflects this property:

i ; old e = e OLD (9)

This property holds of all basic instructions i and must be preserved by rules for
composite instructions such as routine calls.

It must be clear what the scope of i is: as stated in the restriction to the ASSOC
rule, associativity does not apply if old is involved. Compare:

(x := 0) ; (x := 1)) ; oldx = x – by OLD
– but:
(x := 0) ; ((x := 1) ; oldx) = (x := 0) ; x – by OLD

= 0 – by AX (5)

As an example of a proof involving old, consider the following property:

(item := item + 1) ; (item = old item + 1)

which might appear in a class describing a integer counter, whose value is given
by item. As the expression is to the right of the semicolon is of boolean type,
this is the equivalent to proving the Hoare triple {True}(item := item + 1){item =
old item + 1}. Through DIST (7) applied to the equality operator “=”, the property
expands to

((item := item + 1) ; item) = ((item := item + 1) ; (old item + 1) AX (10)

The left side of this equality is item + 1 by the assignment axiom AX (5). The right
side can be further expanded through DIST to

((item := item + 1) ; (old item)) + ((item := item + 1) ; 1)

Towards a Calculus of Object Programs 105

The first term is item by OLD (9); the second term is 1 by CUR (3), yielding item+1
for the right side of AX (10), and hence establishing AX (10).

Comparing this proof with its counterpart in Hoare or weakest-precondition se-
mantics, we note that it avoids using substitution, relying instead on algebraic laws
of distributivity and associativity. On the other hand it requires two assignment ax-
ioms, AX (5) and AY (6), instead of the single axiom of axiomatic semantics.

3.4 Calls

Consider a routine r . The body of r , a sequence of instructions, will be denoted by r ,
and the list of formal arguments by r•. A call to the routine, with actual arguments l,
will be written call r(l). (Modern languages typically do not need the keyword call,
but we keep it here for clarity.) The compositional logic rule is

(call r(l)) ; e = (r ; e)[r• : l] UC (11)

where f [v : l] denotes the expression f with every occurrence of an element in
the list of variables replaced by the corresponding element in the list of expres-
sions l. This is the only place where compositional logic uses substitution, to rep-
resent actual-formal argument association. The rule’s name stands for “Unqualified
Call”; the version for qualified calls (callx.r(l)) will appear later as QC (21).

Since rule UC defines the semantics of calls in terms of the semantics of their
constituent instructions, it preserves the AX (4) and OLD (9) properties.

3.5 Setters

A theorem applies to setter procedures of the form

set_a(. . . ;f : T ; . . .)
– Among other possible actions, set the value of a to f.

do
anything_else

a := f

ensure
a = f – There may be other postcondition clauses.

end

AX (12)

where a is (in an object-oriented context) an attribute of the enclosing class. We say
that a routine with a postcondition clause a := f , where a is an attribute and f an

106 B. Meyer

argument, is a setter for a. The theorem is:

(call r(. . . , c, . . .)) ; a = c

– If r is a setter for a

US (13)

(“Unqualified Setter” rule). The position of c in the actual argument list is the posi-
tion of the setting argument, f above, in the formal argument list.

The proof of US immediately from the previous rule UC (11), and associativity
ASSOC (8) which enables us to ignore whatever anything_else does.

It is often important to deduce properties of routines of which we do not have
the implementation but only a contract. UC is applicable whenever the routine has
the postcondition a = f . An informal proof of this property simply notes that the
semantics of such a routine does not change if we add the assignment a := f at the
end of its body (including if we do this in any order for distinct attributes a), so that
the previous proof is still applicable.

3.6 Mathematical Basis

The “;” operator has a simple mathematical meaning. To see it, we start by look-
ing at non-OO (such as Pascal- or C-style) programming, then move to an object-
oriented context where the idea is the same but the functions’ signature involves one
more level.

Fundamentally, “;” is a variant of mathematical composition. Let us use the oper-
ator “◦” to denote the composition of functions or relations; for functions f and g,
their composition h = f ◦ g is such that h(x) = g(f (x). (Frequent mathematical
convention lists the functions in the reverse order, but for programming it makes
more sense to write them in the order of application.)

Consider first a non-OO framework. A → B will denote the set of functions from
A to B where A and B are arbitrary states. Let State be the set of states and Value
the set of run-time values. An instruction is a function in State → State. (More
precisely, it may be a partial function, to account for undefined computations, or
a general binary relation, to account for non-deterministic programs; since these
cases do not affect the discussion, we keep “→” for simplicity.) An expression is a
function in State → Value.

The “;” operator in this context is just function composition “◦”. This definition
of the operator also explains why we can apply it both between instructions, as
in i ; j , and between an instruction and an expression, as in the basic formula of
computational logic, i ; e. Associativity ASSOC (8) applies, enabling us to write
i1 ; i2; . . . ; in ; e, as long as we use an expression only as the last element. The
first n functions being composed are in State → State, yielding as their composition
another function with the same signature; we then compose this result with e, of
signature State → Value, giving as overall result another State → Value function
representing an expression.

Towards a Calculus of Object Programs 107

In object-oriented programming the signatures are different as a consequence of
general relativity: every instruction and expression is relative to a current object,
not specified in the class text (and not changeable by it, see AX (4)). With Object
representing the set of objects, the signatures are now:

Object → State → State – For an instruction
Object → State → Value – For an expression

and the semicolon operator has the following definition, denoting a generalized form
of composition where both operands are applied to the same object:

i ; f = λx : Object | λs : State | (i(x) ◦ f (x))(σ)

(In other words, (i ; f)(x), applied to a state σ , is the result of applying f (x) to
the result of applying i(x) to σ .) As before, f can be either an instruction or an
expression but the definition is the same, justifying the use of a single operator “;”.

3.7 Comparison with Other Semantic Description Methods

We may assess the level of abstraction of compositional logic against other ap-
proaches to defining the semantics of programs and programming languages.

Denotational semantics specifies the programming language by explicitly defin-
ing, for every kind of instruction i, a function in State → State, and similarly a
function in State → Value for every kind of expression. (For O-O languages, the
signatures also involve Object.)

Axiomatic semantics works at a higher level of abstraction by defining the effect
of instructions on boolean properties of the program state (or, for postconditions, of
two states). The weakest-precondition variant attempts to turn such properties into
a calculus whose rules yield the precondition from the construct and the postcondi-
tion.

Compositional logic is at a higher level of abstraction than denotational seman-
tics since it does not explicitly manipulate the state, but only talks about the effect
of computations on expressions of interest to the programmer. Unlike axiomatic
semantics, however, it defines these properties for arbitrary expressions, not just
boolean ones.

In the case of boolean expressions, compositional logic reduces to the weakest-
precondition calculus: i ; Q is iwpQ (the weakest precondition of the instruction i

for the postcondition Q).
The correspondence with Hoare-style semantics is similar: the Hoare triple

{P }i{Q} expresses that P implies(i ; Q), where implies is implication between as-
sertions.

108 B. Meyer

4 Negative Variables: Reasoning on Object-Oriented Calls

In the object-oriented style of programming, the basic operation is the “qualified
call”

callx.r(l) AX (14)

which calls the routine r , with actual arguments l, on the object OX denoted in the
current class text by x. For the duration of the call, OX will be the current object;
the previously current object will become current again upon termination of the call,
including any other calls that it may in turn have triggered.

The terms “client object” and “client class” will denote the caller side (the context
that issues the above call); “supplier object” and “supplier class” refer to the target
object OX and its class:

The figure (using the precise conventions of “alias diagrams” introduced in [15] for
presenting properties of object structures) also shows a field of the client object,
corresponding to an attribute c, which can be used as an actual argument to the call
(part of the list l).

The unqualified call rules, such as UC (11) above, or its equivalent in ax-
iomatic semantics, which tells us that from {P }r{Q} we may deduce {P [r• :
l]} call r(l){Q[r• : l]}, do not directly apply because they fail to take into account
the relativity of expressions in the different contexts of the caller object and the tar-
get object. If f is a formal argument of r (part of r•) and the corresponding actual
argument in l is c, we cannot just substitute c for f in reasoning about the call, since
the name c is meaningless for the supplier: it denotes a field of another object, and
generally of a different class.

We need, however, to be able to use this field; for example the routine body could
perform the instruction

y := f .item

where y is an attribute of the supplier class. In the execution of callx.r(c), where

Towards a Calculus of Object Programs 109

the formal argument is f , we expect this instruction to assign to y the value of
c.item:

Note that item itself is a feature of the class of c. The thick red arrow in the figure
illustrates the intended result of the assignment to y. The figure also shows that the
formal argument f refers, in the supplier’s context for this particular call, to the
object known in the client’s context as c.

One way to deal with these changes of context is to assume a preprocessing step
in which all unqualified references to features of a class (including attributes, but not
formal routine arguments) are prefixed by Current (or this), then to include in the
call rule a substitution of the target, x in the example, for all occurrences of Current.
This is the technique used in [20]. It implies, however, many textual manipulations.
We will use instead an algebraic technique based on the notion of negative variable
introduced in [15]. The idea is that in a call of target x the negated variable x′,
applicable to the supplier context, denotes a link back to the client object, making
it possible in the supplier context to refer to any expression e stated in terms of the
client context: simply use x′.e.

For example, passing c as the argument in callx.r(c) means binding the correspond-
ing formal f not to c (as in an unqualified call call r(c)) but to x′.c.

The following rules apply to negative variables and Current:

x.x′ = Current – For any variable x NEG1 (15)

x′.oldx = Current NEG2 (16)

Current.e = e – For any expression e CUR1 (17)

e.Current = e CUR2 (18)

(These rules come from [15], with NEG2 adjusted.) The presence of old in NEG2
is necessary to account for a “frame” issue: the possibility that a call x.r(. . .) might,

110 B. Meyer

through a callback, change the value of the x field of the current object. Then dur-
ing the execution of r , evaluating x′.x might lead to the object newly attached to x,
labeled !′ in the next figure, rather than to the call’s target OX:

Object-oriented languages do permit this behavior, in which a routine call changes
the field that served as the call’s target; NEG2 handles them. Such schemes com-
plicate verification, however, and break the symmetry between NEG1 and NEG2. It
is preferable, as a matter of programming methodology, to avoid them by requiring
routines to satisfy the following property:

Definition: nonprodigal routine

A routine is nonprodigal if for any call of target x it satisfies the postcondition

x′.x = Current NP (19)

(The name suggests that the routine preserves its relation with its genitors.) No use
of old is necessary in NEG1, since the expression x.x′ only makes sense if used
from a client in relation to a call of target x, and then x′ always refers back to the
client.

The AX (4) rule stated that since the current object is given by the context of
execution no instruction may ever change the value of Current. Similarly, you never
get a chance to change the back-link to your client:

i ; x′ = x′ – For any instruction i BL (20)

(Pursuing the earlier analogy: while your parents can disown you by designating
someone else as their child, you cannot disown them, that is to say, become the
child of someone else.)

Negated variables yield a simple semantic description for qualified calls x.r(c),
the central mechanism of object-oriented computation. Appendix gives the full se-
mantic rules in both denotational and axiomatic styles. In compositional logic, the
rule is

(callx.r(l)) ; e = x.((call r(x′ � l) ; (x′.e)) QC (21)

where “�” denotes the dot operator “.” distributed over a list (so that x � 〈u,v, . . .〉 is
〈x.u,x.v, . . .〉). The rule determines how to obtain the effect on e of calling x.r(l):

Towards a Calculus of Object Programs 111

• Transpose the arguments of the original call to the context of the supplier, by
prefixing them with “x′.”. The result of this transposition is call r(x′ � l).

• Find out the effect of this call on the expression x′.e, which represents e also
transposed to the supplier context. The result is (call r(x′ � l) ; x′.e.

• Interpret this result back in the context of the client by prefixing it with “x.”,
giving QC.

This process of transposing the client information to the supplier side then transpos-
ing back to the client side reflects the unique nature of object-oriented computation
with its reliance on the current object. A qualified call makes a new object (the
target) current; when the call terminates, the previous current object resumes this
role.

If e is oldx, the general rule AX (4) governing Current, applied to the un-
qualified call, tells us that callx.r(l)) ; Current is Current.Current and hence
(from CUR1 (17)) Current. It follows that the qualified call rule QC also conforms
to CUR.

Similarly, (callx.r(l)) ;oldx) = x from QC, NEG2 (16) and CUR2 (18). It is not
necessarily true, however, that (callx.r(l)) ;x) = x because of the frame issue noted
above: a callback in the execution of r might modify the client’s x. field. We may
only deduce (callx.r(l)) ;x) = x if the routine is nonprodigal as defined above (19).

The QC rule relies on the effect of call r(x ′ � l), the unqualified call. That effect
is given by the rule for unqualified calls UC (11), which defines it as the effect of
the body after argument substitution. By expanding that earlier rule we get a more
detailed version of QC:

(callx.r(l)) ; e = x.((r ; x′.e)[r � : (x′ � l)] QC′ (22)

From the qualified call rule (in either form) we get a theorem on qualified calls
to setter procedures. As before (Sect. 3.5), we assume that a is an attribute and
set_a(f) has the postcondition a = f . Then:

(x.call set_a(c)) ; ((oldx).a) = c QS (23)

(“Qualified Setter” rule, compare with US (13).)
Although the definition of setter procedures such as set_a (3.5) allows any num-

ber of arguments, the rest of the discussion ignores, for brevity, any arguments other
than the one used in a setting role.

112 B. Meyer

The proof of QS is as follows:

(x.call set_a(c)) ; ((oldx).a) = x.((call set_a(x′.c) ; (x′.oldx.a)))

– From QC (21)

= x.((call set_a(x′.c) ; (Current.a)))

– From NEG2 (16)

= x.((call set_a(x′.c) ; a))

– From CUR1 (17)

= x.(x′.c) – From US (13)

= Current.c – From NEG1 (15)

= c – From CUR1 (17)

Often we may prefer a property involving x rather than oldx:

(x.call set_a(c)) ; x.a = c – If r is nonprodigal AX (24)

This property only holds if the routine preserves the link back from its client, as
expressed by the “nonprodigal” property NP (19).

5 The Alias Calculus

The third component of the approach is the alias calculus, developed in an earlier
article [15]. For any expressions e and f denoting references, and any program
location pl, the alias calculus yields the answer to the question: can the values of e

and f ever denote the same object when a program execution is at pl? The theory is
(barring any errors in [15]) sound, in the sense that if the answer is “no” it provides a
guarantee that e and f will always denote different objects—precisely the guarantee
we need for the applications discussed here. If the answer is “yes”, it could still be
the case that e and f never get aliased in practice. In other words, the alias relation
that the calculus determines may be an over-approximation of the real aliasings.
The possibility of over-approximation comes not from the calculus itself but from
the simplification it applies to programming languages: it ignores the conditions in
conditionals (defining the aliasings of if c then i else j end to be the union of those
induced by i and j separately, regardless of c) and in loops. The over-approximation
is generally harmless; when undesired, it can be corrected through the insertion of
an assertion e /=f (expressed in the calculus as the instruction cut e, f), which
needs to be proved, often trivially, through techniques outside of the alias calculus.

The main advantage of the calculus is that its application is automatic. Comput-
ing the alias relations induced by a program requires no annotation (except for the
occasional cut). The calculus yields an algorithm, whose implementation described
in [15], although still experimental, covers the entire theory and has been applied to
sophisticated examples.

Towards a Calculus of Object Programs 113

The existence of the alias calculus allows the rest of this discussion to define
rules of the form “Property P holds if e and f can never be aliased at the given
program point”. Such rules are sound—they cannot lead us wrongly to deduce that
P holds if it does not—if the calculus is sound.

To express that at a particular program point the expressions e and f , of refer-
ence types, can never be aliased, we will write e 	≡ f . (In Eiffel the usual inequality
notation e 	= f suffices, since when applied to references it denotes reference in-
equality.) This notation has two useful generalizations:

• If S1 and S2 are sets or sequences of expressions, S1 	≡ S2 states that e 	≡ f for
every e in S1 and every f in S2.

• We may also use �e 	≡ S1 and
−−−−−−−−→
e − {a, b, . . .} 	≡ S1 where �e denotes the set of objects

reachable from EO (the object denoted by e) by following reference fields any
number of times, and

−−−−−−−−→
e − {a, b, . . .} denotes its subset obtained by starting from

fields of EO other than a, b,

These notations are useful to reason about programs, but programmers need not
know them as they will not appear in assertions or other program elements.

6 Reasoning on Data Structures

It remains to define appropriate concepts and notations to express properties of the
kind of object structures, often complex, that routinely arise in object-oriented pro-
gramming but still defy the reasoning techniques of the usual approaches to program
verification.

6.1 Background: Model-Based Specifications

One of the reasons for the difficulties experienced by traditional approaches may
be that they usually fail to equip themselves with the right abstractions. Typically,
they work with elementary values and individual objects. To reason effectively about
lists, trees and other sophisticated data structures, we need higher-level abstractions,
such as sequences, and we must relate them to the program text; for example, we
must be able to refer to the sequence of objects obtained by repeatedly following,
from a given object, the successive references of a given type.

The notations defined below, in particular the integral operator, address this re-
quirement. They follow the idea of model-based specification, pursued by the au-
thor and colleagues [23, 29] but already present in approaches such as JML [11].
This specification method defines the effect of programs in terms of high-level ab-
stractions, representing mathematical concepts (sets, sequences, relations and so on)
but closely integrated into the program text and expressed in the host O-O program-
ming language.

114 B. Meyer

In devising these abstractions, we retain one of the key practical properties of
the Design by Contract specification method, its support for verification of both the
static (proofs) and dynamic (tests) kind, by making sure that contract elements (as-
sertions) not only have a clear mathematical specification but can also be evaluated,
under the control of compiler options [6], during program execution.

6.2 Context

We assume a statically typed object-oriented language, so that any pointer expres-
sion x.y can be considered type-wise valid: there is an attribute of name x in the
current class, of some type T , and in the class defining T there is an attribute of
name y.

References can be “void” (or “null”). We need not concern ourselves with “void
calls” (or “null-pointer dereferencing”), even in the absence of a mechanism as Eif-
fel’s Void Safety which removes this problem entirely at compile time [18], since
the conventions defined below will ensure that no void reference is used in an unsafe
way.

Object-oriented languages allow attributes from different classes to bear the same
names; in fact the Eiffel style rules promote the systematic use of standard attribute
names such as item. When citing attribute names, the present discussion assumes
that they have been disambiguated first, so that each represents an attribute of a sin-
gle class (and its descendants). Another way of stating this assumption is to assume
that every attribute name is prefixed by the name of its class, as in LINKABLE_item
and LINKED_LIST_item.

6.3 Paths

The first notion we need (already implicitly used in earlier discussions, with expres-
sions such as x′.x.c) is that of a path. A path is a sequence of zero or more attribute
names. If the path contains more than one attribute we separate them by periods, as
in a.b.c.

We may without risk of confusion apply the dot operator to paths (such as p and
q) as well as attributes (such as a, b, c, d , e), combining them freely as in a.p,
p.a and p.q , with associativity. For example if p is a.b.c and q is d.e, then p.q

is a.b.c.d.e. This associativity was used in the proof of QS (23), when it obtained
x.(x′.c) and treated it as (x.x′).c.

A path always denotes an object, defined (as the relativistic nature of object-
oriented programming requires) in relation to the current object. Informally, we ob-
tain the object denoted by a path p by starting from the current object and following,
as long as possible, the references given by the fields corresponding to the elements

Towards a Calculus of Object Programs 115

of p, as in this example:

“As long as possible” means that the process stops if it encounters a void field, so
if the c link in the above figure were void the value of a.b.c would be the same
as that of a.b. This convention of stopping at void links simplifies the discussion
considerably; that it obviously does not reflect the semantics of Void or null in O-O
languages does not matter, since the problem of void safety is not in the scope of
the present discussion and should be addressed through separate techniques, such as
the framework presented in [18].

To avoid any ambiguity we may define precisely the object ! associated with a
path p:

• If p is empty, ! is the current object. In the remaining cases, let a be the first
element and q the remainder of p (i.e. p = a.q , unless q is void in which case
p = 〈a〉).

• If the a link from the current object is void, ! is also the current object.
• Otherwise, let !′ be the object to which the a field of the current object is at-

tached. Then ! is the object associated (recursively) with q if !′ is used as cur-
rent object.

As this definition unambiguously associates an object with every path, the rest of
the discussion often allows itself to talk about “the object p” where p is a path.

The length |p| of a path p is the number of attributes in its definition. The empty
path has length 0 and a.b.c has length 3. In the absence of void links, the length is
the number of objects, other than the current object, involved in the path.

If a is an attribute, a0 denotes the empty path, a1 the path 〈a〉, and an+1 for
n > 0 the path an.a (which is also a.an). In line with the general conventions noted
above, using this notation assumes proper typing: the type of the attribute a must be
the same as the type of the current object, or conform to it.

The notation ✕!a expresses that a is acyclic, in the sense that from any current
object the sequence an, for all n ≥ 0, is acyclic. This property is defined as an 	≡
Current for all n, meaning, from the definition of “ 	≡” in Sect. 5, that an can never
become aliased to the current object (and hence, if the property is satisfied for all
possible current objects, that there are no other cycles in the sequence either). One of
the principal contributions of the alias calculus to the Calculus of Object Programs
is that it tells us, through an automated procedure, that certain attributes are acyclic.

The notation generalizes to p. ✕! a, stating that there are no cycles after p in the
sequence p.an.

One more notation is p.↓a, the depth of a after p, defined as the largest n

such that all p.ai , for 0 ≤ i ≤ n are different objects. (For empty p, we talk
of just “the depth of a” and write it ↓a.) This definition covers two cases; call-
ing s the sequence of objects obtained by starting at p and following a links:

116 B. Meyer

• If s is acyclic (p. ✕! a holds), it must
reach a void a link: otherwise it would
have to be infinite, but our object
structures are finite. Then p.an is the
first object ! in the sequence whose a

field is void.
• If s is cyclic, then p.an is the first ob-

ject ! in s whose a link leads to !
itself or a previous element of s (p.ai

for some i in 0..n).

If we know that an attribute is acyclic, the first case applies and we can think of
p.↓a as the “distance to Void through a”. As a consequence, x.↓a can serve as the
variant for a loop of exit condition x = Void, whose body executes x := x.a, as in
Sect. 2.8 of the example proof.

6.4 Integrals

A path denotes a single object. We also need a notation for the sequence of objects
encountered by repeatedly following the links corresponding to a certain attribute.
The integral notation serves that purpose. If p is a path, the notation p.

∫
a repre-

sents the finite sequence of objects p.ai , for all i in 0..n where n is p.↓a. In other
words, it is the sequence of objects that starts with p and continues by following a

links, up to the first object in which the a link either is void or leads to an object
already in the sequence.

For empty p, we write just
∫

a (“simple integral”) denoting a sequence that starts
with the current object and continues until the a link would give Void or a repetition.

In both cases, the sequence has the following properties:

• It is never empty, since
∫

a always contains the current object, and p.
∫

a contains
the object associated with p (which always exists as discussed in 6.3).

• It is acyclic by construction.
• It contains objects all of the same type, or of types all conforming to a common

ancestor type: the type of the object attached to the a field in the current object.
(This property follows from the assumptions: a typed O-O language, and attribute
names that have been disambiguated so that each denotes an attribute of just one
class.) In the example, a denotes the same attribute for all objects in the sequence∫

a or p.
∫

a.

The notation is inspired by the integrals of classical analysis: as the integral
∫

f

in analysis accumulates the value of the function f , so our sequence
∫

a accumu-
lates the values of the attribute a. Our integrals can also be compared to regular
expressions, but a regular expression denotes a set of sequences, whereas an inte-
gral denotes a single sequence.

Towards a Calculus of Object Programs 117

It would also be possible to define expressions of the form p.
∫

a.q , or even to
include several

∫
terms, but we do not need such extensions in the present discus-

sion.
Other properties of integrals are:

∫
a = 〈Current〉 + a.

∫
a SIE (25)

p.
∫

a = p + p.a.
∫

a NIE (26)

(“Simple Integral Equation” and “Non-simple Integral Equation”.) They follow di-
rectly from the definitions. Note that the second operand of the “+” is an empty
sequence if the a link from (respectively) the current object or p is void.

A general theorem allows us to deduce properties of integrals from properties of
paths:

Integral theorem
Let p be a path and a an attribute; let f a predicate on objects, which can be
generalized to a predicate on sequences of objects (which holds if f holds of
every element of the sequence). Then we may deduce f (

∫
a) (resp. f (p.

∫
a))

from any of the following properties:

1. f (an) (resp. f (p.an)) for any n ≥ 0 such that an (resp. p.an) is acyclic.
2. f (q) (resp. f (p.q)) for any path q such that q (resp. p.q) is acyclic.
3. Either of the previous two without the acyclicity restriction.

To use the theorem, it suffices to show that f holds in the most specific case rep-
resented by the first property; in some cases, however, it may be just as simple to
establish f in the more general cases represented by the second property or even the
third.

We may generalize the “may not be aliased” operator “ 	≡” to integrals as follows:∫
a 	≡ p, for a path p, means that ai 	≡ p for all i, and similarly for non-simple

integrals. To derive such properties, we may as before apply the alias calculus, an
automated process.

6.5 Compositional Semantics of Paths and Integrals: Assignment

It remains to define the effect of instructions on paths and integrals, generalizing the
rules defining their effect on simple variables.

There is no simple rule governing the effect of an arbitrary instruction i on a path
p.q in the general case. In particular, i ; (p.q) is not necessarily the same as (i ;p).q

as illustrated by the following example where i reattaches the b link of !1 from !2

118 B. Meyer

to !3:

i ; (a.b), is !3, but (i ; a) is still !1 so (i ; a).b is !2.
We can, however, generalize the assignment rule for single variables (AX (5) and

AY (6)) to paths not involving cycles. The generalized assignment rule is as follows
(as usual, y is assumed to denote an attribute other than x):

(x := e) ; x.p = e.p – If e.p is acyclic PAX (27)

(x := e) ; y.p = y.p – If y.p is acyclic PAY (28)

– See less restrictive conditions below

The basic assignment rules AX and AY (applicable to variables of any type, not just
references) are special cases of PAX and PAY for an empty path p.

The reason we need an acyclicity restriction is that even though the assignment
updates only one field of a single object (the x field of the current object), the p part
of the path e.p or y.p could also be affected if it cycles back to that object. The
following example shows how a cycle can invalidate PAX. We consider (x := e) ;
x.z.x (so that p is z.x) under the following circumstances:

As illustrated, x denotes !1 before the assignment and !2 afterwards. The example
assumes that z in !2 points back to the current object. So (x := e) ; x.z.x denotes
!2. The value of e.z.x, however, is a reference to !1. Here PAX does not hold.

The rules PAX and PAY as stated above require the paths to be acyclic. This
condition is stronger than needed since it precludes all cycles, including any that
are harmless for the given instruction. A weaker condition suffices: that x (resp. y)
be cycle-free for e before p. This means that no prefix of p is of the form q.x

where e.q (resp. y.q) may be aliased to Current. Acyclic paths are a special case
of this condition. Most cases encountered in practice involve paths that are acyclic
by construction.

To ascertain acyclicity or cycle-freeness, one may apply the alias calculus.
PAX and PAY have counterparts for integrals:

Towards a Calculus of Object Programs 119

(x := e) ; x.p.
∫

a = e.p.
∫

a – If x is cycle-free IAX (29)

– for e before p

(x := e) ; y.p.
∫

a = y.p.
∫

a – If y is cycle-free IAY (30)

– for e before p

These properties assume that x is not the attribute a. They follow from extending
PAX and PAY through the integral theorem. Having x (resp. y) cycle-free for e

before p—for example, acyclic—suffices, since the subsequent elements in the se-
quence, of the form e.p.

∫
a (resp. y.p.

∫
a) result from following a links and

cannot be modified by an assignment to an x field of an object.
For the case in which x and a are the same attribute, the following rules apply:

(x := e) ; ∫
x = 〈Current〉 + e.

∫
x – If e.

∫
x 	≡ Current IA (31)

(x := e) ; x.
∫

x = e.
∫

x – If e.
∫

x 	≡ x IAP (32)

(Reminder: p.
∫

a 	≡ q means that p.ai cannot be aliased to q for any i.) These
rules are theorems which follow from PAX; in particular the condition of IA,
e.

∫
x 	≡ Current, is a direct consequence of the condition in PAX: since

∫
x is

by construction acyclic, the only harmful cycles in e.
∫

x could arise from e.xi

being aliased to Current, and similarly for IAP.
The following counter-example shows that these conditions are indeed necessary:

Initially x (the x field of the current object, !S) is attached to !1, e to !2 and the
x link of !2 back to !. After the assignment x := e, the value of

∫
x will be the

sequence 〈!,!2〉, stopping there because the next x link would cause a cycle. But
〈Current〉 + e.

∫
x in the initial state was 〈!,!2,!,!1〉. IA does not hold here;

indeed its condition is not satisfied since e.
∫

x was aliased to Current.
The six rules just seen enable us to reason about the effect of assignments on

paths (for the first two of these rules, PAX and PAY) and integrals. It remains to see
the rules defining the effect of calls.

6.6 Compositional Semantics of Paths and Integrals: Setter Calls

The final four rules govern the effect of qualified setter calls callx.set_a(c) on paths
and integrals. Their application requires some conditions, whose definitions follow;

120 B. Meyer

the definitions strive for generality, but any “simple setter” such as set_right used in
the list reversal example, which just sets an attribute, trivially satisfies them.

The first two of these rules state the effect of a setter call on a path or sequence
starting with the call’s target:

(callx.set_a(c)) ; (oldx).p = 〈x〉 + c.p PCX (33)

– If set_a is a setter for a

– and does not indirectly affect a

(callx.set_a(c) ; (oldx).
∫

a = 〈x〉 + c.
∫

a ICX (34)

– Same condition as previous rule

We may apply these rules to x rather than oldx if set_a is nonprodigal (NP (19)).
The last two rules are frame conditions indicating that there is no effect on paths

starting with an attribute other than the target:

(callx.set_a(c)) ; y.p = y.p PCY (35)

– If set_a is a setter for a

– and does not indirectly affect a

(callx.set_a(c)) ; (y.
∫

a) = y.
∫

a ICY (36)

– Same condition as previous rule

As before, the “P” versions are for paths and the “I” versions for integrals. The con-
ditions are defined as follows, for a routine r and an attribute a:

• Reminder from 3.5: r is a setter for a if it satisfies the postcondition a = f , where
f is one of the routine’s arguments.

• The routine is a simple setter for a if its implementation entirely consists of
assignments f := a, where f is a formal argument of r , and possibly of other
such assignments of a formal argument to an attribute. The routine set_right of
list reversal is an example. A simple setter for a is a setter for a.

• r directly affects a if it may change the value of a. A setter for a affects a.
• r indirectly affects a if it may change the value of p.a for some non-empty path

p, or includes a qualified call to a routine that (recursively) affects a.

A simple setter for a directly affects a, and affects no attribute (a or another) indi-
rectly.

In the list reversal example, the conditions of the above rules are satisfied since
set_right is a simple setter for right. In addition, a simple setter is nonprodigal, so
we can drop the old in PCX and ICX. For more general cases, these conditions
should be established from the setter’s specification:

Towards a Calculus of Object Programs 121

• The postcondition should express that the routine is a setter.
• It should also limit the scope of changes by expressing that the routine does not

indirectly affect the relevant attributes, and possibly that it is nonprodigal; it is
preferable, however, to avoid having to state such frame properties explicitly, and
rely instead on simple language conventions [17] which imply them.

7 Comparison with Previous Work

The proper handling of references for a verification environment has occupied re-
searchers for a long time. An early paper by Morris [19] defined important steps
towards making the problem tractable. Further impetus to research on the topic was
spurred by a paper by Hoare and He at ECOOP 99 [9], which took an object-oriented
approach. None of the techniques proposed until recently, however, was anywhere
close to allowing practical proofs of programs manipulating realistic object struc-
tures.

Separation logic [24] has enjoyed considerable attention and achieved verifica-
tion successes. The basic idea is to allow modular reasoning about the heap thanks
to the addition to Hoare logic of the ∗ operator, where P ∗ Q means that P and
Q separately hold on disjoint parts of the heap. Bornat [1] has published a proof
of list reversal using separation logic using C-like programs that manipulate heap
addresses directly, quite far from the style of modern object-oriented programming.
In recent years, there have been applications of separation logic to object-oriented
languages, notably [21, 22] and [31], and the development of a proof system based
on separation logic, jStar [4]. The main problem with separation logic is the ex-
tensive amount of additional annotation that it requires, expressing properties of
the heap that are below the level of abstraction at which object-oriented program-
mers normally work. The corresponding issues are handled in the Calculus of Ob-
ject Programs through the alias calculus, whose application is automatic. Because
of the over-approximation that follows from ignoring conditional and loop condi-
tions in the alias calculus, the results may not be strong enough to allow the desired
proofs, in which case the proof engineer will have to add cut instructions (Sect. 5
and reference [15]); these instructions are the counterpart, in the Calculus of Object
Programs, to the added annotations of separation logic. Their advantage, however,
is that (as consistently suggested by experience so far) there will be far fewer of
them, and they will only involve specific disjointness properties needed for a par-
ticular proof, rather than a complete specification of the heap’s state. For example,
establishing the alias properties of the proof of linked list reversal in this article re-
quired no cut instruction whatsoever. This is a good omen for the ease of applying
the approach to other applications.

Another property that sets apart the present work from separation logic is its use
of properties of object structures, expressed by paths and, through the integral opera-
tor, sequences. In separation logic the basic properties of references apply to a single
pair of objects, in the form x �→ y expressing that the reference in x points to y. One

122 B. Meyer

of the assumptions behind the present work is that proofs, and hence specifications,
should rely on concepts at a level of abstraction corresponding to how program-
mers normally think about their programs; the high-level specification techniques
that we have seen above pursue this goal, part of a general scheme of model-based
specification [23, 28]. Recent work has started to apply separation logic in connec-
tion with such specifications. It might be possible to apply Separation logic and the
present Calculus of Object Programs; the Calculus might for example benefit from
the inclusion of some separation logic assertions when it encounters delicate cases.
Conversely, the alias calculus may be able to infer or at least suggest separation
logic assertions, relieving programmers from having to invent them from scratch.

Another approach that has provided significant advances in the search for tech-
niques to prove object-oriented programs is dynamic frames [10] (see also [28]
which applies the ideas to an object-oriented language). The theory of dynamic
frames addresses the problem of specifying and verifying, in a modular way and in
the presence of references, the properties that an operation will not modify. While
the method is elegant and theoretically attractive, it again requires a significant an-
notation effort on the programmer’s part, to specify frame properties. While it is
legitimate, for software reliability, to require programmers to write down the func-
tional specification of the program, it is harder to justify forcing them to state frame
properties, since such properties are accessory to the program’s real goals and many
of them can in principle, if the program is decently written, be inferred automati-
cally from the program text. In the Calculus of Object Programs, the alias calculus
is responsible for performing this automatic inference, avoiding the extra specifica-
tion effort required by dynamic frames. As was noted for separation logic, manual
annotations, in the form of cut instructions, will only be required if the proof hits a
snag; there should be few such cases.

As in the case of separation logic, there may be room for combining dynamic
frames with the Calculus of Object Programs, for example by using the alias calcu-
lus to infer dynamic frame specifications automatically.

Unlike the previous approaches cited—but like the Calculus of Object Programs
—shape analysis does not require an extensive annotation effort and is instead in-
tended to be automatic. Its roots go back to a long history of work on compiler
optimization, but more recent references [12, 25, 26] have developed it in new di-
rections for the benefit of program verification. (The first two references cited use
as an example the list reversal algorithm in a form very close to the version of
the present article.) Such recent work uses abstract interpretation [3] to construct a
Static Shape Graph (SSG) representing an idealized version of the concrete heap. It
can then perform analyses of the SSG and relate them back to the actual store; an ex-
ample, pursuing the same goal as the alias calculus, is a “may-alias” analysis, but the
approach can also be applied to many other properties, including proofs, for which
an experimental tool, TVLA [27], has been developed. The tool has been applied
to a successful automatic proof of a difficult pointer algorithm, Deutsch-Schorre-
Waite binary tree traversal [12]. A practical obstacle to using the method, however,
is combinatorial explosion of the size of SSGs, resulting in a 9-hour computation
time for the example in [12]. The Calculus of Object Programs does not perform

Towards a Calculus of Object Programs 123

any abstraction step but relies on high-level primitives such as the integral opera-
tor to capture relevant properties of object structures and reason directly on them
in the standard framework of Hoare semantics. It could benefit from the insights of
shape analysis; in particular, [26] uses a number of predicates describing high-level
properties of object structures: reachability, reachability-from-x, sharing, cyclicity,
reverse cyclicity. Integrating some of them into the calculus of object structures, in
addition to paths and integrals, might increase the expressiveness of the calculus and
facilitate proofs.

8 Conclusion

The work presented here suffers from several limitations:

• While the alias calculus has been implemented, the rest of the approach has not.
It has been designed for integration into an automated proof environment, which
should progress quickly.

• The techniques do not yet address inheritance. The main step in adding inher-
itance is to handle calls to routines that may have several redeclarations in de-
scendant classes. The rules of the Calculus have been defined in reference to
specifications of routines—more precisely, their postconditions—rather than their
implementation; since these specifications are binding on routine redeclarations
through the principles of Design by Contract [5, 13], which limit changes to
precondition weakening and postcondition strengthening, their application in the
presence of inheritance appears to be a natural extension.

• While the rules should be applicable in a modular way, no particular attention has
been devoted to this point as yet.

• The list reversal example is the most significant covered so far. Many more should
be tried, involving a variety of data structures.

• The Calculus of Object Structures may need some generalization, for example
with a disjunction operator to allow path sets of the form root.

∫
(left | right) in a

tree example. It has so far been kept as simple as possible.
• On the theoretical side, a proof of soundness is needed to justify the rules of this

article.
• All these problems will have to be addressed. I believe, however, that in its present

state the Calculus of Object Programs holds the promise of a comprehensive ap-
proach to proving full functional correctness of object-oriented programs involv-
ing possibly complex run-time object structures. The approach should live up to
the claims made on its behalf through the preceding discussion:

• It closely fits the way programmers using modern object-oriented programming
languages devise their programs and reason about them.

• The annotations it requires—as any approach addressing functional correctness
must—are minimal (alias properties, in particular, are for the most part computed
automatically); they express abstract properties of O-O structures, meaningful to
the programmer, not low-level descriptions of the make-up of the heap. In fact the

124 B. Meyer

notions of heap and stack do not appear, as they are inappropriate at the level of
reasoning suitable for modern programming.

• The notations for expressing correctness properties are a small extension to usual
Design by Contract mechanisms and remain amenable to run-time evaluation; the
approach thereby retains support for both of the dual forms of verification: static
(proofs) and dynamic (tests).

The continuing development of the Calculus will endeavor to make these benefits
directly available to programmers building and verifying object-oriented programs.

Acknowledgements The software verification work of the Chair of Software Engineering at
ETH Zurich has been supported by a generous grant from the Hasler Foundation as part of the
MANCOM program, by several grants from the Swiss National Science Foundation (FNS/SNF),
and by two internal research grants (TH-Gesuch, now ETHIIRA) from ETH Zurich. While not
directly performed in response to any of these grants, the work reported here would not have been
possible without them.

Part of the work was carried out in the Software Engineering Laboratory of ITMO State Uni-
versity in Saint Petersburg, which also provides an excellent environment.

Appendix: Using Negative Variables in Other Semantics

Here is the background for the rules involving negative variables. For the Calculus
of Object Programs we only need the rule of compositional logic QC (21), allowing
us to prove properties of programs involving qualified routine calls callx.r(l), the
central mechanism of object-oriented computation. That rule, however, is a conse-
quence of a more fundamental property, giving the denotational definition of quali-
fied calls:

callx.r(l) = x � (call r(x′.l)) DC (37)

The two sides of the equality are functions in Object → State → State. The rule
states that the effect of calling x.r(l) is obtained by calling r on arguments trans-
posed to the context of the supplier, as expressed by prefixing them by x′, then
interpreting the result transposed back to the context of the client, as expressed by
prefixing it by x. In this result, no occurrences of x′ will remain as they go away
through the rules on negated variables (NEG1 (15) to NP (19)).

Some technical notes on this rule:

• The value of call r(x′.l) is given by the formula for unqualified calls, which states
that call r(l))(σ) is r(σ [r• : l]). This formula is the basis for the corresponding
compositional logic rule UC (11).

• The rule uses “�” to distribute “.” over a function, viewed as a list of pairs.
• For a generally applicable form of DC and its unqualified counterpart it is neces-

sary to add to the right side a term that limits the scope of the resulting function to
the domain of the original state, getting rid of any temporary associations (affect-
ing for example local variables) that only make sense in the context of the called
routine. This restriction is not important for the Calculus of Object Programs.

Towards a Calculus of Object Programs 125

• DC is an equation rather than a definition, since in the presence of recursion the
right-side expression could expand to an expression that includes an occurrence
of the left-side expression. Such fixpoint equations are routine in denotational
semantics and the theory handles them properly.

• The rule does not directly use substitution, although it relies on the semantics of
the unqualified call call r(x′.l) which can be defined as r[r• : l] (where, following
notations introduced earlier, r is the semantics of the loop body, r• denotes the
formal arguments, and e[x : y] denotes substitution of y for x in e).

From this denotational rule we can deduce the axiomatic semantic rule, the object-
oriented variant of Hoare’s procedure rule [8]:

{P }call r(x′.l){Q}
{x � P }callx.r(l){x � Q} AC (38)

where x � e, for a non-reference expression e (here e is P or Q, an assertion, treated
as a boolean expression), applies “.” distributively, for example x � (a = b) means
x.a = x.b. In the application of this rule, P and Q may contain occurrences of x′;
for example the rule enables us to deduce {True}callx.set_a(c){x.a = c} from
{True}call set_a(c){a = x′.c}.

To establish this last property, and more generally the antecedent of any applica-
tion of AC, we use the ordinary Hoare procedure rule for unqualified calls call r(l).
Expanding this rule (ignoring recursion) in AC gives us a directly applicable version
of AC:

{P }r(r• : x′ � l){Q}
{x � P }callx.r(l){x � Q} AC′ (39)

(where the first “�” denotes “.” distributed over the list l of actual arguments). Since
the denotational rule DC (37) describes the nature of object-oriented calls at the
most fundamental level, we may use it to express properties of such calls in any
semantic framework. More generally, let � be a property of program elements, such
that the dot operator “.” distributes over �. Then we may use the general rule

�(callx.r(l)) = x � �(call r(x′.l)) GC (40)

AC, the axiomatic rule, is just one instance of GC. Another instance appears in
the alias calculus article [15], which for the various kinds of instructions i and an
arbitrary relation a (a set of pairs of expressions that might become aliased to each
other) defines a � i, the alias relation resulting from executing i in a state where
the alias relation was a. The rule for qualified calls (with “�” here denoting “.”
distributed over a set of pairs) is

a � callx.r(l) = x � ((x′ � a) � call r(x′.l))

126 B. Meyer

A final example of applying GC is the weakest precondition rule for qualified calls
(using i wpQ to denote the weakest precondition guaranteeing that execution of the
instruction i will ensure the postcondition Q):

(callx.r(l))wpx.Q = x � ((call r(x′.l))wpQ) WC (41)

The simplicity of these rules appears to confirm the usefulness of negative variables
as a tool for reasoning about object-oriented computations.

References

1. Bornat, R.: Proving pointer programs in Hoare logic. In: Backhouse, R., Oliviera, J. (eds.)
MPC ‘00 (Mathematics of Program Construction). Lecture Notes in Computer Science, vol.
1837, pp. 102–126. Springer, Berlin (2000)

2. Clarke, D., Potter, J., Noble, J.: Ownership types for flexible alias protection. In: OOPSLA
1998. ACM SIGPLAN Notices, vol. 33, no. 10, pp. 48–64 (1998)

3. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction of approximations of fixed points. In: POPL 77 (ACM Symposium
on Principles of Programming Languages), pp. 232–245 (1997)

4. Distefano, D., Parkinson, M.: jStar: Towards practical verication for Java. In: OOPSLA ’08,
Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented Programming Sys-
tems, Languages and Applications, pp. 213–226 (2008)

5. ECMA International: Standard ECMA-367: Eiffel: Analysis, Design and Programming
Language, 2nd edn. (June 2006), ed. B. Meyer; also International Standards Organiza-
tion standard ISO/IEC 25436:2006. Text available online at www.ecma-international.org/
publications/standards/Ecma-367.htm

6. Eiffel Software: EiffelStudio documentation (in particular on contract monitoring), at
docs.eiffel.com

7. Hoare, C.A.R.: An axiomatic basis for computer programming. In: Communications of the
ACM, vol. 12, no. 10, pp. 576–580 (1969)

8. Hoare, C.A.R.: Procedures and parameters: An axiomatic approach. In: Engeler, E. (ed.) Sym-
posium on Semantics of Algorithmic Languages. Springer Lecture Notes in Mathematics, vol.
188, pp. 102–116 (1971)

9. Hoare, C.A.R., He, J.: A trace model for pointers and objects. In: Guerraoui, R. (ed.) ECOOP
1999 (13th European Conference on Object-Oriented Programming). Springer Lecture Notes
in Computer Science, vol. 1628, pp. 1–17 (1999)

10. Kassios, I.: Dynamic frames: support for framing, dependencies and sharing without restric-
tions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) Formal Methods 2006. Lecture Notes in
Computer Science, vol. 4085, pp. 268–283. Springer, Berlin (2006)

11. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral inter-
face specification language for Java. In: ACM SIGSOFT Software Engineering Notes,
vol. 31, pp. 1–38 (2006), no. 3. Additional JML documentation at www.eecs.ucf.edu/~
leavens/JML/

12. Loginov, A., Reps, T., Sagiv, M.: Automated verification of the Deutsch-Schorr-Waite tree-
traversal algorithm. In: Static Analysis Symposium, pp. 261–269 (2006)

13. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice Hall, New York (1998)
14. Meyer, B.: Touch of Class: Learning to Program Well, Using Objects and Contracts. Springer,

Berlin (2009)
15. Meyer, B.: Towards a theory and calculus of aliasing. Int. J. Softw. Inform. (July 2011, to

appear). Slightly updated version available at se.ethz.ch/~meyer/publications/aliasing/alias-
revised.pdf

Towards a Calculus of Object Programs 127

16. Meyer, B.: Publish no loop without its invariant. Blog entry at bertrandmeyer.com/2011/05/12/
publish-no-loop-without-its-invariant/, 12 May 2011

17. Meyer, B.: If I’m not pure, at least my functions are. Blog entry at bertrandmeyer.com/2011/
07/04/if-im-not-pure-at-least-my-functions-are/, 4 July 2011 (intended as a first step to an
actual article on language conventions to specify purity and, more generally, frame properties)

18. Meyer, B., Kogtenkov, A., Stapf, E.: Avoid a void: The eradication of null dereferencing. In:
Jones, C.B., Roscoe, A.W., Wood, K.R. (eds.) Reflections on the Work of C.A.R. Hoare, pp.
189–211. Springer, Berlin (2010)

19. Morris, J.M.: A general axiom of assignment; Assignment and linked data structure; A proof
of the Schorr-Waite algorithm (three articles). In: Broy, M., Schmidt, G. (eds.) Theoretical
Foundations of Programming Methodology, Proceedings of the 1981 Marktoberdorf Summer
School, pp. 25–61. Reidel, Dordrecht (1982)

20. Müller, P.: Modular Specification and Verification of Object-Oriented Programs. Springer,
Berlin (2002)

21. Parkinson, M., Bierman, G.: Separation logic and abstraction. In: POPL ‘05 (ACM Sympo-
sium on Principles of Programming Languages), January, pp. 247–258 (2005)

22. Parkinson, M., Bierman, G.: Separation logic, abstraction and inheritance. In: POPL ‘08
(ACM Symposium on Principles of Programming Languages), January, pp. 75–86 (2008)

23. Polikarpova, N., Furia, C., Meyer, B.: Specifying reusable components. In: Verified Software:
Theories, Tools, Experiments (VSTTE ’10), Edinburgh, UK, 16–19 August 2010. Lecture
Notes in Computer Science. Springer, Berlin (2010)

24. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: Logic in
Computer Science, 17th Annual IEEE Symposium, pp. 55–74 (2002)

25. Sagiv, M., Reps, T., Wilhelm, R.: Solving shape-analysis problems in languages with destruc-
tive updating. ACM Trans. Program. Lang. Syst. 20(1), 1–50 (1998)

26. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM Trans.
Program. Lang. Syst. 24(3), 217–298 (2002)

27. Sagiv, M., et al.: TVLA home page, at www.math.tau.ac.il/~tvla/
28. Schoeller, B.: Making classes provable through contracts, models and frames. PhD thesis,

ETH, Zurich (2007). se.inf.ethz.ch/old/people/schoeller/pdfs/schoeller-diss.pdf
29. Schoeller, B., Widmer, T., Meyer, B.: Making specifications complete through models. In:

Reussner, R., Stafford, J., Szyperski, C. (eds.) Architecting Systems with Trustworthy Com-
ponents. Lecture Notes in Computer Science. Springer, Berlin (2006)

30. Tschannen, J., Furia, C.A., Nordio, M., Meyer, B.: Verifying Eiffel programs with Boogie. In:
Boogie 2011, First International Workshop on Intermediate Verification Languages, Wroclaw,
August 2011 (to appear). See documentation about the EVE project at eve.origo.ethz.ch

31. van Staden, S., Calcagno, C., Meyer, B.: Verifying executable object-oriented specifica-
tions with separation logic. In: ECOOP 2010, 24th European Conference on Object-Oriented
Programming, Maribor (Slovenia), 21–25 June 2010. Lecture Notes in Computer Science.
Springer, Berlin (2010)

Formal Specification as High-Level
Programming: The ASSL Approach

Emil Vassev and Mike Hinchey

Abstract Formal methods aim to build correct software by eliminating both re-
quirements and design flaws. Still, specification languages have a somewhat bad
reputation in the software engineering community for being too heavy and difficult
to use. This is mainly due to the use of complex mathematical notations often re-
quiring experts in the field. We rely on our experience to show that writing formal
specifications can be easier if a specification language is used as a high-level pro-
gramming language, where the distinction between a specification language and a
programming language is somewhat blurred. The Autonomic System Specification
Language (ASSL) is a declarative specification language for autonomic systems
with well-defined semantics. It implements modern concepts and constructs such as
inheritance, modularity, type system, and parameterization. Specifications written
in ASSL present a view of the system under consideration, where specification and
design are intertwined.

1 Introduction

Nowadays, we talk about “building” or “constructing” software rather than writ-
ing computer programs. This is mainly due to the complexity involved in modern
software in all possible forms: complexity of the problem to be solved, complexity
of the software to be built, and last, but not least, complexity of the process used
to develop software. Modern software applications are intended to solve complex
problems (e.g., controlling airplanes) and may be enormous in size. Such complex
applications are built through the efforts of large teams of software engineers and
programmers, following the rules of a well-defined software development process.
The process of “building” a computer program goes through a few important phases
(e.g., requirements, design, etc.) before getting to the real “writing” of the program

E. Vassev (�) · M. Hinchey
Lero–the Irish Software Engineering Research Centre, University of Limerick, Limerick, Ireland
e-mail: emil.vassev@lero.ie

M. Hinchey
e-mail: mike.hinchey@lero.ie

K.K. Breitman, R.N. Horspool (eds.), Patterns, Programming and Everything,
DOI 10.1007/978-1-4471-2350-7_9, © Springer-Verlag London 2012

129

130 E. Vassev and M. Hinchey

in question. Different tools and techniques might be used in each phase to support
the process of building software. Moreover, just like the construction of a building,
modern software is often constructed by using reusable components. Programming
languages still have their important role in software development, however today
those languages are “modern” languages, i.e., providing modern programming con-
structs and embedded in special development environments accompanied by sup-
porting tools and libraries of reusable components. Apart from requirements and
design, programming is not anymore just about writing software code that is to be
interpreted by a computer. Instead, modern programming languages such as Java
and C# might be considered as high-level programming languages, where we are
provided with embedded mechanisms (e.g., garbage collection), strong abstraction
from specifics of the computer, and natural language elements and human logic.
High-level programming makes the overall process of building software simpler
and easy to cope with. Note that the level of abstraction determines how high-level
a programming language is. In that sense, formal specification languages, often used
to describe requirements and model software systems before starting with the imple-
mentation, might also be considered as high-level programming languages. This is
especially valid for formal specification languages accompanied by a code generator
that uses a high-level specification of a software system to generate the real imple-
mentation, e.g., in C++. The problem is that often the use of a formal specification
language introduces more complexity to the development process [1], e.g., software
engineers need to change their abstract way of thinking to cope successfully with
the new mathematical models.

We show how ASSL (Autonomic System Specification Language) [2, 3], a mod-
ern domain-specific and formal specification language, might be used as a high-
level programming language where the difference between specification and pro-
gramming is somewhat blurred. Dedicated to autonomic computing [4], ASSL is
equipped with modern programming constructs such as inheritance and parameter-
ization, thus helping developers to use the language as a high-level programming
language. Moreover, a powerful toolset helps ASSL specifications be verified and
implementation code be generated, which helps for a smooth transition from ASSL
code to implementation.

The rest of this entry is organized as follows: In Sect. 2, we briefly outline the
basics of formal methods and those of code generation. In Sect. 3, we present the
ASSL framework. Section 4 is a show case demonstrating how ASSL might be used
as a high-level programming language. Finally, Sect. 5 provides brief concluding
remarks.

2 Formal Methods and Code Generation

One of the most important aspects of successful software development is software
reliability. Practice has shown that traditional development methods cannot guaran-
tee software reliability and prevent software failures. In that context, software de-
veloped using formal methods has been demonstrated to be more reliable. Generally

Formal Specification as High-Level Programming: The ASSL Approach 131

speaking, formal methods are a means of providing a computer-system development
approach where both a formal notation and mature tool support are provided. The
approach heavily relies on mathematics to provide precise techniques for specifica-
tion, development and verification of computer systems [1]. However, it is exactly
those mathematical models that make formal specifications difficult to understand,
especially by people who are not mathematically inclined. This is a major reason
why formal methods are not well accepted in mainstream software development
practices. Hence, in order to be used as a high-level programming language, a for-
mal language must expose constructs and syntax similar to those of the modern
programming languages, i.e., it must be close to the natural language. Modern for-
mal languages like ASSL [2, 3] have modern programming constructs and simple
and natural-language-like syntax, which significantly improves readability of for-
mal specifications. Moreover, in order to be a successful high-level programming
language, a formal method needs to be equipped with a code generator. The for-
mal specification helps us build more robust and more maintainable software, but
it is practically useless without the real implementation, and a code generator (or a
high-level compiler) helps to avoid double programming.

Code generation is based on a formal (or semi-formal) specification of a system,
which requires both a formal specification language and supporting tools. Note that
as a high-level program, a formal specification presents a compact abstract model
of the system in question, i.e., it is easy to be understood by software engineers.
However, to generate a meaningful implementation, that model should also be ex-
pressive enough. Code generation allows for an easy way of implementing different
versions of a system, by changing its formal specification and then generating the
corresponding implementation. Along with the advantages coming with code gener-
ation, there are a few important tradeoffs that should be considered when we conduct
high-level programming with formal methods:

• Any code generator is optimized for both the specification language and the tar-
geted implementation language, which narrows the possibility of using all the
possible constructs of the implementation language, which is presumably more
powerful. Note that a powerful specification language, equipped with modern
constructs such as inheritance, parameterization, etc., will definitely lead to a
more powerful generated implementation.

• A code generator follows specific templates determined by the operational seman-
tics of both the specification language and the implementation language. Thus, all
the generated code is similar, i.e., it is like a program being written by the same
programmer—the same style, coding standards, comments, etc. This is not nec-
essarily bad, but possibly the imposed programming style is not always the best
possible.

3 ASSL

The Autonomic System Specification Language (ASSL) [2, 3] is an initiative for
self-management of complex systems which approaches the problem of formal

132 E. Vassev and M. Hinchey

Fig. 1 ASSL multi-tier
specification model

specification, validation, and code generation of autonomic systems (ASs) within
a framework. Being dedicated to autonomic computing (AC) [4], ASSL helps AC
researchers with problem formation, system design, system analysis and evaluation,
and system implementation.

3.1 ASSL Programming Style and Specification Model

ASSL is a domain-specific specification language, i.e., it provides constructs and
terms related to the AC domain. As such a language, it imposes a different speci-
fication style than the programming style of a general programming language such
as Java. Thus, in ASSL we do have structures similar to Java classes and routines,
but we also have unique domain-specific constructs. Moreover, the “programming
style” of ASSL is different, but easy to cope with. The ASSL programming style
is based on a specification model exposed over hierarchically organized formaliza-
tion tiers (see Fig. 1) [2, 3]. This specification model provides both infrastructure
elements and mechanisms needed by an AS. Each tier of the ASSL specification

Formal Specification as High-Level Programming: The ASSL Approach 133

model is intended to describe different aspects of an AS, such as service-level ob-
jectives, policies, interaction protocols, events, actions, autonomic elements, etc.
This allows us to specify an AS at different levels of abstraction (imposed by the
ASSL tiers) where the AS in question is composed of special autonomic elements
(AEs) interacting over interaction protocols (IPs).

As shown in Fig. 1, the ASSL specification model decomposes an AS in two
directions: (1) into levels of functional abstraction; and (2) into functionally related
sub-tiers. The first decomposition presents the system at three different tiers [2, 3]:

1. AS—a general and global AS perspective—defines general behavior rules, archi-
tecture topology, and global actions, events, and metrics applied in these rules;

2. ASIP—an interaction protocol (IP) perspective—defines a means of communi-
cation between AEs within an AS;

3. AE—a unit-level perspective—defines interacting sets of special computing el-
ements (AEs) with their own autonomic behavior rules, actions, events, metrics,
etc.

The second decomposition presents the major tiers as composed of functionally
related sub-tiers, where new AS properties emerge at each sub-tier (see Fig. 1).
The AS Tier specifies an AS in terms of service-level objectives (AS SLOs), self-
management policies, architecture topology, actions, events, and metrics. The AS
SLOs are a high-level form of behavioral specification that helps developers es-
tablish system objectives, such as performance. The self-management policies are
driven by events and trigger the execution of actions driving an AS in critical sit-
uations. The metrics constitute a set of parameters and observables controllable by
an AS. With the ASIP Tier, the ASSL framework helps developers specify an AS-
level interaction protocol as a public communication interface expressed with spe-
cial communication channels, communication functions, and communication mes-
sages. At the AE Tier, the ASSL formal model exposes specification constructs for
the specification of the system’s AEs. Note that AEs are considered to be analogous
to software agents able to manage their own behavior and their relationships with
other AEs. An AE may also specify a private AE interaction protocol (AEIP) shared
with special AE considered as “friends” (AE Friends tier).

3.1.1 ASSL Self-management Policies

It is important to mention that the ASSL tiers are intended to specify different as-
pects of an AS, but it is not necessary to employ all of them in order to develop
an AS. Conceptually, it is sufficient to specify self-management policies only, be-
cause those provide self-management behavior at the level of AS (the AS tier) and
at the level of AE (AE tier). These policies are specified within the AS/AE Self-
management Policies sub-tier (ASSL construct: AS[AE]SELF_MANAGEMENT)
with special ASSL constructs termed fluents and mappings [2, 3]. A fluent is a state
where an AS enters with fluent-activating events and exits with fluent-terminating

134 E. Vassev and M. Hinchey

ASSELF_MANAGEMENT {
SELF_HEALING {
FLUENT inLosingSpacecraft {
INITIATED_BY {EVENTS.spaceCraftLost}
TERMINATED_BY {EVENTS.earthNotified}}
MAPPING { CONDITIONS {inLosingSpacecraft} DO_ACTIONS {ACTIONS.notifyEarth}}}

} // ASSELF_MANAGEMENT

Fig. 2 Self-healing policy

events. A mapping connects fluents with particular actions to be undertaken. Usu-
ally, an ASSL specification is programmed around one or more self-management
policies, which makes that specification AS-driven. Self-management policies are
driven by events and actions determined deterministically. The ASSL code shown
in Fig. 2 presents a sample specification of a self-healing policy. As shown, fluents
are expressed with fluent-activating and fluent-terminating events. In order to ex-
press mappings, conditions and actions are considered, where the former determine
the latter in a deterministic manner. The example above also helps the reader grasp
a bit of the ASSL syntax explained in the next subsection.

3.1.2 ASSL Events

ASSL aims at event-driven autonomic behavior. Hence, to specify self-management
policies, we need to specify appropriate events. Here, we rely on the reach set of
event types exposed by ASSL [2, 3]. To specify ASSL events, one may use logical
expressions over SLOs, or may relate events with metrics (see Sect. 3.1.3), other
events, actions, time, and messages. Moreover, ASSL allows for the specification of
special conditions that must be met before an event is prompted.

3.1.3 ASSL Metrics

For an AS, one of the most important success factors is the ability to sense the envi-
ronment and react to sensed events. Here, together with the rich set of events, ASSL
imposes metrics that help to determine dynamic information about external and in-
ternal points of interest. Although four different types of metrics are allowed [2, 3],
the most important type is the so-called resource metrics, which is intended to gather
information about special managed element’s quantities.

3.1.4 Managed Elements

An AE typically controls managed elements. In an ASSL-developed AS, a managed
element is specified with a set of special interface functions intended to provide con-
trol functionality over that managed element. Note that ASSL can specify and gen-
erate interfaces controlling a managed element (generated as a stub), but not the real

Formal Specification as High-Level Programming: The ASSL Approach 135

implementation of these interfaces. This is just fine for prototyping, however when
deploying an AS prototype the generated interfaces must be manually programmed
to deal with the controlled system (or sub-system).

3.1.5 Interaction Protocols

ASSL interaction protocols provide a means of communication interface expressed
with messages that can be exchanged among AEs via communication channels
and communication functions. Thus, by specifying an ASSL interaction protocol
we develop an embedded messaging system needed to connect the AEs of an AS. In
a basic communication process ongoing in such a system, an AE relies on a commu-
nication function to receive a message over an incoming communication channel,
changes its internal state and sends some new messages over an outgoing chan-
nel [2, 3].

3.2 ASSL Syntax

The following is a generic meta-grammar in Extended Backus-Naur Form (BNF) [5]
presenting the syntax rules for specifying ASSL tiers.

GroupTier --> FINAL? ASSLGroupTierId { Tier+ }
Tier --> FINAL? ASSLTierId TierName? { Data* TierClause+ }
TierClause --> FINAL? ASSLClauseId ClauseName? { Data* }
Data --> TypeDecl* | VarDecl* | CllctnDecl* | Statement*
TypeDecl --> CustTypeIdentifier
VarDecl --> Type VarIdentifier
CllcntDecl --> Type CustCllctnIdentifier
Type --> CustType | PredefType
Statement --> Assign-Stmnt | Loop | If-Then-Else | Cllctn-Stmnt
Loop --> Foreach-Stmnt | DoWhile-Stmnt | WhileDo-Stmnt

Note that this meta-grammar is an abstraction of the ASSL grammar, which can-
not be presented here due to the complex structure of the ASSL specification model
(see Sect. 3.1), where each tier has its own syntax and semantic rules. The interested
reader is advised to refer to [2] or [3] for the complete ASSL grammar expressed in
BNF and for the semantics of the language.

As shown in the grammar above, an ASSL tier is syntactically specified with an
ASSL tier identifier, an optional tier name and a content block bordered by curly
braces “{ }”. Moreover, we distinguish two syntactical types of tier: single tiers
(Tier) and group tiers (GroupTier) where the latter comprise a set of single tiers.
Each single tier has an optional name (TierName) and comprises a set of special tier
clauses (TierClause) and optional data (Data). The latter is a set of data declara-
tions and statements. Data declarations could be: (1) type declarations; (2) variable
declarations; and (3) collection declarations. Statements could be: (1) loop state-
ments; (2) assignment statements; (3) if-then-else statements; and (4) collection

136 E. Vassev and M. Hinchey

statements. Statements can comprise Boolean and numeric expressions. In addi-
tion, although not shown in the grammar above, note that identifiers participating in
ASSL expressions are either simple, consisting of a single identifier, or qualified,
consisting of a sequence of identifiers separated by “.” tokens. From a programming
language perspective, the ASSL single tiers can be regarded as C++ structures or
classes. The ASSL actions (special single tiers) can be regarded as C++ functions,
i.e., they can be called for execution, can accept parameters and return results.

3.3 ASSL Formalism

ASSL is a declarative specification language with well-defined semantics. It im-
plements modern programming language concepts and constructs like inheri-
tance, modularity, a type system, and highly abstract expressiveness. Specifications
written in ASSL present a view of the system under consideration where specifi-
cation and design are intertwined. Conceptually, ASSL is defined through formal-
ization tiers (see Sect. 3.1), which together with the ASSL formalism determine
the “programming style” of the language. ASSL can be classified as both model-
oriented and property-oriented [6] specification language. The model-oriented style
is typically associated with the use of definitions, whereas the property-oriented
style is generally associated with the use of axioms. ASSL benefits from both styles
by using a property-oriented axiomatisation as a top-level specification style and in-
troducing a suitable number of specification layers with increasingly detailed model-
oriented descriptions.

3.4 High-Level Programming Features of ASSL

In addition to the simple syntax, there are a few important features that make ASSL
suitable for high-level programming.

3.4.1 Abstraction

In general, all computer programming languages can be considered as a “metaphor”,
because “they bridge the gap between something the computer can understand (bi-
nary) and something that humans can understand, and are capable of crafting pro-
grams with” [7]. In that sense, all programming languages (including ASSL) are an
abstraction. However, ASSL goes even further, by imposing additional abstraction
mechanisms, as part of the language. Just as Java and C# are high-level program-
ming languages, in the sense that they are typed and structured, ASSL is a high-level
language for modeling ASs in the sense that it is structured and domain-specific.
The latter means that the language provides high-level structures to emphasize on
the self-management properties of the system in question.

Formal Specification as High-Level Programming: The ASSL Approach 137

Abstraction has been well recognized as one of the best means for driving out
complexity. Before going further in discussion, let us define the notion of abstrac-
tion. As stated by James Rumbaugh in [8], “Abstraction is the selective examination
of certain aspects of a problem. The goal of abstraction is to isolate those aspects
that are important for some purpose and suppress those aspects that are unimpor-
tant.” Therefore, by emphasizing different elements, we can have many different
abstractions of the same complex system. In fact, this is the main abstraction con-
cept in ASSL. As designed, ASSL imposes different abstraction views of the sys-
tem under consideration through isolation of the self-management properties into
comprehensible sub-domains, those being the ASSL tiers and sub-tiers (see Fig. 1).
Therefore, the ASSL concept of abstraction reduces complexity by emphasizing dif-
ferent important elements in different ASSL tiers and hiding the less important ones.
Moreover, with its multi-tier specification model, ASSL provides an abstraction hi-
erarchy. The ASSL abstraction hierarchy is derived from the single ASSL tiers,
which form hierarchically organized levels of abstraction which highly positioned
in the ASSL framework tiers (see Fig. 1) provide a higher level of abstraction.

Figure 3 depicts an abstraction hierarchy exposed by the ASSL framework. The
abstraction views are presented as abstract classes, each comprising a set of more
comprehensible sub-tiers. As shown, the AS tier forms the highest level of abstrac-
tion. It relies on the abstractions exposed by both the ASIP tier and the AE tier.
In addition, the AE tier can be additionally abstracted by the AEClass tier through
generalization. In general, all the abstractions (AS, ASIP, AE, and AEClass) rely on
each other for specifying their sub-tiers. In addition, they can be reused among dif-
ferent ASSL specifications, i.e., an ASIP abstraction can be used in the specification
of many ASs, thus reducing the complexity in programming with ASSL through
reusability.

As a formal language, ASSL defines an implementation-independent presenta-
tion for computer systems. The ASSL specifications are free from any implemen-
tation specifics, i.e., we specify important aspects of a system and generate imple-
mentation.

3.4.2 Generalization and Aggregation

Generalization and aggregation are fundamentally important in ASSL, because they
both reduce complexity in programming ASs. In ASSL, generalization refers to a
set of similar AEs presented as a single AEClass abstraction. The AE classes are
considered abstract AEs used to embody commonalities among the AEs in an AS
through generalization. The ASSL code shown in Fig. 4 demonstrates the use of
ASSL classes.

As shown in Fig. 3, the AEClass tier does not participate in the formation of the
AS tier, but it generalizes the AE tier. AE classes define AE properties like SLO
(service-level objectives), policies, behavior models, actions, etc., inherited by con-
crete AEs constituting the AS in question. Figure 3 also depicts the AS abstraction,
as an aggregation of many constituent AEs and one constituent ASIP. Thus, the AS

138 E. Vassev and M. Hinchey

Fig. 3 ASSL abstraction hierarchy

AECLASSSES {
AECLASS worker { }
}
AES {
AE xWorker EXTENDS AECLASSSES.worker { }
AE yWorker EXTENDS AECLASSSES.worker {
AESLO { SLO lowRiskLevel { } }
ACTIONS { ACTION normalizeRiskLevel { } }

}
}

Fig. 4 AE classes

in question is treated as a unit in many operations, although physically it is made of
several lesser objects.

Formal Specification as High-Level Programming: The ASSL Approach 139

3.4.3 Decomposition and Modularity

Modeling an AS with ASSL is to determine the AEs constituting that system and to
determine the communication protocols (ASIP and AEIPs), which provide a means
of communication among the AEs. Hence, modeling with ASSL can be seen as a de-
composition of the AS in question into AEs and communication protocols. In ASSL,
decomposition is an abstraction technique where we start with a high-level descrip-
tion of the system and create low-level implementations of the latter where features
and functions fit together. Note that both high-level and low-level abstractions are
defined explicitly by the ASSL framework:

• The high-level abstractions form high-level modules in terms of ASSL tiers—AS
tier, ASIP tier, and AE tier.

• The low-level implementations are defined as comprehensible sub-domains (sub-
tiers), forming low-level system modules.

This kind of modularity is based on explicitly-assigned functions to components,
thus reducing the programming effort and complexity.

3.4.4 Granularity

Granularity is a sort of high-level organization technique for complex systems. As
Martin states in [9], “the class, while a very convenient unit for organizing small
applications, is too finely grained to be used as an organizational unit for large ap-
plications”. Hence, something larger and more abstract than a class is needed to
organize ASs as these are considered large and intrinsically very complex [4].

In ASSL, AEs are the highest form of granularity. Both AEs and AE Classes em-
body all the properties of a “mini” AS. Thus, an AE has its own SLO (service-level
objectives), self-management policies, behavior models, actions, events, metrics,
and even a private communication protocol (see Fig. 1). Considering implemen-
tation, the AEs are generated by the framework as Java packages, i.e., as logical
groups of Java classes. This provides an abstraction at implementation level and
allows us to reason about the high-level program and draw parallels between imple-
mentation and specification.

3.4.5 Separation of Concerns

ASSL helps to design and generate AC self-management wrappers in the form
of ASs that embed the components of regular systems. The latter are considered
as managed elements (managed resource), controlled by the AS in question. In
general, a managed element is a separate software system performing services.
ASSL emphasizes the self-managing functionality and the architecture of the self-
management wrapper, but not the managed element functionality and architecture.
Thus, it specifies only a special interface needed to control a managed element.

140 E. Vassev and M. Hinchey

Fig. 5 Self-managing control process

MANAGED_ELEMENTS {
MANAGED_ELEMENT STAGE_ME {
INTERFACE_FUNCTION countFailedNodes {
RETURNS { INTEGER }
}
....
INTERFACE_FUNCTION runNodeReplica { PARAMETERS { DMARFNode node }
ONERR_TRIGGERS { EVENTS.nodeReplicaFailed }
}

}
}

Fig. 6 Managed element specification

Here, ASSL provides an abstraction of the managed elements via a special inter-
face (see Fig. 5).

Figure 6 presents a partial specification of the managed resource interface for a
managed element called STAGE_ME. Note that the runNodeReplica interface func-
tion triggers an erroneous event in case the managed element failed on this func-
tion’s execution.

Here, as it is demonstrated by the example above, the separation-of-concern
technique allows for modeling the self-management part of an AS without being
concerned of the design and implementation of the system-service part (managed
element). The latter could be built separately by implementing the managed re-
source interface, or an already existing system can be adapted to that interface and
turned into a managed element for the self-management wrapper. By using inter-
face abstraction, we also can take advantage of polymorphism. There can be many
managed elements implementing differently the same interface, i.e., we can use
the same interface to control many systems, thus reducing the development effort

Formal Specification as High-Level Programming: The ASSL Approach 141

Table 1 Code generation statistics

Lines of ASSL Code Lines of Java Code Efficiency Ratio

44 3737 85

201 5853 29

293 8159 28

1192 18709 17

and complexity. In addition, this technique also provides an abstraction of the self-
management wrapper to the architects of the managed element. Here, both the self-
management wrapper and the managed element use each other as a “black box”,
with no concerns about internal details. Least but not last, the clear distinction be-
tween the self-managing and non-self-managing parts of a system allows for much
better perception and understanding of the system’s features and consecutively han-
dling the same.

3.5 Code Generation

Once a specification is complete, it can be validated with the ASSL built-in ver-
ification mechanisms [10] and a functional application skeleton can be generated
automatically. The application skeletons generated with the ASSL framework are
fully-operational multithreaded event-driven applications with embedded messag-
ing. Once completed and consistent, an ASSL specification (high-level program)
is translated into Java code that forms the skeleton of the AS under consideration.
The advantage is that the generated code implicitly inherits the specification models
and reduces the amount of code that must be implemented by the developers. ASSL
provides for a synthetic (versus analytic) approach to code implementation. There
are many possible ways to implement an ASSL specification. However, while most
of these possible implementations are redundant or differ slightly in unimportant
ways, the analytic approach can capture any one of them, thus risking the capture
of one with higher complexity. On the other hand, the synthetic approach aims at
reasonable and smaller, and thus less complex, implementations. Moreover, code
generation ensures that the implementation meets its specification. This is due to the
mathematical approach to code generation, where the underlying ASSL formal se-
mantics determine an unambiguous interpretation of the ASSL specifications. Note
that the ASSL code generator generates relatively simple and efficient implementa-
tions, thus reducing significantly the complexity associated with the development of
ASs. Table 1 presents some code generation statistics [11].

We may consider three levels of complexity in ASSL specifications:

• low complexity—specifications with up to 200 lines of ASSL code;
• moderate complexity—specifications with 201–600 lines of ASSL code;
• high complexity—specifications involving over 600 lines of ASSL code.

142 E. Vassev and M. Hinchey

The efficiency ratio (Java generated code versus ASSL specification code) shown in
Table 1 demonstrates an impressive degree of complexity reduction, due mainly to
the ASSL’s multi-tier specification model and code generation mechanism.

4 Case Study: Programming ANTS Missions with ASSL

4.1 ANTS

The Autonomous Nano-Technology Swarm (ANTS) concept sub-mission PAM
(Prospecting Asteroids Mission) is a novel approach to asteroid belt resource explo-
ration that provides for extremely high autonomy, minimal communication require-
ments with Earth, and a set of very small explorers with a few consumables [12].
These explorers forming the swarm are pico-class, low-power, and low-weight
spacecraft, yet capable of operating as fully autonomous and adaptable units. The
units in a swarm are able to interact with each other, thus helping them to self-
organize based on the emergent behavior of the simple interactions. Each spacecraft
is equipped with a solar sail for power; thus it relies primarily on power from the
sun, using only tiny thrusters to navigate independently. Moreover, each spacecraft
also has onboard computation, artificial intelligence, and heuristics systems for con-
trol at the individual and team levels. There are three classes of spacecraft—rulers,
messengers, and workers. Sub-swarms are formed to explore particular asteroids.
In general, a swarm consists of several sub-swarms where every sub-swarm has a
group leader (ruler), one or more messengers, and a number of workers carrying a
specialized instrument. The messengers are needed to connect the team members
when they cannot connect directly, due to a long distance or a barrier.

4.2 Programming Self-healing Behavior for ANTS

In this exercise we programmed with ASSL a self-healing behavior for ANTS [13].
This behavior was programmed by specifying self-management policies using
ASSL tiers and clauses as follows:

• self-management policies—define the self-management behavior of the system
through a finite set of fluents and mappings;

• actions—a finite set of actions that can be undertaken by ANTS in response to
conditions, and according to the self-management policies;

• events—a set of events that initiate fluents and are prompted by the actions ac-
cording to the policies;

• metrics—a set of metrics needed by the events and actions.

The following code (see Fig. 7) presents the ASSL high-level program for self-
healing in ANTS. Note that the specification presented here is partial, due to space

Formal Specification as High-Level Programming: The ASSL Approach 143

AE ANT_Worker {
AESELF_MANAGEMENT {
SELF_HEALING {
FLUENT inCollision {
INITIATED_BY {EVENTS.collisionHappen} TERMINATED_BY {EVENTS.instrumentChecked}}

FLUENT inInstrumentBroken {
INITIATED_BY { EVENTS.instrumentBroken }
TERMINATED_BY { EVENTS.isMsgInstrumentBrokenSent } }

FLUENT inHeartbeatNotification {
INITIATED_BY { EVENTS.timeToSendHeartbeatMsg }
TERMINATED_BY { EVENTS.isMsgHeartbeatSent } }

MAPPING { // if collision then check if the instrument is still operational
CONDITIONS { inCollision } DO_ACTIONS {ACTIONS.checkANTInstrument } }

MAPPING { // if the instrument is broken then notify the group leader
CONDITIONS {inInstrumentBroken} DO_ACTIONS {ACTIONS.notifyForBrokenInstrument}}

MAPPING { // time to send a heartbeat message has come
CONDITIONS {inHeartbeatNotification} DO_ACTIONS {ACTIONS.notifyForHeartbeat}}

}
}
....
ACTIONS {
ACTION IMPL checkInstrument {
RETURNS { BOOLEAN }
TRIGGERS { EVENTS.instrumentChecked } }

ACTION checkANTInstrument {
GUARDS { AESELF_MANAGEMENT.SELF_HEALING.inCollision }
ENSURES { EVENTS.instrumentChecked }
VARS { BOOLEAN canOperate }
DOES { canOperate = CALL ACTIONS.checkInstrument }
TRIGGERS { IF (not canOperate) THEN EVENTS.instrumentBroken END }
ONERR_TRIGGERS { IF (not canOperate) THEN EVENTS.instrumentBroken END }

}
....
}
....
EVENTS {
EVENT collisionHappen {
GUARDS { not METRICS.distanceToNearestObject }
ACTIVATION { CHANGED { METRICS.distanceToNearestObject } } }

EVENT timeToSendHeartbeatMsg { ACTIVATION { PERIOD { 1 min } } }
}
....
METRICS {
METRIC distanceToNearestObject {
METRIC_TYPE { RESOURCE }
METRIC_SOURCE {AEIP.MANAGED_ELEMENTS.worker.getDistanceToNearestObject}
THRESHOLD_CLASS { DECIMAL [0.001 ~) } }

} // METRICS
} // ANT_Worker

Fig. 7 ASSL specification for self-healing in ANTS

limitations. In our approach, we assume that each worker sends, on a regular basis,
heartbeat messages to the ruler [13]. The latter uses these messages to determine
when a worker is not able to continue its operation, due to a crash or malfunction in
its communication device or instrument. The specification shows only fluents and
mappings forming the specification for the self-healing policy for an ANTS Worker.
Here, the key features are:

• an inCollision fluent that takes place when the worker crashes into an asteroid or
into another spacecraft, but it is still able to perform self-checking operations;

144 E. Vassev and M. Hinchey

• an inInstrumentBroken fluent that takes place when the self-checking operation
reports that the instrument is not operational anymore;

• an inHeartbeatNotification fluent that is initiated on a regular basis by a timed
event to send the heartbeat message to the ruler;

• a checkANTInstrument action that performs operational checking on the carried
instrument.

• a distanceToNearestObject metric that measures the distance to the nearest object
in space (not presented here).

• a collisionHappened event prompted by the distanceToNearestObject metric
when the latter changes its value and the same does not satisfy the metric’s thresh-
old class.

The high-level program shown above is an abstract view of the special self-healing
behavior expressed with ASSL constructs. As can be seen, to program with ASSL,
one does not need to write standard classes and methods, e.g., the main() method
in Java. Instead, the ASSL program is built around the AESELF_MANAGEMENT
construct, which ideally can be regarded as a starting point of the program, i.e.,
something similar to the Java’s main() method. Moreover, just like in object-
oriented programming, an ASSL program is divided into class-like structures. In
our example, we can regard as high-level classes the ANT_WorkerAE, the ac-
tions checkInstrument and checkANTInstrument, the collisionHappen event and the
distanceToNearestObject metric. As specified, ANT_Worker is a sort of a “main”
high-level class nesting the other high-level classes. The ACTION classes can be
regarded as specification of high-level functions, i.e., they declare parameters, vari-
ables, executable statements and a sort of error-handling mechanism through events.

Obviously, an ASSL program does not look like a regular OOP program, but it is
rather an abstraction of such written in ASSL. The ASSL code generator translates
this abstraction into a concrete Java program that inherits names and features from
the ASSL program and can be run on a Java Virtual Machine.

5 Summary

High-level programming is a promising approach to the future software develop-
ment. The approach helps us deal with the challenge of building contemporary soft-
ware systems, which are inherently complex and often contain millions of lines of
code and a complex multi-component structure. Abstraction and simple natural lan-
guage syntax drive out the complexity and help developers better perceive and main-
tain their programs. The question is how “high” should be the level of abstraction in
order not to lose the precision needed to correctly program system’s behavior.

We have demonstrated that formal specification languages might be used to
do high-level programming. However, appropriate specification languages need
to: (1) impose an “easy- to-cope-with” syntax, close to the natural language; and
(2) provide developers with an appropriate code-generation mechanism that will
generate the implementation of a system from the formal specification of the same.

Formal Specification as High-Level Programming: The ASSL Approach 145

ASSL (Autonomic System Specification Language) is such a formal language that
successfully might be used for high-level programming. ASSL is dedicated to auto-
nomic computing and it establishes a development environment emphasizing future
self-managing features of the system in question and abstracting away the unneces-
sary details. An ASSL specification is abstract and platform independent. The lan-
guage is formal but provides developers with modern programming-language con-
structs and mechanisms such as inheritance, parameterization, a type system, mod-
ularity and user-friendly syntax. Although, a high-level program written in ASSL
does not look like a regular OOP program, it can be easily understood by develop-
ers. A powerful code generator, accompanied by software-verification mechanisms,
helps such high-level programs be translated into fully operational, multithreading
Java applications.

Overall, practice has shown that formal methods, when applied properly, can
have a significant impact on the software development lifecycle in terms of cost
and time reduction. Moreover, modern formal languages might lay the basis for a
new approach to software programming, where specification and implementation
are intertwined.

Acknowledgements This work was supported by Science Foundation Ireland grant 10/CE/I1855
to Lero–the Irish Software Engineering Research Centre.

References

1. Hinchey, M., Bowen, J.P., Vassev, E.: Formal methods. In: Encyclopedia of Software Engi-
neering, pp. 308–320. Taylor & Francis, London (2010)

2. Vassev, E.: Towards a framework for specification and code generation of autonomic systems.
PhD Thesis, Computer Science and Software Engineering Department, Concordia University,
Quebec, Canada (2008)

3. Vassev, E.: ASSL: Autonomic System Specification Language—A Framework for Specifica-
tion and Code Generation of Autonomic Systems. LAP Lambert Academic Publishing, Saar-
brücken (2009)

4. Murch, R.: Autonomic Computing: On Demand Series. IBM Press, Indianapolis (2004)
5. Knuth, D.E.: Backus normal form vs. Backus Naur form. Commun. ACM 7(12), 735–773

(1964)
6. Srivas, M., Miller, S.: Formal verification of the AAMP5 microprocessor: A case study in

the industrial use of formal methods. In: Proceedings of the Workshop on Industrial-Strength
Formal Specification Techniques (WIFT ’95), pp. 2–16. IEEE Computer Society, Washington
(1995)

7. Foord, M.: The future of programming: How high level can we get? The website, techni-
cal blog and projects of Michael Foord (2009). http://www.voidspace.org.uk/python/articles/
object_shaped_future.shtml. Cited 30 Jan 2012

8. Blaha, M., Rumbaugh, J.: Object-Oriented Modeling and Design with UML, 2nd edn. Pear-
son, Prentice Hall, New York (2005)

9. Martin, R.C.: Granularity. C++ Rep. 8(10), 57–62 (1996)
10. Vassev, E., Hinchey, M.: Software verification of autonomic systems developed with ASSL.

In: Proceedings of the 16th Monterey Workshop on Modeling, Development and Verification
of Adaptive Computer Systems: The Grand Challenge for Robotic Software (Monterey2010),
Microsoft Research Center, Redmond, USA, pp. 1–16. Springer, Berlin (2010).

146 E. Vassev and M. Hinchey

11. Vassev, E.: Code generation for autonomic systems with ASSL. In: Software Engineering
Research, Management and Applications—Management and Applications. Studies in Com-
putational Intelligence, vol. 296, pp. 1–15. Springer, Berlin (2010)

12. Truszkowski, W., Hinchey, M., Rash, J., Rouff, C.: NASA’s swarm missions: The challenge
of building autonomous software. IT Prof. 6(5), 47–52 (2004)

13. Vassev, E., Hinchey, M.: ASSL specification and code generation of self-healing behavior
for NASA swarm-based systems. In: Proceedings of the 6th IEEE International Workshop on
Engineering of Autonomic and Autonomous Systems (EASe’09), pp. 77–86. IEEE Computer
Society, Washington (2009)

Atomicity in Real-Time Computing

Jan Vitek

Abstract Writing safe and correct concurrent programs is a notoriously error-
prone and difficult task. In real-time computing, the difficulties are aggravated by
stringent responsiveness requirements. This paper reports on three experimental lan-
guage features that aim to provide atomicity while bounding latency. The context for
our experiments is the real-time extension of the Java programming language.

1 Introduction

Adding concurrency to any software system is challenging. It entails a paradigm
shift away from sequential reasoning. Programmers must reason in terms of the
possible interleavings of operations performed by the different threads of their pro-
gram. This shift affects all aspects of the software lifecycle. During development,
synchronization commands must be added to prevent data races. During verification
and analysis, more powerful techniques must deployed to validate code. During
testing, code coverage metrics must be revisited. Lastly, debugging becomes more
complex as bugs become harder to reproduce. Aiming to simplify the task of writing
correct concurrent algorithms, Herlihy and Moss proposed the idea of transactional
memory, an alternative to lock-based mutual exclusion [8] that ensures atomicity
and isolation. Atomicity means that either all of a given transaction’s updates will
be visible or none will. Isolation means that a transaction’s data will not be observed
in an intermediate state. While transactional memory has been studied extensively
for general purpose computing, real-time systems have their own set of constraints.
In particular, providing bounds on the execution time of any code fragment is key
to being to ensure that a real-time task will meet its deadline and that a set of tasks
is schedulable.

The tension between concurrency and real-time has been studied extensively.
Practitioners are trained to keep critical sections short and to enforce strict program-
ming protocols to avoid timing hazards. This requires a thorough understanding of
the program’s control flow. Unfortunately, the global view of the program required

J. Vitek (�)
Computer Science Faculty, Purdue University, West Lafayette, USA

K.K. Breitman, R.N. Horspool (eds.), Patterns, Programming and Everything,
DOI 10.1007/978-1-4471-2350-7_10, © Springer-Verlag London 2012

147

148 J. Vitek

by these approaches does not mesh with modern software engineering practices
which emphasize component-based systems and code reuse. The data abstraction
and information hiding principles that are key to reusability in object-oriented pro-
gramming tend to obscure the control flow of programs. Consider the Java code
fragment:

synchronized (obj) { obj.f = tgt.get(); }

Ensuring that the critical section is short requires non-local knowledge. The pro-
grammer must be able to tell which method is invoked in the call to get(), this
in turn depends on the class of the object referenced by variable tgt. The ques-
tion whether acquiring a lock on obj is sufficient is tricky too. It depends on which
shared memory location are accessed by get(). Real-time scheduling theory refers
to the time spent in a critical section as blocking time. This is the time a, possibly
higher-priority, thread may have to wait until it can acquire the lock on obj and exe-
cute. For predictability the blocking time has to be bounded (and preferably small).
A transactional memory equivalent of the above code, with appropriate language
support, would be:

atomic { obj.f = tgt.get(); }

The difference with the lock-based code is that it is not necessary for the program-
mer to specify a lock. Instead, it is up to the implementation to ensure atomicity and
isolation of all of the operations performed by the critical section. Much like in a
database, if two atomic sections attempt to perform conflicting changes to the mem-
ory, one of them will be aborted, its changes undone, and rescheduled for execution.
The software engineering benefits of transactional memory are striking, especially
in an object-oriented setting where it is often difficult to know which locks should be
acquired to protect a particular sequence of memory operations and method invoca-
tions. The main disadvantage lies in the need to reexcute aborted transactions which
entails maintaining a log of memory updates. Unless one can provide a hard bound
on the number of aborts and on all of the implementation overheads, the approach
may not be of use in a real-time context.

The notion of adding transactional facilities to a programming can be traced back
all the way to Lomet [13]. As mentioned above, Herlihy and Moss introduced the
concept of software transactional memory [8, 19], and were among the many to pro-
vide implementations for Java and other languages [7, 9]. Bershad worked on short
atomic sections [3, 4] for performing compare-and-swaps without hardware sup-
port. Anderson et al. [1] described lock free objects for real-time systems, but did
not explore compiler support. Welc et al. investigated the interaction of preemption
and transactions on a multi-processor [22], but did not provide any real-time guar-
antees. Finally, Rigneburg and Grossman have used similar techniques to the ones
developed here to add transactions to the Caml language on uniprocessors [16].

Atomicity in Real-Time Computing 149

2 Preemptible Atomic Regions for Uniprocessor Systems

The first concurrency control abstraction we will review is the preemptible atomic
region (PAR) introduced by Manson, Baker, Cunei, Jagannathan, Prochazka, Xin
and Vitek in [14]. This work was done within the Ovm [2] project that imple-
mented the first open source virtual machine for the Real-Time Specification for
Java (RTSJ) [5].

PARs are a restricted form of software transactional memory that provide an
alternative to mutual exclusion monitors for uniprocessor priority-preemptive real-
time systems. A PAR consists of a sequence of instructions guaranteed to execute
atomically. If a task is executing in a PAR and a higher-priority task is released by
the scheduler, then the higher-priority task will get to execute right away. It will
preempt the lower priority task and in the process, abort all memory operations
performed within the atomic region. Once the lower-priority task is scheduled again,
the PAR is transparently re-executed. The advantage of this approach is that high-
priority tasks get to execute quickly, no special priority inversion avoidance protocol
is needed, while atomicity and isolation of atomic regions is enforced.

Preemptible atomic regions differ from most transactional memory implemen-
tations in that tasks are aborted eagerly. This has the advantage forgoing conflict
detection, but, on the other hand, results in more roll-backs than strictly necessary.
Conflict detection is work that has to be performed on every read or write, while pre-
emption happens relatively unfrequently. We believe that this was the right tradeoff.

We contrast lock-based code and PARs with an example, simplified code taken
from the Zen real-time ORB [11]. Figure 1(a) makes extensive use of synchro-
nization. Method exec() is synchronized to protect ThreadPoolLane in-
stances against concurrent access. The lock on line 3 protects the shared queue.
The Queue object relies on a private lock (line 6 and 8) to protect itself from mis-

class ThreadPoolLane {

1. synchronized void exec(Req t){
if (borrow(t)) {

3. synchronized(queue) {
4. queue.enqueue(t);
5. buffered++;

}
...

class Queue {

6. final Object sync=new Object();

7. void enqueue(Object d) {
QueueNode n=getNode();
n.value=d;

8. synchronized(sync) {
9. // enqueue the object

...

class ThreadPoolLane {

10. @PAR void exec(Req t){
11. if (borrow(t)) {
12. queue.enqueue(t);
13. buffered++;

}
...

class Queue {

14. @PAR void enqueue(Object d) {
15. QueueNode n=getNode();
16. n.value=d;
17. // enqueue the object

...

(a) With Monitors. (b) With Preemptible Atomic Regions.

Fig. 1 Example: a ThreadPoolLane from the Zen ORB. (Simplified)

150 J. Vitek

suse by client code. Atomic regions are declared by annotating a method as @PAR;
they are active for the dynamic scope of the method, so all methods invoked by a
method declared @PAR are transitively atomic. In Fig. 1(b), we use two atomic sec-
tions: one for the exec() method (10) and another for the enqueue() method
(14). The first PAR is sufficient to prevent all data races within exec(); it is there-
fore unnecessary to obtain a lock on the queue. If enqueue() were only called
from exec(), it would not need to be declared atomic (but declaring atomic does
not hurt, as nested PARs are treated as a single atomic region). This solution is sim-
pler to understand, as it does not rely on multiple locking granularities. A single
PAR will protect all objects accessed within the dynamic extent of the annotated
method. Contrast this with the lock-based solution, where all potentially exposed
objects must be locked. Furthermore, the order of lock acquisition is critical to pre-
vent deadlocks. On the other hand, PARs cannot deadlock: they do not block waiting
for each other to finish.

The PAR-based mechanism avoids costs found in typical locking protocols.
When a contended lock is acquired, one or more allocations may need to be per-
formed. Additionally, whenever a lock is acquired or released, several locking
queues need to be maintained; these determine who is “next in line” for the lock. In
contrast, a PAR entrance only needs to store a book-keeping pointer to the current
thread. When a PAR exits, the only overhead is the reset of the log; this consists of
a single change to a pointer. Lock-based implementations also tend to have greater
context-switching overhead. Consider the code in Fig. 1(a) with three threads: t1,
t2 and a higher-priority thread t3. Thread t1 can acquire the lock on sync and
be preempted by Thread t2, which then synchronizes on queue. Now, assume that
Thread t3 attempts to execute exec(). This scenario can result in five context
switches. The first one occurs when t3 preempts t2. The second and third occur
when the system switches back to t2 so that it can release the lock on queue.
Finally, the fourth and fifth switches occur when the system schedules t1 so that
it can release the lock on sync. Under the same conditions, the use of PARs only
requires one context switch. If t2 preempts t1 while it is in an atomic section, then
t1will be aborted, and any changes it might have made will be undone. When t3 is
scheduled, it needs only undo the changes performed by t2 to make progress. This
does not require a context switch, as t3 has access to the log. It is worth pointing
out that roll-backs are never preempted.

PAR-based mechanisms incur two major costs that lock-based implementations
do not. First, all writes to memory involve a log operation that records the current
contents of the location being written. Second, if another thread preempts a thread
that is executing a PAR, all changes performed by that thread will have to be undone;
the heap will be restored based on the values stored in the log. Therefore, whenever
writes are sparse, the overheads for a lock-based solution will be higher than those
of the PAR-based solution. In our experience, aborts are cheap, because critical
sections typically perform few writes.

Atomicity in Real-Time Computing 151

2.1 Real-Time Guarantees

To ensure that a set of real-time tasks meet their deadlines, one must conduct a
response time analysis. The theory for dealing with mutual exclusion has been de-
veloped and is well understood. We now consider how to plug in PARs into schedu-
lability equations. Assume a set of n periodic tasks scheduled according to the rate
monotonic scheme [6], which is widely used scheduling technique for fixed priority
preemptive real-time systems. Tasks share a set of locks �1 . . . �k . At most one task
can be executing at any instant. Each task τi performs a job Ji . A job has period pi

such that ∀i < n, pi < pi+1. There is one critical section per job, and the critical
section always ends before the job finishes. For each job, Wi is the maximal execu-
tion time spent in a critical section and Ui is the maximal time needed to perform
an undo. Ri is the worst case response time of a job Ji . Ci is the worst-case execu-
tion time of job Ji . Tasks with higher priority π than τi are hp(i) = {j | πj > πi},
and ones with lower priority are lp(i) = {j | πj < πi}. Given that a task τi suffers
interference from higher priority tasks and blocking from lower priority tasks, the
response time is computed as Ri = Ci + Bi + Ii , where Ii is the maximum inter-
ference time and Bi the maximum blocking factor that Ji can experience [10]. The
schedulability theorem is the following.

Theorem 1 A set of n periodic tasks τi,0 ≤ i < n is schedulable in RM, iff

∀i ≤ n,∃Ri : Ri ≤ pi

Ri = Ci + max
j∈lp(i)

Uj +
∑

j∈hp(i)

⌈
Ri

pj

⌉
(Cj + Ui + Wi)

The intuition behind Theorem 1 is as follows. The expression maxj∈lp(i) Uj rep-
resents the worst case delay caused by rolling back a critical section executed by
any task with priority lower than τi . The worst case interference of Ji with higher
priority tasks, plus extra execution time needed to reexecute some critical sections,
are computed as follows. Given that �Ri

pj
� is the maximal number of releases of a

higher priority task τj that can interfere with a task τi , we can compute the number
of releases of τj in Ji as

∑
j∈hp(i)�Ri

pj
�. The most pessimistic approximation of how

many rollbacks can occur is to assume that every interference implies a rollback of
a critical section in Ji . Hence, every time a higher priority task τj preempts Ji , Cj

is the worst case execution time of τj during which Ji is preempted and thus not
progressing, and Ui +Wi is the worst case time necessary to undo and reexecute the
critical section of Ji preempted. As a critical section is undone by the higher pri-
ority task,

∑
j∈hp(i)�Ri

pj
�Ui is a part of Ji ’s interference with higher priority tasks,

while
∑

j∈hp(i)�Ri

pj
�Wi is an extra execution time. The worst case for undo times is

Ui = Wi ; this occurs if all operations within a PAR are memory writes.
Let us compare PAR with the original priority inheritance protocol (PIP) by Sha

et al. [18].

152 J. Vitek

Theorem 2 (PIP Schedulability) A set of n periodic tasks τi,0 ≤ i < n is schedula-
ble in RM, iff

∀i ≤ n,∃Ri : Ri ≤ pi

Ri = Ci + mi max
j∈lp(i)

Wj +
∑

j∈hp(i)

⌈
Ri

pj

⌉
Cj

where mi is the number of critical sections in Ji .

In PIP, the worst case delay of a job Ji caused by lower priority tasks sharing
locks with Ji is proportional to the number of critical sections in Ji . Moreover, the
worst case delay to enter to a single critical section is bounded by the worst case
execution time of the conflicting critical section. In PAR, the worst case delay to
enter a single critical section is bounded by the number of updates to be undone. In
addition, the overall delay of Ji caused by lower priority tasks is not dependent on
the number of critical sections in Ji . The cost of PAR is that the overall throughput
is reduced due to the cost of undoing and reexecuting lower priority threads. While
in all the priority inheritance schemes the cost of sharing locks degrades response
times of higher priority threads through their blocking factor, in PAR the cost is paid
by the lower priority threads in their higher execution time and interference.

In Java the number of threads (n) tends to be small, on the other hand the
number of critical sections (m) is typically large. Assuming Ui < Wi , the trade-
off between the PIP and PAR formulas is a question of comparing miWj with
2
∑

j∈hp(i)�Ri

pj
�Wi .

2.2 Implementation Sketch

As seen in Fig. 1, PARs can be declared by annotating a method @PAR. In our im-
plementation, atomic methods are aborted every time a higher priority thread is re-
leased. This approach reduces blocking time, when a high-priority thread is released
it only blocks for as long as it takes to abort one atomic region, and we only need to
maintain a single undo log. Atomic regions introduce several costs. A single system
wide log is preallocated with a user defined size (default of 10 KB). When control
enters a PAR, it is necessary to store a reference to the current thread. Within the
PAR, each time the application writes to memory, two additional writes are issued to
the log: the original value of the location, and the location itself. The commit cost is
limited to resetting the pointer into the log. The cost of undoing consists of travers-
ing the log in reverse, which has the effect of undoing all writes performed within
the critical section, and then throwing an internal exception to rewind the stack. For
example, consider a program with two zero-initialized variables. If the instructions
x=1; y=1; x=2 were executed, the log would contain (addressOf(x):0, ad-
dressOf(y):0, addressOf(x):1). If an abort took place, there would be

Atomicity in Real-Time Computing 153

void f() {
RETRY: try {

try { PAR.start(); f$(); }
finally { PAR.commit(); }

} catch (AbortedFault_) { goto RETRY; }
}

Fig. 2 Code transformation for a method @PAR void f. The body of the original method is
moved into a new synthetic method named f$

a write of 1 to x, then a write of 0 to y, and finally a write of 0 to x; both variables
would then contain their initial values. The runtime cost of an abort is thus O(n),
where n is the number of writes performed by the transaction.

In traditional transactional systems, a conflict manager is required to deal with
issues such as deadlock and starvation prevention. PARs are not subject to these
limitations. Conflict detection is only required when a thread is ready to be released
by the scheduler. Assume the scheduler is invoked to switch from the currently
executing thread t1 to a new higher priority thread t2. First, the scheduler checks
the status of t1. If it is in an atomic region, the scheduler releases t2, which then
executes the abort operation. If t1 is in an atomic region that is already in the
process of aborting, the abort must complete before thread t2 is released. In either
case, the pending AbortedFault will be thrown when thread t1 is scheduled
again.

The implementation proceeds by bytecode rewriting. We transform any method
f() with the PAR annotation into a new method named f$(). A new f() method,
as seen in Fig. 2, is added to the class; all of the original calls to f() will invoke
this method instead of the original method. A transaction starts with an invocation
of start(); this method enters a PAR and begins the logging process. The logged
version of the original method is then executed. Upon successful completion, com-
mit() resets the log. This method is enclosed in a finally clause to ensure that
the transaction commits even if the method throws a Java exception. To deal with the
consequences of an abort, we provide the class AbortedFault. When an abort
occurs, the AbortedFault is thrown by the virtual machine. This exception class
is treated specially by the virtual machine in that it can not be caught by normal
catch clauses and sidesteps user defined finally clauses.

Rewriting extends down into the virtual machine; when a call is made that re-
quires VM assistance, the invoked virtual machine code is rewritten as a PAR. Some
calls can be rolled back. There are, effectively, four different types of code that can
be encountered in the Ovm runtime: (a) Calls to Java methods that can be easily
rolled back. This includes calls to allocators and garbage collectors. (b) Calls to Na-
tive methods that cannot be rolled back. This includes calls to system timers or to I/O
methods. (c) Calls to Native methods that can easily be replaced with Java imple-
mentations. The System.arraycopy method, for example, calls the C function
memcpy. memcpy is a native call, and so cannot be logged; however, it is trivial to
write a Java implementation of this method. (d) Calls to Native methods that do not

154 J. Vitek

mutate system state. These methods can be handled individually, as well. Operations
that must not be undone are called non-retractable operations. These include calls to
I/O methods, as well as calls to user level data structures that are not specific to the
thread currently running (such as timers or event counters), which must not be reset,
as they are logically unrelated to the transaction. When encountered in a PAR, calls
to such methods cause a compiler warning and are transformed to unconditionally
throw an exceptions.

2.3 Experimental Evaluation

We evaluated the response times of high-priority threads with a program that ex-
ecutes a low and a high priority thread which access the same data structure, a
HashMap from the java.util package. The low priority thread continually ex-
ecutes critical sections that perform a fixed number of read, insert and delete op-
erations on the HashMap. Periodically, the high-priority thread executes a similar
number of operations. In one configuration, the accesses are protected by the de-
fault RTSJ priority inheritance lock implementation. In the other, the accesses are
protected by a PAR. For a PAR-based HashMap, this produced a high likelihood
of aborts. In fact, an abort occurred every time a high-priority thread is scheduled.
These measurements were obtained with Ovm running on a 300 MHz Embedded
Planet PowerPC 8260 board with 256 MB SDRAM, 32 MB Flash, and Embedded
Linux. Figure 3 shows the results of the test. Two points are noteworthy. First, the
latency for the PAR-based HashMap is lower; this indicates that undoing the low
priority thread’s writes was faster than context switching to the other thread, fin-
ishing its critical section, and context switching back. Second, the response time of
the PAR-based HashMap was more predictable; this is because it was not necessary
to execute a indeterminately long critical section before executing the high-priority
thread’s PAR.

3 Obstruction-Free Communication with Atomic Methods

The second abstraction we have experimented with is Atomic Methods in the Reflex
programming model [20] (this work was done with Jesper Honig Spring, Filip Pi-
zlo, Jean Privat and Rachid Guerraoui). Atomic methods were introduced in the Re-
flex programming model for mixing highly-responsive tasks with timing-oblivious
Java programs. A Reflex program consists of a graph of Reflex tasks connected ac-
cording to some topology through a number of unidirectional communication chan-
nels. This relates directly to graph-based modeling systems, such as Simulink and
Ptolemy [12], that are used to design real-time control systems, and to stream-based
programming languages like StreamIt [21]. A Reflex graph is constructed as a Java
program, following standard Java programming conventions. Reflex can run in iso-
lation or as part of a larger Java application. To communicate with ordinary Java

Atomicity in Real-Time Computing 155

Fig. 3 Response time of a high-priority thread in the HashMap Microbenchmark. The x-axis
indicates the number of periods (or frames) that have elapsed, and the y-axis indicates the response
time of the high-priority thread (in microseconds)

156 J. Vitek

Fig. 4 Illustration of a Java
application consisting of
time-oblivious code (blue)
and a time-critical Reflex
graph with three connected
tasks

threads, Reflex provides special methods which will ensure that real-time activities
do not block for normal Java threads and ensures atomicity of changes performed
by plain Java. Figure 4 illustrates a Reflex program.

A Reflex acts as the basic computational unit in the graph, consisting of user-
defined persistent data structures, typed input and output channels for communica-
tion between Reflex, and user-specific logic implementing the functional behavior
of the task. In order to ensure low latency, each Reflex lives in a partition of the vir-
tual machine’s memory outside of the control of the garbage collector. Furthermore,
Reflex are executed with a priority higher than ordinary Java threads. This allows
the Reflex scheduler to safely preempt any Java thread, including the garbage col-
lector. Memory partitioning also prevents synchronization hazards, such as a task
blocking on a lock held by an ordinary Java thread, which in turn can be blocked
by the garbage collector. In the Reflex programming model, Reflex have access to
disjoint memory partitions and developers can choose between a real-time garabage
collector and region-based allocation for memory management within Reflex.

3.1 Atomic Methods

Reflex prevent synchronous operations by replacing lock-based synchronization
with an obstruction-free communication. The principle behind atomic methods is
to let an ordinary Java thread invoke certain methods on the time-critical task. Once
inside the atomic method, the ordinary Java thread can access the data it shares with
the Reflex. These methods ensure that any memory mutations made by the ordinary
Java thread to objects allocated within a Reflex’s stable memory will only be visible
if the atomic method runs to completion. Again, given the default allocation context,
any transient objects allocated during the invocation of the atomic method will be
reclaimed when the method returns. If the ordinary Java thread is preempted by the
Reflex scheduler, all of the changes will be discarded and the atomic method will be
scheduled for re-execution. The semantics ensures that time-critical tasks can run
obstruction-free without blocking.

Atomicity in Real-Time Computing 157

public class PacketReader extends ReflexTask {
...
@atomic public void write(byte[] b) {...}

}

Fig. 5 Example of declaration of method on ReflexTask class to be invoked with transactional
semantics by ordinary Java threads

Atomic methods to be invoked by ordinary Java threads are required to be
declared on a subclass of the ReflexTask and must be annotated @atomic
as demonstrated with the write() method in Fig. 5. Methods annotated with
@atomic are implicitly synchronized, preventing concurrent invocation of the
method by multiple ordinary Java threads.

For reasons of type-safety, parameters of atomic methods are limited to types
allowed in capsules (capsules are the special message objects that can be sent across
channels between Reflex), i.e. primitives and primitive array types. Return types
are even more restricted, atomic method may only return primitives. This further
restriction is necessary to prevent returning a transient object, which would lead to
a dangling pointer, or a stable object, which would breach isolation. If an atomic
methods need to return more than a single a primitive, it can only do it by side-
effecting an argument (i.e. an array).

3.2 Example

Figure 6 shows the PacketReader class that creates capsules representing net-
work packets from a raw stream of bytes. This class is part of a network intrusion
detection application written as a Reflex graph. For our experiments, we simulate the
network with the Synthesizer class. The synthesizer runs as an ordinary Java
thread, and feeds the PacketReader task instance with a raw stream of bytes to
be analyzed. Communication between the synthesizer and the PacketReader is
done by invoking the write method on the PacketReader. This method takes a
reference to a buffer of data (primitive byte array) allocated on the heap and parses
it to create packets. The write method is annotated @atomic to give it transac-
tional semantics, thereby ensuring that the task can safely preempt the synthesizer
thread at any time.

3.3 Implementation Sketch

To implement atomic methods, we exploit the preemptible atomic regions facility of
the Ovm virtual machine as presented in Sect. 2. Any method annotated @atomic

158 J. Vitek

public class PacketReader extends ReflexTask {
private Buffer buffer = new Buffer(16384);

@atomic public void write(byte[] b) {
buffer.write(b);

}

private int readPacket(TCP_Hdr p) {
try {
buffer.startRead();
for (int i=0; i<Ether_Hdr.ETH_LEN; i++)

p.e_dst[i] = buffer.read_8();
...
return buffer.commitRead();

} catch (UnderrunEx e) { buffer.abortRead(); ... }
}

}

Fig. 6 An excerpt of the PacketReader task that reads packets received from the ordinary Java
thread and pushes them down in the graph. The write method, invoked by the ordinary Java
thread, is declared to have transactional semantics. The readPacket method is invoked from the
Reflex excute method

is treated specially by the Ovm compiler. More specifically, the compiler will priva-
tize the call-graph of a transactional method, i.e., recursively generate a transactional
variant of each method reachable from the transactional method. This transaction-
alized variant of the call-graph is invoked by the ordinary Java thread, whereas the
non-transactional variant is kept around as the Reflex task might itself invoke (from
the execute() method which is invoked periodically by the Reflex framework)
some of the methods, and those should not be invoked with transactional semantics.
We have applied a subtle modification to the preemptible atomic region implementa-
tion. Rather than having a single global transaction log, a transactional log is created
per ReflexTask instance in the graph, assuming that it declares atomic meth-
ods. This change ensures the encapsulation of each ReflexTask instance, and
enables concurrent invocation of different atomic methods on different Reflex-
Task instances. The preemptible atomic regions use a roll-back approach in which
for each field write performed by an ordinary Java thread on a stable object within
the transactional method, the virtual machine inserts an entry in the transaction log
and records the original value and address of field. With this approach, a transaction
abort boils down to replaying the entries in the transaction log in reverse order. Run-
ning on a uni-processor virtual machine, no conflict detection is needed. Rather, the
transaction aborts are simply performed eagerly at context switches. Specifically,
the transaction log is rolled back by the high-priority thread before it invokes the
execute method of the schedulable Reflex.

Atomicity in Real-Time Computing 159

The Ovm garbage collector supports pinning for objects such that the objects are
not moved or removed during a collection, and will therefore always be in a con-
sistent state when observed by referent objects from other memory areas, including
a Reflex task. Arguments to atomic methods are heap-allocated objects and must
be pinned when the ordinary Java thread invokes a transactional method and un-
pinned again when the invocation exits. We have modified the bytecode rewriter of
the Ovm compiler to instrument the method bodies of the atomic methods to pin
any reference type objects passed in upon entry and unpin again upon exit.

3.3.1 Multicore Implementation

One of the limitations of the Ovm implementation is that the virtual machine is op-
timized for uni-processor systems. In order to validate applicability of our approach
we ported much of the functionality of Reflex to the IBM WebSphere Real-Time
VM, a virtual machine with multi-processor support and a RTSJ-implementation.
The implementation of atomic methods in a multiprocessor setting is significantly
different. We use a roll-forward approach in which an atomic method defers all
memory mutations to a local log until commit time. Having reached commit time,
it is mandatory to check if the state of the Reflex has changed during the method
invocation, and if so abort the atomic method. The entries in the log can safely be
discarded, in constant time, as the mutations will not be applied. If the task state
did not change, the atomic method is permitted to commit its changes with the Re-
flex scheduler briefly locked out for a time corresponding to O(n), where n is the
number of stable memory locations updated by the atomic method. We rely on a
combination of program transformations and minimal native extensions to the VM
to achieve this.

3.4 Real-Time Guarantees

The real-time guarantees for atomic methods are slightly different then those of
preemptible atomic regions. To start, there is a single real-time thread per Reflex
which can interact with possibly multiple plain Java threads. So, the blocking time
of the real-time thread is at most the time required to abort the atomic method (i.e.
time proportional to the log size). On the other hand, no progress guarantee is given
to the plain Java threads trying to communicate with a Reflex. The programming
model allows for unbounded aborts in the worst case, though this has not occurred
in our experiments.

3.5 Experimental Evaluation

We evaluate the impact of atomic methods on predictability using a synthetic bench-
mark on an IBM blade server with 4 dual-core AMD Opteron 64 2.4 GHz processors

160 J. Vitek

Fig. 7 Frequencies of inter-arrival times of a single Reflex task with a period of 100 µs con-
tinuously interrupted by an ordinary Java thread invoking an atomic method. The x-axis gives
inter-arrival times in microseconds, the y-axis a logarithm of the frequency. The graph shows few
departures from the ideal 100 µs inter-arrival times

and 12 GB of physical memory running Linux 2.6.21.4. A Reflex task is scheduled
at a period of 100 µs, and when scheduled reads the data available on its input buffer
in circular fashion into its stable state. An ordinary Java thread runs continuously
and feeds the task with data by invoking an atomic method on the task every 20 ms.
To evaluate the influence of computational noise and garbage collection, another
ordinary Java thread runs concurrently, continuously allocating at the rate of 2 MB
per second.

Figure 7 shows a histogram of the frequencies of inter-arrival times of the Re-
flex. The figure contains observations covering almost 600,000 periodic executions.
Out of 3,000 invocations of the atomic method, 516 of them aborted, indicating that
atomic methods were exercised. As can be seen, all observations of the inter-arrival
time are centered around the scheduled period of 100 µs. Overall, there are only a
few microseconds of jitter. The inter-arrival times range from 57 to 144 µs.

4 Atomicity with Micro-Transactions

The third real-time concurrency abstraction we have studied in [15, 17] is a hard-
ware realization of transactional memory called RTTM for Real-Time Transactional
Memory (work done with Schoeberl, Brandner, Meawad, Iyer). The main design

Atomicity in Real-Time Computing 161

goals for the RTTM were: (a) simple programming model and (b) analyzable tim-
ing properties. Therefore, all design and architecture decisions were driven by their
impact on real-time guarantees. In contrast to other transactional memory proposals
RTTM does not aim for a high average case throughput, but for time-predictability.
RTTM supports small atomic sections with a few read and write operations. There-
fore, it is more an extension of the CAS instruction to simplify the implementation
of non-blocking communication algorithms.

In our proposal each core is equipped with a small, fully associative buffer to
cache the changed data during the transaction. All writes go only into the buffer.
Read addresses are marked in a read set—a simplification that uses only tag memo-
ries. The write buffer and tag memory for the read set are organized for single word
access. This organization ensures that no false positive conflicts are detected. For the
same reason the transaction buffer has to be a fully associative cache with a FIFO
replacement strategy. Fully associative caches are expensive and therefore the size
is limited. We assume that real-time systems programmers are aware of the high
cost of synchronization and will use small atomic sections where a few words are
read and written. On a commit the buffer is written to the shared memory. During
the write burst on commit all other cores listen to the write addresses and compare
those with their own read set. If one of the write addresses matches a read address
the transaction is marked to be aborted. The atomicity of the commit itself is en-
forced by a single global lock—the commit token. The commit token can also be
used on a buffer overflow. When a transaction overflows the write buffer or the tag
memory for the read set the commit token is grabbed and the transaction continues.
The atomicity is now enforced by the commit token. Grabbing the commit token
before commit is intended as a backup solution on buffer overflow. It effectively
serializes the atomic sections. The same mechanism can also be used to protect I/O
operations that usually cannot be rolled back. On an I/O operation within a transac-
tion the core also grabs the commit token. Conflict detection happens only during
a commit when all n − 1 (on a n core multiprocessor) cores listen to the core that
commits the transaction and not during local read/writes thus saving valuable CPU
cycles. When a conflict is detected the transaction is aborted and restarted.

4.1 Example

We have implemented dynamically growing singly linked wait-free queues using
different synchronization techniques. In our implementations, we use the Java syn-
chronized and the annotation @atomic for micro-transactions. The implementation
involves a ‘head’ node to keep track of the queue-empty condition. Both the head
and the tail pointers point to the ‘head’ node at the beginning and when the queue is
empty.

class SLQ {
final static class Node {

162 J. Vitek

final Object value;
volatile Node next;

}

volatile Node head = new Node(), tail = head;

void insert(Node n) {
tail.next = n; tail = n;

}

Object remove() {
if (head.next == null) return null;
head = head.next;
return head.value;

}
}

In the remove method, the removed node is retained as the special ‘head’ node until
the next node is removed. This does not affect the number of retries.

4.2 Real-Time Guarantees

The real-time behavior of such transactions is established by bounding the number
of retries r to n − 1 on a n core multiprocessor. Assuming periodic threads, non-
overlapping periods and execution deadline not exceeding the period, the worst case
execution time (WCET) of any thread t is given by the equation

t = tna + (r + 1)tamax (1.1)

where t is the worst case execution time, tna is the execution time of the non-atomic
section of the thread and tamax is the maximum of the execution times of the atomic
sections of all the n threads in the system. Since r is bounded, the WCET of any
thread is bounded.

5 Experimental Evaluation

The experimentation environment is an FPGA programmed with a symmetric
shared-memory multi-processor hardware system with four JOP cores. As hard-
ware platform we us an Altera DE2-70 Development board consisting of a Cyclone
II EP2C70 FPGA. The Altera board contains 64 MB SDRAM, 2 MB SSRAM and
an 8 MB Flash Memory and I/O interfaces such as USB 2.0, RS232, and a Byte-
BlasterMV port. Each JOP core has a core local 4 KB instruction cache and 1 KB

Atomicity in Real-Time Computing 163

Fig. 8 SLQ Time. The x-axis
gives number of nodes and
the y-axis gives the execution
time in milli-seconds

stack cache. The Cyclone FPGA was programmed to simulate the afore-mentioned
symmetric shared-memory multi-processor environment.

Figure 8 plots the execution time to insert, move and remove a specified number
of nodes from the singly linked queues. The x-axis indicates the number of nodes
used in the experiment, we chose a sample of the small number of nodes followed by
a linear increment starting from 1000. The bars indicate the time taken to complete
the experiment when different synchronization methods are used. Time is measured
from the instance when the insertion of the first node is started till the removal of
the last node is completed. It can be noted that, as the number of nodes processed
increase the average execution time increases almost linearly due to an increase in
the number of locks, transactions and retries. The CAS numbers are simulation of
hardware compare and swap as the architecture does not support such instructions.
Execution times in the case of TM is 17 % lower compared to the CAS cases, it is
2.5 % higher than the LOCK case. The higher execution times of the TM implemen-
tation relative to that of LOCK can be attributed to the small sizes of the read/write
sets and shorter atomic sections in singly linked queues. For example, in a singly
linked list, an insert operation involves the modification only of a pointer and the
queue tail. As a result, locks are held for a short period reducing overall waiting
time. However, in the case of TM, retries, conflict detection and other transactional
memory overhead is high as compared to the time lost in waiting for locks.

6 Conclusion

Correct and efficient design and implementation of concurrent programs is abso-
lutely vital, but tremendously difficult to achieve. In this paper, we have reported
on our experience with three concurrency control abstractions that leverage trans-
actional memory ideas to provide time predictable performance. For uniprocessor
systems, preemptible atomic regions provide a very good compromise between per-
formance and responsiveness. They are fast and have simple semantics. They are
arguably preferable to locks in most cases. If a restricted programming model is

164 J. Vitek

acceptable, then the atomic methods that are part of the Reflex programming model
are a nice match that preserves most of the benefits of PARs but can be used in a
multi-processor setting. Lastly, on a multi-core real-time system, a hardware imple-
mentation such as the one we have proposed with RTTM can provide the appropriate
timing guarantee, but unfortunately our preliminary results suggest that there is a de-
crease in throughput due to the complexity of the hardware. Overall, we believe that
transactional abstractions show promise to provide viable alternatives to lock based
synchronization in the context of real-time systems.

References

1. Anderson, J., Ramamurthy, S., Moir, M., Jeffay, K.: Lock-free transactions for real-time sys-
tems. In: real-Time Database Systems: Issues and Applications. Kluwer Academic, Norwell
(1997)

2. Armbuster, A., Baker, J., Cunei, A., Holmes, D., Flack, C., Pizlo, F., Pla, E., Prochazka, M.,
Vitek, J.: A Real-time Java virtual machine with applications in avionics. ACM Trans. Embed.
Comput. Syst. 7(1), 1–49 (2007)

3. Bershad, B.N.: Practical considerations for non-blocking concurrent objects. In: Proceedings
of the 13th International Conference on Distributed Computing Systems, May, pp. 264–273
(1993)

4. Bershad, B.N., Redell, D.D., Ellis, J.R.: Fast mutual exclusion for uniprocessors. In: Fifth
International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pp. 223–233 (1992)

5. Bollella, G., Gosling, J., Brosgol, B., Dibble, P., Furr, S., Turnbull, M.: The Real-Time Speci-
fication for Java. Addison-Wesley, Reading (2000)

6. Ding, Y., Lehoczky, J.P., Sha, L.: The rate monotonic scheduling algorithm: exact charac-
terization and average case behaviour. In: Proceedings of the 10th IEEE Real-Time Systems
Symposium (1989)

7. Harris, T., Fraser, K.: Language support for lightweight transactions. In: Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’03), Seat-
tle, Washington, November, pp. 388–402 (2003)

8. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-free data
structures. In: ISCA’93: Proceedings of the 20th Annual International Symposium on Com-
puter Architecture, pp. 289–300. ACM Press, New York (1993)

9. Herlihy, M., Luchangco, V., Moir, M., Scherer, W.: Software transactional memory for
dynamic-sized data structures. In: ACM Conference on Principles of Distributed Computing,
pp. 92–101 (2003)

10. Joseph, M., Pandya, P.: Finding response times in a real-time system. Comput. J. 29(5), 390–
395 (1986)

11. Krishna, A.S., Schmidt, D.C., Klefstad, R.: Enhancing real-time CORBA via real-time Java
features. In: 24th International Conference on Distributed Computing Systems (ICDCS 2004),
Hachioji Tokyo, Japan, March, pp. 66–73 (2004)

12. Lee, E.A.: Overview of the Ptolemy project. Technical report UCB/ERL M03/25, EECS De-
partment, University of California, Berkeley (2003)

13. Lomet, D.B.: Process structuring, synchronisation and recovery using atomic actions. Proc.
ACM Conf. Lang. Des. Reliab. Softw. 12(3), 128–137 (1977)

14. Manson, J., Baker, J., Cunei, A., Jagannathan, S., Prochazka, M., Xin, B., Vitek, J.: Pre-
emptible atomic regions for real-time Java. In: Proceedings of the 26th IEEE Real-Time Sys-
tems Symposium (RTSS), December (2005)

Atomicity in Real-Time Computing 165

15. Meawad, F., Iyer, K., Schoeberl, M., Vitek, J.: Real-time wait-free queues using micro-
transactions. In: International Workshop on Java Technologies for Real-Time and Embedded
Systems (JTRES), October (2011)

16. Ringenburg, M.F., Grossman, D.: AtomCaml: First-class atomicity via rollback. In: Tenth
ACM International Conference on Functional Programming, Tallinn, Estonia, September
(2005)

17. Schoeberl, M., Brandner, F., Vitek, J.: Rttm: real-time transactional memory. In: Symposium
on Applied Computing (SAC), pp. 326–333 (2010)

18. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: an approach to real-time
synchronization. IEEE Trans. Comput. 39(9), 1175–1185 (1990)

19. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the 14th Annual
ACM Symposium on Principles of Distributed Computing (PODC’95), August, pp. 204–213
(1995)

20. Spring, J.H., Pizlo, F., Privat, J., Guerraoui, R., Vitek, J.: Reflexes: Abstractions for integrating
highly responsive tasks into Java applications. ACM Trans. Embed. Comput. Syst. (2009)

21. Thies, W., Karczmarek, M., Amarasinghe, S.: Streamit: a language for streaming applications.
In: Proceedings of the 11th International Conference on Compiler Construction (CC), April
(2002)

22. Welc, A., Hosking, A.L., Jagannathan, S.: Preemption-based avoidance of priority inversion
for Java. In: 33rd International Conference on Parallel Processing (ICPP 2004), Montreal,
Canada, August, pp. 529–538 (2004)

Tuning Keyword Pattern Matching

Bruce W. Watson

Abstract I introduce two performance improvements to the Commentz-Walter
family of multiple-keyword (exact) pattern matching algorithms. These algorithms
(which are in the Boyer-Moore-Horspool style of keyword pattern matchers) con-
sist of two nested loops: the outer one to process the input text and the inner one
processing possible keyword matches. The guard of each loop is improved, thereby
leading to non-trivial speedup, which could reach 20 % in practice, depending up
on the input text and keywords.

1 Introduction

In this chapter, I introduce two improvements to the Commentz-Walter family of
multiple-keyword (exact) pattern matching algorithms. These algorithms were de-
rived by Commentz-Walter in [3, 4] and represent the multiple-keyword matching
analogues of the well-known Boyer-Moore-Horspool style of single-keyword algo-
rithms (see [5–7, 9, 10] for introductions to those algorithms). This family of algo-
rithms shares a common algorithm skeleton, differing only in the tables used to skip
portions of the input text in which no match can possibly occur. Benchmarking data
in [10] shows that these algorithms significantly outperform the better-known Aho-
Corasick [1] algorithms on both natural language and genomic inputs. It follows
that any further improvements to the skeleton can have practical consequences.

Detailed derivations of the Commentz-Walter algorithms can also be found in
[2, 10–12]. These algorithms are notoriously difficult to derive correctly, and most
of the improvements arise from a correctness-by-construction approach to algorith-
mics.

I assume the reader is broadly familiar with the field of keyword pattern match-
ing. For more details, see [9] or any other stringology book. Briefly, given an input
string S and a finite set of keywords P (over the same alphabet), find all occurrences
(including overlapping ones) of a keyword in S.

B.W. Watson (�)
FASTAR Research Group, Center for Knowledge Dynamics and Decision-Making, Stellenbosch
University, Stellenbosch, Republic of South Africa
e-mail: bruce@fastar.org

K.K. Breitman, R.N. Horspool (eds.), Patterns, Programming and Everything,
DOI 10.1007/978-1-4471-2350-7_11, © Springer-Verlag London 2012

167

168 B.W. Watson

2 Basic Algorithmic Skeleton

The skeleton is

1: i ← 0
2: while i < |S| do
3: {attempt match of P from right-to-left at S0...i}
4: j ← i

5: while j ≥ 0 and Sj...i is still a viable match in P do
6: j ← j − 1
7: end while
8: if Sj+1...i ∈ P then
9: print match found

10: end if
11: i ← i + distance based on knowledge of Sj...i

12: end while
The algorithm consists of an outer loop proceeding from left to right through S,

attempting a match at every point. The match attempt proceeds from right-to-left.
After each match attempt, we could naïvely move one position to the right in S, how-
ever, the information gathered during a match attempt can be used to shift further to
the right (than just one position)—giving this family of algorithms its performance
advantage. The match attempt is specifically right-to-left to allow for larger shifts.
The shifts are implemented using tables precomputed from P .

In the two following sections, we tune the two loops.

3 Tuning the Outer Loop

The guard of the outer loop (see line 2 above) detects overruns on the right end of
S, when i ≥ |S|. The guard can be changed to true using the ‘sentinel’ technique
of concatenating one of the keywords on the right of S; the loop can be terminated
when the sentinel match is detected in:

1: i ← 0
2: S ← S · p (for some p ∈ P)
3: while true do
4: {attempt match of P from right-to-left at S0...i}
5: j ← i

6: while j ≥ 0 and Sj...i is still a viable match in P do
7: j ← j − 1
8: end while
9: if Sj+1...i ∈ P then

10: if sentinel is being matched then
11: return
12: end if
13: print match found

Tuning Keyword Pattern Matching 169

14: end if
15: i ← i + distance based on knowledge of Sj...i

16: end while
On most present-day architectures,1 the new guard test (an empty test, as the

guard is true) saves at least one instruction (and therefore one clock-cycle in a typical
implementation) in an implementation of the outer loop. The outer loop executes
between |S| and

|S|
|the longest keyword in P |

times, depending on the properties of S and P . (The former case applies when shifts
to the right of only one position are possible, whereas the latter applies when the
longest shifts are possible.)

4 Tuning the Inner Loop

We can similarly tune the guard of the inner loop, appearing on line 6 in Sect. 3.
The second conjunct ensures that the algorithm is still tracking a viable match, and
is usually implemented using a reverse trie (a type of automaton) for keyword set
P and the if-statement’s guard. Little improvement can be made to that conjunct,
other than using a different type of automaton. The first conjunct, j ≥ 0, prevents j

from running off the left of S. It can also be eliminated using a sentinel technique—
attaching a special symbol ⊥ on the left of S (and starting i at position 1), ensuring
that no viable match is possible in:

1: i ← 1
2: S ← ⊥ · S · p (for some p ∈ P)
3: while true do
4: {attempt match of P from right-to-left at S0...i}
5: j ← i

6: while Sj...i is still a viable match in P do
7: j ← j − 1
8: end while
9: if Sj+1...i ∈ P then

10: if sentinel is being matched then
11: return
12: end if
13: print match found
14: end if
15: i ← i + distance based on knowledge of Sj...i

16: end while

1For example on Knuth’s MMIX [8], which is broadly representative.

170 B.W. Watson

The new guard also saves at least one instruction (and likely one clock-cycle) in
a real implementation of the inner loop, which is executed between

|S|
|the longest keyword in P |

and

|S| × |the longest keyword in P |
times. The remainder of the body of the inner loop can be implemented in as little
as 4 clock cycles, indicating a maximum 20 % performance increase.

Readers familiar with the Boyer-Moore algorithms for single-keyword pattern
matching might expect that the inner loop guard could also have been simplified
by beginning i at position k, where k corresponds to the length of one of the key-
words. Unfortunately, this does not lead to a correct algorithm. To see why not,
consider k = |shortest keyword in P |. In this case, running off the left of S remains
a possibility while pursuing a match of a longer keyword in P . The alternative
k = |longest keyword in P | leads to us potentially missing a match starting left of k

of a shorter keyword in P .

5 Conclusions

I have introduced two straightforward optimizations of the Commentz-Walter fam-
ily of algorithms. The practical performance improvements depend heavily on the
characteristics of S and P , but could reach 20 % with efficient data-layouts of the
trie (thereby minimizing the instructions required for the remaining loop guard).
Interestingly, these optimizations (including the relatively trivial sentinel) have not
previously been applied to this family of algorithms.

Acknowledgements This chapter is dedicated to Judith Bishop—good friend and colleague, and
an outstanding computer scientist. In the 1990’s, I was invited by Judith to present a colloquium on
keyword pattern matching algorithms, then at the University of Pretoria. This research work grew
directly out of the discussions surrounding the colloquium and research visit.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search. Commun.
ACM 18(6), 333–340 (1975)

2. Cleophas, L., Watson, B.W., Zwaan, G.: A new taxonomy of sublinear right-to-left scan-
ning keyword pattern matching algorithms. Sci. Comput. Program. 75, 1095–1112 (2010).
doi:10.1016/j.scico.2010.04.012

3. Commentz-Walter, B.: A string matching algorithm fast on the average. In: Maurer, H. (ed.)
Proceedings of the Sixth International Colloquium on Automata, Languages and Program-
ming, pp. 118–131. Springer, Berlin (1979)

Tuning Keyword Pattern Matching 171

4. Commentz-Walter, B.: A string matching algorithm fast on the average. Tech. Rep. 79.09.007,
IBM Heidelberg Scientific Center (1979)

5. Crochemore, M.A., Rytter, W.: Text Algorithms. Oxford University Press, Oxford (1994)
6. Crochemore, M.A., Rytter, W.: Jewels of Stringology. World Scientific, Singapore (2003)
7. Hume, A., Sunday, D.: Fast string searching. Softw. Pract. Exp. 21(11), 1221–1248 (1991)
8. Knuth, D.E.: MMIX—A RISC Computer for the New Millennium, vol. 1, fascicle 1. Addison-

Wesley, Reading (2005)
9. Smyth, W.F.: Computing Patterns in Strings. Addison-Wesley, Reading (2003)

10. Watson, B.W.: Taxonomies and toolkits of regular language algorithms. Ph.D. thesis, Faculty
of Computing Science, Eindhoven University of Technology, the Netherlands (1995)

11. Watson, B.W.: A new family and structure for Commentz-Walter-style multiple-keyword pat-
tern matching algorithms. South Afr. Comput. J. 30, 29–33 (2003)

12. Watson, B.W., Zwaan, G.: A taxonomy of sublinear multiple keyword pattern matching algo-
rithms. Sci. Comput. Program. 27(2), 85–118 (1996)

An Afterword for Judith: The Next Phase of Her
Career

Tony Hey

I first met Judith in the 1970’s when we were both at Southampton. I was a lecturer
in theoretical physics in the Physics Department and Judith was a Ph.D. student in
the very new Computer Studies Department. We met at a party hosted by a mu-
tual friend and I remember that we had a common interest in wine. At that time,
I was doing research on particle physics and more interested in quarks than com-
puter architecture, of which I had only the vaguest notion. By the 1980’s things had
changed full circle and my research interests were now in computer architecture—
specifically in building and using parallel computers. It was then I moved to the
newly formed Department of Electronics and Computer Science at Southampton
in which Judith was now a lecturer. Judith assisted my transition from physicist to
computer scientist and was generous in re-educating me into the broad field of com-
puter science. In research, my group was experimenting with parallel systems using
occam and transputers and collaborating with David May at Inmos. As one of her
research interests, Judith looked at implementations of Ada on our multi-transputer
machines. It was therefore a great loss for me—and for the Department—when Ju-
dith decided to return to South Africa.

Over the years we kept in touch and I have followed Judith’s career with inter-
est. Her books were always useful and educational—from Pascal to Ada, through
Java to C#. From 2001 to 2005, I was director of the UK eScience Core Program
and concerned with funding multidisciplinary collaborations between scientists and
computer scientists. Rather than go back to a university, I joined Microsoft in 2005
to set up a similar eScience program and entered the vibrant world of Microsoft
Research. After a couple of years at Microsoft, my job was enlarged to include
research collaborations not only with scientists but also with the computer science
community. I now found myself needing someone to help construct and direct an ex-
citing and impactful computer science research program and I immediately thought
of Judith. I laid my plans with care and began by inviting her to attend our Faculty

T. Hey (�)
Microsoft Research Connections, One Microsoft Way, Redmond, WA 98052-6399, USA
e-mail: tony.hey@microsoft.com

K.K. Breitman, R.N. Horspool (eds.), Patterns, Programming and Everything,
DOI 10.1007/978-1-4471-2350-7, © Springer-Verlag London 2012

173

174 T. Hey

Summit, held annually in July in Redmond, Microsoft’s main campus near Seattle.
After the summit, I raised the idea of Judith joining me in Microsoft Research and
building up our collaborative research program with the global computer science
community. During the next year, the General Manager, Daron Green, in my group,
had a long series of international phone calls with Judith which culminated in her
coming to Redmond to interview for the position. I was pleased that she accepted
this new challenge.

Since arriving in Microsoft Research, Judith has set about her new task with
characteristic vision and energy. Having long ago mastered the art of navigating
the complexities of departments and faculties in a university, she has now had to
learn a whole new set of skills in navigating the complexities of Microsoft. Not only
are there the powerful Business Groups—such as Windows, Office and Xbox—but
there are also many other groups in Microsoft who interact with universities in one
way or another, with confusing names such as EdPG, DPE, DevDiv and WWPS. It
was therefore with some amusement that I went with Judith to her first Company
Meeting, held each September at Safeco Field, the home of the Seattle Mariners
baseball team. The meeting is a cross between a religious revivalist meeting and
rock concert and the contrast with an academic meeting could not be greater. Judith
must have wondered what she was getting into!

One of the great things for researchers in Microsoft Research is the possibil-
ity of seeing their research end up in a product that is used by millions. However,
achieving a successful technology transfer is still something of a black art, even in
Microsoft. In the short time that Judith has been at Microsoft Research, her pro-
gram has managed to achieve this as well as many other positive outcomes. She has
visited our Research Labs in Europe, China and India and established great partner-
ships with many of our research groups. She is still writing of course, and recently
contributed to a Microsoft book on parallel programming. With the multicore revo-
lution now upon us, parallel computing is now a necessity and not an option. And, as
you would expect, Judith has maintained her connections with the computer science
research community outside of Microsoft Research. Besides initiating a new Mi-
crosoft Research conference on computer science in Europe, she has been actively
involved in chairing and organizing other major computer science conferences. For
Judith, coming to Microsoft Research is not just an ‘afterword’ to her career but a
new stage on which she will continue to flourish.

Author Index

Autili, Marco, 1
Aycock, John, 13
Béládi, Róbert, 19
Bilicki, Vilmos, 19
Gough, K. John, 31
Gschwind, Thomas, 45
Gyimóthy, Tibor, 19
Hedenborg, Mathias, 75
Hey, Tony, 173
Hinchey, Mike, 129
Inverardi, Paola, 1

Kasza, Miklós, 19
Kourie, Derrick G., 63
Löwe, Welf, 75
Lundberg, Jonas, 75
Meyer, Bertrand, 91
Rak, Zoltán, 19
Tivoli, Massimo, 1
Vassev, Emil, 129
Végh, Ádám, 19
Vitek, Jan, 147
Watson, Bruce W., 167

K.K. Breitman, R.N. Horspool (eds.), Patterns, Programming and Everything,
DOI 10.1007/978-1-4471-2350-7, © Springer-Verlag London 2012

175

	Cover
	Patterns, Programming and Everything
	Foreword
	Preface
	Contents
	Contributors

	Assessing Dependability for Mobile and Ubiquitous Systems: Is There a Role for Software Architectures?
	1 Introduction
	2 MAUS: Mobile And Ubiquitous Systems
	3 The Challenge of Assessing Dependability for Mobile and Ubiquitous Systems
	4 An e-Learning Scenario
	5 Concluding Remarks: Is There a Role for Software Architectures?
	References

	A Bestiary of Overlooked Design Patterns
	1 Introduction
	2 List of Patterns
	2.1 Unwanted Visitor Pattern
	2.2 False Facade Pattern
	2.3 Desperate Singleton Pattern
	2.4 Biased Observer Pattern
	2.5 Interior Decorator Pattern
	2.6 Useless Adapter Pattern
	2.7 Lazy-Spouse Initialization Pattern
	2.8 Disreputable Builder Pattern
	2.9 "Wanna-buy-a?" Bridge Pattern
	2.10 Former Flyweight Pattern
	2.11 Industrial Mediator Pattern
	2.12 Failed State Pattern
	2.13 Childproof Container Pattern
	2.14 Unionized Factory Pattern

	3 Conclusion
	References

	End User Programming in Smart Home
	1 Introduction
	2 High-Level Requirements and State of the Art
	3 Proposed Solution
	4 Architecture and Technologies
	5 Evaluation
	6 Conclusions
	References

	Reconceptualizing Bottom-Up Tree Rewriting
	1 Background
	1.1 Dynamic Programming
	1.2 Labelling and Reducing

	2 Predicated Patterns
	2.1 Using Predicated Patterns

	3 What Are Forms?
	3.1 Forms and Post-Conditions
	3.2 Full Evaluation of Boolean Expressions
	3.3 Conditional Execution
	3.4 Emitting Jumping Code

	4 Consequential Changes
	4.1 Computing the Cost
	4.2 Handling Inherited Attributes
	4.3 Future Work

	5 Conclusions
	References

	Automated Adaptation of Component Interfaces with Type Based Adaptation
	1 Introduction
	2 Application Domains
	3 Adapters
	4 Adapter Composition
	5 Adapter Repository
	6 Evaluation
	7 Future Work
	8 Related Work
	9 Conclusions
	References

	The Beneﬁts of Bad Teaching
	1 Prologue
	2 Introduction
	3 A Personal Historical Perspective
	4 Good Teaching
	4.1 Appropriate Course Material
	4.2 Good Organization
	4.3 Good Delivery
	4.4 Good Reinforcement Procedures
	4.5 Good Assessment Procedures

	5 Bad Teaching
	5.1 Appropriate Course Material
	5.2 Good Organization
	5.3 Good Delivery
	5.4 Good Reinforcement Procedures
	5.5 Good Assessment Procedures

	6 Conclusion
	References

	SSA-Based Simulated Execution
	1 Introduction
	2 Foundations of SSA-Based Points-to Analysis
	2.1 Analysis Values
	2.2 Points-to SSA

	3 Simulated Execution
	3.1 Method Graph Processing
	3.2 Call Processing

	4 Flow-Sensitivity
	5 Correctness of Simulated Execution
	5.1 Data Abstraction
	5.2 Transfer Functions
	5.3 Execution Traces

	6 Related Work
	7 Summary, Conclusion and Future Work
	References

	Towards a Calculus of Object Programs
	1 Addressing the Speciﬁcs of Object-Oriented Software
	2 A Proof: Linked List Reversal
	2.1 Algorithm Idea
	2.2 Algorithm Text
	2.3 Speciﬁcation
	2.4 Proof Approach
	2.5 Handling the Previous Part
	2.6 Handling the next Part
	2.7 Combining the Results
	2.8 Termination

	3 Compositional Logic
	3.1 Basics
	3.2 Distributivity and Associativity
	3.3 Rule for "old"
	3.4 Calls
	3.5 Setters
	3.6 Mathematical Basis
	3.7 Comparison with Other Semantic Description Methods

	4 Negative Variables: Reasoning on Object-Oriented Calls
	5 The Alias Calculus
	6 Reasoning on Data Structures
	6.1 Background: Model-Based Speciﬁcations
	6.2 Context
	6.3 Paths
	6.4 Integrals
	6.5 Compositional Semantics of Paths and Integrals: Assignment
	6.6 Compositional Semantics of Paths and Integrals: Setter Calls

	7 Comparison with Previous Work
	8 Conclusion
	Appendix: Using Negative Variables in Other Semantics
	References

	Formal Speciﬁcation as High-Level Programming: The ASSL Approach
	1 Introduction
	2 Formal Methods and Code Generation
	3 ASSL
	3.1 ASSL Programming Style and Speciﬁcation Model
	3.1.1 ASSL Self-management Policies
	3.1.2 ASSL Events
	3.1.3 ASSL Metrics
	3.1.4 Managed Elements
	3.1.5 Interaction Protocols

	3.2 ASSL Syntax
	3.3 ASSL Formalism
	3.4 High-Level Programming Features of ASSL
	3.4.1 Abstraction
	3.4.2 Generalization and Aggregation
	3.4.3 Decomposition and Modularity
	3.4.4 Granularity
	3.4.5 Separation of Concerns

	3.5 Code Generation

	4 Case Study: Programming ANTS Missions with ASSL
	4.1 ANTS
	4.2 Programming Self-healing Behavior for ANTS

	5 Summary
	References

	Atomicity in Real-Time Computing
	1 Introduction
	2 Preemptible Atomic Regions for Uniprocessor Systems
	2.1 Real-Time Guarantees
	2.2 Implementation Sketch
	2.3 Experimental Evaluation

	3 Obstruction-Free Communication with Atomic Methods
	3.1 Atomic Methods
	3.2 Example
	3.3 Implementation Sketch
	3.3.1 Multicore Implementation

	3.4 Real-Time Guarantees
	3.5 Experimental Evaluation

	4 Atomicity with Micro-Transactions
	4.1 Example
	4.2 Real-Time Guarantees

	5 Experimental Evaluation
	6 Conclusion
	References

	Tuning Keyword Pattern Matching
	1 Introduction
	2 Basic Algorithmic Skeleton
	3 Tuning the Outer Loop
	4 Tuning the Inner Loop
	5 Conclusions
	References

	An Afterword for Judith: The Next Phase of Her Career
	Author Index

