
Editor-in-Chief

Hossein Bidgoli, California State University,

Bakersfield, California

Senior Editors

Sean B. Eom, Southeast Missouri State University

Andrew Prestage, Director of Technology,

Kern County School District

Associate Editors

Maryam Alavi, Emory University

Alan Dennis, Kelley School of Business,

University of Indiana

Paul Gray, Claremont Graduate University

Clyde W. Holsapple, University of Kentucky

William R. King, University of Pittsburgh

Catherine M. Ricardo, Iona College

Barbara Haley Wixom, University of Virginia

International Advisory Board

Jay Aronson, University of Georgia

Sven Axs.ater, Lund University, Sweden

Georgios I. Doukidis, Athens University of Economics and Business

George C. Fowler, Texas A&M University

Gary Grudnitski, San Diego State University

Robert R. Harmon, Portland State University

Den Huan Hooi, Nanyang Technological University

Kee Young Kim, Yonsei University

Ken Laudon, Stern School of Business, New York University

Patrick McKeown, University of Georgia

Motofusa Murayama, Chiba University

Effy Oz, Pennsylvania State University

David B. Paradice, Texas A&M University

J. P. Shim, Mississippi State University

Fatemeh Zahedi, University of Wisconsin, Milwaukee

Ahmed Zaki, College of William and Mary

Dedication

To so many fine memories of my brother, Mohsen,
for his uncompromising belief in the power of education.

xxix

The Encyclopedia of Information Systems is the first
comprehensive examination of the core topics in the
information systems field. We chose to concentrate
on fields and supporting technologies that have wide-
spread applications in academic and business worlds.
To develop this encyclopedia, we carefully reviewed
current academic research in the management infor-
mation systems (MIS) field in leading universities and
research institutions. MIS, decision support systems
(DSS), and computer information systems (CIS) cur-
riculums recommended by the Association of Infor-
mation Technology Professionals (AITP) and the As-
sociation for Computing Management (ACM) were
carefully investigated. We also researched the current
practices in the MIS field carried out by leading IT
corporations. Our work assisted us in defining the
boundaries and contents of this project. Its articles
address technical as well as managerial, social, legal,
and international issues in information systems de-
sign, implementation, and utilization.

Based on our research we identified 10 major topic
areas for the encyclopedia:

• Theories, methodologies, and foundations
• Hardware and software
• Database design and utilization
• Data communications, the Internet, and

electronic commerce
• Social, legal, organizational, and international issues
• Systems analysis and design
• Office automation and end-user computing
• Management support systems
• Artificial intelligence
• Applications

Although these 10 categories of topics are interre-
lated, each addresses one major dimension of informa-
tion systems design, implementation, and utilization. The
articles in each category are also interrelated and com-

plementary, enabling readers to compare, contrast, and
draw conclusions that might not otherwise be possible.

Though the entrieshave been arranged alphabeti-
cally, the light they shed knows no bounds. The ency-
clopedia provides unmatched coverage of fundamental
topics and issues for successful design, implementation,
and utilization of information systems. Its articles can
serve as material for a wide spectrum of courses, such
as systems theories, artificial intelligence, data commu-
nications and networking, the Internet, database design
and implementation, management support systems, of-
fice automation, end-user computing, group support
systems, systems analysis and design, electronic com-
merce, hardware and software concepts, programming
languages, software design, and social, legal, organiza-
tional, and international issues of information systems.

Successful design, implementation, and utilization of
information systems require a thorough knowledge of
several technologies, theories, and supporting disci-
plines. Information systems researchers and practition-
ers have had to consult many sources to find answers.
Some of these sources concentrate on technologies and
infrastructures, some on social and legal issues, and
some on applications of information systems. This en-
cyclopedia provides all of this relevant information in a
comprehensive four-volume set with a lively format.

Each volume incorporates core information sys-
tems topics, practical applications, and coverage of
the emerging issues in the information systems field.
Written by scholars and practitioners from around
the world the articles fall into 10 major subject areas:

Theories, Methodologies,
and Foundations

Articles in this group examine a broad range of topics,
theories, and concepts that have a direct or indirect ef-
fect on the understanding, role, and the impact of in-

Preface

formation systems in public and private organizations.
They also highlight some of the current research issues
in the information systems field. These articles explore
historical issues and basic concepts as well as economic
and value chain topics. They address fundamentals of
systems theory, decision theory, and different ap-
proaches in decision making. As a group they provide
a solid foundation for the study of information systems.

Hardware and Software

These articles address important hardware and soft-
ware concepts. The hardware articles describe basic
hardware components used in the information sys-
tems environment. Software articles explain a host of
concepts and methodologies used in the information
systems field, including operating systems, high level
programming languages, fourth generation languages,
web programming languages, and methodologies for
developing programs and commercial software.

Database Design and Utilization

The authors in this cluster cover database technolo-
gies within information systems. They examine popular
database models, including relational, hierarchical,
network, and object-oriented data models. They also
investigate distributed database concepts, data ware-
housing, and data mining tools.

Data Communications, the Internet,
and Electronic Commerce

Articles in this group explore several fundamental
technologies, infrastructures, and applications of the
Internet and data communications and networking.
LANs, WANs, and client-server computing are dis-
cussed and security issues and measures are investi-
gated. Fundamentals of e-commerce technologies and
their applications are summarized as are business
models on the Web. This collection of articles also
presents several applications of data communications
and networking, including group support systems,
electronic data interchange, intranets, and extranets.

Social, Legal, Organizational,
and International Issues

These articles look at important issues (positive and
negative) in information systems design and imple-

mentation. These issues include social, organizational,
legal, and ethical factors. They also describe applica-
tions of information systems in globalization and de-
veloping nations and introduce the obstacles involved
for the introduction of information systems in a global
environment. A thorough examination of these im-
portant topics should help decision makers guard
against negative aspects of information systems.

Systems Analysis and Design

Articles in this group address tools, techniques, and
methodologies for successful analysis and design of
information systems. Among their subjects are tradi-
tional as well as modern systems analysis and design,
software and program design, testing and mainte-
nance, prototyping, and user/system interface design.
Project management, control tools, techniques, and
methodologies for measuring the performance and
quality of information systems are introduced.

Office Automation and End-User Computing

The articles in this category examine ubiquitous in-
formation systems applications and technologies such
as word processing, spreadsheets, long distance con-
ferencing, desktop publishing, and electronic mail.
They also discuss issues and technologies that affect
methods for managing these productivity tools, in-
cluding ergonomic factors and end-user computing.

Management Support Systems

These articles examine information systems technolo-
gies containing significant decision-making capabili-
ties, such as decision support systems, group support
systems, and geographic information systems. They
also look at modeling analysis and the model building
process which is essential for effective design and uti-
lization of management support systems.

Artificial Intelligence

Articles in this range address the fundamentals of ar-
tificial intelligence and knowledge-based systems. This
collection of articles highlight tools and techniques
for design and implementation of knowledge-based
systems and discusses several successful applications
of these systems, including expert systems, machine

xxx Preface

learning, robotics, speech and pattern recognition
and heuristic search techniques.

Applications

Information systems are everywhere. In most cases
they have improved the efficiency and effectiveness of
managers and decision makers. Articles included here
highlight applications of information systems in sev-
eral fields, such as accounting, manufacturing, edu-
cation, and human resource management and their
unique applications in a broad section of service in-
dustries, including law, marketing, medicine, natural
resource management, and accounting firms. Al-
though these disciplines are different in scope, they
all utilize information systems to improve productivity
and in many cases to increase customer service in a
dynamic business environment.

Specialists have written this collection for experi-
enced and not so experienced readers. It is to these
contributors that I am especially grateful. This re-
markable collection of scholars and practitioners have
distilled their knowledge into a one-stop knowledge
base in information systems that “talks” to readers.
This has been a massive effort, but one of the most re-
warding experiences I have ever taken. So many peo-
ple have played a role that it is difficult to know where
to begin.

I thank the members of the editorial board and my
associate editors for participating in the project and for
their expert advice and help with the selection of top-
ics, recommendations for authors, and reviews of the
materials. Many thanks to the countless number of re-
viewers who devoted their time advising me and the au-
thors on how to improve the coverage of these topics.

I thank Dr. J. Scott Bentley, my executive editor,
who initiated the idea of the encyclopedia back in
1998. After several drafts and a dozen reviews, the
project got off the ground and then was managed
flawlessly by Scott and Christopher Morris. They both
made many recommendations for keeping the proj-
ect focused and maintaining its lively coverage. I thank
Ron Lee and Nicholas Panissidi, my superb support
team at Academic Press, who took paper, diskettes,
and e-mail attachments and made them into this final
project. Ron and I exchanged several hundred e-mail
messages to keep the project on schedule. I am grate-
ful for all their support.

Last, but not least, I thank my wonderful wife
Nooshin and my two lovely children Mohsen and Mor-
vareed for being so patient during this venture. They
provided a pleasant environment that expedited the
completion of this project. Also, my two sisters Azam
and Akram provided moral support throughout my life.
To this family, any expression of thanks is insufficient.

Hossein Bidgoli

Preface xxxi

Accounting
Uday S. Murthy
Texas A&M University

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 1

I. ACCOUNTING INFORMATION SYSTEMS DEFINED
II. TRADITIONAL AUTOMATED ACCOUNTING

INFORMATION SYSTEMS
III. MODERN DATABASE-ORIENTED INTEGRATED

ACCOUNTING SYSTEMS

IV. ACCOUNTING SYSTEMS FOR REVENUE (SALES)
V. ACCOUNTING SYSTEMS FOR PROCUREMENT

(PURCHASING)
VI. ENTERPRISE-WIDE ACCOUNTING SYSTEMS

GLOSSARY

accounting software package Software comprising
standardized modules for processing accounting
transactions for each of the major accounting cy-
cles, such as sales, purchases, inventory, receivables,
payables, payroll, and general ledger.

business process modeling Creation of tempates or
diagrams with standardized symbols for represent-
ing various aspects of business activities.

control procedures Mechanisms or activities for pre-
venting or detecting the occurrence of errors and
irregularities in data.

database An organized repository of data with func-
tionality for adding, deleting, updating, and re-
trieving the data.

enterprise-wide system An information system span-
ning all the major functional areas within an orga-
nization, enabling seamless integration of business
processes across the functional areas.

entity-relationship diagram A widely accepted model-
ing convention for representing business entities
and the relationships between them.

I. ACCOUNTING INFORMATION
SYSTEMS DEFINED

Accounting information systems primarily focus on
fulfilling the accounting information needs of an or-
ganization’s internal and external users. The account-

ing information system in an organization is designed to
take business transactions and events as data inputs
and generate a variety of financial reports as infor-
mation outputs. Until the advent of computers and
the information technology revolution of the last few
decades, the accounting process was performed man-
ually, using the centuries-old double-entry bookkeep-
ing system. With the information technology revolu-
tion of the past few decades, however, manual
bookkeeping has become defunct. Even very small or-
ganizations can afford to automate their accounting
system using low-cost, off-the-shelf software. However,
many automated accounting systems still use the
double-entry model as the basis for accounting. If ac-
counting is seen as a system of providing information
useful for decisionmaking, traditional accounting in-
formation systems that focus only on financial infor-
mation and provide only periodic highly aggregated
data can fall short of completely meeting the needs of
users internal and external to an organization. Inter-
nal users include employees at all levels from top man-
agement to the lowest level worker who has a legiti-
mate need for information. External users comprise
investors, stockholders, creditors, customers, govern-
ment and regulatory agencies, and financial institu-
tions. Both internal and external users are increas-
ingly demanding instantaneous user-friendly access to
relevant and reliable information. Modern account-
ing systems must be designed to fulfill a wide range of
users’ needs with reliable information that is available
on-line on demand.

A

II. TRADITIONAL AUTOMATED
ACCOUNTING INFORMATION SYSTEMS

The first generation of computerized accounting in-
formation systems continued using the traditional ac-
counting methodology, except that computer tech-
nology replaced manual paper-and-pencil journals
and ledgers. Computer files replaced journals and
ledgers, while printed reports and screen displays re-
placed manually created reports. Thus, rather than
“reengineering” the accounting system, computers
were used simply to automate manual accounting sys-
tems. Of course, computerization resulted in much
greater speed and accuracy in the accounting process.
In the early days of computer-based accounting (the
1960s and early 1970s), the typical approach was to
develop custom transaction processing applications
using common business-oriented language or
COBOL. Programmers developed COBOL programs
for processing the accounting transactions in each of
the organization’s accounting cycles—revenue (sales,
billing, collections, returns), procurement (ordering,
receiving, recording purchase liability, payment), con-
version (production), payroll, and general ledger.
Users could not easily modify existing reports and
had no ability to generate ad hoc reports on an “as
needed” basis.

In the late 1970s and even more so in the 1980s
and 1990s, organizations increasingly adopted off-the-
shelf accounting software packages rather than cus-
tom building their own COBOL-driven systems. An
accounting software package has a predefined user
interface, chart of accounts system, various transac-
tion processing options, and report generators. While
most packages can be customized and modified to
varying degrees, an organization implementing an ac-
counting package must adapt somewhat to the idio-
syncrasies of the package. For example, the package
may generate sales analysis reports broken down by
salesperson or by region, but not broken down by
salesperson within a region. Thus, an off-the-shelf
package may satisfy a firm’s bookkeeping require-

ments, but typically will not satisfy the need for non-
standard or ad hoc reports. The chief advantage of ac-
counting packages, relative to custom-developed ac-
counting systems, is their low cost and superior
reliability.

Both custom-developed COBOL programs and off-
the-shelf accounting packages are geared toward au-
tomating the process of recording accounting transac-
tions. For example, an accounting package will typically
accept the following revenue cycle accounting transac-
tions: cash sales, credit sales, collections on account,
and sales returns and allowances. In a custom-
developed environment, the same transactions are typ-
ically handled by a series of COBOL programs. Thus,
computerized bookkeeping retains an “accounting
transactions orientation” with a focus on financial data
alone. Business events such as a salesperson contact
with a potential customer or vendor quotations for
products will find no place in a standard accounting
software package. Figure 1 depicts the functioning of
the sales and accounts receivable portion of an
accounting software package. A custom-developed
COBOL program for handling sales and accounts
receivable would function in a similar manner.

As shown in Fig. 1, the “Sales and Accounts Re-
ceivable Module” is designed to accept the typical set
of accounting transactions—credit sales, cash receipts
from customers, and sales returns and allowances.
Through proprietary file management software (the
most common of which is the Btrieve structure for
microcomputer-based packages), input transactions
are recorded in computer files. However, it is impor-
tant to recognize that the data in these files are
accessible only through the file management software.
Thus, reports that can be generated are only those
that are already programmed into the software pack-
age, or designed by the programmer (in the case of
custom-developed software). The basic structure of
the system, particularly the separate books (files) for
each cycle, is not fundamentally altered. Users still
did not have the ability to generate custom reports
that accessed data in separate subsystems. For exam-

2 Accounting

Figure 1 Structure of traditional accounting software packages.

ple, since customer and vendor data are typically main-
tained in separate subsystems, it is difficult to deter-
mine which customers are also vendors and vice versa.
The advantages and drawbacks of computerized book-
keeping are summarized in Table I.

III. MODERN DATABASE-ORIENTED
INTEGRATED ACCOUNTING SYSTEMS

The need for real-time information about enterprise-
wide business events and the advent of database tech-
nology has led to a more modern view of accounting
information systems. The new view of accounting re-
verts to the fundamental definition of accounting as
the main information providing function within or-
ganizations. Ideally, as business events transpire, the
accounting system should collect and store data about
all aspects of those events. Users at all levels in the or-
ganization could then obtain instant real-time reports
regarding the results of those business events. Data
should be stored at the most elemental level, with all
aggregation and summarization being left to individ-
ual users. The data stored should not be limited to fi-
nancial data. Most importantly, all event data should
be stored in a single integrated repository (i.e., a data-
base). This approach visualizes an enterprise-wide in-
formation system for an organization spanning de-
partmental and functional lines. Indeed, the so-called
enterprise resource planning (ERP) systems that have
been adopted by a large number of Fortune 500 com-
panies implement exactly such a vision.

There are two distinct approaches to constructing
a database-driven enterprise information system. The
first approach is to use relational database tools to
custom-develop a suite of applications to meet the or-
ganization’s information needs, with all data being
stored in a relational database like Oracle, Sybase,

IBM’s DB2, or Microsoft’s SQL Server. The second ap-
proach is to implement ERP software from vendors
such as SAP, Oracle, J.D. Edwards, and PeopleSoft.
ERP systems like SAP’s R/3 system provide the bene-
fits of an off-the-shelf package—they are reliable and
cost less than a completely custom-developed system.
However, installing an ERP system in a large multina-
tional organization can literally take years and several
million dollars, since there are thousands of config-
urable switches that must be painstakingly set to meet
the needs of the business. Moreover, businesses often
reengineer their business processes as they replace
their age-old (“legacy”) systems with an ERP system,
increasing the cost and complexity of the ERP imple-
mentation even further. With either the custom-
developed path or the ERP path, the key advantages
of this modern approach to accounting information
systems are (1) the capturing of data about all signif-
icant business events and (2) the storage of that data
in an integrated enterprise-wide database accessible
by all users and that provides all information neces-
sary to run the business.

A. Key Features of Modern
Accounting Systems

Events orientation—In contrast to the “transactions”
orientation of traditional manual and automated sys-
tems, modern accounting systems focus on capturing
data about business events. All relevant business events
should be captured, preferably as the events transpire.
A call from a potential customer, a complaint from an
existing customer, and a suggestion from an employee
are some examples of relevant business events that
have no place in a traditional transactions-oriented
accounting system. However, most managers would
argue that information about customer complaints is

Accounting 3

Table I Advantages and Drawbacks of Traditional Automated Accounting Systems

Advantages Drawbacks

Automation of tedious manual accounting tasks Accounting transactions orientation only;
(e.g., posting to ledgers) non-financial events not recorded

Speed and accuracy Periodic rather than “real-time” reports

Low cost (accounting packages only) Limited flexibility in generating "ad-hoc" reports

Automatic generation of standard accounting Data accessible only through proprietary
reports for common needs (e.g., sales analysis file management systems
reports, customer statements, financial statements).

Redundant data storage permits efficient generation Cross-functional queries difficult to answer
of certain standard accounting reports

valuable and should be stored in the organization’s
information system. The “transactions” mentality in
traditional systems focuses on dollar amounts and the
accounts to be debited and credited. The events ori-
entation simply seeks to record data about all events
in a system that is not constrained by the debit-credit
rules of double-entry bookkeeping.

Enterprise-wide repository—A key feature in mod-
ern accounting systems is the storage of all entity and
event data in a single integrated repository. Such a
repository, in practical terms, is the enterprise’s data-
base. The database is “integrated” in a cross-functional
sense—data about events occurring in one functional
area (e.g., sales order processing) are captured in the
database and can automatically trigger events in an-
other functional area (e.g., shipping). Furthermore,
all organizational users that need certain information
(e.g., a customer’s contact information) have instant
access to that information which is stored only once
and at one location. The design of the enterprise’s
database is a critical issue that would determine the
degree of success of the database approach. Is the
database comprehensive enough? Have appropriate
links been established between related sets of data
within the database? Are data about all aspects of
events stored in the database? Affirmative answers to
these questions would indicate a successful design of

the event repository. The enterprise repository ap-
proach, which is at the heart of modern accounting
systems, is illustrated in Fig. 2.

B. Core Concepts and Building Blocks of
Database-Oriented Accounting Systems

In creating a database-oriented, enterprise-wide ac-
counting information system, a number of design de-
cisions must be made relating to field formats, keys,
and table types. Some core concepts and basic build-
ing blocks of database-oriented accounting systems
are now discussed.

1. Hierarchy of Data

At the lowest level, all computer systems store data in
the form of bits. A bit is a binary digit and can take a
value of either 0 (turned off) or 1 (turned on). In
essence, a bit is turned on by a tiny electrical impulse
and is turned off when the impulse is discharged. A
group of bits forms a byte. In most computer systems,
eight bits form a byte. A byte is roughly equivalent to
a character, which is the lowest element understand-
able by humans. A group of related bytes forms a field.
Thus, the group of bytes that forms the word “Jones”

4 Accounting

REPOSITORY

Figure 2 Enterprise repository concept.

makes up a “name” field. A group of related fields
makes up a record, or in relational database terminol-
ogy, a row in a table. Tom Jones, Marketing, Sales As-
sociate, 9/1/99, $2800 are a group of fields which
make up an employee record showing the employee’s
name, department, grade, date hired, and monthly
salary. A group of logical records constitutes a file,
which is equivalent to a table in relational database ter-
minology. All employee records (rows) taken together
would make up the employee file (table). A collection
of sales invoices for April 2000 would form the sales
file, or table, for April. Finally, a collection of logically
related files/tables is a database. All files/tables relat-
ing to Division A’s operations would constitute the
“Division A database.”

2. Field Formats

Although field format decisions are usually not irre-
versible, giving some forethought to the kind of data
that might be stored in each field is time well spent.
Most database systems support the following formats
for fields in a table: numeric, text, currency, date/time,
and Boolean. Some systems also support counter fields
and fields capable of storing binary objects such as a
graphical image, a video clip or a sound recording. As
the name suggests, numeric fields can only store num-
bers. In contrast, text fields can store any keyboard
character. Moreover, these text fields can store any
character in the complete character set used for a
particular computer. All the characters (numeric and
non-numeric) in the character set for a computer are
called alphanumeric characters. Currency fields are used
for storing dollars and cents appropriate formatted.
Date/time fields can store dates or times in a variety of
user-specified formats (e.g., MM/DD/YYYY or
DD/MM/YYYY). Boolean fields can hold only one of
two possible values—either true or false, or in some
computer systems, yes or no. Counter fields are auto-
matically incremented by one whenever a new record
in the file is created. The user cannot update the
value in the counter field. Fields capable of storing bi-
nary large objects, or BLOBS, are very useful for pres-
ent day information systems which are increasingly
becoming multimedia. No longer are information sys-
tems limited to storing text and numbers. Other forms
of data such as a photograph of an employee or a
video image of a product can also be stored in tables.

3. Keys

In addition to selecting appropriate formats for fields
in a table, another critical design decision is the des-

ignation of the primary key for the table. The primary
key is the field or set of fields that uniquely identify
the rows (records) in a table. For example, in an em-
ployee table, the social security number (SSN) could
serve as the primary key because every employee
would have a unique SSN. In most tables, the primary
key is obvious. Customer tables typically have a cus-
tomer number field that would be the primary key.
The sales invoice number would be the primary key
in a table of sales invoices. Some tables may require
more than one field to uniquely identify records in
the file. Consider a table used to store customer com-
plaints. Assume that the customer number of the cus-
tomer who makes each complaint is recorded. In ad-
dition, the date and time of the complaint is also
recorded. However, no separate “complaint number”
is generated. Assuming that a customer could have
more than one complaint, then the customer number
alone would not uniquely identify rows (records) in
the table. However, if we assume that a customer will
not have more than one complaint in a day, then the
combination of customer number and date would
uniquely identify the rows in the complaints table. If
we assume that customers could make more than one
complaint in a day, then the combination of customer
number, date, and time, would uniquely identify the
rows in the table. When a combination of fields is
needed to uniquely identify records in a table, the pri-
mary key is called a composite key or a concatenated key.
While primary keys uniquely identify records in a
table, the other fields or attributes in the table, called
“nonkey attributes” may be used to facilitate user
queries. Consider a table of sales invoices with the fol-
lowing fields: invoice number, date, customer num-
ber, salesperson number, sales region, and sales
amount. The primary key of this table is the invoice
number. Each of the remaining fields is a nonkey at-
tribute that can be used to sort the table to respond
to a user request for information. Thus, the sales man-
ager might want a listing of sales invoices by date, by
salesperson number, or by sales region. These requests
could be handled by sorting the table by each of the
relevant fields.

The enterprise database of a large organization
may contain thousands of tables, each of which is re-
lated to at least one other table. In a relational data-
base system, the interrelationships between tables are
implemented using common fields across tables.
These common fields are referred to as foreign keys. A
foreign key is a field in a table, which is the primary
key in a related table, referred to as the “master table”
in the relationship. It is important to identify foreign
keys in a database because they enable linking of ta-

Accounting 5

bles that are related to one another. From the view-
point of database integrity, foreign key values must al-
ways refer to an existing value in the “master table”
for that foreign key. In database terminology, this re-
quirement is referred to as “referential integrity” and
can usually be enforced by the database management
system itself.

4. Relationship Types

Relationships between entities and events, both of
which are represented in a relational database by
means of tables, can be of three types, referred to as
the relationship cardinality. One-to-one (1:1), one-to-
many (1:M), and many-to-many (M:M) relationships
are the three relationship types. Consider the rela-
tionship between the “department” and “manager”
entities. A 1:1 relationship between departments and
managers implies that each department can have one
and only one manager and each manager can man-
age one and only one department. Now consider the
relationship between the “salespersons” and “cus-
tomers” entities. A 1:M relationship between sales-
persons and customers means that each salesperson
can have many customers but every customer is as-
signed to exactly one salesperson. Note that a 1:M re-
lationship can be interpreted as an M:1 relationship
when read from the opposite direction. Thus, the re-
lationship from customers to salespersons is an M:1
relationship (many customers have one salesperson).
An M:M relationship between salespersons and cus-
tomers indicates that each salesperson can have many
customers and each customer can work with many
salespersons.

5. Table Types

Depending on the contents of a table it can be classi-
fied under one of the following categories: master,
transaction, reference, history, and backup. Master ta-
bles contain relatively permanent information and are
analogous to ledgers in a manual accounting system.
Customer, employee, vendor, and inventory tables are
examples of master tables. Transaction tables contain
relatively temporary information and are analogous
to journals in a manual accounting system. Examples
of transaction tables include those for storing typical
business transaction data, such as sales, purchases,
payroll vouchers, and cash receipts, and also non-
accounting business event data such as customer sug-
gestions and complaints, equipment failure reports,
etc. Reference tables are used to store relatively perma-
nent information that is needed only for reference

purposes during the process of updating one or more
master tables. Tax tables and price list tables are ex-
amples of reference tables. History tables are old trans-
action and master tables that are maintained only for
reference purposes and for legal reasons. An example
of a history table would be the July 1998 sales invoices
table. These tables are usually maintained off-line as
archive files. The last table type is backup tables. As the
name suggests, backup tables are duplicate copies of
transaction, master, and reference tables (since his-
tory tables are typically maintained only for legal rea-
sons, most organizations would typically not maintain
backup copies of history tables).

C. The Data Processing Cycle

Given a basic understanding of the building blocks of
database-oriented enterprise accounting systems as
presented above, the data processing cycle can now
be discussed. All information systems applications un-
dergo a sequence of steps from data input to infor-
mation output. This process, called the “data pro-
cessing cycle,” comprises the sequence of steps from
data capture to the generation of meaningful infor-
mation for end users. Specifically, the steps in the
data processing cycle are data input, data prepara-
tion, data processing, table maintenance, and infor-
mation output.

Data input involves collection of data and convert-
ing data into computer-readable form. Data input re-
sults in the creation of a transaction data. While in
the past transaction data was first captured on paper
and was then keyed into the computer system, newer
technologies such as bar code scanners facilitate au-
tomatic entering of data. Data preparation may be
needed to facilitate data processing and maintenance
of tables. Data preparation entails two main steps: (1)
validating input data to filter out erroneous transac-
tions, and (2) sorting input data to facilitate the process
of updating master tables, if the update is to be per-
formed in “batch” mode on a periodic basis rather
than “on-line” instantaneously. Data processing repre-
sents the next step in the data processing cycle. This
step includes all the calculations, comparisons, and
manipulations that are undertaken in the particular
application. For example, in a sales application sys-
tem, data processing might involve calculating the
sales tax payable on each invoice. Table maintenance is
the next step in the data processing cycle. This is the
step where the master table(s) is(are) actually up-
dated using transaction data. For example, customer
balances in a customer table would be updated (in-

6 Accounting

creased) to reflect new credit sales transactions for
customers. Although data processing and table main-
tenance are shown as distinct steps in the data pro-
cessing cycle, they are performed simultaneously in
on-line database-oriented systems. Information output is
the last step in the data processing cycle. This step is
where reports are generated either on paper or on
the user’s computer screen. For example, in sales ap-
plication systems, the information output step could
result in the following reports: sales analysis report,
salesperson performance report, product turnover
analysis, and customer statements of account. The
data processing cycle is shown in Fig. 3, along with the
table type(s) accessed at each stage. Note in Fig. 3
that the transaction table is accessed during the data
input step in order to store input transactions and the
master table is accessed during the table maintenance
step in order to read and update the appropriate row
in the master table.

IV. ACCOUNTING SYSTEMS
FOR REVENUE (SALES)

Using the basic building blocks discussed above, we
focus now on accounting systems for meeting specific
business needs. Every business will have slightly dif-
ferent business processes and it is the function of a
firm’s accounting system to record, track, and report
on the business processes unique to that firm. Pre-
sented next are an illustrative set of business processes
for revenue, assuming a retailing organization. Gen-
erating revenue is one of the main processes at all
business organizations. The primary events related to
generating revenue for most retailing firms are to sell

merchandise and to obtain payment from customers.
Secondary events for a retailing firm would typically
include contacting potential customers, accepting
sales orders, shipping merchandise to customers, and
dealing with sales returns and allowances. Note that
these events comprise both economic events (selling
merchandise and collecting payment) and noneco-
nomic events (contacting potential customers). The
sales, collections, and returns processing functions
may be carried out by one system or a set of related
subsystems. In either case, the data underlying the sys-
tem should ideally reside in one repository, consistent
with the notion of the enterprise wide repository dis-
cussed earlier.

A. Business Processes Related
to Revenue Generation

At a very general level, questions that the information
system for a retailing firm should provide answers for
include: How much did we sell? How much do cus-
tomers owe us? What is the value of sales returns and
allowances? What is the total amount of collections we
have received from customers? In addition to these
general questions, other information needs include
reports detailing the performance of salespersons, ag-
ing of accounts receivable, evaluating the perfor-
mance of shippers, determining which products are
selling well and which are not selling as well, and de-
termining which products are being returned the
most. The flexibility and power of the database ap-
proach allows both financial and nonfinancial infor-
mation needs to be served by one integrated reposi-
tory of organizational data.

Accounting 7

Figure 3 Data processing cycle.

Revenue business processes actually begin with the
advertising of merchandise for sale, salesperson con-
tacts with potential customers, and unsolicited cus-
tomer inquiries. The recording of revenue business
processes within the system, however, generally begins
with a customer order (i.e., a sales order) for mer-
chandise. However, prior to receipt of a customer or-
der there could be salesperson contacts with potential
customers. It is therefore necessary to keep track of
contacts between salespersons and potential cus-
tomers. The extent to which these contacts result in
sales orders would be one dimension of salesperson
performance which management would be interested
in. Contacts with existing and potential customers
would also likely be a source of feedback about the
company’s products and services. As a sales order is
being input by a salesperson, it is necessary to first
verify that the customer has sufficient credit avail-
able.1 If the customer’s credit status does not permit
the order to be placed then the customer is simply re-
ferred to the credit department for further action.
Each customer could obviously place many sales or-
ders. However, each sales order must relate to only
one customer. Every sale is executed by one salesper-
son, who can obviously input many sales orders. Each
sales order is for at least one but possibly many items
of merchandise inventory. Obviously, a merchandise
inventory item could be sold on many orders. It is of
course possible that a new inventory item has not as
yet been sold on any order, but the company would
still like to keep track of that inventory item. Before
the order is recorded it is necessary to check whether
the on-hand quantity of inventory is sufficient for
each requested item. Upon recording of the sale it
would be necessary to decrease the quantity on hand
of the merchandise inventory items being sold.

The accounting system would generate several
copies of the sales order document. The first copy is
given (or sent) to the customer as a confirmation of
the order. One copy is forwarded to the shipping de-
partment. A warehouse clerk in the shipping depart-
ment packs and ships out merchandise inventory.
Each warehouse clerk can process either none or
many shipments, but each shipment must be
processed by exactly one warehouse clerk. The ware-
house clerk prepares a shipping document (e.g., a bill
of lading) for each shipment. However, there will be
some time lag between the sales order and the ship-
ping of that order. Thus, it is possible that a recorded
sales order has not as yet been shipped. Every ship-

ping document, once prepared, must relate to exactly
one sales order which has already been recorded. It is
necessary to keep track of the inventory items and the
quantity of each item actually shipped out on a ship-
ment. Each shipment is assigned to one of several ap-
proved shippers with which the company does busi-
ness. Each shipper could obviously be involved with
many shipments. When the shipment is recorded by
the warehouse clerk, a sales invoice is automatically
generated and sent to the customer along with the
merchandise. Note that when the sales invoice is gen-
erated, the sale is recorded in the system, but this
recording of the sale is simply an information process
and is not a “significant business event” in its own
right.

For simplicity, it is assumed that all sales orders are
on credit (i.e., no immediate cash sales). Along with
each shipment, the customer is sent a sales invoice
and it is then necessary to update the customer’s ac-
count to increase the outstanding balance (i.e., in-
crease “accounts receivable”). Customers make pay-
ments subsequently and each payment relates to a
specific invoice resulting from a specific shipment.
Collections are taken by cashiers. Each cashier can
handle either none (i.e., a newly hired cashier) or
many collections. Since collections from customers
are received several days or weeks after the sale, it is
possible that certain shipped orders do not have cor-
responding collections. However, a collection must
relate to one sales invoice, i.e., one shipment received
by the customer. Of course, there can be many col-
lections for a given customer. Upon receipt of a col-
lection from a customer it is necessary to update the
customer’s account to decrease the outstanding bal-
ance. Cash collected from customers must be de-
posited in the bank. Finally, revenue business
processes must also consider the possibility of returns
and allowances. It is conceivable that customers could
return merchandise. All returns and allowances are
processed by returns clerks. Each return clerk can
handle either none (newly hired clerk) or many re-
turns. Customers could also be granted an allowance
on a sale. Every return or allowance would relate to
one shipment that has taken place, and it is possible
that a shipment could be associated with none or
many returns and allowances. The difference between
a return and an allowance is that a return is associated
with merchandise inventory whereas an allowance is
not. For example, a customer may receive an al-
lowance for slightly damaged merchandise, which the
customer decides to keep. In the case of returns, at
least one but possible many items of inventory may be
returned by the customer. Returns and allowances

8 Accounting

1The assumption that all sales are on credit is for ease of
exposition.

also necessitate updates to the customer’s account to
decrease the outstanding balance. For returns it would
be necessary to keep track of the inventory items re-
turned. Let us assume that the company would like to
keep track of regular (“good”) inventory and returned
(possibly defective) merchandise separately.

B. Entity-Relationship Data Model
for Revenue Processes

Based on the above narrative description of revenue
business processes, the entity-relationship (ER) model
shown in Fig. 4 is developed. The purpose of ER mod-
eling is to develop a formal representation of the pro-
posed accounting information system, in terms that
both nontechnical users and information systems de-
signers can understand. The ensuing ER model can
then be implemented in a database system, as dis-
cussed later in the chapter. The ER model follows Mc-

Carthy’s “REA” framework proposed in 1982, which
shows three categories of entities (rectangles)—re-
sources on the left, events in the middle, and agents
on the right. The lines connecting the entities indi-
cate the type of relationship between the entities, in-
cluding the relationship cardinality and whether the
entity’s participation in the relationship is optional or
mandatory. Recall that relationships can be 1:1, 1:M,
or M:M. In the model below, the “many” side of a re-
lationship is shown using crow’s feet and the “one”
side of a relationship is indicated with the absence of
crow’s feet. Also, note that the “|” at the end of a re-
lationship line indicates a mandatory participation in
a relationship and an “�” indicates an optional par-
ticipation in a relationship.

The entities in the middle column in Fig. 4 repre-
sent revenue-related events in chronological order
from top to bottom. The entities in the column on
the left are the organization’s resources and the enti-
ties in the column on the right are the various agents,

Accounting 9

Figure 4 ER diagram for revenue business processes.

internal and external to the organization, who are in-
volved with events. Taken together, the crow’s feet, |
for mandatory participation and � for optional par-
ticipation make it possible to interpret the relation-
ship between entities. For example, the relationship
between the CONTACT-CUSTOMER event and the
SALESPERSON entity would be interpreted as fol-
lows: each customer contact must be performed by
exactly one salesperson; each salesperson may be in-
volved with either none or many customer contact
events. As another example, the relationship between
CUSTOMERS and SALES-ORDERS would be inter-
preted as follows: each sales order must be placed by
exactly one customer; each customer may place either
none or many sales orders.

C. Data Repository for Storing
Revenue-Related Information

The ER diagram in Fig. 4 depicts the various entities
and relationships that must be represented in the en-

terprise database for storing information related to
revenue business processes for the illustrative retail-
ing firm scenario. A standard set of conversion rules
are applied to deduce the relational tables that should
result from the ER diagram. The conversion rules are
as follows: (1) a separate table is created for each en-
tity; (2) attributes are created for each entity and the
primary key in each entity is identified; (3) for the
purpose of conversion, all “optional” relationships are
treated as “mandatory many” relationships; (4) the
primary key of the entity on the “one” side of a rela-
tionship is posted to the table of the entity on the
“many” side of a relationship; and (5) a separate table
is created for the relationship itself for entities par-
ticipating in an M:M relationship with the primary
key of each table being posted to the new relationship
table to form a composite key. Attributes unique to
many-to-many relationships are posted as nonkey at-
tributes in the composite key table. Applying the con-
version rules and streamlining the resulting tables to
eliminate redundancies and inconsistencies, we arrive
at the set of tables shown in Fig. 5. Primary keys are

10 Accounting

Figure 5 Tables for revenue processing subsystem.

underlined and foreign keys are indicated with an as-
terisk at the end of the field.

D. Explanation of Tables

The tables listed above should correspond to the en-
tities on the revenue ER model. Data in the form of
rows (records) in tables will be added, deleted, and
updated via application programs. These programs,
which could be written in languages such as C�� and
Visual Basic, capture business event data, process the
data, and update all affected tables. The various
screens in a high-end ERP system such as SAP R/3 in-
voke programs that take data entered on the screen
and update the relevant event, resource, and agent ta-
bles. The fields in the EMPLOYEES table should be
self-explanatory. There are no separate tables for
salespersons, warehouse clerks, shipping clerks, and
cashiers, although those agents were shown separately
on the ER diagram. Data pertaining to all these in-
ternal agents can be stored in one employees table,
with the “department” field indicating the particular
department in which the employee works. The CUS-
TOMERS table contains typical customer-related in-
formation of which the company would like to keep
track. The “balance” field in the CUSTOMERS table
shows the current balance owed by the customer. Up-
dates to this field occur as follows: (1) increases re-
sulting from credit sales; (2) decreases resulting from
collections from customers; and (3) decreases result-
ing from adjustments such as returns, allowances, and
perhaps bad debt write-offs (which we are not con-
sidering in our simplified example). The sum total of
all “balances” in the CUSTOMERS table equals the
company’s “Accounts Receivable” at any point in time.
The CONTACTS table shows details about contacts
between salespersons and customers. The FEEDBACK
table is also used to record the actual feedback re-
ceived from customers (i.e., complaints and sugges-
tions). The SALES-ORDERS table can be thought of
as being equivalent to a sales journal in a manual ac-
counting environment. A listing of sales orders for a
particular period can be generated by performing a
query on the SALES-ORDERS table, specifying an ap-
propriate criterion in the DATE field. The customer
to whom the sale is made, and the salesperson who
made the sale, can be found out using the foreign
keys as the basis for linking the SALES-ORDERS table
with the CUSTOMERS and EMPLOYEES tables. The
INVENTORY table shows all the items of inventory
available for sale, the current price, and the quantity
on hand.

Three additional tables are needed for the M:M re-
lationships. These are the ITEMS-ORDERED table
(for the M:M relationship between SALES-ORDERS
and INVENTORY), the ITEMS-SHIPPED table (for
the M:M relationship between SHIPMENTS and IN-
VENTORY), and the ITEMS-RETURNED table (for
the M:M relationship between RETURNS-AND-
ALLOWANCES and RETURNED-MERCHANDISE).
Attributes unique to each of these composite key ta-
bles are listed as nonkey attributes in each table. For
example, the ITEMSORDERED table has two nonkey
attributes: QTY-SOLD, and PRICE. These fields show
the quantity of each item sold on each invoice and
the price of each item sold on each invoice.

The COLLECTIONS table shows payments on ac-
count received in settlement of invoices. Note that
the COLLECTIONS table has SHIPMENT-NO as a
foreign key. By linking the COLLECTIONS, SHIP-
MENTS, SALES-ORDERS, and CUSTOMERS tables it
is possible to identify the customer who made each
payment. As entries are made in the COLLECTIONS
table, the appropriate BALANCE field for the cus-
tomer who made the payment will be updated (de-
creased). The SHIPMENTS table also indicates the
shipper assigned to make the shipment (via SHIPPER-
NO). The weight being shipped and shipping charges
that apply are nonkey attributes in this table. The
ITEMS-SHIPPED table indicates which items were ac-
tually shipped on each shipment and the quantity of
each item that was shipped. The SHIPPERS table is
used to keep track of shipping service providers.
Amounts payable to shippers are reflected in the BAL-
ANCE field in the SHIPPERS table. Returns and al-
lowances are recorded in the RETURNS-AND-
ALLOWANCES table, which has SHIPMENT-NO as a
foreign key to indicate the shipment against which
the return is being accepted. If the “returns and al-
lowances” entry is simply an allowance, then no en-
tries will be made in the ITEMS-RETURNED table.
The amount of the allowance as shown in the
AMOUNT field will be used to decrease the customer’s
balance in the CUSTOMERS table. The CASH table
can be thought of as the “cash at bank” resource of
the firm. Moneys collected from customers result in an
increase in the “cash at bank” resource. Finally, the
ITEMS-RETURNED and RETURNED-MERCHANDISE
tables are used to keep track of items returned by cus-
tomers. The quantity returned and the reason for the
return (i.e., defective merchandise, customer not satis-
fied, etc.) are indicated in the ITEMS-RETURNED
table. Note that the item description is not repeated in
the RETURNED-MERCHANDISE table because the de-

Accounting 11

scription can be obtained by joining the RETURNED-
MERCHANDISE table with the INVENTORY table.

V. ACCOUNTING SYSTEMS FOR
PROCUREMENT (PURCHASING)

The main business processes or events related to pro-
curement for a retailing organization are to order
merchandise from vendors and to pay vendors to set-
tle accounts payable. Secondary events include pro-
cessing requests for merchandise from departments,
obtaining information about pricing and availability
of merchandise from vendors, receiving and inspect-
ing incoming merchandise, and returning defective
or unneeded merchandise back to vendors. As with
the discussion pertaining to revenue processes, the
procurement business processes outlined here are
also illustrative; actual processes would vary across
companies. As with the systems for processing rev-
enue activities, the various procurement activities
could be performed by one system or a set of tightly
integrated systems. In either case, the data underlying
the procurement system resides in one repository,
with appropriate links to the relevant revenue-related
tables that were presented earlier. The essence of an
enterprise wide repository is that all information needs
are met via one integrated database (rather than a set
of loosely coupled systems).

A. Business Processes Related
to Procurement/Purchasing

The procurement information system for a retailing
organization should be able to answer the following
questions: At what prices are various items being of-
fered for sale by various vendors? What have user de-
partments requested for purchase? How much did we
purchase? How much do we owe vendors? What is the
value of purchase returns? What are the total pay-
ments made to vendors? Which purchase orders are
outstanding (merchandise not yet received)? Are
there any items received for which vendor’s invoices
have not been received? In addition, management
would also like reports about which vendors supply
the lowest cost items of each type, vendor perfor-
mance in terms of on-time delivery of merchandise,
quality of merchandise supplied as gauged by pur-
chase returns, and trends in requests for items re-
ceived from departments within the retail store. Many
of these information items do not have a strict “fi-
nancial” orientation. The design of the database for

meeting the needs of procurement business processes
should consider all information needs and not just fi-
nancial or accounting needs. At the same time, it is
important to ensure that the database design can pro-
vide all the necessary accounting reports. The flexi-
bility of the database approach allows both financial
and nonfinancial information needs to be easily
served by one integrated repository of organizational
data.

Procurement business processes for a retailing firm
generally begin with a need for merchandise on the
part of a department within the store. Let us assume
that each department within the store has an em-
ployee who is responsible for keeping track of the
quantity on hand of each item. This tracking would
be done by accessing the INVENTORY table, which
was presented in the discussion of revenue-related
business processes. In the earlier presentation, the
INVENTORY table was being accessed and updated
to reflect the sale of merchandise. Here, the very same
table is being accessed and updated to reflect pur-
chases of merchandise. This is the essence of cross-
functional integration which is at the heart of com-
plex ERP systems like SAP, PeopleSoft, and J.D.
Edwards. The INVENTORY table has “quantity on
hand” and “reorder point” fields. In essence, when
the quantity on hand falls below the reorder point it
is necessary to initiate a purchase requisition for that
item. This tracking of the quantity on hand of each
item could easily be done by means of a programmed
procedure that scans each row in the INVENTORY
table. Whether initiated by a programmed procedure
or by an employee in each department, a purchase
requisition, or a formal request for items to be pur-
chased, must be prepared and authorized. It is this
requisition (request for items) that documents a le-
gitimate need for purchases. A purchase requisition
would list at least one item needed but possibly many
items needed by the department.

Independent of the procedures involved in creat-
ing purchase requisitions, personnel in the purchas-
ing department obtain information about the avail-
ability of items from different vendors. Quotations
from vendors indicate the price of each item being of-
fered for sale. It is important to keep track of this in-
formation even though it has no direct “accounting”
implication. This information would be valuable when
a department issues a purchase requisition. Specifi-
cally, the purchasing agent can scan the “items avail-
able for sale” table to determine whether any vendor
has a special discount on the needed item(s). Keep-
ing such information current is a proactive measure
in contrast to a reactive process of soliciting quota-

12 Accounting

tions from vendors after a purchase requisition has
been received. The next step in the purchasing
process is to actually issue a purchase order for a par-
ticular requisition on an approved vendor. One pur-
chase order is placed for every purchase requisition.
Due to the time lag between placing the requisition
and the order it is possible that a requisition does not
have an associated purchase order. A purchase order
can be placed with only one vendor, but a vendor can
obviously have many purchase orders. Each purchase
order would contain at least one item but possibly
many items to be purchased. When the vendor deliv-
ers the merchandise a receiving report must be pre-
pared. While there may be many receiving reports for
a purchase order, each receiving report can relate to
only one purchase order on a specific vendor. How-
ever, due to the time lag between placement of the
purchase order and receipt of the merchandise it is
possible that there is no receiving report for a pur-
chase order. In effect, the purchase orders for which
there are no receiving reports constitute “open” pur-
chase orders (i.e., outstanding orders for which the
merchandise has not as yet been received). Each re-
ceiving report would have at least one but possibly
many items received.

Upon receipt of the vendor’s invoice for items de-
livered, and after the merchandise has been received,
a purchase liability can be recorded. As was the case
with the sales invoicing process, note that the actual
recording of the purchase liability is simply an infor-
mation process and is not a “significant business event”
in its own right. The three prerequisites for the recog-
nition of a purchase liability are (1) a vendor’s in-
voice, (2) a receiving report, and (3) a purchase or-
der. The invoice represents a claim for payment for
merchandise delivered. The receiving report ac-
knowledges that the merchandise was in fact received.
Finally, the purchase order indicates that the items re-
ceived were in fact ordered. In a manual system, the
three documents are physically matched before a pur-
chase liability is recorded. In a relational database sys-
tem, the existence of a valid receiving report and pur-
chase order are determined through foreign keys.
Foreign keys in a relational database system in effect
constitute an “electronic audit trail.”

Vendors must periodically be paid, and these pay-
ments result in a decrease in the firm’s cash resource.
Every payment to a vendor is associated with one mer-
chandise receipt, which in turn relates to one pur-
chase order. Of course, since there will be a time lag
between receipt of merchandise and the actual pay-
ment; it is possible that a merchandise receipt does
not yet have an associated payment. However, when

merchandise is received and the vendor has submit-
ted an invoice, as already discussed, a purchase liabil-
ity exists. In effect, the purchase liabilities that are
“open” (i.e., unpaid) constitute the company’s ac-
counts payable at any point in time.

The only other procedures related to procurement
of merchandise have to do with returns. Defective or
damaged merchandise is returned to vendors and
they are issued a debit memorandum to that effect.
The debit memoranda represent decreases in the ac-
counts payable liability. Each debit memorandum for
a purchase return relates to only one merchandise re-
ceipt and thus one purchase order. Assuming that
there are many items received, it is possible that dif-
ferent items can be returned on several different re-
turns. Obviously, it is possible that a merchandise re-
ceipt has no associated purchase returns. Each
purchase return will have one or more items returned,
and each item can be returned on several different
purchase returns. Since a debit memorandum could
be issued only to request an allowance without actu-
ally returning merchandise, it is possible that a pur-
chase return does not actually have any items returned
associated with it. The increases and decreases to the
vendor’s balance and to the inventory quantity on
hand indicated are simply the “debits” and “credits”
to the vendor’s and inventory accounts.

B. ER Data Model for
Procurement/Purchasing Processes

Based on the above narrative description of procure-
ment business processes, the following ER model is de-
veloped. Again, note that the purpose of ER modeling
is to develop an easily understandable formal represen-
tation of the proposed accounting information system
as the first step toward building a functioning database-
driven system. The ER model shown in Fig. 6 follows
the same conventions described earlier, with resource
entities on the left, event entities in the middle, and
agent entities on the right. Relationships between enti-
ties also use the same conventions for indicating manda-
tory and optional relationships, with crow’s feet being
used to indicate the “many” side of a relationship.

The ER model in Fig. 6 is interpreted much the
same as the model shown earlier for revenue business
processes. The entities in the middle column repre-
sent procurement-related events in chronological
order from top to bottom, those on the left are the
organization’s resources that are affected by procure-
ment activities, and the entities in the column on the
right are the agents involved with procurement-

Accounting 13

related events. The crow’s feet, | for mandatory par-
ticipation and � for optional participation make it
possible to interpret the relationship between enti-
ties. For example, the relationship between the VEN-
DORS agent and the PURCHASE-ORDERS event
would be interpreted as follows: vendors place none
or many purchase orders; each purchase order must
be placed by exactly one vendor.

C. Data Repository for Storing
Revenue-Related Information

Using the same rules outlined earlier, the ER model
for procurement activities is converted to a set of ta-
bles, as shown in Fig. 7. As before, primary keys are
underlined and foreign keys are indicated with an as-
terisk at the end of the field. The tables shown in Fig.
7, and the tables shown earlier as a result of convert-
ing the revenue ER model, would be implemented in
a relational database management system such as
Oracle 8i or Microsoft SQL Server 2000.

D. Explanation of Tables

As with the tables resulting from conversion of the
revenue ER model, the tables shown in Fig. 7 should
correspond to the entities on the procurement ER
model. In an ERP system, the tables in Fig. 7 would
be updated as a result of application programs that
process data entered on user screens. Note that the
EMPLOYEES, INVENTORY, and CASH tables, high-
lighted in bold type, are the same tables shown ear-
lier for revenue business processes. This is the essence
of cross-functional integration—related business
processes share information by accessing the same ta-
bles from different applications or modules.

Most of the fields in the tables in Fig. 7 should be
self-explanatory. Note that although the various inter-
nal agents involved with procurement processes are
shown separately on the ER diagram, there is only
one employees table. The EMPLOYEE-NO field in
various tables indicates the employee who added the
entry into the table. How is it possible to ensure that
say only employees who are purchasing agents in the

14 Accounting

Figure 6 ER diagram for procurement business processes.

purchasing department add orders to the purchase
orders table? A control could be programmed into
the system to verify that the “grade” of the employee
entering the purchase order is in fact “purchasing
agent” and that the employee is in the “purchasing”
department.

The “balance” field in the VENDORS table shows
the current amount owed to each vendor. The sum to-
tal of all “balance” fields in the VENDORS table con-
stitutes current accounts payable. Updates to this field
occur as follows: (1) increases resulting from pur-
chase liabilities executed by means of an “update
query” (using Access terminology); (2) decreases re-
sulting from payments recorded in the PAYMENTS
table; and (3) decreases resulting from purchase re-
turns recorded in the PURCHASE-RETURNS table.
The balance field is an example of a logical field (cal-
culated field) whose value can be derived based on
other values in the database. Thus, rather than actu-
ally storing “balance” as a physical field, its value can

be recomputed whenever it is needed by running a
query. For expediency, however, most organizations
will find it convenient to store this value, to avoid
overloading the information system especially when
purchase transactions number in the millions.

The ITEMS-SUPPLIED table shows which vendor
supplies which items and the current price of the
item. It is this table that would be accessed by pur-
chasing department personnel upon receipt of a pur-
chase requisition from a department. The RECEIVING-
REPORTS and related ITEMS-RECEIVED tables
would be accessed upon receipt of merchandise. The
PAYMENTS table is accessed periodically whenever
payments are made to vendors. Note the connection
between PAYMENTS and CASH—payments to ven-
dors result in a decrease in available cash. The
PURCHASE-RETURNS and related PURCHASED-
ITEMS-RETURNED tables are accessed when items
are returned to vendors. Note that, in the PURCHASE-
ORDERS table, the vendor-invoice-no and vendor-

Accounting 15

Figure 7 Tables for procurement processing subsystem.

invoice-amount fields would be left blank when the pur-
chase order itself is created. These fields are relevant
only when the vendor’s invoice is actually received. As
discussed above, recording the fact that the vendor’s
invoice is received and that a purchase liability exists
is simply an information process. The vendor’s in-
voice should indicate the purchase order to which the
invoice relates—this purchase order number is then
used to retrieve the appropriate row in the PURCHASE-
ORDERS table to update the vendor-invoice-no and
vendor-invoice-amount fields. Periodically, a query
can be run to determine the rows in the purchase
orders table that have values in the vendor-
invoice-no and vendor-invoice-amount fields. The
resulting rows can then be matched with the
RECEIVING-REPORTS table using the PO-NO for-
eign key in the RECEIVING REPORTS table to en-
sure that the items on those purchase orders have in
fact been received.

The ITEMS-REQUISITIONED, ITEMS-ORDERED,
ITEMS-RECEIVED, and PURCHASED-ITEMS-
RETURNED tables all represent M:M relationships.
Attributes unique to each of these composite key ta-
bles, such as the quantity needed field in the ITEMS-
REQUISITIONED table, are listed as nonkey attributes
in each table. You might observe that the PAYMENTS
table does not include VENDOR-NO as a foreign key.
How can the vendor for that payment be identified?
The answer is to follow the trail of foreign keys linking
the PAYMENTS, RECEIVING-REPORTS, PURCHASE-
ORDERS, and VENDORS tables. A whole host of
queries can similarly be answered by following the trail
of foreign keys linking related tables.

VI. ENTERPRISE-WIDE ACCOUNTING SYSTEMS

In order to achieve an integrated enterprise-wide ac-
counting information system, all enterprise-wide busi-
ness processes should be modeled together in an in-
tegrated manner. Models for sales and purchases
business processes were shown above. Now let us ex-
amine how these closely related business processes
are modeled together, especially in a retailing organi-
zation. As shown in the ER diagram below, a compre-
hensive model showing all purchases and sales-related
business processes can be somewhat cumbersome.
The diagram shown in Fig. 8 covers sales and pur-
chase related processes, as well as business processes
related to employees, other expenses, fixed assets,
and loans. An enterprise-wide model for a manufac-
turing organization would be much more complex
since it would have to encompass all processes related

to procurement of raw materials, manufacturing, la-
bor, work in progress, finished goods inventory, and
all sales related processes.

In the cross-functional ER model shown in Fig. 8,
note in particular the integration points between busi-
ness processes. For example, inventory and cash are
the two key resources that are affected by both pur-
chasing and selling activities. Inventory increases as a
result of purchases and decreases as a result of sales;
cash increases as a result of sales and decreases as a
result of purchases. Another key aspect of the cross-
functional ER model to note in Fig. 8 is that every re-
source both increases and decreases in value. Resources
are at the heart of every business and the value of an
organization’s resources would fluctuate over time. In
the context of the enterprise ER model above, the re-
source inventory increases as a result of purchases
and decreases as a result of sales. By contrast, the re-
source cash decreases as a result of purchases and in-
creases as a result of sales. Thus, each increase in a re-
source because of an event will eventually result in a
corresponding decrease in another resource through
another event. For example, the purchasing set of
events results in an increase in the inventory resource
and a corresponding decrease in the cash resource.
Similarly, the sales set of events results in a decrease in
the inventory resource and a corresponding increase
in cash. Note also that each resource increase or de-
crease occurs in response to an event and there is one
internal and (usually) one external agent involved in
that event. In addition to revenue (sales) and pro-
curement (purchasing) processes, the ER model also
shows (1) human resources related processes—hir-
ing, compensating (i.e., paying), and terminating em-
ployees; (2) processes for recording and paying other
expenses such as utilities, maintenance expenses,
phones, etc.; (3) fixed asset processes—acquiring and
retiring/selling fixed assets; and (4) loan related
processes—obtaining and paying off loans. The addi-
tion of these processes results in a comprehensive
enterprise-wide model for meeting both accounting and
other information needs.

A. Controls in Enterprise
Accounting Systems

A critical issue regarding enterprise accounting sys-
tems is the accuracy and integrity of the data stored
within the system. Users of the enterprise system
must have assurance that the information they re-
ceive from the system is error free. Recall that in an
enterprise system data are stored in a single reposi-

16 Accounting

tory or database. Control and security concerns are
heightened in database environments because of the
single shield protecting the entire database, i.e., the
database management system. However, database
technology also provides opportunities to build con-
trols into the system itself such that errors and ir-
regularities are prevented from ever occurring. Con-
trol procedures are mechanisms designed to prevent,
detect, or correct errors and irregularities. The hard-
ware inside computer systems will usually process
transactions and perform calculations in a flawless
manner. However, the software that directs the func-
tioning of computer hardware is designed and cre-

ated by humans. It is the software component of
computer-based information systems, and the hu-
man component that interacts with computer-based
systems, that can cause errors and irregularities in
data and thus bring the need for good controls. Con-
trol procedures may be applied at various organiza-
tional and data processing levels. Control procedures
that affect all information systems and subsystems
within the organization are categorized as general
control procedures, while controls designed to prevent
or detect errors within each information system
or sub-system are categorized as application control
procedures.

Accounting 17

Figure 8 ER diagram for other business processes (beyond purchases and sales).

General control procedures are the methods and
measures adopted within a business to promote op-
erational efficiency and encourage adherence to pre-
scribed managerial policies. Segregation of duties,
maintenance of proper documents and records, and
making sure that all accounting transactions are ap-
propriately authorized are some of the common gen-
eral control procedures that should exist in all ac-
counting systems, regardless of the presence or extent
of computerization. For computer-based accounting
systems, general controls are those controls that facil-
itate the effective operation and management of the
organization’s computer systems and all its applica-
tions. The six categories of general control proce-
dures are (1) proper organization of the information
systems department to ensure adequate supervision
over employees and segregation of duties, (2) system
development and program change controls including
procedures to authorize, test, and document new sys-
tems and changes to existing systems, (3) hardware
controls including scheduled maintenance of com-
puting and related equipment, (4) access controls to
ensure an appropriate match between the duties of
employees and the type of access they have to specific
files and programs, (5) computer operations controls
that cover the functioning of the organization’s com-
puting center, and (6) backup and recovery proce-
dures, including a disaster recovery plan, to protect
against accidental or intentional loss of data.

Application control procedures are focused on en-
suring the accuracy and reliability of data within each
subsystem of the enterprise-wide information system.
Computer-based application control procedures in-
clude input controls, processing controls, and output con-
trols. As their names suggest, these three sets of con-
trol procedures are applicable during the input,
processing, and output stages of the data processing
cycle. Input control procedures are essentially proce-
dures to validate the data. In an enterprise system em-
ploying a relational database, a number of data vali-
dation rules can be defined at the table level within
the database. In addition, the field type designated
for each field in a table can itself serve as a control
mechanism. For example, fields defined as Date/Time
will accept only date and time data appropriately for-
matted. In addition, validation rules, which are en-
forced automatically, can be designed to check
whether data entered into a field in a table (1) fall
within a certain range, (2) are of the correct length,
and (3) match one of the acceptable values for the
field. In on-line systems, if a field can have only one
of several acceptable values, then the user can be pre-
sented with a “pick list” of acceptable values from

which a selection can be made. Another powerful fea-
ture in on-line systems is the ability to program the
system to automatically enter data in certain fields.
This control procedure, referred to as system generated
data, can for example, enter the current date and
next order number on an order entry form.

B. Beyond Transaction
Processing Systems

For large organizations, several gigabytes of data may
be recorded in the enterprise database within a week
or even a day. Moving beyond simply recording trans-
actions, organizations are seeking to obtain business
intelligence from their large data repositories. In
essence, the goal is to find the “gems” of information
in the gigabytes of transaction data. Data warehous-
ing, data marts, and data mining are three concepts
aimed at allowing an organization to lever its data to
obtain a competitive advantage. A data warehouse is a
repository of historical business transaction data, or-
ganized in a manner to facilitate efficient querying
for reaching marketing, tactical, and strategic deci-
sions. The key point is that the data warehouse is sep-
arate from the organization’s “live” database that cap-
tures and stores current transaction data. A data mart
is a closely related concept. It can be defined as a
repository of data gathered from operational data and
other sources that is designed to serve certain users’
needs. The data in a data mart may actually come
from a data warehouse, or it may be more specialized
in nature. The emphasis of a data mart is on meeting
the specific demands of a particular group of users in
terms of analysis, content, presentation, and ease of
use. The terms data mart and data warehouse often
imply the presence of the other in some form. Data
mining is the analysis of data for relationships that
have not previously been discovered. For example,
data mining of sales records for a large grocery store
may reveal that consumers that buy diapers also tend
to buy ice cream and apple juice. Data mining, also
referred to as knowledge discovery, looks for associa-
tions (correlated events—beer purchasers also buy
peanuts), sequences (one event leading to series of
related events—someone buying tile for a new home
later buys other home products), classification of data
(generating profiles of consumers showing their in-
terests), clustering of data (finding and visualizing
groups of related facts), and forecasting (making pre-
dictions about future events based on an analysis of
patterns of existing events).

18 Accounting

SEE ALSO THE FOLLOWING ARTICLES

Computer-Aided Manufacturing • Control and Auditing • Hu-
man Resource Information Systems • Operations Management •
Procurement • Productivity • Public Accounting Firms • Supply
Chain Management • Transaction Processing Systems

BIBLIOGRAPHY

Hollander, A., Denna, E., Cherrington, J. O. (1999). Accounting,
information technology, and business solutions, 2nd edition.
Boston, MA: McGraw-Hill.

Murthy, U. S. (2000). Database systems design and development,
2nd edition. Bloomington, IN: CyberText Publishing.
<http://www.cybertext.com>.

Murthy, U. S., and Groomer, S. M. (2000). Accounting
information systems: A database approach, 5th edition. Bloom-
ington, IN: CyberText Publishing. <http://www.cyber-
text.com>.

Perry, J. T., and Schneider, G. P. (2000). Building accounting
systems using Access 2000. Cincinnati, OH: Thomson Learn-
ing/Southwestern.

Potter, D. A. (1993). Automated accounting systems and procedures
handbook. New York, NY: John Wiley.

Romney, M., and Steinbart, P. (1999). Accounting information sys-
tems, 8th edition. Reading, MA: Addison-Wesley.

Accounting 19

Advertising and Marketing
in Electronic Commerce
Brenda J. Moscove and Robert G. Fletcher
California State University, Bakersfield

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elservier Science (USA). All rights reserved. 21

I. MARKETING AND ADVERTISING DECISION AREAS
II. MECHANICS OF ADVERTISING AND MARKETING FOR

E-COMMERCE

III. IDENTIFYING OPPORTUNITIES AND PROBLEMS
IV. NEW DEVELOPMENTS

GLOSSARY

advertising Paid communications to the masses by an
identifiable sponsor about a product, service, or
idea. It should be a persuasive message.

banner A miniature billboard that appears when an
Internet user calls up a specific web page.

button Smaller than a banner providing a link to the
advertiser’s home page. It can be an icon and gen-
erally costs less than a banner because of its smaller
size.

demographics The statistical characteristics of the
group (population, target market, age, income,
etc.).

electronic commerce (e-commerce) A buying and sell-
ing process that is supported by the use of the
Internet.

interstitials Animated screens that pop up briefly as
information is downloaded from a web site. Quite
often these screens, sometimes known as “splash
pages,” are advertisements.

lifestyle Describes how customers live. It is helpful in
planning advertising and marketing strategies at-
tractive to users of the product/service category.

marketing concept Managing a company based upon
determining the wants and needs of target markets
through delivering satisfaction to these customers
at a profit. In other words, the profit is derived
from customer satisfaction. In the case of a not-for-
profit organization, the same definition applies ex-
cept that the words “at a profit” are omitted.

product life cycle Defines the stages of the product
category (introductory, growth, maturity, and de-

cline) and determines the way in which the prod-
uct/service can be advertised and marketed.

psychographics Used to group target market seg-
ments according to psychological characteristics
(attitudes, values, personality, lifestyle, etc.).

spam Unsolicited e-mail contact with present and po-
tential customers. It is like junk mail.

target market A group of customers that have com-
mon wants and needs that the company or organi-
zation chooses to serve.

I. MARKETING AND ADVERTISING
DECISION AREAS

There are several decisions that must be made before
designing an information system for e-commerce. Sev-
eral of the important decisions are discussed in the
following sections. This discussion is not meant to be
comprehensive but is included to illustrate the types
of questions and issues that an organization’s man-
agement should consider before setting up an infor-
mation system. The information system is built to sat-
isfy the organization’s goals and objectives for the
system; thus, every information system for e-commerce
advertising and marketing may be unique to the spon-
soring organization. The organization’s goals and ob-
jectives may change and become more complex over
time. Conversely, an organization may find that a sim-
ple system would be satisfactory. Therefore, it is nec-
essary to revise, simplify, or expand the system to keep
it practical and up to date in terms of carrying out
management’s objectives.

The primary emphasis of this article is the infor-
mation system needed for e-commerce with focus on
advertising and marketing specific goods and services.
The issues for building a support system to facilitate
advertising and marketing strategies are twofold: a
consideration of target market information needed
for planning and implementing the strategies; and
the ability to take orders, process orders, and deliver
the goods and services in a satisfactory manner.

A fundamental consideration is whether or not the
organization’s marketing and advertising strategies
should include e-commerce. In other words, would
the organization become more efficient and/or prof-
itable by engaging in e-commerce?

A. Target Market Selection

The organization needs to determine the audience
for the e-commerce message. Is the audience the gen-
eral public looking for information such as free in-
formation dispensed by a local, state, or national gov-
ernment? Another example is free information that is
distributed by trade organizations, unions, and cause
groups.

Is the desired target a present or potential con-
sumer? Consumers are people who will utilize or con-
sume the product or service for their own personal
use. Ski equipment, clothing, and books are examples
of consumer products. Airline tickets, concert tickets,
and on-line investments are consumer services.

Is the target audience likely to be a business cus-
tomer? A business customer uses the product and ser-
vice to carry on or maintain the business activities.
Examples are raw materials, component parts, equip-
ment, supplies, and services like bookkeeping or
advertising.

Another category for defining the target audience
is the institutional or nonprofit segment. The cus-
tomer may be a governmental entity, a nonprofit hos-
pital, a museum, or a charity, for example. Both busi-
ness and institutional customers can be combined
under the umbrella of “organizational” customers.

A critical issue for defining target markets is the
marketing strategy chosen by the organization wish-
ing to engage in e-commerce advertising and market-
ing. If they choose to market to only one segment, the
strategy is called concentration. For instance, if the
seller identified three potential segments in the hotel
industry such as budget, family, and status, the orga-
nization may decide to target only the family segment.
Thus, the seller concentrates its strategies on this sin-

gle target market. All advertising and marketing ef-
forts, including e-commerce, are designed to attract
and satisfy this single customer group—the family.

Another strategy the organization could choose is
to select the family and budget segments and devise
target advertising messages and marketing efforts for
each group. This strategy involves multiple segments;
i.e., targeting more than one segment, but not all the
segments identified, and developing advertising and
marketing cues for each target served.

A third strategy is the combination method. The
organization may consider the wants and needs of the
budget and family market(s) to be fairly similar. There-
fore, it combines, or aggregates, these two segments
into one target market. It would reject involvement
with the status segment. Advertising and marketing
e-commerce efforts are designed to appeal to both
the family and budget combined target market. These
efforts must be cleverly designed to attract and satisfy
the combined sector with one set of strategies.

Of course, the final option in overall target audi-
ence identification is mass marketing. The organiza-
tion decides to treat all possible buyers the same and
develops only one set of strategies for the entire range
of present and potential customers. Mass marketing is
the least expensive strategy but can be costly in terms
of lost sales because the mass marketing strategy lacks
focus.

A complete discussion of target markets and adver-
tising and marketing strategies is beyond the scope of
this article. However, additional, detailed information
is presented in marketing and advertising textbooks
such as: Principles of Marketing, 9th Edition, by Philip
Kotler and Gary Armstrong, and Contemporary Advertis-
ing, 7th Edition, by William F. Arens. Further insights
into business to business on-line commerce is available
in “Let’s Get Vertical” in Business 2.0 magazine.

Marketing and advertising information systems dif-
fer according to the type of audience sought. The
starting place for determining the type of information
system needed for e-commerce is defining the target
market(s) the organization wants to serve and de-
signing the system to incorporate the information
needed by the target audience(s).

B. Differences in Reaching the
Target Markets with E-Commerce

In conventional advertising and marketing, the mar-
keter and/or advertiser can select the method of
reaching the target markets. Thus, the initiative rests

22 Advertising and Marketing in Electronic Commerce

with the marketer to choose the media and message
that will best attract the attention of the desired tar-
get market(s). Chances are that, with the right com-
bination of media and messages, a portion of the tar-
get audience(s) will at least be exposed to the product,
service, and/or advertising message.

With e-commerce, the initiative is in the hands of
the target market (prospective buyer). The prospects
elect to visit the home pages for the various compa-
nies. This means they can elect not to view the home
pages as well. The shift in balance for e-commerce,
placing the selection power in the hands of the
prospective buyer, creates new challenges for the ad-
vertisers and marketers. How do they get the prospects
to visit their web pages? For specific hints about turn-
ing first-time visitors into repeat customers for a web
site see “Success Is a Repeat Visitor,” in Fast Company,
June 1998. What information is sought once the web
site is visited?

First, the organizations wishing to attract buyers
must advertise their web sites in a way that gets the
prospective customers to visit the web site. Simply hav-
ing a site and posting information on it is no guaran-
tee that the prospective customers will find any rele-
vant information on the site. Many of the dotcom ads
do not explain what the company does or why the au-
dience should visit the site. They are not memorable.
They only add to the clutter of messages that con-
stantly bombard the public and organizational target
markets. What would encourage a site visit? What
would make the target audience remember the dot-
com address, company, and products/services? The
dotcom ads should be precise and detail the benefits
to the audience for visiting the web site.

Then, the target market actually must visit the web
site. Often, the organization has not clearly defined
what the target market wants in terms of information;
and the web pages fail to attract interest and atten-
tion. Furthermore, often the web pages are not user
friendly; and the prospect exits the advertiser’s site
without getting the desired information.

The advertisers and marketers must understand why
the prospective customers are visiting the web site and
make certain that the proper information and appeals
are included in the messages posted on the site in a
user-friendly, attractive format. For instance, do
prospective customers need to read the company his-
tory or do they simply want product/service informa-
tion? Do they care how many dealerships/retail out-
lets a seller has? Do they need to know about the size,
location, and capacity of the company’s production
plants? Further, do they need to know how the prod-

ucts are made? Such information is usually considered
image rather than product/service information. Im-
age information is aimed at constituencies like share-
holders, potential investors, and lending institutions
rather than customers and potential buyers.

The real question is how to emphasize information
and appeals that will stimulate action for the party vis-
iting the web site instead of concentrating on the
items in the above paragraph that have little impact
on purchasing decisions. What kind of response ac-
tion does the organization wish to elicit? Are the ma-
terials designed to stimulate the desired response?
Part of the system established must contain informa-
tion directly from prospective customers about what
is desired (See Section D, Scope of Electronic Com-
merce and Marketing Activity).

C. Audience Demographics and
Behavioral Characteristics

Another series of questions involves whether the tar-
get market(s) is a specific demographic group of con-
sumers, i.e., sex, age, homeowner, etc., or, a specific
group of organizational customers like banks, hospi-
tals, retailers, etc. Furthermore, final consumers can
be defined in terms of life cycles, lifestyles, psycho-
graphics, and other behavioral characteristics in ad-
dition to demographic categories. Examples include:
athletic, active/passive, outdoor person, couch potato,
etc., lifestyles; type A or type B personalities; and
nonuser, light user, medium user, and heavy user con-
sumption patterns.

Businesses can be defined in terms of organiza-
tional characteristics as well as types of business. A
useful way to identify possible target markets in the
United States is to consult the Standard Industrial
Classification (SIC) codes issued by the federal gov-
ernment. These numerical codes categorize organiza-
tions into specific industries and give information
about each organization like the industry type and
number of organizations in the industry. It also iden-
tifies individual firms, sales volume, number of em-
ployees, location, and other information similar to
demographic information for final consumers. A
North American Industry Classification System
(NAICS) is being developed for North American Free
Trade countries. Other countries, like Singapore, have
similar classification systems. For example, this type of
data may be useful in determining the size of the po-
tential business or organizational customer. Size must
be defined. Is size the number of employees, the

Advertising and Marketing in Electronic Commerce 23

total annual revenue, the yearly gross or net profit,
the annual earnings per share, or any other factor
that is meaningful in identifying which potential cus-
tomer group(s) should be targeted? For instance, if a
company is selling cardboard boxes, the potential
number of cardboard boxes used per year by specific
businesses may be helpful in determining its target
group. The classification codes’ detailed lists of orga-
nizations for certain industries, if helpful, could be
built into the information system for advertising and
marketing using e-commerce techniques.

In addition, target organizations may be defined in
terms of organizational behavioral characteristics like
always looking for new technology, the lowest price,
or status products and services. Usage patterns also
are important. These behavioral characteristics of or-
ganizational buyers and potential purchasers can be
determined best by primary marketing research in-
formation that must be gathered directly from the de-
sired target markets. The information cannot be
found in secondary reports like government census
and other statistical data banks. Behavioral character-
istics are vital to the information systems for planning
good marketing and advertising strategies for reach-
ing reseller and not-for-profit markets.

Another issue for consideration is the geographical
boundary for the target market(s) regardless of
whether it is a final consumer, business, or institu-
tional customer. Is the market area a city, a region, a
country, a group of countries, or worldwide market?
Should a Geographic Information System or Global
Positioning System be integrated with the advertising
and marketing information system for planning ef-
fective advertising and marketing strategies? In deter-
mining the audience, these geographical factors must
be considered in order to define the target market(s)
and location(s) before the information system can be
defined and constructed. See Section II.B for addi-
tional information.

Any information useful in identifying potential tar-
get segments and their wants and needs should be built
into the support system for e-commerce. The informa-
tion must be timely and accurate. The success of using
e-commerce for advertising and marketing is largely
dependent on how well the e-commerce advertising
and marketing strategies satisfy the target audience(s).

D. Scope and Purpose of E-Commerce
Marketing and Advertising Activities

It is important to clearly state the purpose for incor-
porating e-commerce into marketing and advertising

strategy. There are many examples of alternative pur-
poses. Is the purpose to dispense information to the
public without seeking a sale like facts about health,
community information, or a listing of charities? Is
the information geared for building the image (good-
will) of the sponsor rather than immediate sales? Or,
is the purpose to attract investors for the sponsoring
organization? Is the purpose to generate an inquiry
for the sponsoring firm so that a sales person can
close the sale? Is the message designed to generate a
direct sale without human contact? Also, e-commerce
can be used to influence future sales like providing
information that may lead to a sale direct from the In-
ternet or through an inquiry during the next year. For
example, an automobile manufacturer may sponsor
messages about various vehicles knowing that it may
take the buyer nine months to decide to actually pur-
chase a new vehicle. The manufacturer wants to en-
sure that its vehicle models will be considered when
the actual purchase occurs.

The e-commerce efforts can include support activi-
ties designed to influence purchases by enhancing the
competitive position. Offering an e-mail service line to
solve the most common problems with the product or
service for the buyer may give the company a compet-
itive edge in the market place. This strategy can also
be a cost-saving measure on the part of the sponsor.
Information about recurring problems and complaints
must be built into the information system so that the
service line can be responsive. In addition, the service
line must be advertised to attract users.

E. Purpose of the Web Site

There are many purposes for e-commerce efforts. Too
often, organizations design web sites without consid-
ering what the purpose is for the web site. The pur-
pose helps define the type of information needed to
support the web site. The target audience(s) and pur-
pose(s) should determine the type of information,
amount of information, and mechanics for accessing
the information from the support system.

For instance, the prospective buyer is looking for
benefits. When he/she finds the product or service
that provides the desired benefits, a transaction will
take place. If the seller’s message includes a complete
company history, product features, and attributes, and
other irrelevant information instead of benefits, the
prospective buyer will quickly lose interest and visit
another site. Also, the web site must be designed to
provide easy access to the desired information through
a logical series of linkages. The user must be able to

24 Advertising and Marketing in Electronic Commerce

understand the linkages and quickly access only the
information desired.

A major issue, often overlooked, is whether the
web site is designed to replace the organization’s cur-
rent marketing and advertising strategies or supple-
ment present efforts. A company can use e-commerce
as its only means of generating sales or as a means to
enhance its present traditional advertising and mar-
keting endeavors. Different marketing and advertis-
ing strategies apply for brick-and-mortar companies
versus those organizations that do business only over
the Internet.

For example, a retail chain can use e-commerce to
add to its existing customer base supplementing its in-
store sales. E-commerce could be used to generate an
inquiry for the retailer. Then, the retailer or dealer
could close the sale, or, sales may be completed on-
line. The on-line sales supplement the organization’s
traditional in-store sales. Part of the information sys-
tem consists of getting existing customers to visit the
web site to view additional merchandise: clearance
items, items that are no longer stocked by the retail-
ers (bulky items like furniture, special orders, etc.).
Establishing an interface between in-store customers
and Web contacts is essential.

An organization can replace its brick-and-mortar
outlets by choosing to do business only by e-commerce.
In this case, the existing dealerships, retail establish-
ments, etc., are closed. For example, retail chain
Z closes all stores converting all marketing operations
to on-line activities. A catalog business has the same
options as a brick-and-mortar operation: to continue
to do business by catalog and supplement its
orders through e-commerce or to convert entirely to
e-commerce and dispense with the catalog.

Clearly, the place strategy shifts from emphasis on
the retail location to emphasis on the on-line loca-
tion. However, the distribution strategy becomes more
important in terms of the ability to fulfill customer or-
ders on time and in a satisfactory manner. Promotion
strategies emphasize attracting the target audience to
the web site and obtaining on-line orders instead of
the store or dealership visits where merchandise can
be seen, touched, tasted, smelled, etc., before pur-
chasing and, often, serviced after the sale. The infor-
mation base of present and desired customers, their
wants and needs, a means of tracking orders, deliver-
ies, and customer satisfaction must be established.

Finally, a new business can decide to maintain both
e-commerce and brick-and-mortar sites (supplemen-
tal) or to rely exclusively on e-commerce techniques
for advertising and marketing its products and
services.

F. Interface with Other Marketing and
Functional Activities (Production,
Product/Service Offerings, Distribution,
Pricing, and Other Promotion Activities)

The information system for advertising and market-
ing using e-commerce techniques must consider the
impact of e-commerce activities on the other func-
tional areas of the company. A vital consideration for
the information system is the type of goods and ser-
vices to market on-line. For example, does the com-
pany wish to market their full line of products and
services or only those that cannot be obtained else-
where like clearance merchandise, custom-designed
products/services, help-line services to back up dealer
products/services, business-to-business networking
services? Business networking services include those
linkages with business or institutional customers re-
quiring regular repurchasing contacts and establish-
ing procedures that can be on-line functions. The
mix of products and services most often featured on-
line includes computer, travel, entertainment, books,
gifts and flowers, apparel, and food and beverage
goods and/or services. If the desired outcome of the
web site is an on-line order, the information system
must be designed to accommodate all the needed in-
formation for taking, processing, and delivering the
order in a satisfactory manner.

In terms of order fulfillment, can the present struc-
ture used for brick-and-mortar operations accommo-
date sales stimulated by e-commerce? Many organiza-
tions use Just-In-Time (JIT) inventory procedures.
Would an expansion in sales through e-commerce in-
terfere with the operation of these procedures? For
example, would a retail organization be able to obtain
and deliver the large quantities of merchandise that
are ordered just before the Christmas holiday? Would
producers utilizing JIT inventory procedures be able
to produce the items? It is possible that JIT may have
to be supplemented with inventory buildup and stor-
age procedures needed to provide satisfactory order
fulfillment.

Alliances with Federal Express and United Parcel
Service solved the distribution problems experienced
by many companies sending individual packages to
on-line purchasers. Toys R Us allows on-line customers
to avoid shipping charges by using its existing stores
as pick up and/or return sites. Wal-Mart hired Fin-
gerhut, a company with a long history in logistics and
distribution, to assist in handling on-line orders and
deliveries. Wal-Mart associated with Books-A-Million
to supply and deliver books ordered on-line. The

Advertising and Marketing in Electronic Commerce 25

alliance also increases Wal-Mart’s ability to compete
with amazon.com. These alliances require changes in
the distribution and information systems appropriate
to support the seller’s activities and service levels. For
a more detailed discussion of the implications of
e-commerce on the spatial aspects of organizations,
see the working paper by Fletcher and Moscove (2000).

The costs of e-commerce must be factored into the
costs of doing business. In some instances, replacing
brick-and-mortar outlets with e-commerce results in
savings to the sellers. Cisco, an Information technol-
ogy manufacturer, estimates a savings approximating
$300 million per year in staff, software distribution,
and paperwork costs due to e-commerce transactions.
Conversely, the costs of doing business may actually
increase. For instance, reorganizing distributions sys-
tems to include warehouse facilities needed to service
the e-commerce customers satisfactorily may increase
the total costs of transactions. Such additional costs
must be taken into account when establishing prices
for e-commerce offerings. Pricing philosophies of the
seller’s organization must be factored into the infor-
mation system as well as changes in the cost/profit re-
lationships produced by the e-commerce activities.

G. Customer Satisfaction and Relationships

Good marketing and advertising focuses on customer
and potential customer satisfaction. This statement is
true regardless of whether the customer is a final con-
sumer, a business customer, or an institutional buyer.
Satisfied customers demand more products and ser-
vices and create more sales transactions. More sales
transactions usually result in increased profits. Good
advertising encourages people to try the product/ser-
vice and to keep repurchasing it. It helps the pur-
chaser determine that he/she has made the right
choice, defend the purchase, and persuade others to
buy the same products/services.

The information system must contain helpful data
and information from the customers’ perspectives,
not the sellers’ perspectives, about what benefits the
buyer pool expects from the products and services be-
ing marketed. The system also must contain informa-
tion about how the customers evaluate their purchases
after use. Thus, market research must become part of
the information base including customers’ reactions
to e-commerce efforts. The information base includes
primary research to determine the customers’ per-
ceptions—the customers’ viewpoints and opinions
about the marketing communications, product/ser-
vices, price, and place.

E-commerce marketing and advertising efforts are
geared toward building relationships with current cus-
tomers. It is easier and less expensive to sell more to
an existing customer than to obtain a new customer.
Many business relationships, therefore, do not end
with the transaction itself but are built on establishing
strong relationships with the customers that extend to
after sale services and feedback. It is essential that the
information system includes methods to track after
sale customer satisfaction and relationships. The sys-
tem also should incorporate schedules for recontact-
ing customers about the company, activities, products
and service offerings, rewards to present customers,
etc. In this way, advertising can serve as a reminder to
the customers about the company and its offerings.
An organization considering marketing and advertis-
ing through e-commerce may find the Cisco Internet
Quotient Test helpful in assessing its ability of man-
aging customer relations for e-commerce buyers.

Organizations advertising and marketing through
e-commerce offer various services to customers in or-
der to build relationships. A greeting card or gift
seller could provide reminders of birthdays, anniver-
saries, and other special days. Reminders of mainte-
nance needed could be provided to a purchaser of
computer equipment and/or vehicles. New product
information can be regularly e-mailed to present cus-
tomers or posted on the web site. These are just a few
of the ways in which e-commerce can be used to es-
tablish relationships. The information supporting
these activities linking the product/service order to
the customers must be considered concurrent to the
advertising and promotion strategies and integrated
into the support system.

II. MECHANICS OF ADVERTISING AND
MARKETING FOR E-COMMERCE

A. Advertising and Buying Time
and Space for E-Commerce

Ways to advertise and market using e-commerce are
limited only by existing technology. Today’s technol-
ogy offers web sites, banners, buttons, sponsorships,
and interstitials. The web site is a storefront where
customers and prospects, shareholders, and other
stakeholders can discover more about the company,
what the company does and believes, and its product
and service offerings. Thus, the company may regard
the entire web site as an ad. Because this article as-
sumes the perspective of customers and potential buy-
ers of the firm’s products and services, product/ser-

26 Advertising and Marketing in Electronic Commerce

vice linkages and information inducing a sale are the
primary focus.

From a usage standpoint, clicking a banner sends
the user to the advertiser’s location on the Web. The
costs of banners vary depending on the number and
types of visitors the site attracts. A typical charge for
placing a simple banner ad is $10–$40 per thousand
viewers. The banner approach can be supplemented
by keyword purchases offered by most search engines.
If a user requests information under the keyword, the
seller’s ad will appear along with ads from any other
seller paying for the same keyword.

Buttons are less expensive than banners because
they are much smaller. They are about the size of an
icon. Software packages such as Java, Shockwave, Ac-
robat, and Enliven add motion and animation to the
buttons and banners. Search engines, like Excite and
Webcrawler, provide audio capabilities. Interactive
banners and buttons are available. Remember that
the banners and buttons should provide easy to use
links with the product/service information for the
customer pool.

Sponsorships of web pages are available to compa-
nies. For instance, IBM sponsors the Superbowl web
page. Because of the high costs of sponsorships, the
sponsors’ banners, buttons, and other information are
integrated with the web page messages and visuals.

Interstitials (sometimes called intermercials) are
emerging as an effective e-commerce technique.
These visuals and messages occur while the user down-
loads a site. Because they are more intrusive than but-
tons and banners, it is likely that usage will increase.

Spam, unsolicited e-mail to present and potential
customers, is another form of advertising that can
have less than positive effects. A number of e-mail
providers offer services to eliminate spam (junk) mes-
sages. Essentially, these services block any further con-
tact with the potential customers thus eliminating
these viewers from the contact pool. If an organiza-
tion wishes to engage in spam as a way of advertising,
access lists and networks can be obtained and incor-
porated into the information system.

The above techniques are offered as examples of
ways to guide buyers and potential target market cus-
tomers to the marketing information provided on-
line. The techniques do not represent an all-inclusive
use of advertising possibilities, search engine selec-
tion, and the e-commerce system which are beyond
the scope of this article. Once the user accesses the
site, the appropriate products/services and proper in-
formation and appeals must be conveyed to evoke a
purchase response. Also, customer relationships
should be solidified by the materials presented on-line.

The costs of using the various techniques to access
the marketing communications and the effectiveness
of the techniques should become vital parts of the
e-commerce information system for marketing and
advertising. Advertising on the Web emerged in the
last half of the 1990’s. Since on-line advertising is rel-
atively new, there still are many questions about the
costs associated with e-commerce.

A usual billing technique is cost per thousand based
upon the number of page requests for a banner ad. If
specific target markets are sought by purchasing space
in the search engine’s categories and subcategories
(finance, games, etc.), various charges result depend-
ing on the category and tier. Click-throughs are less
popular ways of billing. A user actually clicking on the
banner to visit the advertiser’s home page is a click-
through. Ad networks allow pooling web pages for ad
placement but costs are difficult to calculate and ver-
ify by the advertiser. Also, various discounts may be
negotiated.

In addition to the costs of advertising on-line, the
costs of designing and producing the home page and
other pages, maintaining the pages, insuring currency
and accuracy of information, and establishing the
proper linkages should be included in the informa-
tion system for e-commerce. For example, a profes-
sional Web page designer may charge $300–1500 de-
pending on the extent of information and complexity
of the page(s). Gathering and accessing information
about on-line service suppliers, costs, and media ef-
fectiveness is another consideration. These costs in-
clude, but are not limited to, home page design and
updates, directory service, networking, and newslet-
ters mailed or emailed to online customers. Typical
costs can be quite low for less complex online adver-
tisers: $475 for one year including Internet hosting
fees, web page design, registration of the web site with
various web indexes, and monthly updates. Larger
and more complex site charges could be $995 for 6
pages to about $2395 for 20 pages, with service
provider fees ranging between $35–55 per month, do-
main registration of $100, plus setup fees.

B. Service Providers, Software,
Data Bases, and Tracking

A complete listing of various types of service providers
and databases is extensive. Therefore, the illustrations
given here are intended to stimulate further explo-
ration of the topic on the part of the reader. Search en-
gines such as Yahoo, AOL.com, Excite Network, Lycos,
HotBot, and Netscape are e-commerce facilitators.

Advertising and Marketing in Electronic Commerce 27

These companies (publishers) also provide demo-
graphic and other information allowing the market-
ing organization to track visitors to various web-sites
(www.relevantknowledge.com). An organization must
advertise its web site to web search engines that index
the Web. Submitit! (http://www.submit-it.com) and
All4oneSubmission Machine (http://www.aall4one.
com/all4submit/) are examples of ways to advertise
the organization’s services to the search engine
providers. The web site is registered with the most im-
portant indexes.

New software developments can also assist firms in
their marketing and advertising efforts. For example,
OnDisplay provides infrastructure software to build
supply and revenue channels; engage and retain cus-
tomers; and open on-line trading network partners,
distributors, and suppliers. An e-commerce develop-
ment platform that allows on-line retailers to promote
products to customers is Art Technology Group Inc.
(ATG). A key feature of this platform is the ability to
collect information on individual customers and use
this information to create marketing rules based upon
their shopping patterns.

Establishing links to important industry sites (free
or paid for) are essential for the success of
e-commerce advertising and marketing strategies. Ob-
taining listings of trade association members can be a
starting point for establishing these linkages. Obtain
targeted mailing lists and news groups by using ser-
vices such as Dejanews (http://www.deganews.com) to
find appropriate sources. Consider joining a shop-
ping mall. For a detailed listing of Banner Exchange
Programs see http://bannertips.com/exchangenet-
works.shmtl. Media brokers provide appropriate and
cost-effective locations for placing banner ads espe-
cially helpful to boosting on-line sales for well-known
branded products and services.

General information about the Internet demo-
graphics and usage is available from Nua Internet
Surveys (www.nua.ie), including research reports and
demographic surveys produced by major research
companies. Another source information about demo-
graphics, and other aspects of the Internet (surveys,
statistical sources, articles, and reports) is www.tele-
port.com. Additional general statistical information
about the Internet usage can be accessed at the fol-
lowing web site: www.marketinginc.com. For specific
information about visitors to individual web sites, one
source of information can be found at http://geoci-
ties.yahoo.com/home.

Methods for tracking and evaluating the success of
on-line marketing and advertising efforts should be
built into the information system. A standardized sys-

tem for tracking the ads is lacking. Some basic track-
ing issues that should be considered are: Do potential
and present customers see the ads?; how effective are
the ads? Simply counting the advertising exposures
(hits) from web pages is not a satisfactory way of eval-
uating the effectiveness of the exposure. A more fun-
damental question is does the advertising evoke the
desired response, like an order, an inquiry, or provide
additional customer satisfaction?

Tracking considerations when establishing an in-
formation system include:

1. Who will provide tracking information
2. What is the cost of obtaining tracking

information
3. What type of information will be used for

tracking
• Number of repeat visitors
• Number and frequency of repeat visitors
• Location of site prior to visit (search engine

used, etc.)
• Length of visit
• Pages visited
• Items examined by visitors
• Domain names of visitors
• Geographic location of visitors
• Purchases made by visitors
• Inquiries made by visitors

According to the Internet Advertising Bureau
(IAB), ad requests can be measured. An ad request is
the opportunity to offer the advertisement to a web
site visitor. When the user loads a web page contain-
ing ads, the browser pulls the ad from the server. The
ads appear as banners, buttons, or interstials. The
number of ad requests generated can be converted to
standard cost per thousand measures. However, an ad
request is no assurance that the user actually reads
the materials or pursues further linkages.

The click rate is a more refined measure indicating
that the viewer actually clicks the linkage to another
web page. The click rate is the number of clicks on an
ad divided by the number of ad requests. It is used to
evaluate the frequency with which users try to obtain
additional information about a service or product.
However, the click rate still does not measure whether
or not a user ever sees the ad or retains the message
in a positive way.

Cookies are pieces of information that record a
user’s activities. Leading browsers, like Netscape Nav-
igator and Microsoft Internet Explorer, support cook-
ies. The use of cookies enables tracking of user
demographics and preferences. Internet tracking,

28 Advertising and Marketing in Electronic Commerce

profile, and/or rating services are provided by Inter-
net Profiles Corp. (I-PRO) in partnership with A. C.
Nielson, Media Metrix, BPA Interactive, and Relevant
Knowledge. Or, organizations can build their own
tracking devices into the information system. The
tracking devices and costs must be factored into the
information support systems.

III. IDENTIFYING OPPORTUNITIES
AND PROBLEMS

There are many advantages to organizations resulting
from Internet advertising and marketing. Among the
advantages are

• An interactive marketing and advertising medium
• Accessibility from around the world
• Immediate response
• Selective targeting
• Reaching affluent, sophisticated users
• Ability to reach organizational users
• Providing detailed information
• Replacing brick-and-mortar operations
• Constant technological advances

Likewise, there are many disadvantages cited for
Internet marketing efforts:

• Unclear definition about the purpose of using on-
line advertising and marketing strategies

• Security and privacy risks
• Lack of knowledge and standards for measuring

advertising effectiveness
• Costs of targeting specific markets
• Other costs associated with on-line marketing
• Inappropriately placed ads
• Inability to fill orders and deliver goods as

promised
• Geographic limitations according to economic

development and infrastructure of various
countries

• Spamming (the on-line equivalent to junk mail)
• Ever-changing technology

There are many issues connected to e-commerce
that influence information systems designed to sup-
port marketing and advertising activities. Organiza-
tions need to consider the opportunities and prob-
lems associated with e-commerce marketing and the
extent to which the information systems should ac-
commodate the opportunities and risks involved. For
a detailed listing of electronic resources for research-

ing and evaluating e-commerce activities, see Fletcher,
Moscove, and Corey. See Corey (1998) for a sampling
of web sites, e-mail services, and list servers that in-
fluence devising marketing and advertising and
e-commerce strategies for urban regions derived from
a comparative analysis of information technology pol-
icy for various locations.

IV. NEW DEVELOPMENTS

The technology of e-commerce is dynamic, expand-
ing exponentially. In fact, technology is advancing so
rapidly that there are few predictions about the final
outcome. A few trends that warrant mention are

1. Wireless technology including handheld devices.
Wireless devices connecting “to the Internet will
increase 728% . . . That’s an increase from 7.4
million United States users in 1999 to 61.5
million users in 2003.”

2. Mobile commerce. Mobile commerce negating the
necessity for PCs is very popular in Japan and
countries where mobile phone usage and
handheld devices often surpass PC usage.

3. Broadband technologies. Improvements in
bandwidth technology increase the speed with
which content can be delivered across a network.

4. Push technology. Push technology allows messages
to be delivered to web users of e-mail and other
services for example. Often, spamming has
undesirable results.

The emergence of new technology and techniques
for advertising and marketing for e-commerce and
the absence of industry standards make it impossible
to predict the final structure of information systems
supporting such activities. However, the technological
changes do present exciting challenges for organiza-
tions involved in or initiating e-commerce activities.
The issues raised in this article are not intended to be
all inclusive; they are intended to stimulate further
thought and action by organizations building infor-
mation systems to support e-commerce advertising
and marketing strategies.

SEE ALSO THE FOLLOWING ARTICLES

Business-to-Business Electronic Commerce • Electronic Com-
merce • Electronic Commerce, Infrastructure for • Enterprise
Computing • Marketing • Sales • Service Industries, Elec-
tronic Commerce for

Advertising and Marketing in Electronic Commerce 29

BIBLIOGRAPHY

Arens, W. F. (1999). Contemporary advertising, 7th Edition, pp.
515–523. New York: Irwin/McGraw-Hill.

Beck, R. (July 1999). Competition for cybershoppers on rise, p.
E1. Bakersfield Californian. Bakersfield, CA.

Cisco. (June 2000). Cisco internet quotient test. www.cisco.
com/warp/public/750/indicator/quiz.html.

Corey, K. E. (1998). Information technology and telecommu-
nications policies in southeast Asian development: Cases in
vision and leadership. The naga awakens: Growth and change
in southeast Asia, pp. 145–200. Singapore: Times Academic
Press.

Fletcher, R. G., and Moscove, B. J. (February 2000). E-commerce

and regional science. A Working Paper. Western Regional Sci-
ences Association Conference. Kauai, Hawaii.

Fletcher, R. G., Moscove, B. J., and Corey, K. E. (2001). Elec-
tronic commerce: planning for successful urban and re-
gional development. International urban settings: Lessons of
success, pp. 431–467. Amsterdam: Elsevier Publishers.

Greenstein, M., and Feinman, T. M. (2000). Electronic commerce;
security, risk management and control. pp. 384–385. New York:
Irwin/McGraw-Hill.

ISP-Planet Staff. (February 2000). Wireless to outstrip wired net
access. E-mail: townsnda@Yahoo.com.

Norris, M., West, S., and Gaughan, K. (May 2000). Ebusiness es-
sentials, pp. 252–254. New York: John Wiley & Sons.

Quain, J. R., (1988). Success is a repeat visitor. Fast Company,
No. 15, p. 194.

30 Advertising and Marketing in Electronic Commerce

Artificial Intelligence Programming
Günter Neumann
German Research Center for Artificial Intelligence

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 31

I. ARTIFICIAL INTELLIGENCE PROGRAMMING LANGUAGES
II. FUNCTIONAL PROGRAMMING

III. FUNCTIONAL PROGRAMMING IN LISP

IV. LOGICAL PROGRAMMING IN PROLOG
V. OTHER PROGRAMMING APPROACHES

GLOSSARY

clauses Prolog programs consist of a collection of
statements, also called clauses, which are used to
represent both data and programs.

higher order function A function definition which al-
lows functions as arguments or returns a function
as its value.

lists Symbol structures are often represented using
the list data structure, where an element of a list
may be either a symbol or another list. Lists are the
central structure in Lisp and are used to represent
both data and programs.

recursion An algorithmic technique where, in order
to accomplish a task, a function calls itself with
some part of the task.

symbolic computation Artificial intelligence pro-
gramming involves (mainly) manipulating symbols
and not numbers. These symbols might represent
objects in the world and relationships between
those objects. Complex structures of symbols are
needed to capture our knowledge of the world.

term The fundamental data structure in Prolog is the
term which can be a constant, a variable, or a struc-
ture. Structures represent atomic propositions of
predicate calculus and consist of a functor name
and a parameter list.

PROGRAMMING LANGUAGES IN ARTIFICIAL INTEL-
LIGENCE (AI) are the major tools for exploring and
building computer programs that can be used to sim-
ulate intelligent processes such as learning, reasoning,

and understanding symbolic information in context.
Although in the early days of computer language de-
sign the primary use of computers was for performing
calculations with numbers, it was found out quite soon
that strings of bits could represent not only numbers
but also features of arbitrary objects. Operations on
such features or symbols could be used to represent
rules for creating, relating, or manipulating symbols.
This led to the notion of symbolic computation as an
appropriate means for defining algorithms that
processed information of any type and thus could be
used for simulating human intelligence. Soon it turned
out that programming with symbols required a higher
level of abstraction than was possible with those pro-
gramming languages which were designed especially
for number processing, e.g., Fortran.

I. ARTIFICIAL INTELLIGENCE
PROGRAMMING LANGUAGES

In AI, the automation or programming of all aspects of
human cognition is considered from its foundations in
cognitive science through approaches to symbolic and
subsymbolic AI, natural language processing, computer
vision, and evolutionary or adaptive systems. It is in-
herent to this very complex problem domain that in
the initial phase of programming a specific AI problem
it can only be specified poorly. Only through interac-
tive and incremental refinement does more precise
specification become possible. This is also due to the
fact that typical AI problems tend to be very domain
specific; therefore, heuristic strategies have to be

developed empirically through generate-and-test ap-
proaches (also known as rapid proto-typing). In this way,
AI programming notably differs from standard soft-
ware engineering approaches where programming usu-
ally starts from a detailed formal specification. In AI
programming, the implementation effort is actually
part of the problem specification process.

Due to the “fuzzy” nature of many AI problems, AI
programming benefits considerably if the programming
language frees the AI programmer from the constraints
of too many technical constructions (e.g., low-level con-
struction of new data types, manual allocation of mem-
ory). Rather, a declarative programming style is more
convenient using built-in, high-level data structures (e.g.,
lists or trees) and operations (e.g., pattern matching) so
that symbolic computation is supported on a much more
abstract level than would be possible with standard im-
perative languages such as Fortran, Pascal, or C. Of
course, this sort of abstraction does not come for free,
since compilation of AI programs on standard von Neu-
mann computers cannot be done as efficiently as for im-
perative languages. However, once a certain AI problem
is understood (at least partially), it is possible to refor-
mulate it in the form of detailed specifications as the ba-
sis for reimplementation using an imperative language.

From the requirements of symbolic computation
and AI programming, two new basic programming
paradigms emerged as alternatives to the imperative
style: the functional and the logical programming styles.
Both are based on mathematical formalisms, namely,
recursive function theory and formal logic. The first prac-
tical and still most widely used AI programming lan-
guage is the functional language Lisp developed by
John McCarthy in the late 1950s. Lisp is based on
mathematical function theory and the lambda ab-
straction. A number of important and influential AI
applications have been written in Lisp, so we will de-
scribe this programming language in some detail in
this article. During the early 1970s, a new program-
ming paradigm appeared, namely, logic programming
on the basis of predicate calculus. The first and still
most important logic programming language is Pro-
log, developed by Alain Colmerauer, Robert Kowalski,
and Phillippe Roussel. Problems in Prolog are stated
as facts, axioms, and logical rules for deducing new
facts. Prolog is mathematically founded on predicate
calculus and the theoretical results obtained in the
area of automatic theorem proving in the late 1960s.

II. FUNCTIONAL PROGRAMMING

A mathematical function is a mapping of one set
(called the domain) to another (called the range). A

function definition is the description of this mapping,
either explicitly by enumeration or implicitly by an
expression. The definition of a function is specified
by a function name followed by a list of parameters in
parenthesis followed by the expression describing the
mapping, e.g., CUBE(X) � X � X � X, where X is a real
number. Alonso Church introduced the notation of
nameless functions using the lambda notation. A
lambda expression specifies the parameters and the
mapping of a function using the lambda (�) operator,
e.g., �(X)X � X � X. It is the function itself, so the no-
tation of applying the example nameless function to a
certain argument is, for example, (�(X)X � X � X)(4).

Programming in a functional language consists of
building function definitions and using the computer
to evaluate expressions, i.e., function application with
concrete arguments. The major programming task is
then to construct a function for a specific problem by
combining previously defined functions according to
mathematical principles. The main task of the com-
puter is to evaluate function calls and to print the re-
sulting function values. In this way the computer is
used like an ordinary pocket computer, but at a much
more flexible and powerful level. A characteristic fea-
ture of functional programming is that if an expres-
sion possesses a well-defined value, then the order in
which the computer performs the evaluation does not
affect the result of the evaluation. Thus, the result of
the evaluation of an expression is just its value. This
means that in a pure functional language no side ef-
fects exist. Side effects are connected to variables that
model memory locations. Thus, in a pure functional
programming language no variables exist in the sense
of imperative languages. The major control flow meth-
ods are recursion and conditional expressions. This is
quite different from imperative languages, in which
the basic means for control are sequencing and itera-
tion. Functional programming also supports the spec-
ification of higher order functions. A higher order
function is a function definition which allows func-
tions as arguments or returns a function as its value.

All these aspects together, but especially the latter,
are major sources of the benefits of functional pro-
gramming style in contrast to imperative program-
ming style, viz. that functional programming provides
a high-level degree of modularity. When defining a
problem by dividing it into a set of subproblems, a
major issue concerns the ways in which one can glue
the (sub) solutions together. Therefore, to increase
ones ability to modularize a problem conceptually,
one must provide new kinds of glue in the program-
ming language—a major strength of functional
programming.

32 Artificial Intelligence Programming

III. FUNCTIONAL PROGRAMMING IN LISP

Lisp is the first functional programming language. It
was invented to support symbolic computation using
linked lists as the central data structure (Lisp stands
for List processor). John McCarthy noticed that the con-
trol flow methods of mathematical functions—recur-
sion and conditionals—are appropriate theoretical
means for performing symbolic computations. Fur-
thermore, the notions of functional abstraction and
functional application defined in lambda calculus pro-
vide for the necessary high-level abstraction required
for specifying AI problems.

Lisp was invented by McCarthy in 1958, and a first
version of a Lisp programming environment was avail-
able in 1960 consisting of an interpreter, a compiler,
and mechanisms for dynamic memory allocation and
deallocation (known as garbage collection). A year later
the first language standard was introduced, named
Lisp 1.5. Since then a number of Lisp dialects and
programming environments have been developed,
e.g., MacLisp, FranzLisp, InterLisp, Common Lisp,
and Scheme. Although they differ in some specific de-
tails, their syntactic and semantic core is basically the
same. It is this core which we wish to introduce in this
article. The most widely used Lisp dialects are Com-
mon Lisp and Scheme. In this article we have chosen
Common Lisp to present the various aspects of Lisp
with concrete examples. The examples, however, are
easily adaptable to other Lisp dialects.

A. The Syntax and Semantics of Lisp

1. Symbolic Expressions

The syntactic elements of Lisp are called symbolic ex-
pressions (also known as s-expressions). Both data and
functions (i.e., Lisp programs) are represented as s-
expressions, which can be either atoms or lists.

Atoms are word-like objects consisting of sequences
of characters. Atoms can further be divided into dif-
ferent types depending on the kind of characters which
are allowed to form an atom. The main subtypes are

• Numbers: 1 2 3 4 –4
3.14159265358979 –7.5 6.02E�23

• Symbols: Symbol Sym23 another-one t
false NIL BLUE

• Strings: ”This is a string” ”977?”
”setq” ”He said: \”I’m here.\” ”

Note that although a specific symbol such as BLUE is
used because it has a certain meaning for the pro-

grammer, for Lisp it is just a sequence of letters or a
symbol.

Lists are clause-like objects. A list consists of an
open left round bracket (followed by an arbitrary
number of list elements separated by blanks and a clos-
ing right round bracket). Each list element can be ei-
ther an atom or a list. Here are some examples of
lists:

(This is a list) ((this)((too))) ()
(((((((())))))))

(a b c d) (john mary tom) (loves
john ?X)

(* (+ 3 4) 8) (append (a b c) (1 2
3))

(defun member (elem list)
(if (eq elem (first list)) T

(member elem (rest list))))

Note that in most examples the list elements are
lists themselves. Such lists are also called nested lists.
There is no restriction regarding the depth of the
nesting. The examples also illustrate one of the
strengths of Lisp: very complex representations of ob-
jects can be written with minimal effort. The only
thing to watch for is the right number of left and
right round brackets. It is important to note that the
meaning associated with a particular list representa-
tion or atom is not “entered” into the list representa-
tion. This means that all s-expressions (as described
above) are syntactically correct Lisp programs, but
they are not necessarily semantically correct programs.

2. Semantics

The core of every Lisp programming system is the in-
terpreter whose task is to compute a value for a given s-
expression. This process is also called evaluation. The
result or value of an s-expression is also an s-expres-
sion which is returned after the evaluation is com-
pleted. Note that this means that Lisp actually has op-
erational semantics, but with a precise mathematical
definition derived from recursive function theory.

a. READ-EVAL-PRINT LOOP

How can the Lisp interpreter be activated and used
for evaluating s-expressions and therefore for run-
ning real Lisp programs? The Lisp interpreter is ac-
tually also defined as a function usually named EVAL
and is part of any Lisp programming environment
(such a function is called a built-in function). It is em-
bedded into a Lisp system by means of the so-called
read-eval-print loop, where an s-expression entered by
the user is first read into the Lisp system (READ is also
a built-in function). Then the Lisp interpreter is called

Artificial Intelligence Programming 33

via the call of EVAL to evaluate the s-expression, and
the resulting s-expression is returned by printing it to
the user’s device (not surprisingly calling a built-in
function PRINT). When the Lisp system is started on
the computer, this read-eval-print loop is automati-
cally started and signaled to the user by means of a
specific Lisp prompt sign starting a new line. In this
article we will use the question mark (?) as the Lisp
prompt. For example,

? (+ 3 4)
7

means that the Lisp system has been started and the
read-eval-print loop is activated. The s-expression
(� 3 4) entered by a Lisp hacker is interpreted by the
Lisp interpreter as a call of the addition function and
prints the resulting s-expression 7 at the beginning of
a new line.

b. EVALUATION

The Lisp interpreter operates according to the fol-
lowing three rules:

1. Identity: A number, a string, or the symbols T
and NIL evaluate to themselves. This means that
the value of the number 3 is 3 and the value of
“house” is “house.” The symbol T returns T,
which is interpreted to denote the true value,
and NIL returns NIL meaning false.

2. Symbols: The evaluation of a symbol returns the
s-expression associated to it (how this is done will
be shown below). Thus, if we assume that the
symbol *NAMES* is associated to the list (JOHN
MARY TOM), then evaluation of *NAMES* yields
that list. If the symbol COLOR is associated with
the symbol GREEN, then GREEN is returned as the
value of COLOR. In other words, symbols are
interpreted as variables bound to some values.

3. Lists

Every list is interpreted as a function call. The first el-
ement of the list denotes the function which has to be
applied to the remaining (potentially empty) elements
representing the arguments of that function. The fact
that a function is specified before its arguments is also
known as prefix notation. It has the advantage that func-
tions can simply be specified and used with an arbi-
trary number of arguments. The empty list () has the
s-expression NIL as its value. Note that this means
that the symbol NIL actually has two meanings: one
representing the logical false value and one repre-
senting the empty list. Although this might seem a bit

odd, in Lisp there is actually no problem in identify-
ing which sense of NIL is used.

In general, the arguments are evaluated before the
function is applied to the values of the arguments.
The order of evaluation of a sequence of arguments
is left to right. An argument may represent an atom
or a list, in which case it is also interpreted as a func-
tion call and the Lisp interpreter is called for evalu-
ating it. For example, consider the following evalua-
tion of a function in the Lisp system:

? (MAX 4 (MIN 9 8) 7 5)
8

Here, the arguments are 4, (MIN 9 8), 7, and 5, which
are evaluated in that order before the function with
the name MAX is applied on the resulting argument
values. The first argument 4 is a number so its value
is 4. The second argument (MIN 9 8) is itself a func-
tion call. Thus, before the third argument can be
called, (MIN 9 8) has to be evaluated by the Lisp in-
terpreter. Note that because we have to apply the Lisp
interpreter for some argument during the evaluation
of the whole function call, it is also said that the Lisp
interpreter is called recursively. The Lisp interpreter
applies the same steps, so the first argument 9 is eval-
uated before the second argument 8. Application of
the function MIN then yields 8, assuming that the
function is meant to compute the minimum of a set
of integers. For the outermost function MAX, this means
that its second argument evaluates to 8. Next the ar-
guments 7 and 5 are evaluated, which yields the val-
ues 7 and 5. Now, the maximum function named MAX
can be evaluated, which returns 8. This final value is
then the value of the whole function call.

a. QUOTING

Since the Lisp interpreter always tries to identify a
symbol’s value or interprets a list as a function call,
how can we actually treat symbols and lists as data? For
example, if we enter the list (PETER WALKS HOME),
then the Lisp interpreter will immediately return an
error saying something like ERROR: UNKNOWN FUNC-
TION PETER (the Lisp interpreter should be clever
enough to first check whether a function definition
exists for the specified function name before it tries to
evaluate each argument). Or, if we simply enter HOUSE,
then the Lisp interpreter will terminate with an error
such as ERROR: NO VALUE BOUND TO HOUSE. The
solution to this problem is quite easy: since every first
element of a list is interpreted as a function name,
each Lisp system comes with a built-in function QUOTE
which expects one s-expression as argument and re-
turns this expression without evaluating it. For exam-

34 Artificial Intelligence Programming

ple, for the list (QUOTE (PETER WALKS HOME))
QUOTE simply returns the value (PETER WALKS
HOME), and for (QUOTE HOUSE) it returns HOUSE.
Since the function QUOTE is used very often, it can
also be expressed by the special character ’. There-
fore, for the examples above we can equivalently spec-
ify ’(PETER WALKS HOME) and ’HOUSE.

b. PROGRAMS AS DATA

Note that QUOTE also enables us to treat function
calls as data by specifying, for example, (QUOTE (MAX
4 (MIN 9 8) 7 5)) or ’(MAX 4 (MIN 9 8) 7 5). We al-
ready said that the Lisp interpreter is also a built-in
unary function named EVAL. It explicitly forces its ar-
gument to be evaluated according to the rules men-
tioned above. In some sense, it can be seen as the op-
posite function to QUOTE. Thus, to explicitly require
that a list specified as data to the Lisp system be in-
terpreted as a function call, we can specify (EVAL
’(MAX 4 (MIN 9 8) 7 5)), which returns the value 8 as
described above. In the same way, specifying (EVAL
’(PETER WALKS HOME)) will cause a Lisp error be-
cause Lisp tries to call a function PETER.

The main advantage of being able to treat programs
as data is that we can define Lisp programs (functions)
which are able to construct or generate programs such
that they first build the corresponding list representa-
tion and then explicitly call the Lisp interpreter using
EVAL in order to evaluate the just created list as a
function. It is not surprising that due to this charac-
teristic Lisp is still the dominant programming lan-
guage in the AI area of genetic programming.

c. ASSIGNING VALUES TO SYMBOLS

When programming real-life practical programs,
one often needs to store values computed by some
program to a variable to avoid costly recomputation
of that value if it is needed in another program at
some later time. In a purely functional version of Lisp,
the value of a function only depends on the function
definition and on the value of the arguments in the
call. In order to make Lisp a practical language (prac-
tical at least in the sense that it can run efficiently on
von Neumann computers), we need a way to assign
values to symbols.

Common Lisp comes with a built-in function called
SETQ. SETQ expects two arguments: the symbol
(called the variable) to which a value is bound and an
s-expression which has to provide the value. The Lisp
interpreter treats the evaluation of SETQ in a special
way, such that it explicitly supresses evaluation of
SETQ’s first argument (the variable), but rather binds
the value of SETQ’s second argument to the variable

(to understand how Lisp internally binds a value to a
symbol would require too many technical details
which we cannot go into in this short article). The
value of the second argument of SETQ is returned as
the value of SETQ. Here are some examples:

? COLOR
ERROR: UNBOUND SYMBOL COLOR
? (SETQ COLOR ‘GREEN)
GREEN
? (SETQ MAX (MAX 3 2.5 1))
3

Note that SETQ actually changes the status of the
Lisp interpreter because the next time the same vari-
able is used, it has a value and therefore the Lisp in-
terpreter will be able to return it. If this effect did not
occur, then the Lisp interpreter would signal an error
because that symbol would not be bound (cf. step 2 of
the Lisp interpreter). Thus, it is also said that SETQ
produces a side effect because it dynamically changes
the status of the Lisp interpreter. When making use of
SETQ one should, however, be aware of the fact that
one is leaving the proper path of semantics of pure
Lisp. SETQ should therefore be used with great care.

B. The List Data Type

Programming in Lisp actually means defining func-
tions that operate on lists, e.g., create, traverse, copy,
modify, and delete lists. Since this is central to Lisp,
every Lisp system comes with a basic set of primitive
built-in functions that efficiently support the main list
operations. We will briefly introduce the most impor-
tant ones now.

1. Type Predicate

First, we have to know whether a current s-expression
is a list or not (i.e., an atom). This job is accomplished
by the function LISTP, which expects any s-expression
EXPR as an argument and returns the symbol T if
EXPR is a list and NIL if it is otherwise. Examples are
[we will use the right arrow (⇒) for pointing to the
result of a function call] the following:

(LISTP ’(1 2 3)) ⇒ T
(LISTP ’()) ⇒ T
(LISTP ’3) ⇒ NIL

2. Selection of List Elements

Two basic functions exist for accessing the elements
of a list: CAR and CDR. Both expect a list as their

Artificial Intelligence Programming 35

argument. The function CAR returns the first element
in the list or NIL if the empty list is the argument,
and the function CDR returns the same list from which
the first element has been removed or NIL if the
empty list was the argument. For example,

(CAR ’(A B C)) ⇒ A (CDR ’(A B C))
⇒ (B C)

(CAR ’()) ⇒ NIL (CDR ’(A)) ⇒
NIL

(CAR ’((A B) C)) ⇒ (A B) (CDR
’((A B) C)) ⇒ C

By means of a sequence of CAR and CDR function
calls, it is possible to traverse a list from left to right
and from outer to inner list elements. For example,
during evaluation of

(CAR (CDR ’(SEE THE QUOTE)))

the Lisp interpreter will first evaluate the expression

(CDR ’(SEE THE QUOTE))

which returns the list (THE QUOTE), which is then
passed to the function CAR which returns the symbol
THE. Here are some further examples:

(CAR (CDR (CDR ’(SEE THE QUOTE))))
⇒ QUOTE

(CAR (CDR (CDR (CDR ’(SEE THE
QUOTE))))) ⇒ NIL

(CAR (CAR ’(SEE THE QUOTE))) ⇒ ???

What will happen during evaluation of the last exam-
ple? Evaluation of (CAR ’(SEE THE QUOTE)) returns
the symbol SEE. This is then passed as argument to
the outer call of CAR. However, CAR expects a list as
argument, so the Lisp interpreter will immediately
stop further evaluation with an error such as ERROR:
ATTEMPT TO TAKE THE CAR OF SEE WHICH
IS NOT LISTP.

A short historical note: the names CAR and CDR are
old fashioned because they were chosen in the first
version of Lisp on the basis of the machine code op-
eration set of the computer on which it was imple-
mented (CAR stands for “contents of address register”
and CDR stands for “contents of decrement register.”
In order to write more readable Lisp code, Common
Lisp comes with two equivalent functions, FIRST and
REST. We have used the older names here as it en-
ables reading and understanding of older AI Lisp code.

3. Construction of Lists

Analogously to CAR and CDR, a primitive function
CONS exists which is used to construct a list. CONS ex-

pects two s-expressions and inserts the first one as a
new element in front of the second one. Consider the
following examples:

(CONS ’A ’(B C)) ⇒ (A B C)
(CONS ’(A D) ’(B C)) ⇒ ((A D) B C)
(CONS (FIRST ’(1 2 3)) (REST ’(1 2
3))) ⇒ (1 2 3)

In principle, CONS together with the empty list suf-
fice to build very complex lists, for example,

(CONS ’A (CONS ’B (CONS ’C ’())))
⇒ (A B C)

(CONS ’A (CONS (CONS ’B (CONS ’C
’())) (CONS ’D ’()))) ⇒ (A (B C)
D)

However, since this is quite cumbersome work, most
Lisp systems come with a number of more advanced
built-in list functions. For example, the function LIST
constructs a list from an arbitrary number of
s-expressions, and the function APPEND constructs a
new list through concatenation of its arguments which
must be lists. EQUAL is a function which returns T if
two lists have the same elements in the same order,
otherwise it returns NIL. For example,

(LIST ’A ’B ’C) ⇒ (A B C) (LIST
(LIST 1) 2 (LIST 1 2 3)) ⇒ ((1)
2 (1 2 3))

(APPEND ’(1) (LIST 2)) ⇒ (1 2)
(APPEND ’(1 2) NIL ’(3 4)) ⇒ (1
2 3 4)

(EQUAL ’(A B C) ’(A B C)) ⇒ T
(EQUAL ’(A B C) ’(A C B)) ⇒ NIL

C. Defining New Functions

Programming in Lisp is done by defining new func-
tions. In principle this means specifying lists in a cer-
tain syntactic way. Analogously to the function SETQ,
which is treated in a special way by the Lisp inter-
preter, there is a special function DEFUN which is used
by the Lisp interpreter to create new function objects.
DEFUN expects as its arguments a symbol denoting
the function name, a (possibly empty) list of parameters
for the new function, and an arbitrary number of
s-expressions defining the body of the new function.
Here is the definition of a simple function named
MY-SUM which expects two arguments from which it
will construct the sum using the built-in function �:

(DEFUN MY-SUM (X Y)
(+ X Y))

36 Artificial Intelligence Programming

This expression can be entered into the Lisp sys-
tem in the same way as a function call. Evaluation of
a function definition returns the function name as
value, but will create a function object as side effect
and adds it to the set of function definitions known
by the Lisp system when it is started (which is at least
the set of built-in functions). Note that in this exam-
ple the body consists only of one s-expression. How-
ever, the body might consist of an arbitrary sequence
of s-expressions. The value of the last s-expression of
the body determines the value of the function. This
means that all other elements of the body are actually
irrelevant, unless they produce intended side effects.

The parameter list of the new function MY-SUM
tells us that MY-SUM expects exactly two s-expression
as arguments when it is called. Therefore, if you en-
ter (MY-SUM 3 5) into the Lisp system, the Lisp in-
terpreter will be able to find a definition for the spec-
ified function name and then process the given
arguments from left to right. When doing so, it binds
the value of each argument to the corresponding pa-
rameter specified in the parameter list of the function
definition. In our example, this means that the value
of the first argument 3 (which is also 3 since 3 is a
number which evaluates to itself) is bound to the pa-
rameter X. Next, the value of the second argument 5
is bound to the parameter Y. Because the value of an
argument is bound to a parameter, this mechanism is
also called CALL BY VALUE. After having found a
value for all parameters, the Lisp interpreter is able to
evaluate the body of the function. In our example,
this means that (� 3 5) will be called. The result of
the call is 8, which is returned as result of the call
(MY-SUM 3 5). After the function call is completed,
the temporary binding of the parameters X and Y are
deleted.

Once a new function definition has been entered
into the Lisp system, it can be used as part of the def-
inition of new functions in the same way as built-in
functions are used, as shown in the following example:

(DEFUN DOUBLE-SUM (X Y)
(+ (MY-SUM X Y) (MY-SUM X Y)))

which will double the sum of its arguments by calling
MY-SUM twice.

Here is another example of a function definition,
demonstrating the use of multiple s-expressions in
the function body:

(DEFUN HELLO-WORLD () (PRINT ”HELLO
WORLD!”) ’DONE)

This function definition has no parameter because
the parameter list is empty. Thus, when calling

(HELLO-WORLD), the Lisp interpreter will immedi-
ately evaluate (PRINT ”HELLO WORLD!”) and will
print the string “Hello World!” on your display as a
side effect. Next, it will evaluate the symbol ’DONE,
which returns DONE as result of the function call.

D. Defining Control Structures

Although it is now possible to define new functions by
combining built-in and user-defined functions, pro-
gramming in Lisp would be very tedious if it were not
possible to control the flow of information by means of
conditional branches perhaps iterated many times un-
til a stop criterion is fulfilled. Lisp branching is based
on function evaluation: control functions perform tests
on actual s-expressions and, depending on the results,
selectively evaluate alternative s-expressions.

The fundamental function for the specification of
conditional assertions in Lisp is COND. COND accepts
an arbitrary number of arguments. Each argument
represents one possible branch and is represented as
a list where the first element is a test and the re-
maining elements are actions (s-expressions) which
are evaluated if the test is fulfilled. The value of the
last action is returned as the value of that alternative.
All possible arguments of COND (i.e., branches) are
evaluated from left to right until the first branch is
positively tested. In that case the value of that branch
is the value of the whole COND function. This sounds
more complicated than it actually is. Let us consider
the following function VERBALIZE-PROP, which ver-
balizes a probability value expressed as a real number:

(DEFUN VERBALIZE-PROP (PROB-VALUE)
(COND ((> PROB-VALUE 0.75) ‘VERY-

PROBABLE)
((> PROB-VALUE 0.5)
’PROBABLE)

((> PROB-VALUE 0.25)
’IMPROBABLE)

(T ’VERY-IMPROBABLE)))

When calling (VERBALIZE-PROP 0.33), the actual
value of the argument is bound to the parameter PROB-
VALUE. Then COND is evaluated with that binding. The
first expression to be evaluated is ((� PROB-VALUE
0.75) ‘VERY-PROBABLE). � is a built-in predicate
which tests whether the first argument is greater than
the second argument. Since PROB-VALUE is 0.33, �
evaluates to NIL, which means that the test is not ful-
filled. Therefore, evaluation of this alternative branch
is terminated immediately, and the next alternative
((� PROB-VALUE 0.5) ’PROBABLE) is evaluated. Here

Artificial Intelligence Programming 37

the test function also returns NIL, so the evaluation
is terminated also. Next, ((� PROB-VALUE 0.25) ’IM-
PROBABLE) is evaluated. Applying the test function
now returns T, which means that the test is fulfilled.
Then all actions of this positively tested branch are
evaluated and the value of the last action is returned
as the value of COND. In our example, only the action
’IMPROBABLE has been specified, which returns the
value IMPROBABLE. Since this defines the value of
COND, and because the COND expression is the only ex-
pression of the body of the function VERBALIZE-
PROP, the result of the function call (VERBALIZE-
PROP 0.33) is IMPROBABLE. Note that if we enter
(VERBALIZE-PROP 0.1), the returned value is VERY-
IMPROBABLE because the test of the third alternative
will also fail and the branch (T ’VERY-IMPROBABLE)
has to be evaluated. In this case, the symbol T is used
as the test which always returns T, so the value of this
alternative is VERY-IMPROBABLE.

E. Recursive Function Definitions

The second central device for defining control flow in
Lisp is recursive function definitions. A function which
partially uses its definition as part of its own definition
is called recursive. Thus seen, a recursive definition is
one in which a problem is decomposed into smaller
units until no further decomposition is possible. Then
these smaller units are solved using known function
definitions, and the sum of the corresponding solu-
tions form the solution of the complete program. Re-
cursion is a natural control regime for data structures
which have no definite size, such as lists, trees, and
graphs. Therefore, it is particularly appropriate for
problems in which a space of states has to be searched
for candidate solutions.

Lisp was the first practical programming language
that systematically supported the definition of recur-
sive definitions. We will use two small examples to
demonstrate recursion in Lisp. The first example is
used to determine the length of an arbitrarily long
list. The length of a list corresponds to the number of
its elements. Its recursive function is as follows:

(DEFUN LENGTH (LIST)
(COND ((NULL LIST) 0)

(T (+ 1 (LENGTH (CDR
LIST))))))

When defining a recursive definition, we have to
identify the base cases, i.e., those units which cannot
be decomposed any further. Our problem size is the
list. The smallest problem size of a list is the empty

list. Thus, the first thing we have to do is to specify is
a test for identifying the empty list and to define what
the length of the empty list should be. The built-in
function NULL tests whether a list is empty, in which
case it returns T. Since the empty list is a list with no
elements, we define the length of the empty list as 0.
The next thing to be done is to decompose the prob-
lem size into smaller units so that the same problem
can be applied to smaller units. Decomposition of a
list can be done by using the functions CAR and CDR,
which means that we have to specify what is to be
done with the first element of a list and the rest until
the empty list is found. Since we already have identi-
fied the empty list as the base case, we can assume
that decomposition will be performed on a list con-
taining at least one element. Thus, every time we are
able to apply CDR to get the rest of a list, we have
found one additional element which should be used
to increase the number of the already identified list
elements by 1. Making use of this function definition,
(LENGTH ’()) will immediately return 0, and if we call
(LENGTH ’(A B C)), the result will be 3, because
three recursive calls have to be performed until the
empty list can be determined.

As a second example, we consider the recursive de-
finition of MEMBER, a function which tests whether a
given element occurs in a given list. If the element is
indeed found in the list, it returns the sublist which
starts with the first occurrence of the found element.
If the element cannot be found, NIL is returned. The
following are example calls:

(MEMBER ’B ’(A F B D E B C)) ⇒
(B D E B C)

(MEMBER ’K ’(A F B D E B C)) ⇒
NIL

Similarly to the recursive definition of LENGTH, we
use the empty list as the base case. For MEMBER, the
empty list means that the element in question is not
found in the list. Thus, we have to decompose a list
until the element in question is found or the empty
list is determined. Decomposition is done using CAR
and CDR. CAR is used to extract the first element of a
list, which can be used to check whether it is equal to
the element in question, in which case we can directly
stop further processing. If it is not equal, then we
should apply the MEMBER function on the remaining
elements until the empty list is determined. Thus,
MEMBER can be defined as follows:

(DEFUN MEMBER (ELEM LIST)
(COND ((NULL LIST) NIL)

((EQUAL ELEM (CAR LIST))
LIST)

38 Artificial Intelligence Programming

(T (MEMBER ELEM (CDR
LIST)))))

F. Higher Order Functions

In Lisp, functions can be used as arguments. A func-
tion that can take functions as its arguments is called
a higher order function. There are a lot of problems
where one has to traverse a list (or a tree or a graph)
such that a certain function has to be applied to each
list element. For example, a filter is a function that ap-
plies a test to the list elements, removing those that
fail the test. Maps are functions which apply the same
function on each element of a list, returning a list of
the results. High-order function definitions can be
used for defining generic list traversal functions such
that they abstract away from the specific function used
to process the list elements.

In order to support high-order definitions, their is a
special function, FUNCALL, which takes as its argu-
ments a function and a series of arguments and applies
that function to those arguments. As an example of the
use of FUNCALL, we will define a generic function
FILTER which may be called in the following way:

(FILTER ’(1 3 -9 -5 6 -3) #’PLUSP)
⇒ (1 3 6)

PLUSP is a built-in function which checks whether a
given number is positive or not. If so, it returns that
number, otherwise NIL is returned. The special sym-
bol # is used to tell the Lisp interpreter that the argu-
ment value denotes a function object. The definition
of FILTER is as follows:

(DEFUN FILTER (LIST TEST)
(COND ((NULL LIST) LIST)

((FUNCALL TEST (CAR LIST))
(CONS (CAR LIST) (FILTER

(CDR LIST) TEST)))
(T (FILTER (CDR LIST)
TEST))))

If the list is empty, then it is simply returned. Other-
wise, the test function is applied to the first element
of the list. If the test function succeeds, CONS is used
to construct a result list using this element and all el-
ements that are determined during the recursive call
of FILTER using the CDR of the list and the test func-
tion. If the test fails for the first element, this element
is simply skipped by recursively applying FILTER on
the remaining elements, i.e., this element will not be
part of the result list. The filter function can be used
for many different test functions, e.g.,

(FILTER ’(1 3 A B 6 C 4) #’NUMBERP)
⇒ (1 3 6 4)

(FILTER ’(1 2 3 4 5 6) #’EVEN) ⇒
(2 4 6)

As another example of a higher order function de-
finition, we will define a simple mapping function,
which applies a function to all elements of a list and
returns a list of all values. If we call the function
MY-MAP, then the definition looks like the following:

(DEFUN MY-MAP (FN LIST)
(COND ((NULL LIST) LIST)

(T (CONS (FUNCALL FN (CAR
LIST)) (MY-MAP FN (CDR

LIST))))))

If a function DOUBLE exists which just doubles a num-
ber, then a possible call of MY-MAP could be

(MY-MAP #’DOUBLE ’(1 2 3 4)) ⇒ (2
4 6 8)

Often it is the case that a function should only be
used once. Thus, it would be quite convenient if we
could provide the definition of a function directly as
an argument of a mapping function. To do this, Lisp
supports the definition of LAMBDA expressions. We
have already informally introduced the notation of
LAMBDA expressions in Section II as a means of defin-
ing nameless or anonymous functions. In Lisp, LAMBDA
expressions are defined using the special form
LAMBDA. The general form of a LAMBDA expression is

(LAMBDA (parameter . . .)
body . . .)

A LAMBDA expression allows us to separate a function
definition from a function name. LAMBDA expressions
can be used in place of a function name in a FUN-
CALL, e.g., the LAMBDA expression for our function
DOUBLE may be

(LAMBDA (X) (+ X X))

For example, the above function call of MY-MAP can
be restated using the LAMBDA expression as follows:

(MY-MAP #’(LAMBDA (X) (+ X X)) ’(1
2 3 4) ⇒ (2 4 6 8)

A LAMBDA expression returns a function object which
is not bound to a function name. In the definition of
MY-MAP we used the parameter FN as a function name
variable. When evaluating the lambda form, the Lisp
interpreter will bind the function object to that func-
tion name variable. In this way, a function parameter
is used as a dynamic function name. The # symbol is
necessary to tell Lisp that it should not only bind a

Artificial Intelligence Programming 39

function object, but should also maintain the bind-
ings of the local and global values associated to the
function object. This would not be possible by simply
using the QUOTE operator alone (unfortunately, fur-
ther details cannot be given here due to the space
constraints).

G. Other Functional Programming
Languages Than Lisp

We have introduced Lisp as the main representative
functional programming language (especially the
widely used dialect Common Lisp) because it is still a
widely used programming language for a number of
AI problems such as Natural Language Understand-
ing, Information Extraction, Machine Learning, AI
planning, or Genetic Programming. Beside Lisp, a
number of alternative functional programming lan-
guages have been developed. We will briefly mention
two well-known members, viz. ML and Haskell.

Meta-Language (ML) is a static-scoped functional
programming language. The main differences to Lisp
are its syntax (which is more similar to that of Pascal)
and a strict polymorphic type system (i.e., using strong
types and type inference, which means that variables
need not be declared). The type of each declared
variable and expression can be determined at com-
pile time. ML supports the definition of abstract data
types, as demonstrated by the following example:

DATATYPE TREE = L OF INT
| INT * TREE * TREE;

which can be read as “every binary tree is either a leaf
containing an integer or it is a node containing an in-
teger and two trees (the subtrees).” An example of a
recursive function definition applied on a tree data
structure is shown in the following example:

FUN DEPTH(L _) = 1
| DEPTH(N(I,L,R)) =

1 + MAX(DEPTH L, DEPTH R);

The function DEPTHmaps trees to integers. The depth
of a leaf is 1 and the depth of any other tree is 1
plus the maximum of the depths of the left and right
subtrees.

Haskell is similar to ML: it uses a similar syntax, it
is also static scoped, and it makes use of the same type
inferencing method. It differs from ML in that it is
purely functional. This means that it allows no side ef-
fects and includes no imperative features of any kind,
basically because it has no variables and no assign-
ment statements. Furthermore, it uses a lazy evalua-

tion technique, in which no subexpression is evalu-
ated until its value is known to be required.

Lists are a commonly used data structure in Haskell.
For example, [1,2,3] is the list of three integers 1, 2,
and 3. The list [1,2,3] in Haskell is actually shorthand
for the list 1:(2:(3:[])), where [] is the empty list and
: is the infix operator that adds its first argument to
the front of its second argument (a list). As an exam-
ple of a user-defined function that operates on lists,
consider the problem of counting the number of ele-
ments in a list by defining the function LENGTH:

LENGTH :: [A] -> INTEGER
LENGTH [] = 0
LENGTH (X:XS) = 1 + LENGTH XS

which can be read as “The length of the empty list is
0, and the length of a list whose first element is X and
remainder is XS is 1 plus the length of XS.” In Haskell,
function invocation is guided by pattern matching. For
example, the left-hand sides of the equations contain
patterns such as [] and X:XS. In a function applica-
tion these patterns are matched against actual para-
meters ([] only matches the empty list, and X:XS will
successfully match any list with at least one element,
binding X to the first element and XS to the rest of
the list). If the match succeeds, the right-hand side is
evaluated and returned as the result of the applica-
tion. If it fails, the next equation is tried. If all equa-
tions fail, an error results.

This ends our short “tour de Lisp.” We were only
able to discuss the most important aspects of Lisp.
Readers interested in more specific details should
consult at least one of the books mentioned in the
Bibliography. The rest of this article will now be used
to introduce another programming paradigm widely
used in AI programming, namely, Prolog.

IV. LOGICAL PROGRAMMING IN PROLOG

In the 1970s an alternative paradigm for symbolic
computation and AI programming arose from the
success in the area of automatic theorem proving. No-
tably, the resolution proof procedure developed by
Robinson (1965) showed that formal logic, particu-
larly predicate calculus, could be used as a notation
for defining algorithms and, therefore, for perform-
ing symbolic computations. In the early 1970s, Prolog
(an acronym for Programming in Logic), the first
logical-based programming language, appeared. It
was developed by Alain Colmerauer, Robert Kowalski,
and Phillippe Roussel. Basically, Prolog consists of a
method for specifying predicate calculus propositions

40 Artificial Intelligence Programming

and a restricted form of resolution. Programming in
Prolog consists of the specification of facts about ob-
jects and their relationships and rules specifying their
logical relationships. Prolog programs are declarative
collections of statements about a problem because
they do not specify how a result is to be computed,
but rather define what the logical structure of a result
should be. This is quite different from imperative and
even functional programming, where the focus is on
defining how a result is to be computed. Using Prolog,
programming can be done at a very abstract level
quite close to the formal specification of a problem.
Prolog is still the most important logical program-
ming language. There are a number of commercial
programming systems on the market which include
modern programming modules, i.e., compiler, de-
bugger, and visualization tools. Prolog has been used
successfully in a number of AI areas such as expert
systems and natural language processing, but also in
such areas as relational database management systems
or education.

A. A Simple Prolog Program

Here is a very simple Prolog program consisting of
two facts and one rule:

scientist(gödel).
scientist(einstein).
logician(X) :- scientist(X).

The first two statements can be paraphrased as
“Gödel is a scientist” and “Einstein is a scientist.” The
rule statement says “X is a logician if X is a scientist.”
In order to test this program, we have to specify query
expressions (or theorems) which Prolog tries to an-
swer (or to prove) using the specified program. One
possible query is

?- scientist(gödel).

which can be verbalized as “Is Gödel a scientist?” Pro-
log, by applying its built-in proof procedure, will re-
spond with “yes” because a fact may be found which
exactly matches the query. Another possible query
verbalizing the question “Who is a scientist?” and ex-
pressed in Prolog as

?- scientist(X).

will yield the Prolog answer “X � gödel, X � ein-
stein.” In this case Prolog not only answers yes, but re-
turns all bindings of the variable X which it finds dur-
ing the successful proof of the query. As a further
example, we might also query “Who is a logician?” us-

ing the following Prolog query:

?- logician(X).

Proving this query will yield the same set of facts be-
cause of the specified rule. Finally, we might also spec-
ify the following query:

?- logician(mickey-mouse).

In this case Prolog will respond with “no.” Although
the rule says that someone is a logician if he or she is
also a scientist, Prolog does not find a fact saying that
Mickey Mouse is a scientist. Note, however, that Pro-
log can only answer relative to the given program,
which actually means “no, I couldn’t deduce the fact.”
This property is also known as the closed world as-
sumption or negation as failure. It means that Prolog as-
sumes that all knowledge that is necessary to solve a
problem is present in its database.

B. Prolog Statements

Prolog programs consist of a collection of statements,
also called clauses, which are used to represent both
data and programs. The dot symbol is used to termi-
nate a clause. Clauses are constructed from terms. A
term can be a constant (symbolic names that have to
begin with a lowercase letter, such as gödel or eIn-
Stein), a variable (symbols that begin with an up-
percase letter, such as X or Scientist), or a struc-
ture. Structures represent atomic propositions of
predicate calculus and consist of a functor name and
a parameter list. Each parameter can be a term, which
means that terms are recursive objects. Prolog distin-
guishes three types of clauses: facts, rules, and queries.
A fact is represented by a single structure, which is log-
ically interpreted as a simple true proposition. In the
simple example program above we already introduced
two simple facts. Here are some more examples:

male(john).
male(bill).
female(mary).
female(sue).
father(john, mary).
father(bill,john).
mother(sue,mary).

Note that these facts have no intrinsic semantics,
i.e., the meaning of the functor name father is not
defined. For example, applying common sense, we
may interpret it as “John is the father of Mary.” How-
ever, for Prolog, this meaning does not exist, it is just
a symbol.

Artificial Intelligence Programming 41

Rules belong to the next type of clauses. A rule
clause consists of two parts: the head which is a single
term and the body which is either a single term or a
conjunction. A conjunction is a set of terms separated
by the comma symbol. Logically, a rule clause is in-
terpreted as an implication such that if the elements
of the body are all true, then the head element is also
true. Therefore, the body of a clause is also denoted
as the if part and the head as the then part of a rule.
Here is an example for a set of rule clauses:

parent(X,Y) :- mother(X, Y).
parent(X,Y) :- father(X, Y).
grandparent(X,Z) :- parent(X,Y),

parent(Y,Z).

where the last rule can be read as “X is a grandparent
of Z, if X is a parent of Y and Y is a parent of Z.” The
first two rules say “someone is a parent if it is the father
or mother of someone else.” The reason we treat the
first two rules as a disjunction will become clear when
we introduce Prolog’s proof procedure. Before doing
this, we shall introduce the last type of clause, the query
clause (also called the goal clause). A query is used to
activate Prolog’s proof procedure. Logically, a query
corresponds to an unknown theorem. It has the same
form as a fact. In order to tell Prolog that a query has
to be proven, the special query operator ?- is usually
written in front of the query. In the simple Prolog pro-
gram introduced above, we have already seen an in-
formal description of how a query is used by Prolog.

C. Prolog’s Inference Process

Prolog’s inference process consists of two basic compo-
nents: a search strategy and a unifier. The search strat-
egy is used to search through the fact and rule database,
while unification is used for pattern matching and re-
turns the bindings that make an expression true.

The unifier is applied on two terms and tries to
combine them both to form a new term. If unification
is not possible, then unification is said to have failed.
If the two terms contain no variables, then unification
actually reduces to checking whether the terms are
equal. For example, unification of the two terms

father(john,mary) and
father(john,mary)

succeeds, whereas unification of the following term
pairs will fail:

father(X,mary) and father(john,sue)
sequence(a,b,c) and sequence(a,b)

If a term contains a variable (or more), then the uni-
fier checks whether the variable can be bound with
some information from the second term, however,
only if the remaining parts of the terms unify. For ex-
ample, for the following two terms:

father(X,mary) and father(john,mary)

the unifier will bind X to john because the remain-
ing terms are equal. However, for the following pair:

father(X,mary) and father(john,sue)

the binding would not make sense, since mary and
sue do not match.

The search strategy is used to traverse the search
space spanned by the facts and rules of a Prolog pro-
gram. Prolog uses a top-down, depth-first search strategy.
What does this mean? The whole process is quite sim-
ilar to the function evaluation strategy used in Lisp. If
a query Q is specified, then it may either match a fact
or a rule. In case of a rule R, Prolog first tries to match
the head of R, and if it succeeds, it then tries to match
all elements from the body of R which are also called
subqueries. If the head of R contains variables, then the
bindings will be used during the proof of the sub-
queries. Since the bindings are only valid for the sub-
queries, it is also said that they are local to a rule. A
subquery can either be a fact or a rule. If it is a rule,
then Prolog’s inference process is applied recursively
to the body of such subquery. This makes up the top-
down part of the search strategy. The elements of a
rule body are applied from left to right, and only if the
current element can be proven successfully is the next
element tried. This makes up the depth-first strategy.
It is possible that for the proof of a subquery two or
more alternative facts or rules are defined. In that case
Prolog selects one alternative A and tries to prove it, if
necessary by processing subqueries of A. If A fails, Pro-
log goes back to the point where it started the proof
of A (by removing all bindings that have been assigned
during A’s test) and tries to prove the next alternative.
This process is also called back-tracking. In order to
clarify the whole strategy, we can consider the follow-
ing example query (using the example clauses intro-
duced in the previous paragraph as Prolog’s database):

?- grandparent(bill,mary).

The only clause that can match this query is the fol-
lowing rule:

grandparent(X,Z) :- parent(X,Y),
parent(Y,Z).

and unification of the query with the rule’s head will
return the following bindings: X = bill, Z =

42 Artificial Intelligence Programming

mary. In order to prove the rule, the two elements of
the rule body have to be proven from left to right.
Note that both rules share variables with the rule
head, and, therefore, the bindings computed during
the match of the head with the query are also avail-
able for the respective subqueries. Thus, the first sub-
query is actually instantiated as parent(bill,Y)
and the second subquery is instantiated as par-
ent(Y,mary). Now, to prove the first clause, Prolog
finds two alternative parent rules. Let us assume that
Prolog chooses the first alternative (in order to re-
member that more than one alternative is possible,
Prolog sets a choice point),

parent(X,Y) :- mother(X, Y).

Unification of the subquery with the rule head is eas-
ily possible and will bind the X variable to the term
bill. This partially instantiates the single body ele-
ment as mother(bill,Y). Unfortunately, there are
no facts in the database which validate this subquery.
Because the unification of mother(bill,Y) fails, so
does the whole rule. Then, Prolog back-tracks to the
choice point where it selected the first possible par-
ent rule and chooses the second alternative,

parent(X,Y) :- father(X, Y).

Unification of the (still active) subquery parent
(bill,Y) will instantiate father(bill,Y). This
time unification is possible, returning the binding
Y = john. Now the first parent subquery of the
grandparent rule has been proven and the actual
variables are X = bill, Y = john, Z = mary.
This instantiates the second element of the grand-
parent rule body to parent(john,mary) (note
that the Z value had already been bound after the
grandparent rule was selected). The same strategy
is then applied for this subquery, and Prolog will find
enough facts to prove it successfully. Since both body
elements of the grandparent rule have been proven
to be valid, Prolog concludes that the initial query is
also true.

D. Prolog Extensions

In order to use Prolog for practical programming, it
comes with a number of extensions, e.g., list data struc-
tures; operators for explicitly controlling the traversal
of the search space by a Prolog program (namely, the
cut operator); and routines for IO interfaces, tracing,
and debugging. We cannot describe all these exten-
sions in the context of this short article. We will only
briefly show how lists can be used in Prolog.

Prolog supports lists as a basic data structure using
conventional syntax. The list elements are separated
by commas. The whole list is delimited by square
brackets. A list element can be an arbitrary term or a
list itself. Thus, it is quite similar to the list structures
in Lisp. Here is an example of a Prolog list:

[john, mary, bill]

The empty list is represented as []. In order to be
able to create or traverse lists, Prolog provides a special
construction for explicitly denoting the head and tail of
a list. [X | Y] is a list consisting of a head X and a tail
Y. For example, the above list could also be specified as

[john | mary, bill]

We will use the member predicate as an example
of how lists are treated in Prolog. This predicate will
determine whether a given element occurs in a given
list. Using the above notation, an element is in a list
if it is the head of that list or if it occurs somewhere
in the tail of the list. Using this informal definition of
the member predicate, we can formulate the follow-
ing Prolog program (the symbol _ denotes an anony-
mous variable, used to tell Prolog that it does not mat-
ter which value the unifier binds to it):

member(Element,[Element | _]).
member(Element,[_ | List]) :-

member(Element,List).

Assuming the following query:

?- member(a, [b,c,a,d]).

Prolog will first check whether the head of [b |
c,a,d] is equal to a. This causes the first clause to fail,
so the second clause is tried. This will instantiate the sub-
query member(a, [c,a,d]), which means that the
first list element is simply skipped. Recursively applying
member, Prolog tries to prove whether the head of [c
| a,d] is equal to a which also fails, leading to a new
subquery member(a,[a,d]) through instantiation of
the second clause. The next recursive step will check the
list [a | d]. This time, a is indeed equal to the head
element of this list, so Prolog will terminate with “yes.”

E. Constraint Logic Programming

Constraint logic programming (CLP) is a generaliza-
tion of the (simple) Prolog programming style. In
CLP, term unification is generalized to constraint solv-
ing. In constraint logic programs, basic components
of a problem are stated as constraints (i.e., the struc-
ture of the objects in question) and the problem as a

Artificial Intelligence Programming 43

whole is represented by putting the various constraints
together by means of rules (basically by means of def-
inite clauses). For example, the following definite
clause—representing a tiny fraction of a Natural Lan-
guage (NL) grammar like English:

sign(X0) ←
sign(X1),
sign(X2),
X0 syn cat � s,
X1 syn cat � np,
X2 syn cat � vp,
X1 syn agr � X2 syn agr

expresses that for a linguistic object to be classified as
an S(entence) phrase it must be composed of an ob-
ject classified as an NP (nominal phrase) and by an ob-
ject classified as a VP (verbal phrase) and the agree-
ment information (e.g., person, case) between NP and
VP must be the same. All objects that fulfill at least
these constraints are members of S objects. Note that
there is no ordering presupposed for NP and VP as is
the case for NL grammarbased formalisms that rely on
a context-free backbone. If such a restriction is re-
quired, additional constraints have to be added to the
rule, for instance, that substrings have to be combined
by concatenation. Since the constraints in the example
above only specify necessary conditions for an object of
class S, they express partial information. This is very im-
portant for knowledge-based reasoning, because in
general we have only partial information about the
world we want to reason with. Processing of such spec-
ifications is then based upon constraint solving and the
logic programming paradigm. Because unification is
but a special case of constraint solving, constraint logic
programs have superior expressive power.

A number of constraint-based logic programming
languages (together with high-level user interface and
development tools) have been realized, e.g., CHIP or
the Oz language, which supports declarative pro-
gramming, object-oriented programming, constraint
programming, and concurrency as part of a coherent
whole. Oz is a powerful constraint language with logic
variables, finite domains, finite sets, rational trees,
and record constraints. It goes beyond Horn clauses
to provide a unique and flexible approach to logic
programming. Oz distinguishes between directed and
undirected styles of declarative logic programming.

V. OTHER PROGRAMMING APPROACHES

In this article, we have compared AI languages with im-
perative programming approaches. Object-oriented

languages belong to another well-known programming
paradigm. In such languages the primary means for
specifying problems is to specify abstract data structures
also called objects or classes. A class consists of a data
structure together with its main operations, often called
methods. An important characteristic is that it is possible
to arrange classes in a hierarchy consisting of classes
and subclasses. A subclass can inherit properties of its
superclasses, which support modularity. Popular object-
oriented languages are Eiffel, C��, and Java. The Com-
mon Lisp Object-Oriented System is an extension of
Common Lisp. It supports full integration of functional
and object-oriented programming. Recently, Java has
become quite popular in some areas of AI, especially
for intelligent agent technology, Internet search en-
gines, or data mining. Java is based on C�� and is the
main language for the programming of Internet appli-
cations. Language features that makes Java interesting
from an AI perspective are its built-in automatic garbage
collection and multi-threading mechanism.

With the increase of research in the area of Web
intelligence, a new programming paradigm is emerg-
ing, viz. agent-oriented programming. Agent-oriented pro-
gramming (AOP) is a fairly new programming para-
digm that supports a societal view of computation. In
AOP, objects known as agents interact to achieve in-
dividual goals. Agents can exist in a structure as com-
plex as a global Internet or as simple as a module of
a common program. Agents can be autonomous en-
tities, deciding their next step without the interfer-
ence of a user, or they can be controllable, serving as
a mediary between the user and another agent. Since
agents are viewed as living, evolving software entities,
there seems also to emerge a shift from the more lan-
guage programming point of view toward a more soft-
ware platform development point of view. Here the
emphasis is on system design, development platforms,
and connectivity. Critical questions are then how the
rich number of existing AI resources developed in dif-
ferent languages and platforms can be integrated with
other resources making use of modern system devel-
opment tools such as CORBA (Common Object Re-
quest Broker Architecture), generic abstract data type
and annotation languages such as XML, and a stan-
dardized agent-oriented communication language
such as KQML (Knowledge Query and Manipulation
Language). So the future of AI programming might
be less concerned with questions such as “what is the
best suited programming paradigm?”, but will have to
find answers for questions such as “how can I integrate
different programming paradigms under one um-
brella?” and “what are the best communication lan-
guages for intelligent autonomous software modules?”

44 Artificial Intelligence Programming

SEE ALSO THE FOLLOWING ARTICLES

Engineering, Artificial Intelligence in • Evolutionary Algo-
rithms • Expert Systems Construction • Industry, Artificial
Intelligence in • Medicine, Artificial Intelligence in • Object-
Oriented Programming • Programming Languages Classification

BIBLIOGRAPHY

Charniak, E., Riesbeck, C. K., McDermott, D. V., and Meehan,
J. R. (1980). Artificial Intelligence Programming. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Clocksin, W. F., and Mellish, C. S. (1987). Programming in Pro-
log. Berlin: Springer-Verlag.

Keene, S. E. (1988). Object-Oriented Programming in Common Lisp.
Reading, MA: Addison-Wesley.

Luger, G. F., and Stubblefield, W. A. (1993). Artificial Intelli-
gence: Structures and Strategies for Complex Problem Solving, 2nd
ed. Redwood City, CA: Benjamin/Cummings.

Norvig, P. (1992). Artificial Intelligence Programming. San Mateo,
CA: Morgan Kaufman.

Pereira, F. C. N., and Shieber, S. M. (1987). Prolog and Natural
Language Analysis, CSLI Lecture Notes, Number 10. Stan-
ford, CA: Stanford Univ. Press.

Sebesta, R. W. (1999). Concepts of Programming Languages, 4th
ed. Reading, MA: Addison-Wesley.

Ullman, J. D. (1997). Elements of ML Programming, 2nd ed. En-
glewood Cliffs, NJ: Prentice-Hall.

Watson, M. (1997). Intelligent Java Applications for the Internet and
Intranets. San Mateo, CA: Morgan Kaufman.

Artificial Intelligence Programming 45

Automata Theory
Sergio de Agostino and Raymond Greenlaw
Armstrong Atlantic State University

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 47

I. INTRODUCTION
II. BASIC CONCEPTS

III. DETERMINISTIC FINITE AUTOMATA (DFAs)
IV. NONDETERMINISTIC FINITE AUTOMATA (NFAs)

V. EQUIVALENCE OF DFAs AND NFAs
VI. EQUIVALENCE OF DFAs WITH OTHER MODELS

VII. PUSHDOWN AUTOMATA AND BEYOND
VIII. SUMMARY

GLOSSARY

deterministic Having an unambiguous state. The ma-
chine either has a unique next state or none at all.

deterministic finite automaton (DFA) A simple, theo-
retical machine with one read-only input tape that
reads only left-to-right.

deterministic pushdown automaton (DPDA) A DFA
that is extended by adding a stack data structure.

deterministic Turing machine (DTM) A DFA that is
extended by adding a read/write work tape.

�-transition The ability of a machine to change state
without reading from an input tape or advancing
the input head.

language accepted (by a DFA) The set of all strings
recognized by a DFA.

nondeterministic The machine may have a non-
unique next state.

nondeterministic finite automaton (NFA) A simple,
theoretical, nondeterministic machine with one
read-only input tape that reads only left-to-right.

nondeterministic Turing machine A DFA that is ex-
tended by adding a read/write work tape and non-
determinism.

nondeterministic pushdown automaton (NPDA) A
DPDA extended with nondeterminism.

regular expression A formalism that can be used to
model languages recognized by DFAs.

tape configuration The contents of a tape and the po-
sition of the tape head on the tape.

work tape A tape that can be written-to and read-
from, allowing storage of intermediate data.

I. INTRODUCTION

A large part of theoretical computer science is dedi-
cated to studying computational models—also known as
idealized computers. Such machines consist of a finite
control (processor) and a number of tapes (mem-
ory). These machines differ in terms of their number
of tapes and the functionality of their tapes. Figure 1
depicts such an idealized model. The purpose of a
computational model is to capture those aspects of
computation that are relevant to the particular prob-
lem you wish to solve, while hiding the other aspects
that are unimportant. One can think of a computa-
tional model as a custom machine designed for your
particular needs. Several of the most important mod-
els are the deterministic finite automaton, the nondeter-
ministic finite automaton, the deterministic pushdown au-
tomaton, the nondeterministic pushdown automaton, the
deterministic Turing machine, and the nondeterministic
Turing machine. Each of these models is significant in
the theory of computation.

Before we can attempt to solve a specific problem
by a machine, we must communicate it to the ma-
chine. We do this with a language. In very general
terms, a language is a system of signs used to com-
municate information between one or more parties.
Thus, the first step of understanding a problem is to
design a language for communicating that problem
to a machine. Since a problem requires an answer,
the language has to handle both input and output
communication. What is interesting is that from a
theory-of-computation perspective, almost all prob-

lems can be expressed just in terms of language recog-
nition. That is, the language simply describes all the
legitimate inputs and there is no output to commu-
nicate other than the binary value of YES or NO, de-
pending on whether the input was in the language or
not. A second common and powerful mechanism to
describe languages is provided by the notion of gram-
mar. We will also discuss how grammars relate to lan-
guages and automata.

We begin by presenting some background and then
by defining the most basic computational models—
the deterministic finite automaton and its nondeter-
ministic variant. The other models can easily be de-
scribed as enhanced versions of either the
deterministic or nondeterministic finite automaton.

II. BASIC CONCEPTS

An alphabet is a nonempty, finite set of symbols. A
string is a sequence of symbols over an alphabet. The
empty string consists of a string of 0 symbols and is de-
noted �. A language over an alphabet � is any finite
or infinite set of strings over �. Since languages are
sets, the union, intersection, and difference of two
languages are immediately defined. The concatena-
tion of two languages L1 and L2 is the set of all strings
obtained by concatenating any element of L1 with any
element of L2; specifically,

L1L2 � {xy : x � L1, y � L2}.

We define Ln as L concatenated with itself n times,
with the special case L0 � {�} for every language L. Fi-
nally, we define the star closure of L as L* � L0 ∪ L1 ∪
L2 � � �, and the positive closure as L� � L1 ∪ L2 � � �.

Consider the language L � {�, 00, 0000, 000000,
. . .} over the alphabet {0,1}. What would a program
look like that accepts this language? First of all, what
exactly do we mean by this question? Suppose a user
inputs a given string x over the alphabet {0,1} to a pro-
gram designed to accept this language. Then the pro-

gram should respond YES if x � L, and NO otherwise.
This is really just answering a membership question.
Notice, the language L consists of all strings that con-
tain an even number of 0’s and no 1’s. You could
imagine a C program that keeps track of whether an
even number of 0’s has been encountered in the in-
put and also whether or not a 1 has been seen. When
the end of the input is reached, if an even number of
0’s have been read and no 1 has been detected, then
the program should respond YES and otherwise it
should respond NO.

There is a useful way of diagraming such a pro-
gram and this method is shown in Fig. 2; the picture
is called a (state) transition diagram. The transition di-
agram is a directed graph enhanced with the �� sym-
bol and some labeling on the nodes and edges. The
�� symbol indicates the state that the machine starts
from, called the initial state. This transition diagram
consists of three nodes called states labeled q0, q1, and
q2; and six edges called transitions. Notice the edges
are labeled by 0 or 1, symbols from the alphabet in
consideration. The node with two circles, q0, repre-
sents an accepting state, which coincidentally in this
case is also the initial state.

Consider an “input” to the transition diagram such
as 0000. If we trace through the figure on this input
starting from state q0, we go to state q1 using up one
0, back to q0 using up another 0, back to q1 using the
third 0, and finally back to q0 at which point we have
no more input remaining. The state we ended up in,
q0, is an accepting state so the input 0000 is accepted.
That is, 0000 � L. In tracing the machine on input
10, from state q0 we go to state q2 using up the 1 and
then stay in state q2 using up the last symbol 0. Be-
cause q2 does not have a double circle, it is not an ac-
cepting state; and therefore, the machine does not
stop in an accepting state. The input 10 is rejected as it
should be because 10 ∉ L. Automata theory formal-
izes these ideas.

48 Automata Theory

Finite control

Input tape

Output tape

Work tape 1

Work tape k

• • • • • •

>

>
>
>

Figure 1 Schematic of a finite state machine. The ! symbol
denotes sequential access to a tape.

>>
0

0

1 1

10

q0 q1

q2

Figure 2 A sample state transition diagram useful for repre-
senting a machine that accepts the language {�, 00, 0000,
000000, . . .}.

A. Tapes

In the example just sketched we did not say how the
input was going to be represented. All of our ma-
chines store information as strings on tapes. These
tapes are divided into tape cells or tape squares, or just
cells or squares for short. Each square holds a single
symbol. The tape has a special organization. By con-
vention the tape always contains two special symbols,
called the left and right end markers, and denoted by
the < and > symbols, respectively. A tape begins with
the left end marker, and ends with the right end
marker. Between these two markers, all symbols pres-
ent on the tape must come from the data alphabet.

The end markers are never part of the data alpha-
bet. The data alphabet plus the end markers consti-
tutes the tape alphabet. If the data alphabet is � then we
denote the tape alphabet (that is, � ∪ {<,>}) by �T. The
contents of a tape is the string over the data alphabet that
appears between the end markers. Thus a tape can
contain the empty string if all it has is the left end
marker followed immediately by the right end marker.

The input to a machine is a string, usually denoted x,
over the data alphabet. The notation x(i) is used to re-
fer to the ith symbol of x, where i ranges from 1 to the
length of x. The input is placed on an input tape. The in-
dividual characters comprising x appear in adjacent cells
of the tape; the entire input is between end markers.
The input tape is special in that it is read-only. Since the
machine cannot write to the tape, nothing can ever be
stored on the tape except the original input. Figure 3
provides an illustration of a sample input tape. In this
case the input x is the string 110101. The length of x is
six, and, for example, x(1) equals 1 and x(5) equals 0.

Machines access a tape via a tape head. Initially when
the machine starts up, the tape head is always posi-
tioned to the first square immediately to the right of
the left end marker. Thus if the tape with contents x
is nonempty, the tape head is over x(1) so that the
first symbol of x can be read. If x is the empty string,
�, then the tape head will be positioned over the
right end marker. Figure 4 illustrates the tape head
for the input tape and its initial positioning.

Further constraints can apply to the motion of the
tape head. For example, some machines can only read

the input once while others can go over the input as
many times as desired; we will specify each input ac-
cess method in turn.

When we describe an ongoing computation of a
machine, we must be able to describe the contents of
a tape and the current position of the tape head.
These two pieces of information constitute the tape
configuration.

DEFINITION 1

A tape configuration is a pair [p,x]. The head position
p, with 0 � p � |x| � 1, is a number indicating the po-
sition of the tape head on a tape with contents x.

• When p � 0 the tape head is over the left end
marker,

• when p � |x| � 1 the tape head is over the right
end marker, and

• otherwise the tape head is over the symbol x(p).

The current tape symbol in a tape configuration is the
symbol under the tape head, and is denoted 	[p,x].
The remaining tape in a tape configuration [p,x] is the
contents of the tape from under the tape head up to
but not including the right tape marker. The remain-
ing tape, denoted by
([p,x]), is the string

• � if p � |x| � 1, and
• otherwise it is x(p)x(p � 1) � � � x(|x|).

The initial tape configuration is [1,x], also denoted by
�I(x). The final tape configuration is [|x| � 1, x], also de-
noted by �F(x).

In general, machines can also have work tapes. These
are tapes that can be written to and read from, and so
are used to store the intermediate results of a compu-
tation. All work tapes are initially blank. When the ma-
chine writes to a work tape, it writes a new symbol onto
the tape square under the tape head, replacing the old
contents of the square. If the tape square under the
tape head is an end marker, the writing of a symbol
also extends the tape by one cell, effectively moving
the tape marker to the left or right depending on what

Automata Theory 49

>< 1 1 0 1 0 1

Figure 3 An illustration of an input tape. < and > are left and
right end markers, respectively.

< >1 11 0 01< >

Figure 4 An illustration of the initial position of the input
tape head. At this point the machine would be reading a 1 off
the input tape.

end of the tape the head is at. If the tape head is some-
where between the end markers when the write of an
end marker occurs, the result is that the tape is trun-
cated so that the new contents of the tape are the
squares between the new end marker and its match.
Overwriting > with < or vice versa is not permitted.

B. Finite Controls

Tapes provide us with a model of how we present a
machine with input, store intermediate data, and gen-
erate output. Now we have to consider the machine it-
self. How do we program it? What are the instructions
of the machine? How do we know what instruction to
execute next? What is the syntax of an instruction?
What are the semantics of an instruction, that is, what
happens when you execute an instruction?

The finite control or state transition function is the key
mechanism for defining all the machine models we
study. It is the machine’s program and defines how
the machine computes. One of the most important
features of the finite control is the fact that it must be
finite. This limits the machine to a finite set of in-
structions; this fixed number of instructions is inde-
pendent of the input.

Just like the program counter on a real machine,
the current state of a finite control helps determine
the next instruction to be executed by the machine.
When an instruction is executed, it does any one or
more of the following, depending on the type of ma-
chine: reads a symbol under a tape head, writes a sym-
bol to the tape cell under a tape head, and moves a
tape head. The instruction then determines the next
state or states of the program and changes the cur-
rent state.

If the next state of a particular machine is always
unambiguous (there is either a unique next state, or
none at all) then the machine is said to be determinis-
tic. If there are circumstances during the execution of
the machine in which the next instruction is ambigu-
ous (there are two or more possible next states) then
the machine is said to be nondeterministic. The finite
control of a deterministic machine is usually denoted
�. The finite control of a nondeterministic machine is
usually denoted by . The precise details of the state
transition function for a machine depend on other
specifications of the machine such as how many tapes
it has, and their input/output capabilities. In general,
finite-state control, tape-memory machines can be
classified according to the answers to the following
questions:

1. Is the machine deterministic or
nondeterministic?

2. Are state transitions labeled with a single symbol
from �T, or a string from �*

T and is � allowed as
a label? Must there be a transition for every
possible symbol for every possible state?

3. How many tapes are there, how do the heads
move on the tapes, and which ones are read-only?

III. DETERMINISTIC FINITE AUTOMATA (DFAs)

The deterministic finite automaton or DFA is a very
simple machine. It has one read-only input tape, with
the restriction that the tape head can only move from
left to right and can never change direction. The DFA
has no other tapes. The finite control allows a DFA to
read one input symbol from the input tape and then
based on the machine’s current state, it may change
state. As part of each computational step of a DFA,
the input tape head is automatically repositioned one
square further to the right and is ready for reading
the next input symbol.

For example, in Fig. 2 the states are represented by
the circles. One part of the finite control corre-
sponding to Fig. 2 is the transition �(q0,0) � q1. That
is, when in state q0 and reading a 0 the machine trans-
fers to state q1. The input head is then automatically
moved one square to the right (moving to the right
of the right end marker causes the machine to fail).
The transition �(q0,1) � q2 specifies that while in state
q0 and reading a 1 transfer to state q2. Again the in-
put head is automatically moved one square to the
right. The remainder of the finite control for the tran-
sition diagram shown in Fig. 2 is specified similarly.
The finite control is shown in its entirety in tabular
form in Table I. Each row in such a table represents
one possible transition of M. This table is called the
transition table of M. Note that there are no entries in
the table to indicate what the next state should be
when the input head is over an end marker. In such
a case where there is no next state the machine sim-
ply stops.

We are now ready to present the formal definition
of a DFA. The description of the DFA is presented as
a five-tuple so that the order of the components is
fixed.

DEFINITION 2

A deterministic finite automaton (DFA) is a five-
tuple M � (Q, �, �, q0, F) with the components spec-
ified as follows:

50 Automata Theory

1. Q: A finite, nonempty set of states.
2. �: The data alphabet and its induced tape alphabet

�T � � ∪ {<,>}.
3. �: The transition function or finite control is a

function

� : Q � �T ! Q.

4. q0: The initial state or start state, q0 � Q.
5. F: The set of accepting states, F � Q.

The set of states is denoted Q. Note that Q is finite
and nonempty.

The data alphabet is denoted �. These are the sym-
bols that can occur on the input tape between < and
>. End markers are not allowed as data symbols. The
tape alphabet �T is the set of all possible symbols that
appear on the tape, and so it is � union the set {<,>}.

We defer the description of � for the moment.
The initial state is denoted q0. This is a special state

in Q and is the state from which M begins executing.
Note the initial state is not expressed as a set like the
other components in the definition.

F is the nonempty set of accepting states. These
special states are used by a DFA to signal when it ac-
cepts its input, if in fact it does. When the machine
stops in a nonaccepting state this signifies the input is
rejected. The notion of acceptance is described for-
mally in Definition 6.

Where does the input tape appear in the defini-
tion? The tape is utilized in the transition function �.
The domain of � is Q � �T so elements in the domain
of � are ordered pairs. That is, � takes a state and a
symbol from the input tape (possibly an end marker).
Note, the more complex models we present later make
useful transitions on the end markers. The restric-
tions placed on the DFA do not allow it to take ad-
vantage of the end markers. Therefore, we only show

� being defined on Q � � in our examples. A typical
argument to � would be (0,1). Using standard func-
tion notation we would write �((0,1)) to signify � be-
ing applied to its arguments. To simplify notation, we
drop the “extra” set of parentheses keeping in mind
that the arguments to � are really ordered pairs. So,
for example, we write �(0,1). The range of � is Q.

Suppose q � Q, a � �T, and �(q, a) � q�, where
q� � Q. This is called a transition of M. This transition
moves M from state q into state q� on reading an a,
and the input head is then moved one square to the
right. In Fig. 2 transitions were represented by edges
between states and labeled with input tape symbols.
Since � is a function, DFAs behave deterministically.
Another way of saying this is that the machine has
only one “choice” for its next transition, just like a typ-
ical C program must execute a unique next instruc-
tion. The complete specification for the DFA shown
in Fig. 2 is given below.

EXAMPLE 1

Formal specification of a DFA.
The five-tuple for the DFA M shown in Fig. 2 is as

follows:
M � ({q0, q1, q2}, {0,1}, �, q0, {q0}), where � is defined

as in the transition table shown in Table I or equiva-
lently expressed as

{(q0, 0, q1), (q0, 1, q2), (q1, 0, q0),

(q1, 1, q2), (q2, 0, q2), (q2, 1, q2)}.

Here we have written the function � : Q � �T ! Q as
triples in Q � �T � Q.

In order to describe a computation of a DFA we
need to be able to specify snapshots of the machine
detailing where the machine is in its computation.
What are the important ingredients in these snap-
shots? They are the configuration of the input tape
and the current state of M. Such a snapshot is called
a configuration of the machine.

DEFINITION 3

A configuration of a DFA M � (Q, �, �, q0, F) on in-
put x � � is a two-tuple (q, [p, x]), where q � Q and
[p,x] is a configuration of the input tape. The initial
configuration of M on input x is the configuration
(q0, [1, x]), or equivalently (q0,�I(x)). We use C0 to de-
note the initial configuration when M and x are un-
derstood. For machine M, the set of all possible con-
figurations for all possible inputs x is denoted by C(M).

How can we utilize the notion of configuration to
discuss the computation of a DFA? They help us de-

Automata Theory 51

Table I A Convenient Method for Representing the
Transition Function of a DFA

Transition number State Input symbol New state

1 q0 0 q1

2 q0 1 q2

3 q1 0 q0

4 q1 1 q2

5 q2 0 q2

6 q2 1 q2

Note: The transition table for the DFA presented in Fig. 2 is
shown here. The transitions are numbered for convenience but
this numbering is not part of the finite control.

fine the next move relation, denoted �M, as shown in
the following.

DEFINITION 4

Let M � (Q, �, �, q0, F) be a DFA. Let C(M) be the
set of all configurations of M. Let C1 � (q1, [p1, x])
and C2 � (q2, [p2, x]) be two elements of C(M). C1 �M

C2 if and only if p2 � p1 � 1 and there is a transition
� (q1, 	[p1, x]) � q2. The relation �M is called the next
move, step, or yields relation.

Notice �M is a relation defined on configurations.
This means �M � C(M) � C(M). Since � is a function,
�M is also a function. Definition 4 is saying that con-
figuration C1 yields configuration C2 if there is a tran-
sition from C1 that when executed brings M to the
new configuration C2.

As an example consider the DFA, call it M, whose
transition function was depicted in Table I. The initial
configuration of M on input x � 0011 is (q0, [1, 0011]).
Applying transition 1 from Table I, we see

(q0, [1, 0011]) �M (q1, [2, 0011]).

The machine read a 0 and moved to state q1. Contin-
uing this trace (formally defined in Definition 5), we
obtain the following series of configurations:

(q1, [1, 0011]) �M (q0, [2, 0011}) (by transition 3)

�M (q2, [3, 0011]) (by transition 2)

�M (q2, [4, 0011]) (by transition 6)

We say the DFA halts when there is no next state or
when the machine moves off the end of the tape. This
can occur whenever the state transition function is
undefined. A halting configuration of a DFA is a con-
figuration Ch � (q, [p,x]) � C(M) with the property
that � (q, 	[p,x]) is undefined. If the DFA halts when
there is no more input left to process, that is, it is in
a configuration C � (q, �F(x)) then we say that the
DFA is in a final configuration. That is, the DFA is in a
configuration Ch � (q, [p, x]) � C(M) with the prop-
erty that p � |x| � 1.

The relation �M was defined to aid in assisting with
the descriptions of computations. But �M stands for
only one step. We would like to discuss computations
of varying lengths including length zero.

DEFINITION 5

Let M be a DFA with next move relation �M. Let
Ci � C(M), for 0 � i � n. Define �*

M to be the reflex-
ive, transitive closure of the relation �M. C0 yields or

leads to Cn if C0 �*
M Cn. A computation or trace of M is a

sequence ofconfigurations related by �M as follows:
C0 �M C1 �M � � � �M Cn. This computation has length n
or we say it has n steps. Sometimes, we write C0 �n

M Cn

to indicate a computation from C0 to Cn of length n.

Notice that on an input x of length n, a DFA will
run for at most n � 1 steps. If the state transition
function is defined on every state and data symbol
then the DFA will process its entire input. For the
four step computation traced above, we can write

(q0, [1,0011]) �*
M (q2, [5, 0011]) or

(q0, [1, 0011]) �4
M (q2, [5, 0011])

with (q2, [5, 0011]) the final configuration.
We would like to describe the computational capa-

bilities of DFAs in terms of the languages they accept.
First, we need to define what it means for a DFA to ac-
cept its input. The idea is simply that the machine reads
all of its input and ends up in an accepting state.

DEFINITION 6

Let M � (Q, �, �, q0, F) be a DFA and q � Q. M
accepts input x � �* if

(q0, �I(x)) �*
M (f, �F(x)),

where f � F. This computation is called an accepting
computation. A halting configuration (q, �F(x)) is called
an accepting configuration of M if q � F. If M does not ac-
cept its input x, then M is said to reject x. The compu-
tation of M on input x in this case is called a rejecting
computation, and M was left in a rejecting configuration.

M begins computing in its initial state, with the in-
put tape head scanning the first symbol of x, and x
written on the input tape. If M reads all of x and ends
in an accepting state, it accepts. It is important to
note that M reads its input only once and in an on-line
fashion. This means M reads the input once from left
to right and then must decide what to do with it. M
cannot go back and look at the input again. In addi-
tion, even though M can sense the end of the input
by detecting the > marker, this is only useful if M can
reverse directions on the input tape. Thus M must be
prepared to make a decision about accepting or re-
jecting assuming that the input might be exhausted
after the symbol just read.

As an example, the DFA with the transition function
as shown in Fig. 2 accepts the input x � 0011 since
q0 � F and (q0, [1, 0011]) �* (q0, [5,0011]). We can
now define the language accepted by a DFA M. Infor-
mally, this is simply the set of all strings accepted by M.

52 Automata Theory

DEFINITION 7

Let M � (Q, �, �, q0, F) be a DFA. The language ac-
cepted by M, denoted L(M), is {x | M accepts x}. The
union of all languages accepted by DFAs is denoted
LDFA. That is,

LDFA � {L | there is a DFA M with L � L(M)}.

The DFA shown in Fig. 2 accepts the language {�,
00, 0000, 000000, . . .}. It follows that this language is
in LDFA. Let us look now at a typical application of
DFAs.

EXAMPLE 2

Application of DFAs involving searching a text for
a specified pattern.

DFAs are useful for pattern matching. Here we con-
sider the problem of searching for a given pattern x
in a file of text. Assume our alphabet is {a, b, c }. This
example can easily be generalized to larger alphabets.
To further simplify the discussion let x be the string
abac. The techniques used here can be applied to any
other string x. Formally, we want to build a DFA that
accepts the language

{s | s � {a, b, c }* and s contains the pattern abac}.

The idea is to begin by hard coding the pattern x into
the states of the machine. This is illustrated in Fig. 5A.
Since the pattern abac has length four, four states are
needed in addition to the initial state, q0, to remem-
ber the pattern. Think of each state as signifying that
a certain amount of progress has been made so far in
locating the pattern. So, for example, on reaching
state q2 the machine remembers that ab has been read.

We can only reach state q4 if we have read the pat-
tern abac so q4 is the only accepting state required.
The next step is to fill in the remaining transitions on
other characters in the alphabet. The complete DFA
is shown in Fig. 5B. Notice how in the figure there are
some edges with more than one label. This simply
means that the corresponding transition can be ap-
plied when reading any one of the symbols labeling
the transition.

We now explain how the extra transitions were
added by examining state q3. The following method-
ology can be applied in a similar fashion to the other
states. From state q3 on reading a “c,” we enter the ac-
cepting state specifying that the pattern was indeed
found; this is why state q4 is an accepting state. From
state q3 on reading an “a,” we transition back to state
q1. This is because the “a” could be the start of the
pattern abac. That is, we can make use of this “a.” If
we read a “b” from the state q3, then we need to tran-

sition all the way back to state q0. The “b” nullifies all
of the progress we had made and we must now start
over from the beginning.

The complete description of the DFA for recog-
nizing strings containing the pattern x equals abac
over the alphabet {a, b, c } is ({q0, q1, q2, q3, q4}, {a, b, c},
�, q0, {q4}), where � is as shown in Table II. One point
worth noting is that once a pattern is found (that is,
the first time an accepting state is entered), the text
editor can notify the user of the pattern’s location
rather than continuing to process the remainder of
the file. This is usually what text editors do.

Automata Theory 53

A

B

q1

>>

>>
q2

q1q0

a,b,c

a

b,c ab,c

a

q0

ca

q2

b

q3 q4

bc q3 q4

b a c

a

Figure 5 Steps in constructing a DFA to a recognize a pattern
x in a file of text. In this case corresponding to Example 2, x
equals abac. Part (A) shows how to begin by hard coding the pat-
tern into the machine’s states. Part (B) shows the complete DFA.

Table II The Transition Table for the DFA
Described in Example 2 and Shown in Fig. 5

State Input symbol New state

q0 a q1

q0 b q0

q0 c q0

q1 a q1

q1 b q2

q1 c q0

q2 a q3

q2 b q0

q2 c q0

q3 a q1

q3 b q0

q3 c q4

q4 a q4

q4 b q4

q4 c q4

IV. NONDETERMINISTIC FINITE
AUTOMATA (NFAs)

In this section we define the nondeterministic finite
automata (NFAs). A DFA being deterministic has only
one computational thread. However, an NFA, because
any given configuration may have many possible next
configurations, cannot be described by a single com-
putational thread. An NFA computation should be vi-
sualized as many superimposed simultaneous threads.
But an NFA is not a parallel computer—it does not have
any ability to run simultaneous computations. Instead,
one can imagine the NFA behaving as follows: if the
problem the NFA is solving has a solution, then the si-
multaneous threads will collapse into a single unique
thread of computation that expresses the solution. If
the NFA cannot solve the problem, the threads col-
lapse into failure.

It is obvious that an NFA is not a machine that one
can build directly. So why is it worth considering?
Here are three reasons. The first is simply that this
model has more expressive power than the DFA in
the sense that it is easier to design NFAs than DFAs
for some languages, and such NFAs usually have fewer
states than the corresponding DFA. A second reason
is that the abstract concept of nondeterminism has
proved very important in theoretical computer sci-
ence. Third, although NFA are more expressive when
it comes to programming them, it turns out that any
language that can be accepted by an NFA can also be
accepted by a DFA. We prove this result via simulation
in Section V.

Nearly all of the basic definitions about DFAs carry
over to NFAs. Let us mention the enhancements to a
DFA that yield the NFA model and then look at some
examples. The new features in order of descending im-
portance are the use of nondeterminism, the use of �-
transitions, and the use of transitions on arbitrary strings.

Nondeterminism means that the machine could po-
tentially have two or more different computations on
the same input. For example, in Fig. 6 we show a por-
tion of an NFA. In this NFA from state q0 on reading
an a, the machine could go to either state q1 or state
q2. This behavior is nondeterministic and was not al-
lowed in the DFA. In our examples we will see that
this feature is very useful for designing NFAs.

A �-transition allows the machine to change state with-
out reading from the input tape or advancing the input
head. It is useful to think of such a transition as a jump
or goto. Why would such a jump be useful? As an ex-
ample suppose we want to recognize the language {a}*
∪ {b}* over the alphabet {a, b}.The NFA shown in Fig. 7
accepts this language. Since NFAs, like DFAs, only get to

read their input once, the two �-transitions start two
threads of computation. One thread looks for an input
that is all a’s, the other looks for an input that is all b’s.
If either thread accepts its input, then the NFA stops and
accepts. Thus we can accept (formally defined in this
section) {a}* ∪ {b}* very easily; the design is also con-
ceptually appealing. Notice that without using �-transi-
tions the machine needs three accepting states.

A DFA for accepting the language {a}* ∪ {b}* is
shown in Fig. 7B. This machine has more states, tran-
sitions, and accepting states and it is more complex.
It turns out that at least four states are needed for any
DFA that accepts the language {a}* ∪ {b}*.

Now let us look at the third enhancement to DFAs.
By use of arbitrary transitions on strings we mean that
a transition can be labeled with any string in �*. Es-
sentially, this means an NFA is allowed to read more
than one input symbol at a time (or none). How might
this feature prove useful? Coupled with nondeter-
minism this enhancement allows us to design simpler
machines. As an example recall the DFA presented in
Fig. 5 that accepted the language {x | x � {a, b, c }* and

54 Automata Theory

>>

q1

q2

a

a

q0

Figure 6 A partial NFA. Notice from state q0 there is a choice
of either state q1 or state q2 on input a.

Figure 7 Part (A) shows an NFA for accepting the language
{a}* ∪ {b}*. Part (B) depicts the smallest DFA for accepting the
same language.

x contains the pattern abac }. An NFA for accepting
this same language is shown in Fig. 8. Until we for-
mally define computations and acceptance for NFAs,
think of this machine as gobbling up symbols unless
it encounters the pattern abac in which case it jumps
to an accepting state and then continues to gobble up
symbols. We have reduced the five-state DFA from Fig.
5 to a two-state NFA using this new feature.

Rather than go through all of the definitions pre-
sented for DFAs again for NFAs, we highlight the
changes in defining NFAs.

DEFINITION 8

A nondeterministic finite automaton (NFA) is a five-
tuple M � (Q, �, , q0, F) that is defined similarly to a
DFA except for the specification of the transitions. The
transition relation is a finite subset of Q � �*

T � Q.
Notice Q � �*

T � Q is an infinite set of triples but
we require to be finite.

The new specification of transitions handles all of
the enhancements that were discussed above. Since
we now have a relation instead of a function, the ma-
chine can be nondeterministic. That is, for a given
state and symbol pair it is possible for the machine to
have a choice of next move. In Fig. 6, for example,
the two transitions (q0, a, q1) and (q0, a, q2) are shown.
Of course, in a DFA this pair of transitions would not
be allowed.

Since � Q � �*
T � Q this model incorporates �-

transitions and arbitrary string transitions. For exam-
ples, in the NFA shown in Fig. 7A the two �-transi-
tions (q0, �, q1) and (q0, �, q2) are shown and in Fig.
8 the transition from state q0 to q1 is (q0, abac, q1).

Finally, since is a relation that is not total, there
can be state symbols pairs for which is not defined.
In Fig. 7A the machine does not have a transition out
of state q0 on either a or b. So, in the full representa-
tion of there simply are no transitions (q0,a,q) nor
(q0,b,q) for any q � Q. If a thread ever entered such a
state, the thread would terminate.

Nearly all of the other definitions for DFAs carry
over with very little modification. For example, � still
relates configurations but now we might have C1 � C2

and C1 � C3, where C2 � C3; a situation that was not

possible in a DFA. One definition we need to rethink
is that for acceptance. Since NFAs are nondetermin-
istic, there may be several possible computation
threads on the same input. We say an input is ac-
cepted if at least one thread leads to acceptance.

DEFINITION 9

Let M � (Q, �, �, q0, F) be an NFA. M accepts in-
put x � �* if (q0, �I(x)) �*

M (f,�F(x)), for some ac-
cepting state f � F. Such a computation is called an
accepting computation. Computations that are not ac-
cepting are called rejecting computations. The language
accepted by M, denoted L(M), is {x | M accepts x }.
The union of all languages accepted by NFAs is de-
noted LNFA. That is,

LNFA � {L | there is an NFA M with L � L(M)}.

On a given input an NFA may have both accepting
and rejecting computations. If it has at least one ac-
cepting computation, then the input is accepted. That
is, the input is accepted if at least one thread leads to
an accepting state. The language accepted by an NFA
consists of all strings that the NFA accepts. Let us con-
sider an example of two possible computations of the
NFA M shown in Fig. 8 on input abaca.

The first is

(q0, [1,abaca]) �M (q0,[2, abaca])

�M (q0,[3, abaca])

�M (q0,[4, abaca])

�M (q0,[5, abaca])

�M (q0,[6, abaca])

and the second is

(q0, [1,abaca]) �M (q1,[5, abaca])

�M (q1,[6, abaca]).

Clearly, the two computations are very different. In
the first one we use up all of the input in five steps
but do not end in an accepting state. Thus, this is an
example of a rejecting computation. In the second
case we use up all of the input in two steps and
do end in an accepting state. Thus, the latter compu-
tation is accepting. Since there was an accepting
computation, the input abaca is accepted by M and
abaca � L(M). To prove that an input is accepted by
an NFA, one only needs to demonstrate that a single
accepting computation exists. However, to argue that
an NFA does not accept a given string, one must show
that all possible computations are rejecting. This is
usually more difficult.

Automata Theory 55

0 1

Figure 8 An NFA for accepting the language {x | x � {a, b, c }*
and x contains the pattern abac}.

V. EQUIVALENCE OF DFAs AND NFAs

NFAs possess many features DFAs do not. These en-
hancements simplify the design of NFAs for certain
languages. Do these new features actually make the
NFA a more powerful model in the sense that it can
accept languages that no DFA can? That is, is there
some language L that an NFA can accept that no DFA
can? Surprisingly, DFAs and NFAs accept exactly the
same class of languages. We prove this theorem below.
Our treatment of this result is more detailed than that
of other similar equivalences described in this article.
The intention is to present one detailed argument to
the reader. The specifics for other equivalences can
be found in the references.

THEOREM 1

The language classes LDFA and LNFA are equal.
Proof. (LDFA � LNFA) Suppose L � LDFA. Then there

exists a DFA M � (Q, �, �, q0, F) such that L(M) � L.
The idea is simply to view M as an NFA. Define an
NFA M� � (Q, �, , q0, F), where if �(q,a) � q� then
(q,a,q�) � . We claim that L(M) � L(M�). It is easy
to see that (q0, �I(x)) �*

M (f, �F(x)), where f � F if and
only if (q0, �F(x)) �*

M� (f, �F(x)). This simply says the
machines have the same transitions, which is of course
how M� was defined. Since L(M�) � L, this shows L �
LNFA and we can conclude that LDFA � LNFA.

(LNFA � LDFA) Suppose L � LNFA. Then there ex-
ists an NFA M � (Q, �, , q0, F) such that L(M) � L.
We will construct a DFA M3 such that L(M3) � L. The
simulation of M will take place in three stages. In each
stage a new machine will be constructed that is equiv-
alent to M but is more like a DFA than in the previous
phase. In the third stage the result is in fact a DFA.
The first stage involves eliminating transitions of the
form (q, y, q�), where |y| � 1. Stage two involves elim-
inating �-transitions. In the third stage nondetermin-
ism is removed. From M we construct M1, from M1 we
define M2, and from M2 we build the desired DFA M3.
Figure 9 illustrates the process. Since we will show
L(M3) � L(M), this is enough to complete the proof.
Constructing M1: The idea in building M1 is to add
new states to M so that strings y labeling transitions,

with |y| � 1, can be split up into single symbol transi-
tions as required in a DFA. The reader can think of
splicing in new states in the transition diagram for any
edge labeled by a string of length more than one. The
five-tuple for M1 is given by M1 � (Q1, �, 1, q0, F).
The new state set Q1 consists of the states from Q and
the additional states that we need to splice in. The re-
lation 1 is defined in terms of except that transi-
tions on strings of length more than one need to be
replaced by a new set of equivalent transitions. The al-
gorithm shown in Fig. 10 describes exactly how Q1

and 1 are constructed.
The following three facts imply that L(M) � L(M1):

the set of accepting states in M1 is the same as in M,
all transitions in are in 1 except for those on strings
of length greater than one, and transitions on strings
of length greater than one in were replaced by tran-
sitions in 1 that carried out the same function.
Constructing M2: The second stage in the construc-
tion requires that we eliminate �-transitions from M1.
In the process we will define a new NFA M2 � (Q2, �,
2, q0, F2). In this case Q2 equals Q1 and F2 � F ∪
{q� | (q�, [1,�]) �*

M1
(f, [1,�]) for some f � F }. This

says that any state in M1 from which we can reach an
accepting state without using input becomes an ac-
cepting state in M2. Since we are not consuming in-
put, the empty tape configuration [1, �] is sufficient.
The algorithm shown in Fig. 11 shows precisely how
2 is constructed. The idea is to eliminate all �-
transitions from 1. We replace any combination of
�-transitions and a single transition on one symbol in
1 by a transition involving a single symbol in 2.

We now argue that L(M1) � L(M2). Suppose x �
L(M1). Then (q0, �I(x)) �*

M1
(f, �F(x)) for some f � F.

This computation may involve �-transitions. Any se-
ries of �-transitions that are followed by a transition
in which an individual symbol is read can be replaced
by a single transition of M2 resulting in M2 having the
same configuration as M1. Any combination of �-tran-
sitions that occur after x has been completely read
lead from some state ~q to f. Because of the way in
which F2 was defined, we see ~q � F2 and so x � L(M2).
This shows L(M1) � L(M2). A related argument can
be used to show that L(M2) � L(M1) essentially by re-

56 Automata Theory

Figure 9 Illustration of the construction carried out in Theorem 1.

versing the steps in the argument just presented. All
this says is that we did not make M2 accept more
strings than M1.

Notice if there was some state that involved only �-
transitions in M1, it is possible that after applying
stage two of subset construction that this state be-
comes disconnected or unreachable. An unreachable
state is one that no longer plays any role in the strings
accepted by the machine since it can no longer be
used in a computation. This is because there is no way
to enter an unreachable state by a computation start-
ing from the initial state. Before proceeding to stage
three, we discard unreachable states from M2.

Constructing M3: The third stage in the construc-
tion is to eliminate nondeterminism from M2 in form-
ing M3. The idea is to consider all the possible threads
of computation that M2 could have active. Each thread
is in a single well-defined state, which is based on the
nondeterminism and the transitions that were chosen
in the past by the thread. The current states over all
possible threads will be compressed into a single state
in M3. In other words the states in M3 will be the
power set of the states in M2 (after having removed
unreachable states).

Rather than complicate notation further let us con-
tinue to refer to Q2 and F2 (possibly different since
unreachable states may have been removed) using
the same notation. We define the new machine as fol-
lows: M3 � (Q3, �, �3, {q0}, F3), where Q3 � 2Q2 and F3

� {Q� | Q� � Q3 and Q� � F2 � �}, and �3 is formed
as described in the algorithm depicted in Fig. 12.

It is important to observe that the states of M3 are
sets of states of M2. That is, M3’s states consist of all
possible subsets of states from M2. The idea behind
the algorithm shown in Fig. 12 is best explained via a
simple example. Suppose, for example, that from state
q, M2 could on an a go to either state q1 or state q2.
That is, M2 from configuration (q, [1,as]) for any
string s can make a nondeterministic move—either
change to configuration (q1,[2,as]) or to configura-
tion (q2, [2,as]). In M3 then we want to end up in con-
figuration ({q1, q2},[2,as]) since M2 could be in either
one of these states after reading the a. This is why we
need sets to represent the states of M3.

It is easy to see that M3 is a DFA. The last statement
in the code shown in Fig. 12 dictates that exactly one
transition is added to the relation �3 for each symbol
and each state. Thus �3 is a function. We must argue
that L(M3) � L(M2). Using the transitivity of equality,
this will imply that L(M3) � L(M). So, this will com-
plete the entire proof of the theorem.

First, we prove that L(M2) � L(M3). Suppose x �
L(M2), with n � |x |. Then there exists a computation
(q0,[1,x]) �*

M2
(f, [n � 1,x]) for some f � F2. Since M2

has no �-transitions and no transitions on strings of
length more than one, this computation passes
through exactly n � 1 states. The if statement of the
algorithm shown in Fig. 12 adds the appropriate state
to the set R, and then in the last step of the algorithm
the appropriate transition is added to �3 keeping track
of all the possible states that M2 could be in. Thus for
each step of the computation in M2 involving a tran-
sition (q�, a, q2), there are corresponding sets of states
Q� with q� � Q� and Q2 with q2 � Q2 in M3, and a tran-
sition (Q�, a, Q2) in 3. Therefore,

({q0}, [1,x]) �n
M3

(F �,[n � 1,x]),

where f � F �. This shows that x � L(M3), so L(M2) �
L(M3). By a related argument that essentially reverses
the steps in this one, we can prove that L(M3) �
L(M2).

Automata Theory 57

Figure 10 Constructing M1.

Figure 11 Constructing M2.

Figure 12 Constructing M3.

It is instructive to trace an NFA on an input to ex-
amine how the set of states that the NFA can be in
evolves. In Fig. 13 we show a five-state NFA. Consider
this NFA on the input 010. On reading the first 0, the
machine can occupy states q0 or q1. On reading the 1,
the machine can occupy states q0 or q2. Finally, on
reading the last 0, the machine can occupy states q0,
q1, or q3. Since none of these states are accepting, the
machine rejects input 010.

VI. EQUIVALENCE OF DFAs
WITH OTHER MODELS

We call a language regular if it belongs to LDFA. There-
fore, every regular language can be described by some
DFA or some NFA. In this section we look at other
ways of representing regular languages.

A. Regular Expressions

One way of describing regular languages is via the no-
tion of regular expressions. The notation for regular ex-
pressions involves a combination of strings of symbols
from some alphabet �, parentheses, and the opera-
tors �, �, and *.

DEFINITION 10

We construct regular expressions by applying the fol-
lowing rules:

1. �, �, and a � � are all (primitive) regular
expressions.

2. If r1 and r2 are regular expressions, so are r1 � r2,
r1 � r2, r*

1, and (r1).
3. A string is a regular expression if and only if it

can be derived from the primitive regular
expressions by a finite number of applications of
the rules in step 2.

The next definition describes the languages that can
be represented by regular expressions.

DEFINITION 11

The language L(r) denoted by any regular expression r
is defined by the following rules: � is a regular ex-
pression denoting the empty set; � is a regular ex-
pression denoting {�}; for every a � �, a is a regular
expression denoting {a}; if r1 and r2 are regular ex-
pressions, then so are L(r1 � r2) � L(r1) ∪ L(r2),
L(r1 � r2) � L(r1)L(r2), L((r1)) � L(r1), and L(r*

1) �
(L(r1))*.

It is intuitively reasonable that for every regular
language L, there exists a regular expression r such
that L equals L(r). In fact, every regular language has
an associated NFA and it can be seen that the inputs
of all the accepting threads from the initial state to
any final state are generated by a regular expression.
On the other hand, if r is a regular expression then
L(r) is regular. This follows from the fact that LDFA is
closed under union, concatenation, and star closure.
By closed we mean that you can take any languages in
the class, apply these operations to them, and the re-
sulting language will still be in the class. It is relatively
easy to build the corresponding finite automata by
working with NFAs.

B. Grammars

We present the definition of another model of com-
putation, namely a grammar, in this section.

DEFINITION 12

A grammar G is defined as a quadruple G �
(N, �, S, P), where

• N is an alphabet called the set of nonterminals.
• � is an alphabet called the set of terminals, with �

� N � �.
• S � N is the start variable.
• P is a finite set of productions of the form x → y,

where x � (N ∪ �)� and y � (N ∪ �)*.

Given three strings w, u, v � (N ∪ �)* such that
w � uxv, we say that the production x → y is applicable
to w. By applying the production to w we obtain a new
string z � uyv. We say that w derives z and denote this
with w ⇒ z. If w1 → w2 ⇒ � � � ⇒ wn, we say w1 derives
wn and denote this with w1 ⇒* wn. The set L(G) �
{w � �* : S ⇒* w} is the language generated by G.

A third way of representing regular languages is
by means of certain simple grammars, called regular
grammars.

58 Automata Theory

q1

001

q0 q4

0

 0,10,1

q2 q3
>>

0,1

0

0

1

0

Figure 13 A sample NFA.

DEFINITION 13

A regular grammar is a four-tuple G � (N, �, P, S),
where N is a nonempty set of nonterminals, � is an al-
phabet of terminals, S � N is the start symbol, and P is
a set of productions of the form x → y, where x � N
and y � �*N ∪ �*.

Notice that productions in a regular grammar have
at most one nonterminal on the right-hand side and
that this nonterminal always occurs at the end of the
production. The grammar generates a string of termi-
nals starting from S and then by repeatedly applying
productions in the obvious way until no nonterminals
remain.

Let M � (Q, �, , q0, F) be an NFA accepting a lan-
guage L. It is easy to see that a regular grammar G �
(N, �, S, P) generating L can be defined by setting
V � Q, S � q0, and putting in P the production qi → ajqk

if (qi, aj, qk) � and the production qk → � if qk � F.
It is also easy to see that every regular grammar

G � (N, �, P, S) has a corresponding NFA M � (N ∪
{ f }, �, , S, { f }), where is formed as follows:

1. For every production of the form A → xB, where
A, B � N and x � �*, the transition relation
contains (A,x,B).

2. For every production of the form A → x, where A
� N and x � �*, the transition relation
contains (A,x,f).

Whenever we define a language family through a
grammar, we are interested in knowing what kind of
automaton we can associate with the family. This will
give us an indication of how efficiently the language
can be recognized. Programming language syntax is
usually specified using a grammar. The parser for the
language is an implementation of the corresponding
automaton.

VII. PUSHDOWN AUTOMATA AND BEYOND

A. Introduction

Regular languages have broad application in com-
puter science, but many useful languages are not reg-
ular and so cannot be accepted by DFAs and NFAs.
For example, no DFA can accept the language con-
sisting of nested, balanced parentheses, i.e. {(i)i | i �
0} � {�, (), (()), ((())), . . .}. Obviously, a language
such as this is an important one from the perspective
of programming languages. The reason DFAs cannot
accept a language like the nested, balanced paren-

theses language is because they do not have any way
of storing information other than in a finite set of
states.

The deterministic pushdown automaton (DPDA) and
the nondeterministic pushdown automaton (PDA) con-
sidered in this section are extensions of the DFA and
NFA, respectively. The models are extended by adding
a pushdown (or stack) data structure. Stacks provide
the machines with the ability to write and store infor-
mation for later retrieval. The pushdown automata al-
low us to accept a richer class of languages than the
finite automata and are useful for parsing program
code. In Section VII.D we briefly explore an exten-
sion of these models called the Turing machine.

The deterministic (nondeterministic) pushdown
automata can be viewed as a DFA (respectively, NFA)
that has a stack added to it. Its finite control can read
symbols from the stack as well as having the current
state and input tape symbol to base its next move on.
The next move will result in a possible state change
and some manipulation of the stack. We allow the
DPDA to access more than one symbol from the stack
at a time analogously to NFAs.

Before formally defining the pushdown automaton
let us ask the following question: how could a DFA aug-
mented with a stack be used to recognize the language
{(i)i | i � 0}? Intuitively, we could use the stack to store
left parentheses. For each right parenthesis we en-
counter a left parenthesis that could be popped off the
stack. If we run out of right parentheses exactly when
the stack is empty, then we know that the parentheses
are balanced. Naturally, we have to make sure that the
parentheses are in the correct order too; we have to be
careful not to accept strings like (())(). Let us now de-
scribe how a stack behaves, define the DPDA formally,
and then return to a complete description for a DPDA
that accepts the language of balanced parentheses.

We will implement the stack by adding an extra
tape to our finite automaton model. This extra work
tape, called the stack, will be writable (unlike the in-
put tape). However, there will be restrictions on how
this tape can be manipulated. Its initial configuration
is [1,�], the empty stack. The right end tape mark is
the bottom of stack marker, and the stack tape head will
be the top of stack pointer. The stack can be written to
in only two circumstances.

1. The head can move left one square onto the <
mark and then write any symbol from the data
alphabet �. This symbol is thus pushed onto the
stack and becomes the new topmost symbol. This
operation is called a basic push.

Automata Theory 59

2. If the head is not over the > mark, then a < mark
can be written and the head advanced one
square to the right. This results in the top symbol
being popped off the stack. This operation is
called a basic pop.

These two basic stack operations describe how to
push a single symbol and pop an individual symbol off
of the stack. To implement a push x operation, |x | ba-
sic push operations are required. To perform no op-
eration on the stack, a basic push operation of < is ex-
ecuted. To implement the instruction pop y, |y| basic
pop operations are executed; each one removing the
next symbol from y off the stack. To implement the
pop y, push x combination requires |y| basic pops fol-
lowed by |x| basic pushes. Armed with these prelimi-
naries we are now ready to define our stack machines.

B. Deterministic PDAs

The formal definition of a deterministic pushdown
automata is given below.

DEFINITION 14

A deterministic pushdown automaton (DPDA) is a
five-tuple M � (Q, �, �, q0, F) that is a DFA aug-
mented with a stack. All components are defined sim-
ilarly to a DFA, see Definition 1, except for the tran-
sition function that must incorporate the stack.

�: The transition function or finite control is a (par-
tial) function

� : Q � �T � �*
T ! Q � �T.

The important points to notice about � are that it
is finite and a partial function. A partial function is a
function that may be undefined for some elements of
its domain. Although the domain of � is infinite, � be-
ing finite implies it is only defined for a fixed number
of triples. The restrictions on how reads and writes to
the stack are performed (described in the last sec-
tion) disallows strings in �*

T like a<< that do not obey
the rules for representing strings on tapes.

Let us look at a few examples of transitions in or-
der to make the behavior of a DPDA clear. Let q, q� �
Q, a � �, and x,y � �*. The transition �(q, a, �) �
(q�, x) means read an a from the input tape, change
from state q to q�, and push the string x onto the stack.
As described previously the push x is actually imple-
mented via |x | basic push operations. The transition
�(q, a, y) � (q�, �) means read an a from the input
tape, change from state q to q�, and pop the string y
off the stack. As described earlier the pop y is actually

implemented via |y| basic pop operations. More gen-
erally, the transition �(q, a, y) � (q�,x) means read an
a from the input tape, change state from q to q�, and
replace the string y on the top of the stack by the
string x—think of a pop y followed by a push x being
executed in one step. The actual implementation of
this operation requires |y| basic pops followed by |x |
basic pushes. From now on we will focus on the high-
level pushes and pops, which in the DPDA and PDA
require only one step.

All of our definitions about finite automata carry
over in a natural manner to pushdown automata. The
one item that needs further clarification is the accep-
tance of a string. For acceptance we will require that
the DPDA end up in an accepting state after reading
all of its input, as we did for DFAs, but also require
that the stack be empty. As promised we construct a
DPDA to accept the language of nested, balanced
parentheses.

EXAMPLE 3

A DPDA to accept {(i)i | i � 0}.
As mentioned earlier the key idea is to store all left

parentheses on the stack and then pop them off as
each one matches a right parenthesis. Define M � ({q0,
q1}, {(,)}, �, q0,{q0, q1}), where � is as given in Table III.

The first transition is used to push (’s on the stack;
the second transition is used to match the first) with
the last (; the third transition is to continue match-
ing)’s with (’s. Let us consider some computations of
M. We generalize the notation presented for DFAs by
adding a third component to represent the stack con-
figuration. Consider M on the input string (()). We
obtain the following computation:

(q0, [1,(())], [1,�]) �M (q0, [2,(())], [1,(])

�M (q0, [3,(())], [1,((])

�M (q1, [4,(())], [1,(])

�M (q1, [5,(())], [1,�])

or

(q0, [1,(())], [1,�]) �4
M
(q1, [5,(())], [1,�]).

Therefore,

(q0, [1,(())], [1,�]) �*
M

(q1, [5,(())], [1,�])

and since q1 is an accepting state, all input has been
read, and the stack is empty we have (()) � L(M). We
have generalized �, �*, and �i to relate configurations
of DPDAs.

Observe

(q0, [1,�], [1,�]) �*
M (q0, [1,�],[1,�])

60 Automata Theory

and since q0 is an accepting state, � � L(M) as it
should be since � � {(i)i | i � 0}.

Consider M on the input string ()(). We get the
following computation:

(q0, [1,()()], [1,�]) �M (q0, [2,()()], [1,(])

�M (q1, [3,()()], [1,�])

Notice that no further transitions of M can be ap-
plied. Although q1 is an accepting state and the stack
is empty, because we have not read all of the input
()() � L(M). This is the correct behavior for M since
()() � {(i)i | i � 0}. It is not hard to verify that
L(M) � {(i)i | i � 0}.

In the next section we define the nondeterministic
version of a PDA.

C. Nondeterministic PDA

Let us begin by presenting the definition of a nonde-
terministic pushdown automaton.

DEFINITION 15

A nondeterministic pushdown automaton (PDA) is
a five-tuple M � (Q, �, , q0, F) that is defined simi-
larly to the DPDA except for the specification of the
transitions.

The transition relation is a finite subset of

Q � �*
T � �*

T � Q � �*
T.

The main change from the DPDA to the PDA is, of
course, the addition of nondeterminism. Thus from
some configurations in a PDA it is possible that the
machine could follow several different threads. The
PDA can also perform a transition without reading in-
put or by reading one or more input symbols. The
manner in which the stack can be accessed remains
the same. Other concepts defined for the DPDA can
be defined analogously for the PDA. We can define
corresponding language classes for PDA as we did for
finite automata.

DEFINITION 16

LDPDA (LPDA) represents the class of languages ac-
cepted by DPDAs (respectively, PDAs). That is,

LDPDA � {L | there exists a DPDA M with L � L(M)}

and

LPDA � {L | there exists a PDA M with L � L(M)}.

D. Inequivalence of DPDAs and PDAs

Are the language classes LDPDA and LPDA the same? In
the case of finite automata the corresponding classes,
LDFA and LNFA, are equal. In the present case the lan-
guage classes are not equal. That is, LDPDA � LPDA but
the reverse is not true. Let us look at an example of a lan-
guage accepted by a PDA but not by any DPDA. We will
only give an informal argument as to why the language
is not accepted by any DPDA. However, the example
should make it clear why some languages accepted by
PDAs cannot be accepted by DPDA. In addition, the ex-
ample will illustrate how to program a PDA.

EXAMPLE 4

A language accepted by a PDA but not by any
DPDA.

Consider the language L � {0i1i | i � 0} ∪ {0i | i �
0}. We will construct a PDA M to accept L and argue
informally why no DPDA can accept L. Define M �
({q0, q1, q2}, {0, 1}, , q0, {q1, q2}), where is as given
in Table IV.

Notice that transition 3 adds nondeterminism to
the machine since this transition can be applied at
any time that we are in state q0. By entering state q1,
one can think of the machine as having guessed that
the input is going to consist solely of 0’s. That is, an-
other thread is started.

Automata Theory 61

Table III The Transition Table for the DPDA Described in
Example 3

Transition Input Stack New Stack
number State symbol pop state push

1 q0 (� q0 (

2 q0) (q1 �

3 q1) (q1 �

Table IV The Transition Table for the PDA Described in
Example 4

Transition Input Stack New Stack
number State symbol pop state push

1 q0 0 � q0 0�

2 q0 0 0 q0 00

3 q0 � � q1 �

4 q0 1 0 q2 �

5 q1 � 0 q1 �

6 q2 1 0 q2 �

Let us consider some computations of M. Consider
M on the input 000. The following computation is an
accepting computation:

(q0, [1,000],[1,�]) �M (q0, [2,000], [1,0])

�M (q0, [3,000], [1,00])

�M (q0, [4,000], [1,000])

�M (q1, [4,000], [1,000])

�M (q1, [4,000], [1,00])

�M (q1, [4,000], [1,0])

�M (q1, [4,000], [1,�])

This computation abbreviated

(q0, [1,000], [1,�]) �7
M (q1, [4,000], [1,�])

is accepting since all the input was read, q1 is an ac-
cepting state, and the stack ends empty. M also has re-
jecting computations on input 000. For example, one
thread is

(q0, [1,000], [1,�]) �M (q0, [2,000], [1,0])

�M (q0, [3,000], [1,00])

�M (q1, [4,000], [1,00])

�M (q1, [4,000], [1,0])

�M (q1, [4,000], [1,�])

Since the input was not completely read, this is not
an accepting computation even though q1 is an ac-
cepting state and the stack is empty. As usual with
nondeterministic models, if there is at least one ac-
cepting computation, then the string is accepted. Thus
000 � L(M).

Why it is not possible to accept L using a DPDA?
Intuitively, this is because the two separate compo-
nents of L force the DPDA to make a choice. The
DPDA like the DFA must always move its tape head to
the right after reading a symbol on the input tape.
Thus a DPDA cannot make use of the information
that the end of input has been detected. Without
knowing if the input has ended, a DPDA must effec-
tively guess whether the string will be in the language
{0}* or in the language {0}*{1}* with a matching num-
ber of 0’s and 1’s. Transition 3 in M is what allows us
to create the necessary threads in the PDA. Since a
DPDA cannot handle both of these cases, the lan-
guage cannot be accepted by any DPDA. Note, if the
DPDA did not need to always move the input head
one square to the right, it would be able to accept L
as follows: push 0’s until it sees a nonzero character.
If the symbol is > then empty the stack while leaving

the input head stationary and accept. If not, the sym-
bol is a 1. So, match the input 1’s with 0’s that are on
the stack. If the number of 1’s and 0’s matches, then
accept, and otherwise reject.

THEOREM 2

The language classes LDPDA and LPDA are not equal.
The pushdown automata are not completely gen-

eral models of computation since, for example, no
PDA can accept the language {aibici | i � 0}. We should
point out that a language can be accepted by a PDA if
and only if it is generated by a context-free grammar.
These grammars have a more general form of pro-
duction than the regular grammars mentioned earlier.

E. Turing Machines

Interestingly, simply adding a read/write work tape to
a DFA is sufficient to produce a machine, called a
Turing machine, which is as powerful as any other com-
puting device. We present its definition below.

DEFINITION 17

A deterministic Turing machine (DTM) is a five-tuple
M � (Q, �, �, q0, F) that is defined similarly to a DFA,
except we allow two-way read-only access to the input
tape and incorporate a work tape. The transition func-
tion or finite control is a (partial) function

� : Q � �T � �T ! Q � {�1, 0, �1}

� �T � {�1, 0, �1}

The current state of the DTM, and the current con-
figurations of its input and work tapes, are used by �
to compute the next state and to manipulate the tapes.
� takes a state, a symbol from the input tape alphabet,
and a symbol from the work tape alphabet as argu-
ments. It generates a four-tuple that indicates the next
state of the finite control, a change in position of the
input tape head, a symbol to be written to the work
tape head, and a change in position of the work tape
head. A �1 moves left one cell, a �1 moves right one
cell, and a 0 means do not move.

As with any of the automata, a Turing machine
starts in its initial state with an input written on the
input tape. It then goes through a sequence of steps
controlled by the transition function �. During this
process, the contents of any cell on the tape may be
examined and changed many times. Eventually, the
whole process may terminate, either by entering a
halt state or reaching a configuration for which � is
not defined. Languages accepted by a Turing machine

62 Automata Theory

are called recursively enumerable. A language is recur-
sively enumerable if and only if is generated by a (gen-
eral) grammar. Those recursively enumerable lan-
guages accepted by Turing machines that halt for any
given input are called recursive and form a proper sub-
set of the set of recursively enumerable languages. As
with each of the other automaton, we can define the
nondeterministic version of a Turing machine.

DEFINITION 18

A nondeterministic Turing machine (NTM) is a five-
tuple M � (Q, �, , q0, F) that is defined similarly to
a DTM, except for the specification of the transitions.
The transition relation is a finite subset of

Q � �T � �T � Q � {�1, 0, �1}

� �T � {�1, 0, �1}

It can be shown that any nondeterministic Turing
machine can be simulated by a deterministic Turing
machine.

VIII. SUMMARY

In this article we have covered the basic ideas in au-
tomata theory. The references provide additional de-
tails, and many other interesting applications and re-
sults of the theory.

ACKNOWLEDGMENTS

The material in this article has been recast from Greenlaw and
Hoover (1998). We are grateful to Jim Hoover for allowing us
to include the material here. Thanks to the referees for their
valuable suggestions; they helped to improve this article.

SEE ALSO THE FOLLOWING ARTICLES

Decision Theory • Future of Information Systems • Game
Theory • Information Theory • Machine Learning • Sys-
tems Science • Uncertainty

BIBLIOGRAPHY

Greenlaw, R., and Hoover, H. J. (1998). Fundamentals of the theory of
computation. San Francisco, CA: Morgan Kauffmann Publishers.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2001). Intro-
duction to automata theory, languages, and computation, 2nd
Edition, Addison-Wesley.

Lewis, H. R., and Papadimitriou, C. H. (1998). Elements of the
theory of computation, 2nd edition. Englewood Cliffs, NJ: Pren-
tice Hall.

Sipser, M. (1997). Introduction to the theory of computation. Boston,
MA: PWS Publishing Company.

Sudkamp, T. A. (1991). Languages and machines, 2nd edition.
Reading, MA: Addison-Wesley.

Wood, D. (1987). Theory of computation. New York: John Wiley
& Sons.

Automata Theory 63

Benchmarking
Bengt Karlöf
Karlöf Consulting

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 65

I. INTRODUCTION
II. THEORY AND REVIEW OF BENCHMARKING

III. METHODOLOGY OF BENCHMARKING

IV. BENCHMARKING—PITFALLS, SPRINGBOARDS,
AND OBSERVATIONS

V. SUMMARY

GLOSSARY

benchlearning Combines the efficiency aspects of
benchmarking with the learning organization. It
thereby combines hard and soft issues in making
people learn about what is important for the suc-
cess of the operation.

benchmarking A management method deriving from
the land surveying term “benchmark” which is a
point fixed in three dimensions in the bed rock.
Benchmarking means calibrating your efficiency
against other organizations, getting the inspiration
and building on other peoples experiences.

causality Illustrates the cause and effect logic that is
important to understand in benchmarking. Why is
someone performing better and how do they
do that?

cross-industry benchmarking Means that you take out
a function or a process in a company and compare
it to the corresponding organizational units in a
company in another industry. Take for instance
billing in the telecom industry that can be bench-
marked with billing in credit card operations or
energy companies.

efficiency The function of value and productivity.
Value is in turn utility (or quality) in relation to
price. Productivity means the cost of producing
and delivering a unit of something. Efficiency
thereby includes effectiveness and productivity.

internal benchmarking Surprisingly often learning
does not take place across a decentralized struc-
ture with many similar units. Internal benchmark-
ing has the purpose of creating cross learning.

strategic benchmarking A looser and more inspira-
tional version of benchmarking to enhance cre-
ativity in strategy processes.

strategy A pattern of decisions and actions in the
present to secure future success and exploit
opportunities.

I. INTRODUCTION

Benchmarking is a widely used concept, but one that
is often misinterpreted and insufficiently used. Al-
though the simple definition of benchmarking is to
make a comparison between parts of or the entire op-
eration, there is much more to it. This article sorts
out the correct meaning and application of bench-
marking. Based on several years of experience work-
ing with the method, this article also shares the most
important lessons learned from the practical use of
benchmarking. This article views benchmarking from
a management point of view and does not have a spe-
cific information systems approach.

Benchmarking derives its force from the logical
trap that it springs on those who oppose change. The
psychology that makes benchmarking so effective
compared to most other methods can be summed up
as a reversal of the burden of proof. It works like this:
In normal circumstances, those who want to change
something have to show proof of why it should be
changed. Application of advanced benchmarking
shifts the burden of proof to the conservatives, who
have to show proof of why the change should not
be made.

B

II. THEORY AND REVIEW OF BENCHMARKING

A. What Is Benchmarking?

Benchmark is a term used in surveying. It means a fixed
point, often marked by drilling a hole in bedrock and
painting a ring around it, with a defined location in
three dimensions (altitude, latitude, and longitude,
not time, mass, and energy) from which the locations
of other points can be determined. Etymologically
the word can be traced back to the British weaving in-
dustry in the 18th century. The original meaning is
uncertain, but is in any case irrelevant to the use of
the word in a management context. In management,
the terms benchmark and benchmarking are used as a
metaphor for criteria of efficiency in the form of cor-
rect key indicators, but above all they refer to a process
in an organization that leads to more efficient opera-
tion in some respect, better quality, and/or higher
productivity.

The word benchmark has been used in functional
parts of companies to denote calibrated key indica-
tors or other comparable quantities. In the former
sense, the word has been used since the 1960s for
comparison of production costs in computer opera-
tion. In the advertising business it has been used in
comparing quality/price relationships between com-
parable products.

Nothing is new under the sun. That also applies to
benchmarking. The practice of acquiring knowledge
from colleagues has been customary in the medical
profession ever since the days of Ancient Egypt, and
a similar phenomenon has been observable in Japan
since the Imperial Meiji Restoration of the 1860s. The
origin of benchmarking in its modern, deliberately
applied form is, however, generally ascribed to Rank
Xerox, which in 1978 was severely shaken by price
competition from Japanese manufacturers of small
and medium-sized office copiers. This competition
was initially dismissed as dumping or faulty arithmetic,
but then a fact-finding expedition was sent to Japan
and found, to its dismay, that the Japanese had man-
aged to reduce their production costs far below what
Rank Xerox then considered feasible; their own tar-
gets for productivity improvement turned out to be
hopelessly inadequate. IBM likewise adopted bench-
marking a decade later, but on a scale that was far too
limited; their benchmarking was between their own
production units and with other mainframe computer
manufacturers.

The most important aspects of current bench-
marking can be summarized as follows:

1. A complete and correct description of the
processes and activities that create value-adding
performance

2. Correct and accepted comparison with another
party—a good example

3. In-depth understanding of causality, i.e., of the
differences in work organization, skills, etc. and
so on, that explain differences in performance.
(In short: why, why, why?)

4. Reengineering of work organization and routines
and development of new skills to make
operations more efficient; inspiration from, not
imitation of, the partner

5. A goal-related, result-rewarded process of change
that uses benchmarking as the starting point for
an institutionalized search for new examples for
continuity

Benchmarking is thus essentially a dynamic, improve-
ment-oriented process of change, not a static com-
parison of key indicators which at worst are not cali-
brated and therefore not comparable. This last must
be particularly emphasized, because benchmarking
has often been wrongly applied using uncalibrated in-
dicators in which nobody believes, therefore making
them entirely worthless.

New methods, usually with catchy names, are con-
stantly being launched in the field of management.
The danger of a label like benchmarking is that it
may be filed away in the same pigeonhole with many
other concepts whose effectiveness is only a fraction
of that which benchmarking possesses. So it is impor-
tant for the reader to make this distinction in order
to appreciate the usefulness of the method. Its po-
tential lies perhaps not so much in the quick and easy
boost to efficiency that it offers as in the institution-
alized learning process, which is hereinafter termed
Benchlearning. That name is a registered trademark
and stands for organizational skill development.

Benchmarking can be advantageously defined in
terms of what it is not, namely:

1. Key indicator analysis
2. Competition analysis
3. Imitation

It may, however, be useful to emphasize a few side ef-
fects that often tend to become the principal effects
of benchmarking:

1. Definition of the content of one’s own work
2. Determination of measurement parameters

66 Benchmarking

3. Sound learning, which generates a demand for
even more knowledge

Benchmarking is almost always initiated by the man-
agement of a company or organization or unit thereof.
The aim is almost always to improve efficiency, lead-
ing to higher quality or productivity. The mistake is
often made of taking certain things for granted, for
example, that processes and activities are defined and
that parameters exist for measuring them. Such is in
fact seldom the case, and this necessitates a thorough
review of the situation, which performs the highly
useful function of creating awareness of what the tasks
are and how they relate to the company’s corporate
mission.

Institutionalized learning is seldom if ever the fo-
cus of a benchmarking process. Its psychosocial con-
sequences are thus not the original reason for start-
ing the project. In the best case they come as a pleasant
surprise—provided, of course, that all concerned have
been given time to reflect, make their own discover-
ies, and solve their problems. The one thing that is
more crucial than anything else to success in any or-
ganized enterprise is efficiency. This concept is there-
fore considered in detail next.

B. Efficiency: Technocracy,
Software, and Reality

Half in jest, I often define a technocrat as a person
who approaches technical or economic problems
from a strictly rational standpoint, unmoved by hu-
man, cultural, or environmental considerations.

Semantically, the term efficiency is an exceptionally
vague one. Most people associate it with productivity
in the sense of “working harder and faster.” In the

line of reasoning we shall follow here, productivity is
just one axis of the efficiency graph. Productivity
means doing things right, i.e. making or delivering
products and services of a given quality at the lowest
possible unit cost.

Let us begin by looking at an efficiency graph (Fig.
1), on which the following discussion is based. As the
graph shows, efficiency is a function of value and pro-
ductivity. This means that an organization can achieve
high efficiency either by working on its productivity to
lower its production costs, thereby enabling it to offer
lower prices and thus greater value, or by concentrat-
ing on quality, which increases the numerator of the
value fraction and offers the options of either greater
volume or higher prices.

Conversely, inefficiency can take two forms. One is
when the value (price/quality ratio) offered to the
market is acceptable, but low productivity leads to
losses when the product is sold at the price the mar-
ket is willing to pay. That, until recently, was the situ-
ation of several automakers like Saab, Volvo, and
Mercedes-Benz. The market was willing to pay a given
price for a car of a given design, but unfortunately the
cost of making the car—materials, components, and
labor—was far too high.

In the automotive industry they use assembly time
in hours as an approximation of productivity. An un-
profitable factory with a sellable model can thus de-
fine its short- and medium-term problem as one of
productivity and try to reduce the cost (or assembly
time) per unit, assuming that the situation has been
correctly analyzed. This brings us to one of the key
questions regarding the graph, along with two others:

1. Where are we on the graph compared to our
competitor or whomever we are comparing
ourselves with?

Benchmarking 67

Figure 1 The efficiency graph.

2. Given our position, in which direction should we
move on the graph?

3. How quickly do we need to do it, i.e., how much
time do we have?

Sometimes you can get halfway to solving the prob-
lem simply by asking the right question. If Saab, for
example, has produced a model that the market is un-
willing to buy in sufficient numbers at a price that is
impossible to achieve, there is no point in messing
about with assembly time and productivity. There are
two analytical parameters, value and productivity. The
foregoing example illustrates a situation in which
value is judged to be satisfactory and productivity is
the problem. The reverse situation, alas, is much more
common and more treacherous, i.e., one in which
productivity is high but the value is too low or, even
worse, has never been tested on a market.

The most obvious examples of the latter situation
are to be found in production of tax-financed public
services. Productivity in the public sector in, for in-
stance, my own country, Sweden, is often remarkably
high. Measured in terms of processing times for in-
spection of restaurants or issuing of building licenses
or passports, Swedish civil servants are outstandingly
productive compared to their counterparts in other
countries of which I have experience, such as the
United States, the United Kingdom, France, or Ger-
many. The problem, just as in companies, is that their
products and services have never been put to the mar-
ket test. This frequently results in production of things
for which there would be no demand if they were of-
fered on a free market where the customers could
make their own choices. The situation is obscure but
probably even worse in countries that also suffer from
low productivity in the public sector. Many of us have
noticed this since joining the European Union (EU),
which has meant that yet another publicly financed sys-
tem has been superimposed on those we already had.

The efficiency graph raises some central issues in a
benchmarking context:

1. How do we define what we produce?
2. What is the cost per unit produced?
3. Who uses what we produce?
4. By what criteria do users judge what we produce

and deliver?

Productivity in administration and production of
services is a subject that has received scant attention
in the literature. The question of manufacturing pro-
ductivity, on the other hand, has been discussed in de-
tail ever since the heyday of F. W. Taylor in the be-

ginning of the 20th century. The reason, of course, is
that direct material and labor costs have historically
been the dominant components in the selling price
of a product. John Andersson has put it this way:

There used to be 14 blacksmiths for every clerk. Now
there are 14 clerks for every blacksmith.

The sharply rising proportion of distributed costs has
prompted growing interest in distributed costs in gen-
eral and administrative overhead in particular. This is
one reason why ABC (activity-based costing) analysis
and other aids to calculation have been developed. In
an era of mass production and mass consumption,
productivity in manufacturing was a prime considera-
tion. It was more important to have a car, any kind of
car, than no car at all. The same applied to refrigera-
tors, shoes, etc.

Most of what the economist Torstein Veblen has
called conspicuous consumption takes place in modern
Western societies. That term refers to values which in
Abraham Maslow’s hierarchy of needs are classified as
self-realizing. These developments have led to a
growth of interest in value theory. There is a shortage
of literature, and indeed of general knowledge, about
the value axis of the efficiency graph.

Value is a subjective phenomenon. Perhaps that is
why analysts, regarding it as vague and lacking in struc-
ture, have paid so little attention to it. Adam Smith, the
father of economic science, tried to explain value in
terms of the amount of work that went into a product;
but he never succeeded in explaining why a glass of wa-
ter, which is so useful, is worth so little while a bag of di-
amonds, which is of no practical use, is worth so much.

It was the Austrian economist Hermann Heinrich
Gossen (1810–1858) who came to consider how pre-
cious water becomes to a thirsty traveler in a desert.
That thought led him to formulate the theory of mar-
ginal utility, as follows:

The marginal utility of an article is the increment to
total utility provided by the most recently acquired
unit of that article.

Gossen’s simple observation was that the parched trav-
eler in the desert would be willing to trade a sizable
quantity of diamonds for a liter of water, because the
utility of the water far exceeded that of the diamonds.

Value theory and its corollaries regarding quality will
command increasing attention from leaders of enter-
prises. This is especially true of leaders of units that have
a planned-economy relationship to their “customers.”

In most cases it is desirable to specify the value axis
by constructing a value graph with quality as the ab-
scissa and price as the ordinate, as shown in (Fig. 2).

68 Benchmarking

Quality stands for all the attributes of products and
services that together configure the offering. Price is
the sacrifice the customer must make in order to take
advantage of the offering. What Veblen calls conspicu-
ous consumption is a deviation, such as when somebody
buys a status-symbol car like a Jaguar at a price far in
excess of reasonable payment for performance. In
this case, the price functions as a signal of quality to
the rest of the world. A consequence of this is that the
volume of sales does not increase if the price is re-
duced. Conspicuous consumption situations are fairly
common nowadays, occurring in connection with all
prestige brands. Fake Rolex watches made in Thai-
land do not encroach on the market for real Rolex
watches, because they are sold to people who would
never dream of paying what a genuine Rolex costs.

In the case of internal deliveries between depart-
ments in the planned-economy environment that pre-
vails within a company, the price consists of a pro-
duction cost that is seldom paid directly by the
receiving unit. In this case, the price does not repre-
sent a sacrifice on the buyer’s part. The quality of the
delivery, however, can be judged. These are very im-
portant considerations with regard to productivity
measurements in planned-economy systems, as well as
in total quality management (TQM) and similar
schemes aimed at monitoring efficiency in units of
companies and organizations.

In the application of benchmarking it is of course
extremely important to get into the habit of consid-
ering both axes of the efficiency graph, i.e., value
(quality in relation to price) and productivity (cost
per unit). The highest price that a product or service
can command is determined by the value that cus-
tomers put on it. The lowest price that the supplier
can charge without going broke is determined by pro-
ductivity, because no company can stay in business for
long if its production costs are higher than its rev-

enues. Productivity, therefore, influences the cus-
tomer’s perception of value in that higher productiv-
ity makes it possible to offer a lower price and thus
higher value.

Quality, on the other hand, usually costs money,
when we are talking about customer-perceived qual-
ity. More space between the seats in an aircraft means
fewer passengers and therefore a higher cost per
passenger-kilometer. In medical services, increased
consultation time per patient is likewise a quality pa-
rameter that adds to the cost of providing the service.
Improving quality in the other sense, i.e., reducing
the frequency of rejects in production, does not nor-
mally increase costs but reduces them instead. This is
done by tightening the production flow and elimi-
nating the cost of rework by taking proactive mea-
sures (Fig. 3).

The concept of efficiency is central not only to
benchmarking, but also to all forms of enterprise and
organization, so a full understanding of the meaning
of efficiency is essential.

C. Categories of Benchmarking

According to the individual situation, benchmarking
can be divided into a number of categories and ex-
tremes can be contrasted with each other. Some of
the more important ones are as follows:

• Strategic and operative benchmarking
• Internal and external benchmarking
• Qualitative and quantitative benchmarking
• Same industry and cross-industry benchmarking
• Benchmarking in a leading or supporting role
• Benchmarking for better performance or for

world-class performance

The purpose is instructional, i.e., to make the reader
aware of angles that enable benchmarking to be done
more effectively.

1. Strategic and Operative Benchmarking

One of the great advantages of benchmarking is that
the method can be applied to both strategic and op-
erative issues. The dividing line is by no means sharp.
Strategy is defined here as “action taken at the pres-
ent time to ensure success in the future.” Strategy
thus aims at achieving good results not only now but
next year and the year after that too, though the term
is sometimes loosely used of any issue that is of major
importance, regardless of the time frame.

Benchmarking 69

Experienced customer value

Low
Low

High

Quality

HighPrice

Figure 2 The value graph.

Operative management, on the other hand, has to
do with all the day-to-day problems that must be solved
right now to ensure that deliveries can be made to
customers without a hitch. Strategy is always impor-
tant, but seldom acute. Operative problems, on the
other hand, may be both important and acute. (You
can read more about this in Conflicts of Leadership,
Bengt Karlöf, Wiley, 1996, and Strategy in Reality, Bengt
Karlöf, Wiley, 1997.)

A rough distinction between strategic and opera-
tive issues is made in Fig. 4. As a strategic instrument,

benchmarking can perform the function of identify-
ing new business opportunities or seeking areas where
dramatic improvements can be made. Identification
of the latter is made harder in many organizations by
the absence of competition, and in such cases bench-
marking performs a strategic function.

Probably the most widespread application of bench-
marking is as an operative instrument to identify ways
to improve operations. The aim of functional or
process benchmarking is to seek and find good mod-
els for operative improvements. The great challenge

70 Benchmarking

Figure 3 Quality.

Figure 4 Strategic and operative efficiency.

of the future will be to apply benchmarking in all
parts of the business that operate under planned-
economy rules. The conclusion from this is that the
principal application of benchmarking will be opera-
tive. That statement is not intended in any way to be-
little the importance of the strategic angle, but be-
cause competition is endemic to business, and because
competition can be regarded as an ongoing form of
benchmarking, one can safely conclude that all the
planned-economy parts of an organization will have a
strong motive to find indicators of their efficiency
through benchmarking.

2. Internal and External Benchmarking

Benchmarking will be imperative in organizations that
contain a number of similar production centers within
themselves. Internal benchmarking means making
comparisons between similar production units of the
same organization or company. It may sometimes
seem strange that organizations exposed to the full
force of competition do not use benchmarking to the
extent that one might expect. This applies, for exam-
ple, to banks and airlines. Learning how to improve
efficiency within one’s own company ought to come
first, indeed it should be self-evident.

External benchmarking raises numerous questions.
Many people seem to assume that benchmarking must
involve comparisons with competitors, but this is not
necessarily so. Of all the projects I have worked on,
only a vanishingly small minority have involved com-
petitors. Where this has happened, the subjects of
study have been processes at an early stage in the value-
added chain, like production and project engineering,
which are not regarded as competitively critical.

Almost all industries offer opportunities for
benchmarking in which the competitive situation is
not a sensitive issue. A construction firm in England,
for example, may pick one in North America with
which it is not in competition. A European airline
may benchmark its medium-haul operations against
an airline in Southeast Asia, where the degree of com-
petition is negligible.

A step-by-step procedure often follows the sequence
of

• Internal comparisons
• Benchmarking within the same industry
• Good examples outside the industry

I would like to emphasize that companies should start
by picking partners whose operations are as closely
comparable as possible to avoid straining people’s abil-

ity to recognize similarities. Later you can gradually
move further afield to study situations that may differ
more from your own, but where even greater oppor-
tunities for improvement may be found. In many cases
there is a tendency to regard internal benchmarking
as simpler. This is true in some respects, but not in
others. The instinct to defend one’s territory and not
give anything away can be an obstacle to contacts with
colleagues in other parts of the organization.

A combination of internal and external bench-
marking has frequently proved fruitful. This means
seeking both internal and external reference points
simultaneously and thus opening a wider field to the
participants, giving them insights into situations other
than those with which they are already familiar. Vari-
ety is valuable in itself in enhancing the instructive-
ness of benchmarking; the participants are stimulated
and inspired by glimpses of working environments
that differ somewhat from their own.

3. Qualitative and Quantitative
Benchmarking

The object of any organized activity is to create a value
that is greater that the cost of producing it. This applies
to staff work just as much as to selling and production,
and it applies to all kinds of organizations regardless of
mission or ownership. In some cases quality and pro-
ductivity may be exceedingly difficult to measure. The
personnel department of a company, regardless of what
that company does, is likewise expected to produce a
value greater than the cost of producing it, but in such
a department it may be far from easy to answer the
questions that touch on efficiency:

1. What do we produce and deliver?
2. What does it cost per unit?
3. Who evaluates what we deliver?
4. On what criteria is the evaluation based?

A personnel department normally exists in a planned-
economy environment, operating on money allocated
by top management and lacking customers who have a
free choice of supplier and pay for what they get out of
their own pockets. This makes the questions hard to an-
swer, but does not make them any the less relevant. The
processes of personnel or human resource manage-
ment are fairly easy to define and structure; the hard
part lies in defining who the buyers of the department’s
services are and what set of criteria should be used to
dimension the resources allocated to the department.

Qualitative benchmarking may be preferable in such
cases, i.e., a description of processes and activities

Benchmarking 71

followed by a comparison with the way similar things
are done in another organization that serves as a good
example. This is usually called descriptive or qualita-
tive benchmarking, and in many cases it is quite as ef-
fective as the quantitatively oriented kind. Qualitative
benchmarking can often be supplemented by mea-
surement of attitudes, frequency studies of typical
cases, and isolation of customized production. The
latter includes the making of studies and other work
of a nonrepetitive nature.

4. Same Industry or Same Operation?

Some of the most important questions here have al-
ready been dealt with under the heading of internal
and external benchmarking. One client in the telecom
business said: “The telecom industry is tarred with the
monopoly brush all over the world, so we must look for
examples outside the industry.” The same is true of
many European companies and other structures that
are largely shielded from competition. In such cases it
is advisable to seek examples from other industries. Ex-
perience shows that it is this type of exercise that re-
veals the widest performance gaps, and thus the great-
est opportunities for improvement. You can however
look around in your own industry if good examples are
available at a sufficient geographical remove that the
awkward question of competition does not arise. Euro-
pean airlines can go to the United States, and firms in
the building trade can undoubtedly find useful objects
of comparison all over the world.

Some examples of cross-industry benchmarking
are shown in Table I. They include some well-known
and illustrative examples of how inspiration can come
from quite unexpected places. The recognition fac-
tor—how easy it is to relate what you find to your own
experience—determines how far you can safely move
outside your own familiar field of business.

5. Benchmarking in a Leading
or Supporting Role

Benchmarking can be run as an adjunct to other
methods and processes of change or the methods and
processes can be run as adjuncts to benchmarking. In
a number of cases, business process reengineering
(BPR) has been clarified and made more manageable
by the addition of benchmarking. In other cases
process definitions and measurement criteria may be
the object of benchmarking. The same applies to To-
tal Quality Management (TQM), just-in-time (JIT),
kaizen (continual improvement), lean production, and
other approaches. The educational aspect of bench-
marking helps to identify both the need for change
and opportunities for improvement. The ranking or-
der should be determined by the kind of change de-
sired. If uncertainty prevails on that point, running
an exploratory benchmarking exercise can be useful.
That is usually an excellent way to find out what needs
to be changed.

If you go on from there to consider how and why
something needs to be changed, benchmarking can
provide a source of inspiration as part of a broader
program of change. It may also be used as the prin-
cipal instrument for improvement, preferably in con-
junction with the learning that takes place when
benchmarking is further developed into Benchlearn-
ing. That method takes full advantage of the institu-
tional learning process that benchmarking can gen-
erate. This approach is particularly suitable where the
object is to combine business development with skill
development in parts of companies.

It is, of course, impossible to predict all the situa-
tions of change that may arise, but it is always advis-
able to try benchmarking as a powerful educational
accessory to other schemes in cases where it is not the
principal instrument of change.

72 Benchmarking

Table I Examples of Cross-Industry Benchmarking

Global best practices: Take a look outside your own industry

Key process Good examples

Defining customer needs and customer satisfaction Toyota (Lexus), British Airways, American Express

Dealing with customers’ orders DHL, Microsoft

Delivery service UPS (United Parcel Service), Electrolux, Atlas Copco

Invoicing and debt collection American Express, Singapore Telecom

Customer support Microsoft, Word Perfect

6. Benchmarking for Better Performance
or for World-Class Performance

Sometimes an organization must strive for world-class
performance to secure its own existence and survival—
as for example in the case of nuclear power station
builders, international accountancy chains, or credit
card operators. The rule of thumb is that the more
concentrated an industry is, the more important it is
to achieve world-class performance in the organiza-
tion as a whole and all of its parts. There is, however,
an unfortunate tendency to strive for peak perfor-
mance without regard to the company’s frame of ref-
erence or the competition it faces. The aim should be
to seek an optimum rather than a maximum solution,
i.e., to gradually realize the potential for improvement
that is achievable through effort and determination.

To some extent it may be useful to discuss the world-
class aspect, especially in Europe where pressure of
competition is low. Many organizations suffer from an
odd combination of overconfidence and an institutional
inferiority complex. One often encounters the attitude
that our public service, despite lack of competition, is
of course the best of its kind in the world and that there
is nothing else that can be compared to it. The primary
weakness of this line of reasoning is that it is probably
not true, and a secondary one is that it assumes there is
nothing to be learned anywhere, which is never true.

The discussion, if we can manage to conduct it un-
encumbered by considerations of prestige, often leads
to the opposite conclusion by revealing a number of
imperfections that not only indicate potential areas of
improvement but also betray a sense of inferiority in
important respects. Low pressure of competition en-
courages an overconfident attitude that is often only
a thin veneer in the performance-oriented world of
today.

Willingness to learn is obviously a good thing. Such
an attitude is characteristic of successful organiza-
tions; the trouble is that the very fact of long-term suc-
cess makes it very difficult to maintain.

The literature on benchmarking generally recom-
mends world-class performance as the aim. That is all
very fine if you can get there, but the road may be a
long one. If the shining goal of the good example is
too far off, the excuse-making reflex sets in and pre-
sents a serious obstacle to the process of change. The
ideal is to be able to find a few partners at different re-
moves from your own organization; this maximizes the
force for change, enabling good practice to be studied
in various organizations and to serve as a source of in-
spiration for improving your own. Figure 5 illustrates

how the creativity of one’s own organization can trans-
late inspiration from a partner into performance
that surpasses the latter’s. In the ideal situation, this
leads to a self-sustaining process of improvement,
Benchlearning.

When you set out to organize and mount a bench-
marking project, you should consider a number of
questions that may give rise to problems at the imple-
mentation stage, e.g. between consultant and client:

1. Who does the necessary research?
2. Who is the customer?
3. How many people are involved and in what

capacities?
4. Who should be included in the project group?
5. What can be classed as a “good example”?
6. What experts need to be consulted in what areas

(e.g., ABC analysis)?
7. What special analyses need to be made (e.g.,

frequency studies and time measurements)?
8. How much money is available for the project?
9. What kind of skills and experience are needed

on the project team?
10. Organize a seminar on success factors and pitfalls!

If you pay close attention to these questions and an-
swer them properly, you will minimize the risk of run-
ning into difficulties along the road.

III. METHODOLOGY OF BENCHMARKING

After some 10 years of learning lessons from bench-
marking, I have now adopted a 10-step methodology.

Benchmarking 73

P
er

fo
rm

an
ce

Own conception
of what is possible

Benchmarking partner

Figure 5 Inspiration from a benchmarking partner. [From
Karlöf, B., and Östblom, S. (1993). Benchmarking. Chichester:
Wiley.]

How the process is divided up is actually just a teach-
ing device. An experienced benchmarker can make
do with fewer steps because he or she is familiar with
what is included in each of them.

1. Explanation of Method,
Leadership, and Participation

People with extensive experience in benchmarking
tend to seriously underestimate how difficult and time
consuming it is to explain the method and get people
to understand it. The natural way to structure the ex-
planation is to use the lessons related here and the
structure of the method shown below:

1. A detailed explanation of the benchmarking
method with time for questions and discussion

2. The concept of efficiency as a basis for diagnosis,
measurement, and comparison

3. Definitions of concepts, terminology, and
methods that are recognized by all members of
the group

4. A survey of any special circumstances that may
motivate a departure from the 10 steps presented
here

2. Choosing What to Benchmark

The natural place to start is with units whose efficiency
is known to be below par. The units concerned may
have administrative functions like finance or informa-
tion technology, but they can just as easily be line func-
tions like aircraft maintenance or luggage handling. In
the telecommunications field it may be invoicing or
productivity in access networks. In insurance compa-
nies it may be claims adjustment, in banks creditwor-
thiness assessment, and so on. In every industry there
are production units of a generic nature like IT as well
as industry-specific processes like claims adjustment
(insurance), clinical testing (pharmaceuticals), etc.
Generic support processes can often be compared
across industrial demarcation lines, whereas more spe-
cific processes call for a closer degree of kinship. To
sum up, we are looking at a situation in which effi-
ciency is clearly in need of improvement.

3. Business Definition and Diagnosis

A considerable proportion of the time devoted to
benchmarking is spent in defining the work content of
the business, or in what I have called diagnosis. Put bru-

tally, the statement may sound like an extremely harsh
judgment. What we are actually saying is that people
have failed to define what they are doing and that they
therefore do not know their jobs. Sadly, that brutal
statement is corroborated by repeated and unanimous
experience. Just as learning is such an important side
effect of benchmarking that it contends for the title of
principal effect, business definition or diagnosis is so
important that it deserves to be highlighted as the spe-
cial value that benchmarking often creates, even
though that was not the original intention.

4. Choosing Partners

Choosing a partner is naturally an essential feature of
benchmarking. In a structure with multiple branches,
the choice might seem to be obvious—the partners
are right there in your own organization. Experience
shows, unfortunately, that even if the identity of the
partners is obvious, the difficulties involved in making
contact and collaborating are actually greater than
with an external partner. As a result of decentraliza-
tion, often carried to extremes, there are a lot of peo-
ple in an organization who regard definition as their
own prerogative and therefore see no reason to har-
monize process descriptions, measurement criteria,
etc. So the partnership contact that looks so easy may
turn out to be fraught with great difficulty.

5. Information Gathering and Analysis

We are now ready to proceed to one of the core areas
of benchmarking: the collection of information and
the analysis of descriptive and numerical quantities.
The descriptive quantities are things like work organi-
zation, skill development, and other areas relevant to
the comparison that cannot be expressed in figures.

6. Inspiration from Cause and Effect

Benchmarking indicates not only what can be im-
proved, but also how and why. This is what we call a
cause-and-effect relationship, causality or why, why,
why? Even in studies that use calibrated key indica-
tors, the important explanations of differences in per-
formance are often overlooked. You do not have to go
down to the level of detail of describing every manual
operation, but you should realize that if the drivers in
your partner company take care of routine checks
that have to be made by skilled technicians in your
own company, that goes a long way toward explaining
differences in performance.

74 Benchmarking

7. Follow-Up Visit

The follow-up visit qualifies as a separate step because
it needs to be taken into account at the planning stage
and in initial discussions with partners. If you fail to
schedule at least one follow-up visit as part of the pro-
gram, your partner may feel neglected. One or more
follow-up visits are a perfectly normal feature of
benchmarking.

The main items on the agenda of the follow-up
visit are

1. Checking figures and measurements
2. Testing hypotheses to explain gaps
3. Identifying new explanations of why differences

in performance exist
4. Discussing obstacles to improvement

8. Reengineering

The word reengineering is used here to denote changes
in processes or flows, activities, work organization, sys-
tem structures, and division of responsibilities. Bench-
marking may be supplemented by other points of ref-
erence. Two such points of reference may be well
worth considering in some cases because of their great
instructive value:

1. Own history (experience curve)
2. Zero-base analysis

9. Plans of Action and Presentation

The reason why these two apparently disparate items
have been lumped together under one head is that they
are interdependent. The substance of the plan of ac-
tion influences the form in which it is presented and
vice versa. Planning the changes prompted by a bench-
marking study is no different from any other kind of
project work. The benchmarking element, however,
simplifies the job of planning as well as the presenta-
tion, and the changes will be easier to implement and
better supported by facts than in projects of other kinds.

The plan of action covers the following principal
parameters:

1. Strategies and goals
2. Studies
3. Activities
4. Responsibility
5. Time
6. Resources
7. Results

10. Change and Learning

Change management is much more difficult and de-
mands much more energy than is commonly sup-
posed at the outset. Even when the message has been
received, understood, and acknowledged, a tremen-
dous amount of work still remains to be done.

IV. BENCHMARKING—PITFALLS,
SPRINGBOARDS, AND OBSERVATIONS

Leaders of business know by experience that good ex-
amples, well chosen and presented, have great edu-
cational value. They have also learned to discount the
value of key indicators that nobody believes in and
that only provoke the excuse-making reflex in the or-
ganizations and individuals concerned. In addition,
they understand the logic of shifting the burden of
proof: Nobody wants to make a fool of himself by re-
jecting changes when there is hard evidence to show
that others have already done so and that the results
have been successful. Anybody who did reject them
would be insulting her own intelligence.

There are, however, innumerable kinds of less bla-
tant behavior that can detract from the effect, but
there are also ways of finding shortcuts that lead much
more quickly to the goal of improvement. What fol-
lows is a list—not in any particular order, but based
on experience—of some of the pitfalls, springboards,
and observations.

A. Pitfalls of Benchmarking

1. The Effect of Benchmarking Is Binary

Thoroughness in calibrating numerical data and con-
sistency in the descriptive parts of the analysis are es-
sential. The requirements here are full comparability,
elimination of noncomparable factors, and acknowl-
edgment by the people concerned that the highest
possible degree of comparability has in fact been
achieved. If those people go through the same intel-
lectual process that you have gone through and ac-
cept the comparability of the findings, that effectively
disarms the excuse-making reflex. If, in addition, you
have been really thorough about gathering data and
can show that you have considered and measured all
of the relevant factors, you will avoid the yawning pit-
fall you can otherwise fall into—the pitfall of lack of
calibration, comparability, and acceptance.

Benchmarking 75

2. Beware of Distributed Costs

There used to be 14 smiths for every clerk. Now there
are 14 clerks for every smith. With IT as an enabler,
with a shrinking proportion of direct costs and a grow-
ing proportion of overheads, it has become increas-
ingly hard to assign cost elements to a specific opera-
tion. This difficulty can be overcome by using either
ABC analysis or indicators that exclude overheads to
secure acceptance of cost distribution and compara-
bility. I have had personal experience of situations
where certain cost elements were charged to a higher
level of management in one unit than in another.
Much to our embarrassment, this was pointed out to
us when we made our presentation, and we had to go
back and revise some of the material.

3. Do Not Save Everything
for the Final Report

One way to avoid the embarrassment of being caught
out in errors of comparability is to present conclu-
sions in the form of a preliminary report that is ex-
pected to be adjusted prior to the final presentation.
This defuses the emotional charge in the analysis and
enables a kinder view to be taken of any errors.

4. Do Not Be a Copycat

A lot of people with no firsthand experience of bench-
marking think it means copying the behavior of oth-
ers. That is, of course, true to the extent that good
practice is well worth following. But the real aim of
benchmarking is inspiration for your own creativity, not
imitation of somebody else. Benchmarking is intended
to promote creativity, which can be defined as the abil-
ity to integrate existing elements of knowledge in new
and innovative ways. What benchmarking does is to
supply the necessary elements of knowledge.

5. Do Not Confuse Benchmarking
with Key Indicators

Let me recapitulate the levels of benchmarking:

1. Uncalibrated key indicators that nobody believes
in and that therefore have no power to change
anything

2. Calibrated key indicators unsupported by
understanding of the differences in practice and
motivation that explain differences in
performance (why and how)

3. Calibrated key indicators supported by
understanding of why and how. (This is real
benchmarking, and it leads to spectacular
improvements)

4. Learning added to benchmarking, which then
evolves into Benchlearning

The greatest danger to the future destiny and adven-
ture of benchmarking is that it may degenerate into
bean-counting with little or no calibration. So let us
be quite clear about what benchmarking really means.

6. Complacency Is a Dangerous Enemy

The attitude that “we know it all, know best and can
do it ourselves” is a cultural foundation stone of many
organizations that reject benchmarking as an instru-
ment for their own improvement. Such organizations
react vehemently with the excuse-making reflex when
benchmarking is applied to them. The danger of
complacency is greatest at the outset. When bench-
marking is introduced in an organization with a cul-
ture of complacency, it is often dismissed with scorn.

Many successful organizations have applied bench-
marking too narrowly and consequently have run into
structural crises. Rank Xerox, where the benchmark-
ing method originated, had set productivity improve-
ment targets that proved hopelessly inadequate. IBM
benchmarked between its own units, but not to any
significant degree outside its own organization, being
overconfident in its own superiority. Uninterrupted
success is an obstacle to the learning and improve-
ment of efficiency that benchmarking can offer.

7. Benchmarking Is Not the Same
Thing as Competition Analysis

I have concerned myself very little with what is some-
times called competitive benchmarking. This is because
benchmarking is not at all the same thing as compe-
tition analysis, which traditionally consists of charting

1. Market shares
2. Financial strength
3. Relative cost position
4. Customer-perceived quality

These are highly interesting items of information, but
they do not constitute benchmarking. If benchmark-
ing is done with a competitor as the partner, it must
be done in areas where the competitive interface is
small. Some industries, the automotive industry for

76 Benchmarking

example, practice what they call co-opetition—a mix-
ture of cooperation and competition. The farther
back you go along the integration chain, the easier it
is to collaborate. Conversely, it is very hard to collab-
orate at the front end where you are directly compet-
ing for customers.

8. Do Not Let Your Own Administrators
Take Charge of New Methods

In the 1980s companies set up quality departments.
These have gradually expanded their domains to in-
clude productivity aspects like BPR and, of course,
benchmarking. Having projects run by your own staffers
may look like a cheap way of doing it, but is seldom ef-
fective. In fact, I have never seen an in-house bench-
marking project that was really successful. The resources
allocated are inadequate, the project is a secondary as-
signment for the people in charge of it, and the method
is not fully understood. It is the line management that
must be motivated and act as the driving force, and it is
desirable to retain outside consultants for three reasons:

1. The project must be somebody’s primary
responsibility, which is never the case when the
project manager is recruited internally

2. Benchmarking calls for specialized knowledge
that few employees possess

3. People from inside the company are suspected of
having their own corporate political agenda,
which reduces their credibility

So make sure that somebody has the primary respon-
sibility. That probably means bringing in an outside
consultant.

9. Benchmarking Risks Being
Viewed as a Management Fad

The fact that the whole field of management is a se-
mantic mess is aggravated by the confusion caused by
all the new methods that burst on the scene from
time to time, only to fade away again. We once ran a
poll asking a large number of respondents to draw a
life-cycle curve for benchmarking as a method. This
was done in relation to other approaches like BPR,
TQM, lean production, reinvention of the corpora-
tion, JIT, conjoint analysis, and so on. Though the in-
terviewees had no special preference for benchmark-
ing, their verdict was that it would stand the test of
time. Figure 6 shows the predicted life-cycle curve for
benchmarking as a management technique compared

to those of other unnamed methods. This claim must
of course be made in an article about benchmarking,
but there is much independent evidence that testifies
to the staying power of the method.

10. Our Banana Is the Best in the Bunch

All organizations prefer to make their own inventions
rather than give the credit to somebody else. A Euro-
pean telecom company spent about $70 million on
developing its own invoicing system instead of adopt-
ing an existing system from Australia that met the
same specifications. The tendency to reject good ex-
amples is thus not entirely a matter of lack of compa-
rability in the material, but may also be attributable to
the “not invented here” syndrome.

B. Springboards for Benchmarking

Springboards (success factors) for benchmarking are
necessarily a mirror image of the pitfalls. Let us com-
bine the success factors with some pertinent observa-
tions that are crucial to the success of a benchmark-
ing project.

1. Get Staff Really Involved

To ensure success, the organizational units and indi-
viduals affected by the project must be given the op-
portunity to go through the same intellectual process
as the project management. That will predispose them
to accept the findings of the benchmarking study,
which in turn will make it easier to take the step from
thought to deed. Improvements in understanding,
behavior, and results will all be accelerated if people
are allowed to take an active part. So allocate a share
of the resources to getting them really involved.

Benchmarking 77

Time

Im
po

rt
an

ce
 o

f b
en

ch
m

ar
ki

ng

Figure 6 Life cycle of benchmarking.

2. Make Special Measurements
to Acquire New Information

There is never enough information in existing report-
ing systems. Efforts to improve efficiency nowadays are
directed mainly at administrative work, and this calls
for time management studies, floor traffic studies, de-
scriptions of sales and other processes, and so on. Spe-
cial measurements have double value in that they both
get people involved and provide new information that
is often interesting and helpful for purposes of change
management. You may sometimes experience prob-
lems in persuading your partner to make the necessary
measurements, but this is seldom an insurmountable
obstacle. If you start with the two parameters of effi-
ciency—quality and productivity—you can usually find
innovative approaches, methods, and measurements
that make a significant contribution to the project.

3. Benchmarking Contributes to Both
Gradual and Quantum-Jump Change

The magnitude of the improvements that can ulti-
mately be achieved is impossible to judge in advance.
Experience shows, however, that although you can
sometimes find hitherto unsuspected possibilities for
making major breakthroughs, you will usually have to
be patient and take many small steps that will ulti-
mately lead to great gains in efficiency. Radical change
management is often prompted by a crisis situation in
which the very existence of the business is threatened.
Benchmarking, on the other hand, involves a con-
stant search for good examples to serve as models for
the modest improvements that will enable you to avoid
crises, i.e., to be proactive instead of reactive.

4. The Whole Conceals
Inefficiencies in the Parts

A commercial company is evaluated by its bottom line.
Other types of organizations have their own criteria
for success. But if you look at the component parts of
the organization—departments like accounting, per-
sonnel, and IT or processes like sales and aftermar-
ket—you may find a grave lack of efficiency. There
may thus be a substantial potential for improvement
even where the overall result appears to be good. In
the future, every head of department and process
owner must be prepared to answer the question: “How
do you know that your operation is efficient?”

Benchmarking is an unsurpassed instrument for
detecting inefficiencies concealed in parts of the
whole.

5. Benchmarking Is a Surrogate
for Market Economy

A user of goods or services inside a company or orga-
nization lacks the freedom of choice between suppliers
that exists in a market economy. The trouble is not only
that the value of an internal delivery is not measured
against a price, but also that what is delivered may not
in fact be necessary at all. Units of organizations often
justify their existence and growth by being productive,
but the value of what they produce is not assessed.
Benchmarking helps you make that assessment.

6. Benchmarking Encourages
Performance-Oriented Behavior

Relations between individuals and units in large orga-
nizations are often, alas, governed by power rather
than performance. Because the actual performance of
a unit is so hard to measure, managers tend to devote
more attention to matters of form and irrelevant fac-
tors than to things that really contribute to the success
of the company as a whole. A person may be judged
by his or her style, connections, appearance, or career
status for lack of ways to measure actual performance
and contribution to achieving the company’s aims.

It has become increasingly evident that bench-
marking appeals to strongly performance-oriented
people, by which I mean people who reckon success
in terms of getting results. In this they differ from
power-oriented and relation-oriented people, who are
motivated by other considerations.

7. Proceed Step by Step

What we call the cascade approach means starting
with a broad, shallow comparison (low level of reso-
lution) and then taking a closer look at those areas
that appear to offer the greatest opportunities for im-
provement. The first step in the cascade approach is
exploratory benchmarking, a study that aims at iden-
tifying the areas with the greatest potential for im-
provement. Such a study seldom explains the reasons
for differences in performance, but it does suggest
where you should start digging deeper to look for rea-
sons. This step-by-step approach is particularly rec-
ommended in cases where there are no obvious can-
didates for improvement.

8. Benchmarking Encourages Learning
in Decentralized Systems

Organizations and companies with a multiple-branch
structure and delegated profit-center responsibility

78 Benchmarking

often lack a mechanism for system-wide learning. One
petrol station does not learn from another, nor one
bank branch or retail outlet from another.

One of the obvious applications of benchmarking
in the future will be to enable units of decentralized
systems to learn from each other. This will take ad-
vantage of the organization’s accumulated knowl-
edge—an advantage that ought to be self-evident but
is often overlooked. Failure to make use of knowledge
from individual units of the organization (“advan-
tages of skull”) is astonishingly widespread.

9. Benchmarking Unites
Theory and Practice

When the individuals in a working group or process
are made to lift their gaze from their day-to-day tasks
and consider their performance objectively, they form
a theory about their own work. This has proved to be
of great help in motivating organizations. People like to
unite theory with practice because it makes them feel
motivated. That in turn leads them to put more energy
into their work, which results in a win–win situation
where the employer benefits from increased energy
and efficiency, while the employees are happier in their
work. The function of theory is to lay a foundation for
good practice. Benchmarking combines the theory of
what the job in hand is really about with concrete in-
spiration from good examples to optimize the prospects
for successful change management.

10. Benchmarking Benefits the
Business and the Individual

Traditional training, especially in Scandinavia, focuses
on the individual. People are sent off on courses to
improve their qualifications. This is not always com-
patible with the employer’s desire for better perfor-
mance and efficiency. In the worst case the individual
concerned may quit and use his qualifications to get
a job with a competitor.

Benchmarking ensures that the business as a whole
benefits from learning; knowledge becomes an asset
of the organization rather than the individual. That
way the skills stay in the company and the working
unit even if individuals depart. This reconciles the re-
quirements of a benevolent personnel policy with
management’s need for an efficiently run business.

The intellectual simplicity of the benchmarking
method may be a pitfall in itself. There is a great risk
of underestimating the problems. So if you are con-
templating a project, use the foregoing points as a
checklist to help you avoid the mistakes that others

have made before you and to take advantage of the
lessons they have learned.

V. SUMMARY

Benchmarking is widely known and used, and has
been for a long time. The most important elements
in benchmarking as of today are as follows:

• A complete and correct description of the
processes and activities that create value-adding
performance

• Correct and accepted comparison with another
party—a good example

• In-depth understanding of causality, that is, of the
differences in work organization, skills, and so on,
that explain differences in performance (In short:
why, why, why?)

• Reengineering of work organization and routines
and development of new skills to make operations
more efficient; inspiration from, not imitation of,
the partner

• A goal-related, result-rewarded process of change
that uses benchmarking as the starting point for
an institutionalized search for new examples for
continuity

One key factor when it comes to benchmarking is ef-
ficiency, which in its right sense is a function of value
and productivity. Related to this are issues of how to
define what is produced, what the cost per unit is,
who are the users of the product, and by what crite-
ria those users evaluate the product.

Benchmarking can be divided into a number of cat-
egories of which some are strategic or operative
benchmarking, internal or external benchmarking,
and qualitative or quantitative benchmarking. Further-
more, benchmarking can be conducted within the same
industry or cross-industry. Benchmarking can have a
leading or supporting role and have the goal of better
performance or world-class performance.

From long experience of working with bench-
marking, several important and not instantly obvious
issues have emerged. The method is simple and ap-
pealing, but its very simplicity has proved deceptive.
Some advice to potential benchmarkers is to beware
of distributed costs, to get inspired instead of copying,
and not to confuse benchmarking with comparison of
uncalibrated key indicators or competition analysis.

Benchmarking can be further developed into the
method of Benchlearning, which also incorporates a
continuous learning process in the organization with
numerous positive side effects.

Benchmarking 79

SEE ALSO THE FOLLOWING ARTICLES

Cost/Benefit Analysis • Executive Information Systems • Goal
Programming • Operations Management • Project Manage-
ment Techniques • Quality Information Systems • Reengineer-
ing • Resistance to Change, Managing • Total Quality Manage-
ment and Quality Control

BIBLIOGRAPHY

Briner, W., Geddes, M., and Hastings, C. (1990). Project leader-
ship. New York: Van Nostrand Reinhold.

Camp, R. C. (1989). Benchmarking: The search for industry best
practices that lead to superior performance. Milwaukee, WI: ASQC
Industry Press.

Edenfeldt Froment, M., Karlöf, B., and Lundgren, K. (2001).
Benchlearning. Chichester: Wiley.

Gordon, G., and Pressman, I. (1990). Quantitative decision-
making for business, 2nd ed. Upper Saddle River, NJ: Prentice-
Hall International.

Karlöf, B. (1996). Conflicts of leadership. Chichester: Wiley.
Karlöf, B. (1997). Strategy in reality. Chichester: Wiley.
Karlöf, B., and Östblom, S. (1993). Benchmarking—A signpost to

excellence in quality and productivity. Chichester: Wiley.
Peters, T. J., and Waterman, R. H., Jr. (1982). In search of excel-

lence: Lessons from America’s best run companies. New York:
Harper Collins.

Spendolini, M. J. (1992). The benchmarking book. Amacom.
Thompson, A. A., Jr., and Strickland, A. J., III (1990). Strategic

management—Concepts and cases, 5th ed. Homewood, IL:
Irwin.

80 Benchmarking

Business-to-Business Electronic Commerce
Jae Kyu Lee
Korea Advanced Institute of Science and Technology

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 81

I. INTRODUCTION
II. TAXONOMY OF B2B E-MARKETPLACES

III. ON-LINE SERVICES TO BUSINESSES
IV. E-PROCUREMENT MANAGEMENT
V. INTERNET-BASED EDI

VI. SCM AND COLLABORATION AMONG ALIGNED PARTNERS
VII. AGENT-BASED COMMERCE

VIII. XML IN B2B EC
IX. KNOWLEDGE MANAGEMENT IN THE B2B EC PLATFORM
X. SUMMARY AND CONCLUSION

GLOSSARY

agent-based commerce Electronic commerce that is
assisted by the buyer agents and seller agents ac-
cording to the mutually agreed language, message
format, and protocol.

B2B EC Electronic commerce between businesses.
B2C EC Electronic commerce between business sell-

ers and individual consumers.
data warehouse Data repository that stores the his-

torical transactions to mine the meaning patterns
useful for decision making.

e-hub The electronic hub which plays the roles (at
least one of the roles) of e-marketplace, supply
chain information coordinator, application service
providers to enable the B2B EC.

e-marketplace Electronic marketplaces that display
the electronic catalogs of suppliers, take orders,
support the order fulfillment and perhaps the elec-
tronic payments.

e-procurement Electronic procurement system for
buyer company, which needs to integrate with the
external e-marketplaces as well as the buyer’s cor-
porate information system such as ERP.

electronic supply chain management Management of
the supply chain on-line to reduce the inventory to
minimum by sharing the information between
partnered buyers and sellers.

exchange A type of e-marketplace where many buyers
trade with many sellers.

internet-based EDI Electronic data interchange that

is implemented on the Internet in a secure and
economical manner.

virtual corporation An organization composed of sev-
eral business partners, sharing costs and resources
to produce goods and services more effectively and
efficiently.

XML eXtensible Markup Language that can be
browsed to human and also comprehensible by
software agents.

BUSINESS-TO-BUSINESS ELECTRONIC COMMERCE
(B2B EC) has emerged as the largest pie in EC. How-
ever, its definitions as well as perspectives on the cur-
rent status and future prospects are not unequivocal.
Therefore this article describes the necessary factors
that can enhance the effectiveness and efficiency of
the electronic commerce between companies. Then
the current key activities in the B2B EC area are re-
viewed one by one with the discussion of its relation-
ship with others. Key activities included are B2B
e-marketplaces (seller, intermediary, or buyercentric
ones); on-line service applications for business; the
electronic procurement management system and its
integration with external e-marketplaces; evolution of
the EDI platform onto the Internet; collaboration by
supply chain management; the shared data warehouse
and virtual corporation; agent-based commerce be-
tween the buyer agents and seller agents; XML (eX-
tensible Markup Language) standards and their inte-
gration with electronic data interchange (EDI) and

agents. This article provides a good understanding
about activities in the B2B EC area, and explicates the
converging phenomena among the separate activities
toward enhanced managerial performance.

I. INTRODUCTION

Electronic Commerce (EC) has been launched with
the web-based e-marketplaces for individual con-
sumers. As the large portion of buyers become busi-
nesses, it has become necessary to contrast business-to-
business (B2B) EC with business-to-consumer (B2C)
EC. According to the forecasts, B2B EC is expected to
grow to $1330.9 billion by the year 2003, and contin-
ues to be the major share of the EC market. Since B2B
EC has evolved from B2C EC, there are common points
between them, but the distinction has become en-
larged as the technologies for B2B EC develop.

Theoretically, B2B EC pursues the maximized val-
ues in terms of quality and delivery time, efficient col-
laboration, and reduced search and transaction costs.
According to Handfield and Nichols (1999), full-
blown B2B applications will be able to offer enter-
prises access to the following sorts of information
about associated companies:

• Product: Specifications and prices in e-catalogs,
and sales history in the data warehouse

• Customer, sales, and marketing: Sales history,
forecasts, and promotion for one-to-one customer
relationship management (CRM)

• Suppliers and supply chain: Key contractors, product
line and lead times, quality, performance,
inventory, and scheduling for effective supply
chain management

• Production process: Capacities, commitments, and
product plans for virtual corporations

• Transportation: Carriers, lead times, and costs for
just-in-time (JIT) delivery management

• Competitors: Benchmarking, competitive product
offerings, and market share

In practice, key activities in the B2B EC community are

1. The B2B e-marketplaces emerged with the
same architecture used for B2C, although they
handle different contents that business requires.
Dell and Cisco are good examples of this category of
direct marketing.

2. A large number of vertical e-marketplaces (usually
called exchanges because in most cases there are many
buyers and sellers involved) are widely established. In
the B2B e-marketplaces, the buyers play the key role

for market making, while in the B2C e-marketplaces
sellers control the e-marketplaces.

3. Large buyers build their own e-marketplaces to
handle their tenders in their servers, and to
integrate the procurement process with their
virtually internalized e-marketplaces.

4. E-procurement systems, which support the
internal procurement management and its
integration with the external e-marketplaces, begin
to emerge.

5. The platform for EDI moves onto the Internet
to reduce its implementation cost. So the secure
extranet has become popular among associated
companies.

6. To reduce the inventory and capacity, the
information is shared among aligned partners. To
support such collaboration, the third-party electronic
supply chain management (SCM) hub service appeared.
Big retailers opened their own data warehouse to
their suppliers as a private e-hub on the Internet.

7. The third-party JIT delivery service becomes
tightly coupled with suppliers.

8. To reduce the transactional burden between
buyers and sellers, the software agents are actively
under development. These agents will open the next
stage of agent-based commerce.

9. Sellers can trace the behaviors of on-line
customers precisely, and store this information in
the data warehouse. So web mining through the
data warehouse for customer relationship
management has become popular for identifying
relevant customers.

To grasp the activities of, and to design the B2B EC,
the entities that we have to consider are selling
companies, buying companies, intermediaries,
e-marketplaces, e-SCM hubs, deliverers, a secure net-
work platform on the Internet, protocol of B2B EC,
and a back-end information system that should be
integrated with the external e-marketplaces.

B2B EC is still in its infant stage; so many aspects
have emerged from different backgrounds, as listed
above. However, in the future such efforts should con-
verge under a unified framework. This implies that
there are ample research opportunities to open the
future of B2B EC. The remaining sections describe
each of the activities and interactions among them,
and foresee future prospects.

II. TAXONOMY OF B2B E-MARKETPLACES

The B2B EC can be best understood by categorizing
who controls the e-marketplaces: the seller, interme-

82 Business-to-Business Electronic Commerce

diary, or buyer. Some e-marketplaces are called ex-
change. Most commonly agreed definition of ex-
change is the e-marketplaces which assist the match-
ing of multiple buyers and multiple sellers. But the
term may be used with different implication depend-
ing upon the purpose of authors. Let us study the
characteristics of each type of e-marketplace contrast-
ing them with the B2C e-marketplace. The best B2B
web sites for 15 industries can be found in The Net-
Marketing 200 (www.btobonline.com/netMarketing).

A. Seller-Centric E-Marketplaces

The seller-centric e-marketplaces are the first type of
e-marketplaces that can be used by both consumers
and business buyers as depicted in Fig. 1. In this
architecture, the features of e-catalog, e-cart, on-line
ordering, and on-line payment schemes can be used
for both B2B and B2C e-marketplaces. The only dif-
ference between them is their contents. While B2C
handles the consumer items, B2B handles industrial
items. However, some items like computers and print-
ers are necessary in both sectors. So the seller-centric
e-marketplace and direct marketing will never disap-
pear even though the B2B EC evolves.

The seller-centric e-marketplace is the easiest way
to build B2B e-marketplaces. Successful cases of this
kind are manufacturers like Dell and Cisco, and re-
tailers like Amazon and Ingram Micro. All of them
support e-catalog, and some support auction services.
For instance, Ingram Micro (www.ingram.com)
opened the auction site only to the existing customers
to sell off the seller’s surplus goods at a deep dis-

count. The e-marketplace may consist of pure on-line
players or a combination of on- and off-line (click-
and-mortar) businesses. In the early stage of seller-
centric e-marketplaces, there is no distinction between
the architectures of B2B and B2C EC.

It is reported that Dell sold more than 50% of com-
puter products on-line, and 90% to business buyers.
Cisco sold more than $1 billion worth of routers,
switches, and other network interconnection devices
to business customers through the Internet. The In-
ternet covers 90% of sales and 80% of customer sup-
port, and the operating cost is reduced by 17.5%. In
this way, Cisco recorded the gross margin of 64.4% in
2000. The seller-centric architecture will continue to
exist as long as the supplier has a superb reputation
in the market and a group of loyal online customers.

The benefits to online sellers are

• Global single contact point
• Updating the e-catalog is easy, on-line and

consistent
• Reduced operating cost
• Enhanced technical support and customer service
• Reduced technical support staff cost
• Reduced catalog and service software distribu-

tion cost

However, the problem with the seller-centric
e-marketplaces is that the buyers’ order information
is stored in each seller’s server and it is not easy to in-
tegrate the information with the individual buyer’s
corporate information system. To handle this prob-
lem, the e-procurement system emerged which tries
to integrate the internal procurement management

Business-to-Business Electronic Commerce 83

Consumer

Consumer Supplier's
electronic mall

Supplier's
products catalog

Customer's
order information

Business customer

Business customer

Business-to-business ECBusiness-to-consumer EC

Figure 1 Seller-centric B2B e-marketplace architecture.

process with the external e-marketplaces as explained
in Section IV. When the internal information system
is developed by the ERP (enterprise resource plan-
ning) system, the ERP system should be integrated
with the e-marketplaces as well. For these reasons, the
need of the buyer-centric e-marketplace is enlarged,
as explained in Section II.C.

B. Intermediary-Centric E-Marketplaces

The second type of e-marketplace is the intermediary-
centric e-marketplace. The definition between the e-tailer
(electronic retailer) and intermediary is blurred. A rea-
sonable criterion of distinction seems to occur if the
on-line site operator takes the orders and fulfills them.
The possession of inventory cannot distinguish them
precisely because many e-tailers do not keep inven-
tory although they guarantee the order fulfillment.
The intermediary-centric architecture can also be
used for both B2B and B2C EC. The only difference
here again is the items handled.

Examples of this kind are B2B portal directory ser-
vice, comparison aid, auction to business, and exchange.
A distinctive feature of the B2B intermediary e-market-
place is that in many cases buyers are involved in mar-
ket making, usually to make sure that the pertinent items
are appropriately included and to lead the standard of
integration with their e-procurement systems. Therefore
most B2B intermediaries are vertical e-marketplaces.
They support e-catalog, search, auction, and exchange.

1. Vertical E-Marketplaces

At the moment, the active industries in vertical
e-marketplaces are computers, electronics, chemicals, en-
ergy, automotive, construction, financial services, food
and agriculture, health care, life science, metals, and
telecom. Typical sites in these industries are as follows:

1. Computers and electronics: FastParts,
PartMiner.com, PcOrder, and TechnologyNet

2. Chemicals and energy: AetraEnergy, Bloombey,
CheMatch, ChemConnect, e-Chemicals,
Enermetrix.com, Energy.com, HoustonStreet, and
Industria

3. Automotive: Covisint, Cole Hersee Co.
4. Construction: Deere & Co., Bidcom, BuildNet,

and Cephren
5. Financial Services: IMX Exchange,

Muniauction, Pedestal, and Ultraprise
6. Food and Agriculture: Monsato Co., efdex,

Floraplex, FoodUSA, and Gofish.com

7. Health Care and Life Sciences: Baxter
Healthcare Corp., BioSuppliers.com, Chemdex,
Neoforma, and SciQuest

8. Metals: e-Steel, iSteelAsia, MaterialNet,
MetalShopper, and MetalSite

9. Telecom: Arbinet, Band-X, RateXchange,
Simplexity.com, Telezoo, and The GTX.com

Since each industry has a different level of product
fitness and readiness for digital marketing, the
potential benefit of EC will not be the same. Accord-
ing to Forrester Research, the opportunity of B2B
e-marketplaces can be categorized as in Fig. 2. Ac-
cording to this analysis, computers, electronics, ship-
ping, and warehousing have the highest (above 70%)
potential of e-marketplace saturation, while the heavy
industry and aerospace industry have the lowest po-
tential. So the selection of right industry and items
are very important for the successful implementation
of vertical e-marketplaces. In addition, the business
partnership is critical for the success of this business.

2. Horizontal E-Marketplaces

The horizontal e-marketplaces support the aggregation
of vertical e-marketplaces and the acquisition of com-
mon items and services that are necessary in all in-
dustries like MRO (maintenance, repair, and opera-
tions) items. The types of horizontal e-marketplaces
are as follows:

1. Vertical e-marketplace aggregators: Typical
aggregators are VerticalNet, Ventro, and Internos

2. Procurement solution provider initiative: A
group of horizontal e-marketplaces are built under
the initiative of e-procurement solution providers
like Ariba, Commerce One, Clarus, Works.com,
Suppplyaccess, PurchasePro, Peregrine/Harnbinger,
and Unibex

3. MRO suppliers and services: The sites that
handle the MRO items are MRO.com and
W.W.Grainger

4. Industrial products: supplyFORCE
5. Surplus goods and equipment management:

TradeOut, FreeMarkets, and AssetTrade
6. Information technology: Interwar
7. Sales and marketing: Art Technology Group,

Broadvision, Calico, Firepond, and SpaceWorks.

Some B2B auction sites like FreeMarkets.com, Ear-
marked (www.fairmarket.com), and A-Z Used Com-
puters (www.azuc.com) belong to the intermediary-
centric B2B e-marketplaces.

84 Business-to-Business Electronic Commerce

C. Buyer-Centric E-Marketplaces

To buying businesses, the seller-centric e-marketplaces
are convenient places to search one by one, however,
they are inconvenient in a sense that they are seg-
mented. The ordered information should be stored
in the seller’s server, therefore the buying company
has to manually type in the order information in its
procurement system. Thus, big buyers are compelled
to build the buyer’s own e-marketplace to manage the
purchasing process efficiently.

Types of buyer-centric e-marketplaces are buyer ini-
tiated bidding sites, internalized e-marketplaces, and
buyer’s-coalition procurement sites. Buyer’s bidding
sites may evolve opening the site to the other po-
tential buyers. Internalized e-marketplaces need to
link and maintain consistency with the external
e-marketplaces, and may open to outside buyers. This
service can evolve to e-procurement service providers.

1. Buyer’s Bidding Site

In this model, a buyer opens an e-market on its own
server and invites potential suppliers to bid on the an-
nounced request for quotations. A successful example
is the GE TPN case (tpn.geis.com). This model can
offer a great sales opportunity to committed suppli-
ers. However, as the number of such sites increases,
suppliers will not be able to trace all such tender sites.
At this stage, only very prominent buyers can take
full advantage of this approach. Such government-
driven sites are CBDNet (cbdnet.access.gpo.gov),
GPO (www.access.gm.gov), COS (cos.gdb.org), EPIN
(epin1.epin.ie), and GSD (www.info.gov.hk.gsd).

By building the buyer’s bidding site, buyers can ob-
tain the following benefits:

• Identifying and building partnerships with new
suppliers worldwide

• Strengthening relationships and streamline
sourcing processes with current business partners

• Rapidly distributing information and specifications
to business partners

• Transmitting electronic drawings to multiple
suppliers simultaneously

• Cutting sourcing cycle times and reducing costs
for sourced goods

• Quickly receiving and comparing bids from a large
number of suppliers to negotiate better prices

However, small companies cannot justify the cost of
building their own bidding site for purchase, so the
third party service has emerged. Examples of such
sites are BIDCAST (www.bidcast.com), BIDLINE
(www.bidline.com), BIDNET (www.bidnet.com), Fed-
eral Marketplace (www.fedmarket.cim), and GOV-
CON (www.govcon.com). Each site announces thou-
sands of requests for bids.

By exploring the opportunities, suppliers in the
buyer’s bidding sites can take advantage of boosted
sales, expanded market reach, lowered cost for sales
and marketing activities, shortened selling cycle, im-
proved sales productivity, and a streamlined bidding
process. As the number of buyers increases, the bur-
den of facilitating contacts between many buyers and
many sellers becomes more serious. Manual handling
of a high volume of transactions will not be possible
let alone economical. So the software agents that work

Business-to-Business Electronic Commerce 85

Figure 2 The e-marketplace opportunity index. [From The eMarketplace Opportunity, Forrester Research. http://
europa.eu.int/comm/enterprise/ict/e-marketplaces/presentation_homs.pdf. With permission.]

for buyers and sellers become essential, as described
in Section VII.

2. Internalized E-Marketplaces

Another type of buyer-centric e-marketplace is the in-
ternalized e-marketplace. In this architecture, the inter-
nal e-catalog is accessible by the employees and the fi-
nal requisitioners can order directly on-line. Then the
order will be processed on the e-marketplace seam-
lessly and the procurement decision and ordering
process can be tightly coupled with the internal work-
flow management systems, enhancing the efficiency
of the procurement process.

In this architecture, the procurement department
defines the scope of products and invites the pre-
offered prices. The posted prices will be stored in the
internal database. MasterCard International devel-
oped the procurement card system, which allows the
requisitioner to select goods and services from its own
e-catalog containing more than 10,000 items.

An obstacle of this approach is the maintenance of
the internal e-catalog so that it is consistent with the
external e-marketplaces. For this purpose, the buyer’s
directory should be able to be coordinated in accor-
dance with the change of e-marketplaces. Further re-
search for this challenging issue can be found in Joh
and Lee (2001).

3. Buyers-Coalition Procurement Sites

If every buyer builds its own internal e-marketplace,
suppliers will be scared by complexity that they have
to follow. So common buyers need to coalesce to re-
duce the complexity and incompatibility among buy-
ers. The best example of this kind can be found in the
automobile industry. GM, Ford, and DaimlerChrysler
performed the joint project Automotive Network Ex-
change (ANX) to provide a common extranet plat-
form to 30,000 suppliers. Then each of them started
to build an independent procurement company, but
instead they merged and built a common procure-
ment company, Covisint. This case is a typical exam-
ple of coalition among competitors and the moving
the procurement activities to outsource.

III. ON-LINE SERVICES TO BUSINESSES

In the e-marketplaces, the majority of items are hard
goods. However, in cyberspace, service is more effec-
tive because the service can be completed on-line
without any physical delivery. So let us review the sta-
tus of online services to business.

• Travel and tourism services: Many large
corporations have special discounts arranged with
travel agents. To further reduce costs, companies
can make special arrangements, which enable
employees to plan and book their own trips on-line.
For instance, Carlson Travel Network of Minneapolis
provides an agentless service to corporate clients
like General Electric. The GE employees can fill out
the application at their intranet system.

• Internal job market on the intranet: Many
companies conduct an internal electronic job
market site on the intranet. Openings are posted for
employees to look at, and search engines enable
managers to identify talented people even if they
were not looking actively for a job change. This is
an example of intraorganizational e-commerce.

• Real estate: Since business real estate investment
can be very critical, web sites cannot replace the
existing agents. Instead, the web sites help in
finding the right agents. However, some auctions on
foreclosed real estate sold by the government may
be opened on-line only to business.

• Electronic payments: Firm-banking on the
Internet is an economical way of making business
payments. The electronic fund transfers (EFT) using
the financial EDI on the Internet is the most
popular way that businesses use. The payment fee
on the Internet is cheaper than other alternatives.

• On-line stock trading: Corporations are important
stock investors. Since the fees for on-line trading are
very low (as low as $14.95) and flat regardless the
trading amount, the on-line trading brokerage
service is a very attractive option for business
investors.

• Electronic auction to business bidders: Some
electronic auctions are open only to dealers. For
instance, used cars and foreclosed real estate sold by
the government are open only to dealers. The
comprehensive list of auction sites is available in
www.usaweb.com/auction.html.

• On-line publishing and education: On-line
publishing is not the monopolistic asset of business.
However, the subscribers of certain professional
magazines are only for businesses. The on-demand
electronic education programs can provide a useful
training opportunity to busy employees.

• On-line loan and capital makers: Business loans
can be syndicated on-line from the lending
companies. IntraLink provides a solution for the
service, and BancAmerica offers IntraLoan’s
matching service to business loan applicants and
potential lending corporations. Some sites like
www.garage.com provide information about venture
capital.

86 Business-to-Business Electronic Commerce

• Other on-line services: Businesses are the major
users of on-line consulting, legal advice, health care,
delivery request, electronic stamping, escrowing, etc.

IV. E-PROCUREMENT MANAGEMENT

As we have observed with the buyer-centric B2B
e-marketplaces, one of the most important goals of
B2B EC is effective procurement. So let us study the
B2B EC from the evolutionary view of e-procurement
management.

A. Requisite for Effective and
Efficient Procurement Management

All around the world, purchase and supply manage-
ment (P&SM) professionals now advocate innovative
purchasing as a strategic function to increase profit
margins. Some of the tactics used in this transforma-
tion process are volume purchases, buying from ap-
proved suppliers, selecting the right suppliers, group
purchasing, awarding business based on performance,
improving quality of existing suppliers, doing con-
tract negotiation, forming partnership with suppliers,
and reducing paper work and administrative cost.

What many organizations fail to understand is that
a fundamental change in businesses’ internal pro-
cesses must be implemented to maximize the full ben-
efits of procurement reengineering. The two critical
success factors which most organizations overlook are
cutting down the number of routine tasks and reduc-
ing the overall procurement cycle through the use

of appropriate technologies such as workflow,
groupware, and ERP packages, as well as the B2B
e-marketplaces. By automating and streamlining the
laborious routine of the purchasing function, pur-
chasing professionals can focus on more strategic
purchases achieving the following goals:

• Reducing purchasing cycle time and cost
• Enhancing budgetary control
• Eliminating administrative errors
• Increasing buyers’ productivity
• Lowering prices through product standardization

and consolidation of buys
• Improving information management on suppliers

and pricing
• Improving the payment process

To implement an effective and efficient e-procurement
system, B2B EC needs to support either the integration
of e-procurement systems with external e-marketplaces,
or the integration of e-marketplaces with ERP packages.

B. Integration of E-Procurement
Systems with External E-Marketplaces

A group of e-procurement solution providers devel-
ops architectures that can support the integration of
the buyer sites with external e-marketplaces and any
independent suppliers. The architectures offered by
Ariba and Commerce One are an example of this
kind as depicted in Fig. 3. In this architecture, the so-
lution has a pair of servers in the buyer and seller
sites; namely BuySite and MarketSite.

Business-to-Business Electronic Commerce 87

BuySite

Web
server

Corporate
user

Commerce one
transaction servers

Fax

Email

EDI
format

MarketSite Suppliers

Firewall

Figure 3 An architecture of buyer-centric B2B e-marketplace. [Copyright © Commerce One Operations, Inc. 1999. All rights reserved.]

Suppliers can input their goods in the MarketSite
server via the extranet. In the buyer site, the web
server BuySite supports corporate users in the web-
based search of e-catalog and ordering. The order will
then be executed in the MarketSite. For the customers
who have not joined the MarketSite, the orders can
also be transmitted via fax, e-mail, and EDI message.
To expand the capability of this architecture, many
MarketSites should be able to support the BuySite.
Therefore solution vendors try to make many vertical
MarketSites and aggregate them.

C. Integration of E-Marketplaces with ERP

Buyers tend to develop their back-end information sys-
tems as a combination of intranet, database, ERP, and
legacy systems. ERP is enterprise-wide application soft-
ware, which can provide a centralized repository of in-
formation for the massive amount of transactional detail
generated daily. ERP integrates core business processes
from planning to production, distribution, and sales.
SAP’s R/3 is one such software. Early versions of the
ERP solution did not consider the integration with e-
marketplaces, however, integration has become a critical
issue in the B2B EC environment. Integration can be re-
alized by adopting one of the following approaches: the
inside-out, outside-in, and buyer’s cart approaches.

1. The Inside-Out Approach:
Extend ERP Outward

The leading ERP vendors offer a way to extend their
solutions so that they are usable with the external
e-marketplaces. This approach is called the inside-

out approach as depicted in Fig. 4a. One scheme of
this approach is that an ERP solution maker also pro-
vides an e-marketplace solution that is compatible
with the ERP package. For instance, the solution
called MySAP (www.mysap.com) is developed by SAP
for this purpose. The other scheme is to build a strate-
gic alignment with the e-marketplace solution
providers to establish a mutually agreed upon inter-
face. For instance, SAP has a strategic partnership
with Commerce One.

When the e-marketplace solution requires a simple
mapping of ERP functionality with a web interface,
the inside-out architecture can be highly effective. It
lets companies distribute ERP transaction capabilities
to a wide audience of web users, without requiring
that they load any specific client software on their
PCs. However, from the e-marketplace’s point of view,
this approach is applicable only when the ERP system
is installed. Many companies still use legacy systems.

2. The Outside-In Approach

In this approach, instead of extending the reach of
ERP-based business processes through a web server,
the software named application server integrates mul-
tiple back-end systems with an e-marketplace solution,
as depicted in Fig. 4b. The outside-in architecture is
better suited for complex e-business with multiple
back- and front-end applications. In the outside-in ap-
proach, the e-business application resides within the
application server, rather than within the individual
back-end systems. Typical application servers are Ap-
plication Server (Netscape), Enterprise Server (Mi-
crosoft), Domino (Lotus), Websphere (IBM), and En-
terprise Server (Sun). However, the outside-in

88 Business-to-Business Electronic Commerce

Figure 4 Architectures of integrating EC with ERP. [From Sullivan, 1999a and b.]

approach is limited by the capabilities of the applica-
tion server platforms upon which they are built.

3. Buyer’s Cart Approach

In this approach, the buyer keeps a shopping cart in
the buyer’s PC or server instead of the seller’s server.
The items from multiple e-marketplaces can be ten-
tatively selected and stored in the buyer’s electronic cart
(called b-cart). The order can also be made at the
b-cart, and the result can be stored in the b-cart as
well. With a standard file format in b-cart, the ERP or
any other legacy system can be compatibly interfaced.
This architecture is simple and economical, and it is
well suited for the B2B EC environment.

V. INTERNET-BASED EDI

The most basic instrument for B2B EC is efficient ex-
change of messages between companies. Thus Elec-
tronic Data Interchange (EDI) has been around for
almost 30 years in the non-Internet environment. EDI
is a system that standardizes the process of trading
and tracking routine business documents, such as pur-
chase orders, invoices, payments, shipping manifests,
and delivery schedules. EDI translates these docu-
ments into a globally understood business language
and transmits them between trading partners using
secure telecommunications links. The most popular
standard is the United Nations EDI for Administra-
tion, Commerce, and Trade (EDIFACT). In the
United States the most popular standard is ANSI X.12.
Traditional EDI users (most Fortune 1000 or global
2000 companies) use leased or dedicated telephone
lines or a value-added network, such as those run by
IBM and AT&T, to carry these data exchanges. Now
the platform is moving to the Internet.

A. Traditional EDI

Traditional EDI has changed the landscape of business,
triggering new definitions of entire industries. Well-
known retailers, such as Home Depot, Toys R Us and
Wal-Mart would operate very differently today without
EDI, since it is an integral and essential element of
their business strategy. Thousands of global manufac-
turers, including Proctor & Gamble, Levi Strauss, Toy-
ota, and Unilever have used EDI to redefine relation-
ships with their customers through such practices as
quick response retailing and JIT manufacturing. These
highly visible, high-impact applications of EDI by large
companies have been extremely successful.

However, despite the tremendous impact of tradi-
tional EDI among industry leaders, the current set of
adopters represents only a small fraction of potential
EDI users. In the United States, where several million
businesses participate in commerce every day, fewer
than 100,000 companies have adopted EDI (in 1998).
Furthermore, most of the companies could maintain
contact with only a small number of business partners
on the EDI, mainly due to its high cost. Therefore, in
reality, most businesses have not benefited from EDI.
The major factors that limit businesses from benefit-
ing from the traditional EDI are

• Significant initial investment is necessary
• Restructuring business processes is necessary to fit

the EDI requirements
• Long start-up time is needed
• Use of expensive private value-added network

(VAN) is necessary
• High EDI operating cost is needed
• There are multiple EDI standards
• The system is complex to use
• There is a need to use a converter to translate

business transactions to EDI standards

These factors suggest that the traditional EDI—rely-
ing on formal transaction sets, translation software,
and value-added networks—is not suitable as a long-
term solution for most corporations, because it does
not meet the following requirements:

• Enabling more firms to use EDI
• Encouraging full integration of EDI into trading

partner’s business processes
• Simplifying EDI implementation
• Expanding the capabilities of on-line information

exchange

Therefore, a better infrastructure is needed; such in-
frastructure is the Internet-based EDI.

B. Internet-based EDI

When considered as a channel for EDI, the Internet
appears to be the most feasible alternative for putting
on-line B2B trading within the reach of virtually any
organization, large or small. There are several reasons
for firms to create the EDI ability using the Internet:

• The Internet is a publicly accessible network
with few geographical constraints. Its largest
attribute, large-scale connectivity (without requiring
any special company networking architecture), is a

Business-to-Business Electronic Commerce 89

seedbed for growth of a vast range of business
applications.

• The Internet global internetwork connections
offer the potential to reach the widest possible
number of trading partners of any viable alternative
currently available.

• Using the Internet can cut communication cost
by over 50%.

• Using the Internet to exchange EDI
transactions is consistent with the growing interest
of businesses in delivering an ever-increasing variety
of products and services electronically, particularly
through the web.

• Internet-based EDI can compliment or replace
current EDI applications.

• Internet tools such as browsers and search
engines are very user friendly and most people
today know how to use them.

1. Types of the Internet EDI

The Internet can support the EDI in a variety of ways:

• Internet e-mail can be used as the EDI message
transport in place of VAN. For this end, the
Internet Engineering Task Force (IETF) considers
standards for encapsulating the messages within
the Secure Internet Mail Extension (S/MIME).

• A company can create an extranet that enables
trading partners to enter information in web form
whose fields correspond to the fields of an EDI
message or document.

• Companies can utilize the services of a web-based
EDI hosting service in much the same way that
companies rely on third parties to host their
commerce sites. Netscape Enterprise is illustrative
of the type of web-based EDI software that enables
a company to provide its own EDI services over
the Internet, while Harbinger Express is
illustrative of those companies that provide third-
party hosting services.

2. Prospect of Internet EDI

Companies who currently possess traditional EDI re-
spond positively to Internet EDI. A recent survey by
Forester Research on 50 Fortune 1000 companies
showed that nearly half of them plan to use EDI over
the Internet. Frequently, companies combine the
traditional EDI with the Internet by having their
Internet-based orders transmitted to a VAN or a service
provider that translates the data into an EDI format
and sends it to their host computers. The Internet sim-

ply serves as an alternative transport mechanism to a
more expensive lease line. The combination of the
Web, XML (eXtensible Markup Language), and Java
makes EDI worthwhile even for small, infrequent trans-
actions. Whereas EDI is not interactive, the Web and
Java were designed specifically for interactivity as well
as ease of use.

VI. SCM AND COLLABORATION
AMONG ALIGNED PARTNERS

The major roles of e-marketplaces are the reducing
search cost and competitive purchasing. However,
when strategic partnership is essential, the advantage
of the e-marketplace diminishes. In this setting, a
more critical aspect is the elimination of uncertainty
between companies along the supply chain, reducing
the burden of inventory and buffer capacity. However,
a lean supply chain is inherently vulnerable to the sys-
tem collapse if one company in the chain cannot ful-
fill its mission.

In this section, we describe three types of B2B col-
laboration: the electronic SCM system, the shared data
warehouse and data mining, and virtual corporations.

A. Electronic Supply Chain
Management (SCM) System

Supply chain is a business process that links material
suppliers, manufacturers, retailers, and customers in
the form of a chain to develop and deliver products
as one virtual organization of pooled skills and re-
sources. SCM is often considered an outgrowth of JIT
manufacturing where companies operate with little or
no inventory, relying instead on a network of suppli-
ers and transportation partners to deliver the neces-
sary parts and materials to the assembly line just as
they are needed for the production.

Key functions in SCM are

• Managing information on demand to better
understand the market and customer needs

• Managing the flow of physical goods from
suppliers

• Managing the manufacturing process
• Managing the financial flows with suppliers and

customers

In the early stage, SCM is attempted within a single
factory, and then within an entire enterprise that may
possess geographically dispersed workplaces. To link

90 Business-to-Business Electronic Commerce

the supply chain between companies, the corre-
sponding companies may be connected point-to-
point. However, as the number of participating com-
panies increases, the point-to-point connection
becomes too expensive and technically too difficult
for small companies. So the electronic hub-based col-
laboration become more feasible as depicted in Fig.
5, and the third party SCM service providers like i2
opened their e-hub service on the Internet.

Convergence of e-hub—The initial purpose of SCM
was sharing information among aligned partners. But
since the technical architecture of the e-hub is basi-
cally the same as that of the e-marketplace, the SCM
service companies try to integrate the e-marketplace
function with the hub. In the near future, we
will observe the integration of the SCM hub and
e-marketplaces. However, for the actual implementa-
tion, EC managers should judge which is more im-
portant: the transaction cost reduction among the
aligned partners, or the flexible competitive selection
of products and suppliers. Eventually by providing the
combined service, participating companies will be
able to enjoy the benefit of transaction cost reduction
and competitive selection.

JIT delivery—Even though the SCM reduces the
inventory by sharing the information, if there is no
physical JIT delivery, implementation of SCM is noth-
ing but a mirage. In the EC environment, the orders
can arrive from any geographical locations, so the in-
house delivery is not feasible in most cases. Therefore

partnership with the third-party delivery companies
like FedEx, United Parcel Service, and United States
Postal Service becomes very important.

Key delivery companies provide on-line tracking
service on their web sites. Moreover, the tracking in-
formation can be embedded in the manufacturer’s in-
formation system so that the employees and its cus-
tomers can utilize the information as if the
manufacturer handles the delivery. The deliverers also
provide the warehouse rental service for quick deliv-
ery and reduced carrying cost, and some value-added
services like simple installation and repair.

For instance, National Semiconductor (NatSemi)
dealt with a variety of different companies to get prod-
ucts from Asian factories to customers across the
world, including freight forwarders, customs agents,
handling companies, delivery companies, and airlines.
They decided to outsource this entire process to
FedEx. Today, virtually all of NatSemi’s products, man-
ufactured in Asia by three company factories and
three subcontractors, are shipped directly to a FedEx
distribution warehouse in Singapore. Each day, Nat-
Semi sends its order electronically to FedEx. FedEx
makes sure the order gets matched to a product and
the product is delivered directly to the customer at
the promised time. By going with FedEx as a one-stop
shop for their logistics needs, NatSemi has seen a re-
duction of the average customer delivery cycle from
four weeks to one week and their distribution costs
drop from 2.9% of sales to 1.2%.

Business-to-Business Electronic Commerce 91

Point-to-Point

Supplier

E-Hub Collaboration

Manufacturer
Consolidation

eShowroom

Megastore

Logistics

Merge

Figure 5 Point-to-point and e-hub collaborated SCM.

B. Shared Data Warehouse
and Data Mining

Large retailers like Wal-Mart share their data ware-
houses with the suppliers to share the sales history, in-
ventory, and demand forecast. This framework is il-
lustrated in Fig. 6. This example is a case that a buyer
owns its private SCM e-hub. For instance, Wal-Mart’s
3570 stores share their data warehouse, RetailLink,
with 7000 suppliers like Warner-Lambert. The world’s
largest RetailLink stores 2 years of sales history in 101
terabytes disks. There are about 120,000 data mining
inquiries per week to RetailLink.

Traditionally, the retailers and suppliers forecasted
separately, which resulted in excessive inventory, run-
ning out of stock, and lost opportunity for suppliers.
However, with RetailLink, collaborative forecasting
and replenishment become possible. Suppliers can
use accurate sales and inventory data and take care of
inventory management. By sharing RetailLink, Wal-
Mart could display the right product in the right store
at the right price. The retail industry is projected to
save $150–250 billion per year.

C. Virtual Corporation

One of the most interesting reengineered organiza-
tion structures is the virtual corporation (VC). A virtual
corporation is an organization composed of several
business partners sharing costs and resources for the

purpose of producing a product or service. According
to Goldman et al. (1995), permanent virtual corpora-
tions are designed to create or assemble productive
resources rapidly, frequently, concurrently, or to cre-
ate or assemble a broad range of productive resources.
The creation, operation, and management of a VC is
heavily dependent on the B2B EC platform.

Sometimes a VC can be constructed with the part-
ners in the supply chain. In this case, the SCM can be
a vehicle of implementing the VC. However, VCs are
not necessarily organized along the supply chain. For
example, a business partnership may include several
partners, each creating a portion of products or ser-
vice, in an area in which they have special advantage
such as expertise or low cost. So the modern virtual
corporation can be viewed as a network of creative
people, resources, and ideas connected via on-line
services and/or the Internet.

The major goals that virtual corporations pursue are

• Excellence: Each partner brings its core
competence, so an all-star winning team is
created.

• Utilization: Resources of the business partners are
frequently underutilized. A VC can utilize them
more profitably.

• Opportunism: A VC can find and meet market
opportunity better than an individual company.

The B2B EC platforms like the Internet and extranet
will make the VC possible, because the communication
and collaboration among the dispersed business part-

92 Business-to-Business Electronic Commerce

Figure 6 Collaboration by shared data warehouse and data mining.

ners are the most critical essence to make it happen.
Extranet is a network that links the intranets of business
partners using the virtually private network on the In-
ternet. On this platform, the business partners can use
e-mail, desktop videoconferencing, knowledge sharing,
groupware, EDI, and electronic fund transfer.

For instance, IBM Ambra formed a VC to take ad-
vantage of an opportunity to produce and market a
PC clone. Each of five business partners played the
following roles: engineering design and subsystem de-
velopment, assembly on a build-to-order basis, tele-
marketing, order fulfillment and delivery, and field
service and customer support. As the B2B EC plat-
form propagates, more companies will be able to make
VCs. More example cases, including Steelcase Inc.
and The Agile Web, Inc., can be found in Turban et
al. (1999) and the case AeroTech can be found in Up-
ton and McAfee (1996).

VII. AGENT-BASED COMMERCE

The necessity of agent-based commerce emerges, be-
cause B2B EC needs to utilize not only buyer agents
but also seller agents, and also because these agents
should work together.

Role of buyer agents—The purchase process con-
sists of six steps: need identification, product brokering,
merchant brokering, negotiation, payment and delivery, and
service and evaluation. Among these steps, most agents
are developed to assist the product brokering, mer-
chant brokering, and negotiation process. For the
buyers, the major roles of software agents are the col-

lection of data from multiple e-marketplaces, filtering
relevant items, scoring the products according to the
customers’ preference, and tabular comparison for
side-by-side examination. Pricing Central.com lists the
comparison search engines for each category of items.
Buyer agents are mainly necessary in the seller-centric
e-marketplaces. Buyer agents need to send out the re-
quirement to the relevant seller agents, and interpret
the received proposals.

Role of seller agents—On the other hand, in the
buyer-centric e-marketplaces, sellers have to discover
the relevant call for bids from multiple bidding sites.
Proposal preparation for numerous buyer agents is
another laborious and time-consuming task. So the
seller agent must substitute for the transactional role
of salesman as much as possible. To customize the
proposal, seller agents should be able to understand
the request for bid announced by buyer agents, iden-
tify its relevance to the items they handle, and gener-
ate the appropriate proposals.

In this manner, the interaction between buyer and
seller agents becomes essential. A prototypical sce-
nario of agent-based commerce is depicted in Fig. 7,
and it works as follows:

1. A human buyer gives the requirement by his/her
buyer agent.

2. The buyer agent generates a message (request for
bids) to send to the relevant seller agents.

3. The seller agent interprets the message and
identifies its relevance to the items they handle.

4. The seller agent generates an appropriate
proposal and sends it back to the buyer agent.

Business-to-Business Electronic Commerce 93

Figure 7 A prototypical scenario of agent-based commerce. [From Lee, J. K., and Lee, W. (1997). Proceedings of the 13th Hawaii
International Conference on System Sciences, pp. 230–241. With permission.]

5. The buyer agent compares the received proposals
and reports the results to the human buyer for
final decision-making. This step is the same as
the comparison shopping aid in the current
e-marketplaces.

6. The buyer agent receives the decision made by
human buyer, and reports the selection to the
bidders.

The procedure may vary depending upon the con-
tract protocol adopted. So the protocol of contract,
message format, representation of requirement, and
specification of products are crucial elements of mean-
ingful agent-based commerce. There is much research
going on in various settings.

To exchange the messages in a compatible format,
we need a common standard language called agent
communication languages (ACL) like KQML (Knowl-
edge Query and Manipulation Language). An illus-
trative message that requests a proposal from seller
agents is demonstrated in Fig. 8. ACL consists of per-
formatives and parameters. For instance, evaluate is a
performative, and sender and receiver are parameters.
To develop a dedicated ACL for EC, we need to aug-
ment the performatives and parameters to incorpo-
rate the generic terms necessary for EC, product spec-
ification, and buyers’ requirement representation.

For instance in Fig. 8, the parameters such as title,
contract_ID, contract_type, bid_time, payment_method, de-

livery_method, delivery_date, item_name, and quantity are
the generic terms that are necessary in any agent-
based commerce. So let us distinguish these terms as
the electronic commerce layer. In the bottom of the mes-
sage, the buyer’s requirements are represented by the
product specification. They are not generic, but de-
pend upon the products to buy and sell. So this layer
is distinguished as the product specification layer.

In many cases, the buyers may not be comfortable
with expressing their requirements in the product
specification level. It may be too technical and incom-
prehensible. Buyers are more familiar with the terms
used in the buyer’s environment. So mapping between
the buyer’s requirements expressions with seller’s
product specification is necessary. For this purpose,
the salesman expert system can be used. For instance,
in the process of computer purchase in the Person-
alogic site, customers may express the level of using
word processing, network, graphics, etc. Then the sys-
tem suggests the recommended memory requirement.

VIII. XML IN B2B EC

Hypertext Markup Language (HTML) is developed to
display text for human comprehension. For the agents
to comprehend the global HTML files, the agents
should be equipped with natural language processing
capability. However, the natural language processing

94 Business-to-Business Electronic Commerce

Figure 8 Three layers of message representation.

capability is limited only to the cases with a small vo-
cabulary and structured grammar. Since the web sites
cover all sorts of information, it is impossible to effec-
tively extract the relevant data from the HTML files.
So eXtensible Markup Language (XML) is developed
to define the semantic data items in tags. The software
agents are able to read out the values in the tags. XML
files are also transformable to HTML files to display
on the browser. To complement the XML files, the
document type definition (DTD) defines the structure
between data elements, and the eXtensible Stylesheet
Language (XSL) defines the transformation of XML
and DTD to HTML files for human comprehension.

XML has become popular as the second generation
of web technology. For B2B EC, XML can be observed
from the view of EDI and agents. From the EDI’s point
of view, XML is a tool to implement the EDI on the
web. Users can just download the XML-based web page,
and browse the transformed HTML files and retrieve
the values of embedded data items. If the purpose of
XML is just a message exchange, it can be regarded as
the XML/EDI. However, the EDI community does not
limit the function of XML just for the message ex-
change, as the traditional EDI did. When the XML is
used in the context of agent-based commerce, our con-
cern is not only message format but also the entire pro-
tocol. Therefore the EDI community and agent com-
munity are destined to converge to set up a commonly
agreed upon B2B protocol implemented on XML.

So far, the major research focus in the agent com-
munity is not its implementing platform like XML be-
cause it is more practical than academic. On the other
hand, the EDI task forces, mainly led by industrial ex-
perts, try to set up simple and useful business proto-
cols implemented on XML. The main issue here is the
establishment of standard protocols including busi-
ness entities, procedure, message format, and product
specification. For instance, the protocol OBI (open
business interface) adopts the requisitioner, buying or-
ganization, supplier, and payment authority as the en-
tities of B2B protocol. It is very difficult for a single
protocol to meet the needs of all circumstances. So
the standard establishment is booming to capture the
strategically beneficial position in B2B EC.

Many task forces attempt to establish quite a number
of XML-based business protocols. Some of them are

• OTP (open trading protocol). Proposed by a 30-
company consortium for handling remote
electronic purchase regardless of the payment
mechanism (www.otp.org)

• OFX (open financial exchange). Proposed by
Microsoft, Intuit, and Checkfree for exchanging
financial transaction documents

• OSD (open software description). Proposed by
Marimba and Microsoft for describing software
package components to be used in automated
software distribution environment

• OBI (open buying on the Internet). Proposed by
American Express and major buying and selling
organizations (www.openbuy.com)

• CBL (common business language). Supports the
messages for the basic business forms used in
ANSI X12 EDI (www.xmledi.com) transactions as
well as those in OTP and OBI

• RossetaNet. Developed for PC industry
(www.rosettanet.org)

Software vendors attempt to establish a standard, and
develop solutions that can implement the standard
protocol. Biz Talk developed by Microsoft is one of
these. A concern at this point is that there are too
many standards, so companies are confused which
standard will really become the de facto standard in
the market. To overcome this chaos, UN EDIFACT
and OASIS have developed a standard ebXML. Many
standard bodies, industry groups, vendors, users from
around the world are integrating ebXML into their
implementation. So the ebXML may become the
de facto standard in the industry.

If the industry moves with the XML standard, agent
research should take this movement into account to
develop the practical agents that meet the standard.
That is why the XML, EDI, and agent-based commerce
will merge for effective B2B EC.

IX. KNOWLEDGE MANAGEMENT
IN THE B2B EC PLATFORM

Another important aspect of B2B EC is the manage-
ment of knowledge in the web sites that are used by em-
ployees and partners. For instance, the e-catalog is an
important source of knowledge about the products; the
Q&A for the technical support is the source of technical
knowledge; the regulation for budgetary control is im-
portant knowledge for budgeting.

The first users of visually displayed knowledge are
human. So browsing HTML files is a way to gain it.
Most of the current knowledge management systems
belong to this category. It provides a search engine
for retrieving the statements with the requested key
words. The second users are software agents as men-
tioned in the previous section. For this purpose, we
need to represent the data in XML files explicitly.
However, XML files cannot process the implicitly em-
bedded rules in the texts. So we need the third gen-
eration web technology, which can explicitly codify

Business-to-Business Electronic Commerce 95

the rules for inference engines to process. An issue
here is the maintenance of consistency between the
structured rules and natural language texts. To solve
this issue, eXtensible Rule Markup Language XRML
is under development, as depicted in Fig. 9.

To realize the rule processing with XRML files, we
need three components:

1. Rule structure markup language: This language
represents the rule in markup syntax so that the
variables and values in the rule can be associated
with the natural language texts.

2. Rule identification markup language: This language
identifies the natural language sentences and its
relationship with the rules, variables, and values
used in the rules.

3. Rule trigger markup language: This meta-language
defines the condition that the rules will be
triggered, and is codified as embedded language in
agents and forms in workflow management systems.

The knowledge editor should be able to support the
consistent maintenance of natural language text and
rules and any other programs codified for machine
processing. By developing the XRML or a similar en-
vironment, the B2B EC can become more intelligent
allowing visual display, a machine’s data processing,
and a machine’s rule processing. Agents and workflow
software will be more intelligent in this environment.
More information about Rule Markup Language re-
search initiatives can be found in cec.net.

X. SUMMARY AND CONCLUSION

Key activities in B2B EC have been discussed in
this paper. B2B EC started with the seller-centric

e-marketplaces, and evolved to buyer-centric
e-marketplaces. A large number of vertical market-
places are being developed to help the exchange
and supply chain of each industry. To integrate
the e-procurement systems with the external
e-marketplaces, the Inside-out and outside-in ap-
proaches are competitively being attempted. The EDI
platform for B2B is moving onto the Internet. The
electronic SCM system, shared data warehouse, and
virtual corporations are getting provided on the
e-hub exploring collaboration among the aligned
partners. Agents that assist the buyers and sellers are
establishing the agent-based commerce environment,
and they will be implemented using XML. To build
the standard B2B EC protocol, a large number of
XML consortiums are conducting research.

Each of the above activities has started from the
different angles for B2B interactions. However, even-
tually the B2B platform will converge to the e-hubs
with a unified architecture, and will continuously seek
the effective integration with the internal information
systems. Initial development of B2B EC was pushed by
information technology, but it will be concluded by
the pull of meeting managerial goals.

ACKNOWLEDGMENT

Materials in the author’s book (Turban et al. 2000) is used with
permission of the publisher.

SEE ALSO THE FOLLOWING ARTICLES

Advertising and Marketing in Electronic Commerce • Elec-
tronic Commerce • Electronic Commerce, Infrastructure
for • Enterprise Computing • Marketing • Sales • Service
Industries, Electronic Commerce for

96 Business-to-Business Electronic Commerce

Figure 9 Knowledge management with XRML.

BIBLIOGRAPHY

Blankenhorn, D. (May 1997). GE’s e-commerce network opens
up to other marketers. NetMarketing. www.netb2b.com.

Cunningham, M. J. (2000). B2B: How to build a profitable
E-commerce strategy. Cambridge, MA: Perseus Publishing.

Davis, C. (September 1997). Most B-to-B sites don’t meet cus-
tomer needs: Gartner. NetMarketing. www.netb2b.com.

Finin, T., Wiederhold, J. W. G., Genesereth, M., Fritzson, R.,
McGuire, J., Shapiro, S., and Beck, C. (1993). Specification
of the KQML Agent Communication Language, DARPA
Knowledge Sharing Initiative, External Interface Working
Group.

Freeman, L. (January 1998). Net drives B-to-B to new highs
worldwide. NetMarketing. www.netb2b.com.

Frook, J. E. (July 1998). Web links with back-end systems pay
off. Internet Week. www.internetwk.com.

Goldman et al. (1995). Competitors and virtual organization. New
York: Van Nostrand Reinhold.

Handfield, R., and Nicols, E. (1999). Supply chain management.
Upper Saddle River, NJ: Prentice Hall.

Joh, Y. H., and Lee, J. K. (2001). A framework of buyer’s
e-catalog directory management system. Decision Support
Systems.

Kalakota, R., and Whinston, A. B. (1997). Electronic commerce: A
manager’s guide. Reading MA: Addison-Wesley.

Lawrence, E. et al. (1998). Internet commerce: Digital models for
business. New York: John Wiley and Sons.

Lee, J. K. (1998). Next generation electronic marketing envi-
ronment: ICEC perspective. Proceedings of International Con-
ference on Electronic Commerce ‘98, p. 6. icec.net.

Lee, J. K. and Sohn, M. (2002). eXtensible Rule Markup Lan-
guage—Toward the Intelligent Web Platform. Communica-
tions of the ACM. Forthcoming.

Lee, J. K., and Lee, W. (1997). An intelligent agent based con-
tract process in electronic commerce: UNIK-AGENT ap-
proach. Proceedings of 13th Hawaii International Conference on
System Sciences, pp. 230–241.

Lee, S. K., Lee, J. K., and Lee, K. J. (1997). Customized pur-
chase supporting expert system: UNIK-SES. Expert Systems
with Applications, Vol. 11, No. 4, pp. 431–441.

Lim, G., and Lee, J. K. (2002). Buyer-carts for B2B EC: The
b-cart approach. Organizational Computing and Electronic
Commerce, Forthcoming.

Maddox, K. (1998). Cisco wins big with net ordering. NetMar-
keting. www.netb2b.com/cgi-bin/cgi_article/monthly/97/
05/01/article.html.

Maes, P., Guttman, R. H., and Moukas, A. G. (March 1999).
Agents that buy and sell. Communications of ACM, Vol. 42,
No. 3, 81–91.

Nelson, M. (July 1998). SAP adds module for I-commerce. In-
foWorld, Vol. 21, No. 27.

Retter, T., and Calyniuk, M. (July 1998). Technology Forecast:
1998. Price Waterhouse.

Sculley, A. B., and Woods, W. W. (1999). B2B Exchanges. Philadel-
phia, PA: ISI Publications.

Silverstein, B. (1999). Business-to-business internet marketing. Gulf
Breeze, FL: Maximum Press.

Silwa, C. (1998). Software improved net purchasing process.
ComputerWorld. www.computerworld.com.

Sullivan, D. (January 1999a). Extending E-business to ERP.
e-business Advisor, pp. 18–23.

Sullivan, D. (January 1999b). Take ERP on the road. e-business
Advisor, pp. 24–27.

Trading Process Network. (1999). Extending the enterprise:
TPN post case study—GE Lighting. tpn.geis.com/tpn/re-
souce_center/casestud.html.

Turban, E., Lee, J. K., King, D., and Chung, M. (2000). Elec-
tronic Commerce: a managerial perspective. Englewood Cliffs, NJ:
Prentice Hall.

Turban, E., McLean, E., and Wetherbe, J. (1999). Information tech-
nology for management, 2nd Ed. New York: John Wiley & Sons.

Upton, D. M., and McAfee, A. (July 1996). The real virtual fac-
tory. Harvard Business Review, pp. 123–133.

Weston, W. (June 1998). Commerce one debuts SAP-oriented
Tools. News.com. www.news.com/News/Item/0,4,23566,00.
html.

Business-to-Business Electronic Commerce 97

C and C��
Jiang Guo
California State University, Bakersfield

C

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 99

I. HISTORIES OF C & C��
II. C’S CHARACTERISTICS

III. COMPARISON OF C AND C��

IV. ADVANTAGES OF C��
V. ADVANCED TOPICS OF C��

VI. CONCLUSION

GLOSSARY

data encapsulation The process of combining ele-
ments to create a new entity. For example, a com-
plex data type, such as a class, is a type of data en-
capsulation because it combines built-in types or
use-defined types and functions. Object-oriented
programming languages rely heavily on data en-
capsulation to create high-level objects.

dynamic binding A method of attaching processor ad-
dresses to instructions and data during program ex-
ecution. C�� implements dynamic binding
through the use of virtual functions, which allows
derived classes to override the base class functional-
ity. Which function is invoked depends on the con-
text in which the function is invoked at run time.

inheritance The concept that when a class is defined,
then any subclass can inherit the definitions of one
or more general classes. This means for the pro-
grammer that a subclass need not carry its own
definition of data and methods that are generic to
the class (or classes) of which it is a part. This not
only speeds up program development; but it also
ensures an inherent validity to the defined subclass
object.

memory leak A bug in a program that prevents it
from freeing up memory that it no longer needs.
As a result, the program grabs more and more
memory until it finally crashes because there is no
more memory left.

object-oriented programming A type of programming
in which programmers define not only the data
type of a data structure, but also the types of oper-
ations (functions) that can be applied to the data

structure. In this way, the data structure becomes
an object that includes both data and functions. In
addition, programmers can create relationships be-
tween one object and another. For example, ob-
jects can inherit characteristics from other objects.
To perform object-oriented programming, one
needs an object-oriented programming language
(OOPL). Java, C��, and Smalltalk are three pop-
ular OOPL languages, and there is also an object-
oriented version of Pascal.

programming language A vocabulary and set of gram-
matical rules for instructing a computer to per-
form specific tasks. The term programming lan-
guage usually refers to high-level languages, such
as BASIC, C, C��, COBOL, FORTRAN, Ada, and
Pascal. Each language has a unique set of keywords
(words that it understands) and a special syntax for
organizing program instructions.

type checking Ensures that all declarations and uses
referring to the same object are consistent. It is
also the key to determining when an undefined or
unexpected value has been produced due to the
type conversions that arise from certain operations
in a language.

C AND C�� are widely used for teaching, research,
and developing large systems in industry. They are the
most important computer languages. With a few mod-
est exceptions, C�� can be considered a superset of
the C programming language. While C�� is similar
to C in syntax and structure, it is important to realize
that the two languages are radically different. C��
and its support for object-oriented programming pro-

vide a new methodology for designing, implement-
ing, and ease of maintaining software projects which
C, a structured programming language, is unable to
support. This article describes the histories of C and
C��. It compares the advantages and disadvantages
of the two languages and discusses the object-oriented
features of C��. It also addresses some advanced
topics of C��, such as storage and memory leaks,
type checking, templates, and exceptions.

I. HISTORIES OF C AND C��

The C programming language came into being in the
years 1969–1973. It was developed at AT&T for the
purpose of writing an operating system for PDP-11
computers. This operating system evolved into Unix.
In 1978 Brian Kernighan and Dennis Ritchie pub-
lished The C Programming Language. The C program-
ming language was finally and officially standardized
by the ANSI X3J11 committee in mid-1989. During
the 1980s the use of the C language spread widely,
and compilers became available on nearly every ma-
chine architecture and operating system; in particular
it became popular as a programming tool for per-
sonal computers, both for manufacturers of commer-
cial software for these machines, and for end users in-
terested in programming. Today it is among the
languages most commonly used throughout the com-
puter industry.

C evolved from the B and BCPL programming lan-
guages. BCPL, B, and C all fit firmly into the tradi-
tional procedural family typified by FORTRAN and
Algol 60. They are particularly oriented toward system
programming, are small and compactly described,
and are amenable to translation by simple compilers.
They are low level programming languages. The ab-
stractions that they introduce are readily grounded in
the concrete data types and operations supplied by
conventional computers, and they also rely on library
routines for input-output and other interactions with
an operating system. The programmers can use li-
brary procedures to specify interesting control con-
structs such as coroutines and procedure closures. At
the same time, their abstractions lie at a sufficiently
high level that, with care, portability between ma-
chines can be achieved.

BCPL, B, and C are syntactically different in many
details. But broadly speaking, they are similar. Pro-
grams consist of a sequence of global declarations
and function (procedure) declarations. Procedures
can be nested in BCPL, but may not refer to nonsta-
tic objects defined in containing procedures. B and C

avoid this restriction by imposing a more severe one:
no nested procedures at all. Each of the languages
recognizes separate compilation, and provides a
means for including text from named files which are
called header files. BCPL, B, and C do not strongly
support character data in the language; each treats
strings much like vectors of integers and supplements
general rules with a few syntactic conventions. In the
C language, a string literal denotes the address of a
static area initialized with the characters of the string,
packed into cells. The strings are terminated by a spe-
cial character “\0”. It also should be pointed out that
BCPL and B are the typeless languages, whereas C is
a typed language (every variable and expression has a
data type that is known as compile time).

The programming language C has several direct
descendants, though they do not rival Pascal in gen-
erating progeny, such as Concurrent C, Objective C,
C*, and especially C��. The C language is also widely
used as an intermediate representation (essentially, as
a portable assembly language) for a wide variety of
compilers, both for direct descendents like C��, and
independent languages like Modula 3 and Eiffel.

C�� is a programming language developed at
AT&T Bell Laboratories by Bjarne Stroustrup in the
early 1980s. In the first phase, Stroustrop merely
viewed his work as an extension of C, calling it C with
Classes. This was released around 1982. From
1983–1984 C with Classes was revised and renamed
C��. Subsequent comments led to a revision and
new release in 1985. The programming language
C�� was designed with the intent of merging the ef-
ficiency and conciseness of C with the object-oriented
programming (OOP) features of SIMULA-67. The
language has evolved rapidly and several new features
have been added since its initial release in 1985. The
language also provides support for several other use-
ful mechanisms such as parameterized types, tem-
plates, and exception handling. A formal ISO/ANSI
C�� committee (X3J16) was established to help de-
velop an accurate and reliable standard for the lan-
guage in order to eliminate the ambiguities in the
C�� compilers and translators of the time. The
ISO/ANSI C�� language standard was officially ap-
proved in 1998 and adopted most of the rules present
in the ANSI base document The Annotated C�� Ref-
erence Manual as written by Ellis and Stroustrup.

With a few modest exceptions, C�� can be con-
sidered a superset of the C programming language.
While C�� is similar to C in syntax and structure, it
is important to realize that the two languages are rad-
ically different. C�� and its support for OOP provide
a new methodology for designing, implementing, and

100 C and C��

ease of maintaining software projects which C, a struc-
tured programming language, is unable to support.

Extensive libraries are available for the C pro-
gramming language; consequently, a deliberate effort
was made by the developers of C�� to maintain back-
ward compatibility with C. Any major deviation from
the C programming language would have meant that
all the libraries available for C would have to be te-
diously rewritten for C��. This would have severely
limited the usefulness of C�� in an environment
where C libraries were used extensively.

C�� is largely an amalgamation of several other
programming languages. Obviously, C�� inherits
most of its characteristics, such as its basic syntax,
looping mechanisms and the like, from C. Apart from
C, C�� borrows most heavily from the aforemen-
tioned SIMULA-67 programming language. Nearly all
the support that C�� provides for OOP comes from
this language. The concept of a class and the so-called
virtual function mechanism are a few of the features
present in SIMULA-67 which have been integrated
in C��.

To a limited extent, C�� also borrows some pro-
gramming mechanisms from Algol 68. These include
support for operator overloading and the declaration
of variables almost anywhere in the code. As men-
tioned, the newer C�� compilers provide support
for parameterized types and exception handling, con-
cepts borrowed from Ada and Clu.

II. C’S CHARACTERISTICS

C is a relatively small language, but one which wears
well. C’s small, unambitious feature set is a real ad-
vantage: there’s less to learn and there isn’t excess
baggage in the way when programmers do not need
it. It can also be a disadvantage: since it doesn’t do
everything for programmers, there’s a lot they have to
do themselves. (Actually, this is viewed by many as an
additional advantage: anything the language doesn’t
do for programmers, it doesn’t dictate to them either,
so they are free to do that something however they
want.)

A. The Advantages of C

Despite some aspects mysterious to the beginner and
occasionally even to the adept, C remains a simple
and small language, translatable with simple and small
compilers. The good news about C is that program-
mers can write code that runs quickly, and their pro-

gram is very “close to the hardware.” That means that
they can access low-level facilities in computers quite
easily without the compiler or run time system stop-
ping them from doing something potentially danger-
ous. Its types and operations are well-grounded in
those provided by real machines, and for people used
to how computers work, learning the idioms for gen-
erating time- and space-efficient programs is not dif-
ficult. At the same time, the language is sufficiently
abstracted from machine details that program porta-
bility can be achieved.

C is sometimes referred to as a “high-level assem-
bly language.” Some people think that is an insult,
but it is actually a deliberate and significant aspect of
the language. If a programmer has programmed in
assembly language, he/she will probably find C very
natural and comfortable (although if he/she contin-
ues to focus too heavily on machine-level details, he
will probably end up with unnecessarily nonportable
programs). If he/she has not programmed in assem-
bly language, he/she may be frustrated by C’s lack of
certain higher level features. In either case, he/she
should understand why C was designed this way: so
that seemingly simple constructions expressed in C
would not expand to arbitrarily expensive (in time or
space) machine language constructions when com-
piled. If a programmer writes a C program simply and
concisely, it is likely to result in a succinct, efficient
machine language executable. If he/she finds that
the executable program resulting from a C program
is not efficient, it is probably because of something
silly he/she did, not because of something the com-
piler did behind his back with which he has no con-
trol. In any case, there is no point in complaining
about C’s low-level flavor: C is what it is.

C imposes relatively few built-in ways of doing
things on the programmer. Some common tasks, such
as manipulating strings, allocating memory, and do-
ing input/output (I/O), are performed by calling on
library functions. Other tasks which a programmer
might want to do, such as creating or listing directo-
ries, interacting with a mouse, displaying windows or
other user-interface elements, or doing color graph-
ics, are not defined by the C language at all. A pro-
grammer can do these things from a C program, of
course, but he/she will be calling on services which
are peculiar to his programming environment (com-
piler, processor, and operating system) and which are
not defined by the C standard.

The use of compiler directives to the preprocessor
makes it possible to produce a single version of a pro-
gram which can be compiled on several different types
of computers. In this sense C is said to be very portable.

C and C�� 101

The function libraries are standard for all versions of
C so they can be used on all systems. C’s central li-
brary support always remains in touch with a real en-
vironment. It was not designed in isolation to prove a
point or to serve as an example, but as a tool to write
programs that did useful things; it was always meant
to interact with a larger operating system, and was re-
garded as a tool to build larger tools. A parsimonious,
pragmatic approach influences the things that go into
C: it covers the essential needs of many programmers,
but does not try to supply too much.

C is quirky, flawed, and an enormous success. While
accidents of history surely helped, it evidently satis-
fied a need for a system implementation language ef-
ficient enough to displace assembly language, yet suf-
ficiently abstract and fluent to describe algorithms
and interactions in a wide variety of environments.

B. The Disadvantages of C

The disadvantages of C fall neatly from the advan-
tages. The biggest one is that a programmer can write
C programs that can fail in very catastrophic ways.
These programs will appear totally valid as far as the
compiler is concerned, but will not work and may
even cause computers to stop. A more picky language
would probably notice that programmers were doing
something stupid in their program and allow them to
find the error before it crashed their computers. How-
ever, a more picky language would probably not allow
them to write the program in the first place.

It is worth mentioning that C is a bit dangerous. C
does not, in general, try hard to protect a programmer
from mistakes. If a programmer writes a piece of code
which will do something wildly different from what he
intended it to do, up to and including deleting his
data or trashing his disk, and if it is possible for the
compiler to compile it, it generally will. C is often com-
pared to a sharp knife: it can do a surgically precise
job on some exacting task a programmer has in mind,
but it can also do a surgically precise job of cutting off
his finger. It is up to a programmer to use it carefully.

This aspect of C is very widely criticized; it is also
used to argue that C is not a good teaching language.
C aficionados love this aspect of C because it means
that C does not try to protect them from themselves:
when they know what they’re doing, even if it’s risky
or obscure, they can do it. Students of C hate this as-
pect of C because it often seems as if the language is
some kind of a conspiracy specifically designed to
lead them into booby traps. This is another aspect of
the language that is fairly pointless to complain about.

If a programmer takes care and pays attention, he/she
can avoid many of the pitfalls.

Another disadvantage of C is that it allows pro-
grammers to write very terse code. They can express
exactly what they want to do in very few statements.
They might think that this is nice, because it makes
their programs even more efficient, but it has the side
effect of making them much harder to understand. At
the time a programmer writes the code he/she knows
exactly what each part is supposed to do. If he/she
comes back to the program in several months, he/she
will need time to “get back inside it.” If the code is
written very tightly he/she will take much longer to do
this, and other people may not be able to understand
it at all. In contrast, many programmers strive to write
code that is not necessarily the most efficient possible,
but is easy to understand. Such programmers sacrifice
a bit of program performance for ease of maintenance.

C. A Critique of C

Two ideas are most characteristic of C among lan-
guages of its class: the relationship between arrays
and pointers, and the way in which declaration syntax
mimics expression syntax. They are also among its
most frequently criticized features, and often serve as
stumbling blocks to the beginner.

C treats strings as arrays of characters convention-
ally terminated by a marker (the character \0). Aside
from one special rule about initialization by string lit-
erals, the semantics of strings are fully subsumed by
more general rules governing all arrays, and as a re-
sult the language is simpler to describe and to trans-
late than one incorporating the string as a unique
data type. Some costs accrue from its approach: cer-
tain string operations are more expensive than in
other designs because application code or a library
routine must occasionally search for the end of a
string, because few built-in operations are available,
and because the burden of storage management for
strings falls more heavily on the user. Nevertheless,
C’s approach to strings works well.

On the other hand, C’s treatment of arrays in gen-
eral (not just strings) has unfortunate implications
both for optimization and for future extensions. The
prevalence of pointers in C programs, whether those
declared explicitly or arising from arrays, means that
optimizers must be cautious, and must use careful
dataflow techniques to achieve good results. Sophisti-
cated compilers can understand what most pointers
can possibly change, but some important usages re-
main difficult to analyze. For example, functions with

102 C and C��

pointer arguments derived from arrays are hard to
compile into efficient code on vector machines be-
cause it is seldom possible to determine that one ar-
gument pointer does not overlap data also referred to
by another argument, or accessible externally. More
fundamentally, the definition of C so specifically de-
scribes the semantics of arrays that changes or exten-
sions treating arrays as more primitive objects, and
permitting operations on them as wholes, become
hard to fit into the existing language. Even extensions
to permit the declaration and use of multidimensional
arrays whose size is determined dynamically are not
entirely straightforward, although they would make it
much easier to write numerical libraries in C. Thus, C
covers the most important uses of strings and arrays
arising in practice by a uniform and simple mecha-
nism, but leaves problems for highly efficient imple-
mentations and extensions.

Many smaller infelicities exist in the language and
its description besides those discussed above. There
are also general criticisms to be lodged that transcend
detailed points. Chief among these is that the lan-
guage and its generally expected environment pro-
vide little help for writing very large systems. The
naming structure provides only two main levels, “ex-
ternal” (visible everywhere) and “internal” (within a
single procedure). An intermediate level of visibility
(within a single file of data and procedures) is weakly
tied to the language definition. Thus, there is little di-
rect support for modularization, and project design-
ers are forced to create their own conventions.

Similarly, C itself provides two durations of storage:
“automatic” objects that exist while control resides in
or below a procedure, and “static,” existing through-
out execution of a program. Off-stack, dynamically
allocated storage is provided only by a library routine
and the burden of managing it is placed on the pro-
grammer: C is hostile to automatic garbage collection.

III. COMPARISON OF C AND C��

C�� is an extension of C developed at AT&T with
the purpose of adding object-oriented features to C
while preserving the efficiencies of C. For all practical
purposes, the C language is a subset of C�� even
though it is possible to write C programs that are not
valid in C��. The main similarity in C and C�� lies
in the syntax of the two languages. C and C�� both
share many of the same fundamental programming
constructs. This is the reason why it is easy for a pro-
ficient C programmer to learn C�� provided he/she
understands the object-oriented paradigm. C�� sup-

ports every programming technique supported by C.
Every C program can be written in essentially the
same way in C�� with the same run time and space
efficiency. It is not uncommon to be able to convert
tens of thousands of lines of ANSI C to C-style C��
in a few hours. Thus, C�� is as much a superset of
ANSI C as ANSI C is a superset of the original C and
as much as ISO/ANSI C�� is a superset of C�� as
it existed in 1985.

C�� maintains its C roots at various levels:

• Source code level. Most ANSI C programs are valid
C�� programs.

• Object code level. C�� structures are “binary-
compatible” with equivalent C structures.

• Environment/tool level. C�� works with standard
tools like the make facility.

C�� can be viewed as a programming language de-
rived from C with improved procedural syntax as com-
pared to C and object-oriented features not present
in C. Note that though C�� supports OOP, it does
not enforce it. C�� is therefore a multiparadigm lan-
guage. If what a programmer is looking for is some-
thing that forces him to do things in exactly one way,
C�� isn’t it. There is no one right way to write every
program—and even if there were, there would be no
way of forcing programmers to use it. Of course, writ-
ing C-style programs in C�� is not an optimal use of
C�� for most applications. To be a truly effective
C�� programmer, he/she must use the abstraction
mechanisms and the type system in a way that fits rea-
sonably with their intent. Trying to ignore or defeat
the C�� type system is a most frustrating experience.

C is a procedural language. It is not designed to
support OOP. In a procedural program, the problem
is broken down into modules and submodules which
implement the solution. C�� on the other hand can
provide all the advantages inherent in the object-
oriented paradigm. In an OOP the problem space is
represented by objects that interact with each other,
and these objects are implemented along with mes-
saging mechanisms to provide a solution.

C�� supports data abstraction, OOP, and generic
programming. OO programming languages have a
number of inherent advantages. They lend themselves
to better design because they allow problem spaces to
be modeled like real-world objects. In an object ori-
ented language, an object is called an instance of a
class. A class packages all the attributes and methods
of an object. Attributes are the data associated with
the object and methods are the functions that oper-
ate on the data and express the behavior of the ob-

C and C�� 103

ject. As an object-oriented language C�� supports
inheritance, encapsulation, and polymorphism, which
if properly used lead to better programs. These fea-
tures are discussed in detail in the next section.

C�� provides stronger type checking than C.
When a user defines a new type in C��, support is
provided in the language to permit that type to be-
have in a manner similar to types already built into
the language. The user may define how the standard
operators act upon these user-defined types (operator
overloading) and how these types can be converted to
another type (user defined conversions). The user
may also specify how memory is allocated or deallo-
cated when an instance of that type is created or de-
stroyed. This is done through the use of constructors
and destructors, which are called implicitly at run
time when an instance of that type is brought into
and taken out of scope respectively.

C�� provides support for function prototypes (for-
ward declarations of function signatures), hence en-
abling strong type checking of function parameters to
take place during compilation. In addition, C�� pro-
vides support for the pass by reference mechanism
and also supports default arguments to functions. The
latter means that a function requires an argument
that often has the same specific value, the user can de-
fault the argument to that value and not pass that pa-
rameter when the function is called. In the few cases
where the function has to be called with a different
value for the default argument, the user simply passes
that argument into the function and the new value
overrides the default value.

There is another aspect worth mentioning. Some
people feel that C�� is a little overrated; in general
this holds true for the entire OOP. Often it is said that
programming in C�� leads to “better” programs.
Some of the claimed advantages of C�� are

• New programs can be developed in less time
because existing C�� code can be reused.

• Creating and using new data types is easier
than in C.

• The memory management under C�� is easier
and more transparent.

• Programs are less bug-prone, as C�� uses a
stricter syntax and type checking.

• “Data hiding,” the usage of data by one program
part while other program parts cannot access the
data, is easier to implement with C��.

Which of these allegations are true? Obviously, ex-
treme promises about any programming language are

overdone; in the end, a problem can be coded in any
programming language (even BASIC or assembly lan-
guage). The advantages or disadvantages of a given
programming language aren’t in “what a programmer
can do with them,” but rather in “which tools the lan-
guage offers to make the job easier.”

In fact, the development of new programs by
reusing existing code can also be realized in C by,
e.g., using function libraries: handy functions can be
collected in a library and need not be reinvented with
each new program. Still, C�� offers its specific syn-
tax possibilities for code reuse in addition to function
libraries.

Memory management is in principle in C�� as
easy or as difficult as in C, especially when dedicated
C functions such as xmalloc() and xrealloc()are
used (these functions, often present in our C pro-
grams, allocate memory or abort the program when
the memory pool is exhausted). In short, memory
management in C or in C�� can be coded “ele-
gantly,” “ugly,” or anything in between—this depends
on the developer rather than on the language.

Concerning “bug proneness,” C�� indeed uses
stricter type checking than C. However, most modern
C compilers implement “warning levels”; it is then the
programmer’s choice to disregard or heed a gener-
ated warning. In C�� many such warnings become
fatal errors (the compilation stops).

As far as data hiding is concerned, C does offer
some tools; e.g., where possible, local or static vari-
ables can be used and special data types such as structs
can be manipulated by dedicated functions. Using
such techniques, data hiding can be realized even in
C; though it needs to be said that C�� offers special
syntactical constructions. In contrast, programmers
who prefer to use a global variable int i for each
counter variable will quite likely not benefit from the
concept of data hiding.

Concluding, C�� in particular and OOP in gen-
eral are not solutions to all programming problems.
C��, however, does offer some elegant syntactical
possibilities, which are worth investigating. At the
same time, the level of grammatical complexity of
C�� has increased significantly compared to C. In
time a programmer gets used to this increased level
of complexity, but the transition doesn’t take place
quickly or painlessly.

In the strict mathematical sense, C isn’t a subset of
C��. There are programs that are valid C but not
valid C�� and even a few ways of writing code that
has a different meaning in C and C��. However,
well-written C tends to be legal C�� also.

104 C and C��

Here are some examples of C/C�� compatibility
problems:

• Calling an undeclared function is poor style in C
and illegal in C��, and so is passing arguments
to a function using a declaration that doesn’t list
argument types.

• In C, a pointer of type void* can be implicitly
converted to any pointer type, and free-store
allocation is typically done using malloc(),
which has no way of checking if “enough”
memory is requested.

• C�� has more keywords than C.

IV. ADVANTAGES OF C��

Most people think OOPs are easier to understand,
correct, and modify. Besides C��, many other
object-oriented languages have been developed, in-
cluding most notably, Smalltalk. The best feature
(some people feel this is the worst feature) of C�� is
that C�� is a hybrid language—it is possible to pro-
gram in either a C-like style, an object-oriented style,
or both. Writing Smalltalk-style in C�� can be equally
frustrating and as sub-optimal as writing C-style code
in C��.

There is no formal definition of OOP. Hence there
is some confusion surrounding what features a pro-
gramming language must support in order to claim
that it is object-oriented. Despite this, however, most
agree that in order for a language to claim that it is
object-oriented, it must provide support for three ma-
jor concepts.

• Data encapsulation or data abstraction
• Inheritance or derivation
• Dynamic or run-time binding

The following subsections will explain these features
and show how C�� provides support for them
through its concept of a class; the underlying mecha-
nism upon which all good C�� programs are based.

A. Data Hiding and Encapsulation in C��

This is an important aspect of OOP languages and
C�� offers several mechanisms to achieve data hid-
ing. Encapsulation is the abstraction of information
and is also called data hiding. It prevents users from
seeing the internal workings of an object so as to pro-

tect data that should not be manipulated by the user.
Encapsulation is supported in C�� through the class
mechanism though the view of encapsulation differs
from that in Eiffel. Data hiding and encapsulation
form a crucial element in the protection mechanism
within OOP languages. Encapsulation improves the
modularity of the code and leads to more easy main-
tenance of programs by hiding the actual implemen-
tation details within an object and simply allowing ac-
cess to an object’s interface.

There are several ways in which data hiding can be
achieved. It is true that C�� has the concept of an
interface in which the “services” a class offers can be
made accessible to other objects, however, the man-
ner in which that interface can be described varies.
Whatever the mechanism used, an object of any class
A that wishes to send a message to an object of an-
other class B needs to “include” the interface of class
B in order to allow the compiler to perform its nor-
mal checks (method name, number of parameters,
types of parameters, etc.).

C�� is backward compatible with C and the in-
clude mechanism derives from this. In effect, what
happens is that a pre-compilation process occurs
where any include directives are replaced with the
contents of the file to be included. As this is a process
that can be carried out separately, i.e., a programmer
can carry out the precompilation without carrying on
to the compilation stage it means that he can produce
a text file that comprises his code together with the
code from any include file. This does not seem to be
a very good idea given the aims and objectives of data
hiding and encapsulation.

The user can only perform a restricted set of op-
erations on the hidden members of the class by exe-
cuting special functions commonly called methods.
The actions performed by the methods are deter-
mined by the designer of the class, who must be care-
ful not to make the methods either overly flexible or
too restrictive. This idea of hiding the details away
from the user and providing a restricted and clearly
defined interface is the underlying theme behind the
concept of an abstract data type.

One advantage of using data encapsulation comes
when the implementation of the class changes but the
interface remains the same. For example, to create a
stack class, which can contain integers, the designer
may choose to implement it with an array, which is
hidden from the user of the class. The designer then
writes the push() and pop() methods which put in-
tegers into the array and remove them from the array,
respectively. These methods are made accessible to

C and C�� 105

the user. Should an attempt be made by the user to
access the array directly, a compile time error will re-
sult. Now, should the designer decide to change the
stack’s implementation to a linked list, the array can
simply be replaced with a linked list and the push()
and pop() methods rewritten so that they manipu-
late the linked list instead of the array. The code that
the user has written to manipulate the stack is still
valid because it was not given direct access to the
array to begin with.

The concept of data encapsulation is supported in
C�� through the use of the public, protected, and
private keywords, which are placed in the declaration
of the class. Anything in the class placed after the pub-
lic keyword is accessible to all the users of the class; el-
ements placed after the protected keyword are acces-
sible only to the methods of the class or classes derived
from that class; elements placed after the private key-
word are accessible only to the methods of the class.

As a convention, calling a method of an object in-
stantiated from a class is commonly referred to as
sending a message to that object.

B. Inheritance in C��

There is a very important feature of C��, and object-
oriented languages in general, called inheritance. In-
heritance allows programmers to create a derived class
from a previously defined base class. The derived class
contains all the attributes and methods of the base
class plus any additional specifications of the derived
class. Any changes made to base classes are propa-
gated to all derived classes unless explicitly overrid-
den. Inheritance facilitates code reuse and thereby
cutting development costs.

In the inheritance mechanism, the original class is
called the “base” or “ancestor” class (also the “super-
class”), and the derived class is the “derived” or “de-
scendant” class (also the “subclass”).

Inheritance is the mechanism whereby specific
classes are made from more general ones. The child
or derived class inherits all the features of its parent
or base class, and is free to add features of its own. In
addition, this derived class may be used as the base
class of an even more specialized class.

Inheritance, or derivation, provides a clean mecha-
nism whereby common classes can share their common
features, rather than having to rewrite them. For exam-
ple, consider a graph class, which is represented by edges
and vertices and some (abstract) method of traversal.
Next, consider a tree class, which is a special form of a
graph. We can simply derive tree from graph and the

tree class automatically inherits the concept of edges,
vertices, and traversal from the graph class. We can then
restrict how edges and vertices are connected within the
tree class so that it represents the true nature of a tree.

Inheritance is supported in C�� by placing the
name of the base class after the name of the derived
class when the derived class is declared. It should be
noted that a standard conversion occurs in C�� when
a pointer or reference to a base class is assigned a
pointer or reference to a derived class.

C. Dynamic Binding of
Function Calls in C��

Quite often when using inheritance, one will discover
that a series of classes share a common behavior, but
how that behavior is implemented is different from
class to class. Such a situation is a prime candidate for
the use of dynamic or run-time binding, which is also
referred to as polymorphism.

Polymorphism allows different objects to respond
differently to the same message. There are two types
of polymorphism: (1) early binding, which allows over-
loading of functions; overloading means that differ-
ent functions can have the same name but can be dis-
tinguished based on their signature (number, type
and order of parameters) and (2) late binding, which
allows derived classes to override the base class func-
tionality. Which function is invoked depends on the
context in which the function is invoked. Polymor-
phism improves the flexibility of programming by al-
lowing developers better design options.

Going back to our previous example, we may de-
cide to derive two tree classes from our graph class.
The first class, in_order_tree would be traversed
in an “in order” fashion when it received a traverse()
message, whereas post_order_tree would be tra-
versed in a “post order” manner. The different tra-
versal algorithms could be incorporated into a dy-
namically bound traverse() method. Now, when
one of these trees is passed to a function which ac-
cepts a reference to a graph class, the invocation of
the traverse() method via the graph parameter
would call the correct traversal algorithm at run time
depending upon which tree was passed to the func-
tion. This reduces the burden on the programmer
since a tag does not have to be associated with each
class derived from a graph to distinguish it from other
graphs. In addition, the programmer would not have
to maintain an unwieldy switch statement to deter-
mine which traversal algorithm to invoke since this is
all handled automatically by the compiler.

106 C and C��

C�� implements dynamic binding through the use
of virtual functions. While function calls resolved at
run time are somewhat less efficient than function calls
resolved statically, Stroustrup notes that a typical virtual
function invocation requires just five more memory ac-
cesses than a static function invocation. This is a very
small penalty to pay for a mechanism that provides sig-
nificant flexibility for the programmer.

It is from inheritance and run time binding of func-
tion calls that OOP languages derive most of their
power. Some problems lend themselves very well to
these two concepts, while others do not. As Strous-
trup notes: “How much types have in common so that
the commonality can be exploited using inheritance
and virtual functions is the litmus test of the applica-
bility of object-oriented programming.”

V. ADVANCED TOPICS OF C��

A. Storage and Memory Leaks

In C and C��, there are three fundamental ways of
using memory:

1. Static memory, in which an object is allocated by
the linker for the duration of the program.
Global variables, static class members, and static
variables in functions are allocated in static
memory. An object allocated in static memory is
constructed once and persists to the end of the
program. Its address does not change while the
program is running. Static objects can be a
problem in programs using threads (shared-
address-space concurrency) because they are
shared and require locking for proper access.

2. Automatic memory, in which function arguments
and local variables are allocated. Each entry into a
function or a block gets its own copy. This kind of
memory is automatically created and destroyed;
hence the name automatic memory. Automatic
memory is also said “to be on the stack.’’

3. Free store, from which memory for objects is
explicitly requested by the program and where a
program can free memory again once it is done
with it (using the new and delete operators).
When a program needs more free store, new
requests it from the operating system. Typically,
the free store (also called dynamic memory or the
heap) grows throughout the lifetime of a program.

As far as the programmer is concerned, automatic
and static storage are used in simple, obvious, and im-
plicit ways. The interesting question is how to manage

the free store. Allocation (using new) is simple, but
unless we have a consistent policy for giving memory
back to the free store manager, memory will fill up—
especially for long-running programs.

The simplest strategy is to use automatic objects to
manage corresponding objects in free store. Conse-
quently, many containers are implemented as handles
to elements stored in the free store.

When this simple, regular, and efficient approach
isn’t sufficient, the programmer might use a memory
manager that finds unreferenced objects and reclaims
their memory in which to store new objects. This is
usually called automatic garbage collection, or simply
garbage collection. Naturally, such a memory man-
ager is called a garbage collector. Good commercial
and free garbage collectors are available for C��,
but a garbage collector is not a standard part of a typ-
ical C�� implementation.

Many problems encountered during C program
development are caused by incorrect memory alloca-
tion or deallocation: memory is not allocated, not
freed, not initialized, boundaries are overwritten, etc.
C�� does not “magically” solve these problems, but
it does provide a number of handy tools.

Memory leaks are perhaps the most famous dy-
namic memory problems, though they are by no
means the only ones. A memory leak occurs when a
program (either in application code or in library use)
allocates dynamic memory, but does not free it when
the memory is no longer useful. Memory leaks are es-
pecially problematic with X Window programs since
they are often run for long periods of time (days or
longer) and can execute the same event handling
functions over and over. If there is a memory leak in
X event handling code, an X application will contin-
ually grow in size. This will lead to decreased perfor-
mance and possibly a system crash.

For example, each string must always be initialized
before using it, since all strings must end with a null
character (ASCII 0). The compiler interprets strings
this way—it continues to process characters (in a cout
or cin or string operation) until it hits a character
with value 0—the null character. If this null character
does not exist, then the computer will process the
memory in the string and flow over, until it happens
to hit a null character by chance or runs out of mem-
ory. This is also considered a memory leak and will
probably crash the computer.

Here are some available tools to help debug the
memory leak problem.

• Boehm-Weiser Conservative Garbage Collector:
http://www.hpl.hp.com/personal/Hans_Boehm/gc/

C and C�� 107

• Centerline TestCenter: http://www.centerline.
com/productline/test_center/test_center.html

• Debug Malloc Library, by Gray Watson:
http://www.dmalloc.com

• MemCheck, by StratosWare: http://www.
stratosware.com/products/MemCheck32/index.htm

• Memdebug, by Rene Schmit: http://www.bss.lu/
Memdebug/Memdebug.html

• ParaSoft Insure��: http://www.parasoft.com/
products/insure/index.htm

• Purify, by Rational Software, Inc.: http://www.
rational.com/products/purify_nt/index.jsp

B. Type Checking

Traditionally, a C or a C�� program consists of a
number of source files that are individually compiled
into object files. These object files are then linked to-
gether to produce the executable form of the pro-
gram. Each separately compiled program fragment
must contain enough information to allow it to be
linked together with other program fragments. Most
language rules are checked by the compiler as it com-
piles an individual source file (translation unit). The
linker checks to ensure that names are used consis-
tently in different compilation units and that every
name used actually refers to something that has been
properly defined. The typical C�� run-time environ-
ment performs few checks on the executing code. A
programmer who wants run-time checking must pro-
vide the tests as part of the source code.

C�� interpreters and dynamic linkers modify this
picture only slightly by postponing some checks until
the first use of a code fragment.

• Compile-Time Type Checking. As with most other bug
areas, the best debugging techniques are those
that catch bugs at compile time rather than at run
time. The compiler touches all of the code, so it
can find errors that may only rarely occur at run
time. At least occasionally, a programmer should
set his compiler’s warning output level to the most
verbose setting and then track down and fix all
the problems that it reports. Even if a report is
not a critical problem, it may be worth fixing for
portability reasons or to make real problems
easier to find in the output. Compile-time error
messages that are especially important with
respect to pointer problems are those generated
by function prototypes. Using incorrect pointer
types in functions is a common and serious
application programming problem. A
programmer should enable this compiler feature

all the time and immediately correct any problems
it detects. Some problems almost always lead to
program bugs, especially when the pointers are to
data types of different sizes. Sometimes these
problems are not immediately apparent. For
example, the data types may be the same size on a
particular machine, but the problems show up
when a programmer tries to port the program to
machines with other data type sizes.

• Run-time Type Checking. If a programmer cannot
catch a bug at compile time, the next best thing
for the system is to automatically halt his program
with a core dump when the bug occurs. While a
programmer never wants his end users to
experience core dumps, they identify the program
state at the time of the crash and can help him
identify and debug many types of bugs.

The assert() macro, available with most C and
C�� implementations, is a simple way to force a pro-
gram to exit with an error message when unexpected
results occur. Using assert() is an easy but powerful
way to find pointer and memory problems.

A good programming technique is to initialize
pointers to NULL and to reset them to NULL when-
ever the objects they point to are freed. If program-
mers do this, they can easily check for initialized point-
ers before using them.

C. Operator Overloading

Operator overloading allows C�� operators to have
user-defined meanings for user-defined types (classes).
Overloaded operators are syntactic sugar for function
calls. Overloading standard operators for a class can ex-
ploit the intuition of the users of that class. This lets users
program in the language of the problem domain rather
than in the language of the machine. The ultimate goal
is to reduce both the learning curve and the defect (bug)
rate. Some people don’t like the keyword operator or the
somewhat funny syntax that goes with it in the body of
the class itself. But the operator overloading syntax isn’t
supposed to make life easier for the developer of a class.
It’s supposed to make life easier for the users of the class.
Remember, in a reuse-oriented world, there will usually
be many people who use class R, but there is only one
person who builds it (Rself); therefore he should do
things that favor the many rather than the few.

Most operators can be overloaded. The only C op-
erators that can’t be are . and ?: (and sizeof,
which is technically an operator). C�� adds a few of
its own operators, most of which can be overloaded
except :: and .*.

108 C and C��

When compiling an expression of the form <var>
<op> <value>, the compiler does the following:

1. If <var> is of a built-in type (int, char*,
etc.), the standard (built-in) operator is used

2. If <var> is of a user-defined class type, the
compiler checks if there is a suitable user-defined
operator<op> function defined (that is, one
whose parameter is of the same type as <value>,
or of a type convertable to the type of <value>).
If so, that function is used

3. Otherwise, a compiler error is flagged

Note that there are special problems if there are more
than one “suitable” operator functions available. Such
problems are resolved using the normal function over-
loading resolution rules

D. Templates

The C�� language supports a mechanism that allows
programmers to define completely general functions
or classes, based on hypothetical arguments or other
entities. These general functions or classes become
concrete code once their definitions are applied to
real entities. The general definitions of functions or
classes are called templates; the concrete implemen-
tations, instantiations.

Templates automate the implementation of abstract
algorithms that can operate on multiple data types.
Considering Stack as an example, a different data class
can be given for each instantiation of the Stack class
without manually changing the Stack class definition.
Instead, the compiler generates code specific for each
data type listed as a specific class. For example, if there
is a method that must be defined differently to print
each different data type stored in the Stack class, this
is done automatically by the template facility. Tem-
plates are valuable in promoting code reuse since dif-
ferent stack code can be generated for different data
types from a single copy of the algorithm. Templates
are satisfactory for constructing distinctly different
stacks. But suppose a single stack that held data of dif-
ferent data type was required. Because C�� templates
generate code specific for each data type statically (at
compile time), the data type of the items stored in the
stack must remain static during program execution.
Different code is generated for different stacks, each
able to hold only one data type.

The Standard Template Library (STL) represents a
breakthrough in C�� programming methodology.
Comprising a set of C�� generic data structures and
algorithms, the STL provides reusable, interchange-

able components adaptable to many different uses
without sacrificing efficiency. Adopted by the
ANSI/ISO C�� Standards Committee, the STL is an
important addition to every C�� programmer’s port-
folio of skills. The STL is a general purpose library
consisting of containers, generic algorithms, iterators,
function objects, allocators, and adaptors. The data
structures that are used in the algorithms are abstract
in the sense that the algorithms can be used on (prac-
tically) any data type. The algorithms can work on
these abstract data types due to the fact that they are
template based algorithms.

E. Exceptions

Improved error recovery is one of the most powerful
ways a programmer can increase the robustness of his
code. If a programmer can make several function calls
with only one catch, he greatly reduces the amount of
error-handling code he must write.

Unfortunately, it is almost accepted practice to ig-
nore error conditions, as if programmers are in a
state of denial about errors. Some of the reason is,
no doubt, the tediousness and code bloat of check-
ing for many errors. For example, printf() re-
turns the number of characters that were success-
fully printed, but virtually no one checks this value.
The proliferation of code alone would be disgusting,
not to mention the difficulty it would add in reading
the code.

The problem with C’s approach to error handling
could be thought of as one of coupling—the user of
a function must tie the error-handling code so closely
to that function that it becomes too ungainly and awk-
ward to use.

One of the major features in C�� is exception
handling, which is a better way of thinking about and
handling errors. With exception-handling,

1. Error-handling code is not nearly so tedious to
write, and it doesn’t become mixed up with the
“normal” code. A programmer can write the code
he wants to happen; later in a separate section he
writes the code to cope with the problems. If he
makes multiple calls to a function, he handles the
errors from that function once, in one place.

2. Errors will not be ignored. If a function needs to
send an error message to the caller of that
function, it “throws” an object representing that
error out of the function. If the caller doesn’t
“catch” the error and handle it, it goes to the
next enclosing scope, and so on until some code
block catches the error.

C and C�� 109

There are two basic models in exception-handling the-
ory. In termination (which is what C�� supports) pro-
grammers assume the error is so critical there is no way
to get back to where the exception occurred. Whoever
threw the exception decided there was no way to sal-
vage the situation, and they don’t want to come back.

The alternative is called resumption. It means the
exception handler is expected to do something to
rectify the situation, and then the faulting function is
retried, presuming success the second time. If a pro-
grammer wants resumption, he still hopes to continue
execution after the exception is handled, so his ex-
ception is more like a function call—which is how he
should set up situations in C�� where he wants re-
sumption-like behavior (that is, don’t throw an ex-
ception; call a function that fixes the problem). Al-
ternatively, the programmer can place his try block
inside a while loop that keeps reentering the try block
until the result is satisfactory. Historically, program-
mers using operating systems that supported resump-
tive exception handling eventually ended up using
termination-like code and skipping resumption. So al-
though resumption sounds attractive at first, it seems
it isn’t quite so useful in practice. One reason may be
the distance that can occur between the exception
and its handler; it’s one thing to terminate to a han-
dler that’s far away, but to jump to that handler and
then back again may be too conceptually difficult for
large systems where the exception can be generated
from many points.

F. Use of C��

C�� is used by hundreds of thousands of program-
mers in essentially every application domain. This use
is supported by about a dozen independent imple-
mentations, hundreds of libraries, hundreds of text-
books, several technical journals, many conferences,
and innumerable consultants. Training and educa-
tion at a variety of levels are widely available.

Early applications tended to have a strong systems
programming flavor. For example, several major oper-
ating systems have been written in C�� and many more
have key parts done in C��. C�� was designed so that
every language feature is usable in code under severe
time and space constraints. This allows C�� to be used
for device drivers and other software that rely on direct
manipulation of hardware under real-time constraints.

In such code, predictability of performance is at
least as important as raw speed. Often, so is compact-
ness of the resulting system. Most applications have
sections of code that are critical for acceptable per-

formance. However, the largest amount of code is not
in such sections. For most code, maintainability, ease
of extension, and ease of testing is key. C��’s sup-
port for these concerns has led to its widespread use
where reliability is a must and in areas where re-
quirements change significantly over time. Examples
are banking, trading, insurance, telecommunications,
and military applications. For years, the central con-
trol of the United States long-distance telephone sys-
tem has relied on C�� and every 800 call (that is, a
call paid for by the called party) has been routed by
a C�� program. Many such applications are large
and long-lived. As a result, stability, compatibility, and
scalability have been constant concerns in the devel-
opment of C��. Million-line C�� programs are not
uncommon.

Like C, C�� wasn’t specifically designed with nu-
merical computation in mind. However, much nu-
merical, scientific, and engineering computation is
done in C��. A major reason for this is that tradi-
tional numerical work must often be combined with
graphics and with computations relying on data struc-
tures that don’t fit into the traditional FORTRAN
mold. Graphics and user interfaces are areas in which
C�� is heavily used.

All of this points to what may be C��’s greatest
strength—its ability to be used effectively for applica-
tions that require work in a variety of application ar-
eas. It is quite common to find an application that in-
volves local and wide-area networking, numerics,
graphics, user interaction, and database access. Tradi-
tionally, such application areas have been considered
distinct, and they have most often been served by dis-
tinct technical communities using a variety of pro-
gramming languages. However, C�� has been widely
used in all of those areas. Furthermore, it is able to
coexist with code fragments and programs written in
other languages.

C�� is widely used for teaching and research. This
has surprised some who, correctly, point out that C��
isn’t the smallest or cleanest language ever designed.
However, C�� is clean enough for successful teach-
ing of basic concepts,

• Realistic, efficient, and flexible enough for
demanding projects

• Available enough for organizations and
collaborations relying on diverse development and
execution environments

• Comprehensive enough to be a vehicle for
teaching advanced concepts and techniques

• Commercial enough to be a vehicle for putting
what is learned into nonacademic use

110 C and C��

There are many C�� compilers. Following is a list of
popular C�� compilers.

• GNU C�� compiler
• Microsoft Visual C��
• Borland C��
• PARCompiler C�� and C
• The CC�� Programming Language—a parallel

programming language based on C��
• Watcom C/C�� Compiler
• pC��/Sage��—a portable parallel C�� for

high performance computers

VI. CONCLUSION

The designers of C�� wanted to add object-oriented
mechanisms without compromising the efficiency and
simplicity that made C so popular. One of the driving
principles for the language designers was to hide com-
plexity from the programmer, allowing them to con-
centrate on the problem at hand.

Because C�� retains C as a subset, it gains many
of the attractive features of the C language, such as ef-
ficiency, closeness to the machine, and a variety of
built-in types. A number of new features were added
to C�� to make the language even more robust,
many of which are not used by novice programmers.
Most of these features can be summarized by two im-
portant design goals: strong compiler type checking
and a user-extensible language.

By enforcing stricter type-checking, the C�� com-
piler makes programmers acutely aware of data types
in their expressions. Stronger type checking is pro-
vided through several mechanisms, including: function
argument type checking, conversions, and a few other
features. C�� also enables programmers to incorpo-
rate new types into the language through the use of
classes. A class is a user-defined type. The compiler can
treat new types as if they are one of the built-in types.
This is a very powerful feature. In addition, the class
provides the mechanism for data abstraction and en-
capsulation, which are a key to OOP.

C�� is a very useful and popular programming
language. However, there are still some critiques. For
example, the struct type constructor in C is a redun-
dant feature when the class concept is introduced, and
the worse, C�� sets up different accessibility rules for
structures and classes. Struct is only in C�� as a com-

patibility mechanism to C. A struct is the same as a
class that has by default public components. The struct
keyword could not be eliminated without losing com-
patibility, but the class keyword is unnecessary.

As C is a subset of C��, C programmers can im-
mediately use C�� to write and compile C programs,
this does not take advantage of OOP. Many see this as
a strength, but it is often stated that the C base is
C��’s greatest weakness. However, C�� adds its own
layers of complexity, like its handling of multiple in-
heritance, overloading, and others. Java has shown
that in removing C constructs that do not fit with ob-
ject-oriented concepts, that C can provide an accept-
able, albeit not perfect base. One of the stated ad-
vantages of C�� is that programmers can get free
and easy access to machine level details. This comes
with a downside: if programmers make a great deal of
use of low level coding their programs will not be eco-
nomically portable. Java has removed all of this from
C, and one of Java’s great strengths is its portability
between systems, even without recompilation.

SEE ALSO THE FOLLOWING ARTICLES

COBOL • Fortran • Java • Pascal • Perl • Programming
Languages Classification • Simulation Languages • Visual
Basic • XML

BIBLIOGRAPHY

Barton, J., and Nackman, L. (1994). Scientific and Engineering
C��. Reading, MA: Addison-Wesley.

Brokken, F. (1994). C�� Annotations. University of Groningen.
Deitel & Deitel. (2001). C How to Program. Englewood Cliffs, NJ:

Prentice Hall.
Deitel & Deitel. (2001). C�� How to Program. Englewood Cliffs,

NJ: Prentice Hall.
Ellis, M., and Stroustrup, B. (1990). The Annotated C�� Refer-

ence Manual. Reading, MA: Addison-Wesley.
Joyner, I. (1999). Objects Unencapsulated: Eiffel, Java and C��?

Englewood Cliffs, NJ: Prentice Hall.
Kernighan, B., and Ritchie, D. (1978). The C Programming Lan-

guage. Englewood Cliffs, NJ: Prentice Hall.
Ritchie, D. (1993). The Development of the C Language. Second

History of Programming Languages Conference, Cam-
bridge, MA.

Stroustrup, B. (1994). The Design and Evolution of C��. Read-
ing, MA: Addison-Wesley.

Stroustrup, B. (1997). The C�� Programming Language. Read-
ing, MA: Addison-Wesley.

C and C�� 111

COBOL
Mohammed B. Khan
California State University, Long Beach

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 113

I. THE DEVELOPMENT OF COBOL
II. COBOL’S DISTINGUISHING FEATURES

III. STRUCTURAL ORGANIZATION OF COBOL
VI. DATA ORGANIZATION FOR COBOL PROGRAMS

V. EDITING FEATURES OF COBOL
VI. COMPUTING IN COBOL

VII. COBOL’S INTERFACE WITH SQL
VIII. FUTURE OF COBOL

GLOSSARY

alphabetic data field A data field used to store alpha-
betic characters.

CODASYL The name of the organization that devel-
oped the first version of COBOL in 1960.

data field A single item contained within a record.
documentation Written statements that explain a pro-

gram to humans.
elementary data field A data field that is not divided

into subordinate components.
file An organized accumulation of related data.
group data field A data field that is divided into sub-

ordinate components.
machine independent language A computer pro-

gramming language that can be executed on many
different computers with little or no modifications.

numeric data field A data field used to store numbers.
program maintenance The activity of modifying pre-

existing programs.
record A group of data items pertaining to a single

entity.

COBOL (COMMON BUSINESS-ORIENTED LANGUAGE)
was once the dominant programming language for
business applications. Many distinguishing features
characterize this language among which are: struc-
tured modularity, efficient input-output capability,
English-like sentences, and self-documenting nature.
Though the language has undergone several revisions,
its popularity has definitely reduced in recent years.

Many legacy systems written in COBOL are still in
use. These systems are primarily run on mainframe

computers. However, COBOL compilers have been
written for smaller computers, including personal
computers. COBOL programs interface gracefully
with Structured Query Language (SQL) statements.
Graphical user interfaces (GUI) have been imple-
mented in COBOL, making the language more ac-
ceptable in today’s visual environment.

I. THE DEVELOPMENT OF COBOL

Cobol is one of the oldest high-level programming
languages. Its development began in 1959 when a
group of computer professionals from various orga-
nizations—government, education, business and oth-
ers—agreed to hold a series of meetings to design a
uniform, machine-independent computer program-
ming language for business use. This group met un-
der the name Conference on Data Systems Language
or CODASYL. CODASYL developed the first version
of COBOL, which was called COBOL-60 because it
was released in 1960. Three revisions followed:
COBOL-68, COBOL-74, and most recently, COBOL-
85. Another revision of COBOL (COBOL-9X) is un-
der development at this time.

Over the years, the American National Standards
Institute (ANSI), an organization that adopts stan-
dards in a wide variety of fields, has adopted CODA-
SYL standards for COBOL. Therefore, COBOL-68,
COBOL-74, and COBOL-85 are often referred to as
ANSI-68, ANSI-74, and ANSI-85, respectively. Each of
these standards had new features that made it better
and easier to use than the previous version.

Although more and more organizations are adopt-
ing COBOL-85, many organizations still use COBOL-
74. Many existing COBOL programs that businesses
use are COBOL-74. In fact, there are more COBOL-
74 programs in the business world than there are
COBOL-85 programs.

II. COBOL’S DISTINGUISHING FEATURES

The original intent for the development of COBOL
was to introduce a computer programming language
that would have three major characteristics:

• It would be machine independent, meaning that
COBOL programs could be executed on many
different types of computers with little or no
modification. For example, a COBOL program
that was written to run on a VAX computer can be
executed on an IBM computer with only minor
modifications.

• It would be easy to maintain. Program maintenance
is the process of making modifications to existing
programs. In industry, the largest part of a
programmer’s time is spent modifying existing
programs. Therefore, a program that is easy to
maintain can save a company considerable time
and money.

• It would be self-documenting. Documentation
consists of explanations telling users how a
computer program works or what the program is
doing at a particular point. When a program is
self-documenting, the programming language
instructions, or code, contain English-like words
and phrases.

COBOL has additional features that distinguish it
from most other computer programming languages.
Some of them are

• COBOL programs are uniquely organized. Each
program is divided into four standard parts called
divisions. These divisions will be discussed in detail
later.

• COBOL is well suited for commercial data processing.
Most of the data processing performed in
business requires two major types of tasks:
performing simple calculations, and inputting
and outputting large quantities of data. For
example, consider the tasks that a program
performs when billing department store charge-
account customers. The program reads the
needed data, calculates the bill, and then

outputs it in the desired form. Because there is
likely to be a large number of customers, the
program must input and output the data
efficiently. In addition, it must calculate each bill
using only addition and subtraction. COBOL
easily and efficiently performs these operations.

• The data in COBOL programs are organized into
records. Each record contains a collection of data.
For example, each record used for the
department store charge accounts program might
contain one customer’s account number, name,
address, balance owed, and purchases made
during the current month.

• COBOL programs can process several types of
files—sequential, indexed sequential, and relative.
A file consists of a group of records.

• A COBOL program can read and write massive
amounts of data using only a few statements.
These are referred to as input/output (I/0)
operations. The COBOL language performs
input/output operations efficiently.

III. STRUCTURAL ORGANIZATION OF COBOL

The structure of a COBOL program is unique in that
it consists of divisions and sections. Within a division
and a section, a program contains statements that
perform certain specific functions. COBOL programs
are typed in an 80-column line format. The leftmost
column is column 1, the rightmost column is column
80. Of the 80 columns, only 66 columns (columns
7–72) are actually used for the program itself. A
unique feature of COBOL programs is that certain
parts of the program must start in certain columns of
the 80-column line. A sample COBOL program is pre-
sented in Table I.

A. Column 1 through 6: Sequence Area

Columns 1 through 6 are known as the sequence area.
These columns are used to provide program state-
ment numbers. A computer program consists of state-
ments that tell the computer the steps necessary to
solve a specific problem. These statements must be
arranged in a particular sequence. Normally, the com-
puter follows these statements in the order they ap-
pear, one after another, unless specifically directed
otherwise. For this reason, each statement in a pro-
gram is given a sequence number. The first statement
has the sequence number 1, the second statement has
the sequence number 2, etc. Having six columns

114 COBOL

COBOL 115

Table I Sample COBOL Program

Column 7:
Indicator
Area IDENTIFICATION DIVISION This Division Identifies the Program and

Provides General Information.

PROGRAM-ID.SAMPLE.
AUTHOR.M.B.KHAN.
DATE-WRITTEN.JANUARY 5,1996.
DATE-COMPILED.JANUARY 5,1996.

*
*REMARKS. THIS PROGRAM CALCULATES GROSS PAY OF EMPLOYEES
*BASED ON HOURLY RATES AND NUMBER OF HOURS WORKED.
*OVERTIME PAY IS CALCULATED AT THE RATE OF TIME AND A
*HALF FOR HOURS WORKED OVER 40. THE PROGRAM PRINTS
*EMPLOYEE NAME, HOURLY RATE, HOURS WORKED, AND GROSS
*WEEKLY PAY. SPECIFICALLY, THE PROGRAM
*(1) READS NAME, HOURLY RATE, AND HOURS WORKED FOR AN
* EMPLOYEE
*(2) CALCULATES REGULAR OR OVERTIME PAY, AS APPROPRIATE
*(3) PRINTS NAME, HOURLY RATE, HOURS WORKED, AND GROSS
* PAY FOR THE EMPLOYEE

ENVIRONMENT DIVISION

This Division Describes the Computing
Environment-Specific Computers that
Will Be Used-for the Program, and the
Interface with Hardware Devices.

CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM3090.
OBJECT-COMPUTER. IBM3090.
INPUT-OUTPUT SECTION
FILE-CONTROL
SELECT EMPLOYEE-FILE-IN

ASSIGN TO “PROG31I.DAT”.
SELECT EMPLOYEE-FILE-OUT

ASSIGN TO “PROG310.DAT”.

DATA DIVISION This Division Describes All Data that
Are Needed by the Program

FILE SECTION.

*THE FOLLOWING STATEMENTS DEFINE THE INPUT FILE *

FD EMPLOYEE-FILE-IN
LABEL RECORDS STANDARD.

01 EMPLOYEE-RECORD-IN.
05 EMPLOYEE-NAME-IN PIC X(20).
05 EMPLOYEE-RATE-IN PIC 9(3)V99.
05 EMPLOYEE-HOURS-INPIC 9(3)V99.

(continues)

116 COBOL

Table I Sample COBOL Program (continued)

*THE FOLLOWING STATEMENTS DEFINE THE OUTPUT FILE *

FD EMPLOYEE-FILE-OUT
LABEL RECORDS OMITTED.

EMPLOYEE-RECORD-OUT.
05 EMPLOYEE-NAME-OUT PIC X(20).
05 PIC X(5).
05 EMPLOYEE-RATE-OUT PIC 9(3).99.
05 PIC X(5).
05 EMPLOYEE-HOURS-OUT PIC 9(3).99.
05 PIC X(5).
05 EMPLOYEE-PAY-OUT PIC 9(5).99.

WORKING-STORAGE SECTION.
01 W1-CONTROL-FIELDS.

05 W1-END-OF-FILE PIC X VALUE “N”.
01 W2-WORKING-FIELDS.

05 W2-REGULAR-HOURSPIC 9(2) VALUE 40.
05 W2-REGULAR-PAY PIC 9(5)V99 VALUE 0.
05 W2-OVERTIME-FACTOR PIC 9V9 VALUE 1.5.
05 W2-OVERTIME-HOURS PIC 9(3)V99 VALUE 0.
05 W2-OVERTIME-RATE PIC 9(3)V99 VALUE 0.
05 W2-OVERTIME-PAY PIC 9(5)V99 VALUE 0.
05 W2-TOTAL-PAY PIC 9(5)V99 VALUE 0.

* PROCEDURE DIVISION. This Division Describes the

Step-By-Step Instructions
for Solving the problem

* THE FOLLOWING IS THE MAIN PARAGRAPH. FROM THIS PART, THE *
* PROGRAM TRANSFERS TO OTHER PARTS FOR SPECIFIC FUNCTIONS *

AOOO-CONTROL-LOGIC.
PERFORM B100-INITIALIZE-PROCESSING.
PERFORM B200-PROCESS-DATA

UNTIL W1-END-OF-FILE EQUAL TO “Y”.
PERFORM B300-TERMINATE-PROCESSING.
STOP RUN.

* THE FOLLOWING PARAGRAPH OPENS THE INPUT AND THE *
* OUTPUT FILE AND READS THE FIRST INPUT RECORD *

B100-INITIALIZE-PROCESSING
OPEN INPUT EMPLOYEE-FILE-IN

OUTPUT EMPLOYEE-FILE-OUT.
PERFORM X100-READ-DATA.
B100-EXIT.
EXIT.

* THE MAIN PROCESSING IS CONTROLLED IN THE NEXT PARAGRAPH *
* THE PROGRAM IS TRANSFERRED FROM HERE TO OTHER PARTS FOR *
* APPROPRIATE PROCESSING *

B200-PROCESS-DATA.
PERFORM C100-CALC-REGULAR-PAY.
IF EMPLOYEE-HOURS-IN IS GREATER THAN W2-REGULAR-HOURS

PERFORM C200-CALC-OVERTIME-PAY

(continues)

COBOL 117

Table I Sample COBOL Program (continued)

ELSE
MOVE W2-REGULAR-PAY TO W2-TOTAL-PAY

END-IF
PERFORM X200-WRITE-DATA.
PERFORM X100-REAO-DATA.

B200-EXIT.
EXIT.

* INPUT AND OUTPUT FILES ARE CLOSED IN THE NEXT PARAGRAPH *

B300-TERMINATE-PROCESSING.
CLOSE EMPLOYEE-FILE-IN
EMPLOYEE-FILE-OUT.

B300-EXIT.
EXIT.

* THE FOLLOWING PARAGRAPH CALCULATES REGULAR PAY *

C100-CALC-REGULAR-PAY.
IF EMPLOYEE-HOURS-IN IS GREATER THAN W2-REGULAR-HOURS

MULTIPLY EMPLOYEE-RATE-IN BY W2-REGULAR-HOURS
GIVING W2-REGULAR-PAY

ELSE
MULTIPLY EMPLOYEE-RATE-IN BY EMPLOYEE-HOURS-IN

GIVING W2-REGULAR-PAY
END-IF

C100-EXIT.
EXIT.

* THE FOLLOWING PARAGRAPH CALCULATES OVERTIME PAY *

C200-CALC-OVERTIME-PAY.
SUBTRACT W2-REGULAR-HOURS FROM EMPLOYEE-HOURS-IN

GIVING W2-OVERTIME-HOURS.
MULTIPLY W2-OVERTIME-FACTOR BY EMPLOYEE-RATE-IN

GIVING W2-OVERTIME-RATE.
MULTIPLY W2-OVERTIME-HOURS BY W2-OVERTIME-RATE

GIVING W2-OVERTIME-PAY.
ADD W2-OVERTIME-PAY W2-REGULAR-PAY

GIVING W2-TOTAL-PAY.
C200-EXIT.

EXIT.

* THE INPUT FILE IS READ IN THE FOLLOWING PARAGRAPH *

X100-READ-DATA.
READ EMPLOYEE-FILE-IN

AT END MOVE “Y” TO W1-END-OF-FILE
END READ

X100-EXIT.
EXIT.

* THE NEXT PARAGRAPH MOVES DATA VALUES TO OUTPUT DATA *
* FIELDS AND WRITES THE OUTPUT DATA *

(continues)

means that one could have hundreds of thousands of
statements in a program if necessary.

The sequence numbers in columns 1 through 6
are a holdover from the days when programs were
punched on cards. If the cards were dropped, they
could easily be reordered by using these numbers. To-
day, programmers type their programs directly into
the computer and sequence numbers are generated
automatically by compilers. Therefore, sequence
numbers have little use, and the programmer gener-
ally leaves these columns blank. A few sequence num-
bers have been provided in Table I to show where
they would appear.

B. Column 7: Indicator Area

Column 7 is called the indicator area. This column is
used for special purposes. A specific entry in this col-
umn has a special meaning. For example, an asterisk
(*) in this column indicates a comment statement. A
slash (/) makes the computer go to the top of a new
page before printing that line. A hyphen (-) indicates
that the line is a continuation of the preceding line.

C. Column 8 through 72:
Area A and Area B

Columns 8 through 72 are known as program areas.
Columns 8 through 11 are known as Area A, and
columns 12 through 72 are known as Area B. These
two areas represent the columns in which the COBOL
program appears. The first column of Area A (col-
umn 8) is called the “A margin” and the first column
of Area B (column 12) is called the “B margin.” Some
parts of a COBOL program must start in Area A, while
others must start in Area B.

D. Columns 73 through 80:
Identification Area

Columns 73 through 80 are designated as the identi-
fication area. Program identification codes were useful
when programs were punched on cards in preventing
the cards of different programs from getting mixed
together. The use of this area is optional, and the
COBOL compiler ignores whatever is typed in it. For
this reason, care should be taken not to type any sig-
nificant part of a program statement in this area. The
columns have not been filled in the sample program.
It is important to note that every line of the sample
program ends with a period; this is considered an im-
portant part of COBOL programs.

E. Hierarchical Organization
and Divisions in COBOL

The structural organization of a COBOL program is
perhaps its most striking feature. The program fol-
lows a hierarchical organization. The basic structural
unit of a program is the division. As previously men-
tioned, every COBOL program is divided into four di-
visions: the IDENTIFICATION DIVISION, the
ENVIRONMENT DIVISION, the DATA DIVISION,
and the PROCEDURE DIVISION. These divisions
must be present in a specific sequence.

The IDENTIFICATION DIVISION is the first di-
vision in a COBOL program. Its purpose is to identify
the program and its author and to provide general in-
formation about the program, such as the dates the
program is written and compiled, any program secu-
rity, etc. A narrative description of the program is usu-
ally included in this division.

The ENVIRONMENT DIVISION is the next division
that appears in a COBOL program. The ENVIRON-
MENT DIVISION describes the “computing environ-

118 COBOL

Table I Sample COBOL Program (continued)

X200-WRITE-DATA.
MOVE SPACES TO EMPLOYEE-RECORD-OUT.
MOVE EMPLOYEE-NAME-IN TO EMPLOYEE-NAME-OUT.
MOVE EMPLOYEE-RATE-IN TO EMPLOYEE-RATE-OUT.
MOVE EMPLOYEE-HOURS-IN TO EMPLOYEE-HOURS-OUT.
MOVE W2-TOTAL-PAY TO EMPLOYEE-PAY-OUT.
WRITE EMPLOYEE-RECORD-OUT.

X200-EXIT.
EXIT.

ment” of the program. The “computing environment”
refers to the type of computer hardware on which the
program is written and run. This division also briefly
describes the data files required by the program.

The DATA DIVISION is the third division of a
program. All data that are part of input and output
files as well as other data are described in this
division. Consequently, the DATA DIVISION is one
of the most complicated and lengthy parts of a
COBOL program. This division bears some relation-
ship to the ENVIRONMENT DIVISION in that the
files specified earlier are further described in the
DATA DIVISION. Data are defined in COBOL in a
specific way.

The PROCEDURE DIVISION contains the step-by-
step instructions that are necessary to convert the in-
put data to the desired output data. The instructions
that perform a specific function are grouped together
under a paragraph. Most COBOL statements start
with regular English verbs. The divisions are divided
into sections, which are again divided into paragraphs.
Each paragraph is composed of several entries/clauses
or sentences/statements.

The IDENTIFICATION DIVISION is divided into
several paragraphs. There are four paragraphs in this
division in Table I. However, only the PROGRAM-ID
paragraph is required.

The ENVIRONMENT DIVISION is divided into sec-
tions. There are two sections in the sample program
of Table I. These sections are the CONFIGURATION
SECTION and the INPUT-OUTPUT SECTION, which
are again divided into paragraphs. Paragraphs have
either entries or clauses associated with them. Both
entries and clauses perform the same function; they
describe the paragraphs with which they are associ-
ated. Neither the division name nor the name of the
first section is required.

The DATA DIVISION is divided into two sections.
These sections have several entries that are used to
describe the data used by the program. The first sec-
tion is the FILE SECTION, the other is the WORK-
ING-STORAGE SECTION.

The PROCEDURE DIVISION can be divided into
sections or paragraphs. Each section or paragraph
consists of one or more sentences or statements. A
sentence is a collection of one or more statements. A
statement is a valid combination of words and char-
acters according to the rules of COBOL syntax. Most
COBOL statements start with regular English verbs.
There are eight paragraphs in the PROCEDURE DI-
VISION in Table I.

IV. DATA ORGANIZATION FOR
COBOL PROGRAMS

The input and the output data for a COBOL program
are organized in the form of a file. A file is an orga-
nized accumulation of related data. Input data are
contained in an input file; output data are contained
in an output file. Any number of input and output
files can be used in a COBOL program. A file is di-
vided into records, and records are, in turn, subdi-
vided into data fields.

A. Files, Records, and Data Fields

A computer does not read all the data from a file at
one time. Data are read in segments. A file is divided
into many segments of data; each segment is called a
record. Each record pertains to a single entity such as
an individual person or item. For example, a school
may have a computer file that has the data pertaining
to all students. In this file, each record contains all
the data of a single student. If there are 5000 students
in the school, this file will have 5000 records. When
instructed to read data from an input file, the com-
puter reads one record at a time. Similarly, when in-
structed to write data to a file, the computer writes
one record at a time. The record of an input file is
called an input record; the record of an output file is
called an output record.

Just as a file is divided into records, a record is di-
vided into smaller segments, called data fields, or sim-
ply fields. An input or output record may be divided
into any number of data fields; the number of data
fields depends on the specific problem being solved
by the computer. In COBOL, data fields can be of
three different types: numeric, alphabetic, and alphanu-
meric. The data fields that represent only the digits 0
through 9 are called numeric. Examples of data that
might appear in numeric data fields are age, social se-
curity number (not including the hyphens), price,
sales, quantity, and number of employees. The data
fields that represent alphabetic characters and spaces
only are called alphabetic. Examples are names of in-
dividuals, and names of cities, states, or countries. Al-
phanumeric data fields can represent both numeric
and nonnumeric data. Alphanumeric data include
letters of the alphabet and special characters such as
hyphens, parentheses, blanks, etc. Examples are tele-
phone numbers (including the parentheses and
hyphens), social security numbers (including the

COBOL 119

hyphens), dates of birth (including the hyphens), and
addresses. Although most names contain letters of the
alphabet only, there are names that consist of alpha-
bets and special characters such as the apostrophe in
the name LINDA O’DONNELL. For this reason, most
COBOL programs store names as alphanumeric data.

A data field that is subdivided into subordinate
components is called a group data field; a data field not
further divided into components is called an elemen-
tary data field. For example, the data field “date of
birth” can be subdivided into three subordinate com-
ponents: “day of birth,” “month of birth,” and “year
of birth.” In this case, date of birth is a group data
field; its components are elementary data fields. In a
similar manner, the data field “mailing address” is a
group data field. Its components, “residence num-
ber,” “street name,” “city name,” “state name,” and
“zip code,” are elementary data fields. A group data
field may consist of a combination of numeric and
nonnumeric elementary data fields as in the case of
the “mailing address” data field.

It is important to be able to distinguish between a
data field name and the data value it contains. A data
field may be thought of as the name of a container, and
the data value as the actual contents of the container.

COBOL offers considerable latitude in the naming
of files, records, and data fields. However, certain
rules must be observed.

PHONE-NUMBER, etc. Based on the five rules for nam-
ing files, records, and data fields, the following are all
valid names:

INPUT-EMPLOYEE-FILE
EMPLOYEE-RECORD
EMPLOYEE-ADDRESS-1
CUSTOMER-FILE-IN
CUSTOMER-RECORD-I
CUSTOMER-BALANCE
FILE- 123

However, the following names are invalid:

EMPLOYEE FILE ACCOUNTS-RECEIVABLES-
MASTER-FILE

INVENTORY:RECORD
123-FILE

B. Structural Description of a Record

In COBOL, records and data fields are described in a
special way. A clear understanding of the structural
description of a record is essential for writing COBOL
programs.

1. Levels

Records and data fields are described in COBOL us-
ing levels. Levels are designated by numbers 01
through 49. All records must have level number 01
and their data fields must have level numbers 02
through 49. A common practice is to use level num-
bers in increments of five—5, 10, 15, and so on—in-
stead of increments of one. Though both practices
are allowed in COBOL, levels are usually numbered
05, 10, 15, and so on. The 05 level number indicates
the highest level data field. This data field may be sub-
divided into smaller data fields whose level numbers
are 10. These data fields with level number 10 may be
further divided into smaller data fields whose levels
are 15, and so on. In this way, level numbers 01
through 49 can be used in a COBOL program for de-
scribing records and data fields.

An example will make this clearer. Suppose
STUDENT-RECORD is the name of a record. This
record consists of five data fields: STUDENT-NAME,
STUDENT-ADDRESS, STUDENT-DOB, STUDENT-
CLASS (for student classification), and STUDENT-
MAJOR. This record and its five data fields can be de-
scribed using the structure given below.

The level number 01 for records may start any-
where in Area A but usually starts in column 8. Simi-

120 COBOL

Rules for Choosing Names of
Files, Records, and Data Fields

1. A name must be contructed from the letters of the
alphabet, the digits 0 through 9, and the hyphen. No
other characters are allowed.

2. A name must not be longer than 30 characters.
3. A name must not begin or end with a hyphen.
4. A name must contain at least one letter of the alpha-

bet. Digits only and digits in combination with hy-
phens are not allowed.

5. A name must not be a reserved COBOL word. Re-
served COBOL words have preassigned meanings.

The names of files, records, and data fields should
be selected carefully so that these names are self-
explanatory. Usually, programmers select names that
consist of English words joined by hyphens. Thus, a
file for students may be named STUDENT-FILE; a
file for the master inventory of a company may be
named INVENTORY-MASTERFILE. A record in the
STUDENT-FILE may be named STUDENT-RECORD;
the data fields of this record may be named
STUDENT-NAME, STUDENTADDRESS, STUDENT-

larly, the level number for data fields may start any-
where in Area B, though it usually starts in column 12
and every fourth column thereafter. The record name
starts in column 12 (B margin); the data field name
starts in column 16. It is customary to leave two blank
spaces between the level number and the name of the
record or data field.

The data field STUDENT-DOB can be divided into
three smaller data fields: STUDENT-BIRTH-DAY,
STUDENT-BIRTH-MONTH, and STUDENT-BIRTH-
YEAR. If this is done, the structure of the record and
the data fields will appear as shown below.

01 STUDENT-RECORD
05 STUDENT-NAME

05 STUDENT-ADDRESS
05 STUDENT-DOB

10 STUDENT-BIRTH-DAY
10 STUDENT-BIRTH-

MONTH
10 STUDENT-

BIRTH-YEAR
05 STUDENT-CLASS

05 STUDENT-MAJOR

The only restriction is that each subordinate data
field must have a higher level number than the level
number of the data field to which it is subordinate. As
each data field subdivides, each new level of data fields
is given a higher number. Level 77 and level 88 are two
other levels of data fields used in COBOL programs,
though level 88 is much more common than level 77.

2. PICTURE Clause

The description of a record and its data fields is not
complete without understanding and using the PIC
(short for PICTURE) clause. Each elementary data field
must be defined by a PIC clause that provides infor-
mation as to its type (numeric, alphabetic, or al-
phanumeric) and its size. A group data field’s length
attribute is defined by the PIC clauses of its subordi-
nate data fields, but it is always considered to be al-
phanumeric. A specific picture character designates a
specific type of data.

The picture character 9 designates numeric data;
the picture character A designates alphabetic data;
and the picture character X designates alphanumeric
or nonnumeric data. The picture character A is rarely
used in COBOL programs; in practice, the picture
character 9 is used for numeric data and the picture
character X is used for non-numeric data. The PIC
clause is written at the end of the data field (leaving

at least one blank space after the data field name)
with the word PIC followed by at least one blank space
and the appropriate picture character (X or 9 or A).
If a data field requires more than one picture char-
acter, the number of characters to which the picture
character applies is enclosed in parentheses following
the picture character.

The PIC clause of a student record can be written
as follows:

01 STUDENT-RECORD.
05 STUDENT-NAME PIC X(20).
05 STUDENT-ADDRESS PIC X(30).
05 STUDENT-DOB.

10 STUDENT-BIRTH-DAY PIC 99.
10 STUDENT-BIRTH-MONTH PIC 99.
10 STUDENT-BIRTH-YEAR PIC 9999.

Four-character numeric field

05 STUDENT-CLASS PIC X(10).
05 STUDENT-MAJOR PIC X(15).

According to these PIC clauses, the data field
STUDENT-NAME can contain up to 20 characters of
non-numeric data indicated by the number 20 in
parentheses following the X. This field could also be
written using 20 Xs:

05 STUDENT-NAME PIC
XXXXXXXXXXXXXXXXXXXX.

However, the first method requires fewer keystrokes
and offers fewer opportunities for error. Similarly,
STUDENT-ADDRESS may contain up to 30 charac-
ters of non-nummic data (each blank in the address
counts as one space). The other data fields contain
data of the following types and sizes (Table II):

Each PIC character occupies one byte of computer
memory. For example, STUDENT-NAME occupies 20
bytes of computer memory, and STUDENT-ADDRESS
occupies 30 bytes. The entire STUDENT-RECORD oc-
cupies 83 bytes of computer memory.

A record name can have a PIC clause provided it is
not divided into component data fields. If the record
is subdivided, then each component data field must
carry a PIC clause. PIC clauses can only be used with
elementary data fields. The following illustrations
make this clear:

01 STUDENT-RECORD PIC X(83).
01 STUDENT-RECORD PIC X(83).

05 STUDENT-NAME PIC X(20).
05 STUDENT-ADDRESS PIC X(30).
05 STUDENT-DOB.

COBOL 121

10 STUDENT-BIRTH-DAY PIC 99.
10 STUDENT-BIRTH-MONTH PIC 99.
10 STUDENT-BIRTH-YEAR PIC 9(4).

05 STUDENT-CLASS PIC X(10).
05 STUDENT-MAJOR PIC X(15).

In the first example STUDENT-RECORD has a PIC
clause because it is not divided into subordinate data
fields. This record is defined correctly. However, in
the second example, the same record is divided into
subordinate data fields, and thus, it should not have
a PIC clause. A PIC clause must be provided for all in-
put and output data fields as well as for all other data
fields that may be required in a program.

Similarly, data fields that are divided into subordi-
nate data fields must not have the PIC clause. The fol-
lowing examples are given to illustrate this point.

01 STUDENT-RECORD.
05 STUDENT-NAME PIC X(20).
05 STUDENT-ADDRESS.

10 STREET-ADDRESS.
15 RESIDENCE-NUMBER PIC X(5).
15 STREET-NAME PIC X(10).

10 CITY-NAME PIC X(8).
10 STATE-NAME PIC X(2).
10 ZIP-CODE PIC 9(5).

These data fields do not have PIC clauses because
they have subordinate data fields.

01 INVENTORY-RECORD.
05 PART-NO PIC X(5).
05 PART-MANUFACTURER.

10 COUNTRY-CODE PIC X(3).
10 MANUFACTURER-CODE PIC X(5).

05 UNIT-PRICE PIC 9(5)V99.
05 QUANTITY-IN-STOCK PIC 9(5).

This data field does not have the PIC clause be-
cause it has subordinate data fields.

It is important to know the characters that are al-
lowed in each type of PIC clause. The following table
lists these valid characters. Spaces are valid characters
in COBOL; they occupy computer memory just like
other characters. In this respect, spaces are treated by
COBOL differently than we would view them in the
English language. Valid Characters for each type of
picture Clause are shown in Table III.

A numeric data field normally contains only dig-
its 0 through 9. If the numeric field is input data, it
cannot contain anything else, not even a decimal
point. In some systems, leading spaces are allowed.
Thus, a data value of 10.50 cannot be directly stored

122 COBOL

Table II Data Fields, Types and Sizes

Maximum
Data field Type characters/digits

STUDENT-BIRTH-DAY Numerica 2

STUDENT-BIRTH-MONTH Numerica 2

STUDENT-BIRTH-YEAR Numerica 4

STUDENT-CLASS Nonnumericb 10

STUDENT-MAJOR Nonnumericb 15

aAssuming these data are to be described as numbers such as 16 (for
STUDENT-BIRTH-DAY), 02, (for STUDENT-BIRTH-MONTH) and 1976
(for STUDENT-BIRTH-YEAR).

bAssuming these data are to be described with words such as “fresh-
man” (for STUDENT-CLASS) and “management” (for STUDENT-MAJOR).

Rules for Choosing PIC Clauses:
1. A group data field must not have a PIC clause.
2. The word PIC can start in any column after the data

field. However, for easy readability, the word PIC for
all data fields should start in the same column.

3. There must be at least one blank space between the
word PIC and the picture characters.

4. If a data field requires more than one picture charac-
ter, the number of times the picture character appears
can be enclosed in parentheses. Thus, PIC 9999 is the
same as PIC 9(4).

5. Each group data field must end with a period. Each
elementary data field must also end with a period af-
ter the picture characters.

6. It is important to understand the distinction between
a numeric data value that can be contained in a data
field with 9s for picture characters and in a data field
with Ks as picture characters. Only a data field that
specifies “9” for picture characters can contain nu-
meric data that is to be used in a calculation.

in an input numeric data field. How does one rep-
resent data values with decimal points in input data
fields? The letter V is used to represent an implied
decimal point in the PIC clause. For example, the
PIC clause PIC 99V99 represents a four-digit nu-
meric data value with two digits to the left of the dec-
imal point and two digits to the right of the decimal
point. If the data value 1050 is stored in a data field
having this PIC clause, the contents of the data field
would represent the value 10.50. If the same data
value is stored in a data field with the PIC clause PIC
999V9, it would represent 105.0. The following ex-
amples illustrate how the letter V works in PIC clauses
(see Table IV).

Though numeric data values with decimal points
are stored in data fields without their decimal points,
the computer keeps track of the decimal points during
arithmetic calculations. The presence of implied deci-
mal points does not require any computer memory
space. Thus, a data field defined with the PIC 9(3)V99
requires five, not six, bytes of computer memory.

Review the following data fields.

PIC99V9 PIC999V99 PIC9V99 PICV99
105 23450 105 10

The Computer Assumes Decimals in
these Positions

V. EDITING FEATURES OF COBOL

COBOL provides several features by which numeric
output data are edited to make them more under-
standable and readable to humans. Among these fea-
tures are leading zero suppression, comma insertion,
dollar sign insertion, sign (� or �) insertion, charac-
ter insertion, and check protection.

A. Leading Zero Suppression

Through the use of a special PIC clause, all leading
zeros in output data can be suppressed. This PIC
clause is represented by the letter Z (instead of 9).
Table V explains the difference between PIC 9 and
PIC Z clauses.

B. Comma/Dollar Sign Insertion

In output data, comma and dollar sign ($) can be
inserted so that 1000 looks like $1,000. This is ac-
complished by placing $ and comma in the PIC clause
of an output data field. This is illustrated in Table VI.

C. Check Protection

COBOL supports the appearance of asterisks (*) in nu-
meric output data—a feature that is common in checks.
This feature prevents tampering with dollar amounts.
A special PIC clause (PIC *) accomplishes this fea-
ture. This PIC clause can be used in combination with
dollar sign and comma. Review Table VII.

VI. COMPUTING IN COBOL

Calculations are performed in COBOL using several
statements. Among them are ADD, SUBTRACT,
MULTIPLY, DIVIDE, and COMPUTE statements.
While the ADD, SUBTRACT, MULTIPLY, and DI-
VIDE statements perform primarily one arithmetic
operation in one statement, a single COMPUTE state-
ment performs several arithmetic operations.

Examples of these statements follow in Table VIII.

VII. COBOL’S INTERFACE WITH SQL

COBOL can execute SQL statements to access relational
databases. A COBOL compiler does not recognize SQL

COBOL 123

Table III Valid Characters for Each Type of PICTURE
Clause

Data field type Valid characters

Alphabetic A through Z, a through z, spaces

Numeric 0 through 9

Alphanumeric A though Z, a through z, 0 through 9,
all special characters, spaces

Table IV The Letter V in PIC Clauses

Data Data field’s Value
value stored PIC clause contained

10005 PIC 999V99 100.05

9725 PIC 9V999 9.725

124 PIC 99V9 12.4

567 PIC V999 .567

statements. Therefore, a program that contains SQL state-
ments must first pass through a precompiler, which trans-
lates those statements into standard COBOL code which
a COBOL compiler can the process. The precompiler
also verifies the validity and syntax of the SQL statements.

An assortment of coding requirements and options
govern coding techniques for SQL in a COBOL
program:

• Delimiting SQL statements
• Declaration of communications area for SQL,

known as SQLCA
• Declaration of tables (optional)
• Declaration and usage of host variables and

structures to pass data between the database
management system (DBMS) and COBOL

• Retrieving multiple rows of data using a cursor

SQL statements must be contained within EXEC
SQL and END-EXE delimiters, code as follows:

EXEC SQL
SQL statement(s)

END-EXEC.

These keywords, which must be coded between
Columns 12 and 72 (both inclusive), alert the pre-
compiler to the presence of one or more SQL state-
ments. A comment may be coded within the state-
ments by placing an asterisk in column 7. The period
on the END-EXEC clause is optional, but a COBOL
warning may be used if it is missing. However, the
END-EXEC clause should carry no period when SQL
statements are embedded within an IF . . . THEN . . .

ELSE set of statements to avoid ending the IF state-
ment inadvertently.

All programs with embedded SQL statements need
to communicate with the DBMS through the SQL
communications area (SQLCA). The results of the
DBMA operation are placed in the SQLCA variables.
The most important of theses, the return code, is
placed in the SQLCODE field. It should be tested to
examine the success, failure, or exception condition
on the operation, as shown in the following code:

EXEC SQL
SELECT LSTMNS, DEPT

FROM TEMPL
WHERE EMPID = ‘123456’

END-EXEC
IF SQL CODE NOT EQUAL TO 0

process error

An abbreviated list of common SQL return codes
appears in Table IX.

The SQLCA is a data structure that should be copied
into the program’s WORKING-STORAGE SECTION
through the SQL INCLUDE statement, as shown below:

EXEC SQL
INCLUDE SQLCA

END-EXEC
Structure of SQLCA
01 SQLCA

05 SQLCAID PIC X(08)
05 SQLCABC PIC S9(09) USAGE

COMP
05 SQLCODE PIC S9(09) USAGE

COMP

124 COBOL

Table V Differences in Output Data Using PIC 9 and PIC Z Clauses

Value in Output PIC Output
Data field PIC clause data field clause value

QUANTITY-IN-STOCK PIC 9(4) 0900 PIC Z(4) b900

DEDUCT-AMOUNT PIC 9(2)V99 5075 PIC Z(3).99 b50.75

ACCT-BALANCE PIC 9(3)V99 10000 PIC ZZ9.99 100.00

Table VI Dollar Sign and Comma Insertion in Output Data Fields

Value in Output PIC Output
Data field PIC clause data field clause value

NET-SALARY PIC 9(4)V99 123456 PIC $Z,ZZZ.99 $1,234.56

UNIT-PRICE PIC 9V99 345 PIC $Z,ZZZ.99 $bbbb3.45

INSURANCE-FEE PIC 9(2)V99 1234 PIC $Z,ZZZ.99 $bbb12.34

05 SQLERRM
10 SQLERRML PIC S9(04)

USAGE COMP
10 SQLERRMC PIC X(70)

05 SQLERRP PIC X(08)
05 SQLERRD OCCURS 6 TIMES

PIC S(09)
USAGE COMP

10 SQLWARN0 PIC X(01)
10 SQLWARN1 PIC X(01)
10 SQLWARN2 PIC X(01)
10 SQLWARN3 PIC X(01)
10 SQLWARN4 PIC X(01)
10 SQLWARN5 PIC X(01)
10 SQLWARN6 PIC X(01)
10 SQLWARN7 PIC X(08)

05 SQLEXT

This statement resembles the COPY statement in
that the SQL INCLUDE copies portions of code stored
in a disk library into the program. The INCLUDE state-
ment, however, copies at precompile time rather than
at compile time.

VII. FUTURE OF COBOL

At one time, COBOL was the most widely used pro-
gramming language for business applications. Intro-
duction of newer languages has somewhat adversely
affected the popularity of COBOL. Although new
business applications are still being written in COBOL,
the introduction of newer languages such as Visual
Basic and Visual C�� has reduced COBOL’s use. It
remains to be seen how object-oriented features in-
troduced in COBOL will impact COBOL.

COBOL 125

Table VII Check Protection Feature of COBOL

Sending data field Output data field

PIC clause Data value PIC clause Output data

9(4)V99 123456 $*,***.99 $1,234.56

9(4)V99 12345 $*,***.99 $**123.45

9(4)V99 1234 $*,***.99 $***12.34

9(6)V99 123456 $**,***.99 $*1,234.56

Table VIII COBOL Calculation Statements

ADD data-field-a TO data-field-B Adds contents of data-field-a and data-field-b and stores
the results in data-field-b

ADD data-field-a, data-field-b GIVING Adds contents of data-field-a and data-field-b and stores
data-field-c the result in data-field-c

SUBTRACT data-field-a FROM data-field-b Subtracts contents of data-field-a from data-field-b and stores
the result in data-field-b

SUBTRACT data-field-a FROM data-field-b Subtracts contents of data-field-a from data-field-b and stores
GIVING data-field-c the result in data-field-c

MULTIPLY data-field-a BY data-field-b Multiplies contents of data-field-a and data-field-b and stores
the result in data-field-b

DIVIDE data-field-a BY data-field-b Divides contents of data-field-a by contents of data-field-b and stores
the result in data-field-a

DIVIDE data-field-a INTO data-field-b Divides contents of data-field-b by contents of data-field-a and stores
the result in data-field-b

COMPUTE data-field-a � data-field-b � In a COMPUTE statement, arithmetic operations are performed
data-field-c * data-field-d / from left to right with the following priority order:
data-field-e 1. Exponentiation

2. Multiplication/division
3. Addition/subtraction

SEE ALSO THE FOLLOWING ARTICLES

C and C�� • Fortran • Java • Pascal • Perl • Programming
Languages Classification • Simulation Languages • Visual
Basic • XML

BIBLIOGRAPHY

Arnett, K. P., and Jones, M. C. (Summer 1993). Programming
languages today and tomorrow. The Journal of Computer In-
formation Systems, 77–81.

Bauman, B. M., Pierson, J. K., and Forchit, K. A. (Fall 1991).
Business programming language preferences in the 1990’s.
The Journal of Computer Information Systems, 13–16.

Borck, J. R. (August 2000). Cobol programmers face it: Your fa-
vorite code is outdated and losing support. Infoworld, Vol.
23, Issue 2, 56.

Borck, J. R. (August 2000). Application transformation. In-
foworld, Vol. 22, Issue 33, 53.

Borck, J. R. (August 2000). PERCobol whips Cobol into
shape for budget-minded enterprises. Infoworld, Vol. 22,
Issue 33, 54.

Buckler, G. (1990). Languages, methods all part of a COBOL
evolution. Computing Canada, Vol. 16, Issue 13, 31–34.

Coffee, P. (August 2000). Cobol comes to the party. eweek,
Vol.17, Issue 33, 53.

Garfunkel, J. (March 1992). Trends in COBOL. Enterprise Sys-
tems Journal, 120–122.

Garfunkel, J. (July 1990). COBOL—The next stage. Computer-
world, Vol. 24, Issue 30, 31–34.

Khan, M. B. (1996). Structured COBOL: First course. Danvers,
MA: Boyd & Fraser Publishing Company.

Lauer, J., and Graf, D. (Spring 1994). COBOL: Icon of the past
or the symbol of the future? The Journal of Computer Infor-
mation Systems, 67–70.

McMullen, J. (May 1991). Why PC COBOL is gaining ground.
Datamation, Vol. 37, Issue 10, 70–72.

126 COBOL

Table IX Common SQL Return Codes

SQL code Explanation

�0 Warning

0 Successful execution

�100 Row not found for FETCH, UPDATE, or
DELETE, or the result of a query is an
empty table

�802 Data exception

�007 Statement contains illegal character

�101 Statement too long

�103 Invalid numeric literal

�105 Invalid string

�117 Number of insert values not the same as
number of object columns

�803 Inserted or updated value invalid due to
duplicate key

�0 Error

Cohesion, Coupling, and Abstraction
Dale Shaffer
Lander University

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 127

I. HISTORICAL PERSPECTIVE
II. COHESION

III. COUPLING

IV. COHESION AND COUPLING IN PERSPECTIVE
V. ABSTRACTION

VI. CONCLUSION

GLOSSARY

abstraction A technique that allows one to focus on a
portion of an information system while ignoring
other features of the system.

abstraction barrier A barrier around the implemen-
tation of a portion of an information system that is
designed so that all access to the implementation
is through well-defined avenues of access known as
the interface.

class A set of objects with similar characteristics and
behavior. It identifies the structure of the charac-
teristics and behaviors that are exhibited by all of
its instances.

encapsulation Binding a collection of data elements
and modules that operate on those data elements
into one package which can be invoked using one
name.

functional independence The result from making
modules that were of a single purpose and that
avoided interaction with other modules.

implementation The portion of an information sys-
tem located below the abstraction barrier that con-
tains the programming code that implements spec-
ified behaviors.

information hiding The process of hiding detail from
the user of a module or object; the information that
is hidden is located below the abstraction barrier.

interface The bridge across an abstraction barrier
that carefully controls access to the implementa-
tion portion.

module Any collection of programming statements

that are combined together to perform a specified
task. A module can also contain data, but the data
is generally not maintained when program control
passes from the module. Examples include a func-
tion, procedure, subroutine, subprogram, and
method.

object An encapsulation of data and the methods
that operate on the data. Access to the data and
methods is strictly controlled through message-
passing and inheritance. An object is an instance of
a class.

structured design A set of techniques and strategies
that are used to design modules that will best solve
a problem.

COMPUTER PROGRAMS are usually constructed from
building blocks, most of which can be categorized as
modules and objects. Each module should perform a
specific process in a program, and each object should
perform one or more specific processes on a specific
set of data. Cohesion is a measure of the functional
strength, and coupling is a measure of the indepen-
dence, of a module or object. A computer program
with modules and objects that exhibits a high degree
of cohesion and a low degree of coupling is consid-
ered to be well designed.

While cohesion and coupling are metrics used in
software design, abstraction is a technique for build-
ing software systems. By employing abstraction, a soft-
ware developer can focus on one portion of an infor-
mation system at a time.

I. HISTORICAL PERSPECTIVE

Early computer programs followed computer archi-
tecture, with data in one block of memory and pro-
gram statements in another. With larger systems and
recognition of the major role of maintenance, the
block of program statements was further broken down
into modules, which could be developed indepen-
dently. Research in cohesion and coupling has its
roots in the early 1970s as part of the development of
modules. Structured design formalized the process of
creating modules, recognizing that better written
modules were self-contained and independent of each
other. This functional independence was achieved by
making modules that were of a single purpose,
avoided interaction with other modules, and hides
implementation details.

Consider the modules in Fig. 1. The combinations
module calculates the number of n things taken r at
a time. For example, consider a visit to a restaurant
that had a salad bar where you were allowed to choose
any three of the six meat and vegetable selections to
include on your lettuce salad. The combinations mod-
ule would determine that there were twenty different
ways you could select three of the six items.

Functional independence is shown by the factorial
module. The factorial module does only one task; it
returns the factorial of the value given. It also has
minimal interaction with other modules. The calling
module, combinations, sends the minimum informa-
tion that factorial needs—one number. Functional in-
dependence is measured using two criteria, cohesion
and coupling.

II. COHESION

First consider cohesion from outside of information
systems. Two teams, each aligned along opposite ends

of a rope, are pulling against each other. Each mem-
ber of a team shares a common goal—to pull the knot
at the midpoint of the rope across a specified finish
line. Some members of the team have dug in their
heels for better traction, and the one on the end has
the rope tied around himself. The team has a high de-
gree of cohesion. However, if one team member quits,
or even begins to pull in the opposite direction, the
high degree of cohesion is lost.

Much like the cohesive nature of the team, cohe-
sion in information systems is the cement that holds
a module together. Cohesion of a module is a mea-
sure of the relationship between its parts. If the co-
hesion is high, then the module is more likely to be
designed well.

Cohesion in a module is a measure of the closeness
of the data and programming statements, or more
specifically the tasks performed, within the module.
The higher the degree of cohesion that exists within
a module, the less likely it is that the programmer us-
ing the module will have to become knowledgeable
about what the module does. The programmer using
a module with high cohesion can generally focus on
what a module does rather than how it does it.

The encapsulation that cohesion promotes also
aids in maintenance of the entire software system. For
example, if a program contains modules strictly re-
lated to accessing and updating an inventory, and one
module within it performs a particular search func-
tion, it would be quite easy to implement a new and
improved search algorithm for the module. After thor-
oughly testing the new module, it would simply re-
place the old module in the software system. If done
correctly, the replacement would be virtually unno-
ticeable by the user (except, for example, improved
search time).

A module with high cohesion is generally better
designed and represents a more general approach
than one with low cohesion.

128 Cohesion, Coupling, and Abstraction

int factorial (int num) {
 int
 result = 1,
 counter;
 for (counter = 1; counter <= num; counter++)
 result= result * counter;
 return result;
}

int combinations (int n, int r) {
 return (factorial (n) / (factorial (r) * factorial (n-r)));
}

Figure 1 Example of functional independence.

A. Cohesion in Objects

Cohesion in objects is a measure of how well methods
within an object work together. Objects whose meth-
ods work together to achieve one well-defined pur-
pose are highly cohesive. Each method provides func-
tionality that allows the data in the object to be either
modified, used, or inspected.

If an object contains a series of unrelated methods,
input and several trigonometric methods, for exam-
ple, then the object has low cohesion since input and
the trigonometric sine have very little in common. If
an object contains a series of methods that implement
operations on a table, then the object is said to have
high cohesion.

B. Levels of Cohesion

High cohesion is desirable in that it encapsulates a se-
ries of tasks into one cohesive unit. This encapsulation
allows for easy application of the module when build-
ing software systems. For example, if one were building
a software system to maintain an inventory, one could
select only the inventory object and ignore a trigono-
metric object. However, if a system is being built to sup-
port the activities of a surveyor, then the trigonometric
object could quickly be selected, and one could count
on the object to have only trigonometric capabilities.

Cohesion can be examined at more levels than sim-
ply the arbitrary high and low. In 1979 Yourdon and
Constantine specified seven levels of cohesion. The
initial levels generally result in a poor module or ob-
ject. Subsequent levels result in an increasingly ac-
ceptable module. Table I summarizes these levels of
cohesion. Functional cohesion is the strongest, and
coincidental is the weakest.

The levels of cohesion will be discussed below in
order based on increasing strength. Much of the dis-
cussion will be from the module standpoint. Some
discussion of object cohesion will be made as well.

1. Coincidental Cohesion

Coincidental cohesion is the lowest level of cohesion.
It occurs when there is little or no reasonable rela-
tionship among the tasks within an object or module.
Although it occurs infrequently, it does serve as a zero
point on the cohesion scale.

Coincidental cohesion can occur in objects when
the object consists of unrelated methods. This can
happen when a programmer compiles a set of favorite
methods in an object. Other than being the pro-
grammer’s favorites, the collection has nothing in
common with each other. For example, the object
could contain a method for rounding numbers, iden-
tifying a pattern in a character string, and inputting
integers.

2. Logical Cohesion

When a collection of related methods are bound to-
gether into a single object, logical cohesion is pre-
sent. When the object is called, one or more of the
tasks are selected.

Consider, for example, an error handling object
that, depending on the error, does one or more of
the following: terminate execution, issues a warning,
display a box describing the error and ask whether to
proceed, adds the error to the error log, and offers a
menu of selections for further processing. When an
error is first determined, an object is instantiated and
the error is processed by handleError (Fig. 2). If
the error is not severe, a warning is issued and nor-
mal processing continues. If it is more severe, up to
three actions could occur: an error message is dis-
played, the error log is updated, and/or the program
is terminated. Severity levels are utilized to determine
when these two actions occur.

Each of the methods within the class in Fig. 2 is im-
portant to handling errors, but the relationship be-
tween them ends there. They are simply related in
that, depending on the error, various combinations of
methods are executed.

In a similar way, a module that controls a robot
arm could demonstrate logical cohesion if it con-
tained a set of tasks that support each movement avail-
able to the arm. The movements could include rota-
tion of the wrist and movement at the elbow and
shoulder joints. A call to the module would invoke

Cohesion, Coupling, and Abstraction 129

Table I Levels of Cohesion

Relationship between
Level tasks within a module

Coincidental None

Logical Related

Temporal Processed at the same time

Procedural Established order of execution

Communicational Operates on the same set of data

Sequential Output from one serves as input to
another

Functional A module does one task

one or more of the individual tasks to move the arm
to a specified location and position.

3. Temporal Cohesion

Temporal cohesion between modules transpires when
the modules are placed together so that they can be
processed within a limited time period. The order of
the tasks is not important.

Figure 3 is an example of a set of startup routines
for a personal computer. Since they all occur within a
specified time period, they are temporally cohesive.

Temporal cohesion is slightly better than logical
cohesion. The modules in Fig. 3 are logically cohesive
in that they are performed in association with the
startup process. What makes them temporally cohe-
sive is that they are related by time.

4. Procedural Cohesion

Procedural cohesion occurs when the module con-
tains tasks that are placed together on the basis of the
algorithmic or procedural relationships. The rela-

tionship exists because the tasks must occur in a spe-
cific order, within a repetitive control structure (a
loop), or, as in Fig. 4, as part of a selective control
structure.

Procedural cohesion is one step above temporal
cohesion. Not only are the tasks within the module
connected by time, but they must also be executed in
a specified order. Note that in Fig. 4, it is important
to activate the virus protection software prior to con-
necting to the network and that network services can
only be established if the network connection was suc-
cessfully made.

5. Communicational Cohesion

The previous levels of cohesion were not necessarily
tied to the problem structure. The individual tasks
were somewhat related, but the relationship was lim-

130 Cohesion, Coupling, and Abstraction

public class ErrorHandler {

 public void displayWarning ();

 public void terminateExecution ();

 public void addToErrorLog ();

 public void whatNext ();
 // user choice: terminate or continue processing

 public void handleError ();
 // error handling routine

private
 file errorLog;
 int
 errorCode,
 logThreshold, // level at which an error is logged
 endThreshold;
 // level at which an error ends processing

}

Figure 2 Example of logical cohesion.

void userStartup () {
 startEmail ();
 startWordProcessor ();
 startSpreadsheet ();
}

Figure 3 Example of temporal cohesion.

void doAtStartup () {
 startVirusChecker();
 connectToNetwork ();
 if (successfulConnection)
 establishNetworkServices ();
else {
 startup.errorHandler (networkFailure);
 startupStatus.network (localUseOnly);
 }
 userStartup ();
}

Figure 4 Example of procedural cohesion.

ited to, for example, the sequencing or the timing of
the tasks.

Communicational cohesion occurs within a mod-
ule or class whose tasks are centered on the data. All
of the tasks either create, amend, report, or return
portions of the data. It typically occurs when software
is developed from the standpoint of the data.

An example of communicational cohesion is shown
in Fig. 5. Note that every method in the Inventory
class performs some operation on the inventory.
addNewItem creates data, removeItem destroys
data, findItem returns data, and all of the remaining
methods modify the data.

6. Sequential Cohesion

Within a module, sequential cohesion occurs when
the output from one task serves as input to another
task. In other words, the operations performed on a
set of data are executed in a specific order.

Prior to beginning a game of poker, Fig. 6 shows a
function that could be called to set up the game. Note
that all of the tasks that are within setUpCardGame
not only are performed in the specified sequence, but
the resultant data from each task is used in the next
task.

7. Functional Cohesion

When each task in a module is needed for the exe-
cution of a single function, the module is said to be
functionally cohesive. Moreover, the module in ques-
tion is not cohesive at any of the previous levels. In
other words, a module that is functionally cohesive is
not comprised of tasks that are related only by se-
quential or weaker levels of cohesion.

This description of functional cohesion is less than
ideal. Some examples, however, should help to delin-
eate the difference between functional and lower lev-
els of cohesion.

The Inventory class in Fig. 5 is an example of com-
municational cohesion. However, the updateItem
module within Inventory is functionally cohesive be-
cause it does precisely one task—updating an inven-
tory item.

Another example to consider is an automated bit
changer for an industrial drill (Fig. 7). Note that all
tasks contribute directly to the overall goal of chang-
ing the drill bit. In that sense, one might consider
that it is an example of functional cohesion. However,
the definition specifies that the module is not cohe-
sive at another level. The module in Fig. 7 is an ex-
ample of procedural cohesion.

Cohesion, Coupling, and Abstraction 131

public class Inventory {

 public void addNewItem (Item element);

 public void removeItem(int stockNumber);

 public void updateItem (Item element);

 public Item findItem(int stockNumber);

 public void sellItem (int stockNumber, int quantity);

 public void addToStock (int stockNumber, int quantity);

}

Figure 5 Example of communicational cohesion.

void setUpCardGame (int totalCards, int dealEachPlayer, int
numberPlayers) {
 Cards deck, player1, player2;
 deck.createDeck (totalCards);
 deck.shuffle ();
 deck.cut ();
 player1.deal (deck, dealEachPlayer);
 player2.deal (deck, dealEachPlayer);
}

Figure 6 Example of sequential cohesion.

A third example of functional cohesion was shown
in Fig. 1. The factorial module is functionally cohe-
sive in that it does only one task—it determines the
factorial of the number provided. No superfluous ac-
tions occur; only the processing absolutely necessary
for determining the factorial takes place.

However, if the factorial module were amended so
that it can find the sum as well as the product from 1
to the provided number, then the module would no
longer be functionally cohesive. Figure 8 shows such
a module. Note that when it is called by sumOr-
Product (4, false) it returns the value 24, which is
equivalent to the factorial module. However, when it
is called by sumOrProduct (4, true), it returns the
sum of the integers from 1 to the value provided, re-
turning the value 10. The sumOrProduct module in
Fig. 7 is clearly not functionally cohesive.

C. Levels of Cohesion in Objects

Many of the levels of cohesion can be viewed from the
perspective of objects. For example, an object that
contains methods that perform trigonometric opera-
tions can be considered to be logically cohesive. The
class shown in Fig. 5 is an example of communica-
tional cohesion.

The most desirable form of cohesion is functional
cohesion, where all methods within an object work to-

gether to provide some well-bounded behavior. How-
ever, often the cohesion at the object level is at the
communicational level. But functional cohesion
should always be the goal within a method.

D. Cohesion Levels in Perspective

Within a software system, cohesion can be examined
from different perspectives. Cohesion can be mea-
sured in a module and in an object.

Within a module or method, the level of cohesion
should be at the functional level. If possible, a mod-
ule should accomplish exactly one task. If a module is
found to be at a lower level, rewriting the module to
raise it to a higher level should be considered.

The potential weakness of a module at a level below
functional cohesion is increased difficulty in modifying
the program. For example, if Fig. 8 were intended to
find the factorial or the sum of the integers from 0 to the
provided value, a programmer attempting to determine
why the sum from 0 to 0 is 1 might amend the module
as shown in Figure 9. Note that by initializing result to 0
does indeed correct the problem. However, the module
now produces 0 for any factorial application.

Modules that are not written at a functionally cohe-
sive level are not necessarily poor modules. Figure 7
shows a module that is an example of procedural co-
hesion. Nonetheless, it is a good module in that it does
only one task—changing the bit on an industrial drill.
It did not meet the strict definition of a functionally co-
hesive module, but is still a well-written module.

Objects are better written if they are at least com-
municationally cohesive. Communicational cohesion
is often found in objects because all of the methods
in the object operate on the common data.

However, objects could be logically cohesive and
represent good design. For example, objects that con-
tain only methods that enable trigonometric func-
tions are logically cohesive.

132 Cohesion, Coupling, and Abstraction

boolean changeBit (int newSize) {
 int oldSize= getCurrentSize();
 rotateHolder (oldSize);
 removeBit ();
 storeBit ();
 rotateHolder (newSize);
 retrieveBit ();
 mountBit ();
}

Figure 7 Example of cohesion that is not functional.

int sumOrProduct (int num, boolean sum) {
 int
 result = 1,
 counter;
 for (counter = 1; counter <= num; counter++)
 if (sum)
 result= result + counter;
 else
 result= result * counter;
 return result;
}

Figure 8 A module with two tasks.

int sumOrProduct (int num, boolean sum) {
 int
 result = 0,
 counter;
 for (counter = 1; counter <= num; counter++)
 if (sum)
 result= result + counter;
 else
 result= result * counter;
 return result;
}

Figure 9 Modification difficulty at lower levels of cohesion.

When one designs modules and objects, the goal is
to be aware of issues relating to cohesion and to strive
for as high a level as reasonable. The goal of func-
tional cohesion may not always be realized, yet a well-
written module or object could still be written.

III. COUPLING

The second of the two metrics for modules is cou-
pling. Coupling is the measure of the strength of the
interconnections between modules. It is a measure of
the degree to which individual modules are tied to-
gether. Coupling is generally dependent on the com-
plexity of the interface of a module. In other words,
coupling depends on the data passed to the module.

Modules that are highly coupled are joined by many
interconnections, loosely coupled modules are joined
by weak interconnections, and uncoupled modules
are not connected in any manner. Loosely coupled or
uncoupled modules are considered best.

High coupling complicates a software system by
making it harder to understand, more difficult to
change, and more challenging to find errors. The
more highly coupled a module is to other modules,
the more likely it will be that a programmer who is re-
vising the module will have to examine and possibly
modify additional modules. Therefore, software that
is written with the goal of avoiding high coupling will
generally be less expensive to maintain.

A. Examples of Coupling

Figure 10 shows an example of a highly coupled mod-
ule. Note that when designing the combinations mod-
ule, in order to use the factorial module one must
provide a second parameter that is set to 1. Contrast
this requirement to Fig. 1 where the result was a local
variable initialized to 1. In both cases, the result is ini-
tialized to 1 and eventually holds the final answer.

This additional parameter unnecessarily increases
the coupling between the combinations module and
the factorial module. Notice that in Fig. 1 the addi-
tional parameter is omitted and the coupling between
the modules is reduced. This reduced coupling makes
it easier to use the factorial module.

Consider another example of coupling. A pro-
gramming team is designing a large program to main-
tain airline reservations for customers in America.
One of the modules manages the customer informa-
tion, including the customer’s address and postal
code. The postal code is stored as a character string.
Without consulting the programming team, a pro-
grammer decides to verify the city and state fields
within the customer’s record by comparing it against
the five digit postal code. The module looks up the
postal code in a table, determines the corresponding
city, then updates the city field if it is incorrect. Know-
ing that not all postal codes had been assigned at the
time he developed the table, the programmer de-
cided that if the postal code was not found, no changes
would be made.

The change in specifications seemed to be a good
idea to the programmer. Unfortunately, the change
was never reviewed by the programming team, and
was never included in the documentation accompa-
nying the program.

A few years later the airline reservations program
is expanded to include a web interface for customers
to make reservations. After the interface is imple-
mented successfully in America, other countries are
brought on-line. The United Kingdom is added first,
and with postal codes like PL20 7SN, none of the
postal codes are found by the module written several
years ago, so no changes to the city and state were
made. The successful implementation of the addi-
tions to the original program gave the programming
team a stronger trust in the original program.

Eventually Australia was brought on-line. Postal
codes in Australia are four digits, and when they were
compared to postal codes in the table, almost every

Cohesion, Coupling, and Abstraction 133

int factorial (int num, int result) {
 int
 counter;
 for (counter = 1; counter <= num; counter++)
 result= result * counter;
 return result;
}
int combinations (int n, int r) {
 return (factorial (n, 1) / (factorial (r, 1) * factorial (n-r, 1)));
}

Figure 10 Example of a highly coupled module.

address for customers in Australia were converted to
cities and states in America. When complaints about
lost tickets began flowing into the operations center,
the staff tried to regroup and manage the mailing of
tickets manually while programmers went on a search
for the problem. The difficulty in locating the prob-
lem was compounded by the additional code that was
recently added to the system.

The problem began when the programmer con-
nected the module to a table. This additional con-
nection increased the degree of coupling. If the pro-
gramming team were aware of the additional coupling
and agreed to it, the existence of the table would have
been documented and, when other countries were in-
cluded, been given consideration during the devel-
opment of those additions.

This fictitious situation demonstrates the need to
carefully control coupling. It shows that the goal is
not simply to reduce coupling, but to carefully con-
sider if the additional coupling is needed.

B. Kinds of Coupling

Coupling can be considered at five levels, ordered
from least interconnections to the most connections:
uncoupled, parameter, control, common, and con-
tent. The forms of coupling are covered in turn.

1. Uncoupled

Uncoupled is the state where two modules have ab-
solutely no interconnections between them. In other
words, none of the forms of coupling below are present.

2. Parameter Coupling

The most typical and benign coupling that occurs is
parameter coupling. Values are passed between mod-
ules via the parameter list. Short of uncoupled mod-
ules, parameter coupling is the lowest level of cou-
pling. It is also known as data coupling.

3. Control Coupling

If several modules exchange control information,
then the modules are connected via control coupling.
For example, Fig. 11 accepts an integer representing
an error level and takes predetermined actions based
on the value. The parameter errorLevel is the av-
enue for control coupling.

4. Common Coupling

Common coupling occurs when a group of modules
all access the same global data. It is also known as
common-environment and global coupling.

Consider a group of modules that all perform ac-
tions associated with a file. One module might sort
the file, another search, a third update. Since they all
perform operations on the same set of data, this forms
an example of common coupling.

The down side of common coupling is that diag-
nosing problems can be time consuming. This does
not mean that common coupling is wrong. It simply
means that it should be avoided. If, as in the above ex-
ample, it cannot be avoided, then the software devel-
oper must recognize that common coupling exists
and allow time to identify techniques to indepen-
dently test the modules. The developer could, for ex-
ample, test each of the modules above separately. It
should also be recognized that there could be con-
nections between the modules. For example, the
search module might only be effective on sorted data.

5. Content Coupling

Content coupling has the highest degree of coupling.
It comes about when one module makes use of data
or program statements that are strictly inside another
module. It is also known as pathological coupling and
internal data coupling.

Consider again the sort and search modules from
the previous example, and assume that the search
module only operates on sorted data. If the search
module uses a goto statement to jump to the code in
the sorting module to sort the data prior to searching
it, it would be an example of content coupling.

Contrast this with the approach of calling the sort
module from within the search module. This ap-
proach would lower coupling to the common level,
i.e., sharing common data.

134 Cohesion, Coupling, and Abstraction

void errorResponse (int errorLevel) {
 if (errorLevel > 100)
 terminateExecution();
 else if (errorLevel > 80) {
 addToErrorLog (severeError);
 issueUserWarning(severeError);
 } else if (errorLevel > 50)
 issueUserWarning (mildError);
}

Figure 11 Example of control coupling.

C. Other Types of Coupling

There are other types of coupling evident in a soft-
ware system. They are unranked, and are unrelated to
the previously mentioned kinds of coupling.

External coupling occurs when a module commu-
nicates directly with a specific hardware device. For ex-
ample, a module that accepts input from a mouse is
very closely coupled with the mouse. The same mod-
ule could not, for example, be used for input from a
keyboard. This type of coupling, while entirely neces-
sary, should be limited to specific modules that are
dedicated to communicating to the external device.

Binding coupling occurs when names are prema-
turely bound to values in a program. For example, if the
programmer places the value 0.05 throughout the pro-
gram to represent the sales tax rate of 5%, the program
is tightly coupled to the sales tax rate. Introducing a con-
stant in the program and setting it to 0.05 can decrease
binding coupling. The use of the constant allows future
modification of the program to be simplified when it be-
comes necessary to change the sales tax to 6%.

D. Coupling in Objects

Coupling between classes occurs in two ways—mes-
sage passing and inheritance. Message passing serves
as the primary means of communication between
classes, and should be carefully minimized to achieve
low coupling.

Coupling can also occur through inheritance. In-
heritance has good qualities in that it exploits the
commonality between classes. However, inheritance
can increase coupling by closely connecting a super-
class to its subclass. Common coupling, via the data,
can be the result of inheritance.

Classes typically have a mechanism for controlling
coupling. In some languages, data and methods are
identified as belonging to one of three classifica-
tions—public, protected, and private. Private data and
methods are not available for use outside the class
where they are located.

Methods that are designated as public are available
globally. Any programming component, be it an ob-
ject of a different class or a module that is not part of
a class, can access a method that is designated as pub-
lic by way of message passing. Data can be designated
as public, but is usually not done as it can defeat the
purpose of objects.

Protected data and methods are not available glob-
ally. They are, however, available within the class and

to any classes that inherit from the class where they
are located.

IV. COHESION AND COUPLING IN PERSPECTIVE

Cohesion and coupling form the central tenets of
structured design. Together, these principles con-
tribute to designing software components that will
help solve a problem in a robust, reliable, and effi-
cient manner.

When considering cohesion and coupling, the goal
is not necessarily to use only functional cohesion and
parameter coupling. However, other things being
equal, the higher the level of cohesion and the lower
the level of coupling, the more likely is it that software
will be clear to understand and thus easily modified
and maintained.

V. ABSTRACTION

Abstraction is a technique that helps in understand-
ing complex systems. It allows one to focus on a por-
tion of the system while ignoring other aspects.

George Miller brought the term abstraction to the
forefront in 1956. He proposed that humans were
only able to handle between 5 and 9 pieces of infor-
mation at one time, and that larger pieces of infor-
mation were managed by forming abstractions, or
breaking information into manageable pieces.

An early example of abstraction outside of infor-
mation systems occurred during the industrial revo-
lution. Early efforts at manufacturing required a crafts-
man to completely build, for example, one dresser by
hand. One of the results of the industrial revolution
was to break up the manufacturing process into dis-
tinct stages. Workers could specialize so that a drawer
for a dresser was built in stages. The wood for the
drawer was selected by one individual, cut and planed
by another, built by a third, and finished by a fourth.
If, for example, we focused on the individual applying
the finish, we would be thinking abstractly of the other
stages in the process.

Consider another example from industry. A company
decides to manufacture a lawn mower. The decision was
made to purchase engines rather than build them. A set
of specifications was drawn up, including the following:
3 horsepower, vertical shaft, and 2400 revolutions per
minute. Note that these specifications indicate what is
needed, not how the engine operates. One of several
items not included in these specifications was the

Cohesion, Coupling, and Abstraction 135

diameter of the engine’s piston. Abstraction allowed
the company to focus on what was needed and al-
lowed some items to be ignored.

Abstraction is a fundamental technique in the de-
sign of programs. It allows for the selective hiding of
information to allow refocusing on a different aspect
of the information system. The aspects of the infor-
mation system that are important to the new per-
spective are brought to the forefront while other as-
pects are not directly considered.

Abstraction allows the designer to separate the
goals of the software system from the actual details of
implementing it. This separation of the “what” from
the “how” is a key to abstraction. It allows the software
designer to focus on the essential details of a pro-
gramming component without concern for lower level
details. The separation of what needs done from how
it is actually implemented helps to break a complex
software system into manageable parts.

The use of abstraction to break down complex
problems into manageable pieces allows for a more
easily managed software development process. Indi-
vidual programmers can be assigned specific modules
with less concern for side effects with the work of
other programmers.

Abstraction is the basic tool of software libraries. A
class written with abstraction in mind is more likely to
be suitable for inclusion in a software library. The re-
sultant library will tend to be more general and, there-
fore, applicable to other situations.

Abstraction can be approached from two perspec-
tives when building a software system, from the bot-
tom up or from the top down. First consider from the
bottom up, where the initial focus is on the details
and the goal is to form the details into a cohesive
process. In other words, a complex set of details can
be organized into a module, then dealt with as a sin-
gle unit. For example, a series of steps are needed to
produce the gelatin-like coatings on capsules. Factors
like temperature and viscosity of the vat of gelatin are
monitored while raw ingredients are added to bring
the liquid to the proper consistency prior to pouring
the molds for the capsules. The focus was initially on
the individual steps, with careful attention given to
ensuring each step was correct before combining it
with other steps. Eventually the collection of steps in-
volved in the preparation of the gelatin can be ab-
stractly thought of as gelatin preparation.

The second perspective on abstraction is from the
top down by dividing a large project into a series of
components. For example, when building a program
to maintain a database of paintings and related infor-

mation for an art gallery, the task can be divided into
routines to manage the paintings, maintain informa-
tion on shows, and maintaining information on own-
ership of collections lent to the gallery. We can ab-
stractly consider the information maintained on
paintings until development of it is necessary.

A. Levels of Abstraction

The idea of levels of abstraction is prevalent in the
arts as well as the sciences. Henri Matisse produced a
series of four bronze sculptures of a woman’s back;
each subsequent sculpture was more abstract, con-
taining less detail. It is difficult to tell where the legs
end and the back begins in the fourth rendering.

Levels of abstraction can also be illustrated with
the automobile. We can think of the car simply as a
means of transportation. One can turn on the key,
put the car in gear, and go. At the next level of ab-
straction we can consider the car as a series of sub-
systems—the engine, the drive train, the electrical sys-
tem, and so on. Next we can look closer at the engine,
and consider the carburetor, the ignition system, and
the combustion chamber. At an even lower level of ab-
straction, we can explore the operation of the com-
bustion chamber, considering the four cycles of in-
take, compression, power, and exhaust. At an even
lower level we can consider how the fuel is ignited by
the spark plug to begin the power cycle. And at a
lower level yet, we can discuss the qualities of petrol
that allow it to ignite at low temperatures.

Abstraction is relative. At higher levels, one view is
more general and more details are ignored. At lower
levels the focus is more on details while less attention
is given to the general view. When thinking of a car as
a mode of transportation, we are ignoring many de-
tails. When considering the combustion process tak-
ing place in a car’s cylinder, the center of attention is
on the details of combustion and very little is given to
the engine or the vehicle itself.

Abstraction in computer systems occurs at multiple
levels as well. A user supplies data to and receives re-
sults from an application. A programmer wrote the
information system using a high-level programming
language. The compiler translates the high-level lan-
guage into assembly language or to machine language
that the computer can execute. At the micropro-
gramming level, the control unit within the computer
interprets the machine language instructions and ac-
tivates gates to move information to the necessary lo-
cations. If more than one program is executing at one

136 Cohesion, Coupling, and Abstraction

time, the operating system might temporarily suspend
the execution of the machine language statements in
one program while another program takes prece-
dence. These levels of abstraction are summarized in
Fig. 12.

Identification of levels of abstraction in the devel-
opment of an information system is also evident. A so-
lution is first stated in broad terms using the language
of the problem environment. Next a modeling tech-
nique like Unified Modeling Language is used to
express the problem and move a step closer to the
solution.

As the developer moves closer to creating a solu-
tion in a high-level language, the specifications look
more like classes and modules. It is in this final level
of the development of software, the creation of the
high-level language solution, that there are two kinds
of abstraction—procedural and data.

B. Kinds of Abstraction

There are two major kinds of abstraction in high-level
languages. Both give the ability to group items to-
gether under one name.

Procedural abstraction provides the methodology
that allows a sequence of actions that has a specific
and limited function to be named. The actions are en-
capsulated under a single name that can be invoked
to perform the sequence of actions. The name is de-
scriptive of what the sequence of actions perform.

The resultant sequence of statements that is formed
can be called a module, or a procedure, function,
subroutine, subprogram, or method. A module, then,
is an abstraction that describes the compound actions
and is independent of other modules. This indepen-
dence can be measured by the coupling metric. The
statements within the module should be cohesive.

A data abstraction is a named collection of data
that describes a data object. It isolates how a com-
pound data object is used from the details of how it
is constructed. For example, the data abstraction for

dog would include data such as gender, height, breed,
and age. Whenever one considers the information
about the dog in aggregate, data abstraction is being
used. Examples of constructs that support data ab-
straction are arrays, lists, records, and files.

Procedural and data abstraction has been identi-
fied as being important to software development for
years. The emergence of the object-oriented para-
digm has given a new focus on applying them, how-
ever. Procedural abstraction is employed in the de-
velopment of methods, and data abstraction is utilized
in determining the data elements in an object. A
higher level of abstraction is accomplished by specify-
ing an interface to the object’s data by describing a
set of methods that build the data structure and pro-
vide access to it. By careful specification of the inter-
face, an abstraction barrier is formed.

C. Abstraction Barriers

An abstraction barrier can be compared to a fence
that encloses a large flock of sheep. From outside the
fence one can determine that sheep are indeed inside
the fence. But it is less easy to determine specific in-
formation like quantity, gender, and the types of sheep
inside the fence. If one saw the shepherd inside the
fence and asked him questions about the sheep, spe-
cific attributes about the herd could be determined.
If the fence is well built, it not only keeps out wolves.
It prevents someone outside the fence from climbing
over the fence and counting the sheep.

An abstraction barrier performs a similar function
in an information system. A well-constructed abstrac-
tion barrier hides information about the internal
structure, yet allows pre-determined and carefully con-
trolled avenues of access to the data. It also hides
from view modules that are not needed outside the
abstraction barrier.

A well-written abstraction barrier helps in the de-
velopment of large systems. For example, assume we
have been assigned the task of developing software to
maintain stock ownership for a stockbroker. The num-
ber of shares is maintained using mixed numbers.
The data that represents mixed numbers and the op-
erations that are needed for mixed numbers is shown
in Fig. 13. Once the abstraction barrier is established,
a programming team can better divide responsibili-
ties. Several programmers can work below the ab-
straction barrier and implement the operations. Other
programmers can work above the abstraction barrier
to build the stock ownership system that uses mixed

Cohesion, Coupling, and Abstraction 137

Level Description
1 logic gates
2 microprogramming
3 machine language
4 operating system
5 assembly language
6 high-level language
7 application

Figure 12 Levels of abstraction in a computer system.

numbers like 4 1/3. The programmers working below
the abstraction barrier would be practicing information
hiding by hiding selected portions of the information
system from access above the abstraction barrier.

The object-oriented paradigm has a strong basis in
abstraction barriers. The class specified in Fig. 14
shows the interface for a mixed number. The only in-
formation provided is what is needed for an individ-
ual to establish the value for a mixed number, return
the mixed number, and perform specified operations
on the mixed number. Hidden from the interface is
the exact representation of the mixed number and
how the operations are performed.

D. Abstraction in Information Systems

Abstraction is important to the development of an in-
formation system. One of the early approaches to soft-
ware development, stepwise refinement, has strong
roots in abstraction. At the highest levels of stepwise
refinement, the solution to an information system is
stated in broad terms. As lower levels are defined, ab-

straction barriers are specified, more details are con-
sidered, and a more procedural orientation is taken.
Stepwise refinement, then, moves from higher levels
of abstractions to lower levels.

Like abstraction, abstraction barriers exist in many
areas of information systems. For example, an ab-
straction barrier exists between the high-level code
for a software system and the compiled code. The
programmer building the software system generally
does not think about the compilation process beyond
the fact that it hopefully returns the compiled code.
The developer of the compiler allowed for carefully
controlled access to the compilation process.

VI. CONCLUSION

In the early years of programming, abstraction was not
central to the development process. Modules were not
utilized, and data structures were rare. The result was
generally a high rate of errors per line of code written,
and therefore high software development costs.

Abstraction is so pervasive in information systems
today that it is seldom considered in its own right. It
is so fundamental that programmers are faced with
abstraction on a daily basis, yet seldom consider it
directly.

The change to the object-oriented paradigm has
placed abstraction, if not in name then at least in con-
cept, to the forefront. Well-designed classes have well-
designed abstraction barriers.

Abstraction allows a proposed information system
to be broken down into manageable parts to facilitate
development. These parts can then be glued back to-
gether into a complete system. Cohesion measures
how well the individual portions have been divided,
while coupling measures the relationships between
the parts.

SEE ALSO THE FOLLOWING ARTICLES

Data Flow Diagrams • Documentation for Software and IS De-
velopment • Object-Oriented Programming

BIBLIOGRAPHY

Abelson, H., Sussman, G. J., and Sussman, J. (1985). Structure
and interpretation of computer programs. New York: McGraw-Hill.

Bieman, J. M., and Ott, L. M. (1994). Measuring functional co-
hesion. IEEE Transactions on Software Engineering, 20(8),
644–657.

138 Cohesion, Coupling, and Abstraction

Abstraction barrier:
 operations
 +, -, *, /, reduce
 data
 whole number
 numerator
 denominator

Figure 13 Abstraction barrier definition in a stock ownership
system.

public class mixed {

 public mixed (int whole, numer, denom);

 public void add (mixed number);

 public void subtract (mixed number);

 public void multiply (mixed number);

 public void divide (mixed number);

 public void reduce ();

 public int returnWhole ();

 public int returnNumerator ();

 public int returnDenominator ();

}

Figure 14 Abstraction barrier used with objects.

Booch, G. (1994). Object-oriented Analysis and Design, second edi-
tion. Redwood City, CA: Benjamin/Cummings.

Miller, G. A. (1956). The magical number seven, plus or minus
two: Some limits on our capacity for processing informa-
tion. The Psychological Review, 63, 81–97.

Parnas, D. L. (1972). On the criteria to be used in decompos-
ing systems into modules. Communications of the ACM, 15(12),
1053–1058.

Pressman, R. (2001). Software engineering, 5th ed. New York:
McGraw-Hill.

Stevens, W., Myers, G., and Constantine, L. (1974). Structured
design. IBM Systems Journal, 13(2), 115–139.

Wirth, N. (1971). Program development by stepwise refine-
ment. Communications of the ACM, 14(4), 221–227.

Yourdon, E., and Constantine, L. (1979). Structured design. En-
glewood Cliffs, NJ: Prentice-Hall.

Cohesion, Coupling, and Abstraction 139

Compilers
Seth D. Bergmann
Rowan University

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 141

I. INTRODUCTION
II. THE LEXICAL PHASE

III. THE SYNTAX AND SEMANTIC PHASES
IV. PARSING TOP DOWN

V. PARSING BOTTOM UP
VI. CODE GENERATION

VII. OPTIMIZATION

GLOSSARY

code generation The phase of the compiler which
produces machine language object code from syn-
tax trees or atoms.

compiler A software translator which accepts, as input,
a program written in a particular high-level language
and produces, as output, an equivalent program in
machine language for a particular machine.

compiler-compiler A program which accepts, as in-
put, the specifications of a programming language
and the specifications of a target machine, and pro-
duces, as output, a compiler for the specified lan-
guage and machine.

derivation A sequence of applications of rewriting
rules of a grammar, beginning with the starting
nonterminal and ending with a string of terminal
symbols.

derivation tree A tree showing a derivation for a
context-free grammar, in which the interior nodes
represent nonterminal symbols and the leaves rep-
resent terminal symbols.

formal language A language which can be defined by
a precise specification.

grammar A language specification system consisting
of a finite set of rewriting rules involving terminal
and nonterminal symbols.

high-level language A programming language which
permits operations, control structures, and data
structures more complex than those available on a
typical computer architecture.

lex A lexical analyzer generator utility in the Unix

programming environment which uses regular ex-
pressions to define patterns.

lexical analysis The first phase of the compiler, in
which words in the source program are converted
to a sequence of tokens representing entities such
as keywords, numeric constants, identifiers, opera-
tors, etc.

object program A program produced as the output
of the compiler.

optimization The process of improving generated
code in run time and/or space.

parse A description of the structure of a valid string
in a formal language, or to find such a description.

parsing algorithm An algorithm which solves the pars-
ing problem for a particular class of grammars.

parsing problem Given a grammar and an input
string, determine whether the string is in the lan-
guage of the grammar and, if so, find its structure
(as in a derivation tree, for example).

programming language A language used to specify
a sequence of operations to be performed by a
computer.

recursive descent A top down parsing algorithm in
which there is a procedure for each nonterminal
symbol in the grammar.

register allocation The process of assigning a pur-
pose to a particular register, or binding a register
to a source program variable or compiler variable,
so that for a certain range or scope of instructions
that register can be used to store no other data.

semantic analysis That portion of the compiler which
generates intermediate code and which attempts

to find non-syntactic errors by checking types and
declarations of identifiers.

semantics The intent, or meaning, of an input string.
source language The language in which programs

may be written and used as input to a compiler.
source program A program in the source language,

intended as input to a compiler.
symbol table A data structure used to store identifiers

and possibly other lexical entities during
compilation.

syntax The specification of correctly formed strings
in a language, or the correctly formed programs of
a programming language.

syntax analysis The phase of the compiler which
checks for syntax errors in the source program, us-
ing, as input, tokens put out by the lexical phase
and producing, as output, a stream of atoms or syn-
tax trees.

syntax directed translation A translation in which a
parser or syntax specification is used to specify out-
put as well as syntax.

syntax tree A tree data structure showing the struc-
ture of a source program or statement, in which
the leaves represent operands, and the internal
nodes represent operations or control structures.

target machine The machine for which the output of
a compiler is intended.

token The output of the lexical analyzer representing
a single word in the source program.

translation grammar A grammar which specifies out-
put for some or all input strings.

yacc (yet another compiler-compiler) A parser gener-
ator utility in the Unix programming environment
which uses a grammar to specify syntax.

I. INTRODUCTION

A user interface is the mechanism through which the
user of a device communicates with the device. Since
digital computers are programmed using a complex
system of binary codes and memory addresses, com-
puter scientists have developed sophisticated user in-
terfaces, called programming languages, which en-
able people to specify computations in ways that seem
more natural. This article describes the compiler,
which is the software translator normally used to im-
plement this kind of interface. The concepts pre-
sented here are valuable not only to those responsi-
ble for implementing programming languages, but
also to all programmers, who will become better pro-
grammers as a result of understanding how program-
ming languages are implemented, and will have a
greater appreciation for programming languages. In

addition, the techniques which are presented here
can be used in the construction of other user inter-
faces, such as the query language for a database man-
agement system.

A. What Is a Compiler?

The articles on computer hardware and software de-
scribe the kinds of instructions that the computer’s
CPU is capable of executing. In general, they are very
simple, primitive operations, constituting a language
which we call machine language. For example, there
are often instructions which do the following kinds of
operations: (1) add two numbers stored in memory;
(2) move numbers from one location in memory to
another; and (3) move information between the CPU
and memory. But there is certainly no single instruc-
tion capable of computing an arbitrary expression
such as ((x-x0)

2 + (x-x1)
2)1/2, and there is no

way to do the following with a single instruction:

if (array6[loc]<MAX) sum
= 0; else array6[loc] = 0;

These are some of the capabilities which are im-
plemented with a software translator, known as a com-
piler. The function of the compiler is to accept state-
ments such as those above and translate them into
sequences of machine language operations which, if
loaded into memory and executed, would carry out
the intended computation. It is important to bear in
mind that when processing a statement such as x =
x * 9; the compiler does not perform the multipli-
cation. The compiler generates, as output, a sequence
of instructions, including a “multiply” instruction.

Languages which permit complex operations, such
as the ones above, are called high-level languages, or
programming languages. A compiler accepts as input a
program written in a particular high-level language
and produces as output an equivalent program in ma-
chine language for a particular machine called the
target machine. We say that two programs are equiva-
lent if they always produce the same output when given
the same input. The input program is known as the
source program, and its language is the source language.
The output program is known as the object program,
and its language is the object language. A compiler
translates source language programs into equivalent
object language programs. Some examples of com-
pilers are

• A Pascal compiler for the Apple Macintosh
• A COBOL compiler for the VAX
• A C�� compiler for the Apple Macintosh

142 Compilers

If a portion of the input to a C�� compiler looked
like this:

A = B + C * D

the output corresponding to this input might look
something like this:

LOD R1,C // Load the value of C
// into reg 1

MUL R1,D // Multiply the value
// of D by reg 1

STO R1,TEMP1 // Store the result in
// TEMP1

LOD R1,B // Load the value of B
// into reg 1

ADD R1,TEMP1 // Add value of Temp1
// to register 1

STO R1,TEMP2 // Store the result in
// TEMP2

MOV A,TEMP2 // Move TEMP2 to A,
// the final result

The compiler must be smart enough to know that
the multiplication should be done before the addi-
tion even though the addition is read first when scan-
ning the input. The compiler must also be smart
enough to know whether the input is a correctly
formed program (this is called checking for proper
syntax), and to issue helpful error messages if there
are syntax errors.

Many compilers will not generate optimal, or effi-
cient, code. In designing a compiler, the primary con-
cern is that the object program be semantically equiv-
alent to the source program (i.e., that they mean the
same thing, or produce the same output for a given
input). Object program efficiency is important, but
not as important as correct code generation, which is
of paramount importance.

What are the advantages of a high-level language
over machine or assembly language?

1. Machine language (and even assembly language)
is difficult to work with and difficult to maintain.

2. With a high-level language you have a much
greater degree of machine independence and
portability from one computing platform to
another (as long as the other machine has a
compiler for that language).

3. Application programmers need not be retrained
every time a new machine (with a new instruction
set) is introduced.

4. High-level languages may support data abstraction
(through data structures and objects) and
program abstraction (procedures and functions).

What are the disadvantages of high-level languages?

1. The programmer doesn’t have complete control
of the machine’s resources (registers, interrupts,
I/O buffers, etc.).

2. The compiler may generate inefficient machine
language programs.

3. Additional software—the compiler—is needed in
order to use a high-level language.

As compiler development and hardware have im-
proved over the years, these disadvantages have be-
come less problematic. Consequently, most program-
ming today is done with high-level languages.

An interpreter is software which serves a purpose
very similar to that of a compiler. The input to an in-
terpreter is a program written in a high-level lan-
guage, but rather than generating a machine lan-
guage program, the interpreter actually carries out
the computations specified in the source program. In
other words, the output of a compiler is a program,
whereas the output of an interpreter is the source
program’s intended output. Figure 1 shows that al-
though the input may be identical, compilers and in-
terpreters produce very different output. Neverthe-
less, many of the techniques used in designing
compilers are also applicable to interpreters.

There is often confusion about the difference be-
tween a compiler and an interpreter. Many commer-
cial compilers come packaged with a built-in edit-com-
pile-run front end. In effect, one is not aware that
after compilation is finished, the object program must
be loaded into memory and executed, because this all
happens automatically. As larger programs are needed
to solve more complex problems, programs are di-
vided into manageable source modules, each of which
is compiled separately to an object module. The ob-
ject modules can then be linked to form a single, com-
plete, machine language program. In this mode, it is

Compilers 143

Compiler
a = 3;

b = 4;

cout << a * b;

MOV A,='3'

MOV B,='4'

LOD 1,A

MUL 1,B

STO 1,TEMP

PUSH TEMP

CALL WRITE

Input Output

Interpreter
a = 3;

b = 4;

cout << a * b;

12

Figure 1 A compiler and interpreter producing very different
output for the same input.

more clear that there is a distinction between compile
time, the time at which a source program is compiled,
and run time, the time at which the resulting object
program is loaded and executed. Syntax errors are re-
ported by the compiler at compile time and are shown
at the left, below, as compile-time errors. Other kinds
of errors not generally detected by the compiler are
called run-time errors and are shown at the right below:

Compile-time errors Run-time errors

a = ((b+c)-d; x = a-a;
y = 100/x;
// division by 0

if x<b fn1(); ptr = NULL;
else fn2(); data = ptr->info;

// use of null pointer

It is important to remember that a compiler is a
program, and it must be written in some language
(machine, assembly, high-level). In describing this
program, we are dealing with three languages: (1) the
source language, i.e., the input to the compiler; (2) the
object language, i.e., the output of the compiler; and
(3) the language in which the compiler is written, or
the language in which it exists, since it might have
been translated into a language foreign to the one in
which it was originally written. For example, it is pos-
sible to have a compiler that translates Pascal pro-
grams into Macintosh machine language. That com-
piler could have been written in the C language, and
translated into Macintosh (or some other) machine
language. Note that if the language in which the com-
piler exists is a machine language, it need not be the
same as the object language. For example, a compiler
that produces Macintosh machine language could
run on a VAX. Also, the object language need not be
a machine or assembly language, but could be a high-
level language. A concise notation describing compil-
ers is shown in Fig. 2. In these diagrams, the large C
stands for compiler (not the C programming lan-
guage), the superscript describes the intended trans-
lation of the compiler, and the subscript shows the
language in which the compiler exists. Figure 2a shows
a Pascal compiler for the Macintosh. Figure 2b shows
a compiler which translates Pascal programs into
equivalent Macintosh machine language, but it exists
in VAX machine language, and consequently it will
run only on a VAX. Figure 2c shows a compiler which
translates IBM PC machine language programs into
equivalent Pascal programs. It is written in Ada and
will not run in that form on any machine.

In this notation the name of a machine represents
the machine language for that machine; i.e., VAX rep-
resents VAX machine language, and PC represents
PC machine language (i.e., Intel 80 � 86 or Pentium).

Two opposing approaches have been used in the
implementation of programming languages. The first
approach was to view the compiler (or interpreter)
simply as a means of accessing the capabilities of a
particular CPU architecture., e.g., the addition of two
integer quantities in a program implies that the CPU’s
integer addition instruction should be utilized
(whether it be a 16-, 32-, or 36-bit, or other precision).
This can result in software which is not always portable
from one platform to another. The second approach,
used in the specification of more recent languages
such as Java, is to specify the exact semantics of all op-
erations as part of the language. This results in more
portable code.

It is safe to say that no other field of computer sci-
ence makes as extensive use of theoretical results for
use in an applied manner. The lexical and syntax
phases of a compiler draw extensively from automata
and formal language theory. The code generation
and optimization phases make extensive use of graph
theory.

B. A Brief History of Compilers

The history of compilers is tied to the history of pro-
gramming languages. The first compilers were primar-
ily methods for including calls to previously written
subprograms. At this time coding was done in machine
language; these methods allowed the programmer to
“compile” a collection of previously written code mod-
ules into one program. A few of the early such systems
were A-0, A-2, and FLOW-MATIC, developed by Grace
Murray Hopper at Harvard University in the early
1950s. Around the same time IT (Internal Translator)
was developed at Carnegie Institute of Technology.
These early systems were soon followed by compilers
which were capable of translating algebraic expressions
and which were closer to the current notion of a com-
piler as a language translator. The first such system was
Formula Translator, or FORTRAN, developed by John
Backus of IBM Corporation.

In the 1960s much progress was made in the areas
of lexical and syntax analysis. It was at this time that

144 Compilers

CMac

a

Pas Mac

CVax

Pas Mac

CAda

c

PC Pas

 b

Figure 2 Big C notation for compilers: (a) A Pascal compiler
that runs on the Mac. (b) A Pascal compiler that generates Mac
programs and runs on a VAX. (c) A compiler that translates PC
programs into Pascal and is written in Ada.

compiler-generators (or compiler-compilers) were de-
veloped. These systems were capable of producing
translators automatically from a formal specification
of a language’s syntax and semantics.

In the 1970s the focus shifted to the generation of
efficient object code, as research produced better reg-
ister allocation algorithms and optimization tech-
niques. In the years since that time, new computer ar-
chitectures and new programming language
paradigms have made the art of compiler design a
challenge to this day, with many open problems re-
maining to be solved.

C. The Phases of a Compiler

It is important to remember that the input to a com-
piler is simply a string of characters. Some people as-
sume that a particular interpretation is automatically
“understood” by the computer (count = count +
1; is obviously an assignment operation, but the com-
puter must be programmed to determine that this is
the case).

In order to simplify the compiler design and con-
struction process, the compiler is implemented in
phases. In general, a compiler consists of at least three
phases: (1) lexical analysis, (2) syntax analysis, and
(3) code generation. In addition, there could be other
optimization phases employed to produce efficient
object programs.

1. The Lexical Phase

The first phase of a compiler is called lexical analysis
(and is also known as a lexical scanner). As implied by
its name, lexical analysis attempts to isolate the
“words” in an input string. We use the word “word” in
a technical sense. A word, also known as a lexeme, a
lexical item, or a lexical token, is a string of input char-
acters which is taken as a unit and passed on to the
next phase of compilation. Examples of words are

1. key words—while, void, if, for, . . .
2. identifiers—declared by the programmer
3. operators—�, �, *, /, �, ��, . . .
4. numeric constants—numbers such as 124,

12.35, 0.09E-23, etc.
5. character constants—single characters or strings of

characters enclosed in quotes.
6. special characters—characters used as delimiters

such as . () , ; :
7. comments—ignored by subsequent phases. These

must be identified by the scanner, but are not
included in the output.

The output of the lexical phase is a stream of to-
kens corresponding to the words described above. In
addition, this phase builds tables which are used by
subsequent phases of the compiler. One such table,
called the symbol table, stores all identifiers used in the
source program, including relevant information and
attributes of the identifiers. In block-structured lan-
guages it may be preferable to construct the symbol
table during the syntax analysis phase because pro-
gram blocks (and identifier scopes) may be nested.

2. The Syntax Phase

The syntax analysis phase is often called the parser. This
term is critical to understanding both this phase and
the study of languages in general. The parser will
check for proper syntax, issue appropriate error mes-
sages, and determine the underlying structure of the
source program. The output of this phase may be a
stream of atoms or a collection of syntax trees. An atom
is an atomic operation, or one that is generally avail-
able with one (or just a few) machine language in-
struction(s) on most target machines. For example,
MULT, ADD, and MOVE could represent atomic op-
erations for multiplication, addition, and moving data
in memory, respectively. Each operation could have 0
or more operands also listed in the atom (operation,
operand1, operand2, operand3). The meaning of the
following atom would be to add A and B, and store
the result into C:

(ADD, A, B, C)

Some parsers put out syntax trees as an intermedi-
ate data structure, rather than atom strings. A syntax
tree indicates the structure of the source statement,
and object code can be generated directly from the
syntax tree. In syntax trees, each interior node repre-
sents an operation or control structure and each leaf
node represents an operand. A syntax tree for the
statement

A = B + C * D;

is shown in Fig. 3.
Once a syntax tree has been created, it is not diffi-

cult to generate code from the syntax tree; a postfix
traversal of the tree is all that is needed. In a postfix
traversal, for each node, N, the algorithm visits all the
subtrees of N, and visits the node N last, at which
point the instruction(s) corresponding to node N can
be generated.

Many compilers also include a phase for semantic
analysis. In this phase the data types are checked, and

Compilers 145

type conversions are performed when necessary. The
compiler may also be able to detect some semantic er-
rors, such as division by zero, or the use of a null
pointer.

3. Global Optimization

The global optimization phase is optional. Its purpose is
simply to make the object program more efficient in
space and/or time. It involves examining the sequence
of atoms put out by the parser to find redundant or
unnecessary instructions or inefficient code. Since it
is invoked before the code generator, this phase is of-
ten called machine-independent optimization. For
example, in the following program segment:

for (i=1; i<=100000; i++)
{ x = sqrt (y); // square root

// function
cout < x+i < endl;

}

In this case, the assignment to x need not be inside
the loop since y doesn’t change as the loop repeats
(it is a loop invariant). In the global optimization phase,
the compiler would move the assignment to x out of
the loop in the object program:

x = sqrt (y); // loop invariant
for (i=1; i<=100000; i++)

cout << x+i << endl;

This would eliminate 99,999 unnecessary run-time
calls to the sqrt function.

The reader is cautioned that global optimization
can have a serious impact on run-time debugging. For
example, if the value of y in the above example was
negative, causing a run-time error in the sqrt func-
tion, the user would be unaware of the actual location
of that portion of code which called the sqrt func-
tion, because the compiler would have moved the of-
fending statement (usually without informing the
programmer). Most compilers that perform global
optimization also have a switch with which the user

can turn optimization on or off. When debugging the
program, the switch would be off. When the program
is correct, the switch would be turned on to generate
an optimized version for the user. One of the most
difficult problems for the compiler writer is making
sure that the compiler generates optimized and un-
optimized object modules, from the same source mod-
ule, which are equivalent.

4. Code Generation

As discussed earlier, the computer is capable of exe-
cuting only a limited number of primitive operations
on operands with numeric memory addresses, all en-
coded as binary values, constituting the machine lan-
guage. In the code generation phase, atoms or syntax
trees are translated to machine language (binary) in-
structions, or to assembly language, in which case the
assembler is invoked to produce the object program.
Symbolic addresses (statement labels and data identi-
fiers) are translated to relocatable memory addresses
at this time.

For target machines with several CPU registers, the
code generator is responsible for register allocation.
This means that the compiler must be aware of which
registers are being used for particular purposes in the
generated program, and which become available as
code is generated.

For example, an ADD atom might be translated to
three machine language instructions: (1) load the
first operand into a register; (2) add the second
operand to that register; and (3) store the result, as
shown for the atom (ADD, A, B, Temp):

LOD R1,A // Load A into reg. 1
ADD R1,B // Add B to reg. 1
STO R1,Temp // Store reg. 1 in Temp

It is not uncommon for the object language to be an-
other high-level language. This is done in order to im-
prove portablility of the language being implemented.

5. Local Optimization

The local optimization phase is also optional and is
needed only to make the object program more effi-
cient. It involves examining sequences of instructions
put out by the code generator to find unnecessary or
redundant instructions. For this reason, local opti-
mization is often called machine-dependent opti-
mization. An addition operation in the source program
might result in three instructions in the object pro-
gram: (1) load one operand into a register; (2) add
the other operand to the register; and (3) store the

146 Compilers

=

A +

B *

C D

Figure 3 A syntax tree for A = B + C * D;.

result. Consequently, the expression A + B + C in
the source program might result in the following in-
structions as code generator output:

LOD R1,A // Load A into
// register 1

ADD R1,B // Add B to register 1
STO R1,TEMP1 // Store the result in

// TEMP1*
LOD R1,TEMP1 // Load result into

// reg 1*
ADD R1,C // Add C to register 1
STO R1,TEMP2 // Store the result in

// TEMP2

Note that some of these instructions (those marked
with * in the comment) can be eliminated without
changing the effect of the program, making the ob-
ject program both smaller and faster:

LOD R1,A // Load A into
// register 1

ADD R1,B // Add B to register 1
ADD R1,C // Add C to register 1
STO R1,TEMP // Store the result in

// TEMP

A diagram showing the phases of compilation and
the output of each phase is shown in Fig. 4. Note that
the optimization phases may be omitted (i.e., the
atoms may be passed directly from the Syntax phase
to the Code Generator, and the instructions may be
passed directly from the Code Generator to the com-
piler output file.)

A word needs to be said about the flow of control
between phases. One way to handle this is for each
phase to run from start to finish separately, writing
output to a disk file. For example, lexical analysis is
started and creates a file of tokens. Then, after the en-
tire source program has been scanned, the syntax
analysis phase is started, reads the entire file of to-
kens, and creates a file of atoms. The other phases
continue in this manner; this would be a multiple pass
compiler since the input is scanned several times.

Another way for flow of control to proceed would
be to start up the syntax analysis phase first. Each time
it needs a token it calls the lexical analysis phase as a
subroutine, which reads enough source characters to
produce one token, and returns it to the parser. When-
ever the parser has scanned enough source code to
produce an atom, the atom is converted to object
code by calling the code generator as a subroutine;
this would be a single pass compiler.

D. Some Implementation Techniques

By this point it should be clear that a compiler is not
a trivial program. A new compiler, with all optimiza-
tions, could take over a person-year to implement.
For this reason, we are always looking for techniques
or shortcuts which will speed up the development
process. This often involves making use of compilers,
or portions of compilers, which have been developed
previously. It also may involve special compiler gener-
ating tools, such as lex and yacc, which are part of the
Unix environment.

In order to describe these implementation tech-
niques graphically, we use the method shown in Fig.
5, in which the computer is designated with a rectan-
gle, and its name is in a smaller rectangle sitting on
top of the computer. In all of the examples shown
here the program loaded into the computer’s mem-
ory will be a compiler. It is important to remember
that a computer is capable of running only programs
written in the machine language of that computer.
The input and output (also compilers in our exam-
ples) to the program in the computer are shown to
the left and right, respectively.

Compilers 147

Lexical
analysis

Source program

Syntax
analysis

Global
optimization

Local
optimization

Instructions

Instructions

Atoms

Atoms

Code
generator

Tokens

Figure 4 The phases of a compiler.

Since a compiler does not change the purpose of
the source program, the superscript on the output is
the same as the superscript on the input (X → Y), as
shown in Fig. 6. The subscript language (the language
in which it exists) of the executing compiler (the one
inside the computer), M, must be the machine lan-
guage of the computer on which it is running. The
subscript language of the input, S, must be the same
as the source language of the executing compiler. The
subscript language of the output, O, must be the same
as the object language of the executing compiler.

In the following sections it is important to remem-
ber that a compiler does not change the purpose of
the source program; a compiler translates the source
program into an equivalent program in another lan-
guage (the object program). The source program
could, itself, be a compiler. If the source program is a
compiler which translates language A into language
B, then the object program will also be a compiler
which translates language A into language B.

1. Bootstrapping

The term bootstrapping is derived from the phrase “pull
yourself up by your bootstraps” and generally involves
the use of a program as input to itself (a bootstrapping
loader is used to initialize a computer by loading a
more sophisticated version of itself just after it has
been switched on, hence the expression “to boot” a
computer).

In this article, we are talking about bootstrapping
a compiler, as shown in Fig. 7. We wish to implement
a Java compiler for the VAX computer. Rather than
writing the whole thing in machine (or assembly) lan-

guage, we instead choose to write two easier programs.
The first is a compiler for a subset of Java, written in
machine (assembly) language. The second is a com-
piler for the full Java language written in the Java sub-
set language. In Fig. 7 the subset language is desig-
nated “Sub,” and it is simply Java, without several of
the superfluous features, such as enumerated types,
interfaces, case statements, etc. The first compiler
is loaded into the computer’s memory and the
second is used as input. The output is the compiler
we want—i.e., a compiler for the full Java language,
which runs on a VAX and produces object code in
VAX machine language.

In actual practice this is an iterative process, be-
ginning with a small subset of Java, and producing, as
output, a slightly larger subset. This is repeated, using
larger and larger subsets, until we eventually have a
compiler for the complete Java language.

2. Cross Compiling

New computers with enhanced (and sometimes re-
duced) instruction sets are constantly being produced
in the computer industry. The developers face the
problem of producing a new compiler for each exist-
ing programming language each time a new com-
puter is designed. This problem is simplified by a
process called cross compiling.

Cross compiling is a two-step process and is shown in
Fig. 8. Suppose that we have a Java compiler for the
VAX, and we develop a new machine called a Mac. We
now wish to produce a Java compiler for the Mac with-
out writing it entirely in machine (assembly) language;
instead, we write the compiler in Java. Step one is to use
this compiler as input to the Java compiler on the VAX.
The output is a compiler that translates Java into Mac
machine language, and which runs on a VAX. Step two
is to load this compiler into the VAX and use the com-
piler we wrote in Java as input once again. This time the
output is a Java compiler for the Mac which runs on the
Mac, i.e., the compiler we wanted to produce.

148 Compilers

Program loaded in
computer's RAM

Name of
computer

Input Output

Figure 5 Notation for a program running on a computer.

M

X Y

SC
S O

MC
X Y

OC

Figure 6 Notation for a compiler being translated to a differ-
ent language.

Vax

We want this compiler We write these two small compilers

Sub Vax

VaxC
Java Vax

SubC

Java Vax

VaxC
Sub Vax

VaxC
Java Vax

SubC

Java Vax

VaxC

Figure 7 Bootstrapping Java onto a VAX computer.

Note that this entire process can be completed be-
fore a single Mac has been built. All we need to know
is the architecture (the instruction set, instruction
formats, addressing modes, etc.) of the Mac.

3. Compiling to Intermediate Form

As we mentioned in our discussion of interpreters
above, it is possible to compile to an intermediate form,
which is a language somewhere between the source
high-level language and machine language. The
stream of atoms put out by the parser is a possible ex-
ample of an intermediate form. The primary advan-
tage of this method is that one needs only one trans-
lator for each high-level language to the intermediate
form (each of these is called a front end) and only one
translator (or interpreter) for the intermediate form
on each computer (each of these is called a back end).
As depicted in Fig. 9, for three high-level languages
and two computers we would need three translators
to intermediate form and two code generators (or in-
terpreters)—one for each computer. Had we not used
the intermediate form, we would have needed a total
of six different compilers. In general, given n high-
level languages and m computers, we would need
n x m compilers. Assuming that each front end and
each back end is half of a compiler, we would need
(n+m)/2 compilers using intermediate form.

A very popular intermediate form for the PDP-8
and Apple II series of computers, among others, called
p-code, was developed several years ago at the Univer-
sity of California at San Diego. More recently,
high-level languages such as C have been commonly

used as an intermediate form. Today the Java byte
code language developed by Sun Microsystems is an
intermediate form which has been widely used on the
internet.

Compilers 149

Vax

We want this compiler

Step 1.

We write this compiler We already have this compiler

Java Vax

VaxC
Java Mac

JavaC

Java Mac

MacC
Java Mac

JavaC
Java Vax

VaxC

Java Mac

VaxC

Vax
Step 2.

Java Mac

VaxC
Java Mac

JavaC
Java Mac

MacC

Figure 8 Cross compiling Java from a VAX computer to a Mac computer.

(a)

PC

Mac

Java

C++

Ada

(b)

PC

Mac

Java

C++

Ada

Figure 9 (a) Six compilers needed to implement three lan-
guages on two computers without an intermediate form.
(b) Fewer than three compilers needed for the same problem
with an intermediate form.

4. Compiler-Compilers

Much of compiler design is understood so well at this
time that the process can be automated. It is possible
for the compiler writer to write specifications of the
source language and of the target machine so that the
compiler can be generated automatically. This is done
by a compiler-compiler, which is introduced in Sections
II and V with the study of the lex and yacc utilities of
the Unix programming environment.

II. THE LEXICAL PHASE

The first phase of a compiler is called lexical analysis. Be-
cause this phase scans the input string without back-
tracking (i.e., by reading each symbol once, and pro-
cessing it correctly), it is often called a lexical scanner. As
implied by its name, lexical analysis attempts to isolate
the “words” in an input string. We use the word “word”
in a technical sense. A word, also known as a lexeme, a
lexical item, or a lexical token, is a string of input charac-
ters which is taken as a unit and passed on to the next
phase of compilation. Examples of words are

1. keywords—while, if, else, for, These are
words which may have a particular predefined
meaning to the compiler, as opposed to
identifiers which have no particular meaning.
Reserved words are keywords which are not
available to the programmer for use as
identifiers. In most programming languages, such
as Java and C, all keywords are reserved. PL/1 is
an example of a language which has no reserved
words.

2. identifiers—Words that the programmer constructs
to attach a name to a construct, usually having
some indication as to the purpose or intent of
the construct. Identifiers may be used to identify
variables, classes, constants, functions, etc.

3. operators—Symbols used for arithmetic, character,
or logical operations, such as +,-,=,!=, etc.
Notice that operators may consist of more than
one character.

4. numeric constants—Numbers such as 124,
12.35, 0.09E-23, etc. These must be
converted to a numeric format so that they can
be used in arithmetic operations, because the
compiler initially sees all input as a string of
characters. Numeric constants may be stored in a
table.

5. character constants—Single characters or strings of
characters enclosed in quotes.

6. special characters—Characters used as delimiters
such as .,(,),{,},;. These are generally
single-character words.

7. comments—Though comments must be detected
in the lexical analysis phase, they are not put out
as tokens to the next phase of compilation.

8. white space—Spaces and tabs are generally ignored
by the compiler, except to serve as delimiters in
most languages, and are not put out as tokens.

9. newline—In languages with free format, newline
characters should also be ignored, otherwise a
newline token should be put out by the lexical
scanner.

An example of C�� source input, showing the word
boundaries and token types put out is given below:

while (x33 <= 2.5 e+33 � total)
1 6 2 3 4 3 2 6

calc (x33) ; //!
2 6 2 6 6

During lexical analysis, a symbol table is constructed as
identifiers are encountered. This is a data structure
which stores each identifier once, regardless of the
number of times it occurs in the source program. It also
stores information about the identifier, such as the kind
of identifier and where associated run-time information
(such as the value assigned to a variable) is stored. This
data structure is often organized as a binary search tree,
or hash table, for efficiency in searching.

When compiling block-structured languages such
as Java, C, or Algol, the symbol table processing is
more involved. Since the same identifier can have dif-
ferent declarations in different blocks or procedures,
both instances of the identifier must be recorded.
This can be done by setting up a separate symbol
table for each block, or by specifying block scopes in
a single symbol table. This would be done during the
parse or syntax analysis phase of the compiler; the
scanner could simply store the identifier in a string
space array and return a pointer to its first character.

Numeric constants must be converted to an appro-
priate internal form. For example, the constant
“3.4e+6” should be thought of as a string of six char-
acters which needs to be translated to floating point
(or fixed point integer) format so that the computer
can perform appropriate arithmetic operations with it.
This is not a trivial problem, and most compiler writ-
ers make use of library routines to handle this.

The output of this phase is a stream of tokens, one
token for each word encountered in the input pro-
gram. Each token consists of two parts: (1) a class in-
dicating which kind of token and (2) a value indicat-

150 Compilers

ing which member of the class. The above example
might produce the following stream of tokens:

Token Token
Class Value

1 [code for while]
6 [code for (]
2 [ptr to symbol table entry for x33]
3 [code for <=]
4 [ptr to constant table entry for 2.5e+33]
3 [code for -]
2 [ptr to symbol table entry for total]
6 [code for)]
2 [ptr to symbol table entry for calc]
6 [code for (]
2 [ptr to symbol table entry for x33]
6 [code for)]
6 [code for ;]

Note that the comment is not put out. Also, some to-
ken classes might not have a value part. For example,
a left parenthesis might be a token class, with no need
to specify a value.

Some variations on this scheme are certainly possi-
ble, allowing greater efficiency. For example, when an
identifier is followed by an assignment operator, a sin-
gle assignment token could be put out. The value part
of the token would be a symbol table pointer for the
identifier. Thus the input string “x =”, would be put
out as a single token, rather than two tokens. Also,
each keyword could be a distinct token class, which
would increase the number of classes significantly, but
might simplify the syntax analysis phase.

Note that the lexical analysis phase does not check
for proper syntax. The input could be } while if
({ and the lexical phase would put out five tokens
corresponding to the five words in the input. (Pre-
sumably the errors will be detected in the syntax analy-
sis phase.)

If the source language is not case sensitive, the
scanner must accommodate this feature. For exam-
ple, the following would all represent the same key-
word: then, tHeN, Then, THEN. A preprocessor
could be used to translate all alphabetic characters to
upper (or lower) case.

Implementation techniques for the lexical phase
often involve the use of finite automata theory and/or
regular expressions. Lexical tokens in programming
languages are almost always regular languages (see
the article on Automata Theory) and do not require
a stack for processing.

There is a software tool called lex which is available
with the Unix programming environment which can
generate a lexical analyzer. The input to lex is a series

of patterns, or regular expressions, and the output is
a C program which is the lexical phase of a compiler.

III. THE SYNTAX AND SEMANTIC PHASES

The second phase of a compiler is called syntax analy-
sis. The input to this phase consists of a stream of to-
kens put out by the lexical analysis phase. They are
then checked for proper syntax, i.e., the compiler
checks to make sure the statements and expressions
are correctly formed. Some examples of syntax errors
in C�� are

x = (2+3) * 9); // mismatched
// parentheses

if x>y x = 2; // missing
// parentheses

while (x==3) do fl(); // invalid key
// word do

When the compiler encounters such an error, it should
put out an informative message for the user. At this
point, it is not necessary for the compiler to generate
an object program. A compiler is not expected to guess
the intended purpose of a program with syntax errors.
A good compiler, however, will continue scanning the
input for additional syntax errors.

The output of the syntax analysis phase (if there
are no syntax errors) could be a stream of atoms or
syntax trees. An atom is a primitive operation which is
found in most computer architectures, or which can
be implemented using only a few machine language
instructions. Each atom also includes operands, which
are ultimately converted to memory addresses on the
target machine. A syntax tree is a data structure in
which the interior nodes represent operations, and
the leaves represent operands. We will see that the
parser can be used not only to check for proper syn-
tax, but to produce output as well. This process is
called syntax directed translation. It is also possible to do
some semantic analysis during this phase of compila-
tion. Checking of data types can be accomplished at
this time, and, if necessary, calls to type conversion
routines can be inserted.

Formal methods are almost always used to con-
struct the syntax phase of the compiler. Most of the
early work in the theory of compiler design focused
on syntax analysis, resulting in a wide range of meth-
ods that can be used to construct the syntax phase
(see the article on Automata Theory). Formal gram-
mars are used not only to specify the programming
language, but also as a means of implementing the
syntax analysis phase of the compiler.

Compilers 151

A tool called yacc (yet another compiler-compiler),
which is available in the Unix programming environ-
ment, is often used to generate parsers automatically.
The input to yacc is a grammar (see the section on
Automata Theory) for the language to be imple-
mented, and the output is a parser for that language.
The grammar may be supplemented with code to de-
fine the semantics of the language and to produce
output.

A. Ambiguities in Programming Languages

Ambiguities in grammars for programming languages
should be avoided. One way to resolve an ambiguity
is to rewrite the grammar of the language so as to be
unambiguous. For example, the grammar shown be-
low is an ambiguous grammar for simple arithmetic
expressions involving only addition and multiplica-
tion. The ambiguity can be demonstrated by observ-
ing that there are two different derivation trees for
var + var * var.

1. Expr → Expr + Expr
2. Expr → Expr * Expr
3. Expr → (Expr)
4. Expr → var
5. Expr → const

This ambiguity can be eliminated by writing an equiva-
lent grammar which is not ambiguous, as shown below:

1. Expr → Expr + Term
2. Expr → Term
3. Term → Term * Factor
4. Term → Factor
5. Factor → (Expr)
6. Factor → var
7. Factor → const

A derivation tree for the input string var + var *
var is shown in Fig. 10. There is no other derivation
tree for this input string, because the grammar is not
ambiguous. Also note that in any derivation tree us-
ing this grammar, subtrees correspond to subexpres-
sions, according to the usual precedence rules. The
derivation tree in Fig. 10 indicates that the multipli-
cation takes precedence over the addition. The left
associativity rule would also be observed in a deriva-
tion tree for var + var + var.

Another example of ambiguity in programming lan-
guages is the conditional statement as defined below:

1. Stmt → IfStmt
2. IfStmt → if (Expr) Stmt
3. IfStmt → if (Expr) Stmt else Stmt

Think of this grammar as part of a larger grammar in
which the nonterminal Stmt is completely defined.
For the present example we will show derivation trees
in which some of the leaves are left as nonterminals.
Two different derivation trees for the input string if
(Expr) then if (Expr) then Stmt else
Stmt are shown in Fig. 11. In this grammar, an Expr
is interpreted as False (0) or True (nonzero), and a
Stmt is any statement, including if statements. This
ambiguity is normally resolved by informing the pro-
grammer that elses always are associated with the clos-
est previous unmatched ifs. Thus, the second deriva-
tion tree in Fig. 11 corresponds to the correct
interpretation. This grammar can be rewritten as an
equivalent grammar which is not ambiguous:

1. Stmt → IfStmt
2. IfStmt → Matched
3. IfStmt → Unmatched
4. Matched → if (Expr) Matched else

Matched
5. Matched → OtherStmt
6. Unmatched → if (Expr) Stmt
7. Unmatched → if (Expr) Matched

else Unmatched

This grammar differentiates between the two differ-
ent kinds of if statements, those with a matching else
(Matched) and those without a matching else (Un-
matched). The nonterminal OtherStmt would be
defined with rules for statements other than if state-
ments (while, expression, for, . . .). A derivation tree
for the string if (Expr) if (Expr) Oth-
erStmt else OtherStmt is shown in Fig. 12.

152 Compilers

Expr

Expr + Term

Term * FactorTerm

Factor Factor var

var var

Figure 10 The only derivation tree for var + var *
var using the nonambiguous grammar.

B. The Parsing Problem

The reader may recall, from high school days, the
problem of diagramming English sentences. The
problem is to put words together into groups and as-
sign syntactic types to them, such as noun phrase,
predicate, and prepositional phrase. An example of a

diagrammed English sentence is shown in Fig. 13.
The process of diagramming an English sentence cor-
responds to the problem a compiler must solve in the
syntax analysis phase of compilation.

The syntax analysis phase of a compiler must be
able to solve the parsing problem for the programming
language being compiled: Given a grammar, G, and a
string of input symbols, decide whether the string is
in L(G); also, determine the structure of the input
string. The solution to the parsing problem will be
“yes” or “no,” and, if “yes,” some description of the in-
put string’s structure, such as a derivation tree.

A parsing algorithm is one which solves the parsing

Compilers 153

Stmt

if (Expr) Stmt else Stmt

IfStmt

if (Expr) Stmt else Stmt

IfStmt

if (Expr) Stmt

IfStmt

Stmt

if (Expr) Stmt

IfStmt

Figure 11 Two different derivation trees for: if (Expr)
if (Expr) Stmt else Stmt.

IfStmt

if (Expr) Matched

OtherStmt OtherStmt

Matchedelse

Matched

Stmt

IfStmt

if (Expr) Stmt

Unmatched

Figure 12 A derivation tree for if (Expr) if
(Expr) OtherStmt else OtherStmt using a
nonambiguous grammar.

The boy hugged the dog of a close neighbor

Article Noun Article Noun Article Adjective Noun

NounPhrase Prep NounPhrase

Subject NounPhrase PrepositionalPhase

 NounPhrase

 Verb Directobject

 Predicate

 Sentence

Figure 13 Diagram of an English sentence.

problem for a particular class of grammars. A good pars-
ing algorithm will be applicable to a large class of gram-
mars and will accommodate the kinds of rewriting rules
normally found in grammars for programming lan-
guages. For context-free grammars, there are two kinds
of parsing algorithms—bottom up and top down. These
terms refer to the sequence in which the derivation tree
of a correct input string is built. A parsing algorithm is
needed in the syntax analysis phase of a compiler.

There are parsing algorithms which can be applied
to any context-free grammar, employing a complete
search strategy to find a parse of the input string. These
algorithms are generally considered unacceptable since
they are too slow; they cannot run in “polynomial time.”

IV. PARSING TOP DOWN

In a top-down parsing algorithm, grammar rules are
applied in a sequence which corresponds to a general
top-down direction in the derivation tree. For exam-
ple, consider the grammar:

1. S → a S b
2. S → b A c
3. A → b S
4. A → a

A derivation tree for the input string abbbaccb is
shown in Fig. 14. A parsing algorithm will read one
input symbol at a time and try to decide, using the
grammar, whether the input string can be derived. A
top-down algorithm will begin a derivation with the
starting nonterminal and try to decide which rule of
the grammar should be applied. In the example of
Fig. 14, the algorithm is able to make this decision by
examining a single input symbol and comparing it
with the first symbol on the right side of the rules. Fig-
ure 15 shows the sequence of events, as input symbols
are read, in which the numbers in circles indicate
which grammar rules are being applied, and the un-
derscored symbols are the ones which have been read
by the parser. Careful study of Figs. 14 and 15 reveals
that this sequence of events corresponds to a top-
down construction of the derivation tree.

Not all context-free grammars can be parsed top
down; however, programming languages are often de-
fined in such a way that it is fairly easy to find a gram-
mar for the language which can be parsed top down
(this property is called LL in the literature).

As an example, consider the following grammar
for statements in a typical programming language (as-
sume that expressions are defined previously, as Expr,

and that a StmtList is a sequence of zero or more
statements):

1. Stmt → var = Expr ;
2. Stmt → if (Expr) Stmt
3. Stmt → while (Expr) Stmt
4. Stmt → { StmtList }
5. StmtList → Stmt StmtList
6. StmtList → �

We wish to see whether the following string is a
valid statement as defined by the grammar:

{ if (Expr) var = Expr ;
while (Expr) var = Expr;

}

The derivation is straightforward because the right
side of each rule in the grammar begins with a ter-
minal symbol, making it easy to decide which rule to
apply at each step. The result is shown below:

Stmt ⇒ { StmtList } ⇒ { Stmt Stmt }
➃
⇒ { if (Expr) Stmt Stmt }
➁
⇒ { if (Expr) var = Expr ;
� Stmt }

⇒ { if (Expr) var = Expr ;
➂ while (Expr) Stmt }

⇒ { if (Expr) var = Expr ;
� while (Expr) var = Expr ; }

154 Compilers

a S b

S

b A

a

c

b S

b A c

Figure 14 A derivation tree for abbbaccb.

There is a well-known parsing algorithm called re-
cursive descent, which implements a top-down parse
of any input string. The algorithm consists of a func-
tion for each nonterminal symbol in the grammar.
The purpose of that function is to scan as many input
symbols as necessary to find an example of the cor-
responding nonterminal. The function is written di-
rectly from the grammar rules which define its non-
terminal symbol; it will read an input symbol for each
terminal symbol in the rule, and call a function for
each nonterminal symbol in the rule. As an example,
the function for the nonterminal Stmt is shown be-
low, using C�� as the implementation language.

bool Stmt ()
// Precondition: The first symbol in a
// Stmt has been read into inp
// Postcondition: If the input
// constitutes a valid Stmt, all the
// symbols in the Stmt will be read,
// and inp will contain the next input
// symbol, and a true value is returned.
// Otherwise a false value is returned.

{ if (inp==Var) // rule 1
{ cin >> inp; // read past

// the var
if (inp== ‘=’) // check for
cin >> inp; // a ‘=’

else return
false;

if (!Expr()) // scan for
return false; // an Expr

if (inp==’;’) // check for
cin >> inp; // a ‘;’

else return
false;

return true; // found a
// complete
// Stmt

}
if (inp==If) // rule 2

{ cin >> inp; // read past
// the if

if (inp==’(‘) // check for
cin >> inp; // a ‘(‘

else return
false;

if (!Expr()) // scan for
return false; // an Expr

if (inp==’)’) // check for
cin >> inp; // a ‘)’

else return
false;

if (!Stmt()) // scan for
return false; // a Stmt

return true; // found a
// complete
// Stmt

}
if (inp==While) // rule 3
{ cin >> inp; // read past

// the while
if (inp==’(‘) // check for
cin >> inp; // a ‘(‘

else return
false;

if (!Expr()) // scan for
return false; // an Expr

if (inp==’)’) // check for
cin >> inp; // a ‘)’

else return false;
if (!Stmt()) // scan for
return false; // a Stmt

return true; // found a
// complete
// Stmt

}
if (inp==’{‘) // rule 4
{ cin >> inp; // read past

// the ‘{‘
if // scan for a
(!StmtList()) // StmtList
return false;

if (inp==’}’) // check for
cin >> inp; // a ‘}’
else return
false;

return true; // found a
// complete
// Stmt

}
return false; // no rules

// apply,
// could not
// find a
// Stmt

}

Compilers 155

1

S aSb abAcb abbScb abbbAccb abbbaccb

2 3 2 4

Figure 15 Sequence of events in a top-down parse.

Type checking and other semantics can then be added
to these functions. For example, they could put out
atoms during the parse, or build a syntax tree as the
rules of the grammar are applied.

V. PARSING BOTTOM UP

A. Shift-Reduce Parsing

A bottom-up parsing algorithm is one which applies
grammar rules in a sequence that corresponds to an
upward direction in a derivation tree. Most bottom-up
parsing algorithms use a technique called shift-reduce
parsing. A stack is used to store input symbols and
grammar symbols. A shift operation transfers an input
symbol from the input string to the top of the stack,
and a reduce operation replaces 0 or more symbols on
top of the stack with a nonterminal symbol. One way
to implement shift-reduce parsing is with tables that
determine whether to shift or reduce, and which gram-
mar rule to reduce. This method makes use of two ta-
bles to control the parser. The first table, called the ac-
tion table, determines whether a shift or reduce is to be
invoked. If it specifies a reduce, it also indicates which
grammar rule is to be reduced. The second table, called
a goto table, indicates which stack symbol is to be pushed
on the stack after a reduction. A shift action is imple-
mented by a push operation followed by an advance in-
put operation. A reduce action must always specify the
grammar rule to be reduced. The reduce action is im-
plemented by a Replace operation in which stack sym-
bols on the right side of the specified grammar rule are
replaced by a stack symbol from the goto table (the in-
put pointer is retained). The symbol pushed is not nec-
essarily the nonterminal being reduced, as shown be-
low. In practice, there will be one or more stack symbols
corresponding to each nonterminal.

The columns of the goto table are labeled by
nonterminals, and the the rows are labeled by stack
symbols. A cell of the goto table is selected by choos-
ing the column of the nonterminal being reduced
and the row of the stack symbol just beneath the
handle.

For example, suppose we have the following stack
and input configuration:

Stack Input

ab↵

in which the bottom of the stack is to the left. The ac-
tion shift will result in the following configuration:

Stack Input

b↵

The a has been shifted from the input to the stack.
Suppose, then, that in the grammar, rule 7 is:

7. B →Sa

Select the row of the goto table labeled �, and the
column labeled B. If the entry in this cell is push X,
then the action reduce 7 would result in the follow-
ing configuration:

Stack Input

b↵

An LR parsing algorithm is one which finds a Right-
most derivation when scanning from the Left. Figure
16 shows the LR parsing tables for the nonambiguous
grammar for arithmetic expressions involving only ad-
dition and multiplication shown below. The stack sym-
bols label the rows, and the input symbols label the
columns of the action table. The columns of the goto
table are labeled by the nonterminal being reduced.
The stack is initialized with a � symbol, and blank
cells in the action table indicate syntax errors in the
input string. Figure 17 shows the sequence of config-
urations which would result when these tables are
used to parse the input string (var+var)*var.

Expr → Expr + Term
Expr → Term
Term → Term * Factor
Term → Factor
Factor → (Expr)
Factor → var

The operation of the LR parser can be described
as follows:

1. Find the action corresponding to the current
input and the top stack symbol.

2. If that action is a shift action:
a. Push the input symbol onto the stack.
b. Advance the input pointer.

3. If that action is a reduce action:
a. Find the grammar rule specified by the reduce

action.
b. The symbols on the right side of the rule

should also be on the top of the stack—pop
them all off the stack.

c. Use the nonterminal on the left side of the
grammar rule to indicate a column of the goto
table, and use the top stack symbol to indicate

156 Compilers

�S

�Sa

�X

a row of the goto table. Push the indicated
stack symbol onto the stack.

d. Retain the input pointer.
4. If that action is blank, a syntax error has been

detected.
5. If that action is Accept, terminate.
6. Repeat from step 1.

There are three principle methods for constructing
the LR parsing tables. In order from simplest to most
complex or general, they are called: simple LR (SLR),
look ahead LR (LALR), and canonical LR (LR). SLR is
the easiest method to implement, but works for a small
class of grammars. LALR is more difficult and works on
a slightly larger class of grammars. LR is the most gen-
eral, but still does not work for all unambiguous con-
text free grammars. In all cases, they find a rightmost

derivation when scanning from the left (hence LR).
These methods are beyond the scope of this article, but
are described in Parsons (1992) and Aho (1986).

B. Overview of yacc

For many grammars, the LR parsing tables can be
generated automatically from the grammar. One of
the most popular software systems that does this is
available in the Unix programming environment; it is
called yacc (yet another compiler-compiler). A
compiler-compiler is a program which takes as input the
specification of a programming language (in the form
of a grammar), and produces as output a compiler for
that language. By itself, yacc is really just a parser gen-
erator yielding a program which checks for syntax,

Compilers 157

∆

∆

Action Table

* () var+

shift +

reduce 1

reduce 3

shift +

reduce 5

reduce 2

reduce 4

reduce 6

shift *

reduce 3

reduce 5

shift *

reduce 4

reduce 6

shift (

shift (

reduce 1

reduce 3

shift)

reduce 5

reduce 2

reduce 4

push Expr1

Expr

push Term2

push Term2

push Term1

Term

push Factor4

push Expr5 push Factor4

push Factor4

push Factor3

Initial
stack

Factor

reduce 6

reduce 1

Accept

reduce 3

reduce 5

reduce 2

reduce 4

reduce 6

shift var

shift var

shift var

shift var

shift (

shift (

Expr1

Term1

Factor3

(

Expr5

)

+

Term2

*

Factor4

var

∆

Expr1

Term1

Factor3

(

Expr5

)

+

Term2

*

Factor4

var

Goto Table

Figure 16 Action and goto tables to parse simple arithmetic expressions.

but since it is possible for the user to augment it with
additional features, it can be used to generate a com-
plete compiler. An available public domain version of
yacc is called bison. There are also personal computer
versions of yacc which use Pascal as a base language
instead of C.

yacc generates a C function named yyparse(), which

is stored in a file named y.tab.c. This function calls a
function named yylex() whenever it needs an input
token. The yylex() function may be written by the
user and included as part of the yacc specification, or
it may be generated by the lex utility. A diagram show-
ing the flow of data needed to generate and compile
software is shown in Fig. 18. It assumes that yylex() is

158 Compilers

Stack Input Action Goto

∇ (var+var)*var

shift (

∇ (var+var)*var ↵
shift var

∇ (var +var)*var ↵
reduce 6 push Factor4

∇ (Factor4 +var)*var ↵
reduce 4 push Term2

∇ (Term2 +var)*var ↵
reduce 2 push Expr5

∇ (Expr5 +var)*var ↵
shift +

∇ (Expr5+ var)*var ↵
shift var

∇ (Expr5+var)*var ↵
reduce 6 push Factor4

∇ (Expr5+Factor4)*var ↵
reduce 4 push Term1

∇ (Expr5+Term1)*var ↵
reduce 1 push Expr5

∇ (Expr5)*var ↵
shift)

∇ (Expr5) *var ↵
reduce 5 push Factor4

∇ Factor4 *var ↵
reduce 4 push Term2

∇ Term2 *var ↵
shift *

∇ Term2* var ↵
shift var

∇ Term2*var ↵
reduce 6 push Factor3

∇ Term2*Factor3 ↵
reduce 3 push Term2

∇ Term2 ↵
reduce 2 push Expr1

∇ Expr1 ↵
Accept

Figure 17 Sequence of configurations when parsing (var+var)*var.

being generated by lex and that definitions needed in
both yyparse() from yacc and yylex() from lex
are stored in the header file y.tab.h.

C. Structure of the yacc Source File

The input to yacc is called the yacc source file. It con-
sists of three parts, which are separated by the %%
delimiter:

Declarations
%%
Rules
%%
Support Routines

The Declarations section contains declarations of
token names, stack type, and precedence information
which may be needed by yacc. It also may contain pre-
processor statements (#include or #define) and dec-
larations to be included in the output file, y.tab.c.

The Rules section is the grammar for the language
being specified, such as Java. This is the most important
part of the yacc source file. Each rule is of the form:

nonterminal: � {action}
|	 {action}
|
 {action}
.
.
.
;

where �, 	, and
 are definitions of the nonterminal.
The vertical bar designates alternative definitions for a
non-terminal, as in Backus–Naur form (BNF). An action
may be associated with each of the alternatives. This ac-
tion is simply a C statement which is invoked during the
parsing of an input string when the corresponding gram-
mar rule is reduced. The rules may be written in free
format, and each rule is terminated with a semicolon.

The third section of the yacc source file contains
support routines, i.e., C functions which could be
called from the actions in the Rules section. For ex-
ample, when processing an assignment statement, it
may be necessary to check that the type of the ex-
pression matches the type of the variable to which it
is being assigned. This could be done with a call to a
type-checking function in the third section of the yacc
source file.

VI. CODE GENERATION

A. Introduction to Code Generation

Up to this point we have ignored the architecture of
the machine for which we are building the compiler,
i.e., the target machine. By architecture, we mean the
definition of the computer’s central processing unit
as seen by a machine language programmer. Specifi-
cations of instruction-set operations, instruction for-
mats, addressing modes, data formats, CPU registers,
input/output instructions, etc., all make up what is
sometime called the conventional machine language ar-
chitecture (to distinguish it from the microprogram-
ming level architecture which many computers have).
Once these are all clearly and precisely defined, we
can complete the compiler by implementing the code
generation phase. This is the phase which accepts as in-
put the syntax trees or stream of atoms as put out by
the syntax phase, and produces, as output, the object
language program in binary coded instructions in the
proper format.

The primary objective of the code generator is to con-
vert atoms or syntax trees to instructions. In the
process, it is also necessary to handle register alloca-
tion for machines that have several general purpose
CPU registers. Label atoms must be converted to mem-
ory addresses. For some languages, the compiler has
to check data types and call the appropriate type con-
version routines if the programmer has mixed data
types in an expression or assignment.

Note that if we are developing a new computer, we
don’t need a working model of that computer in or-
der to complete the compiler; all we need are the

Compilers 159

yacc source

y.tab.c

y.tab.o

lex source

lex.yy.c

lex.yy.o

a.out

cc (ld)

cc –ccc –c

lexyacc

#include "y.tab.h"

y.tab.h

Figure 18 Generation and compilation of software using lex
and yacc.

specifications, or architecture, of that computer. Many
designers view the construction of compilers as made
up of two logical parts—the front end and the back
end. The front end consists of lexical and syntax analy-
sis and is machine-independent. The back end con-
sists of code generation and optimization and is very
machine-dependent, consequently this section com-
mences our discussion of the back end, or machine-
dependendent, phases of the compiler.

B. Converting Atoms to Instructions

If we temporarily ignore the problem of forward ref-
erences (of Jump or Branch instructions), the process
of converting atoms to instructions is relatively sim-
ple. For the most part all we need is some sort of case,
switch, or multiple destination branch based on the
class of the atom being translated. Each atom class
would result in a different instruction or sequence of
instructions. If the CPU of the target machine re-
quires that all arithmetic be done in registers, then an
example of a translation of an ADD atom would be as
shown, below, in Fig. 19; i.e., an ADD atom is trans-
lated into an LOD (load into register) instruction, fol-
lowed by an ADD instruction, followed by an STO
(store register to memory) instruction.

Most of the atom classes would be implemented in
a similar way. Conditional branch atoms (called TST
atoms in our examples) would normally be imple-
mented as a Load, Compare, and Branch, depending
on the architecture of the target machine. The MOV
(move data from one memory location to another)
atom could be implemented as a MOV (Move) in-
struction, if permitted by the target machine archi-
tecture; otherwise it would be implemented as a Load
followed by a Store.

Operand addresses which appear in atoms must be
appropriately coded in the target machine’s instruc-
tion format. For example, many target machines re-
quire operands to be addressed with a base register or
data segment register and an offset from the contents
of that register. If this is the case, the code generator
must be aware of the presumed contents of the base
register, and compute the offset so as to produce the
desired operand address. For example, if we know that

a particular operand is at memory location 1E (hex),
and the contents of the base register is 10 (hex), then
the offset would be 0E, because 10 + 0E = 1E. In
other words, the contents of the base register, when
added to the offset, must equal the operand address.

C. Single Pass versus Multiple Passes

There are several different ways of approaching the
design of the code generation phase. The difference
between these approaches is generally characterized
by the number of passes which are made over the in-
put file. For simplicity, we will assume that the input
file is a file of atoms. A code generator which scans
this file of atoms once is called a single pass code gen-
erator, and a code generator which scans it more than
once is called a multiple pass code generator.

The most significant problem relevant to deciding
whether to use a single or multiple pass code genera-
tor has to do with forward jumps. As atoms are en-
countered, instructions can be generated, and the
code generator maintains a memory address counter,
or program counter. When a Label atom is encoun-
tered, a memory address value can be assigned to that
Label atom (a table of labels is maintained, with a
memory address assigned to each label as it is de-
fined). If a Jump atom is encountered with a destina-
tion that is a higher memory address than the Jump
instruction (i.e., a forward jump), the label to which
it is jumping has not yet been encountered, and it will
not be possible to generate the Jump instruction com-
pletely at this time. An example of this situation is
shown, below, in Fig. 20 in which the jump to Label
L1 cannot be generated because at the time the JMP
atom is encountered the code generator has not en-
countered the definition of the Label L1, which will
have the value 9.

A JMP atom results in a CMP (Compare instruction)
followed by a JMP (Jump instruction) in this example.

There are two fundamental ways to resolve the
problem of forward jumps. Single pass compilers re-
solve it by keeping a table of Jump instructions which
have forward destinations. Each Jump instruction with
a forward reference is generated incompletely (i.e.,
without a destination address) when encountered,
and each is also entered into a fixup table, along with
the Label to which it is jumping. As each Label defi-
nition is encountered, it is entered into a table of La-
bels, along with its address value. When all of the
atoms have been read, all of the Label atoms will have
been defined, and, at this time, the code generator
can revisit all of the Jump instructions in the Fixup

160 Compilers

(ADD, A, B, T1) → LOD R1,A

ADD R1,B

STO R1,T1

Figure 19 Translation of an ADD atom to instructions.

table and fill in their destination addresses. This is
shown in Fig. 21, below, for the same atom sequence
shown in Fig. 20. Note that when the (JMP, L1) atom
is encountered, the Label L1 has not yet been de-
fined, so the location of the Jump (8) is entered into
the Fixup table. When the (LBL, L1) atom is en-
countered, it is entered into the Label table, because
the target machine address corresponding to this La-
bel (9) is now known. When the end of file (EOF) is
encountered, the destination of the Jump instruction
at location 8 is changed, using the Fixup table and
the Label table, to 9.

Multiple pass code generators do not require a
Fixup table. In this case, the first pass of the code gen-
erator does nothing but build the table of Labels,
storing a memory address for each Label. Then, in
the second pass, all the Labels will have been defined,
and each time a Jump is encountered its destination
Label will be in the table, with an assigned memory
address. This method is shown in Fig. 22 which, again,
uses the atom sequence given in Fig. 20.

Note that, in the first pass, the code generator
needs to know how many machine language instruc-
tions correspond to an atom (three to an ADD atom
and two to a JMP atom), though it does not actually

generate the instructions. It can then assign a mem-
ory address to each Label in the Label table.

A single pass code generator could be implemented
as a subroutine to the parser. Each time the parser
generates an atom, it would call the code generator
to convert the atom to machine language and put out
the instruction(s) corresponding to that atom. A mul-
tiple pass code generator would have to read from a
file of atoms, created by the parser.

VII. OPTIMIZATION

A. Introduction to Optimization

In recent years, most research and development in
the area of compiler design has been focused on the
optimization phases of the compiler. Optimization is
the process of improving generated code so as to re-
duce its potential running time and/or reduce the
space required to store it in memory. Software de-
signers are often faced with decisions which involve a
space-time trade-off—i.e., one method will result in a
faster program, another method will result in a pro-
gram which requires less memory, but no method will

Compilers 161

Atom Location Instruction

(ADD, A, B, T1) 4 LOD R1,A

5 ADD R1,B

6 STO R1,T1

(JMP,L1) 7 CMP 0,0,0

8 JMP ?

(LBL,L1) (L1 = 9)

Figure 20 Problem in generating a jump to a forward destination.

Fixup Table Label Table

Atom Loc Instruction Loc Label Label Value

(ADD,A,B,T1) 4 LOD R1,A

5 ADD R1,B

6 STO R1,T1

(JMP,L1) 7 CMP 0,0,0

8 JMP 0 8 L1

(LBL,L1) L1 9

...

EOF

8 JMP 9

Figure 21 Use of the fixup table and label table in a single pass code generator for forward jumps.

do both. However, many optimization techniques are
capable of improving the object program in both time
and space, which is why they are employed in most
modern compilers. This results from either the fact
that much effort has been directed toward the devel-
opment of optimization techniques, or from the fact
that the code normally generated is very inefficient
and easily improved.

The word “optimization” is possibly a misnomer,
since the techniques that have been developed simply
attempt to improve the generated code, and few of
them are guaranteed to produce, in any sense, opti-
mal (the most efficient possible) code. Nevertheless,
the word optimization is the one that is universally
used to describe these techniques, and we will use it
also. Some of these techniques (such as register allo-
cation) are normally handled in the code generation
phase and will not be discussed here.

Optimization techniques can be separated into two
general classes: local and global. Local optimization
techniques normally are concerned with transforma-
tions on small sections of code (involving only a few
instructions) and generally operate on the machine
language instructions which are produced by the code
generator. On the other hand, global optimization tech-
niques are generally concerned with larger blocks of
code and will be applied to the intermediate form,
atom strings, or syntax trees put out by the parser.
Both local and global optimization phases are op-
tional, but may be included in the compiler as shown

in Fig. 23, i.e., the output of the parser is the input to
the global optimization phase, the output of the global
optimization phase is the input to the code generator,
the output of the code generator is the input to the
local optimization phase, and the output of the local
optimization phase is the final output of the compiler.
The three compiler phases shown in Fig. 23 make up
the back end of the compiler discussed in Section VI,
though the global optimization phase could be in-
cluded in the front end.

In this discussion on improving performance, we
stress the single most important property of a com-
piler—that it preserve the semantics of the source
program. In other words, the purpose and behavior
of the object program should be exactly as specified
by the source program for all possible inputs. There
are no conceivable improvements in efficiency which
can justify violating this promise.

Having made this point, there are frequently situa-
tions in which the computation specified by the source
program is ambiguous or unclear for a particular
computer architecture. For example, in the expres-
sion (a + b) * (c + d) the compiler will have
to decide which addition is to be performed first (as-
suming that the target machine has only one Arith-
metic and Logic Unit). Most programming languages
leave this unspecified, and it is entirely up to the com-
piler designer, so that different compilers could eval-
uate this expression in different ways. In most cases it
may not matter, but if any of a, b, c, or d happen

162 Compilers

Begin First Pass: Label Table

Atom Loc Instruction Label Value

(ADD,A,B,T1) 4-6

(JMP,L1) 7-8

(LBL,L1) L1 9

...

EOF

Begin Second Pass:

Atom Loc Instruction

(ADD,A,B,T1) 4 LOD R1,A

5 ADD R1,B

6 STO R1,T1

(JMP,L1) 7 CMP 0,0

8 JMP 9

(LBL,L1)

...

EOF

Figure 22 Forward jumps handled by a multiple pass code generator.

to be function calls which produce output or side ef-
fects, it may make a significant difference. Languages
such as C, Lisp, and APL, which have assignment op-
erators, yield an even more interesting example:

a = 2; b = (a*5 + (a = 3));

Some compiler writers feel that programmers who
use ambiguous expressions such as these deserve what-
ever the compiler may do to them.

A fundamental question of philosophy is inevitable
in the design of the optimization phases. Should the
compiler make extensive transformations and im-
provements to the source program, or should it re-
spect the programmer’s decision to do things that are
inefficient or unnecessary? Most compilers tend to as-
sume that the average programmer does not inten-
tionally write inefficient code, and will perform the
optimizing transformations. A sophisticated program-
mer or hacker who, in rare cases, has a reason for
writing the code in that fashion can usually find a way
to force the compiler to generate the desired output.

One significant problem for the user of the com-
piler, introduced by the optimization phases, has to
do with debugging. Many of the optimization tech-
niques will remove unnecessary code and move code
within the object program to an extent that run-time
debugging is affected. The programmer may attempt
to step through a series of statements which either
doesn’t exist, or occur in an order different from what
was originally specified by the source program.

To solve this problem, many compilers include a
switch with which optimization may be turned on or

off. When debugging new software, the switch is off,
and when the software is fully tested, the switch can
be turned on to produce an efficient version of the
program for distribution. It is essential, however, that
the optimized version and the nonoptimized version
be functionally equivalent (i.e., given the same inputs,
they should produce identical outputs). This is one of
the more difficult problems that the compiler de-
signer must deal with.

Another solution to this problem, used by IBM in
the early 1970s for its PL/1 compiler, is to produce
two separate compilers. The checkout compiler was de-
signed for interactive use and debugging. The opti-
mizing compiler contained extensive optimization, but
was not amenable to the testing and development of
software. Again, the vendor (IBM in this case) had to
be certain that the two compilers produced function-
ally equivalent output.

B. Global Optimization

As mentioned previously, global optimization is a trans-
formation on the output of the parser. Global opti-
mization techniques will normally accept, as input, the
intermediate form as a sequence of atoms (three-
address code) or syntax trees. There are several global
optimization techniques in the literature—more than
we can hope to cover in detail. Therefore, we will look
at the optimization of common subexpressions in ba-
sic blocks in some detail, and then briefly survey some
of the other global optimization techniques.

A few optimization techniques, such as algebraic
optimizations, can be considered either local or
global. Since it is generally easier to deal with atoms
than with instructions, we will include algebraic tech-
niques in this section.

1. Basic Blocks and DAG

The sequence of atoms put out by the parser is clearly
not an optimal sequence; there are many unnecessary
and redundant atoms. For example, consider the
C�� statement:

a = (b + c) * (b + c) ;

The sequence of atoms put out by the parser could
conceivably be as shown in Fig. 24.

Every time the parser finds a correctly formed ad-
dition operation with two operands it blindly puts out
an ADD atom, whether or not this is necessary. In the
above example, it is clearly not necessary to evaluate
the sum b + c twice. In addition, the MOV atom is

Compilers 163

Intermediate Form
(atoms from the parser)

Global Optimization

Improved Intermediate Form
(atoms)

Code Generator

Local Optimization

Object Code (instructions)

Improved Object Code
(instructions)

Figure 23 Sequence of optimization phases in a compiler.

not necessary because the MUL atom could store its
result directly into the variable a. The atom sequence
shown in Fig. 25 is equivalent to the one given in Fig.
24, but requires only two atoms because it makes use
of common subexpressions and it stores the result in
the variable a, rather than a temporary location.

In this section, we will demonstrate some techniques
for implementing these optimization improvements to
the atoms put out by the parser. These improvements
will result in programs which are both smaller and
faster, i.e., they optimize in both space and time.

It is important to recognize that these optimiza-
tions would not have been possible if there had been
intervening Label or Jump atoms in the parser out-
put. For example, if the atom sequence had been as
shown in Fig. 26, we could not have optimized to the
sequence of Fig. 25, because there could be atoms
which jump into this code at Label L1, thus altering
our assumptions about the values of the variables and
temporary locations. (The TST atom compares b and
c for equality and branches to label L3 if true. The
atoms in Figure 26 do not result from the given C��
statement, and the example is, admittedly, artificially
contrived to make the point that Label atoms will af-
fect our ability to optimize.)

By the same reasoning, Jump or Branch atoms will
interfere with our ability to make these optimizing
transformations to the atom sequence. In Fig. 26 the
MUL atom cannot store its result into the variable a,
because the compiler does not know whether the con-
ditional branch will be taken.

The optimization techniques which we will demon-
strate can be effected only in certain subsequences of
the atom string, which we call basic blocks. A basic
block is a section of atoms which contains no Label
or branch atoms (i.e., LBL, TST, JMP). In Fig. 27, we
show that the atom sequence of Fig. 26 is divided into
three basic blocks.

Each basic block is optimized as a separate entity.
There are more advanced techniques which permit op-
timization across basic blocks, but they are beyond the
scope of this article. We use a Directed Acyclic Graph
(DAG) to implement this optimization. The DAG is di-
rected because the arcs have arrows indicating the di-
rection of the arcs, and it is acyclic because there is no
path leading from a node back to itself (i.e., it has no
cycles). The DAG is similar to a syntax tree, but it is not
truly a tree because some nodes may have more than
one parent and also because the children of a node
need not be distinct. An example of a DAG, in which
interior nodes are labeled with operations, and leaf
nodes are labeled with operands, is shown in Fig. 28.

Each of the operations in Fig. 28 is a binary oper-
ation (i.e., each operation has two operands), conse-
quently each interior node has two arcs pointing to
the two operands. Note that in general we will distin-
guish between the left and right arc because we need
to distinguish between the left and right operands of
an operation (this is certainly true for subtraction and
division, which are not commutative operations). We
will be careful to draw the DAG so that it is always
clear which arc represents the left operand and which
arc represents the right operand. For example, in Fig.
28 the left operand of the addition labeled T3 is T2,
and the right operand is T1. Our plan is to show how
to build a DAG from an atom sequence, from which
we can then optimize the atom sequence.

We will begin by building DAG for simple arith-
metic expressions. Directed acyclic graphs can also be

164 Compilers

Figure 24 Atom sequence for a = (b + c) * (b +
c);.

(ADD, b, c, T1)

(ADD, b, c, T2)

(MUL, T1, T2, T3)

(MOV, T3,, a)

(ADD, b, c, T1)

(MUL, T1, T1, a)

Figure 25 Optimized atom sequence for a = (b + c)
* (b + c) ;.

Figure 26 Example of an atom sequence which cannot be
optimized.

(ADD, b, c, T1)

(LBL, L1)

(ADD, b, c, T2)

(MUL, T1, T2, T3)

(TST, b, c,, 1, L3)

(MOV, T3,, a)

(ADD, b, c, T1) Block 1

(LBL, L1)

(ADD, b, c, T2) Block 2

(MUL, T1, T2, T3)

(TST, b, c,, 1, L3)

(MOV, T3,, a) Block 3

Figure 27 Basic blocks contain no LBL, TST, or JMP atoms.

used to optimize complete assignment statements and
blocks of statements, but we will not take the time to
do that here. To build a DAG, given a sequence of
atoms representing an arithmetic expression with bi-
nary operations, we use the following algorithm:

1. Read an atom.
2. If the operation and operands match part of the

existing DAG (i.e., if they form a sub-DAG), then
add the result Label to the list of Labels on the
parent and repeat from step 1. Otherwise,
allocate a new node for each operand that is not

already in the DAG, and a node for the
operation. Label the operation node with the
name of the result of the operation.

3. Connect the operation node to the two operands
with directed arcs, so that it is clear which
operand is the left and which is the right.

4. Repeat from step 1.

As an example, we will build a DAG for the ex-
pression a * b + a * b + a * b. This ex-
pression clearly has some common subexpressions,
which should make it amenable for optimization. The
atom sequence as put out by the parser would be:

(MUL, a, b, T1)
(MUL, a, b, T2)
(ADD, T1, T2, T3)
(MUL, a, b, T4)
(ADD, T3, T4, T5)

We follow the algorithm to build the DAG, as shown
in Fig. 29, in which we show how the DAG is con-
structed as each atom is processed.

The DAG is a graphical representation of the com-
putation needed to evaluate the original expression
in which we have identified common subexpressions.
For example, the expression a * b occurs three
times in the original expression a * b + a *
b + a * b. The three atoms corresponding to these
subexpressions store results into T1, T2, and T4.

Compilers 165

Figure 28 Example of a DAG.

a b

*

+

+

T1

T2

T3

a b

* T1

 (MUL, a, b, T1)

a b

* T1.2

 (MUL, a, b, T2)

+

a b

* T1.2

T3

(ADD, T1, T2, T3)

+

a b

* T1.2.4

T3

(MUL, a, b, T4)

(ADD, T3, T4, T5)

+

a b

* T1.2.4

T3

+ T5

Figure 29 Building the DAG for a * b + a * b + a * b.

Since the computation need be done only once, these
three atoms are combined into one node in the DAG
labeled T1.2.4. After that point, any atom which
uses T1, T2, or T4 as an operand will point to
T1.2.4.

We are now ready to convert the DAG to a basic
block of atoms. The algorithm given below will gen-
erate atoms (in reverse order) in which all common
subexpressions are evaluated only once:

1. Choose any node having no incoming arcs
(initially there should be only one such node,
representing the value of the entire expression).

2. Put out an atom for its operation and its
operands.

3. Delete this node and its outgoing arcs from
the DAG.

4. Repeat from step 1 as long as there are still
operation nodes remaining in the DAG.

This algorithm is demonstrated in Fig. 30, in which
we are working with the same expression that gener-
ated the DAG of Fig. 29. The DAG and the output are
shown for each iteration of the algorithm (there are
three iterations).

A composite node, such as T1.2.4, is referred to
by its full name rather than simply T1 or T2 by con-
vention, and to help check for mistakes. The reader
should verify that the three atoms generated in Fig.
30 actually compute the given expression, reading the
atoms from bottom to top. We started with a string of
five atoms, and have improved it to an equivalent
string of only three atoms. This will result in signifi-
cant savings in both run time and space required for
the object program.

2. Other Global Optimization Techniques

We will now examine a few other common global op-
timization techniques, however, we will not go into
the implementation of these techniques.

Unreachable code is an atom or sequence of atoms
which cannot be executed because there is no way for
the flow of control to reach that sequence of atoms.
For example, in the following atom sequence the
MUL, SUB, and ADD atoms will never be executed
because of the unconditional jump preceding them.

(JMP, L1)
(MUL, a, b, T1)
(SUB, T1, c, T2) ⇒ (JMP, L1)
(ADD, T2, d, T3) (LBL, L2)
(LBL, L2)

Thus, the three atoms following the JMP and pre-
ceding the LBL can all be removed from the program
without changing the purpose of the program. In gen-
eral, a JMP atom should always be followed by a LBL
atom. If this is not the case, simply remove the inter-
vening atoms between the JMP and the next LBL.

Data flow analysis is a formal way of tracing the way
information about data items moves through the pro-
gram and is used for many optimization techniques.
Though data flow analysis is beyond the scope of this
article, we will look at some of the optimizations that
can result from this kind of analysis.

One such optimization technique is elimination of
dead code, which involves determining whether com-
putations specified in the source program are actually
used and affect the program’s output. For example,

166 Compilers

(ADD, T3, T1.2.4, T5)

+

a b

* T1.2.4

T3

+ T5

+

a b

*
T1.2.4

T3

(ADD, T1.2.4, T1.2.4, T3)

a b

*
T1.2.4

(MUL, a,b, T1.2.4)

Figure 30 Generating atoms from the DAG for a * b +
a * b + a * b.

the program in Fig. 31 contains an assignment to the
variable a which has no effect on the output since a
is not used subsequently, but prior to another assign-
ment to the variable a. The first assignment is dead
code and can be removed from the program.

Another optimization technique which makes use
of data flow analysis is the detection of loop invari-
ants. A loop invariant is code within a loop which
deals with data values that remain constant as the
loop repeats Such code can be moved outside the
loop, causing improved run time without changing
the program’s semantics. An example of loop invari-
ant code is the call to the square root function (sqrt)
in the program of Fig. 32.

Since the value assigned to a is the same each time
the loop repeats, there is no need for it to be re-
peated; it can be done once before entering the loop
(we need to be sure, however, that the loop is certain
to be executed at least once). This optimization will
eliminate 999 unnecessary calls to the sqrt function.

The remaining global optimization techniques to
be examined in this section all involve mathematical
transformations. The reader is cautioned that their
use is not universally recommended, and it is often
possible, by employing them, that the compiler de-
signer is effecting transformations which are undesir-
able to the source programmer. For example, the
question of the meaning of arithmetic overflow is cru-
cial here. If the unoptimized program reaches an
overflow condition for a particular input, is it valid for
the optimized program to avoid the overflow? (Be
careful; most computers have run-time traps designed
to transfer control to handle conditions such as over-
flow. It could be that the programmer intended to
trap certain input conditions.) There is no right or
wrong answer to this question, but it is an important
consideration when implementing optimization.

Constant folding is the process of detecting opera-
tions on constants, which could be done at compile
time rather than run time. An example is shown in
Fig. 33 in which the value of the variable a is known

to be 6, and the value of the expression a * a is
known to be 36. If these computations occur in a
loop, constant folding can result in significant im-
provement in run time (at the expense of a little com-
pile time).

Another mathematical transformation is called re-
duction in strength. This optimization results from the
fact that certain operations require more time than
others on virtually all architectures. For example, mul-
tiplication can be expected to be significantly more
time-consuming than addition. Thus, the multiplica-
tion 2 * x is certain to be slower than the addition
x + x. Likewise, if there is an exponentiation oper-
ator, x ↑ 2 is certain to be slower than x * x.

A similar use of reduction in strength involves us-
ing the shift instructions available on most architec-
tures to speed up fixed point multiplication and divi-
sion. An integer multiplication by a positive power of
two is equivalent to a left shift, and an integer division
by a positive power of two is equivalent to a right shift.
For example, the multiplication x*8 can be done
faster simply by shifting the value of x three bit posi-
tions to the left, and the division x/32 can be done
faster by shifting the value of x five bit positions to the
right.

Our final example of mathematical transforma-
tions involves algebraic transformations using properties
such as commutativity, associativity, and the distribu-
tive property, all summarized in Fig. 34. We do not be-
lieve that these properties are necessarily true when
dealing with computer arithmetic, due to the finite
precision of numeric data. Nevertheless, they are em-
ployed in many compilers, so we give a brief discus-
sion of them here.

Though these properties are certainly true in math-
ematics, they do not necessarily hold in computer
arithmetic, which has finite precision and is subject to
overflow in both fixed-point and floating-point repre-
sentations. Thus, the decision to make use of these
properties must take into consideration the programs
which will behave differently with optimization put

Compilers 167

{

a = b + c * d; //This statement has no effect and can be removed

b = c * d / e;

c = b - 3;

a = b - c;

cout << a << b << c ;

}

Figure 31 Elimination of dead code.

into effect. At the very least, a warning to the user is
recommended for the compiler’s user manual.

The discussion of common subexpresssions above
would not have recognized any common subexpres-
sions in the following:

a = b + c;
b = c + d + b;

but by employing the commutative property, we can
eliminate an unnecessary computation of b + c:

a = b + c;
b = a + d;

A multiplication operation can be eliminated from
the expression a * c + b * c by using the dis-
tributive property to obtain (a + b) * c.

Compiler writers who employ these techniques cre-
ate more efficient programs for the large number of
programmers who want and appreciate the improve-
ments, but risk generating unwanted code for the
small number of programmers who require that alge-
braic expressions be evaluated exactly as specified in
the source program.

C. Local Optimization

In this section we discuss local optimization tech-
niques. The definition of local versus global techniques
varies considerably among compiler design textbooks.
Our view is that any optimization which is applied to
the generated code is considered local. Local opti-
mization techniques are often called peephole opti-
mization, since they generally involve transformations
on instructions which are close together in the object
program. The reader can visualize them as if peering
through a small peephole at the generated code.

There are three types of local optimization tech-
niques which will be discussed here: load/store opti-
mization, jump over jump optimization, and simple
algebraic optimization. In addition, register alloca-
tion schemes could be considered local optimization,
though they are generally handled in the code gen-
erator itself.

The parser would translate the expression a +
b - c into the following stream of atoms:

(ADD, a, b, T1)
(SUB, T1, c, T2)

The simplest code generator design as presented in
Section VI, would generate three instructions corre-
sponding to each atom: Load the first operand into a
register (LOD), perform the operation, and store the
result back to memory (STO). The code generator
would then produce the following instructions from
the atoms:

LOD R1,a
ADD R1,b
STO R1,T1 // unnecessary
LOD R1,T1 // unnecessary

168 Compilers

{

for (i=0; i<1000; i++)

{ a = sqrt (x); //loop invariant

vector[i] = i * a;

}

}

{ a = sqrt (x); //loop invariant

for (i=0; i<1000; i++)

{

vector[i] = i * a;

}

}

Figure 32 Movement of loop invariant code.

{

a = 2 * 3; //a must be 6

b = c + a * a; //a * a must be 36

}

{

a = 6;

b = c + 36;

}

Figure 33 Constant folding.

SUB R1,c
STO R1,T2

Notice that the third and fourth instructions in this
sequence are entirely unnecessary since the value be-
ing stored and loaded is already at its destination. The
above sequence of six instructions can be optimized
to the following sequence of four instructions by elim-
inating the intermediate Load and Store instructions
as shown below:

LOD R1,a
ADD R1,b
SUB R1,c
STO R1,T2

For lack of a better term, we call this a load/store opti-
mization. It is clearly machine dependent.

Another local optimization technique, which we
call a jump over jump optimization, is very common and
has to do with unnecessary jumps. Often greater effi-
ciency can be obtained by rewriting the conditional
logic. A good example of this can be found in a C��
compiler for the statement if a>b) a = b;. It
might be translated into the following stream of atoms:

(TST, a, b,, 3, L1)
(JMP, L2)
(LBL, L1)
(MOV, b,, a)
(LBL, L2)

A reading of this atom stream is “Test for a greater
than b, and if true, jump to the assignment. Other-
wise, jump around the assignment.” The reason for
this somewhat convoluted logic is that the TST atom
uses the same comparison code found in the expres-
sion. The instructions generated by the code genera-
tor from this atom stream would be:

LOD R1,a
CMP R1,b,3 // Is R1 > b?
JMP L1
CMP 0,0,0 // Unconditional

Jump
JMP L2

L1:
LOD R1,b
STO R1,a

L2:

It is not necessary to implement this logic with two
Jump instructions. We can improve this code signifi-
cantly by testing for the condition to be false rather
than true, as shown below:

LOD R1,a
CMP R1,b,4 // Is R1 � b?
JMP L1
LOD R1,b
STO R1,a

L1:

This optimization could have occurred in the in-
termediate form (i.e., we could have considered it a
global optimization), but this kind of jump over jump
can occur for various other reasons. For example, in
some architectures, a conditional jump is a “short”
jump (to a restricted range of addresses), and an un-
conditional jump is a “long” jump. Thus, it is not
known until code has been generated whether the
target of a conditional jump is within reach, or
whether an unconditional jump is needed to jump
that far.

The final example of local optimization techniques
involves simple algebraic transformations which are
machine dependent and are called simple algebraic op-
timizations. For example, the following instructions
can be eliminated:

MUL R1, 1
ADD R1, 0

because multiplying a value by 1, or adding 0 to a value,
should not change that value. (Be sure, though, that
the instruction has not been inserted to alter the con-
dition code or flags register.) In addition, the instruc-
tion (MUL R1, 0) can be improved by replacing it with
(CLR R1), because the result will always be 0 (this is
actually a reduction in strength transformation).

SEE ALSO THE FOLLOWING ARTICLES

C and C�� • COBOL • Evolutionary Algorithms • Object-
Oriented Programming • Optimization Models • Pascal •
Programming Languages Classification • User/System Inter-
face Design

Compilers 169

a + b == b + a Addition is commutative

(a + b) + c == a + (b + c) Addition is associative

a * (b + c) == a * b + a * c Multiplication distributes over addition

Figure 34 Algebraic identities.

BIBLIOGRAPHY

Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers—
Principles, techniques, and tools. Reading, MA: Addison-
Wesley.

Bergmann, S. (1994). Compiler design—Theory, tools, and exam-
ples. Dubuque, IA: Brown.

Chomsky, N. (1958). Certain formal properties of grammars.
Information and Control, 2:2.

Knuth, D. E. (1965). On the translation of languages from left
to right. Information and Control, 8:6.

Lewis, P. M., Rosenkrantz, D. J., and Stearns, R. E. Attributed
translations. Journal of Computer and System Sciences, 9:3.

Parsons, T. W. (1992). Introduction to computer construction. New
York: W. H. Freeman.

Pollack, B. W., ed. (1972). Compiler techniques. Princeton, NJ:
Auerbach.

Rosen, S., ed. (1967). Programming systems and languages. New
York: McGraw-Hill.

Sammet, J. E. (1969). Programming languages: History and fun-
damentals. Englewood Cliffs, NJ: Prentice Hall.

Wexelblat, R. L., ed. (1981). History of programming languages.
New York: Academic Press.

170 Compilers

Computer-Aided Design
George Gustav Savii
“Politehnica” University of Timisoara

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 171

I. INTRODUCTION
II. CAD SOFTWARE

III. GEOMETRIC MODELING
IV. GRAPHICS AIDS
V. GRAPHICS EDITING

VI. VISUALIZATION OF MODELS

VII. ASSEMBLY MODELING
VIII. MASS PROPERTY CALCULATIONS

IX. FINITE-ELEMENT MODELING AND ANALYSIS
X. USER INTERFACES

XI. ELECTRONIC CAD

GLOSSARY

boss As used in this article, a raised part or protrud-
ing ornament on a flat surface.

Cartesian coordinates A rectangular system of coor-
dinates to locate points in the model space.

chamfer A beveled edge or corner, usually cut at a 45
degree angle.

fillet A rounded edge or corner.
Lambert’s cosine law Relates the amount of reflected

light to the cosine of the angle between the inci-
dent ray and the surface unit normal at incidence
point.

lead time The period of time required from the de-
cision to make a product to the beginning of actual
production.

polyline A string of lines that may contain a number of
line segments and/or curve arcs connected together.

COMPUTER-AIDED DESIGN (CAD) is a process used
mainly in engineering, based on design techniques,
using computer systems, as in the creation of complex
mechanical parts and equipment, wiring diagrams,
buildings, etc. To design means to create a kind of
plan to work from when producing something (a
house, a car, a dress, an artistic unit, etc.) in order to
meet some requirements, especially functional. The
plan can contain specification of dimensions, materi-
als, and operations. Computer-aided design can be
considered any design that makes extensive use of

computer/information technology. More specifically,
CAD concerns the productivity tools that facilitate the
design process. These tools are used in both parts of
the design process: analysis and synthesis.

Design is an intelligent human information-
processing activity requiring many skills and much
knowledge. Automation of routine design tasks
increases productivity of designers and design engi-
neers, thus leaving more time for the creative activi-
ties. The ability to design in three dimensions in-
creases the designers conceptual capacity and
creativity, improves design quality, and creates a geo-
metric database useful for analysis and production
operations. Design databases can be electronically
transferred to engineering analysis and simulation
programs, which will alleviate costly testing of proto-
types, and to manufacturing, improving quality and
productivity and reducing lead time. Because elec-
tronic databases, rather than drawings, are sent to
customers and suppliers, this reduces the costs of pro-
ducing, storing, and managing blueprints and speeds
communications with customers and suppliers.

I. INTRODUCTION

A. The Design Process

The design processes are quite different, depending
on the object to be created, on the dimension and
structure of the company where the process takes

place, and the type of the design. Figure 1 presents
the structure of a typical design process. The input
data for the design process consist of functional re-
quirements and initial design specification for the
product to be created and of general and specific
knowledge. The output of the design process consists
of the final design specification. This specification is
used to analyze the design and to predict its perfor-
mance. To get more realistic results, a physical model
can be created by rapid prototyping based on CAD
data. The results of the analysis are compared to the
functional requirements and a redesign process is used
to correct the design specification. This cyclic process
continues until satisfactory performance is achieved.

B. CAD Components and Tools

Computer-aided design systems make use of a number
of procedures from software libraries to perform their
functions. The main areas that must be covered by the
software libraries are numerical methods, geometry,
graphics, interfacing, and database management.

C. History and Trends of CAD Development

The first domains of CAD in which applications were
developed were analysis using finite-elements meth-

ods, simulation of dynamic systems, and optimization.
The development of graphical display systems leads to
more graphics-oriented applications (like solid mod-
eling), with user-friendly interfaces and high-quality
visualization. Increasing the computing power of
processors made possible the integration of useful al-
gebraic manipulations, including usual databases and
spreadsheets.

At present, the large design problems require co-
operative, and perhaps distributed, design problem
solvers, as well as negotiation. Using the resources
available on the World Wide Web provides additional
challenges. Internet is changing the way professionals
collaborate CAD projects. Professionals can work as a
team and share CAD applications and documents
(models, drawings, libraries, etc.) with others, thou-
sands of miles away. CAD data can be shared in hybrid
workflows without the need for explicit translations.

The future of the CAD industry lies mainly in the
drawing automation, artificial intelligence techniques,
and extensive use of virtual environment technologies
for visualization and collaborative working.

II. CAD SOFTWARE

A. Graphics Standards
and CAD Data Exchange

There are two main standards groups specific to CAD:
for CAD systems development and for CAD data
exchange.

The standards for CAD systems development aim
to increase the portability of the CAD applications,
making them platform (hardware and operating sys-
tem) independent. The first important standards in
this category were Graphics Kernel System (GKS) and
Programmer’s Hierarchical Interactive Graphics Sys-
tem (PHIGS), describing the functional interfaces be-
tween applications and the graphical input/output
devices. Of wide use today are OpenGL and DirectX.
OpenGL is a cross-platform standard for 3-D render-
ing and 3-D hardware acceleration. OpenGL is a pro-
cedural rather than descriptive interface. DirectX pro-
vides a standard development platform for Windows
based PCs by enabling software developers to access
specialized hardware features without having to write
hardware-specific code.

The data exchange standards are intended to make
possible the exchange of graphical information be-
tween heterogeneous systems. The first important
standard in this group has been Initial Graphics Ex-
change Specification (IGES). A most complex stan-

172 Computer-Aided Design

Product
specification

Customer

Synthesis

Initial design
specification

Design

Redesign

Optimization

Design
analysis

Documentation Manufacturing

Analysis Analysis

Market
Previous
products

Figure 1 The design process.

dard is Product Data Exchange Using STEP (PDES),
which is application-oriented and contains relevant
information for the entire life cycle of a product.

For limited purposes, graphical formats native to
common applications are also used for graphical data
exchange between homogeneous/heterogeneous sys-
tems (DXF, HPGL, etc.).

B. Coordinate Systems

A coordinate system is a reference system that locates
the position of a point. For example, in the 3-D space,
a coordinate system gives a triad of numbers that lo-
cate a point in space by its distance from three fixed
planes that intersect one another. If the planes inter-
sect one another at right angles, the system is called
Cartesian orthogonal.

For special purposes, other types of 3-D systems of
coordinates can be used: oblique, spherical, and cylin-
drical. The spherical system is useful for expressing
the position of the camera (the viewpoint) with re-
spect to the scene representing a geometric model to
be visualized, using longitude and latitude.

1. Coordinate Systems in CAD Models

It is possible to define more than one coordinate sys-
tem in the space of a geometric model of a design.
The main, global system is usually called the
model/world coordinate system. This system is used to
store the geometry of the created model. For the user
to be able to create new objects in different positions
and with different orientations, new coordinate sys-
tems with arbitrary position and orientation can be
defined. These systems are usually called working/user
coordinate systems. The visualization process requires
another special coordinate system, a bi-dimensional
system, for the bi-dimensional surface of the display
or paper. This is called the screen/paper coordinate sys-
tem. In addition, coordinate systems are attached to
parts and assemblies.

2. Coordinate Transformations

The relation between the coordinates of a point in
two different systems can be obtained by coordinate
transformation. Depending on the relative position of
the two systems, there are two basic transformations:
translation and rotation. These two can be combined to
produce a complex transformation. A third transfor-
mation relates systems with different numbers of di-
mensions or the projection. For example, a projec-

tion is applied to represent a 3-D model onto a 2-D
screen.

3. Specifying Coordinates

Coordinate values can be entered in two formats: ab-
solute or relative. The absolute coordinates always have
as reference point the origin of the coordinate sys-
tem. In relative format, the coordinates are measured
from the last point entered.

C. Software Modules

The CAD software applications are usually structured
in modules corresponding to the main groups of func-
tions: draw, edit, visualization, data storage and man-
agement, system control, and special features.

The draw module enables the creation of graphical
entities: lines, circles/ellipses, arcs, text, dimensions,
symbols, etc. The edit module enables changing the ex-
isting drawing entities by applying geometric and other
types of transformations: move, duplicate/copy, erase,
scale, trim, stretch, etc. The visualization module per-
forms the display of the design model on the screen
and printing/plotting on paper. The data storage and
management module allows the user to store and man-
age drawing data. The design can be stored as a set of
files on the hard disk; these files can be manipulated
in the usual way: copied, moved, deleted, organized in
directories and subdirectories, etc. The management
of the files includes translation between different data
exchange formats. The system control module gives the
user the possibility to control how the CAD applica-
tion works, allowing him/her to set the working envi-
ronment suiting his/her needs. For example, the user
can choose the units of measure used, the style for
lines and dimensions, screen geometric and color res-
olutions, etc. The working environment can be saved
as a named prototype (template) model/drawing. The
special features are related to layer creation and man-
agement, links to spreadsheets and databases, inser-
tion of new, user developed functions, etc.

Modern CAD applications have modules or
connections to modules for engineering analysis
(computer-aided engineering, CAE) and modules for
manufacturing (computer-aided manufacturing,
CAM). This makes the way from model to material
product very short: an engineer can model a machine
part using CAD modules, then the solid model is trans-
ferred into a CAE module for finite-element analysis;
if the results are acceptable, the model is transferred
into a CAM module that produces a sequence of

Computer-Aided Design 173

commands (a computer numerical control (CNC)
program) for the machine-tool.

D. Add-On Programs

To enhance the power of CAD software, there are a
number of separate programs available, which work
as an extension to accomplish specific tasks. For ex-
ample, an architectural add-on program brings a rich
library of building entities like doors, windows, and
special functions, such as for an automatic creation of
the roof. A piping design program includes special
features to draw pipes and check for interference.

By using powerful specialized modules, general-
purpose CAD applications can become specialized
systems. Typical examples are the Geographical In-
formation Systems (GIS).

CAD applications have been developed in a wide
range of domains. On the market there are also sys-
tems for computer-aided design of printed circuit
boards, integrated circuits (especially VLSI), commu-
nication networks, power networks, complex mole-
cules, drugs, fashion, etc.

E. Symbol Libraries

An important step in design automation can be made
by using symbol libraries. Standardized symbols and
other graphic entities (both 2-D and 3-D) that are of-
ten used can be stored in special files and directories,
representing symbol libraries. The entities in these li-
braries can be readily accessed and inserted in the
current design whenever needed.

As an annex to their catalogs, many manufacturers
of add-on equipment (electric, hydraulic, pneumatic,
fastening, etc.) offer graphic libraries in electronic
format containing the 3-D models and 2-D drawings
of their products.

F. Database Link

CAD applications usually have a module for linking to
internal or external alphanumeric databases. The data-
bases can contain attributes of the graphic entities
(dimensions, color, weight, manufacturer, dealer, etc.).

G. Knowledge-Based Processing in CAD

To help the designer in making decisions, knowledge-
based modules or applications can be used. Knowl-

edge bases contain expertise found during solving
previous projects and from related activities. To date,
most knowledge-based systems (also known as expert
systems) developed for design have been used to as-
sist the designer in refining a design, and suggesting
alterations (diagnostic problem). Expert systems are
also useful in choosing the type of elements to be
used: motors, transmissions, fastenings, materials, etc.
(configuration problem). Abstraction can be used to
discover to which general design the current design
belongs. Acquisition techniques can request and in-
tegrate new design knowledge. Classification can be
used to categorize the requirements or the current
state of the design in order to decide what sort of
method or analysis might be used. Expert systems can
also be used for planning the design process, in order
to design subcomponents in an appropriate order.

H. Intelligent CAD

Intelligent CAD programs are based on artificial in-
telligence (AI) techniques. These programs are not
based purely on mathematics as the calculation pro-
grams. Beside mathematics, they analyze forms,
shapes, arrangement of objects, patterns, colors, etc.
They can draw conclusions even if the resulting state-
ments are not completely true or false (using fuzzy
logic techniques), can recognize patterns and shapes
(using neural networks), and can optimize proce-
dures (using genetic algorithms).

I. Concurrent Engineering

Concurrent engineering, also known as simultaneous
engineering, involves a parallel development across
product life cycle activities, from conception through
disposal, including quality, cost, schedule, and user
requirements, using technologies such as CAD and
manufacturing. Using shared databases, customers,
designers, and production managers can simultane-
ously evaluate a proposed product design. Multifunc-
tional teams set product and process parameters early
in the design phase. As a result, the design of the
product, as it evolves, can incorporate the require-
ments of the user, special needs for marketing, and
any limitations of the production process. Concurrent
engineering is designing for assembly, availability, cost,
customer satisfaction, maintainability, manageability,
manufacturability, operability, performance, quality,
risk, safety, schedule, social acceptability, and all other
attributes of the product.

174 Computer-Aided Design

Concurrent engineering tends to reduce cycle time
and costs when appropriately applied.

III. GEOMETRIC MODELING

A. Curves

The point is a zero-dimensional entity, but it is im-
portant in CAD because it defines a location in space.
A point in a 3-D Cartesian coordinate system can be
represented by a triplet {x, y, z}. Besides the coordi-
nates, a point can have other values associated, such
as an identifier and attributes (color, etc.).

A curve is a one-dimensional entity. The most fun-
damental of all curves is the straight line. A straight
line segment can be defined in terms of the end
points; for example, in a 3-D coordinate system: {x1,
y1, z1}, {x2, y2, z2}. A general space curve can be defined
in terms of the starting point, variable tangent direc-
tion, and curve length.

Next in complexity to the straight line are the qua-
dratic curves: circle, ellipse, parabola, and hyperbola.
The basic methods for constructing arcs and circles
start from: (1) center point and radius, (2) three
points, (3) end points and angle, (4) start point, an-
gle, and radius, (5) two tangents and a point, and (6)
three tangents.

The complex shapes of many objects require more
complex curves than the quadrics, which are planar.
However, the complexity of the shape must not in-
volve a similar complexity in the mathematical ex-
pression. Three types of complex synthetic curves are
widely used in CAD systems: Hermite cubic splines,
Bézier curves, and B-splines. The Hermite cubic spline
connects two data (end) points and utilizes a cubic
equation defined by the positions and tangent vectors
at these points. The parametric equation of a cubic
spline segment is given by

Q��(u) � �
3

i�0
C��i � ui

where u is the parametric dimension (0 � u � 1) and
C��i are the polynomial coefficients. A Bézier curve is
defined from n � 1 control points P��i :

Q��(u) � �
n

i�0
�i(u) � P��i

where u is the parametric dimension and �i are the
basis (blending) functions. Bézier curves have two
major disadvantages: (1) it is very difficult to make
the curve pass through any specific points other than
the end points and (2) the effect of moving a control
point is global.

The B-spline curve is also based on an open poly-
gon with n � 1 points, but the blending functions are
nonzero only over a range of k control points, being
characterized by degree k�1. This makes the effect of
moving a control point local.

Usually the nodes of the B-spline are equally dis-
tributed. To increase the complexity of the generated
curves, a nonuniform distribution of nodes is used. If
a B-spline curve is defined using basis functions that
are algebraic ratios of polynomials, a rational B-spline
curve is obtained. If both variations are used, the
nonuniform rational B-splines (NURBS) curves are
obtained, which are widely used for modeling sur-
faces of high complexity.

To model complex shapes, polylines are used.
These are strings of line and/or curve segments con-
nected together. More complex types of linear enti-
ties used in CAD are text, dimension, and hatch pat-
terns. Text is used to write notes, specifications, and
to describe the components of a design.

Dimensions are used to indicate size and position
(with tolerances). Sometimes they also contain infor-
mation about surface finishing. An advanced type of
dimension is the associative dimension. This is used in
a mode of dimensioning that automatically updates
dimension values when the dimension size (bounding
object) is changed. This speeds up the process of
adding and editing dimensions in a design.

The hatch patterns are used to represent various
materials (especially in cross sections) and finishes, to
emphasize portions of the design, etc. The associative
hatching conforms to its bounding objects so that if
the bounding objects are modified, the hatch is auto-
matically adjusted.

B. Surfaces

A surface is a 2-D entity. A general surface embedded
in 3-D can be modeled by dividing it into an assembly
of patches. A patch is defined as the basic mathemat-
ical element to model a composite surface. Both ana-
lytic and synthetic surface entities are used in CAD
systems. Analytic entities include plane surface, lofted
surface, surface of revolution, and tabulated cylinder.
Synthetic entities include the bi-cubic Hermite
patches, Bézier patches, B-spline patches, and Coons
patches.

Extensively used to design complex shapes, as in
car bodies, glassware, shoes, household appliances,
etc., are the sculptured surfaces. A sculptured sur-
face, also called free-form surface, is defined as a col-
lection of interconnected and bounded parametric

Computer-Aided Design 175

patches together with blending and interpolation
formulas. Usually, it is a complex synthetic surface.

1. Analytic Surfaces

The simplest of all surfaces is the plane. In building
CAD objects, only limited portions of planes are used,
the limits being curves. Reasonably complex objects
can be built using only planes, resulting in polyhedral
or faceted models.

The surface of revolution and the tabulated cylin-
der are swept surfaces, obtained by moving a curve in
a given manner. To obtain a surface of revolution, a
planar curve is rotated a given angle about an axis. A
tabulated cylinder results from translating a space pla-
nar curve along a given direction or from moving a
straight line along a given planar curve. The para-
metric representation of a tabulated cylinder is:

Q��(u,v) � P��(u) � v � n��

where P��(u) represents the planar curve and n�� is the
cylinder axis.

To design a complex surface that passes through a
family of curves, like the fuselage of an aircraft or the
bottom hull of a vessel, the lofting method is used. A
lofted surface can be defined as:

Q��(u,v) � �
i

�i(v) � P��i(u)

where P��i(u) represents the family of defining curves.
A ruled surface is a simple lofted surface that inter-
polates linearly between two boundary curves.

2. Synthetic Surfaces

The most popular method in surface modeling is the
tensor product method, which defines a patch by map-
ping a rectangular domain described by the paramet-
ric dimensions:

Q��(u,v) � �
i

�
j

�ij(u,v) � P��ij

The Bézier and B-spline patches are members of this
class, with P��ij denoting the control points, and using
two sets of basis functions, one for each dimension.
They are extensively used, for example, in defining
the complex shape of the car body. Surfaces that are
more complex can be generated by blending two fam-
ilies of curves. The Coons patches are members of
this class.

C. Surface Models

Surface models provide information on the surfaces
connecting the object edges. Typically, a surface
model consists of curve entities that form the basis to
create surface entities. In a mechanical design, each
entity is usually represented by a collection of patches.

Despite their similar look, there is a fundamental
difference between surface and solid models. Surface
models define only the geometry of their corre-
sponding objects and store no information regarding
the topology of these objects.

D. Solid Models

Solid models are advanced representations of real
physical objects, also taking into account the content,
not only the outline. Therefore, these models have
volume, and if given a density the computer can cal-
culate many physical properties, such as mass, center
of gravity, and moments of inertia. These calculations
can be performed regardless of how irregularly shaped
the parts. Computer-aided analyses can also be per-
formed, for instance, the finite-element analysis to de-
termine the strain and stresses.

The major types of solid models are half-spaces,
constructive solid geometry (CSG), boundary repre-
sentation (B-rep), sweep based, enumeration based,
analytical solid models (ASM), parametric, and fea-
ture based models.

Half-spaces can be considered directed surfaces:
each one of them divides the model space into two in-
finite regions, one filled with material and the other
empty. Half-spaces can be combined to construct var-
ious solids. Modeling with half-spaces is cumbersome
to use and can easily lead to invalid solids.

1. Constructive Solid
Geometry (CSG) Models

In the CSG models, the geometry of a physical object
is stored as a binary tree of Boolean operations ap-
plied to a limited set of simple geometric objects
(primitives). The nodes represent operations, and the
leaves are primitives. The main advantage of these
methods is the easiness of making design changes.
The main disadvantage is the complexity of the cal-
culations needed to evaluate the tree for graphical
representation.

An example of a CSG model for a simple object is
presented in Fig. 2. The primitives are a hexahedron
(prism) and a cylinder, and the operation is subtraction.

176 Computer-Aided Design

2. Boundary Representation
(B-Rep) Models

A geometric model in which the physical objects are
represented by their surfaces is called a B-rep model.
Care must be taken regarding validity, self-intersection,
and continuity of the surfaces defining a physical ob-
ject. The B-rep models have the advantage of high
speed and high-quality graphical visualization. An ex-
ample of a B-rep model for the same simple object
CSG modeled in Fig. 2 is presented in Fig. 3.

3. Sweep-Based Models

The sweep modeling methods are based on an entity
of a lower order (e.g., 2-D) that is moved (translated
or rotated) in a given manner to produce a higher or-
der (e.g., 3-D) entity. The surfaces are generated by
sweeping curves, while the solids by sweeping sur-
faces. Extrusion (Fig. 4) and revolution (Fig. 5) are
particular types of sweeping.

Complex sweeping can be performed with scale
change, by joining different end shapes, or along a
spiral.

4. Enumeration-Based Models

The enumeration models consider the 3-D space split
into units of similar form that have a flag attached in-

dicating if the respective unit is occupied by the ob-
ject. For instance, the octree method uses recursive
subdivisions and cubic units. This method is quite
rarely used in CAD.

5. Analytical Solid Models (ASM)

ASM is an extension of the tensor product method
used to represent surfaces. It defines a hyperpatch
(parametric solid) by mapping a cubical domain de-
scribed by the parametric dimensions into the mod-
eling space. An object is represented as an assembly
of non-overlapping hyperpatches. Most used are the
Bézier and the B-spline hyperpatches. Using Boolean
operations, hyperpatches can be combined to model
more complex objects.

Computer-Aided Design 177

Figure 2 CSG modeling of a simple object.

Figure 3 B-rep model of a simple object.

Figure 4 Model generated by extrusion.

Figure 5 Model generated by revolution.

6. Parametric Models

The parametric models are based on parametric rep-
resentations of entities. The parameters control the
various geometric properties of the entity, such as the
length, width, height, radius, etc. Some parametric
modelers also allow constraint equations to be added
to the models. These can be used to construct rela-
tionships between parameters, or impose dimensional
or geometric constraints between entities (distances,
parallelism, etc.).

7. Feature-Based Models

A feature is anything cut from the original piece from
which the part will be produced. Examples of features
are holes, fillets, chamfers, bosses, and pockets.
Feature-based modelers allow features to be associated
with specific edges and/or faces. When the reference
(edge or face) is moved, the feature moves along with
it, keeping the original relationships.

Feature-based models are mainly based on a com-
bination of CSG and parametric models.

E. Geometric Databases
and Data Structures

All the information related to the geometry of a model
is kept in special databases. Information about each
type of geometric entity is stored using appropriate
data structures. For example, the structure for a
straight-line segment (usually simply called line) can
contain either (1) an identifier, the coordinates of the
first end point, and the coordinates of the second end
point or (2) an identifier, the coordinates of the first
end point, the direction, and the length of the line.
Higher order entities can be defined using linked lists
of lower order entities. Complex entities may require
the use of trees and graphs.

F. Geometric Transformations

Geometric transformations are needed to give an en-
tity the needed position, orientation, or shape start-
ing from existing position, orientation, or shape. The
basic transformations are scaling, rotation, transla-
tion, and shear. Other important types of transforma-
tions are projections and mappings.

By scaling relative to the origin, all coordinates of
the points defining an entity are multiplied by the
same factor, possibly different for each axis. Scaling

can be also performed relative to an arbitrary point.
Mirroring is a special kind of scaling, with one or
more scaling factors negative.

By translation, all coordinates of the points defin-
ing an entity are modified by adding the same vector
quantity.

Rotation is performed by premultiplying the coor-
dinates of the points defining an entity by a special ro-
tation matrix, dependent on the rotation angles.

Shear produces a deformation by forcing contact-
ing parts or layers to slide upon each other in oppo-
site directions parallel to the plane of their contact.

Mappings are complex transformations, in CAD
usually consisting of applying a bi-dimensional image
on the 3-D surface of an entity. They are used to im-
prove the aspect of modeled objects, adding texture
information.

Projections are transformations between systems
with different numbers of dimensions. The most im-
portant use of projections is for rendering 3-D mod-
els on screen or paper (2-D geometric entities). Tra-
ditional drafting uses orthographic projections
(parallel to one of the coordinate axis). To give the
sensation of depth to the rendered scenes, the per-
spective projection is applied. In such a projection, all
lines in the scene that are not parallel to the screen
(projection plane) converge in one point for each di-
rection. In the simplest case, all the lines perpendic-
ular to the screen converge in one point.

IV. GRAPHICS AIDS

The efficiency of CAD activities can be improved us-
ing special elements, like layers, grids, snapping,
graphic groups, colors, and geometric modifiers.
These form the group of graphic aids present in all
important CAD systems.

A. Layers

Data in a project can be more efficiently handled if
grouped based on content or reference. For example,
in a mechanical design, all auxiliary entities like di-
mensions and notes can be grouped together. For a
complex design, the grouping must be more elabo-
rate, in a hierarchical style. For example, in the case
of a building design, data can be grouped by stories,
each story having groups for electrical cabling, water,
drainage, gas, etc. For each such a group, a layer is de-
fined in the design. Each layer can be made visible/in-
visible, active/inactive (unlocked/locked), deleted,

178 Computer-Aided Design

duplicated, etc. In this manner, an engineer can work
on the full project, but only having permission to edit
entities in the layer he is responsible for. The layers
are considered to be transparent.

B. Grids

A grid of aligned equidistant points can be displayed
on the screen, to help the user place the new entities
(aligned, for example). Grids also give an idea about
the distances between entities, the grid points being
defined in the model space. The grid points are usu-
ally aligned to the axes of coordinates.

C. Snapping

An important aid in creating valid entities is snap-
ping. There are two types of snapping: grid and ob-
ject. In grid-snapping mode, the new points can be
created only at grid points. In object-snapping mode,
the point locations are indicated using existing graph-
ics entities as a reference. The object-snapping mode
depends on the active geometric modifier (end point,
center, tangent, etc.).

D. Geometric Modifiers

To facilitate the graphical input/output operations, a
set of commands defining the positioning mode of
new entities with respect to the existing ones can be
defined. These commands are called geometric mod-
ifiers and they influence, for example, the way the
object-snapping mode works. Most common modes
are end point, midpoint, center, intersection, per-
pendicular, tangent, nearest, and node.

E. Graphic Groups

To simultaneously process in the same manner more
than one entity, graphic groups can be defined by as-
sociating a number of graphic entities. Any action is
performed on all group members. The groups can be
temporary or permanent.

F. Dragging

Dragging is a technique of moving (translating) a
graphics entity around with a locating device. The im-

age of the entity is moved anchored to the cursor of
the locating device. It is used for implementing the
entity creation and editing functions.

G. Colors

To make the CAD model more expressive, the user
can choose individual colors for lines and surfaces, as
well as for the background. Besides colors, different
line types can be used: continuous, dash, dotted, dash-
dot, etc. Special line types are normally used for aid-
ing elements, like center lines, construction lines, and
hidden lines.

V. GRAPHICS EDITING

A proper definition of the actions for graphics edit-
ing, combined with graphics aids, can increase the ef-
ficiency of design activity.

A. Entity Selection

Before an editing action can be performed, at least
one entity must be selected. Main selection modes are
single entity selection, selection of all displayed enti-
ties, graphics group selection, chain selection (con-
tiguous entities), and window/fence selection. Some-
times it is possible to define filters to be used in entity
selection.

B. Editing Operations

The main editing operations applied to graphic enti-
ties are verification (displaying and checking the prop-
erties of the entities), duplication (in a different posi-
tion/layer/etc.), array (rectangular or circular),
measuring (distances, angles, lengths, etc.), division (of
a line in segments of equal length, etc.), offsetting (cre-
ating parallel entities to existing ones), stretching (mov-
ing a portion/points of an entity and deforming the
connecting region), trimming (cutting a section from
or extending a line or surface to end on another en-
tity), and property editing (changing entity attributes:
layer, color, etc.).

If the user makes a mistake in issuing a command
or in entering any data, or does not accept the result
of an operation (drawing, editing, etc.), he can re-
turn to the former situation by using a built-in func-
tion (commonly known as Undo) that reverses the

Computer-Aided Design 179

effect of the last command (or set of commands)
entered.

VI. VISUALIZATION OF MODELS

The designer can verify the constructed model, de-
termine spatial relationships, interpret numerical re-
sults of analyses, etc., at any stage, by visualization on
screen or on paper.

The displayed image of a model is created by math-
ematical projection using a virtual camera. The user
can pan and zoom to display different regions of the
design. Each combination of position, orientation,
and focal length of the camera defines a view or a
viewpoint. Views and viewpoints can be named and
stored within the design.

To create engineering drawings, parallel projec-
tions (orthographic) and perspective projections (ax-
onometric) are used, in combination with special rep-
resentations of hidden lines.

The simplest and fastest mode of 3-D model visu-
alization is vertices, but it is very seldom used in CAD,
not showing any edge or surface. Second in com-
plexity, the wireframe mode represents all the edges in
the model. The advantage is the speed of visualiza-
tion, but there is an important disadvantage in the
ambiguity of the image.

To obtain more realistic images of the design, a
group of techniques known as rendering are used.

A. Rendering

Rendering denotes the techniques used to create im-
ages with a high degree of realism. A first step can
be hidden lines and hidden surfaces removal. Next
steps can be shading, coloring, shadowing, trans-
parency, mirroring, depth-cueing, texturing, and
animation.

To increase the speed of rendering, many func-
tions—like drawing lines, circles, arcs, triangles, color
and texture filling—are implemented in the display
(video) adapter, forming a graphics accelerator. The
accelerators are based on processors (graphics co-
processors) that are specialized for computing graph-
ical transformations, so they achieve better results
than the general-purpose main processor of the com-
puter. In addition, they free up the main processor to
execute other commands while the graphics acceler-
ator is handling graphics computations.

B. Hidden Line, Hidden Surface,
and Hidden Solid Removal

The first step in adding realism to a scene represent-
ing a CAD model is achieved by removing the lines,
surfaces, and volumes that are hidden by other entities.

A simple algorithm uses the observation that the
surfaces having the normal vector oriented to the
back (away from the viewpoint/camera) are not visi-
ble. This is based on the convention that the normal
vectors are always oriented outward relative to the vol-
ume they enclose. The algorithm is therefore called
the backface cull. Another algorithm is the painter’s al-
gorithm, which draws the faces on the screen in the or-
der of decreasing distances from the projection plane
(screen). These algorithms are limited in the type of
faces they can handle.

A more general, but also more complex algorithm,
is the z-buffer method. The positive z is usually toward
the screen (camera). For each pixel on the screen, a
memory location (in the z-buffer) stores the highest z
value found until that moment for the entities drawn
at that pixel, and the corresponding color. After all en-
tities are searched, the color in the z-buffer is the one
corresponding to the nearest point to the camera.

C. Shading

Assigning a displayed color to each point of an entity
depending on its own color and position (normal
unit vector), on illumination and on the viewers po-
sition, strongly improves the realism of the rendered
scene. The simplest shading, flat-shading, is obtained
by assigning a single color to each polygon (face). By
interpolation, a smooth-shaded image can be ob-
tained. In the Gouraud algorithm the interpolation
across the polygon is applied to shades. An alternative
is to interpolate the normal vector across the polygon,
which is done in the Phong algorithm. Better results
produce the ray tracing (or ray cast) algorithms, but
they are more resource-demanding. These algorithms
follow the light ray from the pixel on the screen to
the light sources or background, taking into account
any optical effect, such as reflection, refraction, and
dispersion. The best rendering quality can be achieved
by radiosity methods, which calculate the energy equi-
librium conditions for all surfaces in the scene.

Figure 6 presents the model of an object visualized
using four different techniques: wire-frame, hidden
line/surface, flat shading, and interpolated shading.

180 Computer-Aided Design

D. Coloring

The color can be characterized by three parameters,
usually the hue (dominant wavelength), saturation
(content of pure color), and intensity (energy). For
practical purposes, there are many color-specifying
systems (color spaces): red, green, blue (RGB), cyan,
magenta, yellow (CMY), hue, lightness, saturation
(HLS), hue, saturation, value (HSV), etc. The RGB
system is additive and is used in color displays. The
equivalent for printers and plotters is the subtractive
system CMY. The HLS system is preferred by artists
and designers, being more intuitive. The HSV system
is very similar to HLS.

E. Shadowing

When the viewer’s position differs from that of the
light source, some regions of the scene are only par-
tially illuminated or not at all, forming shadows.
Penumbra contains the partially illuminated regions.
The complete shadow (umbra) regions are usually
not completely dark, because of the ambient light.

F. Transparency and Reflection

More realism can be added to the rendered scenes by
considering transparency and reflection. Real objects
let a part of the incident light travel through, reflect
another part, and absorb the rest. Crossing the limit
between two transparent materials changes the direc-
tion of the ray of light by an amount depending on
the ratio of the refraction coefficients of the respec-
tive materials. The transparency effect is usually im-
plemented using the alpha blending. In this technique,
the alpha value for each element drawn reflects the
opacity of that object. The displayed pixel is drawn

with a color that is a weighted sum of the colors of the
contributing objects.

The reflection phenomenon is such that the nor-
mal vector to the reflective surface bisects the angle
between the incident and emergent light. The light
reflected from real objects contains both diffuse and
specular components. Lambert’s cosine law governs
the diffuse reflection. For the specular reflection, an
empirical approximation is often used, derived from
Lambert’s cosine law, mainly by introducing a shini-
ness factor as the power of the cosine function.

G. Depth-Cueing

Light is partially or totally absorbed when passing
through matter, even through air. A simple technique
to create the illusion of depth is by depth modulation
of light intensity. This method is called depth-cueing or
intensity-cueing. The intensity of each pixel is reduced
depending on the distance from viewer to the corre-
sponding point in the model. By adding coloring, a
realistic fog effect can be obtained.

A more general method applies a blurring effect to
the scene.

H. Texturing

A first impression about the material of an object can
be given by properly combining transparency (in-
cluding refraction), mirroring (“specular” effect), and
diffusion. More realism can be obtained by applying
(mapping) a pattern on object surfaces. Texture map-
ping adds pictorial details without adding any time-
consuming geometry.

The next step is suggesting the irregularities of the
surfaces, usually achieved by applying local perturba-
tions. Bump mapping can give the visual illusion of
the presence in the surface of small bumps, holes,
carvings, engravings, etc., without complicating the
geometry by using sculptured surfaces.

A special technique to obtain realistic irregular sur-
faces is based on fractals.

Figure 7 presents a perspective view of a CAD model
of a room, rendered using interpolated shading, tex-
tures, and transparency.

I. Aliasing

Because display devices (screen displays, printers, plot-
ters) are almost all raster devices, presenting an image

Computer-Aided Design 181

Figure 6 The model of an object visualized using four differ-
ent techniques: (a) wire-frame, (b) hidden line, (c) flat shad-
ing, and (d) interpolated shading.

made of discrete elementary regions (the pixels),
some distorting effects can appear, globally known as
aliasing. Some examples are jagged or stepped diago-
nal lines and little moving objects that temporary dis-
appear from the screen.

To prevent the negative effects of the aliasing, some
anti-aliasing methods must be applied. For example, a
simple method, often used, is to apply a little blur to
the lines. This makes them wider, but smoother.

J. Plotting

To obtain a hard copy from the design, a plotter or
printer is used. The resulting drawings are still needed
in not-computer-integrated workshops. Parameters
controlling the size and the quality of the plots can be
specified. The fist step is composing the drawing lay-
out: specifying the paper size and the views to be plot-
ted along with their position, size, and scale. The sec-
ond important step is the pen assignment: choosing
the association between the plotter pen colors and
line types and the model/design colors and line types.
For example, the different colors in the computer-
internal model (used for on-screen display) can be
materialized by different line weights on the paper.

K. Animation

Animation makes possible a complex examination of
the modeled scenes, just like rotating a handheld ob-
ject, walking around a car, or walking through the
rooms of a house. More, the dynamic behavior of
complex equipment can be examined before it is ma-

terialized. Examination of dynamic behavior implies
powerful simulation techniques to generate the data
(time-dependent sequences of positions and orienta-
tions) needed for animation.

L. Virtual Reality

Virtual reality technologies provide improved visual-
ization of product by allowing the user to coexist (im-
mersed) in the same space as the product model,
therefore gaining a better appreciation of product
geometry and aesthetics. It also provides improved in-
teraction with design in terms of more intuitive model
manipulation and functional experimentation. The
designer can effectively interact with the product
model directly rather than using the conventional 2-
D mouse and cursor.

M. Rapid Prototyping

The rapid prototyping (or “desktop manufacturing”)
makes possible the creation of a physical model (pro-
totype) starting from the CAD numerical model, usu-
ally in 24–48 hours. This model can be used for de-
sign analysis and evaluation in the early stages of the
product design process, when the changes still involve
low costs. In some cases, the prototype can be used di-
rectly for manufacturing actual parts, for example, us-
ing low-pressure casting, vacuum forming, sand cast-
ing, or direct injection molding.

The main rapid prototyping techniques are based on:
photopolymerization, laser-cutting the cross-sectional
outline in the top layer, transforming a powder in solid
objects by fusion using laser beams, melting a thermo-
plastic filament at given coordinates, gluing powder
grains using liquid adhesive, depositing drops of ther-
moplastic or wax materials, etc. The solidification process
is performed on successive thin layers of material.

VII. ASSEMBLY MODELING

Most manufactured products are assemblies of com-
ponents. Assembly modeling provides a logical struc-
ture for grouping and organizing components into as-
semblies. Design and engineering teams no longer
need to create parts in isolation and hope that when
the product goes together, everything fits. They can
create parts in the context of the entire product. As-
sembly design has significant impact on many down-
stream activities such as process planning, production

182 Computer-Aided Design

Figure 7 Perspective view of a CAD of a room, rendered with
shading, textures, and transparency.

planning and control, and packaging. The modeling
representation of hierarchical relationships and mat-
ing conditions are specific to assembly modelers.

A. Assembly Description and Management

The assembly structure can be represented in a hier-
archical assembly tree. The nodes in the tree repre-
sent subassemblies and the terminal nodes (the
leaves) represent individual parts. An assembly de-
scription contains pointers to the individual compo-
nents used, and constraints used to position the com-
ponents with respect to one another. Positional
constraints refer to orientation and location of the
parts, and to relationships between features of differ-
ent parts. This ensures that a design change is auto-
matically propagated throughout all components of
an assembly.

Specific functions of the assembly manager module
are creation of subassemblies from parts, creation of
assemblies from subassemblies and parts, control of
the relative placement of parts and subassemblies, re-
generation of assemblies and subassemblies after mod-
ification, creation of exploded assemblies, and inter-
ference and clearance checks.

Because the idea of entire product assembly pre-
sumes multiple users, data management has become
a critical element of assembly modeling software. One
key issue is to alert users to changes made by others
that might affect their work.

Assembly analysis may include interference check-
ing, mass properties, kinematic and dynamic analysis,
and finite-element analysis.

B. Mating Conditions

Rather than specifying the transformation matrices
needed to place each part in the assembly, mating
conditions can be specified. Mating conditions cap-
ture and maintain the intended fit of the compo-
nents. Surface and edge mating constraints are used
to locate and orient components with respect to each
other. Constraint solving methodologies take the sur-
face/edge mating constraints and automatically trans-
form them into transformation matrices.

VIII. MASS PROPERTY CALCULATIONS

Based on the fact that a 3-D solid contains a complete
description of the geometry of an object, it is possible

to obtain additional information from the graphical
database. This can refer, for example, to area, vol-
ume, centroid (center of mass), moment of inertia,
etc. All these are integral proprieties, i.e., calculable
by integration. These properties are usually needed
for some other activities in design, such as calculating
the quantity of paint to apply to the surface of an ob-
ject, the quantity of material needed to manufacture
a part, or performing dynamic simulation.

For a usual representation of a general line,
P��(s), the length of the line is computed as the integral

L � �b

a
�P�� � � P����� � ds

where P�� � denotes the derivative with respect to s, and
a and b are the values of the parametric coordinate s
for the line end points.

To determine the area of a parametric surface, the
integration is performed along both parametric co-
ordinates. To calculate the volume closed by para-
metric surfaces, the volume integral is usually trans-
formed into a surface integral.

The mass of a general solid is calculated by integra-
tion over all elementary volumes of known density. The
center of mass can be calculated by weighted integral
of the elementary masses, the weighting factors being
the positions of elementary masses. A weighted inte-
gral of elementary masses can also be used for calcu-
lating moments of inertia, with weighting factors being
second-order function of elementary mass positions.

IX. FINITE-ELEMENT MODELING AND ANALYSIS

In the analysis part of a design, it is often required to
obtain information about the planar or spatial distri-
bution of field variables. The equations describing the
behavior of the field are partial differential equations
with some imposed boundary conditions. The com-
plexity of the equations requires some approximating
but simpler methods for solving. The finite-element
method (FEM) is a numerical analysis technique for ob-
taining approximate solutions to engineering problems.

A. Phases of the Finite-Element Analysis

The first step for a finite-element analysis (FEA) is to
approximate the region of interest with finite ele-
ments defined by nodes. This is achieved by properly
subdividing the region. The shape of the finite ele-
ments (triangle or quadrangle in 2-D, tetra-, penta-,
or hexahedron in 3-D, etc.) is chosen to allow the use
of a simple interpolation function to approximate the

Computer-Aided Design 183

distribution of a dependent variable within an ele-
ment. In the second step, the variation of the field
variable is approximated within each element by a
polynomial and the equilibrium equations for each
element are written. Next, the equations for all ele-
ments in the region are assembled, resulting in a set
of algebraic equations to be solved for the dependent
variables in each node. In the last step, the results are
interpreted. The whole problem is equivalent to a
minimum energy problem.

B. Mesh Generation

The collection of nodes represents the finite-element
mesh. CAD/CAE systems perform an automatic mesh
generation, starting from the shape and approximate di-
mensions of elements given by the user. The user can
enter a hint about the number of nodes on some bound-
aries. Finer generated meshes produce higher accuracy
results, but are more resource-demanding (time and
computer memory). This is why, for a given object, the
general mesh can be relatively coarse, but in the subre-
gions with problems (high dependent variable gradient,
as near the stress concentrators), a finer mesh can be re-
quested. An advanced FEM/FEA program can detect by
itself such subregions and proceed consequently.

C. Imposing Boundary Conditions

To solve the set of partial differential equations, some
consistent boundary conditions must be specified. For
example, in a stress/strain problem, the conditions
are in the form of applied forces/pressures and/or
displacements. In a temperature field problem,
the boundary conditions can be heat fluxes and/or
temperatures.

D. Lumping External Applied Loads

Because the boundary conditions can be specified only
in existing nodes, distributed loads must be transformed
in equivalent systems of lumped (concentrated) loads.

Figure 8 illustrates an example of finite element
analysis. Figure 8a shows the boundary conditions and
the generated mesh. The arrows represent the lumped
external load, and the triangles—the blocked nodes
(unable to move). In Fig. 8b, the results of the stress
analysis using FEM are shown. The brightness is pro-
portional to stress, as shown on the scale.

E. Finite-Difference Method

For some types of problems, like analysis of fluid flow or
thermal conduction, a simpler method than FEA, but
very similar to it, can be applied: the finite-difference
method. After mesh generation, partial derivative equa-
tions are written for each node, and then the partial
derivatives are replaced by finite difference operators,
before assembling the equations for all nodes. This leads
to a matrix (linear) problem.

F. Boundary-Integral Method

The boundary-integral method finds the field distrib-
ution by determining the appropriate factors for the
superposition of a set of characteristic functions. The
method involves information related only to the
boundary of the region of interest, so the mesh is gen-
erated only on the boundary.

X. USER INTERFACES

User interfaces must facilitate the two-way exchange
of information between the user and the software ap-
plication. There are two kinds of interfaces: textual
and graphical.

A. Hardware

Considering the input functions, there are four logi-
cal types of input devices: for text input (e.g., the key-
board), valuator (producing a single numerical value,
like a potentiometer), selector (producing a choice
from a predefined set), and locator (producing a set
of numerical values, like the coordinates of a point,
obtained by mouse click).

184 Computer-Aided Design

7
6

5

4

3

2

1

0

Figure 8 FEM analysis of a console: (a) boundary conditions
and mesh and (b) deformed console with calculated stresses.

The physical devices can act as one or more logical
devices. Most common interactive graphical devices
are keyboard, mouse, graphics/digitizing tablet, joy-
stick, trackball, thumbwheels, and touch-sensitive
screen. To work with the six degrees of freedom of an
object in the 3-D space used by the CAD models, spe-
cial devices with more than the usual two degrees of
freedom were created.

B. Language-Based Interfaces

Language-based interfaces work based on messages,
i.e., strings of ASCII characters. The messages must con-
form to a grammar that is specific to each application.

C. Graphical User Interfaces

The graphical user interfaces (GUI) are based on com-
plex visual communication. Most users consider this
type of interface friendlier. The two main components
of a GUI are the windows system and the menus sys-
tem. Usually the window manager and the menu man-
ager are components of the operating system, so the
window frames and the menus of all applications on a
computer look similar. Some applications offer the
possibility to choose the GUI style, for example, to
look like running under another operating system.

D. Windows Managers

Complex models in CAD require simultaneously work-
ing on or visualizing several views of the model. This
is possible by opening each view in a separate window.
All windows can be entirely displayed (tiled), which
decreases the size of each window, or can be over-
lapped, which allows each window to be almost as
large as the entire screen. The possibly hidden win-
dows can be restored by mouse-clicking on their re-
spective icons on a toolbar.

E. Menu Managers

A menu is a list of items from which the user can se-
lect. The items in the list can be actions, objects, val-
ues, etc. Besides the usual textual menus and the cor-
responding toolboxes (where text is replaced by icons),
the menus can have special graphical appearance:
push buttons, radio buttons (array of push buttons,
only one active at a time), sliders, even editable input

boxes (numeric or text). Usually, in CAD applications
the menu system is complex, with items organized in
a hierarchical tree. To get easier access to the menu
items, most of the menu items can be mapped on the
active surface of a graphics (digitizing) tablet.

F. Error Handling

It is of great importance to have reliable error han-
dling in a CAD system. Even most experienced users
make errors while typing or selecting items from
menus or entities from the model. This is why a high
degree of interactivity is needed for the CAD soft-
ware. Good software will produce a short description
of each error detected and, possibly, a hint to solve
the problem. A context-sensitive help is of great value.

G. Journal Files

A journal file is a record of the commands that have
been sent to an application, a history of the input
messages. Journal files are useful in debugging and
maintenance, helping in tracking the commands that
lead to an error situation.

Journal files are also useful in work automation,
making possible the extraction of a sequence of com-
mands that is to be used later again, possibly in a re-
peated manner, to accomplish the same actions. The
extracted sequence (usually named macro) can be
saved in a script file, possibly edited, than indepen-
dently executed when needed.

XI. ELECTRONIC COMPUTER-AIDED DESIGN

Computer systems have gained an important place in
the design and the production of electronic products.
One major field is computer-aided printed circuit board
(PCB) design (CAPCBD). The other field is computer-
aided design of integrated circuits, especially VLSI.

A. Computer-Aided Design
of Integrated Circuits

Highly complex integrated circuits designs, like VLSI
circuits used for microprocessors and memories, have
become too difficult to draft manually. Therefore, cir-
cuit designers use CAD methods to lay them out. A
CAD system can display all or part of a circuit diagram
to verify a correct design, change the function of a
logic device, simulate the behavior of an integrated

Computer-Aided Design 185

circuit while its design is in progress, and store very
large diagrams.

There are currently four types of CAD tools that
support the physical design of an integrated circuit.
The first is the geometric approach, where a general-
purpose interactive graphic system is used to create
the exact shape of a structure on an integrated circuit
mask. The second is the symbolic approach, where
details are hidden and the designer works with sym-
bols that the CAD system converts to exact geome-
tries. In the cell-based approach, individual function
cells and performance data can be completely char-
acterized and their specifications stored in a comput-
erized cell library. Finally, in the procedural method,
cells are automatically placed in a complete integrated
circuit layout that uses a procedural language to de-
scribe their placement and interconnections.

B. Computer-Aided Printed
Circuit Board Design

Starting from the product proposition, in the system
design stage a visual model and product specification
are obtained. By detailed design, a functional model
is created. With computer-aided PCB design, it’s pos-
sible to test the PCB on its functionality in an early de-
velopment stage. After the model is adjusted to work
properly, a prototype is built and tested. The design
documentation consists of all data such as plot data,
drawings, test data, etc. The latest CAD systems de-
liver the documentation tailored for many kinds of
production machines.

An important issue of designing PCBs is fitting in
checkpoints (like dimension checks). This can be
done automatically by the CAD system.

The main modules of a CAPCBD application are

• Schematic design editor, which enables the
designer to input schematic circuits and
interactively assigns them to symbol components;
the design editor also catalogs schematic circuits
in the design database

• Layout editor, which creates board figures, places
parts on boards, and wires analog patterns

• Schematic explorer, which allows the user to
browse the design database.

The created design data can be processed by a man-
ufacturing data conversion program to create data for
automatic PCB manufacturing machines (NC data)
used in printed-wiring board manufacture (process-
ing and assembly).

SEE ALSO THE FOLLOWING ARTICLES

Computer-Aided Manufacturing • Computer-Integrated Man-
ufacturing • Computer Assisted Systems Engineering • Struc-
tured Design Methodologies • Systems Design • User/System
Interface Design • Virtual Reality

BIBLIOGRAPHY

Encarnação, J. L. (1990). Computer aided design: Fundamentals
and system architectures, 2nd revised edition. New York:
Springer Verlag.

Farin, G. (2001). Curves and surfaces for computer aided geometric
design, Fifth edition. Boston: Academic Press.

Kunwoo, L. (1999). Principles of CAD/CAM/CAE systems. Read-
ing, MA: Addison-Wesley.

McMahon, C., and Browne, J. (1998). CADCAM: Principles, practice
and manufacturing management. Reading, MA: Addison-Wesley.

Taylor, D. L. (1992). Computer-aided design. Reading, MA: Addison-
Wesley.

Zeid, I. (1991). CAD/CAM theory and practice. New York: McGraw-
Hill.

186 Computer-Aided Design

Computer-Aided Manufacturing
Anita Lee-Post
University of Kentucky

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 187

I. INTRODUCTION
II. MANUFACTURING IN THE UNITED STATES

III. THE STRATEGIC ROLE OF CAM
IV. CAM TECHNOLOGY

V. CURRENT STATUS OF CAM
VI. FUTURE DEVELOPMENTS OF CAM
VII. CONCLUSION

GLOSSARY

advanced manufacturing technology Cutting-edge sci-
entific development for practical applications in
any production related activities or processes.

CAM technology Scientific development in using
computers to automate and/or support any pro-
duction related activities or processes.

computer-aided production engineering Using com-
puters to automate and/or support the design of
production related activities or processes.

digital manufacturing Using computers (discrete sig-
nals of 1s and 0s) to execute and control various
production related activities or processes.

manufacturing strategy Long-term planning that fo-
cuses on gaining competitiveness through innova-
tive production.

virtual manufacturing Using network technology to
operate and manage various production related ac-
tivities or processes that are not in close physical
proximity.

THE MEANING OF COMPUTER-AIDED MANUFACTUR-
ING (CAM) is first introduced. A brief history of man-
ufacturing in the United States is then reviewed to
highlight the strategic role that CAM can play to re-
store the competitive edge in United States manufac-
turing. The key enabling CAM technologies are de-
scribed to give a current picture of how CAM is being
successfully applied in United States manufacturing.
The article concludes with a depiction of what the

future will hold in the next generation of CAM
technologies.

I. INTRODUCTION

Computer-aided manufacturing (CAM) refers to the
use of computer technology in the production process.
It is the use of computers to program, direct, and con-
trol production equipment in the fabrication of man-
ufactured items. Specifically, computer hardware, soft-
ware, database, and telecommunication technologies
are used together with numerical control machines,
expert systems, vision systems, LASER, industrial ro-
bots, as well as other programmable material handling,
storage, and control devices to form an automated, in-
tegrated, and flexible manufacturing system. To com-
pete successfully in today’s global economy, manufac-
turing companies realize the importance of continually
improving their products by addressing product qual-
ity, cost, delivery, design changes, and the like simulta-
neously. The key to the success of such an undertaking
is the application of computer technology to manage,
implement, and control the entire production process.
With the rapid rate of technological advancement, it is
imperative to keep abreast with the current status of
computer applications in manufacturing in order to
unlock the full potential of these technologies. This
chapter is written precisely with such a purpose in
mind—to provide the information needed for those in-
terested in exploiting advanced manufacturing tech-
nologies for competitive excellence.

II. MANUFACTURING IN THE UNITED STATES

American manufacturing in pre-1840 was home and
guild based, relying on labor-intensive manual opera-
tions using primitive technology. Manufacturing took
place in small factories powered by unreliable water
supplies and seasonally recruited workers from local
farms. Production was broken down in distinctive
stages, each being performed by craftsmen in spe-
cialized trades with no interest in centralizing or sim-
plifying production. Adam Smith’s concept of divi-
sion of labor and the invisible hands of capitalism
kept production processes small and fragmented with
an emphasis on specialization.

It was not until the first phase of the industrial rev-
olution, characterized by technological innovation and
alternative energy source discovery, which brought
about the concept of mass production through verti-
cal integration and interchangeable parts. Human la-
bor was substituted by capital innovations that mecha-
nized manual operations to achieve economies of
scale. Many previously distinctive operations were cen-
tralized. The availability of steam and coal as power
supplies freed manufactures from depending on water
sources and brought freedom of industrial location.
The concept of interchangeable parts further reduced
the need for specialized skills. The result was an em-
phasis on machine instead of people specialization.

Large-scale production facilities for mass produc-
tion required a mass distribution system of raw mate-
rials and finished goods. This was critical for initiat-
ing the second phase of the industrial revolution,
occurring between 1850 and 1880. The resulting in-
novation in transportation and communication had
made possible high-volume production in modern in-
tegrated facilities supported by mass distribution sys-
tems of retailers. Big businesses including railroads,
steel, oils, etc., with an emphasis on efficiency, high
throughput, and low unit cost became commonplace.
Further speeding up production, in 1913 Henry Ford
sought a nonstop continuous workflow under the con-
cept of a moving assembly line. The potential of
economies of scale for producing a single product
was fully exploited by the 1920s. However, hindered
by the depression of the 1930s and the war of the
1940s, American manufacturing did not reach its
global dominance until the 1950s. By this time,
though, a lack of competition during this golden era
had caused a lax attitude in American manufacturing
in regard to production details, product quality, con-
tinual improvement, and customer service. In addi-
tion, the narrow focus on efficiency turned out to be

an obstacle to United States manufacturers’ ability to
adapt. As a result, from 1960 to 1980 United States
companies’ manufacturing market share dropped
from 99 to 92% domestically and from 25 to 15%
globally. During this period, the United States com-
pared unfavorably with many other industrialized
countries in various economic indicators such as na-
tional income statistics, unemployment rate, and pro-
ductivity improvements, as shown in Figs. 1–3, re-
spectively. Increased imports during these last decades
cost millions of manufacturing jobs and billions of
dollars of trade deficit. Numerous attempts were made
to address the concern of the United States’ decline in
manufacturing dominance. Harvard’s R. B. Riech de-
scribed this issue aptly:

The central problem of America’s economic future is
that the nation is not moving quickly enough out of
high-volume standardization production. The extra-
ordinary success of the half-century of the manage-
ment era has left the United States a legacy of eco-
nomic inflexibility. Thus, our institutional heritage
now imperils our future.

Doll and Vonderembse in their 1991 article attributed
the decline to the difficulty of United States firms to
adapt to the changing manufacturing environment.
They used a model to characterize the evolution of
manufacturing systems as three stages: (1) Craft shops,
(2) Industrial systems, and (3) Post-industrial enter-
prises. The craft shops stage demanded skilled arti-
sans, the shortage of which drove the emphasis of au-
tomation in the industrial stage. The view of
manufacturing as a functional area focusing on effi-
ciency worked well in the industrial stage but proved
to be too narrowly defined for the post-industrial
stage. Post-industrial manufacturing, they posited,
should be viewed as an enterprise that involved a com-
plex network of interdependent value-added activities
from raw material preparation, through fabrication,
to assembly, to distribution, and after sale service. A
lack of understanding of how best to manage the post-
industrial manufacturing enterprise hindered United
States firms from adapting adequately to the chang-
ing manufacturing environment.

What was the result of United States manufacturers’
response to the decline? The third annual Industry Week
census of manufacturers in December 1999 provided
the most up-to-date assessment of the effort taken by
United States manufacturers in regard to the situation:

Manufacturers in the U.S. are struggling in their ef-
forts to improve. Gains are measured in small steps
rather than swaggering strides. Corporate executives

188 Computer-Aided Manufacturing

Computer-Aided Manufacturing 189

Figure 1 Percent change in national income per employed person.

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

Canada US Italy UK

1959-76

1977-80

France Sweden Japan W. Germany

Figure 2 Average unemployment rates.

and plant-level managers do not seem to share the
same vision for their companies’ futures. New tech-
nologies are being thrust in front of organizations
faster than many can grasp how best to use them. The
quest for excellence in manufacturing is far from
over.

III. THE STRATEGIC ROLE OF CAM

Manufacturing was first recognized as a competitive
weapon in a 1956 article by Miller and Roger. Skinner
warned that top management often overlooked the
potential of manufacturing to strengthen a company’s
competitive ability. Effective manufacturing allows a
company to compete in price, quality, efficiency, de-
livery, responsiveness, flexibility, innovation, and cus-
tomer service. CAM provides the means for compa-
nies to develop specific manufacturing strategies and
capabilities, most notably by combining traditional

economies of scale (efficiency wrought by volume)
with economies of scope (efficiency wrought by vari-
ety) to achieve both flexibility and efficiency. Other
reported benefits ascribed to CAM include:

• Greater flexibility
• Faster response to changes in demand and

product design
• Greater control
• Repeatability of processes
• Reduced waste
• Faster throughput
• Distributed processing capability
• Product variety
• Small lot sizes

A research conducted by Industry Week in July 1999
provided evidence of not only the attainment of afore-
mentioned benefits from computer applications, but
also the relationship between the magnitude of these

190 Computer-Aided Manufacturing

12.00%

10.00%

8.00%

6.00%

4.00%

2.00%

1960-73
1973-79

0.00%
Japan

Netherlands

Denm
ark

Belgium

Sweden

Italy
France

W
. Germ

any

Canada

UK US

Figure 3 Comparative productivity improvements.

Table I Benefits Related to the Level of Computer Technology Expenditure

Heavy spenders Light spenders
% %

5-Year productivity increase 99.5 45.5

5-Year median productivity increase 60.1 28.8

5-Year manufacturing cost reduction 27.5 19.6

benefits and the level of computer technology spend-
ing. The findings, summarized in Table I, showed that
plants whose computer technology expenditures
amounted to 4% or more of the plant budget (heavy
spenders) enjoyed greater productivity and cost ad-
vantages than plants that spent less than 4% of the
budget on computer technology expenditures (light
spenders).

Specific benefits offered by CAM are documented
in a 1995 report in Manufacturing Engineering, as de-
tailed in Table II.

Today manufacturing has reached a post-industrial
era that is characterized by increasing complexity, un-
certainty, product variety, and rapid development in
technology, as well as intense global competition and
change. CAM is one of the approaches to manufac-

Computer-Aided Manufacturing 191

Table II Specific Benefits Reported by CAM Users

Company Technology Benefits Product

Akromold, Cuyahoga CAD/CAM software from • Speeds production of injection Automotive, housewares, electron-
Falls, OH Matra Datavision and compression molds ics, and appliance applications

• Completes toolmaking jobs in
two days instead of two weeks

• Eliminates the building of
support geometry for toolpaths

• Eases dealings with customer
part files

Christchurch Hospital, • CAN Wintec machining • Automates the error prone and Titanium plate prostheses to repair
Christchurch, center labor intensive prostheses defects in a human skull
New Zealand • AutoCAD production process

• SurfCAM

CNC Products, • Mastercam software from • Generates gouge-free and Camera and other complex
Highland, NY CNC Software, Inc. verified toolpaths part designs

• Saves part design, machining,
and processing time

Hendrick Motorsports, • CNC machining center • Reduces a 200-hour manufactur- Race car engines
Charlotte, NC • Coordinate measuring ing process to 38 hours

machine • Eliminates 15 setups

• CAM software from • Reduces processing costs by 70%
Camax: SmartCAM and
Camand

Star Metal Products • Machining centers from • Maximizes machine uptime Tooling required for producing
Fadal Engineering Co. • Reduces complex trigonometric nuts and bolts

• Virtual Gibbs CAM system calculations from hours to
from Gibbs & Associates seconds

• Saves hours of prove-out time
and eliminates scraps due to
programming errors by real-time
part rendering

• Reduces NC programming time
from 55 hours to 3.5 hours

• Reduces program run time

• Reduces engineering changes
time

• Reduces programming and
machining times from 250
hours to a day

turing that enables manufacturing systems to be adap-
tive, innovative, and efficient.

IV. CAM TECHNOLOGY

The goal of CAM is to tap into the processing power
and speed, storage capacity, and interactive graphical
interface of a computer to automate complex
production tasks. The strategic incentive is the result-
ing increased productivity, which will help keep Amer-
ican manufacturing competitive in the global market-
place. It enables the automation and computer support
of all the production activities on the shop floor to
manufacture parts designed with computer-aided de-
sign (CAD) and analyzed with computer-aided engi-
neering (CAE). CAM technologies rely on computers
to control and operate equipment such as robots, ma-
chine tools, programmable controllers, and machining
centers, etc., to produce a variety of parts efficiently
and flexibly. The following subsections will take a closer
look at some of these CAM technologies. Web sites that
provide pictures and/or further explanations of each
of these technologies are provided in Table III.

A. NC, CNC, and DNC

Among the earliest applications of computer tech-
nology in manufacturing is numerical control (NC).
The first NC machine was developed by Parsons Corp.
and Massachusetts Institute of Technology under the
support of the United States Air Force in 1954. The
machine achieved the desired accuracy by using num-
bers to move tools in milling turbine blades. Since
then, NC has developed into a sophisticated technol-
ogy that drives modern machining centers and flexi-
ble manufacturing systems.

Electronic Industries Association defined NC as: “a
system in which actions are controlled by direct in-

sertion of numerical data at some point. The system
must automatically interpret at least some portion of
this data.” A typical NC system is made up of hard-
ware and software that controls machine tools and
other production equipment. NC hardware consists
of a machine-control unit (MCU) and the machine
tool, as shown in Fig. 4. A MCU is made up of a data
processing unit (DPU) and a control loop unit (CLU).
NC data are read and decoded by the DPU into con-
trol signals under the supervision of the CLU. The
NC software can be divided into executive software
that controls the NC hardware, application software
that performs specific machining tasks, and front-end
software that serves as a user interface.

NC application software, also called a part pro-
gram, differs in NC capabilities, modeling features,
data translation support, and postprocessing. NC
capabilities define the type of manufacturing
processes and the degree of movements that a given
NC machine can perform. Customized part programs
support NC machines for various cutting and fabri-
cating processes such as milling, drilling, turning,
electrical discharge machining (EDM), forming, nest-
ing, punching, nibbling, and mold and die produc-
tion, among others. They also define the “degree of
freedom” from two to five axis movements for the NC
machines. A 2-axis part program runs NC machines in
x and y directions. A 21⁄2-axis allows an additional z di-
rection positioning, but this z direction is not auto-
matically controlled. A 3-axis allows movements in the
x, y, and z directions simultaneously. A 4-axis adds ro-
tary movement to the movement in the other three
directions. A 5-axis adds spindle or table movement to
the 4-axis.

Modeling features of a part program can be de-
fined by its level and type of modeling. Level of mod-
eling refers to the degree of integration between CAD
and CAM. Types of modeling include 2D/3D, wire-
frame, surface, and solid. Solid modeling is quickly
replacing surface as the modeling techniques of

192 Computer-Aided Manufacturing

Table III Web Sites for CAM Technologies

CAM technologies URL Comments

NC machines www.bostomatic.com/b_mach.htm Pictures of NC machines

FMS www.mazak.com/palltech.htm Pictures of FMS components

Expert systems www.cs.cmu.edu/Web/Groups/AI/html/faqs/ai/expert/part1/faq.html Frequently asked questions

Machine Vision http://www.vision1.com/gl.html Glossary of terms

Robots http://www.bricengineeredsystems.com/ Pictures of industrial robots

LASER http://www.electrox.com/solmain.html Laser industrial solutions

choice. Depending on the modeling features sup-
ported by the part program, various machining strate-
gies for a geometrically defined part can be created.
They include point-to-point or continuous-path tool
path motion, materials selection, machines selection,
tooling selection, speeds/feeds selection, and offsets
selection.

A part program’s data translation support allows
data exchange between CAD and CAM. The data
translator enables CAD files generated in such stan-
dard data exchange format as Initial Graphics Ex-
change Specification (IGES), Data Exchange Format
(DXF), or Standard for The Exchange of Product
model data (STEP) to be interpreted. In this way, part
geometry from the CAD model can be translated into
a form that makes sense for machining applications
such as process planning, fixture design and selec-
tion, and manufacturability evaluation. This resulting
output is called a cutter-location (CL) file.

A part program’s postprocessor converts CL data
into machine-specific codes called machine control
data or “G” codes, which the machine controller un-
derstands. The postprocessor can be either cus-
tomized or generic. A customized postprocessor,
called a C-post, is designed for a specific machine tool
environment. A generalized postprocessor, called a
G-post, offers “universal” postprocessing. Users can
use the user configuration file provided to modify the
G-post to their specific machining environment.

The development of NC is considered a primary
factor in the progress of CAM. In fact, the earlier
meaning of CAM was limited to the part program-
ming with its goal to replace skilled machinists in
manufacturing metal parts with complex geometry
and shape with a programmable machine. Under NC,
instructions to control machine tools for grinding,
drilling, cutting, milling, punching, bending, and
other manufacturing operations are coded on paper
or magnetic tapes and later decoded by electro-

mechanical controllers. Manufacturers can quickly
program, set up, and run the machine tools used in
various cutting and fabricating operations. However,
time-consuming and error-prone manual labor is still
involved in preparing, loading, and unloading of data
tapes as well as controlling individual machines. Im-
provements in the machine hardware enable the de-
velopment of machining centers that can perform
multiple machining operations. This together with
the development of more sophisticated computer
technology gave rise to computer numerical control
(CNC). Under CNC, several machines or machining
centers are under the control of one computer that
provides NC program storage, interactive graphical
interface, and easy on-machine programming. Fur-
ther improvements in computer technology, in par-
ticular, the development of communication networks,
led to distributed numerical control (DNC). Under
DNC, various CNC systems are networked together,
allowing the gathering and disseminating of both
downstream and upstream shop-floor data for an in-
tegrated control of machining operations in real time.
Future NC machines are expected to include machine
intelligence that calls for some kind of planning and
adaptive control capabilities.

B. Flexible Manufacturing

The desire to produce a variety of products in low vol-
ume with the ability to accommodate last-minute de-
sign changes in a cost-effective manner has prompted
the advent of flexible manufacturing systems (FMSs).
The convergence of NC, CNC, DNC, as well as the au-
tomatic material handling systems such as conveyors,
towline with carts, wire-guided carts, and automated
guided vehicles (AGVs) provide the technological ba-
sis for an FMS. Nof, Bullers and Whinston in 1980 de-
fined an FMS as: “an automated manufacturing sys-

Computer-Aided Manufacturing 193

Machine control unit

Machine tool

NC data

Control
signal

Data
processing

unit

Control
loop unit

Figure 4 Components of a typical NC system.

tem consisting of computer controlled machines
linked together with automated material handing sys-
tems and capable of simultaneously producing multi-
ple part types.” A study by Dimitrov in 1990 reported
that approximately 750 FMSs were installed in 26
countries. In the United States, some of the better
known companies such as General Electric, Ingresall
Milling Machine Company, General Motors, Chrysler,
Cadillac, Ford, Hughes, Pratt & Whitney, & Allen
Bradley had installed either partial or complete FMSs.
In all cases, there have been reported improvements
in quality, labor costs, inventory costs, and respon-
siveness to changes. In fact, FMS is the number one
technology among twelve emerging technologies that
the United States Department of Commerce identi-
fied in 1990 that would create an estimate $1 trillion
investment spending by the year 2000.

One of the challenges in FMS installation and op-
eration is the control of the complex network of equip-
ment and shop floor activities of such a system. The
National Institute of Standards and Technology (for-
merly the National Bureau of Standards) proposed a
five-level factory control hierarchy: facility, shop, cell,
workstation, and equipment, as shown in Fig. 5. The
lowest equipment level controls various production
equipment including NC machines, robots, convey-
ors, AGVs, automated storage and retrieval systems,
etc. The workstation level provides the integration
and interface controls of these equipment. The in-
teraction between workstation and material handling,

sequencing, and scheduling of parts through the sys-
tem are the responsibility of the cell level. The inte-
gration of multiple cells and the planning and man-
agement of inventory occur at the shop level. Finally
at the facility level, manufacturing and business plans
are constructed and analyzed to ensure proper man-
agement of all production activities within the manu-
facturing system.

FMS comes with its promise to enable manufactur-
ers to achieve two conflicting goals, namely low vol-
ume and low cost production in response to rapid
market changes. The key to such promise lies in the
way flexibility is pursued in an FMS. Eight types of
flexibility have been defined. They are

1. Setup or machine flexibility—the ability to make
machine changeover of tools, fixtures, and
programs to produce a new set of products

2. Process flexibility—the ability to produce parts in
different ways

3. Convertibility or product flexibility—the ability to
change the system to produce new products easily
and quickly

4. Routing flexibility—the ability to process a part
through different routes so that production will
not be interrupted in case of machine
breakdown, labor shortage, or material
unavailability

5. Volume flexibility—the ability to run the system
profitably at different production volumes

194 Computer-Aided Manufacturing

Figure 5 A control hierarchy for FMS.

6. Expandability flexibility—the ability to cost
effectively expand the facilities as needed

7. Operation flexibility—the ability to interchange
the order of operations for each part type

8. Production flexibility—the ability to produce a
wide range of part types

Upton in 1995 provided the following guideline to
manufacturers pursuing flexibility in their factory:

1. Identify the type of flexibility the factory needs
2. Determine the type of workforce or equipment

the factory needs to enhance flexibility
3. Define ways to measure the type of flexibility

sought
4. Develop a plan to orchestrate the right mix of

machines, computer systems, and people

He stressed that flexibility can only be achieved when
managers emphasized its importance and practiced it.

C. Expert Systems

The CAM technologies discussed so far rely primarily
on massive data storage, fast retrieval, and powerful
computational capabilities of computers to manipu-
late numeric data using well-defined algorithms. Un-
like these technologies, expert systems focus on
heuristic reasoning of symbolic data that represent
knowledge of the problem domain and human ex-
perts to solve difficult problems that require special

expertise. According to the British Computer Soci-
ety’s Specialist Group on Expert Systems, an expert
system is regarded as:

. . . the embodiment within a computer of a knowl-
edge-based component, from an expert skill, in such
a form that the system can offer intelligent advice or
make an intelligent decision about a processing func-
tion. A desirable additional characteristic, which many
would consider fundamental, is the capability of the
system, on demand, to justify its own line of reason-
ing in a manner directly intelligible to the inquirer.
The style adopted to attain these characteristics is
rule-based programming.

Waterman gave the following description on the struc-
ture of expert systems, as shown in Fig. 6:

An expert system contains a knowledge base, a dialog
structure and an inference engine, which consists of
an interpreter and a scheduler. The knowledge base
is the collection of the domain knowledge. The dia-
log structure provides communications and interac-
tion with the user during the operation and process-
ing of the expert system. The inference engine
contains the general problem solving knowledge. The
interpreter makes decisions on how to apply the rules
for inferring new knowledge and the scheduler pri-
oritizes the rules in the appropriate order.

Building expert systems involves the following steps:

1. Knowledge acquisition whereby the knowledge
and methods used in problem solving are
captured from the knowledge source

Computer-Aided Manufacturing 195

Figure 6 Structure of an expert system.

2. Knowledge representation whereby the
knowledge acquired is stored and organized in a
form that the computer understands

3. Knowledge verification and validation whereby
the knowledge acquired and represented is
proved to be accurate and useful in problem
solving

Expert system development tools such as expert
system shells have facilitated the building of expert
systems. Indeed, as Fig. 7 indicates, there was an ex-
ponential growth in the number of expert systems de-
veloped from 1980 to 1992.

The early success of using expert systems in plan-
ning, medical diagnosis, military analysis, geological
exploration, financial consultation, etc., has drawn in-
terests in developing expert systems for manufactur-
ing. A wide range of manufacturing applications, from
NC program generation, facility layout, FMS simula-
tions, production scheduling and rescheduling, qual-
ity control, and process planning to production con-
trol has been reported. A growing number of
industries are now applying expert systems in manu-
facturing, including automobile, glass, oil, aerospace,
computers, and electronics, to name a few. Compa-
nies that invested over $100 million in expert systems
and achieved results include Boeing Computer Ser-
vices’ Connector Assembly Specification Expert, Digi-
tal Equipment Corporation’s XCON, Hewlett
Packard’s Agatha system, and Lockheed-Georgia Cor-
poration’s GenPlan. Reported benefits of these ex-
pert systems include increased speed in completing
complex tasks, improved quality, improved decisions,
reduced cost, reduced skill labor required, reduced
training time, reduced errors, retention of volatile or

portable knowledge, and enhanced knowledge shar-
ing and accessibility. Table IV describes a selected
sample of expert systems in manufacturing and their
related benefits in detail.

Despite numerous examples of successful utiliza-
tion of expert systems among American companies, a
1991 survey of Fortune 500 companies conducted by
Wong, Chong, and Park found that 48% of the 98 re-
spondent companies were not using expert systems
because of top management’s lack of knowledge about
these systems. They suggested that the popularity of
expert systems might increase if the systems are prop-
erly integrated with operation research techniques, in
particular, simulation. These expert simulation sys-
tems can boost management executives’ confidence
in expert systems by allowing a “test run” of the sys-
tems in a simulated environment so that the behavior
and promises of these systems can be observed or
demonstrated.

Besides integrating with simulation, other prob-
lem-solving techniques such as optimization and fore-
casting can be combined with expert systems tech-
nology to form hybrid systems that address
ill-structured and complex manufacturing problems
more effectively and flexibly. Another trend is to have
several expert systems embedded within an overall
problem-solving system that considers subjective and
qualitative types of factors in decision making. The in-
dividual expert systems can be smaller, having less
than 200 rules, and specializing in solving problems
from a particular domain. The results from each ex-
pert systems can be shared or aggregated within the
overall problem solving system. As the range and ca-
pabilities of expert systems are extended, more appli-
cations in manufacturing such as forecasting produc-

196 Computer-Aided Manufacturing

Figure 7 The number of expert systems developed.

tion demand, integrated production planning and
scheduling, location planning, and inventory man-
agement will be solved collectively by expert systems
in the near future.

D. Computer Vision

Computer vision enables the exploitation of another
unconventional capability of a computer, namely, the
image processing and pattern recognition ability. The
idea of having a computer see and interact with its en-
vironment emerged in the late 1950s and 1960s. The
high cost of implementation and technical expertise

needed slowed down its adoption in manufacturing. It
was not until the 1980s before computer vision tech-
nology became more widely used for inspection, qual-
ity control, dimensional gauging, print verification,
code reading, assembly verification, sorting, and ma-
chine guidance. The pressure of increasing miniatur-
ization, rapidly advancing technology, intense compe-
tition, and rising labor costs encouraged the
acceptance of vision technology as a solution to qual-
ity, process control, and productivity, especially in the
semiconductor and electronics industries. Today, these
industries account for half of the vision market. The
sophisticated imaging capabilities of vision systems
are indispensable in making electronic products. The

Computer-Aided Manufacturing 197

Table IV Manufacturing Applications of Expert Systems

Company Expert systems Application Benefits

American Airlines MOCA Schedule airline maintenance • Provides quality (95% first acceptance rate) and
reliable (99% accurate) schedule

• Allows maintenance controllers to perform their
task effectively

• Eliminates maintenance scheduling paperwork
• Reduces the number of flight breaks
• Increases the average flying time for an aircraft
• Increases in flight capacity without an increase in the

number of staff members
• Generates a saving of $500,000 annually

Digital Equipment ECAPP Process planning • Reduces product introduction times
Corp. • Generates high quality process plans

• Reduces machine lost time
• Facilitates communication between design and

manufacturing engineers
• Enhances responsiveness to dynamic environmental

changes

Digital Equipment XCON, XSEL, Configure computers at • Generates tens of millions of dollars in savings
Corp. XFL digital to meet customer annually

specification • Gives customers the maximum flexibility in
ordering their computers

• Outperforms human in computer configuration
• Reduces a three-hour configuration task to

15 minutes
• Reduces the number of nonmanufacturable systems

from 30 to 1%

Hewlett Packard AGATHA Test and diagnose computer • Reduces a manufacturing bottleneck
boards • Eliminates diagnosis backlogs

• Saves diagnostic cost
• Provides a thorough, consistent level of diagnosis

continuously
• Reduces diagnostic times by 40–80%
• Reduces technician training time by 25%

Nippon Steel QDES Design of steel products • Reduces design cycle time by 85%
• Improves design accuracy by 30%
• Generates a saving of $200,000 annually

automotive sector is the next large user of machine
vision, accounting for 30% of the 1999 vision market.
Automotive applications go beyond the usual focus on
productivity and quality issues to part identification.
General Motors Corp., for example, uses machine vi-
sion to match the right tires with the target vehicle.

A computer vision system consists of components
that perform three tasks: image transformation, image
analysis, and image understanding, as shown in Fig. 8.
Devices such as a camera, photodiode array, charge-
coupled, or charge-injection device array capture an im-
age of an object as an analog signal. During the image
transformation stage, the analog signal is then con-
verted to a digital form as pixels in a grid of image ar-
ray, which is stored in the computer memory as a pic-
ture matrix. Before the image can be understood by the
computer, it needs to go through the image analysis
stage whereby the edges of the object are detected by a
process called pixel differentiation which essentially
converts a picture matrix into a binary matrix of lines.
The resulting line drawings allow shape and image in-
terpretation when augmented with additional knowl-
edge about the object such as color, texture, depth, and
its environment in the image understanding stage.

The quest for cost-effective quality control, flexi-
bility, and easy product changeover has extended vi-
sion capabilities by combining them with sensors and
X-rays. Vision sensor systems are well suited in au-
tomating basic inspection tasks whereas vision X-ray
systems are ideal in inspecting sealed products.

E. Robots

The need for more flexible machines to automate
manufacturing tasks has led to the development of in-

dustrial robots. The Robotics Institute of America de-
fines a robot as “a reprogrammable multifunctional
manipulator designed to move material, parts, tools,
or other specialized devices through variable pro-
grammed motions for the performance of a variety of
tasks.”

A robot typically consists of four components: frame
(or arm), tooling (or gripper), power system (or
power source), and controller (or keyboard/joystick).
The movement of a robot frame can be designed us-
ing one or a combination of the four basic configu-
rations: (1) Cartesian has three linear axes, (2) cylin-
drical has two linear axes and a rotary axis,
(3) spherical has one linear axis and two rotary axes,
and (4) articulated has three rotary axes. The con-
troller determines the range of movement that a robot
takes: from the simplest point-to-point, to the inter-
mediate continuous-path, to the most complex com-
puted trajectory. Depending on the design purpose of
a robot, it can be powered by (1) hydraulics for mov-
ing heavy loads, (2) pneumatics for high-speed move-
ment, or (3) electricity for precise and quiet motion.

The first industrial robots that appeared in the mid-
1960s were simple pick-and-place devices for material
transfer. By the 1980s, a new generation of robot sys-
tems were commonly used in welding, painting, ma-
chine loading and unloading, foundry activities, die
casting, injection molding, heat treating, glass han-
dling, product inspection, and material handling. It is
estimated that 46,000 industrial robots have been in-
stalled in the United States. Automotive and metal-
working industries are the biggest robot users in the
United States. Robots outperform humans in terms of
consistency, predictability, and reliability. They are es-
pecially desirable to replace human in hazardous,
toxic, strenuous, and poor working situations. Robotic

198 Computer-Aided Manufacturing

Figure 8 Components of a computer vision system.

sensors that detect and interpret range, proximity,
sound, touch, and force are particularly useful in guid-
ing the robots through unmanned operations, per-
forming delicate gripping and assembly, and position-
ing parts more accurately and precisely.

An emerging process in building parts called shape
deposition manufacturing has become a new area of
robotic application under study at Carnegie-Mellon
by Kanade, Reed, and Weiss since 1994. Shape depo-
sition builds a part by “growing” it layer by layer fol-
lowing a cross-sectional description of the part struc-
ture. The cross-sectional description is generated by
slicing a 3-D CAD model into sections. The ease and
speed in going from part design to fabrication is the
principal advantage of deposition manufacturing. An-
other advantage is that the process is fixture and tool
free, thus making it almost effortless in operating the
deposition equipment. The robot’s role in shape de-
position system is to integrate robotic thermal spray-
ing with deposition. Various materials, including met-
als, plastics, and ceramics can be sprayed onto
patterned surfaces by a robot in layers. The multiple
layers, when fused, can be separated from the pat-
tern, forming a shell with the desired shape of the
substrate surface. Injection molds, dies, or electric
discharge machining electrodes can be fabricated eas-
ily in this way. In addition, novel structures or assem-
blies that are deemed infeasible with conventional
manufacturing processes can be made. For example,
composites and laminates of metals, plastics, and ce-
ramics can be formed. Assemblies that are of high
packing density, composed of selective material de-
position within each layer, or made up of components
formed and embedded in a single structure can be
put together. Industrial applications of robots are sure
to grow in other non-traditional areas.

F. LASER

LASER stands for light amplification by simulated
emission of radiation. It is an alternative source of en-
ergy in the form of a coherent and concentrated light
source converted from electricity. By focusing the en-
ergy onto a small area, a LASER can heat up or va-
porize the target material. The contributions of
LASER lie in three major areas: machining, metrol-
ogy, and prototyping.

In machining, LASER enables tool-less and fast ma-
terial processing. Welding, cutting, drilling, heat treat-
ment, and other machining operations are done in a
noncontact process. By controlling the power density
of a LASER beam, it can work on various materials
from organic, to alloy, to refractory metals. Drilling

with LASER can produce holes with diameters rang-
ing from 0.005–0.05 inches and precise length-to-
diameter ratios up to 100. Welding with LASER pro-
duces parts with low-distortion in high speed. Heat
treating with LASER is ideal for distortion-free, local-
ized surface hardening to depths of up to 2 mm.

In metrology, the high-precision advantage of
LASER makes it especially attractive to gauging, in-
spection, calibration, interferometry, holography,
scanning, and alignment applications. LASER appli-
cations in interferometry determine distance or thick-
ness of a part. An original LASER beam is split into
measuring and reference beams. These beams are re-
flected off from their respective reflectors to produce
interference fringes. The distance or thickness of the
part to be measured is then derived from these fringes.
LASER-based inspection allows for in-process scan-
ning for hot-rolled or extruded material. Its simplic-
ity also leads to the development of portable scanning
devices. When combined with holography, it can be
used to detect defects and produce data on an ob-
ject’s stress or vibration tolerance.

In prototyping, stereolithography allows rapid gen-
eration of physical models from a CAD database to fa-
cilitate new product development and evaluation.
Stereolithography is a layering procedure using ultra-
violet LASER beam to solidify the free surface of a liq-
uid photopolymer resin forming cross sections of the
object. These cross sections are added layer by layer
to produce the solid model for design testing and
analysis. Prototyping used to be a time consuming
task of highly skilled machinists and technicians who
needed to produce a physical item of the product so
that its fit, accessibility, and other related aspects of
the product could be studied and determined. With
the use of LASER in stereolithography, the process to
make a physical prototype of a product can be done
quickly and inexpensively. More importantly, rapid
prototyping has been an enabling technology for the
development of a new approach in producing a prod-
uct called concurrent engineering.

The goal of concurrent engineering is to design
and manufacture a product in an integrated simulta-
neous fashion. With concurrent engineering, various
processes involved in producing a product, including
design, manufacture, support, maintenance, test, in-
spection, reliability, safety, and disposability are con-
sidered in a systematic instead of serial manner. Rapid
prototyping promotes the consideration of these
processes at the outset. Physical models are generated
based on CAD drawings. These physical models can
then be used for prototype evaluation and product
performance simulation before actual production can
take place. As a result, issues related to product de-

Computer-Aided Manufacturing 199

velopment and manufacture such as design, process,
quality, cost, maintenance, and repair can be consid-
ered systematically.

V. CURRENT STATUS OF CAM

The key technologies that help define the current sta-
tus of CAM include computers, NC machines, and
CAD. Computers are the enablers for CAM applica-
tions. As computers become faster, cheaper, smaller,
accessible, PC-based, graphically interfaced, and mul-
timedia oriented, the same are expected from today’s
CAM applications. NC machines bring about the need
for CAM. The introduction of DNC makes the inte-
gration of production with shop-floor control a real-
ity. Today’s CAM applications are expected to offer
shop-floor programming software as well. For exam-
ple, Mitron/GenRad’s CIMbridge permits assembly
line balancing to increase productivity. Orbotech’s
Xpert assists in balancing fabrication issues to mini-
mize yield loss. CAM has long been the receiving end
of model data generated by CAD systems. A bidirec-
tional interface is currently needed so that just as de-
sign intent is communicated to the manufacturing
side, production constraints can be relayed to the de-
sign side. Data reusability is the goal of such
CAD/CAM integration. A 3D CAD solid model needs
to be geometrically correct, transferable to NC pro-
gram, and compatible with the company’s manufac-
turing capabilities. It is a question of data exchange
rather than model quality. A number of industry and
government groups such as the International Elec-
trotechnical Commission, the International Standards
Organization, the Japanese Printed Circuit Associa-
tion, the European Standards Commission, etc., are
working together to solve the CAD-to-CAM data ex-
change problem by establishing formal data format-
ting standards. At the same time, software vendors are
developing integrated CAD/CAM systems, further en-
hancing the capabilities of today’s CAM applications.
A look at a sample of today’s CAM software provided
in Table V gives a glimpse of the current status of
CAM technology.

What was the first-hand experience with CAM tech-
nologies in United States industry? A factory automa-
tion survey conducted by Rosenthal in 1982–1983 pro-
vided some insights. He found that a major barrier to
the widespread use of CAM was a general lack of un-
derstanding by potential users of their needs for fac-
tory automation technology. This is in contrast to
leading users of CAM whose success in adopting and
implementing CAM was contingent on the following:

1. Their understanding of CAM technologies was
based on a systemic view of their manufacturing
requirements and activities.

2. Their factory automation initiatives investments
were evaluated on a broad set of criteria such as
product quality improvement, lead time
reduction, and new product developments.

3. Their analysis of CAM benefits were driven by
long-term strategic rather than short-term
productivity implications

4. Their analysis of CAM costs included long-term
cost of not adopting these technologies.

5. Their willingness to take risks and proceed in an
incremental fashion showed their general feeling
that they could not postpone decisions until
improved technologies became available.

These findings suggested that manufacturing man-
agers should reflect on their organization’s current
strategy toward factory automation. They should start
with an assessment of the adequacy of their knowl-
edge base toward CAM technologies. Having estab-
lished a full awareness of their needs for improved
production processes, their interests in long-term
strategic benefits of CAM technologies should lead to
a realistic analysis of both tangible and intangible
costs, as well as benefits. Only then can the strategic
implications of CAM be fully realized.

VI. FUTURE DEVELOPMENTS OF CAM

What is next for CAM? Daratech in Cambridge, MA,
predicts that worldwide spending for CAM software
and services will reach $6.6 billion in 2000, a 16.4%
growth from 1999. Computers will continue to ad-
vance along their current trend making CAM systems
more powerful, affordable, and accessible. Integra-
tion and intelligence will be the driving forces behind
the next generation CAM systems.

“Open” system architecture will enable full data in-
tegration across multiple computer platforms without
the need for integrated CAD/CAM software. The gap
between design and manufacturing will be bridged.
Integration downstream will bring about CAM/NC
systems that are feature-based in which both topolog-
ical characteristics and parametric information of a
part design are provided. Users will be able to define
and use both design and manufacturing features for
both part modeling and machining.

Another form of integration called “virtual factory”
will lead a dramatic shift in the environment in which
CAM systems operate. According to Upton and

200 Computer-Aided Manufacturing

Computer-Aided Manufacturing 201

Table V CAM Software

CAM software Manufacturer Features

CAM systems Bridgeport Machines, Inc., Bridgeport, CT • Windows feature-based system converts part
www.machinetoolsonline.com/storefronts/bridge.html information to a complete manufacturing

process plan, including automatic tool
selection, speed and feed settings

CAD/CAM Version 7.0 Cimatron Technology Inc., Burlington, ON • Solid modeling capabilities range from
www.cimatron.com wire-frame and surfaces to parametric solids

• NURBS surfaces can be created and
modified dynamically

• 2 1⁄2 to 5-axis milling, drilling, turning,
punching, and wire EDM toolpaths
generation

VERICT CGTech, Irvine, CA • Multi-axis milling, drilling, and turning
www.cgtech.com • Optimizes NC tool paths automatically

• Simulates and optimizes NURBS
interpolation

OneSpace CoCreate Software Inc., Fort Collins, CO • A CAD-neutral 3D modeling tool
www.cocreate.com • Supports virtual collaboration in product

development

CADDS Version 5 Product Development Company, Needham, MA • 2 1⁄2-, 3-, and 5-axis machining
www.ptc.com/products/cadds/index.htm

MasterCAM CNC Software Inc., Tolland, CT • Intel-based 2 1⁄2-axis milling and drilling
www.mastercam.com package

• 5-axis positioning and lathe operation
handling

• Creates CAD geometry and wire EDM

PowerMILL Delcam, Birmingham, United Kingdom • Multi-axis machining
www.delcam.com • Object linking and embedding for design

and modeling

Esprit-X DP Technology, Camarillo, CA • Toolpath and feed rate calculation
www.dptechnology.com • Spindle speed adjustment in 3-D machining

Virtual Gibbs CAM Gibbs & Associates, Moorpark, CA • Quick resequencing of operations, tool size
www.gibbsnc.com modifications, feed and speed changes, and

multiple part programming

CATIA/Cadam IBM, White Plains, NY • Generative machining and assisted
Solutions Version 4 www.catia.com manufacturing that captures manufacturing

and process know-how and automates
repetitive NC functions

Helix Engineering MicroCADAM, Inc., Burbank, CA • Addresses the needs of sheet metal design
www.microcadam.com and fabrication

• Flatwrap and flatpattern provides methods
for unbending or flattening a surface or
solid

• Supports surface and solid modeling

Pro/Manufacturing Parametric Technology Corp., Waltham, MA • Generates tool paths directly from
Version 14 www.ptc.com Pro/ENGINEER solid models

• Parametric modeling and modification

EdgeCAM 4.0 Pathtrace Systems Inc., Walnut, CA • Focuses on machining, especially 2- and
www.pathtrace.com 4-axis turning, mill-turning, rotary and

multiplane milling, family of parts
machining, and post processing

• Fully integrated CAD/CAM with feature
recognition intelligence

(continues)

McAfee, a virtual factory is: “a community of factories
each focused on what it does best, all linked by a net-
work that would enable them to operate as one, flex-
ibly and inexpensively, regardless of their location.”

The emergence of these “virtual” factories built on
a network of business relationships will radically
change the way products are manufactured. Compa-
nies with different CAD systems, team members from
engineering, marketing and management, suppliers,
and others can collaborate electronically on viewing,
discussing, changing, and documenting a design of a
product. Bilateral electronic linkages will be the means
for a company to connect with its suppliers and cus-
tomers. Manufacturers will rely on the Internet to im-
prove their supply-chain efficiency. Companies with
different computer systems can exchange information
about inventory levels and delivery schedules easily.
Using the Internet to collaborate with partners, trans-
mit orders, invoices, payments, or procurement re-
quests will be a common practice. On the customers’
front, help desks and other forms of customer service
such as order-entry, invoices and/or payments, and re-
lationship management will be handled electronically.
The Internet will also be seen as the natural medium
for new product development and business forecast-
ing with customers and/or suppliers.

A number of companies such as McDonnell Doug-
las and Dell Computer are already operating in a vir-

tual manufacturing environment. McDonnell Doug-
las has built a highly effective virtual factory since
mid-1993 linking several thousand suppliers, partners,
and customers. This arrangement allows McDonnell
Douglas to build prototypes of complex new parts
rapidly. It also helps McDonnell Douglas finding the
best suppliers quickly through an electronic bidding
system. Manufacturing schedules are coordinated so
that warnings of time overruns can be issued early
when subcontractors are behind on their subassem-
blies. McDonnell Douglas’ virtual factory has made it
possible for both long- and short-term partners to col-
laborate easily, securely, cheaply, and conveniently.
Dell Computer has successfully used the Internet to
take customer orders on-line and then orchestrated
production tailored to each customer’s specification,
thus, generating an impressive 160% return on in-
vested capital in 1999. Dell viewed one of the changes
that was brought about by the Internet as the dra-
matic reduction in cost of connections and linkages.
The near zero cost to communicate with suppliers
and customers allows a company to scale quickly, be-
come more flexible, and manage supplier networks
and customer relations in a more dynamic fashion. A
company can focus on what it does best.

In order to support a virtual manufacturing envi-
ronment, future CAM systems need to be Internet
“ready,” focusing on collaborative and communicative

202 Computer-Aided Manufacturing

Table V CAM Software (continued)

CAM software Manufacturer Features

I-DEAS Generative Structural Dynamic Research Corp., Milford, OH • Interactive machining
Machining www.sdrc.com • Feature-based machining helps users

improve the manufacturing process, not
just tool path creation

SurfCAM Version 6.0 Surfware Inc., San Fernando, CA • Machines undercut surfaces in one setup
www.surfware.com • Parametric design capabilities

• Creates optimized tool paths according to
user-defined tolerances

CAMWorks 99 Teksoft Inc., Scottsdale, AZ • Generates NC code on solid model
www.teksoft.com • Stores preferences for how particular part

features should be machined

Unigraphics Unigraphics Division, Electronic Data Systems, • Variable-axis surface machining
Cypress, CA • Provides more cutting methods for

www.ugs.com different geometry
• Provides shop-floor oriented programming

system (UG/SHOP)

VISI-CAM Solid Vero International, Inc., Gloucestershire England • 2D through 3D surface and solids
Machining www.vero-software.com machining

• Provides tool path calculations, offsets,
CNC codes, and simulation from solid and
surface models

functions. For example, the Boeing 777 jet was devel-
oped using virtual prototyping involving only elec-
tronic instead of physical models. On another plane,
a virtual reality system called Virtuosi was developed
by a group of researchers at the University of Not-
tingham to customize clothing design. The system
provided a 3-D viewing and manipulation of fashion
designs over the Web. Clothes so designed were
demonstrated by voice-activated mannequins on vir-
tual runways in the system.

Artificial intelligence research will allow the devel-
opment of smart CNC controls that would machine a
part in the most efficient manner automatically. The
more “intelligent” CAM systems can optimize NC tool
paths, provide knowledge-based machining, and allow
the best practices or process expertise be captured
and stored in templates as standards for manufactur-
ing. These fully automated and highly integrated CAM
systems permit any part design changes to be rippled
through all aspects of the manufacturing processes
without human intervention.

Another advance in artificial intelligence research
on self-evolving robots will have an impact on CAM. A
report in the August issue of the journal Nature de-
scribed how scientists at Brandeis University in Waltham,
MA, had successfully created a robotic manufacturing
system that designed and built self-evolving and
self-generating robot-like machines. Through a self-
selection process, the best generations of robot-like ma-
chines were created from plastic. The machines were
powered by motors and controlled by a neural network
on a microchip. Because of the self-evolving nature of
these robots, they were essentially designed for free.
One of the promises this advancement can bring on
CAM is a more economical approach to robotics. The
cost of designing and building a robot will be reduced
from millions of dollars to just a few thousand dollars.
In the future, the use of these inexpensive robots to as-
semble parts, clean up spills, and perform many other
specific tasks in a factory will become a reality.

VII. CONCLUSION

As the use of computers in manufacturing broadened,
CAM users ultimately can study and control manu-
facturing from product development to production as
one seamless process. CAM will soon become synony-

mous with computer-aided production engineering,
digital manufacturing, virtual manufacturing, and dig-
ital factory.

An article in the January 2000 issue of Manufactur-
ing Engineering reiterated that future CAM software
will be smarter, easier-to-use, more affordable, and
PC-based. CAM technology will be a natural solution
to cost reduction, error reduction, lead-time reduc-
tion, and productivity improvement. Advances in com-
puter technology will certainly accelerate the progress
of CAM. CAM and other advanced manufacturing
technologies will play an increasingly significant role
in reshaping a company’s manufacturing strategy and
restoring our competitive edge through excellence in
manufacturing.

SEE ALSO THE FOLLOWING ARTICLES

Accounting • Computer-Integrated Manufacturing • Man-
agement Information Systems • Operations Manage-
ments • Productivity

BIBLIOGRAPHY

Chang, T. C., Wysk, R. A., and Wang, H. P. (1998). Computer-
aided manufacturing, 2nd edition. Englewood Cliffs, NJ: Pren-
tice Hall.

Ettlie, J. E. (1998). Taking charge of manufacturing. San Fran-
cisco, CA: Jossey-Bass.

Hopp, W. J., and Spearman, M. L. (1996). Factory physics: Foun-
dations of manufacturing management. Boston, MA: Irwin/
McGraw-Hill.

Karwowski W., and Salvendy, G., eds. (1994). Organization and
management of advanced manufacturing. New York: John Wiley
& Sons.

Kendall, K. E., ed. (1999). Emerging information technologies: Im-
proving decisions, cooperations, and infrastructure. Thousand
Oaks, CA: Sage Publications.

Lee, A. (1994). Knowledge-based flexible manufacturing systems
(FMS) scheduling. New York: Garland Publishing.

Machover, C. (1996). The CAD/CAM handbook. New York:
McGraw-Hill.

Magaziner, I. C., and Reich, R. B. (1982). Minding America’s
business: the decline and rise of the American economy. New York:
Law & Business.

Mital, A., and Anand, S., eds. (1994). Handbook of expert systems
applications in manufacturing: Structures and rules. London,
UK: Chapman and Hall.

Vajpayee, S. K. (1995). Principles of computer-integrated manufac-
turing. Englewood Cliffs, NJ: Prentice Hall.

Computer-Aided Manufacturing 203

Computer Assisted Systems Engineering (CASE)
Donna Weaver McCloskey
Widener University

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 205

I. INTRODUCTION TO COMPUTER-AIDED SOFTWARE
ENGINEERING (CASE) TOOLS

II. UPPER AND LOWER CASE TOOLS

III. USAGE OF CASE TOOLS
IV. OBJECT-ORIENTED ANALYSIS AND DESIGN
V. FUTURE DIRECTIONS FOR CASE

GLOSSARY

context diagram A context diagram is a high-level
data flow diagram, which shows the external enti-
ties with which an information system interacts. It
shows the boundaries of the system and the major
information flows between the system and the ex-
ternal entities.

data dictionary A part of the repository, the data dic-
tionary stores all of the data definitions. This in-
cludes field names and aliases, data descriptions,
default values, format, range of acceptable values,
and other data validation checks.

data flow diagram (DFD) A data flow diagram shows
the flow of data from external entities, and
processes and data stores within an information
system.

entity-relationship (ER) diagram A diagram used to
model the database structure. It contains the fields
and table structure along with how the tables relate
to one another.

object The building block of object-oriented systems.
Each object contains data and the functions that
can be performed on that data. Once an object is
created it can then be reused, thus saving time on
future development projects.

object-oriented (OO) analysis and design OO analy-
sis and design is a system development methodol-
ogy that is based on an object orientation. OO
modeling techniques closely link and integrate
analysis and design activities. UML has become the
standard modeling tool for this methodology. Sys-

tem implementation is typically an OO program-
ming language or OO database.

rapid application development (RAD) RAD is a sys-
tem development methodology in which system de-
velopers and end users work jointly and in real
time to develop the system. RAD makes extensive
use of prototyping and promises better and cheaper
systems, which can be deployed more rapidly than
using the traditional system development life cycle
methodology.

repository The repository is a centralized database
that stores all of the information regarding a sys-
tem development project, including the data dic-
tionary, diagrams, prototypes, generated code, and
notes.

system development life cycle (SDLC) The SDLC is a
linear and sequential methodology for the devel-
opment of an information system. While different
authors break the steps down into a variety of steps,
the main items include preliminary investigation,
analysis, design, implementation, and maintenance.

unified modeling language (UML) UML is an inte-
grated set of modeling techniques for depicting
and constructing an OO information system.

CASE, computer assisted (sometimes aided) system
(sometimes software) engineering tools help manage,
control, and complete the analysis, design, imple-
mentation, and maintenance of large information sys-
tems projects. A CASE tool is a software application
that contains features such as program management

tools, diagramming tools, prototyping tools, code
generators, and an information repository with the
capability to support team developed projects. Rapid
application development (RAD) and the increasing
use of object-oriented tools have contributed to the
growth and acceptance of object-oriented (OO) CASE
tools.

I. INTRODUCTION TO COMPUTER-AIDED
SOFTWARE ENGINEERING (CASE) TOOLS

Imagine that you are building your dream home.
There are a number of types of professionals and
trades people that you will have to work with in com-
pleting this job. A lawyer may be necessary to review
contracts. An architect will assist you in the design of
the house. Eventually carpenters, plumbers, electri-
cians, painters, etc., will be needed to make your
dream home a reality. Imagine the planning and co-
ordination that must go into such a project. You can’t
simply make a decision about carpeting today and
have it installed tomorrow. There are a variety of lead
times to deal with since many items have to be or-
dered or made. Scheduling becomes a challenge too.
Would you want the walls painted before or after the
new carpet is installed? Likewise, the walls can’t be fin-
ished until some of the electrical and plumbing work
has been completed. The coordination and commu-
nication necessary for such a large project becomes
even more essential when changes and modifications
are being made. You could have a meeting with your
architect to make some modifications to the house,
perhaps to add a jacuzzi. But unless your architect is
in close contact with your contractors, the jacuzzi might
not be ordered or the appropriate subflooring may
not be put in place. Unless the contractor is in close
contact with the other subcontractors, the electrician
may not add the appropriate wiring for the tub.

Imagine now that your product is not one house
but an information system. The concept is the same.
The development of an information system involves
many people and the coordination and communica-
tion among the project team members is crucial for
the timely development of a quality product. Since
the 1970s developers have used computer-aided/
assisted software/system engineering (CASE) tools to
help manage, control, and complete the analysis and
design of large information systems projects. A CASE
tool is a software application that supports various as-
pects of information system creation. CASE tools have
evolved from rather simplistic diagramming tools to
advanced tools with an integrated repository that sup-

ports the development efforts of multiple users. As
outlined in Table I, CASE tools may include a variety
of components in addition to a diagramming tool,
such as project management tools, prototyping tools,
code generators, documentation generators, and qual-
ity management tools.

The use of a CASE tool offers many potential ben-
efits to an organization. First, CASE tools can have a
direct impact on increasing productivity and the speed
with which systems are developed. Although the tools
do not replace the critical role played by analysts and
developers, they do allow certain activities to be per-
formed more efficiently. The automation of diagram
creation and maintenance and the ability to generate
code automatically certainly help to increase the speed
at which systems can be developed. Many researchers
have indeed found that the use of a CASE tool results
in increased productivity. Finlay and Mitchell (1994)
reported on the introduction of a CASE tool to a
British manufacturing company. They found that the
use of a CASE tool resulted in productivity gains of
85% and a 70% reduction in delivery times.

Second, a CASE tool provides a means of improv-
ing communication. Using a central repository, all of
the participants are able to access the same data def-
initions and standards. The repository also contains
all of the diagrams, prototypes, notes, and other doc-
umentation associated with the project. Thus, in ad-
dition to accessing data definitions and standards,
team members can work collaboratively to create and
modify work started by other team members. While
certainly critical within the development of one proj-
ect, the repository also provides the opportunity for
organizational wide data definitions and standards.
Frequently an information system will use data, per-
form calculations, or provide output that is identical
or at least very similar to that created by another or-
ganizational information system. Having a central
repository that is used by all of the organization’s de-
velopment teams would potentially allow the reuse of
components from other projects, thus further im-
proving productivity.

Third, because CASE tool usage results in well-
documented analysis and design, it can reduce the
time and costs associated with system maintenance.
Frequently system documentation is performed at the
end of the project, when time and budget constraints
might force the activity to get less than optimal atten-
tion. By using a CASE tool, the analysis and design
activities are formally documented throughout the life
cycle. A documentation generator can then be used to
assist in producing both system and user documenta-
tion in a standard format. Providing quality documen-

206 Computer Assisted Systems Engineering (CASE)

tation is a critical component since it is infinitely easier
to modify and maintain a well-documented system.

Finally, a CASE tool allows for the integration of
analysis, design, and implementation activities. CASE
tools provide error checking and analyses for com-
pleteness and consistency within and between tools or
components. For example, various diagramming tech-
niques have a number of rules and standards, which
will be checked by the tool. For example, every data
flow in a data flow diagram must have a unique name.
The CASE tool would check that this naming con-
vention was being followed for each diagram. Like-
wise, the CASE tool can notifiy the analyst of poten-
tial problems between diagrams. When a change is
made to one component part of the project, the tool
will either update or flag other areas that are im-
pacted. If the project was being managed using paper
files, a change to one part of the project would ne-
cessitate the manual checking of other potentially im-
pacted areas. Certainly, the large number of updates
and modifications could result in errors. By offering
error-checking capabilities and by sharing one repos-
itory, the CASE tool allows for the seamless integra-
tion of analysis, design, and implementation activities,
thus systems are developed with fewer errors. Re-
searchers have indeed found that a CASE tool re-
sulted in improved system quality.

CASE tools provide two different and distinct ways
of developing system models. The first, and perhaps
most common, is forward engineering. In this way a
system analyst develops models that are then refined
and eventually transformed into program code. Re-
verse engineering starts with a system that is then mod-
ified and refined. The CASE tool takes program code
and then generates the system model from it. Some
tools support both forward and reverse engineering.

II. UPPER AND LOWER CASE TOOLS

CASE tools support both the early stages of develop-
ment, the analysis and design phases, and the later
stages, the implementation and maintenance phases.
Therefore, CASE tools can be used by a wide variety
of people, including project managers, business and
database analysts, software engineers, system develop-
ers and designers, programmers, and those people re-
sponsible for system maintenance. Frequently the
tools used to support the two distinct aspects of sys-
tem development are differentiated as upper and
lower CASE. Some CASE tools focus on one or the
other, but most are integrated tools that support sys-
tem development from beginning to end. An inte-
grated CASE tool, frequently called a cross life cycle

Computer Assisted Systems Engineering (CASE) 207

Table I Common Components of Case Tools

Project management tools Includes tools that help manage and track the project. This may include project scheduling,
resource allocation tools, and budget trackers.

Diagramming tools A variety of diagramming techniques are used to model the information system. The traditional
system development life cycle approach would involve a context diagram, data flow diagrams,
entity-relationship diagrams, and structure charts. An object-oriented approach would involve
a different type of diagramming, most commonly UML. Diagramming tools allow the analyst
to create, store, and modify the many diagrams used in the analysis phase system development.

Prototyping A prototyping tool allows for the relatively quick and easy development of menus, reports, and
forms. It typically does not involve programming or have an associated database. Prototyping
allows users to get the “look and feel” of the system early in the analysis and design process.

Code generator Code generators allow users to generate executable code and database definition code from
prototypes and other design specifications. Typically CASE tools support a variety of
programming languages, including COBOL, C, C��, Visual Basic, and Java.

Repository A central area that stores all of the data concerning a project, including the diagrams,
prototypes, data definitions, project management information, notes, and other
documentation. The repository can be accessed by multiple users and thus facilitates teamwork.
The repository also serves as an important resource when future changes or maintenance
becomes necessary. A password system maintains who has access to what data and what their
privileges are.

Documentation generator This helps to produce both technical and user documentation in standard formats.

Quality management tools Analyze system models, descriptions, specifications, and prototypes for completeness,
consistency, and conformity to the accepted rules of the development methodology.

CASE tool, may also have features that are used
throughout the project, such as project management
and scheduling tools (Table II).

A. Upper CASE

Upper CASE tools (sometimes also referred to as front
end CASE tools) are typically used by analysts and de-
signers and include diagramming tools, prototyping
tools that include form, report, and user interface
generators, and the repository. Upper CASE tools pri-
marily focus on the analysis and design of the infor-
mation system.

One of the early steps in the traditional system de-
velopment life cycle is analysis, the modeling of the
logical system. This step would include using a num-
ber of diagramming techniques to present the scope
of the information system, the individuals and other
systems that the new information system will interact
with, the flow of data, the processes that are done,
and the data that is stored and used. Context dia-
grams, data flow diagrams, and entity-relationship di-
agrams are commonly used diagrams to model the in-
formation system. A CASE tool allows the analyst to
create these diagrams relatively easily and profession-
ally, thus saving the analyst the time required to man-
ually draw and then continually redraw the diagrams
as changes and additions are made. The tool can also
provide some basic checks to ensure that the correct
data modeling rules are followed. For example, a
CASE tool will not allow a data flow to go unnamed
or for a child data flow diagram to have flows that do
not match those is the parent data flow diagram. An-
alysts would rarely work alone on such large projects.
Because the project diagrams are stored in a reposi-
tory, multiple participants will have access and have
the ability to make changes and corrections. The au-
tomated diagramming tool helps the analyst maintain
the same naming conventions and ensures the inter-

operability of diagrams. The ability to create and main-
tain data flow diagrams and the data dictionary have
been found to have the highest ranking in critical
components for a CASE tool.

Prototyping tools allow the developer to quickly
develop screens, reports, and forms to give end users
the “look and feel” of the information system. By pre-
senting a prototype to the end users early, the devel-
oper can gain valuable feedback and additional sup-
port for the project. The process of developing the
templates is very straightforward. The establishment
of templates allows the developer to set common fea-
tures, such as headings, footers, function key assign-
ments, buttons, and formatting constraints so that
each screen, report, and form are consistent. A change
to the shared template would then “ripple through”
to each item without the need to edit each one.

B. Lower CASE

Lower CASE tools (sometimes also referred to as back
end CASE tools) support the final stages of the system
development life cycle, implementation, and mainte-
nance. Lower CASE tools, which often include code
and documentation generators, are typically used by
programmers and those people involved in the im-
plementation and maintenance of the information
system.

A tool for generating code from prototypes and
other design specifications is perhaps the most im-
portant tool at this stage and certainly has a direct im-
pact on the speed of implementation. The direct gen-
eration of executable source code, without the need
for programmers to do the actual coding, offers a
number of advantages to the system implementation
process. First, the time needed to program, test, and
maintain the code can be substantially reduced. Given
that the design was accurately and completely en-
tered, error-free code can be directly generated. A

208 Computer Assisted Systems Engineering (CASE)

Table II Comparison of Upper, Lower, and Integrated Case Tools

Integrated CASE (or
Upper CASE Lower CASE cross life cycle CASE)

Primary function Primarily used during the initial Primarily used during the Tools that support the ongoing
stages of development, including implementation and activities of a system
project identification, analysis, maintenance phases development project
and design

Features Diagramming tools for process, Code and documentation Project management and
logic, and data models and generators scheduling tools
prototyping tools

change in the design would then require just the re-
generation of the code. Most CASE tools support a va-
riety of programming languages, including COBOL,
C, C��, Visual Basic, and Java, making it easy to mi-
grate from one platform to another.

Complete documentation is critical to the timely
and cost-effective maintenance of the developed sys-
tem. Researchers have found that system maintenance
could take up to 400 times longer with poor docu-
mentation, whereas good quality documentation could
result in an 80% reduction in system maintenance
time compared to average documentation. Frequently,
documenting the system is put off until the end of the
project, when budget and time constraints could cause
the effort to be short changed. The use of a CASE tool
ensures that the system is being documented through-
out the development process. Documentation genera-
tors allow information technology professionals to
quickly and easily create both user and technical doc-
umentation. Because it was developed throughout the
system development life cycle, the documentation is
often more complete and of higher quality, thus sup-
porting maintenance activities.

Lower CASE tools have made rapid application de-
velopment (RAD) possible. RAD is a relatively new
system development methodology in which system de-
velopers and end users work jointly and in real time
to develop the system. Unlike a traditional system de-
velopment life cycle, it is not a sequential and linear
approach but rather a collaborative and integrated ef-
fort. Developers no longer work on analysis diagrams
in relative isolation. RAD involves the end users di-
rectly in the entire development process and makes
extensive use of prototyping. Due to the high in-
volvement of end users, one of the advantages of RAD
is said to be better systems. The streamlined method-
ology also results in systems that can be deployed
more rapidly than using the traditional development
life cycle methodology, which results in lower devel-
opment costs. CASE tools, particularly the prototyp-
ing and code generators, have made RAD a feasible
methodology that is gaining more and more support,
particularly for electronic commerce applications.

III. USAGE OF CASE TOOLS

A. Reasons CASE Tools
Are Not Used Effectively

CASE tools have a somewhat tarnished image and
adoption has been slower than expected. Kremerer
(1992) reports that one year after the introduction of

a CASE tool 70% of the organizations were not using
them and that in 25% of the organizations only one
group was using the tools. Finlay and Mitchell (1994)
reported on the introduction of a CASE tool to a
British manufacturing company and found that the
CASE tool was being used, which had resulted in sub-
stantial productivity gains and reduced delivery times.
Unfortunately, these benefits were not as great as orig-
inally anticipated. Not achieving the level of antici-
pated benefits is just one of the disappointments that
have tarnished the introduction of CASE tools.

CASE tools have gained a reputation of not fulfill-
ing their promise. Early on, CASE tools were oversold
as being a “cure all” for system development prob-
lems. It was misunderstood that CASE tools would
serve an active, rather then passive, role in system de-
velopment. It is important to remember that CASE
tools are to aid or assist in the development process,
not to replace the vital role of system developers. The
belief that CASE tools would serve as some type of “sil-
ver bullet” to magically increase system quality while
decreasing development time is as absurd as believing
that the use of a word processing package would let
anyone write a great novel. While a CASE tool can
help speed up several tasks and can offer some checks
for quality assurance, it is but a tool that can only be
used effectively by those people who have the skills
and knowledge to complete the project. In fact, a
small study of experienced CASE tool users found
that CASE tools were not found to have a positive im-
pact on the most critical factors in successful systems
development, including involving the client in the de-
velopment process and setting appropriate bound-
aries and scope. The tool cannot correct voids in
knowledge or experience. A CASE tool can enhance
communication between team members and can help
track whether a project is on schedule and on budget,
but it cannot correct problems in project manage-
ment, such as unrealistic budgeting and scheduling.
The general misunderstanding of the role CASE tools
could play in systems design and development re-
sulted in unmet expectations. This is still a burden
that current CASE tools are carrying. To separate
themselves from the initial bad press surrounding
CASE tools, many organizations are no longer using
the term CASE tool, but rather integrated application
development tool.

Additionally, CASE tools do not come cheap. A
premier integrated CASE tool could run in the area
of thousands of dollars per user. And the software is
just part of the budget necessary for successful adop-
tion. The addition of hardware and training costs fur-
ther inflates the price tag. The less than spectacular

Computer Assisted Systems Engineering (CASE) 209

results of early CASE adoption combined with the
high costs of implementation have resulted in a rela-
tively flat adoption curve.

CASE tools are complex and powerful tools that
can be used throughout the system development life
cycle. Ironically, this very feature has been cited as a
reason that CASE tools are not used. The complexity
of the tool and the belief that the tool is complicated
to work with have been found to be substantial factors
in the slow adoption by systems professionals.

The successful adoption of a CASE tool requires
use by a group of skilled and trained system develop-
ers. Unless the tool is accepted and used by the entire
group, many of the advantages will not be realized.
For example, the advantage of standard data defini-
tions does not exist if all of the team members are not
using the CASE tool. For this reason, the support of
management has been found to be a significant fac-
tor in determining successful CASE usage.

B. Current Usage

Because of the vast number of products and their dif-
ferences in scope and capabilities, it is difficult to assess
the overall CASE tools market share. The CASE Tool
Index web page (http://www.qucis.queensu.ca/
Software-Engineering/tools.html) gives a comprehen-
sive list of current CASE tools. In December 2001, there
were well over 300 tools listed. Articles and reviews of
particular applications, such as those published at Soft-
ware Development Online (http://www.sdmagazine.
com), published research and CASE studies are useful
for examining which tools are popular and whether
other organizations have found them useful. For exam-
ple, a 1998 study of the use of CASE tools by system de-
velopers found that 76 respondents reported using 13
different CASE tools, with the majority of the responses
involving Texas Instrument’s IEF (49 respondents) and
Sterling Software’s ADW (15 respondents). These tools,
along with Oracle and Intersolv’s Excelerator were con-
sistently ranked highest in an evaluation of features.

C. Critical Success Factors

Post, Kagan, and Keim (1999) sought to evaluate
CASE tools as well as individual features. Systems an-
alysts and developers who used a CASE tool on a day-
to-day basis were asked to evaluate the tool on a num-
ber of criteria. Results indicated that the prototyping
feature did not have a significant impact on the over-

all evaluation of the CASE tool, indicating that the
users were not using the tools for prototyping. The re-
spondents seemed to perceive that no one CASE tool
met all of their needs. Some were rated strong in
graphics and data dictionary features whereas others
were rated strong in analysis. Those tools that were
rated strongest in analysis were also rated strongest
overall indicating the importance of these features.

IV. OBJECT-ORIENTED
ANALYSIS AND DESIGN

The traditional system analysis and design method-
ologies do not necessarily support the use of object-
oriented (OO) tools. The object orientation involves
saving data and the procedures that impact that data
as self-contained units, called objects. This approach
offers many advantages, including cost reductions and
increases in the speed of system development through
the reusability of objects. Data and functions are en-
capsulated, thus simplifying maintenance and reduc-
ing errors. Once objects are created they can then be
reused in additional applications. This assumes that
individual programmers take advantage of previously
designed and developed objects and that the designs
are compatible. In this respect, it is even more im-
portant to have a tool for defining standards, docu-
mentation, and facilitating the coordinated design ac-
tivities in an object-oriented environment.

A. Unified Modeling Language (UML)

The implementation of an information system in an
object-oriented environment involves storing data dif-
ferently, thus the traditional modeling techniques,
such as entity-relationship diagrams, are no longer ap-
propriate. There were a number of independent OO
modeling techniques for the analysis and design of
OO systems. Grady Booch’s “Booch” method, Ivar Ja-
cobson’s Object-Oriented Software Engineering
method and James Rumbaugh’s Object Modeling
Technique were unified, resulting in the popular and
dominant Unified Modeling Language. UML is an in-
tegrated modeling technique that can be used to
model a system from analysis, design, and into imple-
mentation. Unlike the modeling methods used in the
traditional system development life cycle, the model-
ing techniques are integrated and interrelated result-
ing in fewer errors and increased speed.

210 Computer Assisted Systems Engineering (CASE)

B. OO CASE Tools

Again, given the number of CASE tools and the vari-
ety of features and functions that they offer, there is
not a reliable measure of the OO CASE tool market
share. As with traditional CASE tools, there are a num-
ber of research articles, case studies, and product re-
views. For example, Post and Kagan (2001) conducted
a survey of American developers who use CASE tools
in their day-to-day jobs. Respondents indicated the
use of 24 CASE tools that support an object orienta-
tion. Rational Rose from Rational Software (34), Com-
puter Associate’s Paradigm Plus (18), Aonix’s
StP/OMT (13), and Texas Instrument’s Composer
(10) were most frequently identified.

V. FUTURE DIRECTIONS FOR CASE

Whether they are called CASE tools or not, develop-
ment tools offer a number of substantive benefits for
the development of information systems. Despite the
bad press, there is evidence that CASE tools do help
develop quality information systems in a reduced
amount of time. The use of a development tool
throughout the stages of system development can also
result in better and more complete documentation,
thus facilitating the maintenance of the information
system. The speed with which electronic commerce
applications need to be developed has contributed to
different development methodologies. The increased
use of RAD and OO analysis and design will surely
continue to support the use of CASE tools.

SEE ALSO THE FOLLOWING ARTICLES

Data Flow Diagrams • Data Modeling: Object-Oriented Data
Model • Program Design, Coding, and Testing • Project

Management Techniques • Pseudocode • Quality Infor-
mation Systems • System Development Life Cycle • System
Implementation

BIBLIOGRAPHY

Aegan, I., Siltanen, A., Sorensen, C., and Tahvanainen, V.
(1992). A tale of two countries: CASE experiences and ex-
pectations. In The impact of computer supported technologies on
information systems development. (K. E. Kendall, K. Lyytinen,
and J. DeGross, eds), 61–91. Amsterdam: IIP Transactions,
North-Holland.

Finlay, P. N., and Mitchell, A. C. (1994). Perceptions of the ben-
efits from the introduction of CASE: An empirical study.
MIS Quarterly, 18(4): 353–370.

Hanna, M. (1992). Using documentation as a life-cycle tool,
Software Magazine, 12(12): 41–51.

Iivari, J. (1996). Why are CASE tools not being used? Commu-
nications of the ACM, 39(10): 94–106.

Kremerer, C. F. (1992). How the learning curve affects CASE
tool adoption. IEEE Software, 9(3): 23–28.

Norman, R. J., and Nunamaker, J. F. (1989). CASE productivity
perceptions of software engineering professionals. Commu-
nications of the ACM, 32(9): 1102–1108.

Orlikowski, W. J. (1993). CASE tools as organizational change:
Investigating incremental and radical changes in systems de-
velopment. MIS Quarterly, 17(3): 309–340.

Post, G. V., and Kagan, A. (2001). User requirements for OO
CASE tools. Information and Software Technology, 43(8):
509–517.

Post, G. V., Kagan, A., and Keim, R. T. (1998). A comparative
evaluation of CASE tools. The Journal of Systems and Software,
44(2): 87–96.

Post, G. V., Kagan, A., and Keim, R. T. (1999). A structural
equation evaluation of CASE tool attributes. Journal of Man-
agement Information Systems, 15(4): 215–234.

Senn, J. A., and Wynekoop, J. L. (1995). The other side of
CASE implementation: Best practices for success. Informa-
tion Systems Management, 12(4): 7–14.

Sumner, M., and Ryan, T. (1994). The impact of CASE: Can it
achieve critical success factors? Journal of Systems Manage-
ment, 45(6): 16–20.

Computer Assisted Systems Engineering (CASE) 211

Computer Hardware
Ata Nahouraii
Indiana University of Pennsylvania

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 213

I. HISTORICAL DEVELOPMENT OF I/O DEVICES
II. INPUT DEVICES

III. OUTPUT DEVICES

IV. AUXILLARY DEVICES
V. OTHER IMAGE PROCESSING SYSTEMS:

VI. APPLICATIONS

GLOSSARY

analog Associated with the continuous wave or pulse
type signal (such as the human voice). If transmit-
ted to a computer or terminal it must be converted
to a digital signal [0,1] before it can be processed.

array Any digital image stored as a two-dimensional
data and addressable by x,y (or row, column)
coordinates.

binary Binary, or base 2, is a numbering system with
only two digits, 0 and 1. Binary is convenient for
use with bits which have only two states, on and off.

bit The smallest unit of memory in the computer.
bit depth The number or bits used to represent each

pixel (picture element) in an image determining
its color or tonal range.

byte A unit of measure equal to 8 binary bits. This
standard unit is used to measure file size, computer
memory size, and disk or mass storage capacity.

CCD (charge-coupled device) A diode that is light-
sensitive when charged with electrical voltage and
is able to convert light into an electrical charge.

CMS (color management system) Measures color uni-
formity across input and output devices so that fi-
nal printed results match originals. The character-
istics or profiles of devices are normally established
by reference to standard 1T8 color targets.

CMYK (cyan, magenta, yellow, black) The subtractive
primaries, or process colors, used in color printing.
Black (K) is usually added to enhance color and to
print a true black.

density The ability of a material to absorb light. It is
a measure of light transmission of a transparent or

translucent object or the ratio of the number of
bits to the total number of bits in an object. The
greater the density area, the more compact the ab-
sorbency of the surface.

digital Method of data storage and/or transmission
wherein each element of information is given a
unique combination of numerical values [0,1] or
bits. Digital data consist of discrete steps or levels
and have a finite state. This is in contrast to analog
data which are a continuous form.

dot Smallest visible point that can be transmitted,
transcribed, or displayed.

DPI (dots-per-inch) A method of denoting the resolu-
tion of a scanned image, or a digitized image in a file.

drum scanner An optical input device that is mounted
on a revolving cylinder for digitizing.

gigabyte (GB) A unit of measure defined as one bil-
lion bytes, or 1,024,000,000 characters.

LAN (local area network) A group of connected com-
puters sharing access to printers and other periph-
eral devices. It may use a wire or optical fiber link
for data transfer.

pixel Another term for picture element; it is a two-
dimensional array of dots that define the form and
color of an image. Measurement is indicated as PPI
(pixels per inch). The pixel most often refers to
screen dots rather than image dots.

PMT (photomultiplier tube) A light sensitive tube as-
sociated with drum scanners.

SCSI (small computer system interface) An internal
communications standard for computers, through
which hard drives, scanners, and other peripherals
transfer data.

transparency scanner An optical input system for dig-
itizing images from positive or negative trans-
parency film.

Willing or not, we are being ushered into a new pe-
riod of technological advances earmarked by the com-
puter. Today, almost everyone is affected by some form
of automated information system. The ability of a
computer system to perform certain functions effec-
tively and efficiently depends on its hardware and its
associated software. The hardware are the physical
components that are needed to support the input,
processing, and output activities of a given system;
software, on the other hand, consists of programs or
instructions that make the computer work.

This article describes various types of input/output
(I/O) devices that are needed by a user for present
and future expected functions. It will address I/O de-
vices that can support personal computers (PC), work-
stations, midrange computers, mainframe systems, and
highly specialized systems known as supercomputers.

I. HISTORICAL DEVELOPMENT OF I/O DEVICES

Prior to World War II, data were processed either
manually or mechanically; however, the war created
an urgent need for new data-processing methods. The
areas of aircraft design, development of military
weapons, and procurement of materials and supplies
required more efficient ways to achieve the intended
objectives by providing timely reports with vital statis-
tics. This led to the development of automatic calcu-
lating machines, wired controlled circuit boards,
banks of switches, keys, and dials. With this impetus,
a new initiative in the design and development of I/O
devices began to surface as shown below.

• 1800s—Punch cards
• 1940s—Magnetic drums
• 1950s—Magnetic tape drives, first “hard” drive,

disk packs
• 1960s—Direct access storage
• 1970s—Mass storage subsystems, winchester
• 1980s—Small sized hard/floppy drives
• 1990s—CD-ROM, CD-RW, DVD, Zip, Jaz
• 2000—Online storage, SAN, NAS

It should be noted that the modern I/O devices are
very complex, fast, and robust and contain fail-safe
redundancy features.

II. INPUT DEVICES

A. The Keyboard

One of the most difficult problems facing the develop-
ment of input devices was that of a keyboard for the de-
livery of massive amounts of data that would be col-
lected, analyzed, and used to control computer systems.

A computer keyboard is an array of switches, each of
which sends a unique signal when pressed. The switches
are spring-loaded “push to make” types, so when pressed
down they complete the circuit and then break it again
when released. Most computer keyboards have been en-
hanced with plenty of tactile feedback and the ability to
issue commands in several combinations. This enhanced
design consists of a full array of function keys, a separate
set of movement keys for the cursor, as well as specific
keys for use with internet connectivity or within applica-
tions. An important factor for keys is the force displace-
ment curve which is designed to register how much
force is needed to depress a key. In general, keys are de-
signed for 80–100 g of force, whereas game consoles are
designed to accept 120 g or higher (see Fig. 1).

A newly developed keyboard is the split keyboard.
This type of a keyboard is ergonomically designed to
avoid wrist and hand injuries and help avoid carpal tun-
nel syndrome. The keyboard can enter schematic via
touchpad and text by its keys.

B. The Mouse

In the early 1980s, the first PCs were equipped with
the traditional user input device: a keyboard. By the
end of the decade, however, a mouse device became
essential for running the graphical user interface
(GUI) operating systems.

There are two common types of mouse: electro-
mechanical and optical. The electro-mechanical has

214 Computer Hardware

Figure 1

recently replaced its hard rubber ball in the base with
a steel ball for weight and a rubber coating for grip,
which turns movement into electrical signals. The op-
tical mouse projects a beam of light downward and of-
ten uses a special metallic pad, depending on the
model selected.

Some tasks such as drawing lend themselves to effi-
cient use of a mouse. Most recently a new mouse, called
opto-electronic, has been introduced. Its ball is steel for
weight and as it rotates, it drives two rollers, one each
for the x and y axes. It should be noted that tasks such
as word processing, which may involve frequent use of
cut-and-paste commands for editing, would be awkward
and time-consuming without a mouse (see Figs. 2–4).

C. The Trackball

This pointing device is a stationary, upside-down mouse
and generally is used with laptops. The advantage of the
trackball over the mouse is that it minimizes hand–eye
coordination, as well as reducing extra desk space
needed to navigate the mouse. Most notebooks or lap-
tops have built-in trackballs. Some notebooks, however,
are equipped with a skin membrane called a touchpad.
The touchpad generally is made of a thin plastic mem-
brane and is coated with a conducting material and
spread over a printed circuit board. Navigation is per-
formed by applying pressure on the surface of the mem-
brane similar to the movement of a trackball.

D. Optical Character Recognition Devices

An optical character recognition device, often abbre-
viated as OCR, is able to recognize text that is printed
in a specific type font. Early OCR equipment could
only read one type face (like this one) in dot
matrix form. Scanners are a form of OCR family that
can read almost any type font and their accuracy de-
pends in large part on the text or recognition soft-
ware used. The device converts light—an analog con-
tinuous wave form—into digital binary bits of zero
and one [0,1] which is a discrete wave form. To ac-
complish this, scanners use electronic components
such as charge-coupled devices (CCD), a diode that is
light sensitive when electrically charged, or photo-
multiplier tubes (PMT), a light sensitive tube that de-
tects light at any intensity by amplifying it. PMTs are
usually associated with drum scanners. Some exam-
ples of scanners are as follows.

Computer Hardware 215

Figure 2

Figure 3

Figure 4

E. Flatbed Scanners

These are the most common desktop scanners that re-
semble copy machines because the item being scanned
rests on a glass plate while the scanning head moves un-
derneath it. The flatbed scanners are able to capture im-
ages from source material as well as three-dimensional
objects. A transparency adapter is required in order to
scan slides, x-rays, and other transparent originals. Be-
cause flatbed scanners allow one to feed in sheets con-
tinuously, an automatic document feeder is needed to
handle large numbers of documents (see Fig. 5).

F. Sheetfed Scanners

The sheetfed scanners act more like fax machines
rather than copiers; they move the page being scanned
past the scanning head, rather than the other way
around. These scanners can only scan a single sheet at
a time unless equipped with built-in document feeders
for multiple-page scanning. Sheetfed scanners are less
exact than their flatbed counterparts. The difficulty of
moving a sheet of paper without introducing distor-
tion makes them less precise than flatbed scanners.

G. Hand-Held Scanners

Over the last few years, hand-held scanners have grown
in popularity. These units are able to capture images
from labels on cans or containers that can’t be con-
veniently fed through flatbed or sheetfed scanners
(see Fig. 6).

H. Drum Scanners

Before the advent of desktop scanning, most images
were loaded into computers through drum scanners.
These units were used primarily in color prepress com-
panies. The originals were mounted on a glass cylinder,
which would then be rotated at high speeds around a
sensor located in the center for image processing.

Today, drum scanners have been enhanced by us-
ing PMTs. These sensors are more advanced than the
CCDs and contact image sensors (CISs) used in other
kinds of scanners. With these advanced sensors and
the process of repeated rotating of the original past
the PMTs at high speed, the drum scanners are im-
portant professional tools.

I. Scanner Specifications

A majority of scanners employ the “bit map” method
of storing graphic images. This means the information
is stored in a digital memory as a rectangular array of
bits. In order to compare the performance of multiple
scanners, the criteria listed below are typically used:

• Resolution
• Bit-depth
• Dynamic range
• Scanning method
• Scanning area
• Speed

In addition to the above criteria, there are other is-
sues to consider such as the aesthetics of case design

216 Computer Hardware

Figure 5

and the quality of construction, footprint (how much
desk space is taken up), connection type (SCSI, par-
allel, USB, FireWire), bundled software, and price.

J. Bar Codes

Bar code is an automatic identification technology that
allows rapid data collection and does it with extreme ac-
curacy (see Fig. 7). It provides a simple and easy method
to encode information which is easily read by inexpen-
sive electronic devices. Bar code is a defined pattern of
alternating parallel bars and spaces, representing num-
bers and other characters that are machine readable.
Predetermined width patterns are used to code data
into a printable symbol. Bar codes can be thought of as
a printed version of the Morse code in that the narrow
bars represent dots and the wide bars represent dashes.
The bar code reader decodes a bar code by scanning a
light source across the bar code and measuring the in-
tensity of light reflected back to the device. The pattern
of reflected light produces an electronic signal that ex-
actly matches the printed bar code pattern and is easily
decoded into the original data by simple electronic cir-
cuits. There are a variety of different types of bar code
encoding schemes called symbologies, each developed
to fulfill a specific need in a specific industry. Bar code

technology is designed to function best with a red light
as a scanning spot and is designed to be bidirectional
to increase performance. The bidirectionality remains
the same if bar codes are read from top to bottom/bot-
tom to top, or left to right/right to left. Currently over
40 bar code symbologies have been developed with
their unique scanning device.

Since bar code symbologies are like languages that
encode information differently, a scanner programmed
to read a particular code cannot read another. Some of
the commonly encoding schemes or “symbologies” are
code 39 (Normal and Full ASCII), Universal Product
Code (UPC-A, UPC-E), and European Article Num-
bering system (EAN-8, EAN-13). The EAN symbologies
adhere to the same size requirement.

In summary, the use of bar coding systems assists in
the collection of data for production control, auto-
matic sorting systems, or monitoring work-in-progress.
As such, bar coding provides accurate, immediate in-
formation; thereby, it facilitates the decision making
process (see Figs. 8 and 9).

K. Automatic Teller Machine

The backbone to any bank system and the one we
most often interact with is the ATM, or automatic
teller machine. The system acts as a data terminal and
supports two input and four output devices.

1. The Input Devices

• Card reader. The card reader captures the
account information stored on the magnetic strip
on the back of an ATM/debit or credit card. The
host processor uses this information to route the
transaction to the cardholder’s bank.

• Keypad. The keypad lets the cardholder tell the
bank what kind of transaction is required (cash
withdrawal, balance inquiry, etc.) and for what
amount. Also, the bank requires the cardholder’s
personal identification number (PIN) for
verification. Federal law requires that the PIN
block be sent to the host processor in encrypted
form (see Fig. 10).

Computer Hardware 217

Figure 6

Figure 7 Figure 8

2. The Output Devices

• Speaker. The speaker provides the cardholder
with tactile feedback when a key is pressed.

• Display screen. The display screen prompts the
cardholder through each step of the transaction
process. Leased-line machines commonly use a
monochrome or color cathode ray tube (CRT)
display. Dial-up machines commonly use a
monochrome or color liquid crystal display
(LCD).

• Receipt printer. The receipt printer provides the
cardholder with a paper receipt of the transaction.

• Cash dispenser. The heart of an ATM is the safe
and cash-dispensing mechanism. The entire
bottom portion of most small ATMs is a safe that
contains the cash.

The cash-dispensing mechanism is equipped with pho-
toelectric sensors that count each bill and measure
the thickness of each bill as it exits the dispenser. If
two bills are stuck together, excessively worn, torn or
folded, the dispensing mechanism diverts it to a reject
bin. The number of reject bills is also recorded so
that the machine owner can be aware of the quality
of bills that are being loaded into the machine. A
high reject rate would indicate a problem with the
bills or with the dispenser mechanism.

The bill count and all of the information pertain-
ing to a particular transaction are recorded in a jour-
nal. The journal information is printed out periodi-
cally and a hard copy is maintained by the machine
owner for 2 years for transaction dispute resolutions.

Like most input devices, the ATM is connected to a
front-end or host processor for its feedback. The host
processor is analogous to an Internet service provider
(ISP) in that it is the gateway between the bank’s sys-
tem and the ATM machine as shown in Fig. 11.

Most host processors can support either leased-line
or dial-up machines. Leased-line machines connect
directly to the host processor through a four-wire,
point-to-point, dedicated telephone line. Dial-up
ATMs connect to the host processor through a nor-
mal phone line using a modem and a toll-free num-
ber, or through an Internet service provider using a
local access number via a modem.

Leased-line ATMs are preferred for very high-
volume locations because of their throughput capabil-
ity, and dial-up ATMs are preferred for retail merchant
locations where cost is a greater factor than through-
put. The initial cost for a dial-up machine is less than
half that for a leased-line machine. The monthly op-
erating costs for dial-up are only a fraction of the costs
for leased line.

The host processor may be owned by a bank or fi-
nancial institution, or it may be owned by an inde-
pendent service provider. Bank-owned processors nor-
mally support only bank-owned machines, where as
the independent processors support merchant-owned
machines.

218 Computer Hardware

Figure 9

Figure 10 Figure 11

L. Readers

Serial, or serial port readers, utilize the assigned chan-
nels of a computer to pass data for processing from a
source such as card-reading devices, magnetic strip read-
ers, or optical character recognition sensors. Serial read-
ers pass data, 1 bit at a time. Parallel readers pass 8 bits
at a time. Today, people have come to know the term
“smart card” related to parallel and serial readers. Smart
cards, such as credit cards, may be swiped into the sys-
tem for identification. What makes a smart card differ-
ent from any old piece of plastic and from magnetic-
strip cards is an embedded microchip.

These smart cards are more prevalent for use in se-
curity areas, or employment verification. They also
can be connected to cameras and photo scanners.
Light wands have both a light source, and a light de-
tector in a pen-like container which must stay in con-
tact with the source of the data.

Card systems developed in the 1950s were data
driven by punch cards used to create and update data.
The early card systems were either brush type or pho-
toelectric. The brush type sensed electrically the pres-
ence or absence of a hole in each position of a card
to form electrical pulses. These pulses were then de-
tected by card-reader circuitry and stored accordingly
as data. In contrast, the photoelectric readers sensed
each hole by means of light passing through the hole;
this process activated a photoelectric cell to cause an
electrical pulse to be formed.

Today, the Universal Serial Bus (USB) readers have
now replaced many of the parallel and serial readers
of the past. The USB peripheral bus standard was de-
veloped by Compaq, IBM, DEC, Intel, Microsoft, NEC,
and Northern Telecom and the technology is avail-
able without charge for all computer and device ven-
dors (see Fig. 12).

M. Radio Frequency
Identification Devices (RFID)

Other than bar codes, products can be identified by
a system known as radio frequency devices. Products
are given a chip or tag that is read by a radio fre-
quency identification device (RFID). The RFID can
detect the tag and send that information to be
processed. Some examples of this technology are used
for tracking equipment at warehouses and for auto-
matically charging users of toll roads, without them
having to stop to pay at a booth.

The most popular formats are used in homes in
America and abroad. The radio and television indus-

try uses the same technology that all radio frequency
devices employ to deliver programs to a global audi-
ence. RF transmissions are possible in nearly every
frequency of the electromagnetic spectrum. Most wire-
less net working systems transmit in gigahertz band.
This is a relatively clear frequency range that offers
large amounts of frequency bandwidth in which to
transmit data. While the technology is quick, reliable,
and secure, it does carry a high cost.

III. OUTPUT DEVICES

Output is associated with processed data. It may be in
a readable form that can be understood, or retained
in a machine-readable form to serve as input to an-
other machine. Today, the majority of the output re-
ceived is generally through display screens and print-
ers. Each type of printer uses a different technology
to operate as can be observed from the following
descriptions.

A. IMPACT Printers

IMPACT printers refer to a class of printers that work
by banging a head or needle against an ink ribbon to
make a mark on the paper. This includes dot-matrix
printers, daisy-wheel printers, and line printers. In
contrast, laser and ink-jet printers are nonimpact
printers. The distinction is important because impact
printers tend to be considerably nosier than nonim-
pact printers but are useful for multipart forms such
as invoices (see Fig. 13).

Computer Hardware 219

Figure 12

B. Daisy Wheel Printers

This printer produces letter-quality type. A daisy wheel
printer works on the same principle as a ball-head
typewriter. The daisy wheel is a disk made of plastic or
metal on which characters stand out in relief along
the outer edge. To print a character, the printer ro-
tates the disk until the desired letter is facing the pa-
per. Then a hammer strikes the disk, forcing the char-
acter to hit an ink ribbon, leaving an impression of
the character on the paper. You can change the daisy
wheel to print different fonts. Daisy wheel printers
cannot print graphics, and in general they are noisy
and slow, printing from 10 to 75 characters per sec-
ond. As the price of laser and inkjet printers has de-
clined and the quality of dot-matrix printers has im-
proved, daisy wheel printers have become obsolete
(see Fig. 14).

C. Dot Matrix

Dot matrix was the dominant print technology in the
home computing market in the days before the inkjet.
Dot matrix printers produce characters and illustrations
by striking pins against an ink ribbon to print closely
spaced dots in the appropriate shape. They are relatively
expensive and do not produce high-quality output. How-
ever, they can print to continuous stationery multi-page
forms, something laser and inkjet printers cannot do.
Print speeds, specified in characters per second (cps),
vary from about 50 to over 500 cps. Most dot matrix
printers offer different speeds depending on the quality
of print desired. Print quality is determined by the num-
ber of pins (the mechanisms that print the dots). Typi-
cally, this varies from 9 to 24. The best dot matrix print-
ers (24 pins) are capable of near letter-quality type.

D. Thermal Wax

Thermal wax is another specialist technology well suited
for printing on transparencies (see Fig. 15). It uses CMY
or CMYK (cyan, magenta, yellow, black) rolls contain-
ing page-sized panels of plastic film coated with wax-
based colorants. It works by melting ink dots—generally
binary, although some higher-end models are capable
of producing multi-level dots—on to special thermal
paper. Resolution and print speeds are low, typically 300
dpi and around one page per minute (1 ppm). This
technology is suitable for applications by specialists.

E. Solid Ink Printers

Marketed almost exclusively by Tektronix, solid ink print-
ers are page printers that use solid wax ink sticks in a
“phase-change” process (see Fig. 16). They work by

220 Computer Hardware

Figure 13

Figure 14 Figure 15

liquefying wax ink sticks into reservoirs, and then squirt-
ing the ink onto a transfer drum, from where it is cold-
fused onto the paper in a single pass. Once warmed up,
thermal wax devices should not be moved to avoid dam-
age. They are an excellent form of data sharing over a
network. To this end, they come with Ethernet, parallel,
and SCSI ports allowing for comprehensive connectivity.

Solid ink printers are generally cheaper to pur-
chase than a similarly specified color laser and eco-
nomical to run, owing to a low compartment count.
Output quality is good, with multilevel dots being sup-
ported by high-end models, but generally not as good
as the best color lasers for text and graphics, or the
best inkjets for photographs. Resolutions start at 300
dpi, to a maximum of 850 by 450 dpi. Color print
speed is typically 4 ppm in standard mode, rising to 6
ppm in a reduced resolution mode.

F. Inkjet Printers

Although inkjets were available in the 1980s, it was not
until the 1990s that prices dropped enough to make
them more affordable to the masses (see Fig. 17).
Canon claims to have invented what it terms “bubble
jet” technology in 1977, when a researcher accidentally
touched an ink-filled syringe with a hot soldering iron.
The heat forced a drop of ink out of the needle and so
began the development of a new printing method.

Inkjet printers have made rapid technological ad-
vances in recent years. The three-color printer has
been around for several years and has succeeded in
making color inkjet printing an affordable option; but
as the superior four-color model became cheaper to

produce, the swappable cartridge model was gradually
phased out. Inkjet printers of high quality use six
inks—photo magenta, magenta, photo cyan, cyan, yel-
low, and black. They come with six separate tank units.
The latter design was intended for controlling cost in
the event one color is depleted faster than the others
due to high usage. This way, the unit used most fre-
quently can be replaced for that color. They also have
high picoliter count, a measurement used to deter-
mine how finely ink is sprayed onto the paper.

G. Laser Printers

Hewlett–Packard introduced the laser printer in 1984,
based on technology developed by Cannon. It works
in a similar way to a photocopier, the difference being
the light source. With a photocopier, a page is scanned
with a bright light, while with a laser printer the light
source is, not surprisingly, a laser. After that, the
process is much the same, with the light creating an
electrostatic image of the page onto a charged pho-
toreceptor, which in turn attracts toner in the shape of
an electrostatic charge. Laser printers quickly became

Computer Hardware 221

Figure 16

Figure 17

popular due to the high quality of their print and their
relatively low running costs. As the market for lasers
developed, competition between manufacturers be-
came increasingly fierce, especially in the production
of low-end models. Prices have gone down and down
as manufacturers have found new ways of cutting costs.

Output quality has improved over the years, with
600-dpi resolution becoming more standard. Their
size has become smaller, making them more suited
for home use (see Fig. 18).

IV. AUXILLARY DEVICES

Some devices act as input and output devices. Storage
devices are considered I/O devices because we can
send information to them and similarly retrieve that
information from them. A POS (point-of-sale) system
is also considered as in input output system, as it takes
in information like credit card information and pro-
duces a screen output and paper output. Some ex-
amples of auxiliary devices are as follows.

A. Magnetic Tape Storage
Devices: 7-Track and 9-Track

Seven- and nine-track tapes were magnetic tapes used
for storage in the 1970s, 1980s, and well into the 1990s.
Almost every kind of minicomputer and mainframe
used them for backup, data archiving, and data inter-
change. Physically at least, they were well standardized
for interchange. They use various logical formats such
as ASCII, EBCIDIC, OS, ANSI. The tapes could be
made “read only” so that the data remain safe.

The 9-track tapes could also be recorded in differ-
ent densities: 800, 1800, and 6250 bpi (bytes per inch);
the higher the density, the newer the technology. The
1600- and 6250-bpi tape drives could recognize lower
densities (e.g., a 1600-bpi drive could read an 800-bpi
tape). The “9-track” refers to recording 8 data bits plus
one parity bit across the tape (edge to edge). Thus
1600 bpi is the same as 1600 cpi (characters per inch).
At 1600 bpi, a 2400-foot 9-track tape could hold about
50 MB (depending on blocking, etc).

In earlier times, there were 4-track and 7-track
drives at lower densities such as 200 and 556 bpi. IBM
was the main vendor.

B. Magnetic Strip Reader

Magnetic strip readers are convenient for retailers
who want to accept credit or debit cards. They are
usually attached as a keyboard wedge or directly to a
serial port and are most often configured to read
tracks one and two or one, two, and three. They can
also read driver’s licenses, ID cards, and security
badges (see Fig. 19).

C. Paper Tapes

In 1857, Sir Charles Wheatstone introduced the first
application of paper tapes as a medium for the prepa-
ration, storage, and transmission of data. He used the
paper tape to punch in the Morse code with dots or
holes. IBM improved this design with standard one-
inch wide tapes to represent data in five-, seven-, or
eight-channels, and numbered from 0 to 7 with 0.1 in.

222 Computer Hardware

Figure 18

Figure 19

between the punched holes. Each row represents a
character. This invention produced the paper used in
ticker tape (stock market reporting) machines. The
paper-tape device can be configured to be a paper-
tape reader by having it combined into one device.

D. Cartridge Tapes

Magnetic cartridge tapes were a significant improve-
ment over the reel tapes used predominately in the
1970s and 1980s. Their advantage comes from their
small size (usually 4 or 5 in.). They are enclosed and
therefore protected from dust and dirt. The cartridge
consists of a small reel of chromium dioxide tape that
is enclosed in a compact plastic housing. The
chromium dioxide coating of a cartridge tape permits
high density and improved data reliability. A standard
3480-tape cartridge, with only 537 feet of tape, has a
data capacity greater than that of a standard 2400-foot
tape reel when it is used with a block size larger than
4 kilobytes. The approximate capacity of the tape car-
tridge, written in 24-KB blocks, is 200 megabytes, while
the capacity of a reel tape at the same block size is
about 165 MB. Another advantage of magnetic car-
tridge tapes is the ability to store large amounts of
data at a very affordable price. However, one disad-
vantage is the access time. Data must be restored to
the hard disk before the data can be accessed.

E. Magnetic Disk Drives

In a hard disk, the magnetic recording material is lay-
ered onto a high-precision aluminum or glass disk
(see Fig. 20). The hard disk platter is then polished
to mirror smoothness. There are arms that read the

information off these platters. The platters spin any-
where from 170 mph to almost double the speed.
Data are stored on the surface of a platter in sectors
and tracks. Tracks are bent looking circles, and sec-
tors are pie-shaped wedges (see Fig. 21).

F. Magnetic Drum Units

Magnetic drum units are a predecessor to modern hard
drives. They consist of a metal cylinder coated with
magnetic iron-oxide material. A drum can have up to
200 bands around it, which are logical tracks in which
data are stored. One problem is that the drum is per-
manently mounted in the device.

Magnetic drums are able to retrieve data at a
quicker rate than tape or disk devices but are not able
to store as much data as either of them.

G. Fault Tolerant Systems

These systems create a map that can rebuild data if a
disk crash occurs. An example of this type of system
is the redundant array of independent/inexpensive
disks (RAID). The most popular types of RAID are
RAID 1 and RAID 5. RAID 1 is mirroring, which makes
a direct copy of a drive onto an adjacent drive. RAID
5 partly duplicates the data with a minimum of 3
drives with an option for online spares. RAID im-
proves performance and reliability.

H. Mass Storage

Mass storage devices refer to large-capacity auxiliary
storage in an IT-system environment. The components

Computer Hardware 223

Figure 20 Figure 21

may be high-end storage devices like small computer
systems interface (SCSI, pronounced “skuzzy”) hard
disks, tape drives, tape autoloaders, compact disk
(CD), digital video disk (DVD), and storage area net-
works (SANs). The two most popular mass storage de-
vices are SAN (storage area networks) and drive array
subsystems. SAN usually use fiber optic channels to
connect to servers in order to increase speed and stor-
age capacity. SAN storage usually ranges from several
hundred gigabytes to the Terabytes (see Fig. 22).

The drive array subsystem is typically connected to
servers using SCSI technology. Each intelligent con-
troller of SCSI manages the flow of information, and
the devices it supports may be made up of several
disks or different implementations of RAID that are
directly attached to their particular dedicated host
servers. The drive arrays, when equipped with RAID 5
disks, strip data across several drives. One drive has
the stripping bit and often there are online spare
drives in case of drive failure.

The server—a combination of hardware and soft-
ware—functions in managing shared resources and
provides services to computer programs in the same
computer, or to computers on another network. Many
servers are configured with a RAID controller. When
used for the World Wide Web, the server may be called
a virtual server. In this mode, the server is at someone
else’s premises and is shared by multiple Web-site
owners with each owner having complete control of
the server.

A network is a group of computers connected to
each other by means of adapters and cables. It has the
ability to share devices and data among the group of

computers or other physical devices such as printers
or fixed disks, or a directory on a fixed disk that con-
tains information.

I. Direct Access Devices

Direct access devices consist of magnetic disk drives,
optical drives, and many other types of devices. They
all access media directly or without the need to pass
over other data. Tape drives read data sequentially un-
til they read the information asked for. Because of
this, direct access devices are usually faster than se-
quential devices.

J. WORM Compact Disks
and CD-RW Devices

WORM stands for “write once read many.” This is the
case of all CD media except CD-RW. CDs are types of
optical disks that have burned pits in the surface that
represent the binary digit 1. Light is reflected off of
the pits by the use of a laser. A CD typically holds 740
MB of data, but recently they have been able to hold
up to 900 MB of data by using the CD’s outer tracks
(see Fig. 23).

K. Disk Digital Video Units

DVD stands for digital video disk. The media is similar
in size to a (CD). The media has a capacity of 4.7 GB
of storage for data per side and can be double layered
to create a total size of up to 17 GB. This device is usu-
ally used to store video. It stores up to 1355 minutes of
video in 5.1 Dolby digital sound and has the highest
quality picture associated with it (see Fig. 24).

224 Computer Hardware

Figure 22 Figure 23

L. Flash Memory

Flash memory refers to memory chips that can be
rewritten and hold their content without power. It is
widely used for digital camera film and as storage for
many consumer and industrial applications. Flash
memory chips earlier replaced read only memory ba-
sic input/output system (ROM BIOS) chips in a PC
so that the BIOS could be updated in place instead of
being replaced. Flash memory chips generally have
life spans from 100 to 300K write cycles.

1. Other Optical Devices

On the market today are many devices in use because
of their durability, and because they do not need to be
cleaned as often. There are no moving parts, thereby
less chance of breakage. These devices include light
pens, touch screens, bar code readers, and hand print
readers. For example, a kiosk is comprised of a screen
and may have several Input and Output [I/O] devices.
Most kiosks are of LCD color touch-screen type. The
user simply touches the area on the screen for the de-
sired inquiry. Some kiosks are designed to include an
internet connection and may be used as an e-mail kiosk.

V. OTHER IMAGE PROCESSING SYSTEMS

Image processing systems use a sophisticated mathe-
matical algorithm for image recognition. There are two

different types of image processing systems that are cur-
rently used: fuzzy logic and neural networking. Fuzzy
logic image processing is best described by scanning a
picture into a computer. When scanned, the picture
transmits black and white shades for its input. This gives
just two colors for the object to use. However, a picture
can be scanned by using grayscales, a system that uses
both black and white, but also uses different mixes of
the two to get different shades of gray to make the pic-
ture look as close to the original as possible. This system
of using grayscales is like that of using fuzzy logic. It
gives a computer the ability to make approximations
about conditions of the image as opposed to only being
able to report on the information at hand. This can be
compared to a weather forecaster who reviews data on
weather conditions and can predict storm patterns.

A second type of image processing system is a neural
network system. In such a system, several processors and
software are connected and are set to work together.
This set up is able to simulate the operation of the hu-
man brain. For this reason, neural networks are good at
pattern recognition and can solve complex problems,
even for cases where all data are not present. Many of
the uses for neural network systems lead us into the next
topic, biometric devices. Many, but not all, biometric de-
vices use a neural network to identify images.

A. Biometric Devices

In computer security, biometrics refers to authentica-
tion techniques that rely on measurable physical char-

Computer Hardware 225

Figure 24

acteristics that can be automatically checked. In gen-
eral they are special types of readers or sensors for
data acquisition and processing. Examples include
computer analysis of fingerprints, speech, or using
the iris of the eye by digitally creating about 255 data
points from the iris’s unique pattern.

Proven application of speech-recognition systems
currently in use include material handling applications,
quality control, numerical machine-tooling parts pro-
gramming, source data collections, military com-
mand/control, and applications for the physically chal-
lenged. The handprint or finger print application is
used for door locks or a fingerprint identification mouse
to secure drug closets in hospitals, health care facilities,
airport security checks, law enforcement agencies, or
office and home security. The eye scan is currently used
as a passport for frequent travelers at airports such as
Charlotte, North Carolina, to London’s Heathrow Air-
port. The future for biometric application is vast. The
reader may refer to the Disaster Recovery Planning sec-
tion of the EIS for in-depth coverage of this topic.

VI. APPLICATIONS

A. Case 1. Automatic Teller Machines
(ATM) Environment—Banks

In doing an ATM transaction, the user initiates the
process by means of the card reader and keypad. The
ATM forwards this information to the host processor,
which routes the transaction request to the card-
holder’s bank or institution that issued the card. If
the cardholder is requesting cash, the host processor
causes an electronic funds transfer to take place from
the customer’s checking account to the host proces-
sor’s account. Once the funds are transferred to the
host processor’s bank account, the processor sends an
approval code to the ATM authorizing the machine to
dispense the cash. If used as a debit card, the proces-
sor then executes an “automated clearing house”
(ACH) notice for the cardholder’s funds into the mer-
chant’s bank account, usually the next bank business
day. In this way, the merchant is reimbursed for all
funds dispensed by the ATM (see Fig. 25).

B. Case 2. I/O Environment—Luxury Hotels

Technology plays an important role in the successful
operation of any typical large-scale hotel or a con-
vention center. They must rely heavily on how the
needed data are collected, supported, and processed.

Thus the computer-based information systems de-
signed may include electronic devices, computers,
software, networks, and operating systems. In that
realm, its operation may be organized to have three
major administrative functions: front office, market-
ing and sales, and back office.

The I/O devices that operate in tandem for the
success of the operation are:

• The input devices, such as keyboards, mice, point-
of-sale, touch screens, floppy and disk drives, bar
code readers, door-lock reader

• The output devices, such as 17� Dell monitors,
Hewlett–Packard laser jets model 5si, door-lock
writers

• The storage devices, such as, HS 1120 magnetic
tapes (tow digital data storage), RAID 5 hard drive
equipped servers, smart-card (magnetic strip) as
in room keys

• The communication devices, such as fiber optic
wires, Cat 5 (twisted pair), router, a hub/switch,
firewall for security, fax machines, phones, wave
LAN antennas for the wireless equipment,
processing devices—including servers such as an
EMC/Compaq servers, Pentium III Dell
computers (700 MHz), and the Micros terminals.

1. Servers

The servers are cluster-based, that is, if one of the servers
goes down the rest of the servers are not affected. The
first server supports the front office database. The sec-

226 Computer Hardware

Figure 25

ond server supports the marketing and sales database.
The third server, possibly the SAP system or PeopleSoft,
supports the back office or the accounting database.
The fourth server is the Micros system that supports the
kitchen and restaurant database.

RAID 5 (Distributed Data Guarding) is also called
“stripe sets with parity.” This level of RAID actually
breaks data up into blocks, calculates parity, and then
writes the data blocks in “stripes” to the disk drives,
saving one stripe on each drive for the parity data. In
RAID 5 configuration, if a drive fails, the controller
uses the data on the parity drive and the data on the
remaining drives to reconstruct data from the failed
drive. This allows the system to continue operating
with slightly reduced performance until the failed
drive is replaced.

2. The Front Office

The Micros system has two forms of input devices:
touch screen point-of-sale terminal and credit card
readers. A touch screen monitor does nothing more
than act like a mouse. POS software uses the inven-
tory items themselves to track the sales.

3. The Marketing and Sales Office

Marketing and sales is responsible for booking ban-
quets, conventions, and conferences and for pre-
selling rooms. The input devices are keyboards, mice,
floppies, and diskettes. The output devices are display
and laser jet printers, and a web-based architecture
that allows for plenty of booking on the Internet.

4. The Back Office

The back office is responsible for accounting such as
accounts receivable, accounts payable, debits, and
credits; preparing financial and managerial state-
ments; and payroll. They are also responsible for the
human resources and data bank. This office is usually
supported by a SAP or PeopleSoft software which have
a comprehensive range of business applications and
support. The input devices which play a major role
for the accounting activities are the keyboard, mouse,
floppy disk, and barcode readers.

Window-based architecture and spreadsheet soft-
ware such as Lotus 123 or Excel complete the back of-
fice functions.

For recovery purposes of accounting functions,
backup and storage are done in the back office using
magnetic tapes as the storage device to save all daily
transactions.

C. Case 3. I/O Environment—
Food Chain Stores

Perhaps one of the most significant turning points for
food-chain enterprises is the introduction of a smart-
card. Customers using the smart-card at the check out
receive immediate discounts. The customer’s card us-
age also initiates the process of receiving future dis-
count coupons or free products by mail.

It is interesting to note that food-chain store cus-
tomers do not mind leaving behind a bit of their pri-
vacy for discounts and convenience, although some
advocates of privacy have questioned the use of these
types of cards.

In general, the principle reader of each food-chain
store relies heavily on the POS terminals for its busi-
ness transactions. The system is thus designed to func-
tion with the following input/output devices for the
successful POS.

1. Input/Output

• Point-of-sale data starts at register
• Utilize IBM “Supermarket” package
• Registers are IBM 4690 POS terminals with Telxon

barcode scanners
• Ethernet relay to in-store server(s), also running

IBM 4690 OS

The checkout lane in each store is equipped with IBM
4690 POS (Point-of-Sale) terminals and Telxon bar
code scanners, or their compatibles. The IBM 4690
systems software runs on all these terminals as well as
the IBM database server in the “systems” room at each
store, or a server in the front of the store. This may
be a twisted pair (TP) Ethernet, coaxial, or fiber op-
tics design. Data are stored within the store and are
sent by “frame relay” to a server farm that feeds a data
warehouse maintained at the corporate office. The
transaction data, as well as the customer data, are
stored using an Oracle data warehouse coupled with
a RAID 5 type SAN storage system. This is where data
integration, reporting, forecasting, and marketing is
evaluated for regional competitiveness. To remain
competitive, outputs from the following reports are
further analyzed for efficiency and effectiveness:

• Automated sales checkout via bar code reader—%
error and speed of customer service at check out
time

• Sales and profitability reports by item, by
department, and by vendor

• Customer history—who are the best customers

Computer Hardware 227

• Salesperson performance—both sales volume and
profitability on those sales

• Sales tax reports—total sales, taxable sales, and
sales tax collected for the period chosen

• Perpetual inventory—all transactions at the point-
of-sale automatically update the inventory levels so
inventory is current at all times.

• Accounts receivable—sales charged on a house
account automatically update the customer’s
account.

SEE ALSO THE FOLLOWING ARTICLE

Operating Systems

BIBLIOGRAPHY

Baum, E., and Haussler, D. (1989). What size net gives valid gen-
eralization? Neural Computations, 1.1. (Technical Report by
the International Biometric Consulting Group). Santa Cruz,
CA: Santa Cruz University, Computer Research Laboratory.

Durbeck, R. C. (1988). Output hardcopy devices. Boston: Acade-
mic Press.

El-Bakry, H. M. (2001). Neural networks. Proceedings, IJCNN ‘01,
International Joint Conference, Vol. 1, 577–582.

Fleck, R. A., and Honess, C. B. (1978). Data processing and com-
puters: An introduction. Columbus, OH: Merrill.

Jain, A.K, Prabhaker, S., Hong, L., and Pankanti, S. (2000). Im-
age Processing, IEEE Transactions, Vol. 9, No. 5, 846–859.

Kuroki, M., Yoneoka, T., Satou, T., Takagi, Y., Kitamura, T., and
Kayamori, N. (1997). Emerging technologies and factory
automation. Proceedings, ETFA ‘97, 1997 6th International Con-
ference, 568–572.

Nutt, G. (2002). Operating systems, a modern perspective, 2nd ed.
New York: Addison–Wesley Longman.

Pugh, E., Johnson, L., and Palner, J. (1991). IBM’s and early 370
systems. Cambridge, MA: MIT Press.

Ranade, S. (1991). Mass storage technologies, Westport, CT:
Meckler Co.

Raza, N., Bradshaw, V., and Hague, M. (1999). RFID technol-
ogy. IEE Colloquium of Oct. 25, 1999, Vol. 1, No. 1, 1–5.

Roach, M. J., Brand, J. D., and Mason, J. S. D. (2000). Pattern
recognition. Proceedings, 15th International Conference, Vol. 3,
258–261.

Schellenberg, K. (Ed.) (1998). Computer in society, 7th ed. Guil-
ford, CT: Dushkin/McGraw–Hill.

Sriran, T., Vishwanatha Rao, K., Biswas, S., and Ahmed, B.
(1996). Industrial electronics, control, and instrumentation.
Proceedings of the 1996 IEEE IECON 22nd International Confer-
ence, Vol. 1, 641–646.

Stair, R., M., and Reynolds, G. W. (2001). Principles of Informa-
tion Systems, 5th ed. Boston, MA: Course Technologies.

Sukthankar, R., and Stockton, R. (2001). IEEE Intelligent Systems,
Vol. 16, No. 2, 14–19.

Zucker, C., and Rourke, J. (2001). PC hardware: The complete ref-
erence. New York: Osborne/McGraw–Hill.

228 Computer Hardware

Computer-Integrated Manufacturing
Asghar Sabbaghi and Ali R. Montazemi
Indiana University, South Bend

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 229

I. INTRODUCTION
II. CONCEPTION OF CIM AND LITERATURE REVIEW

III. CONCEPTUAL SCHEMA OF CIM AND ITS MAJOR
COMPONENTS

IV. INTEGRATION OF DATABASES AS THE CORE COMPONENT

V. STRATEGIC PLANNING, IMPLEMENTATION, AND
MANAGEMENT ISSUES OF CIM

VI. EMPIRICAL STUDY
VII. CONCLUDING COMMENTS

GLOSSARY

bill of material (BOM) A listing of all the raw mate-
rials, parts, subassemblies, and assemblies needed
to produce one unit of finished product. The list-
ing in the BOM file is heirarchical and it shows the
quantity of each item needed to complete one unit
of the following level of assembly.

computer-aided design (CAD) This is defined as a
computer-based system that provides interactive
graphic facilities to assist engineering in product
and tool planning, design, drafting, design revi-
sions, process planning, facilities planning, and de-
sign optimization. CAD is also used to maintain
BOM and engineering revision information and
software system.

computer-aided manufacturing (CAM) A computer-
based system to program, direct, and control man-
ufacturing process and handling equipment. These
programs are based on the geometry of the parts
and toll paths, both of which are captured by the
CAD system. CAM serves as the primary automated
communication link between the engineering and
shop floor functions of a company, thus integrat-
ing design and manufacturing activities.

computer-integrated manufacturing (CIM) This is
viewed as an integrated information system that
links a broad range of manufacturing activities, in-
cluding engineering design, flexible manufactur-
ing systems, production planning and control, and
all the business functions in any production/oper-
ation organization. The term was first used by Har-

rington in 1973 to envision the integration of com-
puterized manufacturing systems at the shop floor
level and management information systems at the
corporate level. Since then, the concept has been
expanded, both technologically and philosophi-
cally, to integrate information technologies into
the entire organizational functions and units, in-
cluding engineering, manufacturing, and business
functions as well as all managerial level and opera-
tional functions.

enterprise resource planning (ERP) The ERP system,
adopted in recent years by large and medium-size
firms, is defined as strategic business solution that
integrates all the business functions, including man-
ufacturing, finance, and distribution. ERP systems
encompass traditional transaction processing sys-
tems as well as model-based DSS such as data ware-
house, supply chain optimization, planning, and
scheduling systems. Such integrated systems im-
prove management of information resources and
enable decisionmakers to better access required in-
formation across the organization. Software ven-
dors such as SAP AG, Baan, PeopleSoft, and Oracle
provide a host of integrated ERP products.

flexible manufacturing system (FMS) This a group of
machines designed to handle intermittent process-
ing requirements and produce a variety of similar
products. The system includes supervisory com-
puter control, automatic material handling, and
robots or other automated processing equipments.

manufacturing resource planning (MRP II) This is an
expanded scope of MRP and a broader approach

to production resource planning that involves not
only those in MRP but also other areas, such as
marketing and finance, of the firm in the planning
process. A major purpose of MRP II is to integrate
primary functions and other functions such as per-
sonnel, engineering, and purchasing in the plan-
ning process. The MRP II systems have also the ca-
pability of performing simulation, enabling
managers to answer a variety of “what if” questions
so that they can gain a better appreciation of avail-
able options and their consequences.

master production schedule (MPS) This is a timetable
that specifies what to be made and when. The
schedule must be in accordance with a production
plan that sets the overall level of output in broad
terms (e.g., product families, standard hours, or
dollar volumes). The plan also includes a variety of
inputs, including financial plans, customer de-
mand, engineering capabilities, labor availability,
inventory fluctuations, supplier performance, and
other considerations.

material requirement planning (MRP) This is an in-
formation system designed to handle ordering
and scheduling of dependent-demand invento-
ries, e.g., raw materials, component parts, and
subassemblies. A production plan for a specific
number of finished products is translated into re-
quirements for component parts and raw materi-
als working backward from the due date, using
lead times and other information to determine
when and how much to order. Hence, require-
ments for end items generate requirements for
low-level components, which are broken down by
planning periods (e.g., weeks) so that ordering,
fabrication, and assembly can be scheduled for
timely completion of end items while inventory
levels are kept reasonably low.

model-based management system (MBMS) A model-
based management system makes use of quan-
titative models (i.e., Operations Research and
Management Science techniques) to assist the de-
cisionmaker in improving effectiveness of his/her
decision processes.

transmission control protocol–internet protocol
(TCP–IP) Two elements of a suite of internet pro-
tocols which include transport and application pro-
tocols. The combined acronym TCP–IP is commonly
used for the whole suite. While the TCP element
divides a message up into packets (call datagrams),
recombining the message at the receiver, the IP ele-
ment routs the package across the network.

I. INTRODUCTION

The focus of Information Technology (IT) applica-
tions has shifted dramatically over the past two
decades from efficiency/process improvement to
strategic/competitive advantages. This change of fo-
cus has inspired organizations to take a business vi-
sion, rather than a technological focus, toward IT de-
ployment and management. While computer-
integrated manufacturing (CIM) has been recognized
as one of the manifestations of IT evolution with much
potential for strategic opportunities and competitive
advantages, the traditional approach in management
of technology, particularly focusing on manufacturing
and engineering aspects of the system, in many cor-
porations has remained as an obstacle to the success-
ful implementation and management of CIM.

In practice, CIM has emerged as a new framework
in the evolutionary process of development of new ap-
proaches and techniques in production/operations
management such as just-in-time (JIT), total quality
management (TQM), flexible manufacturing systems
(FMS), computer-aided design (CAD), computer-
aided manufacturing (CAM), material requirement
planning (MRP), and manufacturing resource plan-
ning (MRP II), among others. In this context, CIM
provides a framework to integrate a variety of tech-
nologies in support of information requirements of
the company’s engineering, manufacturing, business,
and management functions. This integration facili-
tates data communication and data sharing among
various functional areas within an organization and
thus supports decision-making processes, reduces lead
time, and improves communication among decision
makers within and outside of the organization.

Since the early 1970s, computers have been increas-
ingly utilized in various operations of the production
floor. CAD has extended design and drawing capabili-
ties; MRP has reduced lead time, cut waste, and re-
duced down time; and software to support Master Pro-
duction Scheduling (MPS) has increased efficiency
and cut production costs. Production floor manage-
ment of automated machines has been integrated with
CAM to form a direct line between the drawings as
conceived by the design engineer and the actual pro-
duction of parts and products. Computer-aided engi-
neering (CAE) has been integrated with CAD to allow
an immediate analysis of designs as they take shape
with CAD graphics. JIT inventory control, as a stockless
or zero-inventory concept, is an integration of produc-
tion schedules, warehouse management data, and ma-
terial handling data, both within and between com-

230 Computer-Integrated Manufacturing

pany files and those of subcontractors. While these ad-
vances have resulted in significant short- and long-term
benefits, however, information technology in all these
situations has been developed and adopted to achieve
functional efficiency and measurable benefits. In many
cases the sole objective of automation has been toward
downsizing. Because of technological factors as well as
organizational infrastructure, the managerial attitude
toward exploring these technologies has been an engi-
neering approach. Thus, making it often functional or
departmental rather than company-wide strategy. The
result has been “islands of automation” in which indi-
vidual processes have been automated without much
concern for integration and compatibility among them.
These processes have had limited flexibility because of
their lack of integration and the limited information-
sharing capability.

The purpose of this study is to provide an overview
of CIM and its component technologies, in a concep-
tual and managerial rather than a technical context,
and to analyze the organizational environment and
managerial approaches required for successful imple-
mentation and applications of CIM. In particular, CIM
is viewed as the integration of computerized manufac-
turing systems at the shop floor (CMS) and Manage-
ment Information Systems (MIS). This approach im-
plies an integrated, company-wide, and MIS approach
toward CIM implementation and management rather
than traditionally functional and technological atti-
tude. This study, therefore, emphasizes the key role of
senior management and top MIS professionals in plan-
ning, selecting, justifying, implementing, and manag-
ing a CIM system. Responses to a survey targeted at
various professionals and personnel involved in man-
aging and using CIM will be used to identify and ana-
lyze some managerial perceptions that are critical to
successful planning and implementation of CIM.

In Section II, we provide various views on the con-
cept of CIM. Next, we present a conceptual schema of
a CIM system and its major components. It is our con-
tention that CIM should provide information to dif-
ferent organizational units. This must be achieved
through well-integrated database and model-base sys-
tems, such as described in Section IV. In Section V, we
elaborate on management issues and strategic dimen-
sion CIM initiatives. An integrated CIM system requires
champions from all organizational units. However, re-
cent literature reflects CIM as an engineering initia-
tive, and, thus avoiding input from senior executives
for linking CIM to the organizational strategy. Obvi-
ously, if this is found to be true, then organizations do
not realize the full potential of CIM. Therefore, this

conjecture was the basis of an empirical investigation
that we conducted. The nature of this study and find-
ings is reported in Section VI. Section VII provides a
summary and concluding comments.

II. CONCEPTION OF CIM
AND LITERATURE REVIEW

Over the past two decades, information technology
has significantly changed the way organizations com-
pete, and has also changed the structure of the entire
industries. Organizations that have used their busi-
ness vision, experience, and their expertise to effec-
tively integrate IT into their corporate strategy and
organizational plans have gained much competitive
advantage and success in the marketplace. In this con-
text, CIM has surfaced as a concept that integrates in-
formation technologies into the entire organizational
functions and units, including engineering, manufac-
turing, and business functions as well as all manage-
rial level and operational functions. Since its first use
in the term CIM has increasingly received a great deal
of attention from production and inventory control
managers, consultants, and scholars. Along with a JIT
approach in manufacturing, TQM, and world class
manufacturing, CIM has increasingly represented an
important path that manufacturing companies could
follow to improve their competitiveness in domestic
and global markets.

CIM has been viewed and interpreted differently in
the literature. There has been a tendency in the past
to consider CIM as a purely technological endeavor in
meeting short-term goals and as a quick payback so-
lution to manufacturing problems. In this context,
CIM has been viewed as the most advanced manufac-
turing technology known, or as the use of database
and communication technologies to integrate the de-
sign, manufacturing, and business functions that com-
prise the automated segment of the facilities. It
has also been defined as a complete application of
computer-aided technology, and as the integration of
CAD/CAM and production management (encom-
passing all activities, from planning and design of a
product through its manufacturing and shipping. CIM
has been viewed as a global approach which aims at
improving industrial performance. This approach is
applied in an integrated way to all activities from de-
signing to delivery and after sale. The objectives of
the CIM in this approach are to simultaneously im-
prove productivity, decrease costs, meet due dates, in-
crease product quality, and secure flexibility at local

Computer-Integrated Manufacturing 231

and global levels in a manufacturing system. In such
an approach, economic, social, and human aspects
are at least as important as technical aspects. On the
one hand, CIM is viewed as almost synonymous with
the use of machine vision, automated handling sys-
tems, robotics, and flexible manufacturing systems.
On the other hand, CIM is primarily considered an
information-based system to manage and structure
databases. However, recent trends in the literature ac-
knowledge CIM to be primarily a strategic system that
draws on IT to help the firm better meet the needs of
its market place. Thus, much of the rapidly prolifer-
ating literature on CIM has dwelt on its technological
aspects and its potential.

Industry-specific definitions of CIM also are preva-
lent in the literature. The print industry, for example
has adopted certain CIM principles such as electronic
data interchange (EDI), digital linkage of users and
suppliers, and automation in the production and bind-
ing steps to move the industry from a labor-intensive
position to one of greater automation. The machine
tool industry is another sector frequently cited as prac-
ticing certain CIM concepts such as CAD, computer-
aided process planning (CAPP), CAM, and MRP II.
For industry-specific definitions, it appears that CIM
provides a vast menu of possibilities for an organiza-
tion. From this list of possibilities, decisionmakers se-
lect various processes, hardware and software which
are then adapted to specific industry needs.

Another emerging trend in CIM literature involves
Product Data Management (PDM) systems. In today’s
manufacturing environments, the need for PDM is
paramount because of rapidly changing product tech-
nology. In addition to PDM, the DBMS (for example,
an Oracle system) must be capable of integrating with
a particular network protocol (e.g., TCP-IP). This in-
tegration is essential for the development, delivery,
and support of object-oriented client/server docu-
ments that are critical to business functions. For suc-
cessful CIM installation, PDM cannot be overlooked
because it is the backbone of data management in a
CIM environment.

In practice, there is a wide array of CIM systems im-
plemented at varying levels of sophistication with vary-
ing degrees of success. Particularly, in gaining consid-
erable increases in productivity, reduction in lead
time, and unit cost as well as in better machine uti-
lization. For instance, GM redesigned its full-size
pickup track operations at the Pontiac East Assembly
Plant, Michigan, its largest manufacturing automa-
tion protocol (MAP) installation worldwide and used
CIM to reduce redundancy and improve quality and
customer service. This system handles almost the en-

tire operation (99%) of truck cab and box welds, ap-
plication of vehicle base paint by robots, and inspects
truck boxes and doors by vision systems to ensure the
accuracy of parts going through the welding process.
Over 300 programmable controllers direct robots to
different weld times to regulate the time and the pres-
sure of welds.

Ford Motor Company plastic plant, which manu-
factures 10,000 bumper fascias a day, installed its CIM
in 1986, expanding since then. The automated system
coordinates batch runs of numerous styles and colors
of fascias through the plant. After molding parts are
placed by robots onto automated guided vehicles
(AGVS), which bring the parts over to an automated
storage and retrieval system (AS/RS). When needed
to fill an order, fascias are picked out of the auto-
mated warehouse and placed on an automated elec-
tronic monorail (AEM) conveyer, which carries the
parts to assembly and painting operations. Once a
customer places an order, the system automatically
uploads the customer order into Milan’s scheduling
system, which will alert the AS/RS to find the parts
and deliver them to assembly and painting station.
One software package provides a graphical overview
of the entire (AEM) conveyors. It alerts the operator
to a fault in the track, and switches and dispatches
maintenance to fix problems. A second software pack-
age does the same for AGVS.

GW Plastics in Bethel, VT, one of the CIM pioneers
and CIM award winners, has seen its custom injection
molding business soar by about 20% a year since its
first installation of CIM in 1986, and has greatly ex-
panded it to embrace its capacity; including new mold-
ing plants in San Antonio, TX, and Tucson, AZ. As
business grew, GW replaced its original mid-range
computers with an IBM AS400 mini-mainframe for
greater processing power and installed a wide-area
network for managing data in support of financial
and manufacturing information, engineering files,
sales, shipping, backlog, and forecast data. GW’s bar-
code system is integrated into AS400 to provide real-
time verification of shipments to customers who de-
mand JIT delivery.

Much of the literature on CIM suggests consider-
able improvements in productivity, lead time, and
unit costs. However, the same studies also suggest that
CIM systems appear not to have fully paid off in en-
hancing company-wide integration (technologically
and organizationally), responsiveness, and business
flexibility, as well as in supporting strategic decision-
making processes. In some instances, the planning
and implementation issues have led to disappointing
results. Many firms do not achieve their objectives

232 Computer-Integrated Manufacturing

from CIM investments largely because the analytical
methods used to justify these projects often do not
capture the richness and underlying flexibility of new
technologies. Swamidass (1994) has surveyed United
States manufacturers and found that even though
manufacturing technologies such as CAD, CAM,
TQM, JIT, and computer numerical control (CNC)
have been widely used at most plants, skilled use is rel-
atively uncommon among them. Although factory au-
tomation seems to be critical to the survival of manu-
facturing firms, it is not clear from current MIS or
operations management literature whether CIM has
been used mainly as a ubiquitous support function or
as an important element in achieving a sustainable
competitive advantage in products or markets. CIM as
a technology is giving way to the idea of CIM as a phi-
losophy. This includes “the highest level of integrated
automation in a manufacturing plant” and increas-
ingly broader conceptions of enterprise management.
According to Forrester and Hassard (1992), part of
the problem is that what counts as the effective inte-
gration of systems can be company specific. Hill
(1994) contends that the unwillingness of firms to un-
dergo the necessary organizational changes is one
reason for their inability to gain the full benefits of
CIM. Organizational integration also has to match
and support the technological integration in the move
toward CIM. De Meyer (1990) investigated the com-
puterized integration of several business functions,
such as inventory planning, accounting, and product
design in European firms. In a series of cross-sectional
studies, he shows that the most often integrated func-

tions include sales planning with master production
scheduling and process control with quality report-
ing. His study does not address the technological im-
pediments to integration or the relative contributions
of the various enabling technologies to strategic man-
agement. Over time the decline in the cost of au-
tomation technologies has enabled manufacturers to
adopt sophisticated production systems. Initial adop-
tion of these systems has forced competitors to follow
the industry leaders in the implementation effort or
exit their industries.

III. CONCEPTUAL SCHEMA OF CIM
AND ITS MAJOR COMPONENTS

Conceptually, CIM can be viewed as an integrated sys-
tem shown in Fig. 1. Applications of CIM are in sup-
port of effective decision making processes in various
functional areas, such as engineering, manufacturing,
marketing, and accounting. In this holistic view, func-
tional areas are considered as subsystems and evalu-
ated against the company’s goals and strategic objec-
tives, namely, optimization of total company-wide
business, rather than suboptimization. CIM is an in-
teractive system in support of various types of decision
problems (i.e., unstructured, semi-structured, and
structured decision problems).

From technical standpoint, CIM requires integra-
tion of information through common databases,
hardware/software integration, and compatible soft-
ware. In particular, model bases and databases are

Computer-Integrated Manufacturing 233

Figure 1 A conceptual schema of CIM.

linked through model based management systems
(MBMS) and database management systems (DBMS).
These software modules coordinate the flow of infor-
mation manipulation and transmission in response to
queries by users in various functional areas through
dialog generation and management software
(DGMS). The model-base component consists of in-
terrelated and integrated models based on method-
ologies gleaned from engineering, operations re-
search, and management science in support of
decisionmakers from various functional areas. The
abstraction of the models and their linkages are con-
structed from numerous variables common to various
functional areas at different levels of aggregation.
Based on a large number of internal linkages in the
model-base and the database, once the optimum de-
sign is determined, manufacturing process would de-
fine the BOM. Other subsequent functional models
are deployed to support the production planning and
financial and accounting analysis.

Fixture planning and programming is an impor-
tant function of CAPP, which is the link between de-
sign and manufacturing (Fig. 1). This generates in-
structions for the production parts and translates
design data into process plan to produce a part or a
product. CAPP has several layers which must be inte-
grated with other functions within the process plan-
ning and other CIM activities. The CAPP subsystem
must provide information and programs for machine
tools, robots, and fixturing subsystems to the produc-
tion department. Furthermore, the production plan-
ning and control (PPC) subsystem requires informa-
tion about the resources necessary to manufacture
the product. This information may include the re-
quired machine tools, fixturing subsystems, and
process time, among others, which would allow PPC
to plan and schedule the required resources.

Another technical challenge in CIM development
is to manage the huge amount of rapidly changing
heterogeneous data, which may range from graphic
and geometric data in engineering to textual and nu-
meric data in manufacturing, sales, financial, ac-
counting, and other business areas. These various
types of data are to be integrated and shared through
an underlying integrated database system.

IV. INTEGRATION OF DATABASES
AS THE CORE COMPONENT

Integration is the technical hub of CIM. One of the
major requirements for a manufacturing system is the
ability to store, manipulate, transmit, and display

graphical data integrated with text. For example,
CAD/CAM must be capable of supporting engineer-
ing analysis with heavy loads of numerical computa-
tion, as well as manufacturing and business analysis.
For instance, CNC machines, as the advanced manu-
facturing technologies of CIM, provide the data com-
munication networks and thus define the level of data
integration in the system. Manufacturing automation
protocol and standard for the exchange of product
data (STEP) provide common specifications hardware
integration and data formats to facilitate communica-
tion between heterogeneous systems. Data from dif-
ferent subsystems such as CAD and CAM are shared
through an underlying CIM database system, in a co-
ordinated and adaptable format. Islam (1997) pre-
sented an analysis of IDEF, an enterprise modeling
technique and data flow diagram (DFD), to identify
some of the requirements for CIM database systems.
He has identified some of the main characteristics of
data model to support a generic CIM. In particular,
the data from various subsystems like engineering,
manufacturing, marketing, and other functional ar-
eas are different in nature—accounting data and
other business systems are numeric and alphanu-
meric, while the data for CAD subsystems are geo-
metric and graphic. Therefore, a common database
should integrate the heterogeneous data type. Since
design data have to be shared by subsystems like CAPP,
MRP II, CAM, and FMS, the data need to be con-
verted into a neutral recognizable format. The com-
mon database requires integrity constraints, such as a
consistency checking routine that checks the validity
between two design elements for their assembly. The
CAPP subsystem generates a process plan based on
the geometric and engineering data of the CAD sub-
system as well as data from MRP II subsystems. The
CAD data for BOM are part input data for MRP II
subsystems, where geometric data are converted to al-
phanumeric data. The MRP II provides work center
data, and purchase order and material plan which are
used by other subsystems. The output from MRP II in-
cludes various data such as manufacturing order and
inventory status, which are inputs to a CAM subsys-
tem. CAM also uses design data from CAD and rou-
tine from CAPP subsystems. The FMS subsystem is a
combination of heterogenous hardware and software
monitoring the manufacturing operations and thus
should have updated information for CAM, the pro-
duction plan, and other necessary changes in the sys-
tem. Another issue in this context is the integration
of the product data management (PDM) and enter-
prise resource planning (ERP). Companies often
struggle in determining how these two technologies,

234 Computer-Integrated Manufacturing

PDM and ERP, can best work together, what tasks each
should handle, who should control information, and
how they should be linked.

PDM evolved from engineering efforts in the 1980s
and was first used primarily to manage engineering
drawings and related CAD files (Miller, 1999). The tech-
nology eventually expanded to include management of
data from a variety of separate applications including
not only mechanical drafting, solid modelers, and struc-
tural analysis, but also electronic CAD (ECAD), NC pro-
gramming, and others such as technical publications
and office applications. In this capacity, PDM systems
manage a variety of engineering data and processes in-
cluding design geometry, project plans, part files, as-
sembly diagrams, analysis results, correspondence,
BOMs, specifications, engineering changes, approval
processes, product structure, parts classification and re-
trieval, configuration management, program manage-
ment, authorizations, workflow, and others.

Enterprise resource planning systems trace their
roots back to manufacturing initiatives in the 1960s,
evolving from MRP systems for inventory planning
and control and later MRP II technology which ex-
panded into shop floor scheduling and coordination.
These systems broadened into what is now termed
ERP, which encompasses numerous aspects of pro-
duction such as inventory control, shop scheduling,
capacity planning, and master scheduling as well as
purchasing, sales, accounting, finance, and even hu-
man resources. By coordinating production opera-
tions for peak efficiency, ERP has become virtually
indispensable for manufacturers to reduce manu-
facturing lead time and cost as well as to facilitate
teamwork and collaboration on the factory floor. As
PDM and ERP have both expanded, their increased
functionality has resulted in overlap of some func-
tions such as BOMs, parts classification, component
information, configuration management, process
workflow, and program management.

Transferring information quickly and accurately
between engineering and manufacturing speeds work-
flow, improves communication throughout the orga-
nization, and avoids redundant efforts along with re-
ducing associated errors and delays in recreating data.
This provides an ability to leverage efforts so that data
already entered in one area do not have to be recre-
ated in another. In many cases, product information
is transferred when design engineering releases a
PDM product definition to industrial engineers, who
then convert it into an assembly view for ERP. Often,
a more direct exchange is being used where the PDM
product structure is sent via a translator directly into
ERP. A few systems even provide two-way translation

between PDM and ERP, giving engineering and man-
ufacturing managers a direct view of one another’s
database. Still, in some other cases, companies strive
for the most tightly integrated system where overlap-
ping portions of PDM and ERP information are stored
in the same database and shared by both systems.

Companies must identify a solution that can effec-
tively integrate PDM and ERP systems and can closely
meet their individual needs. Often, this means care-
fully evaluating company operations, goals, and pro-
cedures to identify how data such as BOMs can be
shared, exchanged, and to ensure that the right in-
formation in the right format is available to the right
person on a timely manner. As an example, fuel gaug-
ing and proximity sensing system manufacturer Eldec
(a division of the Crane Co., Lynnwood, WA) masters
all parts and BOMs in its PDM system and transfers
information to its ERP system automatically at prede-
fined times. Only six attributes are mastered in PDM,
which establishes information such as purchase or
fabricated part type and possible alternates. The data
is sent to ERP, where an integration tool and template
help create the 140 attributes needed for manufac-
turing. Production personnel fill in the remaining
data and maintain control of information throughout
manufacturing. To expedite the transfer of informa-
tion from PDM to ERP, Eldec developed programs to
automatically extract BOM data from schematics in
PDM and put it into an Excel spreadsheet in a format
that can be loaded directly into the ERP system.

ERP denotes control and management of the en-
tire manufacturing facility in areas including not only
production but also purchasing, finance, and engi-
neering. It has evolved from earlier MRP systems for
inventory control and later MRP II technology for
shop floor scheduling and coordination. By coordi-
nating the manufacturing operations for peak effi-
ciency, ERP has become virtually indispensable for
manufacturers to reduce manufacturing time and cost
as well as facilitate teamwork and coordination. Simi-
larly, PDM systems manage product-related informa-
tion throughout the enterprise including design
geometry, engineering drawings, project plans, part
files, assembly diagrams, and product specifications.
Typical users have traditionally included designers
and engineers, but PDM system usage is being ex-
panded to include other areas including manufactur-
ing, sales, marketing, purchasing, shipping, and fi-
nance. Because of significant overlaps in data and
functionality between PDM and ERP, most companies
view integration between the two systems appealing.

The scope of integration in CIM is far beyond
merely the hardware/software and data integration

Computer-Integrated Manufacturing 235

and networking: the human and organizational as-
pects of CIM play a critical role in well-deliberated
planning, successful implementation, and effective
management of CIM.

V. STRATEGIC PLANNING, IMPLEMENTATION,
AND MANAGEMENT ISSUES OF CIM

As we discussed earlier, CIM consists of overall inte-
gration of various functional areas from engineering
to manufacturing, inventory, sales, marketing, etc., as
well as integration of databases that support various
levels of managerial decision problems. Since CIM re-
quires such fundamental changes in organizational
communication, both technologically and function-
ally, as well as massive capital investment, it is the se-
nior management responsibility, with its long-range,
company-wide view to integrate CIM strategy into the
corporate strategy, to evaluate all possible strategies
and intangible benefits, to judge its feasibility, and to
decide on its adoption.

It has been reported that the failure of CIM to live
up to its promise of a fully integrated information sys-
tem has been due to a lack of commitment from se-
nior management. While senior managers have taken
full advantage of such innovative concepts as TQM
and JIT scheduling, they have not fully utilized the
economic benefits of CIM. Lack of understanding at
the corporate level about technology management
and its potential have been cited for the failure. More
specifically, for nontechnical managers, it has been
easier to envision the applications of the TQM and
JIT concepts, and to measure their benefits. However,
CIM has been perceived as a technological initiative
that requires highly sophisticated hardware and soft-
ware integration. Furthermore, the characterization
of CIM technology has been depended on by the man-
ufacturing industry and thus viewed as a highly tech-
nological issue rather than management issue.

Due to the technology orientation of CIM, it has
been predominantly implemented by engineers and
line managers. Consequently, the objective has been
to improve efficiency and reduce costs rather than on
improving corporate-wide integration of information
systems. The engineering approach in development
of CIM has also been implemented from bottom up
where individual functional areas and lines have un-
dertaken CIM projects based on their local needs and
on a piecemeal approach, and thus has led to islands
of automation, focusing on localized benefits. In par-
ticular, the lack of integration among functional areas
such as marketing, purchasing, and production plan-

ning, and across key technologies such as MRP, CAD,
and robotics, has been a stumbling block in the suc-
cessful implementation and management of CIM
processes. This is partly due to the lack of leadership
from MIS professionals.

MIS professionals have traditionally focused on
business functional areas such as accounting, finance,
and planning data, and have shied away from robots
and programmable controllers. Thus, MIS depart-
ments are lagging behind other departments in their
contribution to CIM development.

To ameliorate this problem, senior management,
particularly chief information officers, must approach
CIM as a tool for competitive advantage in the mar-
ket place, and integrate CIM strategy into corporate
strategy and consider all possible strategic and intan-
gible benefits as well as tangible ones. CIM technol-
ogy contributes to competitive advantage by being re-
sponsive to the market changes and being flexible to
redesign and manufacture according to market con-
ditions, as well as in identifying the needs of a spe-
cialized market and responding effectively and effi-
ciently to those needs.

Given the dimension and the characteristics of CIM
strategy, it embraces considerations for the office and
the business of the future as well as the factory of the
future. The CIM strategy involves a dramatic change
in manufacturing and business philosophy, as these
changes will affect the entire corporation. Therefore,
the need for a strategic plan detailing how a manu-
facturing and business concern can be addressed, via
CIM, involves similar problems and issues inherent in
information technology and MIS planning. The CIM
strategy has to be viewed from an information tech-
nology management perspective and must be inte-
grated into long-range business strategy by senior
management. Senior managers must be involved in
the CIM strategy development as the participants
rather than spectators. Their roles should be shifted
from being represented by subordinates to ones who
create business strategy with CIM as an integral com-
ponent. In this context, senior management can drive
CIM strategy as an inseparable component of the over-
all business strategy.

VI. EMPIRICAL STUDY

The integration of various functional departments
and managerial levels remains as a critical factor in
design, development, implementation, and manage-
ment of CIM systems. Managers, particularly those in
small to mid-size companies, may assume CIM to rep-

236 Computer-Integrated Manufacturing

resent a potential loss of management control, and a
major challenge to their position and authority within
the company. In their view, for instance, CIM may
change the way the company plans, schedules, exe-
cutes, and tracks production decisions. Much of the
skills and knowledge possessed by the current man-
agement may no longer be pertinent to this new CIM-
run environment; moreover, they may feel that they
no longer understand the operations in CIM envi-
ronment. Other employees may also be adversely dis-
posed toward CIM. For example, they may view CIM
aimed at narrowly automating much of the functions
and reducing labor force rather than on developing
knowledge workers and on improving the productiv-
ity and innovation. As a result, they may experience
fear, uncertainty, and dread.

In order to examine the managerial issues that were
previously discussed, a number of manufacturing com-
panies in St. Joseph County, IN, were surveyed with re-
gard to their adoption and implementation of CIM.
The survey was carried out through a structured ques-
tionnaire format. A contact person in each company
was identified for distribution of the forms among em-
ployees and collecting them after completion. An ef-
fort was made to include a wide variety of functional
areas, types of positions, and managerial levels in the
survey. The questionnaire included two different parts:
(1) interviewer and organization identification: com-
pany size, position of interviewee, gender, the inter-
viewers’ level of education, and their perception of
CIM impact on employment and on the stress to be
placed on CIM initiatives; and (2) a set of open-ended
questions. From a total of 211 respondents, 1.2% were
employed in small companies (companies with less
than 100 employees), 33.5% were employed in
medium-size companies (with 100–500 employees),
and 64.5% were from large companies (having more
than 500 employees). The data in this survey thus rep-
resent mostly large and mid-size companies.

The survey consists of various employees: 23.9% of
the respondents were from the management level,
51.2% professionals, and 24.9% clerical and other
support personnel. With regard to the level of educa-
tion, 12.2% of respondents had high school degrees
or less, 13.8% had completed some college work,
22.8% had a bachelor’s degree, 25.4% had carried
out some graduate studies, 23.8% had completed a
graduate degree, and 2.1% had professional training.
Hence all educational levels except professional train-
ing are well represented in the survey. Various types
of professionals were represented: 23.4% represent-
ing management of CIM, IS professionals made
23.9%, CIM professionals 27.9%, and clerical opera-

tors represented 24.9% of the respondents. Most com-
panies that were visited during the data collection
had computer systems of some sort. Often stand-alone
accounting and inventory systems were in use, but
these could not be easily interfaced with other man-
ufacturing applications.

With regard to the computerization of the functional
departments in their firms of those surveyed, 74.7%
came from those with a fully computerized accounting
department, 64.2% from firms with computerized
MRP/MAP, 60.5% from those with computerized in-
ventory, 54.7% from companies with computerized sales
planning, 67.9% from computerized shop floor con-
trol, 76.3% from those with computerized process con-
trol, 71.1% from those with computerized quality re-
porting, and 16.3% from firms with other computerized
departments. Thus, firms with computerized depart-
ments are well represented in the survey.

We have examined the perceptions of the respon-
dents, through the analysis of variance (ANOVA), re-
garding their expected impact of CIM on the number
of employees and their expected stress on CIM over
the next two years. Table I reports the results of the
statistical analysis when we focused on comparison of
the perception of various groups of respondents. We
examined the perceptions of various groups desig-
nated by the size of the companies, the gender of the
respondents, the employment position, and more im-
portantly the managerial positions of the respondents
in the survey to the impact of CIM on employees and
the stress to be placed on CIM initiatives.

We have used one-way ANOVA to analyze the per-
ceptions of various respondents on the impact of CIM
on employment and the level of stress to be placed on
CIM initiative and management during the next two
years. More specifically, we have examined the re-
spondents perceptions by a number of factors: the re-
spondent’s company size, gender, education, and job
title. In order to test some hypothesis in this context,
we have formulated the following null hypotheses:

H1—The perception of the users regarding the
impact of CIM on employment does not depend on
the gender.

H2—The perception of the users regarding the
stress to be placed on CIM initiatives does not
depend on the gender.

H3—The perception of the users regarding the
impact of CIM on employment does not depend on
their company’s size.

H4—The perception of the users regarding the
stress to be placed on CIM initiatives does not
depend on their company’s size.

Computer-Integrated Manufacturing 237

H5—The perception of the users regarding the
impact of CIM on employment does not depend on
the managerial and functional title of the
respondents.

H6—The perception of the users regarding the
stress to be placed on CIM initiatives does not
depend on the managerial and functional title of
the respondents.

H7—The perception of the users regarding the
impact of CIM on employment does not depend on
the education of the user.

H8—The perception of the users regarding the
stress to be placed on CIM initiatives does not
depend on the user’s education.

These hypotheses can be formulated as follows. We use
APi (X) to represent the average perception of group i
of respondents toward the specific dimension of CIM

that is under examination, where for gender: i � M
(male), and i � F (female); for size: i � s (small), m
(mid-size), and l (large); for education: i � 1 (high
school or less), 2 (some college), 3 (bachelor’s degree),
4 (some graduate study), 5 (graduate degree), and 6
(professional training); and for job title dimension: i �
a (CIM managers), b (IS professionals), c (CIM profes-
sionals), and d (clerical and operating personnel). For
instance, APM(CIM-IMP) denotes the average percep-
tion of males toward the CIM impact on employment,
APM(Stress) represents the average perception of males
toward stress to be placed on CIM initiatives and man-
agement, and APb(Stress) denotes the average percep-
tion of IS professionals toward stress to be placed on
CIM initiatives and management.

Using these definitions, we can formulate the above
hypotheses, respectively, in the following mathemati-
cal forms. For the gender factor:

238 Computer-Integrated Manufacturing

Table I One-way ANOVA: Perception of Various Groups of Employees toward the Impact of CIM on
Employment and Stress on CIM

By gender Sum of squares d.f. Mean square F Sig.

CIM-IMP Between groups 1.435 1 1.435 2.669 0.104
Within groups 112.394 209 0.538
Total 113.829 210

Stress Between groups .557 1 0.557 0.465 0.496
Within groups 249.974 209 1.196
Total 250.531 210

By the size of the companies Sum of squares d.f. Mean square F Sig.

CIM-IMP Between groups 1.254 3 0.418 0.769 0.513
Within groups 112.575 207 0.544
Total 113.829 210

Stress Between groups 1.904 3 0.635 0.528 0.663
Within groups 248.627 207 1.201
Total 250.531 210

By education Sum of squares d.f. Mean square F Sig.

CIM-IMP Between groups 1.904 6 0.317 0.578 0.747
Within groups 111.925 204 0.549
Total 113.829 210

Stress Between groups 13.809 6 2.301 1.983 0.070
Within groups 236.722 204 1.160
Total 250.531 210

By the title of respondents Sum of squares d.f. Mean square F Sig.

CIM-IMP Between groups 1.580 3 0.527 0.971 0.407
Within groups 112.250 207 0.542
Total 113.829 210

Stress Between groups 62.563 3 20.854 22.966 0.000
Within groups 187.967 207 0.908
Total 250.531 210

H1: APM(CIM-IMP) � APF(CIM-IMP)
H2: APM(Stress) � APF(Stress)

For the company size factor:

H3: APs(CIM-IMP) � APm(CIM-IMP) � AP1(CIM-
IMP)

H4: Aps(Stress) � APm(Stress) � Ap1(Stress)

For the education factor:

H5: AP1(CIM-IMP) � AP2(CIM-IMP) � AP3(CIM-
IMP) � AP4(CIM-IMP) � AP5(CIM-IMP) �
AP6(CIM-IMP)

H6: AP1(Stress) � AP2(Stress) � AP3(Stress) �
AP4(Stress) � AP5(Stress) � AP6(Stress)

For the job responsibility and title factor:

H7: APa(CIM-IMP) � APb(CIM-IMP) � APc(CIM-
IMP) � APd(CIM-IMP)

H8: APa(Stress) � APb(Stress) � Apc(Stress) �
APd(Stress)

One-way ANOVA, as shown in Table I, suggests that
the first three null hypotheses can be accepted, i.e.,
there were no significant differences among various
groups of respondents by the size of companies, by
the gender, and by education of respondents, as they
perceive the impact of CIM on employment and the
stress to be placed on CIM. However, the data re-
ported two different results for the fourth null hy-

pothesis (H4): While CIM management, CIM and IS
professionals, and operating personnel have the same
perception toward the impact of CIM, they show sig-
nificantly different perceptions toward the stress to be
placed on CIM initiatives and management.

The result of ANOVA rejects the fifth hypothesis
(H5) that the various employees have similar percep-
tions of stress on CIM. We extend our analysis to pin-
point whether the observed differences in the survey
could be attributed to just the natural variability
among the sample averages or whether there is rea-
son to believe that some of the four groups have sig-
nificantly different perceptions for the stress to be
placed on CIM over the next two years. By extending
our analysis to a multiple comparison procedure, us-
ing Bonferroni, as shown in Table II, one can see no
significant difference between the perception of CIM
managers and CIM professionals on the one hand
and between IS professionals and clerical/operating
personnel on the other hand. However, the first two
groups, CIM managers and CIM professionals, have
significantly different perceptions regarding the stress
to be placed on CIM initiatives and management. In
particular, IS professionals show significantly lower
stress on CIM projects.

We further expanded our analysis of the data to in-
clude more than one grouping or factor variable. In
particular, by reviewing the one-factor analysis, we com-
bined employment title and the educational back-
ground of the respondents in our two-way analysis, as
shown in Table III. There was no significant evidence to
conclude that there exists interaction between the job

Computer-Integrated Manufacturing 239

Table II Multiple Comparisons (Bonferroni) of Respondents’ Perceptions by the Employment Position

Dependent Variable: STRESS
By the employment position 95% Confidence interval

(I) TITLE (J) TITLE Mean difference (I-J) Std. error Sig. Lower bound Upper bound

CIM managers IS professionals 1.17a 0.19 0.000 0.67 1.68
CIM professionals �8.67E-02 0.18 1.000 �0.57 0.40
Clerical and operation 0.88a 0.19 0.000 0.39 1.38

IS professionals CIM managers �1.17a 0.19 0.000 �1.68 �0.67
CIM professionals �1.26a 0.19 0.000 �1.76 �0.77
Clerical and operation �0.29 0.19 0.749 �0.80 0.21

CIM professionals CIM managers 8.67E-02 0.18 1.000 �0.40 0.57
IS professionals 1.26a 0.19 0.000 0.77 1.76
Clerical and operation 0.97a 0.18 0.000 0.48 1.46

Clerical and operation CIM managers �0.88a 0.19 0.000 �1.38 �0.39
IS professionals 0.29 0.19 0.749 �0.21 0.80
CIM professionals �0.97a 0.18 0.000 �1.46 �0.48

a The mean difference is significant at the 0.05 level.

240 Computer-Integrated Manufacturing

Table III Tests of Interaction between Factors: Impact of CIM and Stress on CIM

Dependent Variable: CIM Impact on the Number of Employees
Job title & the company size
Source Type III sum of squares d.f. Mean square F Sig.

Corrected model 9.226 10 0.923 1.764 0.069
Intercept 56.705 1 56.705 108.420 0.000
Title 6.874 3 2.291 4.381 0.005
Size 1.432 3 0.477 0.913 0.436
Title * Size 6.606 4 1.652 3.158 0.015
Error 104.603 200 0.523
Total 934.000 211
Corrected total 113.829 210 Squared � 0.081 (adjusted R squared � 0.035)

Job title and gender Type III sum of squares d.f. Mean square F Sig.

Corrected Model 5.642 7 0.806 1.512 0.165
Intercept 599.524 1 599.524 1124.932 0.000
Title 1.682 3 0.561 1.052 0.371
Gender 0.879 1 0.879 1.650 0.200
Title * Gender 2.893 3 0.964 1.809 0.147
Error 108.187 203 0.533
Total 934.000 211
Corrected total 113.829 210 a. R squared � 0.050 (adjusted R squared � 0.017)

Job title and education Type III sum of squares d.f. Mean square F Sig.

Corrected model 16.658 22 0.757 1.465 0.090
Intercept 232.932 1 232.932 450.660 0.000
Title 1.943 3 0.648 1.253 0.292
Education 2.564 6 0.427 0.827 0.551
Title * Education 13.277 13 1.021 1.976 0.025
Error 97.171 188 0.517
Total 934.000 211
Corrected total 113.829 210 a. R squared � 0.146 (adjusted R squared � 0.046)

Dependent Variable: STRESS
Job title and company size Type III sum of squares d.f. Mean square F Sig.

Corrected Model 68.092 10 6.809 7.465 0.000
Intercept 226.731 1 226.731 248.556 0.000
Title 43.736 3 14.579 15.982 0.000
Size 1.018 3 0.339 0.372 0.773
Title * Size 5.076 4 1.269 1.391 0.238
Error 182.439 200 0.912
Total 2442.000 211
Corrected total 250.531 210 a. R squared � 0.272 (adjusted R squared � 0.235)

Job title and gender Type III sum of squares d.f. Mean square F Sig.

Corrected Model 64.646 7 9.235 10.085 0.000
Intercept 1542.226 1 1542.226 1684.226 0.000
Title 48.096 3 16.032 17.508 0.000
Gender 0.421 1 0.421 0.460 0.499
Title * Gender 1.665 3 0.555 0.606 0.612
Error 185.885 203 0.916
Total 2442.000 211
Corrected total 250.531 210 a. R squared � 0.258 (adjusted R squared � 0.232)

(continues)

title of respondents and their gender, and the size of
their companies. Therefore, one cannot reject the sixth
null hypothesis (H6), that there is no interaction be-
tween the employment title and the gender as well as
between the employment title and the size of the com-
pany with regard to stress on CIM. In other words, the
effect of job title and responsibility on placing stress on
CIM seem to be similar for males and females and for
respondents from mid-size and large companies. How-
ever, there was a significant interaction between the job
title and the education of employees. The significant in-
teraction between employment title and educational
background of respondents tells us that it is reasonable
to believe that the difference in perception among re-
spondents with different education is significantly dif-
ferent for any specific job title of the employees. Thus
the relationship between job title and perception of
employees is different with educational background,
i.e., the eighth null hypothesis (H8) is not supported.

VII. CONCLUDING COMMENTS

CIM in this study was considered as the (vertical) in-
tegration of the flow of information from factory to
the board room with its focus on business and also it
is the (horizontal) integration of functional areas
from design and manufacturing, to marketing and
other business functions. It is, thus, a strategic chal-
lenge for senior management, particularly for CIOs,
to integrate CIM strategy into corporate strategy to
ensure the company’s competitive effectiveness.

Our empirical study in this investigation was con-
ducted to analyze the perception of various users, in-
cluding IS professionals and CIM managers, with re-
gard to the impact of CIM on employment and the
stress to be placed on CIM projects. According to the
results of this empirical study, summarized in Table
IV, two types of perceptions were recognized: one per-
ception, shared by CIM managers and professionals,

Computer-Integrated Manufacturing 241

Table III (continued)

Job title and education Type III sum of squares d.f. Mean square F Sig.

Corrected Model 95.594 22 4.345 5.272 0.000
Intercept 793.582 1 793.582 962.930 0.000
Title 11.842 3 3.947 4.790 0.003
Education 2.872 6 0.479 0.581 0.745
Title * Education 25.306 13 1.947 2.362 0.006
Error 154.937 188 0.824
Total 2442.000 211
Corrected total 250.531 210 a. R squared � 0.382 (adjusted R squared � 0.309)

Table IV Summary Results of the Statistical Analysis

Null hypothesis Statement of the hypothesis Empirical result

H1 The perception of the users regarding the impact of CIM on employment does not Supported
depend on the gender

H2 The perception of the users regarding the stress to be placed on CIM initiatives does Supported
not depend on the gender

H3 The perception of the users regarding the impact of CIM on employment does not Supported
depend on their company's size

H4 The perception of the users regarding the stress to be placed on CIM initiatives does Not supported
not depend on their company's size

H5 The perception of the users regarding the impact of CIM on employment does not Not supported
depend on the managerial and functional title of the respondents

H6 The perception of the users regarding the stress to be placed on CIM initiatives does Supported
not depend on the managerial and functional title of the respondents

H7 The perception of the users regarding the impact of CIM on employment does not Not supported
depend on the education of the user

H8 The perception of the users regarding the stress to be placed on CIM initiatives does Not supported
not depend on the user's education

judged the impact of CIM insignificant, while another,
expressed by IS professionals and clerical operators,
viewed the impact of CIM as labor replacement—i.e.,
decreasing the number of employees. The latter judge-
ment was also displayed by the majority of employees
from the mid-size companies.

According to the data, the perceived stress on CIM
did not depend on the organizational size, but rather
upon the type of responding employee. Two groups
with two different perceptions were identified: CIM
managers and professionals viewed that there would
be significant stress on CIM, whereas IS professionals
and clerical operators were not as optimistic. Our
analysis suggests that IS professionals perceive the
stress on CIM to be significantly different from CIM
managers and CIM professionals. In particular, IS pro-
fessionals have placed less emphasis on CIM under-
takings and their management, and thus lagged be-
hind other departments in contributing to the CIM
development and its strategic applications for com-
petitive edge. These data also suggest that training
and education among CIM managers and CIM pro-
fessionals has played a positive role in placing higher
stress on CIM technology.

Successful implementation and management of
CIM initiative depend not only upon expertise in
technology assessment and deployment, but more im-
portantly, on the business vision and a company-wide
management approach. Effective assessment in de-
ployment of CIM technology, in particular, should
take into consideration its potential values and non-
tangible as well as tangible costs and benefits. Given
the scope of CIM technology, senior IS management
with its long-range and company-wide view is respon-
sible for playing a leading role in CIM undertakings,
for estimating all possible strategic and intangible
benefits resulting from CIM, and for leading the fea-
sibility analysis and the adoption process. The lack of
leadership by senior IS management in CIM initia-
tives and management will inevitably lead to the au-
tomation of functional tasks without achieving the in-
tegration that is vital to the survival and functioning
of the company as a whole.

SEE ALSO THE FOLLOWING ARTICLES

Computer-Aided Design • Computer-Aided Manufacturing •
Enterprise Resource Planning • Operations Management •
Productivity • Supply Chain Management • Total Quality
Management and Quality Control

BIBLIOGRAPHY

Aronson, R. (1995). Lead winners find CIM is key to improve-
ment. Manufacturing Engineering, Vol. 115, No. 5; 3–69.

Davenport, T. H. (2000). Mission Critical: Realizing the Promise of
Enterprise Systems. Boston: Harvard Business School Press.

DeGaspari, J. (1995). Ten years after. Plastics Technology, Vol. 41,
No. 11, 46–48.

De Meyer, A. (1990). How to arrive at computer integrated
manufacturing: A 3-year survey. European Journal of Opera-
tional Research, 47, 29–247.

Doumeints, G., Vallespir, B., and Chen, D. (1995). Methodolo-
gies for designing CIM systems: A survey. Computer in Indus-
try, No. 25, 263–280.

Fjemestand, J., and Charabarti, A. (1993). A survey of
computer-integrated manufacturing literature: A framework
of strategy, implementation, and innovation. Technology
Analysis and Strategic Management, Vol. 5, No. 3, 251–71.

Forrester, P., and Hassard, J. (1992). The CAPM/CAE interface
within CIM system approaches in medium-sized companies.
Computing and Control Engineering Journal, Vol. 3, No. 2, 75–78.

Fraser, J. (March 1998). 300-mm: How will production software
keep up? Solid State Technology, Vol. 41, No. 31, 30–33.

Harrington, J., Jr. (1973). Computer Integrated Manufacturing.
New York: Industrial Press.

Hill, M. (1994). Computer-integrated manufacturing: Elements
and totality. New Wave Manufacturing Strategy (J. Storey, ed.),
pp. 122–150, London: Paul Chapman.

Islam, A. (1997). Deviation of selection criteria of CIM data-
base using IDEF. Computer and Industrial Engineering, Vol. 33,
Nos. 1–2, 31–34.

Johanson, J., Karmarkar, U. S. (1995). Computer integrated
manufacturing: Empirical implications for industrial infor-
mation systems. Journal of Management Information Systems,
Vol. 12, No. 2, 59–83.

King, W. R., and Ramamurthy, K. R. (1992). Do organizations
achieve their objectives from computer-based manufactur-
ing technologies? IEEE Transaction on Engineering Manage-
ment, Vol. 39, No. 2, 129–141.

Lamparter, W. (April 1996). The next revolution? American
Printer, Vol. 217, Issue 1, 34–41.

Lamparter, W. (September 1997). CIM for print. American
Printer, Vol. 219, Issue 6, 48–53.

Miller, E. (March 1999). Integrating PDM and ERP. Computer-
Aided Engineering, Vol. 18, No. 3, 69–74.

Newman, S. (1994). Strategic Information Systems. Toronto:
Macmillan.

Noitove, M. H. (November 1995). CIM stars in tooling devel-
opment. Plastics Technology, Vol. 41, No. 11, 44–46.

Ogando, J. (March 1998). New entry in CIM systems, let’s start
small and expand later. Plastics Technology, Vol. 44, No. 3, 18–20.

Procter, S., and Brown, A. D. (1997). Computer-integrated op-
erations: The introduction of hospital information support
systems. International Journal of Operations and Production
Management, Vol. 17, No. 7/8, 746–755.

Zambelli, J., and Kelley, W. (July 1998). U.S. steel: Re-engineering
for the future. Steel-Times International, Vol. 22, No. 3, 24–26.

242 Computer-Integrated Manufacturing

Computer-Supported Cooperative Work
Judith S. Olson and Gary M. Olson
University of Michigan

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 243

I. DEFINITION
II. THINKING ABOUT GROUP WORK: A FRAMEWORK
III. FINDINGS ABOUT HOW GROUP WORK CHANGES

WITH TECHNOLOGIES

IV. KEEPING UP AS DEVELOPMENTS EMERGE

GLOSSARY

asynchronous Turn taking in conversation that is de-
layed. E-mail and conversation databases (like Lo-
tus Notes) facilitate conversation without requiring
the participants to be available to each other at the
same time.

backchannel Responses that a listener utters during
the speaker’s speech to signal to the speaker that
he or she understands or not, agrees or not, etc.
They consist of short grunts and “uh huhs” or head
nods and furled brows.

collaboratory A laboratory without walls, the collec-
tion of technologies to connect scientists to each
other, to remote instruments, and to digital li-
braries.

groupware The collection of technologies that are in-
tended to support groups, including e-mail, Net-
Meeting, Lotus Notes, etc.

MUDs and MOOs Specially built technologies to sup-
port real-time communication with others remotely.
They originated in the game world, where MUD
stands for Multi-User Dungeons and Dragons, and
the OO in MOO is object oriented, referring to the
underlying programming language type of MUD.

Picturephone A commercial product that allowed reg-
ular telephone users to see the called party as well
as be seen by them.

real-time Without delay, usually referring to synchro-
nous communication either conversing with an-
other person or with simultaneous access to work
materials.

workflow Applications that allow people to coordinate
a series of tasks on related documents in a paperless
manner, often passing responsibility for reading/
writing/ approval of documents electronically,

I. DEFINITION

Computer-supported cooperative work (CSCW) is the
study of how people work together using computing
and communication technologies. The term applies
whether the people are collocated or remote, working
at the same time or asynchronously, or trying to make
a transition from one situation to the other (getting a
meeting scheduled, assigning work tasks to people to
do in parallel). The collection of technologies available
for this is called Groupware. The name CSCW emerged
in the mid-1980s as the name of a biannual conference,
but has since grown to be the name of the field. CSCW
is broadly interdisciplinary, drawing from computer sci-
ence, management information systems, information
science, psychology, sociology, and anthropology.

II. THINKING ABOUT GROUP
WORK: A FRAMEWORK

Many of our waking hours are spent in groups. We
live in communities and work in teams in organiza-
tions. We use a variety of technologies to do this, many
of them old. We hold regular meetings face-to-face,
we write on whiteboards, we pass out copies of things

to discuss or consult this evening’s program. Recently,
however, the pace of invention and use of the tech-
nologies to help us work in groups has accelerated,
first with personal computers (projected Powerpoint
slides, later projected notetaking on line) and then
with simple networked computing (attachments on
e-mail, Lotus Notes shared databases) and the inter-
net itself (instant messaging, discussion groups, and
shared repositories of news and information). These
technologies have fundamentally changed how we
collaborate. Today people can plan a successful global
conference without ever having met; large corpora-
tions form worldwide teams, called “virtual colloca-
tion,” and some mobile consultants take their work
on the road, never requiring the use of an office.

So are these good technologies? Do they empower
us or do they alienate us from each other? What do
we learn from the use of these technologies about hu-
man behavior itself? The answer, of course, is very
complex. Not all groups are the same, they do not do
the same kind of activities, and the technologies in-
clude a huge variety. It helps to begin with a frame-
work—a way to talk about the various findings and
sort things out. Figure 1 presents such a framework,
showing key elements in both the players and settings
of work, its process and outcomes.

A. The Group

The same technology can have a very different effect
on groups that are made up of different kinds of peo-
ple, relationships, organizations, and contexts of time
and location. Heterogeneous groups behave differ-
ently than homogenous ones. How these differences
play out is affected by technologies. For example,

strangers who are speaking their non-native language
benefit from video conferencing much more than es-
tablished groups speaking their mother tongue. Sim-
ilarly, groups that have established trust can function
cooperatively over simple email, whereas those who
do not trust each other quickly dissipate into self-
serving behaviors. Furthermore, technologies that fit
with a group’s reward structure are more likely to be
adopted than those that require cultural change.

B. The Task

If we look at the microstructure of group interactions,
they are made up of a host of building-block activities.
They consist of the exchange of information, planning,
gathering or generating information, discussing to come
to agreement, and planning and producing a product.
Each of these subtasks is likely to be supported best by
different technical support. Furthermore, there are dif-
ferent dependencies among group members in getting
the task done; some tasks can be done by a divide-and-
conquer strategy, others require close coordination. And,
tasks differ in their difficulty, requiring coordinated ex-
pertise (e.g., in designing a bridge) or merely joining
similar low-level activities (e.g., laying bricks for a build-
ing in parallel). And sometimes the group activity is not
work related, but intended to build relationships, as in
social gatherings and support sessions.

C. The Technologies

Technologies can be simply categorized in two ways. We
can look at the situation that the technology is intended
to support (see Groupware), and we can look at what it

244 Computer-Supported Cooperative Work

Figure 1 A simplified relationship between technology and group work.

supports: the peoples’ conversations or a shared object.
First, technologies focused on several settings: support
for real-time collocated work (like a meeting), for re-
mote real-time work (like a video conference), for asyn-
chronous work in the same place (like hospital or fac-
tory floor shift handoffs), and for asynchronous work
regardless of location (like around the world software
development). In addition to these distinctions of delay
and location, we can also look at whether the tech-
nologies support conversation (e.g., the telephone) or
the sharing of objects (e.g., a project plan, engineering
documents, the next version of code). Table I organizes
some of today’s groupware on these dimensions.

D. The Process

The composition of the group, the task they set out
to do, and the technologies they employ determine
the process they engage in. One could describe the
content of these conversations, the gestures used, the
timing, and participation.

E. Outcomes

The success of a new technology’s introduction can
be measured in a variety of ways. The quality of the

Computer-Supported Cooperative Work 245

Table I Groupware to Support Various Time/Places of Groupwork and Focusing on Support of the
Conversation or the Shared Objects

Work situation Example products

Real time

Support for face-to face conversations Vantana, Group Systems V

Support for remote conversation

Chat boxes, MUDs, and MOOs Unix Talk, Lambda MOO

Videoconferencing PictureTel, Vtel

Desktop audio Placeware, NetMeeting

Desktop video Proshare, CU-SeeMe, NetMeeting

Support for shared work objects

Camera PictureTel Object Camera

Computer whiteboards SmartBoard, SoftBoard, NetMeeting

Shared editors Aspects, ShrEdit

Application sharing ProShare, NetMeeting, Timbuktu, Point-to-Point, Shared-X.

Asynchronous work

Support of conversation

E-mail Outlook, Mulberry, Eudora, and many more

Filters for e-mail Outlook, Mulberry, and many more

Conversation databases Lotus Notes, Confer, Netnews

Revision control systems RCS

Recommender systems Book recommendations on amazon.com

Support of objects

Shared file servers FTP, Fetch, servers on the network

Group authoring Microsoft Word revision mode, For Comment

Project management MS Project, MacProject

Workflow systems Lotus Notes

Transitions between modes of work

Electronic calendars Meeting Maker, PROFs

Awareness servers ICQ, Instant Messenger, CU-SeeMe

product, the individual and collective learning, and
the group’s feelings for each other (affecting their
willingness to work together in the future) are all af-
fected by the previous factors. What’s important here
is to assess not only the immediate outcomes (did
they get the work done, were they satisfied), but also
those that wouldn’t appear until much later (like the
growth of expertise in the community, the feelings of
isolation, or mistrust).

III. FINDINGS ABOUT HOW GROUP WORK
CHANGES WITH TECHNOLOGIES

In the following, we outline some of the results from
the past 20 years of research about the variety of situ-
ations in which groups find themselves, working on
different tasks and with different technological sup-
port. Where appropriate we will refer to the details of
the process they undergo to get their tasks done and
the consequent outcomes, both related to the task
and their group. The sections are ordered to fit the
time/place distinctions set out in Table I.

A. Support for Face-to-Face Conversations

Face-to-face meetings are supported by a variety of
technologies. Embedded in many technologies are
procedures for structuring the discussions. For exam-
ple, some embody the “nominal group technique” or
the rules of “brainstorming.” Others support various
kinds of voting mechanisms, such as anonymous rank-
ing algorithms. This set of technologies typically sup-
ports the conversation of the meeting. Other tech-
nologies used in face-to-face meetings are more free
form, allowing people to collaboratively create and
change an object under discussion, such as a presen-
tation, proposal, or engineering diagram. In the lat-
ter case, the conversation takes place with people’s
voices as in a normal meeting, but technology sup-
ports the object. We will discuss these in Section III.C.

One form of technology support that structures
the meetings is called Group Decision Support Sys-
tems (GDSS). Earlier work on individual decision sup-
port systems (DSSs) grew to involve groups doing sim-
ilar work. The GDSSs are typically employed by large
heterogeneous groups engaged in the tasks of gener-
ating a number of ideas (brainstorming) and decid-
ing among them. Because the processes dictated are
strict and the technology nonintuitive, these systems
typically require a facilitator. Experimental evalua-
tions of GDSSs, reviewed by Fjermestad and others in

1998, have shown that the process is indeed more struc-
tured, and the outcomes judged to be better. Because
these systems typically allow anonymity of the ideas gen-
erated, they produce more equal participation among
group members. Although decision quality is higher,
they require more time and the participants are less sat-
isfied than they are with traditional meetings.

B. Support for Remote
Real-Time Conversation

The telephone is the most popular technology to sup-
port people conversing at a distance. Audio confer-
ences using speakerphones support the groups larger
than two. More recently, however, people are using a
less-rich, less expensive medium, conversing using
text-based chats, in either MUDs or MOOs, or via In-
stant Messaging capabilities. Or, when wishing to get
closer to “being there,” they opt for video conferenc-
ing. Each of these is reviewed in turn below.

1. Text-Based Conversation

In MUDs, MOOs, and instant messaging systems, par-
ticipants type their contributions in a small window
on the computer screen. As soon as they finish, they
send the burst of text to all others currently partici-
pating, or to a subset they designate, with the utter-
ance tagged with their names. The MUDs and MOOs,
in addition, allow people to describe other actions as
well, e.g., “Gary enters the room;” “Judy smiles.” Par-
ticipants in MOOs and MUDs also create descriptions
of places and objects, sometimes giving the objects ac-
tions that are triggered when others act on them, e.g.,
“powers” that emerge when an object is “picked up.”
Although these were invented to support fantasy
games, today they are used both for education and
productive meetings as well as game playing.

Descriptions of the activity in MOOs and MUDs
center around the issue of identity. Since participants
can describe themselves as they wish, including gen-
der, they often experience reactions to their described
selves different from their true selves. For example,
those that describe themselves in terms of lower power
status are reacted to in a more friendly way than those
who describe themselves as powerful. Different MOO
communities develop distinctly different cultures de-
pending on their own developed rules of etiquette.

Chat systems have been used for serious purposes,
such as the one in the Upper Atmospheric Research
Collaboratory (UARC). Here, scientists chat while they
collectively view shared displays of data from instru-

246 Computer-Supported Cooperative Work

ments around the world. As many as 15 scientists have
been on at once, discussing the phenomena, with an-
other 30 signed on but not directly conversing, called
“lurkers.” When the content of the chat dialog is cate-
gorized, it turns out that nearly eight separate threads
of conversations are carried on in parallel, many more
than in a face-to-face meeting, with no more confu-
sion about what is being talked about. Because the
participants can scroll back through the previous dia-
log, they can keep track of the threads and keep up.

2. Audio- and Videoconferencing

It has been known for 30 years now that audio con-
versation helps comprehension much more than read-
ing text, but that adding video adds nothing further.
Yet, we continue to develop video connections, first
with Picturephone, large-scale videoconferencing
suites, and later with video on the desktop, as in Net-
Meeting. More recent research shows that people con-
sistently like the video connection better than audio
only. Perhaps this is due to the ease with which they
can tell things about the context—who is speaking,
how others are reacting to the things being said, and
what else is going on in the room.

More recent studies of the value of video show a
more complicated picture. Small established groups
doing a design task produces better output quality
when they are face-to-face than when they communi-
cate by audio only, and that with video the quality is
as good as face-to-face. But, a detailed analysis of the
process shows that both remote groups grapple with
organizing themselves more than the face-to-face
groups do. There is more overhead to doing the work.
In a second study, examining groups that did not
know each other well, video provided a large, signifi-
cant advantage in both the output quality as well as
their satisfaction with the work. In this case, video was
important in the strangers’ ability to gesture when
they had to convey a difficult concept, and to read
and adjust to the expressions of understanding or
confusion on the other person’s face.

These effects make sense when we examine all the
things in communication that are conveyed visually.
They determine whose turn it is to talk next and what
people are referring to (especially when they say short-
hand words like “this” and “that”). They can gauge
the level of understanding or agreement of the lis-
teners and whether people are paying attention. When
the conversation is only supported by audio, these
cues are lacking, leading to confusion and disruption.

Modern video communication technology is im-
perfect, however, disrupting conversation and com-

prehension. Because of bandwidth limits, most video
systems today delay the signal by about 1 second, and
even delay the audio in order to keep it synchronized
with the video. Unfortunately, this delay has a well-
known effect on conversation. Since people pause
about 1 second to allow someone else to take a turn,
if they do not hear anything in 1 second (now caused
by the technical delay, not because someone did not
take the turn), they will continue to speak. This causes
all kinds of disruption as then two people are speak-
ing at the same time, and more difficult yet, have to
explicitly negotiate who will proceed. When given a
choice, experienced people will ask for a good audio
system without delay (which is possible over regular
telephone lines) and dismiss the potentially odd look
of the out-of-synch video.

Video is also used for remote presentations, not
just for small group meetings. In some distance-
learning technologies, the presenter broadcasts by
video and audio, gesturing with a telepointer or an-
notating the presentation with digital ink. In some of
these systems, like in Placeware, the audience can
send in chat-like questions to the presenter or vote on
questions asked by the presenter, and even chat
among themselves without disrupting the speaker. Au-
diences using these systems like them because they
can multi-task (e.g., read e-mail while listening to the
dull parts); speakers like them less because they can-
not react to the normal visual cues about whether the
audience understands the material or not.

C. Support for Face-to-Face or Remote
Real-Time Sharing of Objects

The kinds of systems built for sharing the object of
the meeting support both face-to-face and remote
meetings. When we talk about the object of the meet-
ing, we mean things like the proposal under discus-
sion, the agenda and/or minutes, an engineering
drawing or a to-do list. In using these systems, it is as-
sumed that the conversation proceeds in parallel, usu-
ally by voice in a meeting room, or through audio
conferencing when participants are remote. There
are two classes of system that support the sharing of
the object: one that allows deep shared editing of the
material (where several people can edit at once) and
one that shares the entire screen or window and al-
lows only one person to edit the material at a time. Al-
though to date there is only one commercial product
that allows simultaneous in-document editing (As-
pects), such systems have existed for 10 years in the
research world. Systems in this class include Cognoter

Computer-Supported Cooperative Work 247

in the Colab at Xerox PARC and ShrEdit from Michi-
gan. Application sharing through the use of ProShare
and NetMeeting, and screen-sharing offered by
Shared-X, Timbuktu, or Point-to-Point are simple but
powerful collaborative tools. Like flip charts and
whiteboards, these tools do not dictate the group
process but rather provide editable, visible support
for whatever the group dictates is useful at the time.

Research shows that these systems improve small,
established groups doing design tasks in the quality of
their work. Groups liked it slightly less than working
in a traditional room, with only paper and white-
boards. But, interestingly, the process by which they
worked differed as well—those using the shared ob-
ject explored fewer alternative designs, while achiev-
ing higher quality. Perhaps the system kept them fo-
cused on the task at hand, helping them evaluate as
they went whether or not they were making progress.
They wasted less time summarizing the current state
of the design because it grew in front of them, and
participants could work in parallel while seeing what
the others were doing.

In a very different setting, another group editor,
called Aspects, was used by groups of four 6th grade
students engaged in the task of writing articles for
their class magazine over the course of 12 weeks. Here,
students fought over ownership and control and wor-
ried about whether they had permission to change
something that another had created. In this case, they
could not see exactly what the other person was doing,
and so were confused about whether what they did
would fit. However, the students reported liking the
experience, in particular because it allowed everyone
to participate in a joint creation.

Most of the early shared object technologies were
embodied in normal desktop computers, with one
person per computer. More recently, such technolo-
gies are housed in electronic whiteboards, like the
LiveBoard, SmartBoard, or SoftBoard. The LiveBoard,
a large electronic whiteboard with pen/gesture input,
was evaluated in a long-term case by a group doing
the task of regular patent reviews for a company. The
fact that the group persisted in using it effectively for
over two years attests to its value. Comments and sug-
gestions along the way were incorporated into evolu-
tionary design changes, including the system recog-
nizing the structure of a “list” and “outline,” and
separating various regions of the work on the board.
The board had enough intelligence to “do what I
want it to” for the kinds of objects the group was us-
ing frequently in their work.

Ordinary video connectivity is also used to share
work objects. Engineers share the results of a manu-

facturing defect remotely by putting the damaged part
on the “object camera” in a videoconference, and
zooming in on the defect. Discussion is much more ef-
fective when the part can been seen than when it is
merely described. In another situation, video cameras
were used in surgery, focused on the detailed work but
projected to the team members in the operating room.
By seeing the progress of the surgery, supporting team
members did not need verbal instructions about what
to do; they could see when the next process was about
to commence and prepared for it.

D. Asynchronous Support of Conversation

1. E-Mail

E-mail is the one “killer app” of CSCW. The fact that
messages can be exchanged across platforms and net-
works and that there is a standard, has made it almost
as easy and ubiquitous as using a telephone. And,
with the multipurpose Internet mail extensions
(MIME) standard for attachments and common rep-
resentation formats like Postscript, it has become easy
to transfer full documents and other media to wide-
spread communities.

But with the spread of email have come some pow-
erful effects on human behavior. It has changed who
talks to whom, giving power to some people who, be-
cause of more social reasons, were not heard from be-
fore. They are no longer inhibited from participating
because of shyness or articulateness; they can speak
without seeing other people. Unfortunately, this in-
visibility, the fact that the sender is not seeing the re-
action of the recipient while typing, has created the
negative phenomenon of “flaming.” In the absence of
social cues, people tend to write asocial emotive mes-
sages that are either shocking, upsetting or offensive
to the reader.

E-mail also has profound effects on the conduct of
work, as well, depending on how people use it. Not only
are messages sent and received independent of time
and place, but people also use their “inbox” as a re-
minder for things they have to do. Time management
is supported poorly this way, but it speaks to the context
in which email is used and points to future needs.

E-mail comes from a variety of sources with a vari-
ety of purposes. Much of today’s e-mail is generated
by individuals broadcasting notifications to a list. This
can appear in the context of news servers or merely
from people in the department notifying everyone of
an upcoming event. Other e-mails are targeted di-
rectly to the individual recipient and imply an action

248 Computer-Supported Cooperative Work

to be taken by that person. The flood of e-mail is of-
ten overwhelming. To help the person cope, some
e-mail systems offer ways to sort the e-mail manually
by having the recipient shunt it to a folder for future
use, or offer programmable filters that automatically
sort things into folders or order them on implied pri-
ority. In other systems, like Lotus Notes, messages are
not displayed in order of arrival, but organized around
various topics with responses. This helps the reader
keep track of where they are in a particular conversa-
tion or issue and give context to their reply.

The fact that these conversations in general are asyn-
chronous and carry few social cues has far-reaching
consequences. In particular, after long-term use of
e-mail without any face-to-face contact, people begin to
distrust each other. Recent studies have measured this
distrust and then explored various conditions that may
help. Groups who were remote but able to meet face-
to-face periodically developed and maintained trust.
People who met socially before working remotely de-
veloped and maintained trust. Meetings over video
were almost as effective as face-to-face, those with au-
dio a bit less. Interestingly, a “pre-meeting” over text-
based chat was effective in engendering initial trust if
the participants talked of social things, the topics they
would cover if “getting acquainted.”

2. Recommender Systems

Recently, the pooling of people’s opinions about var-
ious things like books or movies has been enabled
through technology called recommender systems.
This is a form of very asynchronous and anonymous
“conversation.” By matching a single person’s prefer-
ences and purchases with others like him or her, the
system can suggest new things that the person might
enjoy. The interesting part of this kind of system is
that the entry of data requires no effort on the part
of the recommender; the people who “recommend”
are not consciously doing so; they are merely behav-
ing normally and the system combs the information
for use.

E. Support for Asynchronous
Sharing of Objects

A variety of objects are shared in the conduct of work.
Documents such as work plans, proposals, require-
ments, etc., are often authored by many over time.
People store finished documents like the quarter-end
financial statement for others to access. Some people
are experimenting with storing what are called design

rationales to help people who come later on a project
to understand earlier thinking. And project manage-
ment systems and workflow systems support the coor-
dination of various stages of work.

1. Collaborative Authoring of Documents

Much of group work currently consists of individuals
writing documents (e.g., system requirements, policy
proposals, project reports) and then soliciting com-
ments from many different people and making
changes, iterating several times. Today this activity in-
volves a lot of paper drafts and a great deal of time
simply entering edits. The standard word processors
(e.g., Microsoft Word) now have revision features that
make edits visible (crossouts of previous words, new
additions marked differently) and allow easy accep-
tance of the edits and production of a clean copy.
There have been extensive prototype systems with
ideas about how to support more of this process, re-
viewed by Michailidis and Rada in 1996.

Authors using these tools intermingle their talk and
writing when they develop the ideas for their text, im-
plying a need for informal support at this stage of writ-
ing. A study of the use of the PREP editor also sup-
ported the need for flexibility in the technology to
support the difference phases and preferences of col-
laborating authors. At some points in the text, authors
chose to attach voice commentary, and at others they
wanted to explain their ideas by rewriting the text.

2. Design Rationale

A number of systems were built to support groups of
designers in the complex task of designing an object
like an automobile or airplane. Most of these systems
aim to capture the argumentation that occurs during
the design process, linking the questions of consider-
ation with the alternative solutions that were proposed
as well as the evaluative discussion that accompanied
it. There is a strong belief that this kind of system
would help designers in two ways: (1) it would help
designers generate more alternatives and therefore
consider more and consider them more fully and
(2) it would also be a memory source to help those
other team members that have to maintain and/or al-
ter the system. By retrieving the rationale behind an
earlier decision, the maintainers might be expected
to spend less time rediscovering why some unused al-
ternatives would not work. The most well-known of
these systems is gIBIS, which uses a hypertext linking
structure to organize the various issues, alternatives,
and criteria in the design rationale.

Computer-Supported Cooperative Work 249

The capture of design rationale has not been to-
tally successful, likely because it is a classic case of mis-
aligned benefits. The person benefiting from the in-
formation is not the person who has to invest time
and effort by entering it. Also, the representation does
not always fit the discussion. Discussions do not always
follow one-issue-at-a-time, and alternatives and crite-
ria sometimes relate in braided ways. But, when the
diagramming/procedure of design rationale is fol-
lowed, indeed the designers that come on the project
later use it with some success. An analysis of their dis-
cussions showed that half their questions are design
rationale questions, and half of these are answered by
the design rationale documentation. Difficulties arise
in that the originator does not always anticipate what
later designers might need (and therefore ignores ra-
tionales actually discussed) and some design decisions
are made without rationale and are accepted without
discussion.

3. Repositories of Shared Knowledge

Other types of coordination are possible with appli-
cations like Lotus Notes. A group can keep open is-
sues lists in a form accessible to all interested parties,
and construct workflow systems that automatically
route information to the right people for additions
and approvals. Some organizations are viewing Lotus
Notes as repositories of corporate knowledge, captur-
ing people’s experience on previous projects, their
heuristics for decisionmaking (e.g., pricing policies
and exception handling), boilerplate for various kinds
of proposals, etc.

Three case studies have shown the organizational
consequences of introducing these kinds of technolo-
gies. In the first, consultants were asked to share their
knowledge about various clients and engagements in a
large Lotus Notes database so that others could bene-
fit from their experience and insights. Two key issues
prevented successful adoption. First, although consul-
tants had to bill all their working hours to various
clients, there was no account for them to use to bill the
time devoted to data entry and learning of Lotus Notes.

Second, consultants were promoted on the basis of
their skill advantage over their co-workers, discourag-
ing them from sharing their knowledge. So in this
case the accounting/billing of time and the assess-
ment of credit was misaligned with the capability the
technology afforded, the objective of its introduction,
and the goals of its use. In a successful case in our ex-
perience, sales people shared their client contacts
with each other. This sharing prevented the embar-
rassing occasions when a single client was being told

different stories by two different sales people. This
use fit the incentive scheme in which sales people re-
ceived commissions on total sales as well as their in-
dividual sales.

In the third case study, software designers used Lo-
tus Notes to keep their open issues list and to share
information about future features or potential solu-
tions to bugs. Their use of the system initially rose
and then declined over 12 months. Interviews of the
group members revealed that the team members were
less and less inclined to use the application because
they thought the manager was not participating. They
saw no activity on his part and assumed he did not
value their use of the system. In truth, the manager
was participating regularly; he read the material but
did not write. Unfortunately, Lotus Notes does not
make reading activity visible in the interface.

4. Workflow Applications

Workflow applications allow people to design, exe-
cute, and manage coordinated activities over a net-
work. A process involving several people, like the re-
porting, approval, and payment of a travel expenses,
would be supported electronically. Initial reporting
would be done in an electronic document, transferred
to another, signatures obtained for approval, and
records kept of not only where a particular document
is in the process, but who is responsible for it and
when was it received or completed.

Workflow applications have often resulted from
business process reengineering efforts, where teams
examine a business activity and find ways to make it
more efficient. Often, efficiency comes with some
technology to either store documents for many people
to access (eliminating paper), or some stages of pro-
cessing being eliminated, automated, or supported.
Not only does workflow have a bad reputation among
workers because it displaces workers, but it also is of-
ten conceived as the ideal work process, both rigid
and dictatorial. Many of the systems do not support
the flexibility and judgment that often accompanies
real coordinated work and therefore fall into disuse.

One other aspect of workflow applications has also
generated user resistance. Because applications can
track the status of various documents and procedures,
management can monitor the work of employees. In
many countries, such monitoring is disallowed by pow-
erful worker organizations. In the United States, it is
allowed, but often unwelcome. In a team where work-
flow was a new concept, the team members misun-
derstood how important it was to be accurate in as-
signing responsibility to various subtasks (like who

250 Computer-Supported Cooperative Work

will handle a particular bug fix). They did not know
the full range of views available to the manager to
monitor work. One team member, the one most often
assigned the first task in a series, came to realize that
there was a potential for managerial monitoring. The
management report would look as if he alone were re-
sponsible for delays, when in fact the real work was
being done by others down the line. This feature
made him less and less eager to use the application.
In general, managerial monitoring is a feature that is
known to disincline people from using Groupware.

F. Support for the Transition between
Asynchronous and Real-Time Work:
Awareness Support and Calendars

Group work is a mixture of synchronous and asyn-
chronous activities. People meet to plan the work and
assign individuals to do various subtasks. These peo-
ple coordinate and clarify as they go, and periodically
meet to align goals and plan next steps. They move
often between individual subtasks and coordination
or clarification in real time. The following technolo-
gies would support these transitions.

First, project management software captures deci-
sions made in meetings about who is doing what, and
what the linkages or dependencies are between sub-
tasks. These technologies help calculate the conse-
quences of changes to the plan (by calculating the
critical path) and indicate to team members who is
waiting for work. Open issues lists and project man-
agement software are the tools to support the transi-
tion from real-time meetings to parallel, more inde-
pendent work. These technologies suffer only from
the time and effort involved in keeping them up to
date. Like writing and distributing meeting minutes,
it requires someone to do it.

More difficult is the transition from asynchronous
work to synchronous, both accessing an individual so
that one can converse or negotiate in real time and
calling meetings. Recognizing how difficult this is,
some organizations expect workers to be at their desks
at all times (and thus reachable at all times). Others
schedule standing meetings, expecting full attendance
whether one’s expertise is needed or not. In lieu of
these rash solutions, some have adopted some tech-
nologies to help people locate others or to assess when
they can reach them so they can make contact.

Two of the most comprehensive of these systems
are Montage and Cruiser, which allow video “glances”
into team members’ offices so one can assess whether
they are available for a phone or video conversation.

If the glance instead reveals that the intended person
is not there or not available, the seeker has several op-
tions. The seeker can leave an e-mail message, or can
view the person’s calendar to see when he/she might
return or where they might be reached. Or the seeker
can leave a “sticky note” on the screen of the person
being sought, attracting the team member’s attention
immediately upon their return. In an evaluation of
Montage which was deployed in a distributed work-
group, the results showed that people glanced at each
other nearly 3 times a day, and 3/4 of those were un-
acknowledged (people were there but they did not re-
spond to connect in a real-time video link). The con-
nections when made were short (a little over a
minute). And, although the additional access to cal-
endars, e-mail and sticky notes were used infrequently,
people reported afterward valuing them highly.

Other uses of video to allow awareness of team
members’ activity have been tried and reviewed in
1999 by Mackay. The VideoWindow at Bellcore was in-
tended to encourage both ordinary meeting and ca-
sual interactions from remote sites over coffee. RAVE,
a suite of systems at Rank Xerox EuroPARC, was in-
tended to support awareness of global activity, glances
into individual’s offices, and point-to-point contact
for close intense work. Long-term use of video con-
nectivity was analyzed in the Portland Experiment. All
of these systems have been studied within research lab
settings, where modest amounts of sustained use were
found. It would be extremely useful to have studies of
these systems carried out in other kinds of organiza-
tional settings.

All of the implementations of awareness through
video raise issues of privacy. Various solutions have
been proposed, including introducing reciprocity (you
are only on camera when you can see the person view-
ing you), warning (the sound of a “squeaky door open-
ing” or footsteps coming serves as a signal of an im-
pending glance), viewee control over camera position,
and showing recent snapshots as opposed to live im-
mediate action. One awareness system, called Thun-
derwire, used open audio instead of video. In use,
most difficulties pointed to the interpretation of si-
lence. People realized the need for designing new
norms in announcing oneself (because the hearers
are blind), and negotiating inattention and withdrawal.

On-line calendars afford awareness as well as ease
in scheduling meetings. PROFs calendar and Meeting
Maker are two popular implementations; both allow
designation of who can write and who can read the
calendar, as well as control over private portions of
the calendar, where viewers can see that the person is
busy, but not what they are doing. This application

Computer-Supported Cooperative Work 251

has been declared the quintessential misalignment of
costs and benefits (the individual has to keep the cal-
endar up to date if it is going to be of benefit to oth-
ers), but many organizations have since adopted it
successfully. A culture of sharing and accessibility en-
ables the successful adoption of on-line calendars.

G. Efforts to Support Communities

A number of recent projects investigated the needs of
large-scale communities, both through user-centered
design and by merely deploying a flexible technology
and watching its use. Two main thrusts are relevant
here: the development of collaboratories, and the
study of home/community use of the world wide web.

A collaboratory is the “. . . combination of technol-
ogy, tools and infrastructure that allow scientists to work
with remote facilities and each other as if they were co-
located.” A 1993 National Research Council report de-
fines a collaboratory as a “. . . center without walls, in
which the nation’s researchers can perform their re-
search without regard to geographical location—inter-
acting with colleagues, accessing instrumentation, shar-
ing data and computational resources [and] accessing
information in digital libraries.” A simplified form of
these definitions describes a collaboratory as the use of
computing and communication technology to achieve
the enhanced access to colleagues and instruments pro-
vided by a shared physical location, but in a domain
where potential collaborations are not constrained by
temporal or geographic barriers.

One such collaboratory effort is the UARC, a set of
technologies that allows space scientists studying the
upper atmosphere to view real-time data from various
instruments (like incoherent scatter radar) around
the world. They can align these views with models of
what should be going on, and converse through a
chat facility with the other scientists or graduate stu-
dents, and share their configuration views with others
to support their ongoing conversation. Preliminary
analysis found that UARC theorists and data analysts
are working together where they did not before. Also
graduate students have access to remote mentors and
can experience real-time data collection, where pre-
viously they might get to go to a site once in their
graduate training. Their network of colleagues has
shifted with use of the collaboratory, and it is expected
that publication authorship will shift as well. The is-
sue, really, is whether science is progressing faster or
not, and since there is no real control group for this
effort, we do not know.

An earlier collaboratory supporting molecular bi-
ologists studying the C. elegans nematode, affection-
ately called the Worm Community, illustrated both
the difficulty of getting a community started and the
important emergent attitudes about various partici-
pants’ willingness to share. Various disciplines develop
their own cultures about joint work, credit, and need
for immediate communication, and will be variously
successful in adopting this and other new capabilities,
like digital libraries. There are now efforts underway
to support medical radiology and AIDS clinicians and
bench scientists in collaboratories. It is likely that col-
laboratory interactions in science will become a rou-
tine aspect of scientific practice, with important im-
plications not just for the practices of scientists but
also for the training of graduate students.

In contrast to this well-planned, user-centered de-
velopment of technologies evident in collaboratories,
there are efforts to install various technologies in des-
ignated communities. The intent is to learn by various
evaluation strategies what people value and what they
might need in the future. Two such efforts are the
HomeNet in the Pittsburgh area and the Blacksburg
Electronic Village in Virginia. These systems have
been installed for a few years and data collection has
progressed to a point of revealing trends in behavior.
They are finding that teenage males are by far the
heaviest users, although there is evidence that access
to e-mail for keeping up personal conversations and
contacts is valued by all.

IV. KEEPING UP AS DEVELOPMENTS EMERGE

A number of sources exist that review subsets of the
technologies and associated group behavior in greater
depth. They are well worth pursuing if one wants
more detail and deeper analysis of cognition in CSCW.
Six large volumes of anthologies of studies in this area
are listed in the Bibliography. This article is a short-
ened version of a paper published in 1999 by Olson
and Olson, which has a more extensive bibliography
of 150 articles. These volumes plus the Proceedings on
Computer Supported Cooperative Work (CSCW) and the
European Computer Supported Cooperative Work (ECSCW),
the conferences that alternate meeting biannually,
provide both the basics and the continuing progress
in this exciting field. Several journals also publish
CSCW work: Computer Supported Cooperative Work, Hu-
man Computer Interaction, ACM Transaction on Informa-
tion Systems, Communication of the ACM, and ACM Trans-
actions on Computer-Human Interaction.

252 Computer-Supported Cooperative Work

SEE ALSO THE FOLLOWING ARTICLES

Electronic Mail • Group Support Systems and Electronic Meet-
ing Systems • Groupware • Human Side of Information •
Knowledge Management • Virtual Organizations • Voice
Communications

BIBLIOGRAPHY

Abbott, K. R., and Sarin, S. K. (1994). Experiences with workflow
management: Issues for the next generation. Proceedings of the
Conference on Computer Supported Cooperative Work, pp. 113–120.

Baecker, R. M. (1993). Readings in Groupware and Computer-
Supported Cooperative Work. San Mateo, CA: Morgan Kaufman.

Finholt, T. A., and Olson, G. M. (1997). From laboratories to
collaboratories: A new organizational form for scientific col-
laboration. Psychological Science, pp. 28–36.

Finn, K., Sellen, A., and Wilbur, S., eds. (1997). Video-Mediated
Communication. Hillsdale, NJ: Lawrence Erlbaum Associates.

Fjermestad, J., and Hiltz, S. R. (1998–1999). An assessment of
group support systems experimental research. Journal of
Management Information Systems.

Greif, I., ed. (1988). Computer-Supported Cooperative Work: A Book
of Readings. San Mateo, CA: Morgan Kaufmann Publishers.

Mackay, W. (1999). Media spaces: Environments for informal
multimedia interaction. Computer Supported Cooperative Work,
pp. 55–82.

Marca, D., and Bock, G. (1992). Groupware: Software for Computer
Supported Cooperative Work. Los Alamitos, CA: IEEE Com-
puter Society Press.

McGrath, J. E. (1984). Groups: Interaction and performance. En-
glewood Cliffs, NJ: Prentice Hall.

McLeod, P. L. (1992). An assessment of the experimental lit-
erature on electronic group support: Results of a meta-
analysis. Human-Computer Interaction, 7, 257–280

Michailidis, A., and Rada, R. (1996). A review of collaborative
authoring tools. Groupware and Authoring (R. Rada, ed.), pp.
9–44. New York: Academic Press.

Olson, G. M., and Olson, J. S. (1999). Computer supported co-
operative work. Handbook of Applied Cognition (F. Durso, ed.).
pp. 409–442. New York: John Wiley & Sons.

Olson, G. M., and Olson, J. S. (2000). Distance matters. Human
Computer Interaction. 15, 139–179.

Rada, R. (1996). Groupware and Authoring. New York: Academic
Press.

Sproull, L., and Kiesler, S. (1991). Connections: New Ways of Work-
ing in the Networked Organization. Cambridge, MA: MIT Press.

Computer-Supported Cooperative Work 253

Computer Viruses
Robert M. Slade
Vancouver Institute for Research into User Security

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 255

I. BASIC CHARACTERISTICS
II. HISTORY AND TRENDS

III. RELATED PROGRAMS AND TERMS
IV. TRIPARTITE VIRUS STRUCTURE

V. DAMAGE
VI. ANTIVIRAL TECHNOLOGIES

VII. ANTIDETECTION MECHANISMS
VIII. CONCLUSION

GLOSSARY

activity monitor A type of antiviral software that
checks for signs of suspicious activity, such as at-
tempts to rewrite program files, format disks, and
so forth. Some versions of activity monitors will
generate an alert for such operations, while others
will block the behavior.

BSI A boot sector infector; a virus that replaces the
original boot sector on a disk, which normally con-
tains executable code.

change detection Antiviral software that looks for
changes in the computer system. A virus must
change something, and it is assumed that program
files, disk system areas, and certain areas of mem-
ory should not change. This software is very often
referred to as integrity-checking software, but it does
not necessarily protect the integrity of data, nor
does it always assess the reasons for a possibly valid
change. Change detection using strong encryption
is sometimes also known as authentication software.

companion virus A type of viral program that does
not actually attach to another program, but which
interposes itself into the chain of command, so
that the virus is executed before the “infected” pro-
gram. Most often, this is done by using a similar
name and the rules of program precedence to as-
sociate itself with a regular program. Also referred
to as a spawning virus.

false negative A false negative report occurs when an
antiviral reports no viral activity or presence, when
there is a virus present. References to false nega-
tives are usually only made in technical reports.

Most people simply refer to an antiviral “missing”
a virus. In general security terms, a false negative is
called a false acceptance, or Type II, error.

false positive A false positive report occurs when the
activity or presence of a virus is reported when
there is, in fact, no virus. False positive reports have
come to be very widely used among those who know
about viral and antiviral programs. Very few use the
analogous term false alarm. In general security
terms, a false positive is known as a false rejection,
or Type I, error.

file infector A virus that attaches itself to, or associ-
ates itself with, a file, usually a program file. File in-
fectors most often append or prepend themselves
to regular program files, or overwrite program
code. The file infector class is often also used to re-
fer to programs that do not physically attach to
files but associate themselves with program file
names.

heuristics In general, heuristics refer to trial-and-error
or seat-of-the-pants thinking rather than formal
rules. In antiviral jargon, however, the term has
developed a specific meaning with regard to the ex-
amination of program code for functions or opcode
strings known to be associated with viral activity. In
most cases this is similar to activity monitoring but
without actually executing the program; in other
cases, code is run under some type of emulation. Re-
cently the meaning has expanded to include generic
signature scanning meant to catch a group of viruses
without making definite identifications.

macro virus A macro is a small piece of programming
in a simple language, used to perform a simple,

repetitive function. Microsoft’s Word Basic and
VBA macro languages can include macros in data
files, and have sufficient functionality to write com-
plete viruses.

malware A general term used to refer to all forms of
malicious or damaging software, including viral
programs, trojans, logic bombs, and the like.

multipartite Formerly a viral program that will infect
both boot sector/MBRs and files. Possibly now a
virus that will infect multiple types of objects or re-
produces in multiple ways.

payload Used to describe the code in a viral program
that is not concerned with reproduction or detec-
tion avoidance. The payload is often a message but
is sometimes code to corrupt or erase data.

polymorphism Techniques that use some system of
changing the “form” of the virus on each infection
to try and avoid detection by signature scanning
software. Less sophisticated systems are referred to
as self-encrypting.

scanner A program that reads the contents of a file
looking for code known to exist in specific viral
programs.

stealth Various technologies used by viral programs
to avoid detection on disk. The term properly refers
to the technology, not to a particular virus.

system infector A virus that redirects system pointers
and information in order to “infect” a file without
actually changing the infected program file. This is
a type of stealth technology.

trojan horse A program that either pretends to have,
or is described as having, a (beneficial) set of fea-
tures but which, either instead, or in addition, con-
tains a damaging payload. Most frequently the us-
age is shortened to trojan.

virus A final definition has not yet been agreed on by
all researchers. A common definition is “a program
that modifies other programs to contain a possibly
altered version of itself.” This definition is generally
attributed to Fred Cohen, although Dr. Cohen’s ac-
tual definition is in mathematical form. Another pos-
sible definition is “an entity that uses the resources
of the host (system or computer) to reproduce itself
and spread, without informed operator action.”

wild, in the A jargon reference to those viral pro-
grams that have been released into, and success-
fully spread in, the normal computer user com-
munity and environment. It is used to distinguish
those viral programs that are written and tested in
a controlled research environment, without escap-
ing, from those that are uncontrolled “in the wild.”

worm A self-reproducing program that is distin-
guished from a virus by copying itself without being

attached to a program file, or which spreads over
computer networks, particularly via e-mail. A recent
refinement is the definition of a worm as spreading
without user action, for example, by taking advan-
tage of loopholes and trap doors in software.

zoo A jargon reference to a set of viral programs of
known characteristics used to test antiviral software.

A COMPUTER VIRUS is a program written with func-
tions and intended to copy and disperse itself without
the knowledge and cooperation of the owner or user
of the computer. A final definition has not yet been
agreed on by all researchers. A common definition is
“a program that modifies other programs to contain
a possibly altered version of itself.” This definition is
generally attributed to Fred Cohen from his seminal
research in the mid-1980s, although Dr. Cohen’s ac-
tual definition is in mathematical form. Another pos-
sible definition is an entity that uses the resources of
the host (system or computer) to reproduce itself and
spread, without informed operator action.

I. BASIC CHARACTERISTICS

Dr. Fred Cohen is generally held to have defined the
term computer virus in his thesis (published in 1984).
(The suggestion for the use of the term virus is cred-
ited to Len Adleman, his seminar advisor.) However,
his original definition covers only those sections of
code that, when active, attach themselves to other
programs. This, however, neglects many of the pro-
grams that have been most successful “in the wild.”
Many researchers still insist on Cohen’s definition
and use other terms such as worm and bacterium for
those viral programs that do not attack programs.
Currently, viruses are generally held to attach them-
selves to some object, although the object may be a
program, disk, document, e-mail message, computer
system, or other information entity.

Computer viral programs are not a “natural” oc-
currence. Viruses are programs written by program-
mers. They do not just appear through some kind of
electronic evolution. Viral programs are written, de-
liberately, by people. However, the definition of pro-
gram may include many items not normally thought
of in terms of programming, such as disk boot sectors
and Microsoft Office documents or data files that also
contain macro programming.

Many people have the impression that anything
that goes wrong with a computer is caused by a virus.
From hardware failures to errors in use, everything is

256 Computer Viruses

blamed on a virus. A virus is not just any damaging
condition. Similarly, it is now popularly believed that
any program that may do damage to your data or in-
hibit access to computing resources is a virus. Viral
programs are not simply programs that do damage.
Indeed, viral programs are not always damaging, at
least not in the sense of being deliberately designed
to erase data or disrupt operations. Most viral pro-
grams seem to have been designed to be a kind of
electronic graffiti: intended to make the writer’s mark
in the world, if not his or her name. In some cases a
name is displayed, on occasion an address, phone
number, company name, or political party.

II. HISTORY AND TRENDS

Many claims have been made for the existence of
viruses prior to the 1980s, but, so far, these claims
have not been accompanied by proof. The Core Wars
programming contests did involve self-replicating
code, but usually within a structured and artificial
environment.

At least two Apple II viruses are known to have
been created in the early 1980s. There is some evi-
dence that the first viruses were created during the
1980s, and Fred Cohen’s work was undertaken during
that decade. However, it was not until the end of the
decade (in 1987 in particular) that knowledge of real
viruses became widespread, even among security ex-
perts. For many years boot sector infectors and file in-
fectors were the only types of common viruses. These
programs spread relatively slowly, primarily distrib-
uted on floppy disks, and were thus slow to dissemi-
nate geographically. However, these viruses tended to
be very long lived.

During the early 1990s virus writers started experi-
menting with various functions intended to defeat de-
tection. (Some forms had seen limited trials earlier.)
Among these were polymorphism, designed to change
form in order to defeat scanners, and stealth, de-
signed to attempt to confound any type of detection.
None of these virus technologies had a significant im-
pact. Most viruses using these “advanced” technolo-
gies were easier to detect because of a necessary in-
crease in program size.

Although demonstration programs had been cre-
ated earlier, the mid-1990s saw the introduction of
macro and script viruses in the wild. These were ini-
tially confined to word processing files, particularly
files associated with the Microsoft Office Suite. How-
ever, the inclusion of programming capabilities even-
tually led to script viruses in many objects that would

normally be considered to contain data only, such as
Excel spreadsheets, PowerPoint presentation files, and
e-mail messages. This fact led to greatly increased de-
mands for computer resources among antiviral sys-
tems, since many more objects had to be tested, and
Windows object linking and embedding (OLE) for-
mat data files presented substantial complexity to
scanners. Macro viruses also increase new variant
forms very quickly, since the virus carries its own
source code, and anyone who obtains a copy can gen-
erally modify it and create a new member of the virus
family.

E-mail viruses became the major new form of virus
in the late 1990s and early 2000s. These viruses may
use macro capabilities, scripting, or executable attach-
ments to create e-mail messages or attachments sent
out to e-mail addresses harvested from the infected
machine. E-mail viruses spread with extreme rapidity,
distributing themselves worldwide in a matter of hours.
Some versions create so many copies of themselves
that corporate and even service provider mail servers
are flooded and cease to function. E-mail viruses are
very visible, and so tend to be identified within a short
space of time, but because many are macros or scripts,
many variants can be quickly generated.

With the strong integration of the Microsoft Win-
dows operating system with its Internet Explorer
browser, Outlook mailer, Office suite, and system
scripting, recent viruses have started to blur the nor-
mal distinctions. A document sent as an e-mail file at-
tachment can make a call to a Web site that starts ac-
tive content, which installs a remote access tool acting
as a portal for the client portion of a distributed
denial-of-service network.

Because the work has had to deal with detailed
analysis of low-level code, virus research has led to sig-
nificant advances in the field of forensic program-
ming. However, to date computer forensic work has
concentrated on file recovery and decryption, so the
contributions in this area likely still lie in the future.

Many computer pundits, as well as some security
experts, have proposed that computer viruses are a re-
sult of the fact that currently popular desktop oper-
ating systems have only nominal security provisions.
They further suggest that viruses will disappear as se-
curity functions are added to operating systems. This
thesis ignores the fact, well established by Cohen’s re-
search and subsequently confirmed, that viruses use
the most basic of computer functions, and that a per-
fect defense against viruses is impossible. This is not
to say that an increase in security measures by oper-
ating system vendors could not reduce the risk of
viruses; the current danger could be drastically re-

Computer Viruses 257

duced with relatively minor modifications to system
functions.

It is going too far to say (as some have) that the
very existence of viral programs, and the fact that
both viral strains and the numbers of individual in-
fections are growing, means that computers are fin-
ished. At the present time, the general public is not
well informed about the virus threat, and so more
copies of viral programs are being produced than are
being destroyed. Indeed, no less an authority than
Fred Cohen has championed the idea that viral pro-
grams can be used to great effect. An application us-
ing a viral form can improve performance in the same
way that computer hardware benefits from parallel
processors. It is, however, unlikely that viral programs
can operate effectively and usefully in the current
computer environment without substantial protective
measures being built into them. A number of virus
and worm programs have been written with the obvi-
ous intent of proving that viruses could carry a useful
payload, and some have even had a payload that could
be said to enhance security. Unfortunately, all such
viruses have created serious problems themselves.

III. RELATED PROGRAMS AND TERMS

Computer viruses have many aspects. There are also
a number of classes of malware (maliciously pro-
grammed software, or programmed security threats)
that do not have viral characteristics.

A. Specific Virus Types

Viruses are generally partly classified by the objects to
which they attach. (Worms, discussed in the next sec-
tion, may be seen as a type of virus that attaches to
nothing.)

1. Boot Sector Infector

Most desktop computer operating systems have some
form of boot sector, a specific location on disk that
contains programming to bootstrap the start-up of a
computer. Boot sector infectors (BSIs) replace or redi-
rect this programming in order to have the virus in-
voked, usually as the first program running on the
computer.

BSIs would not appear to fit the definition of a
virus infecting another program, because BSIs can be
spread by disks that do not contain any program files.
However, the boot sector of a normal MS-DOS disk,

whether or not it is a “system” or bootable disk, always
contains a program (even if it only states that the disk
is not bootable), and so it can be said that a BSI is a
“true” virus.

The terminology of BSIs comes from MS-DOS sys-
tems, and this leads to some additional confusion.
The physical “first sector” on a hard drive is not the
operating-system boot sector. On a hard drive the
boot sector is the first “logical” sector. The number
one position on a hard drive is the master boot record
(MBR). Some viral programs, such as the Stoned virus,
always attack the physical first sector: the boot sector
on floppy disks and the master boot record on hard
disks. Thus viral programs that always attack the boot
sector might be termed “pure” BSIs, whereas pro-
grams like Stoned might be referred to as an “MBR
type” of BSI. The term boot sector infector is used for all
of them though, since all of them infect the boot sec-
tor on floppy disks.

2. File Infectors

File infecting viral programs link, or attach, to an ex-
isting program in many different ways. The largest
number will place the bulk of the viral code toward
the end of the program file, with a jump sequence at
the beginning of the file that points to the main body
of the virus. Some viral code attaches to the begin-
ning of the file—simpler in concept, but actually more
difficult in execution. These two techniques are
known as appending and prepending, respectively, but
the terms are used less than in years past.

Some viral programs do not attach to the begin-
ning or end of the file, but write their code into the
target program itself. Most often this is done by sim-
ply overwriting whatever is there already. Of course, if
a virus has overwritten existing code, the original tar-
get program is damaged, and there is little or no pos-
sibility of recovery other than by deleting the infected
file and restoring from a clean backup copy. However,
some overwriting viruses are known to look for strings
of null characters. If such can be identified, the viral
code can be removed and replaced with nulls again.

3. System or Companion Viruses

Some viral programs do not physically touch the tar-
get file at all. There are two ways to infect in this man-
ner. One method is quite simple, and may take ad-
vantage of precedence in the system. In MS-DOS, for
example, when a command is given, the system checks
first for internal commands, then COM, EXE, and

258 Computer Viruses

BAT files in that order. EXE files can be “infected” by
writing a COM file in the same directory with the
same file name. This type of virus is most commonly
known as a companion virus, although the term spawn-
ing virus is also used.

The second method is more difficult. System viral
programs will not change the target program, but will
change the directory entry for the program so as to
point to the virus. The original file will not be
changed, but when the target program is called, the
virus will be run first instead. More recently, other
ways to have the system call the virus have been found.
The registry, in recent Microsoft Windows versions,
has enormous control over the operation of the com-
puter and can be used to modify many operations in
order to have viral programs run in place of, or be-
fore, many normal functions.

4. Macro, Script, or Interpreted Viruses

Early viruses were written as object or machine exe-
cutable code. There were some experiments involving
MS-DOS batch files, or programs that contained
macro languages, such as Lotus 1-2-3. Macro, batch,
or scripting languages are not directly executable by
the computer, but must be interpreted by the operat-
ing system or an application program. Macro or script
programs are written in a simple source code and are
thus comprehensible to an educated user.

With the introduction of more functional macro,
script, and batch languages, plus the ability to attach
these programs to data objects in such way that they
are easily executable, interpreted viruses have become
a serious problem. Viral macros can be included with
ordinary Microsoft Word document files, and text at-
tachments or e-mail inclusions can contain viruses
written in the Microsoft VBScript language. With the
prevalence of the Microsoft operating system, Office
application, and e-mail software, these types of viruses
have become the most common form of viral pro-
gram seen today.

Interpreted viruses have another feature that in-
creases their numbers. Each macro or script virus car-
ries its own source code, so virus writers are easily able
to use existing viruses as templates to create others.

5. E-mail Viruses

Most high-profile viruses in recent years have involved
the use of e-mail systems. Technically speaking, e-mail
viruses are no different than other viruses or worms,
aside from the obvious distinction of the specific use
of e-mail or network systems, and may be either ob-

ject code programs, script attachments, or Microsoft
Office document attachments with macro viruses.

The major characteristic of an e-mail virus is the
more extensive use of social engineering to try to get
the user to activate the virus. This includes vague but
attractive subject lines and message text, and the use
of address book data to generate the appearance that
the message is from someone the user knows and
trusts.

The infection pattern of e-mail viruses is also sig-
nificantly different from that for more traditional
forms. Older viruses took months to spread, but stayed
in the computing environment for years. E-mail
viruses and worms often spread worldwide within a
matter of hours, but, because of the attendant pub-
licity, seldom are a problem for more than a few days.

6. Multipartite Viruses

Multipartite viral programs were originally also known
as dual infection, since they had the potential to in-
fect both program files and boot sectors. This ex-
pands the range of possible vectors. Multipartite in-
fections can theoretically travel on any disk, and
multiple copies may travel on a disk if program files
are present. Dual infectors can also travel on net-
works, which pure BSIs cannot, and via files passed
over bulletin board systems and other communica-
tions channels.

Multipartite viruses have traditionally been seen as
a combination of the two earliest types, file and boot
sector infectors, hence the alias of dual infection.
However, the term may now be more generally used
for any virus that can infect multiple objects or infect
in multiple ways.

B. Worms

Worm programs also reproduce and are seen by many
as simply a special case of computer virus. The dis-
tinction is said to be either that worms are viruses that
travel across networks, or that worms spread by them-
selves, without attaching to an infected object.

The derivation of the term worm is given by the ex-
periments in distributed computing by John Shoch
and Jon Hupp. They wrote programs that would trans-
fer copies of themselves to other machines on a net-
work while remaining under the control of the origi-
nal program. They saw the entire matrix of copied
programs as a single “worm”: a single entity with many
program segments. There are also references to the
network “tapeworm” in the fictional work Shockwave

Computer Viruses 259

Rider by John Brunner, although the program de-
scribed in Brunner’s novel neither reproduced nor
had segments.

Two examples of the usage of the term worm are
the famous Morris/Internet/UNIX worm of late 1988,
and the lesser known CHRISTMA EXEC mail worm
of December 1987. Many recent e-mail viruses are
also seen as examples of worms.

C. Hoaxes

Hoax warnings are specifically related to viruses.
These are false warnings about nonexistent computer
viruses, generally spread as chain letters. Characteris-
tics of hoaxes are that they give almost no technical
details of the supposed virus, warn of terrible damage
that the virus will do, and state that the virus is im-
possible to detect or eradicate. The final point is that
hoaxes ask the reader to forward the message to all
friends and contacts. The chain letter aspect of hoaxes
is another association with viruses: the hoax uses the
user to reproduce, rather than copying itself with
computer functions.

D. Trojans

Trojans, or trojan horse programs, are the largest class
of malware. However, the term is subject to much con-
fusion, particularly in relation to computer viruses. A
trojan is a program that pretends to do one thing while
performing another, unwanted action. The extent of
the “pretense” may vary greatly. Many of the early PC
trojans relied merely on the file name and a descrip-
tion on a bulletin board. “Log-in” trojans, popular
among university student mainframe users, mimicked
the screen display and the prompts of the normal log-
in program and could, in fact, pass the username and
password along to the valid log-in program at the
same time as they stole the user data. Some trojans
may contain actual code that does what it is supposed
to be doing while performing additional nasty acts
that it does not tell you about.

An additional confusion with viruses involves tro-
jan horse programs that may be spread by e-mail. In
years past, a trojan program had to be posted on an
electronic bulletin board system or a file archive site.
Because of the static posting, a malicious program
would soon be identified and eliminated. More re-
cently, trojan programs have been distributed by mass
e-mail campaigns, by posting on Usenet newsgroup
discussion groups, or through automated distribution

agents (bots) on Internet relay chat (IRC) channels.
Since source identification in these communications
channels can be easily hidden, trojan programs can
be redistributed in a number of disguises, and specific
identification of a malicious program has become
much more difficult.

Some data security writers consider that a virus is
simply a specific example of the class of trojan horse
programs. There is some validity to this usage since a
virus is an unknown quantity that is hidden and trans-
mitted along with a legitimate disk or program, and
any program can be turned into a trojan by infecting
it with a virus. However, the term virus more properly
refers to the added, infectious code rather than the
virus/target combination. Therefore, the term trojan
refers to a deliberately misleading or modified pro-
gram that does not reproduce itself.

E. Remote Access Tools

All networking software can, in a sense be considered
remote access tools (RATs): We have file transfer sites
and clients, World Wide Web servers and browsers,
and terminal emulation software that allows a micro-
computer user to log on to a distant computer and
use it as if he or she were on site. The RATs consid-
ered to be in the malware camp tend to fall some-
where in the middle of the spectrum. Once a client,
such as Back Orifice or SubSe7en, is installed on the
target computer, the controlling computer is able to
obtain information about the target computer. The
master computer will be able to download files from,
and upload files to, the target. The control computer
will also be able to submit commands to the victim,
which basically allows the distant operator to do pretty
much anything to the prey. One other function is
quite important: All of this activity goes on without
any alert being given to the owner or operator of the
targeted computer.

When a RAT program has been run on a computer,
it will install itself in such a way as to be active every
time the computer is turned on after that. Informa-
tion is sent back to the controlling computer noting
that the system is active. The user of the command
computer is now able to explore the target, escalate
access to other resources, and install other software,
such as DDoS zombies, if so desired.

Once more, note that remote access tools are not
viral. When the software is active, though, the master
computer can submit commands to have the installa-
tion program sent on, via network transfer or e-mail,
to other machines.

260 Computer Viruses

F. DDoS Agents

Distributed denial-of-service (DDoS) is a modified
denial-of-service (DoS) attack. DoS attacks do not at-
tempt to destroy or corrupt data, but attempt to use
up a computing resource to the point where normal
work cannot proceed. The structure of a DDoS attack
requires a master computer to control the attack, a
target of the attack, and a number of computers in
the middle that the master computer uses to generate
the attack. These computers between the master and
the target are variously called agents or clients, but
are usually referred to as running “zombie” programs.

Again, note that DDoS programs are not viral, but
checking for zombie software protects not only you
and your system, but prevents attacks on others as well.
It is, however, still in your best interest to ensure that
no zombie programs are active on any of your ma-
chines. If your computers are used to launch an assault
on some other system, you could be liable for damages.

G. Jokes or Pranks

Pranks are very much a part of the computer culture.
So much so that you can now buy commercially pro-
duced joke packages that allow you to perform “Stu-
pid Mac (or PC, or Windows) Tricks.” Numberless
pranks are available as shareware. Some make the
computer appear to insult the user; some use sound
effects or voices; some use special visual effects. A
fairly common thread running through most pranks
is that the computer is, in some way, nonfunctional.
Many pretend to have detected some kind of fault in
the computer (and some pretend to rectify such faults,
of course making things worse). One entry in the
virus field is PARASCAN, the paranoid scanner. It pre-
tends to find large numbers of infected files, although
it does not actually check for any infections.

Generally speaking, pranks that create some kind
of announcement are not viral, and viruses that gen-
erate a screen or audio display are rare. The distinc-
tion between jokes and trojans is harder to make, but
pranks are intended for amusement. Joke programs
may, of course, result in a denial of service if people
find the prank message frightening.

IV. TRIPARTITE VIRUS STRUCTURE

Malicious software has six basic elements, although
not all may be present in each specific program. In-
sertion is the method used to become resident in the

target system. Avoidance, otherwise known as stealth,
is the method used to evade detection. Eradication is
the means by which the malware removes traces of it-
self following a trigger. Propagation or replication is
considered the province of viruses and worms only
and is what makes a program a virus. The trigger is
the event or condition that initiates a payload. The
payload is the additional coding carried by the pro-
gram. In considering computer viruses, three struc-
tural parts are considered important, the replication
or infection mechanism, the trigger, and the payload.

A. Infection Mechanism

The first, and only necessary, part of the structure is
the infection mechanism. This is the code that allows
the virus to reproduce, and thus to be a virus. The in-
fection mechanism itself has a number of parts to it.

The first function is to search for, or detect, an ap-
propriate object to infect. The search may be active,
as in the case of some file infectors that take directory
listings in order to find appropriate programs, of ap-
propriate sizes, or it may be passive, in the case of
macro viruses that infect every document as it is saved.
Some additional decisions may be made once an ob-
ject is found. Some viruses may try to actually slow the
rate of infection in order to avoid detection. Most will
check to see if the object has already been infected.

The next action will be the infection itself. This
may entail the writing of a new section of code to the
boot sector, the addition of code to a program file,
the addition of macro code to the Microsoft Word
NORMAL.DOT file, the sending of a file attachment
to harvested e-mail addresses, or a number of other
operations. Additional subfunctions exist at this step
as well, such as the movement of the original boot sec-
tor to a new location, or the addition of jump codes
in an infected program file to point to the virus code.
There may also be changes to system files, to try and
ensure that the virus will be run every time the com-
puter is turned on. This can be considered the inser-
tion portion of the virus.

At the time of infection, a number of steps may be
taken to try to keep the virus safe from detection. The
original file creation date may be conserved and used
to reset the directory listing in order to avoid a change
in date. The virus may have its form changed, in some
kind of polymorphism. The active portion of the virus
may take charge of certain system interrupts, in order
to make false reports when someone tries to look for
a change to the system. Certain prompts or alerts may
also be generated in an attempt to make any odd be-

Computer Viruses 261

havior noticed by the user appear to be part of a nor-
mal, or at least innocent, computer error.

B. Trigger

The second major component of a virus is the pay-
load trigger. The virus may look for a certain number
of infections, a certain date and/or time, or a certain
piece of text, or it may simply blow up the first time
it is used. As noted, a virus does not actually have to
have either a trigger or a payload.

C. Payload

If a virus does have a trigger, then it usually does have
a payload. The payload can be pretty much anything,
from a simple one-time message, to a complicated dis-
play, to a program that reformats the hard disk. How-
ever, the bigger the payload, the more likely it is that
the virus will get noticed. Therefore, while you may
have seen lists of payload symptoms to watch for—
such as text messages, ambulances running across the
screen, letters falling down, and the like—checking
for these payloads is not a very good way to keep free
of viruses. The successful ones keep quiet. However, a
virus carrying a very destructive payload will also erad-
icate itself when it wipes out its target.

V. DAMAGE

There is much discussion of “damaging payloads” in
viruses, and the topic should be addressed more care-
fully. Viruses can do any kind of damage that software
can do. This includes corrupting data, erasing files,
corrupting system data, reformatting disks, corrupt-
ing security systems, corrupting software, or killing
program processes.

The myth of viral programs physically damaging
hardware seems to be one of the more enduring. No
viral program yet found has been designed to damage
hardware, and there has never been any confirmed
case of a viral program directly causing physical dam-
age to computer hardware. There is at least one virus
that does attempt to correct the BIOS (basic
input/output system) programming if the computer
uses a Flash memory EEPROM. This does prevent the
computer from starting correctly, and does require
the physical removal and reprogramming or replace-
ment of the BIOS chip. However, no hardware is ac-
tually damaged.

However, deliberate damage is not the only kind that
viruses can cause. Viruses tend to be poorly pro-
grammed and tested, and they carry many bugs and
sloppy programming practices. A great many viruses
have caused data corruption that was probably never in-
tended, simply because the programmer did not know
enough about disk structures or memory management.

Viruses can also cause various kinds of denial of
service, because they take up CPU time, disk space,
space in mail queues, and other resources.

VI. ANTIVIRAL TECHNOLOGIES

All antiviral technologies are based on the three
classes outlined by Fred Cohen in his early research.
The first type performs an ongoing assessment of the
functions taking place in the computer, looking for
operations known to be dangerous. The second
checks regularly for changes in the computer system
where changes should occur only infrequently. The
third examines files for known code found in previ-
ous viruses.

Within these three basic types of antiviral software,
implementation details vary greatly. Some systems are
meant only for use on stand-alone systems, while oth-
ers provide support for centralized operation on a
network. With Internet connections being so impor-
tant now, many packages can be run in conjunction
with content scanning gateways or firewalls.

A. Activity Monitors

An activity monitor watches for suspicious activity. It
may, for example, check for any calls to format a disk
or attempts to alter or delete a program file while a
program other than the operating system is in con-
trol. It may be more sophisticated, and check for any
program that performs “direct” activities with hard-
ware, without using the standard system calls.

Activity monitors represent some of the oldest ex-
amples of antiviral software. Generally speaking, such
programs followed in the footsteps of the earlier anti-
trojan software, such as BOMBSQAD and WORM-
CHEK in the MS-DOS arena, which used the same
“check what the program tries to do” approach. This
tactic can be amazingly effective, particularly given
the fact that so much malware is slavishly derivative
and tends to use the same functions over and over
again.

It is, however, very hard to tell the difference be-
tween a word processor updating a file and a virus in-

262 Computer Viruses

fecting a file. Activity monitoring programs may be
more trouble than they are worth because they can
continually ask for confirmation of valid activities.
The annals of computer virus research are littered
with suggestions for virus-proof computers and sys-
tems that basically all boil down to the same thing: If
you restrict the operations that a computer can per-
form, you can eliminate viral programs. Unfortunately,
you also can eliminate most of the usefulness of the
computer.

B. Change Detection Software

Change detection software, also often referred to as
integrity- checking software, examines system and/or
program files and configurations, stores the informa-
tion, and compares it against the actual configuration
at a later time. Most of these programs perform a
checksum or cyclic redundancy check (CRC) that will
detect changes to a file even if the length is un-
changed. Some programs will even use sophisticated
encryption techniques to generate a signature that is,
if not absolutely immune to malicious attack, prohib-
itively expensive, in processing terms, from the point
of view of a virus.

A sufficiently advanced change-detection system,
which takes all factors including system areas of the
disk and the computer memory into account, has the
best chance of detecting all current and future viral
strains. However, change detection also has the high-
est probability of false alarms, since it will not know
whether a change is viral or valid. The addition of in-
telligent analysis of the changes detected may assist
with this failing.

C. Scanners

Scanners examine files, boot sectors, and/or memory
for evidence of viral infection. They generally look for
viral signatures, sections of program code that are
known to be in specific viral programs but not in most
other programs. Because of this, scanning software
will generally detect only known viruses and must be
updated regularly. Some scanning software has resi-
dent versions that check each file as it is run.

Scanners have generally been the most popular
form of antiviral software, probably because they make
a specific identification. In fact, scanners offer some-
what weak protection, since they require regular up-
dating. Scanner identification of a virus may not al-
ways be dependable: A number of scanner products

have been known to identify viruses based on com-
mon families rather than definitive signatures.

D. Heuristic Scanners

A recent addition to scanners is intelligent analysis of
unknown code, currently referred to as heuristic scan-
ning. Note that heuristic scanning does not represent
a new type of antiviral software. More closely akin to
activity monitoring functions than traditional signa-
ture scanning, this looks for “suspicious” sections of
code that are generally found in viral programs. While
it is possible for normal programs to want to “go res-
ident,” look for other program files, or even modify
their own code, such activities are telltale signs that
can help an informed user come to some decision
about the advisability of running or installing a given
new and unknown program. Heuristics, however, may
generate a lot of false alarms, and may either scare
novice users, or give them a false sense of security af-
ter “wolf” has been cried too often.

E. Disinfection Software

Disinfection software is not a type of antiviral software
as such, but is generally a feature added to normal sig-
nature scanners. Disinfection is by no means the op-
timal way to deal with viral infections. The best solu-
tion is to delete (and, preferably, overwrite) the
affected file or area, and restore programs from orig-
inal sources. BSIs affect a whole disk, and therefore
present greater problems, but in most cases material
can be recovered from infected disks, and the disks
themselves “cleansed” in various ways. There comes a
point at which the trade-off between security and con-
venience tips the scales in favor of disinfection, but be
aware of the dangers.

In many cases, disinfection is simply not possible.
An overwriting virus, for example, will not keep any
track of the material it destroys when it dumps itself
into a file. Many viruses contain bugs that prevent the
recovery of the original file. Also, sadly, disinfection
software has been known to contain bugs that left the
situation worse after the attempted cleanup than af-
ter the infection.

Generally speaking, disinfecting software will con-
tain a description of the specific viral operation of a
given viral program, so that the infection process can
be reversed. However, virus removal is no longer the
exclusive province of scanning software. Two types
of generic disinfection now exist. Some change-

Computer Viruses 263

detection programs store sufficient information about
the file to make an attempt to restore it if the damage
is not too severe or complicated. Also, heuristic scan-
ning is being used to trace and remove viral infec-
tions. So far testing has revealed serious drawbacks to
both of these applications, but the technology is still
in its infancy and shows promise for the future.

VII. ANTIDETECTION MECHANISMS

Viruses are seen as predators in the software jungle,
but actually behave more like prey. Most viruses can
be killed easily, once detected, and so rely on prolific
reproduction or technologies to avoid detection.

A. Stealth

In a sense all concealment mechanisms used in viruses
are “stealth” technologies, but this term is most often
used for programs that attempt to avoid detection by
trapping calls to read the disk and “lying” to the in-
terrogating program. By so doing, they avoid any kind
of detection that relies on perusal of the disk. The
disk gives back only that information regarding file
dates, sizes, and makeup appropriate to the original
situation, providing of course, that the virus is active
at the time of checking. Although this stealth method
avoids any kind of “disk” detection, including check-
summing and signature scanning, it leaves traces in
the computer’s memory that can be detected.

B. Hiding Places

Consider the common boot sector. To the vast major-
ity of users, the fact that a program can be located at
a physical position on the disk but not be referenced
by the file directory list is a foreign concept. This con-
fusion may contribute to the enormous success of
boot sector viral programs.

The sector and even the partition boot record on
a hard disk are accessible to dedicated amateurs
armed with utility software. However, there are other
places to hide on a disk that are not as easily exam-
ined. It is quite possible to format an additional track
outside the normal range. To avoid problems between
drives with variations in tolerance, the software does
not “push” the limits of the hardware. Special pro-
grams for the Apple II computer provided 38 tracks
rather than the normal 35. Various programs are avail-

able for MS-DOS as well that provide greater storage
on the same-sized disks.

In addition to tracks outside of and between nor-
mal formats, there is substantial space between the
sectors on a disk. Some programs can increase the
number of sectors so as to increase the space on disk.
However, it is also possible to use the additional space
without formatting additional sectors, simply by writ-
ing information to the space between. This fact has
occasionally been used by commercial software man-
ufacturers for the purposes of copy protection.

C. Polymorphism

The “shape” of a virus can be changed in a number
of ways. One way is to get a simple “random” number,
such as the value of the seconds field of the system
time when the infection occurs, and to perform a sim-
ple encryption on the value of each byte in the viral
code. Only a short chunk is left at the beginning to
decrypt the rest of the virus when the time comes to
activate it. Encryption could be used in other ways:
encrypting a regular, but arbitrary, number of bytes,
or encrypting most of the code as a whole rather than
on a byte basis.

In programming there are always at least half a
dozen means to the same end. Many programming
functions are commutative—it does not matter in
what order certain operations are performed. This
means that very small chunks of code, pieces too small
to be of use as signatures, can be rearranged in dif-
ferent orders each time the virus infects a new file.
This, as you can imagine, requires a more “intelli-
gent” program than a simple encryption routine.

A distinction tends to be made between the early,
and limited, self-encrypting viral programs, and the
latter, more sophisticated polymorphs. Earlier self-
encrypting viral programs had limited numbers of vari-
ants: Even the enormous Whale virus had less than 40
distinct forms. (Some of the earliest were the V2Px
family written by Mark Washburn. He stated that he
wrote them to prove that scanners were unworkable,
and then he wrote his own activity-monitoring pro-
gram. He is one of the very few people to have written
and released a virus who also wrote antiviral software.
His release of “live” code into the wild tends to deny
him status as an antivirus researcher. Lest some say this
is arbitrary bias, please note that his thesis was rather
ineffectual: All his variants are fairly easily detectable.)
More recent polymorphs are more prolific: Tremor is
calculated to have almost 6,000,000,000 forms.

264 Computer Viruses

VIII. CONCLUSION

Viruses are here. Virus numbers are growing. New
viruses and variants will continue to grow for the fore-
seeable future and will become an increasing prob-
lem in all areas of computing. We are also seeing a
very disturbing trend toward convergence in virus
writing. Until now, viruses have been a problem all on
their own. Viruses are no longer an isolated threat.
They are being used to launch attacks from one op-
erating system platform, aimed at another. Invasions
of privacy, with attendant social and legal problems,
are being carried as payloads in recent viruses. Viral
programs are using a variety of technologies to up-
date themselves on the fly and make their presence
known to outsiders once they have invaded a system.

However, training and some basic policies can
greatly reduce the danger of viruses to users. Here are
a few guidelines that can really help in the current
environment:

• Do not double-click on attachments.
• When sending attachments, be really specific.
• Do not blindly use Microsoft products as a

company standard.
• Disable Windows Script Host. Disable ActiveX.

Disable VBScript. Disable JavaScript.
• Do not send HTML-formatted e-mail.
• Use more than one scanner, and scan everything.

Viruses do not really present a new threat. Still it is
true that viruses present a greater risk than many
other forms of malicious software. A virus need only
be created and released once. If it is successful, it
spreads on its own, attacking systems as it goes. Each

system compromised becomes another source of in-
fection. If you are not part of the solution, in the vi-
ral world, you are most definitely part of the problem.

SEE ALSO THE FOLLOWING ARTICLES

Crime, Use of Computers in • Disaster Recovery Plan-
ning • Encryption • Error Detecting and Correcting Codes •
Ethical Issues • Firewalls • Internet, Overview • Network En-
vironments, Managing • Privacy • Security Issues and Measures

BIBLIOGRAPHY

Cohen, F. (1994). A short course on computer viruses. 2nd ed. New
York: Wiley.

Ferbrache, D. (1992). A pathology of computer viruses. London:
Springer-Verlag.

Gattiker, U., Harley, D., and Slade, R. (2001). Viruses revealed.
New York: McGraw-Hill.

Highland, H. J. (1990). Computer virus handbook. New York: El-
sevier Advanced Technology.

Hruska, J. (1992). Computer viruses and anti-virus warfare. 2nd
ed. London: Ellis Horwood.

Kane, P. (1994). PC security and virus protection handbook. New
York: M&T Books.

Lammer, V. (1993). Survivor’s guide to computer viruses. Virus
Bulletin.

Slade, R. M. (1996). Robert Slade’s guide to computer viruses. 2nd
ed. New York: Springer-Verlag.

Solomon, A. (1991). PC viruses: Detection, analysis and cure. Lon-
don: Springer-Verlag.

Solomon, A. (1995). Dr. Solomon’s virus encyclopedia. Aylesbury,
UK: S&S International.

Vibert, R. S. (2000). The enterprise anti-virus book. Braeside,
Canada: Segura Solutions.

Computer Viruses 265

Continuous Simulation
Stanislaw Raczynski
Universidad Panamericana, Mexico

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 267

I. INTRODUCTION
II. DYNAMIC SYSTEMS

III. ORDINARY DIFFERENTIAL EQUATIONS AND MODELS OF
CONCENTRATED PARAMETER SYSTEMS

IV. CONTINUOUS SIMULATION WITH ANALOG COMPUTERS
V. NUMERICAL METHODS FOR ORDINARY

DIFFERENTIAL EQUATIONS
VI. EXAMPLE OF CONTINUOUS SIMULATION USING ODES

VII. SIGNAL FLOW GRAPHS
VIII. BOND GRAPHS

IX. ALTERNATE MODELING TOOLS AND
DYNAMIC UNCERTAINTY

X. DISTRIBUTED PARAMETER SYSTEMS
XI. SYSTEM DYNAMICS

XII. GALACTIC SIMULATIONS AN THE N-BODY PROBLEM

GLOSSARY

analog computer A device that contains several (up to
several hundreds) integrators, amplifiers, summa-
tion circuits, signal sources, and auxiliary circuits
that use the operational amplifier as the basic ele-
ment. The main application of analog computers is
to solve ordinary differential equations and to sim-
ulate the behavior of continuous dynamic systems.

bond graphs (BGs) A bond graph is a net of links
(named bonds, represented by a “harpoons”) and
nodes. Each bond is related to two variables: effort and
flow. For example, in electrical models the efforts are
voltages and the flows are currents. In a mechanical
model efforts are forces and flows are velocities. The
nodes represent external excitations or internal bal-
ances that the model variables must obey. BGs are
useful while modeling physical systems.

computer simulation The process of establishing re-
lations between models and computers. As a result
we get a computer implementation of the model.

differential inclusions (DIs) The difference between
a differential equation and a differential inclusion
is that the right-hand side of the DI is a set-valued
function instead of real- or vector-valued one. The
general form of a DI is

dx/dt � F(x,t)

where t is an independent variable, x is the depen-
dent variable, and F is a set.

distributed parameter system A system in which we
cannot relate discrete elements like electrical re-
sistances, capacitors, masses, dampers, etc., with
discrete system components. This occurs, for ex-
ample in three-dimensional heat transfer problems,
fluid dynamics, or diffusion processes. The main
tools used in modeling of such kind of systems are
the partial differential equations.

modeling A process of creating models, which are ab-
stractions of real or imaginary systems. Models are
used to predict what happens if certain actions are
taken. Many years ago, A. Rosenblueth and N.
Wiener pointed out that modeling is one of the
central needs of scientific reasoning. Dealing with
models we must take into account many factors,
like the level of simplification, experimental frame,
model validity, tractability, credibility, and the aim
of modeling among others. The difference between
modeling and simulation is seen in the fact that
modeling means to look for relations between real
systems and models, and computer simulation
refers to relations between models and computers.

N-body problem The problem of integrating the tra-
jectory of N bodies moving in space, due to gravi-
tational or other forces they produce. The difficulty
of the numerical solution is due to the fact that the

number of reciprocal interactions grows with the
square of the number of bodies. Recently, simula-
tion of the movement of several hundreds of thou-
sands of bodies has been accomplished.

ordinary differential equation (ODE) An ordinary
differential equation in its general form can be ex-
pressed as follows.

F(x, x(1), x(2), ..., x(n),t) � 0

where t is the independent variable representing
the model time, x is the dependent variable and
x(1) � dx/dt, x(2) � d2x/dt 2, etc. The order of the
equation is equal to the order of the highest order
derivative of the dependent variable.

partial differential equation (PDE) A partial differ-
ential equation is a mathematical relation between
the independent variable, the dependent variable,
and one or more partial derivatives of the depen-
dent variable.

predictor-corrector method One of the methods be-
longing to the group of multistep methods for ordi-
nary differential equations. It is faster than the
Runge–Kutta methods and widely used in continu-
ous system simulation, in particular in the simula-
tion of physical systems.

Runge–Kutta method A family of numerical methods
for ordinary differential equations. Used in con-
tinuous system simulation.

signal flow graphs (SFGs) A graphical representation
of causal dynamic systems. A SFG is composed of
links and nodes. Links are directed, that is, every
link has an input and output, marked with an ar-
row. Nodes represent signals or variables, and links
are operators that transform input signals into out-
put signals. The main field of application is auto-
matic control and instrumentation. SFGs are also
useful in models of system dynamics.

stiff equations Stiffness occurs when there are two or
more very different timescales, for example, in sys-
tems that have very fast and very slow parts inter-
acting with each other. In the solution to stiff equa-
tions some terms may change rapidly compared to
other ones. The integration process becomes un-
stable even if such rapid terms are negligible. This
problem is called stiffness and provokes serious dif-
ficulties in system simulation.

systems dynamics A method for studying the world
around us. Unlike other scientists who study the
world by breaking it up into smaller and smaller
pieces, “system dynamicists” look at things as a whole.
The central concept of system dynamics is an un-
derstanding of how all objects in a system interact
with one another. The objects and people in the
simulated system interact through feedback loops.

Some general concepts on CONTINUOUS SYSTEM
SIMULATION are discussed. Continuous simulation here
refers to concentrated parameter systems and distrib-
uted parameter systems. A classification of dynamic
systems is reviewed in a summarized form. The main
numerical methods for the concentrated parameter
systems described by the ordinary differential equa-
tions are described. An example of simulating a sim-
ple mechanical system is given. The methods of signal
flow graphs and bond graphs are discussed. A new, al-
ternate approach is proposed that uses the differen-
tial inclusions instead of ordinary differential equa-
tions. Next, we remark on the distributed parameter
systems, partial differential equation models, and the
finite element method. Finally, a short comment is
made about the N -body problem and galactic
simulations. Simulation software for continuous sim-
ulation is not discussed in this article, because of the
encyclopedic character of the text. Any software de-
scribed in publications of such type may be obsolete
within a few years, whereas the more general concepts
do not change so quickly.

I. INTRODUCTION

Roughly speaking, continuous simulation is one of the
two main fields of computer simulation and model-
ing, the other being discrete event simulation. Continu-
ous models include those of concentrated parameter sys-
tems and distributed parameter systems. The former group
of models includes those for which the power of the
set of all possible states (or, more precisely, the num-
ber of classes of equivalence of inputs) is equal to the
power of the set of real numbers, and the latter refers
to systems for which that set is greater than the set of
reals. These classes of dynamic systems are described
in more detail in the next section. The most common
mathematical tools for continuous modeling and sim-
ulation are the ordinary differential equations (ODEs)
and the partial differential equations (PDEs).

First of all, we must remember that in the digital
computer nothing is continuous, so the process of us-
ing continuous simulation with this hardware is an il-
lusion. Historically, the first (and only) devices that did
realize continuous simulation were the analog com-
puters. Those machines are able to simulate truly con-
tinuous and parallel processes. The development of
digital machines made it necessary to look for new nu-
merical methods and their implementations in order
to get good approximations for the solution of both or-
dinary and partial differential equations. This aim has
been achieved to some extent, so we have access to
quite good software tools for continuous simulation.

268 Continuous Simulation

In the present article some of the main algorithms
are discussed, like the methods of Euler, Runge–Kutta,
multistep, predictor-corrector, Richardson extrapola-
tion, midpoint for the ODEs, and the main finite dif-
ference and finite element methods for the PDEs.

To illustrate the very elemental reason why contin-
uous simulation on a digital computer is only an im-
perfect approximation of the real system dynamics,
consider a simple model of an integrator. This is a
continuous device that receives an input signal and
provides the output as the integral of the input. The
differential equation that describes the device is

dx/dt � u(t) (1)

where u is the input and x is the output. The obvious
and most simple algorithm that can be applied on a
digital computer is to discretize the time variable and
advance the time from 0 to the desired final time in
small intervals h. The iterative formula can be

x(t�h) � x(t) � hu(t) (2)

given the initial condition x(0). This is a simple “rec-
tangle rule” that approximates the area below the
curve u(t) using a series of rectangles. The result is al-
ways charged with certain error. From the mathemat-
ical point of view this algorithm is quite good for reg-
ular input signals, because the error tends to zero
when h approaches zero, so we can obtain any re-
quired accuracy.

Suppose now that our task is to simulate the inte-
grator over the time interval [0,1] with u � const �
1. We want to implement the above algorithm on a
computer on which real numbers are stored to a res-
olution of eight significant digits. To achieve high ac-
curacy of the simulation we execute the correspond-
ing program of Eq. (2) several times, with h
approaching zero. One can expect that the error will
also approach zero. Unfortunately, this is not the case.
Observe, that if h � 0.000000001, the result of the
sum operation at the right-hand side of Eq. (2) is
equal to x(t) instead of x(t) � hu(t) because of the
arithmetic resolution of the computer. So, the error
does not tend to zero when h becomes small, and the
final result may be zero instead of one (integral of 1
over [0,1]). This example is rather primitive, but it
shows the important fact that we cannot construct a
series of digital simulations of a continuous problem
that tends to the exact solution—at least theoretically.
Of course, we have a huge number of numerical meth-
ods that guarantee sufficiently small errors and are
used with good results, but we must be careful with
any numerical algorithm and be aware of the re-
quirements regarding the simulated signals to avoid
serious methodological errors. A simple fact that we

always must take into account is that in a digital com-
puter real numbers does not exist, and are always rep-
resented as their rough approximations.

II. DYNAMIC SYSTEMS

Computer simulation is an implementation of a sys-
tem model on a computer. The aim of modeling and
simulation is to observe the changes of the model
state over a given time interval. The fundamental con-
cepts of dynamic systems are the model state and
causality. Roughly speaking, the system state is a min-
imal set of data that permits us to calculate the future
system trajectory, given the actual state and all system
inputs (external excitations) over the time interval
under cosideration. A dynamic system is causal if its
actual state depends on its previous states and the
previous and actual external excitations only. Another
notion of causality is the input/output causality rela-
tion used in signal processing, instrumentation and
automatic control.

Note that these two causality concepts are quite dif-
ferent. An electronic amplifier has its input and out-
put signals well defined and obviously the input is the
cause and the output is the result, not vice versa. How-
ever, in physical systems this concept does not work.
For a moving mass the relevant variables are the dy-
namic force and the acceleration. But if the mass is
the only isolated element of our model, we cannot say
which variable is the cause and which one is the re-
sult. The same occurs with an electric resistor. Unless
you define to what device it is connected (e.g., volt-
age source or current source), you cannot say if the
cause is the current or the voltage.

One well-known classification of dynamic systems is
based on the number of classes of equivalence of input
signals. This is valid only for causal systems that have
well-defined input and output signals. A set of inputs
forms an equivalence class over a given time interval
if the system state and system outputs at the end of
the interval are the same for all inputs belonging to
the set. Practically, this means that the number of
classes of equivalence of inputs is the number of all
possible system states at the end of the considered
time interval. Let us denote this set of states by S.
Then we can define the following groups of dynamic
systems:

• Finite automata is a system for which the
number of classes of equivalence of inputs N is
finite. For example, an electric switch is a finite
automata. A digital computer also belongs to this
class, though it may have trillions of possible states.

Continuous Simulation 269

• Infinite automata is a system for which N is
infinite, but the set of possible states is enumerable.
In other words, for this class of systems the power of
the set S is equal to the power of the set of integers.

• Concentrated parameter systems are those for which
N is infinite, and the elements of the set S are not
enumerable. For this class of systems the power of
the set S (its cardinal number) is equal to the power
of the set of all real numbers. This is a wide class of
systems that includes mechanical systems or electric
circuits. However, the parameters of the systems of
this class must be concentrated in specific discrete
elements, like ideal springs, dampers, capacitors,
and so on. The most common modeling and
simulation tool for concentrated parameter systems
are the ODEs.

• Distributed parameter systems result when the
power of the set S is greater than the power of the
set of reals. In other words, for such systems the
number of possible states is greater than the number
of all reals. A classic example is a guitar string. Its
state is a continuous three-dimensional function over
the string’s initial length. It is known that no one-to-
one mapping between real numbers and continuous
functions can be established, because the power of
the set of all such functions is greater than the
power of reals. The parameters of systems of such
kind cannot be concentrated in discrete components
like ideal capacitors or dampers. Other examples are
heat transfer problems, waves on the surface of
water, and fluid dynamics. The main mathematical
tool for this class of systems are the PDEs.

Continuous simulation is applied to the simulation of
the last two classes of dynamic systems, namely, the
concentrated and distributed parameter systems.

III. ORDINARY DIFFERENTIAL
EQUATIONS AND MODELS OF
CONCENTRATED PARAMETER SYSTEMS

An ordinary differential equation in its general form
can be expressed as follows.

F(x, x(1), x(2), ..., x(n), t) � 0 (3)

where t is the independent variable representing the
model time, x is the dependent variable, and
x(1)�dx/dt, x(2)�d2x/dt2, etc. The order of the equa-
tion is equal to the order of the highest order deriva-
tive of the dependent variable.

ODEs have been used to describe dynamic systems,
mainly concentrated parameter systems. This caused

the common believe that ODE modeling is the only
tool to simulate such systems. In fact, this is not true.
First of all, we must be sure that the following condi-
tions are satisfied:

1. There exists a differential equation that
represents a valid model of our system.

2. If so, we must know if there exists a (unique)
solution to our ODE with given initial conditions.

3. If conditions 1 and 2 are satisfied, we must
determine if the ODE model we use can provide
solutions that satisfy the aim of the simulation
task.

The above conditions seem to be obvious, but in prac-
tice few simulationists check them. There is a strange
belief that everything can be simulated with ODEs
and that solutions provided by simulation software
represent or approximate the real system behavior.
Unfortunately, this is not the case. In my opinion,
ODEs are too primitive to be applied to global mod-
els of systems like industrial dynamics, ecology, or mi-
crobiology. In Section IX of this article you can find
a description of other possible mathematical tools,
namely differential inclusions.

If we can resolve Eq. (3) with respect to the high-
est derivative of the dependent variable, then we can
find the equivalent set of the first-order equations. In-
deed, from Eq. (1) we have

x(n) � f(x, x(1), x(2), ..., x(n�1), t) (4)

Now, let us denote x � x1, x(1) � x2, x(2) � x3, etc. So,

dx1/dt � x2

dx2/dt � x3

(5)
�

dxn/dt � f(x, x1, x2, ..., xn, t)

The last equation can be written in vectorial form as
follows:

dx/dt � f(x,t) (6)

where the boldface letters denote vectors. For exam-
ple, the following equation of an oscillator

ax � b dx/dt � c d2x/dt 2 � 0 (7)

is equivalent to the following set of two equations of
the first order:

dx1/dt � x2

dx2/dt � �(ax1 � bx2)/c
(8)

270 Continuous Simulation

The form of the set of first-order equations is important
in computer simulation, because most of the numerical
methods and their implementations use this mathemat-
ical model. Normally, the user is only asked to give the
right-hand sides of the Eqs. (5) and define the initial
conditions and other model parameters. The software
should do the rest of the simulation task automatically.

The numerical methods used in continuous sys-
tems simulation are discussed in Section V. The next
section contains some comments on continuous sim-
ulation on analog computers.

IV. CONTINUOUS SIMULATION
WITH ANALOG COMPUTERS

A typical example of an analog simulation is a wind-
tunnel test on a scaled-down physical model of an air-
plane. Another way to do an analog simulation is to
look for an analogy between one physical model and
another, for example, a mechanical system and an
electric circuit. A simple electronic circuit with one
operational amplifier, one resistor, and one capacitor
can realize the operation of mathematical integra-
tion. As a consequence, it is possible to solve differ-
ential equations using combinations of such circuits.
The advanced devices with many such circuits and
variable interconnections between them are called
analog computers.

In the early 1940s and 1950s, analog computers
were commonly used to simulate continuous dynamic
systems, mainly, automatic control systems, mechani-
cal systems, and others. During the last decades ana-
log computers have been losing importance. How-
ever, we should remember that analog computers are
truly continuous PDE solvers. As stated in the intro-
duction, the continuous simulation of digital com-
puters is a much more “artificial” approximation of a
real continuous problems.

Figure 1 shows an analog circuit that satisfies the
equation

d2x/dt 2 � �u � x � adx/dt

where u(t) is an external input and x(t) is the model
response. In Fig. 1, operational amplifiers marked
with an i are integrators, the amplifier marked with
with an s is a summator, and the amplifier marked
with an a is an inverting amplifier. All amplifiers are
supposed to have negative infinite gain. The rectan-
gles represent resistors. The analog integrator is real-
ized by the circuit shown in Fig. 2.

V. NUMERICAL METHODS FOR
ORDINARY DIFFERENTIAL EQUATIONS

Note that this article is on simulation and not on
mathematics. This section gives only a very short de-
scription of some of the most used methods. See the
Bibliography for more details.

As mentioned in Section III, the ODE models in
most cases can be expressed in the form of a set of
ODEs of the first order, as follows:

dxi/dt � fi(x1, x2, ..., xn, t)

where xi are dependent variables, i � 1, 2, 3, ..., n, and
t is the independent variable, representing the model
time.

The boundary conditions for these variables may con-
sist of requiring that certain variables have certain nu-
merical values in a given time instant. They can be
more complicated, given, for example, in the form of
a set of nonlinear algebraic equations for the state
variables. The nature of the boundary conditions de-
termines which numerical methods will be feasible
for solving the problem. Boundary conditions divide
into two broad categories:

• Initial value problems, in which all the dependent
variables are given at some starting time instant
and we want to calculate their changes over some
time interval or in some fixed time instants.

• Two-point boundary value problems, in which the
conditions are specified at more than one time

Continuous Simulation 271

Figure 1 An analog model with integrators.

Figure 2 Analog integrator circuit.

instant. Typically, some of the conditions are
specified at a starting point and others at the final
time. Problems of such kind arise in optimal
control theory rather than simulation and are not
discussed here.

The simplest way to solve the initial value problem
is to rewrite the dxs and dts as finite increments Dx
and Dt, and to multiply the equations by Dt. This gives
an algebraic formula for the change in the dependent
variables, when the time is incremented by the step
size Dt. In the limit case while the step size approaches
zero, the solution may be a good approximation of
the real one. The implementation of this method is
Euler’s method. Euler’s method is simple but not rec-
ommended for several reasons, the most important
being the fact that approximation errors may accu-
mulate during the iteration process.

In this article, we discuss the most commonly used
methods:

• Runge-Kutta methods
• Richardson approximations
• Predictor-corrector methods.

A. Runge–Kutta Methods

This is one of the most popular families of algorithms
that solve ODEs. Recall that the ODE models in most
cases can be expressed in the form of a set of ODEs
of the first order:

dxi/dt � fi(x1, x2, ..., xn, t)

where xi, i � 1, 2, 3, ..., n, are dependent variables,
and t is the independent variable, representing the
model time in dynamic systems.

The main disadvantage of Euler’s method is that
the solution advances through the integration step h,
but uses derivative information only at the beginning
of that interval. To avoid this, we can take a “trial”
step to the midpoint of the interval. Then we can use
the values of x and t at that point to recalculate the
derivative and compute the “real” step over the whole
interval. This results in the following algorithm:

k1 � hf(xj, tj)

k2 � hf(xj � k1/2, tj � h/2)

xj�1 � xj � k2 � O(h3)

where xj is the vector x at the time instant hj, j being
the consecutive step number. The above equations
represent the second-order Runge–Kutta or midpoint

method. The term O(h3) is a function that tends to
zero as fast as h3, when h approaches zero.

Runge–Kutta methods propagate a solution over an
interval by combining the information from several
Euler-style steps, each involving one evaluation of the
right-hand sides of the equations. Then, the informa-
tion obtained from these evaluations is used to match
a Taylor series expansion of the solution to some
higher order curve.

For example, the fourth-order Runge–Kutta algorithm
is given by the following formula:

k1 � hf(xj, tj)

k2 � hf(xj � k1/2, tj � h/2)

k3 � hf(xj � k2/2, tj � h/2)

k4 � hf(xj � k3, tj � h)

xj�1 � xj � k1/6 � k2/3 � k3/3 � k4/6 � O(h5)

where h is the integration step (time increment),

xj � x(tj), xj�1 � x(tj � h)

where j � 1, 2, 3, ... is the consecutive step number,
and k1, k2, k3, and k4 are auxiliary variables. O(z) is a
function that tends to zero at least as fast as its argu-
ment z does. This means that the above algorithm will
approximate well any real solution that is a fourth-
order curve.

There are many modifications and higher order
versions of the Runge–Kutta method. For example, a
widely used fifth-order Runge–Kutta–Fehlberg algo-
rithm provides a highly accurate solution and also an
error estimate. Using this estimate the program can
repeat the integration step with smaller time incre-
ments to achieve the desired accuracy.

One of the disadvantages of the Runge–Kutta meth-
ods is the fact that for one step evaluation we need sev-
eral evaluations (e.g., four for the fourth-order method)
of the system’s right-hand sides. The regularity assump-
tions for these methods consist of the continuous dif-
ferentiability assumption (up to order N) for the right-
hand sides of the equations. On the other hand, the
method has no “memory,” that is, no information from
previous steps is used. This makes the method some-
what more robust compared to other algorithms, like
the multistep predictor-corrector methods.

B. Richardson Approximations

The Richardson approximations improve the accu-
racy of an approximated solution to a set of the first-
order ordinary differential equations. The true solu-
tion is assumed to be an analytic function of the size

272 Continuous Simulation

of the integration step h. The function can be evalu-
ated with various values of h, none of them small
enough to yield the accuracy we desire. Then, we fit
the obtained solutions to some analytic function and
evaluate it at the point h � 0. For example, the points
can be the results of evaluating the solution by the
Elle’s method in 2, 4, and 6 steps. These three points
can be used to evaluate the solution with h � 0 as-
suming the solution is a second-order polynomial
function of h.

C. Predictor-Corrector Methods

These methods belong to the family of multistep meth-
ods. They are used primarily in problems with very
“smooth” equations and complicated right-hand sides.
If this is not the case, the Runge–Kutta or Richardson
approximation methods dominate.

In the multistep methods we approximate the equa-
tion’s right-hand side by a polynomial passing through
several previous points and possibly through the ac-
tual point, being evaluated at t � (n�1)h. If this point
is included, the method is said to be implicit; other-
wise, it is explicit. The general formula is as follows.

xn�1 � xn � h(�0Xn�1 � �1Xn � �2Xn�1 � ...)

where Xk denotes f(xk, tk). If �0 � 0 then the method
is implicit. The implicit methods must solve an alge-
braic equation for

xn�1 � x((n�1)h)

because this value has not been calculated yet and ap-
pears on both sides of the general formula. Normally,
the Newton–Raphson method is used. If the value of
x at (n�1)h is not used, the approximation can be cal-
culated in one step, and the method is explicit.

The predictor-corrector method uses both approx-
imations; first, an explicit method is used to estimate
the value of x((n�1)h), and then the implicit method
calculates (corrects) it using this approximation as
the starting point for the Newton–Raphson method.
This procedure seems to be complicated, but you
should note that all of these operations need only one
evaluation of the equation’s right-hand sides per in-
tegration step. If the model is complicated, the cost
of computing (real CPU time) depends mainly on the
number of right-hand side evaluations, which makes
the multistep methods several times faster than other
methods, e.g., Runge–Kutta. On the other hand, any
multistep method must use some previously stored
values of the dependent variable. If the equations are
not regular enough over these consecutive steps, the
method fails. In particular, if our model receives dis-

continuous excitations or changes its structure (for
example, switching controllers), the multistep meth-
ods are not recommended.

As an example, see the following Adams–
Bushworth–Moulton corrector-predictor scheme:

xn�1 � xn � �
1
h
2
� (23Xn � 16Xn�1 � 5Xn�2)

(predictor)

xn�1 � xn � �
1
h
2
� (5Xn�1 � 8Xn � Xn�1) (corrector)

Here Xk denotes f(xk, tk). Note that in the corrector part
the value of x at (n�1)h is taken from the predictor for-
mula, so that the corrector needs no Newton–Raphson
iterations to be performed (xn�1 does not appear at the
right-hand side of the corrector equation).

Using any of the above formulas for the approxi-
mation of the solution on the next model time step,
we can create our simulation program. Simply the
main time loop must be coded, where the model time
is advanced by the small integration step h and the re-
sulting model state is used as the initial state for the
next time step. In such a way, most of the simulation
packages for ODE models work. Many of these pro-
grams are able to change the integration step if nec-
essary. A common algorithm that is used is the com-
bination of the Runge–Kutta–Fehlberg method with
an appropriate step-change algorithm.

A very important and difficult problem in any nu-
merical method for the ODEs is the numerical stability.
The lack of numerical stability may lead to wrong and
qualitatively bad solutions. Our model can be described
by correct and stable equations, while the simulation re-
sults may reveal unstable behavior. Sometimes it is easy
to misinterpret this instability as a lack of stability in the
original model. The numerical stability depends, of
course, on the particular algorithm. For example, the
stability condition for the Runge–Kutta algorithm of the
fourth order is 2.78 � rh � 0, where h is the integration
step and r depends on the model. If the model is linear
and one dimensional, then r � df/dx, where f is the
equation right-hand side and x is the state variable.

D. Stiff Equations

Stiffness occurs when there are two or more very dif-
ferent timescales, for example, in systems that have
very fast and very slow parts interacting with each
other. Consider the following set of equations:

dx1/dt � 998x1 � 1998x2

dx2/dt � �999x1 � 1999x2

x1(0) � 0, x2(0) � 0

Continuous Simulation 273

The solution to these equations is

x1(t) � 2e�t � e�1000t

x2(t) � �e�t � e�1000x

To integrate this system of equations, we must define
the step size of any numerical methods h �� 0.001 if
we want the method to be stable. However, the term
e�1000t disappears very quickly when t grows. One
could suppose that for t between, say, 0.1 and 1, we
could apply a greater integration step because the fast
term does not influence the solution. Unfortunately,
that is not the case, because the integration process
becomes unstable even if this term is negligible. This
problem is called stiffness and it provokes serious dif-
ficulties in system simulation.

The most popular methods for stiff equations are
these:

• Generalizations of the Runge–Kutta method, of
which the most useful are the Rosenbrock
methods, and their implementation by
Kaps–Rentrop

• Generalization of the Burlisch–Stoer method, due
to Bader and Deufhard

• Predictor-corrector methods

VI. EXAMPLE OF CONTINUOUS
SIMULATION USING ODES

Let us simulate the behavior of the suspension of a car.
First of all, the simulationist should ask the funda-
mental question: For what? Remember that to simu-
late something without defining the aim of the task is
a waste of time. In our case, the problem is to see how

the system response depends on the parameter of
the damper. This can help the designer to choose
the damper that provides an acceptable response of the
vehicle to a rectangular obstacle on the road (Fig. 3).

This is a very simplified model, where only one
wheel is considered and only vertical movement is
simulated. In the more advanced models of vehicle
dynamics, we must simulate all of the forces the vehi-
cle receives and look for the three-dimensional model
of the system. But to start with a simple academic ex-
ample, the following model can be quite illustrative.

Suppose that the car moves forward with a con-
stant horizontal velocity V. So, considering all vari-
ables as differences between their actual values and
the initial equilibrium state, we take into account the
following:

y � movement of the wheel
x � movement of the vehicle
F1 � force determined by the compliance of the tire
F2 � force of the suspension spring
Fa � force produced by the damper
u � external excitation, due to the shape of the road

All of the above variables are functions of time and
all represent vertical movements and forces. M1 and
M2 represent the mass of the wheel (together with
the moving part of the suspension) and the mass of
the car, respectively (M2 being 1/4 of the car total
mass).

To derive the model equations we must use the
force balance for the two masses, including the dy-
namic forces. This provides the following equations.

F1 � F2 � Fa � M1d2y/dt2 � 0

F2 � Fa � M2d2x/dt 2 � 0
(9)

274 Continuous Simulation

Figure 3 A suspension of a car and its mechanical scheme.

The forces of the two springs and of the damper de-
pend on the corresponding changes of the spring
and damper length, so

F1 � K1(u � y), F2 � K2(x � y)

Fa � Ka(dx/dt � dy/dt)

Note that the damper force depends on the velocities
and not positions. The above forces are supposed to
be linear with respect to the positions and velocities.
The next version of the model might include nonlin-
ear functions for the forces. This would not compli-
cate significantly our simulation task; the only neces-
sary change would be to replace the above expressions
with nonlinear functions.

Because the most convenient form of an ODE
model is a set of equations of the first order, let us re-
define the equations using the following notation:

x1 � x, x2 � dx/dt, x3 � y, x4 � dy/dt

After substituting the new variables into Eq. (9) and
reordering the equations, we obtain the following:

dx1/dt � x2

dx2/dt � [K2(x3 � x1) � Ka(x4 � x2)]/M2

dx3/dt � x4 (10)

dx4/dt � [K1(u(t) � x3) � K2(x3 � x1)

� Ka(x4 � x2)]/M1

The last set of equations can be used to simulate our
system. Note that we obtain four equations, and that
the state vector of the model is x � (x1, x2,x3, x4). This
is correct, because the movement equation for each
mass is of the second order.

Now, we must decide what to do with our mathe-
matical model. A beginner could choose the follow-
ing procedure: First, find a numerical algorithm to
solve the equations, for example, Runge–Kutta–
Fehlberg. The algorithm can be found in any book on
numerical methods. Then, prepare the correspond-
ing code, in Basic, Pascal, Fortran, C, or some other
programming language. Insert the code of our model
[Eq. (10)] in the program, compile it, and run it.

This may result in a correct simulation program
and provide good results, but in most cases it is sim-
ply a waste of time. The same task can be completed
20 times faster while using an appropriate simulation
language. In any directory of simulation software, like
the Directory of Simulation Software of the Society
for Computer Simulation you can find hundreds of
simulation languages and packages, at least half of
them for continuous ODE models. A good ODE sim-
ulation package should only ask you to type the right-
hand sides of the model equations, and give model
parameters and initial conditions. The rest should be
done automatically, providing all needed reports, tra-
jectory plots, etc. Figures 4 and 5 show examples of
simulation results. The plots were generated by the
ODE module of the PASION simulation system

Continuous Simulation 275

Figure 4 System trajectory. 1, car position; 2, car (vertical) velocity; 3, wheel position; 4, wheel velocity. Dumping coefficient Fa � 5.

(http://www.raczynski.com/pn/pn.htm). The inte-
gration algorithm was the fifth-order Runge–Kutta–
Fehlberg algorithm, with about 2000 integration steps
over the interval of 20 sec of model time. The real
time of simulation is less than 0.1 sec on a 450-MHz
PC. The system parameters are as follows: M1 � 50 kg,
M2 � 200 kg, K1 � 1000 N/cm, K2 � 100 N/cm. The
external excitation u(t) was a step function with am-
plitude 10 cm, starting at t � 1 sec. Note that if you
use the SI unit system, the mass must be given in kilo-
grams and the force in newtons.

The aim of our task is to see how the damper pa-
rameter Fa affects system performance. The value used
for the simulation of Figure 4 is too small, and results
in a highly oscillatory response. Figure 5 shows the re-
sult of a simulation experiment where Fa changes au-
tomatically from 5–80 in 25 steps. A trajectory is au-
tomatically simulated for each value and the 3-D plot
shows the changes in the trajectory shape. The verti-
cal coordinate is the car vertical position, the axis
from left to right is the model time and the other one
(marked P) is the value of Fa. By running the pro-
gram several times the designer can choose a satisfac-
tory value for Fa.

Most of the dynamic systems are subject to sto-
chastic disturbances. The same package permits other
kinds of experiments, where one or more inputs are
random signals. Figure 6 shows the trajectory of our
model (car vertical position), where the excitation u
is as before, plus a uniformly distributed random value
with mean zero and amplitude 20, changing at each
integration step of 0.01 sec. The plot of Fig. 6 shows
the confidence intervals for the simulated variable as
a function of time. The confidence level is 0.9, which
means that with probability 0.9 we are within the lim-
its marked with vertical sections.

In Fig. 7 we can see the probability density func-
tion for the same experiment. “Output Y[1]” is the
car position and the vertical value is the probability

276 Continuous Simulation

Y1:(Y1)

P

Time

Figure 5 A set of system trajectories with different values for
the damper parameter.

Figure 6 A system trajectory and confidence intervals in the case of a stochastic disturbance. Damper parameter Fa � 30.

density function for the corresponding time–position
point.

The preceding example shows how you could pre-
pare an ODE model and what should result based
on the simulation tool used. This can serve as a crite-
rion to select the software. Of course, PASION is not
the only package that does the job. The Internet of-
fers many similar tools; use the search keywords sim-
ulation, ODE, continuous, modeling, dynamic system, or
similar terms.

VII. SIGNAL FLOW GRAPHS

Signal flow graphs (SFGs) can be used to represent
the dynamics of a modeled system, instead of differ-
ential equations. The very traditional way of simulat-
ing dynamic systems has been to obtain the system
equations, prepare the corresponding code in a pro-
gramming language, and run the simulation. How-
ever, note that a simulationist need not be a mathe-
matician or a programmer. The simulation software
and new modeling methods make it possible to elim-
inate both the mathematics and programming from
the simulation task. What the simulationist must do is
understand the structure and the dynamics of the
modeled system and be able to describe it precisely
enough to be interpreted by a computer. Both SFGs
and bond graphs (see the next section) are graphical

representations of dynamic system models. If the
model is described in such a graphical way, the simu-
lation software should automatically generate model
equations and the corresponding code.

When we refer to a SFG we mean a network com-
posed of nodes and directed links. Nodes represent
signals and links represent transfer functions. The di-
rection of a link shows which signal is the input to the
link (the cause) and which is the output (the result).
Figure 8 shows a graph that describes an integrator.
Signal B depends on the signal A, and not vice versa.
The transfer function (in terms of the Laplace trans-
form) for the link A → B is 1/s, which means that B
is the integral of A.

The equation A � dB/dt is also valid for this graph.
However, we must remember that A is the cause and
B is the result. If two or more links enter the same
node, then the signal at the node is the sum of signals
generated by the entering links. Figure 9 shows a sim-
ple circuit with an operational amplifier (a follower)
and the corresponding signal flow graph.

Consider a simple mechanical system composed of
a spring, a mass and a damper as shown in Fig. 10. The

Continuous Simulation 277

Figure 7 The probability density function for car elevation.

Figure 8 An example of a link of a signal flow graph.

movement of the mass is the result of an external force
F and of the two forces produced by the spring and
by the damper (no gravity force supposed). The force
of the spring is supposed to be equal to kx where k is
a constant, and the force of the damper is Bdx/dt, B
being a constant. Figure 11 shows a graph, which de-
scribes the system (a is the acceleration). The corre-
sponding differential equation is

(F(t) � kx(t) � Bdx/dt)/M � a

Note that F(t) is a source node of the graph, that is, it
does not depend on any internal signal of the system.

Figure 12 represents the dynamics of a feedback
control system. The signal u is the set point, e is the
control error, x is the controlled physical variable,
and h is its measured value. The link PID is the con-
troller with proportional–integral–derivative action,
G(s) is the transfer function of the controlled process,
and H(s) is the dynamics of the measurement instru-
ment. Using SFGs the user paints the graph on the
screen, then specifies the transfer functions for the
links. The simulation software should do the rest. For
example, the flow graph module of the PASION sim-
ulation system does the job. The program permits var-
ious types of links like linear or nonlinear function,
time delay, sample-and-hold, transfer function, or a
“superlink,” which is a whole model prepared earlier.

The generation of the system equations and the
corresponding code is completely automatic and
transparent to the user. This permits the simulation-
ist to concentrate on the most relevant and important

conceptual work, and not on reordering equations
and programming.

VIII. BOND GRAPHS

Bond graphs are the widespread tool in modeling of
physical systems. The fact that a bond connects two
variables—the effort and the flow—makes this tool
the most appropriate for modeling physical systems,
because the power produced at the bond is the prod-
uct of these two variables (e.g., voltage and current,
force and velocity, liquid pressure and flow). This
method again permits us to eliminate both mathe-
matics and coding from the simulation task.

A bond graph model is composed by the nodes or
junctions and the links named bonds. A bond is a di-
rected link with a harpoon. The harpoon is placed on
the left of the link (related to its direction). The two
variables are indicated shown in Fig. 13. The effort is
placed on the side of the harpoon and the flow is on
the other side.

There are several types of nodes in bond graph
models. At the node of type 0 the sum of flows is
equal to zero, while the efforts of all connected bonds
are equal to each other. At the node of type 1 the sum
of efforts must be zero and the flows of all corre-
sponding bonds are the same. Thus, we can represent
graphically any system that obeys any number of bal-
ance equations.

The node equations for node 0 and the node 1 are
as follows (see the example in Fig. 14).

278 Continuous Simulation

Figure 9 Simple circuit with operational amplifier and corre-
sponding SFG.

Figure 10 A mechanical system.

Figure 11 The signal flow graph for the system of Fig. 10.

Figure 12 SFG model of a control system.

f � g � h � 0 (node of type 0)

e � v � w � 0 (node of type 1)

The sign of a term in the node equation depends
on the direction of the corresponding bond, the out-
going bond having the negative sign of the corre-
sponding variable. Other possible nodes accepted by
the BOND module of the PASION simulation system
are as follows:

SE node—effort source, e.g., an external force or ideal
voltage source

SF node—flow source, e.g., mandated velocity in a
translational system, ideal current source

R node—dissipative element, e.g., damper or electrical
resistance

C node—capacitance, e.g., a spring or electrical
capacitance

L/I node—inertia/inductance, e.g., a moving or rotat-
ing mass, electrical inductance.

The causality in bond graph diagrams is denoted
by a stroke at one of the ends of the bond. This means
that the flow variable is evaluated at the end with the
stroke and the effort variable at the other end.

Figure 15 shows the possible combinations of bonds
and nodes of type SE, SF, R, L/I, and C, and the im-
plied causalities. All free ends of the bonds can be
connected to nodes of type 0 or 1.

The node–bond combinations are as follows:

(a) (SE node) Effort source. The effort e is
defined at the node.

(b) (SF node) Flow source. The flow f is defined.

(c),(d) (R node) Dissipative bonds. The equations
are f � e/R and e � fR, respectively.

(e) (C node) Capacitance. It has the desired
causality as shown. The equation is de/dt �
f/C, where C is the capacitance.

(f) (I/L node) Inertia or Inductance. The
equation is df/dt � e/L, where L is a
constant (mass, inductance, etc.).

(g) (TF bond) Ideal transformer. The equations
are e1 � m e2, f2 � m f1, where m is a constant.

(h) (TF bond) Ideal transformer. The equations
are e2 � e1/m, f1 � f2/m, where m is a
constant.

(i) (GY bond) Ideal “gyrator.” The equation is
e1 � rf2, e2 � rf1, where r is a constant.

(j) (GY bond) Ideal “gyrator.” The equation is
f2 � e1/r, f1 � e2/r, where r is a constant.

Note that R node–bond combinations and the TF and
GY bonds have two possible causalities, whereas the
other bonds have the causalities indicated in the pre-
vious figure. These causalities may be given by the
user.

Consider a simple mechanical system as shown in
Fig. 16. Here v is the velocity of the point a, w is the
car velocity, and M is the mass of the car. The corre-
sponding bond graph is shown in Fig. 17, where

p � v � w
h is the force of the damper
h � rp
dg/dt � p/k
r is the constant of the damper
k is the constant of the spring

In mechanical systems the efforts are flows and
flows are velocities, respectively. In Fig. 17 the para-
meters p and h are shown as px and hx because p and
h are reserved symbols of the software used (BOND
GRAPH module of the PASION simulation system).

The causality in bond graph models is not the most
important issue. The user model needs no causalities
defined. Good bond graph software must determine
causalities automatically, then generate the model
equations and corresponding code and run the sim-
ulation. The only situation, when the user must check
the causalities is when the software detects a causality
conflict. This can result from a physically invalid
model. For example, the causality conflict will occur
when you put a voltage source in parallel with a ca-
pacitor or a current source in parallel with an induc-
tance. Such models imply a possibility of infinite pulses

Continuous Simulation 279

Figure 13 A bond.

Figure 14 Nodes of type 0 and 1.

of current or voltage. This makes it difficult or im-
possible to calculate the system trajectory, and the
simulation fails.

IX. ALTERNATE MODELING TOOLS
AND DYNAMIC UNCERTAINTY

A. Introduction

As stated in previous sections, the ordinary differential
equations represent only one of many possible ways to
describe the dynamics of a concentrated parameter
system. The widespread old belief that ODEs are the

only possible tool in continuous modeling and simu-
lations is wrong. In many cases simulation projects fail
because the tools, like ODEs, are too primitive to de-
scribe the system on which we are working.

The lack of reliable data in computer simulation is
an important obstacle in many simulation projects.
Models that are nice and valid from the academic
point of view often turn out to be useless in practical
applications, when the user cannot provide reliable
data. In the past, a common way to treat this lack of
exact data was to assume some model parameters or
input variables to be random ones. This results in a
stochastic model, where every realization of the sys-
tem trajectory is different, and the problem is rather

280 Continuous Simulation

Figure 15 Bond types.

Figure 16 An example of a mechanical system. Figure 17 Bond graph model for the system of Fig. 17.

to determine the probability density function in the
system space for certain time-sections, the variance,
confidence intervals, etc.

Such stochastic analysis is interesting but not al-
ways possible. The common problem is again the lack
of data. Some parameters of the model have “uncer-
tain” values, and the user of the model has no idea
about their probabilistic behavior. More likely we are
given an interval to which the uncertain parameter
belongs, instead of its probability distribution or sam-
pled real data. Some external disturbances can fluc-
tuate within certain intervals, and what we are asked
to is to give the interval for some output variables.
The stochastic simulations with randomized variables
do not give such intervals. Moreover, frequently the
user wants to know possible extreme values rather
than the probability of reaching them. (Recall the law
of Murphy!) The uncertainty treatment has nothing,
or very little, to do with Monte Carlo or stochastic
simulation. The intervals we are looking for are not
confidence intervals or any other statistics.

There is no room here to mention the huge num-
ber of publications available on uncertainty problems;
see the Bibliography.

B. Differential Inclusions
as a Modeling Tool

Most simulationists who deal with continuous systems
use, as a basic tool, ordinary or partial differential
equations. As suggested before, ODEs and PDEs as
modeling tools may be too primitive for many system
models except, perhaps, simple mechanisms, circuits,
and very academic examples. Let us consider a simple
example of a second-order system:

d2y/dt2 � a dy/dt � y � b (11)

This is an ODE model. Introducing the notation x1 �
y, x2 � dy/dt, we obtain

dx1/dt � x2

dx2/dt � b � ax2 � x1
(12)

In more general notation, the state equation is

dx/dt � f(a,b,x) (13)

where x is a two-dimensional vector, t is the time, and
f is a vector-valued function.

Now suppose that parameters a and b are uncer-
tain and that the only information we have is the cor-
responding intervals where their values may belong,

or a permissible irregular set on the plain where the
point (a,b) must belong. Note that we know nothing
about a possible probability distribution of these pa-
rameters and we do not treat them as random vari-
ables. Thus, Eq. (13) takes the following form:

dx/dt � F(x,t) (14)

where F is a set. What we have obtained is a differen-
tial inclusion (DI). The right-hand side of Eq. (12) de-
termines the set F. However, this is merely one of
many possible ways to represent the set. In this case it
is parameterized by a and b.

The solution to a DI is the reachable set for the
possible system trajectories that is exactly the solution
to our uncertainty problem. In this very natural way
the uncertainty in dynamic system modeling leads to
differential inclusions as a corresponding mathemati-
cal tool. Note that this tool has been known for about
70 years and that much literature is available on DI
theory and applications. The first works were pub-
lished in 1931–1932 by Marchaud and Zaremba. They
used the terms contingent or paratingent equations.
Later, in 1960–1970, Wazewski and his collaborators
published a series of works that referred to the DIs as
orientor conditions and orientor fields.

As always occurs with new theories, their works re-
ceived severe criticism, mainly from some physicists
who claimed that it is a stupid way of wasting time
while dealing with such abstract and useless theories.
Fortunately, the authors did not abandon the idea
and developed the elemental theory of differential in-
clusions. In the decade from 1930–1940 such prob-
lems as the existence and properties of the solutions
to DIs were solved in finite-dimensional space. After
this, many works appeared on DIs in more abstract,
infinite-dimensional spaces. Within a few years after
the first publications about them appeared, DIs be-
came the basic tool in optimal control theory. Recall
that optimal trajectories of a dynamic system are those
that are on the boundary of the system’s reachable
set. In the works of Pontiragin, Markus and Lee, Bell-
man, and many others, one of the fundamental prob-
lems is the properties of the reachable sets.

C. Differential Inclusion Solver

A differential inclusion is a generalization of an ordi-
nary differential equation. In fact, an ODE is a special
case of a DI, where the right-hand F is a one-point set.
One could expect that a solution algorthm for a DI
might be obtained as some extension of a known al-
gorithm for the ODEs. Unfortunately, this is not the

Continuous Simulation 281

case. First of all, the solution to a DI is a set. In par-
ticular, it is a set in the time–state space, where the
graphs of all possible trajectories of a DI are included.
Finding the boundary of such a set (named reachable
set, or emission zone as in the works of Zaremba and
Wazewski) is not an easy task.

One of the properties of a reachable set (RS) is the
fact that if a trajectory reaches a point on the bound-
ary of the RS at the final time, then its entire graph
must belong to the RS. This fact is well known and
used in the optimal control theory. Observe that any
trajectory that reaches a point on the boundary of the
RS is optimal in some sense. Such trajectories can be
calculated using several methods, the main one
being the maximum principle of Pontriagin. This can
be used to construct an algorithm for RS determina-
tion. If we can calculate a sufficient number of tra-
jectories that scan the RS boundary, then we can see
its shape. The trajectories should be uniformly dis-
tributed over the RS boundary. This can be done by
some kind of random shooting over the RS boundary.
Such shooting has nothing to do with a simple ran-
dom shooting, when the trajectories are generated
randomly inside the RS.

My first attempts to develop a DI solver were pre-
sented at the IFAC Symposium on Optimization Meth-
ods on Varna in 1974. This was a random shooting
method, but not a simple shooting. That algorithm
generated trajectories inside the RS, but the control
variable had been modified to obtain a nearly uniform
distribution of ponts inside the RS at the end of the
simulated time interval. The DI solver presented in
the Transactions on SCS in 1996 is much more effective.

Briefly, the DI solver works as follows. The user
provides the DI in the form of an equivalent control
system. To do this, he or she must parametrize the
right-hand size (the set F) using an m-dimensional
auxiliary variable u. The DI solver determines the
equations of so-called conjugated vector p and inte-
grates a set of trajectories, each of them belonging to
the boundary of the RS. Over each trajectory the
Hamiltonian H(x,p,u,t) is maximized. This procedure
is similar to that used in dynamic optimization.

In the optimal control problem the main difficulty
exists in the boundary conditions for the state and
conjugated vectors. For the state vector we have the
initial condition defined, and for the conjugated vec-
tor only the final conditions (at the end of the tra-
jectory) are known, given by the transversality condi-
tions. This means that the optimal control algorithm
must resolve the corresponding two-point-boundary
value problem. In the case of a DI we are in a better
situation. There is no object function and no trans-

versality conditions. As a consequence, for vector p we
can define the final as well as the initial conditions.

At any rate, we obtain a trajectory whose graph be-
longs to the RS boundary. Defining initial conditions
for p we integrate the trajectory only once, going for-
ward. The only problem is how to generate these ini-
tial conditions in order to scan the RS boundary with
uniform density. The algorithm is quite simple: The
initial conditions for p are generated randomly, due
to a density function that changes, covering with more
density points that correspond to trajectories that fall
into a low-density region at the RS boundary. Trajec-
tories that are very close to each other are not stored
(storing only one from each eventual cluster). As a re-
sult, we obtain a set of trajectories covering the RS
boundary that can be observed in graphical form and
processed.

D. An Example

Consider a second-order dynamic system where the
acceleration and damping coefficient are uncertain.
An example of the corresponding DI in parametrized
form is as follows:

dx1/dt � x2

dx2/dt � u1 � u2x2 � x1

where �1 � u1 � 1 and 0.5 � u2 � 1.5. Figure 18
shows the 3-D image of the RS in coordinates x1 (up-
ward), x2 (to the right), and t. In Fig. 19 you can see
a time section of the RS for some fixed time. Observe
the small cluster of trajectories at the origin of the co-
ordinate system. These trajectories (10,000 in total)
are obtained by a simple random shooting, where
both controls had been genrated randomly within the
limits defined above. The other pixels (the RS con-

282 Continuous Simulation

Figure 18 A 3-D image of the solution to a differential inclusion.

tour) are the end points (400 in total) of the trajec-
tories generated by the DI solver. This demonstrates
just how useless the simple shooting method is for
solving DIs.

X. DISTRIBUTED PARAMETER SYSTEMS

As stated before, the set of all possible states of a dis-
tributed parameter system (DPS) is greater than the
set of all real numbers. In fact, the state of a DPS is
given as one or more functions of the position in a
space (continuum). A classic example of such a sys-
tem is a vibrating string or the temperature distribu-
tion in a piece of metal. The name is due to the fact
that the parameters of the system cannot be concen-
trated in discrete points and are instead distributed
over a given region. The basic modeling tool for DPSs
is the partial differential equation. Normally, a PDE
model establishes a relationship between the deriva-
tives of the dependent variable (e.g., the tempera-
ture) with respect to the model time and the space
position coordinates.

We do not discuss here the numerical methods for
utilizing PDEs. From the computational point of view
the problem of solving a PDE is difficult. Consider,
for example, the following heat transfer equation:

�
�

�

T
t
� � �

	

k
c
� � � � � (15)

where T is the temperature, x, y, z are the 3-D coor-
dinates, t is the time, 	 is the material density, c is the
specific heat, and k is the thermal conductivity. This
is a common situation in simulation problems that in-
volve PDEs. One or more dependent variables propa-

�2T
�
�z2

�2T
�
�y2

�2T
�
�x2

gate forward in time. The highest time derivatives of
these variables should be put alone on the equation’s
right-hand side.

A common way to find the solution to this and sim-
ilar equations is to discretize both time and space, and
replace the derivatives with their discrete approxima-
tions. As the time derivative appears only at the left-
hand side of Eq. (15), we can calculate the “slope”
(the rate of change) of the temperature at each (dis-
crete) point of the 3-D space. Then applying Euler-like
procedure we can calculate the solution at the next
time step, advance the model time, and so on.

Obviously the number of points to calculate grows
with the fourth power of the required time–space res-
olution. But that is not the only difficulty. Note that the
right-hand side of (15) is a differential operator. A well-
known fact (at least for mathematicians) is that such
operators are not bounded. This is the other, profound
cause of our numerical difficulties. The stability of the
numerical algorithm can be easily lost and we must use
sophisticated methods to avoid that. This is why the
simulation software for DPSs (e.g., the famous ANSYS
package) is so expensive and why we need hours of
computer time to simulate PDE models.

A well-known approach to the DPSs simulation is the
finite element method (FEM). In fact, a FEM solves a PDE
using a user-defined grid of spatial elements with finite
dimensions. Each finite element approximates the be-
havior of the corresponding real element. However, the
equation that governs the state of a single finite ele-
ment is not a PDE. In the global scale the set of (thou-
sands) of finite elements approaches the numerical so-
lution to the corresponding PDE. The advantage of
FEM is that the user can define an irregular net of ele-
ments, where the regions that require greater accuracy
are covered by smaller elements. The challenge for the
future is to develop efficient methods for such types of
models. This may help with problems such as weather
simulation and predictions, human body simulation,
plasma dynamics, and new material simulation.

The DPS problems that can be solved on a PC are dis-
cretized models, which can reach up to hundreds of
thousand of finite elements or regular grid points. Fig-
ure 20 shows an example of a solution to the gas dy-
namics equation in a duct with an obstacle. The image
was generated by the Fluids32 program (consult
http://www.raczynski.com/pn/fluids.htm). The figure
shows a vertical section of the duct. The program uses
a uniform 3-D grid of points (about 150,000 in total)
and finds a steady flow solution provided it exists.
Note that this is equivalent to solving 150,000 nonlin-
ear algebraic equations for five variables (3-D velocity,
temperature, and pressure).

Continuous Simulation 283

X1

X2

Figure 19 A time section of the reachable set of a differential
inclusion.

XI. SYSTEM DYNAMICS

System dynamics is a computer-aided approach to pol-
icy analysis and design. With origins in servomechanisms
engineering and management, the approach uses a per-
spective based on information feedback and mutual or
recursive causality to understand the dynamics of com-
plex physical, biological, and social systems.

What SD attempts to do is understand the basic
structure of a system, and thus understand the be-
havior it can produce. SD takes advantage of the fact
that a computer model can be of much greater com-
plexity and carry out more simultaneous calculations
than can the human mind.

During the 1970s to 2000s, SD has been applied
broadly in such areas as environmental change, eco-
nomic development, social unrest, urban decay, psy-
chology, and physiology. Jay W. Forrester (http://web.
mit.edu/sloan/www/faculty/forrester.html), the cre-
ator of system dynamics, defines it as follows:

Unlike other scientists, who study the world by break-
ing it up into smaller and smaller pieces, system dy-
namicists look at things as a whole. The central con-
cept to system dynamics is understanding how all the
objects in a system interact with one another. A sys-
tem can be anything from a steam engine, to a bank
account, to a basketball team. The objects and people
in a system interact through “feedback” loops, where

a change in one variable affects other variables over
time, which in turn affects the original variable, and
so on.

The seminal book by Forrester, Industrial Dynamics, is
still a significant statement of philosophy and
methodology in the field. Since its publication, the
span of applications has grown extensively and now
encompasses work in corporate planning and policy
design, public management and policy, biological and
medical modeling, energy and the environment, the-
ory development in the natural and social sciences,
and dynamic decision making.

The STELLA simulation package is one of the most
well-known implementations of the concepts of sys-
tem dynamics. A STELLA model is defined in terms
of levels and flows. Levels are represented graphically
as boxes and flow as directed links (arrows). The lev-
els are integrals of total flows that affect them. The
flows can depend on the levels through algebraic func-
tions, depicted as circles. Levels can represent, for ex-
ample, the capital level of a corporation, the working
power, or cash. The flows can be cash flow, working
power flow, material or machinery flow, etc.

Figure 21 shows a possible fragment of a STELLA
scheme. Here, A and B are levels, f 1, f 2, and f 3 are
flows, and x, y, and z are external signals. The flow f 1
depends on levels A and B through the function F.
STELLA, as well as DYNAMO, PowerSim, and several
other similar tools, has been widely used for simula-
tion of dynamic systems in particular in soft systems
simulation.

A huge number of works and publications are avail-
able on the applications of system dynamics models.
The importance of this methodology lies in its acces-
sibility for engineers, sociologists, decision makers,
and businesspeople, rather than in the validity of sys-
tem dynamics models. The false conviction that every-
thing that changes can be simulated using continuous
system dynamics sometimes results in strange and
even wrong models. However, the model validity and
accuracy is not always the most important aspect of
the simulation task. When simulating social systems, it
is important to understand the system structure and
its internal interactions rather than to produce exact
projections of systems trajectories. Such a modeling
effort can be useful in other “dimensions” of model-
ing. A good example of this is a model of Shakespeare’s
Hamlet presented at one of the system dynamics con-
ferences. A paper entitled “Implementation of Stella
to illustrate Hamlet,” by Pamela Lee Hopkins, Desert
View High School, Tucson, Arizona, was presented at
the 1984 Systems Dynamics Conference in Boston.
(The text, however, is not included in the proceed-

284 Continuous Simulation

Figure 20 Simulation of shock waves in a gas flow (Fluids32
program).

ings.) The model is designed to expose the effect plot
events have on Hamlet’s willingness to kill Claudius.
This permits the examination of the impact of each
event as it occurs and as Hamlet continues to con-
template the situation. The model variables are,
among others the motivation to avenge, new evidence,
old evidence, motivation per death, aging, opportu-
nity to act, etc. Obviously the author’s objective was
not to repeat the sequence of events of the original
Hamlet, or to write new Shakespeare-style dramas. As
stated in the article:

The model forces the students to sequence events,
thereby improving their understanding of the dra-
matic action of the play. The model provides a mean-
ingful language, in the form of numbers, for students
to discuss psychological concepts, emotions, and the
resulting behaviors. This promotes student involve-
ment in discussion of the difficult concepts of a criti-
cally acclaimed piece of literature.

XII. GALACTIC SIMULATIONS
AND THE N-BODY PROBLEM

Recall that the problem of integrating the equations
of movement of N bodies in space is extremely diffi-
cult for even just three bodies, and no analytic solu-
tion can be found for more than four bodies moving
due to their reciprocal gravitational forces. A huge lit-
erature exists along with many numerical methods for
solving the N-body problem. We do not pretend to
give any exhaustive discussion here; only some recent
results are mentioned.

To solve the N-body problem, we must integrate a
system of second-order ordinary differential equations
of the form

mi dxi
2/dt2 � fi(x) for i � 1, 2, ..., N

where fi(x) is the total force, x � (x1, x2, x3, ..., xN), xi

� R3. Here fi is the vectorial sum of all the forces the
body i receives from the other bodies and mi is the

mass of the i-th body. This force is proportional to
1/d2

ij, where dij is the distance from body i to body j.
Thus, the number of forces grows with N square, and
for big N the computer time may be unacceptable.
Another difficulty arises from the nonlinearity of the
problem. In fact, looking at the preceding equation,
we can see that the space where the bodies move is
full of singularities, each body position being a sin-
gularity, where the force tends to infinity as d ap-
proaches zero. This implies more computational prob-
lems and may result in numerical instability.
Fortunately, several decomposition algorithms are
available that can reduce the computational time.

Consider the large-scale structure (LSS) formation
dynamics problem. When the number of particles is
big, a common approach is to use the Fourier trans-
form. A regular grid is defined in the region, and
then the Fourier transform is used to speed the cal-
culation of the potential field. This field is the result
of a convolution of the point distribution and the
Green’s function for the force. However, such meth-
ods have some disadvantages and lack flexibility, in
particular when the particles form many local clusters
leaving other regions nearly empty. Some improve-
ments of the method were proposed and work well
with great numbers of points. At any rate, this ap-
proach always needs a grid definition.

Another approach is to decompose the problem
using a binary tree, which has nodes that represent
the body clusters. In the binary tree, the bodies are
sorted and a tree is formed, where the leaves repre-
sent the bodies. Every body (leave) is connected to its
nearest neighbor and forms a cluster (next level of
the tree). Thus, after such sorting, it is relatively easy
to decompose the system in clusters and to assign the
corresponding movement tasks to the processors of a
parallel machine. As a result, machines like CRAYs
and similar supercomputers can be used quite effi-
ciently. Actually, the number of bodies moving simul-
taneously in the most advanced galactic and particle
simulation can reach more than 200 millions. This

Continuous Simulation 285

Figure 21 Fragment of a STELLA scheme.

permits us to simulate the dynamics of huge star clus-
ters and possibly approximate galactic dynamics.
Other applications are molecular simulations and sim-
ulations of gas dynamics.

The number of bodies involved in galactic simula-
tions in not necessarily the most important issue. Sur-
prisingly, simulating about 1000 bodies we also can
obtain interesting results. Such simulation can even
be implemented on a PC. For example, it can be
shown that the rotational movement, disk formation,
and appearance of spiral shapes is a natural conse-
quence of the Newtonian dynamics applied to a cloud
of particles. Note that the same methodology can be
applied to the simulation of particle movement in
small, molecular scale. If we replace the gravitational
force with the Van der Waals forces, then we obtain a
model of a particle in a gas. With other definition of
the interactions, the model might describe, for ex-
ample, a granular media, the dynamics of which is
highly difficult to analyze analytically. A PC can be
used in simulations of this type.

SEE ALSO THE FOLLOWING ARTICLES

Discrete Event Simulation • Model Building Process • Monte
Carlo Simulation • Optimization Models • Simulation Lan-
guages • Software Process Simulation

BIBLIOGRAPHY

Ames, W. F. (1977). Numerical methods for partial differential equa-
tions, 2nd ed. New York: Academic Press.

Aubin, J. P., and Cellina, A. (1984). Differential inclusions, New
York: Springer-Verlag.

Bader, G., and Deufhard, P. (1983). Numerishe mathematik, Vol.
41, 373–398.

Bargiela, A. (1998). Uncertainty—a key to better understand-
ing of systems. Proc. 10th European Simulation Symposium,
11–29.

Barnes, J., and Hut, P. (1986). A Hierarchical O(N log N) force
calculation algorithm. Nature, Vol. 324, 446.

Binney, J., and Tremaine, D. (1987). Galactic dynamics. Prince-
ton, NJ: Princeton University Press.

Cellier, F. (April 1992). Hierarchical non-linear bond graphs: A
unified methodology for modeling complex physical sys-
tems, Simulation. Vol. 58, No. 9, 230–248.

Cellier, F. E., and Elquist, H. (1993). Automated formula ma-
nipulation in object-oriented continuous-system modeling,
IEEE Control Systems, Vol. 13, No. 2, 28–38.

Dalquist, G., and Bjork, A. (1974). Numerical methods. Engle-
wood Cliffs, NJ: Prentice Hall.

Dorf, R. (1992). Modern control systems. Reading, MA: Addison-
Wesley, Sec. 2.7.

Gear, C. W. (1971). Numerical initial value problems in ordinary
differential equations, Englewood Cliffs, NJ: Prentice Hall,
Chap. 9.

Hernquist, L. (1998). Hierarchical N-body methods. Computer
Physics Communications, Vol. 48, 107.

Kandrup, H. E., and Mahon, M. E. (1994). Chaos and noise in
galactic dynamics. Annals of the New York Academy of Sciences,
Vol. 751, 93–111.

Kaps, P., and Rentrop, P. (1979). Numerishe mathematik, Vol. 33,
55–68.

Lambert, J. D. (1981). Safe point methods for separably stiff sys-
tems of ordinary differential equations. SIAM Journal on Nu-
merical Analysis, Vol. 18, 83–101.

Lee, E. B., and Markus, L. (1967). Foundations of optimal control
theory. New York: Wiley.

Marchaud, A. (1934). Sur les champs de demi-cones et les équa-
tions differielles du premier ordre, Bull. Soc. Math. France,
Vol. 62, 1–38.

Mills, P., Nyland, L., Prins, J., and Reif, J. (1992). Prototyping
high-performance parallel computing applications in pro-
teus, Proc. 1992 DARPA Software Technology Conference, April
28–30, 1992, Los Angeles. Arlington, VA: Meridian, 433–442.

Nyland, L. S., and Prins, J. F. (1992). Prototyping parallel algo-
rithms. Proc. DAGS/PC Symposium, June 1992. Hanover, NH:
Dartmouth College, 31–39.

Plis, A. (1962). Trajectories and quasitrajectories of an orientor
field. Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys., Vol. 10,
529–531.

Raczynski, S. (1974). On the determination of the reachable
sets and optimal control by the random method, Proc. Sym-
posium IFAC on Optimization Methods, Varna, Bulgaria, 1974.

Raczynski, S. (1984). On some generalization of “bang-bang”
control. Journal of Mathematical Analysis and Applications. Vol.
98, No. 1, 282–295.

Raczynski, S. (1986). Some remarks on nonconvex optimal
control. Journal of Mathematical Analysis and Applications. Vol.
118, No. 1, 24–37.

Raczynski, S. (1996). Differential inclusions in system simula-
tion. Trans. Society for Computer Simulation, Vol. 13, No.1,
47–54.

Raczynski, S. (1996). When systems dynamics ODE models fail,
Simulation, Vol. 67, No. 5, 343–349.

Raczynski, S. (November 1997). Simulating the dynamics of
granular media—The oscillon phenomenon, Computer Mod-
eling and Simulation in Engineering, Vol. 2, No. 4, 449–454.

Raczynski, S. (March 2000). Creating galaxies on a PC, Simula-
tion, Vol 74, No. 3, 161–166.

Ralston, A., and Rabinowitz, P. (1978). A first course in numeri-
cal analysis, 2nd ed. New York: McGraw-Hill.

Rice, J. R. (1983). Numerical methods, software and analysis. New
York: McGraw-Hill.

Turowicz, A. (1963). Sur les trajectoires et quasitrajectoires des
systémes de commande nonlinéaires, Bull. Acad. Polon. Sci.
Ser. Math. Astronom. Phys., Vol. 10, 529–531.

Wazewski, T. (1962). Sur les systemes de commande non lin-
eaires dont le contredomaine de commande n’est pas
forcement convexe, Bull. Acad. Polon. Sci. Ser. Math. Astronom.
Phys. Vol. 10, No.1.

Zaremba, S. K. (1936). Sur les équations au paratingent. Bull.
Sci. Math., No. 60, 139–160.

286 Continuous Simulation

Control and Auditing
Mary S. Doucet and Thomas A. Doucet
California State University, Bakersfield

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 287

I. BROAD OBJECTIVES OF INTERNAL CONTROL SYSTEMS
II. INTERNAL CONTROL OF INFORMATION SYSTEMS

III. AUDIT OF INFORMATION SYSTEMS

IV. CONTROLS IN THE CONTEXT OF CURRENT AND FUTURE
TECHNOLOGIES

GLOSSARY

application controls Controls which affect only spe-
cific applications and include the steps within ap-
plication software and the manual procedures de-
signed to control the processing of various types of
transactions.

fiduciary objectives of internal control Objectives
which support an organization’s business processes
(include reliability, compliance, effectiveness, and
efficiency).

general controls Controls designed to prevent or de-
tect errors or irregularities on a more extensive ba-
sis than application controls. They include all con-
trols over the information processing facility, access
controls, environmental controls, business conti-
nuity planning controls, systems and program soft-
ware acquisition and maintenance controls, net-
work controls, and data communication controls.

information security “The protection of the interests
of those relying on information, and the informa-
tion systems and communications that deliver the
information, from harm resulting from failures of
availability, confidentiality, and integrity” (IFAC
1998, Executive Summary).

information systems audit The process of determin-
ing whether a computer system safeguards assets,
maintains data integrity, allows organization goals
to be achieved effectively, and uses resources
efficiently.

internal control A process designed to provide rea-
sonable assurance regarding the achievement of
objectives in the following categories: (1) effective-
ness and efficiency of operations, (2) reliability of

financial reporting, and (3) compliance with ap-
plicable laws and regulations.

THE DIGITAL WORLD has increased the critical impor-
tance of the control and audit of information systems to
the survival of organizations. The International Federa-
tion of Accountants (IFAC) suggests that this increased
importance arises from “the increasing dependence on
information and the systems and communications that
deliver the information; the scale and cost of the current
and future investments in information; and the poten-
tial for technologies to dramatically change organiza-
tions and business practices, create new opportunities,
and reduce costs.” Therefore, control and audit of in-
formation systems must be considered in the context of
managing the organization and providing assurance to
users of information. Control of information systems is
not just a technology issue; it is a management issue.

A primary facet of the control of information sys-
tems is to ensure information security. The objective
of information security is “the protection of the in-
terests of those relying on information, and the in-
formation systems and communications that deliver
the information, from harm resulting from failures of
availability, confidentiality, and integrity” (IFAC). To
protect against harm resulting from failures of avail-
ability, confidentiality, and integrity, and to ensure
other aspects of internal control, an organization has
to assess the risks to information systems. These risks
must be considered within the context of the poten-
tial threats to the organization, the probability of those
threats occurring, and the impact on the organization
if the threats are realized.

Additionally, the audit of information systems must
be considered within the context of the purpose of
the audit. The objectives and intensity of the evalua-
tion of internal control will vary depending on the
type of audit service being provided. If the auditor is
issuing assurance on internal control (or on just the
information security aspects of internal control), the
scope and intensity of the testing of the control sys-
tem will be much greater than if the auditor is per-
forming a financial statement audit. In the first case
auditors are reporting primarily on the internal con-
trol system, which requires a much more rigorous
evaluation than the second case for which auditors
need only sufficient assurance to rely on the infor-
mation that comprises the financial statements.

I. BROAD OBJECTIVES OF
INTERNAL CONTROL SYSTEMS

While there are many definitions of internal control,
one definition that appears to have gained widespread
support is the definition provided by the Committee
of Sponsoring Organizations of the Treadway Com-
mission (COSO). COSO defines internal control as
follows: Internal control is a process, effected by an
entity’s board of directors, management, and other
personnel, designed to provide reasonable assurance
regarding the achievement of objectives in the fol-
lowing categories: (1) effectiveness and efficiency of
operations, (2) reliability of financial reporting, and
(3) compliance with applicable laws and regulations.

Several fundamental concepts are inherent in this
definition. Perhaps the most important concept is
that internal control cannot provide absolute assur-
ance that an organization can meet its objectives. In-
ternal control, however, should provide reasonable as-
surance that an organization’s objectives in the
separate but overlapping categories will be met. An-
other fundamental concept inherent in this defini-
tion is that internal control is a process (a means to
an end, not an end itself) carried out by people at all
levels in the organization. Finally, there is the funda-
mental concept that the effectiveness of the internal
control system depends primarily on the people who
implement it.

A number of broad information systems control
objectives can be derived from the COSO definition
of internal control. While each organization may dif-
fer in the emphasis it places on these internal control
objectives, the following broad objectives (the term
“requirements” is used by the COBIT Framework)
are common to all organizations (Information Sys-
tems Audit and Control Foundation): (1) availability,

(2) integrity, (3) confidentiality, (4) reliability,
(5) compliance, (6) effectiveness, and (7) efficiency.
The size, structure, and other characteristics of an or-
ganization will have an impact on the emphasis placed
on each of these objectives. In the COBIT Frame-
work, these seven objectives of information are cate-
gorized as information security objectives (availability,
integrity, and confidentiality) and fiduciary objectives
(reliability, compliance, effectiveness, and efficiency).
While the fiduciary objectives of information systems
are important to all organizations, an organization
cannot achieve these fiduciary objectives without also
achieving the more critical information security ob-
jectives. Therefore, organizations should design in-
ternal control systems to meet both the information
security and fiduciary objectives. Each of these broad
objectives is discussed briefly below.

A. Information Security Objectives
of Internal Control Systems

Because of their importance in providing support for
an organization’s overall objectives, the information
security objectives are discussed first. The security ob-
jectives of information provide the underlying sup-
port for the internal control of information systems.
These security objectives are discussed in their order
of priority for many business managers.

1. Availability

The objective of availability of information demands
that information be available to support the organi-
zation’s processes and its interactions with other or-
ganizations and with customers. Additionally, the avail-
ability of appropriate information is necessary to
support the safeguarding of an organization’s re-
sources and capabilities. Availability of information is
essential to the operation of any organization; many
organizations are paralyzed when information is un-
available. Availability of information provides the
foundation for a quality organization.

2. Integrity

Integrity of information implies that it is valid and
complete. If the available information lacks integrity,
the organization’s decisions will be based on infor-
mation that lacks credibility and, thus, the probability
of faulty decisions is increased. Thus, integrity re-
quires that information be protected against unau-
thorized alteration. If information integrity is com-
promised, the result can be as devastating as

288 Control and Auditing

unavailable information and some might argue that it
can be more devastating.

3. Confidentiality

Confidentiality requires that sensitive information
should only be accessed by those with authorization
(such authorization should only be provided on a
“need to know, need to do” basis). Maintaining con-
fidentiality is critical to an organization’s ongoing suc-
cess. When confidentiality is breached, an organiza-
tion often pays with its reputation, and customers,
suppliers, and business partners may decide to take
their business elsewhere.

B. Fiduciary Objectives of
Internal Control Systems

The fiduciary objectives described below are derived
from the COSO Framework. These fiduciary objec-
tives are intended to support an organization’s busi-
ness processes.

1. Reliability

The reliability of information objective necessitates
that appropriate information be provided to manage-
ment to fulfill its fiduciary objectives. As stated in the
Statement of Financial Accounting Concepts No. 1, reliable
information is verifiable, represents what it purports
to represent, and is neutral with respect to parties it
affects (Financial Accounting Standards Board,
FASB). Reliable information allows management to
operate the organization and fulfill the organization’s
financial and compliance reporting responsibilities.

2. Compliance

The fiduciary objectives of information require infor-
mation to be provided that allows an organization to
comply with laws, regulations, and contractual rela-
tionships. In addition to providing the information,
the use of information itself must also comply with
laws, regulations, and contractual relationships.

3. Effectiveness

The effectiveness objective means that to be useful to
an organization, information must support the effec-
tive operations of that organization. In order to sup-
port the effective operations of an organization, in-
formation must be relevant to the organization’s
business processes and must be provided in a timely

manner. Additionally, the integrity of information,
discussed previously, is essential for information to
support the effective operations of the organization’s
business processes.

4. Efficiency

The usefulness of information is increased by the pro-
vision of information through the most productive
and economical use of resources. Providing informa-
tion in the most efficient manner enhances the qual-
ity of any organization.

C. Meeting Security and Fiduciary
Internal Control Objectives

To meet the fiduciary and information security objec-
tives, organizations must develop internal control poli-
cies and procedures that address the security objec-
tives while enhancing the fiduciary objectives of
internal control of information systems. The next sec-
tion provides a discussion of the internal control of
information systems.

II. INTERNAL CONTROL OF
INFORMATION SYSTEMS

Historically, internal controls have often been viewed
by many managers as necessary burdens. Controls
were often seen as a hindrance to operating effec-
tiveness and efficiency. Today internal controls are of-
ten viewed as an integral part of the management
processes of planning, executing, and monitoring
business activities. In many organizations separating
out the control aspects of a process is difficult because
controls are so highly integrated with the process.
This integration can provide a challenge to the on-
going monitoring of internal controls and to the sep-
arate periodic evaluations of the internal control sys-
tem. However, as will be discussed in the next section,
this ongoing monitoring and separate periodic evalu-
ation are integral parts of a good system of internal
control of information systems.

A. Current Frameworks for the Control
and Audit of Information Systems

The control of information systems should be ad-
dressed within the broader context of an entity’s
organization-wide control system. The objective of the

Control and Auditing 289

organization-wide control system is the safeguarding
of all of an organization’s assets and capabilities. One
such organization-wide control model is the COSO
control model. In the United States the COSO con-
trol model is widely accepted as providing businesses
with an ideal control framework. While this organiza-
tion-wide control model has a broader focus than the
control of information systems, it has influenced
frameworks that deal more directly with the control
of information systems.

There are two major control models that focus pri-
marily on the control of information systems and/or
its related technology: (1) The Systems Auditability and
Control (SAC) Report, developed by the Institute of In-
ternal Auditors, which provides control principles and
techniques related to specific technologies; and
(2) the Control Objectives for Information and related Tech-
nologies (COBIT) Report, developed by the Informa-
tion Systems Audit and Control Foundation, which
provides a conceptual framework of control objectives
designed to meet specific business goals.

In the following three sections, an overview of the
COSO Report, the SAC Report, and the COBIT Re-
port are provided. These frameworks are comple-
mentary with different as well as overlapping audi-
ences. In fact, the COBIT Report (the most recent of
the three) incorporates concepts from both the COSO
Report and the SAC Report.

These three frameworks have been instrumental in
laying the groundwork for discussion of the control
and audit of information systems. Following a discus-
sion of these three frameworks is a discussion of types
of information systems controls. This is followed by a
discussion of the impact of recent technologies on
the control of information systems, and the potential
future impact of technology on the control of infor-
mation systems.

1. COSO Framework

The internal control of information systems must
be discussed within the broader framework of an
organization-wide control system. In fact, one of the
key issues that organization managements are con-
cerned with is how to integrate the internal control
system with the organization’s overall objectives. In
1992, COSO published Internal Control—Integrated
Framework. The purpose of the COSO Framework was
to integrate various internal control concepts into a
framework that would help managers to better con-
trol their organizations’ activities. This framework
provides a useful structure from which to design and
implement an organization-wide control system.

The COSO Framework suggests that internal con-
trol consists of five interrelated components: (1) con-
trol environment, (2) risk assessment, (3) control
activities, (4) information and communication, and
(5) monitoring. The control activities and the infor-
mation and communication components of this
model relate more directly to internal control of in-
formation systems; however, to better understand the
COSO internal control model it is beneficial to look
at all the components.

The first component, the control environment, is
the foundation for all of the other components in
that it provides the climate in which the people (the
core of any organization) perform their tasks and
carry out their control responsibilities. The control
environment includes the “tone at the top” and re-
flects the corporate culture inherent in the ethical
values adopted by and the integrity of management.
An important aspect of the control environment that
has a direct impact on control of information systems
is that the control environment is influenced by the
degree to which employees recognize that they will be
held accountable.

The second component, risk assessment, is the
process by which management identifies and analyzes
the risks that might prevent the achievement of orga-
nizational objectives and, thus, is a vital component of
any organization’s internal control. An organization’s
ability to survive, compete, maintain its financial
strength, maintain the quality of its deliverables, and
maintain its positive image are all affected by risks to
the attainment of these objectives. Therefore, before
an organization can assess risks to meeting its goals, it
must first develop operational and fiduciary (report-
ing and compliance) objectives at all levels in the
organization.

The risk assessment process involves identifying
factors that contribute to or increase risks as well as
performing a risk analysis to estimate the significance
of the risk and assessing the probability of the risk oc-
curring. Risks that do not have a significant impact on
the organization, or that have a low probability of oc-
curring, should not receive as much attention as those
that have a high probability and/or a significant im-
pact on the organization. Once the risk assessment
process has identified the potential risks that need to
be addressed, management needs to implement poli-
cies and procedures that are necessary to address the
risks. In essence, the result of risk assessment is an
evaluation or reevaluation of the control activities of
the organization.

The policies and procedures that management im-
plements constitute the control activities identified as

290 Control and Auditing

the third component of the COSO Framework. These
control activities are designed to help ensure that
management directives are satisfied. The information
systems of most organizations include both manual
and computerized elements. The control activities
component, as discussed in the COSO Framework, as-
sumes this environment. It is this aspect of the COSO
Framework that has been almost universally adopted
as a means for discussing the control of information
systems.

The COSO Framework categorizes information sys-
tems control activities by scope: (1) general controls
(also referred to as information technology controls
or general computer controls) and (2) application
controls. General controls are broader in nature and
are designed to prevent or detect errors or irregular-
ities on a more extensive basis than application con-
trols. They include all controls over the information
processing facility, access controls, environmental con-
trols, business continuity planning controls, systems
and program software acquisition and maintenance
controls, network controls, and data communication
controls. The information systems environment in
large and complex organizations can be thought of as
consisting of a group of independent segments to
which general controls must be applied. With distrib-
uted processing and distributed information systems
becoming the norm for these organizations, it is im-
portant to recognize that general controls may not be
implemented uniformly across all segments in the or-
ganization. Application controls affect only specific
applications and include the steps within application
software and the manual procedures designed to con-
trol the processing of various types of transactions.
These controls allow for the secure capture and com-
munication of information.

Information and communication comprise the
fourth component of the COSO Framework. Infor-
mation and communication, along with control activ-
ities, are perhaps the most critical components of the
COSO Framework for the control of information sys-
tems. Information, as used in the COSO Framework,
refers to information systems that identify, capture,
process, and report information. It is important, and
increasingly so, that an organization’s information sys-
tem generates high quality information (information
that meets the security and fiduciary objectives de-
scribed earlier) in order for management to make the
appropriate decisions in controlling and managing
an organization’s activities.

Communication means that an organization should
communicate to all personnel the importance of the
internal control system and their responsibilities re-

garding internal control. In order for an internal con-
trol system to work, personnel must be given clear
guidance as to what their responsibilities are, must be
provided with relevant information to perform their
duties, and must be given a mechanism for commu-
nicating significant information upstream in their
organization.

Monitoring is the fifth component of the COSO
Framework and involves assessing the system’s per-
formance over time either through ongoing monitor-
ing activities, separate evaluations, or a combination
of the two. All internal control systems need to be
monitored. Monitoring helps an organization to de-
termine whether its internal control system continues
to be effective. When deficiencies are addressed in a
timely manner through the monitoring process, the
operating effectiveness of the internal control system
is ensured.

The COSO Framework broadly defines the com-
ponents of an organization’s internal control system.
While the COSO Report is intended to provide a
broad framework to help managers to better control
their organizations’ activities, the SAC Report dis-
cussed below is intended for a wider audience, pro-
vides more extensive control principles and tech-
niques, and addresses specific concerns with the
widespread use of current information technologies.
While its purpose differs somewhat from that of the
COSO Framework, the control principles and tech-
niques described in the SAC Report are consistent
with and complementary to the framework described
in COSO.

2. SAC Framework

The Systems Auditability and Control Report lists the re-
sults of a research project conducted by the Institute
of Internal Auditors and provides guidance on the
control and audit of information resources. One of
the major findings of the research project was that
the most important challenge facing management is
the ability “to integrate the planning, design, and im-
plementation of complex application systems with the
strategy of the organization.” As we begin the 21st
century this challenge continues to confront organi-
zations of all sizes.

Data security and contingency planning were also
found to be key control concerns for managers. The
reasons for these concerns include: (1) the heavy re-
liance organizations place on their information sys-
tems for critical operations; (2) the use of applica-
tions (such as electronic data interchange, EDI) that
allow third parties to exchange structured transaction

Control and Auditing 291

information; (3) greater on-line access to an organi-
zation’s information systems; and (4) the inadequate
consideration of security and recovery controls by end
users. These concerns have not diminished since the
initial SAC Report and, in fact, have increased espe-
cially with the advent of greater internet connectivity,
more telecommuting capabilities, electronic com-
merce, and an increasing emphasis on client/server
architecture.

The SAC Report focuses on the business perspec-
tive of information technology and the accompanying
risks associated with planning, implementing, and us-
ing this technology. The objectives of the SAC Report
include: providing senior management with necessary
guidance to establish priorities for the implementa-
tion of information technology controls and provid-
ing internal audit and information systems practi-
tioners with guidelines and technical reference
materials to facilitate the implementation and verifi-
cation of appropriate controls. The emphasis in the
SAC Report is on control principles and techniques,
rather than specific implementations. Thus, these
control principles and techniques should be applica-
ble to emerging technologies.

The SAC Report contends that regardless of the
significant changes experienced in information tech-
nologies and their impact on control and audit, “the
basic philosophy of a controlled environment has not
changed” (SAC). Information and process integrity
are still primary concerns for most organizations. Man-
agement is still responsible for identifying risks, de-
signing internal control systems that mitigate the iden-
tified risks, and ensuring that the control systems are
operating effectively. Auditors are still responsible for
determining that internal control systems exist, are
adequate and effective, and that reliance can be
placed on them.

The SAC Framework emphasizes the complex re-
lationship between risks and controls. Some controls
may address several risks, while some risks may need
several controls to be mitigated. This is why the SAC
Framework recommends that risks and controls be
evaluated in the context of the organization-wide in-
ternal control system. Taking this organization-wide
view has led to a migration of the control focus from
the applications environment to one which focuses
on a balance of application and general controls. Gen-
eral controls are more extensive (can affect multiple
applications) than application controls. Thus, the
current trend in information technology is toward
placing additional attention on general controls. The
audit implications of the migration of controls in-
clude more emphasis being placed on the periodic

general control reviews and the audit of technology
components.

The SAC Framework suggests that the key elements
of an internal control system are the control environ-
ment, manual and automated systems, and control
procedures. Consistent with the COSO Framework,
the SAC Framework indicates that a sound control en-
vironment provides the foundation of the internal
control system and contributes to its reliability. Also
consistent with the COSO Framework is the classifica-
tion of control procedures by scope: general informa-
tion systems controls and specific application controls.

The SAC Report describes the audit tools and tech-
niques relevant to auditing information technology
controls. It emphasizes that manual auditing tech-
niques are no longer sufficient since much of the data
required for auditing are in an electronic format and
the volume and complexity are greater than can be
handled manually. As technological environments be-
come increasingly complex, auditors themselves will
need to apply innovative uses of information technol-
ogy to audit these environments.

The SAC Report also addresses an organization’s
core information systems environment and addresses
the risks, controls, and audit considerations of the
telecommunications technologies that enable the var-
ious components of a business operation to “talk”
with each other. The SAC Report does this within the
context of specific technologies; however, as men-
tioned previously, the control principles and tech-
niques are broad enough to be applied to emerging
technologies.

3. COBIT Framework

The Control Objectives for Information and Related Tech-
nology Framework provides a comprehensive and us-
able control model over information technology in
support of business processes. While the SAC Report
provides control principles and techniques related to
specific technologies, the COBIT model provides a
more conceptual view of the control objectives re-
lated to information technology processes. The pri-
mary goal of the COBIT model is to provide “clear
policies and good practices for security and control in
IT (information technology).” To enable the COBIT
model to be applicable over time, it defines the IT
objectives in a generic way so that the objectives are
not dependent on any particular technical plat-
form (COBIT Framework). COBIT recognizes that
some special technical environments may need sepa-
rate coverage for control objectives. For example
ISACA has published Control Objectives for Net Centric

292 Control and Auditing

Technology to address the specific technical issues for
this environment.

The COBIT model recognizes that information is
“the result of the combined application of IT-related
resources that need to be managed by IT processes.”
The COBIT model starts from the following premise:
“In order to provide the information that the organi-
zation needs to achieve its objectives, IT resources
need to be managed by a set of naturally grouped
processes.” The COBIT model consists of 34 processes
supported by high-level IT control objectives. The
control objectives are grouped into four domains:
(1) planning and organization, (2) acquisition
and implementation, (3) delivery and support, and
(4) monitoring (see Table I for a listing of the 34

processes as they relate to these domains). Planning
and organization encompasses the achievement of
business objectives via the best use of IT resources.
Acquisition and implementation deals with identify-
ing the IT solutions required to meet business objec-
tives, developing or acquiring the necessary IT re-
sources, and implementing and integrating these
solutions into the business process. Delivery and sup-
port concerns itself with the actual delivery of re-
quired services. This domain includes the processing
of data by application systems. Monitoring deals with
the monitoring of IT processes for quality and control
compliance. The COBIT model ties the control ob-
jectives of information (availability, integrity, confi-
dentiality, reliability, compliance, effectiveness, and

Control and Auditing 293

Table I Domains and Processes

COBIT Framework

Domains: Processes:

Planning and organization PO1 Define a strategic IT plan
PO2 Define the information architecture
PO3 Determine the technological direction
PO4 Define the IT organization and relationships
PO5 Manage the IT investment
PO6 Communicate management aims and direction
PO7 Manage human resources
PO8 Ensure compliance with external requirements
PO9 Assess risks
PO10 Manage projects
PO11 Manage quality

Acquisition and implementation AI1 Identify solutions
AI2 Acquire and maintain application software
AI3 Acquire and maintain technology architecture
AI4 Develop and maintain IT procedures
AI5 Install and accredit systems
AI6 Manage changes

Delivery and support DS1 Define service levels
DS2 Manage third-party services
DS3 Manage performance and capacity
DS4 Ensure continuous service
DS5 Ensure systems security
DS6 Identify and attribute costs
DS7 Educate and train users
DS8 Assist and advise IT customers
DS9 Manage the configuration
DS10 Manage problems and incidents
DS11 Manage data
DS12 Manage facilities
DS13 Manage operations

Monitoring M1 Monitor the processes
M2 Assess internal control adequacy
M3 Obtain independent assurance
M4 Provide for independent audit

efficiency) and the IT resources that deliver the in-
formation (people, application systems, technology,
facilities, and data) with its four domains and their re-
lated control objectives.

An example should clarify how the model may be
used by business process owners, auditors, and users.
First, the COBIT model enumerates the high-level
control objectives by tying each to one of the 34 IT
processes. Each high-level control objective is pre-
sented as a statement in the following format:

Control over the IT process of name of one of the 34
IT processes (see Table I)
• that satisfies the business requirement of

specific business requirement
• is enabled by statement of control objectives
• and takes into consideration specific control

practices.

Additionally, the COBIT model clearly presents which
information systems control objectives are primarily
and secondarily supported by the high-level control
objective. The model also specifies which IT resources
are managed by the process under consideration, not
just which IT resources are affected by the process.

B. Types of Information Systems Controls

There are two well-established ways to classify con-
trols: (1) on the basis of their function and (2) on the
basis of their scope. Classifying controls by function
distinguishes whether the controls are preventive, de-
tective, or corrective in nature. Preventive controls
are most desirable because they are designed to pre-
vent an error, omission, or unauthorized access from
occurring. Preventive controls can be as simple as hav-
ing clear instructions for data entry or as complex as
firewall security. Detective controls detect and report
when an error, omission, or unauthorized access oc-
curs. Detective controls include input programs which
identify data incorrectly entered and reports on failed
access attempts. Corrective controls are designed to
correct errors and omissions, and terminate unau-
thorized access once detected. Corrective controls in-
clude resubmitting data which was entered incorrectly
and programs designed to correct electronically trans-
mitted data corrupted by line noise.

The classification of controls on the basis of their
scope (i.e., general controls versus application con-
trols) is widely accepted and is the primary means by
which information systems controls are classified in
this discussion. General controls, as previously de-

fined, include all controls over the information pro-
cessing facility and its related functions. Examples of
general controls include the use of log-on IDs and
passwords to authenticate users, locked doors, data
encryption, and business continuity planning. Appli-
cation controls include the steps within application
software and the manual procedures designed to con-
trol the processing of various types of transactions.
Examples of application controls include data valida-
tion controls, control totals, and valid report distri-
bution lists.

1. General Controls

General controls include: sound personnel and com-
munication practices; information systems organiza-
tional controls, access controls (both logical and phys-
ical); environmental controls; business continuity
planning controls; controls over acquisition, develop-
ment, and maintenance of systems and programs; net-
work controls; and data communication controls.

a. SOUND PERSONNEL AND

COMMUNICATION PRACTICES

Sound personnel and communication practices in-
clude hiring practices. Good hiring practices match
skills to positions, and ensure the good character of
those who fill sensitive positions such as the network
administrator, security administrator, and database
administrator. They also include the continuing de-
velopment of current employees’ professional and
technical skills. In addition, practices that promote se-
curity awareness via appropriate documentation of
the internal control system and communicating secu-
rity concerns to all personnel are an integral part of
an effective general control environment.

b. INFORMATION SYSTEMS

ORGANIZATIONAL CONTROLS

Information systems management is responsible for
the day-to-day operations of the information process-
ing facility, which includes ensuring that application
systems can accomplish their work and that develop-
ment staff can develop, implement, and maintain ap-
plication systems. In addition to responsibility for day-
to-day operations, information systems management
is responsible for information systems planning,
strategic planning, and information systems project
management. Information systems management is re-
sponsible for control over (1) data entry when not
performed in user departments; (2) library functions
such as recording, issuing, receiving, and safeguard-
ing all program and data files maintained on com-

294 Control and Auditing

puter disks and tapes; and (3) data control group
functions such as the collection, conversion, and con-
trol of input and the balancing and distribution of
output to users, computer operations, security ad-
ministration, quality assurance, database administra-
tion, systems analysis, application programming, sys-
tems programming, network administration, and help
desk administration.

Information systems management is also responsi-
ble for the proper separation of duties within the in-
formation processing function. The proper separa-
tion of duties helps reduce the possibility that
transactions are improperly authorized or recorded.
At a minimum systems analysis and programming
should be separated from computer operations to
prevent an analyst or programmer from making unau-
thorized changes to a program and then using that
changed program in operations. In fact the only func-
tion that application programming might be com-
bined with even in a small operation is the systems
analysis function. The application programmer would
have too much control if combined with other func-
tions within the information systems organization.

c. ACCESS CONTROLS

Access controls need to be pervasive and apply to end
users, programmers, computer operators, security ad-
ministrators, network administrators, management,
and any others authorized to use the organization’s
computing capacity, including trading partners and
other outsiders. Other outsiders include interconnec-
tion to affiliates’ networks and links to external net-
works of these affiliates’ networks. Once the local area
network of an affiliate has access to an organization’s
network, it becomes a trusted network by default and
has direct access to the network and its resources.

Logical access exposures result from unauthorized
access which can lead to disclosure, manipulation, or
destruction of programs and data. These exposures
include changing data before or as it is entered into
the computer, hiding malicious code in an authorized
computer program, manipulating a program for per-
sonal gain, viruses, worms, logic bombs, trap doors,
asynchronous attacks, data leakage, wire tapping, and
denial of service attacks.

The most widely used logical access controls, which
can also be classified as preventive controls, are the
use of log-on IDs and passwords. Log-on IDs provide
individual identification of the user and passwords
provide authentication. The computer then contains
a list of log-on IDs and access rules that allow access to
files and data on a “need to know, need to do” basis.
If these access rules are specified at the operating sys-

tem level, they are more pervasive and provide better
security than if specified only at the application level.
Passwords should be easy for the user to remember,
but hard for a perpetrator to guess. Some critical con-
trol features for passwords are that they: (1) should
be internally one-way encrypted; (2) should be
changed on a regular basis; (3) should be five to eight
characters long; (4) should include alpha and nu-
meric characters; (5) should not be easy to guess,
such as a spouse’s name, child’s name etc., (6) should
be masked (not appear on the screen when typed);
and (7) inactive user IDs should be deactivated and
eventually deleted from the system. Additionally, log-
on IDs should be deactivated after several unsuccess-
ful attempts (generally three) to enter the correct
password and the system should automatically dis-
connect a log-on session if there is no activity for a
specified length of time.

Increasing telecommuting has made remote access
security critical. Dial-back procedures for personnel
who are telecommuting from a set location do not
work for personnel who are dialing in from various
remote locations such as airports and hotel rooms.
Remote access security requires the use of surround
security measures such as firewalls, as well as the en-
cryption of messages and sensitive files stored on the
computer. Firewalls should filter dial-in access in such
a manner as to deny access except where explicitly
permitted.

Logical access controls are strengthened via the
use of organization-wide classification schemes and
naming conventions. These enable better control over
computer files and aid in the verification and moni-
toring of security. Classification of data should be
based on its relative sensitivity and should use a sim-
ple scheme such as high sensitivity, medium sensitiv-
ity, and low sensitivity. For example, the Department
of Defense has the simple classification scheme: sen-
sitive, but unclassified; confidential; secret; and top
secret. Access should be denied to any user who does
not have the appropriate level of authorization. How-
ever, even personnel who might be allowed access to
highly sensitive data in their area should be denied
access to highly sensitive data in another area. For ex-
ample, someone might be cleared for access to highly
sensitive data in production, but should be denied ac-
cess to highly sensitive data in personnel or payroll.
Naming conventions can be used to provide this type
of filter.

Physical access exposures include unauthorized en-
try, damage, vandalism, or theft of equipment, copy-
ing, viewing, and abuse of data processing resources.
Physical access controls should include, at a mini-

Control and Auditing 295

mum, using bolting door locks to facilities that house
computer equipment and hardware. More advanced
physical access controls might include biometric con-
trols, cipher locks, and electronic door locks.

Manual or electronic logging of visitors, along with
escorted or controlled visitor access, also reduces phys-
ical access risks. Photo identification badges, video
cameras, and security guards provide an even greater
level of security. If photo identification badges are
used, visitors should be required to wear a different
color badge. Deadman doors, which consists of two
doors and require that the first door close before the
second door opens, provide a higher level of security
to computer rooms and document stations. Mainte-
nance personnel should be bonded. The location of
sensitive facilities, such as the computer room, should
not be advertised nor should they be identifiable or
visible from the outside.

Some access problems must be addressed by the
use of both logical and physical access controls. For
example, many organizations operate in client/server
environments. In this environment sensitive corpo-
rate data may be stored on or accessed from PCs that
are not centrally located. To adequately protect PC
data, both logical and physical access controls are re-
quired. The most widely used logical access controls
over PC data are passwords and the use of encryption.
The use of encryption will protect against any unau-
thorized use of the data stored on a PC even if the
password protection is penetrated. Physical access con-
trols over PC data include removing and locking up
the storage medium when the PC is not in use, using
lockable enclosures to protect against someone just
taking the PC, and using an alarm system that will
alert security if the PC is moved.

Both logical and physical access controls may also
be needed to protect an organization against viruses,
worms, and logic bombs. Client/server environments,
local and wide area networks (LANs, WANs), and ready
access to the internet, require sound control policies
and procedures, as well as technical controls such as
virus scanners and active monitors (active monitors
look for virus-like activities and prompt the user to
confirm they want to perform the activity requested).
Sound internal control policies and procedures that
would help protect against viruses, worms, and logic
bombs include, but are not limited to, write protect all
disks with .EXE or .COM extensions, allow no disk (in-
cluding commercial software) to be used until it has
been scanned (preferably on a stand-alone machine),
boot only from disks that have been continuously write-
protected, ensure antivirus software is installed on all

workstations and the server, ensure that antivirus soft-
ware is updated frequently, ensure that a sound backup
policy is in place and operating effectively, educate
users so they will comply with these good internal con-
trol policies and procedures, use hardware-based pass-
words, and use workstations without floppy drives.

d. ENVIRONMENTAL CONTROLS

Information-processing facilities also face environ-
mental threats. These include, but are not limited to,
power failures, power spikes, natural disasters, fire,
equipment failure, air conditioning failure, water
damage and/or flooding. While these often result
from events that the organization has no control over,
certain environmental controls will reduce the dam-
age caused by these events.

A variety of control procedures can help mitigate
the damage caused by these environmental threats.
Surge protectors can prevent the damage caused by
power spikes, while an uninterrupted power supply
(UPS) can mitigate the damage caused by power fail-
ures. The computer room should not be located in
the basement or on the first two floors of a multistory
building. This can help prevent water damage due to
flooding. Water detectors can be used to reduce the
impact of water damage due to pipe leakage, etc. To
prevent fire and smoke damage, an organization
should implement a combination of controls such as
fireproofing walls, floors, and ceilings around the
computer, using fire-resistant office materials, using
fire suppression systems, and having regular inspec-
tions by fire department personnel. Smoke detectors
will help to detect potential fires and warn personnel.
The use of hand-held fire extinguishers can reduce
the damage if a fire is detected early enough. If, in
fact, there is a fire or a need for an emergency evac-
uation, there should be two emergency power-off
switches, one located inside the computer room and
one located just outside the computer room. Both
switches should be easily accessible to authorized
computer room personnel and clearly identified, but
should be protected from accidental or unauthorized
activation. Controlled keypad access to both of these
switches could prevent inadvertent activation.

These environmental controls will also help miti-
gate the damage caused by natural disasters, but gen-
erally will not completely alleviate the impact of such
disasters. When such disasters or other less severe
business interruptions occur, the organization should
have a plan for resuming normal operations as quickly
as possible. These business continuity planning con-
trols are discussed in the next section.

296 Control and Auditing

e. BUSINESS CONTINUITY PLANNING CONTROLS

Successful organizations must have a plan to continue
business after interruptions caused by access viola-
tions, as well as a recovery plan in the event of envi-
ronmental threats ranging from the interruption of
electrical services to natural disasters such as floods,
tornadoes, hurricanes, and earthquakes. While much
of this business continuity planning process can be
considered preventive in nature, once business is in-
terrupted, the business continuity plan is a corrective
control for resuming operations quickly.

A major component of any business continuity plan
includes sufficient backup of systems and data. This
requires sound policies and procedures to ensure that
adequate backup exists. Particularly problematic is
ensuring that end users follow appropriate backup
procedures.

In recent years, information systems professionals
and business managers have recognized the need for a
more comprehensive business continuity plan than the
traditional disaster recovery plan designed to be in-
voked in the event of a physical disaster. Blatnik asserts
that businesses are probably suffering greater financial
loss from less severe computer disruptions than from
major physical disasters. These information systems
professionals and business managers have also recog-
nized the need for end-user personnel to be involved
in the business continuity planning process. Disaster
recovery and business continuity planning can no
longer be viewed as the exclusive purview of the infor-
mation systems processing function. With distributed
information systems becoming the norm, it is impera-
tive that all those who may have an impact on or may
be affected by business interruptions be involved in the
business continuity planning and maintenance process.

Business continuity planning begins with assessing
the risks and identifying the critical processes that
would require a quick recovery in the event of a busi-
ness interruption. In order to identify critical
processes it is important to have a complete under-
standing of the network and system design and to
know what systems supports exist. Network diagrams
and an assessment of system supports, including ser-
vice arrangements, key vendor relationships, and
maintenance agreements help to identify points of
systems failure that might affect critical processes.
These failures may range from the interruption of ser-
vice due to a failure in a communication line, a hub,
a host computer, or an overarching failure due to a
large-scale physical disaster.

Once the critical processes have been identified,
they need to be prioritized according to criticality and

time sensitivity. Prioritizing the critical processes re-
quires the input of business managers (or at least end-
user personnel), as well as key technical staff and in-
formation systems auditors. Prioritizing the critical
processes allows the organization to focus on those
processes requiring immediate attention in the event
of a business interruption.

A recovery plan for all critical processes should be
developed such that each critical process has a clearly
specified recovery plan. For example, the recovery
plan could be as simple as keeping a spare hub on
hand so that if a hub goes out, it can be replaced with
minimal interruption of service. Another example
would be if the main server fails, recovery might in-
volve contacting the service personnel with the ven-
dor and/or rerouting critical main server functions to
backup servers. All recovery plans should be designed
to minimize downtime.

To ensure that business continuity plans will en-
able the organization to quickly recover, testing of the
business continuity plan is critical. At a minimum, a
paper walkthrough of the plan by the personnel who
are responsible for the plan’s implementation should
be performed. This paper walkthrough involves rea-
soning out what might happen in the event of various
types of business interruptions. While this paper walk-
through provides the organization with useful infor-
mation, it is not sufficient to conclude that the busi-
ness continuity plan is complete. The information
provided by the paper walkthrough should be used to
modify and improve the business continuity plan. The
paper walkthrough should then be followed by tests
on different aspects of the plan where actual resources
are expended in simulation of a system interruption.
These tests should be performed at a time when ac-
tual disruption of business is minimized.

A full operational test, which requires shutting
down operations, should only be performed after ad-
equate paper tests and tests on different aspects of the
plan have been performed. The results of every phase
of this full operational test should be documented
and analyzed. The analysis should include quantita-
tive measures of the elapsed time, the number of crit-
ical systems that were successfully recovered, actual
versus required measures of such items as the num-
ber of records successfully carried to the backup site,
measures of the accuracy of data entry at the backup
site versus normal data entry accuracy, and other mea-
sures of success.

The business continuity plan must be tested on a
regular basis. It is important that the business conti-
nuity plan not be viewed as static. The pace of change

Control and Auditing 297

in this environment is significant, and that puts addi-
tional stress on continuity plans that need to change
correspondingly. The business continuity plan should
include recovery plans for smaller scale business in-
terruptions that should also be tested regularly and
changed as necessary.

f. CONTROLS OVER ACQUISITION, DEVELOPMENT,
AND MAINTENANCE OF SYSTEMS

A variety of systems development methodologies are in
use today, with the systems development life cycle
(SDLC) approach perhaps being the oldest and most
frequently cited methodology. Whatever methodology
is adopted, well-defined standards for all phases of sys-
tems development are required in order to provide ad-
equate control of the acquisition, development, and
maintenance of information systems. The systems de-
velopment standards adopted need to be flexible
enough to adapt to the type of systems development
being undertaken, whether it is a local or a global sys-
tem or application. For example, the standards adopted
for the development of a system-wide database will dif-
fer substantially from the standards adopted for a small
system developed by a group of end users. Well-defined
standards help reduce the risk that the new or modi-
fied system will not meet users’ needs, will take longer
to complete than expected, or will be over budget. The
most serious of these risks is that the new system will
not meet the needs of the user.

While there are a variety of systems development
methodologies, all essentially contain the following
phases during the systems development life cycle: (1) re-
quirements analysis, (2) solution definition, (3) design
and build (or acquire), (4) testing, and (5) transition.

Before any development takes place it is important
to clearly define the business requirements. One crit-
ical aspect of defining the business requirements that
is often overlooked is the study of the existing system,
including studying what works and what does not
work, and the actual need for replacing or modifying
the existing system. Users should be involved in this
phase of development and should be aware of the
need for systems development standards and how they
can help meet those standards for the development
project being considered.

After the business requirements have been clearly
defined, the specific phases of the development
process and the key deliverable for each of those
phases should be decided early in planning phases of
the project. Some of this might occur during the re-
quirements analysis phase; however, much of it will
depend on the definition of the solution and thus will
occur during the solution definition phase.

The deliverables of the solution definition phase
become the blueprint for the design and build phase
of the project. The deliverables of the solution defi-
nition phase should include a definition of key user
interfaces with the system, a definition of manual and
automated processes, specification of how interfaces
will work, specification of data structures and content,
and specification of “error handling, security, control,
backup, and contingency procedure” (Warren et al.).
In essence, the solution definition defines how the
system will appear to users.

The design and build phase includes developing
the technical design of the system (i.e., how the sys-
tem will be built), programming and testing of the
system, developing user procedures, and training user
personnel. Some key deliverables from this phase in-
clude procedures for the data conversion system, de-
tailed test plans, software ready for systems testing,
technical documentation, user documentation, help
screens, training materials, and trained operations
and user staffs.

The testing of systems prior to implementation is
critical to the success of any systems acquisition or de-
velopment; however, often not enough time is allo-
cated to this critical phase of the development cycle.
Often, subsystem testing is not performed in a timely
manner during the design and build phase of the
project. The amount and timing of testing should be
related to the criticality of the subsystem/application.
The last step in systems testing is to perform a com-
prehensive test of the entire system. “The key deliver-
able of this phase is the tested, formally accepted, and
fully documented new system, ready for installation
and production operation” (Warren et al.).

The last phase in systems development is the tran-
sition phase, which has as its key deliverable the new
system implemented in the production environment.
Part of the transition phase is the conversion of old
files to new formats which must be completed before
a new system is implemented. Often this conversion
process is not controlled as well as it should be and,
in particular, if conversion of master files is not ade-
quately controlled it can have a far-reaching impact
on the organization. Hence controlling the conver-
sion process to ensure correct and complete conver-
sion of the master files is critical. Conversion pro-
grams should be tested thoroughly and application
control procedures, such as control totals and pro-
grammed edit checks, should be applied to the con-
version of data. Because of the high risk of error and
the potential far-reaching effects of those errors, the
conversion process should be monitored. At a mini-
mum, the following techniques should be used:

298 Control and Auditing

(1) test checking of individual data and records on
the new file against the source records; (2) using au-
dit software or verification programs to look for ex-
ceptional or unusual data on the new file; and (3) us-
ing audit software or specially designed programs to
compare information on the new application files
with that on the existing application files and report-
ing the differences.

g. NETWORK CONTROLS

In order to address the complexity of networked sys-
tems, the International Standards Organization has
developed network control standards in the following
areas: configuration management, fault management,
performance management, and security manage-
ment. Configuration management consists of defin-
ing the network management system, the devices to
which it connects, and the network configuration
characteristics. In addition to a detailed map of the
network topology and all the hardware within the net-
work, good configuration management also supports
fault management, performance management, and
security management.

Fault management is the most important function
of network management because it deals with main-
taining “the availability of the network services and re-
sources” (Warren et al.). There are four phases to fault
management: (1) problem identification, (2) prob-
lem classification, (3) problem recovery, and (4) prob-
lem reporting. Having well-defined procedures for
performing each phase will help maintain availability
of network services and resources. Problem identifi-
cation requires monitoring the network for condi-
tions that are considered to be failures. Problem clas-
sification requires a comprehensive diagnostic testing
capability in order to classify the cause of the failure.
Recovering from the failures and restoring service
rapidly (problem recovery) requires well-defined steps
given the different types of network failure (equip-
ment, high-capacity private lines, etc.). Proper records
of failures, such as trouble tickets initiated by opera-
tors or help desk technicians, should be kept and pe-
riodic reports should be prepared indicating types of
failures, steps taken to resolve failures, time to resolve
failures, and the ultimate resolution of a problem.

Performance monitoring is as important, if not
more important, for networked systems as it is for
mainframe and client-server systems. Performance
monitoring requires the collection, storage, and re-
porting of network availability, fault management per-
formance, and network performance. In addition to
supporting network management, performance mon-
itoring can also help detect the misuse and abuse of

network resources. Preventing the misuse and abuse
of network resources requires defining and regulating
access to network resources through the use of ap-
propriate access controls such as authentication and
authorization as well as the use of encryption.

h. DATA COMMUNICATION CONTROLS

LANs and WANs depend upon controlled data com-
munications systems. Hence, good network controls
depend upon good data communication controls.
Data communication controls should be designed to
mitigate the effects of three types of exposures:
(1) passive or active subversive attacks; (2) failure of
communication components; and (3) impairment of
data during transmission (line errors). The discussion
of access controls addressed the key exposures and
controls related to passive or active subversive attacks.
In this section the discussion of data communication
controls will center on the failure of communications
components and the impairment of data during
transmission.

There are three broad categories of communica-
tions system components: (1) transmission media,
(2) hardware, and (3) software. Transmission media in-
clude both bounded media (twisted-pair wire, coaxial
cable, optical fiber) and unbounded media (mi-
crowave, satellite, and infrared). Examples of trans-
mission media failure include a sliced cable or a mi-
crowave failure. Communications hardware includes
amplifiers, repeaters, modems, ports, routers, bridges,
gateways, multiplexors, concentrators, switches, etc.
Examples of communications hardware failures in-
clude a power surge that knocks out a modem or a
concentrator that fails. Communications software in-
cludes message, line, or packet switching software,
data compression software, electronic funds transfer
software, electronic data interchange software, polling
software, buffer software, etc. Examples of software
failures include program bugs or message collisions
due to polling software failure.

The impairment of data during transmission can
be caused by attenuation, delay distortion, or noise.
Attenuation is the weakening of the signal as it trav-
els along the transmission medium. To help prevent
attenuation from occurring, amplifiers can be used to
boost the signal strength for analog signals and re-
peaters can be used to boost the signal strength for
digital signals. Delay distortion only occurs on
bounded transmission media and occurs because the
varying frequency components of a digital signal will
arrive at the receiver at different times. Noise is an
electrical fluctuation in the transmission medium that
increases as more data are transmitted over a medium.

Control and Auditing 299

Several controls exist which help to mitigate the
impact of the impairment of data: (1) redundancy
checks, (2) echo checks, (3) automatic retransmis-
sion, (4) forward error correction, and (5) sequence
checking. Redundancy checks require that additional
information be sent along with the message which al-
lows the receiver to perform an error check on re-
ceived data. Echo checks, sometimes called loop
checks, call for the receiver to send the message back
to the sender so the sender can compare what was re-
ceived with the stored message. Automatic retrans-
mission requires the use of special characters ap-
pended to the message that allow the receiving unit
to send a positive acknowledgment of receipt of a cor-
rect message or to send a negative acknowledgment
of an incorrect message. If the sender receives a neg-
ative acknowledgment, the sender resends the mes-
sage automatically. Forward error correction allows
the receiver not only to detect if the message is in-
correct, but also sends enough information to allow
the receiving unit to correct the message without fur-
ther involvement of the sender. Message sequencing
allows for checking that all messages were received in
the correct sequence.

2. Application Controls

Application controls include controls over data input,
processing, files, and output and include both physi-
cal and logical controls. Input control procedures
should ensure that every transaction that is received
for processing is recorded accurately and completely.
Input control procedures should also ensure that all
transactions that should be processed are indeed
processed and that all valid transactions are processed
only once. Processing control procedures should en-
sure that proper processing of transactions takes place.
File control procedures should ensure that only au-
thorized processing is performed on stored data and
that data integrity is maintained by not allowing con-
current access to a data item. Output control proce-
dures should ensure that information systems output
is only distributed or displayed to authorized users.

a. INPUT CONTROLS

Input controls include both data capture controls and
data validation controls. Data capture controls should
ensure that: (1) all transactions are recorded in the ap-
plication system; (2) transactions are only recorded
once; and (3) rejected transactions are identified, con-
trolled, corrected, and reentered into the application
system. There are two primary approaches to capturing
data: (1) batching source documents of like transac-

tions and processing them together or (2) on-line data
entry. Batched input can consist of physical batches (a
physical group of transaction source documents; phys-
ical batches are becoming less and less prevalent but
still do exist) or of logical batches (transactions en-
tered on-line but batched on a logical basis, such as
employee ID number, before further processing).

Data capture controls for batched input include
identifying batches by unique identifiers that include
batch numbers, transaction types, and employee ID
numbers; using control totals such as record counts
and financial totals; and indicating when the batch
was prepared and processed. Another critical batch
control is to provide information on errors detected
in the batch and the ultimate resolution of the errors
(i.e., how the errors were corrected). Additionally, in
order to keep track of physical batches as they are
routed through the organization, every employee who
handles batches should keep a batch control register
in order to log the movement of a batch from initia-
tion to processing and back to storage.

The primary data capture control for on-line data
entry is a system generated transaction log. This trans-
action log should contain detailed information on
each transaction, such as date and time of entry, trans-
action type, customer/vendor identification, and who
input the transaction and from which terminal.

Data validation controls can be performed during
data input or during data processing. For batch pro-
cessing, data validation is generally performed during
data processing, while for on-line input data valida-
tion generally occurs during input. There are three
types of data validation checks: (1) field checks,
(2) record checks, and (3) file checks.

Common field check controls include alphanu-
meric field tests, missing data (completeness) tests,
range tests, limit tests, existence (validity) tests, and
check-digit verification tests. An alphanumeric field
test checks to ensure that an alphabetic field contains
only alphabetic characters or that a numeric field con-
tains only numeric characters. A missing data test
checks to see that a field contains data, not blanks or
zeros. A range test checks to see if the value in a field
falls within an allowable range of values, while a limit
test checks to see that the value does not exceed a
predetermined limit. An existence test checks to de-
termine whether the value is one of a set of permissi-
ble values (generally through a table look-up proce-
dure). Finally, check digit verification checks to see
that the check digit is valid for the value in the field.

Record tests are designed to determine whether
the value in a field is consistent with the field’s logi-
cal relationship to other fields. Three common record

300 Control and Auditing

checks are reasonableness tests, valid-sign tests, and
sequence checks. Reasonableness tests ensure that
the value in the field is consistent with other data con-
tained in the record. An example of a reasonableness
test would be to test whether the value for an indi-
vidual’s salary is consistent with that individual’s job
classification. A valid-sign test ensures that the sign of
the value is consistent with the transaction type. A se-
quence test checks for sequential numbering of trans-
actions and issues an error message if the current
transaction is out of sequence.

File checks determine whether the file used during
data entry is the correct file type and is the latest ver-
sion of the file. If the wrong file is accessed notifica-
tion should be made immediately after it is accessed
so that no processing is performed on the wrong file.
File checks include internal labels that identify the
file type, generation numbers that identify whether it
is the correct version, a retention date to ensure pro-
cessing is not performed on a file past its retention
date, and control totals on the contents of the file to
add to the other file check controls.

The resolution of data input errors is a critical as-
pect of data input controls. Data input error messages
should be clear and concise and should lead to quick
and accurate correction of the errors. Records should
be kept of data input errors and the steps taken to
correct the error and reenter the transaction into the
system.

b. PROCESSING CONTROLS

Processing controls are responsible for ensuring the
proper computing, sorting, classifying, and summa-
rizing of data. In addition to the application programs
that perform these functions for specific subsystems
within the organization, the processing of data is af-
fected by the performance of the central processor,
the operating systems that manage system resources,
and the real or virtual memory where the program in-
structions are stored. Hence, proper processing of
transactions not only requires strong controls within
the application program, but also requires strong gen-
eral controls. More specifically, strong controls over
the acquisition, development, and maintenance of
systems and programs, strong business continuity con-
trols, and strong organizational controls, such as seg-
regation of duties of information systems personnel,
are required.

Within the application program, processing valida-
tion procedures help ensure that numeric fields have
been properly authorized and are accurate, complete,
and calculated correctly. In addition to the range
check described previously, another field check that

should be performed on numeric fields in a record is
an overflow check. An overflow check detects whether
a field used for calculations is zeroed out initially. If a
field is not zeroed out initially, subsequent calcula-
tions can be in error. Additionally, record checks that
should be performed on numeric fields at the pro-
cessing stage include reasonableness tests and sign
tests discussed previously.

File checks include the use of run-to-run control
totals and crossfooting. Run-to-run control totals help
ensure the accuracy of computations by allowing com-
parison of the master file balance before and after
processing with the amount the file balance should
be after the transactions have been processed. If the
current balance of a cash account is $50,000 and in-
coming transactions contain a total of $7000 in addi-
tions to cash and $10,000 in subtractions from cash,
the resulting balance in the cash account after pro-
cessing should be $47,000. Crossfooting involves cal-
culating separate control totals for related fields and
crossfooting them at the end of processing. In a pay-
roll file, separate control totals could be calculated
for gross pay, total deductions, and net pay. After pro-
cessing the control totals can be crossfooted to ensure
that gross pay minus deductions equals net pay.

Other controls that are necessary to ensure proper
processing include audit trail controls and check-
point/restart controls. Audit trail controls should in-
clude an accounting audit trail that would allow au-
ditors “to trace and to replicate the processing
performed on a data item that enters the processing
subsystem” (Weber). Additionally, an operations audit
trail should allow the collection of resource con-
sumption data (i.e., hardware consumption, software
used, data files accessed, and personnel interventions
required), the logging of security sensitive events such
as failed attempts to use resources, the collection of
hardware malfunction data, and the logging of user-
specified events such as allowing a user-written pro-
gram to access data.

Checkpoint/restart controls are critical to ensur-
ing the proper processing of transactions. If a pro-
gram is interrupted before normal termination,
accurate and complete processing up to that point
should not be repeated during the recovery process.
Checkpoint/restart controls allow programs to be
restarted and completed from a point just prior to the
interruption.

c. FILE CONTROLS

File controls are designed to ensure that stored data
is not improperly accessed and changed. In addition
to the processing controls that help ensure process-

Control and Auditing 301

ing is only performed on the correct version of the
file and is accurate and complete, other controls over
data files should be used to protect the stored data
from corruption. Before and after processing image
reports make it possible to determine the impact that
transactions have had on stored data. All critical data
files should record and report before and after pro-
cessing image reports which allows the comparison of
the data file before processing to after processing in
case of a problem with the processing of transactions
against the data file. In addition to internal labels de-
scribed in Section II.B.2.b, external labels should be
used for removable storage media to ensure the
proper file is loaded for processing. Data file security
controls should be used to ensure that only autho-
rized users have access to stored data. This helps en-
sure that data is not corrupted by unauthorized ac-
cess. Transaction logs which detail all transaction
input activity (such as date of input, user ID, and ter-
minal location) should be kept in order to help locate
exceptions when they do occur.

Additionally, file controls (especially in a database
system) should ensure that two processes are not al-
lowed access to the same data item concurrently so
that one process is not updating the data item at the
same time that the other process is trying to update
the data item. The result could be that one of the up-
dates is not processed. Concurrency controls, which
are quite complex particularly in a distributed data-
base system, reduce the possibility of this occurring.

d. OUTPUT CONTROLS

Output controls are designed to ensure that reports,
checks, documents, and other displayed or printed in-
formation are not distributed or displayed to unau-
thorized users. Output controls should include report
distribution logs, the secure logging and storage of
sensitive and critical forms (especially negotiable
forms such as blank checks), controlled computer
generation of negotiable instruments, controlled phys-
ical distribution of reports (including having the re-
cipient sign a distribution log indicating receipt of
output), controlled disposition of physical reports,
strict adherence to a formal record retention policy,
periodic reconciliation of output to control totals,
and establishment and adherence to formal output
error handling procedures.

III. AUDIT OF INFORMATION SYSTEMS

Weber defines information systems auditing as “the
process of collecting and evaluating evidence to de-

termine whether a computer system safeguards assets,
maintains data integrity, allows organization goals to
be achieved effectively, and uses resources efficiently.”
This definition indicates that the objectives of an in-
formation systems audit are broader than those of the
traditional financial statement audit (which is pri-
marily concerned with safeguarding assets and finan-
cial statement data integrity) or traditional internal
audit (which historically has been concerned with ef-
fectiveness and efficiency). The information systems
audit encompasses the objectives of both. Because in-
formation systems auditing provides a competent, in-
dependent evaluation of the internal controls of an
information system, it enables organizations to better
meet both the security objectives (availability, integrity,
and confidentiality) and fiduciary objectives (reliabil-
ity, compliance, effectiveness, and efficiency) of inter-
nal controls described previously.

Networked computer systems are much more com-
plex than the manual or legacy systems they replaced
and this complexity impacts the collection and evalu-
ation of audit evidence. In order to deal with the com-
plexity of these computerized systems, information
systems auditors break the information system down
into its various subsystems. Subsystems of an informa-
tion system can be logically grouped by whether they
are part of the general controls subsystem or the ap-
plications control subsystem. The general controls
subsystem consists of those functions which are de-
signed to provide the support for the planned and
controlled development, implementation, operation,
and maintenance of the information system.

The applications control subsystem consists of all
the application functions needed to accomplish reli-
able information processing. In the typical organiza-
tion these application functions relate to the follow-
ing accounting cycles: revenue and collection,
acquisition and expenditure, production and payroll,
and finance and investment. Within each application
function, controls over input, file access, processing,
and output are needed.

Information systems auditors should have a gen-
eral understanding of the various subsystems that
make up the organization-wide information system
and the relationship of the various subsystems to each
other in order to plan and conduct the audit. In the
broad sense information systems auditors should have
an understanding that the general controls subsys-
tems provide the underlying foundation for the con-
trolled operations of the applications functions within
the applications control environment. The informa-
tion systems audit involves evaluating evidence about
the reliability of controls in each of these subsystems.

302 Control and Auditing

To assess subsystem reliability in the general con-
trols subsystems, the information systems auditor de-
termines the major functions performed by each sub-
system as well as how those functions should be
performed. The information systems auditor then
evaluates how well the subsystem performs in com-
parison to how it should perform. When a function
within the subsystem does not perform as it should,
the information systems auditor determines that a
failure of the subsystem function has occurred.

The approach to assessing subsystem reliability in
the applications control subsystems is similar to the
approach for the general controls subsystems. To as-
sess subsystem reliability in the application controls
subsystems, the information systems auditor deter-
mines the possible transactions that occur in the par-
ticular application and what would constitute proper
processing of transactions for that application. A fail-
ure occurs if a transaction is not properly authorized,
accurate, complete, and performed consistently with
effective and efficient operations. Applications con-
trol subsystems failures may result in errors in an or-
ganization’s financial information. The information
systems auditor is concerned with errors which could
cause material losses to the organization or material
misstatements in the financial information reported
by the organization and failures that have or could
cause material losses to the organization through in-
effective and inefficient operations.

Information systems auditors generally audit the
controls in the general controls subsystems first to de-
termine the reliability of the general controls envi-
ronment, keeping in mind that general controls may
not be consistently applied across all segments of large
and complex organizations. The absence or improper
functioning of a control at the general controls level
indicates that a protective control which generally ap-
plies to many application functions is not function-
ing. This is a more serious control failure than the
failure of a control in a particular application func-
tion which only affects that particular application
function.

There are four categories of systems- and nonsys-
tems-related audit procedures that are used to collect
and evaluate evidence regarding subsystem reliability:
(1) procedures to gain an understanding of the in-
formation system and its controls; (2) tests of con-
trols; (3) substantive tests of events/transactions; and
(4) substantive tests of balances/overall outcomes.
Procedures to gain an understanding of the informa-
tion system and its controls include inquiries, inspec-
tions, and observation. The auditor uses these proce-
dures to determine what controls exist to meet

management’s control objectives, how they are
designed, and whether they have been placed into
operation.

Tests of controls focus on determining whether the
controls are well-designed to meet specified control
objectives and whether they have operated effectively
throughout the entire audit period. The specific au-
dit procedures used to test controls include inquiries,
inspections, observation, and reperformance of the
control procedure. To test information systems con-
trols auditors can: (1) use generalized audit software
(e.g., IDEA™, Audit Automation Software; ACL) to
access and evaluate the contents of data files; (2) use
specialized software to assess operating system con-
trols; (3) use flow-charting techniques to document
and evaluate automated applications; and (4) use op-
erating system audit reports to evaluate operating sys-
tem controls (ISACA).

The objectives of substantive tests of events/trans-
actions and substantive tests of balances/overall out-
comes are quite different from the objectives for tests
of controls. The objective of substantive tests of trans-
actions depends on whether the auditor is testing
transactions from an attest perspective or from an op-
erational perspective. From an attest perspective the
auditor is concerned with whether the subsystem pro-
cessing has led to erroneous or irregular processing
which results in materially misstated financial state-
ments. From an operational perspective the auditor is
concerned with whether transactions/events have
been processed effectively and efficiently. The objec-
tive of tests of balances and tests of overall results is
to obtain sufficient evidence to make a final judgment
as to the extent of loss or account misstatement that
occurs when the information system fails to meet the
objectives of safeguarding assets, maintaining data in-
tegrity, and achieving operating effectiveness and ef-
ficiency. For both types of substantive tests, the infor-
mation systems auditor can use generalized audit
software, specialized operating system software, and
audit reports from operating systems to perform tests
of balances/overall results.

The audit of most information systems, particularly
networked systems, is quite complex and requires a
well-planned process. The steps in an information sys-
tems audit mirror the steps taken in a traditional fi-
nancial statement audit, but as previously discussed
the objectives are broader. The audit objectives cen-
ter around substantiating that internal controls exist
to minimize risks to the organization and include
both financial statement objectives (safeguarding as-
sets and integrity of data) and internal audit objec-
tives (effectiveness and efficiency of operations). The

Control and Auditing 303

steps to be taken in an information systems audit in-
clude: (1) planning the audit by obtaining an under-
standing of the information system (or subsystem);
(2) performing tests of the relevant controls; (3) per-
forming tests of events (generally transactions for
application subsystems) occurring in the subsystem;
(4) performing tests of balances or overall results of
the subsystem (not all subsystems will generate bal-
ances, but all subsystems should meet certain criteria
for overall performance); and (5) forming an audit
opinion and reporting the results of the audit.

The information systems auditor will generally follow
these steps in the audit of the various subsystems of the
information system; however, before the audit can be
planned for the various subsystems, the auditor should
first gain an understanding of the organization-wide in-
formation system. Specifically, to gain an understanding
of the organization-wide information system and its con-
trols, information systems auditors should familiarize
themselves with the technical, managerial, and physical
environment of the information systems processing fa-
cility. This familiarization process includes such steps as
reviewing network diagrams, documenting access paths,
touring the information systems processing facility, in-
terviewing systems and network personnel, reviewing
reports from access control software, and reviewing writ-
ten policies, procedures, and standards. In reviewing
policies and procedures particular attention should be
paid to physical access policies, logical access policies,
and whether the organization provides formal security
awareness training. If the information systems auditors
have prior experience with this information system, this
familiarization process would include reviewing the
prior year’s working papers and noting any changes in
the technical, managerial, and physical environment
since the prior audit.

Once information systems auditors have familiar-
ized themselves with the technical, managerial, and
physical environment of the information systems pro-
cessing facility, they are able to plan the audit of the
various subsystems. They will prepare audit programs
which detail the steps to be taken in auditing each
subsystem of the information system. A primary con-
cern of the information systems auditor is that control
objectives for each subsystem are being met.

The information systems auditor performs tests of
the subsystem controls which are designed to meet
each of the subsystem control objectives. The infor-
mation systems auditor tests policies and procedures
as well as whether the proper separation of duties of
subsystem activities is being followed. Where the
proper separation of duties for subsystem activities is
not being followed, the information systems auditor

will assess whether compensating controls exist and
will test them.

The testing of automated controls has moved be-
yond random sampling of transactions to include the
use of audit software to analyze entire data files and
the use of system exception reports for audit pur-
poses. For example, the auditor can electronically an-
alyze an organization’s inventory file for slow-moving
inventory and so forth. Auditors may also analyze sys-
tem exception reports to gain an understanding of
how effectively the system controls are working. The
results of the tests of controls will provide the infor-
mation systems auditor with evidence which can be
used to determine the extent to which the auditor will
need to perform tests of transactions/events and tests
of balances/overall results.

When internal control objectives are being met
and internal controls are operating effectively, the in-
formation systems auditor can rely on these controls.
Such reliance can reduce the amount of substantive
audit evidence required to perform the audit. The
next two steps in the audit process are for the auditor
to gather and evaluate evidence about the proper pro-
cessing of transactions/events and then to perform
tests of balances/overall outcomes.

The final step in the subsystem audit is to evaluate
all the evidence gathered and make a final judgment
on the overall operations of the subsystem. Information
systems auditors will also develop recommendations for
improving the operations of each of the subsystems.

Once all of the subsystems have been audited and
the results of each subsystem audit have been com-
piled, information systems auditors are ready to re-
port their findings for the overall audit of the infor-
mation system. The overall report on the information
system reliability will take into consideration how all
of the subsystems interact with each other. This re-
quires more than just an understanding of how well
each subsystem operates; it requires an overall un-
derstanding of the complexity of the organization-
wide information system.

Information systems auditors are all too aware that
they not only must be well-versed in the techniques
and control emphasis of the traditional financial state-
ment audit, but must also draw on the expertise from
the areas of management information systems, com-
puter science, and even behavioral science. The
knowledge bases of these disparate fields of study are
far too broad for any one individual to be well-versed
in each; hence, information systems audit teams
should be composed of individuals with a variety of
talents and the ability to communicate with each other
about their individual areas of expertise.

304 Control and Auditing

IV. CONTROLS IN THE CONTEXT OF
CURRENT AND FUTURE TECHNOLOGIES

The increasingly widespread computerization of in-
formation, combined with the widespread access to
this information through the technology provided via
the internet, has magnified the need for the imple-
mentation of good internal control policies and pro-
cedures. Much information that was previously ob-
tained through a long and tedious process is now
virtually at the fingertips of millions of internet users.

Staying abreast of control issues related to advances
in existing technologies, as well as new and emerging
technologies presents an ongoing challenge for infor-
mation systems auditors. Control issues related to these
advances will require new and innovative control ap-
proaches. For example, the authentication of users in
public networks became an issue in the late 20th cen-
tury and will continue to be an issue. One way to ad-
dress this issue is through the use of digital certificates,
which allow one to send and receive secure e-mail. To
help auditors stay abreast of these and other technology
related issues, the Information Technology Section of
the American Institute of Certified Public Accountants
issues an annual list of top ten technologies, top ten
technology issues, top ten technology applications, and
emerging technologies (see www.toptentechs.com).
Many of the technologies, technology issues, technol-
ogy applications, and emerging technologies addressed
by the Information Technology Section are likely to be
of concern to information systems auditors during the
early part of the 21st century.

ACKNOWLEDGMENTS

We thank Lyn Graham and Bill Powers of BDO Seidman LLP
for their useful insights into this topic.

SEE ALSO THE FOLLOWING ARTICLES

Accounting • Benchmarking • Computer-Aided Manufactur-
ing • Cost/Benefit Analysis • Procurement • Productivity •

Public Accounting Firms • Supply Chain Management •
Transaction Processing Systems

BIBLIOGRAPHY

ACL web site at www.acl.com/en/.
Blatnik, G. (1998). Point of failure recovery plan. IS Audit and

Control Journal, Vol. IV, 24–27.
Committee of Sponsoring Organizations of the Treadway Com-

mission (COSO). (1992). Internal Control—Integrated Frame-
work: Framework. New York: Committee of Sponsoring Orga-
nizations of the Treadway Commission.

Financial Accounting Standards Board (FASB). (1978). Objec-
tives of financial reporting for business enterprises. Statement of Fi-
nancial Accounting Concepts No. 1. Stamford, CT: FASB.

IDEA, Audit Automation Software web site at www.caseware.com/.
Information Systems Audit and Control Association (ISACA).

(1998). 1999 CISA Review Technical Information Manual.
Rolling Meadows, Illinois: Information Systems Audit and
Control Association.

Information Systems Audit and Control Association (ISACA).
(1998a). COBIT: Control Objectives for Information and Related
Technology: Executive Summary. Rolling Meadows, Illinois: In-
formation Systems Audit and Control Association.

Information Systems Audit and Control Association (ISACA).
(1998b). COBIT: Control Objectives for Information and Related
Technology: Framework. Rolling Meadows, Illinois: Informa-
tion Systems Audit and Control Association.

International Federation of Accountants (IFAC). (1998). Man-
aging security of information. Information Technology Com-
mittee, web site at www.ifac.org/. New York, IFAC.

International Federation of Accountants (IFAC). (1999). Manag-
ing information technology planning for business impact. In-
formation Technology Committee, web site at www.ifac.org/.
New York, IFAC.

International Standards Organization (ISO) web site at
www.iso.ch/.

Messier, W. F., Jr. (2000). Audit & Assurance Services: A Systematic
Approach, 2nd ed. New York: McGraw-Hill.

Warren, J. D., Edelson, L. W., and Parker, X. L. (1999). Hand-
book of IT auditing. Boston: Warren, Gorham & Lamont.

Weber, R. (1999). Information Systems Control and Audit. New Jer-
sey: Simon & Schuster Company.

Wilson, G., International Federation of Accountants (IFAC).
(2000). Articles and Speeches Library, Electronic Authenti-
cation Technologies: E-mail Security and DigitalCertificates,
web site at www.ifac.org/. New York, IFAC.

Control and Auditing 305

Copyright Laws
Alisha D. Malloy Kannan Mohan Detmar Straub Amrit Tiwana
Georgia State University Georgia State University Georgia State University Emory University

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 307

I. INTRODUCTION
II. DEFINITIONS

III. SCOPE
IV. CHALLENGES TO THE CURRENT INTELLECTUAL PROPERTY

RIGHTS
V. UNITED STATES LAWS, STATUTES, AND ETHICS

VI. COPYRIGHTS IN THE NEW ECONOMY

VII. THE DIGITAL MILLENNIUM COPYRIGHT ACT
VIII. COPYRIGHT ISSUES ON THE INTERNET: TWO CASES

IX. OPTION VALUE-BASED PROTECTION
X. KEY ISSUES AND MANAGEMENT CHALLENGES FACING

ORGANIZATIONS
XI. POSSIBLE IMPLEMENTATION, POLICIES, AND SOLUTIONS

XII. ACCOUNTABILITY, LIABILITY, AND CONTROL

GLOSSARY

copyright The right of literary property as recog-
nized and sanctioned by positive law. An intangi-
ble, incorporeal right granted by statute to the au-
thor or originator of certain literary or artistic
productions, whereby he is invested, for a period
of up to 70 years after death, with the sole and ex-
clusive privilege of copying, publishing, and selling
them.

fair use doctrine A privilege in others than the owner
of a copyright to use the copyrighted material in a
reasonable manner without the owner’s consent,
notwithstanding the monopoly granted to the
owner.

intellectual property Intangible property created by
individuals or corporations that is subject to pro-
tections under trade secret, copyrights, and patents
laws.

patent A grant of some privilege, property, or au-
thority, made by the government or sovereign of a
country to one or more individuals for the unique
appearance or design of an article of manufacture
made to protect against duplication of a design if
it is original, nonobvious, and ornamental.

trademark A distinctive mark of authenticity through
which products of particular manufacturers or the
vendible commodities of particular merchants may
be distinguished from those of others.

I. INTRODUCTION

Copyright is the body of law that deals with the own-
ership and use of works of literature, music, and art.
By extension, it has come to be applied to works that
have produced information and are novel. By United
States law, it is an intangible, incorporeal right granted
by statute to the author or originator of certain liter-
ary or artistic productions, whereby he is invested for
a period of up to 70 years after death, with the sole
and exclusive privilege of multiplying copies of the
same and publishing and selling them. In response to
rapid technological changes, laws concerning infor-
mation use are undergoing continuous change, in-
cluding the evolution of copyright laws. The ease of
replication, transmission, and alteration of digital me-
dia has increased the lack of understanding in apply-
ing copyright laws to information in electronic form.

The advent of the Information Age and the Inter-
net raises a number of new issues concerning use of
information. Much of the responsibility for this rests
with information systems (IS) management. One of
the most important of these is how to deal with in-
formation as a commodity. Rapid advances in tech-
nology have brought with them new responsibilities
for organizations to design adequate safeguards to
protect against wrongful use of information. This ar-
ticle focuses on copyright issues as they pertain to in-
formation systems and the Internet. A brief summary

of the current legal situation is given; followed by is-
sues concerning international copyright laws and the
Internet; then recommendations are given to IS and
general management on how to mitigate these risks.

II. DEFINITIONS

A. Copyright

Copyright is a United States statutory grant, which
protects creators of intellectual property against copy-
ing by others for any purpose. United States federal
law grants copyright exclusively. A copyright provides
an author with a tool to protect his work from being
taken, used, and exploited by others without permis-
sion. The owner of a copyrighted work has the exclu-
sive right to reproduce it, prepare derivative works
based upon it, distribute copies by sale or other trans-
fer of ownership, and to perform and display it pub-
licly and to authorize others to do so. The basic pur-
pose of copyright is to enrich a society’s wealth of
culture and information. While copyrights protect orig-
inal works of authorship, it does not protect against in-
dependent creation of similar or identical works.

Authors are not required to publish or register
their fixed works in order to secure copyright protec-
tion. In the information systems community, copy-
rights ensure that companies whose livelihood de-
pends upon intellectual property, like software
companies or Internet-based publishing companies,
can compete in the marketplace. Without the ability
to prevent unauthorized copying, sale, and distribu-
tion of its products, intellectual property-based com-
panies would not be able to survive.

B. Fair Use Doctrine

The “fair use” doctrine is a privilege of those other
than the owner of a copyright to use copyrighted ma-
terial in a reasonable manner without the owner’s con-
sent, notwithstanding the monopoly granted to the
owner. To determine whether fair use has been made
of copyrighted material, the nature and objects of the
selections made, the quantity and value of the mate-
rial used, and extent to which the use may diminish
the value of the original work must be considered.

Fair use involves a balancing process by which a
complex of variables determines whether other inter-
ests should override the rights of creators. The U.S.
Copyright Act explicitly identifies four interests: (1)
the purpose and character of the use, including its

commercial nature; (2) the nature of the copyrighted
work; (3) the proportion that was “taken”; and (4) the
economic impact of the “taking.” Fair use is for pur-
poses such as criticism, comment, news reporting,
teaching, scholarship, or research but not restricted
to these. It is an affirmative defense to an action of
copyright infringement.

C. Patents

A patent is a legal grant to exclude others from mak-
ing, using, or selling one’s invention and includes
right to license others to make, use or sell it (Valmont
Industries, Inc. v. Yuma Mfg. Co., 296 F. Supp. 1291,
1294, (1969)). Governments establish patent systems
and grant patents to encourage innovation, technical
development, and ultimately economic prosperity.
One important aspect about patents is that they do
not give the patent owner the right to practice the in-
vention claimed in the patent, but only to exclude
others from practicing this invention. The require-
ments for obtaining patents are that the invention
should be “new” and useful and it must not be an ob-
vious extension of previous inventions or technology.

D. Trademarks

Trademarks are the brand names used by manufac-
turers to identify their products. These are effective
ways for manufacturers to distinguish their products
from their competitors’ products in the marketplace.

E. Copyright versus Patents
versus Trademarks

Copyrights, patents, and trademarks are grouped to-
gether as intellectual property, which could be seen as
the product of one’s intellectual endeavors. The dif-
ference between these three is that the purpose of
copyright is to promote the progress of science and
useful arts. The purpose of a patent is to encourage
inventions and their disclosure to the public. The
purpose of a trademark is to prevent confusion in the
marketplace, thereby assuring accurate information
and the maintenance of quality goods and services.
Copyright is a form of protection to the authors of
“original works of authorship” including literary, dra-
matic, musical, artistic, software, databases and cer-
tain other intellectual works. Patents grant the owner
an exclusive monopoly on the ideas behind an inven-

308 Copyright Laws

tion. It is the ideas, not the invention that can be
patented although the ideas have to be put in a tan-
gible form in an invention before they can be
patented. Patents protect the ideas, which can be im-
plemented in practice while copyrights protect the
expression of ideas.

III. SCOPE

The necessity for the general management of organi-
zations to understand the scope of copyrights, patents,
and trademarks is justified by the responsibility of the
management to protect the organization from expo-
sure to information liability.

A. What Can Be
Copyrighted/Patented/Protected
as Trademarks?

Copyrights protect creative endeavors such as writings
fixed in a tangible medium. Under the Copyright Act
of 1976 the expressions that can be copyrighted in-
clude literary works, artwork, sculpture, photographs,
and music. Copyrights do not protect ideas, but they
protect the expression of ideas set forth in a tangible
medium.

Different types of work on the Internet that are
protected by copyright laws are written works like
e-mail, articles placed on ftp or web servers, musical
or audiovisual works, digitized images, software, web
pages, and databases.

Patents protect products, machines, methods, or
compositions as they are embodied in utilitarian or
aesthetic designs. They can protect new and better
utilitarian objects, methods of making those objects,
and methods of using them.

Trademarks protect words, symbols, or other forms
of expression, which identify the source of the goods
or services provided by a person or entity.

B. Who Owns Copyrights?

Employers are owners of any work created by an em-
ployee within the scope of employment. This case of
“works made for hire” where the employer owns the
copyright for the work is an exception to the concept
that the creator of a work is the copyright owner of
the work. Legislation has been enacted to set a fed-
eral standard that would prevent an employer from
demanding an assignment of rights in an employee’s

invention unless it falls within the definition of an
“employment invention.” The party who pays for the
work owns only a tangible copy of the work, while the
creator of the work owns the copyright of the work. If
a group creates a work, the copyright may be held
jointly. In the case of a joint work, if one author gains
some benefits by exploiting the work, the benefits
should be shared with all other authors.

Works of authorship are protected upon creation,
i.e., it is subject to copyright protection immediately af-
ter it is put in any tangible medium. The work must sat-
isfy the threshold standards of originality and creativity
in order to be subject to copyright protection. The
concept of originality differs from that of novelty in the
case of patents in the aspect that the work can be iden-
tical to another work created by another party and still
be subjected to copyright protection as long as the
party that had created the second work had not copied
it from the existing work. A work must be sufficiently
creative in order to be protected by copyright laws.

C. Duration

Copyright works created before January 1, 1978, are
protected by United States law for the length of the
author’s life plus another 50 years. Works created af-
ter January 1, 1978, are protected for 70 years after the
author’s life due to an extension granted by the 104th
Congress, 1st Session in 1995. In the case of joint
works, copyright protection is granted for the length
of the life of the last surviving joint author plus an-
other 50 or 70 years depending on the creation date.

D. Types of Rights

The two major categories of copyrights are moral and
patrimonial rights. Moral rights include the right of
publication or the right to choose when to disclose his
or her work, right of attribution or association with the
work as its author, and the right to the integrity of the
work or the right to oppose any modifications made to
his or her work. Patrimonial rights include the right of
reproduction, right of transformation, the right of dis-
tribution, and the right of public communication.

IV. CHALLENGES TO THE CURRENT
INTELLECTUAL PROPERTY RIGHTS

The unique capabilities of the current technological
systems pose a variety of challenges in the form of

Copyright Laws 309

legal and political pressures on intellectual property
rights. Some of the problems identified by the Office
of Technology Assessment, Congress of the United
States are as follows:

1. Problems of identifying ownership. The advanced
networking capabilities that enhance collaborative
work make it very unwieldy to administer the
concepts of originality and original authorship.

2. Problems of identifying infringements and enforcing
rights. With the current high speed communication
media and large capacity storage technologies, it
becomes much more than a case of individuals
trading vast quantities of copyrighted material
without the knowledge or permission of the
copyright holders. It could be a case where
individuals can inexpensively and privately share the
contents of an entire library.

3. Problems of private use. It would be impossible to
track down people who copy copyrighted material.

4. Problems of functional works. With the advent of
software engineering, differences between inventions
and writings cease to be clear cut. This demands
changes in the legal framework in order to facilitate
inclusion of the new information-based products.

5. Problem of derivative use. The use of secondary
material would be restricted if the copyright holders
have the privilege of benefiting from all subsequent
works based on their original works.

V. UNITED STATES LAWS,
STATUTES, AND ETHICS

A. Evolution of Copyright Laws
in the United States

The first United States statute was formulated in 1790
offering protection for books and illustrations. It was
in 1980 that a United States federal law known as The
Software Act was enacted, which modified the exist-
ing copyright protection by including software pro-
grams as protected under the Copyright Act.

The copyright laws in the United States have
evolved to a point where the omission of a copyright
notice will not jeopardize the owner’s copyright in-
terest. The first step toward legal regulation of Inter-
net copyright matters was taken in 1993, when the
Clinton Administration formed the Information In-
frastructure Task Force (IITF). The IITF was charged
with the development of the national information in-
frastructure (NII) and has since produced two reports
on what it perceives as needed changes in copyright
laws. Critical changes to the right of transmission were

made. In 1997, former President Clinton signed the
No Electronic Theft (NET) Act, which amended Sec-
tion 506 of the Copyright Act. This NET Act is specif-
ically aimed at software pirates on the Internet.

B. Licensing

United States governmental agencies regulate licens-
ing. The Reproduction Rights Organization (RRO)
has the authorization to license organizations to pho-
tocopy registered titles from their repertories. The
Copyright Clearance Center (CCC) issues several types
of licensing agreements based upon the type of orga-
nization seeking a license. The most common one is
the Annual Authorizations Service Repertory License
Agreement, which allows corporations to make un-
limited photocopies provided these copies are used
internally and the titles are part of the CCC’s reper-
tory of registered works.

The Digital Millennium Copyright Act (DMCA),
signed in October 1998 provides two categories of
protection against circumvention of technological
measures used by copyright owners to protect their
works. The first category includes measures to pre-
vent unauthorized access to copyrighted work and the
second category includes measures to prevent unau-
thorized copying of a copyrighted work. Violations of
these provisions are subject to criminal prosecution.

Even though the World Intellectual Property Or-
ganization (WIPO) has decided that electronic trans-
mission of material should be protected by copyrights,
it has not yet been explicitly included in the United
States copyright law.

C. Infringement

Infringement is the unauthorized use of copyright
material, i.e., the use without permission of copyright
holder. In determining whether there is a copyright
infringement, and not a fair use exemption, the fac-
tors to be considered include: (1) the purpose and
character of the use, including whether such use is of
a commercial nature or is for nonprofit educational
purposes; (2) the nature of the copyrighted work;
(3) the amount and substantiality of the portion used
in relation to the copyrighted work as a whole; and
(4) the effect of the use upon the potential market
for or value of the copyrighted work, see Copyright
Act, § 107 (17 U.S.C.A.).

Remedies for copyright infringement include in-
junctive relief, impounding and disposition of in-
fringing articles, and recovery of actual damages and

310 Copyright Laws

profits. In lieu of actual damages, the Federal Copy-
right Act provides for statutory damages which will
vary as to whether the infringement was willful and
unintentional, see Copyright Act, § 504 (17 U.S.C.A.).
There are three categories of infringement: direct,
contributory, and vicarious.

1. Direct Infringement

A copyright is infringed directly when one of the ex-
clusive rights of the copyright holder is violated. The
plaintiff is required to prove just the ownership of copy-
right and copying by the defendant. The offending
party can be prosecuted even if he or she did not know
that the work in question was protected. Intent is con-
sidered as a factor only when calculating damages.

2. Contributory Infringement

Contributory infringement occurs where a person
with knowledge of the infringing activity induces,
causes, or materially contributes to the infringing con-
duct of another. Substantial or pervasive involvement
is required.

3. Vicarious Infringement

Even without participation or knowledge a defendant
can be held liable for the actions of a primary in-
fringer where the defendant has the right and ability
to control the infringer’s acts and receives a direct fi-
nancial benefit from the infringement.

VI. COPYRIGHTS IN THE NEW ECONOMY

Global networks and communication channels cut
across national boundaries and spawn a new realm of
activity that, in effect, undermines both the feasibility
and the legitimacy of applying laws based on geo-
graphic boundaries.

The self-regulated environment that characterizes
the World Wide Web poses new and unforeseen chal-
lenges for existing copyright laws. Almost every trans-
action involving the transfer of information can be
conducted on-line: education, health care provision,
delivery of intangible services, publishing, music, and
the practice of law. Explicable intellectual property
can be reduced to digital form, and digital informa-
tion can be globally redistributed at low or near-zero
cost. As existing copyright laws are reactively retrofit-
ted to address various issues surrounding copyright
protection on the Web, their scope and breadth chal-
lenges the notion of fair use that has since long been

upheld in the traditional publishing industry. The
fundamental problem with copyright laws, as noted
over a decade ago, is that they represent “a patchwork
of new and reapplied laws that offer little clarity on
underlying issues.”

A. Implications of the Internet
on Content Digitization

The most critical implications of the widespread adop-
tion of the Internet are observed in the context of goods
that are intangible in nature. Such intangible goods can
range from electronically packaged services to digital
information products. Various descriptive terms such as
information commodities, digital goods, and informa-
tion products have been used in past research. (For the
sake of brevity, we use the term “information prod-
ucts.”) An information product is defined as a highly in-
terdependent package of information that is capable of
being distributed in digital form. Software engineering
products, CD-ROM databases, print-on-demand ser-
vices, electronic libraries, electronic newspapers, digi-
tized music and video content, and web content are ex-
amples of such products. In economic terms, the fixed
costs associated with their production are high and the
variable costs are relatively low. If left to the market
place, the price of an information product will be low
due to its low marginal cost of reproduction. Further-
more, because such products are experience goods,
their pricing is perceived value-based, and not cost-based.
As the trade of such intangible goods increases, copy-
right laws become increasingly vulnerable and subject
to unenforceability.

The Internet has provided a channel for the dis-
tribution and trade of such products at low overhead
costs. When distributed over such a medium, infor-
mation products’ variable cost of production and dis-
tribution approaches zero, as the product has no phys-
ical form (unlike retail packaged software and music,
or nondigital information products). However, their
intangible nature also causes severe competitive mar-
ket challenges that only worsen because of their low
economic cost of reproduction coupled with high
fixed costs.

1. Supply-Side Effects on Incremental
Costs of Digitized Products

Digital technology and the Internet change two sig-
nificant supply-side costs that govern the feasibility of
content distribution. First, reproduction costs are
dramatically reduced by the act of digitization of con-
tent. Perfect copies—indistinguishable from the orig-

Copyright Laws 311

inal—can be made. Second, public networks gener-
ally and the internet specifically, facilitates distribu-
tion of these perfect reproductions “quickly, easily,
and cheaply.”

Information is an experience good—judgments
about its value cannot be made until it is actually seen.
Production costs of information products are deter-
mined by their “first copy costs.” Information prod-
ucts often involve high fixed costs but low marginal
costs. In the case of digital information products, this
implies that the fixed cost of producing the first copy
of the product is substantial and every subsequent
copy is negligible or nears zero. The key implication
of the first copy costs characteristics of an information
product is that these costs are incurred by the pro-
ducer and if copyright laws are unable to prevent sub-
sequent unauthorized copying, it will guarantee dis-
tribution of the product at it’s incremental cost—zero.

B. Copyright Limitations
and Electronic Commerce

With the emergence of electronic commerce, the no-
tion of the term “copying” must be revisited. In an
electronic, Internet-mediated environment, one can-
not access any information without making multiple
copies. Temporary copying occurring within a com-
puter’s memory to enable readers to read documents
is considered “reproduction.” Existing laws governing
copyrights on the Internet take a restrictive view of
what constitutes fair use. “The ability to redistribute
to a friend one’s own copy of a work” constitutes copy-
right violation according to the existing United States
laws.

1. Recipient Liability Issues

Another issue relates to liability of the recipient of an
illicit digital copy of a work. Copyright law stipulates
that the owner of any computer on which appears a
copyright infringing duplicate will be held liable along
with the unwitting recipient of the information arti-
fact, however innocent he may be. If this article of the
law were to be enforced, the unwilling recipient of an
e-mail attachment containing copyright infringing
work could be held liable for copyright violation.

2. Database Protection and
Compilation Copyrights

Article 2B of the DMCA, which is discussed in the fol-
lowing section, addresses the question of protection

offered to information compilers—organizations that
verify, organize, format, and “scrub” publicly available
information in the final form of a database. Copyright
laws do not provide protection to all such compila-
tions, but only to those that exhibit sufficient novelty
and creativity in their selection, organization, and
arrangement. In digital form, such data compilations
are, in United States law, afforded “thin” protection
that only covers their creative organization, and not
their content or arrangement. The European Union
enforces a law for protecting intellectual property
rights (against reuse and extraction for a period of 15
years) of database developers who make “substantial
investments” in their development. In the United
States, however, an equivalent law was struck down
and declared as being both unconstitutional and detri-
mental to scientific research.

VI. THE DIGITAL MILLENNIUM COPYRIGHT ACT

The DMCA which was passed by the United States
Congress in November 1998 addressed some of the is-
sues related to copyright protection on the Internet,
and yet left others still calling for attention. The
DMCA specifically addressed liability issues for online
service providers including but not limited to Inter-
net access providers, web sites, and telephone com-
panies by introducing so-called “safe harbors.” Under
these safe harbors, on-line service providers are ex-
empted from liability if they are willing to:

1. Terminate service to repeat infringers
2. Accommodate standard technological measures

adopted by copyright industries to protect
intellectual property and works

3. Remove infringing material when notified to that
effect

4. Abide by certain conditions that are imposed to
support the above in an evolutionary manner

These safe harbors facilitate system storage, links to
other sites, system caching, and the transmission and
routing/rerouting of information provided by the on-
line service providers if they are unaware of the pres-
ence of copyright infringing material and do not ben-
efit from such infringement.

The DMCA has provided a legal device for pre-
venting electronic piracy for use software, entertain-
ment, and music producers; it has, however, met with
resentment from many consumer groups that believe
that the DMCA places severe restrictions on their tra-
ditional access to and use of information products.

312 Copyright Laws

VIII. COPYRIGHT ISSUES ON
THE INTERNET: TWO CASES

Two cases of copyright problems illustrate these con-
cerns: the MP3 music format and electronic books.
Both technologies were originally commercialized to
facilitate legitimate trade of both music and books.

1. Case 1: MP3 and Copyrights on Music

The MP3 music format is a public domain digital for-
mat for streaming music over the Internet. A song can
be compressed into a small electronic file that can be
transmitted rapidly over the public Internet and au-
tomatically decompressed on the receiving end. In-
dependent artists and music producers that might
want to distribute their music without the deep pock-
ets that widespread distribution has traditionally en-
tailed have considered the MP3 format a boon. Sev-
eral electronic commerce businesses such as
emusic.com, mp3.com, and tunes.com were founded
on the basis of this format. However, new advertising
supported software that is distributed free of charge
to users enables them to use the same format and cre-
ate a huge directory of digital music titles “ripped off”
or converted from legally obtained music CDs. Other
users navigating this directory can see both their own
and thousands of others’ stolen MP3 file collections
and freely download them. Because the copy itself is
digital, there is no degradation in music quality and
thousands of pirated copies can be easily made. This
led to one such software developer, Napster, being
taken to court in March 2000 by two bands, Metallica
and Dr. Dre, over violation of copyrights. Napster’s
plea for indemnity on the basis of being an on-line
service provider was turned down for its failure to act
when the company was aware of copyright violations
that its software enabled.

The industry fought back with traditional methods
such as lawyers and law enforcement agents, as well as
with technology. While copyright protection technolo-
gists have tried pursuing novel technical solutions to
prevent copying, MP3 proponents have repeatedly de-
veloped workarounds for any protection. While the in-
troduction of digital music brings unforeseen oppor-
tunities, it also comes with its share of copyright
protection problems. Although court orders have re-
stricted uncontained piracy of copyright infringement
through peer-to-peer networks such as Napster, the
promise of digital distribution of information products
has motivated several international record labels to
replicate that model while digitally “tagging” individual
songs. Such tagging will prevent widespread copying, it

will also restrict the ability of the actual buyers to listen
to legally acquired digitized music. Copyright laws need
to be rethought for the digital age. Additionally liabil-
ity and conspiracy, as defined in our existing laws, need
to be clarified in this context.

2. Case 2: E-Books and
Publishing Copyrights

The publishing industry has been toying with the idea
of not just selling, but also publishing books through
the Internet. The logic is straightforward: Readers
can purchase a copy of the book on a real-time basis
and at the same time publishers can benefit from the
reduced production and distribution costs. This trans-
lates to a combination of lower prices and higher
profit margins within these markets. The publishing
industry can also better afford to electronically pub-
lish very specialized short print run titles that would
not justify the expense of conventional printing.

Unfortunately, existing copyright laws afford little
protection to on-line publishers, and that unhinges
the value logic for electronic publishing. Markets for
electronic books and their paper-based equivalents are
cannibalistic; i.e., sales in one category are thought to
reduce the same product’s demand in the other. Given
this market, selling books and similar productions on-
line does not guarantee a revenue stream that justifies
losing the same from the print-based market segment.
The only justification is that publishers can be assured
that one digital copy of the book will not be redistrib-
uted (“pirated”) to a hundred other potential pur-
chasers by the original purchaser.

IX. OPTION VALUE-BASED PROTECTION

The enforceability of copyright laws is questionable in
the boundless economy created by the Internet and
electronic commerce. Legal differences, national cul-
ture, and differing value systems make it difficult, if
not impossible, to enforce a common set of laws across
all countries. Some have suggested that much charge-
able value in the case of information products will be
in certification of authenticity and reliability, not in
the content itself. If consumer-perceived value is max-
imized, sustainable increasing economic returns can
be generated through self-reinforcing positive net-
work feedback loops that characterize information
goods. Economists have also recommended further
exploration of the notion of option value—select abil-
ities valued by the consumer—associated with digital
information products that are vulnerable to copyright

Copyright Laws 313

infringement. The effectiveness of copyright protec-
tion then depends on a potent combination of tech-
nology, reasonably enforceable laws and good eco-
nomic judgments.

X. KEY ISSUES AND MANAGEMENT
CHALLENGES FACING ORGANIZATIONS

Even with the current repository of ill-defined United
States copyright laws and ethical issues dealing with
the rapidly evolving information technology and the
Internet, organizations are still liable for the misuse of
intellectual property contained within these applica-
tions. Organizations must not only protect their own
copyrighted intellectual property from infringers, but
they must also instill in employees the importance of
reciprocating this protection to material they may find
from external sources, commercial databases, and the
Internet. Information technology (IT) managers, as
well as general managers, must be aware of the legal
liabilities that can occur as a result of internal misuse
of data, software programs, and the Internet.

Information technology is a double-edged sword.
While it is the source of many benefits, it is also the
source of many dilemmas. This is especially evident
when dealing with copyright issues and IT. The ex-
ploding use of networks and the Internet further chal-
lenges copyrights ethical and legal frameworks and
protections due to the ease of replication, transmis-
sion, and alteration of the information.

The 1990 Straub and Collins paper suggests that
there are three main areas of concern for all managers:
(1) how to provide functionality while respecting the
intellectual property rights of external intellectual
property creators; (2) how to acquire and utilize ex-
ternal information without violating licensing contracts
or infringing on copyrights; and (3) how to collect and
disseminate information on individuals while respect-
ing individual rights and privileges. The following ar-
eas are specifically emphasized: ownership, protection,
software piracy, and downloading from the Internet.

A. Issues of Ownership of
Intellectual Property

Who owns custom-made software? Is the owner the
person who wrote the software program/intellectual
property or the company for which the author wrote
the program/intellectual property? What is to prevent
a programmer from taking copies of programs from

one job to another? The answers to these questions
are well established within U.S. Code, Title 17, § 201,
Ownership of Copyright, which states the following.

1. Initial Ownership

Copyright in a work protected under this title vests ini-
tially in the author or authors of the work. The authors
of a joint work are co-owners of copyright in the work.

2. Works Made for Hire

In the case of a work made for hire, the employer or
other person for whom the work was prepared is con-
sidered the author for purposes of this title, and, un-
less the parties have expressly agreed otherwise in a
written instrument signed by them, owns all of the
rights comprised in the copyright.

3. Contributions to Collective Works

Copyright in each separate contribution to a collec-
tive work is distinct from copyright in the collective
work as a whole and vests initially in the author of the
contribution. In the absence of an express transfer of
the copyright or of any rights under it, the owner of
copyright in the collective work is presumed to have
acquired only the privilege of reproducing and dis-
tributing the contribution as part of that particular
collective work, any revision of that collective work,
and any later collective work in the series.

Therefore if the author of the software (i.e., pro-
grammer) is in the employ of an organization, the
software belongs to the organization, not to the pro-
grammer. For example, the programmer may not take
the software to the next job. If the programmer is a
consultant, however, the ownership of the software
produced should be spelled out specifically in con-
tractual form; otherwise, the parties enter extremely
muddy legal waters.

Questions of just who owns intellectual property
has resurfaced with the advent of digital publishing of
intellectual property and commercial databases made
available on the Internet. It is the customary practice
in the information industry for the content provider
to be responsible for obtaining all necessary copyright
interest for online distribution. However, in Tasini v.
The New York Times Co. Inc., the Second Circuit Court
of Appeals in Manhattan ruled that several publishers
including The New York Times and Newsweek did not
have the right to put freelance journalist articles into
electronic databases without the authors’ permission.

314 Copyright Laws

B. Issues of Protection of
Intellectual Property

In the information age of today, intellectual property
is now an organization’s primary source of competi-
tive advantage, a situation that is very similar to phys-
ical products in the industrial age. In an information
intensive industry, copyright should be an essential
weapon for organizations, especially as they continue
to migrate their intellectual property to networks and
the Internet. Yet the ever-increasing lawsuits concern-
ing copyright infringement show that there is a trend
in most organizations to respond to these trespasses
on intellectual property, IT, and the Internet with le-
gal uncertainty, misinformation, and disinterest. Cur-
rent attitudes within organizations could lead to fur-
ther degradation of the copyright as a legal weapon
in protecting trade secrets, if not its ultimate exter-
mination as a powerful source of protection.

C. Issues of Software Piracy

Software piracy, or stealing software, is illegally obtain-
ing and using software. When individuals and organi-
zations purchase software, the sole right that is inferred
to them is the use of the software. Mere purchasing
does not confer the right to copy or misuse the soft-
ware outside the scope of the copyright. It is unlawful
to copy any copyrighted software or intellectual prop-
erty. Whether it is the casual sharing of copyrighted
software among friends or assembly line copying by or-
ganized crime, unlawful copying incurs major losses
for software vendors and content providers.

The proliferation of IT and the Internet have made
illegal reproduction and distribution of copyrighted
software and intellectual property commonplace. Ac-
cording to the Software and Information Industry As-
sociation (SIIA) and Business Software Alliance (BSA)
fourth annual study on global software piracy, world-
wide losses from software piracy amounted to almost
$11 billion in 1998. Of the 615 million new business
software applications installed during 1998, 231 mil-
lion, or 38%, were pirated. Losses in the United States
alone were estimated at $3.2 billion, 26% of the world-
wide revenue losses.

With the increased popularity of local area net-
works (LAN) and client/server, organizations typi-
cally purchase only one package of each application
software and place it on the network so everyone can
use it, which saves money over purchasing individual
copies. In order to do this legally in the United States,

an organization must purchase a site license, which is
a contract with a software manufacturer that grants
the organization the right to let a specified number
of people access and use the one network software
copy. The site license agreement states how many peo-
ple may simultaneously use a copy of the software. If
more people need to use the package than stated in
the site license agreement, additional fees must typi-
cally be paid for each new person added.

D. Issues of Downloading Intellectual
Property from the Internet

With new advances in IT occurring almost daily, extant
United States copyright laws are in danger of becom-
ing antiquated. Most organizations are faced with the
inevitable migration to the Internet where copyright,
as it relates to content, will face its greatest challenges
yet. This is due to several factors: (1) increased acces-
sibility brings increased risk; (2) sale to multiple often
anonymous end users rather than known corporate en-
tities dissolves the security of contractual relationships,
making enforcement of copyright infringement more
difficult; and (3) migration to the Internet may leave
many organization’s databases unprotected. As far back
as 1991 a United States court concluded that a mod-
icum of creativity in the selection, coordination, or
arrangement of a database is required for it to be copy-
rightable (Feist Publications v. Rural Telephone Service Co).

XI. POSSIBLE IMPLEMENTATION,
POLICIES, AND SOLUTIONS

A. Technological Solutions

In attempts to quell the flood of recent copyright vio-
lations, technological solutions have been created and
improved measures are being developed to better pro-
tect digital works through varying combinations of
hardware and software. These protection schemes can
be implemented at the level of copyrighted work or at
more comprehensive levels such as operating systems,
networks, or both. Some of the current technological
solutions include those listed below.

1. Copyright Protection Schemes
for Software Programs

These schemes prevent unauthorized duplication
of software programs, but they also slow down user

Copyright Laws 315

computers. More importantly, this form of protection
leaves legitimate users with no convenient recourse if
the software was lost due to a hard drive crash.

2. Encryption

Encryption is the scrambling of data using mathemat-
ical principles that can be followed in reverse to de-
crypt or unscramble the data. File encryption there-
fore converts a file from a manipulatable file format to
a scrambled/encrypted format. Authorization in the
form of possession of an appropriate key is required
to decrypt the file and restore it to its manipulatable
format. Thus, the encryption of software and data is a
form of protection against unlawful copying and reuse.

3. Digital Signatures/Watermark

Digital signatures use mathematical algorithms to
place a seal on a digitally represented work. Generat-
ing the digital signature is referred to as signing the
work. The algorithms can be implemented through
software or hardware, or both. The digital signature
serves as means for authenticating the work, both as
to the identity of the entity that authenticated it and
as to the contents of the file that encodes the infor-
mation that constitutes the work.

4. Steganography

Steganography encodes digitized information with at-
tributes that cannot be disassociated from the file that
contains that information. Using the steganography
technique, a firm can embed a hidden message in
digitized visual or audio data. The embedded infor-
mation does not degrade or otherwise interfere with
the audio or visual quality of the work.

B. Policies

Information system (IS) and general managers must
be aware of the legal liabilities that can incur as a re-
sult of internal misuse of data, software programs,
and the Internet in order to effectively protect the or-
ganization from potential litigation concerning copy-
right issues. These management responsibilities ex-
tend to dissemination of the approved information
policy to the organization.

1. Code of Ethics for IS Professionals

Oz in the 1992 article “Ethical Standards for Informa-
tion Systems Professionals” as well as many other au-

thors have called for a unified code of ethics that will
cover all IS professionals. Codes of ethics are promises
by the profession to regulate themselves in the general
interest of society. Most groups of professionals have
adopted ethical codes and codes of conduct, which al-
low them to take on special rights and obligations due
to their special claims to knowledge, wisdom, and re-
spect. Physicians, lawyers, and engineers have moral
responsibilities and know to whom and for what they
are responsible. Professionals in the IS field need sim-
ilar guidance. These professional groups take respon-
sibility for the partial regulation of their professions by
determining entrance qualification and competence.
Because computer laws did not exist when computers
where initially introduced, professional organizations
initiated their own ethical codes. Although some indi-
vidual IS professional organizations have established
professional standards in the field, not all IS profes-
sionals are bound by the same set of rules.

2. Code of Conduct for Organization

Establishing corporate conduct policies that include
IS concerns is a way in which to ensure that copyright
protections are adhered. Managers need to be re-
sponsible for developing, implementing, and enforc-
ing corporate conduct policies. Historically the IT
area was the last to be considered with first priority
going to financial integrity and personnel policies. In
light of the current quandary of protections prob-
lems, it has become clear in the last four decades that
organizations need stricter policy statements for their
IT covering issues of privacy, ownership, accountabil-
ity, data quality, and system security.

XII. ACCOUNTABILITY,
LIABILITY, AND CONTROL

New information technologies and the Internet are
challenging the existing liability laws and social prac-
tices for holding individuals and institutions account-
able. Questions that often arise are: How will tradi-
tional intellectual property rights be protected in a
digital society in which tracing and accounting for
ownership is difficult and ignoring such rights is so
easy? Who can and will be held accountable for the
harm done to individual and collective information
and property rights? What standards of data quality
and system security should be demanded to protect
individual rights and the safety of society?

Information system managers are faced with these
difficulties since they will be ultimately responsible

316 Copyright Laws

for the harm done by the organizations with regards
to these copyright issues. Companies need to show
more responsibility with internal policies that ex-
pressly state that users must treat all intellectual ma-
terial, including that on the Internet as though it is
copyrighted, even if it does not have the © symbol af-
fixed. End users sometimes assume that material is
not copyrighted if they do not see a specific notice of
copyright. They may conclude that, ethically, it is per-
missible to help themselves, but this is not the case.
According to the U.S. Code: Title 17, § 401(a):

Whenever a work protected under this title is pub-
lished in the United States or elsewhere by authority of
the copyright owner, a notice of copyright as provided
by this section may be placed on publicly distributed
copies from which the work can be visually perceived,
either directly or with the aid of a machine or device.

Therefore copyrighted material no longer need in-
clude notice of copyright by use of © or even the
word “copyright.” Copyright protection exists from
the time the work is created in fixed form. That is,
United States law does not require copyright warnings
in order to be protected from infringers; the notices
one sees are simply reminders. Organizational guide-
lines should also include rules preventing the down-
load of software without prior permission from the IT
department.

A. Control

Organizations should limit or control access to the
source of a work; limit the reproduction, adaptation,
distribution, performance, or display of work; identify
attribution and ownership of a work; and manage or
facilitate copyright licensing. Organizations should rely
on a variety of technologies, based in software and
hardware, to protect them against unauthorized uses
of the intellectual property. A balance must be achieved
that ensures that there is effective protection of copy-
righted material that does not unduly burden use of
the work by consumers or compromise their privacy.

Controlling access to the source of the work, in-
formation, or data server can also regulate distribu-
tion of digital works. Access can range from complete
uncontrolled access to completely controlled access.

This access control should be implemented through
user identification and authentication procedures that
deny access to unauthorized users.

SEE ALSO THE FOLLOWING ARTICLES

Crime, Use of Computers in • Desktop Publishing • Ethical
Issues • Internet, Overview • Law Firms • Security Issues and
Measures • Software Piracy

BIBLIOGRAPHY

Bielefield, A., and Chessman, L. (1997). Technology and copyright
law: A guide for the library, research and teaching professions. New
York: Neal-Schuman Publishers Inc.

Congress of the United States, Office of Technology Assess-
ment. (1986). Intellectual Property Rights in an Age of Elec-
tronic and Information.

Digital Millennium Copyright Act. http://www.gseis.ucla.
edu/iclp/dmcal.htm

Gerhardt-Powals, J., and Powals, M. (1999). The digital millen-
nium copyright act: An international assault on fair use? Pro-
ceedings of the ACM ITiCSE ’99, Cracow, Poland, 191–196.

Johnson, D., and Post, D. (1996). Law and borders—The rise
of law in cyberspace. Stanford Law Review, Vol. 48, 1367–1398.

Koppius, O. R. (1999). Dimensions of intangible goods. Pro-
ceedings of the 32nd Hawaii International Conference on Systems
Sciences, Maui, Hawaii.

Kurz, R. (1996). Internet and the law: Legal fundamentals for the
internet user. Rockville, MD: Government Institutes Inc.

Oz, E. (1992). Ethical standards for information systems pro-
fessionals. MIS Quarterly, Vol. 16, No. 4, 423–433.

Rosenoer, J. (1997). Cyber law: The law of the internet. New York:
Springer-Verlag.

Samuelson, P. (1999). Good news and bad news on the intel-
lectual property front. Communications of the ACM, Vol. 43,
No. 2, 19–24.

Shapiro, C., and Varian, H. (November–December 1998). Ver-
sioning: The smart way to sell information. Harvard Business
Review, pp. 96–114.

Straub, D. W., and Collins, R. W. (June 1990). Key information
liability issues facing managers: Software piracy, proprietary
databases, and individual rights to privacy. MIS Quarterly, pp.
143–156.

Straub, D. W., and Welke, R. J. (1998). Coping with systems risk:
Security planning models for management decision-
making. MIS Quarterly, Vol. 22, No. 4, 441–469. Copyright
Act, U.S.C.A. 17.

Yeung, M. M. (1998). Digital watermarking. Communications of
the ACM, Vol. 41, No. 7, 30–33.

Copyright Laws 317

Corporate Planning
Robert J. Thierauf
Xavier University

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 319

I. INTRODUCTION TO MORE EFFECTIVE CORPORATE
PLANNING USING STRATEGIC INTELLIGENCE

II. CORPORATE PLANNING DEFINED
III. THE ESSENTIALS OF CORPORATE PLANNING IN A

CHANGING WORLD
IV. APPLICATIONS THAT LEND THEMSELVES TO CORPORATE

PLANNING

V. LONG-RANGE CORPORATE PLANNING
VI. SHORT-RANGE AND MEDIUM-RANGE CORPORATE

PLANNING
VII. FUTURE CORPORATE PLANNING WILL MOVE TOWARD

GREATER USE OF STRATEGIC INTELLIGENCE

GLOSSARY

business intelligence Gives the manager a better un-
derstanding of the area under study by employing
on-line analytical processing (OLAP) functionality,
data warehousing, and data mining techniques.

corporate planning Centers on the planning of a com-
pany’s activities from the short range to the long
range that is necessary to realize a company’s mis-
sion and purpose that are related to its corporate
objectives and its measurable goals.

critical success factors (CSFs) Factors that are critical
in making or breaking the organization from the
short run to the long run.

disruptive changes Those factors that are present in
an industry that may cause a company to experi-
ence major problems from the short range to the
long range.

e-commerce Provides electronically direct access to
new and established markets, thereby cutting costs
for both buyers and sellers through the elimina-
tion of unnecessary paperwork and processes.

executive visioning The capability of top-level execu-
tives to envision the future and its impact on a com-
pany’s operations.

key performance indicators (KPIs) A way of formal-
izing and measuring a company’s critical success
factors that are essential to its success and can be
related to a company’s financial ratios.

long-range corporate planning A process that pro-
vides the means for articulating a clear mission and
purpose of an organization which provides the over-
all direction for setting appropriate corporate ob-
jectives and goals, employing corporate strategies
and programs, and allocating an organization’s re-
sources optimally over time.

medium-range corporate planning A derivative of an
organization’s long-range corporate plans that cen-
ters on a two- to five-year time frame.

multidimensional analysis The capability to look at
different dimensions of the same data to better un-
derstand a company’s operations.

problem finding The process of going out into the fu-
ture and determining potential problems and iden-
tifying future opportunities that are related to them.

scenario planning A tool used by corporate planners
for utilizing information and knowledge to foresee
what is ahead under good, average, and poor eco-
nomic conditions.

short-range corporate planning A detailed financial
plan that specifies both how the company’s objec-
tives and measurable goals for the coming year are
to be attained and the operational procedures for
managing operations.

strategic intelligence Centers on understanding the to-
tal picture of where the organization is headed to-
day and tomorrow and is linked to executive vi-
sioning in a changing world.

I. INTRODUCTION TO MORE EFFECTIVE
CORPORATE PLANNING USING
STRATEGIC INTELLIGENCE

A number of leading futurists predict that the 21st
century will be times of great change. Many of the an-
ticipated changes are not minor perturbations, but
major adjustments in business and social environ-
ments. Several of the driving forces behind these
changes are global competition, the continual re-
structuring of business organizations, the aging of the
United States population, continued variations in the
inflation (deflation) rate, the volatility of the stock
markets, globalization of capital markets, periodic en-
ergy shortages, and accelerating technological
changes of all types. Future decisions will involve more
complex ones than in the past and, to be effective,
must merge together both quantitative and qualita-
tive analyses. Solving the problems of the future and
developing new opportunities for the typical com-
pany requires the use of advanced computer systems
to provide top-level managers and their staffs with a
more effective approach to corporate planning.

From this broad perspective, managers need to em-
ploy strategic intelligence as found in current business in-
telligence systems (BISs). Such systems center on in-
tegrating core data, information, and knowledge with
relevant contextual facts to detect significant events
and to illuminate forthcoming problems and promis-
ing opportunities. In effect, these systems assist corpo-
rate managers in getting to know what their customer
needs are before they do. Their focus is on fulfilling
the strategic requirements of corporate managers at
the highest level. Strategic intelligence (as discussed in
a separate section below) centers on a broad under-
standing of what it takes to develop and implement
appropriate corporate objectives, goals, strategies, and
programs over the short to long term. In addition, BIS
provide the ability to monitor business trends; to make
intelligent strategic, tactical, and operational decisions
based on uncertain judgments and contradictory facts;
and to allow the organization to adapt quickly as situ-
ations change. Essentially, they rely on the exploration
and analysis of related and unrelated data, informa-
tion, and knowledge to provide relevant insights, iden-
tify trends, and discover opportunities.

II. CORPORATE PLANNING DEFINED

For a company to be successful today, there must be a
continuous pursuit of a company’s mission and pur-
pose that provides the means for setting ambitious

corporate objectives and measurable goals and the
concentration of a company’s competitive energies
and action for achieving them. A company’s mission
statement provides the operational substance for a
company, that is, who the customers are, what cus-
tomer needs are being met, and how the company can
fulfill those needs. Related to a company’s mission is
its purpose for being in existence, that is, what useful
need does it provide for its customers. In terms of cor-
porate objectives, they serve as guidelines for action.
More importantly, they serve as a standard for mea-
suring performance and can provide incentives for
employee performance. As such, most objectives take
the form of corporate goals that are attainable, quan-
tifiable, and measurable. Furthermore, every business
needs both strategic objectives and goals as well as fi-
nancial ones. A strategic orientation might include a
larger market share, quicker design-to-market times,
superior customer service, and the like while a finan-
cial orientation might include revenue growth, earn-
ings growth, and stronger cash flows. In turn, strategic
and financial objectives and goals can be set forth as
specific strategies and programs that are needed to al-
locate a company’s resources in an optimum manner.

Typically, a corporate planning approach should
challenge a company to stretch itself and visualize what
it might be. For a small-sized company, it might be to
dominate a market niche or become a market leader.
As will be seen in this chapter, corporate planning at
the upper level, also known as strategic planning, is
more about breaking down a company’s mission and
its purpose along with its objectives and goals into cor-
porate strategies and programs that optimize a com-
pany’s resources. It also includes the consequences
that are expected which are articulated in the form of
plans and reports, i.e., budgets. From this perspective,
corporate planning centers on financial measurement
over time. An important element of corporate plan-
ning is the improvement of a company’s financial sta-
tus over time. Overall, corporate planning can be de-
fined as the appropriate planning of a company’s
activities from the short to the long range that is nec-
essary to realize a company’s mission and purpose that
are related to its corporate objectives and its measur-
able goals and, in turn, to its strategies and programs
for the optimum allocation of a company’s resources.

Underlying effective corporate planning is problem
finding where there is a proactive approach such that
external- and internal-environmental factors that affect
the organization, from the short to the long range, are
taken into consideration. Essentially, top-level managers
and corporate planners need to identify potential prob-
lems in the future and bring them back to the present
time for resolution. Problem finding tends to center on

320 Corporate Planning

finding solutions to problems that may be very difficult
to solve. Going one step further, managers need to iden-
tify opportunities that are related to future problems.
As in the past, top-level managers and corporate plan-
ners must also be involved in problem finding to allo-
cate and use the organization’s resources effectively.

An important benefit from problem finding is that,
if warned early enough to take corrective action, a man-
ager can prevent a mole hill from becoming a moun-
tain. What is it worth to a manager to be warned of a
business problem sometime sooner? What it is worth to
the manager and to the company is the avoidance of a
crisis. Many times, it is too late to react to problems
that are already out of control. This advantage from us-
ing problem finding, while difficult to quantify, is very
significant and real for the typical company today.

A. The Essence of Strategic Intelligence

Today, an integral part of corporate planning is strate-
gic intelligence. While the word strategic refers to or per-
tains to strategy, intelligence means understanding.
Within this context, strategic intelligence centers on
understanding the total picture of where the organiza-
tion is going today and tomorrow. It is also linked to
executive visioning in a changing world. Strategic in-
telligence is a forward-looking perspective and an ar-
ticulated vision of direction that a company should
take at the appropriate time and place. As such, it is a
guiding force that allows corporate managers the abil-
ity to keep their hands on the pulse of the business
every step of the way. Because strategic intelligence oc-
curs at the highest level, it is oriented toward many
sources based outside the organization. In addition, a
relationship exists between a company’s critical success
factors (those factors that are critical to a company’s
success), which are related to outside factors germane
to a specific industry and being successful in that in-
dustry. In turn, these factors are helpful in assisting top
managers and their corporate planning staff in deter-
mining what strategic direction the company should
take today and, more importantly, tomorrow. Underly-
ing strategic intelligence is problem finding (as set
forth above) that centers on solving future problems
today and identifying future opportunities.

III. THE ESSENTIALS OF CORPORATE
PLANNING IN A CHANGING WORLD

Because change can be the engine of growth, the chal-
lenge lies not in embracing this business tenet, but in
anticipating, adapting to, and generating fresh ideas

that exploit change. Because corporate planning is a
logical means for adapting to change, it centers on
setting or changing organization objectives and goals
as deemed appropriate, obtaining the resources to
meet these objectives and goals, and determining the
strategies and programs to govern the use and dispo-
sition of these resources. Because it occurs at the high-
est level and is related directly to top-level executives
and their corporate planning staff, the appropriate
external and internal factors are merged that are crit-
ical to setting the proper present and future direction
for the organization. In turn, it provides input for
lower and middle-level managers. Some of the im-
portant essentials underlying corporate planning are
given in this section.

An integral part of the essentials of corporate plan-
ning are long-range followed by medium-range, and
finally short-range corporate plans. Current and fu-
ture products and services are basic to long-range cor-
porate planning. A distinctive characteristic of this high-
est planning level is the use of marketing facts to
discover opportunities, and then develop effective
strategies and programs to capitalize on these oppor-
tunities. Similarly, the focus is on bringing future
problems back to the present time for solution. Long-
range corporate plans which embrace all aspects of
the organization and its environment provide a basis
for more detailed medium-range corporate planning.

Medium-range corporate planning, sometimes called
tactical planning, is concerned with financial plan-
ning to place the organization in the best financial
position for the next several years. This fiscal plan-
ning involves developing the operating programs and
associated budgets for the next several years. On the
other hand, short-range corporate planning or detailed
operational planning is related to the financial plans
of the current year only. For an organization that has
practiced formal planning on a regular basis, it is nor-
mal for every major functional area to prepare annual
plans for the coming year. Essentially, this financial
planning is brought together from a detailed exami-
nation of the key measures of the business, such as
product-line profitability, variable and fixed costs, in-
ventory turnover, manufacturing capacity, and finan-
cial ratios for the coming year.

A. Using Strategic Intelligence to
Make Sense Out of Chaotic Times
and Disruptive Changes

To help the typical company make some sense out of
today’s chaotic times, such as the velocity and volatil-
ity with which trade, capital, and currencies move

Corporate Planning 321

around the globe, decision makers need to employ
strategic intelligence to its fullest. The American chief
executive officer of Britain’s Cable & Wireless notes
that “the Chinese character for crisis combines char-
acters for danger and opportunity.” There is promise
as well as menace. The best businesses can do is to ap-
ply several approaches to make their companies win-
ners in the accelerating shakeout of industries around
the world.

For one approach, a company can intensify its in-
telligence gathering both internally and externally. In
this tumultuous period, using published statistics to
guide decisions is not the way to go. By the time em-
ployment figures rise or fall or retail sales rise or fall,
it is too late. Typically, decision makers possess valu-
able untapped marketing intelligence within their
own companies, if only they can get to it. The CEO of
Du Pont holds a biweekly phone conference with 20
top managers around the globe to stay abreast of
changes in customers, competitors, and local
economies and politics. He asks different, pointed
questions each time: What is happening to customers
and their customers? What is the direction of local
leaders to deal with the downturn? What should be
done now to meet changing competitive rules? The
sessions are not just for the CEO’s enlightenment, but
also for others. By hearing the answers from their
peers, they broaden their perspective of the global
landscape.

Another approach is to seize new opportunities
created by the crisis and, at the same time, stay re-
lentlessly on strategy since all ships are being tossed
by the same storm. The unsound may run into trou-
ble and that can open up opportunities if a company
is alert. At least three major financial services compa-
nies—AIG, Travelers, and Merrill Lynch—have ac-
quired distribution systems in Japan as that country’s
finance industry has struggled. Cargill has been trying
to crack the Japanese market for 30 years. Now the
troubles of a Japanese competitor may finally give it a
chance: Cargill announced recently that it would buy
Toskoku, a Japanese food-trading company that has
filed for bankruptcy. Tough times can also be ideal for
forging new business relationships that will serve long-
term goals that previously just had not seemed ur-
gent. Current conditions have led Orion Capital, a
Connecticut-based property and casualty insurer, to
investigate strategic partnerships with several insur-
ance carriers, distributors, and service firms.

Still another approach is tightening up operations.
There is no substitute for good business fundamen-
tals—customer satisfaction, cost, quality, cycle time,
and brand. Some ways of achieving them are smarter

than others. For example, Du Pont has centralized
and streamlined its efforts to combine purchasing by
diverse units around the world to get better prices
from vendors—a process it calls “vendor conver-
gence.” Managers who see an opportunity to combine
purchasing with another unit decides whether it would
be the right move for all the businesses involved. They
have ultimate authority, which they normally would
not have to make these deals happen.

Tied in with making sense out of chaotic times is
the area of disruptive changes in a typical company’s
markets. Disruptive changes can be caused not only by
a number of factors that related to a company’s mar-
kets, but also can be related to a company’s size per
Clayton Christensen. When a company is young, its
personnel, equipment, technologies, brands, and the
like define what it can and cannot do. As it becomes
more mature, its abilities, for example, stem more
from its processes, such as product development, im-
proved manufacturing, and financial capabilities.

Because companies, independent of the people
within them, have capabilities, those capabilities also
define disabilities. As a company grows, what it can
and cannot do becomes more clearly defined in cer-
tain predictable ways. In the largest companies, val-
ues, particularly those that determine what are its ac-
ceptable gross margins and how big an opportunity
has to be before it becomes interesting, define what
the company can and cannot do. Because resources
are more adaptable to change than processes or val-
ues, smaller companies tend to respond to major mar-
ket shifts better than larger ones. Hence, it is sug-
gested that companies capitalize on opportunities that
normally do not fit in with their processes or values.
The bottom line is that all companies start with an un-
derstanding of what they are capable of doing and
create a framework that managers can use to assess
the abilities and disabilities of their organizations as a
whole.

B. Use of Strategic Intelligence
in Executive Visioning

An important element underlying strategic intelli-
gence from the short range to the long range is exec-
utive visioning. Many times, executive visioning is tied
in with problem finding. An executive view entails far-
sightedness along with the eagerness to look ahead
from a practical viewpoint. Effective executive vision-
aries are not necessarily those who can predict the
21st century and beyond accurately. Rather, they are
decision makers who can draw a conceptual road map

322 Corporate Planning

from where the company is now to some imagined fu-
ture, who can say, “This is how we get there.” Vision-
ing implies a change from the status quo, which helps
explain why visionaries are overrepresented in the
ranks of entrepreneurs, and why they come in handy
to an organization in deep trouble—think of Mr. Lee
Iacocca saving Chrysler. Vision is not for the compla-
cent. While the executive visionary sees things a bit
differently, the individual is no mystic. The person’s
sources of information are down to earth—customers
and suppliers, for example—and extend beyond his
or her gut-level feelings. The most visionary executive
can take in large amounts of information and knowl-
edge, and not just from inside himself or herself.

Vision by itself is not enough for the executive to
possess. The executive visionary must be able to com-
municate what he or she has dreamed, and the com-
pany must have the required skills needed to execute
it. The leaders of the organization must act consis-
tently with the vision in everything they do. Too often
in the past, top-management teams work up a state-
ment of corporate vision, promulgate it, and then
think their work is done. What they overlook and what
dooms this kind of superficial effort is the need to
plan and manage this vision over time. A BIS, backed
up by appropriate information systems, is an excellent
vehicle for assisting in the fulfillment of carrying out
the executive vision. Executive visioning and its tie in
with long-range corporate planning will be noted later
in the chapter.

C. Capitalizing on E-Commerce
Via the Worldwide Internet

A most important strategy for the long run is centered
around electronic business technologies, which have
changed the ways of the business world. E-commerce
provides direct access to new markets, strengthening
relationships with customers and other business part-
ners; cutting costs by eliminating unnecessary paper-
work and processes; and empowering employees with
better education, communication, and information
access. All elements of a company’s supply chain, for
example, can linked via E-commerce. If a person buys
a pair of Nike running shoes, that information can be
transmitted back to the plant in Taiwan where the
shoes are made and the shoes Fedexed directly to the
person’s home. Similarly, items purchased electroni-
cally from several suppliers in the same region could
be shipped in a batch using electronic interfaces. A
whole host of intermediaries in the chain who used to
make their living coordinating and moving informa-

tion can be eliminated. Intranet-to-intranet commu-
nication is blurring the lines between companies. The
notion of where a corporation starts and stops is very
different today. As another example, a company’s ex-
pertise might be harvesting timber or processing lum-
ber, but the company also needs to move its products
to the construction industry. Traditionally, all those
steps were brought together in a soup-to-nuts opera-
tion. Now, given interconnectivity, someone else can
run a company’s truck fleet, and it will still operate
like one’s own fleet.

In the future, the greatest share of E-commerce
revenue is not going to high-profile retail web sites,
such as amazon.com and eBay. These are consumer
commerce ventures, selling one product at a time to
individual customers. While an admittedly huge mar-
ket, it is not the largest. The bulk of E-commerce rev-
enues will come from transactions between businesses,
in which both purchase volumes and dollar values al-
ready dwarf the consumer commerce market. The
business-to-business E-commerce market presents an
opportunity so big and appealing that there will be
many mini-monopolies. The vastness of these oppor-
tunities is what has spurred interest in on-line indus-
try marketplace vertical markets in which companies
within a given industry can easily buy and sell goods
and services with one another.

An example, Chemdex (www.chemdex.com) is an
on-line industrial chemical marketplace that lets buy-
ers and sellers of industrial reagents more easily find
one another, look up information about fh6 chemi-
cals they need, and make on-line purchases. What it
takes to make a good marketplace is an E-commerce
infrastructure tailored to the particular needs of the
industry’s buyers and suppliers, and a rich supply of
information about the products available throughout
the industry. This means that entrepreneurs with in-
timate knowledge of specific industries have a great
opportunity to create such marketplaces and cash in
on the trade they generate.

D. Using Corporate Planning Software
for Strategic Intelligence

Today, a wide range of corporate planning software
for strategic intelligence is available to top manage-
ment and its corporate planning staff. Typical busi-
ness planning software packages include the follow-
ing. Avantos ManagePro helps managers plan and
track goals and progress while fostering success
through focused management activities. It includes
goal planning and tracking tools, such as the Top

Corporate Planning 323

Level Goal Planner, for planning and delegating key
business objectives, strategies, and tactics. The Goal
and People Status Boards enable managers to moni-
tor the status of primary business goals and obtain at-
a-glance reinforcement of where to focus attention.
Jian BizPlan Builder is a complete business plan tem-
plate on disk with more than 90 typed pages of ex-
ample text that are formulated into word-processing
files. Templates use standard spreadsheet applications
like Excel or Lotus 1-2-3 to calculate financials and
generate graphs. The step-by-step format guides the
user through, explains issues, and gives clear and sen-
sible advice.

Once a company’s business plans have been devel-
oped (from the short- to the long-range), software can
be employed that is useful in determining the com-
pany’s overall financial performance. Such software
goes beyond monthly actual versus budget reports that
are routinely produced by today’s information systems.
Currently, companies are employing the use of corporate
scorecard software which is a sophisticated business model
that helps a company understand what is really driving
its success. In effect, it acts like the control panel on an
airplane, that is, the business equivalent of a flight
speedometer, odometer, and temperature gauge all
rolled into one. A corporate scorecard keeps track of a
company’s financial progress as well as its softer mea-
surements. These range from customer satisfaction to
return on investment that needs to be managed to reach
a company’s final destination, i.e., profitable growth. A
scorecard, for example, might graph customer service
to determine if it is improving or deteriorating and, at
the same time, tally product defects to determine if they
are rising or falling and where. Going a step further,
scorecard software, which is usually distributed through-
out a company’s computer network, lets company em-
ployees across the entire organization be certain they
are talking about like items when they get together. If
customer satisfaction is declining, sales, manufacturing,
and research and development will all be reading the
same score, and thus will be able to tackle the problem
from a common ground perspective.

Today, there are two views on utilization of score-
card software. One is that a company’s yardsticks
should be purely financial. Managers should employ
indicators like revenue growth and return on invest-
ment to guide a business. The other is that a corpo-
rate scorecard should be balanced. A company, for in-
stance, not only should keep close watch on
performance numbers like gross-profit margins on
new products, but also should use softer measure-
ments. Other softer measures include the number of
new products, product development cycle times, and

the rate of on-time deliveries. The bottom line from
this view is that it forces a company to evaluate criti-
cally those drivers that really determine its perfor-
mance over the short run to the long run.

An example of knowledge discovery software that can
assist management and its corporate planning staff is
KnowledgeX. This software discerns hidden relation-
ships among people, organizations, and positions. It
is able to take information, organize it, and extract
from that material the connections and webs of rela-
tionships. Using Intelligent Knowledge Exchange,
KnowledgeX can perform a text processing task called
“SmartParse” to do the selection and extraction of
textual information. If it encounters terms it already
knows, it will automatically assign the correct set of
connections to that term. If it does not know the term,
the user can define it once and all future uses of that
term will be connected according to rules. Knowl-
edgeX is object oriented. It allows multimedia infor-
mation to be accessible from within the program.

Once the relationships are established, Knowl-
edgeX has the ability to display these connections in
a graphical way or as a text outline. The graphical dis-
play is easy to grasp and often reveals relationships
that had been buried within the text and not obvious
to the researcher. By creating maps showing relation-
ships among customers, companies, individuals, and
organizations, KnowledgeX makes it easy to grasp how
these people and organizations are interconnected.
The more information that the knowledge base con-
tains, the better that KnowledgeX is at finding un-
known and unnoticed relationships.

In addition, KnowledgeX can combine informa-
tion entered by many people on the network and find
the connections within that information. As such,
fragments coming from other people can be con-
verted into something like a centralized knowledge
source. That is, KnowledgeX takes information and
knowledge coming from many sources and reveals re-
lationships that had never been known before be-
cause the pieces were too fragmented and dispersed
among too many people. From this perspective, this
knowledge discovery software is quite useful in bring-
ing together diverse elements needed for resolving
strategic planning issues.

IV. APPLICATIONS THAT LEND THEMSELVES
TO CORPORATE PLANNING

In order to understand corporate planning applica-
tions, reference can be made to either a manufactur-
ing-oriented company or a service-oriented company.

324 Corporate Planning

For either type company, corporate planning is linked
directly with a company’s other activities, that is, plan-
ning activities are related to marketing, manufactur-
ing, and finance that are linked to human resources.
All of the external- and internal-environmental factors
related to these company activities form the basis for
short- to long-range corporate planning applications.

Within this broad-based framework, the essential
focus of the applications covered in the next sections
focus on short-, medium-, and long-range corporate
planning. As a starting point for long-range corporate
planning, executive visioning can be used by top-level
managers to build a consensus around what it plans
to accomplish and guides action at the lower and
middle-management levels. Typically, top manage-
ment is assisted by a corporate-planning staff who op-
erate in an environment characterized by numerous
product and technological change. The task of the
corporate-planning staff is not only to prepare short-
to long-range corporate plans using strategic intelli-
gence, but also to monitor current results against
these plans. If necessary, the corporate-planning staff
should provide feedback to top management when tar-
geted plans are not being met. Feedback gives top
management the capability to study alternatives for
improving an organization’s operations.

V. LONG-RANGE CORPORATE PLANNING

Within a BIS environment, corporate planners view
long-range corporate planning as a continuous process
over the long term (five years and beyond) that takes
into account a relevant business model for the times.
This process, shown in Fig. 1, begins with executive vi-
sioning (based on a current business model) that pro-
vides the means for articulating a clear mission and
purpose for the organization. This overall direction
provides the means for setting appropriate corporate
objectives and measurable goals, employing strategies

and programs to achieve these desired objectives and
goals, and allocating a company’s resources in an op-
timum manner. In turn, this chain of events provides
a basis for the preparation of long-range corporate
plans. Typically, many of the prior events have already
been set in place in prior years. Hence, planners need
to make adjustments before the preparation of the
corporate plans. To assist in the preparation of final
long-range corporate plans, there is generally a need
to evaluate the plans using different sets of scenarios
based on good, average, and poor economic condi-
tions. This area is covered below under the tie in of a
relevant business model for the times to scenario
planning.

Once long-range corporate plans have been devel-
oped such that a company’s resources have been al-
located in an optimum manner, appropriate critical
success factors (CSFs) are specified, as shown in Fig.
1. The process of identifying CSFs was originally de-
fined by John Rockart of MIT. Typically, these factors
have been set forth previously and may need to be up-
dated to the present times. For example, a corporate-
planning staff has determined in the past its CSFs to
be: (1) price (responsiveness to competitive pricing);
(2) cost control (reducing the cost of plant and office
operations); (3) inventory turnover (improving the
times the inventory turns over yearly); and (4) prod-
uct mix (having the right products for the times). A
current review of the company’s operations indicates
that selling on the Internet as well as buying from out-
side vendors on the Internet has become a critical
success factor. Hence, it needs to be added at this
time along with possible adjustments to the four men-
tioned above. In a similar manner, key performance
indicators (KPIs) and financial ratios per Fig. 1 may
have to be modified for the current times. KPIs and
financial ratios can be developed not only over the
long term, but also as important measures for current
operations, especially when comparing budgeted fig-
ures to current actual amounts.

Corporate Planning 325

Figure 1 Long-range corporate planning process—from executive visioning to mission and purpose to corporate objectives and
measurable goals to company resources that provide a basis for preparing long-range corporate plans which, in turn, allows for
specifying a company’s critical success factors that are tracked by key performance indicators and financial ratios.

A. Tie In of a Relevant Business Model
for the Times to Scenario Planning

To assist top management and corporate planners in
getting a handle on their company’s operations, a
starting point is the relevance of the company’s cur-
rent business model to changing times. Conventional
wisdom of the past focused on companies with the
largest market shares who, in turn, would have the
largest revenues and lowest costs for the highest prof-
its. However, many large companies, like General Mo-
tors, IBM, and Sears have found this not to be true.
What is happening is that companies are seeing a mi-
gration from products and services to what might be
called “spinouts.” Thus, the newer business model for
changing times is centering on spinouts as drivers of
profitability. Take, for example, General Electric’s jet
engine profits are not in building the engines, but in
their financing, service, spare parts, and overhauling
existing engines. Essentially, manufacturing of these
engines has become almost incidental to the total op-
erations for producing profits. The essential message
here is that a typical company must change its basic
business model to reflect changing times.

Having the appropriate business model in place,
scenario planning can be utilized by top management
and corporate planners to evaluate outcomes under
good, average, and poor economic conditions. Basi-
cally, scenario planning simplifies the avalanche of in-
formation and knowledge into a limited number of
possible states. Each scenario tells a story of how var-
ious elements might interact under certain condi-
tions. When financial relationships between elements
can be formalized, a company can develop appropri-
ate financial statements under good, average, and
poor economic conditions. In turn, each scenario
needs to be evaluated for internal consistency and
plausibility. Although a scenario’s boundary might at
times be somewhat unclear, a detailed and realistic
narrative can direct attention to aspects that would
otherwise be overlooked.

Generally, scenario planning attempts to compen-
sate for two common errors in decision making—un-
derprediction and overprediction of change. Most peo-
ple and companies are guilty of the first error. For
example, think in terms of a hundred years ago how
hard it was to imagine the factors that propelled society
into today’s new technological world where automo-
biles, airplanes, televisions, and computers are com-
monplace. Yet a small group of futurists overpredicted,
expecting levels of change that failed to materialize, no-
tably in medicine, artificial intelligence, and space travel.

Scenario planning allows companies to chart a mid-
dle ground between under- and overprediction. It
helps expand the range of possibilities that can be
seen. It does this by dividing knowledge into two ar-
eas: (1) elements that are knowable and (2) elements
that are uncertain or unknowable. The first compo-
nent casts the past forward, recognizing that the world
possesses considerable momentum and continuity. As-
sumptions about demographic shifts and substitution
effects of new technologies can safely be made. Obvi-
ous examples of uncertain aspects are future interest
rates, oil prices, results of political elections, rates of
innovation, etc. It is not important to account for all
the possible outcomes of each uncertainty; simplify-
ing the possible outcomes is sufficient for scenario
planning. Because scenario planning depicts possible
future events and not specific strategies to deal with
them, top management and corporate planners need
to tie in company strategies with these scenarios.

B. Using Strategic Intelligence to Better
Understand Long-Range Corporate Planning

Company resources, as indicated previously, need to
be allocated in an optimum manner, thereby provid-
ing a basis for developing long-range corporate plans
under good, average, and poor economic conditions.
To assist in developing these plans, corporate plan-
ners should begin with a knowledge and understand-
ing of corporate strategies and programs that are re-
flected in existing products, services, margins, profits,
return on investment, cash flow, availability of capital,
research and development capabilities, skills and ca-
pacities of personnel, etc. For a manufacturing-
oriented company, this intelligence is typically ex-
tended to an in-depth analysis of manufacturing op-
erations that are linked to centralized operations at
the corporate level. There is need to examine the past
few years’ and the current year’s performance as part
of a beginning overall-review process. Evaluating sig-
nificant aspects of past and present operations is the
basis for determining how well the organization ob-
jectives and goals are being met. In like manner, plans
for the coming five years under different scenarios
based on short- to medium-range plans for improving
operations become an essential part of getting started
on long-range corporate planning.

A typical five-year plan for a manufacturing-
oriented company includes the external-environmental
factors that are generally not controllable, such as cus-
tomers, government, public, competitors, suppliers,
investors, and financial institutions. On the other

326 Corporate Planning

hand, four internal-environmental factors that are con-
trollable by the company center on the following:

1. Marketing planning focuses on expanding the
present product lines and entering new product
markets; also, increasing use of selling outlets
and/or distribution to sell the company’s products,
changes in pricing policy and pricing practices to
effect higher sales, and consideration of new
advertising media for more effective penetration of
the company’s markets.

2. Manufacturing planning centers on major
facilities contemplated and improvements in
processing efficiency, including the percent of
capacity that is now and will be employed with
present facilities and machinery as well as the steps
that are being undertaken to use excess capacity.

3. Financial planning relates to projected sales by
product lines, contribution (sales less direct
manufacturing costs) by product lines, indirect
manufacturing costs plus sales and general and
administrative expenses, net profits before federal
income taxes by product lines, fixed and working
capital needs, return on investment by product
lines, and comparable financial ratios and analyses.

4. Human resources planning which is related to
marketing, manufacturing, and financial plans
centers on projected requirements for key
management personnel and production labor when
considering turnover and future growth.

To develop projected strategic plans under different
scenarios for a five-year period, the corporate-
planning staff employs the company’s corporate data-
bases and data warehouses to analyze meaningful long-
range data, information, and knowledge in order to
discover pertinent intelligence about a company’s op-
erations over time. In turn, this output is used to fi-
nalize its five-year strategies and programs under the
most likely scenario. Also, management needs to con-
sider the company’s critical success factors. To better
understand strategic intelligence as a way of getting a
handle on long-range corporate planning, reference
can be made to Figs. 2 and 3 for a typical company
that are based on three likely scenarios, i.e., good, av-
erage, and poor economic conditions. These repre-
sent the consensus of top management working with
its corporate-planning staff. The dollar amounts for
total sales, cost of goods sold, gross margin, selling
and general expenses, and profits under good, aver-
age, and poor economic conditions five years hence
are found in Fig. 2. In this figure, the graph of this
data is shown, followed by the pie charts for good and

poor economic conditions in Fig. 3. Although not
shown, a number of other values, graphs, and pie
charts could have been illustrated for the company’s
geographical regions—north, east, south, and west.
Additionally, the geographical regions could have
been ranked five years hence. The attendant circum-
stances will normally dictate what further analyses are
necessary for a thorough understanding of a com-
pany’s operations five years into the future.

A thorough understanding of Figs. 2 and 3 plus re-
lated illustrations provides an effective overall long-
range strategic measurement framework for a typical
company. Ever since Peter Drucker wrote that what is
measured gets done, decision makers have considered
performance measurement an essential part of their
jobs. The potential effectiveness of a measurement
framework for strategic intelligence needs to consider
the following criteria in the form of these questions:

• Is it, or can it be, connected to a company’s
strategy?

• Is a balance of financial and non-financial
measures included? Are key measures tied in with
a model which expresses the causal relationship
between them so the focus is on key performance
factors and financial ratios?

• Can it be linked to important management
processes, i.e., planning, management reviews,
budgeting, etc.?

Typically, underperforming companies are more of-
ten the result of hundreds or even thousands of deci-
sions made by individuals throughout the company
than any grand strategic mistakes. Decision results at
all levels impact the strategic capacity of the company.
Too frequently, people must rely on a variety of
generic inputs which are not targeted to their specific
needs. An effective strategic intelligence capability
must offer the collective history, facts, insights, and
applicable analyses of the organization to decision
makers. A most difficult part of strategic intelligence
is continually undertaking the analyses needed for de-
cision makers and looking at their results so future
decision makers can learn from the past. This feed-
back loop is essential not only to populate the intel-
lectual assets of the organization, but also to enable
the BIS to monitor and make adjustments to key un-
derlying business assumptions and rules. Decision
makers need to be informed when the company is
where it should be and when it is off track. Hence,
when companies succeed, they need to know why so
that there can be a positive approach to a company’s
decision-making behavior.

Corporate Planning 327

328 Corporate Planning

A

Good Economic Conditions Average Economic Conditions Poor Economic Conditions
5% Growth Rate 2% Growth Rate 3% Recession Rate

Sales $200,200,550 $194,450,275 $184,875,290

Cost of Goods Sold $128,400,175 $128,100,450 $126,450,250

Gross Margin 71,800,375 66,349,825 58,425,040

Selling & General Exp $140,550,400 $140,550,400 $140,550,400

Profits $31,249,975 $25,799,425 $14,874,640

Good economic conditions

A
m

ou
nt

 (
m

ill
io

ns
)

Profits

Selling and general exp.

Gross m
argin

Cost of goods sold

Sales

$250

$200

$150

$100

$50

Average economic conditions
Poor economic conditions

B

Figure 2 (A) Total sales, cost of goods sold, gross margin, selling and general expense and profits under good, average, and poor
economic conditions five years hence and (B) graph that compares the above amounts five years hence.

Selling and
general exp

20.3%

Cost of
goods sold

64.1%

Profits
15.6%

Selling and
general exp

21.9%

Cost of
goods sold

68.4%

Profits
9.7%

Figure 3 A pie chart comparison of cost of goods sold, selling and general expenses, and profits under good and poor economic
conditions five years hence.

VI. SHORT- AND MEDIUM-RANGE
CORPORATE PLANNING

Short-range corporate planning is a derivative of
medium-range corporate planning which, in turn,
comes from long-range corporate planning. Essen-
tially, short-range corporate planning is concerned
with the efficient use of a company’s resources. It is a
detailed financial plan that specifies both how the
company’s objectives and goals for the coming year
will be attained and the operational procedures for
managing daily operations. As such, the short-range
plans outline the specific steps to accomplishing the
medium-range plans. Also, they play a major role in
implementing business strategies by translating long-
range plans into action and take into consideration a
company’s critical success factors.

Additionally, short-range corporate plans center on
detailed objectives and specific measurable goals and
strategies of the company and a means for achieving
them, usually in the form of flexible budgets or profit
plans. Management needs cost and revenue margin
information so that it can identify areas of strength
and weakness. Knowledge about a company’s product
margin or contribution information and its competi-
tors over time is also needed to measure the profit im-
pact of alternative courses of action. Approved short-
range corporate plans become budgets such that actual
results can be measured and compared with them
monthly for more effective control. Overall, these
plans of a short duration represent top-down planning
and budgeting that links performance to strategic vi-
sion. Essentially, these short-range corporate plans rep-
resent continuous plans that are owned by department
heads who will be held accountable for results.

A. Use of Strategic Intelligence to
Develop and Evaluate Short- and
Medium-Range Profit Plans

For a typical company’s products, an annual profit
plan is an integral part of corporation-wide corporate
planning. In a similar manner, overall profit plans are
determined for two, three, and four years hence. Typ-
ical output in terms of short-range reports (current
year) include periodic (or monthly) balance sheet and
income statements, monthly flexible budgets, monthly
budget exception reports, and periodic (or monthly)
KPIs and financial ratios. Medium-range reports (2 to
4 years in the future) include projected balance sheet
and income statement, projected cash flow, KPIs and
financial ratios, projected source and application of

funds, and projected products, manufacturing facili-
ties, and personnel requirements. As information be-
comes available that is reflective of changing times,
profit plans for the coming year must be revised to re-
flect the changes and expected changes in the busi-
ness environment. Effective profit planning, therefore,
must be a continuous effort rather than a periodic one.

Although flexible budgets for profit planning are
generally prepared by the accounting department, the
responsibility rests with the corporate planning staff,
who must not only select the appropriate financial in-
formation for specific planning decisions, but must
also combine this information from corporate data-
bases and data warehouses in useful and meaningful
ways. Many times, companies need to employ knowl-
edge discovery techniques to extract financial trends
and patterns. Staff members must also review and co-
ordinate the estimates provided by the functional man-
agers involved in a particular decision. They must pro-
vide a measure of the profit impact of alternative
courses of action and advice on the meaning and sig-
nificance of financial analysis. In summary, long-range
corporate plans for a typical company are translated
into medium-range plans for the next several years and
finally into short-range corporate plans, i.e., annual
profit plans (including budgets) for the coming year.

Flexible budgets or detailed profit plans for the
coming year are developed that take into account
planning for marketing, manufacturing, and finance
as well as human resources that have impact on the
current year. Similarly, overall profit plans for
medium-range corporate plans can be developed. To
assist the corporate-planning staff, a series of “what-if”
questions about planning need to be asked and an-
swered where sensitivity analysis can be used to deter-
mine the impact the change of one or more variables
might have on the final profit plans. Managers and
their staffs can interact with the company’s informa-
tion and knowledge to answer what-if questions and
to undertake sensitivity analysis.

For example, a six-month analysis of five new prod-
ucts can be undertaken that starts with their profits
which are as follows:

Month Product 1 Product 2 Product 3 Product 4 Product 5

1 $42,400 $62,100 $65,700 $ 80,400 $118,400

2 39,900 56,400 61,400 78,800 86,900

3 44,200 58,300 69,100 98,100 104,800

4 54,800 60,100 75,400 102,500 113,100

5 57,200 63,300 80,300 107,200 120,200

6 62,600 66,100 88,700 112,800 138,300

Corporate Planning 329

This data can be graphed (like in Fig. 2). Although
not shown, pie charts for a company’s best and worst
profits in the five new products can be developed (as
in Fig. 3). In turn, the profitability of these five new
products over the forthcoming six months can be
ranked as follows:

Month Product 1 Product 2 Product 3 Product 4 Product 5

1 $62,600 $66,100 $88,700 $112,800 $138,300 Best

2 57,200 63,300 80,300 107,200 120,200

3 54,800 62,100 75,400 102,500 118,400

4 44,200 60,100 69,100 98,100 113,100

5 42,400 58,300 65,700 80,400 104,800

6 39,900 56,400 61,400 78,800 86,900 Worst

Basically, profits increase over the months due to a
number of factors, including larger sales volumes due
to the acceptance of the product, a reduction in pro-
duction times, and a reduction in scrappage as the
learning curve improves. In addition, the percentages
of profitability could have been set forth for the five
products along with a graph and an appropriate rank-
ing of the products for a different view.

Related to short-range (and medium-range) cor-
porate plans is the measurement of actual perfor-
mance against these plans. This can take the form of
employing key performance indicators and financial
ratios. Also, scorecard software (mentioned previ-
ously) can help management at this point. Besides
getting an overview of how a company is doing over-
all, specific areas of a company can be measured and
evaluated for its performance. As examples, scorecard
software can check on defect rates plant by plant and
indicate how each plant’s quality is improving. It can
link measurements like on-time deliveries to certain
financial indicators. The software can measure the
percentage of sales due to new product introductions,
and gross margins on new products along with
corporate-wide indicators like revenues and return on
investment. It should be noted that different compa-
nies at different times have different needs and aims.
For example, a service company that has just merged
would not build a strictly financial model that focuses,
say, on productivity. Output per employee is not a
driver for that business. The real value of scorecard
software is that it forces a company to reexamine its
assumptions about what really drives performance. It
forces a company to focus and become much more
explicit about what matters to its customers and, ulti-
mately, what matters to a company’s total operations.

VII. FUTURE CORPORATE PLANNING
WILL MOVE TOWARD GREATER USE
OF STRATEGIC INTELLIGENCE

In the future, the employment of strategic intelligence
in corporate planning is expected to increase for a
number of reasons. First, a company needs to think
globally, then act locally in response to the local mar-
kets it serves. Second, sharpening a company’s com-
petitive intelligence is needed for growth and survival
in the long run. Third, the impact of e-commerce on
a typical company is expected to increase at an un-
precedented rate. Fourth, the average company is in
the early stages of a total revolution in organization
structures, that is, companies may be run as virtual
corporations. Fifth, there may well be a shift away
from core competence where the focus will be on fig-
uring out where the opportunities for a company lie.
Sixth, there will be an open atmosphere where inno-
vation is encouraged among all company employees.
Still many other reasons can be given for the shift to
strategic intelligence in corporate planning matters.

As with present corporate planning, decision mak-
ers at the very top need to have basic intelligence to
assess the overall health of the company. Armed with
that intelligence, they are ready to ask questions about
a company’s future direction. Knowing what ques-
tions to ask about a company’s future direction is
most important when retrieving strategic information
and knowledge from the company’s databases and
data warehouses. For example, a decision maker can
ask questions about the company’s future profitability
and receive information about the profitability or
sales volume of the company as a whole. If the indi-
vidual is satisfied, then the decision maker would go
on to the next metric of interest. If something seemed
out of line, for example, sales volume exceeded ex-
pectations, then the decision maker could look fur-
ther into the sales volume measures, possibly request-
ing a breakdown by product line or division. In turn,
a number of graphs, pie charts, and rankings of prod-
ucts along with their sales amounts and percentages
can be presented to the decision maker for a better
understanding of a company’s future performance,
i.e., future strategic intelligence.

SEE ALSO THE FOLLOWING ARTICLES

Decision-Making Approaches • Decision Theory • Economic
Impacts of Information Technology • Enterprise Resource
Planning • Operations Management • Productivity • Reen-
gineering • Strategic Planning for/of Information Sys-
tems • Value Chain Analysis

330 Corporate Planning

BIBLIOGRAPHY

Ackoff, R. L. (1999). Re-creating the corporation: A design of orga-
nizations for the 21st century. New York: John Wiley.

Brown, S. L., and Eisenhardt, K. M. (1998). Competing on the
edge: Strategy as structured chaos. Boston, MA: Harvard Busi-
ness School Press.

Christensen, C. M. (1997). The innovator’s dilemma: When new
technologies cause great firms to fail. Boston, MA: Harvard Busi-
ness School Press.

Colis, D. J. (2001). Corporate strategy, Second Edition. New York:
McGraw-Hill.

Drucker, P. (1999). Management challenges for the 21st century.
New York: HarperBusiness.

Godet, M. (1987). Scenarios and strategic management. London:
Butterworths.

Kaplan, R. S., and Norton, D. P. (1996). The balanced scorecard:
Translating strategy into action. Boston, MA: Harvard Business
School Press.

Mintzberg, H. (1994). The rise and fall of strategic planning:
Reconceiving roles for planning, plans, planners. New York: Free
Press.

Siegel, D. (1999). Futurize your enterprise: Corporate strategy in the
age of the e-customer. New York: John Wiley.

Thierauf, R. J. (1987). A problem-finding approach to effective cor-
porate planning. Westport, CT: Quorum.

Velia, C. M., and McGonagle, Jr., J. J. (1988). Improved business
planning using competitive intelligence. Westport, CT: Quorum.

Corporate Planning 331

Cost/Benefit Analysis
David L. Olson
University of Nebraska, Lincoln

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 333

I. COST-BENEFIT ANALYSIS
II. SELECTION PRACTICE

III. PROJECT EVALUATION TECHNIQUES
IV. SUMMARY

GLOSSARY

checklist A means of evaluating initial project pro-
posals in terms of a list of expected characteristics.

contingent valuation method Survey techniques ask-
ing for willingness to pay or to accept for a quali-
tive feature.

discounted cash flow Conversion of cash flows into
their worth as of some base period, usually the
present.

discount rate The rate used to convert future cash flows
into their current worth, usually set at the firm’s mar-
ginal rate of return (marginal value of money).

internal rate of return That marginal value of capital
that yields a net present value of zero for a stream
of cash flow.

net present value The worth, in today’s terms, of a
stream of cash flow over time, assuming a given
marginal cost of capital.

payback Financial analysis estimating the time re-
quired to recover an investment.

project profile A display of expected project perfor-
mance on important criteria, allowing comparison
of alternative projects.

screening A method of implementing a checklist for
project evaluation by listing the worst acceptable
performance on a list of criteria.

SMART Simple multiattribute rating theory, a means
of objectively comparing the values of projects con-
sidering multiple criteria.

value analysis Analysis of a proposed project by com-
paring subjectively described benefits versus esti-
mated costs.

COST-BENEFIT ANALYSIS is presented, including
demonstration of the method. In practice, complete
information is often not available for full cost-benefit
analysis, and the simplification of payback is often
used to provide decision makers with a quick picture
of investment opportunity. Some other alternative
evaluation methods for information system project
evaluation are also presented. The role of the time
value of money is discussed, as well as the treatment
of intangible factors.

Cost-benefit analysis seeks to identify accurate mea-
sures of benefits and costs in monetary terms, and uses
the ratio of benefits to costs to provide a metric for
evaluation of project proposals. Economists would view
this calculation from the perspective of society. The
same approach is often applied from the perspective
of a firm. A ratio of benefits to costs greater than 1.0
indicates a positive investment, while a ratio less than
1.0 indicates that the investment will result in a loss.
Net present value is usually the most important finan-
cial criterion used. Cost-benefit analysis and other
financial/economic evaluations of project desirability
are important considerations in any investment deci-
sion. However, there are limitations and weaknesses in
cost-benefit analysis. While traditional cost-benefit and
net present value tools are useful in evaluating infor-
mation system projects, managers have recognized that
rational decision making requires expansion of tech-
niques used to recognize information technology’s ex-
tensive impact on the organization, its customers, and
its competitors. Financial measures alone are seldom
sufficient to support decisions involving long-term im-
pact. Therefore, other techniques are often applied.

I. COST-BENEFIT ANALYSIS

Information system project proposals are generated
in great volume. This presents management with the
very important and difficult decision of whether to
fund specific project proposals. The seemingly most
accurate and precise methodology to evaluate project
proposals is cost-benefit analysis.

While cost-benefit analysis is a valuable tool in se-
lection of information system projects, it requires data
accuracy usually beyond what is available. Therefore,
in practice, many other approaches are used. Studies
describing practice are reviewed, and some of the al-
ternative methods used are demonstrated. For proj-
ects involving long time frames, considering the net
present value of benefits and costs is important.

A. Cost/Benefit Example

Assume that an automation project has been pro-
posed to improve an organization’s methods of pro-
viding service to customers. Currently this operation
is accomplished by a staff of 12 people with a total
payroll expense of $400,000 per year (including ben-
efits). The proposed project would reengineer the sys-
tem and only require eight staff (at a little more pay),
yielding a personnel cost at the current rate of
$320,000 per year. The project would take an esti-
mated year to develop and install (including training
of staff). Project costs include $30,000 for software ob-
tained from vendors, $50,000 to vendor consultants,
and $200,000 for internal staff to integrate the new
software into the existing system. Training staff would
cost $30,000 in staff time. The benefits of the pro-
posed project are expected to be obtained for five
years after project completion. Inflation for staff pay-
roll expenses for this operation have consistently been
2% per year. The company has a marginal value of
capital of 15% per year.

The cost-benefit calculation for the new project re-
quires identification of benefits in monetary units.
Use of net present value requires identification of the
timing of monetary exchanges. The benefit from the
new project consists of lowered personnel costs. A
comparison of the old operation versus the new is
given in Table I. The increased contribution to profit
per year would be $424,650 over years 2 through 6
(Table II). Development and training costs would
amount to $310,000, incurred in the first year.

1. Ratio

The nominal cost-benefit ratio (disregarding the time
value of money) is $424,650 / $310,000 � 1.37. This
indicates that the project is worthwhile, in that the ex-
tra initial expenses of $310,000 would be exceeded by
expected benefits by 37%. The cost-benefit ratio is
easily interpreted. If the ratio exceeds 1.0, the project
would be profitable if the firm’s marginal value of
capital were equal to the discount rate. The ratio can
be used as a basis for rank-ordering projects, with
higher ratios more attractive.

Nas (1996) provides a more complete coverage of
cost-benefit analysis.

B. Payback

Another measure of value is to identify the time for
an investment to be repaid. Payback is a rough esti-
mate, but presents a view of the transaction that is
very understandable and important to managers.

Another time-related factor is the need for cash
flow. One alternative may be superior to another on
the net present value of the total life-cycle of the proj-
ect. However, cost-benefit analysis does not consider
the impact of negative cash flow in early periods. For
instance, in our process reengineering example, the
cash flow would be as given in Table II. The Net Ben-
efit column is calculated by subtracting the cost of the
new system from the cost of the old system by year. In
the first year, this is negative, due to the high invest-
ment cost of the new system. In years 2 through 6, the
new system provides a positive net benefit relative to

334 Cost/Benefit Analysis

Table I Simple Cost-Benefit Calculation (in Dollars)

Old process New process Benefit

Benefits:
Personnel
Year 2 408,000 326,400 81,600
Year 3 416,160 332,928 83,232
Year 4 424,483 339,587 84,897
Year 5 432,973 346,378 86,595
Year 6 441,632 353,306 88,326
Total costs 2,123,248 1,698,599 424,650

Costs:

Software 30,000
Consultants 50,000
Development 200,000
Training 30,000 Total costs: 310,000

the old system. The new system gains a nominal ad-
vantage by the end of year 5 (payback is about 4.7
years), but $310,000 has been sacrificed at the begin-
ning. One of the most common reasons for company
failure in the United States is lack of cash flow. In this
case, if the firm has cash-flow difficulties, the invest-
ment would be less attractive than if they had ade-
quate cash reserves.

C. The Time Value of Money

We can modify the cost-benefit ratio by considering
the time value of money. In this project, for instance,
the nominal expected gains of $424,650 are spread
out over 5 years, while the extra costs of $310,000 are
all incurred at the beginning. Having the $310,000
would mean that the company would not be able to
adopt some other investments (and maybe even force
the firm to borrow money). The marginal value of
money for the firm is 15% per year. Net present value
converts a time stream of money back to its worth in
today’s terms (or in terms of the project’s start, or any
other specific time of reference).

Table III shows the changes in cash flow between
the two systems (shown in the net difference column).
Discounting each year’s net change in cash flow by
the discount rate of 1.15 per year to the t th power,
where t is the time period, we get the following. Note
that initial expenses are treated as occurring during
year 1. Viewed in this light, relative to obtaining a re-
turn of 15% per year on alternative investments, in-
stalling the new system would be unattractive, equiva-
lent to writing a check for $23,359 to someone today.
If there were some alternative investment on which
the company could obtain 15% on their $310,000 in-
vestment, they would be ahead by adopting the alter-
native investment to the tune of over $23,000 over a
5-year period.

A related concept is internal rate of return, which is
the marginal value of capital for which the net pres-
ent value of a stream of cash flow would break even,
or equal zero. In this case, the internal rate of return
(IRR) amounts to 1.113, or 11.3% average return.
Therefore the net present value at 15% is negative,
and the new system does not appear to be attractive.

It is dangerous to compare projects with different
time horizons.

Cost/Benefit Analysis 335

Table II Payback (in Dollars)

Year Old system New system Net benefit Cumulative

1 400,000 400,000–310,000 �310,000 �310,000

2 408,000 326,400 �81,600 �228,400

3 416,160 332,928 �83,232 �145,168

4 424,483 339,587 �84,897 �60,271

5 432,973 346,378 �86,595 �26,323

6 441,632 353,306 �88,326 �114,650

Table III Net Present Value (in Dollars)

Year (t) Old system New system Net difference Divide by 1.15t

1 400,000 710,000 �310,000 �269,565

2 408,000 326,400 �81,600 �61,701

3 416,160 332,928 �83,232 �54,726

4 424,483 339,587 �84,897 �48,540

5 432,973 346,378 �86,595 �43,053

6 441,632 353,306 �88,326 �38,186

Net present value �23,359

D. Other Factors

There are a number of complications that can be
brought into the calculation of cost-benefit ratios.
One of the most obvious limitations of the method is
that benefits, and even costs, can involve high levels
of uncertainty. The element of chance can be in-
cluded in cost-benefit calculations by using expected
values.

This section begins with discussion of some other
limitations of cost-benefit analysis. This is followed by
a calculated example. Then specific information sys-
tem project characteristics relating to cost-benefit
analysis limitations are emphasized.

The cost-benefit ratio does not reflect intangible
benefits unless they are presented in monetary terms.
Cost-benefit analyses have included measurements for
intangible items, but they tend to be given lower values
because of the uncertainty involved in their estimates.
The contingent valuation method seeks to measure the de-
cision maker’s willingness to pay for intangible factors.
This approach can be time-consuming and less than
convincing. Respondents commonly understate their
true preferences when asked how much they would be
willing to pay, or overstate their bid if they are told they
will not be responsible for financing. Governments have
encountered some problems in applying cost-benefit
analysis to public works, to include evaluating the ben-
efit of recreational facilities. When a dam is built, there
clearly is benefit obtained from providing many citizens
much improved fishing and water sports. (There also is
added cost in depriving citizens of the opportunity to
view some flooded historical sites.) The approach usu-
ally taken has been to place some dollar value on recre-
ation, based on some very insubstantial measures. The
evaluation of risk to human life has also been tackled

by economists, who have applied things like the net
present value of the expected earnings of those whose
lives are expected to be lost in some proposed invest-
ment project. This of course involves high levels of spec-
ulation as well, because the calculation assumes certain
ages, assumes that the only value of a human is what
they earn, and disregards who pays and who benefits.

If a firm was threatened with a severe monetary
penalty for not complying with a governmental regu-
lation with respect to environmental pollution or safe
working conditions, a net present value analysis might
well lead to the conclusion that it would be rational
to pay the penalty and avoid improving operations.
For instance, assume that a blast furnace is pouring
out black matter at a phenomenal rate that the gov-
ernment finds terribly offensive. Governmental regu-
lations call for a penalty of $10,000,000 if the pollu-
tion source is not cleaned up within one year, through
applying information technology in conjunction with
more modern processing equipment. Hard core cost-
benefit analysis would identify the cost of cleaning up
the facility, which might involve an expense of
$12,000,000 in equipment and installation, and an
added cost of operations of $5,000,000 per year over
the next eight years, the remaining life of the equip-
ment. At a discount rate of 12% per year, the net pres-
ent value of benefits and costs would be as shown be-
low. The net column shows discounted values for
benefits and costs. Totals are given at the bottom of
Table IV. Here the ratio of net present benefits to net
present costs is $8,928,571/35,552,483 � 0.25, well
below 1.0, indicating that the rational decision maker
would pay the fine and keep operating as is. But the
government didn’t impose the fine limit for the pur-
pose of raising money. They imposed the fine as a
means to coerce polluters to clean up operations. The

336 Cost/Benefit Analysis

Table IV Net Present Value (in Dollars)

Year Benefits Net Costs Net

1 $10,000,000 8,928,571 17,000,000 15,178,571

2 — 5,000,000 3,985,969

3 — 5,000,000 3,558,901

4 — 5,000,000 3,177,590

5 — 5,000,000 2,837,134

6 — 5,000,000 2,533,156

7 — 5,000,000 2,261,746

8 — 5,000,000 2,019,416

Total 8,928,571 35,552,483

United States Congress has no trouble adding extra
zeroes to penalties. If the firm continued to pollute,
it is not too hard to imagine the penalty being raised
in the future to some much larger figure. There have
been actual cases similar to this scenario, where within
three years the penalty was raised to much larger val-
ues, providing a much different cost-benefit ratio.
Benefits are often difficult to forecast.

Information systems projects typically involve ben-
efits that are difficult to measure in terms of concrete
monetary benefits. This vastly complicates sound man-
agement, because cost-benefit analysis will not always
accurately reflect project benefits. Hinton and Kaye
cited cost and benefit intangibility, hidden outcomes
involved in information technology investment, and
the changing nature of information technology sys-
tems as important issues.

Intangible factors—Both costs and benefits tend to
have intangible features. The tangible costs and bene-
fits tend to be historical, backed by data or solid price
quotations from vendors. But many of the benefits are
expected in the future, and are very difficult to mea-
sure. These include expected increases in market
share, improved customer service, and better corpo-
rate image. These would all have a significant impact
on the corporation’s bottom line, but guessing exactly
what that impact would be is challenging at best.

Hidden outcomes—Other aspects of information
technology projects often involve unexpected results.
Information technology projects can impact organi-
zational power. New projects can change the power
specific groups may have held in the past, which can
have negative impact on the teamwork of the organi-
zation. Information technology also includes compo-
nents of the organization’s communications network.
Often different elements of the organization can
adopt projects that impact the organizational com-
munications network without this impact being con-
sidered. This can result in duplication of efforts, or
development of barriers between groups within the
organization. Computers can make work more pro-
ductive and more attractive, but they also can change
work roles to emphasize skills in which specific em-
ployees have no training, making them feel less
productive.

Failure to identify the impact of projects often is not
noticed until project implementation. At that stage,
the problems created are more difficult to deal with. It
is important to consider the systems aspects of projects,
and try to predict how the project will change how peo-
ple do their jobs. Thorough user involvement can make
project impact more obvious, as well as easier to rec-
oncile and convince users of the project’s benefits.

The changing nature of information technology—There
are many excellent applications of computer technol-
ogy to aid businesses, but a major problem is that
technology is highly dynamic. Some information sys-
tems projects take years to implement. This can, and
often has, resulted in installation of a new system af-
ter it is outdated by even newer technology. A com-
mon rule of thumb is a maximum of 9 months be-
tween management approval and project component
construction in information systems projects.

II. SELECTION PRACTICE

Hinton and Kaye (1996) surveyed 50 members of a
professional organization whose members were re-
sponsible for appraising key organizational invest-
ments. Methods used for information technology pro-
jects were appraised, and compared to projects in
other areas (operations, marketing, and training).
Treatment of a project as a capital investment involves
cost-benefit analysis to establish profitability. Treat-
ment as a revenue-related project does not require
cost-benefit analysis, as the project is expected to fos-
ter key organizational goals, and the benefits are rec-
ognized as being difficult to measure accurately.
Projects involving investment in operations and in-
formation technology were usually treated with some
form of cost-benefit analysis. Investments in training
and marketing were usually treated as revenue-related
projects, and thus cost-benefit analysis was for the
most part foregone.

Net present value masks some of the true value of
information technology proposals. On the other
hand, some projects that have low impact on corpo-
rate performance often appear attractive in cost-
benefit analyses. This is because cost-benefit analysis
emphasizes those features most easily measured. The
value of information technology projects is in making
organizations more competitive, increasing customer
satisfaction, and operating more effectively. These are
the sometimes intangible strategic benefits that are
often disregarded because they were not measurable.

Cost-benefit analysis should consider costs over the
entire life cycle of the project. Life cycle costs are
roughly four times development costs for most infor-
mation systems projects. But these long-range costs
are much less predictable, and therefore often not in-
cluded in cost-benefit analyses.

Information systems projects involve significant in-
vestment on the part of firms. Efficient management
of these investments is critical to firm success. How-

Cost/Benefit Analysis 337

ever, there is a great deal of difficulty in accurately as-
sessing the costs and benefits involved in most infor-
mation technology projects. Many companies simply
disregard important intangible factors since they in-
volve high levels of uncertainty and even speculation.
But there are many important intangible factors in-
volved in assessing the worth of information technol-
ogy project proposals. Value analysis, or multicriteria
analysis offers means of considering such factors.

III. PROJECT EVALUATION TECHNIQUES

A number of methods exist to evaluate project pro-
posals, either from the perspective of selecting the
best option available, designing an ideal option, or
rank-ordering options. Cabral-Cardoso and Payne
(1996) surveyed research and development decision
makers in the United Kingdom about their use of for-
mal selection methods in project selection decisions.
The study, based on 152 samples, asked each decision
maker to identify familiarity based on use for 18 dif-
ferent methods. Table V lists the most commonly cited
methods in the survey (methods rank ordered by per-
centage use). Economic and financial analyses in-
clude payback (determining the expected time until
investment is recovered), and cost-benefit analysis.
Net present value and internal rate of return consider
the time value of money, appropriate when projects
are lengthy (3 years or more).

Checklists describe criteria of importance and their
minimum acceptable levels of requirement. Screening
methods are a variant of checklists, eliminating projects
that do not have minimum estimated performance on
specific measures. Project profiles describe the perfor-
mance of each project on criteria so that the decision
maker can see each project’s strengths and weaknesses.
Scoring and rating models are a simple form of multi-
criteria analysis where measures are obtained on each
criterion of importance, and combined in some fash-
ion. Multicriteria decision models are in general more
formal than scoring and rating models, but operate on
essentially the same principle—identify factors that are
important, measure how well each project does on each
factor, and combine these into some value score that
can be used for ranking.

The last two types of methods are more specialized.
Mathematical programming provides optimal solu-
tions for a portfolio of projects, on any specific mea-
sure, subject to constraints, such as budget limits. Ex-
pert systems are usually sets of rules that implement a
checklist approach in a thorough, systematic manner.

We will now review some of the more popular al-
ternative methods to cost-benefit analysis in informa-
tion systems project selection.

A. Screening

Screening is a process that is very useful in cutting
down the dimensions of the decision problem. The
way in which screening operates can vary widely in
details, but essentially involves identifying those fac-
tors that are important, establishing a minimum level
of importance, and eliminating those projects that
fail on any one of these minimum standards. Obvi-
ously, if the standards are set too high, the decision
problem disappears as no projects survive the screen-
ing. This is appropriate if the minimum standards re-
flect what management demands in return for their
investment.

To demonstrate screening, assume that 100 infor-
mation systems project proposals are received this
month. All of the projects were evidently worthwhile
in someone’s mind, but management must consider
budgets and other resource limitations. Assume that
the criteria and minimum performance levels re-
quired are as given in Table VI. If any of the 100 pro-
posed projects failed to meet all four of these stan-
dards, they would be rejected preemptively. This
reduces the number of proposed projects for more
detailed analysis. This approach can be implemented

338 Cost/Benefit Analysis

Table V Use of Formal Selection Methods

% Who Used
Method (U.K., 152 samples)

Economic and financial
Payback analysis 68
Cost-benefit analysis 63
NPV/IRR 40

Multifactor techniques
Checklist 38
Project profile 26
Scoring/rating models 26
Multicriteria decision models 11

Other
Goal programming 18
Expert systems 6

Adapted from Cabral-Cardoso, C., and Payne, R. L. (1996).
Instrumental supportive use of formal selection methods in
R&D project selection. IEEE Transactions on Engineering Man-
agement, Vol. 43, No. 4, 402–415.

by checklists, which give clearly defined standards on
those areas of importance to management.

Screening is good at quickly weeding out those
projects with unacceptable features. The negative side
of screening is that trade-offs between very good fea-
tures and these unacceptable features are disregarded.
The willingness of decision makers to accept lower re-
turn on investment (ROI) for projects with strategic
importance is disregarded. For those projects for
which such trade-offs are not important, screening is
a very efficient way to reduce the number of propos-
als to a more manageable number.

In the prior section, we gave a list of risk factors for
information system projects. These could be imple-
mented as a checklist by management specifying mini-
mum acceptable measures that can be used to screen
individual projects. Not all risk elements might apply
for a given organization’s checklist. An example check-
list is given in Table VII. Checklists ensure imple-
mentation of policy limits. Checklists are a way to im-
plement screening from the perspective of features
management feels are important. The next step in

analysis is to more directly compare alternative proj-
ect proposals.

The intent of a project profile is to display how the
project proposal compares to standards, as well as how
the project compares to other proposals. Profiles have
a benefit over screening limits, because poor perfor-
mance on one factor can be compensated for by strong
performance on another factor. For instance, match
with company strategic programs can be an important
factor. There could be other project proposals that
contribute nothing to the firm’s strategic program, yet
have an outstanding cost improvement for adminis-
trative work. This would be reflected in very strong
performance on return on investment. Conversely, an-
other project may have a slightly negative return on in-
vestment calculation, but may involve entering a new
field in which the firm wants to gain experience.

To demonstrate project profiles, assume a firm has
a number of information projects proposed. This is
generally a large list, because of the many beneficial
things information technology can do for organiza-
tions. In Table VIII there is a short list of eight pro-
posals, measured on resources used, as well as bene-
fits expected. A profile displays the characteristics of
individual projects. Estimated cost is needed to de-
termine if available budget can support a project. The
same is true for other scarce resources, such as sys-
tems analysts in this case. A tabular form is given
here. Graphical displays and ratios are often valu-
able to give a measure with which relative perfor-
mance can be measured. For measures such as
NPV/cost ratio, cut-off levels can be used to screen
out projects. For instance, a positive return on esti-
mated cost in net present terms might be desired.
Projects A265, B837, and C592 are below this limit,

Cost/Benefit Analysis 339

Table VI Screening

Expected return on At least 30%
investment

Qualified project team Available
leadership

Company has expertise Either company is experienced
in this area in this work, or company

desires to gain this experience

Project completion time Within 48 months

Table VII Checklist

Factor Minimum standard

Project manager ability Qualified manager available

Experience with this type of application Have experience, or application in a
strategically key new technology

Experience with the programming environment Personnel with experience can be obtained

Experience with the language or system used Experienced personnel can be obtained

Familiarity with modern programming practices If not, training is available

Availability of critical equipment, software, and
programming language Each critical component available

Completeness of project team (are all team Key personnel identified and agree to work,
members assigned?) support personnel widely available

and might be screened out. However, the first two of
these projects are listed as key to the organization’s
strategy, and management might be willing to accept
lower return for the potential for advancing organi-
zational strategy.

B. Value Analysis

Keen (1981) proposed value analysis as an alternative to
cost-benefit analysis in the evaluation of proposed in-
formation system projects. These projects, clearly at-
tractive to business firms, suffer in that their benefits
are often heavily intangible. For instance, decision sup-
port systems are meant to provide decision makers with
more complete information for decision making. But
what is the exact dollar value of improved decision mak-
ing? We all expect the success of firms to be closely tied
to effective decision making, but there is no rational,
accurate measure of making better decisions.

Value analysis was presented as a way to separate
the benefits measured in intangible terms from costs,
which are expected to be more accurately measur-
able. Those tangible benefits as well as costs can be
dealt with in net present terms, which would provide

a price tag for proposed projects. The value of the
benefits would be descriptive, with the intent of show-
ing the decision maker accurate descriptions of what
they were getting, along with the net present price.
The decision would then be converted to a shopping
decision. Many of us buy automobiles, despite the fact
that the net present cost of owning an automobile is
negative. Automobiles provide many intangible bene-
fits, such as driving a good looking car, the ability to
speed through the countryside (safely, of course), and
obtaining a quality means of transportation. The dol-
lar value of these intangible benefits is a matter of
willingness to pay, which can be identified in mone-
tary terms by observing the purchasing behavior of in-
dividuals. This measurement requires some effort,
and is different for each individual.

In terms of our pollution abatement project, the
intangible values can be identified by criterion, or
measure of value to the decision maker, as shown in
Table IX. Value analysis would consist of presenting
the decision maker with the intangible comparisons
in performance, and placing the decision in the con-
text of whether or not the decision maker thought
the improvements provided by the new system were
worth about $27 million. If, in the decision maker’s

340 Cost/Benefit Analysis

Table VIII Project Profiles

Project Estimated Systems Cash flow NPV/cost Key to
identifier cost analysts this period ratio strategy

A265 868,000 5 100,000 0.63 Yes

A801 721,000 5 �190,000 1.22 No

A921 528,000 4 360,000 1.86 No

B622 962,000 6 �52,000 2.55 No

B837 752,000 5 �200,000 0.48 Yes

C219 649,000 5 170,000 1.12 Yes

C512 758,000 5 �320,000 1.58 Yes

C592 887,000 6 �300,000 0.62 No

Table IX Value Analysis

Old system New system

Working conditions with respect to safety Risky Very safe

Impact on market share Vulnerable on quality High quality

Capital equipment Deteriorating In good condition

Legal risk High Minimal

Net present cost relative to current 0 $26,624,000

judgment, these intangible benefits were clearly worth
$27 million or more, the new system should be in-
stalled. On the other hand, if the decision maker is
unwilling to pay $27 million for these improvements,
the old system should be retained.

Taking value analysis one more step, to quantify
these intangible benefits in terms of value (not in
terms of dollars), takes us to multicriteria analysis.

C. Multiple Objectives

Profit has long been viewed as the determining ob-
jective of a business. However, as society becomes
more complex, and as the competitive environment
develops, businesses are finding that they need to
consider multiple objectives. While short-run profit
remains important, long-run factors such as market
maintenance, product quality, and development of
productive capacity often conflict with measurable
short-run profit.

1. Conflicts

Conflicts are inherent in most interesting decisions.
In business, profit is a valuable concentration point
for many decision makers because it has the appar-
ent advantage of providing a measure of worth. Min-
imizing risk becomes a second dimension for deci-
sion making. There are cash flow needs which
become important in some circumstances. Businesses
need developed markets to survive. The impact of ad-
vertising expenditure is often very difficult to fore-
cast. Yet decision makers must consider advertising
impact. Capital replenishment is another decision fac-
tor which requires consideration of trade-offs. The
greatest short-run profit will normally be obtained
by delaying reinvestment in capital equipment. Many
United States companies have been known to cut
back capital investment in order to appear reason-
ably profitable to investors. Labor policies can also
have impact upon long-range profit. In the short
run, profit will generally be improved by holding the
line on wage rates, and risking a high labor turnover.
There are costs which are not obvious, however, in
such a policy. First, there is training expense involved
with a high turnover environment. The experience
of the members of an organization can be one of its
most valuable assets. Secondly, it is difficult for em-
ployees to maintain a positive attitude when their ex-
perience is that short-run profit is always placed
ahead of employee welfare. And innovative ideas are
probably best found from those people who are in-

volved with the grass roots of an organization—the
work force.

This variety of objectives presents decision makers
with the need to balance conflicting objectives. We
will present the simple multi-attribute rating tech-
nique (SMART), an easy to use method to aid selec-
tion decisions with multiple objectives.

2. Multicriteria Analysis

Multicriteria analysis considers benefits on a variety of
scales without directly converting them to some com-
mon scale such as dollars. The method (there are
many variants of multicriteria analysis) is not at all
perfect, but it does provide a way to demonstrate to
decision makers the relative positive and negative fea-
tures of alternatives, and gives a way to quantify the
preferences of decision makers.

Perhaps the easiest application of multicriteria
analysis is the simple multi-attribute rating theory
(SMART), which identifies the relative importance of
criteria in terms of weights, and measures the relative
performance of each alternative on each criterion in
terms of scores. We will first explain scores.

a. SCORES

Scores in SMART can be used to convert perfor-
mances (subjective or objective) to a zero-one scale,
where zero represents the worst acceptable perfor-
mance level in the mind of the decision maker, and
one represents the ideal, or possibly the best perfor-
mance desired. Note that these ratings are subjective,
a function of individual preference. Scores for the cri-
teria given in the prior section for the pollution abate-
ment decision could be as given in Table X. The safety
score was assigned assuming that the new system would
provide working conditions as ideal as possible. The
score for the old system is an evaluation expressing
the decision maker’s judgment of just how unsafe the
old system was. A rating of 0.3 indicates that it is pretty

Cost/Benefit Analysis 341

Table X SMART Scores of Alternatives on Criteria

Old system New system

Working conditions with 0.3 1.0
respect to safety

Impact on market share 0.5 1.0

Capital equipment 0.4 1.0

Legal risk 0.0 1.0

Net present cost 1.0 0.3

bad. With respect to market share, the new system
would provide as good an impact on market share as
any system the decision maker could imagine. The
old system would involve significant risk of losing mar-
ket share, rated at 0.5. Obtaining the new system
would place the company in an excellent position
with respect to capital equipment, while the old sys-
tem would be much worse (rated at 0.4). The legal
risk of the current system is as bad as the decision
maker could imagine, while the proposed system
would be as good as could be imagined. Finally, the
cost of the old system is much better, and in fact lower
than any imaginable alternative, while the new sys-
tem’s net present cost of $27 million is rated as bad
(numerically, 0.3 on a 0–1 scale).

b. WEIGHTS

The next phase of the analysis ties these ratings to-
gether into an overall value function by obtaining the
relative weight of each criterion. In order to give the
decision maker a reference about what exactly is be-
ing compared, the relative range between best and
worst on each scale for each criterion should be
explained.

There are many methods to determine these
weights. In SMART, the process begins with rank-
ordering the four criteria, after consideration of an-
chors of worst and best measures. A possible ranking
for a specific decision maker might be as in Table XI.

Two estimates of weights can be obtained. The first as-
signs the least important criterion 10 points, and as-
sesses the relative importance of each of the other cri-
teria on that basis. Table XII demonstrates this
estimation of relative weights. These add to 125. The
first estimate of weights would divide each relative im-
portance by 125, yielding the values in Table XIII.
The total will of course add to 1.0. The implication is
that impact on market share (over the range of values
considered) is four times as important as maintaining
capital equipment, and about 1.5 times as important
as net present cost. The second estimate of weights is
obtained by looking at relative importance from the
opposite perspective. The most important criterion is
assigned 100 points, and the others evaluated on that
basis. This is supposed to be an independent check of
the prior estimate, although relative order should be
maintained in both assessments. Table XIV gives an
example of these assessments. This total is 280. The
second estimate of weights is therefore obtained by
dividing each value by 280 as in Table XV. The next
step is to compromise if necessary between these two
estimates. The last criterion can be used to make sure
that the sum of compromise weights adds to 1.00.

c. VALUE SCORE

The next step of the SMART method is to obtain
value scores for each alternative by multiplying each
score on each criterion for an alternative by that cri-

342 Cost/Benefit Analysis

Table XI Criteria Anchors and Ranking

Worst measure Best measure

Impact on market share Poor quality product High quality

Legal risk High Minimal

Net present cost Worst expected 0

Working conditions with respect to safety Very risky Very safe

Capital equipment Need replacement now In mint condition

Table XII Assessment of Weight Preferences

Worst measure Best measure Assigned value

Capital equipment Need replacement now In mint condition 10

Working conditions with respect to safety Very risky Very safe 15

Net present cost Worst expected 0 25

Legal risk High Minimal 35

Impact on market share Poor quality product High quality 40

terion’s weight, and adding these products by alter-
native, as in Table XVI. This value score provides a
relative score that can be used to select (take the al-
ternative with the highest value score), or to rank or-
der (by value score). In this case, the new system
would be indicated as better fitting the preferences of
the decision maker.

d. OTHER MULTIPLE CRITERIA METHODS

Note that there are many other approaches imple-
menting roughly the same idea. The best known is
multi-attribute utility theory, which uses more sophis-
ticated (but not necessarily more accurate) methods
to obtain both scores and weights. The analytic hier-
archy process is another well-known approach.

IV. SUMMARY

Cost-benefit analysis (with net present value used if the
time dimension is present) is the ideal approach from
the theoretical perspective, but has a number of limita-
tions. It is very difficult to measure benefits, and also dif-
ficult to measure some aspects of costs accurately. One
view of dealing with this problem is to measure more ac-
curately. Economists have developed ways to estimate

Cost/Benefit Analysis 343

Table XIII Estimation of Relative Criteria Weights

Capital equipment 10/125 � 0.08

Working conditions with respect 15/125 � 0.12
to safety

Net present cost 25/125 � 0.20

Legal risk 35/125 � 0.28

Impact on market share 40/125 � 0.32

Table XIV Check Assignment of Relative Criteria Weights

Worst measure Best measure Assigned value

Impact on market share Poor quality product High quality 100

Legal risk High Minimal 80

Net present cost Worst expected 0 50

Working conditions with respect to safety Very risky Very safe 30

Capital equipment Need replacement now In mint condition 20

Table XV Estimation of Check Weights

Based on best Based on worst Compromise

Impact on market share 100/280 � 0.357 0.320 0.34

Legal risk 80/280 � 0.287 0.280 0.28

Net present cost 50/200 � 0.179 0.200 0.19

Working conditions with respect to safety 30/200 � 0.107 0.120 0.11

Capital equipment 20/200 � 0.071 0.080 0.08

Table XVI Calculation of SMART Value Scores

Criterion Weight Old system New system

Working conditions with respect to safety 0.11 � 0.3 � 0.033 � 1.0 � 0.110

Impact on market share 0.34 � 0.5 � 0.170 � 1.0 � 0.340

Capital equipment 0.08 � 0.4 � 0.032 � 1.0 � 0.080

Legal risk 0.28 � 0.0 � 0.000 � 1.0 � 0.028

Net present cost 0.19 � 1.0 � 0.190 � 0.3 � 0.057

Value score by alternative (sum) 0.425 0.867

the value of a life, and the value of scenic beauty. How-
ever, these measures are difficult to sell to everybody.

Screening provides a way to simplify the decision
problem by focusing on those projects that are accept-
able on all measures. Profiles provide information that
display trade-offs on different measures of importance.

Value analysis isolates intangible benefits from those
benefits and costs that are more accurately measurable
in monetary terms, and relies upon decision-maker
judgment to come to a more informed decision. The
SMART method, one of a family of multicriteria decision
analysis techniques, provides a way to quantify these in-
tangible factors to allow decision makers trade-off values.

Cost-benefit provides an ideal way to proceed if
there are no intangible factors (or at least no impor-
tant intangible factors). However, usually such factors
are present. Intermediate approaches, such as pay-
back analysis and value analysis, exist to deal with
some cases. More complex cases are better supported
by multicriteria analysis. In cases of constraints, such
as budgets, it is sometimes appropriate to optimize
over some objective. Linear programming provides a
means of generating the best portfolio of funded
projects subject to constraint limits given that accu-
rate measures of project performance are available.

ACKNOWLEDGMENT

This chapter draws heavily from Olson, D. L. (2001). Introduc-
tion to information systems project management. Boston: Irwin/
McGraw-Hill. With permission.

SEE ALSO THE FOLLOWING ARTICLES

Accounting • Control and Auditing • Operations Manage-
ment • Procurement • Systems Analysis • Value Chain Analysis

BIBLIOGRAPHY

Cabral-Cardoso, C., and Payne, R. L. (1996). Instrumental and
supportive use of formal selection methods in R&D project
selection. IEEE Transactions on Engineering Management, Vol.
43, No. 4, 402–410.

Edwards, W. (1977). How to use multiattribute utility measure-
ment for social decisionmaking. IEEE Transactions on Systems,
Man, and Cybernetics, Vol. SMC-7, No. 5, 326–340.

Hinton, M., and Kaye, R. (November 1996). Investing in infor-
mation technology: A lottery? Management Accounting Vol.
74, No. 10, 52.

Keen, P. G. W. (1981). Value analysis: Justifying decision sup-
port systems. MIS Quarterly, Vol. 5, No. 1, 1–16.

Keeney, R. L., and Raiffa, H. (1976). Decisions with multiple
objectives: Preferences and value tradeoffs. New York: John
Wiley & Sons.

Nas, T. F. (1996). Cost-benefit analysis: Theory and application.
Thousand Oaks, CA: Sage Publications.

Olson, D. L. (1996). Decision aids for selection problems. New York:
Springer-Verlag.

Olson, D. L. (2001). Introduction to information systems project
management. Boston: Irwin/McGraw-Hill.

Saaty, T. L. (1977). A scaling method for priorities in hierar-
chical structures. Journal of Mathematical Psychology, Vol. 15,
234–281.

344 Cost/Benefit Analysis

Crime, Use of Computers in
M. E. Kabay
Norwich University

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 345

I. THE FOUNDATIONS OF INFORMATION SECURITY
II. THE LEGAL FOUNDATIONS

III. CLASSIFICATION OF BREACHES
OF INFORMATION SECURITY

IV. CRIMES WHERE COMPUTERS AND
NETWORKS ARE TOOLS ONLY

V. WHERE COMPUTERS, NETWORKS, AND SOFTWARE
ARE THE TARGETS AS WELL AS TOOLS

GLOSSARY

authenticity Validity, conformance, and genuineness
of information.

availability Timely accessibility of information for a
specific purpose.

confidentiality Limited observation and disclosure of
knowledge.

data diddling Unauthorized modification of data.
denial of service Prevention of availability due to re-

source saturation or resource destruction.
eavesdropping Unauthorized interception of commu-

nications.
integrity Completeness, wholeness, and readability of

information; quality of being unchanged from a
prior state.

logic bomb Unauthorized, harmful executable code
whose actions are triggered by a logical condition
such as the presence or absence of specific data or
by a particular time or date.

malware Contraction of “malicious software”; exe-
cutable code intended by its writer to violate infor-
mation security of its victims. Examples include
viruses, worms, logic bombs, Trojan Horses, and
denial-of-service programs.

penetration Unauthorized access to resources
through violation of access-control restrictions.

possession Holding, control, and ability to use
information.

social engineering The use of deceit to persuade
other human beings to help an attacker violate in-
formation security restrictions.

Trojan Horse Software having undocumented and
unauthorized functions in addition to or instead of
expected useful functions.

utility Usefulness of information for a purpose.
virus Self-replicating executable code that inserts

unauthorized instructions into other executable
codes.

worm Self-replicating executable code that passes
copies of itself through computer communications
networks.

This article reviews the important types of CRIMES
involving computers and networks. Computers and
computer networks are tools for obtaining, storing,
manipulating, and transmitting information. Like any
other tool, they can be used for social good or for so-
cial ill. Criminals have used every technological inno-
vation in history as the basis for new or variant crimes,
and the criminal subculture has been active in turn-
ing computers and networks towards its ends. Com-
puters and networks play a role in crime both as me-
diating instruments of crime and, in contrast, as the
objects or targets of crime.

I. THE FOUNDATIONS OF
INFORMATION SECURITY

The classic definition of information security was devel-
oped in the 1970s: Data security [involves] the protec-
tion of information from unauthorized or accidental

modification, destruction, and disclosure. The “classic
triad” of information security names confidentiality,
integrity, and availability. To these three, the respected
security expert Donn B. Parker has added possession,
authenticity, and utility.

A. Basic Concepts

Protection means reducing the likelihood and severity
of damage. Another way of putting this is that infor-
mation security strives to reduce risks. It is not possi-
ble in practice to provide perfect prevention of secu-
rity violations. Common sense suggests that the degree
of protection must match the value of the data.

Information is protected by caring for its form, con-
tent, and storage medium.

Unauthorized means forbidden or undocumented.
The very concept of authorization implies classifica-
tion: there must be some definition of which data are
to be protected and at what level.

Modification means changes of any kind. The ulti-
mate modification is destruction. However, small but
significant changes in data cause more trouble than
destruction. For example, the damage caused by a
vandal who damages a Web site by adding pornogra-
phy and vile language can be spotted at once and can
be removed quickly. In contrast, some kinds of mali-
cious software can make small random changes (e.g.,
in spreadsheets) that can accumulate for months.
Backup copies of the corrupted files may make it im-
possible to recover valid versions of these files.

Disclosure means allowing people to see or use data.
The critical element is authorization: permission by a
data owner for selected others to have access to these data.

Confidentiality is a wider concept than disclosure.
For example, certain files may be confidential; the
data owner may impose operating system controls to
restrict access to the data in the files. Nevertheless, it
may be possible for an unauthorized person to see
the names of these files or find out how often they are
accessed. Changing a file’s security status may be a
breach of confidentiality; for example, copying data
from a secure file to an unsecured file is a breach of
confidentiality.

Possession means control over information. For ex-
ample, when thieves copy proprietary software without
authorization, they are breaching the owner’s posses-
sion of the software. Such counterfeit software repre-
sents a breach of possession or control. Similarly, if
someone obtains an unauthorized copy of a confiden-
tial document, there is a breach of possession or con-
trol even before anyone actually looks at the docu-

ment because the owner no longer determines when
the data will be disclosed to unauthorized people.

Integrity refers to internal consistency. A database is
termed structurally corrupt when its internal pointers
or indexes no longer correspond to the actual records
they point to. For example, if the next record in a
group is in position 123 but the index pointer refers
to position 234, the structure lacks integrity. Surrepti-
tiously using a disk editor to bypass security and alter
pointers in such a data structure would impair in-
tegrity even if all the data records were left intact.
Logical corruption occurs when data are inconsistent
with each other or with system constraints. For exam-
ple, if the summary field in an order header contains
a total of $5678 for all items purchased but the actual
sum of the costs is $6789 then the data structure is
logically corrupt; it lacks integrity.

Authenticity refers to correspondence between data
and what the data represent: accordance with reality,
correctness. A typical example of impaired authentic-
ity is electronic mail sent using a false name—or worse,
someone else’s name.

Availability means that data can be used in a timely
fashion; the data are convenient or handy. If a server
crashes, the data on its disks are no longer available;
but if a mirror disk is at hand, the data may still be
available.

Utility refers to the usefulness of data for specific
purposes. Even if the information is still intact, it may
have been transformed into a less useful form. For ex-
ample, unauthorized encryption of a firm’s source
code for production program is a breach of utility. In
a formal sense, the data were authentic, accurate, and
available—they just were not useful.

B. Threats to Security

Enterprise systems are faced with two kinds of threat:
people and disasters. People include managers, em-
ployees, service personnel, temporary workers, suppli-
ers, clients, thieves, liars, and frauds. Disasters include
fire, flood, earthquake, civil disturbance, and war.

The difficulty in describing the risk of facing these
threats is that we lack proper statistical information
about how often different types of damage occur. In
statistical work, this difficulty is known as the problem
of ascertainment. Most organizations are reluctant to
admit, let alone publicize, successful attacks on their
information systems.

The second part of the ascertainment problem is
that even if people were reporting all the computer
crimes and accidents they knew about, we would still

346 Crime, Use of Computers in

not know about the crimes and accidents that have
not yet been discovered.

Keeping in mind that all statistics about computer
crimes are problematic, the information security field
has arrived at a shaky consensus about the origins of
damage to computer systems and networks. In brief,

• Perhaps as much as half of the damage is due to
errors and omissions by authorized users of the
systems.

• Fire and water damage and problems resulting
from poor electrical power account for perhaps a
quarter of the problems.

• Authorized but dishonest or disgruntled
employees are a significant source of difficulties.

• Malicious software and outside attacks were
thought to account for a small portion of the
threat to systems before the explosive growth in
Internet usage in the early 1990s; however, by the
turn of the millennium, both malicious software
and outsiders posed a much greater source of
danger, perhaps approximating the threat from
angry and dishonest insiders.

Figure 1 shows the rough guesses about damage to
computer systems before and after the explosion of
Internet usage that occurred around 1993. Note that
the edges of the categories are deliberately made fuzzy
to remind the reader of the uncertainty of these esti-
mates. The categories are

• E&O. Errors and omissions; due to lack
of training, poor motivation, or poor
supervision

• Fire, water. Arson, accident, sabotage; water dam-
age often accompanies fire damage

• Dishonest. Employees
• Disgruntled. Employees
• Outsider. Contractors, visitors, strangers
• Virus. Self-replicating code that integrates

into executable code
• Worms. Self-replicating code that propagates

through networks
• Trojans. Software with undocumented and

unauthorized functions
• DoS. Denial of service attacks

II. THE LEGAL FOUNDATIONS

This section reviews some of the key laws that govern
the use of computers and networks and which crimi-
nalize specific acts.

A. United States Computer-Crime Laws

The most advanced set of laws criminalizing particu-
lar unlawful behavior involving computers and net-
works has been legislated in the United States. The
Computer Fraud and Abuse Act of 1986 (18 USC §1030)
focuses primarily on protecting “government-interest”
computers, including federal, state, county, and mu-
nicipal systems; financial and medical institutions;
and computers used by contractors supplying such in-
stitutions. Specifically, the Act prohibits the use of “a
program, information, code, or command” with in-
tent to damage, cause damage to, or deny access to a

Crime, Use of Computers in 347

Figure 1 Rough guesses about the sources of damage to information systems. Copyright 2002, M. E. Kabay.

computer system or network. In addition, the Act
specifically prohibits even unintentional damage if
the perpetrator demonstrates reckless disregard of
the risks of causing such damage.

Another law governing interstate electronic com-
munications has been used in prosecutions of com-
puter crimes: 18 USC §1343, dealing with wire fraud.
Wire fraud requires the following elements: (a) a
scheme to defraud by means of false pretenses; (b)
knowing and willful participation with intent to de-
fraud; (c) the use of interstate wire communications
in furtherance of the scheme.

The Electronic Communications Privacy Act of
1986 (18 USC §1367 and others), generally known as
the ECPA, assigns fines and prison sentences for any-
one convicted of unauthorized interception and dis-
closure of electronic communications such as phone
calls through land lines or mobile systems and e-mail.
In addition, the ECPA specifically prohibits making
use of an unlawfully overheard electronic communi-
cation if the interceptor knows that the message was
unlawfully obtained. On the other hand, providers of
electronic messaging systems, including employers,
are permitted to intercept messages on their own sys-
tems in the course of their normal operations; natu-
rally, they are authorized to transmit messages to other
communications providers as part of the normal
course of transmission to the ultimate recipient. The
ECPA also prohibits access to stored messages, not
just those in transit.

United States law also criminalizes the use of in-
terstate communications for the transmission of
threats, in kidnappings, and in extortion (18 USC
§2518). Another form of prohibited speech is every-
thing associated with child pornography: making,
sending, publishing, or storing images of children en-
gaged in sexually explicit conduct (18 USC §2251).

The Communications Decency Act of 1996 (47 USC
§223) was a highly controversial statute prohibiting
anyone using interstate or communications from
transmitting obscene or indecent materials when they
know that the recipient is under 18 years of age—re-
gardless of who initiated the communications. In June
1997, in a stinging rebuke to proponents of censor-
ship, the United States Supreme Court issued its rul-
ing on the Communications Decency Act, finding that
it violated First Amendment protection of free speech.
The unanimous opinion stated that the effort to pro-
tect children from sexually explicit material went too
far because it also would keep such material from
adults who have a right to see it.

In addition to federal laws, the United States has a
tapestry of state laws applying to computer crimes.

States differ widely in the availability of computer-
crime laws and in their definitions and penalties.

B. Criminal Law and Civil Law

Another area of legal constraints originates in civil
law. Issues of copyright, trademark, defamation, pri-
vacy, anonymity and pseudonymity, duty of care, and
digital signatures are too complex for this article,
which focuses on the relatively simple concepts of
unauthorized access to or interference with computer
systems and networks (see Bibliography).

C. International Developments

Few countries have kept up with the United States in
their legislation concerning computer crimes. How-
ever, there have been recent developments bringing
hope to the targets and victims of computer crimi-
nals. The following sections give a few examples of
legislation to illustrate the kinds of issues and penal-
ties being developed around the world in cyberlaw.

1. Canada

Canadian law (section 342.1) specifies, “Every one who,
fraudulently and without color of right, (a) obtains, di-
rectly or indirectly, any computer service, (b) by means
of an electromagnetic, acoustic, mechanical or any
other device, intercepts or causes to be intercepted, di-
rectly or indirectly, any function of a computer system,
or (c) uses or causes to be used, directly or indirectly,
a computer system with intent to commit an offence
under paragraph (a) or (b) or an offence under sec-
tion 430 in relation to data or a computer system is
guilty of an indictable offence and liable to imprison-
ment for a term not exceeding ten years, or is guilty of
an offence punishable on summary conviction.”

In addition, Canadian law addresses “mischief” per-
taining to computer systems (section 430.1): “Every
one commits mischief who wilfully (a) destroys or al-
ters data; (b) renders data meaningless, useless or in-
effective; (c) obstructs, interrupts or interferes with
the lawful use of data; or (d) obstructs, interrupts or
interferes with any person in the lawful use of data or
denies access to data to any person who is entitled to
access thereto.”

On January 1, 2001, Canada’s Personal Informa-
tion Protection and Electronic Documents Act took
effect. The law defined statutory obligations for pro-
tecting privacy, among other security-related topics.

348 Crime, Use of Computers in

2. United Kingdom

In Britain, the Computer Misuse Bill of 1990 defines
unauthorized access to computer material (including
equipment and data), stipulates that there be intent to
commit or facilitate commission of further offenses,
and specifically addresses the issue of unauthorized
modification of data. The law states that there is no
need to prove that the defendant was aiming to harm
any particular program or data, any particular kind of
program or data, or indeed programs or data held in
any particular computer. Penalties are limited to a max-
imum of 5 years in prison and various levels of fines.

3. Germany

German law (section 202a) defines “data spying” as
unauthorized access to other people’s data and comes
down hard on “violation of private secrets” (section
203) which include in particular data held by physi-
cians, dentists, veterinarians, pharmacists, psychologists,
lawyers, patent agents, notaries public, defense counsel,
certified public accountants, sworn auditors, tax advi-
sors, auditors, marriage/family/educational/youth/ad-
diction counselors, social workers, insurance compa-
nies, and several other categories of data owners.
Violation of this provision can be punished by fines or
imprisonment of up to 1 year.

Section 204 specifically identifies industrial espi-
onage by augmenting the possible penalties to a max-
imum of 2 years in prison.

Section 263a increases the penalties yet again for
anyone convicted of computer fraud: “Anybody who,
with a view to procuring himself of a third person any
unlawful property advantage, causes prejudice to the
property of another by influencing the result of a data
proceeding activity through improper program de-
sign, through the use of incorrect or incomplete data,
through the unauthorized use of data, or otherwise
through any unauthorized interference with the trans-
action, shall be sentenced to imprisonment not ex-
ceeding five years or to a fine.”

Other sections of German law explicitly deal with
forgery, deception by unauthorized modification of
data, and computer sabotage.

4. Italy

Law number 547 dating to 1993 established Article
615.5 of the Penal Code: “Spreading of programs
aimed at damaging or interrupting a computer sys-
tem. Anyone who spreads, transmits, or delivers a
computer program, whether written by himself or by
someone else, aimed at or having the effect of dam-

aging a computer or telecommunication system, the
programs or data contained in or pertaining to it, or
interrupting in full or in part or disrupting its opera-
tion is punished with the imprisonment for a term of
up to two years and a fine of up to It. L. 20,000,000.”

5. Switzerland

Article 144bis, in force since 1995, stipulates, “Any-
one, who without authorization deletes, modifies, or
renders useless electronically or similarly saved or
transmitted data, will, if a complaint is filed, be pun-
ished with the imprisonment for a term of up to 3
years or a fine of up to 40,000 Swiss francs. If the per-
son charged has caused a considerable damage, the
imprisonment will be for a term of up to 5 years.”

As for malicious software, “Anyone, who creates,
imports, distributes, promotes, offers, or circulates in
any way programs, that he/she knows or has to pre-
sume to be used for purposes according to the item
above, or gives instructions to create such programs,
will be punished with the imprisonment for a term of
up to 3 years or a fine of up to 40,000 Swiss francs. If
the person charged acted for gain, the imprisonment
will be for a term of up to 5 years.”

6. Other Countries

For a comprehensive and frequently updated review
of computer crime laws in 37 countries, see Stein
Schjolberg’s review, “The Legal Framework: Unau-
thorized Access to Computer Systems—Penal Legisla-
tion in 37 Countries.” The Web address is http://www.
mossbyrett.of.no/info/legal.html. The 37 countries
covered are:

Argentina Egypt Japan Spain

Australia Finland Luxembourg Sweden

Austria France The Netherlands Switzerland

Belgium Germany New Zealand Tunisia

Brazil Greece Norway Turkey

Canada Hungary Poland United Kingdom

Chile Iceland Portugal United States

China Ireland Romania

Czech Republic Israel Singapore

Denmark Italy South Africa

D. Jurisdictional Problems

Cyberspace crime poses a jurisdictional problem be-
cause the perpetrator of a crime can reside in one

Crime, Use of Computers in 349

country, act through computers and networks in sev-
eral other countries, and cause harm to computer sys-
tems in yet other countries. Trying to investigate and
prosecute crimes that are carried out in milliseconds
when international cooperation can take days and
weeks means that many computer crimes simply go
unpunished.

The most irritating aspect of computer crime in-
vestigations and prosecutions is the jurisdictional quag-
mire resulting from incomplete and inconsistent laws.
In international law, no one may legally be extradited
from one country to face prosecution in another coun-
try unless both counties involved have dual criminal-
ity. That is, an offense must be similar in law and at the
same level of criminality (misdemeanor, felony) be-
fore extradition can be considered by courts of law.

A good example of the frustration felt by law en-
forcement officials and victims of computer crime oc-
curred in the year 2000, when a worldwide infestation
by the e-mail-enabled worm Love Bug caused damage
and lost productivity estimated in the hundreds of
millions of dollars. The putative originator of the
worm was a computer programming student in
Manila, The Philippines. Even though the alleged
perpetrator came close to admitting his responsibility
for the infection—and was lionized by the local
press—there were no applicable laws in The Philip-
pines under which he could be prosecuted locally. As
a result, he was never extradited to the United States
for prosecution.

III. CLASSIFICATION OF BREACHES
OF INFORMATION SECURITY

The study of computer crime has not reached the
state of academic rigor characteristic of a mature field.
Classification of computer crimes remains relatively
primitive. However, there are two ways of referring to
computer crimes that are sometimes used to organize
discussions. Many authors provide lists of computer
crimes, but there is rarely any obvious underlying
principle for the sequence of crimes in their lists.

A. Levels of Information Warfare

One approach to organizing the types of computer
crime is based on the work of Winn Schwartau, a con-
troversial author and speaker who was active during
the 1990s in warning of the danger of an “electronic
Pearl Harbor” and succeeded in bringing electronic
attack methods and countermeasures to public atten-

tion. Schwartau points out in his book Information
Warfare that there are three obvious levels of target in
electronically mediated conflict: individuals, corpora-
tions and other organizations, and countries. He
refers to these classes as Interpersonal, Intercorpo-
rate, and International Information Warfare. This
schema permits a crude but useful level of organiza-
tion for discussions of crime and warfare directed at
and mediated through information technology.

B. John D. Howard’s Analysis

In his 1997 doctoral dissertation, John D. Howard
presents a thorough analysis of computer incidents.

Howard starts by defining the following elements
of a computer security event:

• Attacker
• Tool
• Vulnerability
• Action
• Target
• Unauthorized result
• Objective

Security events may involve more than one factor from
each of the elements; in that sense, the analysis is not
a taxonomy because it cannot be used to assign any
given crime to a single class. Nonetheless, Howard’s
work is most helpful in thinking about computer
crime.

The attackers include

• Hackers
• Spies
• Terrorists
• Corporate raiders
• Professional criminals
• Vandals
• Voyeurs

The tools available to computer criminals include

• Physical attack
• Information exchange
• User command
• Script or program
• Autonomous agent
• Toolkit
• Distributed tool
• Data tap

350 Crime, Use of Computers in

The vulnerabilities that can be exploited by an at-
tacker include

• Design
• Implementation
• Configuration

Attackers can use their tools on specific vulnerabili-
ties by taking the following actions:

• Probe
• Scan
• Flood
• Authenticate
• Bypass
• Spoof
• Read
• Copy
• Steal
• Modify
• Delete

The specific targets addressed by these actions include

• Account
• Process
• Data
• Component
• Computer
• Network
• Internetwork

The unauthorized results include

• Increased access
• Disclosure of information
• Corruption of information
• Denial of service
• Theft of resources

The objectives of all this effort include

• Challenge, status, thrill
• Political gain
• Financial gain
• Damage

IV. CRIMES WHERE COMPUTERS
AND NETWORKS ARE TOOLS ONLY

This article makes a distinction between computer
crimes that use computers and networks as tools ver-

sus those where the computers and networks are the
primary targets of the crime as well as being tools. We
start with computers and networks as tools.

A. Fraud

One of the most common forms of computer crime is
data diddling—illegal or unauthorized data alteration.
These changes can occur before and during data
input or before output. Data diddling cases have
included banks, payrolls, inventory, credit records,
school transcripts, and virtually any other form of data
storage known. In most of these cases, the purpose was
to defraud victims by using the modified data to mis-
represent reality and thereby to trick the victims into
granting or allowing gain to the perpetrators.

1. The Equity Funding Fraud

Perhaps the most notorious case of computer-
mediated fraud through data diddling was the Equity
Funding Fraud, a case of organized data diddling on a
scale unparalleled to date which took place from 1969
through 1972.

The case began with computer problems at the Eq-
uity Funding Corporation of America, a publicly
traded and highly successful firm with a bright idea.
The idea was that investors would buy insurance poli-
cies from the company and also invest in mutual funds
at the same time, with profits to be redistributed to
clients and to stockholders. Through the late 1960s,
Equity’s shares rose dizzyingly in price; there were
news magazine stories about this wunderkind of the
Los Angeles business community.

The computer problems occurred just before the
close of the financial year. An annual report was about
to be printed, yet the final figures simply could not be
extracted from the mainframe. In despair, the head
of data processing told the president the bad news;
the report would have to be delayed. The president
ordered him to make up the bottom line to show
about $10,000,000 in profits and calculate the other
figures so it would come out that way. The DP chief
obliged, rationalizing it with the thought that it was
just a temporary expedient and could be put to rights
later in the real financial books.

The expected profit didn’t materialize, and some
months later, the head of DP was in trouble again.
The books were not going to balance: Where were the
large inflows of cash from investors that the company
had counted on? The executives at Equity manufac-
tured false insurance policies which would make the

Crime, Use of Computers in 351

company look good to investors. They inserted false
information about nonexistent policies and identified
the fraudulent records with special customer codes to
exclude then from audit listings, thus tricking a lack-
adaisical auditor who saw only records which had cor-
responding paper files for real policyholders.

In time, Equity’s corporate staff decided to sell the
policies to other insurance companies via the redis-
tribution system known as re-insurance, which spreads
the risk of insurance policies across cooperating
groups of insurers. The imaginary policies brought in
large amounts of real cash. When it came time to start
paying real money to the re-insurers for the policies
in the names of fake people, the criminals “killed” the
imaginary holders of the fake policies. Equity natu-
rally demanded real money for the imaginary benefi-
ciaries of the ghostly policy holders. Re-insurers
poured cash into Equity—over a million dollars for
these false deaths.

By the spring of 1971, the executives were churn-
ing out between 20,000 and 50,000 fake policies per
year; by 1972, 64,000 of the companies 97,000 policies
were fraudulent. The face value of these invented
people’s insurance policies totaled $2.1 billion out of
a total of $3.2 billion. About 25% ($185M) of the
company’s total assets ($737M) reported in 1971 were
imaginary.

As has often happened in cases of conspiracy, an
angry computer operator who had to work too much
overtime reported the fraud to the Securities and Ex-
change Commission. Although the crooked managers
tried to erase incriminating computer tapes, they were
arrested, tried, and condemned to prison terms.

2. Vladimir Levin

In February 1998, Vladimir Levin was convicted to
three years in prison by a court in New York City. Levin
masterminded a major conspiracy in 1994 in which
the gang illegally transferred $12M in assets from
Citibank to a number of international bank accounts.
The crime was spotted after the first $400,000 was
stolen in July 1994 and Citibank cooperated with the
FBI and Interpol to track down the criminals. Levin
was also ordered to pay back $240,000, the amount he
actually managed to withdraw before he was arrested.
This case illustrates the international, boundary-
crossing nature of today’s computer-mediated crime.

3. Salamis

A particular kind of computer fraud is called the
salami technique. In the salami technique, criminals

steal money or resources a bit at a time. Two different
etymologies are circulating about the origins of this
term. One school of security specialists claims that it
refers to slicing the data thin—like a salami. Others
argue that it means building up a significant object or
amount from tiny scraps—like a salami.

The classic story about a salami attack is the
“collect-the-roundoff” trick. In this scam, a program-
mer modifies the arithmetic routines such as interest
computations. Typically, the calculations are carried
out to several decimal places beyond the customary
two or three kept for financial records. For example,
when currency is in dollars, the roundoff goes up to
the nearest penny about half the time and down the
rest of the time. If the programmer arranges to col-
lect these discarded fractions of pennies in a separate
account, a sizable fund can grow with no warning to
the financial institution.

More daring salamis slice off larger amounts. The
security literature includes case studies in which an
embezzler removed $0.20 to $0.30 from hundreds of
accounts two or three times a year. These thefts were
not discovered or reported until an audit found them:
most victims wouldn’t bother finding the reasons for
such small discrepancies.

In another scam, two programmers made their pay-
roll program increase the federal tax-withholding
amounts by a few cents per pay period for hundreds
of fellow employees. The excess payments were cred-
ited to the programmers’ withholding accounts in-
stead of to the victims’ accounts. At income-tax time
the following year, the thieves received fat refunds
from the Internal Revenue Service.

In January 1993, four executives of a Value Rent-a-
Car franchise in Florida were charged with defraud-
ing at least 47,000 customers using a salami technique.
The defendants modified a computer billing program
to add five extra gallons to the actual gas tank capac-
ity of their vehicles. From 1988 through 1991, every
customer who returned a car without topping it off
ended up paying inflated rates for an inflated total of
gasoline. The thefts ranged from $2 to $15 per cus-
tomer—rather thick slices of salami but nonetheless
difficult for most victims to detect.

In 1998, Los Angeles, district attorneys charged
four men with fraud for allegedly installing computer
chips in gasoline pumps that cheated consumers by
overstating the amounts pumped. The problem came
to light when an increasing number of consumers
charged that they had been sold more gasoline than
the capacity of their gas tanks. However, the fraud was
difficult to prove initially because the perpetrators
programmed the chips to deliver exactly the right

352 Crime, Use of Computers in

amount of gasoline when asked for 5- and 10-gallon
amounts, which were the standard volumes used by
inspectors.

4. Stock Fraud

Fraud artists have used letters and newspapers to trick
victims into giving away money for nothing; naturally,
today’s confidence tricksters use e-mail and the World
Wide Web for similar purposes.

One of the more popular scams is the pump-and-
dump stock fraud. The perpetrators use e-mail or the
Web to stimulate or manipulate specific stocks; de-
pending on when and how they buy the stocks, the
crooks can make a profit either by raising the stock
price or by lowering it. For example, a former em-
ployee of online press release distributor Internet
Wire was arrested in August 2000 and charged with
securities and wire fraud in connection with the dis-
tribution of a phony press release that sent a tech
company’s stock price plummeting the week before.
Shares of Emulex, a maker of fiber-optic equipment,
lost up to 60% of their value, most of it during one
15-minute freefall, after some financial news services,
including Dow Jones and Bloomberg, ran stories based
on the release. The suspect netted profits of $240,000.

B. Counterfeits of Documents and Money

Creating false documents long predates the use of
computers; however, digital scanners, digital-image
editing programs, and high-resolution color printers
have made forgeries easy. People have created con-
vincing counterfeit money, sent authentic-looking
faxes leading to the premature release of prisoners,
and used impressive but false letters of recommenda-
tion—complete with digitized logos of prestigious in-
stitutions copied from Web sites—to get jobs for which
they were unqualified.

One of the more ingenious forgeries occurred in
the 1970s, when automatic processing of checks and
deposits was still relatively new. A young man in Wash-
ington, DC, printed his own account’s routing num-
bers in magnetic ink at the bottom of the deposit slips
he stole from a bank. He replaced the blank deposit
slips in the public areas of the bank with the doctored
ones. All the slips with magnetic ink were automati-
cally sorted and processed, diverting $250,000 of other
people’s money into the criminal’s bank account, from
which the thief withdrew $100,000 and disappeared.

Credit card numbers include check-digits that are
computed using special algorithms to help prevent

creation of authentic-looking account numbers. Un-
fortunately, programs for creating such authentic
credit card accounts, complete with check digits, are
widely available in the computer underground. Even
children have taken to forging credit card numbers.
For example, a 16-year-old Australian from Brisbane
started defrauding businesses using stolen and forged
credit card numbers just after leaving school. By 1997,
he had stolen $100,000 in goods and services. In Oc-
tober 1997, he pleaded guilty to 294 counts of fraud.

C. Extortion

Computer data can be held for ransom. For example,
in an early case dating to 1971, two reels of magnetic
tape belonging to a branch of the Bank of America
were stolen at Los Angeles International Airport. The
thieves demanded money for their return. The own-
ers ignored the threat of destruction because they
had adequate backup copies.

In the 1980s and 1990s, rumors persistently circu-
lated in the financial community that banks and other
institutions were giving in to extortion. For example,
the June 3, 1996, issue of the London Times reported
that hackers had been paid 400 million pounds ster-
ling in extortion money to keep quiet about having
electronically invaded banks, brokerage firms, and in-
vestment houses in London and New York with logic
bombs (programs with harmful effects that could be
launched as a result of specific conditions such as a
given date or time). According to the article, banks
chose to give in to the blackmail over concerns that
publicity about such attacks could damage consumer
confidence in the security of their systems.

In September 1999, the Sunday Times of London re-
ported that British banks were being attacked by crim-
inal hackers attempting to extort money from them.
The extortion demands were said to start in the mil-
lions and then run down into the hundreds of thou-
sands of pounds. Mark Rasch, a former attorney for
computer crime at the United States Department of
Justice and later legal counsel for Global Integrity, said,
“There have been a number of cases in the UK where
hackers have threatened to shut down the trading floors
in financial institutions. . . . The three I know of (in
London) happened in the space of three months last
year one after the other. . . . In one case, the trading
floor was shut down and a ransom paid.” The Interna-
tional Chamber of Commerce (ICC) confirmed it had
received several reports of attempted extortion.

There was a case of attempted extortion directed
at a retail Web site in December 1999. A 19-year-old

Crime, Use of Computers in 353

Russian criminal hacker calling himself Maxus broke
into the Web site of CD Universe and stole the credit
card information of 300,000 of the firm’s customers.
When the company refused his $100,000 ransom, he
posted 25,000 of the accounts on a Web site (Maxus
Credit Card Pipeline). After investigation showed that
the stolen card numbers were in fact being used
fraudulently, 300,000 people had to be warned to
change their card numbers.

In January 2000, information also came to light
that VISA International had been hacked by an ex-
tortionist who demanded $10M for the return
of stolen information—information that VISA
spokesperson Chris McLaughlin described as worth-
less and posing no threat to VISA or to its customers.
The extortion was investigated by police but no ar-
rests were made.

D. Slamming

Slamming is the fraudulent, unsolicited switching of
long-distance services to another long-distance carrier;
the practice has caused consternation among victims
confronted with larger phone bills than they expected
from their normal carrier. In mid-December 1996, Con-
necticut’s Department of Public Utility Control (DPUC)
was slammed by a firm called Wiltel, which converted 6
of its 14 lines to its service without authorization.

By July 1997, the United States Federal Trade Com-
mission was overwhelmed with over 16,000 complaints
from enraged customers whose long-distance tele-
phone service had been switched without their per-
mission. For example, the Fletcher Companies en-
gaged in systematic slamming and the United States
Federal Communications Commission (FCC), re-
sponding to over 1400 complaints, fined the group of
companies $5M in April 1998. In June 2000, long-
distance company WorldCom, Inc. agreed to pay
$3.5M to settle an inquiry by the Federal Communi-
cations Commission into 2900 complaints from per-
sons charging that WorldCom telemarketers illegally
switched them from other phone service carriers.
WorldCom president Bernard J. Ebbers said the slam-
ming incidents were perpetrated by a few sales em-
ployees who were subsequently fired.

E. Industrial Espionage

Teenage hackers who deface government sites or steal
credit card numbers attract a lot of attention, but ex-
perts say the real problem of cybercrime is corporate-
sponsored proprietary information theft committed

by professionals who rarely get caught. According to
a report from the American Society for Industrial Se-
curity in September 2000, Fortune 1000 companies
sustained losses of more than $45 billion in 1999 from
thefts of proprietary information, and a survey by the
Computer Security Institute in 2000 indicated over
half of 600 companies polled said they suspected their
competitors were a likely source of cyberattack.

In 1995, San Jose, CA, prosecutors announced in-
dictments in a case of industrial espionage in Silicon
Valley. Two executives of the defunct Semiconductor
Spares, Inc. were charged with stealing over 500 tech-
nical drawings from Lam Research Corp.

In 1996, Britain’s Davy International initiated a law-
suit over industrial espionage against the Austrian
firm VA Technologie AG. In another case of alleged
industrial espionage that came to light in 1996, the
American subsidiary of Boehringer Mannheim Corp.,
a pharmaceutical firm based in Germany, accused
Lifescan, Inc., the diabetes-products division of John-
son & Johnson, of encouraging industrial espionage
by presenting “Inspector Clouseau” and “Columbo”
awards to employees who got the most information
about their competitor, regardless of ethics.

In June 1997, two citizens of Taiwan were arrested
after allegedly trying to bribe a Bristol–Myers Squibb
Co. scientist into turning over technological secrets
for the manufacture of Taxol, a drug used to fight
ovarian cancer.

In 1998, Pixar, makers of the recent animated movie
“Toy Story,” filed suit for a restraining order barring per-
sons unknown from spreading stolen information about
the salaries of their 400 employees. The report was widely
circulated on the Net and damaged the company’s abil-
ity to hire and retain employees (because competitors
could outbid Pixar easily and inexpensively).

In a settlement of one of the few documented cases
of industrial espionage involving intercepted e-mail,
the Alibris company paid a $250K fine in 1999 for the
firm it acquired in 1998. That company, Interloc, ad-
mitted intercepting and copying 4000 e-mail messages
sent to Amazon.com through its own ISP, Valinet.
Prosecutors said that the e-mail was intercepted to
gain a competitive advantage against Amazon in In-
terloc’s own book business. The managers of Interloc
steadfastly denied any wrongful intention but failed
to explain why they copied the e-mail.

In June 2000, Microsoft complained that various
organizations supporting Microsoft in its antitrust bat-
tle with the United States government had been vic-
timized by industrial espionage agents who attempted
to steal documents from trash bins.

Echelon, an international surveillance network, was
in the news in the late 1990s. Echelon, which is jointly

354 Crime, Use of Computers in

operated by the U.S., U.K., Australia, Canada, and
New Zealand, is capable of intercepting phone, fax,
and e-mail signals around the world and is intended
to gather intelligence regarding terrorist and other
threats to the U.S. and its allies. In 1997, the Covert
Action Quarterly, an intelligence newsletter, reported,
“Unlike many of the electronic spy systems developed
during the Cold War, Echelon is designed primarily
for non-military targets: governments, organizations,
businesses, and individuals in virtually every country.
It potentially affects every person communicating be-
tween (and sometimes within) countries anywhere in
the world.” In July 2000, the European Parliament re-
newed its attack on Echelon by forming a temporary
committee to investigate whether the spy network was
used for commercial espionage against European busi-
nesses. The parliament said the committee would also
determine Echelon’s legality. Later in 2000, a Green
Party member of the European Parliament filed crim-
inal charges in Germany against Echelon.

F. Gambling

One of the more lucrative scams focuses on bilking
credulous gamblers by offering games of chance and
betting on sports and other events via the Internet. In-
terstate gambling is illegal in the United States, but
the operators of the gambling sites have been setting
up their servers in offshore locations, free of U.S. law.
The likelihood that any of the games of chance are in
fact programmed to be honestly conducted is un-
known. In one embarrassing incident in 1998, an an-
alyst discovered that nobody who chose the digit “9” as
part of their bet ever won the Arizona Lottery’s new
Pick 3 game—because the algorithm was incapable of
generating a 9 in the winning three-digit numbers.
Observers noted that the risk of accidental or deliber-
ate distortions of probability distributions might be
even higher in software written by unknown persons
working for unknown private organizations in offshore
locations. If gambling is a tax on people with a limited
understanding of probability, offline gambling seems
like a tax on people with limited reasoning powers.

G. Auctions

Auctions have always been a risky way to buy goods,
since dishonest sellers can engage shills to pretend to
bid the price of an item up beyond its value. The risk
is higher when goods have no intrinsic value but de-
pend solely on demand for determination of the price.
When there is no visual contact or screening of the

participants in the group bidding for an item, how-
ever, the risk is much greater.

Another aspect of online auctions is the possibility
of buying stolen or illegal goods. For example, in Sep-
tember 1999, someone put up a human kidney for
sale through the online auction house eBay and re-
ceived bids of up to $5.8M. The auction service can-
celed the sale because selling human organs is a Fed-
eral felony with up to $250,000 in fines and at least 5
years in jail. Other offers—some of which may have
been pranks—included an offer to sell a human baby;
prices (possibly also from pranksters) reached over
$100,000 before eBay interrupted the (illegal) sale.

Online auctions have become the most serious
source of complaints to the Internet Fraud Complaint
Center, a project of the FBI and the Department of
Justice. In November 2000, the Center opened and
began receiving more than 1000 complaints a day.
However, the online auction industry denies that fraud
is a serious problem, and eBay says that only 1 of every
40,000 listings has resulted in a confirmed case of
fraudulent activity. Complaints about Internet fraud
can be reported to http://www.ifccbi.gov.

H. Pornography

Some monitors think that pornography is the single
largest money-making use of the Internet and the
World Wide Web. Pornography is governed by differ-
ent standards in different countries, but all countries
ban the creation, distribution, and storage of child
pornography. Many pornographers use tricks such as
registering their domains with misleading names; a
well-known example is http://www.whitehouse.com,
which plays on novices’ ignorance of the naming
standards (U.S. government agencies have domain
names ending in .gov, not .com). Other tricks include
using misspellings. At one time, for example, a
pornographer registered several misspellings of
“microsoft.com”; people were astonished at what they
would see appearing on screen after typing, say,
http://www.micosoft.com. Trademark owners have
been successful in stopping this obvious abuse of their
trademark through civil litigation, but the pornogra-
phers keep coming up with alternatives.

I. Stalking and Assault

Some of the worst abuses of the new communications
media have involved lies by pedophiles. These sexual
predators have successfully used e-mail and especially
children’s chat rooms to misrepresent themselves to

Crime, Use of Computers in 355

naïve children as if they were in the same age range.
The Internet Crime Forum in the U.K. reported in
December 2000 that they estimate 20% of the chil-
dren online have been approached by pedophiles. Pe-
dophiles have exacerbated conflicts between their vic-
tims and their parents, lured youngsters into
concealing their communications, persuaded them to
send pornographic videos of themselves, and even
convinced a few to travel without parental approval
for meetings with their new “friends.” In January 2001,
for example, a 32-year-old man was charged with rap-
ing a 14-year-old upstate New York girl he met in an
Internet chat room and lured to a hotel room in Al-
bany, NY.

J. Libel, Misrepresentation,
and Harassment

The ease with which anyone can forge the identifying
information used in e-mail or use pseudonyms on dis-
cussion groups has resulted in many instances of libel,
distortion, misrepresentation, and harassment. For
example, criminals sent out thousands of racist, hate-
ful e-mail messages in the name of a Texas university
professor who subsequently needed police protection
for his home and family. Another criminal posted a
victim’s phone number in chat rooms catering to
phone-sex enthusiasts and described the young
woman in question as a prostitute. She had to change
her phone number to escape hundreds of salacious
callers a day. Another kind of harassment is unso-
licited commercial e-mail (often called “spam,” much
to the disgust of the trademark owner for the lun-
cheon meat called Spam). Spammers often use anony-
mous e-mail identities to flood the Net with millions
of unwanted advertising messages, much of it fraudu-
lent. Some jurisdictions (e.g., Washington, Virginia,
and Massachusetts) have criminalized the use of
forged headers in such e-mail. Many observers predict
that unsolicited commercial e-mail will eventually be
regulated as unsolicited facsimile (fax) messages were
in the 1980s.

A different kind of junk e-mail is hoaxes and hoax
virus warnings. These nuisances spread through the
ill will of pranksters who write or modify the hoaxes
and, unfortunately, through the good will of credu-
lous novices who cannot recognize the nonsense they
are obediently forwarding to everyone they know.
Pathognomonic signs of a hoax include:

• Absence of a specific date, name of contact, or
originating organization’s Web site

• Absence of a valid digital signature
• Improbably catastrophic effects or consequences

of a supposed danger
• Use of exclamation marks, ALL CAPS TEXT, and

presence of misspellings
• Claims that anyone can monitor exactly how many

e-mails are sent with copies of the message
• Instructions to send the message to “everyone you

know”

K. Theft of Intellectual Property

Electronic communications are ideal for sharing files
of all kinds; unfortunately, some people share other
people’s property. In 1999 and 2000, concern grew in
the recording industry over the widespread pirating
of music tracks through a variety of networks such as
MP3.com, Napster, Gnutella, and others. At some uni-
versities, traffic in unauthorized copies of songs (and
later videos) grew so frantic that available bandwidth
was exhausted, leading to prohibitions on such trans-
fers and stringent filtering at the firewalls. After ex-
tensive negotiations, several copyright-violation law-
suits, and considerable debate among people with
divergent views on the ownership of commercial mu-
sic and video, several facilitating companies in the
U.S. agreed to cooperate with the entertainment in-
dustry to provide access to their products at reason-
able cost.

V. WHERE COMPUTERS, NETWORKS,
AND SOFTWARE ARE THE TARGETS
AS WELL AS TOOLS

In a sense, any attack on a computer is an attack on
its users. However, this section focuses on types of
crime where interference with the computing equip-
ment and communications networks are themselves
prime targets, not just incidental mechanisms in the
crime.

A. Denial of Service and Jamming

Saturating resources without falling afoul of security
restrictions has been a common attack method for
decades. However, such denial of service (DoS) attacks
have grown rapidly in frequency and severity in re-
cent years. Factors contributing to such harassment
techniques include

356 Crime, Use of Computers in

• The explosive growth of Internet access by
individuals, including children, in the 1990s

• The growing number of sites online
• Faster modems
• Widespread distribution of attack scripts
• A subculture of criminal hacking
• Easy anonymity on the Net

E-mail bombing is a popular method; for example, in
one case a victim received 25,000 identical e-mail mes-
sages containing the single word “IDIOT.” Subscription-
list bombing involves subscribing victims to hundreds of
list servers; in an early case, the criminal calling itself
“Johnny [x]chaotic” harassed several dozen recipients
with thousands of postings from these unwanted sub-
scriptions. This technique is harder to use today be-
cause list servers typically now ask for a written confir-
mation of all subscription requests.

Another kind of DoS often occurs by mistake: mail-
storms occur when an autoresponder sends mail to an-
other autoresponder, which sends mail back to the
originating autoresponder. Mailstorms can generate
thousands of messages very quickly, causing mailboxes
to reach their limits and even crashing susceptible sys-
tems. Such feedback loops can be exploited by an at-
tacker who forges a REPLY-TO address in an e-mail
message designed to spark such a storm. Mailstorms
are greatly amplified when a list server can be tricked
into communicating with an autoresponder.

Many other types of DoS attacks use attributes of
TCP/IP. Some involve sending malformed datagrams
(packets) that crash recipient processes (e.g., Ping of
Death); others send bad data to a process (e.g., buffer-
overflow attacks).

Towards the middle of 1999, security agencies no-
ticed that a new generation of DoS attacks were brew-
ing: Distributed DoS (DDoS). In these attacks, criminals
use automatic scanning software to identify systems
with known vulnerabilities and install slave (also
known as zombie) programs that initiate concealed
(stealth) processes (daemons) on the victimized ma-
chines. These zombies wait for encrypted instructions
from a master program controlled by the criminals; at
a specific time, hundreds or thousands of zombies
can be ordered to use their host-machine’s resources
to send an overwhelming flood of packets to the ulti-
mate victim machines. Such attacks materialized in
February 2000, when major Web sites such as eBay,
Amazon, and other high-profile systems were
swamped with so much spurious traffic that they were
unable to service legitimate users. Damages were esti-
mated in the tens of millions of dollars.

B. Penetration

The classic computer crime is penetration of a security
perimeter. Such penetration has become a hobby with a
subculture of criminal hackers, but it can also be part of
a more serious effort to obtain information illicitly. The
popular press frequently includes reports of such pene-
trations; perhaps one of the most spectacular recent
cases in terms of publicity occurred in October 2000,
when Microsoft reported that criminal hackers appeared
to have entered their production systems and made
copies of valuable source codes for the latest versions of
its flagship MS-Windows and MS-Office products.

Most penetration occurs through exploitation of
known security vulnerabilities. Although patches are
known and available for new vulnerabilities within
hours or days, many overworked, untrained, or careless
system administrators fail to install these patches. All
studies of known vulnerabilities have the same result: a
majority (two-thirds and up) of all Net-connected sys-
tems have old, unpatched vulnerabilities that can be
penetrated even by children (script-kiddies) using auto-
mated tools (exploits, scripts) they barely understand.

Another class of attacks involves social engineering,
which is the hacker phrase for lying, cheating, dissimu-
lation, impersonation, intimidation, seduction, and ex-
tortion. Criminals such as the notorious Kevin Mitnick
use such techniques in persuading employees to betray
user identification and authentication codes that can
then be used for surreptitious access to systems.

So many Web sites are vandalized by the criminals
who penetrate their inadequate security perimeters
that the incidents now barely make the news. Archives
of copies (mirrors) of the vandalized pages are avail-
able on the Web; e.g., http://www.antionline.com.
Most of the vandalized pages are not suitable for view-
ing by children due to the presence of foul language,
bad grammar, and lots of pornographic images; iron-
ically, it is thought that most of the vandalism is by
children, many of whose parents are delighted that
their unsupervised offspring are ensconced in front
of a computer “keeping out of trouble.”

An important point about all penetrations is that,
contrary to criminal-hacker cant, all penetrations are
harmful. Criminal propaganda claims that unautho-
rized entry is harmless as long as no data are modi-
fied; some go further and argue even against unau-
thorized disclosure of confidential data. However,
operations staff know that when intruders break into
any system, they destroy the basis for trust of that vio-
lated system. All data and all software must be vali-
dated after every penetration; such work is tedious,
difficult, and expensive.

Crime, Use of Computers in 357

C. Covert Breaches of Confidentiality

Even without breaching the security perimeter in an
obvious fashion, criminals can intercept confidential
communications. For example, in August 1997, three
New Jersey businessmen were arrested and charged
with illegally intercepting and selling messages sent
via a paging service to senior New York City officials
such as the mayor, top police officers, and leaders of
the fire department. Interception of domestic cord-
less telephones is an easy method for collecting in-
formation that can be used for blackmail or for sale
to unscrupulous buyers. Many wireless mobile phones
still use no encryption and their signals can be inter-
cepted by commonly available equipment (with mi-
nor modifications) costing a few hundred dollars.
Land-lines are easy to tap at the point-of-presence of
the telephone company, at the neighborhood distrib-
ution cabinet, or—in office buildings—at the usually
unlocked junction panels in basements or corridor
walls.

Another form of electronic eavesdropping involves
the use of spyware. Some software is written to allow
automatic transmission of information from a user’s
system to specified sites on the Internet. A typical and
harmless example is the registration process of many
products; the user has a choice on whether to trans-
mit information or not, and if so, how (by modem, In-
ternet connection, fax, or mail). Spyware, in contrast,
by definition conceals its transmissions. Users with
firewalls that monitor inbound and outbound TCP/IP
communications may be surprised by occasional re-
quests for outbound transmission from processes they
know nothing about. For example, Comet Systems
cute cartoon cursors were downloaded by millions of
people, many of them children. However, the free
software turned out to be a Trojan: the modified pro-
grams initiated TCP/IP communications through the
users’ Internet connections and reported on which
sites were being visited by each copy of the programs
when the users went to any of 60,000 sites providing
links to the cursor programs. Their purpose was to
gather statistics about Web usage patterns. Company
officials argued that there were no links between the
serial numbers and any identifying information about
the users. Privacy advocates argued that the reporting
function ought to have been overt and optional.

D. Viruses, Worms, and Trojans

Disregarding DNA, which is the ultimate self-reproducing
information-storage structure, self-reproducing com-

puter programs and processes have been around since
the Bell Labs scientists started playing “Core Wars” on
company mainframes in the 1960s.

1. Early Viruses

Hobbyists in the 1980s had more scope for their ex-
periments because the operating systems of personal
computers lacked a security kernel and therefore al-
lowed any process to access any part of memory. Ap-
ple II microcomputer users invented computer viruses
in the early 1980s such as Festering Hate, Cyberaids,
and Elk Cloner. In 1983, Fred Cohen, then a student,
created a self-replicating program for a VAX 11/750
mainframe at the University of Southern California.
His thesis advisor, Len Adelman, suggested calling it
a virus. Cohen demonstrated the virus to a security
class. Cohen continued his work on viruses for several
years; his Ph.D. thesis presented a mathematical de-
scription of the formal properties of viruses. He also
defined viruses neatly and simply as “a computer pro-
gram that can infect other computer programs by
modifying them to include a (possibly evolved) copy
of itself.”

On October 22, 1987, a virus apparently written by
two brothers in Lahore, Pakistan, was reported to the
Academic Computer Center of the University of
Delaware in Newark. This virus destroyed the data on
several hundred diskettes at the University of Delaware
and also at the University of Pittsburgh School of Busi-
ness. It destroyed the graduate thesis of at least one
student.

In November 1987, students at Lehigh University
in Bethlehem, Pennsylvania, began complaining to
the staff at the computer center that they were getting
bad diskettes. At one point, 30 students returned
diskettes in a single day. It turned out that there was
a virus adding itself to the COMMAND.COM file on
the DOS system diskettes. When the Lehigh staff ex-
amined the virus, they discovered that it was pro-
grammed to copy itself 4 times after each infection.
On the 4th replication for any given copy, the virus
would destroy the file allocation table of the diskette
or hard disk, making the data unrecoverable (at that
time, there were no utilities available for reconstitut-
ing files easily once the pointers from cluster to clus-
ter on the disk had been lost). Several hundred stu-
dents lost their data.

Until 1995, there were two main virus vectors and
therefore types: boot-sector viruses and file-infectors.
There were a few thousand distinct kinds of viruses
(defined by signature strings of specific recognizable
executable code) and industry surveys suggested that

358 Crime, Use of Computers in

the rate of infection (measured in terms of numbers
of PCs infected) was rising tenfold per year. Viruses
were restricted to single platforms: MS-DOS, MS-
Windows, and the Apple Macintosh operating system.
UNIX and other operating systems with real security
features were largely unaffected.

In August 1995, everything changed. Reports ap-
peared of a new form of harmful self-replicating code:
macro-language viruses. The first instance, dubbed
“winword.concept” by antivirus specialists, contained
no harmful payload: it merely contained text ex-
plaining that it was an illustration of the concept of
macro viruses. Within the next few years, macro viruses
came to dominate the lists of virus types. By January
of 2001, there were over 56,000 viruses in antivirus
laboratories, of which more than half were macro
viruses. However, in the wild, almost all infections
were by macro viruses. In the 2000 Annual Virus Preva-
lence Survey run by ICSA Labs, there were no signifi-
cant reports of boot-sector or file-infector viruses in
the population studied.

The dominance of macro viruses is due to their
cross-platform capability. Microsoft decided to ignore
warnings by security specialists and incorporated ex-
tensive macro capabilities into its MS-Office prod-
ucts—products that run under a number of different
operating systems. The default state allows automatic
execution of such macros without direct user inter-
vention, leading to the situation we face today. The
problem has been exacerbated in the final years of
the 1990s because Microsoft also decided to incorpo-
rate automatic execution of any executable attach-
ment to e-mail received in its MS-Outlook products.

2. Worms

a. EARLY WORMS

In December 1987, a German student released a
self-reproducing program that exploited electronic
mail networks on the ARPANET and BITNET net-
works. This program would display the request, “Please
run me. Don’t read me.” While the victim ran the pro-
gram, it displayed a Christmas tree on screen; at the
same time, it used the victim’s e-mail directory and au-
tomatically sent itself to everyone on the list. Because
this rogue program did not embed itself into other
programs, experts call it the Christmas-Tree Worm.

Unfortunately, this worm had no mechanism for
remembering where it had come from. Since most
people to whom we write include our names in their
address list, the worm usually mailed itself back to the
computer system from which it had originated as well
as to all the other computer systems named in the vic-

tim’s directory. This reflection from victim to infector
is reminiscent of an uncontrolled nuclear chain reac-
tion. The greater the number of cross references
among e-mail address directories, the worse would be
the growth of the worm.

The original version of this worm worked only on
IBM VM/VMS mainframe computers; luckily, there
weren’t very many of them on the ARPANET and BIT-
NET networks. However, a source-code version of the
worm was installed into the IBM internal e-mail net-
work and recompiled. Because of the extensive cross-
references in the e-mail system, where many employ-
ees corresponded with hundreds of other employees,
the worm reproduced explosively. According to
Phillips, the network was clogged for 3 hours before
IBM experts identified the problem, wrote an eradi-
cator, and eliminated the worm.

b. THE MORRIS WORM OF 1988
The first worm that garnered worldwide attention

was a self-reproducing program launched at 17:00
EST on November 2, 1988, by Robert T. Morris, a stu-
dent at Cornell University in Ithaca, New York. In ad-
dition to sending itself to all the computers attached
to each infected system, the worm superinfected its
hosts just like the Christmas-Tree Worm had done,
leading to slowdowns in overall processing speed. By
the next morning, the Internet was so severely af-
fected by the multitudes of copies of the worm that
some systems administrators began cutting their net-
works out of the Internet. The Defense Communica-
tions Agency isolated its Milnet and Arpanet networks
from each other around 11:30 on November 3.

By late November 4, a comprehensive set of patches
was posted on the Internet to defend systems against the
Worm. That evening, the author of the Worm was iden-
tified. By November 8, the Internet seemed to be back
to normal. A group of concerned computer scientists
met at the National Computer Security Center to study
the incident and think about preventing recurrences of
such attacks. The affected systems were no more than
5% of the hosts on the Internet, but the incident alerted
administrators to the unorganized nature of this world-
wide network. The incident contributed to the estab-
lishment of the Computer Emergency Response Team
Coordination Center at the Software Engineering Insti-
tute of Carnegie-Mellon University, whose valuable Web
site is http://www.cert.org.

In 1990, Morris was found guilty under the Com-
puter Fraud and Abuse Act of 1986. The maximum
penalties included 5 years in prison, a $250,000 fine,
and restitution costs. Morris was ordered to perform
400 hours of community service, sentenced to 3-years

Crime, Use of Computers in 359

probation, and required to pay $10,000 in fines. He
was expelled from Cornell University. The Supreme
Court of the United States upheld the decision by de-
clining to hear the appeal launched by his attorneys.

c. THE MELISSA WORM

On Friday, March 26, 1999, the CERT-CC received
initial reports of a fast-spreading new MS-Word macro
virus. Melissa was written to infect such documents; once
loaded, it used the victim’s MAPI-standard e-mail ad-
dress book to send copies of itself to the first 50 people
on the list. The virus attached an infected document to
an e-mail message with the subject line “Subject: Impor-
tant Message From <name>” where <name> is that of
the inadvertent sender. The e-mail message read, “Here
is that document you asked for . . . don’t show anyone
else ;-)” and included an MS-Word file as an infected at-
tachment. The original infected document “list.doc” was
a compilation of URLs for pornographic Web sites. How-
ever, as the virus spread it was capable of sending any
other infected document created by the victim.

Because of this high replication rate, the virus
spread faster than any previous virus in history. On
many corporate systems, the rapid rate of internal
replication saturated e-mail servers with outbound au-
tomated junk e-mail. Initial estimates were in the
range of 100,000 downed systems. Antivirus compa-
nies rallied immediately and updates for all the stan-
dard products were available within hours of the first
notices from CERT-CC.

The Melissa macro virus was quickly followed by the
PAPA MS-Excel macro virus with similar properties.

d. THE LOVE BUG

In May 2000, the I LOVE YOU (“Love Bug”) com-
puter worm struck computers all over the world, start-
ing in Asia, then Europe. The malicious software
spread as an e-mail attachment, sending itself to all
the recipients in standard e-mail address books.
Within days, new variants appeared; for example, one
variation used a subject line purporting that the car-
rier message contained a joke. These worms not only
spread via e-mail, they also destroyed files on the in-
fected systems.

Within a week, Philippine authorities detained sev-
eral young people for questioning after identifying the
computer used to launch the worm. On May 11, Fil-
ipino computer science student Onel de Guzman of
AMA Computer College in Manila told authorities that
he may accidentally have launched the Love Bug but
he did not take responsibility for creating it, saying in
Tagalog, “It is one of the questions we would rather
leave for the future.” All suspects were released with-

out prosecution because of the absence of laws in their
country that would criminalize their alleged actions.

3. Trojans

a. EARLY TROJANS

Helpful volunteers in the early 1980s distributed a
great deal of useful software for free; such freeware be-
came a blind for malefactors who wrote harmful pro-
grams but described them as useful utilities. In March
1988, users noticed a supposed improvement to the
well-known antivirus program Flu-Shot-3. Flu-Shot-4
was a Trojan, however, and it destroyed critical areas
of hard disks and floppy disks. One of the interesting
aspects of this Trojan was that it was an early user of
the stealth technique of self-modifying code: the harm-
ful assembler instructions were generated only when
the program was run, making it harder for conven-
tional antivirus signature scanner programs to iden-
tify it.

Other famous early Trojans included the supposed
keyboard driver KEYBGR.COM which displayed a smi-
ley face that moved randomly around on screen, and
the 12-Tricks Trojan, which was advertised as a hard-
disk diagnostic program but actually caused a wide
range of damage such as garbling print output and re-
formatting hard disks. A particularly notorious Trojan
was the PC Cyborg or AIDS Trojan, which claimed to
be an AIDS information program but actually used a
simple monoalphabetic character substitution code to
scramble the names of all files and directories as well
as using up all free space on disk and issuing fake er-
ror messages for all DOS commands.

b. THE MOLDOVAN PORNOGRAPHY SCAM

In late 1996, viewers of pornographic pictures on
the http://www.sexygirls.com site were in for a sur-
prise when they got their next phone bills. Victims
who downloaded a “special viewer” were actually in-
stalling a Trojan Horse program that silently discon-
nected their connection to their normal ISP and re-
connected them (with the modem speaker turned
off) to a number in Moldova in central Europe. The
long-distance charges then ratcheted up until the user
disconnected the session—sometimes hours later,
even when the victims switched to other, perhaps less
prurient, sites. AT&T antifraud staff spotted the prob-
lem because of unusually high volume of traffic to
Moldova, not usually a destination for many U.S.
phone calls. A federal judge in New York City ordered
the scam shut down. In November 1997, the U.S. Fed-
eral Trade Commission won $2.74M from the bandits
to refund to the cheated customers.

360 Crime, Use of Computers in

c. BACK ORIFICE

In July 1998, The Cult of the Dead Cow (cDc, a long-
running group supporting criminal hacking activi-
ties) announced BackOrifice (BO), a tool for analyz-
ing and compromising MS-Windows security and
named as a spoof on the Back Office product from Mi-
crosoft. The author, a hacker with the L0PHT group
(http://www.10pht.com), described the software as
follows: “The main legitimate purposes for BO are re-
mote tech support aid, employee monitoring and re-
mote administering [of a Windows network].” How-
ever, added the cDc press release, “Wink. Not that
Back Orifice won’t be used by overworked sysadmins,
but hey, we’re all adults here. Back Orifice is going to
be made available to anyone who takes the time to
download it [read, a lot of bored teenagers].” The
product featured image and data capture from any
Windows system on a compromised network, an HTTP
server allowing unrestricted I/O to and from work-
stations, a packet sniffer, a keystroke monitor, and
software for easy manipulations of the victims’ Inter-
net connections. BO’s description qualified it as a
Trojan that allowed infection of other applications and
used stealth techniques to erase its own visibility once
loaded into memory. Security experts pointed out that
the key vulnerability allowing BO to contaminate a net-
work was the initial step—running a corrupted appli-
cation that would load the parasitic code into memory.
Users should not download software from unknown
sites or execute attachments to e-mail without assur-
ance of their legitimacy. All the major firms offering
anti-malicious-code software issued additions to their
signature files to identify the Trojan code.

About 15,000 copies of BO were distributed to In-
ternet Relay Chat users by a malefactor who touted a
“useful” file (nfo.zip) that was actually a Trojan drop-
per for BackOrifice.

In July 1999, cDc released BackOrifice 2K (BO2K),
usually installed illegally on victim machines through
a contaminated vector program that has been thereby
transformed into a Trojan Horse dropper. BO2K al-
lowed complete remote control and monitoring of
the infected PCs. BO2K was noteworthy because it at-
tacked WindowsNT workstations and servers and thus
had even more serious implications for information
security. Antivirus companies worked feverishly im-
mediately after the release of the tool to update their
virus-signature files. A criminal hacker calling himself
Deth Veggie insisted that the CDC was involved in
guerilla quality assurance—their penetration tools, he
argued, would force Microsoft to repair the “funda-
mentally broken” Windows operating systems. Secu-
rity specialists disagreed, saying that writing and re-

leasing such tools was definitely malicious and was
primarily damaging innocent users.

E. Logic Bombs

A logic bomb is a program which has deliberately
been written or modified to produce results when cer-
tain conditions are met that are unexpected and unau-
thorized by legitimate users or owners of the software.
Logic bombs may be within stand-alone programs or
they may be part of worms or viruses. An example of
a logic bomb is any program which mysteriously stops
working 3 months after, say, its programmer’s name
has disappeared from the corporate salary database.

In 1985, a disgruntled computer security officer at
an insurance brokerage firm in Texas set up a com-
plex series of Job Control Language (JCL) and RPG
programs described later as “trip wires and time
bombs.” For example, a routine data retrieval func-
tion was modified to cause the IBM System/38
midrange computer to power down. Another routine
was programmed to erase random sections of main
memory, change its own name, and reset itself to ex-
ecute a month later.

In 1988, a software firm contracted with an Okla-
homa trucking firm to write an application system.
The two parties disagreed over the quality of the work
and the client withheld payment, demanding that cer-
tain bugs be fixed. The vendor threatened to deto-
nate a logic bomb which had been implanted in the
programs some time before the dispute unless the
client paid its invoices. The client petitioned the court
for an injunction to prevent the detonation and won
its case on the following grounds:

• The bomb was a surprise—there was no prior
agreement by the client to such a device.

• The potential damage to the client was far greater
than the damage to the vendor.

• The client would probably win its case denying
that it owed the vendor any additional payments.

In public discussions among computer programmers
and consultants, some have openly admitted installing
such logic bombs in their customers’ systems as a tool
for extorting payment.

In 1998, a network administrator for Omega Engi-
neering was convicted of activating a digital time bomb
that destroyed the company’s most critical manufac-
turing software programs. The company claimed more
than $10 million in damages and lost productivity.

Crime, Use of Computers in 361

F. Sabotage

The quintessential sabotage story concerns the National
Farmers Union Service Corporation of Denver, where a
Burroughs B3500 computer suffered 56 disk head
crashes in 2 years starting in 1970. Down time was as
long as 24 hours per crash, with an average of 8 hours
per incident. Technicians guessed that the crashes were
due to bad power; the company spent $500,000 up-
grading their power. The crashes continued.

The investigators began wondering about sabotage;
all the crashes had occurred at night—specifically
during a trusty operator’s shift, old helpful Albert.
Management installed a closed-circuit TV (CCTV)
camera in the computer room—without informing
Albert. Film of the next crash showed good old Albert
opening up a disk cabinet and poking his car key into
the read/write head solenoid, shorting it out, and
causing the 57th head crash.

Psychologists determined that Albert had been ig-
nored and isolated for years in his endless night shift.
When the first head crashes occurred spontaneously,
he had been surprised and excited by the arrival of
the repair crew. He had felt useful, bustling about,
telling them what had happened. When the crashes
had become less frequent, he had involuntarily, and
almost unconsciously, recreated the friendly atmos-
phere of a crisis team. He had destroyed disk drives
because he needed company.

Many other cases of sabotage involve disgruntled
employees or ex-employees.

However, other cases do involve outsiders. For ex-
ample, in the late 1980s, a New Jersey magazine pub-
lisher’s voice mail system was corrupted by a 14-year
old boy and his 17-year old cousin, both residents of
Staten Island. The younger child had ordered a sub-
scription to a magazine dedicated to Nintendo games
and never received the colorful $5 poster he had been
promised. In retaliation, the children entered the
company’s voice mail, cracked the maintenance ac-
count codes, and took over the system. They erased
customer messages, changed employees’ answering
messages, and generally wreaked havoc. Their actions
resulted in lost revenue, loss of good will, loss of cus-
tomers, expenses for time and materials from the
switch vendor, and wasted time and effort by the pub-
lisher’s technical staff. Total costs were estimated by
the victim at $2.1M.

We have already seen that Web-site defacement, a
form of sabotage, is so common that it no longer war-
rants much news coverage.

G. Counterfeit Software

All over the world, opportunistic criminals make illegal
copies of copyrighted software. The problem is particu-
larly serious throughout Asia, where some countries
have more than 99% of all software in pirated form;
however, counterfeit software is big business even in the
U.S. For example, in June 2000, Pennsylvania State Po-
lice cracked a global software piracy operation involving
at least $22M in counterfeit Microsoft software. Police
collected over 8000 copies of Windows 98, Microsoft Of-
fice, and Windows NT and more than 25,000 counter-
feit end-user license agreements. Authorities pointed
out the following warning signs of counterfeit software:

• Impossibly low prices
• Unwillingness of companies or individuals to verify

their identity or contact information
• Online distributors with inadequate descriptions of

return and warranty policies
• Nonstandard packaging such as a CD in a jewel

case but with no documentation or authentication
marks

An unfortunate side-effect of the ease with which or-
dinary users can copy software—including even burn-
ing their own CD-ROMs—is that many adults and es-
pecially children have no clear conception that there
is anything wrong with making copies of software for
their friends and even for sale. In the U.S., however,
penalties for copyright violations can reach as high as
fines of $250,000 per title and up to 5 years in prison.

SEE ALSO THE FOLLOWING ARTICLES

Computer Viruses • Copyright Laws • Electronic Payment
Systems • Encryption • Ethical Issues • Firewalls • Foren-
sics • Law Firms • Privacy • Security Issues and Measures •
Software Piracy • Year 2000 (Y2K) Bug Problems

BIBLIOGRAPHY

Bosworth, S., and Kabay, M. E., eds. (2002). Computer security
handbook, 4th ed. New York: Wiley.

Cavazos, E., and Morin, G. (1996). Cyberspace and the law: Your
rights and duties in the on-line world. Cambridge, MA: MIT Press.

Fialka, J. J. (1997). War by other means: Economic espionage in
America. New York: Norton.

Fraser, B. (Ed.) (1997). Site security handbook, RFC2196 (Net-
work Working Group). Available at http://www.cis.ohio-
state.edu/htbin/rfc/rfc2196.html.

362 Crime, Use of Computers in

Freedman, D. H., Mann, C. C. (1997). @Large: The strange case of
the world’s biggest Internet invasion. New York: Simon & Schuster.

Howard, J. D. (1997). An analysis of security incidents on the Inter-
net 1989–1995. Ph.D. Thesis, Department of Engineering
and Public Policy, Carnegie Institute of Technology, Carnegie
Mellon University. Available at http://www.cert.org/
research/JHThesis/Start.html.

Icove, D., Seger, K., and VonStorch, W. (1995). Computer crime: A
crime fighter’s handbook. Sebastopol, CA: O’Reilly & Associates.

Lessig, L., Post, D., and Volokh, E. (1997). Cyberspace law for
non-lawyers. Published via e-mail, http://www.ssrn.com/up-
date/lsn/cyberspace/csl_lessons.html.

Littman, J. (1996). The fugitive game: Online with Kevin Mitnick—
The inside story of the great cyberchase. Boston: Little, Brown
and Company.

Parker, D. B. (1998). Fighting computer crime: A new framework for
protecting information. New York: Wiley.

Power, R. (2000). Tangled web: Tales of digital crime from the shad-
ows of cyberspace. Indianapolis: Que.

Schwartau, W. (1996). Information warfare, 2nd ed. New York:
Thunder’s Mouth Press.

Shimomura, T., and Markoff, J. (1996). Takedown: The pursuit
and capture of Kevin Mitnick, America’s most wanted computer
outlaw—By the man who did it. New York: Hyperion.

Slatalla, M., and Quittner, J. (1995). Masters of deception: The
gang that ruled cyberspace. New York: HarperCollins.

Smith, G. (1994). The virus creation labs: A journey into the un-
derground. Tuscon, AZ: American Eagle Publications.

Sterling, B. (1992). The hacker crackdown: Law and disorder on the
electronic frontier. New York: Bantam Doubleday Dell.

Stoll, C. (1989). The cuckoo’s egg: Tracking a spy through the maze
of computer espionage. New York: Simon & Schuster.

Tipton, H. F., and Krause, M. (Eds.) (2000). Information security
management handbook, 4th ed. Boca Raton, FL: Auerbach.

Crime, Use of Computers in 363

Cybernetics
Asterios G. Kefalas
University of Georgia

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 365

I. INTRODUCTION
II. BRIEF HISTORY OF CYBERNETICS

III. CYBERNETIC SYSTEMS
IV. UNDERSTANDING AND MANAGING CYBERNETIC SYSTEMS

V. STABILITY AND INSTABILITY OF CYBERNETIC SYSTEMS
VI. SOME PRINCIPLES OF IMPLICIT CONTROLLERS OR

HOMEOSTATS
VII. EPILOGUE

GLOSSARY

adaptability The ability of a system to learn and to al-
ter its internal structure and operations in response
to changes in the external environment.

attributes Properties of objects or relationships that
manifest the way something is known, observed, or
introduced in a process.

black box A technique that considers a system only in
terms of inputs and outputs and whose internal
mechanisms are unknown or unknowable.

complexity The property of a system resulting from
the interaction of four main determinants: the
number of elements, their attributes, the number
of interactions among the elements, and the de-
gree of organization of the elements.

cybernetics The science of control and communica-
tion in the animal and machine.

cybernetic systems Systems that are characterized by ex-
treme complexity, probabilism, and self-regulation.

entropy A measure of the degree of disorder; a nat-
ural tendency of systems to fall into a state of dis-
order; the loss in quality of energy accompanying
all transformation processes.

environmental scanning The process of acquiring in-
formation about the external environment.

feedback The reintroduction into a system of a por-
tion of the system’s output known as the error (e),
which is the difference between the goal and actual
performance. If it minimizes the error then it is
called negative feedback. If it amplifies the error

then it is positive feedback. Negative feedback en-
sures control; positive feedback accounts for growth.

goal-seeking systems Systems whose behavior is deter-
mined by the degree of accomplishment of the goal.

homeostasis The maintenance of a given (same) state
of a system.

information The element that tells matter and en-
ergy what to become or what form to take. It is
measured in bits. One bit of information is the
amount of uncertainty removed once one of two
equally probable alternatives (e.g., heads or tails)
has been specified.

probabilism A doctrine that asserts that statements
about the behavior of exceedingly complex systems
must be accompanied by a probability, a number
between 0 and 1.

uncertainty The inability to make a statement about
the future state of a system. It is measured as com-
plexity or disorder by using Boltzmann’s formula,
S � k log W.

I. INTRODUCTION

When, in the middle of the 1940s, Norbert Wiener
coined the term cybernetics, he had no idea that, half a
century later, this word would have become so popular,
ubiquitous, pervasive, and revolutionary. By the same
token, few cyberpunks realize today that the world in
which they now live was once a pure vision expressed
in a number of mathematical equations littering the

Cybernetics, or control and communication in the
animal and machine.

The full importance of an epoch-making idea is of-
ten not perceived in the generation it is made.

Alfred Marshall, 1920

blackboard in Room 2-224 at MIT. Yet today there is
hardly any human being over 3 years old who does
not know or use the first half of this word. In the early
1970s science fiction writers produced some popular
television serials, such as The Cyborgs and The Six Mil-
lion Dollar Man, that dramatized the basic idea of cy-
bernetics: that humans and machines can be com-
bined to create a perfectly controlled system that will
always achieve its purpose. Today the word cyber has
become the first part of numerous combination words
such as cyberspace, cybermall, and cybercrime. In this arti-
cle we attempt to take the mystery out of cybernetics
by explaining its origins and meaning, its main build-
ing blocks, its main principles and applications, and
their importance for the business community and so-
ciety in general.

II. BRIEF HISTORY OF CYBERNETICS

In the twilight years of the 19th century inquisitive
scholars began to suspect that nature could no longer
be seen as matter and energy alone. In addition, and
perhaps more importantly, they realized that nature’s
secrets could only be unlocked by adding to the ex-
isting laws of physics and chemistry a new theory. This
theory could provide a set of principles and tools that
would enable humans to understand that which “in-
forms” the material world to do what it is doing and
to become what it is becoming. This is the theory of in-
formation. Thus, nature must be interpreted as matter,
energy, and information. Aristotle established the
foundations of a theory of information as a change
agent, i.e., as that which makes the possible actual.
According to Campbell, Aristotle proposed four types
of causes responsible for bringing about changes in
the world.

Cause number one is matter, without which nothing
would happen at all. Cause number two is the form im-
plicit in the thing which changes. The form is its
meaning, determining what kind of thing it is, “what
can be said” about it. Cause number three is the effi-
cient cause, an active agent of change, a mover, a force
or power that brings about what matter only makes
possible. Finally, cause number four is the end or pur-
pose that a thing naturally tends to approach when it
changes.

Cybernetics is about understanding and managing
these four forces of change. A quick review of its more
recent historical antecedents must start with the ef-
forts of late 19th-century thinkers who questioned the
adequacy of Newtonian laws as an all-explaining set of
rules for life on earth. One of the first phenomena

that attracted the attention of physicists was the trans-
formation of energy from one type into another. Since
Newton’s mechanical explanation of the movements
of the heavenly bodies, once thought to be guided by
God, focused on achieving equilibria states rather than
on changes in the states, transformation processes
were of no interest. When scientists directed their
searchlights away from heavenly bodies and toward
earthly objects they noticed that these objects were in
a constant state of change. Even though the amount
of energy in the universe does not change (i.e., energy
is indestructible), it can be converted into another
type of energy at a fixed rate of exchange. In this ex-
change the amount of energy is constant; however, its
quality may change. Rudolf Clausius identified this
loss of quality of energy as entropy and expressed it as
a fraction: heat divided by temperature. Clausius de-
clared in his second law of thermodynamics that every
transfer of energy is accompanied by a net irreversible
increase in entropy. Clausius summed up his conclu-
sions in the famous couplet:

The energy of the universe is a constant. The entropy
of the universe tends to a maximum.

Thus humanity once again was confronted with a sim-
ilar question that was answered in a definite way by Sir
Isaac Newton more than 100 years earlier. Instead of
asking the question that it was asked back then, “Why
do things fall to the ground?,” physicists now ask:
“Why does energy suffer this curious one-way decay?”
Could it be possible to answer this question with the
precision and elegance of Newton’s laws? Ludwig von
Boltzmann’s (1844–1906) efforts to create a theory of
atomism in the late 1800s provided a measure for this
decaying process of entropy maximization, and Nor-
bert Wiener in late 1940 provided its therapy—a the-
ory of control and communication that uses informa-
tion to arrest entropy that prevents a system from
performing useful work.

In a paper presented at the Imperial Academy of
Sciences, Boltzmann told his colleagues that

Precisely those forms of energy that we wish to realize
in practice are however always improbable. For exam-
ple, we desire that a body move as a whole; this re-
quires all its molecules to have the same speed and the
same direction. If we view molecules as independent
individuals, this is however the most improbable case
conceivable. It is well known how difficult it is to bring
even a moderately large number of individuals to do
exactly the same thing in exactly the same manner.

Boltzmann defined this improbable order as com-
plexity and provided a set of mathematical tools to

366 Cybernetics

measure it. His basic idea was that the degree of com-
plexity will somehow be related to the number of in-
dependent individuals in an entity. Unable to con-
vince his fellow scientists of the importance and
necessity of focusing on the atomic level of the mate-
rial world Boltzmann took his life. After considerable
work and some 20 years later, Max Planck and Werner
Heisenberg provided the formula

S � k log W (1)

where S is complexity, k is Boltzmann’s universal con-
stant, and W is the number of alternatives (or the
number of ways in which the parts of a system can be
arranged).

The entropy S reaches a maximum when all the
parts of the system are so thoroughly mixed up that
there is no reason to expect the system to be in one
state or another. When that happens our knowledge
of the state of the system is at a minimum. In sum,
Boltzmann told us that the higher the entropy, the
less information we can have about the system.

Despite these great developments, a “real” theory of
information was not developed until the early 1940s,
until the ideas of entropy, uncertainty, and information
were related and became the building blocks of a new
science. Two very different figures played a pivotal role
in this new science. The first one was Claude Shannon.
Shannon was unassuming, slow to push his ideas be-
fore the public, seemingly indifferent to applause and
recognition, and a famously unprolific writer. The sec-
ond figure was Norbert Wiener (1894–1964). Wiener
was almost the opposite of Shannon: a florid and ec-
centric character, a blower of fanfares for his own con-
siderable accomplishments. Wiener would walk into
some of his colleagues’ rooms, puffing at a cigar, and
say: “Information is entropy.” Although many others
sensed the connection between entropy and informa-
tion it was clearly Wiener whose “mathematical car-
pentry” became the essential building blocks of the
new and emerging science of cybernetics.

Cybernetics dates from the time of Plato, who, in
his Republic, used the term kybernetike (a Greek term
meaning “the art of steersmanship”) both in the lit-
eral sense of piloting a vessel and in the metaphorical
sense of piloting the ship of state, that is, the art of
government. From this Greek root was derived the
Latin word gubernator, which, too, possessed the dual
interpretation, although its predominant meaning
was that of a political pilot. From the Latin, the Eng-
lish word governor is derived. It was not until Watt
termed his mechanical regulator a “governor” that
the metaphorical sense gave way to the literal me-
chanical sense. It was this event that in 1947 provided

the motivation for Norbert Wiener to coin the term
cybernetics for designating a field of studies that would
have universal application. With this the term has now
come full circle.

In more recent times the science of cybernetics has
been much abused by writers who equated it exclu-
sively with electronic computers, automation, opera-
tions research, and a host of other tools. In his classic
text, Wiener defines cybernetics as the science of con-
trol and communication in the animal and machine. It is
quite evident that Wiener intended cybernetics to be
concerned with universal principles applicable not
only to engineering systems but also to living systems.
In Wiener’s 1954 words:

In giving the definition of Cybernetics in the original
book, I classed communication and control together.
Why did I do this? When I communicate with another
person, I impart a message to him, and when he com-
municates back with me he returns a related message
which contains information primarily accessible to
him and not to me. When I control the actions of an-
other person, I communicate a message to him, and
although this message is in the imperative mood, the
technique of communication does not differ from
that of a message of fact. Furthermore, if my control
is to be effective I must take cognizance of any mes-
sages from him which may indicate that the order is
understood and has been obeyed. . . . When I give an
order to a machine, the situation is not essentially dif-
ferent from that which arises when I give an order to
a person. In other words, as far as my consciousness
goes, I am aware of the order that has gone out and
of the signal of compliance that has come back. . . .
Thus the theory of control in engineering, whether
human or animal or mechanical, is a chapter in the
theory of messages.

This view of control can be profitably applied at the
theoretical level of any system and to diverse disci-
plines in both large and small systems. As Wiener
states, “It is the purpose of Cybernetics to develop a
language and techniques that will enable us indeed to
attack the problem of control and communication in
general, but also to find the proper repertory of ideas
and techniques to classify their particular manifesta-
tions under certain concepts.”

To better understand the true meaning and useful-
ness of cybernetics, let us take a closer look at the def-
inition given by Wiener. Four main concepts are in-
cluded in this definition, which can be arranged into
two sets: (1) control and communication, and (2) an-
imal and machine. What this definition implies is that
the concepts of control and communication are two
sides of the same coin. The desired outcome (i.e., con-
trol) is achieved by the process of communication and

Cybernetics 367

the process of communication is triggered by the lack
of control. Thus in systems that are always in perfect
control, there is no need for communication. How-
ever, such systems do not really exist; or if they do ex-
ist they are of no interest because they will eventually
fall victims to the second law of thermodynamics, the
law of maximum entropy, and will die.

Finally, implicit in this definition of cybernetics is
the idea that this relationship between control and
communication holds for mechanical systems (i.e.,
machines), as well as for human systems (i.e., ani-
mals). This latter statement became the impetus for
science fiction writings and television dramatizations.
In addition, this statement was misinterpreted by a
number of scholars and motivated Wiener to write a
popular book on the subject under the title The Hu-
man Use of Human Beings. What people foresaw back
then is what actually happened today: The human
and the machine became one system, an information
processing system.

III. CYBERNETIC SYSTEMS*

Stafford Beer, a brilliant British systems scholar, is the
first and only man to declare in his passport cyberneti-
cian as a profession. He, more than anybody else, has
contributed immensely to the popularization of cy-
bernetics and its application to management. One of
his greatest contributions is his classification of cy-
bernetic systems. In his seminal work Cybernetics and
Management, Beer used a scheme that classifies sys-
tems in accordance with two criteria: complexity and
predictability. The first criterion, complexity, refers to
the structure of the system, whereas the second one,
predictability, relates to its behavior. Table I provides
a presentation of the possible combinations of these
two criteria and their specific attributes.

With respect to the first criterion, Beer uses three
degrees of complexity: simple, complex, and exceed-
ingly complex. A simple system is one that has few
components and few interrelationships; similarly, a sys-
tem that is richly interconnected and highly elaborate
is complex, and an exceedingly complex system is one
that cannot be described in a precise and detailed
fashion. The second criterion concerns the system’s
predictability of its behavior. A system whose parts in-
teract in a perfectly predictable way, and consequently
make its behavior predictable, is a deterministic sys-

tem. On the other hand, a system whose parts do not
behave in a predictable manner is a probabilistic sys-
tem. In the former the observer or the manager of a
system can make a definite statement about its present
and future state, whereas in the latter any such state-
ment must be qualified by the addition of a statement
regarding the probability associated with the likeli-
hood that the statement will be true.

The six categories of the two criteria, one threefold
and the other twofold, are presented in Table I. Al-
though Beer is clear in his admonition that these bands
are hazy and that they represent merely bands of like-
lihood, still such a scheme has value since his group-
ing is done according to the kinds of control to which
they are susceptible. Not all categories are of equal dif-
ficulty and of equal importance. Deterministic systems
are of little interest because behavior is predetermined
and because they do not include the organization as
does an open system. As shown in Table I, examples of
this type of system include the pulley, billiards, a type-
writer, most machines in organizations, the movement
of parts on an assembly line, the automatic processing
of checks in a bank, and so on. In each of the above
examples, the output of the system is controlled by
management of the input to the system.

From simple deterministic systems one moves to com-
plex deterministic ones, the singular difference being
the degree of complexity involved. The computer is il-
lustrative of this class of system in that it is much more
complex than the previously mentioned systems but
still operates in a perfectly predictable manner. The
point made earlier that the band separating the cate-
gories is hazy is demonstrated by the fact that to a com-
puter specialist the computer may not be complex. In
a similar manner, the automobile engine is complex for
many, but again for a mechanic it is a simple deter-
ministic system. In all of the above examples there is
only a single state of nature for the system, which is de-
termined by the structural arrangement of the elements
composing it. If these are in the proper configuration,
the system will operate in a predetermined pattern.

If one were to introduce a second state of nature
into each of the above systems, they would become
probabilistic. As seen from Table I, probabilistic sys-
tems can range from the simplest games of chance,
such as the flipping of a coin, in which only two pos-
sible states can exist, to the organization, in which
multiple states are possible. As the complexity of a
probabilistic system and the number of states of na-
ture increase, prediction and control of systems be-
havior become extremely difficult. Thus, while in de-
terministic systems control of the inputs will provide
prediction of the outputs, in probabilistic systems con-

368 Cybernetics

*Sections III through VI draw heavily from Management Systems:
Conceptual Considerations, P. P. Schoderbek, C. G. Schoderbek, and
A. G. Kefalas, by permission of the senior author.

trol of the inputs will provide only a range of possible
outputs. This is the case with the last category of ex-
ceedingly complex, probabilistic systems which in-
cludes the firm, the individual, and the economy, all
of which can exhibit variable states of nature. The
firm, being composed of multiple subsystems, inter-
acts with other external systems such as the govern-
ment, competitors, unions, suppliers, and banks. The
interaction of the various internal departments and
components of an organization and its external sub-
system is so intricate and dynamic that the system is
impossible to define in detail.

What, then, is of concern for cybernetics is a sys-
tem whose structure is very complex and whose be-
havior is probabilistic. As noted in Table I, simple
probabilistic systems are controlled through statistical
methods, whereas complex probabilistic systems are
dealt with through more sophisticated methods.
These tools serve adequately in dealing with systems
exhibiting a measure of complexity, but in treating
exceedingly complex systems, which lack definability,
they are deficient. Highly complex systems will not
yield to the traditional analytical approach because of
the morass of indefinable detail; yet these too must be
controlled. Ironically, the same complexity that makes
these systems indescribable in details provides the key
to their controllability. This is Beer’s third character-
istic of cybernetic systems, and that is self-regulation.
The self-regulatory feature of cybernetic systems is es-
sential if systems are to maintain their structure.

IV. UNDERSTANDING AND
MANAGING CYBERNETIC SYSTEMS

The domain of cybernetics is systems that are ex-
ceedingly complex, probabilistic, and self-regulating.
Understanding these kinds of systems requires a new
definition of understanding. There is a story of two

physicists taking a walk on a beach in Cape Cod. One
physicist asked the other, “I understand that you are
teaching this new stuff about relativity theory. Do you
really understand relativity theory?” The other physi-
cist looked at him and replied, “Yes I do teach it, but
to understand relativity theory one must change the
definition of understanding.” The new understanding
is a process that involves the three Cs: conviction, con-
venience, and convention. When at the beginning of
the 1900s physicists were confronted with the inade-
quacy of the conventional language to describe the
structure and behavior of the atom, they invented a
brand new set of concepts. The pioneers of this vo-
cabulary creation process had to first convince their
colleagues of the appropriateness of the vocabulary.
Subsequent users found the use of this vocabulary
convenient and finally its frequent usage became a
convention. Some 50 years later computer scientists
went through the same three Cs vocabulary building
process. Today there is no serious dispute as to the
meaning of bits, bytes, megabytes, gigabytes, terabytes,
and all of the other words we need to communicate.
Nobody really understands, in the conventional mean-
ing of the word, what a gigabyte is, yet all of us “know”
that a gigabyte is more than a megabyte.

Table II presents the main characteristics of cyber-
netic systems along with the tools for dealing with each
of these characteristics. For example, the technique
employed when dealing with extreme complexity is

Cybernetics 369

Table I Classification of Systems Based on Susceptibility to Control

Predictability/Complexity Simple Complex Exceedingly complex

Deterministic (one state of nature) Pulley Computer Empty set
Billiards Planetary system
Typewriter

Type of control required Control of inputs Control of inputs Control of inputs

Probabilistic (many states of nature) Quality control Inventory levels Firm
Machine breakdowns All conditional behavior Humans
Games of chance Sales Economy

Type of control required Statistical Operations research Cybernetic

Source: Adapted from Stafford Beer, Cybernetics and Management, Science Edition (New York: John Wiley, 1964), p. 18.

Table II Characteristics and Tools for Analysis of
Cybernetic Systems

Characteristics of a system Tools for analysis

Extreme complexity Black box

Probabilism Information theory

Self-regulation Feedback principle

that of the black box. There can be but little doubt
that only a few of the systems encountered in the
workaday world are of the deterministic type. Most
are probabilistic in their behavior. Any system operat-
ing within a margin of error is probabilistic and there-
fore must be treated statistically. Information theory
is the tool used to deal with probabilism. Finally, self-
regulation requires that control must operate from
within. The tool for dealing with self-regulation is
negative feedback that utilizes the error or the differ-
ence between the goal and the actual performance as
the means of control.

A. Complexity and the Black Box

An explanation of the term complexity can be ap-
proached from many different viewpoints. From the
mathematical viewpoint, complexity can best be un-
derstood as a statistical concept. More precisely, com-
plexity can best be explained in terms of the proba-
bility of a system being in a specific state at a given
time. From a nonquantitative viewpoint, complexity
can be defined as the quality or property of a system
that is the outcome of the combined interaction of
four main determinants. These four determinants are
(1) the number of elements comprising the system,
(2) the attributes of the specified elements of the sys-
tem, (3) the number of interactions among the specified
elements of the system, and (4) the degree of organiza-
tion inherent in the system; that is, the existence or
lack of predetermined rules and regulations that
guide the interactions of the elements or specify the
attributes of the system’s elements.

Most attempts at measuring the complexity of a
given system usually concentrate on two criteria: the
number of elements and the number of interactions
among the elements. This is especially true in classi-
cal statistics situations. This kind of measure of com-
plexity is very superficial and, to some extent, mis-
leading. Confining oneself to these two dimensions of
complexity will lead one to classify a car engine as a
very complex system. There are indeed a large num-
ber of elements and an equally large number of in-
teractions among all the parts of a car engine. By the
same token, one would be inclined to classify a two-
person interaction as a very simple system, because
only two elements and only two possible interactions
are involved.

If one were to incorporate the other two determi-
nants of complexity, namely, the attributes of the ele-
ments and the degree of organization, then one would
arrive at a different conclusion. Concerning the ex-
ample of a car engine, one would observe that the in-
teractions must obey certain rules and follow a certain
sequence. One would also observe that the attributes
of the system’s elements are predetermined. By using
all four criteria of complexity, one must conclude that
the car engine is, in fact, a very simple system.

One of the merits of the black box technique (Fig.
1) is that it provides the best antidote against the ten-
dency of the investigator to oversimplify a complex
phenomenon by breaking it into smaller parts. The
black box technique for dealing with complexity rep-
resents a selection procedure based on a series of di-
chotomies. In other words, the investigator of a com-
plex situation manipulates the inputs to the black box
and classifies the outputs into certain distinct classes

370 Cybernetics

Figure 1 The black box technique.

based on the degree of similarity of the outputs. The
investigator then converts each class into a “many-to-
one” transformation. The black box technique in-
volves the following sequential steps: (1) input ma-
nipulation, (2) output classification, and, finally,
(3) many-to-one transformations. The input manipu-
lations over an extended number of trials reveal (in
the output classification as recorded in the protocol)
certain similarities or repetitiveness. These similarities
are in turn converted into legitimate many-to-one
transformations that act as implicit control devices;
these many-to-one transformations account for the re-
duction in the system’s variety without unnecessary
simplifications.

B. Probabilism and Information Theory

Information theory is a body of organized knowledge
that is concerned primarily with the abstract logical
nature of information, its mathematical measure, ca-
pacity of communication channel, noise, coding,
speed, and accuracy of transmission, and secondarily
with the meaning of the transmitted information.

1. The Abstract Logical
Nature of Information

Information is a statistical concept, which denotes a
change in probabilities indicated to the receiver as
the result of actual selection among possible message
states by the sender at the opposite end of the com-
munications channel. It is evident from this defini-
tion of information that the concept refers to the
mechanism of selecting, choosing, or narrowing of
the range of possible alternatives about which the
user of that mechanism is ignorant or uncertain as to
the correctness of his choice. The fewer the number
of alternatives the selector is left with after the selec-
tion process has begun, the more informed he is and,
therefore, the less uncertain. In general, one could
define information as the antidote for uncertainty.

2. Measurement of Information

The basic unit of measurement of information is the
bit—a contraction of “binary digit.” A source is said to
have received 1 bit of information when the proba-
bility of one of two equally probable alternatives has
been specified. In other words, if the receiver knows
that he is confronted with two equally probable alter-
natives, such as the tossing of a coin when only two al-
ternatives—heads (H) or tails (T)—are possible, and

is told the existence of the one alternative—thereby
removing all uncertainty—then he is said to have re-
ceived 1 bit of information. Alternatively, the number
of bits can be found by determining the number of
times that the message or the uncertainty would have
to be halved in order to achieve certainty. Mathemat-
ically, the number of bits is determined by the fol-
lowing formula (its resemblance to Boltzmann’s for-
mula for complexity is obvious):

H � �pi log 2pi (2)

where H is the average amount of information in bits,
pi is the number of alternatives, and log 2 is the bi-
nary logarithm. Note that the minus sign is needed to
ensure positive amounts of information (positive H).
Any probability is a number less than or equal to 1,
and the logarithm numbers less than 1 are themselves
negative.

For equally probable alternatives, the first term on
the right-hand side of the equation (pi) is reduced to
1 (since the logarithm of 2 to the base 2 is unity), and
H is found by looking up pi in the log 2 pi table. A
simple example will illustrate the point. Figure 2 de-
picts a situation of total uncertainty. Let’s assume that
a coin has been hidden under one of the 64 cells of
the matrix. There is no further information available
than that there are 64 alternatives (pi) and that each
cell has an equal probability of hiding the coin. The
question is how much information does one need to
discover the coin? We can determine the number of
bits from Eq. (2). Thus,

H � �pi log 2 pi � 1 * log 2 64 � 1 * 6

� 6 bits of information

Alternatively, in practical terms, one can determine
the number of bits via a series of binary (yes or no)
questions and by doing a series of dichotomies or by
halving the 64 alternatives. As Fig. 2 shows, the answer
again will be 6 bits of information, which in reality
represent the answers to six yes/no questions. It is im-
portant for the question to be asked in a binary man-
ner, leaving no choice or free will to the subject. In
other words, no matter what answer the subject gives,
information must be created that will remove half of
the uncertainty or eliminate half of the alternatives.
For example, one should not ask the question “Is the
coin in cell 1–1 or not?” The answer to this type of
question depends on the willingness and honesty of
the subject. The question “Is the coin in cell 1–1?” will
provide information no matter what the answer is.
If the answer is yes, then of course all uncertainty is
removed. However, if the answer is no, then that

Cybernetics 371

alternative is no longer part of the total uncertainty
and can be eliminated from the total uncertainty.

Following this logic one can find the specific cell
by halving the possible alternatives. As can be seen
from Fig. 2, this process involves successive reductions
of uncertainty in a descending order of magnitude.
The first question eliminates 32 possible cells result-
ing in 1 bit of information. The second question halves
the remaining 32 alternatives and removes another 16
alternatives, and so on until the last (sixth) question
involving two alternatives, of which one is eliminated
leaving no uncertainty at all.

3. Meaning of Information

It must be said at the outset that the originators of in-
formation theory, Shannon and Weaver, who wrote
the original work, The Mathematical Theory of Commu-
nication, in the late 1940s, did not intend to deal with
the problem of the meaning of transmitted informa-
tion. In Weaver’s own words, relative to the broad sub-
ject of communication, there seem to be problems at
three levels. Thus, it is reasonable to ask, seriously:

Level A: How accurately can the symbols of communi-
cation be transmitted? (The technical problem.)

Level B: How precisely do the transmitted symbols con-
vey the desired meaning? (The semantic problem.)

Level C: How effectively does the received meaning af-
fect conduct in the desired way? (The effectiveness
problem.)

Although the mathematical theory of communication
applies only to level A, Weaver noted that the theory
of level A is, at least to a significant degree, also a the-

ory of levels B and C. No real attempt was made, how-
ever, to develop a theory of the meaning of informa-
tion by either Shannon or Weaver. Weaver felt that
such a theory was feasible and that a communication
system must be extended to include a semantic re-
ceiver and a second receiver whose function will be to
match the statistical semantic characteristics of the
message to the statistical semantic capacities of the to-
tality of receivers, or of that subset of receivers that
constitutes the audience one wishes to affect. Shan-
non, on the other hand, considered the entire
semantic aspect of communication irrelevant to the
engineering problem.

C. Self-Regulation and Negative Feedback

Self-regulating mechanisms are subsystems whose
main function is to keep some variables of the focal
or operating system within predetermined limits. They
consist of four basic elements, which are themselves
subsystems:

1. A control object, or the variable to be controlled
2. A detector, or scanning subsystem
3. A comparator
4. An effector, or action-taking subsystem

These four basic subsystems of the control system,
along with their functional interrelationships and
their relationship with the operating system, are de-
picted in Fig. 3. The broken lines enclose the area of
the system under consideration, here the control sys-
tem of the organization. It too has its inputs, processes,
and outputs with the outputs of one system or subsys-
tem serving as the serial inputs of another. In Fig. 3 a
time element has been associated with the outputs.
The various points in time are indicated by t0 through
t8. If the system depicted were a production system, it
would be evident from the figure that some of these
timed outputs have exceeded the upper control limit.
These control objects are fed into the detector, then
to the comparator, and finally to the effector before
being fed back into the overall system. What one sees
at the bottom portion of the figure is a blown-up view
of the feedback control element of a system or the im-
plicit controller that is activated by the existence of an
error, that is, a difference between the standard and
the actual output of the system.

1. Control Object

A control object is the variable of the system’s be-
havior chosen for monitoring and control. The

372 Cybernetics

Figure 2 Determining the number of bits by halving the
alternatives.

choice of control object is the most important con-
sideration when studying and designing a control sys-
tem. Variations in the states of the control object
(i.e., its behavior) become the stimuli that trigger the
functioning of the system. The control system keeps
the system’s output within certain predetermined lim-
its via a self-regulating mechanism consisting of a de-
tector that constantly monitors the changes in output
over time. The output of the detector is sent to a com-
parator, which compares the sensed output against a
set of standards. The effector decides whether devia-
tions (i.e., the output of the comparator) warrant
corrective action to be taken against the operating
system’s input function. Without these variations, the
system has no reason for existence. Because, in real-

ity, we never have a perfect match between desired
and actual outcome, variations will always exist; ergo,
the need for control.

From the foregoing it should be clear that great
care and much thought ought to be given to “what
must be controlled.” Let it suffice to point out the
rather obvious observation that the control object
must be chosen from the system’s output variables.
Well-balanced quantitative and qualitative attributes
of the system’s output should provide the best choice
of control variables. Focusing on controlling system
output does not necessarily imply an ex post facto ac-
count of system behavior. Feedback control systems
can just as easily function as anticipatory mechanisms
rather than ex post facto corrective devices.

Cybernetics 373

Figure 3 Major elements of a control system.

2. Detector

The function of the detector or scanning system will
be explained in greater detail in the next section. It
will suffice to say here that scanning systems feed on
information. In other words, the detector operates on
the principle of selective acquisition, evaluation, and
transmission of information. As such, a detector sys-
tem is another name for a management information
system (MIS). Frequency, capacity, efficiency, accuracy,
and cost of detector devices are some of the important
aspects with which an administrator must reckon.

3. Comparator

The output of the scanning system constitutes the en-
ergizing input of the comparator. Its function is to
compare the magnitude of the control object against
the predetermined standard or norm. The results of
this comparison are then tabulated in a chronological
and ascending or descending order of magnitude of
the difference between actual performance and the
standard. This protocol of deviations becomes the in-
put to the activating system.

Note that if there are significant differences between
the output and the goal, the system is said to be “out of
control.” This could mean that the goal formulated is
unrealistic, unsuitable for the system’s capabilities. Ei-
ther the goal itself must be changed, or the design char-
acteristics of the system must be altered. For example,
if the production goal cannot be met, the goal must be
altered or, if kept, either more people must be put on
the production line or more equipment employed.

4. Effector

The effector is a true decision maker. It evaluates alter-
native courses of corrective action in light of the signif-
icance of the deviations transmitted by the comparator.
On the basis of this comparison, the system’s output is
classified as being in control or out of control. Once the
status of the system’s output is determined to be out of
control, then the benefits of bringing it under control
are compared with the estimated cost of implementing
the proposed corrective action(s).

These corrective measures might take the form of
examining the accuracy of the detector and of the
comparator, the feasibility of the goal being pursued,
or the optimal combination of the inputs of the focal
system, that is, the efficiency of the process of the op-
erating system. In other words, the output of the ac-
tivating system can be a corrective action that is aimed
at investigating the controllability of the operating
system or the controllability of the controller itself.

The ultimate results of the operation of the detector–
comparator–effector process are always negative feed-
back, i.e., a transmission of a message to the input por-
tion of the system that will inform it to do the opposite
of what it has been doing. The end result of the effi-
ciency of the implicit contoller is error minimization, i.e.,
its function is to minimize the difference between the
goal and the actual performance. The system’s ability to
do so will depend on its ability to achieve a stable state

V. STABILITY AND INSTABILITY
OF CYBERNETIC SYSTEMS

A cybernetic system can take either of two states: (1) It
can be stable or (2) it can be unstable. Both states are
necessary for system survival. Although stability is the ul-
timate long-run goal of the system, short-run instability
is necessary for system adaptation and learning. The sys-
tem, in other words, pursues a long-run stability via
short-run changes in its behavior manifested in its out-
put’s deviations from a standard. It is this continuous
change of states (a churning) that guarantees the long-
term ultrastability of a system.

Let us briefly explore the nature of stability and
instability as well as some of the reasons for instabil-
ity. In general terms, stability is defined as the ten-
dency of a system to return to its original position af-
ter a disturbance is removed. In our systems
nomenclature, stability is the state of the system’s
control object which exhibits at time t1 a return to
the initial state t0, after an input disturbance has been
removed. Were the system’s control object not able
to return to or recover the initial state, then the sys-
tem’s behavior would exhibit instability. The input
disturbance may be initiated by the feedback loop, or
it may be direct input from the system’s environment.
The particular behavior pattern that the system will
exhibit is dependent on the quality of the feedback
control system (detector, comparator, and effector)
in terms of sensitivity and accuracy of the detector
and comparator as well as the time required to trans-
mit the error message from the detector to the ef-
fector. Oversensitive and very swift feedback control
systems may contribute as much to instability as do
inert and sluggish ones.

Time delay is the most important factor for insta-
bility of social systems such as business enterprises
and governments. Although the application of infor-
mation technology such as MIS and electronic data
processing (EDP) has made considerable progress to-
ward accelerating the transmission of information
from the detector to the effector, as well as expedit-
ing the comparison and evaluation of information in-

374 Cybernetics

side the comparator, still, the impact of the corrective
action on the control object’s behavior is felt after a
considerable time lag. The object of the implicit con-
troller is to minimize and/or eliminate the informa-
tion float that causes this time lag.

Continuous oscillations of the kind exhibited in Fig.
4 are the result of two characteristics of feedback sys-
tems: (1) The time delays in response at some frequency
add up to half a period of oscillation and (2) the feed-
back effect is sufficiently large at this frequency.

Figure 4 demonstrates the behavior of the system’s
output, which is controlled by a feedback system char-
acterized by a one-half-cycle time delay. When a time
delay of that magnitude exists, the impact of the cor-
rective action designed to counteract the deviation
comes at a time when this deviation is of a considerably
different magnitude, although it has the same direc-
tion. This causes the system to overcorrect. In Fig. 4 a
deviation of the magnitude equal to SA is detected at
time t1. At time t2, new inputs are added to bring the
output back to the standard (S). The impact of this cor-
rective action on the system’s output is not felt until t3.
By that time the actual system’s output is at point C (i.e.,
after a time lag equal to t4 � t3. The detector senses this
new deviation and initiates new corrective action. Be-

cause of the one-half-cycle time lag, the actual system’s
output has oscillated above the upper limits at point H.
New corrective action initiated, aimed at bringing the
output back to the standard, will be felt at time t4.

This basic principle of time delay and its impact on
the system’s control behavior is illustrated very clearly
in Tustin’s diagrams, which appear in Fig. 5. It might
seem from the above brief description of the function
of the basic elements of the control system that the task
is a formidable one when measured in terms of cost or
time. In conventional control systems, this might in-
deed be the case. In cybernetic control systems, how-
ever, this is definitely not true. The reason, of course,
is that this task is performed as part of the normal op-
eration of the system and requires no extra effort; i.e.,
it is built-in or is implicit in the system’s design.

VI. SOME PRINCIPLES OF IMPLICIT
CONTROLS OR HOMEOSTATS

The basic tenets of cybernetics could be summarized
in a few principles. The principles governing cyber-
netic systems are universal and simple. These princi-
ples as formulated by Beer are discussed next.

Cybernetics 375

Figure 4 Control object’s behavior. [Adapted from Johnson, R. A., Kast, F. E., and Rosenzweig J. E (1967). The Theory and Man-
agement of Systems, 2nd ed. New York: McGraw Hill, 89.]

A. Control Principle I

Implicit controllers depend for their success on two
vital tricks. The first is the continuous and automatic
comparison of some behavioral characteristic of the sys-
tem against a standard. The second is the continuous
and automatic feedback of corrective action.

Thus, according to control principle 1, implicit
controllers are engaged in both detector and com-
parison activities, as well as in corrective action. This
is, of course, common to all control systems. However,
what is unique in the case of implicit controllers is the
prerequisite that these functions be continuous and
automatic. That is to say, detecting, comparing, and
correcting activities are not initiated periodically, nor
are they imposed on the control system from outside;
rather they are executed from within in a perpetual
manner. The entire control function is built in or em-
bedded into the operating system.

Implicit controllers can be found both in machines
and in humans. It is possible to program machines to
easily self-correct. Many functions of the human body
are self-correcting. The maintenance of body temper-
ature, blood count, the pH of electrolytes, body-fluid
retention, etc., are all controlled continuously and au-
tomatically. Social organizations, on the other hand,
are typically neither able nor willing because of costs
to have continuous and automatic control.

B. Control Principle II

In implicit governors, control is synonymous with com-
munication. Control is achieved as a result of trans-
mission of information. Thus, to be in control is to
communicate. Or, in Norbert Wiener’s original words,
“Control . . . is nothing but the sending of messages
which effectively change the behavior of the recipi-
ent.” This is indeed the most basic and universal prin-
ciple of cybernetics. The realization that control and
communication are two sides of the same coin moti-
vated Wiener to use them as the subtitle of his classic
pioneering work Cybernetics. This is where one reads:
to control is to communicate and vice versa!

It is evident from the above principles of control (I
and II) that the system whose behavior is subject to
this type of control becomes literally a slave to its own
purpose. Because every deviation from standard be-
havior is autonomously and automatically communi-
cated (through the sequential activities of the detec-
tor, comparator, and effector), the more frequently
out-of-control situations occur, the more frequently
communication takes place and consequently the
more corrective action is taken. It is for this reason
that implicit controllers are also referred to in the lit-
erature as servomechanisms (servo means slave) or home-
ostats (same state). These systems become slaves to
their own purpose or goal, which is the minimization
of the error (i.e., the difference between the goal and
the actual performance).

This observation allows us to formulate another ba-
sic principle of cybernetic control, originally con-
ceived by S. Beer.

C. Control Principle III

In implicit controllers, variables are brought back into
control in the act of and by the act of going out of con-
trol. This principle follows directly from our explana-
tion of the basic structure of the control system. Re-
call that what triggers the detector subsystem is the

376 Cybernetics

Figure 5 Oscillations in feedback systems. Oscillation is inher-
ent in all feedback systems. The drawing at top shows that when
a regular oscillation is introduced into the input of a system
(lighter line), it is followed somewhat later by a corresponding
variation in the output of the system. The dotted rectangle in-
dicates the lag that will prevail between equivalent phases of the
input and the output curves. In the three drawings below, the
input is assumed to be a feedback from the output. The first of
the three shows a state of stable oscillation, which results when
the feedback signal (thinner line) is opposite in phase to the
disturbance of a system and calls for corrective action equal in
amplitude. The oscillation is damped and may be made to dis-
appear when, as in the next drawing, the feedback is less than
the output. Unstable oscillation is caused by a feedback signal
that induces corrective action greater than the error and thus
amplifies the original disturbance. [Adapted from Tustin, Arnold
(1955). Feedback. In a Scientific American book, Automatic Con-
trol. New York: Simon & Schuster, 20–21.]

existence and magnitude of the deviation between
the goal and actual performance, i.e., the actual out-
put of the operating or focal system. In addition, the
system must be autonomous; i.e., must have the au-
thority to inform the focal system regarding the mag-
nitude of the deviation without the intervention of
another decision-making authority. It follows that the
more frequently deviations occur, the more frequent
will be the communication between the detector and
the comparator. In addition, the more frequent and
more substantial the magnitude of the deviation, the
more likely it is that corrective action will be initiated
and executed.

From the foregoing discussion of the basic princi-
ples of cybernetic control, the following question is in-
escapable: Given the unique nature of a cybernetic sys-
tem, what kinds of demands do these control principles
impose on goal-directed systems? The most important
demand facing the system is that it be an adaptive
learning system. In other words, the function of the
implicit controller demands that the operating system
eventually learn that being in control is as necessary a
condition for its survival as its growth capabilities. In
addition, cybernetics teaches us that for systems to be
in control they must be capable and free to go out of
control. Thus, systems that claim to be always in con-
trol must not be free or must be lying or both.

VII. EPILOGUE

For most people the 20th century was clearly the age
of the material world. The intellectual accomplish-
ments of the previous eras were swiftly converted into
robust scientific theories that were in turn converted
into great technologies. The industrial revolution,
which started in Great Britain in late 18th century,
reached its zenith in the last quarter of the 20th cen-
tury. The main object of scientific and technological
activities was the manipulation of disorganized mass
and its conversion into organized objects.

Humanity experienced tremendous riches accom-
panied by an increase in leisure time. Humans were
able to live comfortably by working less and less. Ma-
chines did all difficult tasks while humans enjoyed man-
aging the machines. By the end of the 20th century hu-
mans lived easier, safer, better, and longer. Scientists
taught engineers how to deal with the smallest object—
the atom—and engineers designed machines that
made atoms do what humans wanted. The end result
has been an unprecedented economic wealth creation.

The 21st century is ushering in the so-called “New
Economy.” This economy is essentially a process of

creating wealth not by converting one kind of matter
into another, but by manipulating data and creating
information. The myriad of wealth-creating systems is
nothing else but communication devices that do not
directly handle matter, but instead facilitate the move-
ments of bits of information. Human effort is now fo-
cusing on the third characteristic of nature: informa-
tion. Information tells the other two, matter and
energy, what form to take. The New Economy oper-
ates not in places but in spaces. The totality of these
spaces is known as Cyberspace. Trillions of bits of in-
formation travel in this space at a speed approaching
the speed of light. Although Alan Turing’s (1912–
1954) dream to create a computing machine that
could operate at the speed of thought has not yet be-
come reality, Bill Gates’s “Business @ the Speed of
Thought” proposal seems to look more and more
real. Indeed, today there are more people in the de-
veloped—and increasingly also in the developing—
world making a living pushing bytes than there are
those who push atoms. Cyberspace has become the
new market. Cybernetics is the science that explains
the behavior of systems that operate in cyberspace.

As in the middle of the 20th century, so it is in the
beginning of the 21st century. Wiener’s issue of man
and machine is gaining momentum. Unlike in the
20th century, this time human imagination regarding
the symbiosis between the animal and machine has
become the subject of serious academic research and
experimentation. The January 2000 issue of Wired,
which carries the special focus of “Augment or Bust,”
features Cyborg 1.0, Kevin Warwick’s outline of his
plan to become one with his computer. Warwick and
his colleagues in the Department of Cybernetics at
Reading University in the United Kingdom have been
working since 1988 on various cybernetic projects. In
August 1998, Warwick had a silicon chip implanted in
his arm allowing the computer to monitor his move-
ments through the halls and offices. The implant com-
municates via radio waves with a network of antennas,
which in turn transmit the signals to a computer pro-
grammed to respond to his actions. In Warwick’s
words, “The aim of this experiment was to determine
whether information could be transmitted to and
from an implant. Not only did we succeed, but the
trial demonstrated how the principles behind cyber-
netics could perform in real-life applications.”

ACKNOWLEDGMENTS

This article is dedicated to the Schoderbek brothers,
Peter, my doctoral advisor, coauthor, friend, and

Cybernetics 377

lifelong mentor, and to Father Charles, friend, coau-
thor, and great mentor to both Peter and myself.

SEE ALSO THE FOLLOWING ARTICLES

Automata Theory • Data, Information, and Knowledge • De-
cision Theory • Future of Information Systems • Game The-
ory • Information Theory • Systems Science • Uncertainty

BIBLIOGRAPHY

Ashby, W. R. (1960). Design for a brain. London: Chapman
and Hall.

Ashby, W. R. (1963). Introduction to cybernetics. New York: John
Wiley & Sons.

Beer, S. (1964). Cybernetics and management. New York: John Wiley
& Sons.

Beer, S. (1972). Brain of the firm: A development in management cy-
bernetics. New York: McGraw-Hill.

Buckley, W. (Ed.) (1968). Modern system research for the behavioral
scientist: A sourcebook. Chicago: Aldine Publishing Co.

Campbell, J. (1982). Grammatical man: Information, entropy, lan-
guage, and life. New York: Simon and Schuster.

De La Metrie, J. O. (1961). Man a machine. La Salle, IL: Open
Court Publishing Co.

Dechert, C. R. (ed.) (1966). The social impact of cybernetics. New
York: Simon and Schuster.

Foerster, H. von (Ed.) (1953), Cybernetics. New York: Josiah Macy.
Kefalas, A. G. (1977). Organizational communication: A sys-

tems approach. Readings in interpersonal communication, R. C.
Huseman, C. W. Logue, and D. L. Freshley (Eds.). Boston:
Holbrook Press.

Klir, G., and Valachi, M. (1967). Cybernetic modeling. New York:
Van Nostrand.

MacKay, D. (1969). Information, mechanism and meaning. Cam-
bridge, MA: The MIT Press.

Maltz, M. (1970). Psycho-cybernetics and self-fulfillment. New York:
Bantam Books.

Pattee, H. (1973). Hierarchy theory: The challenge of complex sys-
tems. New York: George Braziller.

Porter, A. (1969). Cybernetics simplified. New York: Barnes & Noble.
Schoderbek, P., Kefalas, A. G., and Schoderbek, C. G. (1990).

Management systems: Conceptual considerations, 4th ed. Home-
wood, IL: Irwin.

Scientific American (1966). Information: A comprehensive review of the
extraordinary technology. San Francisco: W. H. Freeman and Co.

Shannon, E. C., and Weaver, W. (1964). The mathematical theory
of communication. Urbana: University of Illinois Press.

Simon, H. A. (1970). The science of the artificial. Cambridge, MA:
The MIT Press.

Tustin, A. (1955). Feedback. Scientific American: automatic con-
trol. New York: Simon & Schuster.

Wiener, N. (1948). Cybernetics, or control and communication in the
animal and machine. New York: John Wiley & Sons.

Wiener, N. (1954). The human use of human beings: Cybernetics
and society. Garden City, NY: Doubleday-Anchor.

378 Cybernetics

Database Administration
Ming Wang
California State University, Los Angeles

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 379

I. DATABASE MANAGEMENT SYSTEM (DBMS) SELECTION
AND INSTALLATION

II. DATABASE DEVELOPMENT MANAGEMENT
III. DATABASE ADMINISTRATION ROUTINES

IV. MONITORING AND TUNING
V. BACKUP AND RECOVERY

VI. TRENDS IN DATABASE ADMINISTRATION

GLOSSARY

database administrator (DBA) DBA refers to the per-
son who is a database administrator and is respon-
sible for the control of the centralized and shared
database.

database recovery The process restores the database
to a correct state after a failure. It protects the data-
base from inconsistencies and data loss.

log file A special file maintained by a DBMS contains
information about all updates to a database.

transaction A basic logical unit consists of an action
or series of actions, carried out by a single user or
application program, which accesses or changes
the contents of the database. Transactions can ter-
minate successfully (commit) or unsuccessfully
(abort). Aborted transactions must be rolled back
to the database original state.

DATABASE ADMINISTRATION is a critical activity for
any organization. It involves logical and physical data-
base designs as well as technical issues like authoriza-
tion, security enforcement, monitoring, performance
tuning, backup and recovery.

The database administrator (DBA) is the person re-
sponsible for the design, control, and administration
of the database. The DBA must manage the informa-
tion system (IS) as the database is analyzed, designed,
and implemented. The person also interacts with and
provides support for end users. The DBA must have a
broad technical background with a sound understand-

ing of hardware architectures and database life cycles.
The technical aspects of the DBA’s job are as follows:

1. Database management system (DBMS) selection
and configuration

2. Database development management
3. Database administration routines
4. Monitoring and tuning
5. Backup and recovery

I. DATABASE MANAGEMENT SYSTEM
(DBMS) SELECTION AND INSTALLATION

One of the DBA’s first and most important responsi-
bilities is the selection of the DBMS. The selected
DBMS must have features needed by the organization
and be properly interfaced with existing software and
hardware in the organization. In today’s Internet en-
vironment, the DBA must also work with web server
administrators for the Internet connectivity.

The first step is to determine a company’s needs.
To match DBMS capacity to the organization’s needs,
the DBA should check the following features of a
DBMS before he makes a decision: type of data model,
storage capacity, application development tools, secu-
rity, Internet connectivity, integrity, performance,
concurrency control, backup and recovery proce-
dures, database administration tools, portability and
standards, hardware/ software configuration, data dic-
tionary, vendor training and support, available third-
party tools, and software acquisition cost. The DBA

D

must supervise the installation of all software and
hardware and have a thorough understanding of the
configuration, startup procedures, and installation
procedures. The installation procedures include de-
tails such as the location of backup and transaction
log files, network configuration information, and
physical storage details.

II. DATABASE DEVELOPMENT MANAGEMENT

The DBA should be involved in every phase of data-
base development, from database planning through
analysis, design and implementation stages, testing,
and modification. Strong design and data modeling
skills are essential for the DBA.

A. Conceptual and Logical Design

The DBA schedules and coordinates the database de-
signers for data design and modeling. He determines
the standards and procedures of the development
and ensures that the database modeling and design
activities are performed within this framework. The
result of testing database and applications must meet
the predefined standards.

The entity-relationship (ER) diagram is popularly
used for conceptual design. The ER diagram illus-
trates the relationships that have been identified
among the entities. ER diagrams are critical for pro-
viding an understanding of the global view of the
database. They also help to ensure consistency in de-
finitions across the enterprise, to identify the applica-
tion interface, and to make up applications.

The conceptual design is further refined and
mapped onto a logical data model. The logical data
model can be a relational data model, hierarchical
data model, network data model, or object-oriented data
model. Mapping is the process of applying a set of tech-
nical rules to convert the conceptual design to a logical
design. Mapping from an ER diagram to a relational
database will convert an entity to a relation with a pri-
mary key and its associated attributes. Conceptual de-
sign and logical database design are iterative processes.
They are critical to the overall success of the system.

B. Application Design

Application design proceeds in parallel with concep-
tual design in a DBMS-independent way. When a data-
base system is being designed, the designers should
be aware of the transactions/applications that will

run on the database. An important part of database
design is to specify the functional characteristics of
these transactions early in the design process. This en-
sures that the database will include all the informa-
tion required by these transactions.

The DBA provides database transaction design and
quality control services to the application program-
mers. Such support services include reviewing the
database application design to ensure that transac-
tions are correct, efficient, and compliant with data-
base integrity and standards.

C. Physical Design

Database administration is typically responsible for
physical database design and much of database im-
plementation. Physical design is the process of choos-
ing specific structures and access paths for database
files to achieve good performance for the various data-
base applications. Each DBMS provides a variety of
options for file organization and access paths. These
include various types of indexing and clustering of re-
lated records on disk blocks. Once a specific DBMS is
selected, the physical design process is restricted to
choosing the most appropriate structure for the data-
base files from the options offered by that DBMS.
One of the advantages of relational database is that
users are able to access relations and rows without
specifying where and how the rows are stored. The in-
ternal storage representation for relations should be
transparent to users in a relational database.

D. Relational Database Implementation
for a Target DBMS

1. Creating Tables and Loading Data

After the logical and physical designs are completed,
the DBA can implement the database systems with the
selected DBMS. Data definition language (DDL) and
storage definition language (SDL) are used to create
database tables and data storage files. The database
can then be loaded with the data. If data is to be con-
verted from earlier file processing systems, conversion
routines may be needed to reformat the data for load-
ing into the new database.

2. Defining Integrity Constraints

The constraints in the database help to ensure the ref-
erential integrity of the data in the database. They pro-
vide assurance that all of the references within the data-

380 Database Administration

base are valid and all constraints have been met. The
reason to define constraints is to make the DBMS do
most of the work in maintaining integrity of the data-
base. The more constraints you add to a table defini-
tion, the less work you have to do in applications to
maintain the data. On the other hand, the more con-
straints there are in the table, the longer it takes to up-
date the data. The two most important constraints spec-
ified in a relational database are the primary key and
foreign key constraints. They enforce database integrity.

The primary key of the table is the column or a
group of columns that makes every row in that table
unique. A foreign key constraint is used to specify the
nature of the relationship between tables. A foreign
key from one table references a primary key that has
been previously defined elsewhere in the database.
For example, the Department table has a primary key
of DeptNo. The Employee table contains DeptNo
column links to the one in the Department table. By
specifying Employee.DeptNo as a foreign key to
Dept.DeptNo, you guarantee that no DeptNo values
can be entered into the Employee table unless those
values already exist in the Department table.

The design of other constraints is dependent on
the choice of the DBMS. Some DBMS’s provide more
facilities than others for defining other constraints.
Oracle provides three additional constraints—Not
Null, Check, and Unique.

1. The Null constraint is a column constraint that is
used to allow or disallow the absence of a value
in a specific column. The Not Null constraint
prevents the entry of NULL data for a column on
which the NOT NULL constraint is defined.

2. The Check constraint is a column constraint that
is used to ensure that only specific values will be
allowed for storage in a column. Check
constraints verify data in a column against a set
of constants defined to be valid data.

3. The Unique constraint is a column constraint
used to ensure unique values in the column. It
prevents duplicate values from appearing in a
column for two or more rows.

3. Creating Indexes

An index is an object used to speed up the retrieval of
rows by using a pointer. It reduces disk I/O by using
the path access method to locate data quickly. The
DBA can create indexes to support database perfor-
mance and improve on database applications. The key
attribute used to retrieve data frequently requires an
index. The following guidelines will indicate when the
DBA needs to create an index or not create an index.

Create an index on:

1. The primary key unless some DBMS are
automatically created

2. Any attribute that is heavily used as a
secondary key

3. A foreign key if it is frequently accessed
4. An attribute that contains a wide range of values
5. An attribute that contains a large number of null

values
6. A big table where most queries are expected to

retrieve less than 2–4% of the rows

Don’t create indexes on:

1. Small relations except for its primary key; it may
be more efficient to search the whole relation
than to store an additional index structure

2. An attribute or relation that is frequently updated
3. An attribute if the query will retrieve a significant

proportion of the rows in the relation
4. An attribute that consists of long character strings
5. An attribute that is not often used as a condition

in the query

4. Creating Views

A view is a virtual relation that does not actually exist in
the database but is produced upon the request. Views
are used to display data from one or more tables that
may be inappropriate or too complex for users to access.
The content of a view is defined as a query on one or
more base relations. Views are dynamic, meaning that
changes made to base relations that affect view attributes
are immediately reflected in the view. Therefore a view
is a dynamic result of relational operations on the base
relations. Advantages of views are as follows:

1. Making complex queries easy
2. Restricting direct access to data in the database
3. Allowing data independence
4. Presenting different views of the same data

Oracle’s data dictionary is composed of views. It stores
all data about the Oracle database in tables, but dis-
allows direct access to the tables instead of providing
views through which the user can only select data.
Normally the views are created using SQL statements.

E. Testing Databases and Applications

Before an application comes on-line, the DBA must
test and evaluate the database and all applications.

Database Administration 381

Testing usually starts by loading the tested database.
Such a database contains test data for the applica-
tions. The purpose is to check the data definition and
integrity rules of the database and application pro-
grams. Application programmers are responsible for
program unit testing. DBA and system administrators
are responsible for system integration testing. End
users are involved with functional testing.

III. DATABASE ADMINISTRATION ROUTINES

A. Database Security and Authorization

The DBA is the central authority for managing the au-
thorizations for access to the data in the database.
The DBA’s responsibilities include granting privileges
to users who need to use the system. The DBA has a
super account in the DBMS, called a system account,
which provides powerful capabilities not available to
other users. The DBA must specify the account struc-
ture for individual accounts, users, or user groups.
This should include the ownership of all objects in
the application and the clearly defined privileges for
that user. A privilege is a right to execute a particular
type of SQL statement or a right to access another
user’s object.

1. User Authentication

Authentication is a mechanism that determines
whether a user is who he claims to be. Whenever a
person or a group of persons needs to access a data-
base system, the DBA will create a new account and
password for the user. When the user logs in to the
DBMS, the DBMS checks that account number and
password. Application programs are also considered
as users and required to supply passwords.

Some new DBMSs have password expiration and
account locking features. Password expiration means
that the DBA can set a password to have a lifetime in
the DBMS. Once a time period passes, the user must
change his or her password or be unable to access the
database. Account locking will lock an account when
users attempt to log into the database unsuccessfully
on several attempts.

The DBA keeps track of database users and their
accounts and passwords in a table or a file with two
fields—account name and password. The password is
encrypted. The DBA cannot read the user’s password,
but the DBA can reassign the user’s password by over-
writing the older password. The table is maintained
by the DBMS. Whenever a new account is created, a

new record is inserted into a table. When account is
canceled, the corresponding record must be deleted
from the table.

If there are many users and privileges governing
database usage, using roles can improve the manage-
ment of granting privileges to users. A role is a named
set of privileges that can be given to users and other
roles. A DBA, or any other user with the CREATE
ROLE privilege, can create roles, assign various privi-
leges to roles, and grant roles to users or to other
roles. This is especially true when groups of users re-
quire the same privileges. In Oracle, a role can be cre-
ated with a statement as follows:
CREATE ROLE Student;
After you create a role, you can assign privileges

to it
GRANT SELECT, INSERT, UPDATE, DELETE

on Employee, Department to Student;

2. Object Level Granting

Anything created in the database such as a table, col-
umn, view, and procedure is called an object. Privi-
lege at the object level specifies for each user the in-
dividual tables on which each type of command can
be applied. Some privileges also refer to individual
columns.

Each object is under the control of an owner ac-
count, which is the account that was used when the
relation was created in the first place. The account
owner controls the granting and revoking of object
privileges. The owner can pass privileges on any of
the owned tables to other users by granting privileges
to their accounts. The DBA does not own all the ob-
jects, but the DBA can assign an owner to a whole
database schema by creating the schema and associ-
ating an authorization identifier with that schema.

3. Account Level Granting

The privileges at the account include the following:
create privilege, alter privilege, select, insert, delete,
and update privileges. Account level privilege state-
ments are not defined as part of SQL as standard. In-
stead, they are defined by the individual DBMS. In
Oracle, an account owner specifies the particular priv-
ileges on the objects in his or her account as follows:
GRANT INSERT, DELETE ON EMPLOYEE, DE-
PARTMENT TO User1;

Whenever the owner of an object grants a privilege
on the object to another account, the privilege can be
given to that account with or without grant option. If
the grant Option is given, the other account can also

382 Database Administration

grant that privilege on the object to other accounts.
This is called propagation of privileges.
GRANT INSERT, DELETE ON EMPLOYEE, DE-
PARTMENT TO User1
WITH GRANT OPTION;

The clause WITH GRANT OPTION means the
grantee can propagate the privilege to User2’s ac-
count by using GRANT.

B. Auditing

Database auditing means to monitor database activity
to uncover suspicious or inappropriate use against the
database. An enterprise database system must be able
to keep track of all operations on the database that are
applied by a certain user during each log-in session,
which consists of the sequence of database interactions
that a user performs from the time of logging in to the
time of logging off. When a user logs in, the DBMS can
record the user’s account name and the client machine
from which the user logged in. All the operations from
that client machine are ascribed to the user’s account
until the user logs off. It is very important to keep track
of updated operations on the database.

Database auditing consists of reviewing the log to ex-
amine all accesses and operations applied to the data-
base during a certain time period. When an illegal or
unauthorized operation is found, the DBA can deter-
mine the account number used to perform this opera-
tion. Database audits are particularly important for sen-
sitive database that are updated by many transactions
and users, such as an airline database that is updated by
many sales representatives. A database log that is used
mainly for security purposes is called an audit trail. In Or-
acle, the DBA can set audit to TRUE for AUDIT_TRAIL
in order to audit the privileged operations.

A database audit is performed if any tampering
with the database is suspected. The database audit
generates a lot of information about database access.
If the DBA tried to audit everything, the most impor-
tant information might be missed. A database audit is
most effective when the DBA knows what he is look-
ing for. The best way is to set up a clear goal, and then
set audit to monitor these aspects of database. Audit-
ing the database requires a good deal of additional
storage space for storing the audit data generated.

C. Concurrency Control Techniques

Concurrency control is the process of simultaneously
managing operations on the database so that they do

not interfere with each other. Concurrency control is
needed when multiple users are allowed to access or
to update the same data in the same database simul-
taneously. The transaction is a central concept associ-
ating with concurrency control techniques. Trans-
actions can terminate successfully (commit) or
unsuccessfully (abort). Aborted transactions must be
rolled back to the original database state. There are
two basic concurrency control techniques that allow
transactions to execute safely in a parallel way: lock-
ing and stamping.

1. Locking

Locking is a procedure used to control concurrent ac-
cess to data. When one transaction is accessing the
database, a lock may deny access to other transactions
to prevent an incorrect result. Locking methods are
the most widely used approach to ensure serializabil-
ity of concurrent transactions.

Deadlock occurs when two or more transactions
are waiting to access the data locked by the other
transaction. Neither transaction can continue because
each is waiting for a lock it cannot obtain until the
other completes. Once deadlock occurs, the DBMS
has to recognize that deadlock exists and break the
deadlock. Unfortunately, the only way to break dead-
lock once it has occurred is to abort one or more
changes made by the transaction so that the lock can
be released.

There are two general techniques for handling
deadlock: deadlock prevention and deadlock detec-
tion. Using deadlock prevention, the DBMS looks
ahead to determine if a transaction would cause dead-
lock and never allows deadlock to occur. Using dead-
lock detection, the DBMS allows deadlock to occur
but recognizes occurrences of deadlock and breaks
them. Many systems use the detection and recovery
method, since it is easier to detect deadlock than to
prevent it.

2. Timestamping

Timestamping methods for concurrency control are
quite different from locking methods. No locks are
involved, and therefore there can be no deadlock.
Locking methods generally prevent conflicts by mak-
ing transactions wait. With timestamp methods, there
is no waiting. Transactions involved in conflict are
simply rolled back and restarted.

Timestamping is a unique identifier created by the
DBMS that indicates the relative starting time of a
transaction. Timestamps can be generated by simply

Database Administration 383

using the system clock at the time the transaction
started, or by incrementing a logical counter every
time a new transaction starts.

With timestamping, a transaction which attempts
to read or write a data item is allowed to proceed only
if the last update on that data item was carried out by
an older transaction. Otherwise, the transaction re-
questing the read/write is restarted and given a new
timestamp to prevent them from being continually
aborted and restarted. Timestamping ensures that
transaction conflicts are serializable.

IV. MONITORING AND TUNING

After a database is developed and is in operation, ac-
tual use of the applications, transactions, queries, and
views reveals factors and problem areas that may not
have been accounted for during the initial physical
design. As a matter of fact, database tuning continues
for the life of the database, as long as performance
problems are identified.

Most DBMSs include a monitoring utility to collect
performance statistics, which are kept in a system cat-
alog or data dictionary for analysis. These include sta-
tistics on storage, the number of times a particular
query or transaction is executed in an interval time,
I/O performance of files, locking or logging related
statistics, counts of file pages, and frequency of index
usage.

Identified performance problems can be tuned.
Based on the statistics, some queries or transactions
may be rewritten for better performance. We may in-
vert to logical design, normalize or denormalize ta-
bles, and make adjustments to the database. The di-
viding line between physical design and tuning is very
thin. As database system requirements change, it of-
ten becomes necessary to add or remove existing ta-
bles, to change primary access methods by dropping
old indexes and constructing new ones, to set appro-
priate physical DBMS parameters, to change configu-
rations of devices, and even to change operating sys-
tem parameters.

The DBA is responsible for guaranteeing services
and for ensuring the reliability of the system. The
goals of tuning are as follows:

1. To make applications run faster
2. To lower the response time of transactions
3. To improve the overall throughput of

transactions

A. Tuning Database Design

If a given database does not meet the expected objec-
tives, we may revert to the logical database design, and
make adjustments to the logical schema to a new set of
physical tables and indexes. The ultimate goal of nor-
malization is to assign the logically related attributes into
tables, to minimize redundancy, and to avoid update
anomalies. The trade-off for this is to generate extra pro-
cessing overhead in the database. In this case, the DBA
should consider denormalization. The process of com-
bining the normalized tables (which may be in BCNF or
4NF) into weaker forms is called denormalization (i.e.,
to add attributes from one table to attributes in another
table in order to answer queries more efficiently).

B. Tuning Indexes

Indexes may be tuned for the following reasons:

1. Some queries without an index may take too long
to run.

2. Some indexes may not be needed.
3. Some indexes may be causing excessive overhead

because the index is on an attribute that changes
frequently.

To diagnose the above problem, the DBA needs to
use a trace tool in the DBMS to ask the system to show
how a query was executed and what operations were
performed in what order. Based on the tuning analy-
sis, he may drop, add, or rebuild some indexes.

C. Tuning Queries

Query performance is dependent upon appropriate
selection of indexes; indexes may have to be tuned af-
ter analyzing queries that give poor performance in
SQL. A well-designed application may still experience
performance problems if the SQL code is poorly con-
structed. Application design and SQL problems cause
most of the performance problems in properly de-
signed databases. The key to tuning SQL is to mini-
mize the search path that database uses to find the
data. Here are the two examples that indicate that a
query needs to be tuned:

The first query shows that relevant indexes are not
being used. The query output is supposed to display
the employee’s SSN for those who work under the
manager with MGRSSN = ‘123456789’

384 Database Administration

SELECT SSN FROM EMPLOYEE
WHERE DNO IN (SELECT DNUMBER FROM
DEPARTMENT)

WHERE MGRSSN = ‘123456789’;

may not use the index on DNO in EMPLOYEE,
whereas the following query may cause the index to
be used.

SELECT SSN FROM EMPLOYEE
WHERE DNO = DNUMBER AND MGRSSN =
‘123456789’;

The following query may take too many disk ac-
cesses. It has potential danger of searching all of in-
ner employee table M for each row from the outer
employee table E.

Get the SSN of employee with the highest salary in
each department:

Select SSN from EMPLOYEE E
WHERE SALARY = SELECT MAX(SALARY)
FROM EMPLOYEE AS M
WHERE M.DNO = E.DNO;

To make it more efficient, it can be broken into two
queries where the first query just computes the maxi-
mum salary in each department as follows:

SELECT MAX (SALARY) AS HIGHSALARY, DNO
INTO TEMP

FROM EMPLOYEE
GROUP BY DNO;
SELECT SSN
FROM EMPLOYEE, TEMP
WHERE SALARY = HIGHSALARY AND
EMPLOYEE.DNO = TEMP.DNO;

D. Tuning Disk Utilization

How the database actually stores data also has an ef-
fect on the performance of queries. A segment is a
logical storage that stores the data for a database ob-
ject. Each segment contains one or more extents. An
extent is a smallest storage unit containing a contigu-
ous set of data blocks. If the data is fragmented into
multiple extents, then resolving a query may cause
the database to look in several physical locations for
related rows. Fragmentation may slow performance
when storing new records. If the free space in a data
storage file is fragmented, then the database may have
to dynamically combine neighboring free extents to

create a single extent that is large enough to handle
the new space requirements. If a segment is frag-
mented, the easiest way to compress its data into a sin-
gle extent is to rebuild it with the proper storage pa-
rameters. This process can be automated via the
Export/Import tools.

V. BACKUP AND RECOVERY

A. Database Backup

Backup is the process of periodically copying the data-
base and log file onto storage media. It is always ad-
visable for the DBA to make backup copies of the
database and log file at regular intervals and to en-
sure that the copies are in a secure location. In the
event of a failure, the backup copy and the details
captured in the log file are used to restore the data-
base to the latest possible consistent state. It is strongly
recommended that the log file be stored on a disk
separated from the main database files. This reduces
the risk of both the database files and the log file be-
ing damaged at the same time. Two database backup
techniques currently used are logical backup and phys-
ical backup.

1. Logical Backup

A logical backup of the database involves reading a set
of database records from a table and writing them to
a file. These records are read independently of their
physical location. The Export utility performs this
type of backup. To recover using the file generated
from an export, the corresponding import utility is
used. For example, Oracle’s Export utility reads the
database including the data dictionary, and writes the
output to a binary file called an export dump file. You
can export the full database, specific users, or specific
tables. In practice, you can perform full database ex-
ports for all tables or for only those tables that have
changed since the last export. Use Import to recover
database objects.

2. Physical Backup and Recovery

Physical backup involves copying the files that form
the database without their logical content. These back-
ups are also referred to as file systems backups since
they involve using operating system file backup com-
mands. There are two different types of physical files
backup: off-line backups and on-line backups.

Database Administration 385

Off-line backups—Off-line backups occur when
the database has been shut down normally. The fol-
lowing files are backed up: data files, control files, on-
line redo logs, and database configuration file such as
the init.ora file in Oracle.

On-line backups—An on-line backup involves set-
ting each tablespace into a backup state, then backing
up its datafiles, and then restoring the table space to
its normal state. You can use on-line backups for any
database that is running in on-line backups mode. In
this mode, the on-line redo logs are archived, creat-
ing a full log of all transactions within the database.

On-line backup procedures are very powerful for
two reasons. First, they provide full point-in-time re-
covery. Second, they allow the database to remain
open during the file system backup. Thus, even data-
bases that cannot be shut down due to user require-
ments can still have file-system backup.

B. Database Recovery

Database recovery is the process of restoring the data-
base to a correct state in the event of a failure. The
failure may be the result of a system crash due to
hardware or software, a media failure, such as a head
crash, or application software errors. It may also be
the result of unintentional or intentional corruption
or destruction of data by operators or users. Whatever
the underlying cause of the failure, the DBMS must
be able to recover from the failure and restore the
database to a consistent state.

1. Restore the System Log File

To facilitate recovery, the DBMS must maintain a log
file containing transaction records that identify the
start/end of transactions and the before and after im-
ages of the write operations. In the case of a cata-
strophic system failure, the latest backup copy can be
reloaded from the storage tape to the disk and the sys-
tem can be restarted. It is necessary to restore the last
backup copy of the database and reapply the update
operations of committed transactions using a log file.
This assumes that the log file has not been damaged.

2. Transaction Rollback

If the database has not been physically damaged but
has become inconsistent, we don’t need to use the
backup copy of the database, but can restore the data-
base to a consistent state using the before- and after-
images held in the log file. For example, the system

crashed while transactions were executed, then it is
necessary to undo the changes (rollback) that caused
the inconsistency to the original consistent state. Then
redo the transactions to ensure that the updates they
performed have executed correctly in the database.

VI. TRENDS IN DATABASE ADMINISTRATION

A. Changes

Database technology evolved from file processing sys-
tems. Before the database was invented, data was
stored in different data files and data administration
was essential in every data processing organization.
Data administration is a high level function that is re-
sponsible for the overall management of data re-
sources in an organization. With databases developed
on a mainframe legacy system, the role of data ad-
ministration still remains popular. Organizations that
employ separate data administration functions often
have mainframe-based databases that have been de-
veloped using established systems development
methodology, including development of logical and
physical models.

As client/server database technology develops, the
blend of the two roles between data administration
and database administration is becoming a reality.
These organizations emphasize the capacity to build
a database quickly, tuning it for maximum perfor-
mance and being able to restore it to production
quickly when problems develop. These databases are
more likely to be departmental, client/server data-
bases that are developed quickly using newer devel-
opmental approaches such as prototyping, which al-
low changes to be made quickly. There are no
universally accepted data administration and database
administration structures. Organizations vary widely
in their approaches to data administration. As busi-
ness practices change, roles are also changing within
organizations. In organizations where there is no sep-
arate data administration function, the DBA also as-
sumes the responsibilities of the data administrator.

B. The Future

From the advent of shared databases, the role of data-
base administration has been changing to become
more specialized, evolving into distributed databases,
server programming, and data warehouses. The abil-
ity to work with multiple databases, communication
protocols, and operating systems will be highly val-

386 Database Administration

ued. There will be more and more automatic tools for
database monitoring and tuning. Traditional database
tuning might be replaced by decision support systems
able to tune systems by analyzing usage patterns.

SEE ALSO THE FOLLOWING ARTICLES

Database Development Process • Database Machines • Data-
base Systems • Data Warehousing and Data Marts • Network
Database Systems • Network Environments, Managing

BIBLIOGRAPHY

Caffrey, M., and Scherer, D. (2001). Oracle DBA: Interactive work-
book. Englewood Cliffs, NJ: Prentice-Hall.

Connolly, T. M., and Begg, C. E. (2002) Database systems: A prac-
tical approach to design, implementation, and management, 3rd
ed. Reading, MA: Addison-Wesley.

Date, C. J. (2000). An introduction to database systems, 7th edition.
Reading, MA: Addison-Wesley.

Elmasri, R., and Navathe, S. B. (2000). Fundamentals of database
systems, 3rd edition. Reading, MA: Addison-Wesley.

Koch, G., and Loney, K. (2000) Oracle8i: The complete reference.
Berkeley, CA: Osborne McGraw-Hill.

Loney, K. (2000). Oracle8i DBA handbook. Berkeley, CA: Osborne
McGraw-Hill.

Ramakrishman, R., and Gehrke, J. (2000). Database management
systems, 2nd edition. Boston, MA: McGraw-Hill.

Riccardi, G. (2001). Principles of database systems with internet and
Java applications. Reading, MA: Addison-Wesley.

Rob, P., and Coronel, C. (2001). Database systems: Design, imple-
mentation, and management, 4th edition. Cambridge, MA:
Course Technology.

Theriault, M., Carmichael, R., and Viscusi, J. (2000). Oracle DBA
101. Berkeley, CA: Osborne McGraw-Hill.

Database Administration 387

Database Development Process
Ming Wang Russell K. Chan
California State University, Los Angeles Pioneer Hi-Bred International, Inc.

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 389

I. DATABASE DEVELOPMENT
II. APPLICATION DEVELOPMENT

III. EVOLUTION OF DATABASE DEVELOPMENT

GLOSSARY

data Data are raw facts that are meaningful and can
be stored in a database. Data can be characterized
as atomic (e.g., bit, character, integer, floating
point, or boolean), complex (e.g., records, sets, or
arrays), or multimedia (e.g., text fonts, audio, im-
age, or digital video).

database A database is a collection of related data
and meta-data stored in secondary storage. Data in
the database are persistent because once data are
stored in the database, it can be retrieved, updated,
or removed from the database only by an explicit
request to the database management system.

database administration Database administration in-
cludes physical database design and implementa-
tion using a target DBMS, setting security and in-
tegrity constraints, monitoring system performance,
tuning the database and database queries, and per-
forming backups and system recovery.

database design Conceptual design is the high-level,
abstract representation of reality. Logical design
translates this representation into specifications
that can be implemented on and processed by a
computer system. Physical design determines the
physical storage structures and access methods re-
quired for efficient access to the contents of a data-
base from a secondary storage device.

database language A database language provides a
description and implementation of a data model.
It is also an interface between users and a database
system. Typical database languages are database de-
finition language (DDL), database manipulation

language (DML), and database control language
(DCL). DDL defines the database schema. DML
defines database operations. DCL controls data-
base privileges and security.

database management system (DBMS) A DBMS is a
software package that is used to define, store, main-
tain, and provide controlled access to databases.
Examples of relational DBMSs are Oracle, Access,
FoxPro, SQLServer, DB2, Informix, Sybase, and Vi-
sual Base. Examples of object-oriented DBMSs are
Jasmine, O2, Gemstone, and Object Store.

database system A database system involves a DBMS,
databases, and database applications. The interac-
tions among them make a database system work.
The DBMS is the software that creates and man-
ages databases. Database applications are programs
that create and use the data in databases.

data dictionary The data dictionary defines the struc-
ture for each table in the system including all at-
tribute names and characteristics. In other words,
the data dictionary contains meta-data that de-
scribes what data are stored in the database.

data model An abstract, self-contained, and logical
definition of a collection of concepts that can be
used to describe the structure of a database. By
structure of a database we mean the data, the rela-
tionships among data, and the constraints that ap-
ply to the data. Some data models include a set of
basic operations for specifying retrievals and up-
dates on the database.

entity-relationship model (ER) The entity-relationship
model is a high-level conceptual data model devel-
oped by Chen in 1976 to facilitate database design.

The ER diagram is a diagrammatic technique for
displaying an ER model. The ER diagram describes
data as entity types, relationship types, and attrib-
utes and key attributes. Entity types are specific ob-
jects or things in the real world that are represented
in the database.

meta-data Meta-data describes how data are stored in
the database. It is closely related to the database
management system software. It includes storage
structures, logical database structures, and user
views or subsets of conceptual schema.

normalization Normalization is a formal technique
for analyzing relations based on their primary keys,
functional dependencies, and other types of de-
pendencies. The technique involves a series of rules
that can be used to test individual relations so that
a database can be normalized to a certain degree.
When a requirement is not met, the relation vio-
lating the requirement must be decomposed into
relations that individually meet the requirements
of normalization.

object-oriented database (OODB) The object-
oriented database model is based on the object-
oriented data model defined by Kim in 1991. An
OODB is a collection of persistent and sharable ob-
jects supporting object-oriented principles such as
encapsulation, inheritance, and polymorphism.

object-relational database (ORDB) Object-relational
database technology is an extension of relational
database technology to support some object-
oriented features such as encapsulation, inheri-
tance, and reuse. The object-relational database
management system (ORDBMS) is a hybrid of a re-
lational database management system (RDBMS)
and object-oriented database (OODBMS) technol-
ogy. ORDB is still relational because the object data
are stored in relations (tables). The technique used
for ORDB is mapping objects to relations.

relational database (RDB) A relational database is
based on the concept of a relational data model.
The relational data model was proposed by E. F.
Codd in 1970. In the relational data model, data
and relationships are represented in tables that are
composed of rows and columns. Each column has
a unique name and data type. A data value is stored
at the intersection of each row and column. A row
in a table represents a relationship among a set of
values. Tables are related to each other by defined
referential integrity. Data retrieval from multiple
tables is done through referential integrity.

SQL Structured query language (SQL) is the most
widely used language for creating, manipulating,
and querying relational databases and is supported
by almost every relational DBMS. SQL is a non-

procedural language. Instead of writing a program
to retrieve data, you can retrieve data from a data-
base with a single SQL statement.

system catalog The system catalog is one of the fun-
damentals of a DBMS. It is actually a system-
created database whose tables store the user-
created database characteristics and contents. It is
a very detailed system data dictionary that contains
meta-data that describes how data are stored in the
database.

THE DATABASE DEVELOPMENT PROCESS is divided
into two parts: database development and application
development. Database development includes design
(data structure and content) and implementation.
Application development is a process including func-
tionality analysis, transaction design, user interface
design, and implementation. Database design and ap-
plication design are parallel activities. During or after
the conceptual design, the basic data model opera-
tions can be used to specify the high-level user oper-
ations identified during functional analysis. This also
serves to confirm that the conceptual design meets all
the identified functional requirements. Modifications
to the conceptual design can be introduced if some
functional requirements cannot be specified in the
initial conceptual design. We must ensure that all the
functionalities stated in the users’ requirements spec-
ification are present in the application design. In ad-
dition, the physical database design phase, during
which we choose the storage structures and access
paths of database files, depends on the applications
that will use these files. Obviously, these two activities
strongly influence one another. Traditionally, the data-
base development process has primarily focused on
the first activity, whereas software design has focused
on the second. This may be called data-driven versus
process-driven design. It is now being recognized by
database designers and software engineers that these
two activities should proceed hand in hand, and the
commercial design tools are increasingly combining
them together. Figure 1 shows the interaction between
the data and process during the database develop-
ment process.

I. DATABASE DEVELOPMENT

The database development process begins with enter-
prise modeling. Ideally every database development
should fit within the enterprise architecture. This
means data collection and conceptual design are
based on the needs of the business and are then trans-

390 Database Development Process

lated into logical design, physical design, and the im-
plemented database systems. The following phases do
not have to proceed strictly in sequence. In many
cases we may have to modify the design from an ear-
lier phase during a later phase.

A. Data Collection and Analysis

Data collection and analysis is a preliminary stage of
database design. The information required for data-
base design may be gathered in the following ways:

• Interviewing prospective end-users of the database
within the enterprise

• Using a questionnaire to gather information from
prospective end-users

• Observing the enterprise operation
• Reviewing documentation used or generated in

day-to-day work
• Analyzing and converting data from the existing

system

B. Conceptual Design

Conceptual design is the high-level, abstract repre-
sentation of reality. It is a concise description of the
data requirements of users and includes a detailed de-
scription of the entity types, relationships, and con-
straints. The conceptual design can be used as a ref-
erence to ensure that all users’ data requirements are
met. It enables the database designers to concentrate
on specifying the properties of the data for each end-
user view without being concerned with data storage
details. This conceptual design is often carried out us-
ing the entity-relationship (ER) and enhanced entity-
relationship (EER) diagrams.

1. Entity-Relationship (ER) Model

The most popular high-level data model used in data-
base design is the entity-relationship (ER) model. The
ER model uses a top-down design approach. The ER
analysis begins with identification of entity types in
the user’s view of the enterprise and identification of

Database Development Process 391

Figure 1 Database development process diagram.

relationship types between the entity types that we have
identified. An entity type is a specific object or thing
having an independent existence in the world. It can
be either concrete or abstract. Let us consider a hu-
man resource example using the entity types Employee
and Department and the relationship type, Employee
Works for Department. Finally we identify attributes as-
sociated with each entity type such as (Employee ID,
Last Name, and First Name) and (Department Code,
Department Name, and Department Phone). Attrib-
utes are properties used to describe an entity type. A
specific entity will have a value for each of its attributes;
for example, a specific employee entity may have
empID�987654321, empLast�Smith and empFirst�John.

a. DEGREE OF RELATIONSHIP

The degree of a relationship refers to the number of
participating entity types in a relationship. A relation-
ship between two entity types is called a binary type re-
lationship. A relationship between three entity types is
called a ternary type relationship. Relationship types of
many degree are called n-ary type relationships.

Figure 2 illustrates a binary relationship using
Chen’s ER diagram.

b. SYMBOLS

A rectangle denotes an entity type. Ovals denote at-
tributes. A diamond indicates a relationship type with
lines connecting the related entity types. Underlined
attributes are keys that are associated with the entity
type. Each value in the key is used to uniquely iden-
tify an instance of an entity type. Employee ID is a key
identified in Employee. Department Code is a key
identified in Department. An entity type may have
more than one key, each of which is a candidate key.
The primary key in a relational database table is cho-
sen from one of the candidate keys.

c. CARDINALITY RATIO

The cardinality ratio defines the three types of re-
lationships between entity types. One to many (1:M)
or many to one (M:1), one to one (1:1), and many to
many (M:N). The ER model uses the cardinality ratio

to represent the conceptual design of a database. In
Fig. 2, the cardinality ratio between the two entity
types is many to one (M:1). That is, one department
may have many employees and one employee must
work for only one department.

d. PARTICIPATION

A double line indicates total/mandatory participa-
tion; that is, each employee must work for one de-
partment. A single line indicates partial/optional par-
ticipation; that is, each department may or may not
have employees.

2. Enhanced Entity-Relationship
(EER) Model

The enhanced entity-relationship Model (EER) sup-
ports object-oriented concepts such as inheritance. It
extends the ER diagram by adding new symbols to the
ER diagram. For instance, a company has some em-
ployees who are paid by hourly wage and others who
are paid by salary. The hourly employees have an
hourly pay rate, whereas the salaried employees have
a monthly pay rate. In addition, salaried employees
earn vacation and sick leave.

a. SUPERCLASS AND SUBCLASS

It is natural to define an entity class HourlyEmployee
as a subclass of Employee. That is, an HourlyEmployee
entity is an Employee and has all of its characteristics.
Additionally, an HourlyEmployee has additional char-
acteristics, such as an hourly pay rate. Similarly, salaried
employees are employees who are different from hourly
employees. Figure 3 is an EER diagram that depicts
subclass–superclass relationship types. These relation-
ship types are often called “is-a types” because a mem-
ber of the subclass is a member of the superclass.

b. SYMBOLS

The subclasses HourlyEmployee and SalaryEm-
ployee are connected to the superclass Employee with
lines connected through a circle. The d in the circle
indicates disjointness, which specifies that the sub-

392 Database Development Process

Figure 2 Chen’s ER diagram depicts the binary relationship.

classes of the specification must be disjoint. This means
that an entity can be a member of at most one of the
subclasses of the specification. An individual employee
is either an hourly paid employee or salary paid em-
ployee and cannot be both. The inheritance (arch)
symbols have their open sides facing the superclass.
The entity class HourlyEmployee has six attributes:
five inherited from Employee and one of its own. The
entity class SalariedEmployee has eight attributes: five
inherited from Employee and three of its own.

Class hierarchies are categorized in two ways: spec-
ification and generalization. Specification is the
process of dividing a class of objects into more spe-
cialized subclasses. Generalization is the reverse
process of generalizing several subclasses into a
higher-level abstract superclass that includes the ob-
jects in all these classes. Specification is conceptual re-
finement in a top-down approach, whereas general-
ization is conceptual synthesis in a bottom-up
approach.

3. Universal Modeling
Language (UML) Diagram

The UML Class Diagram is a standard for object mod-
eling in software design and has now become a new
approach used for object-oriented databases and
object-relational database modeling. Figure 4 de-
scribes the classes Employee and Department and the
relationship between them.

In UML, multiplicities are specified in the form
min..max and an asterisk(*) indicates no maximum
limit on participation. Thus Fig. 4 indicates that one
employee may work for one or zero department and
one department must have four or more employees.
UML was developed by the Object Management
Group and spearheaded by Rational Software Corpo-
ration. In UML class diagrams, a class is displayed as
a box (see Fig. 4) that includes three sections: the top
section gives the class name, the middle section in-
cludes the attributes for individual objects of the class,
and the last section includes methods that can be ap-
plied to these attributes. An entity in the ER diagram
corresponds to an object in UML.

4. Summary of Conceptual Design

To sum up, we can conduct the conceptual design
with ER, EER, or UML class diagrams in the following
steps:

a. Identify entity types from each user group’s view
b. Identify the important relationship types that

exist between the entity types that we have
identified

c. Determine the cardinality ratio and participation
constraints of relationship types

d. Identify attributes associated with the entity types
e. Determine attribute domain (value range) for

each attribute
f. Determine a key or keys for each entity type

Database Development Process 393

Figure 3 EER diagram for specification.

Figure 4 UML class diagram.

g. Identify the subclasses (to specialize entity types)
and the superclass (to generalize entity types)

h. Draw entity-relationship/enhanced entity-
relationship/UML diagram

i. Review the conceptual design with perspective
users

C. Logical Design (Data Model Mapping)

The second phase of database design is called logical
database design. The conceptual data model created
from each end-user group’s view in the previous phase
is refined and mapped onto a logical data model,
which can be a relational, network, hierarchical, or
object-oriented data model. A global logical design of
the database comes from the combination of local
logical designs for each end-user group. The tech-
nique of normalization is used to test the correctness
of a logical data model.

1. Mapping to a Relational Model

Mapping is the process of transforming conceptual
design to logical design. Given an ER diagram de-
scribing a database, there is a standard approach to
generating a relational database. An entity type is
mapped to a relation in a straightforward way: each
attribute of an entity type becomes an attribute of the
table. Table I shows the correspondence between ER
and relational models.

Consider the Department entity type in Fig. 2. A
possible Department relation is mapped as:

Department (dCode, dName, dPhone)

Additional rules for mapping are as follows:

a. RULES FOR BINARY RELATIONSHIP TYPES

i. One to one—Merge the two entity types into a
single relation.

ii. One to many—Map the two entity types into the
two corresponding relations and add a foreign key
to the Many side of the relationship
corresponding to the primary key on the one side.
Figure 2 has a one-to-many relationship, which can
be mapped into the following two relations:

Employee (empID, empLast, empFirst,
dCode)

Department (dCode, dName, dPhone)

iii. Many to many—Map the two entity types into
two corresponding relations and create a
“Relationship” relation with two foreign keys
from each of the two relations as a primary key.

b. RULE FOR TERNARY RELATIONSHIP TYPES

Map the entity types into corresponding relations
and create the “Relationship” relation with three for-
eign keys from each of the three relations as a pri-
mary key.

c. RULE FOR WEAK ENTITY TYPES

Create a relation and include all the attributes of a
weak entity. The relation does not have its own pri-
mary key. The primary key of the relation is the com-
bination of the primary key of the owner(s) and the
partial key of the weak entity type. The weak entity
type is an entity type whose existence depends on an-
other entity type (Owner).

d. RULE FOR EACH MULTIVALUED

ATTRIBUTE IN A RELATION

Create a new relation and use the same name as
the multivalued attribute. The primary key in the new
relation is the combination of the multivalued at-
tribute and the primary key in the parent entity type.
For example, department location is a multivalued at-
tribute associated with the Department entity type
since one department has more than one location.
Since multivalued attributes are not allowed in a re-
lation, we have to split the department location into
another table. The primary key is the combination of
deptCode and deptLocation. The new relation dept-
Location is

DeptLocation (deptCode, deptLocation,
deptPhone)

e. RULES FOR MAPPING THE EER
SUPERCLASS/SUBCLASS HIERARCHY IN FIG. 3

i. Create a relation for the superclass and for each
subclass. Map each entity type Employee,
HourlyEmployee, and SalaryEmployee to a
distinct relation

394 Database Development Process

Table I Correspondence between ER and
Relational Models

From ER model To relational model

Entity type Relation/table

Key attribute Primary/secondary key

Simple attribute Attribute

Composite attribute Set of attributes

Relationship Set of attributes

Employee (empID, empLast, empFirst,
empTitle, empPhone)

HourlyEmployee (empID, hourlyRate)
SalaryEmployee (empID, MonthlyPay,
sickLeaveHours, vacationLeaveHours)

ii. Alternatively, we can create just two relations
HourlyEmployee and Salaryemployee. Each
includes all the attributes of its own entity types
as well as all the attributes of Employee (i.e.,
empID, empLast, empFirst, empTitle, and
empPhone).

HourlyEmployee (empID, empLast,
empFirst, empTitle, empPhone,
hourlyRate)

SalaryEmployee (empID, empLast,
empFirst, empTitle, empPhone,
MonthlyPay, sickLeaveHours,
vacationLeaveHours)

This approach is not applicable in some
situations. If we have employees who are neither
hourly employees nor salaried employees, but
contract employees, there is no way to store such
employees in the database.

2. Normalization

Normalization is a process for assigning attributes to en-
tities. Normalization involves the identification of the
required attributes and their subsequent decomposi-
tion into normalized tables based on the functional de-
pendency analysis between the attributes. Normaliza-
tion ensures that the relations derived from the data
model do not have data redundancy, which can cause
update anomalies when implemented. Table II contains
data used by a software consulting firm for its opera-
tions. The business rules are assumed as follows:

• The company manages many contracts.
• A contract has one or more employees.
• An employee may be assigned to one or more

contracts.

• An employee must have one and only one job
title.

• One job title may be used for many employees.
• The company charges its clients by billing the

hours spent on each contract.
• The hourly billing rate is dependent on the

employee’s job title.

a. DATA REDUNDANCIES AND ANOMALIES

Obviously, Table II has data redundancies. For ex-
ample, each time another employee is assigned to a
contract, information about the contract such as the
contract number and name must be retyped. Each
time Mary Fox is assigned to another contract, infor-
mation about Mary Fox is retyped. The data redun-
dancies invite data inconsistencies and yield three
kinds of anomalies: update anomalies, addition anom-
alies, and deletion anomalies. Modifying the job class
for employee Mary Fox requires at least two row al-
terations which could cause update anomalies if the
alterations are done incorrectly. If employee Mary
Fox quits, deletions must be made for every entry in
which EmpID � 111762334. As such deletions are
made, other vital data are lost. These are called dele-
tion anomalies. Insertion anomalies occur when a
new employee must be assigned to a contract in order
to complete a row definition even if this employee
may not have been assigned a contract yet. In order
to reduce data redundancies and eliminate the data
anomalies, we must normalize Table II.

b. FUNCTIONAL DEPENDENCY ANALYSIS

Normalization is based on functional dependency
analysis. Functional dependency analysis on the table
is performed as follows:

i. Mark each key attribute component on a separate
line, and then write the original key on the last
line:

ContractNo
EmpID
ContractNo, EmpID

Database Development Process 395

Table II Data Table Used by a Consulting Firm

Contract No Contract Name Emp lD Emp Name Job Title Hourly Rate Hours

0100 Data conversion 234890101 John Smith DBA 60.00 35

0100 Data conversion 111762334 Mary Fox Programmer 50.00 20

0200 System update 111762334 Mary Fox Programmer 50.00 15

0300 Database design 546778789 Tim Wilson DBA 60.00 39

ii. Write the dependent attributes after each new
key. The function dependency analysis for Table
II is done as follows:

ContractNo → ContractName
EmpID → , EmpName, JobTitle
EmpID, ContractNo → ChgHours
JobCode → JobTitle, HourlyRate

Functional dependency analysis can also be done via
a function dependency diagram as shown in Fig. 5.

c. NORMALIZATION FORMS

Normalization works through a series of stages
called normal forms. The first three stages are de-
scribed as first normal form (1NF), second normal
form (2NF), and third normal form (3NF). From a
structural point of view, a higher normalization form
is better than a lower normalization form. That is to
say, 2NF is better than 1NF and 3NF is better than
2NF. For most business-oriented database designs, the
third normal form is as high as we need to go in the
normalization process. Only very specialized applica-
tions may require fourth normal form (4NF) or fifth
normal form (5NF).

i. First normal form (1NF) A table is in the first
normal form (1NF) if all the key attributes are defined
and there are no repeating groups in the table. All at-
tributes are dependent or partially dependent on the
primary key. Table II is in 1NF. The composite primary
key is ContractNo and EmpID. All attributes are de-
pendent or partially dependent on this primary key.

ii. Second normal form (2NF) A table is in 2NF if it
is in 1NF and it includes no partial dependencies;
that is, no attribute is dependent on only a portion of
the primary key. In the conversion from 1NF to 2NF,
partial dependency needs to be removed. The pri-
mary key for Table II is the combination of Con-
tractNo and EmpID. Only ContractNo is the deter-
minant of ContractName. Thus contract name is
dependent on ContractNo. Only EmpID is the deter-
minant of EmpName. Thus employee name is de-
pendent on EmpID. Functional dependency analysis
can be written in the following format:

ContractNo → ContractName
EmpID → EmpName, JobTitle, hourlyRate
EmpID, ContractNo → ChgHours

It is still possible for a table in 2NF to exhibit transi-
tive dependency; that is, one or more attributes may
be functionally dependent on nonkey attributes.

iii. Third normal form (3NF) A table is in 3NF if it is
in 2NF and it contains no transitive dependencies; that
is, a condition in which an attribute (non-primary-key)
is dependent on another attribute (non-primary-key)
that is not part of the primary key.

Emp (EmpID, EmpName, JobTitle,
HourlyRate)

Note the above Emp table is in 2NF, but not in 3NF
because JobTitle is the determinant of HourlyRate.
Functional dependency analysis on the Emp table can
be written in the following format:

JobCode → JobTitle, HourlyRate
EmpID → EmpName, JobTitle

We normalized Table II from 1NF to 2NF, and then
to 3NF. According to the function dependency analy-
sis we can finally decompose Table II into four differ-
ent tables. All the tables are in 3NF:

Contract (ContractNo, ContractName)
Emp (EmpID, EmpName, JobTitle)
WorksOn (EmpID, ContractNo, ChgHours)
Job (JobCode, JobTitle, HourlyRate)

d. DENORMALIZATION

The highest level of normalization is not always de-
sirable. We usually stop at 3NF. The reverse of nor-
malization is denormalization, which is the process of
combining two or more tables into one table. Nor-
malization purity is difficult to reach in the real data-
base environment. Normalized (decomposed) tables
require additional processing (join) and reduce sys-
tem speed. The conflict among design efficiency, in-
formation requirements, and processing speed is of-
ten resolved through compromises that include
denormalization.

396 Database Development Process

Figure 5 Function dependency diagram.

e. BOTTOM-UP DESIGN AND NORMALIZATION

Normalization can also be used as the bottom-up ap-
proach for the design of relational databases. It is far less
popular than the top-down design approach such as ER
and EER and is only used for very small and simple data-
bases. An example of this normalization approach would
be to create a database using data from a flat file on an
existing system. Functional dependency analysis is used
to group attributes into relations that represent types of
entities. The process of normalizing Table II from 1NF
to 3NF is an example. If we take Table II as a flat data
file, we have successfully converted it into a small data-
base through the process of normalization.

D. Choice of DBMS

It becomes important to select an appropriate DBMS
package to implement the database after logical de-
sign. One approach to choosing a DBMS is to check
off DBMS features against requirements. The follow-
ing features should be checked:

• Data definition—data types, integrity controls, and
data dictionary

• Physical definition—file structures and indexing
• Accessibility—query languages, database host

language, interface to high-level languages
• Transaction handling—concurrency control and

deadlock resolution strategy
• Backup and recovery—checkpoints, logging facility
• Utilities—data upload/download facilities, tuning,

and performance measuring tools
• Database security—user access controls and

authorization
• Application development environment—Internet

connectivity
• Vendor stability and user base
• Maximum number of concurrent users
• Operating system requirements

E. Physical Design

The aim of physical database design is to decide how
the logical database design will be implemented. For
the relational database, this involves:

• Defining a set of the table structures, data types
for fields, and constraints on these tables such as
primary key, foreign key, unique key, not null and
domain definitions to check if data are out of the
range.

• Identifying the specific storage structures and
access methods to retrieve data efficiently. For
example, adding a secondary index to a relation.

• Designing security features for the database system
including account creation, privilege
granting/revocation, access protection, and
security level assignment.

Physical design is DBMS-specific whereas logical de-
sign by contrast is DBMS-independent. Logical design
is concerned with the what; physical database design
is concerned with the how. In short, physical design is
a process of implementing a database on secondary
storage with a specific DBMS.

F. Implementation

The completion of physical design allows the data-
base administrator to begin the database implemen-
tation process:

1. Database Creation

All the tables, constraints, indexes, and views need to
be created with the selected DBMS. Storage space and
the access methods also need to be defined.

2. Database Loading

The newly created database contains the table struc-
tures. These table structures can be filled by typing
the data into the table or by loading the data from ex-
isting databases or files. The copying procedure re-
quires the use of special loading utilities in the DBMS.
Because of foreign keys and referential integrity, data
must be loaded in a specific order.

3. Testing

Once the data have been loaded into the database,
the database administrator needs to test and fine-tune
the database for performance, referential integrity,
data consistency, concurrent access, and security con-
straints. Testing and evaluation must ensure that data-
base security and integrity are maintained, that backup
and recovery procedures are in place, and that data-
base access and use are properly secured. If the data-
base implementation fails to meet some criteria, sev-
eral options may be considered as follows:

• Modify the physical design
• Modify the logical design

Database Development Process 397

• Upgrade or change the DBMS software
• Fine-tune the DBMS configuration parameters for

performance related issues

G. CASE Tools

CASE stands for computer-aided software engineer-
ing. CASE tools can be applied to support database
development. There are three types of CASE tools:
upper-CASE, lower-CASE, and integrated CASE tools:

1. The upper-CASE tool supports database planning
and design including data collection and analysis,
data model generation and application design.

2. The lower-CASE tool supports database
implementation including data conversion, report
generation, application code generation,
prototyping, and testing.

3. The integrated CASE tool supports all phases of
database development and provides the
functionality of both upper-CASE and lower-CASE
in one tool.

CASE tools were created to improve the productivity
and quality of database development. The advantages
of using them are:

• Promoting the standards for database
development for data, diagrams, documentation,
and projects, making them easy to reuse and
maintain

• Keeping data linked, consistent and integrated for
the organization

• Reducing database development time since some
CASE tools can automatically generate diagrams
and application of an executable code based on
the design

II. APPLICATION DEVELOPMENT

The role of an application program is to extract and
update the information in the database. Application
programs are written for the end-users of the data-
base. Most application programs provide user inter-
faces that allow people to interact with the database.

A. Functionality Analysis

In parallel with specifying the data requirements, it is
useful to specify the known functional requirements

of the application. These consist of the user-defined
operations (or transactions) that will be applied to
the database, and they include both retrievals and up-
dates. In software design, it is common to use a data
flow diagram (DFD), hierarchical input process out-
put (HIPO), or computer-aided software engineering
(CASE) tools for specifying functional requirements.
Identifying the required functionality for a database
application is a critical activity. Inadequate or incom-
plete functionality will lead to rejection or underuti-
lization of the system.

B. Transaction Design (DBMS-Independent)

The design of a database transaction is based on the
functionality analysis and is DBMS-independent. A
transaction is an action carried out by a single user or
application program, which accesses or changes the
content of the database. There are two kinds of trans-
actions: retrieval transactions and update transactions.
Sometimes a transaction can be a combination of the
two. A transaction may be composed of several oper-
ations, such as transfer of money from one account to
another account. However, from the user perspective
it is only a single task. A transaction is a logical unit
of work that must be either completed or aborted. No
intermediate states are acceptable. The purpose of
transaction design is to define and document the
high-level characteristics of the transactions required
on the database system. This activity should be carried
out early in the design process to ensure that the log-
ical data model is capable of supporting all the re-
quired transactions. It is important to specify the doc-
umentation of each transaction as follows:

• Data to be used by the transaction
• Function description
• Output of the transaction
• Importance to users

C. User Interface Design

In addition to designing functionality, we have to de-
sign an appropriate user interface to the database ap-
plication. The user interface is the menu that users
need to follow when they use applications to retrieve
or update data in the database. Most developers use
the Access, ASP, JSP, or other GUI tools to generate
an interface. Shneiderman’s 1992 guidelines will help
developers to determine if the interface design is user-
friendly. Some factors are

398 Database Development Process

• Meaningful title
• Comprehensible instructions
• Logical grouping and sequencing of fields
• Visually appealing layout
• Consistent use of terminology, abbreviations, and

color
• Visible space and boundaries for data-entry fields
• Convenient cursor movement
• Error correction for characters and fields
• Meaningful error messages for unacceptable

values
• Quit button

D. Application Implementation

The interface and application design can be imple-
mented in many ways. The implementation is DBMS-
dependent. A database developer should be knowl-
edgeable about the development environment of the
selected DBMS product. Therefore he or she will be
able to pick an appropriate tool for application de-
velopment. Database applications can be classified
into two approaches according to their connectivity
to the DBMSs.

1. Embedded SQL

The traditional approach to database application pro-
gramming uses embedded SQL. Embedded SQL
means the integration of SQL with a general-purpose
programming language that is called a host language.
The host language can be any high-level language
such as C, COBOL, C��, Java, or BASIC. A DBMS
specific preprocessor transforms the embedded SQL
statements into function calls in the host language.
The details of this translation vary across DBMSs, and
therefore even though the source code can be com-
piled to work with different DBMSs, the final exe-
cutable works only with one specific DBMS.

2. ODBC and JDBC

Open database connectivity (ODBC) and Java data-
base connectivity (JDBC) are new technologies used
in database application programming. They integrate
SQL with a general-purpose programming language
and they provide a standard way for the application
programs to interact with the database through an ap-
plication programming interface (API). In contrast to
embedded SQL, ODBC and JDBC allow a single exe-
cutable to access different DBMSs without recompila-
tion. Applications using ODBC or JDBC are DBMS-

independent at both the source code level and the
executable level, while embedded SQL is DBMS-
independent only at the source code level. In addi-
tion, when using ODBC or JDBC, an application can
access not only one DBMS, but several different
DBMSs simultaneously.

3. JDBC and Java Technology

JDBC contains Java classes and interfaces that provide
low-level access to databases. It is the most prominent
and mature approach for querying and modifying re-
lational databases from Java applications. Coming af-
ter ODBC, JDBC defines a database access API that
supports SQL functionality and enables access to a
wide range of relational DBMS products. With JDBC,
Java can be used as the host language for writing data-
base applications. The goal of JDBC is to give the pro-
grammer the ability to write applets, servlets, and ap-
plications that are independent of any particular
DBMS. JDBC contains two parts: an API for applica-
tion writers and a lower-level driver API for driver
writers. The JDBC API is a predefined Java library
called java.sql that defines a set of interfaces and
classes to be used for communicating with a database.
The JDBC driver acts like a translator. It receives the
client applications request in Java methods, translates
it into a format that the database can understand,
then presents the request to the database using the
database native protocol. The response is received by
the JDBC driver, translated back into Java data for-
mat, and presented to the client application. The 7
steps to query databases with JDBC are:

• Import the JDBC package
• Load and register the JDBC driver
• Establish connection to the database
• Create a SQL statement
• Execute a SQL statement
• Retrieve the query results
• Close the statement and connection

Java servlets are a new technology for developing
server-based Web database applications. Servlets help
provide secure access to a web site, interact with the
database, dynamically generate HTML, and maintain
unique session information for each client. Servlets
communicate with thin clients—applications that re-
quire minimum client-side support. The server is re-
sponsible for the database access. Clients connect to
the server using standard protocols such as JDBC avail-
able on all client platforms. Thus, the logical code
can be written once and reside on the server for

Database Development Process 399

access by clients. Java servlets can be used in place of
traditional CGI scripts for the following reasons:

• Easier to write
• Faster to run
• Not tied to any platform
• Multithreading locks prevent collisions
• Faster speed and persistent information
• Can parse XML
• A new tool to support JSP/Java Server Page

E. Testing

Developed database applications need to be thor-
oughly tested before they go live. The testing should
be based on the design specifications, performance
requirements, and realistic data. If testing is con-
ducted successfully, it will uncover errors within the
application programs and possibly the database struc-
ture. The main testing strategies include:

• Top-down testing. Testing subsystems to find
design errors early.

• Bottom-up testing. Testing lower-level functions,
then working up to higher level modules.

• Stress testing. Testing the upper and lower limits
of the system to find the defects that would not
normally be identified.

III. EVOLUTION OF DATABASE DEVELOPMENT

A. History of Database Development

Database systems evolved from file processing systems.
As database management systems become more and
more popular, file processing systems are slowly fad-
ing from the scene. This is because database man-
agement systems are superior to file processing sys-
tems in the following ways

• Data dictionary management
• Data storage management
• Security management
• Multi-user access control
• Data integrity management
• Backup and recovery management

1. Hierarchical DBMS

In the late 1960s, IBM developed the first commercial
hierarchical DBMS information management system

(IMS), and its DL/1-language. The principles behind
the hierarchical model are derived from IMS. Hierar-
chical DBMSs organize their record types in a hierar-
chical tree. This approach is well suited for large sys-
tems containing a lot of data. Hierarchical databases
support two types of information—the record type
which is a record containing data, and parent–child
relations (PCR) which define a 1:N relationship be-
tween one parent record and N child-records. Hier-
archical DBMS retrieve data fast because all the paths
that link record types are predefined. Hierarchical
databases are still used in many legacy systems and
IMS is still the leading hierarchical DBMS used by a
large number of banks, insurance companies, and
hospitals as well as several government agencies.

2. Network DBMS

The original network model and language were pre-
sented in the CODASYL Database Task Group’s 1971
report; hence it is also called the DBTO model. Re-
vised reports in 1978 and 1981 incorporated more re-
cent concepts. The network DBMS offers an efficient
access path to its data and is capable of representing al-
most any informational structure containing simple
types (e.g., integers, floats, strings, and characters).
The network DBMS is more flexible than the hierar-
chical DBMS because it represents and navigates among
1:1, 1:N, and M:N relationships. But the programmer
still has to know the physical representation of data to
be able to access it. Accordingly, applications using a
network database have to be changed every time the
structure of the database changes, making database
maintenance tedious. Both the hierarchical and net-
work DBMSs were accessible from the programming
language (usually COBOL) using a low-level interface.

3. Relational Databases

In 1970 Edgar F. Codd, at the IBM San Jose Research
Laboratory, proposed a new data representation
framework called the relational data model which es-
tablished the fundamentals of the relational database
model. Codd suggested that all data in a database
could be represented as a tabular structure (tables
with columns and rows, which he called relations)
and that these relations could be accessed using a
high-level nonprocedural (or declarative) language.
Instead of writing programs to access data, this ap-
proach only needed a predicate that identified the
desired records or combination of records. This would
lead to higher programmer productivity and in the
beginning of the 1980s several relational DBMS

400 Database Development Process

(RDBMS) products emerged (e.g., Oracle, Informix,
Ingres, and DB2).

The relational approach separates the program
from the physical implementation of the database,
making the program less sensitive to changes of the
physical representation of the data by unifying data
and metadata in the database. SQL and RDBMSs have
become widely used due to the separation of the phys-
ical and logical representation (and of course to mar-
keting). It is much easier to understand tables and
records than pointers to records. Most significantly,
research showed that a high-level relational query lan-
guage could give performance comparable to the best
record-oriented databases

B. Current Trends in
Database Development

Database technology is in a period of intensive change
and innovation that is both revolutionary and evolu-
tionary. The revolutionary aspect refers to the inno-
vation of an object-oriented database management
system (OODBMS) based on object-oriented pro-
gramming technology. The evolutionary aspect refers
to the promotion of a new extended version of rela-
tional database technology under the name object-
relational database management system (ORDBMS).
The success of relational DBMSs in the past decades
is evident. However, the basic relational model and
earlier versions of SQL proved inadequate to support
object presentation. It has been said that traditional
SQL DBMSs experience difficulty when confronted
with the kinds of “complex data” found in application
areas such as hardware and software design, science
and medicine, document processing, mechanical and
electrical engineering, etc. To meet the above chal-
lenges, object-oriented database management systems
are proposed as an alternative to relational database
management systems and are aimed at application
domains where complex objects play a central role.
The approach is heavily influenced by the paradigm
of object-oriented programming languages and can
be understood as an attempt to add functionality to
support an object-oriented programming environ-
ment. The relational DBMSs are still dominant and
evolving continuously, and in particular, have been in-
corporating many concepts that were developed in
object databases. The object-relational DBMS
emerged as a way of enhancing the capabilities of re-
lational DBMSs with some of the features that ap-
peared in object-oriented DBMSs. Figure 6 illustrates
the current trends in the database development.

1. Object-Oriented DBMS

Object-oriented database management systems are
proposed as an alternative to relational database man-
agement systems and are aimed at application do-
mains where complex objects play a central role. The
approach is heavily influenced by the paradigm of
object-oriented programming languages and can be
understood as an attempt to add functionality to sup-
port an object-oriented programming environment.
Zdonik and Maier specify that an OODBMS must, at
a minimum, provide database functionality and data
encapsulation and support object identity and objects
with complex states. The current commercial
OODBMSs are listed in Table III.

Recent database market surveys indicate that
OODBMS will probably continue to occupy a niche
within the database market. This niche will be charac-
terized by applications that require very large amounts
of data with several complex relations and with special-
ized data types. For example, the OODBMS seems likely
to maintain its standing in computer-aided design
(CAD), computer-aided manufacturing (CAM), geo-
graphical information system (GIS), specialized multi-
media applications, mapping applications, simulation
modeling, and scientific applications.

Database Development Process 401

Figure 6 Current trends in database development.

Table III Object-Oriented DBMS Products
by Vendors

Vendor OODBMS

Computer Associates Jasmine

Gemstone Systems, Inc. GemStone

O2 Technology O2

Object Design Object Store

Objectivity Objectivity/DB

Versant Object Technology Versant ODBMS

2. Object-Relational DBMS

In 1990, Stonebraker et al. suggested extending the
capabilities of a RDBMS to include support for richer
object structures and rules. The resulting ORDBMS is
a hybrid of the RDBMS and OODBMS which allows
users to take advantage of OODBMS and to maintain
a consistent data structure in an existing relational
database. To overcome the identified weakness of re-
lational DBMS, three of the leading RDBMS vendors,
IBM, Informix, and Oracle have all extended their
systems to ORDBMS (see Table IV).

ORDBMS will likely become dominant in most com-
plex business applications because of the need to main-
tain compatibility with existing systems, the universal
acceptance of relational databases, and the support of
SQL-99, which added object-relational features.

SEE ALSO THE FOLLOWING ARTICLES

Database Administration • Database Systems • Data Model-
ing: Entity-Relationship Data Model • Data Modeling: Object-
Oriented Data Model • Documentation for Software and IS
Development • Network Database Systems • Object-Oriented
Databases • Relational Database Systems • Structured Query
Language (SQL)

BIBLIOGRAPHY

Connolly, T. M.. and Begg, C. E. (2002). Database systems: A prac-
tical approach to design, implementation, and management, 3rd
ed. Reading, MA: Addison–Wesley.

Date, C. J. (2000). An introduction to database systems, 7th ed.
Reading, MA: Addison–Wesley.

Elmasri, R., and Navathe, S. B. (2000). Fundamentals of database
systems, 3rd ed. Reading, MA: Addison–Wesley.

Ramakrishman, R., and Gehrke, J. (2000). Database management
systems, 2nd ed. Boston: McGraw–Hill.

Riccardi, G. (2001). Principles of database systems with internet and
Java applications. Reading, MA: Addison–Wesley.

Rob, P., and Coronel, C. (2001). Database systems: Design, imple-
mentation, and management, 4th ed. Cambridge, MA: Course
Technology.

Ullman, J. D., and Widom, J. (1997). First course in database sys-
tems. Upper Saddle River, NJ: Prentice Hall.

402 Database Development Process

Table IV Object-Relational DBMS Products
by Vendors

Vendor RDBMS ORDBMS

IBM DB/2 Universal database

Informix Dynamic server Universal server

Oracle Oracle 7.x Oracle 8i

Database Machines
Catherine M. Ricardo
Iona College

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 403

I. INTRODUCTION
II. FUNCTIONS OF A DATABASE MACHINE

III. DATABASE MACHINE ARCHITECTURE

IV. ADVANTAGES OF DATABASE MACHINES
V. CHALLENGES FOR DATABASE MACHINES

VI. EXAMPLES

GLOSSARY

bottleneck A resource or part of a system that has
smaller capacity than other components, resulting
in delays while other parts wait for the resource to
finish its task. For example, an I/O bottleneck oc-
curs when the system must wait for input or output
to finish before resuming a task.

cache memory A small, expensive storage area used to
temporarily hold data that will be accessed frequently.

charged couple device (CCD) A type of solid-state in-
tegrated circuit that represents data as an electrical
charge.

concurrency control The management of the inter-
action between two or more simultaneous processes
so that they do not interfere with one another
thereby causing errors.

cylinder The vertical set of tracks in the same relative
position on the different surfaces of a disk pack.

database management system (DBMS) Software that
supports the definition, creation, and maintenance
of a database, and allows users and applications to
access the data.

data integrity The correctness and internal consis-
tency of data stored in a database. It is expressed
as integrity constraints, which are rules that the
database is not permitted to violate.

data mining The process of examining large data-
bases with the purpose of finding new information
by discovering patterns or rules of interest, usually
as part of decision support systems for business.

data warehouse An integrated collection of data
about a particular enterprise that represents facts

about the subjects of that enterprise at a given pe-
riod of time and is used for decision making.

encryption The process of encoding data so that it
will not be readable by users or applications with-
out a decryption key.

hashing A method of calculating the address for a
record by using the value of a key field as input to
an algorithm called the hashing algorithm. The
output of the algorithm is the target address.

join operation An operation involving records in two
tables that have a common attribute. Those records
that have the same value for the common attribute
are put together to form the join.

partitioned data Data that are split into disjoint frag-
ments or subsets such that the union of the subsets
gives back the original set of data.

query An operation on a database by which the user
specifies which records, parts of records, or com-
binations of records are to be retrieved.

redundant arrays of independent disks (RAID) An ar-
chitecture in which an array of small inexpensive
disks is treated as a single logical disk. Data are
striped or distributed over the multiple disks which
can then be read in parallel to speed retrieval.

replicated data Data that are repeated and stored at
more than one location.

I. INTRODUCTION

A database machine or database computer is a device
whose basic function is managing access to a database.
The purpose of such a machine is to provide faster

application processing through the offloading of the
database access to this dedicated device. The concept of
database machines became popular during the 1980s,
when it was widely believed that these special-purpose
machines would be in widespread use within a decade.
Several vendors offered such systems. They used spe-
cialized architecture and storage technologies to opti-
mize performance of database functions. Due to a vari-
ety of factors, including advances in technology and
most notably the move to client-server architecture,
these expectations for specialized database machines
failed to materialize. However, with the continuing de-
velopment of many very large databases, the growing
popularity of data warehouses, and the development of
data mining applications, all of which require storage of
vast quantities of data and fast processing, dedicated
database servers have become widely used. A database
server is a machine that manages the database in a net-
worked environment. Unlike a true database machine,
a server is a general-purpose computer without special-
ized architecture or storage devices.

II. FUNCTIONS OF A DATABASE MACHINE

In a traditional database environment, a general-
purpose computer is used to run the database man-
agement system (DBMS), as well as a variety of other
software and applications under its operating system.
The database files reside on a disk that is under the
computer’s control. When a user or application pro-
gram requests data, the computer processes the re-
quest and manages the disk controllers to access the
data files. In a database machine environment, the
general-purpose computer, called the host, does not
run the DBMS software. Instead the DBMS runs on the
database machine, a separate computer that controls
the devices on which the database files reside. When a
user or program requests data access, the request is
submitted to the host, which passes it to the database
machine for processing. The dedicated machine then
performs the following functions:

• Accepts the data request and identifies which
stored records will be needed to satisfy the request

• Checks that the user is authorized to access those
items and to perform the requested operations on
them

• Chooses the best path for data access
• Performs concurrency control so that other data

requests submitted at the same time do not cause
errors; this is necessary if at least one of the
requests is an update

• Handles the recovery subsystem, to ensure that
the database can be restored to a correct state in
the event of a transaction or system failure

• Maintains data integrity, checking that no integrity
constraints are violated

• Directs the actual data access using its device
controllers

• Handles data encryption, if used
• Formats the retrieved data, if any
• Returns the data or results to the host machine

III. DATABASE MACHINE ARCHITECTURE

The database machine concept can be implemented
in several ways, including the use of backend machines,
parallel processors, and specialized storage devices.

A. Backend Machine

In the backend machine architecture, illustrated in
Fig. 1, the database computer may be a general-

404 Database Machines

Figure 1 Backend machine architecture.

purpose machine that is used as a server for database
processing, or it may be a special-purpose computer.
In either case, the host maintains the user interface,
and the backend performs all the database access, as
described in the previous section. If the backend is a
special purpose machine, it may use a modified op-
erating system, and some database functions such as
join operations may be microcoded to optimize data
access operations. The development of these special
purpose computers is generally not cost-effective, so
in practice servers are most often used today.

B. Parallel Architecture

In a parallel database machine environment, instead of
a single backend, there are multiple backend machines

connected either to a single host or to multiple hosts.
The backends control multiple disk units containing the
database. The entire database may be replicated on sev-
eral disks or the files may be partitioned over the disks.
Data partitioning can be done by placing new records
on successive disks in round-robin fashion, by hashing
on some attribute, or by range partitioning, which means
placing records by designating disks according to a range
of values for a certain attribute. When a query is
processed, since the required data may reside on differ-
ent disks, the query is decomposed into subqueries that
are then processed using the appropriate partition of
the database. If there are multiple hosts, any of the hosts
can communicate with any of the backends by using a
programmable switch to direct data request traffic, and
any of the backends can access data on any of the disks
by means of a switch for data traffic. Figure 2 illustrates

Database Machines 405

Figure 2 Parallel architecture.

this architecture. The result is a very fault-tolerant sys-
tem that can keep functioning despite failure of a host,
a backend, or a disk unit. Each component can serve as
a backup for the other components of its type, taking
over its functions in the event of failure. This architec-
ture allows data redundancy but the communications
costs may be considerable. Parallel system architectures
can be shared-memory, shared-nothing, shared-disk, or
hierarchical (cluster). In a shared-memory design, all
processors have access to any memory module or disk
unit. In the shared-disk approach, all processors have ac-
cess to any disk unit, but each has its exclusive access to
its own memory. In shared-nothing architecture, each
processor has exclusive control of its own memory and
its own disk unit or units. A hierarchical or cluster ar-
chitecture involves a shared-nothing machine made up
of nodes that are shared-memory.

C. Specialized Storage Devices

A variety of secondary storage technologies have been
used for database machines, including charged cou-
ple device (CCD) memory, magnetic bubble memory,
and head-per-track disks. In associative disk storage,
an intelligent controller is used to manage data search-
ing. Although a variety of techniques can be used to
implement associative memory, all of these devices
function as if there were a fixed read/write head con-
taining a processor for each track. With the ability to
perform logical comparisons on the track, data items
can be retrieved by value, rather than by location. By
moving the search logic to the controller hardware as
the data is being read from disk, it is possible to re-
trieve only records that qualify for the query being
processed, reducing the amount of data that is trans-
mitted to the buffer. The effect is the offloading of
the basic retrieval functions from the host computer
to these units. Eventually these specialized storage
units were found to be prohibitively expensive, and
parallel disks were used instead.

IV. ADVANTAGES OF DATABASE MACHINES

Using database machines or database servers can pro-
vide the following benefits, depending on the archi-
tecture chosen:

• Increased performance. In a backend
architecture, the offloading of the database
management and operations to another device frees
the host computer, allowing it to perform other

processing in parallel with the database processing.
The use of a specialized operating system and
microcoding of database operations can make the
backend itself extremely efficient. If parallel
database machine architecture is used, processing
power is automatically increased. The use of
associative storage likewise offloads some of the
processing load from the host, allowing it to
perform other functions.

• Database sharing. A single database machine
can function as a backend for multiple host
computers, allowing many users to share data.

• Increased reliability. If multiple servers are
used, the system can continue to function despite
the failure of one of the servers.

• Increased data availability. If the database is
replicated and one of the copies is not available, a
backup copy can be used, allowing processing to
continue. If the database is partitioned, processing
involving other sections of the database can
continue.

• Improved security. If a single backend machine
controls all access to the database files, all data
requests must be directed to that machine, allowing
centralization of the security subsystem. User
authorization can be checked before any database
access. Since there is no user interface on the
database machine, all requests must also go through
the host computer, which can apply initial access
control checks.

• Greater flexibility. Because a variety of
architectures can be used, the system designer can
choose the configuration that best suits the
environment. Additional backends or disk units may
be added in a modular fashion as needed.

• Load balancing. If there are multiple servers,
the system can direct requests to the machine that is
least busy at a given time to balance processing load.

V. CHALLENGES FOR DATABASE MACHINES

There are also major challenges facing designers and
developers of database machines, including:

• Cost. The major disadvantage to database
machines has been the cost of developing the
systems. With rapid advances in technology, it is not
cost-effective to develop specialized machines that
depend heavily on technologies that soon become
obsolete.

• I/O bottleneck. The I/O bottleneck refers to the
slow speed of input/output relative to processing

406 Database Machines

speed. Since most databases use secondary storage
devices, typically disk, it is necessary to consider the
delay involved in locating and transferring records
from these devices. Various methods have been used
to attempt to address this problem. For example,
clustering of records, that involves placing records
that are most often accessed together on the same
cylinder or adjacent cylinders, can be used to reduce
seek time. This technique can be used by many
DBMs, but it was an inherent feature of early
database machines, including DBC and DIRECT.
Another solution is using specialized hardware. For
example, disk units with fixed read/write heads per
track were used in some early machines, such as Data
Base Computer (DBC). These expensive specialized
units were replaced by arrays of moving-head disks in
later database machines, such as DBC/1012,
GAMMA, and Active-Graph Machine (AGM). RAID
technology is used by most systems today.

• Scalability. Scalability refers to the ability of a
database machine to handle larger tasks quickly. The
usual solution is to use parallel machines to spread
the processing load; however, this presents the
problem of control among the units. If the units are
controlled centrally, a bottleneck may be
introduced, since all units need access to the
controller. A better solution is distributed control, as
found in DBC/1012 and GAMMA. Parallel machines
ideally have both linear speedup and linear scaleup.
With linear speedup, if the hardware is doubled, the
processing job should be completed in half the
time. With linear scaleup, if the hardware is
doubled, it is possible to perform a job that is twice
as large in the same amount of time.

VI. EXAMPLES

A. Overview

Britton-Lee, Tandem, and Teradata all offered early
commercial specialized database machines. Research
and academic institutions designed or prototyped sev-
eral others, including DBC at Ohio State, DIRECT
and GAMMA at the University of Wisconsin, and AGM
at the University of California, Irvine. Other research
systems included Bubba, Arbre, Volcano, SDC,
XPERS, and Persist. Current commercial database
machines or database servers include the NCR World-
Mark series and WhiteCross Data Exploration Server.
Among current DBMS providers, IBM produces Par-
allel Sysplex, a shared everything clustering architec-
ture combining DB2 with OS/390 in a tightly coupled

environment that provides many of the same benefits
as a database machine. Informix and Oracle work
with several hardware vendor partners to maximize
database performance on those machines.

B. Britton-Lee IDM

Britton-Lee developed one of the first commercial
database machines, the Intelligent Database Machine,
IDM, released in 1981. It was an integrated hardware
and software system that ran the IDM RDBMS (Rela-
tional Database Management System) based on the
INGRES DBMS, and functioned as a backend for
mainframes from several vendors, including DEC and
IBM. The IDM host resident software installed on the
host computer allowed the mainframe access to the
IDM backend. Host and backend communicated us-
ing IDM Network communications software that
linked the IDM host resident software and RDBMS,
the backend relational DBMS. IDM had a specialized
operating system modified for efficient data access,
microprocessors designed for specific tasks, a data-
base accelerator that optimized execution of common
processes, and disk cache for frequently used records.
Subsystems managed security, transaction manage-
ment, query optimization, concurrency control,
backup and recovery, and other tasks. It had its own
language, Intelligent Database Language (IDL), for
database creation and management.

C. Tandem Non-Stop System

Also in the early 1980s, Tandem developed its Non-
Stop System, an early parallel architecture system that
featured multiple processors and multiple disks. The
system was designed to provide high performance
and reliability by duplication of components. The ba-
sic hardware consisted of 2–16 processors linked by
an InterProcessor Bus. Each processor module con-
sisted of a central processing unit, a memory unit, an
I/O channel, and an InterProcessor Bus interface.
Figure 3 shows the basic architecture of the simplest
Tandem system. Note that while any processor can
control any disk controller, only one processor actu-
ally has that control at any given time. To increase re-
liability, each query, transaction, or application is as-
signed to one primary processor and a backup
processor, that can take over execution if the primary
one fails. Reliability is further increased by mirrored
disks, writing all data to two disks, so that processing
can continue even if a disk failure occurs.

Database Machines 407

The original group of Tandem database software
products, collectively called ENCOMPASS, included

• ENSCRIBE, an RDBMS
• DDL, a data definition language
• A data dictionary
• ENFORM, a query language
• PATHWAY, a facility that provides an interface for

designing and controlling transactions
• TMF, a transaction management facility that also

handles recovery

Tandem’s Non-Stop architecture is still in use. The
company later paired with Compaq to address the
needs of smaller customers.

D. Teradata DBC

Teradata also developed backend machines to inter-
face with large mainframes. The DBC/1012 Model 1
was announced in 1984 as a backend for the IBM 370,
and later models served as backends for a variety of
mainframes, minicomputers, and workstations. Tera-
data’s pioneering DBC/1012 systems used parallel pro-
cessing to provide high performance, load balancing,
and high reliability. Figure 4 shows a sample configu-
ration for this system. The parallel database proces-
sors, called access module processors (AMPs), manage

disk storage units that can hold up to 500 megabytes
each. Data are partitioned across the disk units in such
a way that records from the same table are spread
across several disk units. Hashing is used to determine
record placement. A set of interface processors (IFPs)
provides communications between the mainframe and
the AMPs. The system is linked by an intelligent in-
terconnection network, called YNet, a bus that routes
messages between the IFPs and the AMPs and handles
some other tasks. The system was designed to be highly
modular, allowing designers to add additional micro-
processors to handle larger databases. It handled up
to 1024 processors, each of which could handle up to
four disk units. The basic system components are

• Host computers, which could be mainframes or
a variety of minicomputers or workstations,
connected on a network.

• TDP, Teradata Director Program, software that
resides in each host machine to handle activity
between the host and the Teradata backend.

• IFPs, at least two per mainframe host, each
having a channel interface controller, a processor,
and two interfaces to the bus; their job is to receive
requests from the hosts, interpret and decompose
them, route subrequests, and consolidate responses
for the requesting process.

• COPs, communication processors that perform
the same services for the minicomputers or
workstations. Each has a processor, two interfaces to
the bus, and a network adapter.

• YNet, the intelligent bus that carries
communications from the IFPs and COPs to the
AMPs, manages interprocessor communications
between the AMPs, consolidates results of
subrequests, and returns results to the IFP or COP
that submitted the request. To ensure fault
tolerance, the system must have two YNets to serve
as backups for each other.

• AMPs, each of which manages the data on up
to four disk units.

• Disk units, on which the data is partitioned
using a hashing scheme for parallel processing.
Because of the partitioning, several disk units are
searched in parallel in answering each query. To
ensure data availability, primary and secondary
copies of data could be made. These were high-
volume Winchester disks. A two-megabyte disk cache
was available for each AMP.

E. NCR WorldMark

Teradata later paired with NCR. The NCR 3700 was
the successor to the DBC 1012 and used essentially

408 Database Machines

Figure 3 Tandem Non-Stop architecture.

the same technology. Recently, NCR has focused on
providing scalable environments for data warehous-
ing, including Windows- and UNIX-based systems.
Models in NCR’s WorldMark series use the Teradata
MPP (massively parallel processing) architecture, in-
cluding the interconnection now called BYNET, and
scalability from 2–512 nodes, handling up to over 100
terabytes, as well as RAID technology.

F. WhiteCross Data Exploration Server

WhiteCross Technologies offers a database hardware
and software package that targets the data mining mar-
ket. Its Data Exploration Server, WX/DES, uses a lin-
early scalable MPP server architecture. It employs very
large memory (VLM) technology for fast in-memory
processing of large databases, eliminating the need for
indexes. Query speed is reported to be 5 million rows
per second per processor, with linear speedup as addi-
tional processors are added. It can support an unlimited
number of communications processors, which can feed
data from a variety of sources in parallel. It uses RAID
technology and disk swapping for fault tolerance. The

architecture has been optimized for processing of joins
and complex queries. It allows concurrent data loading
and data analysis. WhiteCross provides a proprietary
software suite, Exploration Studio, for data mining. It in-
cludes MiningSTUDIO, which provides decision tree
and rule-based algorithms, neural network models, au-
tomatic cluster detection, data profiling and data visual-
ization, and other tools. QuerySTUDIO provides visual
tools for users’ queries, and ApplicationSTUDIO is a
software development kit using DCOM/ActiveX tech-
nology for writing applications in a variety of languages.

SEE ALSO THE FOLLOWING ARTICLES

Database Development Process • Database Systems • Data
Mining • Data Warehousing and Data Marts • Distributed
Databases • Encryption • Relational Database Systems • Struc-
tured Query Language

BIBLIOGRAPHY

Boral, H., and DeWitt, D. (1983). Database machines: An idea
whose time has passed? A critique of the future of database

Database Machines 409

Figure 4 Teradata DBC/1012 architecture.

machines. Proceedings of the 1983 Workshop on Database Ma-
chines (H. O. Leilich and M. Misikoff, ed.), pp. 166–187.
New York: Springer-Verlag.

Boral, H., Alexander, W., Clay, L., Copeland, G., Danforth, S.,
Franklin, M., Hart, B., Smith, M., and Valduriez, P. (1990).
Prototyping bubba, a highly parallel database system. IEEE
Transactions on Knowledge and Data Engineering, 2, 1, 4–24.

Chen, P., Lee, E., Gibson, G., and Katz, R. (1994). RAID high
performance, reliable secondary storage. ACM Computing
Surveys, 26, 2, 145–185.

DeWitt, D., Gerber, R., Graek, G., Heytens, M., Kuman, K., and
Muralikrishna, M. (1986). GAMMA: A high performance
dataflow database machine. Proceedings of 12th International
Conference on Very Large Data Bases, 107–121.

DeWitt, D., and Gray, J. (1992). Parallel database systems: The
future of high performance database systems. Communica-
tions of the ACM, 35, 6, 85–98.

Hsiao, D., ed. (1983). Advanced database machine architecture, En-
glewood Cliffs, NJ: Prentice-Hall.

Hsiao, D. (1986). Future database machine architectures. in
New Directions for Database Systems (G. Ariav and J. Clifford,
eds.), pp. 12–18, New Jersey: Ablex.

Ozsu, M. T., and Valduriez, P. (1999). Principles of distributed data-
base systems, 2nd ed, Upper Saddle River, NJ: Prentice-Hall.

Qadah, G. (1985). Database machines: A survey. AFIPS Confer-
ence Proceedings, National Computer Conference, 54, 211–223.

Su, S. (1988). Database computers: Principles, architectures and tech-
niques. New York: McGraw-Hill.

410 Database Machines

Database Systems
Abraham Silberschatz Henry F. Korth S. Sudarshan
Bell Laboratories Bell Laboratories Indian Institute of Technology, Bombay

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 411

I. DATABASE SYSTEM APPLICATIONS
II. HISTORY OF DATABASE SYSTEMS

III. DATABASE SYSTEM FUNCTIONALITY
IV. DATA MODELS
V. DATABASE LANGUAGES

VI. DATABASE APPLICATION ARCHITECTURE
VII. DATABASE USERS AND ADMINISTRATORS

VIII. TRANSACTION MANAGEMENT
IX. DATABASE SYSTEM STRUCTURE

GLOSSARY

data manipulation language A language that enables
users to access or manipulate data as organized by
the appropriate data model.

data model A collection of conceptual tools for de-
scribing data, data relationships, data semantics,
and consistency constraints.

hard disk A data storage device where data are encoded
magnetically on the surfaces of one or more platters
spinning on a common axis. The disk has an arm
containing a read-write head for each platter surface,
and the arm pivots to position the read-write head at
a desired distance from the center of the platter.

security Protection of data from unauthorized access
and update. Includes mechanisms to authenticate
users and to control which users are authorized to
access specific data.

transaction A unit of activity which should be exe-
cuted atomically, that is, be completed or appear to
never have started. Updates made by a completed
transaction should be durable, that is, not lost even
if there are system failures.

A DATABASE-MANAGEMENT SYSTEM (DBMS) is a col-
lection of interrelated data and a set of programs to
access those data. The collection of data, usually re-

ferred to as the database, contains information rele-
vant to an enterprise. The primary goal of a DBMS is
to provide a way to store and retrieve database infor-
mation that is both convenient and efficient.

Database systems are designed to manage large
bodies of information. Management of data involves
both defining structures for storage of information
and providing mechanisms for the manipulation of
information. In addition, the database system must
ensure the safety of the information stored, despite
system crashes or attempts at unauthorized access. If
data are to be shared among several users, the system
must avoid possible anomalous results such as lost up-
dates or inconsistent data.

I. DATABASE SYSTEM APPLICATIONS

Databases are widely used in a variety of application
domains. Here are some representative applications:

• Banking—for customer information, accounts,
loans, and banking transactions

• Airlines—for reservations and schedule
information (Airlines were among the first to use
databases in a geographically distributed manner.
Terminals situated around the world accessed the
central database system through phone lines and
other data networks.)

• Universities—for student information, course
registrations, and grades

• Electronic commerce—for product catalogs, order
and shipping data, billing, and customer data

Portions of this article were adapted by permission from Chap-
ter 1 of Database System Concepts, 4th ed., by Silberschatz, Korth, and
Sudarshan, McGraw–Hill, 2001.

• Telecommunication—for translation of toll-free
phone numbers, portability of local phone
numbers among competing service providers, and
home-location databases for wireless networks

Other applications include billing for credit-card
transactions, network management and billing for
telecom, financial applications such as stock markets
and investment-banking companies, retail and online
sales, manufacturing, and human-resource functions
such as salaries, payroll taxes, and so on.

As the list illustrates, databases form an essential
part of almost all enterprises today. Most of us inter-
act frequently with databases, sometimes explicitly
even without our knowledge. For example, when you
access a bank Web site and retrieve your bank balance
and transaction information, the information is re-
trieved from the bank’s database system. When you
access a Web site, information about you may be re-
trieved from a database, to select which advertise-
ments should be shown to you. Furthermore, data
about your Web accesses may be stored in a database.
Although user interfaces hide details of access to a
database, and most people are not even aware they
are dealing with a database, accessing databases forms
an essential part of almost everyone’s life today.

The importance of database systems can be judged
in another way—today, database system vendors like
Oracle are among the largest software companies in
the world, and database systems form an important
part of the product line of more diversified compa-
nies like Microsoft and IBM.

Because information is so important in most orga-
nizations, computer scientists have developed a large
body of concepts and techniques for managing data.
This article provides a brief overview of the issues in
the design and development of database system ap-
plications, as well as an overview of the internal struc-
ture of database systems.

II. HISTORY OF DATABASE SYSTEMS

Data processing drives the growth of the computer in-
dustry, as it has from the earliest days of commercial
computers. In fact, automation of data processing
tasks predates computers. Punched cards, invented by
Hollerith, were used at the very beginning of the 20th
century to record U.S. census data, and mechanical
systems were used to process the cards and tabulate
results. Punched cards were later widely used as a
means of entering data into computers.

Techniques for data storage and processing have
evolved over the years and have been driven by two

factors: the technology for storage of data, and appli-
cation requirements. In the 1950s and 1960s, mag-
netic tapes were the primary means of data storage. A
typical database application of the era managed the
payroll of an organization, storing details of salaries,
taxes, and so on as records of a file, stored sequen-
tially on a tape.

Processing of data consisted of reading data from
one or more tapes and writing data to a new tape.
Data could also be input from punched card decks,
and output to printers. For example, salary raises were
processed by entering the raises on punched cards
and reading the punched card deck in synchroniza-
tion with a tape containing the master salary details.
The records had to be in the same sorted order. The
salary raises would be added to the salary read from
the master tape and written to a new tape; the new
tape would become the new master tape.

Tapes (and card decks) could be read only se-
quentially, and data sizes were much larger than main
memory; thus, data processing programs were forced
to process data in a particular order, by reading and
merging data from tapes and card decks.

The emergence of hard disks in the late 1960s
changed the scenario for data processing greatly, since
hard disks allowed direct access to data. The position
of data on disk was immaterial, since any location on
disk could be accessed in just tens of milliseconds. Data
were thus freed from the tyranny of sequentiality.

With direct access to data on disks, it was possible
to store data structures such as lists and trees on disk.
A node of a list or tree could store the disk address of
another node, which could then be accessed within
tens of a millisecond, instead of minutes. Application
programmers could construct and manipulate these
data structures.

Direct access to data also made possible online ac-
cess to data. It was possible to accept a request for
even a single piece of information, such as seat avail-
ability on a particular flight, and efficiently locate it
using “index” structures, and answer the request. Sim-
ilarly, a reservation request could be processed effi-
ciently by updating data at a few locations on the disk
without having to read or write all data on the disk.

The “network” and “hierarchical” data models de-
veloped in this era provided an abstract view of these
data structures, hiding some of the low level imple-
mentation details of the data structures. However, ap-
plication programmers had to deal with the task of
navigating the data structures to find required data.

A landmark paper by Codd in 1970 defined the re-
lational model, where data are represented in tabular
form, and data are accessed in a nonprocedural man-
ner without the need for the user or programmer to

412 Database Systems

be concerned about the manner in which the data are
stored. The simplicity of the relational model and the
possibility of hiding implementation details com-
pletely from the programmer were enticing indeed.
Codd later won the prestigious Association of Com-
puting Machinery Turing Award for his work.

Although academically interesting, the relational
model was not used in practice initially, because of its
perceived performance disadvantages; relational data-
bases could not match the performance of existing
network and hierarchical databases. That changed
with System R, a groundbreaking project at IBM Re-
search that developed techniques for the construc-
tion of an efficient relational database system. Initial
commercial relational database systems, such as IBM
DB2, Oracle, Ingres, and DEC Rdb, played a major
role in advancing techniques for efficient processing
of declarative queries.

The 1980s saw the emergence of the object-oriented
database model, employing concepts from the object-
oriented programming paradigm such as inheritance,
object identity, encapsulation, and a rich type system.
The 1990s saw these concepts merge into the rela-
tional model via object-relational database systems.

In recent years, the XML language has evolved
from being a document markup language to an
emerging standard for data interchange among ap-
plications, especially web-based ones. The manage-
ment of XML data represents one of the major chal-
lenges to database researchers and product developers
today.

III. DATABASE SYSTEM FUNCTIONALITY

Database systems, in the most general sense, provide
the means for storing data and facilities to query the
data. Databases also provide features to ensure in-
tegrity and security of data, to deal with software and
hardware failures, and to deal with problems due to
concurrent access.

It was these challenges, among others, that
prompted the development of database systems. In
later sections, we shall see the concepts and algo-
rithms that enable database systems to solve these dif-
ficulties. We use a bank enterprise as a running ex-
ample of a typical data-processing application found
in a corporation.

Consider part of a savings-bank enterprise that
keeps information about all customers and savings ac-
counts. A typical file-processing system is implemented
directly on a conventional operating system. The sys-
tem stores permanent records in various files, and it
needs different application programs to extract

records from, and add records to, the appropriate
files.

Before database management systems came along,
organizations usually stored information in such sys-
tems. Keeping organizational information in a file-
processing system has several disadvantages that are
addressed by database systems. Contrasting the two
approaches helps highlight the benefits of using data-
base systems.

A. Data Representation

Consider how a bank may store information about ac-
counts and customers who own accounts. Suppose a
bank provides both checking and savings accounts and
maintains one file for each account type. The file con-
tains a large number of records, each containing in-
formation about the account, such as the account num-
ber, balance available, and so on. In a file-processing
system, the application code that fetches and updates
information must deal with low level details such as the
format in which information is stored.

In contrast, a database system provides a higher-level
view of the data. For instance, a relational database pro-
vides a view of data as consisting of a number of records,
each containing several attributes. Lower level details of
how each record is stored in a file are hidden from ap-
plications. Providing such a layer of abstraction also en-
ables the database system to implement efficient but
more complex means of storing data, without burden-
ing application programs with details of data storage.

Deciding how to organize information logically in
files is another challenge. For instance, the bank must
store information about customers. A straightforward
method of doing so would be to store customer in-
formation, such as address and telephone number,
along with the account records. Now suppose a cus-
tomer has both savings and checking accounts. That
customer’s information would be stored redundantly,
in two places. This redundancy leads to higher stor-
age and access cost. In addition, it may lead to data
inconsistency; that is, the various copies of the same
data may no longer agree. For example, a changed
customer address may be reflected in savings-account
records but not elsewhere in the system.

A better design would keep customer information
in a separate file, with each customer identified by a
customer identifier, and store only the customer iden-
tifier with the account information. Several techniques
are available for designing how to represent informa-
tion. Underlying these techniques is a data model, which
is a collection of conceptual tools for describing data,
data relationships, data semantics, and consistency

Database Systems 413

constraints. Data models and techniques for database
design are described in Section IV.

B. Data Manipulation

A database system provides convenient mechanisms for
users to manipulate stored data. By contrast, in a file-
processing system a number of application programs
would be required to manipulate the files, including

• A program to debit or credit an account
• A program to add a new account
• A program to find the balance of an account
• A program to generate monthly statements

Application programmers would write these applica-
tion programs to meet the needs of the bank. New ap-
plication programs are added to the system as the
need arises. Thus, as time goes by, the system acquires
more files and more application programs.

Suppose that one of the bank officers needs to find
out the names of all customers who live within a par-
ticular postal-code area. The officer asks the data-
processing department to generate such a list. Because
the designers of the original system did not anticipate
this request, there is no application program on hand
to meet it. There is, however, an application program
to generate the list of all customers. The bank officer
has now two choices: either obtain the list of all cus-
tomers and extract the needed information manually
or ask a programmer to write the necessary applica-
tion program. Both alternatives are obviously unsatis-
factory. Suppose that such a program is written, and
that, several days later, the same officer needs to trim
that list to include only those customers who have an
account balance of $10,000 or more. As expected, a
program to generate such a list does not exist. Again,
the officer has the preceding two options, neither of
which is satisfactory.

The point here is that conventional file-processing
environments do not allow needed data to be re-
trieved in a convenient and efficient manner. More
responsive data-retrieval systems are required for gen-
eral use.

Database systems provide query languages that sim-
plify the task of retrieving desired information. These
languages are “declarative,” that is, they allow the user
to specify what is required without being bothered
about how exactly to get the required information.
The database system takes on the responsibility of un-
derstanding and fulfilling the user’s request. Database
query languages are described in Section V.

C. Integrity and Security

The data values stored in the database must satisfy cer-
tain types of integrity constraints (also known as consistency
constraints). For example, the balance of a bank account
may never fall below a prescribed amount (say, $25).

Database systems allow such constraints to be spec-
ified explicitly, and reject any updates to the database
that cause the constraints to be violated. If a file-
processing system were used instead of a database, such
constraints can be ensured by adding an appropriate
code in the various application programs. However,
when new constraints are added, it is difficult to
change the programs to enforce them. The problem
is compounded when constraints involve several data
items from different files.

Not every user of the database system should be
able to access all the data. For example, in a banking
system, payroll personnel need to see only that part of
the database that has information about the various
bank employees. They do not need access to infor-
mation about customer accounts.

Database systems allow explicit specification of
which users are allowed what sort of access (such as
read or update) to what data. If a file-processing sys-
tem were used, application programs would require
an extra code to verify if an attempted access is au-
thorized. But, since application programs are added
to the system in an ad hoc manner, enforcing such se-
curity constraints is difficult.

D. Failures and Concurrency Problems

A computer system, like any other mechanical or elec-
trical device, is subject to failure. In many applica-
tions, it is crucial that if a failure occurs, the data be
restored to the consistent state that existed prior to
the failure. Consider a program to transfer $50 from
account A to account B. If a system failure occurs dur-
ing the execution of the program, it is possible that
the $50 was removed from account A but was not
credited to account B, resulting in an inconsistent
database state. Clearly, it is essential to database con-
sistency that either both the credit and debit occur, or
that neither occur. That is, the funds transfer must be
atomic—it must happen in its entirety or not at all.

It is difficult to ensure atomicity when writing ap-
plications accessing files in a conventional file-
processing system. In contrast, database systems provide
built-in support to ensure atomicity.

For the sake of overall performance of the system
and faster response, many systems allow multiple users

414 Database Systems

to update the data simultaneously. In such an environ-
ment, interaction of concurrent updates may result in
inconsistent data. Consider bank account A, contain-
ing $500. If two customers withdraw funds (say $50 and
$100, respectively) from account A at about the same
time, the result of the concurrent executions may leave
the account in an incorrect (or inconsistent) state. Sup-
pose that the programs executing on behalf of each
withdrawal read the old balance, reduce that value by
the amount being withdrawn, and write the result back.
If the two programs run concurrently, they may both
read the value $500, and write back $450 and $400, re-
spectively. Depending on which one writes the value
last, the account may contain either $450 or $400,
rather than the correct value of $350.

To guard against such concurrent-access anomalies,
database systems supervise data access by concurrent
accesses and ensure that the database state remains
consistent. If a file system were used directly, supervi-
sion would be difficult to provide because data may
be accessed by many different application programs
that have not been coordinated previously.

Section VIII describes how database systems pro-
vide support for atomicity, control of concurrency,
and related properties.

IV. DATA MODELS

A database system is a collection of interrelated files
and a set of programs that allow users to access and
modify these files. The need for efficiency has led de-
signers to use complex data structures to represent
data in the database. The low-level physical view of
data is too detailed for most users. A major purpose
of a database system is to provide users with an ab-
stract or logical view of the data. That is, the system
hides certain details of how the data are stored and
maintained.

Underlying the structure of a database is the data
model: a collection of conceptual tools for describing
data, data relationships, data semantics, and consis-
tency constraints. To illustrate the concept of a data
model, we outline two data models in this section: the
entity-relationship model and the relational model.
Both provide a way to describe the design of a data-
base at the logical level.

A. The Entity-Relationship Model

The entity-relationship (E-R) data model is based on a
perception of a real world that consists of a collection

of basic objects, called entities, and of relationships
among these objects. The entity-relationship model is
widely used in database design. An entity is a “thing”
or “object” in the real world that is distinguishable
from other objects. For example, each person is an en-
tity, and bank accounts can be considered as entities.

Entities are described in a database by a set of at-
tributes. For example, the attributes account-number and
balance may describe one particular account in a bank,
and they form attributes of the account entity set. Sim-
ilarly, attributes customer-name, customer-street address,
and customer-city may describe a customer entity.

An extra attribute customer-id is used to uniquely
identify customers (since it may be possible to have
two customers with the same name, street address, and
city). A unique customer identifier must be assigned
to each customer. In the United States, many enter-
prises use the social security number of a person (a
unique number the U.S. government assigns to every
person in the United States) as a customer identifier.

A relationship is an association among several enti-
ties. For example, a depositor relationship associates a
customer with each account that she has. The set of
all entities of the same type and the set of all rela-
tionships of the same type are termed an entity set
and relationship set, respectively.

The overall logical structure (schema) of a data-
base can be expressed graphically by an E-R diagram,
which is built up from the following components:

• Rectangles, which represent entity sets
• Ellipses, which represent attributes
• Diamonds, which represent relationships among

entity sets
• Lines, which link attributes to entity sets and

entity sets to relationships

Each component is labeled with the entity or rela-
tionship that it represents.

As an illustration, consider part of a database bank-
ing system consisting of customers and the accounts
that these customers have. Figure 1 shows the corre-
sponding E-R diagram. The E-R diagram indicates
that there are two entity sets, customer and account,
with attributes as outlined earlier. The diagram also
shows a relationship depositor between customer and
account.

In addition to entities and relationships, the E-R
model represents certain constraints to which the con-
tents of a database must conform. One important con-
straint is mapping cardinalities, which express the num-
ber of entities to which another entity can be
associated via a relationship set. For example, if each

Database Systems 415

account must belong to only one customer, the E-R
model can express that constraint.

B. Relational Model

The relational model uses a collection of tables to rep-
resent both data and the relationships among those data.
Each table has multiple columns, and each column has
a unique name. Figure 2 presents a sample relational
database comprising three tables: One shows details of
bank customers, the second shows accounts, and the
third shows which accounts belong to which customers.

The first table, the customer table, shows, for exam-
ple, that the customer identified by customer-id 192-
83-7465 is named Johnson and lives at 12 Alma St. in
Palo Alto. The second table, account, shows, for ex-
ample, that account A-101 has a balance of $500, and
A-201 has a balance of $900.

The third table shows which accounts belong to
which customers. For example, account number
A-101 belongs to the customer whose customer-id is
192-83-7465, namely Johnson, and customers 192-83-
7465 (Johnson) and 019-28-3746 (Smith) share account
number A-201 (they may share a business venture).

The relational model is an example of a record-
based model. Record-based models are so named be-
cause the database is structured in fixed-format
records of several types. Each table contains records
of a particular type. Each record type defines a fixed
number of fields, or attributes. The columns of the
table correspond to the attributes of the record type.

It is not hard to see how tables may be stored in
files. For instance, a special character (such as a
comma) may be used to delimit the different attrib-
utes of a record, and another special character (such
as a newline character) may be used to delimit records.
The relational model hides such low-level implemen-
tation details from database developers and users.

The relational data model is the most widely used
data model, and a vast majority of current database
systems are based on the relational model. One of the
reasons for the success of the relational model is its
strong mathematical foundation, which has helped in
the design of declarative query languages. The math-
ematical foundation has also helped in the construc-
tion of efficient query evaluation systems.

The relational model is at a lower level of abstrac-
tion than the E-R model. Database designs are often
carried out in the E-R model, and then translated to
the relational model. For example, it is easy to see
that the tables customer and account correspond to the
entity sets of the same name, while the table depositor
corresponds to the relationship set depositor.

416 Database Systems

customer-name customer-street

customer-id customer-city

customer

balance

accountdepositor

account-number

Figure 1 A sample E-R diagram.

customer-id customer-name customer-street customer-city
192-83-7465 Johnson 12 Alma St. Palo Alto
019-28-3746 Smith 4 North St. Rye
677-89-9011 Hayes 3 Main St. Harrison
182-73-6091 Turner 123 Putnam Ave. Stamford
321-12-3123 Jones 100 Main St. Harrison
336-66-9999 Lindsay 175 Park Ave. Pittsfield
019-28-3746 Smith 72 North St. Rye

(a) The customer table

account-number balance
A-101 500
A-215 700
A-102 400
A-305 350
A-201 900
A-217 750
A-222 700

(b) The account table

customer-id account-number
192-83-7465 A-101
192-83-7465 A-201
019-28-3746 A-215
677-89-9011 A-102
182-73-6091 A-305
321-12-3123 A-217
336-66-9999 A-222
019-28-3746 A-201

(c) The depositor table

Figure 2 A sample relational database.

We also note that it is possible to create schemas in
the relational model that have problems such as un-
necessarily duplicated information. For example, sup-
pose we store account-number as an attribute of the cus-
tomer record. Then, to represent the fact that accounts
A-101 and A-201 both belong to customer Johnson
(with customer-id 192-83-7465), we would need to
store two rows in the customer table. The values for
customer-name, customer-street, and customer-city
for Johnson would get unnecessarily duplicated in the
two rows.

Relational database design theory offers a formal
way of distinguishing good schema designs from bad
schema designs. The process of normalization deals
with the conversion of any given schema into one that
satisfies the requirements of a good schema design.

C. Other Data Models

The object-oriented data model is another data model
that has seen increasing attention. The object-
oriented model can be seen as extending the E-R
model with notions of encapsulation, methods (func-
tions), and object identity.

The object-relational data model combines features
of the object-oriented data model and relational data
model.

Semistructured data models permit the specifica-
tion of data where individual data items of the same
type may have different sets of attributes. This is in
contrast with the data models mentioned earlier,
where every data item of a particular type must have
the same set of attributes. The extensible markup lan-
guage (XML) is widely used to represent semistruc-
tured data.

Historically, two other data models, the network
data model and the hierarchical data model, pre-
ceded the relational data model. These models were
tied closely to the underlying implementation, and
complicated the task of modeling data. As a result
they are little used now, except in old database code
that is still in service in some places.

D. Instances and Schemas

Databases change over time as information is inserted
and deleted. The collection of information stored in
the database at a particular moment is called an in-
stance of the database. The overall design of the data-
base is called the database schema. Schemas are
changed infrequently, if at all.

The concept of database schemas and instances
can be understood by analogy to a program written in
a programming language. A database schema corre-
sponds to the variable declarations (along with asso-
ciated type definitions) in a program. Each variable
has a particular value at a given instant. The values of
the variables in a program at a point in time corre-
spond to an instance of a database schema.

Database systems have several schemas, partitioned
according to the levels of abstraction. The physical
schema describes the database design at the physical
level, while the logical schema describes the database
design at the logical level. A database may also have
several schemas at the view level, sometimes called sub-
schemas, that describe different views of the database.

Of these, the logical schema is by far the most im-
portant, in terms of its effect on application programs,
since programmers construct applications by using
the logical schema. The physical schema is hidden be-
neath the logical schema and can usually be changed
easily without affecting application programs. Appli-
cation programs are said to exhibit physical data inde-
pendence if they do not depend on the physical schema,
and thus need not be rewritten if the physical schema
changes.

At the lowest level, the database stores information
as an instance of the physical schema. However, the
database allows the same information to be viewed as
an instance of the logical schema.

V. DATABASE LANGUAGES

A database system provides a data definition language
to specify the database schema and a data manipula-
tion language to express database queries and up-
dates. In practice, the data definition and data ma-
nipulation languages are not two separate languages;
instead they simply form parts of a single database
language, such as the widely used SQL language.

A. Data-Definition Language

We specify a database schema by a set of definitions
expressed by a special language called a data-definition
language (DDL).

For instance, the following statement in the SQL
language defines the account table:

create table account

(account-number char(10),

balance integer)

Database Systems 417

Execution of the above DDL statement creates the
account table. In addition, it updates a special set of
tables called the data dictionary or data directory.

A data dictionary contains metadata—that is, data
about data. The schema of a table is an example of
metadata. A database system consults the data dictio-
nary before reading or modifying actual data.

We specify the storage structure and access meth-
ods used by the database system by a set of statements
in a special type of DDL called a data storage and defi-
nition language. These statements define the imple-
mentation details of the database schemas, which are
usually hidden from the users.

The data values stored in the database must satisfy
certain consistency constraints. For example, suppose
the balance on an account should not fall below $100.
The DDL provides facilities to specify such constraints.
The database systems check these constraints every
time the database is updated.

B. Data-Manipulation Language

Data manipulation is

• The retrieval of information stored in the database
• The insertion of new information into the

database
• The deletion of information from the database
• The modification of information stored in the

database

A data-manipulation language (DML) is a language
that enables users to access or manipulate data as or-
ganized by the appropriate data model. There are ba-
sically two types:

• Procedural DMLs require a user to specify what
data are needed and how to get those data.

• Declarative DMLs (also referred to as nonprocedural
DMLs) require a user to specify what data are
needed without specifying how to get those data.

Declarative DMLs are usually easier to learn and
use than are procedural DMLs. However, since a user
does not have to specify how to get the data, the data-
base system has to figure out an efficient means of ac-
cessing data. The DML component of the SQL lan-
guage is nonprocedural.

A query is a statement requesting the retrieval of in-
formation. The portion of a DML that involves infor-
mation retrieval is called a query language. Although
technically incorrect, it is common practice to use the

terms query language and data-manipulation language
synonymously.

This query in the SQL language finds the name of
the customer whose customer-id is 192-83-7465:

select customer.customer-name

from customer

where customer.customer-id � ’192-83-7465’

The query specifies that those rows from the table cus-
tomer where the customer-id is 192-83-7465 must be re-
trieved, and the customer-name attribute of these rows
must be displayed. If the query were run on the table
in Fig. 2, the name Johnson would be displayed.

Queries may involve information from more than
one table. For instance, the following query finds the
balance of all accounts owned by the customer with
customer-id 192-83-7465.

select account.balance

from depositor, account

where depositor.customer-id � ’192-83-7465’ and

depositor.account-number � account.account-number

If the above query were run on the tables in Fig. 2,
the system would find that the two accounts num-
bered A-101 and A-201 are owned by customer 192-
83-7465 and would print out the balances of the two
accounts, namely 500 and 900.

There are a number of database query languages in
use, either commercially or experimentally, of which
the SQL language is by far the most widely used.

VI. DATABASE APPLICATION ARCHITECTURE

Application programs are programs that are used to
interact with the database. Application programs are
usually written in a host language, such as Cobol, C,
C��, or Java. Examples in a banking system are pro-
grams that generate payroll checks, debit accounts,
credit accounts, or transfer funds between accounts.

To access the database from an application pro-
gram, DML statements need to be executed from the
host language. There are two ways to do this:

• By providing an application program interface
(set of procedures) that can be used to send DML
and DDL statements to the database, and retrieve
the results. The Open Database Connectivity
(ODBC) standard defined by Microsoft for use
with the C language is a commonly used
application program interface standard. The Java

418 Database Systems

Database Connectivity (JDBC) standard provides
corresponding features to the Java language.

• By extending the host language syntax to embed
DML calls within the host language program.
Usually, a special character prefaces DML calls,
and a preprocessor, called the DML precompiler,
converts the DML statements to normal
procedure calls in the host language.

Most users of a database system today are not pres-
ent at the site of the database system, but connect to
it through a network. We can therefore differentiate
between client machines, on which remote database
users work, and server machines, on which the data-
base system runs.

Database applications are usually partitioned into
two or three parts, as in Fig. 3. In a two-tier architecture,
the application is partitioned into a component that
resides at the client machine and that invokes the
database system component at the server machine
through query language statements. Application pro-
gram interface standards like ODBC and JDBC are
used for interaction between the client and the server.

In contrast, in a three-tier architecture, the client ma-
chine acts as merely a front end and does not contain
any direct database calls. Instead, the client end com-
municates with an application server. The application
server in turn communicates with a database system to
access data. The business logic of the application, which
says what actions to carry out under what conditions, is
embedded in the application server, instead of being
distributed across multiple clients. Three-tier applica-
tions are more appropriate for large applications and
for applications that run on the World Wide Web.

Although the term application server can be ap-
plied to servers for any applications, the term is in-

creasingly being used to refer to systems that manage
an entire range of enterprise activities, such as finan-
cial applications, personnel management, sales, in-
ventory/stores management, as well as business plan-
ning activities.

VII. DATABASE USERS AND ADMINISTRATORS

People who work with a database can be categorized
as database users or database administrators. Users
can be differentiated by the way they expect to inter-
act with the system.

• Naive users are unsophisticated users who interact
with the system by invoking one of the application
programs that have been written previously.
Examples include bank tellers and Web users who
interact with databases through Web forms.

• Application programmers are computer professionals
who write application programs. Application
programmers can choose from many tools to
develop user interfaces. There are also special
types of programming languages that combine
imperative control structures (for example, for
loops, while loops, and if-then-else statements)
with statements of the data manipulation
language.

• Sophisticated users interact with the system without
writing programs. Instead, they form their
requests either by using a database query language
or by using specialized tools. Analysts who submit
queries to explore data in the database fall in this
category.

Online analytical processing (OLAP) tools simplify
analysts’ tasks by letting them view summaries of data
in different ways. For instance, an analyst can see to-
tal sales by region (for example, North, South, East,
and West), or by product, or by a combination of re-
gion and product (that is, total sales of each product
in each region). The tools also permit the analyst to
select specific regions, look at data in more detail (for
example, sales by city within a region), or look at the
data in less detail (for example, aggregate products
together by category).

Another class of tools for analysts is data mining
tools, which help them find certain kinds of patterns
in data. For example, the analyst may wish to find
groups of products that are often bought by a cus-
tomer at the same time.

A person who has central control over the system is
called a database administrator (DBA). The functions of

Database Systems 419

user

application server

database system

user

database system

network

server

client
application

network

application client

(a) (b)

Figure 3 (a) Two-tier and (b) three-tier architectures.

a DBA include schema definition, storage structure
and access-method definition, schema and physical-or-
ganization modification in response to changes in data-
base requirements, and routine maintenance such as
backing up data to guard against data loss, and ensur-
ing availability of enough free disk space for new data.

VIII. TRANSACTION MANAGEMENT

Often, several operations on the database form a single
logical unit of work. An example is a funds transfer, as
in Section III.A, in which one account (say A) is debited
and another account (say B) is credited. Clearly, it is es-
sential that either both the credit and debit occur, or
that neither occur. That is, the funds transfer must hap-
pen in its entirety or not at all. This all-or-none require-
ment is called atomicity. In addition, it is essential that
the execution of the funds transfer preserve the consis-
tency of the database. That is, the value of the sum A �
B must be preserved. This correctness requirement is
called consistency. Finally, after the successful execution
of a funds transfer, the new values of accounts A and B
must persist, despite the possibility of system failure.
This persistence requirement is called durability.

A transaction is a collection of operations that per-
forms a single logical function in a database applica-
tion. Each transaction is a unit of both atomicity and
consistency. Thus, we require that transactions do not
violate any database-consistency constraints. That is, if
the database was consistent when a transaction started,
the database must be consistent when the transaction
successfully terminates. However, during the execu-
tion of a transaction, it may be necessary temporarily
to allow inconsistency, since either the debit of A or
the credit of B must be done before the other. This
temporary inconsistency, although necessary, may lead
to difficulty if a failure occurs.

It is the programmer’s responsibility to define prop-
erly the various transactions, so that each preserves the
consistency of the database. For example, the transac-
tion to transfer funds from account A to account B
could be defined to be composed of two separate pro-
grams: one that debits account A, and another that
credits account B. The execution of these two programs
one after the other will indeed preserve consistency.
However, each program by itself does not transform the
database from a consistent state to a new consistent
state. Thus, those programs are not transactions.

Ensuring the atomicity and durability properties is
the responsibility of the database system itself—specifi-
cally, of the transaction-management component. In the ab-
sence of failures, all transactions complete successfully,
and atomicity is achieved easily. However, because of

various types of failure, a transaction may not always
complete its execution successfully. If we are to ensure
the atomicity property, a failed transaction must have
no effect on the state of the database. Thus, the data-
base must be restored to the state in which it was before
the transaction in question started executing. The data-
base system must therefore perform failure recovery, that
is, detect system failures and restore the database to the
state that existed prior to the occurrence of the failure.

Finally, when several transactions update the data-
base concurrently, the consistency of data may no
longer be preserved, even though each individual
transaction is correct. It is the responsibility of the
concurrency-control manager to control the interaction
among the concurrent transactions, to ensure the
consistency of the database.

Database systems designed for use on small per-
sonal computers may not have all these features. For
example, many small systems allow only one user to
access the database at a time. Others do not offer
backup and recovery, leaving that to the user. These
restrictions allow for a smaller data manager, with
fewer requirements for physical resources—especially
main memory. Although such a low-cost, low-feature
approach is adequate for small personal databases, it
is inadequate for a medium- to large-scale enterprise.

IX. DATABASE SYSTEM STRUCTURE

A database system is partitioned into modules that
deal with each of the responsibilities of the overall sys-
tem. The functional components of a database system
can be broadly divided into the storage manager and
the query processor components.

The storage manager is a program module responsi-
ble for storing, retrieving, and updating data in the
database. It provides a physical schema level abstrac-
tion of the data. The raw data are stored on a mag-
netic disk or other storage device, using the file sys-
tem that is usually provided by a conventional
operating system. The storage manager translates data
between the file-system level representation and the
physical schema abstraction.

The query processor component uses the physical
schema abstraction provided by the storage manager
to process queries, updates, and DML statements sub-
mitted to the database system.

The storage manager and the query manager each
have several subcomponents. Figure 4 shows these
components and the connections among them.

For example, the transaction manager component of
the storage manager ensures the transactional prop-
erties of atomicity in the event of failure, durability of

420 Database Systems

updates in the event of failure, and controls concur-
rency to ensure that there are no problems.

Data structures stored on disk by the storage man-
ager include:

• Data files, which store the database itself
• Data dictionary, which stores metadata about the

structure of the database, in particular the schema
of the database

• Indices, which provide fast access to data items
that hold particular values.

The query processor is important because it helps
the database system simplify and facilitate access to
data. High-level views help to achieve this goal; with
them, users of the system are not burdened un-
necessarily with the physical details of the implemen-
tation of the system. However, quick processing of

Database Systems 421

naive users
(tellers, agents,

web-users)

query processor

storage manager

disk storage
indices

statistical datadata

data dictionary

application
programmers

application
interfaces

application
program

object code

compiler and
linker

buffer manager file manager authorization
and integrity

 manager

transaction
manager

DML compiler
and organizer

query evaluation
engine

DML queries DDL interpreter

application
programs

query
tools

administration
tools

sophisticated
users

(analysts)

database
administrator

use write use use

Figure 4 System structure.

updates and queries is important. It is the job of the
database system to translate updates and queries writ-
ten in a nonprocedural language, at the logical level,
into an efficient sequence of operations at the physi-
cal level.

A query can usually be translated into any of a
number of alternative evaluation plans that all give
the same result. The query compiler also performs
query optimization, that is, it picks the lowest cost eval-
uation plan from among the alternatives. The query
evaluation engine executes low-level instructions gen-
erated by the query compiler.

SEE ALSO THE FOLLOWING ARTICLES

Database Administration • Database Development Process •
Database Machines • Data Modeling: Entity-Relationship Data
Model • Data Modeling: Object-Oriented Data Model • Net-
work Database Systems • Object-Oriented Databases • Rela-
tional Database Systems • Structured Query Language (SQL) •
Systems Science

BIBLIOGRAPHY

Bernstein, P., Brodie, M., Ceri, S., DeWitt, D., Franklin, M.,
Garcia-Molina, H., Gary, J., Held, J., Hellerstein, J., Jagadish,
H. V., Lesk, M., Maier, D., Naughton, J., Pirahesh, H., Stone-
braker, M., and Ullman, J. (December 1998). The Asilomar
report on database research. ACM SIGMOD Record 27(4).

Bernstein, P., and Newcomer, E. (1997). Principles of Transaction
Processing. Morgan Kaufmann.

Codd, E. F. (June 1970). A relational model for large shared
data banks. Communications of the ACM 13(6), 377–387.

Elmasri, R., and Navathe, S. B. (2000). Fundamentals of Database
Systems. 3rd edition. Benjamin Cummings.

Gray, J., and Reuter, A. (1993). Transaction Processing: Concepts
and Techniques. Morgan Kaufmann.

O’Neil, P., and O’Neil, E. (2000). Database: Principles, Program-
ming, Performance. 2nd edition. Morgan Kaufmann.

Ramakrishnan, R., and Gehrke, J. (2000). Database Management
Systems. 2nd edition. McGraw Hill.

Stonebraker, M., and Hellerstein, J. (1998). Readings in Database
Systems. 3rd edition. Morgan Kaufmann.

Silberschatz, A., Korth, H. F., and Sudarshan, S. (2001). Data-
base System Concepts. 4th edition. McGraw Hill.

Silberschatz, A., Stonebraker, M., and Ullman, J. (1966). Data-
base research: Achievements and opportunities into the 21st
century. Technical Report CS-TR-96-1563, Department of
Computer Science, Stanford University, Stanford.

Ullman, J. D., and Widom, J. (1997). A First Course in Database
Systems. Prentice Hall.

Web Resources

IBM DB2, commercial database system. Available at
www.ibm.com/software/data.

Informix, commercial database system. Available at www.
informix.com.

Microsoft SQL Server, commercial database system. Available at
www.microsoft.com/sql.

MySQL, free/public domain database system. Available at
www.mysql.com.

Oracle, commercial database system. Available at www.
oracle.com.

Postgre SQL, free/public domain database system. Available at
www.postgresql.org.

Sybase, commercial database system. Available at www.sybase.com.

422 Database Systems

Data Compression
Khalid Sayood
University of Nebraska, Lincoln

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 423

I. INTRODUCTION
II. LOSSLESS COMPRESSION

III. LOSSY COMPRESSION
IV. FURTHER INFORMATION

I. INTRODUCTION

Data compression involves the development of a com-
pact representation of information. Most representa-
tions of information contain large amounts of redun-
dancy. Redundancy can exist in various forms. It may
exist in the form of correlation: spatially close pixels in
an image are generally also close in value. The redun-
dancy might be due to context: the number of possi-
bilities for a particular letter in a piece of English text
is drastically reduced if the previous letter is a q. It can
be probabilistic in nature: the letter e is much more
likely to occur in a piece of English text than the letter
q. It can be a result of how the information-bearing se-
quence was generated: voiced speech has a periodic
structure. Or, the redundancy can be a function of the
user of the information: when looking at an image we
cannot see above a certain spatial frequency; therefore,
the high-frequency information is redundant for this
application. Redundancy is defined by the Merriam-
Webster Dictionary as “the part of the message that can
be eliminated without the loss of essential informa-
tion.” Therefore, one aspect of data compression is re-
dundancy removal. Characterization of redundancy in-
volves some form of modeling. Hence, this step in the
compression process is also known as modeling. For
historical reasons another name applied to this process
is decorrelation.

After the redundancy removal process the infor-
mation needs to be encoded into a binary represen-
tation. At this stage we make use of the fact that if the
information is represented using a particular alpha-
bet some letters may occur with higher probability
than others. In the coding step we use shorter code

words to represent letters that occur more frequently,
thus lowering the average number of bits required to
represent each letter.

Compression in all its forms exploits structure, or
redundancy, in the data to achieve a compact repre-
sentation. The design of a compression algorithm in-
volves understanding the types of redundancy present
in the data and then developing strategies for ex-
ploiting these redundancies to obtain a compact rep-
resentation of the data. People have come up with
many ingenious ways of characterizing and using the
different types of redundancies present in different
kinds of technologies from the telegraph to the
cellular phone and digital movies.

One way of classifying compression schemes is by
the model used to characterize the redundancy. How-
ever, more popularly, compression schemes are di-
vided into two main groups: lossless compression and
lossy compression. Lossless compression preserves all
the information in the data being compressed, and
the reconstruction is identical to the original data. In
lossy compression some of the information contained
in the original data is irretrievably lost. The loss in in-
formation is, in some sense, a payment for achieving
higher levels of compression. We begin our examina-
tion of data compression schemes by first looking at
lossless compression techniques.

II. LOSSLESS COMPRESSION

Lossless compression involves finding a representation
which will exactly represent the source. There should
be no loss of information, and the decompressed, or

reconstructed, sequence should be identical to the
original sequence. The requirement that there be no
loss of information puts a limit on how much com-
pression we can get. We can get some idea about this
limit by looking at some concepts from information
theory.

A. Information and Entropy

In one sense it is impossible to denote anyone as the
parent of data compression: people have been finding
compact ways of representing information since the
dawn of recorded history. One could argue that the
drawings on the cave walls are representations of a sig-
nificant amount of information and therefore qualify as
a form of data compression. Significantly less contro-
versial would be the characterizing of the Morse code
as a form of data compression. Samuel Morse took ad-
vantage of the fact that certain letters such as e and a
occur more frequently in the English language than q
or z to assign shorter code words to the more frequently
occurring letters. This results in lower average trans-
mission time per letter. The first person to put data
compression on a sound theoretical footing was Claude
E. Shannon (1948). He developed a quantitative notion
of information that formed the basis of a mathematical
representation of the communication process.

Suppose we conduct a series of independent ex-
periments where each experiment has outcomes A1,
A2, . . ., AM. Shannon associated with each outcome a
quantity called self information, defined as

i(Ak) � log �
P(

1
Ak)
�

The units of self-information are bits, nats, or Hart-
leys, depending on whether the base of the logarithm

is 2 e, or 10. The average amount of information as-
sociated with the experiment is called the entropy H:

H � E[i(A)] � �
M

k�1
i(Ak)P(Ak) � �

M

k�1
P(Ak) log �

P(
1
Ak)
�

� � �
M

k�1
P(Ak) log P(Ak) (1)

Suppose the “experiment” is the generation of a let-
ter by a source, and further suppose the source gen-
erates each letter independently according to some
probability model. Then H as defined in Eq. (1) is
called the entropy of the source. Shannon showed
that if we compute the entropy in bits (use logarithm
base 2) the entropy is the smallest average number of
bits needed to represent the source output.

We can get an intuitive feel for this connection be-
tween the entropy of a source and the average num-
ber of bits needed to represent its output (denoted by
rate) by performing a couple of experiments.

Suppose we have a source which puts out one of
four letters {A1, A2, A3, A4}. In order to ascertain the
outcome of the experiment we are allowed to ask a
predetermined sequence of questions which can be
answered with a yes or a no. Consider first the case of
a source which puts out each letter with equal proba-
bility, that is,

P(Ak) � �
1
4

� k � 1,2,3,4

From Eq. (1) the entropy of this source is two bits. The
sequence of questions can be represented as a flow-
chart as shown in Fig. 1. Notice that we need to ask two
questions in order to determine the output of the
source. Each answer can be represented by a single bit
(1 for yes and 0 for no); therefore, we need two bits to
represent each output of the source. Now consider a

424 Data Compression

Figure 1 Sequence of questions for equiprobable source.

slightly different situation in which the source puts out
the four different letters with different probabilities:

P(A1) � �
1
2

�, P(A2) � �
1
4

�, P(A3) � �
1
8

�, P(A4) � �
1
8

�

The entropy of this source is 1.75 bits.
Armed with the information about the source, we

construct a different sequence of questions shown in
Fig. 2. Notice that when the output of the source is A1

we need ask only one question. Because P(A1) � �
1
2

� on
the average this will happen half the time. If the source
output is A2 we need to ask two questions. This will
happen a quarter of the time. If the source output is
A3 or A4 we will need to ask three questions. This too
will happen a quarter of the time. Thus, half the time
we can represent the output of the source with one
bit, a quarter of the time with two bits, and another
quarter of the time with three bits. Therefore, on the
average we will need 1.75 bits to represent the output
of the source. We should note that if our information
about the frequency with which the letters occur is
wrong we will end up using more bits than if we had
used the question sequence of Fig. 1. We can easily
see this effect by switching the probabilities of A1 and
A2 and keeping the questioning strategy of Fig. 2.

Both these examples demonstrate the link between
average information, or entropy of the source, and
the average number of bits, or the rate, required to
represent the output of the source. They also demon-
strate the need for taking into account the proba-
bilistic structure of the source when creating a repre-
sentation. Note that incorrect estimates of the

probability will substantially decrease the compres-
sion efficiency of the procedure.

The creation of a binary representation for the
source output, or the generation of a code for a source,
is the topic of the next section.

B. Coding

In the second example of the previous section the way
we obtained an efficient representation was to use
fewer bits to represent letters that occurred more fre-
quently—the same idea that Samuel Morse had. It is
a simple idea, but in order to use it we need an algo-
rithm for systematically generating variable length
code words for a given source. David Huffman (1951)
created such an algorithm for a class project. We de-
scribe this algorithm below. Another coding algorithm
which is fast gaining popularity is the arithmetic cod-
ing algorithm. We will also describe the arithmetic
coding algorithm in this section.

1. Huffman Coding

Huffman began with two rather obvious conditions
on the code and then added a third that allowed for
the construction of the code. The conditions were:

1. The codes corresponding to the higher
probability letters could not be longer than the
code words associated with the lower probability
letters.

Data Compression 425

Figure 2 Sequence of questions for second source.

2. The two lowest probability letters had to have
code words of the same length.

He added a third condition to generate a practical
compression scheme.

3. The two lowest probability letters have codes that
are identical except for the last bit.

It is easy to visualize these conditions if we think of the
code words as the path through a binary tree: a zero
bit denoting a left branch and a one bit denoting a
right branch. The two lowest probability letters would
then be the two leaves of a node at the lowest level of
the tree. We can consider the parent node of these
leaves as a letter in a reduced alphabet which is ob-
tained as a combination of the two lowest probability
symbols. The probability of the letter corresponding to
this node would be the sum of the probabilities of the
two individual letters. Now, we can find the two lowest
probability symbols of the reduced alphabet and treat
them as the two leaves of a common node. We can con-
tinue in this fashion until we have completed the tree.

We can see this process best through an example.

EXAMPLE 1: HUFFMAN CODING

Suppose we have a source alphabet with five letters
{a1,a2,a3,a4,a5} with probabilities of occurrence P(a1)
� 0.15, P(a2) � 0.04, P(a3) � 0.26, P(a4) � 0.05, and
P(a5) � 0.50. We can calculate the entropy to be

H � � �
5

i�1
P(ai) log P(ai) � 1.817684 bits

If we sort the probabilities in descending order we can
see that the two letters with the lowest probabilities are
a2 and a4. These will become the leaves on the lowest
level of the binary tree. The parent node of these
leaves will have a probability of 0.09. If we consider the
parent node as a letter in a reduced alphabet it will be
one of the two letters with the lowest probability: the
other one being a1. Continuing in this manner we get
the binary tree shown in Fig. 3. The code is

a1 110
a2 1111
a3 10
a4 1110
a5 0

It can be shown that, for a sequence of independent
letters, or a memoryless source, the rate of the Huff-
man code will always be within one bit of the entropy.

H � R � 1

In fact we can show that (Gallagher, 1978) if pmax is
the largest probability in the probability model, then

for pmax � 0.5 the upper bound for the Huffman code
is H(S) � pmax, while for pmax � 0.5, the upper bound
is H(S) � pmax � 0.086. If instead of coding each let-
ter separately we group the letters into blocks con-
taining n letters, then the rate is guaranteed to be
even closer to the entropy of the source. Using our
looser bound we can show that the bounds on the av-
erage length of the code will be

H � R � �
n
1

�

However, blocking letters together means an expo-
nential increase in the size of the alphabet. There-
fore, in many situations this particular approach is
not very practical.

2. Arithmetic Coding

Practical arithmetic coding came into existence in
1976 through the work of Risannen (1976) and Pasco
(1976). However, the basic ideas of arithmetic coding
have their origins in the original work of Shannon
(1948). (For a brief history see Sayood, 2000). Arith-
metic coding relies on the fact that there are an un-
countably infinite number of numbers between 0 and
1 (or any other nonzero interval on the real number
line). Therefore, we can assign a unique number from
the unit interval to any sequence of symbols from a fi-
nite alphabet. We can then encode the entire se-
quence with this single number which acts as a label
or tag for this sequence. In other words, this number
is a code for this sequence: a binary representation of
this number is a binary code for this sequence. Be-
cause this tag is unique, in theory, given the tag the
decoder can reconstruct the entire sequence. In or-
der to implement this idea we need a mapping from

426 Data Compression

Figure 3 Huffman code for the five letter alphabet.

the sequence to the tag and an inverse mapping from
the tag to the sequence.

One particular mapping is the cumulative density
function of the sequence. Let us view the sequence to
be encoded as the realization of a sequence of ran-
dom variables {X1, X2, 			} and represent the set of all
possible realizations which have nonzero probability
of occurrence in lexicographic order by {Xi}. Given a
particular realization

Xk � xk,1,xk,2, 			

the cumulative distribution function FX(xk,1,xk,2,) is
a number between 0 and 1. Furthermore, as we are
only dealing with sequences with nonzero probability,
this number is unique to the sequence Xk. In fact, we
can uniquely assign the half-open interval [FX(Xk�1),
FX(Xk�1)) to the sequence Xk. Any number in this in-
terval, which we will refer to as the tag interval for Xk,
can be used as a label or tag for the sequence Xk. The
arithmetic coding algorithm is essentially the calcula-
tion of the end points of this tag interval. Before we
describe the algorithm for computing these end
points let us look at an example for a sequence of
manageable length.

Suppose we have an iid sequence with letters from
an alphabet A � {a1,a2,a3,a4}. The probability of oc-
currence of the letters are given by p0 � 0.3, p1 � 0.1,
p2 � 0.2, and p4 � 0.4. Ordering the letters from the
smallest to the largest index, we have FX(a1) � 0.3,
FX(a2) � 0.4, FX(a3) � 0.6, and FX(a4) � 1.0. We will
find the tag interval for the sequence a4,a1,a2,a4. We
begin with a sequence that consists of a single letter
a4. Given that FX(a4) � 1.0 and FX(a3) � 0.6, the tag
interval is [0.6,1.0). Now consider the two-letter se-
quence a4, a1. If we impose a lexicographic ordering,

FX1,X2(X1 � a4, X2 � a1)

� �
3

i�1
�
4

j�1
Pr[X1 � ai,X2 � aj] � Pr[X1 � a4,X2 � a1]

� FX(a3) � Pr[X1 � a4,X2 � a1]

� 0.6 � 0.4
 0.3 � 0.72

The two-letter sequence prior to a4, a1 in the lexico-
graphic ordering is a3, a4. We can compute FX1,X2(X1

� a3,X2 � a4) � 0.6; therefore, the tag interval is
(0.6,0.72]. Another way of obtaining the tag interval
would be to partition the single letter tag interval
[0.6,1) in the same proportions as the partitioning of
the unit interval. As in the case of the unit interval,
the first subpartition would correspond to the letter
a1, the second subpartition would correspond to the

letter a2, and so on. As the second letter of the se-
quence under consideration is a1, the tag interval
would be the first subinterval, which is [0.6,0.72).
Note that the tag interval for the two-letter sequence
is wholly contained in the tag interval corresponding
to the first letter. Furthermore, note that the size of
the interval is p4p1 � 0.12. Continuing in this manner
for the three-letter sequence, we can compute
FX1,X2,X3(a4,a1,a2) � 0.672 and FX1,X2,X3(a4,a1,a1) �
0.648. Thus, the tag interval is (0.648,0.672]. Again
notice that the tag interval for the three letter se-
quence is entirely contained within the tag interval
for the two-letter sequence, and the size of the inter-
val has been reduced to p4p1p2 � 0.024. This pro-
gression is shown in Fig. 4. If we represent the upper
limit of the tag interval at time n by u(n) and the lower
limit by l(n), we can show that

l(n) � l(n�1) � (u(n�1) � l(n�1)) FX(xn � 1) (2)

u(n) � l(n�1) � (u(n�1) � l(n�1)) FX(xn). (3)

Notice that as the sequence length increases, the tag
interval is always a subset of the previous tag interval.
However, the number of digits required to represent
the tag intervals increases as well. This was one of the
problems with the initial formulation of arithmetic
coding. Another was the fact that you could not send
the code until the last element of the sequence was
encoded. Both these problems can be partially re-
solved by noting that if we use a binary alphabet, once
the interval is complete in either the upper or lower
half of the unit interval the most significant digits of
the upper and lower limits of the tag interval are iden-
tical. Furthermore, there is no possibility of the tag in-
terval migrating from the half of the unit interval in
which it is contained to the other half of the unit in-
terval. Therefore, we can send the most significant bit
of the upper and lower intervals as the tag for the se-
quence. At the same time we can shift the most sig-
nificant bit out of the upper and lower limits, effec-
tively doubling the size of the tag interval. Thus, each
time the tag interval is trapped in either the upper or
lower half of the unit interval, we obtain one more bit
of the code and we expand the interval. This way we
prevent the necessity for increasing precision as long
as the tag interval resides entirely within the top or bottom
half of the unit interval. We can also start transmitting
the code before the entire sequence has been en-
coded. We have to use a slightly more complicated
strategy when the tag interval straddles the midpoint
of the unit interval. We leave the details to Sayood
(2000).

Data Compression 427

C. Sources with Memory

Throughout our discussion we have been assuming
that each symbol in a sequence occurs independently
of the previous sequence. In other words, there is no
memory in the sequence. Most sequences of interest to
us are not made up of independently occurring sym-
bols. In such cases an assumption of independence
would give us an incorrect estimate of the probability
of occurrence of that symbol, thus leading to an inef-
ficient code. By taking account of the dependencies
in the sequence we can significantly improve the
amount of compression available. Consider the letter
u in a piece of English text. The frequency of occur-
rence of the letter u occurring in a piece of English
text is approximately 0.018. If we had to encode the
letter u and we used this value as our estimate of the
probability of the letter, we would need approximately
log2 �

0.0
1
18
� � 6 bits. However, if we knew the previous

letter was q our estimate of the probability of the let-
ter u would be substantially more than 0.018 and thus
encoding u would require fewer bits. Another way of
looking at this is by noting that if we have an accurate
estimate of the probability of occurrence of particular
symbols we can obtain a much more efficient code. If
we know the preceding letter(s) we can obtain a more
accurate estimate of the probabilities of occurrence
of the letters that follow. Similarly, if we look at pixel
values in a natural image and assume that the pixels
occur independently, then our estimate of the proba-
bility of the values that each pixel could take on would
be approximately the same (and small). If we took
into account the values of the neighboring pixels, the

probability that the pixel under consideration would
have a similar value would be quite high. If, in fact,
the pixel had a value close to its neighbors, encoding
it in this context would require many fewer bits than
encoding it independent of its neighbors (Memon
and Sayood, 1995).

Shannon (1948) incorporated this dependence
in the definition of entropy in the following manner.
Define

Gn � � �
i1�m

i1�m
�

i2�m

i2�m
			 �

in�m

in�1

P(X1 � i1,X2 � i2, . . ., Xn � in)

log P(X1 � i1,X2 � i2,. . . ,Xn � in)

where {X1,X2, . . .,Xn} is a sequence of length n gen-
erated by a source S. Then the entropy of the source
is defined as

H(S) � lim
n→�

�
n
1

� Gn

There are a large number of compression schemes
that make use of this dependence.

D. Context-Based Coding

The most direct approach to using this dependence
is to code each symbol based on the probabilities pro-
vided by the context. If we are to sequentially encode
the sequence x1,x2, . . .,xn, we need � log �i�0

n�1

p(xi�1|x1,x2, . . .,xn) bits (Weinberger et al., 1995). The
history of the sequence makes up its context. In prac-

428 Data Compression

0.648

0.6552

0.6576

0.6624

0.67200.720

0.672

0.648

0.636

0.600

0.84

0.76

0.72

0.6

1.0

a4

a3

a2

a1

0.3

0.0

0.4

0.6

1.0

Figure 4 Narrowing of the tag interval for the sequence a4a0a2a4.

tice, if we had these probabilities available they could
be used by an arithmetic coder to code the particular
symbol. To use the entire history of the sequence as
the context is generally not feasible. Therefore, the
context is made up of some subset of the history. It
generally consists of those symbols that our knowl-
edge of the source tells us will have an affect on the
probability of the symbol being encoded and which
are available to both the encoder and the decoder.
For example, in the binary image coding standard
JBIG, the context may consist of the pixels in the im-
mediate neighborhood of the pixel being encoded
along with a pixel some distance away which reflects
the periodicity in half-tone images. Some of the most
popular context-based schemes today are ppm (pre-
diction with partial match) schemes.

1. Prediction with Partial Match

In general, the larger the size of a context, the higher
the probability that we can accurately predict the sym-
bol to be encoded. Suppose we are encoding the
fourth letter of the sequence their. The probability of
the letter i is approximately 0.053. It is not substan-
tially changed when we use the single letter context e,
as e is often followed by most letters of the alphabet.
In just this paragraph it has been followed by d, i, l,
n, q, r, t, and x. If we increase the context to two let-
ters he, the probability of i following he increases. It in-
creases even more when we go to the three-letter con-
text the. Thus, the larger the context, the better off we
usually are. However, all the contexts and the proba-
bilities associated with the contexts have to be avail-
able to both the encoder and the decoder. The num-
ber of contexts increases exponentially with the size
of the context. This puts a limit on the size of the con-
text we can use. Furthermore, there is the matter of
obtaining the probabilities relative to the contexts.
The most efficient approach is to obtain the frequency
of occurrence in each context from the past history
of the sequence. If the history is not very large, or the
symbol is an infrequent one, it is quite possible that
the symbol to be encoded has not occurred in this
particular context.

The ppm algorithm initially proposed by Cleary and
Witten (1984) starts out by using a large context of
predetermined size. If the symbol to be encoded has
not occurred in this context, an escape symbol is sent
and the size of the context is reduced. For example,
when encoding i in the example above we could start
out with a context size of three and use the context
the. If i has not appeared in this context, we would
send an escape symbol and use the second order con-

text he. If i has not appeared in this context either, we
reduce the context size to one and look to see how of-
ten i has occurred in the context of e. If this is zero,
we again send an escape and use the zero order con-
text. The zero order context is simply the frequency
of occurrence of i in the history. If i has never oc-
curred before, we send another escape symbol and
encode i, assuming an equally likely occurrence of
each letter of the alphabet.

We can see that if the symbol has occurred in the
longest context, it will likely have a high probability
and will require few bits. However, if it has not, we pay
a price in the shape of the escape symbol. Thus, there
is a tradeoff here. Longer contexts may mean higher
probabilities or a long sequence of escape symbols.
One way out of this has been proposed by Cleary and
Teahan (1997) under the name ppm*. In ppm* we
look at the longest context that has appeared in the
history. It is very likely that this context will be fol-
lowed by the symbol we are attempting to encode. If
so, we encode the symbol with very few bits. If not, we
drop to a relatively short context length and continue
with the standard ppm algorithm. There are a number
of variants of the ppm* algorithm, with the most pop-
ular being ppmz developed by Bloom. It can be found
at http://www.cbloom.com/src/ppmz.html.

E. Predictive Coding

If the data we are attempting to compress consists of
numerical values, such as images, using context-based
approaches directly can be problematic. There are
several reasons for this. Most context-based schemes
exploit exact reoccurrence of patterns. Images are
usually acquired using sensors that have a small
amount of noise. While this noise may not be per-
ceptible, it is sufficient to reduce the occurrence of
exact repetitions of patterns. A simple alternative to
using the context approach is to generate a predic-
tion for the value to be encoded and encode the pre-
diction error. If there is considerable dependence
among the values with high probability, the predic-
tion will be close to the actual value and the predic-
tion error will be a small number. We can encode this
small number, which as it occurs with high probabil-
ity will require fewer bits to encode. An example of
this is shown in Fig. 5. The plot on the left of Fig. 5 is
the histogram of the pixel values of the sensin image,
while the plot on the right is the histogram of the dif-
ferences between neighboring pixels. We can see that
the small differences occur much more frequently
and therefore can be encoded using fewer bits. As

Data Compression 429

opposed to this, the actual pixel values have a much
more uniform distribution.

Because of the strong correlation between pixels in
a neighborhood, predictive coding has been highly
effective for image compression. It is used in the cur-
rent state-of-the-art algorithm CALIC (Wu and
Memon, 1996) and forms the basis of JPEG-LS, which
is the standard for lossless image compression.

1. JPEG-LS

The JPEG-LS standard uses a two-stage prediction
scheme followed by a context-based coder to encode
the difference between the pixel value and the pre-
diction. For a given pixel the prediction is generated
in the following manner. Suppose we have a pixel
with four neighboring pixels as shown in Fig. 6. The
initial prediction X is obtained as

if NW � max(W,N)
X � max(W,N)
else
{

if NW � min(W,N)
X � min(W,N)
else
X � W � N � NW

}

This prediction is then refined by using an estimate
of how much the prediction differed from the actual
value in similar situations in the past. The “situation”
is characterized by an activity measure which is ob-
tained using the differences of the pixels in the neigh-
borhood. The differences NE � N, N � NW, and NW
� W are compared against thresholds which can be
defined by the user and a number between 0 and 364
and a SIGN parameter which takes on the values �1
and �1. The sign parameter is used to decide whether
the correction should be added or subtracted from
the original prediction. The difference between the
pixel value and its prediction is mapped into the range
of values occupied by the pixel and encoded using
Golomb codes. For details, see Sayood (2000) and
Weinberger et al. (1998).

2. Burrows-Wheeler Transform

The Burrows-Wheeler transform (BWT) uses the
memory in a sequence in a somewhat different man-
ner than either of the two techniques described pre-
viously. In this technique the entire sequence to be
encoded is read in and all possible cyclic shifts of the
sequence are generated. These are then sorted in lex-
icographic order. The last letter of each sorted cycli-
cally shifted sequence is then transmitted along with
the location of the original sequence in the sorted
list. The sorting results in long sequences of identical
letters in the transmitted sequence. This structure can
be used to provide a very efficient representation of
the transmitted sequence. The easiest way to under-
stand the BWT algorithm is through an example.

EXAMPLE: BWT
Suppose we wish to encode the sequence

RINTINTIN. We first obtain all cyclical shifts of this se-
quence and then sort them in lexicographic order as
shown in Fig. 7.

We transmit the string consisting of the last letters
in the lexicographically ordered set and the position

430 Data Compression

Figure 5 Histograms of pixel values in the sensin image and of the differences between neighboring pixels.

Figure 6 Labeling of pixels in the neighborhood of a pixel to
be encoded.

of the original string in the lexicographically ordered
set. For this example the transmitted sequence would
be the string TTRIIINNN and the index 7. Notice that
the string to be transmitted contains relatively long
strings of the same letter. If our example string had
been realistically long, the runs of identical letters
would have been correspondingly long. Such a string
is easy to compress. The method of choice for BWT is
move-to-front coding (Burrows and Wheeler, 1994;
Nelson, 1996; Sayood, 2000).

Once the string and the index have been received,
we decode them by working backwards. We know the
last letter in the string is its seventh element which is N.
To find the letter before N we need to generate the
string containing the first letters of the lexicographi-
cally ordered set. This can be easily obtained as II-
INNNRTT by lexicographically ordering the received
sequence. We will refer to this sequence of first letters
as the F sequence and the sequence of last letters as the
L sequence. Note that given a particular string and its
cyclic shift, the last letter of the string becomes the first
letter of the cyclically shifted version, and the last letter
of the cyclically shifted version is the letter prior to the
last letter in the original sequence. Armed with this fact
and the knowledge of where the original sequence was
in the lexicographically ordered set, we can decode the
received sequence. We know the original sequence was
seventh in the lexicographically ordered set; therefore,
the last letter of the sequence has to be N. This is the
first N in L. Looking in F we see that the first N appears
in the fourth location. The fourth element in L is I.
Therefore, the letter preceding N in our decoded se-
quence is I. This I is the first I in L; therefore, we look
for the first I in F. The first I occurs in the first location.
The letter in the first location in L is T. Therefore, the
decoded sequence becomes TIN. Continuing in this
fashion we can decode the entire sequence.

The BWT is the basis for the compression utilities bzip
and bzip2. For more details on BWT compression, see
Burrows and Wheeler (1994), Nelson and Gailly
(1996), and Sayood (2000).

F. Dictionary Coding

One of the earliest forms of compression is to create
a dictionary of commonly occurring patterns which is
available to both the encoder and the decoder. When
this pattern occurs in a sequence to be encoded it can
be replaced by the index of its entry in the dictionary.
A problem with this approach is that a dictionary that
works well for one sequence may not work well for an-
other sequence. In 1977 and 1978, Jacob Ziv and Abra-
ham Lempel (1977, 1978) described two different ways
of making the dictionary adapt to the sequence being
encoded. These two approaches form the basis for
many of the popular compression programs of today.

1. LZ77

The 1977 algorithm commonly referred to as LZ77
uses the past of the sequence as the dictionary. When-
ever a pattern recurs within a predetermined window,
it is replaced by a pointer to the beginning of its pre-
vious occurrence and the length of the pattern. Con-
sider the following (admittedly weird) sequence:

a mild fork for miles vorkosigan

We repeat this sentence in Fig. 8 with recurrences re-
placed by pointers. If there were sufficient recurrences
of long patterns, we can see how this might result in
a compressed representation. In Fig. 8 we can see that
the “compressed” representation consists of both
pointers and fragments of text that have not been en-
countered previously. We need to inform the decoder
when a group of bits is to be interpreted as a pointer
and when it is to be interpreted as text. There are a
number of different ways in which this can be done.
The original LZ77 algorithm used a sequence of
triples <o,l,c> to encode the source output, where o is
the offset or distance to the previous recurrence, l is
the length of the pattern, and c corresponds to the
character following the recurrence. In this approach
when a symbol was encountered for the first time (in
the encoding window) the values for o and l were set
to 0. Storer and Syzmanski (1982) suggested using a
one bit flag to differentiate between pointers and sym-
bols which had not occurred previously in the coding

Data Compression 431

Figure 7 Cyclically shifted versions of the original sequence
and lexicographically order set of the cyclical shifts.

m i l d f o r k e s v g na

Figure 8 Illustration for LZ77.

window. In their variant, commonly known as LZSS,
the one bit flag is followed by either a pair (<o,l>) or
the code word of the new symbol. There are a num-
ber of variants of both the LZ77 and the LZSS algo-
rithms which are the basis for several popularly used
compression utilities. Included among them are gzip
and PNG (portable network graphics).

2. LZ78

The 1978 algorithm requires actually building a dy-
namic dictionary based on the past symbols in the se-
quence. The sequence is encoded using pairs of code
words <i,c>, where i is the index to a pattern in the
dictionary and c is the code word of the character fol-
lowing the current symbol. The most popular variant
of the LZ78 algorithm is the LZW algorithm devel-
oped by Terry Welch (1984). In this variation the dic-
tionary initially contains all the individual letters of
the source alphabet. The encoder operates on the se-
quence by collecting the symbols in the sequence into
a pattern p until such time as the addition of another
symbol will result in a pattern which is not con-
tained in the dictionary. The index to p is then trans-
mitted, the pattern p concatenated with is added as
the next entry in the dictionary, and a new pattern p
is begun with as the first symbol.

Variants of the LZW algorithm are used in the UNIX
compress command as part of the graphic interchange
format (GIF) and for the modem protocol v. 42bis.

III. LOSSY COMPRESSION

The requirement that no information be lost in the
compression process puts a limit on the amount of com-
pression we can obtain. The lowest number of bits per
sample is the entropy of the source. This is a quantity
over which we generally have no control. In many ap-
plications this requirement of no loss is excessive. For
example, there is high-frequency information in an im-
age which cannot be perceived by the human visual sys-
tem. It makes no sense to preserve this information for
images that are destined for human consumption. Sim-
ilarly, when we listen to sampled speech we cannot per-
ceive the exact numerical value of each sample. There-
fore, it makes no sense to expend coding resources to
preserve the exact value of each speech sample. In
short, there are numerous applications in which the
preservation of all information present in the source
output is not necessary. For these applications we relax
the requirement that the reconstructed signal be iden-
tical to the original. This allows us to create compres-

sion schemes that can provide a much higher level of
compression. However, it should be kept in mind that
we generally pay for higher compression by increased
information loss. Therefore, we measure the perfor-
mance of the compression system using two metrics. We
measure the amount of compression as before; how-
ever, we also measure the amount of distortion intro-
duced by the loss of information. The measure of dis-
tortion is generally some variant of the mean squared
error. If at all possible, it is more useful to let the ap-
plication define the distortion.

In this section we describe a number of compres-
sion techniques that allow loss of information, hence
the name lossy compression. We begin with a look at
quantization which, in one way or another, is at the
heart of all lossy compression schemes.

A. Quantization

Quantization is the process of representing the out-
put of a source with a large (possibly infinite) alpha-
bet with a small alphabet. It is a many-to-one mapping
and therefore irreversible. Quantization can be per-
formed on a sample-by-sample basis or it can be per-
formed on a group of samples. The former is called
scalar quantization and the latter is called vector quan-
tization. We look at each in turn.

1. Scalar Quantization

Let us, for the moment, assume that the output al-
phabet of the source is all or some portion of the real
number line. Thus, the size of the source alphabet is
infinite. We would like to represent the source output
using a finite number of code words M. The quantizer
consists of two processes: an encoding process that
maps the output of the source into one of the M code
words, and a decoding process that maps each code
word into a reconstruction value. The encoding
process can be viewed as a partition of the source al-
phabet, while the decoding process consists of ob-
taining representation values for each partition. An
example for a quantizer with an alphabet size of four
is shown in Fig. 9. If the quantizer output alphabet in-
cludes 0, the quantizer is called a midtread quantizer.
Otherwise, it is called a midrise quantizer.

The simplest case is when the partitions are of the
same size. Quantizers with same size partitions are
called uniform quantizers. If the source is uniformly dis-
tributed between �A and A, the size of the partition
or quantization interval � is 2A/M. The reconstruc-
tion values are located in the middle of each quanti-

432 Data Compression

zation interval. If we define the difference between
the input x and the output Q(x) to be the quantiza-
tion noise, we can show that the variance of the quan-
tization noise in this situation is �2/12. If the distrib-
ution of the source output is other than uniform, we
can optimize the value of � for the particular distrib-
ution (Gersho and Gray, 1991; Max, 1960).

Often, the distribution of the quantizer input is a
peaked distribution modeled as a Gaussian or Laplacian
distribution. If the encoder is going to use a fixed length
code, that is, each quantizer output is encoded using the
same number of bits, we can get a lower average distor-
tion if we use smaller partitions corresponding to the
lower value inputs. Such a quantizer is called a nonuni-
form quantizer and is specified by the boundary values of
the partition bi and the reconstruction levels yi. If we
know the probability density function fX(x), the bound-
ary and reconstruction values for an M-level quantizer
which minimizes the mean squared error can be ob-
tained by iteratively solving the following equations.

yj �

�bj

bj�1
xfX(x)dx}

�bj

bj�1
fX(x)dx

(4)

bj � (5)

Rather than changing the size of the quantization in-
tervals, we can also implement a nonuniform quan-
tizer as shown in Fig. 10. The high-probability input

yj�1 � yj�
2

region is “spread out” so as to make use of multiple
quantization intervals. The mapping is reversed after
the quantizer. For a companding function c(x) and a
source which lies between �xmax, the variance of the
quantization noise is

�q
2 � �xmax

�xmax
dx. (6)

If a variable length code such as a Huffman code or
arithmetic coding is used to encode the output of the
quantizer, Gish and Pierce (1968) showed that the opti-
mum quantizer is a uniform quantizer which covers the
entire range of the source output. If the range is large
and our desired distortion is small, the number of quan-
tizer levels can become quite large. In these situations we
can use a quantizer with a limited output alphabet called
a recursively indexed quantizer (Sayood and Na, 1992).

The JPEG algorithm uses a set of uniform scalar
quantizers for quantizing the coefficients used to rep-
resent the image. The quantizer levels are then en-
coded using a variable length code.

2. Vector Quantization

The idea of representing groups of samples rather
than individual samples has been present since Shan-
non’s original papers (1948). There are several ad-
vantages to representing sequences. Consider the sam-
ples of the signal shown in Fig. 11. The values vary
approximately between �4 and 4. We could quantize
these samples with an eight-level scalar quantizer with
� � 1. So the reconstruction values would be {��

1
2

�, ��
3
2

�,
��

5
2

�, ��
7
2

�}. If we were to use a fixed length code we
would need three bits to represent the eight quan-
tizer outputs. If we look at the output of the quantizer
in pairs, we get 64 possible reconstruction values.
These are represented by the larger filled circles in
Fig. 12. However, if we plot the samples of the signal
as pairs (as in Fig. 13) we see that the samples are
clustered along a line in the first and third quadrants.
This is due to the fact that there is a high degree of
correlation between neighboring samples, which
means that in two dimensions the samples will cluster

fX(x)
�
(c�(x))2

x2
max�

3M2

Data Compression 433

Reconstruction
values

Partitions

Figure 9 Quantizer with alphabet size of four.

Figure 10 Companded quantization.

around the y � x line. Looking from a two-dimen-
sional point of view, it makes much more sense to
place all the 64 output points of the quantizer close
to the y � x line. For a fixed length encoding, we
would need six bits to represent the 64 different quan-
tizer outputs. As each quantizer output is a represen-
tation of two samples, we would end up with three bits
per sample. Therefore, for the same number of bits,
we would get a more accurate representation of the
input and, therefore, incur less distortion. We pay for
this decrease in distortion in several different ways.
The first is through an increase in the complexity of
the encoder. The scalar quantizer has a very simple
encoder. In the case of the two-dimensional quan-

tizer, we need to block the input samples into “vec-
tors” and then compare them against all the possible
quantizer output values. For three bits per sample
and two dimensions this translates to 64 possible com-
pares. However, for the same number of bits and a
block size, or vector dimension, of 10, the number of
quantizer outputs would be 23
10 which is
1,073,741,824! As it generally requires a large block
size to get the full advantage of a vector quantizer, this
means that the rate at which a vector quantizer (VQ)
operates (i.e., bits per sample) is usually quite low.

The second way we pay is because of the fact that
the quantizer becomes tuned to our assumptions
about the source. For example, if we put all our quan-

434 Data Compression

Figure 11 Samples of a signal.

-1.0

-2.0

-3.0

-4.0

Figure 12 Two-dimensional view of an eight-level scalar
quantizer.

Figure 13 Two-dimensional view of an eight-level scalar
quantizer.

tizer output values along the y � x line and then we
started getting input vectors which lay in the second
or fourth quadrants, we would end up with substan-
tial distortion in the reconstruction.

The operation of a VQ can be summarized as fol-
lows (see Fig. 14). Both the encoder and the decoder
have copies of the VQ codebook. The codebook con-
sists of the quantizer reconstruction vectors. The en-
coder blocks the input into an N sample vector and
finds the vector in the codebook which is closest (usu-
ally in the Euclidean sense) to the input. The encoder
then sends the index of the closest match. The de-
coder, upon receiving the index, performs a table
lookup and obtains the reconstruction vector.

The VQ codebook is usually obtained using a clus-
tering algorithm popularized by Linde, Buzo, and
Gray (1980). It is generally referred to by the initials
of the three authors (LBG). The LBG algorithm ob-
tains a nearest neighbor partition of the source out-
put space by making use of a training set. Selection
of the training set can be an important aspect of the
design of the VQ as it embodies our assumptions
about the source output. Details of the LBG algo-
rithm can be found in a number of places (see
Gersho and Gray, 1991; Linde, Buzo, and Gray, 1980;
Sayood, 2000).

There are a number of variations on the basic VQ
described above. The most well known is the tree
structured vector quantizer (TSVQ). Details on these
can be found in Gersho and Gray (1991).

B. Predictive Coding

If we have a sequence with sample values that vary
slowly as in the signal shown in Fig. 11, knowledge
of the previous samples gives us a lot of information
about the current sample. This knowledge can be
used in a number of different ways. One of the ear-
liest attempts at exploiting this redundancy was in

the development of differential pulse code modula-
tion (DPCM) (Cutler, 1952). A version of DPCM is
the algorithm used in the International Telecom-
munication Union (ITU) standard G.726 for speech
coding.

The DPCM system consists of two blocks as shown
in Fig. 15. The function of the predictor is to obtain
an estimate of the current sample based on the recon-
structed values of the past sample. The difference be-
tween this estimate, or prediction, and the actual value
is quantized, encoded, and transmitted to the receiver.
The decoder generates an estimate identical to the
encoder, which is then added on to generate the re-
constructed value. The requirement that the predic-
tion algorithm use only the reconstructed values is to
ensure that the prediction at both the encoder and
the decoder are identical. The reconstructed values
used by the predictor, and the prediction algorithm,
are dependent on the nature of the data being en-
coded. For example, for speech coding the predictor
often uses the immediate past several values of the se-
quence, along with a sample that is a pitch period
away, to form the prediction. In image compression
the predictor may use the same set of pixels used by
the JPEG-LS algorithm to form the prediction.

The predictor generally used in a DPCM scheme is
a linear predictor. That is, the predicted value is ob-
tained as a weighted sum of past reconstructed values.

pn � �
i�I

ai xi

where I is an index set corresponding to the samples
to be used for prediction. The coefficients ai are gen-
erally referred to as the predictor coefficients. If we as-
sume the source output to be wide sense stationary, the
predictor coefficients can be obtained as a solution of
the discrete form of the Weiner-Hopf equations

A � R�1P

where A is an M
 1 vector of predictor coefficients,
R is the M
 M autocorrelation matrix of the set of

Data Compression 435

Encoder Decoder

Figure 14 Operation of a vector quantizer.

samples used to form the prediction, and P is the M

1 vector of autocorrelation coefficients between the el-
ements of the index set and the value to be estimated.

Both the quantizer and the predictor in the DPCM
system can be adaptive. The most common form of
adaptivity for DPCM in speech coding is based on the
reconstruction values. This allows both the encoder
and the decoder, in the absence of channel errors, to
adapt using the same information.

In Fig. 16 we show the results of encoding the sensin
image using a simple fixed predictor and a recursively
indexed quantizer with entropy coding.

C. Transform Coding

Transform coding first became popular in the early
1970s as a way of performing vector quantization
(Huang and Schultheiss, 1963). Transform coding
consists of three steps. The data to be compressed is
divided into blocks, and the data in each block is
transformed to a set of coefficients. The transform is

selected to compact most of the energy into as few co-
efficients as possible. The coefficients are then quan-
tized with different quantizers for each coefficient. Fi-
nally, the quantizer labels are encoded.

Transform coding generally involves linear trans-
forms. Consider the situation where the data is
blocked into vectors of length M. The transform co-
efficients can be obtained by multiplying the data
with a transform matrix of dimension M
 M.

� � AX

where X is a vector of size M
 1 containing the data,
and � is the M
 1 vector of transform coefficients. The
data can be recovered by taking the inverse transform:

X � A�1�

In most transforms of interest the transform matrix is
unitary, that is,

A�1 � AT

If the data is stationary we can show that the optimum
transform in terms of providing the most energy com-

436 Data Compression

Figure 15 Block diagram of a DPCM system.

Figure 16 (a) The original sensin image and (b) the sensin image coded at one bit per pixel using DPCM and the
recursively indexed quantizer.

paction is the Karhunen-Loeve transform (KLT). The
KLT transform matrix is constructed from the eigen-
vectors of the autocorrelation matrix. Therefore, the
transform is data dependent. Different sets of data might
require different transform matrices. In practice, unless
the size of the transform is small relative to the data, it
generally costs too many bits to send the transform ma-
trix to the decoder for the KLT to be feasible. The prac-
tical alternative to the KLT has been the discrete cosine
transform (DCT). The DCT provides comparable com-
pression to the KLT for most sources and has a fixed
transform matrix whose elements are given by:

[A]i,j �
��

M
1
�� cos �(2j �

2M
1)i�
� i � 0, j � 0,1,			, M � 1

��
M
2
�� cos �(2j �

2M
1)i�}
� i � 1,2,			, M � 1,

(7)

j � 0,1,			, M � 1

The rows of the transform matrix are shown in graph-
ical form in Fig. 17. We can see that the rows repre-
sent signals of increasing frequency. Thus, the DCT
breaks the signal up into its frequency components.
As most natural sources, such as speech, have higher
low-frequency content the lower order coefficients
usually contain most of the information about a par-
ticular block. We obtain compression by discarding
those coefficients which contain little or no energy.

When coding two-dimensional sources such as im-
ages, most transform coding schemes use separable

transforms. These are transforms which can be imple-
mented by first taking the transform of the rows and
then taking the transform of the columns (or vice
versa). The popular JPEG image compression standard
uses a separable 8
 8 DCT as its transform. The im-
age is divided into 8
 8 blocks. These blocks are then
transformed to obtain 8
 8 blocks of coefficients.

The coefficients have different statistical character-
istics and may be of differing importance to the end
user. Therefore, they are quantized using different
quantizers. In image compression the lower order co-
efficients are more important in terms of human per-
ception and are therefore quantized using quantizers
with smaller step sizes (and hence less quantization
noise) than the higher order, higher frequency coef-
ficients. A sample set of step sizes recommended by
the JPEG committee (Pennebaker and Mitchell, 1993)
is shown in Fig. 18.

Each quantized value Q(�i,j) is represented by a label

li,j � � .5
where Qij is the step size in the ith row and jth column
and indicates truncation to an integer value. The
reconstruction is obtained from the label by multi-
plying it with the step size.

The final step involves coding the quantization
levels. The JPEG image compression standard uses a

�ij�
Qij

Data Compression 437

0 3 6

7

4
1

2 5

Figure 17 Basis set for the DCT. The numbers in the circles correspond to the row of the transform matrix.

minor variation of a scheme by Chen and Pratt (1984).
The lowest order coefficient, commonly referred to as
the DC coefficient, has been found to be correlated
from block to block. It is therefore coded differen-
tially. The remaining coefficients are scanned in zigzag
order as shown in Fig. 19. As most of the higher fre-
quency coefficients are generally small and the step
sizes used to quantize them are relatively large, most
of the labels at the tail end of the scan are zero. We
take advantage of this fact by sending an end of block
symbol after the last nonzero label on the scan. Thus,
a large number of coefficients are represented using
a single code word. We represent the remaining co-
efficients using a code which is indexed by the mag-
nitude of the coefficient and the number of zero val-
ued labels preceding it. Details of the coding can be
found in a number of places including Pennebaker
and Mitchell (1993) and Sayood (2000).

In Fig. 20 we show the sensin image coded at 0.5
bits per pixel using JPEG.

D. Subband/Wavelet Coding

Transform coding at low rates tends to give the re-
constructed image a blocky appearance. The image in
Fig. 21 has been coded at 0.25 bits per pixel using the
JPEG algorithm. The blocky appearance is clearly ap-
parent. This has led to the increasing popularity of
subband and wavelet-based schemes. The implemen-
tation for both subband and wavelet-based schemes is
similar. The input is filtered through a bank of filters,
called the analysis filterbank. The filters cover the en-
tire frequency range of the signal. As the bandwidth
of each filter is only a fraction of the bandwidth of the
original signal, the Nyquist criterion dictates that the
number of samples required at the output of the fil-
ter be less than the number of samples per second re-
quired at the input of the filter. The output of the fil-
ters is subsampled or decimated and encoded. The
decimated output values are quantized, and the quan-
tization labels are encoded. At the decoder, after the
received samples are decoded they are upsampled by
the insertion of zeros between the received samples
and filtered using a bank of reconstruction filters. A
two-band subband coding scheme is shown in Fig. 22.
The major components of the design of subband cod-
ing schemes are the selection of the filters and the en-
coding method used for the subbands. In order to de-
termine the latter, it may be necessary to allocate a
predetermined bit budget between the various bands.

Notice that in the system shown in Fig. 22 if the fil-
ters are not ideal filters then at least one of the two
analysis filters will have a bandwidth greater than half
the bandwidth of the source output. If the source is
initially sampled at the Nyquist rate, then when we
subsample by two that particular filter output will ef-
fectively be sampled at less the Nyquist rate, thus in-
troducing aliasing. One of the objectives of the design
of the analysis and synthesis filterbanks is to remove
the effect of aliasing.

If we ignore the quantization and coding for the
moment, we can determine conditions on the analy-
sis and synthesis filterbanks such that the reconstruc-
tion is a delayed version of the source output. If we
represent the samples of the source sequence by x(n)
and the reconstruction sequence by x(n), then this re-
quirement known as the perfect reconstruction (PR) re-
quirement can be written as

x(n) � cx(n � n0) (8)

where c is a constant. In terms of the Z transforms of
the sequences, we can write the PR requirement as

X(z) � cz�n0X(z) (9)

438 Data Compression

Figure 18 Sample quantization table.

Figure 19 The zigzag scanning pattern for an 8
 8
transform.

Let H1(z) and H2(z) be the transfer functions for the
analysis filters and K1(z) and K2(z) be the transfer
functions of the synthesis filters. Then we can show
(Sayood, 2000) that

X(z) � �
1
2

� [H1(z)K1(z) � H2(z)K2(z)]X(z)

� �
1
2

� [H1(�z)K1(z) � H2(�z)K2(z)]X(�z) (10)

Examining this equation we can see that in order for
the perfect reconstruction condition to be satisfied,
we need

H1(�z)K1(z) � H2(�z)K2(z) � 0 (11)

H1(z)K1(z) � H2(z)K2(z) � cz�n0 (12)

The first equation is satisfied if we pick the synthesis
filters as

K1(z) � �H2(z) (13)

K2(z) � H1(�z) (14)

To satisfy the second equation we can select H2(z) as
(Mintzer, 1985; Smith and Barnwell, 1984)

H2(z) � z�N H1(�z�1) (15)

Thus, all four filters can be expressed in terms of one
prototype filter. We can show that this prototype filter
should have an impulse response satisfying

�
N

k�0
hkhk�2n � �n (16)

We can arrive at the same requirement on the filter
coefficients using a wavelet formulation. Once we
have obtained the coefficients for the filters, the com-
pression approach using wavelets is similar. After the
source output has been decomposed the next step is
the quantization and coding of the coefficients. The
two most popular approaches to quantization and
coding for image compression are the embedded ze-
rotree (EZW) (Shapiro, 1993) and the set partition-
ing in hierarchical trees (SPIHT) (Said and Pearl-
man, 1996) approaches.

Both these approaches make use of the fact that
there is a relationship between the various subbands.
A natural image is essentially a low-pass signal. There-
fore, most of the energy in a wavelet or subband de-
composition is concentrated in the LL band. One ef-
fect of this is that if the coefficient representing a
particular pixel in the LL band is less than a specified
threshold, the coefficients corresponding to the same
pixel in the other bands will also have a magnitude
smaller than that threshold. Thus, during coding we
can scan the coefficients in the LL band first and
compare them against a sequence of decreasing

Data Compression 439

Figure 20 (a) The original sensin image and (b) the sensin image coded at 0.5 bits per pixel using JPEG.

Figure 21 The sensin image coded at 0.25 bits per pixel using
JPEG.

thresholds. If the coefficient is less than the threshold
we can check to see if the corresponding coefficients
in the other bands are also less than this threshold.
This information is then transmitted to the decoder.
If the coefficients in the other band are also less than
the threshold this is a highly efficient code. Note that
the efficiency is dependent on the image being low
pass. For more high-pass images, such as remotely
sensed images, this strategy is not very effective.

In Fig. 23 we have the sensin image coded at rates
of 0.5 bits per pixel and 0.25 bits per pixel using the
SPIHT algorithm. Comparing the 0.25 bits per pixel
reconstruction to Fig. 21 we can see the absence of
blockiness. However, there are different artifacts that
have taken the place of the blockiness. Neither re-
construction is very good at this rate.

A descendant of these techniques, known as
EBCOT (Taubman, 2000), is the basis for the new
JPEG 2000 image compression standard. Detailed in-
formation about these techniques can be found in
Said and Pearlman (1996), Sayood (2000), and
Shapiro (1993).

E. Analysis-Synthesis Schemes

When possible, one of the most effective means of
compression is to transmit instructions on how to re-
construct the source rather than transmitting the
source samples. In order to do this we should have a
fairly good idea about how the source samples were
generated. One particular source for which this is
true is human speech.

Human speech can be modeled as the output of a
linear filter which is excited by either white noise or
a periodic input or a combination of the two. One of
the earliest modern compression algorithms made
use of this fact to provide a very high compression of
speech. The technique, known as linear predictive
coding, has its best known embodiment in the (now
outdated) U.S. Government standard LPC-10. Some
of the basic aspects of this standard are still alive, al-
beit in modified form in today’s standards.

The LPC-10 standard assumes a model of speech
pictured in Fig. 24. The speech is divided into frames.
Each frame is classified as voiced or unvoiced. For the

440 Data Compression

Source

Figure 22 A two-band subband coding scheme.

Figure 23 The sensin image coded at (a) 0.5 bits per pixel and (b) 0.25 bits per pixel using SPIHT.

voiced speech the pitch period for the speech sample
is extracted. The parameters of the vocal tract filter
are also extracted and quantized. All this information
is sent to the decoder. The decoder synthesizes the
speech samples yn as

yn � �
M

i�1
biyn�i � G�n (17)

where {bi} is the coefficient of the vocal tract filter. The
input to the filter, the sequence {�n}, is either the out-
put of a noise generator or a periodic pulse train,
where the period of the pulse train is the pitch period.

Since the introduction of the LPC-10 standard there
has been a considerable increase in the sophistication
of speech coders. In code excited linear prediction
(CELP) the vocal tract filter is excited by elements of
an excitation codebook. The entries of the codebook
are used as input to a vocal filter of the form

yn � �
10

i�1
biyn�i � �yn�P � G�n (18)

where P is the pitch period. The synthesized speech
is compared with the actual speech, and the code-
book entry that provides the closest perceptual match
is selected. The index for this entry is sent to the de-
coder along with the vocal tract filter parameters.

Mixed excitation linear prediction (MELP) uses a
somewhat more complex approach to generating the
excitation signal. The input is subjected to a multi-
band voicing analysis using five filters. The results of
the analysis are used with a complex pitch detection
strategy to obtain a rich excitation signal.

F. Video Compression

Currently, the source that requires the most resources
in terms of bits and, therefore, has benefitted the most
from compression is video. We can think of video as a
sequence of images. With this view video compression
becomes repetitive image compression and we can

compress each frame separately. This is the point of
view adopted by M-JPEG, or motion JPEG, in which
each frame is compressed using the JPEG algorithm.

However, we know that in most video sequences
there is a substantial amount of correlation between
frames. It is much more efficient to send differences
between the frames rather than the frames themselves.
This idea is the basis for several international stan-
dards in video compression. In the following we briefly
look at some of the compression algorithms used in
these standards. Note that the standards contain much
more than just the compression algorithms.

The ITU H.261 and its descendant ITU H.2631 are
international standards developed by the ITU, which
is a part of the United Nations organization. A block
diagram of the H.261 video coding algorithm is shown
in Fig. 25. The image is divided into blocks of size 8

 8. The previous frame is used to predict the values
of the pixels in the block being encoded. As the ob-
jects in each frame may have been offset from the pre-
vious frame, the block in the identical location is not
always used. Instead the block of size 8
 8 in the pre-
vious frame which is closest to the block being en-
coded in the current frame is used as the predicted
value. In order to reduce computations the search
area for the closest match is restricted to lie within a
prescribed region around the location of the block
being encoded. This form of prediction is known as
motion compensated prediction. The offset of the block
used for prediction from the block being encoded is
referred to as the motion vector and is transmitted to
the decoder. The loop filter is used to prevent sharp
transitions in the previous frame from generating
high frequency components in the difference.

The difference is encoded using transform coding.
The DCT is used followed by uniform quantization.
The DC coefficient is quantized using a scalar quan-
tizer with a step size of 8. The other coefficients are
quantized with 1 of 31 other quantizers, all of which
are midtread quantizers, with step sizes between 2
and 62. The selection of the quantizer depends in
part on the availability of transmission resources. If
higher compression is needed (fewer bits available),
a larger step size is selected. If less compression is ac-
ceptable, a smaller step size is selected. The quantiza-
tion labels are scanned in a zigzag fashion and en-
coded in a manner similar to (though not the same
as) JPEG.

Data Compression 441

Figure 24 Speech synthesis model used by LPC-10.

1Originally published in 1996; an update published in 1998 is
commonly referred to as H.263�.

The coding algorithm for ITU-T H.263 is similar to
that used for H.261 with some improvements. The im-
provements include:

• Better motion compensated prediction
• Better coding
• Increased number of formats
• Increased error resilience

There are a number of other improvements that are
not essential for the compression algorithm. As men-
tioned before, there are two versions of H.263. As the
earlier version is a subset of the latter one; we only de-
scribe the later version.

The prediction is enhanced in H.263 in a number
of ways. By interpolating between neighboring pixels
in the frame being searched, a “larger image” is cre-
ated. This essentially allows motion compensation dis-
placement of half pixel steps rather than integer num-
ber of pixels. There is an unrestricted motion vector
mode that allows references to areas outside the pic-
ture, where the outside areas are generated by dupli-
cating the pixels at the image boundaries. Finally, in
H.263� the prediction can be generated by a frame
that is not the previous frame. An independent seg-
ment decoding mode allows the frame to be broken
into segments where each segment can be decoded
independently. This prevents error propagation and

also allows for greater control over quality of regions
in the reconstruction. The H.263 standard also allows
for bidirectional prediction.

As the H.261 algorithm was designed for video-
conferencing, there was no consideration given to the
need for random access. The MPEG standards incor-
porate this need by requiring that at fixed intervals a
frame of an image be encoded without reference to
past frames. The MPEG-1 standard defines three dif-
ferent kinds of frames: I frames, P frames, and B
frames. An I frame is coded without reference to pre-
vious frames, that is, no use is made of prediction
from previous frames. The use of the I frames allows
random access. If such frames did not exist in the
video sequence, then to view any given frame we would
have to decompress all previous frames, as the recon-
struction of each frame would be dependent on the
prediction from previous frames. The use of periodic
I frames is also necessary if the standard is to be used
for compressing television programming. A viewer
should have the ability to turn on the television (and
the MPEG decoder) at more or less any time during
the broadcast. If there are periodic I frames available,
then the decoder can start decoding from the first I
frame. Without the redundancy removal provided via
prediction the compression obtained with I frames is
less than would have been possible if prediction had
been used.

442 Data Compression

Loop filter
status

Motion
vector

+

–

Figure 25 Block diagram of the ITU-T H.261 video compression algorithm.

The P frame is similar to frames in the H.261 stan-
dard in that it is generated based on prediction from
previous reconstructed frames. The similarity is closer
to H.263, as the MPEG-1 standard allows for half pixel
shifts during motion compensated prediction.

The B frame was introduced in the MPEG-1 stan-
dard to offset the loss of compression efficiency occa-
sioned by the I frames. The B frame is generated us-
ing prediction from the previous P or I frame and the
nearest future P or I frame. This results in extremely
good prediction and a high level of compression. The
B frames are not used to predict other frames, there-
fore, the B frames can tolerate more error. This also
permits higher levels of compression.

The various frames are organized together in a
group of pictures (GOP). A GOP is the smallest random
access unit in the video sequence. Therefore, it has to
contain at least one I frame. Furthermore, the first I
frame in a GOP is either the first frame of the GOP
or is preceded by B frames which use motion com-
pensated prediction only from this I frame. A possible
GOP is shown in Fig. 26. Notice that in order to re-
construct frames 2, 3, and 4, which are B frames, we
need to have the I and P frames. Therefore, the or-
der in which these frames are transmitted is different
from the order in which they are displayed.

The MPEG-2 standard extends the MPEG-1 stan-
dard to higher bit rates, bigger picture sizes, and in-
terlaced frames. Where MPEG-1 allows half pixel dis-
placements, the MPEG-2 standard requires half pixel
displacements for motion compensation. Further-
more, the MPEG-2 standard contains several addi-
tional modes of prediction. A full description of any
of these standards is well beyond the scope of this ar-
ticle. For details the readers are referred to the stan-
dards ISO/IEC IS 11172, 13818, and 14496 and books
Gibson et al. (1998), Mitchell et al. (1997), and Sayood
(2000).

IV. FURTHER INFORMATION

We have described a number of compression techniques.
How they compare relative to each other depends on
the performance criteria, which in turn depend on the
application. An excellent resource for people interested
in comparisons between the multitude of compression
programs available for different applications is the
Archive Compression Test maintained by Jeff Gilchrist at
http://act.by.net. Another excellent resource on the In-
ternet is the data compression page maintained by Mark
Nelson at http://dogma.net/DataCompression/. This
page contains links to many other data compression re-
sources, including programs and a set of informative ar-
ticles by Mark Nelson. Programs implementing some of
the techniques described here can also be obtained at
ftp://ftp.mkp.com/pub/Sayood/.

SEE ALSO THE FOLLOWING ARTICLES

Desktop Publishing • Electronic Data Interchange • Error
Detecting and Correcting Codes • Multimedia

BIBLIOGRAPHY

Burrows, M., and Wheeler, D. J. (1994). A Block Sorting Data
Compression Algorithm. Technical Report SRC 124, Digital
Systems Research Center.

Chen, W.-H., and Pratt, W. K. (March 1984). Scene Adaptive
Coder. IEEE Trans. Communications. COM-32:225–232.

Cleary, J. G., and Witten, I. H. (1984). Data compression using
adaptive coding and partial string matching. IEEE Trans.
Communications. 32(4):396–402.

Cleary, J. G., and Teahan, W. J. (February 1997). Unbounded
length contexts for PPM. Computer Journal, 40:30–74.

Cutler, C. C. (July 29, 1952). Differential Quantization for Tele-
vision Signals. U.S. Patent 2 605 361.

Gallagher, R. G. (November 1978). Variations on a theme by
Huffman. IEEE Trans. Information Theory. IT-
24(6):668–674.

Gersho, A., and Gray, R. M. (1991). Vector Quantization and Sig-
nal Compression. Dordrecht/Norwell, MA: Kluwer Academic.

Gibson, J. D., Berger, T., Lookabaugh, T., Lindbergh, D., and
Baker, R. (1998). Digital Compression for Multimedia: Principles
and Standards. San Mateo, CA: Morgan Kaufmann.

Gish, H., and Pierce, J. N. (September 1968). Asymptotically ef-
ficient quantization. IEEE Trans. Information Theory. IT-
14:676–683.

Huang, J.-Y., and Schultheiss, P. M. (September 1963). Block
quantization of correlated gaussian random variables. IEEE
Trans. Communication Systems. CS-11:289–296.

Huffman, D. A. (1951). A method for the construction of min-
imum redundancy codes. Proc. IRE. 40:1098–1101.

ISO/IECIS 11172. Information Technology—Coding of Moving

Data Compression 443

Bidirectional prediction

Forward prediction

I-frame

P-frame

B-frame

Figure 26 A possible arrangement for a GOP.

Pictures and Associated Audio for Digital Storage Media Up
To About 1.5 Mbits/s.

ISO/IECIS 13818. Information Technology—Generic Coding
of Moving Pictures and Associated Audio Information.

ISO/IECIS 14496. Coding of Moving Pictures and Audio.
Linde, Y., Buzo, A., and Gray, R. M. (January 1980). An algo-

rithm for vector quantization design. IEEE Trans. Commu-
nications. COM-28:84–95.

Max, J. (January 1960). Quantizing for minimum distortion.
IRE Trans. Information Theory. IT-6:7–12.

Memon, N. D., and Sayood, K. (1995). Lossless Image Com-
pression: A Comparitive Study. In Proceedings SPIE Conference
on Electronic Imaging. SPIE.

Mintzer, F. (June 1985). Filters for distortion-free two-band
multirate filter banks. IEEE Trans. Acoustics, Speech, and Sig-
nal Processing. ASSP-33:626–630.

Mitchell, J. L., Pennebaker, W. B., Fogg, C. E., and LeGall,
D. J. (1997). MPEG Video Compression Standard. London/New
York: Chapman & Hall.

Nelson, M. (September 1996). Data compression with the Bur-
rows-Wheeler transform. Dr. Dobbs Journal.

Nelson, M., and Gailly, J.-L. (1996). The Data Compression Book.
California: M&T Books.

Pasco, R. (1976). Source Coding Algorithms for Fast Data Com-
pression. Ph.D. thesis, Stanford University.

Pennebaker, W. B., and Mitchell, J. L. (1993). JPEG Still Image
Data Compression Standard. New York: Van Nostrand-
Reinhold.

Rissanen, J. J. (May 1976). Generalized Kraft inequality and
arithmetic coding. IBM J. Research and Development.
20:198–203.

Said, A., and Pearlman, W. A. (June 1996). A new fast and effi-
cient coder based on set partitioning in hierarchical trees.
IEEE Trans. Circuits and Systems for Video Technologies. 243–250.

Sayood, K. (2000). Introduction to Data Compression, Second Edi-
tion. San Mateo, CA: Morgan Kauffman/Academic Press.

Sayood, K., and Na, S. (November 1992). Recursively indexed
quantization of memoryless sources. IEEE Trans. Informa-
tion Theory. IT-38:1602–1609.

Shannon, C. E. (1948). A mathematical theory of communica-
tion. Bell System Technical J. 27:379–423,623–656.

Shapiro, J. M. (December 1993). Embedded image coding us-
ing zerotrees of wavelet coefficients. IEEE Trans. Signal Pro-
cessing. SP-41:3445–3462.

Smith, M. J. T., and Barnwell, T. P., III. (1984). A Procedure for
Designing Exact Reconstruction Filter Banks for Tree Struc-
tured Subband Coders. In Proceedings IEEE International Con-
ference on Acoustics Speech and Signal Processing. IEEE.

Storer, J. A., and Syzmanski, T. G. (1982). Data compression via
textual substitution. J. ACM. 29:928–951.

Taubman, D. (July 2000). High performance scalable image
motion compression with EBCOT. IEEE Trans. Image Pro-
cessing. IP-9:1158–1170.

Weinberger, M., Seroussi, G., and Sapiro, G. (November 1998).
The LOCO-I Lossless Compression Algorithm: Principles
and Standardization into JPEG-LS. Technical Report HPL-
98-193, Hewlett-Packard Laboratory.

Weinberger, M. J., Rissanen, J. J., and Arps, R. (1995). Applica-
tions of Universal Context Modeling to Lossless Compres-
sion of Gray-Scale Images. In Proc. Asilomar Conference on Sig-
nals, Systems and Computers, pp. 229–233. IEEE.

Welch, T. A. (June 1984). A technique for high-performance
data compression. IEEE Computer. 8–19.

Wu, X., and Memon, N. D. (May 1996). CALIC—A context
based adaptive lossless image coding scheme. IEEE Trans.
Communications.

Ziv, J., and Lempel, A. (May 1977). A universal algorithm for
data compression. IEEE Trans. Information Theory. IT-
23(3):337–343.

Ziv, J., and Lempel, A. (September 1978). Compression of in-
dividual sequences via variable-rate coding. IEEE Trans. In-
formation Theory. IT-24(5):530–536.

444 Data Compression

Data Envelopment Analysis
Timothy Anderson
Portland State University

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 445

I. INTRODUCTION TO DATA ENVELOPMENT ANALYSIS
II. DATA ENVELOPMENT ANALYSIS MODELS OF

INFORMATION SYSTEMS
III. SELECTION ISSUES FOR DATA ENVELOPMENT ANALYSIS

MODELS

IV. PROCEDURE FOR APPLYING A DATA ENVELOPMENT
ANALYSIS

V. CONCLUSION

GLOSSARY

BCC The BCC model is one of the most commonly
used DEA models. It is credited to Banker, Charnes,
and Cooper. This model differs from the CCR
model in that it exhibits variable returns to scale
rather than constant returns to scale.

CCR Perhaps the most commonly used DEA model
originating with Charnes, Cooper, and Rhodes.
This model exhibits constant returns to scale.

DMU A decision making unit. For example, in a DEA
application to an information systems context, this
may refer to a software development team.

envelopment and multiplier formulations DEA is
based on linear programming. As with all linear
programs, there is a primal and a dual formula-
tion. The selection of which one to call primal and
which to call dual is arbitrary and, therefore, the
terms envelopment and multiplier are used to elim-
inate ambiguity. The envelopment model focuses
on allowing the “best” DMUs to envelope the rest
of the DMUs. The multiplier formulation uses non-
negative weights to cast each DMU in the best pos-
sible light relative to the other DMUs.

inputs and outputs Inputs are the resources used by
a DMU in achieving its goals. Inputs are “bads” in
that increasing levels of an input while holding
everything else constant should generally result in
a lower efficiency score. Outputs have the opposite
property. Examples of DEA inputs might include
the number of staff assigned to a team or capital

expenditures in networking. Outputs might be lines
of code or reduced computing time.

orientation DEA models often have two important
but underappreciated variations based on the ori-
entation of the model. An input-oriented model
primarily focuses on input reduction while an
output-oriented primarily model focuses on output
augmentation.

returns to scale Two of the most common returns to
scale assumptions are constant and variable. Constant
returns to scale (or CRS) implies that doubling each
of the inputs used by a DMU should double each of
the outputs. Variable returns to scale (or VRS) im-
plies that doubling each of the inputs used by a DMU
does not necessarily double each of the outputs.

weight restrictions DEA normally does not place any re-
strictions on the relative trade-offs between the inputs
or the trade-offs between the outputs. This can lead
to unrealistic or extreme trade-offs. Various weight re-
striction techniques can be applied to overcome this.

As we struggle with the problem of measuring and
evaluating the benefits of information technology proj-
ects or better ways to conduct software development
projects, it has become apparent that we need better
tools for analysis. Data envelopment analysis (DEA)
provides a powerful technique for evaluating complex
processes and systems such as those encountered in
information systems. It provides a quantitative and ro-
bust methodology for evaluating software development

projects, teams, or IT departments relying on com-
parison to their peers and can therefore be added to
the toolkit of techniques.

This article is meant to be an introduction to Data
Envelopment Analysis (DEA), which is becoming an
increasingly popular tool for measuring and assessing
the performance of information systems and other
complex systems. This article is not meant to be an
exhaustive tutorial on DEA. For that purpose, there
are several books that have recently been published.
Because of the varying backgrounds of readers, this
introduction focuses more on gaining an intuitive un-
derstanding of DEA than mathematical rigor.

I. INTRODUCTION TO DATA
ENVELOPMENT ANALYSIS

Data Envelopment Analysis (DEA) is commonly used
to evaluate the efficiency of a number of producers.
A typical statistical approach is characterized as a cen-
tral tendency approach and it evaluates producers rel-
ative to an average or representative producer. In con-
trast, DEA is an extreme point method and compares
each producer with only the “best” producers. In the
DEA literature, a producer is usually referred to as a
decision-making unit or DMU. Extreme point meth-
ods are not always the right tool for a problem but are
appropriate in certain cases. (See strengths and limi-
tations of DEA in Sections III.C and III.D.)

A fundamental assumption behind DEA is convexity.
First, we will assume that if a given producer, A, is ca-
pable of producing Y(A) units of output with X(A) in-
puts, then other producers should also be able to do
the same if they were to operate efficiently. Similarly, if
producer B is capable of producing Y(B) units of out-
put with X(B) inputs, then other producers should also
be capable of the same production schedule. By con-
vexity, we will assume that we can combine a percent-
age mix of A and B (as well as others) to form a com-
posite producer with composite inputs and composite
outputs. Since this composite producer does not nec-
essarily exist, it is sometimes called a virtual producer.

The heart of the analysis lies in finding the “best”
virtual producer for each real producer. If the virtual
producer is better than the original producer by either
making more outputs with the same inputs or making
the same outputs with less inputs then the original pro-
ducer is inefficient. Some of the subtleties of DEA are in-
troduced in the various ways that producers A and B
can be scaled up or down and combined.

The procedure of finding the best virtual producer
can be formulated as a linear program. Analyzing the

efficiency of n producers is then a set of n linear pro-
gramming (LP) problems. The following formulation
is one of the standard forms for DEA. The vector �
describes the components of other producers used to
construct the virtual producer. The matrices X and Y
describe the virtual inputs and outputs, respectively.
The vectors X0 and Y0 are the input and output vec-
tors for the DMU currently being examined. The
products X� and Y � are the targets of performance
for the analyzed producer. The value of � can be used
as a measure of the producer’s efficiency. This results
in the envelopment formulation of DEA.

min
�,�

�,

s.t. Y � � Y0, (1)
X � � �X0,
� � 0.

It should be emphasized that an LP of this form must
be solved for each of the DMUs. There are other ways
to formulate this problem such as the ratio model
which leads to the multiplier formulation which we
will cover shortly. The first constraint of Eq. (1) forces
the virtual DMU to produce at least as many outputs
as the DMU, DMU0, with inputs X0 and outputs Y0, to
be evaluated. The second constraint finds out how
much less input the virtual DMU would need. Hence,
it is called input-oriented. The factor used to scale
back the inputs is � and this value is called a radial
measure of the efficiency of DMU0.

The target of performance as described by X � and
Y � may not necessarily be optimal in that there may
be nonradial slacks. The following formulation pro-
vides a remedy to this problem by introducing slack
variables and an infinitesimal, �, as a multiplier in the
objective function that is greater than zero but smaller
than any real number. The resulting formulation is
given in Eq. (2).

min
�,�,s�,s�

� � �s� � �s�,

s.t. Y � � Y0 � s� 	 0, (2)
�X0 � X � � s� 	 0,
�, s�, s� � 0.

In the computer codes used, this infinitesimal multi-
plier is treated preemptively. In the first stage, the
goal is to find the vector, �, that gives the lowest pos-
sible efficiency score, �. The second stage goal is
given the value of � from the previous stage, try to
maximize the sum of the slacks. The result is that two
linear programs are needed for each DMU. Algorith-
mic extensions have been developed to reduce the
computational burden, but since these linear pro-

446 Data Envelopment Analysis

grams are relatively small it is not critical and we de-
fer the reader to more exhaustive volumes by Charnes
and colleagues. It is important not to use a finite ap-
proximation to � such as 10�6, since this can (1) cause
a significant computational problem and (2) yield er-
roneous results. For more information on computa-
tional problems, see Ali.

To see how this operational procedure is used, we
first solve Eq. (1) to obtain a value of � 	 �*. We then
replace Eq. (2) with Eq. (3).

max
�,s�,s�

s� � s�,

s.t. Y � � Y0 � s� 	 0, (3)
�X0 � X � � s� 	 0,
� 	 �*
�,s�,s� � 0.

Notice that the objective function has changed and
the new constraint, � 	 �*, sets the radial reduction
equal to the value from the first phase. The goal of
this second phase is to maximize the slacks to identify
all mix inefficiencies.

Putting this all together we obtain new values X̂0 	
�*X0 � s�* � X0 and Ŷ0 	 Y0 � s�* � Y0. The values
of X̂0 and Ŷ0 are referred to as projections for DMU0

and describe the amount of inputs and outputs that
the DMU should have needed based upon the model
used. This combination of X̂0 and Ŷ0 is efficient and
the differences between these targets of performance
and the actual performance,
X0 	 X0 � X̂0 � 0 and

Y0 	 Y0 � Ŷ0 � 0, indicates the inefficiency in the
performance of the DMU relative to the other DMUs.

A. Simple Numerical Example

A simple numerical example will help to show what
DEA is doing. Assume that there are three program-
mers (DMUs), A, B, and C, that have each had pro-
gramming and/or documentation responsibilities.
Our goal is to evaluate each of the programmers to de-
termine their productivity. We may use this informa-
tion in order to determine project bonus, make em-
ployee retention decisions, or various other purposes.

Each of the three programmers spent 100 hours in
completing their work. Programmer A only develops
code to the exclusion of documentation, programmer
C does a lot of documentation, and programmer B
does a mix of programming and documentation. This
is summarized in the following table.

Now, as a DEA analyst, we play the role of Dr.
Frankenstein by combining parts of different pro-
grammers. First let us analyze programmer A. Clearly

no combination of programmers B and C can pro-
duce 40 function points with the constraint of only
100 hours. Therefore, programmer A is efficient at
developing function points and receives an efficiency
of 1.0.

Now we move on to analyze programmer B. Sup-
pose we try a 50–50 mixture of programmers A and
C. This means that � 	 [0.5, 0.5]. The virtual output
vector is now,

Y � 	 [0.5 * 40 � 0.5 * 10, 0.5 * 0 � 0.5 * 20]
	 [25, 10]

Note that X 	 100 	 X(0) where X(0) is the input(s)
for the DMU being analyzed. Since Y � � Y(0) = [20,
5], there is room to scale down the inputs, X, and pro-
duce a virtual output vector at least equal to or greater
than the original output. This scaling down factor
would allow us to put an upper bound on the effi-
ciency of that programmer’s efficiency. The 50–50 ra-
tio of A and C may not necessarily be the optimal vir-
tual producer. The efficiency, �, can then be found by
solving the corresponding linear program.

It can be seen by inspection that programmer C is
efficient because no combination of programmers A
and B can produce his total of 20 pages of documen-
tation in only 100 hours. Programmer C is fulfilling
the role of producing pages of documentation more
efficiently than any other programmer just as pro-
grammer A is coding function points more efficiently
than anyone else. Programmer B was outproduced by
a combination of programmers A and C.

This example can be made more complicated by
looking at unequal values of inputs instead of the con-
stant 100 hours, by making it a multiple input prob-
lem, or by adding more data points, but the basic
principles still hold.

B. Graphical Example

The single input two-output or two input-one output
problems are easy to analyze graphically. The previous

Data Envelopment Analysis 447

Table I Programmer Data

Input
Output #1 Output #2

Function Pages of
Programmer (DMU) Hours Points documentation

A 100 40 20

B 100 20 25

C 100 10 20

numerical example is now solved graphically in Fig. 1.
(An assumption of constant returns to scale is made
and explained in detail later.) The evaluation of pro-
grammer B is depicted in Table II.

If it is assumed that convex combinations of pro-
grammers are allowed, then the line segment con-
necting programmers A and C shows the possibilities
of virtual outputs that can be formed from these two
programmers. Similar segments can be drawn between
A and B along with B and C. The segment AC lies be-
yond the segments AB and BC, so this means that a
convex combination of A and C will create the most
outputs for a given set of inputs.

This line is called the efficiency frontier. The effi-
ciency frontier defines the maximum combinations of
outputs that can be produced for a given set of in-
puts. The segment connecting point C to the Doc axis
is drawn because of disposability of output. It is as-
sumed that if programmer C can produce 20 pages of
documentation and 10 function points, he could also
produce 20 pages of documentation without any func-
tion points. We have no knowledge though of whether
avoiding function points altogether would allow him
to increase his production of documentation, so we
must assume that it remains constant.

Since programmer B lies below the efficiency fron-
tier, he is inefficient. His efficiency can be determined
by comparing him to a virtual programmer formed
from programmer A and programmer C. The virtual
programmer, called V, is approximately 64% of pro-
grammer C and 36% of programmer A. (This can be
determined by an application of the lever law. Pull
out a ruler and measure the lengths of AV, CV, and
AC. The percentage of programmer C is then AV/AC
and the percentage of programmer A is CV/AC.)

The efficiency of programmer B is then calculated
by finding the fraction of inputs that programmer V
would need to produce as many outputs as program-
mer B. This is easily calculated by looking at the line

from the origin, O, to V. The efficiency of program-
mer B is OB/OV, which is approximately 68%. This
figure also shows that programmers A and C are effi-
cient since they lie on the efficiency frontier. In other
words, any virtual programmer formed for analyzing
programmers A and C will lie on programmers A and
C, respectively. Therefore, since the efficiency is cal-
culated as the ratio of OA/OA or OC/OC, program-
mers A and C will have efficiency scores equal to 1.0.

The graphical method is useful in this simple two-
dimensional example but gets much harder in higher
dimensions. The normal method of evaluating the ef-
ficiency of programmer B is by using a linear pro-
gramming formulation of DEA such as Eqs. (1) or (2).

The following linear program is a numerical illus-
tration of Eq. (1) for the evaluation of DMU (or pro-
grammer) B.

min
�,�,

�,

s.t. � �� � � �, (4)

[100 100 100]� � � � 100,
� � 0.

Bear in mind that as described earlier, this will give
the correct score, �, but may not necessarily yield the
optimal target of performance. To do that, it would
be necessary to follow the earlier two-phase approach.
In this case, the target of performance is described
in Table II. This figure is an illustration of the type of
information obtained from a DEA software package,
in this case DEA-Solver, 1.0 from Saitech Inc.

The formulation that we have used is an input-
oriented formulation in that the focus is on finding
the level of input (or the number of hours in this ex-
ample) that should have been needed to produce the
same or more output. The results indicate that Pro-
grammer B should have been able to accomplish his
or her work in 68.75 hours instead of 100 hours.

If the goal had been instead to determine how
much work should have been finished in 100 hours,
we would instead use an output-oriented model. The
output-oriented equivalent to formulation Eq. (1) is
given by Eq. (5).

max ,
,�

s.t. Y � � Y0, (5)
X � � X0,
� � 0.

Equation (5) can be readily extended to account for
slacks in the same manner as was given in Eq. (2).

20
5

10
20

20
5

40
0

448 Data Envelopment Analysis

5

10

15

20

10 20 30 40
Function points

P
ag

es
 o

f d
oc

um
en

ta
tio

n

Efficiency frontierC

A
B

V

Figure 1 Graphical example of DEA for Programmer B.

The results of the output-oriented model are given in
Table III.

The numerical efficiency score of 0.6875 remains
unchanged in this model. This is actually the inverse
of as given in Eq. (5). In the case of constant re-
turns to scale, � 	 1/ or the results of the objective
functions from Eqs. (1) and (5) are reciprocals of
each other. This relationship does not necessarily hold
in the case of other returns to scale assumptions. The
issue of returns to scale is explored in Section III.B
and for further treatment of this, the reader is
referred to more comprehensive references in the
Bibliography.

The results in Table II indicate that Programmer B
should have developed code with at least 9 more func-
tion points and 2 more pages of documentation in

the 100 hours. The decision of orientation is impor-
tant and should be based upon the goals of the orga-
nization(s) involved, whether the primary issue is re-
ducing inputs or increasing outputs.

C. Data Envelopment
Analysis Multiplier Model

Another approach to conducting DEA is to examine
the multiplier model. This model can be thought of
as an opportunity for each DMU to select the set of
weights (or prices) on inputs and outputs that make
it look as good as possible relative to its peers. Weights
(or prices) can’t be negative and a DMU can’t pick a
pricing scheme that makes itself or any of its peers

Data Envelopment Analysis 449

Table II Input-Oriented Results

Score
DMU I/O Data Projection Difference %

A 141.6875
Hours 100.6875 100.75 �30.25 �30.00
Function points 140.6875 140.75 �30.25 �30.00
Pages of documentation 140.6875 140.75 �30.25 �30.00

B 100.6875
Hours 100.6875 168.75 �31.25 �31.25
Function points 120.6875 120.75 �30.25 �30.00
Pages of documentation 145.6875 145.75 �30.25 �30.00

C 101.6875
Hours 100.6875 100.75 �30.25 �30.00
Function points 110.6875 110.75 �30.25 �30.00
Pages of documentation 120.6875 120.75 �30.25 �30.00

Table III Output-Oriented Results

Score
DMU I/O Data Projection Difference %

A 141.6875
Hours 100.6875 100.75 0 0.00
Function points 140.6875 140.75 0 0.00
Pages of documentation 140.6875 140.75 0 0.00

B 100.6875
Hours 100.6875 100.75 0 0.00
Function points 120.6875 129.09 9.09 45.45
Pages of documentation 145.6875 147.27 2.27 45.45

C 101.6875
Hours 100.6875 100.75 0 0.00
Function points 110.6875 110.75 0 0.00
Pages of documentation 120.6875 120.75 0 0.00

appear to be better than perfect (1.0). This is imple-
mented by the Eq. (6).

max
u,v

z 	

s.t. � 1; j 	 1, K, n,

(6)

ur,vi � 0; r 	 1, K, s; i 	 1, K, m.

In this case, ur, represents the weight (or virtual price)
of output r. Similarly, vi, represents the weight (or vir-
tual price) of output i. The number of DMUs is n, the
number of outputs is s, and the number inputs is m.
Unfortunately, this model is nonlinear. It can be read-
ily linearized by multiplying out the denominator of
the ratio in each of the n constraints and by selecting
a particular solution among the many linear multiples
of solutions by setting the denominator in the objec-
tive function equal to one. The result is the following
formulation.

max
u,v

z 	 �
s

r	1
uryr0,

s.t. �
m

i	1
vixi0 	 1,

(7)

�
s

r	1
uryrj � �

m

i	1
vixij; j 	 1, K, n,

ur,vi � 0; r 	 1, K, s; i 	 1, K, m.

From here, it is relatively straightforward to imple-
ment characteristics such as limiting the relative
weight (or price) of inputs or the relative weight (or
price) of outputs. For example, to limit the price of
input 1 to be greater than or equal to the price of in-
put 2, simply add another constraint, v1 � v2. Active
research is underway to improve the weight restric-
tion techniques, but this is frequently enough to elim-
inate unrealistic weighting schemes from your DEA
model.

II. DATA ENVELOPMENT ANALYSIS
MODELS OF INFORMATION SYSTEMS

Several researchers have used DEA to examine soft-
ware development projects. The earliest work on us-
ing DEA to evaluate information systems was con-
ducted by Banker and Kemerer with colleagues. For a

�
s

r	1
uryrj

�

�
m

i	1
vixij

�
s

r	1
uryr 0

�

�
m

i	1
vixi0,

particularly clear review of this literature and inter-
esting set of three additional DEA models for software
development projects, you should see work by Joseph
Paradi. Mahmood has examined issues such as trying
to evaluate how information technology investments
benefit a company by using DEA to evaluate the com-
plex nature of software projects.

III. SELECTION ISSUES FOR DATA
ENVELOPMENT ANALYSIS MODELS

A. Input versus Output Orientation

One of the basic choices in selecting a DEA model is
whether to use an input-orientation or an output-
orientation. The difference is subtle but important
and can typically be best understood by considering
whether a DMU emphasizes reducing input while
achieving the same level of output or emphasizes pro-
ducing more output given the same level of input. De-
pending upon the linear program formulation and/or
software used, an output-oriented efficiency will be
1.0 or higher. Scores greater than 1.0 indicate ineffi-
ciency. For example, an output-oriented score of 1.5
(or 150%) indicates that a DMU should be able to in-
crease output by 50% while consuming the same in-
put. (Technically, it means that a DMU should be able
to produce at least 50% more of each output while us-
ing no more of any input than is currently being
used.)

B. Returns to Scale

Since this problem uses a constant input value of 100
for all of the programmers, it avoids the complica-
tions caused by allowing different returns to scale. Re-
turns to scale refers to increasing or decreasing effi-
ciency based on size. For example, a manufacturer
can achieve certain economies of scale by producing
a thousand circuit boards at a time rather than one at
a time—it might be only 100 times as hard as pro-
ducing one at a time. This is an example of increas-
ing returns to scale (IRS).

On the other hand, the manufacturer might find it
more than a trillion times as difficult to produce a tril-
lion circuit boards at a time, though, because of stor-
age problems and limits on the worldwide copper
supply. This range of production illustrates decreas-
ing returns to scale (DRS). Combining the two ex-
treme ranges would necessitate variable returns to
scale (VRS).

450 Data Envelopment Analysis

Constant returns to scale (CRS) means that the
producers are able to linearly scale the inputs and
outputs without increasing or decreasing efficiency.
This is a significant assumption. The assumption of
CRS may be valid over limited ranges but its use must
be justified. As an aside, CRS efficiency scores will
never be higher than VRS efficiency scores.

The CRS assumption can be made in our computer
programming example since each hour is relatively
independent, and the cumulative outputs are then
the sum of individual events. For example, it is ex-
pected that doubling the number of hours or time
spent will double the number of pages of documen-
tation that a programmer produces, which implies
that the CRS assumption can be used. Therefore,
other situations such as VRS, IRS, and DRS are not
covered here. This also explains why most of the ex-
amples concentrate on cases with equal inputs. In the
one input model, the CRS assumption allows pro-
grammers to be scaled up or down, and so the multi-
plication of programmer inputs to achieve some con-
stant value is implied in some cases. In a CRS model,
the input-oriented efficiency score is exactly equal to
the inverse of the output-oriented efficiency score.
This is not necessarily true for inefficient DMUs in
the case of other returns to scale assumptions.

In the DEA literature, the CRS model is typically
referred to as the CCR model after the originators of
the seminal publication, Charnes, Cooper, and
Rhodes. Similarly, the VRS model is referred to as the
BCC model after Banker, Charnes, and Cooper. Con-
verting the CRS (or CCR) model of formulation (2)
into the VRS (or BCC) formulation requires adding a
constraint that the sum of the � variables be equal to
1. This ensures that each DMU is compared against
one DMU or a composite DMU that adds up to a sin-
gle DMU rather than being compared solely against
radically scaled up or down DMUs. The resulting for-
mulation is given in Eq. (8).

min
�,�,s�,s�

� � �s� � �s�,

s.t. Y � � Y0 � s� 	 0, (8)
�X0 � X � � s� 	 0,
→
1 � � 	 1
�,s�,s� � 0.

C. Strengths of Data Envelopment Analysis

As the earlier list of applications suggests, DEA can be
a powerful tool when used well. A few of the charac-
teristics that make it powerful are

• It can handle multiple input and multiple output
models

• It doesn’t require assumption of a functional form
relating inputs to outputs

• DMUs are directly compared against a peer or
combination of peers which DEA identifies
explicitly

• Inputs and outputs can have very different units,
for example, X1 could be in units of lives saved
and X2 could be in units of dollars without
requiring an a priori trade-off between the two

D. Limitations of Data
Envelopment Analysis

The same characteristics that make DEA a powerful
tool can also create problems. An analyst should keep
these limitations in mind when choosing whether or
not to use DEA.

• Since DEA is an extreme point technique, noise
(even symmetrical noise with zero mean) such as
measurement error can cause problems.

• DEA is good at estimating “relative” efficiency of a
DMU, but it converges very slowly to “true”
efficiency. In other words, it can tell you how well
you are doing compared to your peers but not
compared to a “theoretical maximum.”

• Since DEA is a nonparametric technique,
statistical hypothesis tests are difficult and are the
focus of ongoing research.

Since a standard formulation of DEA creates a sepa-
rate linear program for each DMU, large problems
can be computationally intensive. Naive implementa-
tions of DEA using off-the-shelf linear programming
packages can result in computational problems. I have
frequently seen this with respect to the Excel Solver
and poorly scaled data. This has improved in recent
versions of Excel (Excel 2000’s Solver seems to be
much more robust), but the prevalence of degeneracy
and potential for cycling are still cause for concern.

E. Other Topics

There are a number of other variations and exten-
sions of DEA that have been developed over the years.
For example, eliminating the convexity assumption
results in the Free-Disposal Hull model (FDH). FDH
is useful when combinations of DMUs or rescaled ver-
sions of DMUs are inappropriate or unrealistic. The

Data Envelopment Analysis 451

FDH model can be easily modeled by constraining
the � vector to consist of binary variables.

In this introduction to DEA we have focused on ra-
dial DEA models focusing on the efficiency score, �
or . While the slacks from Eq. (2) may provide the
opportunity for additional improvement, many stud-
ies only consider the efficiency scores and ignore the
slacks. Another useful model is the additive model
which does not include a radial score. The additive
model is simply the same as Eq. (3) if you remove the
constraint on � 	 �* and remove � from the set of in-
put constraints.

DEA assumes that a DMU has the ability to vary its
inputs and outputs in order to reach the efficiency
frontier and improve performance. Often you may
find that a DMU doesn’t have the ability to change
certain inputs or outputs in order to try and achieve
efficiency. In this case, you can consider models with
nondiscretionary variables. This is beyond the scope
of this introduction to DEA.

DEA assumes deterministic production of outputs
using the inputs. An active area of current research is
in developing extensions to DEA to better allow for
stochastic variation through the use of chance con-
straints. On the other hand, very effective methods of
sensitivity analysis are available in DEA.

IV. PROCEDURE FOR APPLYING A DATA
ENVELOPMENT ANALYSIS STUDY

Model building is as much an art as it is a science.
The following is a description of steps that could be
used to conduct a DEA study in the information sys-
tems industry.

A. Decide on the Purpose of the Analysis

Is the goal to compare the efficiency of software de-
velopment teams, information systems implementa-
tions, or corporate information technology depart-
ments? In these cases, you may be interested in
determining best practices, recognizing excellence,
or setting performance targets.

B. Determine What Constitutes
a Decision Making Unit

This sounds like a trivial step, but it can often be diffi-
cult to decide what the DMUs are to be studied. If you
are comparing information technology departments,

do you examine those within similar industries or as di-
visions of a single, large organization? If you are exam-
ining software development projects within a single
company, do you consider only COBOL projects or all
software development projects? In any case, be sure you
have enough DMUs to exceed the number of inputs
and outputs by a considerable margin. The following
rule of thumb is suggested n � max{m � s, 3(m � s)}
where n is the number of DMUs, m is the number of
inputs, and s is the number of outputs.

C. Determine an Input-Output Model

Selecting the inputs and outputs can be difficult. You
may try to get an experienced team to consider what
the important resources are for a DMU (as you defined
earlier) to meet its missions. Next, how you define or
measure this mission may provide a starting point for
a list of your outputs. You may find certain factors that
don’t fall well within either category. These additional
factors could be used later to explain the efficiency
scores. For example, it might be interesting to see if
there is a relationship between efficiency and the num-
ber of years of experience with the company. In this
case, you could then use regression or other statistical
techniques to examine the relationship between effi-
ciency scores and years of company experience.

Often you will find that something that is an input
is a good rather than a bad or an output is a bad
rather than a good. For example, Paradi and col-
leagues conducted three separate DEA studies of soft-
ware development projects. For outputs, they used:
function points, quality, and time-to-market. The time
to market output is a “bad” because increases in time-
to-market should reduce the efficiency score. They
converted it therefore to a “good” by subtracting each
DMU’s time-to-market from the maximum time-to-
market in the dataset. They then used this modified
time-to-market score as their output. A similar trans-
formation was needed on the second output since
quality was measured by companies as either defects
or rework hours.

Also, some inputs or resources might be common
across all of the DMUs such that it falls out or they
may be so common as to be nonlimiting with respect
to achieving the outputs. If so, you may want to con-
sider dropping this input from the model. For exam-
ple, is administrative support considered an important
input? In a model of information technology depart-
ments, there may be wide variation between how the
departments use administrative support, in which case
it might be a useful input. On the other hand, most of

452 Data Envelopment Analysis

the models of software development projects to date
have not seen the need to include this as an input.

It is also generally a good idea to experiment with
adding or removing inputs and outputs from the
input-output model to determine whether and how
much they affect the efficiency scores.

D. Decide on the Specific Data
Envelopment Analysis Model

It will be necessary to decide whether or not CRS hold
or whether variable returns to scale is a better fit for
the application. One way to answer this question is
with the following two questions.

1. If a DMU doubles its inputs as defined earlier,
should it be expected to double its outputs?

2. If a DMU halves its inputs, would you expect it to
produce half as much output?

If the answer to both 1 and 2 is affirmative, than you
should use a CRS model such as Eqs. (1) or (2). If you
answer no to both questions, a VRS model may be
most appropriate. There are alternatives when one of
the two questions is in the affirmative and one is in
the negative such as the nondecreasing returns to
scale and nonincreasing returns to scale models. Deal-
ing with this problem is beyond the scope of this
introduction.

E. Look for Relationships
between Inputs and Outputs

You may find situations where there are some natural
ways of aggregating inputs together. For example, if you
have three budget expense categories as separate in-
puts, you may want to combine them into a single in-
put. This will help reduce the dimensionality of the
problem. In other cases, you may want to find a better
way to model the value of inputs or outputs. For exam-
ple, if you have as separate inputs the full-time-
equivalents of senior programmers and junior pro-
grammers, you may want to incorporate a weight re-
striction so that senior programmers are considered to
be at least “costly” or important as junior programmers.

F. Collect the Data

Collecting the data is often a time-consuming step.
Bear in mind the rule of thumb that you will want to

have at least two or three times the number of DMUs
as you have inputs and outputs, as was noted in Sec-
tion IV.B. This is a rough rule of thumb and depends
upon many other factors such as the level of correla-
tion among inputs and the correlation among out-
puts. High correlations will tend to reduce your need
for DMUs. Also, the model that you use will affect
your data requirements. In general, a variable returns
to scale model will need more DMUs.

G. Perform the Analysis

As of August 2000, there are a number of special pur-
pose software packages that can be purchased for con-
ducting DEA. These include DEA-Solver, Frontier An-
alyst, IDEAS, On-Front, and Warwick DEA. In general,
these can accommodate data from spreadsheets and
provide a wealth of different DEA models.

H. Examine Results

Since DEA is an extreme point technique, a single
outlier can have a major impact on your results. These
outliers can be very useful in what they can teach us
about best practices, or they may reflect a unique and
noncomparable situation that others should not be
evaluated against. Even worse, it may reflect a mea-
surement error. Therefore, it is important to carefully
examine each of these efficient DMUs to determine if
that seems reasonable and accurate. The generalized
sensitivity analyses described by Cooper and col-
leagues make it possible to examine them all simulta-
neously in order to identify those which most affect
the results of the other DMUs. You may also find that
DMUs are efficient by providing an unrealistic weight-
ing scheme. In this case, you may want to consider go-
ing back and modifying the model to incorporate
weight restrictions.

Also, check the DMUs with the lowest efficiency
scores to see if these scores seem reasonable. In par-
ticular, note the DMUs that they are being compared
against. As a thought experiment, it can be helpful to
have one person play the role of a low-scoring DMU
and the other person play the role of the efficient
DMU the low scorer is being compared against as can
be easily done from the printouts in most DEA com-
puter software. If the low-scoring DMU can come up
with a good argument for something that is being left
out of the model, this provides a good starting point
for going back and revising the input-output model
selected.

Data Envelopment Analysis 453

I. Repeat Above Steps as Needed

It is almost always necessary to go back and repeat the
process to find a better model. Carefully examining
the results will help point out shortcomings in the
DEA model that you have built and help in diagnos-
ing ways to fix it.

J. Use Results to Improve the System

One of the most important results from a DEA study
is an indicator of who the most efficient DMUs are,
and for each of the inefficient DMUs, an indicator to
which of these DMUs they are being compared against.
The inefficient DMUs can then use this as a starting
point in order to examine possible best practices that
better meet their situation. For example, in a study of
100 information technology departments (or DMUs)
with 10 efficient DMUs, the 90 inefficient DMUs each
have their own target of performance constructed out
of a subset of those 10 DMUs (perhaps three or four)
that are in some way similar to their operation. This
now allows a more focused investigation by the man-
ager of the inefficient information technology depart-
ment of those three or four information technology
departments to learn how they operate.

V. CONCLUSION

As we struggle with the problem of measuring and
evaluating the benefits of information technology
projects or better ways to conduct software develop-
ment projects, it has become apparent that we need
better tools for analysis. DEA provides a powerful
technique for evaluating complex processes and sys-
tems such as those encountered in information sys-
tems. It provides a quantitative and robust methodol-
ogy for evaluating software development projects,
teams, or information technology departments rely-
ing on comparison to their peers and can therefore
be added to the toolkit of techniques.

ACKNOWLEDGMENTS

This document has evolved from a web page started in 1994 on
the subject of DEA. The author appreciates the many con-
structive comments and encouragement from colleagues over
the years. In particular, this version has benefited from detailed
suggestions by William W. Cooper.

SEE ALSO THE FOLLOWING ARTICLES

Decision Making Approaches • Information Measurement •
Success Measures of Information Systems

BIBLIOGRAPHY

Ali, A. I. (1994). Computational aspects of DEA. Data envelop-
ment analysis: Theory, methodology and applications (A. Charnes,
W. W. Cooper, A. Lewin, and L. M. Seiford, eds.), pp. 63–88,
Boston: Kluwer Academic Publishers.

Banker, R. D., Charnes, A., and Cooper, W. W. (1984). Some
models for estimating technical and scale inefficiencies in
data envelopment analysis. Management Science, 30(9):
1078–1092.

Banker, R. D., Datar, S. M., and Kemerer, C. F. (1991). A model
to evaluate variables impacting the productivity of software
maintenance projects. Management Science, 37(1).

Banker, R. D., Kemerer, C. F. (1989). Scale economies in new
software development. IEEE Transactions on Software Engi-
neering, 15(10): 1199–1205.

Charnes, A., Cooper, W. W., Lewin, A. Y., and Seiford, L. M.,
eds. (1994). Data envelopment analysis: Theory, methodology and
applications. Boston: Kluwer.

Charnes, A., Cooper, W. W., and Rhodes, E. (1978). Measuring
the efficiency of decision making units. European Journal of
Operational Research, 2(6): 429–44.

Coelli, T., Rao, D. S. P., and Battese, G. E. (1998). An introduc-
tion to efficiency and productivity analysis. Boston: Kluwer
Academic.

Cooper, W. W., Seiford, L. M., and Tone, K. (1999). Data en-
velopment analysis: A comprehensive text with models, applications,
references and DEA-solver software. Boston: Kluwer Academic
Publishers.

Fare, R., and Grosskopf, S. (1996). Intertemporal production fron-
tiers: With dynamic DEA. Boston: Kluwer Academic Publishers.

Fare, R., Grosskopf, S., and Lovell, C. A. K. (1994). Production
frontier. Cambridge, MA: Cambridge University Press.

Fried, H. O., Lovell, C. A. K., and Schmidt, S. S., eds. (1993).
Measurement of productive efficiency. New York: Oxford Uni-
versity Press.

Mahmood, M. A. (1994). Evaluation organizational efficiency
resulting from information technology investment: An ap-
plication to data envelopment analysis. Information Systems
Journal, 4(2): 93–115.

Mahmood, M. A., Pettingell, K. J., and Shaskevich, A. I. (1996).
Measuring productivity of software projects: A data envel-
opment analysis approach. Decision Sciences, 27(1): 57–80.

Paradi, J. C., Reese, D. N., and Rosen, D. (1997). Applications
of DEA to measure the efficiency of software production at
two large Canadian banks. Annals of Operations Research, 73:
91–115.

Thanassoulis, E. (2001). Introduction to the theory and application
of data envelopment analysis. Dordrecht: Kluwer Academic
Publishers.

454 Data Envelopment Analysis

Data Flow Diagrams
Sangjin Yoo
Keimyung University

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 455

I. INTRODUCTION
II. FUTURE DIRECTION OF DFD METHODOLOGY

III. BRIEF OVERVIEW OF DFDs

IV. COMMON TYPES OF DFD MISTAKES
V. LEVELING OF DFDs

VI. SUMMARY

GLOSSARY

database A collection of data organized to service
many applications at the same time by storing and
managing data so that they appear to be in one lo-
cation. The major benefit of using a database in-
stead of a file system is that the system can remove
the data redundancy and consistency of the data in
a system.

database management system (DBMS) Special soft-
ware to create and maintain a database and enable
individual business applications to extract the data
they need without having to create separate files or
data definitions in their computer programs.

data dictionary (DD) An automated or manual tool
for storing and organizing information about the
data maintained in a database

data flow analysis (DFA) A system design and analysis
approach. It is supported by a technique referred
to as DFD. However, the DFD focuses more on the
process, but the DFA more likely focuses on the
data.

data flow diagram (DFD) A primary tool in structured
analysis and design information systems that graph-
ically illustrates the systems’s component processes
and the flow of data between them.

entity relationship diagram (ERD) A methodology for
documenting databases illustrating the relation-
ship between various entries in the relational data-
bases.

field A grouping of characters into a word, a group
of words, or a complete number, such as a person’s
name or age.

file A group of records of the same type. In the sim-
ilar above example, if we collect the students’ in-
formation and group that information we will make
a student file.

flowchart A graphical design tool that depicts the
physical media and sequence of processing steps
used in an entire information system.

logical design Lays out the components of the infor-
mation system and their relationship to each other
as they would appear to users.

physical design The process of translating the ab-
stract logical model into the specific technical de-
sign for the new system.

programming A stage in the systems life cycle that
translates the design specifications produced dur-
ing the design stage into software program code.

record A group of related fields. For example, last
name, first name, middle name, and social security
number fields are all representing a specific per-
son. In this example the group of those fields rep-
resents or is called a record.

structured analysis A method for defining system in-
puts, processes, and outputs and for partitioning
systems into subsystems or modules that show a
logical graphic model of information flow.

structured design A software design discipline, en-
compassing a set of design rules and techniques
for designing a system from the top down in a hi-
erarchical type.

structured programming A discipline for organizing
and coding programs that simplifies the control
paths so that the programs can be easily understood
and modified. Uses the basic control structures and

modules that have only one entry point and one
exit point. This concept is in contrast to the con-
cept of event-driven programming in Visual Basic
Programming Language.

structured query language (SQL) The standard data
manipulation language for relational DBMS.

system analysis The analysis of a problem that the
organization will try to solve with an information
system.

system design Details how a system will meet the in-
formation requirements as determined by the sys-
tem analysis.

I. INTRODUCTION

Since at least 1960, systems analysts have faced the
task of describing business processes in order to build
performance-enhanced information systems. This is
true whether the analyst is designing a system to au-
tomate a structured task (such as order entry) or to
support unstructured objectives (such as business
strategy formation).

However, system analysts, at that time, have not
had the proper modeling tools for designing a busi-
ness process function. Unsuccessful systems are often
exposed as dramatic and expensive failures and they
usually have been held responsible for the organiza-
tional blame. For these reasons, systems analysts have
put considerable effort into developing ways of un-
derstanding processes that can translate directly into
information system specifications. These specifica-
tions, often demanding detailed descriptions of data-
base structures, records, and fields, are explicit and
structured like the entity-relationship diagram (ERD),
which is not focused on the process, but on the data
to describe clearly and precisely the data with which
software applications will work.

The systems analysis challenge arises from applying
internal organizational process knowledge to a
computer-system-recognizable knowledge in order to
accomplish useful work. Based on this kind of mis-
match, systems design processes are difficult to de-
scribe, for at least the following reasons:

• Processes tend to be understood differently by
each person working within them (ask three
different people how “the process works”; get five
different answers).

• Processes sustain many variations. An order entry
process, for example, may work one way for first-
time customers, one way for large customers, one
way for small customers, one way for former

customers, and one way for customers whose
purchasing agents are personal friends of your
CEO’s spouse.

• Processes can prove very complex. Again, an order
entry process that seems quite simple at one level
proves very complex in large organizations that
operate through many functional departments
spread across a wide geographical area.

• An existing business process is not guaranteed to
be optimally effective. This means that not
everything in every organization works or that
processes are perfectly fit to the organization.
Thus, most managers look to information systems
as a tool for fixing those problems that exist
within current processes. In other words, they
look for ways to use systems to redesign processes.

The management implications of systems design
arise largely from the interaction of systems design and
process design, e.g., from an in-depth understanding of
how information systems can be designed to foster
constructive change within organizational processes.
Each influences the other: in most systems design
projects, processes influence systems and vice versa.
Understanding these issues at more than a superficial
level can greatly improve the success of any business
design, process design, or system design ideas that
you have.

Most traditional system design techniques do not
arise from perspectives that managers might typically
use to describe a business. Instead, they are devel-
oped from a systems engineering perspective: tech-
niques were evolved by software engineers who were
trying to understand business processes in order to
build information systems that worked.

This point also might seem obvious, at least until
you try to build a systems prototype of any meaning-
ful size. In such a project sooner or later a “manage-
ment” perspective (e.g., a focus on the business de-
mands associated with the process in question) will
begin to conflict with an “information systems” per-
spective (e.g., a focus on the demands imposed by the
technology that information engineers are trying to
use to support the process). The business demands of
the process (e.g., to deliver a product or service
quickly and without error, based on often highly am-
biguous customer preferences) tend to oppose the re-
quirements of an information system (which can
process data extremely quickly, but must receive that
data in a highly structured, unambiguous form). For
example, according to the evolution of the global
connected on-line real-time environments, most cus-
tomers are very sensitive to their supplier’s on-line se-

456 Data Flow Diagrams

curity and privacy concerns. If customers try to track
their products via the Internet, the information sys-
tem of the company should check the customers’
identities before supporting the customers’ requests
through the Internet or other telecommunication
technology. However, there are lots of ways to identify
the customer himself utilizing fingerprint, ID, Pass-
word, etc. In this case, the managers want to provide
any kind of services their customers want regardless
of the system support ability, while restricting identi-
fication methods to their customers use due to insta-
bility of information technology. Those two parties
should resolve the problem between the managerial
and technical gap in system design and analysis. In
database management systems (DBMS), most tradi-
tional DBMS such as relational, hierarchical, etc. can-
not support the logical data relationship. For exam-
ple, if a user inputs several constraint conditions of
data, the DBMS cannot provide the correct result
even though it uses a complex SQL query method,
because those inputs do not have a specific range, in-
stead having an ambiguous range of value in the case
of finding the shortest path or goal programming of
the management science theory.

The effect of these conflicting perspectives is illus-
trated in Fig. 1. It suggests that many characteristics
of existing business processes can be left ambiguous,
especially with regard to how those processes achieve
explicit business goals.

Information systems inherently micromanage: the
technology constraints imposed by hardware and
database design make it impossible for them to do
otherwise. It sounds overly obvious to point out that
databases must have fields and those fields must be
defined—but when information systems are being
used to support cross-functional processes that ex-
tend beyond any but the most operational levels, the
impact of such requirements forces systems analysts to
reach a level of process description that many man-
agers never attempt. The input, processing, and out-

put requirements of information systems drive a need
for understanding process characteristics at multiple
levels and in great depth.

From this point of view the success of systems design
hinges on finding techniques that effectively reconcile
an organization’s naturally ambiguous understanding
of the processes that achieve strategic goals with an in-
formation system’s naturally structured approach to
handling data. One approach to resolving this conflict
involves understanding the structures inherent in busi-
ness data, and gave rise to entity-relationship (ER) mod-
eling. Another complementary perspective focused on
how data move through the tasks that make up business
processes. This approach has come to be called data
flow analysis (DFA), and is supported by a technique re-
ferred to as data flow diagramming (DFD). However,
the DFD is more focused on the process not on the data
that the DFA tries to focus on.

II. FUTURE DIRECTION OF DFD METHODOLOGY

About twenty years ago, systems analysts—Gane and
Sarson, DeMarco—began to resolve the conflicts be-
tween managerial and information systems design per-
spectives in an elegant way. This solution described
processes by focusing almost exclusively on the data
that each process generated (→ data-oriented process
activities). This notion suggested that by focusing on
data movement and the processing activities that oc-
curred within a business process, one could simplify
process descriptions in ways that supported successful
information systems. To a large extent, this idea
proved valuable: systems analysis techniques based on
this perspective now dominate most software systems
engineering work. Focusing on the data had the fol-
lowing advantages:

1. A focus on data minimized the distractions
generated by other process characteristics. For

Data Flow Diagrams 457

Business
Goal

Ambiguity

Business
goal

Business
process
design

Area of
design
conflict

Structure

Information
system
design

Technology
constraints

Figure 1 Conflicts inherent in business process design and information system design. See http://roger.babson.edu/
Osborn/doit/readings/dfdsumry.htm.

example, knowing what data an order entry
process required enabled system designers to
build systems that would support order entry no
matter who did the work, no matter where the
work was done, and no matter when it was done.
The system design, from this perspective,
depends less on attributes of the existing process
than on the data within the process. In this sense,
a focus on data alone enabled systems analysts to
move quickly beyond process details to recognize
the minimum necessary characteristics of a
process that their systems would have to support.

2. A focus on data made it easier to recognize
potentially new process designs. Abstracting a
general picture of the data used in a process
from the specific details that represented
examples of that process tended to provide new
insights for process redesign. Consider the
ordering example we discussed above. In the
more complex version of that process, accounting
matches two types of purchase orders with a
shipping manifest. A systems analyst using data-
driven techniques would quickly recognize that
all three forms carried largely the same data, ask
why they were all needed, and ask why the
matching step needed to take place. In
organizations where Accounting waited days or
weeks to obtain copies of all three forms prior to
sending out an order (not really so unlikely in
many businesses), such a process innovation
could have important business benefits (e.g.,
shorter delivery times).

In effect, focusing on data enabled systems analysts
to extract only those details most necessary to the de-
velopment of the information system from the masses
of detail collected to describe organizational processes.
This simplified process view often offered insights for
potential process redesigns. Insights arose for at least
two reasons:

1. Developing software-based process support forces
analysts to examine the logic by which
organizations make choices within processes.
Electronic support for order entry, for example,
requires that a system “know” how orders are
officially approved, how products are confirmed
to be backordered, how packages are approved
for shipment, etc.

2. Developing the algorithms (e.g., the specific
instructions) that software can use across a range of
process variations forces analysts to generalize
generic process characteristics from observed

process specifics. Orders from both large and small
customers, for example, are likely to have features
in common as well as specific differences based
upon customer size: an efficient software system
would know how to handle common characteristics
using the same software code, thereby minimizing
the amount of customized code that would have to
be produced to manage process variations.

This interaction between process descriptions and
the requirements of software engineering led to a
standardized way of analyzing business processes. This
perspective understood processes from the point of
view of the data and processing steps that they gener-
ated. It led to a four-step analysis of data flows and
their related processing steps:

1. Data flows and processing steps were observed
within the process as it was currently practiced in
the organization. The resulting model was often
referred to as the “physical” or “implementation”
model of the system.

2. The underlying logic represented by observed
process steps was abstracted to build a
generalized model of the process. This model was
often referred to as the “logical” or “essential”
model of the system. “Logical,” in this sense,
referred to the programming logic that analysts
would have to use to write the software code
needed to build the system.

3. After closely examining patterns of data flows and
processing that emerged from the physical and
logical models, analysts could often suggest ways
of executing process logic more effectively. In
other words, they could suggest process
improvements. The logical model of these
improvements would comprise the key
characteristics of a new process that, if
implemented, would enable improvements in
business performance based on a combination of
process redesign and newly available information
system support.

4. If management decided to adopt the new process,
the combination of process design and
information system support would become the
basis of new practice within the organization,
giving rise to a new set of physical process models.

A summary of this approach to process analysis is
shown below in Fig. 2. It suggests how a systems analyst
could analyze data flows (DFA-perspective) to move from
observations of current practice in an organization to
understanding (1) key characteristics of current prac-

458 Data Flow Diagrams

tice, (2) key characteristics of improved practice, and
(3) potential redesigns that could become future prac-
tice to support improved business performance. The
curved arrow in the figure suggests the analytical pro-
gression that would support such conclusions.

We will refer to the analytical perspective that fo-
cuses on data movement and the processing implica-
tions of work tasks as DFA. The following sections de-
scribe a graphical approach to understanding data
flows that provides a way to build data flow models
quickly and consistently. These models offer a useful
way to compress large amounts of process informa-
tion into a two-dimensional space that assists in both
understanding the logic of a process and identifying
key data entities within the process. For this reason,
DFA can be seen as a technique complementary to
ERD. Indeed, the DFA advanced data flow diagrams
methodology, can be seen as a data-driven process
representation that is one step further away from the
database-design-specific characteristics of ERD.

In conclusion, while DFDs do depict data, they are
more aptly described by most authors as being process
oriented. In DFDs, data is described/shown in chunks
(data stores) and the structure and details of the data
are not the primary focal point in a DFD, even though
they are part of techniques related to DFDs such as the
data dictionary (DD). In DFDs, processes are the focus
of decomposition and refinement and hence the notion
of DFDs being process oriented. The data flows to and
from the processes are indeed important, but processes

drive the construction and use of the diagram. At most,
it is reasonable to say that DFDs are both process and
dataflow driven. While DFA is a tool that analyzes the
data movement or patterns in a process, ERD is more fo-
cused on the data not on the process utilizing the DBMS
in most cases for analysis, design, and implementation
of the data-oriented information systems (Fig. 3).

III. BRIEF OVERVIEW OF THE DFDs

In this section we will briefly overview the general
characteristics of DFD. Data flow diagrams are a net-
work-style (or hierarchical) representation of a sys-
tem. They are the cornerstones for structured system
analysis and design. They provide one technique for
isolating the data stores used by a process and the ma-
jor data entities that those stores contain.

In short, DFDs offer a graphical technique for sum-
marizing the movement of data between the processing
steps that occur within a business process. They isolate
the collections of data, or data stores, which accumulate
during a process, and identify the sources and/or des-
tinations of data that arise outside process boundaries.
In addition, there are various DFD drawing CASE tools
such as PowerDesigner (PowerSoft, Inc.), Data Explorer
(IBM), Khoros, Wavefront Data Visualizer, Edge Dia-
grammer (Pacestar Softwave), and SilverRun BPM.

A. Key Characteristics of DFDs

Some key characteristics of DFDs are

• Two-dimensional summary. DFDs offer a way to
summarize the data flow characteristics of a
process on a single page. As such they can provide
a useful and concise summary of a system, which
can be described by a single business process-
oriented picture.

• Completeness. DFDs offer a way to check the
completeness of your process model, particularly

Data Flow Diagrams 459

Generalized Observed

Logical/Essential Physical/Implementation

Key characteristics of
current practice

Current practice in business
unit, including I/T system

Key characteristics of
improved practice

Proposed redesign for current
practice, including I/T system

Types of
Models

Current
Process

Process as
Redesigned

Figure 2 Types of data flow process models: physical, logical,
and process redesign. See http://roger.babson.edu/Osborn/
doit/readings/dfdsumry.htm.

 DFDs
Dataflow

diagramming

 ERDs
Entity-relationship

diagramming

Strategy Formation Business Process Design Information System Design

Figure 3 Complementary data-driven system design techniques and process design. See http://roger.babson.edu/
Osborn/doit/readings/dfdsumry.htm.

regarding your understanding of the data that
would be required by an information system and
process flow steps within the system (e.g., Are all
the data that would be needed for input actually
available? Does each processing step produce data
that could be used by subsequent steps? Are all
data generated usable and the consequence
processes effective by an information system where
necessary?). DFDs can provide a fast way to
generate further questions that need to be asked
about the process.

• Processing not processes. DFDs refer to “process”
steps. It might be more useful to think of DFD
“processes” as processing steps rather than process
activities. In essence, DFDs ask one to refer to the
information systems implications of any processing
work that occurs during the tasks that comprise a
business process. DFD terminology tends to
confuse the term “process” in its connotation with
business process with the term “process” that refers
to a computational process executing within
software (e.g., a software algorithm). Whether this
represents the presumption among information
engineers that everything is just a version of a
computational process; the point here is that it is

safer to think of DFD “processes” as processing
steps.

• Patterns. DFDs can provide shorthand for
understanding patterns that exist within the data
flows supporting business processes. They can
show, for example, where large amounts of data
are collected, stored, transferred, generated, used,
and delivered. They can highlight areas of
potentially extraneous activity, and can suggest
process components that do not receive the
information support that they deserve (or need).

B. Symbols Used in DFDs

Table I summarizes the graphical symbols used in
DFDs. The vocabulary used by DFDs is very simple,
comprising only four symbols such as data flows, pro-
cessing steps, sources/sinks, and data stores to repre-
sent any system at any level of detail.

An example can probably provide the best way to
understand how a DFD can summarize knowledge
about a process. The diagram in Fig. 4 illustrates how
a systems analyst might use a DFD to describe data
flows, processing steps, sources, sinks, and data stores

460 Data Flow Diagrams

Table I Symbols Used in Data Flow Diagrams (DFDs)

Symbol Description

Source (or Sink). Source is short for “data source”—a source represents any source of data
that is identified as outside the boundary of the process that the DFD is modeling.
Similarly, a “sink” is any destination for data that is outside the boundary of the process
that the DFD is modeling.

Processing step. A DFD process represents an activity that processes data; presumably the
processing is important enough to play a significant role in the business process that
the DFD is modeling. This processing focus is relevant even when the description of the
process does not sound like data processing—e.g., “withdraw funds from account” in a
DFD describing banking actually refers to the processing that must accompany the
withdrawal.

Note that the process is labeled with an identifying number—in this case, 1.0. Thus number
is used in developing levels of DFDs that describe increasingly detailed levels of a process
(e.g., process 1.0 breaks apart into three processes labeled 1.1, 1.2, 1.3, etc.).

Data store. A collection of data needed by the business process. A data store is not the
same thing as a “database”—instead, it represents a more abstract way of referring to any
accumulation of data that is used by the process. The contents of a data store will very
likely suggest some databases that could be derived from that store, but data stores tend
to be process-specific rather than database-specific. One of the main purposes for which
we will use DFDs is to identify entities within the contents of data stores. Those entities
then become the basis for database tables developed using ERDs.

Data flow(s). In DFDs, data flows are represented by arrows. The arrows are labeled with the
data that move along the arrow (the arrowhead indicates the direction of movement).

See http://roger.babson.edu/Osborn/doit/readings/dfdsumry.htm.

Source
(or sink)

1.0

Process
(e.g.,

processing
step)

Data store

Data item(s)

used to describe an individual’s relationship with his
or bank. The DFD describes the processing transac-
tions that take place as the individual and the bank
jointly manages a set of customer accounts. The
process(es) described include most operational as-
pects of handling the customer’s money, including
making deposits, funding withdrawals, paying bills
(perhaps a service provided by electronic banking),
and reconciling account balances. Some of the data
stores can be translated almost directly into database
specifications (e.g., “account transactions”). Others
show how the notion of data stores can apply equally
well to data that are captured in paper form (e.g.,
“monthly account statements”). Throughout, the data
flow arrows identify data items and groups of data
items that move between sources, data stores, and
processing steps. Note that processing steps represent

those points at which data from sources and data from
data stores come together, resulting in some change
in specific data items maintained by the bank.

C. Advantages of DFDs

Here are some of the advantages of using DFD analysis.

• Data flows and process consequences. Note how this
representation of the data characteristics of banking
operations enables us to start at any point in the
operation (e.g., deposits, withdrawals, or bill
payment), and follows the consequences of that
activity through to the point where all appropriate
account balances have been adjusted and reconciled.
Wherever we start in the process, we can understand

Data Flow Diagrams 461

Bank

Bank

Creditor

Employer

Any other
source of
income

Other
income
earned

Pay earned

Monthly statement

Bill

Payment

Record
of payment

Record
of deposit

Account transactions

Withdraw
or transfer

2.0

1.0

Pay a bill

3.0

Withdraw
funds from

account

4.0

Deposit funds
into account

Modified
balance

Modified
balance

Modified
balance

Account
balance

Current
balance

Bank accounts

Transaction

Account transaction

Prior monthly
statement

New or modified
monthly statement

Reconcile
account
balance

Monthly account statements

Figure 4 A sample data flow diagram—bank operations. [Adapted from Whitten, Bentley, and Barlow. (1994). Sys-
tems Analysis and Design Methods, 3rd ed. Burr Ridge, IL: McGraw-Hill].

the processing steps that the bank would need to
take to complete the relevant transaction(s) and to
inform its constituents of the results.

• Data inputs and outputs. The DFD also makes it
possible to understand what data are needed to
provide appropriate inputs to any processing step.
If, for example, we were to build an information
system to support this individual’s banking activities
(in the days before Quicken and/or Microsoft
Money), we would need to understand exactly what
data items are represented by data flows such as
“Monthly Statement,” “Pay earned,” “Withdraw or
Transfer,” and other arrows shown in the diagram.

• Simplifying complexity by isolating process components.
Note how the DFD would make it easier to
capture the detail of such data flows. By isolating
“Withdraw or Transfer” within the larger scheme
of the banking process, the DFD makes it possible
to consider the details of the data items included
in this flow without reference to the flows
affecting other processing steps. All of the flows
affecting withdrawals (e.g., processing step 3.0,
“Withdraw funds from account”) are isolated as
entering or leaving processing step 3.0. At the
time that DFDs were developed, this shift toward
modularizing data flows and processing elements
represented a major step forward in enabling
systems analysts to add useful structure to process
representations rapidly and easily.

D. Three Approaches
to Refinement of DFDs

1. Start by identifying the input and output data
flows (arrows), and the top-level data transformer
(bubble). Decompose the data transformer and
specify the input and output data flows for each
of the components.

2. Start with the output data flow from the system
and try to identify the final transformation that
has to be done to attain that data flow. Then try
to identify the previous transformer, etc.

3. Same as method 2, except that we start from the
input flow to the system and work out the
sequence of transformations that should be
applied to it.

IV. COMMON TYPES OF DFD MISTAKES

DFDs look easy on the surface. After all, what’s hard
about writing down a few bubbles and arrows? In prac-

tice the techniques proves to be somewhat more dif-
ficult than one might initially anticipate. Obtaining
appropriate names for both processing steps and data
flows can require careful thought. As one rule of
thumb, imagine that you are producing a diagram
that must pass this test: you will finish the DFD, then
hand it to someone (of reasonable intelligence) who
will then proceed to describe the process back to you
based upon what he or she sees in your diagram. If
this process recitation captures your original process
description (and, of course, the appropriate charac-
teristics of the business process itself), your DFD is
reasonably accurate.

With such problems in mind, this section considers
some of the common mistakes that occur when one
first tries to build DFDs.

Simply said, the DFD must focus on the flow of
data, not the control of data. Every DFD should con-
sider following basic rules: every symbol is labeled, no
processes lack input data flow, no processes lack out-
put data flows, data does not flow directly between
sources, sinks, or stores, and data flows entering and
leaving lower level diagrams match those entering
and leaving parent processes. The following section
will look at common mistakes in drawing DFDs more
detail.

A. Illegal Data Flows

One of the patterns of DFA is that all flows must be-
gin with or end at a processing step. This makes sense,
since presumably data cannot simply metastasize on
its own without being processed (in spite of the cir-
cumstantial evidence we might have gathered in our
own business experience). This simple rule means
that the following mistakes can be fairly easily identi-
fied and corrected in a DFD. The symbols shown be-
low are purposefully left blank (e.g., without captions)
so that it is easier for you to recognize patterns such
as these in your own DFDs (Table II).

B. Diagramming Mistakes: Black
Holes, Gray Holes, and Miracles

A second class of DFD mistakes arises when the outputs
from one processing step do not match its inputs. It is
not hard to list situations in which this might occur.

• A processing step may have input flows but no
output flows. This situation is sometimes called a
black hole.

462 Data Flow Diagrams

• A processing step may have output flows but no
input flows. This situation is sometimes called a
miracle.

• A processing step may have outputs that are greater
than the sum of its inputs, e.g., its inputs could not
produce the output shown. This situation is
sometimes referred to as a gray hole.

When one is trying to understand a process during
the course of an interview (and consequently drafting
DFDs at high speed), it is not hard to develop dia-
grams with each of the above characteristics. Indeed,
scanning DFDs for these mistakes can raise questions
that provide questions for use in further process analy-
ses (e.g., “Where do you get the data that allows you
to do such-and-such...”).

The following diagram (Fig. 5) illustrates these
common DFD mistakes. By tracing the inputs and out-
puts affecting each processing step, you can avoid
them in your own diagrams.

C. The Differences between
DFDs and Flow Charts

The DFDs are not flow charts. A last class of DFD mis-
takes is somewhat more difficult to identify. Many of
us have had prior experience developing flow charts.
Flow chart diagrams can be useful for describing pro-
gramming logic or understanding a single sequence

of process activities. It is important to recognize, how-
ever, that DFDs are not flow charts. Flow charts often
show both processing steps and data “transfer” steps
(e.g., steps that do not “process” data); DFDs only
show “essential” processing steps. Flow charts might
(indeed, often do) include arrows without labels,
while DFDs never show an unnamed data flow. Flow
charts show conditional logic and DFDs don’t (the
conditional decisions appear at lower levels, always
within processing steps). Flow charts show different
steps for handling each item of data, while DFDs might
include several data items on a single flow arrow.

With these distinctions in mind, the following dia-
grams suggest some DFD drafting mistakes that might
be influenced by prior experience with flow charts
(Fig. 6).

In the example above, a processing step is included
that does not actually change any data. This step (ti-
tled “route transaction”) might appear on a flow chart
but would not appear on a DFD.

In Fig. 7, the left side tries to represent the dispo-
sition of credit receipts after a credit card purchase
has been approved. Branching, whether relating to
data or to conditional decision-making, might appear
on a flow chart but would not appear on a DFD.

How does one decide what goes on a DFD? One
answer lies in understanding the difference between
a physical and logical model of a process. The logical
model describes only those processing steps that are
essential to completing the process. These may not be

Data Flow Diagrams 463

Table II Common Data Flow Diagramming Mistakes

Wrong Right Description

A source or a sink cannot provide data
to another source or sink without
some processing occurring

Data cannot move directly from a
source to a data store without being
processed

Data cannot move directly from a data
store to a sink without being
processed

Data cannot move directly from one
data store to another without being
processed

Adapted from Figure 9.9, p. 360 in Whitten, J. L., Bentley, L. D., and Barlow, V. M. (1994). Systems Analysis and Design Methods (3rd Ed.).
Burr Ridge, IL: Irwin.

immediately obvious during early steps in process
analysis, so be prepared to sketch multiple drafts of a
DFD. One of the reasons that this technique was de-
veloped was to enable systems analysts to sketch mean-
ingful process descriptions on a single piece of paper
during discussions with business managers (even an
envelope or a napkin, no kidding). The technique is

designed for rapid diagramming and multiple itera-
tion. Don’t be dismayed if your first draft has mis-
takes—those mistakes are one of the ways that you
know how to ask more insightful questions of the
process.

As a final aid in developing DFDs, consider the fol-
lowing description of processing steps (Table III). It

464 Data Flow Diagrams

Employee

Employees

Membership
application

Outputs but no inputs:
A miracle

Inputs but no outputs:
A black hole

Existing account

Member accounts

Modified account status

1.0

Create new
member
account

2.0

Freeze
account
number

Bank statement

Employee status

Frozen account notification

3.0
Generate
employee

bank
statements

Employee ID
and address

Inputs not
sufficient to
product outputs:
A grey hole

Accounts
receivable
department

Figure 5 Common DFD drafting errors: black holes, gray holes, miracles. [Adapted from Figure 9.5, p. 356 in Whit-
ten, J. L., Bentley, L. D., and Barlow, V. M. (1994). Systems Analysis and Design Methods (3rd Ed.). Burr Ridge, IL: Irwin.]

Figure 6 Processing steps that do not change data do not belong in DFDs. [Adapted from Figure 9.6, p. 357 in Whit-
ten, J. L., Bentley, L. D., and Barlow, V. M. (1994). Systems Analysis and Design Methods (3rd Ed.). Burr Ridge, IL: Irwin.]

suggests five characteristics of the processing step that
changes data (and so deserves to be included on
a DFD).

V. LEVELING OF DFDs

A. Definition of DFD Leveling

If we have hundreds of system processes that to be
drawn on a single paper, it is a very tough job even
though you can draw it clearly on a paper. Further-
more, hundreds of processes on a single document be-
come incoherent, make it difficult to follow each
process, and/or are clearly no better of than using an
essay. To resolve these kinds of problems, we can use a
set of leveled DFDs based on the top-down partitioning
(or known as hierarchical) and “decomposition princi-
ple.” In short, processes are decomposed by exploding
them into lower and lower levels until they are ready for
detailed design. In other words, a complicated problem

or a single design domain can be chopped into a very
simple unit domain that can be easily understood and
maintained by the system analysts or users. DFDs should
have between three and nine processes on a single level.
Detailed designs of atomic processes are specified in de-
scriptions called “mini-specs,” usually in pseudo-code.
Furthermore, detail that is not shown on the different
levels of the DFDs such as volumes, timing, frequency,
etc. is shown on supplementary diagrams or in the DD.
For example, data store contents and/or definition of
terms, symbols, etc., may be shown in the DD.

DFD-leveling refers to using multiple pages to show
data flows at varying levels. For example, one page of a
DFD might show processing steps 1.0, 2.0, and 3.0. A sec-
ond page might show the subprocesses within step 1.0: it
would have the same total inputs and outputs as 1.0, but
would show an additional level of detail in describing
processing steps 1.1, 1.2, and 1.3 that make up process
1.0. A third page might show steps 2.1, 2.2, and 2.3; a
fourth page steps 3.1, 3.2, 3.3, etc. When decomposing
data in this way, it is important to make sure that the

Data Flow Diagrams 465

Figure 7 Conditional/diverging data flows should be replaced by individual flows. [Adapted from Figure 9.8, p. 359 in
Whitten, J. L., Bentley, L. D., and Barlow, V. M. (1994). Systems Analysis and Design Methods (3rd Ed.). Burr Ridge, IL: Irwin.]

Table III Processing Steps to Be Considered in Drafting DFDs

Include processing steps that Example(s)

Perform computations A processing step that develops charges associated with a product or
service, e.g., “price consulting engagement”

Make decisions A processing step that qualifies a potential customer as a good
prospect based on demographics, income level, and the number of
times that the individual has responded to company product trials

Split data flows based on content or business rules A processing step that separates approved orders from rejected
orders based on credit rules

Filter and/or summarize data flows to produce new data A processing step where specific data items may not change, but the
flow(s) structure of the data does, e.g., filtering invoice data to identify

products that were in highest demand during the past two weeks

Adapted from p. 355 in Whitten, J. L., Bentley, L. D., and Barlow, V. M. (1994). Systems Analysis and Design Methods (3rd Ed.). Burr Ridge,
IL: Irwin.

lower level DFD receives exactly the same “incoming”
data flow as the higher level process which it describes,
and passes the same “outgoing” data flow as that process.

B. Assigning Names on the DFD

The DFD symbols identify relationship among com-
ponents of a system. For a DFD to complete its mission
as a communication vehicle, these components must
be given clear and meaningful names that support the
description of the system. The naming of system com-
ponents should follow these clear, simple rules:

• Data flow and data stores should receive names
that describe the composition of the data flowing
through the system with nouns.

• Process symbols should be named with strong
verbs to indicate the basic transformation or
process that is taking place.

Care must be taken to find names that accurately
reflect the data and the processing involved. Difficulty
in finding names is often a sign of a more serious
problem: it may indicate a lack of understanding about
what is happening. More detailed information may be
necessary before the diagram can be completed.

C. Context Diagram

The starting point is the context diagram, which, in
effect, defines the scope of the system. It highlights
the net inputs and sources as well as the net outputs
and destinations (sinks) of data for the system.

In this level, system analysts or developers define
the scope of the system using context diagrams, which
offer a way to describe the scope of a DFD by identi-
fying (at its highest level) the boundaries of the sys-
tem. The context diagram is a special kind of DFD.

If we build a data flow model of a system in a top-
down fashion, we start with a context diagram, in
which the system is represented as one process. Fur-
thermore, the context diagram shows all external en-
tities, which interacted with the system and all data
flows between these and the system. The purpose of
the context diagram is to depict how the system is
connected to, and interacts with, other entities that
make its data environment. It especially gives the sys-
tem context on the diagram where the boundaries
will be between the system and the rest of the world.
Before getting started on level 0 diagram, remember
the need to focus on major business operations or oc-

currences rather than on specific, narrow, physical
processing functions.

We can illustrate the leveling process using an auto-
matic ordering example. The automatic ordering sys-
tem provides a quick, efficient service to customers by
allowing for almost instantaneous order and dispatch.
The only entities “outside” the system (who are in con-
tact with the organization using the system, but not
part of it) are the customer and the credit supplier (a
credit card company). The example is shown in Fig. 8.

D. Top-Level/Level 0 DFD

Top level diagram (or level 0 diagram) provides a more
detailed description of the system (Fig. 9). It is used to
describe, at a high level, the overall processing in the
system. The scope of the system presented in this level
remains the same as in the context diagram. The dif-
ference is that the single and central process, the en-
tire system, will be partitioned into a series of compo-
nents, or major subsystems within overall system.

This level of DFD usually shows the major processes
such as departments or critical functions. It still has
the same external entities (sources and sinks). There
are several hints to start with this level. First, make a
list of the major data stores currently in use. Second,
list the major business occurrences or events within
the system. Third, draw a segment, or fragment, of a
DFD for each of the identified events. And the final
step in the preparation of a level 0 diagram is to as-
semble the fragments into a single DFD.

E. Level 1 DFD

This level expands the processes in the level 0 diagram
basically. When constructing DFDs at any level, it is
good practice to name the data flow first, then to name

466 Data Flow Diagrams

Figure 8 A context diagram.

the processes (Fig. 10). This helps to keep the con-
centration on the flow and transformation of the data.

F. Higher Level DFD

The level 2 DFD expands the processes in the level 1
diagram. The level 3 DFD is an expansion of the
process in the level 2 DFDs. The level 4 DFD is an ex-
pansion of the process in the level 3 DFDs. And the

level 5 DFD is an expansion of the process in the level
4 DFD etc. Levels stop when the analyst feels enough
detail has been reached. All processes may require dif-
ferent levels of abstraction. In other words, eventually
we will decompose the DFD diagram to a point where
the DFD cannot be decomposed any further. This
point is usually reached when the processes themselves
only describe simple tasks. When we reach this point,
the contents of the process “bubble” need to be de-
scribed. In Fig. 10, such a point has been reached.

Data Flow Diagrams 467

Figure 9 The top-level DFD.

Figure 10 Level 1 DFD: simple processes.

VI. SUMMARY

Because of simplicity and clarity, DFDs are very effec-
tive for enhancing communication between users and
systems designers. In addition, the resulting models
form a good foundation from which to begin design
work. DFDs stress processes or transformations that
are applied to data. They do not emphasize data ac-
cess paths, nor do they emphasize control and timing
for events. In fact, they hide these items. This is good,
since it enhances the ability of the analyst to discover
redundancies and inaccuracies in the way data are
processed by the current system and eliminate them
from the new system. However, it means that DFDs
alone do not constitute a complete model, even for analy-
sis. Supporting documentation—in the form of the
DD, process-descriptions (or often-called, mini-specs),
and some narrative—is necessary.

If DFDs become too complex, it becomes difficult
to trace data flows and transformation and their pur-
pose (simplicity) is defeated.

Data flow diagrams emphasize functionality and
movement of data. Functions and processes are iso-
lated, and the data exchanged between them are spec-
ified in detail. Data flow diagrams are thus process or
function oriented.

Data flow diagrams can assist in:

1. Isolating the component parts of a business
process, reducing the analytical complexity
involved in determining the specifications that
process support software would have to meet

2. Shifting the focus of a process description to the
data flows and processing steps that the process
represents

3. Identifying data-related process characteristics
that could be candidates for process design
improvements

4. Identifying data stores that isolate entities that
could be further developed using ER analysis

SEE ALSO THE FOLLOWING ARTICLES

Database Administration • Database Systems • Flowcharting
Techniques • Structured Design Methodologies • Structured
Programming • Structured Query Language (SQL) • Systems
Analysis

BIBLIOGRAPHY

Fichman, R. G., and Kemerer, C. F. (October 1992). Object ori-
ented and conventional analysis and design methodology—
Comparison and critique. MIT, IEEE Computer, pp. 22–39.

Kozar, K. A. (Spring 1997). Representing systems with data flow
diagrams. Available at http://spot.colorado.edu/~kozar/
DFD.html.

Laudon, K. C., and Laudon, J. P. (2000). Management informa-
tion systems: organization and technology in the networked enter-
prise, 6th Ed. Upper Saddle River, NJ: Prentice Hall.

Terence T. O. (August 1998). Dynamic modeling and perfor-
mance analysis of information systems. Available at http://
www.sbaer.uca.edu/docs/proceedingsII/98dsi0822.htm.

468 Data Flow Diagrams

Data, Information, and Knowledge
Eduardo Gelbstein
International Computing Centre, United Nations

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 469

I. INTRODUCTION
II. CONCEPTS AND DEFINITIONS

III. USING DATA AND INFORMATION

IV. DDI QUALITY ISSUES
V. GOOD PRACTICES

VI. DILEMMAS FOR THE INFORMATION AGE

GLOSSARY

data Facts and figures that can be used as a basis for
reasoning, discussion, or calculation. Data, partic-
ularly raw data collected from observations and ex-
periments, may include redundant or irrelevant
items as well as useful facts and figures, and must
be refined to be meaningful.

data resource management A discipline the purpose
of which is to define what data is available and
where it can be found, in addition to defining con-
trols and quality mechanisms.

information Data (possibly from various sources) pre-
sented in a context that is new or pertinent to a
specific situation.

knowledge Often described as the ability to use in-
formation so as to be able to do something with it.

metadata The description of the characteristics of
data.

The growing availability of measurements, databases,
texts, images and other records in digital form, to-
gether with the extent to which networks such as the
Internet have been deployed, provide humanity with
access to volumes of data and information with prece-
dent in human history.

Sections of this article present definitions, differ-
ences and relationships between data, information,
and knowledge as well as a discussion as how data and
information can be used.

This article also presents a discussion of quality issues
and some of the dilemmas for the Information Age.

I. INTRODUCTION

Man has left records of his observations of the world
around him for at least 30,000 years. Early records in-
clude cave paintings and inscriptions in clay and stone
dealing with mundane topics such as commercial
grain transactions and ownership of land. From these
early records, the history of writing progressed from
clay and stone to papyrus, paper, books, and maps,
and went beyond language to include music (the
phonograph), images (photography), and digital
techniques which now encompass all forms of records.

The processes of observation, analysis, documenta-
tion, and collection have continued ever since. As lit-
eracy spread, science became established as a disci-
pline, and data, information, and knowledge began
to accumulate at an ever-growing pace that continues
to accelerate.

By the latter half of the 20th century, humanity had
access to volumes of data and information much
greater than at any other time in human history. The
way in which a knowledge worker used these “materi-
als” has more in common with the work of a crafts-
man than with that of an assembly line operator in
the Industrial Revolution. Those who use data and in-
formation need to have a very good knowledge of
their tools and must also have a thorough under-
standing of what to do with these “raw materials.”

Editors, publishers, librarians, web site designers
and other professionals have created and continue to
create collections out of this raw material to facilitate
the search and use of such material. By their very na-
ture, these collections imply choices made by their

creators and in many instances researchers may pre-
fer or need to have access to the original source for
that data or information.

People working with data and information do so
for a variety of purposes, transforming the data and
information for re-use and distribution beyond the
boundaries of their workplaces, and, often, beyond
geographical boundaries as well.

II. CONCEPTS AND DEFINITIONS

Data is defined as facts and figures that can be used
as a basis for reasoning, discussion, or calculation.
Data, particularly raw data collected from observa-
tions and experiments, may include redundant or ir-
relevant items as well as useful facts and figures, and
must be refined to be meaningful.

Data resource management (DRM) is a discipline
the purpose of which is to define what data are avail-
able and where they can be found, in addition to
defining controls and quality mechanisms. All of these
create a framework where every user of these data can
determine their suitability for any particular situation.
Data resource management includes many separate
activities, among them:

• Enterprise data modeling, including definitions
and relationships

• Data standards and data dictionaries
• Data administration
• Data quality assurance and quality management
• Metadata management (see below)
• Creation and maintenance of data warehouses

and data marts

The emergence of distributed and end user comput-
ing has made DRM much more complex than it was
in the days of centralized computing. More than ever,
it remains a critical activity.

A good understanding of how and when data were
acquired, and other pertinent details, is essential in
determining the suitability of any data. The descrip-
tion of the characteristics of data is called metadata.
This metadata is a prerequisite for the measurement
of data quality.

The relationship of metadata to data is comparable
to the relationship between a product description and
a manufactured product such as a personal computer.
Another example of what metadata represents is
found by looking at a quality map. Its metadata will
include details such as scale, type of projection, date
of production, the identity of the publisher, and other

details that will tell the person looking at this map
whether or not it is appropriate for the intended use.

Information consists of data, possibly from various
sources, presented in a context that is new or perti-
nent to a specific situation. The way in which data are
organized will depend on an individual’s needs, how
the data are interpreted and the purpose for which
the information is sought. These data may also exist
in the form of documents.

In general, a document is a record or the captur-
ing of some event or thing (for example, philosophi-
cal thoughts, dissertation) so that the information will
not be lost and can be communicated. A document is
frequently written, but it can also contain or be made
with images and sound. A document usually adheres
to some convention based on similar or previous doc-
uments or specified requirements.

Examples of documents are sales invoices, wills and
deeds, newspaper issues, individual newspaper stories,
oral history recordings, executive orders, and product
specifications. Document collections can be found in
filing cabinets, archives, libraries, etc.

Printed or nonelectronic documents can be con-
verted into electronic form and stored in a computer
as one or more files. Often, a single document be-
comes a single file but an entire document or indi-
vidual parts may be treated as individual data items.
As files or data a document may be part of an orga-
nized collection or a database. Electronic document
management (EDM) deals with the management of
electronically stored documents.

A key objective of data information resource man-
agement is that of ensuring that data, documents, and
other forms of information can be shared, which in
turn creates requirements for compatibility, rational-
ization, and various other standards. Sharing, in turn,
requires rules concerning the release of data, docu-
ments, and information (DDI), definition of access
rights, and all other aspects of information security.
Information science includes this and many other re-
lated topics.

Knowledge is often described as the ability to use
information so as to be able to do something with it.
In philosophy, the theory of knowledge is called epis-
temology and deals with such questions as how much
knowledge comes from experience or from innate
reasoning ability; whether knowledge needs to be be-
lieved in order to be used; and how knowledge
changes as new ideas about the same set of facts arise.

In information technology, knowledge is the posses-
sion of information and/or the ability to quickly locate
it. This is essentially what Samuel Johnson (1709–1784)
stated: “Knowledge is of two kinds: we know a subject

470 Data, Information, and Knowledge

ourselves, or we know where we can find information
upon it.” In practice, this knowledge also implies the
possession of experienced “know-how.”

The main differences between information and
knowledge are as follows.

Information is considered a self-contained item.
The question “where can this information be found?”
is completely legitimate. Furthermore, it can be found,
bought, written down, collected, compared, put on a
database, etc., by any interested party.

Knowledge is considered a personal attribute. The
question “who knows this?” is more appropriate than
“where can I find this knowledge?”. Knowledge is in-
variably hard to acquire, hard to share.

The author of a book or an article documents part
of her/his knowledge and invariably assumptions
need to be made as to what is expected as “common
knowledge” to the reader.

Among the factors that influence how knowledge
is transferred from one person to another are the de-
gree to which the recipient already has already ac-
quired a suitable conceptual framework and relevant
past experiences.

III. USING DATA AND INFORMATION

The discussion of this topic is divided in four segments:

1. Defining the need, the search, and the usage
2. Information complexity
3. Context
4. Turning information into knowledge

The abbreviation DDI will be used throughout this
section.

A. Defining the Need for Data or
Information, Its Search and Usage

One of the many adages to appear in the early days of
the information systems and technology industry is that

. . . the information you have is not the information
you want

. . . the information you want is not the information
you get

. . . the information you get is not the information
you need

. . . the information you need is not available

. . . in any case, should you (by chance) acquire the
information you need

. . . it changes the nature of the subject and then . . .

. . . the information you have is not the information
you need.

Defining a need for DDI is an important exercise, and
the three questions below can be used to facilitate this
process:

1. What DDI do I need to provide to the people
with whom I collaborate and to the people on
whom I depend. In what form, how often, etc.?

2. What DDI do I need myself? Who/what can
deliver it and in what form?

3. What DDI are critical to me?

These needs are always influenced by context, such as
the nature of the situation being considered, prior
knowledge, and purpose.

A search for DDI can be carried out in many differ-
ent ways, ranging from looking through the contents
of boxes in a dusty archive to using a search engine
such as those available through the World Wide Web.
The role of technology is to provide better, faster,
more powerful, and convenient access and/or pro-
cessing. At certain points in the technology cycle dis-
intermediation may occur, but this is just a side effect.
The person with a specific need can define and refine
the search and assess the results as they are delivered.

The library card catalog was largely a disinterme-
diating technology in many contexts: people with sim-
ple needs or with some minimal training could by and
large understand the tool and find what they wanted,
and because of standardization, transfer skills easily to
other contexts (i.e., other libraries). Computer sys-
tems both in libraries and commercial databases
brought increased need of mediaries, because search
languages, field tags or names, and command lan-
guages were obscure and varied, as well as because of
new cost structures. We may be seeing now increased
disintermediation, because of simpler, more standard
interfaces, much cheaper computer costs and com-
munication/network technologies that make inter-
mediation more complicated than before. But that is
not the primary role of technology.

The success or otherwise of a search will be deter-
mined by

• The interest in, and value of, the DDI being
looked for

• Knowledge of what is or might be available
• Accessibility of the internal and external sources
• Familiarity with search processes and tools
• Level of quality required of the DDI

Data, Information, and Knowledge 471

Different criteria and techniques will apply depend-
ing on how much is known about what is being looked
for and how much is known about different ways to
search. In addition, these will be influenced by:

• Whether the DDI is in printed or digital form
and, if in digital form, it is structured (such as a
database) or unstructured (a text or compound
document consisting of text, audio, image, etc.
files); text documents may be in different
languages and/or use different character sets

• The volume of the DDI to be located and
retrieved, the time sensitivity of the results, the
cost of access, any restrictions about the re-use,
copy or further dissemination of the material, etc.

• The skills of the person in expressing the search
such as using a query language and in formulating
a search strategy, the functions supported by the
query language and the database (such as full text
or keyword search) and the availability of tools
such as control lists, dictionaries, and thesauri.

B. Use of DDI

As DDI can be put to use in many different ways, the
use of data, documents and information is always
driven by situational factors. The effectiveness with
which they are used is influenced by the prior knowl-
edge, experience, and cognitive abilities of the user,
the functionality and quality of the tools available,
and the knowledge of how these are used.

C. Analysis

There are many ways to combine DDI from multiple
sources and manipulate them with specific objectives.
Such objectives may include summarizing large vol-
umes of data using statistical techniques, pattern
recognition, data mining and discovery, modeling
complex phenomena, simulation, and virtual reality.

D. Business Intelligence

Making sound business decisions based on accurate
and current information takes more than intuition.
Data analysis, reporting, and query tools can help
business users synthesize valuable information from a
sea of data—today these tools collectively fall into a
category called “business intelligence” (BI).

This relies on the use of computer systems and
technologies for gathering, storing, and providing ac-
cess to enterprise and external DDI to support the
process of making informed business decisions. The
BI applications include the activities of decision sup-
port system (DSS), query and reporting, on-line ana-
lytical processing (OLAP), and forecasting.

In addition to supporting decision making, BI also
covers the integration of multiple sources to deliver
situation reports and provide the basis for risk
management.

E. Dissemination

For DDI to be shared, the appropriate publication
processes need to be in place. The processing of DDI
from multiple sources, to condense it, present it in a
more readily usable format (which may include the vi-
sualization of data and trends) and other editorial
techniques will put DDI to a productive use for an or-
ganization and/or its wider external community.

1. Information Complexity

The sheer volume of data, documents, and other
forms of information available causes their use and
management to be a significant challenge. The prob-
lem is compounded by the growing need to integrate
information from multiple sources, many of which
are external to the organization. These components
need to be validated, rationalized, and combined with
other components. These activities require that the
precise meaning of each one of these components be
clearly understood and that the relationships between
the various components be clearly defined. External
information components may present issues of lan-
guage and intellectual property.

There are large quantities of data, documents, and
other forms of information generated within an orga-
nization, residing in a variety of information systems
such as technical and production systems databases,
data warehouses, document management systems, en-
terprise resource management (ERP) systems, elec-
tronic (and other) archives, etc.

As information technology enables or even en-
courages the decentralization of these resources, it
becomes harder for any organization to “know what it
knows” and be able to track, access, share, and exploit
the assets it has.

These internal sources are complemented by an
even larger number of external sources of DDI in dig-

472 Data, Information, and Knowledge

ital form, and a still larger number of sources in
nondigital formats. The digital sources can be classi-
fied in groups such as:

• Commercial information providers: these can be
general-purpose providers such as real-time stock
market and other financial information,
newswires, and services specializing in specific
industries

• Other commercial sources include industry
associations, vendors, and other service providers

• Digital libraries, professional and other journals,
on-line newspapers (including archive services)

• Governments, nongovernmental and other not-
for-profit organizations

• Personal and special interest group websites and
many more

As a result of the wide choice of material, a number
of issues face the user of these sources: the ease or
otherwise of integrating these DDI, made complex by
the lack of standards; the cost of obtaining these DDI
and associated copyright; and the growing importance
of assessing quality before using any of this material.

2. Information in Context

The ability to access information, particularly in digi-
tal form, makes it easy to fail to take into account im-
portant factors without which it may be hard to un-
derstand what the actual DDI might mean and why it
is important.

The elements of this context include, at the very
least, the following:

• DDI and explicit knowledge already available on a
particular subject

• Tacit and common knowledge specific to the
environment and subject matter

• Knowledge about the organizations, institutions,
communities, and individuals, that create and
maintain the DDI at their sources

One of the side effects of implementing information
systems, information management, and information
technology operations particularly well is that they be-
come “invisible” to the end user. In the case of a dig-
ital library, for example, it becomes easy to accept the
illusion that there are no library collection managers,
librarians, and catalogers, publishers, editors, refer-
ees, authors and information technology infrastruc-
ture operators, and that things happen automatically.

3. Turning Information into Knowledge

The main purpose of DDI is to enable the sharing of
information and thus support the creation and devel-
opment of knowledge. This, in turn, drives innova-
tion and accelerates change as a result. Innovation
and change create new DDI and knowledge in a self-
reinforcing cycle. New knowledge may modify or dis-
place previous knowledge.

Knowledge is not lost when it is shared. In fact, the
opposite is true, as knowledge increases as a result of
interactions. However, the sharing of knowledge can-
not be taken for granted due to a number of reasons.

Cultural reasons such as behavior are learned early
in the educational cycle. For example, sharing knowl-
edge during examinations is called cheating. More-
over, Francis Bacon (1561–1626) stated that “knowl-
edge itself is power”—and human history shows that
power is not something people give up willingly.

There are practical reasons relating to the fact that
there are three distinct kinds of knowledge:

1. Knowledge about something: The easiest to
acquire as it only requires that the recipient
becomes aware of a particular subject

2. Knowledge on how to do something: More difficult
as it requires considerable learning, and the
acquisition of both explicit and tacit knowledge,
the latter being best achieved by working with a
mentor or in a community of interest; in
addition, learning how to do something also
requires practice

3. Knowledge of the why of something:
Understanding the underlying principles and/or
theories differs from the above insofar as it
requires the learning and comprehension of
conceptual as well as practical matters.

4. Knowledge management is a relatively new concept
in which an organization systematically gathers,
organizes, shares, and analyzes its knowledge to
support its objective of getting the knowledge
from “those who have it” to “those who need it”,
in turn supporting the organization’s business
objectives as well as creating new knowledge

It is of interest to note that the value of data, informa-
tion and knowledge has so far defied quantification in
standard accounting terms. Nevertheless, knowledge
can represent serious money as evidenced in, for exam-
ple, risk management in the financial sector, or in re-
duced capital tied up in inventories as a result of imple-
menting “just-in-time” inventory management systems.

Data, Information, and Knowledge 473

IV. DDI QUALITY ISSUES

This article has referred to the very high volumes of
DDI available today, and to the need for quality.

Data quality exists when it enables its users to ac-
complish their objectives. In the field of total quality
management, “quality” is defined as “the ability to
consistently meet the customers’ expectations” where
“expectations” means “conformance to require-
ments.” The importance of quality can be illustrated
through an analogy: poor quality of data and infor-
mation is the Information Age equivalent of manu-
facturing scrap and defective units of the Industrial
Age. Poor quality DDI is a waste of resources and re-
ally bad quality can render an organization dysfunc-
tional or become the subject of litigation. Ensuring
the quality of DDI is a complex matter and requires
considerable resources.

The components of DDI quality include, at the very
least:

• Accuracy: Best defined as the opposite of an error.
An error is a discrepancy between the recorded
value for an event or object and the actual value
as measured or observed. Accuracy is always
relative to the specification of how a measurement
or observation is to be carried out and recorded.

• Precision: A term that describes the amount of
detail that can be discerned from a measurement
or observation. Precision is always finite because
no measurement system is infinitely precise.
Furthermore, the recording of data/information
is frequently designed to reduce detail. In the case
of a document, precision related to the degree of
relevance to a particular topic.

• Completeness: Refers to a lack of errors of omission
in a set of DDI or in a database. It is assessed
relative to their specification, which defines the
desired degree of generalization and abstraction
(selective omission). This may also be affected by
policies on archival/long-term preservation.

• Timeliness and currency: These are defined by the
time it takes for updates to become visible to
users’ environments. In operational environments,
real-time updates are usually available immediately.
Therefore, data timeliness is instantaneous. When
digital data is extracted from a data warehouse, the
frequency of updates becomes the defining factor.

• Consistency: Refers to the absence of apparent
contradictions in a set of DDI. It is also a measure
of the internal validity of a set of DDI or of a
database. It is assessed using information that is
contained within the set or the database.

• Traceability: Defines the extent to which the history
of changes to the DDI can be followed back in time.

• Security: Identifies what DDI a given individual or
user group may access.

When DDI do not meet the users’ expectations, the
predictable result is that these DDI will not be used.
Instead, empowered users with knowledge of end user
computing will create their private stores of DDI in
electronic form or develop applications that create
multiple copies of the “same” data in an uncontrolled
environment. Others will build their own collections
of paper documents and other forms of private
archives. To an organization, these represent unnec-
essary costs in building and maintaining nonvalue-
added items.

Finding examples of poor DDI quality is relatively
easy. Poor quality DDI may also exist in corporate data-
bases and other sources. Typically, there are islands of
information in many corporate environments as a con-
sequence of what has been described in the previous
paragraph. In addition there is legacy data that can no
longer be accessed because the application that cre-
ated it has been withdrawn, there are documents writ-
ten with word processing software that is no longer
supported, etc. Similarly there may well be printed
documents that are not included in corporate records.

In the World Wide Web there are numerous sites
with out-of-date information, untrustworthy content,
broken or incorrect links, etc. These have been referred
to as “garbage on the information superhighway.”

There are many potential sources of poor quality.
These include:

• Lack of accountability for the creation, updating,
and maintenance of DDI

• Lack of standards and definitions, which cause
DDI to be mismatched with the intended purpose
for their use

• Mistakes in data entry or conversion
• Lack of validity and consistency checks
• Missing attributes (a customer record showing

“J. Smith” should indicate if it is Mr., Mrs., Ms.,
Dr., Prof., etc.)

• Homonyms that are incorrectly interpreted (St.
could be Saint or Street)

• Lack of data quality audits

V. GOOD PRACTICES

The following are offered as a complement to the
previous sections and are intended to highlight the

474 Data, Information, and Knowledge

differences between computer systems and human
beings. Understanding their strengths and weaknesses
is an important component of how DDI will be used.

A. Things That Cannot Be
Expected from Computers

Computers as they are known around the year 2000
are able to process algorithms and logical sequences.
They have, at best, crude sensory and artificial intelli-
gence capabilities. As such they cannot understand
context or situations.

Therefore, DDI are not necessarily “right” because
they are delivered by a computer, and the user of
these must be fully aware of the quality issues dis-
cussed in this article.

It is critically important that any DDI be relevant to
the specific purpose for which they are collected. DDI
collected for one purpose may be totally inappropri-
ate for a different purpose.

B. People Do Not Think and
Act as Computers Do

Unlike computers, people are emotional beings who
are extremely good at recognizing context, but whose
knowledge is limited. There is no simple mechanism
for people to know what they don’t know. These few
factors have important consequences:

• People cannot give good answers to the question
of what information they need

• A person may have access to large amounts of
DDI and/or knowledge; this does not guarantee
that these will be used objectively in making
decisions or taking actions

• A person who has a particular item of DDI
needed by another person will not necessarily give
it freely

• Whatever is encoded into a computer system by
one or more people is not necessarily complete

• Implementing new computer systems does not
guarantee that DDI will flow freely across an
organization, or that this information will be used
effectively

VI. DILEMMAS FOR THE INFORMATION AGE

There are frequently voiced complaints that there is
too much data and not enough information. Others

claim to suffer from an information overload and
maintain that the technologies of mobile computing,
integrated messaging, etc., are demanding an in-
creasing amount of their time. Some wish that it was
possible for their company to “know what they know.”

At the same time, there is often a feeling remain-
ing that much of the information needed either within
an organization or from external sources remains dif-
ficult to find and extract.

All of these are related to a number of human
factors.

A. The Need for a New Literacy

Teaching the basic skills of reading, writing, and arith-
metic was a by-product of the needs of the Industrial
Revolution and the businesses that emerged from it.
Of course, these skills continue to be needed today.

Additional skills are needed to be able to operate
effectively in the Information Age. In particular, the
ability to formulate information needs, the ability to
navigate through large amounts of data and informa-
tion, and the ability to analyze, recognize, interpret
results and extract meaning from all of these becomes
increasingly important.

Failure to acquire these skills will reinforce the in-
congruity of an “information illiterate” user with a su-
percomputer on his desk, if not in his hand, con-
nected to every other (super) computer in the world.

B. Cultural Resistance

The best processes, information flows, formal organi-
zational charts, etc., are not sufficient to ensure that
the “unencodable,” factors such as tacit knowledge,
peoples’ networks, and organizational politics can be
or will be formalized in information systems.

C. Wider Sharing of
Information and Knowledge

While this is highly desirable in a world that is truly net-
worked through ubiquitous technologies, the owner-
ship of information and knowledge, formalized through
patents and copyrights, constitutes a major competitive
factor which may inhibit or prevent its sharing.

Data, information, and knowledge can be put to
creative use to improve business performance, en-
hance quality of life, and develop a better under-
standing of the universe.

Data, Information, and Knowledge 475

They can also be used to create misinformation,
disinformation, and fraudulent, potentially danger-
ous and destructive products or processes. Depending
on each individual’s values and framework, some of
these will be good business opportunities and others
should be avoided at all cost.

Finally, while it is true that in the last few years
mankind has collected large volumes of data, infor-
mation, and knowledge about an unbelievably large
range of subjects, extending from the nature of the
universe to the mapping of the human genome, this
does not answer many questions that continue to be
studied. For example:

• Why do people dream?
• Why are some people more susceptible than

others to particular diseases?
• Is there life beyond earth?
• Is poverty inevitable?

• Are we ever going to catalog all the knowledge
that exists?

SEE ALSO THE FOLLOWING ARTICLES

Computer History • Data Mining • Decision-Making Ap-
proaches • Decision Support Systems • Digital Divide • In-
formatics versus Information Systems • Information Measure-
ment • Knowledge Acquisition • Knowledge Management •
Virtual Reality

BIBLIOGRAPHY

Borges, J. L. (1944). The Library of Babel.
Brown, J. S., and Duguid, P. (2000). The social life of information.

Boston, MA: Harvard Business Books.
Haeckel, S., and Nolan, R. (1993). Managing by wire. Boston,

MA. Harvard Business Review.

476 Data, Information, and Knowledge

Data Mining
Marietta J. Tretter
Texas A&M University

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 477

I. WHAT IS DATA MINING?
II. WHAT CAN DATA MINING ACCOMPLISH?

III. WHAT DATA IS NEEDED TO DO DATA MINING?
IV. EXAMPLES OF DATA MINING

V. GENERAL PRINCIPLES OF DATA MINING MODEL
BUILDING

VI. THE TOOLS OF DATA MINING
VII. OTHER METHODS OF DATA MINING AND FUTURE TRENDS

GLOSSARY

classification A group of analytic methods for putting
observations or customers into separate and rela-
tively distinct groups using all available informa-
tion. These groups could be something like good
credit risk and bad credit risk.

clustering A group of analytic methods that put ob-
servations or customers into groups that may be re-
lated or overlapping.

data mining The process of extracting knowledge
from very large data sets.

decision trees A group of analytic methods that suc-
cesively separate or split observations or customers
into branches of related groups forming a tree of
groups. To get the rule for the separation one starts
at the end of the branch and follows the path back
to the original data set. Trees result in generally
easy to implement and understand models.

discriminant analysis A multivariate statistical tech-
nique that builds a regression like equation that al-
lows distinction between two or more sets of data.
To build the discriminant analysis model or equa-
tion on good and bad credit risks you would need
to already have the two groups distinguished be-
fore running the discriminant analysis. You could
then apply the model to unknown credit risks.
Neural networks can also be used to perform this
model building.

flat file Most statistical packages prefer to work on
data in flat file format. This means that each ob-
servation with its related variables is stored as a sin-
gle row of entries.

input variables The information or facts used to
model or explain the target variable. If the target
is a good loan risk then the inputs might be credit
rating, income, own home, etc.

linear versus nonlinear models Linear means a
straight line can best represent the relationship be-
tween two variables and nonlinear means that a
straight line gives a bad fit of the relationship. Gen-
erally the utility of the various data mining tech-
niques can be judged based on their ability to fit
linear or nonlinear relationships. Most real world
applications tend to be nonlinear.

logistic regression A traditional statistical method that
is often quite powerful in building data mining
models. It fits probability of occurrence rather than
actual occurrence. In the good credit risk model
you would be fitting the probability of a good credit
risk.

model A relationship, usually expressed by a mathe-
matical formula or a set of rules that relates the tar-
get variable to the other input variables of a cus-
tomer or observation unit.

neural networks A group of analytic methods that
compares all observations across all variables to get
the strongest relationships between variables and
observations. They produce robust models that are
often difficult to interpret.

observation All possibly relevant information about a
unit of interest. For example, if we are modeling
customer behavior, the customer observation would
include such variables as income, age, occupation,
hobbies, credit history, address, own home, educa-
tion level, etc.

overfitting Suppose you have two variables that are
known to have a simple linear relationship. If those
are real variables and you plot them you will get an
approximate straight line, but there will be some
variability due to measurement error or other rea-
sons and not all the points will lie exactly on the
line. A simple regression model will fit a straight
line that is as close as possible to all the points but
still a straight line.

A neural network, for example, can fit the exact,
not quite straight line. This is called overfitting
and often results in a model that accurately fits the
data at hand but does not do very well on a new
data set since it fit many of the inconsistencies in
the original data set.

regression analysis A mathematical and statistical
method for fitting a straight line model of a target
and input variable.

target variable The single fact that is trying to be
modeled in the data mining process. This could be
something like good loan risk, large purchaser, etc.

This article is an introduction to DATA MINING. It de-
fines data mining and differentiates it from traditional
applications of statistical methods.

Several examples of uses of data mining are given
in the context of current practices in business and in-
dustry. The role of model building in data mining is
explained and several of the techniques used in data
mining are briefly covered including some available
software which is a very dynamic topic.

I. WHAT IS DATA MINING?

The concept of data mining (DM) has existed for sev-
eral years, although it has been clearly identifiable
only within the last five years. When seeking informa-
tion about DM it is easy to get confused because the
area originates from three separate disciplines: infor-
mation technology (IT), machine learning (ML), and
statistics. Information technology contributed to the
development, storage, and manipulation of large
amounts of data. These data accumulating in quantity
naturally led to the question of what sort of usable in-
formation might be extracted. Machine learning and
artificial intelligence spent many years building algo-
rithms that recognize patterns in some sort of data
(numeric, verbal, symbolic). Statistics was founded by
the need to summarize and analyze mostly numerical
data. DM is a rough mixture of the techniques and
terminology of the three areas and thus causes con-
fusion because there are often three different ways to

refer to the same thing. For example, variables are
also referred to as attributes or inputs and observa-
tions are cases or collective inputs with targets.

What is DM? Actually the name is very descriptive.
Quite simply, DM takes a relative mountain of infor-
mation (data) and attempts to extract a few gems or
nuggets of knowledge. In fact many of the software
packages, societies, user groups, etc. involved with
DM carry that idea in their titles: Gold Miner,
KDNuggets, Diamond SUG.

II. WHAT CAN DATA MINING ACCOMPLISH?

From just a few of its many success stories, DM can:
help you sell more products; identify new chemical
compounds for prescription drugs; identify fraudu-
lent insurance claims; make your customers happier;
help you to retain customers; send catalogs only to
customers that would be interested; target merchan-
dise only to customers who would be interested in
buying it; identify diseases; map genes; improve the
reliability of big yellow tractors; help you get your car
fixed quicker; and help you browse a web site for only
what you want to buy. The list of DM applications
grows daily as do the number of DM software tools
available to generate these applications. Many of the
successful applications of DM have been in the con-
text of marketing. It is so prevalent in this context
that it has become a necessity rather than an option
for large-scale marketing. Those applications, which
are not marketing driven, are often still related to a
profit motive in a business context. Where there are
large data sets and large amounts of money to be lost
or gained you will find DM applications. Ultimately a
good part of what DM accomplishes is to make or save
money even if the original intent, for example, is to
identify diseases.

III. WHAT DATA IS NEEDED
TO DO DATA MINING?

To a statistician a lot of data would be 10,000 cases
with perhaps 20 variables or pieces of information per
case. To a data miner a billion cases with perhaps 3000
variables would be a reasonably large amount of data.
The new frontiers of DM are working with terabytes of
data. IT contributions to DM established data ware-
houses, which are now a main supplier of information
to the data miner. IT also provided on-line analytic
processing (OLAP) tools used in decision making
based on data. However, OLAP remains a part of data
warehousing and will not be considered further here.

478 Data Mining

Since many of the algorithms that build DM mod-
els have origins in statistics, the typical DM software
expects data in a flat file consistent with how most sta-
tistical packages handle data. A flat file stores all the
variables (information) associated with a case or ob-
servation (customer) in one row. For example, a hu-
man customer, John Smith, is a case and his variables
might be name, address, age, income credit history,
etc. All of the information for this one customer would
comprise a row of data for DM. In a data warehouse
this customer’s information would be stored in sev-
eral places in a relational format with links of pur-
chases, returns, etc., back to the main customer
record. Thus the data miner rarely builds models di-
rectly from the data warehouse or a subset data mart.

Up to 80% of the effort that goes into DM is in-
volved in extracting, formatting, and cleaning the
data before it is ready to be analyzed. Poorly prepared
data will give poor models and poor predictions. Data
are rarely perfect and often information stored in
warehouses is incorrect or incomplete. A data set with
30 variables and with, say, 1% of the data missing for
each variable could potentially result in 30% of the
cases being unusable. Data may need many transfor-
mations before it is usable. Dates may need transfor-
mation to Julian dates; ratios may need to be devel-
oped; and qualitative or alphabetic data may need to
be converted to quantitative or numeric data. In sys-
tems collecting terabytes of data, it may be reasonable
to build DM primitives into the data warehousing
process to create some of the transformations required
in the DM model-building process. For example, the
telecommunications industry stores terabytes of call
and customer information. After much experience
with this data they now typically generate often used
data transformations from DM primitives built into
the data warehouse. These speed up the model-
building process because the DM analyst does not
have to spend time repetitively producing necessary
transformations. In order to prepare data for DM it is
important to have domain knowledge as well as knowl-
edge of the DM processes. Variables will have to be se-
lected and those variables will possibly need transfor-
mation and cleaning. DM requires a large amount of
relevant and clean data in, typically, a flat file format.

IV. EXAMPLES OF DATA MINING

There is no shortage of DM examples both good and
bad. A search of the Internet yields more than you can
read. This includes one of the great myths of DM,
beer, and diapers. The myth comes from a Market Bas-
ket analysis, which supposedly found that when people

buy diapers they also buy beer. This of course can be
rationalized in many different and believable ways.
However, no one has ever been able to substantiate
this claim. Another claim is a relationship between
purchase of Barbie dolls and chocolate. This claim has
been substantiated and many explanations have been
proposed. Russell Stover Candy markets their choco-
lates in boxes with pictures of Barbie on them.

In the applications below, the following informa-
tion is given: cases, inputs, target, and action. This
terminology was chosen to keep the applications con-
sistent and comparable and to fit the general DM
model-building process explained in the next section.

A. Retailing

Campaign management has produced very positive
results for DM. The goal is to build a model that pre-
dicts which customers will most likely respond posi-
tively to a mail advertising campaign. The cases or ob-
servations consist of customers, prospects, or
households. The variable that is to be modeled (re-
ferred to as the target) is response to a past or test so-
licitation. The idea is to build a model that explains
why customers responded positively to a past cam-
paign and then use that model to predict future cam-
paign responses. The input data can be geographic,
demographic, or psychographic information for each
customer or case. These data may come from cus-
tomer purchase records, questionnaires, and com-
mercial data providers that sell demo-, geo- and psy-
chographic data. Fingerhut, for example, is a
long-established mail-order retailer that has used DM
very effectively to increase sales. When you order from
a mail order catalog you will quickly find that you will
start receiving many more catalogs from the same or
different vendor. The companies that produce these
catalogs generally use DM. Ideally if their DM were
perfect, you would only receive the catalogs you are
interested in.

Customer relationship management (CRM) is the
evolving and more sophisticated application of DM to
retailing. CRM is an attempt to create and maintain
the type of customer relationships between retailer
and customer that existed in the days of the Mom and
Pop general stores. These stores knew their customers
well. For example the butcher, Pop, knew that Mrs.
Jones would come in and buy a roast every Wednes-
day. On Wednesday he would make sure he had the
roast she likes and might suggest items to go with the
roast. With people shopping on the Internet and/or
catalogs it is once again possible with DM tools to
know customers like the Mom and Pop stores did.

Data Mining 479

CRM is a collection of DM and data warehousing tools
that let you collect and analyze customer data. The
goal of CRM with respect to the customer is to make
sure you have what they like, offer them new or re-
lated items that they will like, and generally keep them
as a loyal customer. The customer must be made to
feel that they are valued because you understand and
anticipate their needs and desires.

1. Credit Scoring

Before DM, the equivalent of credit scoring was often
done using a multivariate statistical technique known
as discriminant analysis. When neural networks started
to become popular many people replicated the results
of discriminant analysis with various neural networks.
DM can actually use these methods as well as an arse-
nal of other tools to produce improved results. In credit
scoring, a bank, for example, is interested in identify-
ing good credit risks based on a model built using cases
from past loan recipients. The cases would consist of
both good and bad credit risk customers. The variables
or inputs on each existing credit customer would be
application information including income, age, etc.,
and credit bureau reports. The model target or the
variables modeled from the inputs could be defaulted,
charge-off, serious delinquency, repossession, or fore-
closure. If the model proves to be a good model then
the bank can use it in screening future loan applicants.
This model could also relate to credit card offerings.
This model gives a credit score or number, which can
be interpreted in terms of credit risk.

2. Customer Retention or Churn

Most businesses are concerned with keeping current
customers. A large insurance company found itself in
a situation where they were not getting new customers
and they were losing existing customers. Obviously
not a good circumstance. By using DM they modeled
their existing customers and dramatically turned the
situation around within two years. The rugged com-
petition among phone companies has also made them
very concerned with churn among existing customers.
To handle churn, some companies have terabyte data
warehouses that contain customer calling history. The
data warehouses have imbedded DM primitives that
process this information in real time. When a cus-
tomer calls the phone company, a representative
brings the customer history up on a computer screen
along with a list of incentives to offer this customer.
The phone companies also use this information to
call customers and offer various incentive packages.

The observations or cases for churn prediction are
existing and attrited customers. The input variables
are payment history, product and service usage, and
demographics. The potential target variables reflect-
ing attrition are churn, brand switching, cancellation,
and defection. The model, if useful, will predict can-
didates for customer loyalty promotions or campaigns.
The promotion may include such things as better
rates for loyal customers, exclusive offerings, improved
service levels, etc.

3. Fraud Detection

Credit card companies, Internet merchants, medical
insurance, and telecommunications are a few of the
industries concerned with fraud. DM has proven to be
very useful in detecting large-scale fraud. The cases or
observations are past transactions or claims. The in-
puts are particulars and circumstances. One Internet
merchant mined sales transactions to try to determine
characteristics or patterns of fraudulent purchases on
credit cards. What they found was that all of the fraud-
ulent purchases were centered on just a few zip codes.
In this case exploratory DM was more useful than pre-
dictive DM models in finding patterns. The target
variables for a model would be fraud, abuse, or de-
ception. The action taken as a result of a successful
model is to impede or investigate suspicious cases.

The telecommunications industry runs DM primi-
tives on terabyte data warehouses keeping track of all
phone calls. In this way suspect patterns of phone
calls are caught in real time. The DM primitives are
developed and modified by preliminary model build-
ing and consistent updates on the model and primi-
tives built into the data warehouse. As new fraud pat-
terns are detected, the warehouse primitives are
modified.

B. Manufacturing

Manufacturers of heavy mechanical equipment must
be concerned with quality control. For example, the
engines in earth-moving equipment will be expected
to function for many years and hours. If they do break
down they will be repaired. Thus the manufacturer
must insure the reliability of the engine components.
When an engine breaks down, replacement parts must
be supplied on a timely basis. One such manufacturer
has data on every heavy equipment engine made and
its repair history. By using DM on this data they can
better design engines to eliminate weak parts. They
can also predict which parts need to be stocked for re-

480 Data Mining

pairs. The cases or observations are engines or com-
ponents of interest. The inputs or explanatory vari-
ables are the various components of the engine and
their replacement history (all have serial numbers for
tracking purposes) plus any usage information avail-
able (this might include age, hours running, and
maintenance history). The target variable is engine
breakdown, time to breakdown, etc. A combination of
predictive and exploratory modeling can be used in
this case. Breakdowns could be predicted or weak
components identified. The action is to insure the re-
liability of the engine.

C. Other Applications

One of the relatively new applications of DM is the in-
tegration of CRM with supply chain management
(SCM) and/or enterprise resource planning (ERP).
Much of this effort is webcentric. There is little docu-
mentation in this area simply because the development
has been so fast that little time has been available to
write specific details. It is a pioneering area, which will
see much development within the next two years. There
are many other applications of DM that are not touched
on here. One entirely different area is text mining,
which remains mostly in the domain of ML.

V. GENERAL PRINCIPLES OF DATA
MINING MODEL BUILDING

It is not practical to do DM without a computer or ap-
propriate software. Most of the DM software suites ap-
proach DM from a model-building perspective analo-
gous to the process of building universally familiar
multiple regression models or econometric models.
The steps in building a DM model are

1. Identify the problem and what is to be modeled
2. Get the appropriate data
3. Clean the data and perform any transformations

that might seem appropriate
4. Divide the data into training and testing sets
5. Build a model on the training data
6. Evaluate the model
7. Use the model
8. Monitor the model performance

Building a DM model is an iterative process. If the re-
sult of step 6 is not satisfactory then the process may
go back all the way to step 1. You may need to rethink
what the problem is or what you want to model. You

may need to select different data and variables or you
may simply need to eliminate some variables or add
some transformations. You may also need to try dif-
ferent algorithms in building the final model.

There are two general types of models that can be
built depending on the goals of building the model.
Predictive models are built to predict or forecast the
behavior of the modeled variable or target based on
the inputs to the model. The idea is that if you know
the inputs, for example, income, debt, age, then you
can predict if a person is a good credit risk (target).
Another type of model is descriptive. It does not try
to predict what will happen but explains or describes
what is happening in your data set. In the manufac-
turing application a predictive model would attempt
to predict when the engine will fail. A descriptive
model would describe the failure of the engine as it
relates to the failure of various parts.

A. Identify the Problem and
What Is to Be Modeled

When you build a model you need a goal or some-
thing to aim for, a target. To focus the discussion, con-
sider the possible targets for a strictly mail order com-
pany selling through catalogs. They might want to
increase profit, sales, or decrease mailing costs. They
might wish to obtain new customers, or increase the
number of items ordered by current customers. They
clearly want to get as much profit as possible out of
each catalog mailing. The number of potential targets
may be limited only by the imagination or under-
standing of the business. Suppose the company de-
cides to look at increasing revenue for each catalog
mailed. This is, in fact, not a simple problem. It is re-
lated to how many people respond to a catalog mail-
ing and how much they order so it would probably in-
volve at least three models. If this is the first attempt
at DM it would be good to focus on just one model to
begin with. Thus a reasonable target would be to
model the best customers who can be identified as
those that spend the most from the catalog.

B. Get the Appropriate Data

The target to be modeled is the highest spending cat-
alog customer. Since this model is only for a particu-
lar mail order company, the primary customer data
must come from this company. If the company has
not collected this data in some sort of data warehouse
little can be done in building the model until that is

Data Mining 481

accomplished. If the data is available then the next
step is to decide what customer data is needed. They
might want to start with all customer data and do
some descriptive data analysis including means and
histograms to decide how they define the best cus-
tomers—spending cut off. They may also wish to pur-
chase data from a credit bureau and from data ven-
dors that might supply additional information on their
customers spending habits from other catalogs. Ideal
in-house customer data would be type of purchase,
amount, frequency, or time lapse between purchases,
record of returned merchandise, etc.

C. Clean the Data and Perform
Any Transformations That
Might Seem Appropriate

It might seem surprising that data would need clean-
ing if it is all in-house data. Many things can happen
to data in the best of circumstances. For example, the
same customer may be listed under several different
variations of their name. They may often return mer-
chandise and these data may be stored separately or
not linked to the customer’s regular file. They can be
missing for many reasons. Where there is manual data
entry there can be errors. It is always useful to run de-
scriptive measures of the data to spot missing or ex-
treme errors.

Once the data is merged and cleaned it will then
be necessary to look for initial transformations. For
example, the frequency or time lapse for orders may
be stored as dates and it will be necessary to convert
those to frequency counts. Depending on the tech-
niques used to build the model the data may need
mathematical transformations. For example, it may
turn out that a ratio of income-to-dollar purchases
gives better results than income and dollar purchases
alone. If merchandise has been returned then the
amount purchased needs to be adjusted. Missing data
is always a problem and care must be taken to address
that problem consistent with the algorithms you might
be using. Simply ignoring missing data is rarely a good
solution.

Once these data are cleaned and merged by cus-
tomer you can then decide which inputs or data will
be relevant to modeling the target. Domain knowl-
edge is very relevant for this process. The more the
analyst knows about the catalog business, in this case,
the more likely the model will be good at predicting
customer purchasing behavior. Some DM software will
automatically eliminate variables and even do trans-
formations, but a person with domain knowledge and

some skill at model building can almost always build
a better model than this software alone.

D. Divide the Data into
Training and Testing Sets

The cost of building and using bad DM models is
high. Thus it is wise to test the model in the building
process by holding back some of the data from the
model-building process. The original data set is ran-
domly split into at least two parts (in the later stages
of the model-building process a third split is used for
validation of the final model). The larger part, 95 to
about 65% of these data are used to train or build the
model and the remainder are used to test the model
to see if it holds up under a different set of related
data. The reason for doing this is that if you work
hard enough on the training data you will in most
cases be able to optimize or overfit the model to the
data. Overfitting means you did not capture what is
really going on in the population of interest but you
have fit all the consistencies and inconsistencies in
your training data set. Neural network algorithms are
particularly subject to overfitting.

For smaller data sets (3 or 4 thousand rows) there
are more elaborate ways of validating and cross vali-
dating the model. For example, these data could be
split into two equal parts. You would train on one set
and test on the other. Then, train on the previous test
set and test on the training set. The error rates of the
two model-building sets can then be averaged. The
idea, again, is to determine how the model holds up
on a set of data different from the data set that was
used to train or build the model.

E. Building a Model
on the Training Data

Building a model on the training data involves fitting
the model you have chosen with a particular DM al-
gorithm. In DM it is common practice to fit using sev-
eral different algorithms or tools. The models from
each algorithm are compared. It is very likely that you
will iterate back to the variable selection and trans-
formation phase several times before you are satisfied
with a final model for the testing phase. DM software
suites typically support the process of fitting several
different algorithms, comparing results, and refining
the model by iterating through the model-building
process. The reason for this is that even if the data an-
alyst is very familiar with the model-building process

482 Data Mining

and has extensive domain knowledge, the data sets
are usually complex enough that an experienced an-
alyst may not be able to completely judge the under-
lying relationships in a model. Fitting several algo-
rithms helps to uncover underlying relationships in
the data. Some of the algorithms are better at fitting
linear relationships and some are better at fitting non-
linear relationships. Most real data is complex and
not simply fit by linear models. Neural networks are
typically very good at fitting complex relationships
and because of that are usually run as benchmarks for
other algorithms. They are not always the tool of
choice for the final model because they tend to be
harder to deploy, harder to explain, and are also much
more likely to overfit the data. Some suites also offer
the choice of combining models and this is often an
ideal way to completely capture all of the useful rela-
tionships in a data set.

F. Evaluate the Model

Several of the DM algorithms generate statistical esti-
mates and tests. However, with very large data sets
some of these classical statistical tests are not too
meaningful. The classic p value, for example, will be
astronomically small for variables that are hardly con-
tributing to a model. Thus other tools are often used
to quickly evaluate model utility. Two very useful tools
are the confusion matrix and the lift chart.

1. Confusion Matrix

After training we can use the model to classify the cat-
alog customers into spending categories. Suppose we
had two categories in the original data set: high
spenders and other. We could simply report an error
rate of misclassification of existing customers, but the
confusion matrix (in spite of its name) helps clarify
that number (Fig. 1).

After fitting the training data or test data to the
model we could have simply reported the percentage
of customers correctly classified into high spender or
other (remember that these are our customers so we
actually know which category they are in). If you look
at the confusion matrix the diagonal entries of 18 and
77 are the correct classifications and this would give
us a 95% classification accuracy since 95 out of 100
cases were correctly classified (the numbers were kept
small for purpose of illustration). However, the con-
fusion matrix also lets you answer the question of
which case would most likely be incorrectly classified.
Would we rather misclassify a high spender as other or

would we rather misclassify an other as a high spender?
I think most would agree that we want to misclassify
or possibly lose as few high spenders as possible. We
can see from the confusion matrix that this model
tends to err in favor of the high spenders.

2. The Lift Chart

In the case of our catalog model, we would be inter-
ested in how our model might improve catalog sales.
A very useful graph for this is the lift chart. Suppose
we build a model of catalog customers that have re-
sponded to a previous catalog mailing. Note that the
population is that of all customers ordering from that
catalog. Suppose the response rate for this nontar-
geted catalog mailing to customers was 10%. We want
to know if using the respondent model we can send
out fewer catalogs to selected individuals and at the
same time improve our sales. This would increase rev-
enue from sales and also reduce mailing costs because
we would be sending to fewer customers. The lift chart
can help answer this question.

Once the model is fit we then apply the model to
the test data and identify the respondents according
to the model.

In the lift chart in Fig. 2 the dark bars refer to ran-
domly mailing the catalog to a percentage of the re-
sponding customers. The corresponding light bars
represent mailing that percentage to customers on a
list that is rank ordered (scored by the model) by the
likelihood of buying. The rank order is highest likeli-
hood of buying to lowest. If 10% of the scored group
were to receive a mailing we would take the top 10%.
To read the lift chart we find that if we randomly mail
to 10% of our responding customers we can expect a
10% response. However, if we mail to the top 10% of
our scored customers, we can expect a 30% response
rate, according to the model. We would have to mail
to 30% of the random customer base to expect
the same response rate. Thus we will get more for
less. You can run a cost-benefit analysis to decide the

Data Mining 483

Prediction

High spender

Other

18

2

3

77

Actual
High spender Other

Figure 1 Confusion matrix.

trade-offs of mailing to different percentages of the
scored data.

A caution flag must be raised here. Lift charts and
confusion matrices are very informative. However, it
must be remembered that you are fitting known re-
sults. When the models are applied to a new situation
the results may be better or worse. It is important to
monitor the performance of all deployed DM models.
If the lift chart claims a 30% response rate and you
only get a 5% rate on the next mailing or successive
mailings, someone is sure to notice and hopefully that
is the person in charge of the DM. The ultimate eval-
uation of a DM model should be that the model is un-
derstandable and makes good business sense. If it
seems magic or mysterious, chances are it is not a
good model no matter how good the confusion ma-
trices or lift charts look.

G. Using the Model

If we built a reasonable predictive model of high
spenders for our catalogs then ideally we could use
that information to identify high spenders who are
not yet our customers. One must be careful with that
assumption because we would be using the model
outside of the group we built it on. We could also use
the model to understand what comprises a high
spender. Maybe it is income, region of the country,
age, interests, or most likely a complex combination
of things. Since we used frequency of buying we might

also find that these customers buy in some pattern
and thus try to match that pattern to catalog mailings.

DM software suites often make the catalog or ad
mailing campaign as efficient as possible. Imagine a
mail order company sending out as many as 100 dif-
ferent catalog mailings targeting different customer
bases in one day. Also imagine that there are thou-
sands of customers. The logistics of this seem over-
whelming. However, if the customer data are scored
this can be a totally automated process. The model
will generate a score something like a test grade for
each customer. This scored list of customers is then
ranked from highest to lowest scores (higher is bet-
ter) and catalogs are mailed as far or as deep down
this list as desired. Attaching value to a customer re-
sponse and cost to mailing will result in the lift chart
showing return on investment. This can then be used
to decide on the depth of mailing in a scored cus-
tomer base.

The ultimate use of a model depends on the ap-
plication. In fraud detection the model might con-
tribute to understanding fraud patterns. The model
may be a small part of a manufacturing process. The
model may be applied to new data for further evalu-
ation. The model may be used to recommend busi-
ness strategies or actions. The use of a model is as var-
ied as the number of applications of DM.

H. Monitor the Model Performance

If you attend many presentations demonstrating the
usefulness of DM you often have to wonder how the
lift charts compare to the actual model performance.
Not surprisingly, it is very hard to pin down that in-
formation. Whether or not a business brags about its
failures, it is a certainty that if the lift chart is much
better than the actual performance someone will most
likely start to notice a loss in profits, increase in costs,
etc. It is not in the best interest of the company to not
monitor the actual performance of a DM model.
Telecommunications companies go through a model-
building process before setting up their terabyte data
warehouses. They then use DM models to improve
and maintain customer relations. Because of the
sheer volume of data they try to use the initial model-
building phase to build DM primitive functions into
the data warehouse. For example, the data miner may
always use a certain ratio of variables when building a
model; it is easiest to have the warehouse generate
that ratio rather than creating it every time in the
model building process. However, since customers
change, the telecommunications analysts monitor the

484 Data Mining

Figure 2 Lift chart of scored versus random mailing.

situation and if the ratio were no longer useful they
would alter the primitives.

There is a current trend for database providers to ad-
vertise automatic DM tools built into data warehouses.
These tools are really equivalent to built in primitives
and cannot take the place of an experienced DM ana-
lyst with modeling and domain knowledge. Generally
these tools are intended to aid DM analysts and not re-
place them. DM requires a rich collection of tools and
algorithms used by a skilled analyst to produce accept-
able results. The DM process is also an ongoing process
due to constant changes taking place in the data.

VI. THE TOOLS OF DATA MINING

DM is a merger of three areas: IT; statistics; and ML.
The tools or algorithms of DM make this fact most ap-
parent. About five years ago few commercial suites of
algorithms existed. With diligence you could collect
together various pieces of software and do some DM.
Machine learning and statistical software vendors be-
gan marketing various components for DM. Very
quickly these components found their way into DM
software suites which had a user-friendly interactive
model-building environment. This area is far from
settled and you will see software suites being bought
out by larger software vendors on an overnight basis.
Clementine, now marketed by SPSS, is a good exam-
ple of this. Most of these suites contain algorithms
from statistics and from artificial intelligence.

We will consider some of the more typical tools be-
low. New techniques are being developed and need to
be developed to work with terabytes of data, which is
becoming more common partly due to the large
amount of click stream data generated by the Inter-
net. OLAP tools are not considered here because they
are typically part of data warehousing.

A. Logistic Regression

Regression tools have historically been used in busi-
ness to fit various models. They are appealing because
they are reasonably intuitive and the resulting equa-
tions, which model a target as a function of input vari-
ables, are understandable. In fact a person skilled in
building multiple regression models will find the logic
of DM model building to be very similar. Logistic re-
gression is part of this regression tool kit that has
found respectable use in DM.

Logistic regression is suitable for fitting models to
a binary target with a buy, don’t buy type of value

which can be coded as 1, and 0, respectively. Logistic
regression can be used to classify, for example,
whether or not a person will buy. It can also be used
to predict the continuous variable, the probability
that a person will buy a product. The model is built
on the logarithm of the odds ratio that an event will
occur. If a person has an 80% chance of buying a
product the odds of buying are 4 to 1.

One of the underlying reasons some tools are more
powerful or useful than others is their ability to han-
dle nonlinear relationships. If a target variable in-
creases, as an example, at the same rate as an input
variable, it has a linear or straight-line relationship.
However, if the target increases, as an example, at the
rate of the input raised to the power two then the re-
lationship would not be fit by a straight line and would
thus be nonlinear. Keeping in mind that most models
have many input variables, it is not too surprising to
find that most relationships are nonlinear.

Logistic regression is a very good modeling tool
but it does assume that the target (dependent vari-
able in regression terms) is linear in the coefficients
of the input or predictor variables. That, combined
with the fact that a successful logistic regression model
requires the analyst to provide the variable transfor-
mations necessary for this linear relationship implies
that the model is only as good as the skill of the ana-
lyst that built it.

B. Neural Networks

Neural networks have their origins in artificial intelli-
gence. They started out as an attempt to model the
workings of a brain. Since we are not yet completely
certain how the brain works, we can only assume that
neural networks are an artificial representation of a
biological brain. There are many different variations
of neural nets that have been specialized to certain
types of problems.

Looking at Fig. 3, a simplistic description of a neural
network can be given. Figure 3 represents a neural
network using data on customers with the information
given on the input node labels. The targets are labeled
on the output nodes. In this particular case we are try-
ing to classify customers that have purchased from the
target catalogs. One case or observation would consist
of a customer’s age, income, leisure activities, and
from which of the listed catalogs they have purchased.
Each case or set of data from one customer is fed
through the neural network. As each input node goes
to a hidden layer node, a weight is applied (multi-
plied), the weighted inputs to the hidden node are

Data Mining 485

added together, and a function applied (sometimes
referred to as the activation function) which produces
a result that is passed (fed forward), in this case, to
the output node. This value is compared to the actual
output value from the customer. An error is computed
between the actual customer target value and the
value from the network. If not within desired accuracy
this error is fed back to the hidden layer where the
weights are adjusted. This process continues for each
case until the desired or target output is produced
within the tolerance desired or until the error can not
be reduced.

If there was no hidden layer and the activation
function was linear, then the neural net would be
equivalent to simple linear regression assuming there
is only one output node.

In Fig. 3, the heavy dark lines indicate the connec-
tion between the customer profile and the catalogs
from which they purchased. The typical person in this
data set that purchased from the woodworking and auto
parts catalogs was over age 30, makes under $50,000 per
year, and repairs their home as a leisure activity.

There are advantages and disadvantages to neural
nets. The advantages of neural nets are that they can
fit nonlinear relationships by addition of hidden lay-
ers. They require less prior knowledge of possible in-
teractions between variables. In logistic regression the
analyst must specify the interactions before building
the model whereas in neural networks the hidden lay-

ers take care of this without analyst intervention. Given
enough time they can fit almost any data, however,
the question is whether this fit will hold up under
cross validation and testing.

The disadvantages are that they often overfit the
data which means that they do not do well when ap-
plied to new data. If the data has a lot of measure-
ment error the neural network will fit all of this error
or noise and the model will not be robust when ap-
plied to new data. The weights from a neural network
are not meaningful (they are in regression) in inter-
preting the relationships among the variables and in
understanding the model.

One of the most valuable aspects of neural net-
works is to serve as a benchmark or goal for other
methods. Recall that a good approach to model build-
ing in DM is to fit several different algorithms to the
model and compare results. If a neural network is
performing better than other viable models, it is a
strong indication that the other models can be im-
proved. The advantage of other models is that they
may lend more insight into the situation being mod-
eled or they may be easier to deploy and interpret
than a neural network.

There are many variations of neural networks. One
with an interesting potential is the Radial Basis Func-
tion neural network. This network does not have hid-
den nodes but maps the inputs to outputs using a
weighted sum of basis functions. It is a very robust and

486 Data Mining

Skiing

Fishing

Golf

Leisure Activity
Home Repair

<50k

>50k

>30

<30

Age

Income

Hidden Layers

Catalogs

Input Nodes Output Nodes

DVD Video

Auto Parts

Luxury Auto Accessories

Sporting Goods

Woodworking

Figure 3 Neural network identifying catalog purchasers.

fast computing function approximation technique. To
date, most implementations use the Gaussian as the ba-
sis function. There is some evidence to indicate that
other basis functions including a cubic spline will pro-
duce better results especially with time series data. This
might be a useful research area for those interested.

C. Decision Trees

Decision trees produce models that are easy to un-
derstand if the number of branches remain relatively
small. If there are many variables then the tree can
become complex and uninterpretable. Decision trees
work by doing successive binary splits (some algo-
rithms do produce more than two branches at each
split). The first split will yield the biggest separation
or distinction in two groups of data. Each subgroup is
then split until some stopping criteria are reached. Al-
gorithms differ partly on how they measure the sepa-
ration distance between groups. Two different algo-
rithms on the same data set would very likely give
different branches and rules. Decision trees can result
in very easy to understand decision rules.

For example, in Fig. 4, one rule for a good loan
risk is: A good loan risk had 4 jobs or less in the last
4 years and has an income greater than $50,000. If
the tree results in many branches then the rules would
obviously become very complicated and perhaps un-
usable. There are methods to prune trees to keep
them useful. Some of the different algorithms include
chi-squared automatic interaction (CHAID), classifi-
cation and regression trees (CART), and C5.0.

Decision trees produce rules. Another method re-
ferred to as rule induction also produces rules similar
to a decision tree, however, it does not produce a tree.
Since there is no tree and no forced splits at each
level, a rule induction algorithm may produce better
classification rules.

D. MARS

Statistician Jerome Friedman invented CART and then
in mid-1980 developed a method that attempts to
overcome the disadvantages of CART. It produces a
decision tree and can thus produce rules associated
with the tree. Friedman’s MARS was intended to elim-
inate at least two of the problems of CART including
(1) dependence of all splits on previous splits and (2)
reduced interpretability of splits due to interactions
among variables. MARS does not produce a tree or
rules but does find the most important predictor vari-
ables and their interactions. It also relates the depen-
dence of the target on each predictor somewhat in
the way that a multiple regression model would.

What does MARS stand for? It stands for a very com-
plex algorithm, multivariate adaptive regression splines.
There is only one well-known implementation of MARS
available. The commercial implementation took sev-
eral years to perfect, however, the code is still available
as freeware from the Web. A recent possible successor
to MARS is MART, multiple additive regression trees.

E. K-Nearest Neighbor or
Memory-Based Reasoning

This algorithm relates cases and groups them based
on some distance measure. The distance measure that
is used is very important and also can be difficult to
define. For example, what would be the distance be-
tween red hair and blond hair in skin cancer data?
Once defined, the distance must be summed between
attributes to calculate and assign the cases and neigh-
bors to groups. The algorithm is not complex but is
computer-intensive as each new case requires that the
distance be computed between each case. This
method is also referred to as memory-based reason-
ing because often all of the data is kept in main mem-
ory to speed the calculations of the distances.
Terabytes of data pose restrictions on this algorithm.

VII. OTHER METHODS OF DATA
MINING AND FUTURE TRENDS

The techniques described here represent general cate-
gories of DM algorithms. As the area becomes mature
there will be many more algorithms developed. New al-
gorithms are needed that deal effectively with terabytes
of data. K-nearest neighbor methods can be improved

Data Mining 487

Figure 4 Simple decision tree.

to be faster and more efficient. Decision tree models
may soon be made more accurate through the use of
boosting and bagging. Radial basis functions may be
adapted to terabyte databases better than traditional
neural networks because of their computational effi-
ciency. Genetic algorithms can be useful in improving
the learning process of DM algorithms. Sophisticated
visualization methods can improve understanding of
the data and thus improve models. A current trend is
to develop visual representations of variable relation-
ships to help understand resulting models. Existing al-
gorithms have helped to understand what DM can do.
New and improved algorithms will help do more. Cur-
rently the businesses that use DM are enjoying a com-
petitive edge. When everyone is using DM then new
methods and applications will need to be invented to
improve that edge. Some of the classic methods of de-
cision theory are being applied to DM algorithms to
help sharpen the DM edge. E-commerce is offering a
tremendous challenge and opportunity for DM. There
may be a point where no further advances can be made.
That point seems far in the future.

SEE ALSO THE FOLLOWING ARTICLES

Database Development Process • Data Warehousing and Data
Marts • Decision-Making Approaches • Decision Theory •

Hybrid Systems • Machine Learning • Neural Networks •
Supply Chain Management

BIBLIOGRAPHY

Adriaans, P., and Zantinge, D. (1996). Data mining. Harlow,
England: Addison-Wesley.

Berry, M. J. A., and Linoff, G. S. (2000). Mastering data mining.
New York: Wiley.

Berthold, M., and Hand, D. J. (1999). Intelligent data analysis.
Berlin, Heidelberg: Springer-Verlag.

Friedman, J. H., Stone, C. J., Breiman, L., and Olshen, R. A.
(1984). Classification and regression trees. Boca Raton, FL: CRC
Press, LLC.

KD Nuggets. http://www.kdnuggets.com/. A noncommercial
web site that lists the latest software, technology, publica-
tions, jobs, etc. in data mining.

Kennedy R. L., Lee Y., Van Roy, B., Reed, C. D., and Lippman,
R. P. (1997). Solving data mining problems through pattern recog-
nition. Upper Saddle River, NJ: Prentice Hall.

Mena, J. (1999). Data mining your website. Boston, MA: Digital
Press.

Pyle, D. (1999). Data preparation for data mining. San Francisco,
CA: Morgan Kaufmann Publishers.

Two Crows Corporation (1999). Data mining ’99 technology report.
Potomac, MD: Two Crows Corporation. www.twocrows.com.

Witten, I. H., and Frank E. (1999). Data mining: Practical ma-
chine learning tools and techniques. San Francisco, CA: Morgan
Kaufmann.

488 Data Mining

Data Modeling: Entity-Relationship Data Model
Salvatore T. March
Vanderbilt University

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 489

I. INTRODUCTION
II. BASIC ENTITY-RELATIONSHIP CONSTRUCTS

III. GRAPHICAL REPRESENTATIONS
IV. ADVANCED CONCEPTS

V. TECHNIQUES FOR BUILDING A DATA MODEL
VI. TRANSFORMING DATA MODELS INTO DATABASE DESIGNS

VII. SUMMARY AND DIRECTIONS FOR FURTHER RESEARCH

GLOSSARY

attribute Name and specify the characteristics or de-
scriptors of entities and relationships that must be
maintained within an information system. Attri-
butes are typically single-valued.

data model An implementation independent repre-
sentation of the data requirements of an informa-
tion system. Data models may be very broad in
scope, representing a large number of application
areas or they may be very narrow in scope, repre-
senting a single application.

data modeling A process by which the data require-
ments of an application area are identified and rep-
resented. Data modeling is often a component of
information system development methodologies.

data modeling formalism A set of constructs and rules
used in the representation of data. Example data
modeling formalisms include the entity-relationship
model and the binary-relationship model.

entity A category or grouping of objects (e.g., people,
things, events) or roles of objects (e.g., customer,
employee) each sharing a common set of charac-
teristics or descriptors (e.g., all employees have em-
ployee numbers, names, addresses, pay rate, etc.).

identifier A combination of attributes and relation-
ships whose values uniquely distinguish the in-
stances of an entity. An entity may have multiple,
alternate identifiers. Identifiers are often artificial
in the sense that an identifying attribute is created
for the entity and values assigned to its instances
(e.g., employee number or customer number).

relationship A named association among entities. A
relationship defines the entities involved and the
roles played by each in that association. A rela-
tionship may associate instances of the same entity
or different entities.

I. INTRODUCTION

A. The Purpose of Data Modeling

Data modeling is a process by which the data require-
ments of an application area are represented in an
implementation-independent way. A data modeling for-
malism defines a set of constructs and rules used in the
representation of data. The product of data modeling
process is a data model represented in some data mod-
eling formalism.

Effective information system development requires:
(1) accurately representing the data and processing
requirements of the application area; (2) validating
those requirements with end users; and (3) trans-
forming the data requirements into a database schema
and the processing requirements into computer pro-
grams (in the target database management system
(DBMS)/programming language environment).

A data model represents the “things” and “events”
that are a part of the application (e.g., customers, in-
ventory items, order placement and shipment), their
characteristics (e.g., customers are identified by cus-
tomer number and are described by customer name,
credit limit, etc.), and their relationships (e.g., each

order must be associated with a single customer). A
data model can be validated by end users to insure ac-
curacy of the data requirements. These can then be
transformed into a database implementation.

B. Data Models and
Database Implementations

A data model does not specify the physical storage of
the data. It provides a precise representation of the
data content, structure, and constraints required by
an application. These must be supported by the data-
base and software physically implemented for the ap-
plication. The process of developing a database im-
plementation (schema) from a data model is termed
physical database design. In short, the data model de-
fines what data must be represented in the applica-
tion and the database schema defines how that data
is stored. The goal of data modeling, also termed con-
ceptual database design, is to accurately and completely
represent the data requirements. The goal of physical
database design is to implement a database that effi-
ciently meets those requirements.

Clearly there must be a correspondence between a
data model and the database schema developed to
implement it. For example, a data model may specify
that each employee must report to exactly one de-
partment at any point in time. This is represented as
a relationship between employees and departments in
the data model. This relationship must have a physi-
cal implementation in the database schema; however,
how it is represented is not of concern to the data
model. That is a concern for the physical database de-
sign process. In a relational DBMS (RDBMS), rela-
tionships are typically represented by primary key-
foreign key pairs. That is, the department identifier
(primary key) of the department to which an em-
ployee reports is stored as a column (foreign key) in
the employee’s record (i.e., row in the Employee
table). In an object DBMS relationships can be rep-
resented in a number of ways, including complex ob-
jects and embedded object identifiers (OIDs).

Numerous data modeling formalisms have been pro-
posed; however, the entity-relationship (ER) model
and variations loosely termed binary-relationship mod-
els are the most widely known and the most commonly
used. Such formalisms have come to be known as
semantic data models to differentiate them from the
storage structures used by commercial DBMSs to de-
fine a database schema. Data modeling has become a
common component of system development method-
ologies. A number of object-oriented system develop-

ment approaches, such as the Unified Modeling Lan-
guage, have extended data models into what has been
termed class diagrams. These use the same basic con-
structs as data models to represent the semantic data
structure of the system, but typically extended the rep-
resentation to include operations, system dynamics,
and complex constraints and assertions.

C. Overview of the Article

This article describes data modeling and more specifi-
cally the ER and binary relationship models. Section II
introduces basic data modeling constructs and Section
III introduces alternative graphical notations. Section
IV discusses more advanced concepts and constructs
developed to enable data models to represent a richer
set of semantics. Section V presents techniques for de-
veloping data models and criteria by which to evaluate
and improve them. Section VI illustrates how data mod-
els are transformed into a relational database schema
and discusses implementation efficiency issues. Finally,
Section VII summarizes the article and presents direc-
tions for further research.

II. BASIC ENTITY-RELATIONSHIP CONSTRUCTS

As originally proposed by Peter P.-S. Chen in 1976,
the ER mdel has four basic constructs, entity, rela-
tionship, attribute, and identifier. These have become
the basis for essentially all data and object structure
modeling formalisms. They are first defined and then
illustrated in an example data model.

A. Entity

An entity is a category or grouping of objects (e.g.,
people, things, events) or roles of objects (e.g., cus-
tomer, employee), each sharing a common set of char-
acteristics or descriptors (e.g., all employees have em-
ployee numbers, names, addresses, pay rate, etc.).
The individual members of a category are termed
entity-instances or just instances. Each instance must be
uniquely identified within the context of the domain
being modeled (e.g., the employee with employee
number 12314, the customer with customer number
5958). Chen’s original proposal referred to the cate-
gory as an entity set and to the instances as entities. The
important consideration is to distinguish the category
or type from its instances.

Defining entities and their instances is not always
as simple as it sounds. Consider, for example, a prod-

490 Data Modeling: Entity-Relationship Data Model

uct identified by product number 1242. Does this
product number identify a single “thing” (instance)
or a category of “things” (entity)? If it is a category,
does the context require differentiating the instances?
The answer is often domain dependent. Suppose
product number 1242 is defined as “box of 24 No. 2
red pencils.” Clearly there are numerous units (in-
stances) of that thing in inventory; product number
1242 does not refer to a specific one of them but si-
multaneously to any one of them and to the collec-
tion of them. Characteristics such as weight and vol-
ume are likely to be ascribed to it (referring to each
unit) as well as characteristics such as quantity on
hand and warehouse location (referring to the col-
lection of units). Hence, although it is a category it is
treated as an instance of the entity product.

Suppose, on the other hand, that product number
1242 is defined as “1988 Porsche 944.” Again, there
may be multiple units (instances) of that thing in in-
ventory; however, a unique vehicle identification num-
ber (VIN) identifies each of them. Characteristics
such as weight and wheelbase can be ascribed to “1988
Porsche 944;” however, characteristics such as color
and mileage must be ascribed to the specific instance.
In this case, “1988 Porsche 944” is an instance of Prod-
uct, however, “the 1988 Porsche 944 having VIN
34FRD88JH99HHY” is an instance of it. Although
“1988 Porsche 944” is a category and could be de-
fined as an entity, it is more likely that a more general
category, such as “Car” would be more appropriate.

B. Relationship

A relationship is a named association among entities. A
relationship defines the entities involved and the roles
played by each in that association. A relationship may
associate instances of the same entity or different en-
tities. For example, prerequisite is the named relation-
ship associating two instances of the entity Course; re-
porting is the named relationship associating an
instance of Employee with an instance of Department;
sale is the named relationship associating an instance
of Customer, an instance of Salesperson, and an in-
stance of Product.

A relationship can be characterized by its degree
and its cardinality. The degree of a relationship is the
number of entities it associates. The cardinality of a
relationship describes the number of times an in-
stance of an entity may participate in a relationship.
Cardinality has also been termed connectivity or multi-
plicity. Each of these characteristics is discussed below.

1. Relationship Degree

A relationship associating instances of the same entity,
e.g., prerequisite is termed a unary or recursive rela-
tionship. It is said to have a degree of 1. A relation-
ship associating instances of two different entities,
e.g., reporting is termed a binary relationship (degree
2). A relationship associating instances of three enti-
ties, e.g., sale is termed a ternary relationship (degree
3). Generally a relationship associating instances of N
entities is termed an N-ary relationship (degree N).
The original ER model supports N-ary relationships.
The binary relationship models restrict relationships
to at most binary. The implications of this restriction
are discussed below.

It is often important to distinguish the “roles”
played by the entities in a relationship, particularly
when a relationship associates instances of the same
entity or when it is not clear from the entities them-
selves. In the relationship prerequisite, for example,
it is crucial to distinguish which instance of Course
plays the role “has-prerequisite” and which plays the
role “is-prerequisite-for.” Specifying that the courses
Computer Science 101 and Mathematics 220 partici-
pate in the relationship named “prerequisite” is not
very useful until the roles are specified. Typically this
specification utilizes one role or the other to form a
sentence: “Computer Science 101 has-prerequisite
Mathematics 220” or “Mathematics 220 is-prerequi-
site-for Computer Science 101.” In the relationship
reporting, the roles of Employee and Department are
clear, Employee instances “report-to” Department in-
stances or Department instances “are the reporting
units for” Employee instances.

2. Relationship Cardinality

A relationship is also characterized by its cardinality,
i.e., the number of times an instance of each entity
can participate in the relationship. Hence, a relation-
ship has a cardinality for each participating entity.
More precisely, a relationship has a minimum and a
maximum cardinality for each participating role.
Unary and binary relationships are often character-
ized by the maximum cardinality of each role as be-
ing “one-to-one,” “one-to-many,” or “many-to-many.”
The relationship prerequisite, for example, is a many-
to-many relationship since a course can have many
prerequisite courses and a course can be a prerequi-
site for many courses. Continuing with the above ex-
ample, Computer Science 101 may require not only
Mathematics 220, but also Computer Science 100.
Furthermore, Mathematics 220 may be a prerequisite

Data Modeling: Entity-Relationship Data Model 491

not only for Computer Science 101 but also for Ac-
counting 1000 and Marketing 1015.

The cardinality of the relationship reporting, on
the other hand, is not so clear. If an employee can re-
port to only one department at a time, a department
can have many employees report to it at the same
time, and departmental reporting history is not main-
tained, then it is a one-to-many relationship (one de-
partment to many employees). If, on the other hand,
employees can report to multiple departments at the
same time or the relationship includes reporting his-
tory over time then it is a many-to-many relationship.
A data model must explicitly represent which of these
alternatives is appropriate for the domain being mod-
eled. The “right” representation is clearly domain de-
pendent. Determining it is the task of the data mod-
eler or systems analyst.

While it is important to determine the maximum
cardinality of a relationship, it is just as important to
determine its minimum cardinality. Typically the min-
imum cardinality for a relationship is either 0 or 1, al-
though it could be larger. Considering the prerequi-
site relationship, clearly it is not necessary for a course
to have a prerequisite or to be a prerequisite for other
courses. Hence the minimum cardinality for each role
is 0. On the other hand, considering the reporting re-
lationship, an organization may require, for budgetary
reasons, that an employee always report to a single de-
partment but that a department need not have any
employees report to it. In this case the minimum car-
dinality is 1 for Employee and 0 for Department—
each employee must participate in exactly one re-
porting relationship; each department may participate
in 0 or more reporting relationships.

If the minimum cardinality of a role in a relation-
ship is 1 or greater, then the entity playing that role
is said to be dependent upon the other entity (or enti-
ties) in that relationship. That is, an instance of that
entity cannot exist without an associated instance of
the other(s). This type of dependency is often termed
a referential integrity or existence dependency. If the mini-
mum cardinality of a role is zero, then the entity is
said to be independent of the other entity (or entities)
in the relationship; it can exist without participating.

C. Attribute

Attributes name and specify the characteristics or de-
scriptors of entities and relationships that must be
maintained within an information system. Each in-
stance of an entity or relationship has a value for each
attribute ascribed to that entity or relationship. Chen

defined an attribute as a function that maps from an
entity or relationship instance into a set of values. The
implication is that an attribute is single valued—each
instance has exactly one value for each attribute. Some
data modeling formalisms allow multivalued attrib-
utes, however, these are often difficult to conceptual-
ize and implement. They will not be considered in
this article.

Returning to the definition of an entity, the “com-
mon set of characteristics or descriptors” shared by all
instances of an entity is the combination of its attrib-
utes and relationships. Hence an entity may be viewed
as that collection of instances having the same set of
attributes and participating in the same set of rela-
tionships. Of course, the context determines the set
of attributes and relationships that are “of interest.”
For example, within one context a Customer entity
may be defined as the collection of instances having
the attributes customer number, name, street address,
city, state, zip code, and credit card number, inde-
pendent of whether that instance is an individual per-
son, a company, a local government, a federal agency,
a charity, or a country. In a different context, where
the type of organization determines how the customer
is billed or even if it is legal to sell specific product to
that instance, these same instances may be organized
into different entities and additional attributes may
be defined for each.

D. Identifier

Each entity has at least one combination of attributes
and relationships whose values uniquely distinguish
its instances. This unique combination is termed an
identifier. An entity may have multiple, alternate iden-
tifiers. Given the value of an entity’s identifier, there
is at most one corresponding instance of that entity in
the domain of interest. Employee number 12314, for
example, identifies one specific employee just as cus-
tomer number 5958 identifies one specific customer.
Social Security Number 111–11–1111 may alternately
identify the same employee.

Identifiers are often artificial in the sense that an
identifying attribute is created for the entity and values
assigned to its instances. Employee number and cus-
tomer number are examples of artificial identifiers.
The reason is that often there is not a set of “natural”
attributes that are guaranteed to uniquely distinguish
all instances of an entity, e.g., there may be several em-
ployees with the same name, or even the same name
and address. Even Social Security Number is an artifi-
cial identifier assigned by the federal government.

492 Data Modeling: Entity-Relationship Data Model

III. GRAPHICAL REPRESENTATIONS

There are two major graphical representations for a
data model. The first was posed by Chen in 1976 and
is most properly called the ER model. It uses boxes to
represent entities, embedded boxes to represent de-
pendent entities, diamonds connected to entities to
represent relationships, ovals to represent attributes,
and the identifier underlined (the original proposal
did not include a graphical representation for attrib-
utes, this was added later). Minimum and maximum
relationship cardinality are written beside the line
connecting each entity with the relationship diamond.

An alternate binary relationship graphical repre-
sentation was popularized, among others, by a system
development methodology called information engi-
neering (IE). It too uses boxes to represent entities
but uses a line to represent relationships and includes
attributes within the entity box. It uses the “chicken
feet” notation to represent relationship cardinality. It
does not allow relationships to have attributes, does
not support many-to-many relationships or relation-
ships with degree higher than 2, i.e., binary relation-
ships. Equivalent ER and IE representations are shown
in Figs. 1 and 2, respectively. These representations
are compared and explained in the next section.

A. Interpretation and Comparison

The ER representation (Fig. 1) has three entities, De-
partment, Employee, and Project and three relation-
ships, Managing (one-to-one), Reporting (one-to-
many), and Assign (many-to-many). Maximum and
minimum cardinality is shown for each entity in each
relationship. The Reporting relationship, for example,
specifies that each employee must report to exactly
one department (1:1 specifying a minimum of 1 and
a maximum of 1). A department can have zero or
many employees Reporting to it (0:M specifying a min-
imum of 0 and a maximum of Many). Each entity has
attributes shown in ovals connected to the appropriate
entity. The Assign relationship also has attributes, again
shown in ovals connected to it. Department, Employee,
and Project have (artificial) attribute identifiers eno
(Employee Number), dno (Department Number), and
pno (Project Number), respectively. These are under-
lined. Relationships without attributes are assumed to
be identified by the combination of their related en-
tity instances. Hence, Managing instances are identi-
fied by the combination of the department and the
managing employee and Reporting instances are iden-
tified by the employee and the reporting department.
A relationship can include any of its attributes in its

Data Modeling: Entity-Relationship Data Model 493

Figure 1 An entity-relationship graphical representation.

identifier. Assign instances are identified by the com-
bination of the employee and the project to which the
employee is assigned and the date on which the as-
signment was made (date).

The binary relationship (IE) representation (Fig.
2) also includes the entities, Employee, Department,
and Project. Again, entities are represented by boxes,
but the name of the entity is shown at the top of the
box and the attributes are listed inside the box. The
Managing (one-to-one) and Reporting (one-to-many)
relationships are represented as lines with minimum
and maximum cardinalities shown symbolically on
the line. The symbol for maximum cardinality is lo-
cated closest to the entity, that for minimum cardi-
nality next to it. The Reporting relationship, for ex-
ample, has a chicken foot on the Employee entity
specifying that a maximum of many employees can re-
port to one department. It has a 0 next to the chicken
foot specifying that a minimum of 0 employees can
report to 1 department. It has a 1 next to Department
specifying that an employee can report to a minimum
of 1 department and another 1 next to it specifying
that an employee can report to a maximum of 1 de-
partment. Again, identifier attributes are underlined.

The major difference between the formalisms is
how to represent the fact that employees are assigned
to projects on a specific date (many-to-many), and
that additional facts must be maintained relevant to
that assignment, such as the hours spent and the cur-
rent status. Since the IE representation does not sup-

port many-to-many relationships or relationships with
attributes, it includes a fourth entity, Assignment, hav-
ing one-to-many relationships with Employee and
Project and the attributes that the ER representation
ascribes to the relationship Assign. Its identifier is the
combination of these relationships and the date on
which the assignment was made (date). Each of these
relationships has a solid square box on it near the As-
signment entity to represent the fact that they are
part of the identifier. Effectively the IE approach de-
fines Assignment as an entity while the ER approach
defines it as a relationship. While there are numerous
debates about the benefits of each of these approaches,
the IE approach is less cluttered and more intuitive. It
will be used in the remainder of this article.

Notice that both representations convey the same
semantics. Each thing is specified as having the same
descriptors and constraints. Each employee reports to
exactly one department (hence Employee is existent
dependent upon Department within the database). A
department may employ zero or more employees (de-
partments can exist without employees). A depart-
ment is managed by at most one employee. An em-
ployee manages at most one department. Not all
employees participate in this relationship, all depart-
ments do. That is, not all employees manage a de-
partment, but all departments must have a manager.

As discussed above, the major difference between
these formalisms is the manner in which they represent
certain types of relationships. These are, many-to-many

494 Data Modeling: Entity-Relationship Data Model

Figure 2 A binary relationship graphical representation.

relationships, relationships having attributes, and rela-
tionships having a degree of 3 or higher. Such “relation-
ships” are represented directly in the ER model but re-
quire the creation of an intersection entity in the IE model.
While this may seem somewhat artificial, experience sug-
gests that such “relationships” are often a major focus of
the information system and perceived by the users as be-
ing “entities” (categories of things). Frequently they rep-
resent “events” occurring at a point in time, or having
some time duration, about which information must be
maintained. Representing them as entities enhances their
importance and simplifies the model.

IV. ADVANCED CONCEPTS

A. Generalization

A common criticism of early data modeling formalisms
was the lack of an abstraction capability. Process mod-
eling was based upon the concept of functional de-
composition; that is, breaking a complex process down
into simpler ones. Data models, on the other hand,
tended to be relatively “flat.” Each entity was defined
as a set of nonoverlapping instances. This makes it dif-
ficult to adequately model certain types of data.

Consider, for example, the way in which managers
are represented in Figs. 1 and 2. A manager is an Em-
ployee, but a special kind of Employee, one with a

special function in the organization and perhaps hav-
ing different characteristics from other employees.
The fact that the Managing relationship between Em-
ployee and Department has a minimum degree of 0
indicates that there is some heterogeneity among the
instances of Employee—some are managers, some are
not. This heterogeneity forces application programs
that access the database to treat some employees dif-
ferently from others. The data model does not ade-
quately represent the domain of interest.

Smith and Smith introduced the notion of general-
ization as a mechanism by which to increase the fi-
delity of data models to a domain of interest. Gener-
alization allows the instances of different entities to
overlap and provides a means for defining the nature
of that overlap.

A more accurate representation of the employees,
managers, and their association with departments uses
generalization as shown in Fig. 3. Employee is a gener-
alization or supertype or superclass of Manager. Conversely
Manager is a specialization or subtype or subclass of Em-
ployee. This is indicated by the specialization arc con-
taining a triangle pointing from Manager to Employee.
Generalization is a special case of a one-to-one rela-
tionship, termed an ISA (is a) relationship. Each in-
stance of Manager ISA instance of Employee, but only
some instances of Employee are also instances of Man-
ager. Using generalization it is clear that the Managing
relationship applies to only a subset of employees.

Data Modeling: Entity-Relationship Data Model 495

Figure 3 Manager as a subtype of employee.

Since each Manager ISA Employee, all attributes of
Employee apply to all instances of Manager. It is said
that Manager inherits all properties (descriptors) from
Employee. This, so-called property inheritance is funda-
mental to the object-oriented models such as the uni-
fied modeling language (UML).

Often a subtype such as Manager will have addi-
tional descriptors that do not apply to the supertype.
Manager, for example, has the attributes parking space
number and credit card number that are not applic-
able to any other employees. Of course, Manager par-
ticipates in the relationship Managing that does not
apply to other employees.

Whenever there is an entity with a relationship
whose minimum degree is 0 or whenever there are at-
tributes that do not apply to all instances of an entity,
generalization can be used to decompose that entity
into one or more subtypes. By using generalization in
this way the fidelity of the data model to the domain
of interest is increased. However, using generalization
in this way also increases the complexity of the dia-
gram. It is suggested that generalization only be used
when entity subsets (such as managers) are routinely
distinguished within the application area.

B. Generalization Constraints

The data model in Fig. 3 illustrates a single subtype
that is completely contained in a single supertype,
i.e., every Manager ISA Employee. It is also possible
for a supertype to have multiple, possibly overlapping,
subtypes and for entities to be subtypes of more than
one supertype. The last is termed a generalization lat-
tice having multiple inheritance. These situations may re-
quire the specification of generalization constraints to
clarify the nature of these relationships.

While a complete discussion of such constraints is
beyond the scope of this article it is instructive to ex-
amine the three most common subtype constraints.
These are exclusion, cover, and partition. They refer to
a collection of subtypes of a single supertype. Exclusion
specifies that each instance of the supertype can be in
at most one of the subtypes. Cover specifies that each
instance of the supertype must be in at least one of the
subtypes. Partition specifies that an instance of the su-
pertype must be in exactly one of the subtypes.

Consider, for example, a supertype Client having a
collection of three subtypes, Customer, Vendor, and
Employee. If it is not possible for the same Client in-
stance to be categorized more than one of these sub-
classes, then an Exclusion constraint exists. That is, an
Exclusion constraint precludes a client from being a

customer and a vendor or a customer and an em-
ployee or a vendor and an employee. If a client must
be at least one of the subtypes, customer, vendor, or
employee, then a Cover constraint exists. That is,
there cannot be any other types of clients than cus-
tomers, vendors, and employees. If a client must be
exactly one of customer, vendor, or employee, then a
Partition constraint exists.

C. Time-Dependent Data

It is frequently important to representing time-
dependent or temporal aspects of an application within
a data model. That is, specific applications frequently
require not only the current values of attributes and
relationships, but also their past values. Data models
are frequently developed to represent current values
only. Consider the data model represented in Fig. 2.
It specifies that each employee has exactly one value
of eno, e_name, ssn, and salary, i.e., these are at-
tributes and that an employee reports to exactly one
department. Clearly, over time, an employee can
legally change his name, hopes for salary increases,
and is likely to change departments. Hence, over time
an employee can have many values of e_name and
salary and can be related to many departments. If
it is important to include such temporal aspects of
these attributes and relationships within the domain
of interest, then they must be represented in the data
model.

A number of temporal data models have been pro-
posed. These typically extend the basic data modeling
constructs to include time dependencies. Typically at-
tributes and relationships are designated as being ei-
ther static or temporal. Designating an attribute or re-
lationship as “temporal” explicitly specifies that history
must be maintained for that attribute or relationship.
If, for example, salary and departmental reporting
history were to be maintained, the salary attribute
and Reporting relationship would simply be desig-
nated as being temporal. It is left to the designer of
the physical database to determine how that history is
maintained. Frequently it is assumed that a temporal
database management system will be used.

A more semantic approach to representing tempo-
ral data is to identify the events that cause the values
of attributes and relationships to change and repre-
sent them as entities. These event entities include the
time designation of when the event occurred and the
new values or incremental changes enabling the cal-
culation of the new values. In this approach the event
causing salary to change would be identified and an

496 Data Modeling: Entity-Relationship Data Model

entity would be created for it. Suppose this event is
called Performance Review. This entity would be one-
to-many related to Employee and have attributes such
as the date on which the salary review took place and
the new salary. Similarly, the event causing the Re-
porting relationship to change would be identified
and related to both Employee and Department.

V. TECHNIQUES FOR BUILDING A DATA MODEL

Data modeling is a part of an overall process of de-
veloping a system representation. Numerous tech-
niques have been proposed; however, the process re-
mains highly subjective. The key tasks are (1) identify
the major entities, including supertypes and subtypes;
(2) establish relationships; (3) determine attributes
and identifiers; and (4) document relationship cardi-
nalities and other constraints. The developed data
model must be validated with other representations
of the information system such as process and behav-
ior representations.

Three commonly used approaches to modeling the
data content of a domain of interest are sentence analy-
sis, document analysis, and event analysis. Each provides
a different perspective from which to view the do-
main. They are most effectively used in combination.

Obtaining sentences describing the tasks and
processes required in a domain is relatively straight-
forward. Knowledgeable users are simply asked to “tell
their story.” The resultant sentences serve as exem-
plars of tasks and processes performed in the domain
that must be supported by the information system.
The data requirements implicit in those descriptions
are extracted and formally represented in a data
model. Analyzing the documents, including transac-
tions and reports, used in performing those tasks and
processes provides insight into current processes and
enables the identification of opportunities for process
improvements. Event analysis focuses on identifying
and describing, what happens (the events), who is in-
volved (the actors and business resources), and what
responses are required as a result. Each of these tech-
niques is described below and a data model created
to illustrate this process.

A. Sentence Analysis

Sentence analysis simply identifies subjects, verb
phrases, and objects. Often these are in the form of
specific instances and must be generalized to the type
level. If the subject and object are both entities, then

the verb phrase represents a relationship, typically
stated in the form of the role of the entity represented
by the subject. If the subject represents an entity but
the object represents a fact about that entity, then the
object is an attribute and the verb phrase explains the
meaning of the attribute. This distinction is typically
made within the scope of the domain under consid-
eration and must be generalized to identify opportu-
nities for integration with other systems. Consider the
following sentences that have already been general-
ized to the type level.

• Salespeople service Customers.
• Customers place Orders through a Salesperson.
• Freight is determined when an Order is Shipped.
• Salespeople are paid commission based on their

commission rate and Invoiced sales.
• Each Salesperson has a number, name, and

address.
• Each Customer has a number and a bill-to-

address.
• Each Shipped Order results in an Invoice for

which the Customer is responsible.

The first two sentences specify relationships,
Salesperson-Customer, Customer-Order, and Salesperson-
Order. Additional analysis would be required to de-
termine the nature of these relationships and if any
are derived. For example, suppose the Salesperson
who gets credit for the Order is always the same as the
Salesperson who services the Customer who placed
the Order. Then the relationship between Salesper-
son and Order can be derived from the relationship
between Salesperson and Customer combined with
the relationship between Customer and Order. It
would not be necessary to keep a direct relationship
between Salesperson and Order. However, if sales-
people occasionally go on vacation or if customers are
occasionally moved from one salesperson to another
and sales history must be maintained with salespeo-
ple, then likely, this relationship would need to be
maintained explicitly. The next four sentences specify
attributes. Salesperson has the attributes, commission
rate, number, name, and address. Customer has the
attributes number and bill-to-address. The last sen-
tence equates Orders and Invoices.

B. Document Analysis

Document analysis similarly looks for facts represented
in the documents used in a business process. To ana-
lyze a document, each heading on the document is

Data Modeling: Entity-Relationship Data Model 497

classified as representing: (1) an entity (its identifier);
(2) an attribute; or (3) calculated data. This determi-
nation is done by an analyst in conjunction with the
end users; however, as mentioned above, it is ex-
tremely common for an organization to create artifi-
cial identifiers for important entities. These identi-
fiers invariably appear on reports or transaction
documents as <entity> Number (or No. or num)
or as some other obvious designator of an entity.

Consider the invoice document illustrated in Fig. 4.
A scan of that document reveals 22 headings: Invoice
(Order) Number, Date, Customer Number, Salesper-
son, Bill-to-Address, Customer PO, Terms, FOB Point,
Line Number, Product Number, Product Description,
Unit of Sale, Quantity Ordered, Quantity Shipped,
Quantity Backordered, Unit Price, Discount, Exten-
sion, Order Gross, Tax, Freight, and Order Net. The
fact that these are on the same document indicates
that there is some association among these various
items. They represent descriptors of related entities.

To develop a data model from this document, the
headings are categorized into one of three classes: en-
tity identifier, attribute, or calculated value. This is
somewhat subjective, but recalling the definition of
an entity as any thing about which information must
be maintained, the following are initially classified as
entity identifiers: Invoice Number (equivalent to Or-
der Number), Customer Number, Salesperson (with
an implicit Salesperson number), and Product Num-

ber. Tax, Order Gross, and Order Net are classified as
calculated values. All others are classified as attri-
butes. For each entity identifier, the entity is named:
Invoice Number identifies Invoice, Customer Num-
ber identifies Customer, and Product Number identi-
fies Product.

Next, relationships are established. It is obvious
that Customer relates to Invoice. Given the existence
of a relationship the next questions that must be asked
are: “How many Customers are responsible for a sin-
gle Invoice?” (answer: exactly one) and “How many
Invoices can be the responsibility of one Customer?”
(answer: zero or more). In this way it is determined
that there is a one-to-many relationship between Cus-
tomer and Invoice (see Fig. 5).

Similarly a many-to-many relationship is established
between Invoice and Product—one Invoice contains
many Products (this is obvious), and that the same
Product can be on many Invoices. How can the same
product be on more than one Invoice? This assumes
that what is meant by the same Product is not the same
physical instance of the product, but different in-
stances of the same type of product, having a single
Product Number, where the instances of which are
completely interchangeable. That is, the customer is
being invoiced for some quantity of the same product.
In Fig. 3, for example, “Cheerios” is Product Number
2157, sold in units of cartons. Local Grocery Store is
being invoiced for 40 cartons of this same product.

498 Data Modeling: Entity-Relationship Data Model

Figure 4 An example invoice document.

Presumably 40 (or 50 or 100) more cartons of the
same product could be ordered, shipped, and invoiced
to a different Customer. Hence the relationship is
many-to-many.

As many-to-many relationships are not permitted in
this formalism, an intersection entity must be created
between Invoice and Product. The intersection entity
is related many-to-one to each of the entities in the
many-to-many relationship (chicken feet on the inter-
section entity). An obvious name for the intersection
entity is Line Item, since, in common business termi-
nology, a line item on an invoice represents a single
product on the invoice. Each Line Item is identified
by the combination of the Invoice to which it relates
and the Line Number (line) as illustrated in Fig. 5.

Finally, attributes are identified from the values on
the document and associated with the appropriate en-
tity. Frequently attributes are named for the heading
under which the value appears, e.g., Customer PO,
Terms, FOB Point, Product Description. In other cases
the value is the result of a calculation, e.g., Extension,
Order Gross, and Tax at 6%. When that is the case,
the calculated value itself does not correspond to an
attribute, however, all data needed to perform the cal-
culation must be represented within the attributes.
For example, Extension is defined by the calculation,

Order Quantity * Unit Price * (1 � Discount/100).

Order Quantity, Unit Price, and Discount are each rep-
resented as attributes. Extension is not. Similarly Order
Gross is the sum of all Extension calculations for each

Line Item on the Invoice. Tax at 6% is also a calculated
value, however, it requires an additional attribute, Tax
Rate. The appropriate entity for this attribute must be
determined. There may be a single Tax Rate that ap-
plies to each Customer. Alternately there may be a dif-
ferent Tax rate for each State in which Customers re-
side. The domain for which the data model in Fig. 5
was developed has a potentially different tax rate for
each customer. Hence, tax_percent is an attribute
of Customer. If there is not an appropriate entity for
an attribute, i.e., one that is uniquely described by an
attribute, then there is a missing entity. Further analy-
sis is required to identify it.

Finally, the model is reviewed to identify subtypes.
If a relationship applies to some, but not all instances
of an entity, that is, the minimum degree of one of the
relationship descriptors is zero, then subtypes exist in
at least one of the entities, i.e., the subtype participates
in the relationship while the supertype does not.

Similarly, if an attribute applies to some, but not all
instances of an entity, then subtypes exist for the entity,
i.e., the subtype has the additional attributes. The value
of explicitly recognizing subtypes depends on the de-
gree of heterogeneity among the subtypes. The pur-
pose of the data model is to communicate the mean-
ing of the data. If the introduction of subtypes confuses
rather than clarifies, they should not be introduced.

Referring to the data model of Fig. 5, some Cus-
tomers may not have any outstanding Invoices (mini-
mum cardinality of zero). Thus there are two subtypes
of Customer—those with Invoices and those without

Data Modeling: Entity-Relationship Data Model 499

Figure 5 A data model for an order processing application.

Invoices. If this is the only distinction for subtyping, it
is probably not worthwhile explicitly recognizing the
subtypes. If, on the other hand, Customers with In-
voices have additional attributes or are viewed differ-
ently from Customers without Invoices, then it may be
beneficial to represent this subtype explicitly in the
data model.

C. Event Analysis

Event analysis defines an entity for each event and
identifies the associated actors and resources required
for that event to occur. The sentences in the Section
V.A not only identify things, they also identify events.
At least three events can be distinguished, Place Or-
der, Ship Order, and Invoice Order. If additional sen-
tences were obtained, it is likely that a fourth event
would be identified, Pay Invoice. Event analysis can
often help clarify the nature of attributes and rela-
tionships. Invoice, for example, has an attribute
named date. The identification of four events related
to this entity forces the question: “To which event
does this date refer?” Most likely four different date
attributes must be maintained, one for each event.
Furthermore, the attribute freight does not have a
meaningful value for an Order that has not been
shipped. Similarly, for the Line Item entity, the at-
tribute quantity_shipped is not meaningful until
the Ship Order event has occurred.

Event methodologies recommend creating an en-
tity for each event. Hence, Place Order, Ship Order,
Invoice Order, and Pay Invoice would be separate en-
tities in the Order processing data model. Such a rep-
resentation highlights the possibility that a single Or-
der may have many Ship events or that a single Ship
event may include multiple Orders. It effectively forces
an analyst to investigate such possibilities.

D. Evaluating the Resultant Data Model

The quality of the data model is assured by the man-
ner in which it was constructed. The construction de-
scribed above is based on the principle of normal forms
originally proposed for the relational data model and
later applied to semantic data models. Each attribute
is associated with an entity only if that attribute di-
rectly describes that entity with a single value. In the
“normal form” terminology, the assignment of attri-
butes to entities in this way assures that each attribute
is fully functionally dependent upon the identifier of the
entity, and not dependent upon any other attribute in
the model.

Disallowing many-to-many relationships assures
that each relationship corresponds to a functional de-
pendency between entity identifiers. The identifier of
the entity on the “one” side is fully functionally de-
pendent upon the identifier of the entity on the
“many” side. Thus the resultant data model is “well
formed” in the sense that it can be directly trans-
formed into a “third normal form” relational schema.

The structural rules for evaluating a data model are

1. Each entity must be uniquely named and
identified

2. Attributes are associated with entities (not
relationships), and each entity must have one
and only one value for each of its attributes
(otherwise an additional entity must be created)

3. Relationships associate a pair of entities or associate
an entity with itself (only binary relationships are
allowed but relationships can be recursive)

4. Many-to-many relationships are not allowed (an
intersection entity with two one-to-many
relationships must be created)

5. Subtypes are identified when the minimum
degree of a relationship descriptor is zero or
when an attribute does not apply to all instances
of an entity; these subtypes are explicitly
recognized when there is a “significant”
difference among the subtypes (e.g., they have
multiple attributes or relationships)

VI. TRANSFORMING DATA MODELS
INTO DATABASE DESIGNS

After validation a data model must be transformed
into the schema definition of a DBMS for implemen-
tation. This section describes how data models can be
transformed into an RDBMS schema and presents the
basic efficiency issues that must be considered in that
transformation.

A. Relational DBMS

The basic elements of a relational database schema
define tables, columns in those tables, and constraints
on those columns. Constraints include primary keys
(identifiers) and foreign keys (relationships). While
there are numerous efficiency issues related to trans-
forming a data model into such a database schema, a
“quick and dirty” approach simply maps entities into
tables, attributes into columns, identifiers into pri-
mary keys, and relationships into columns designated
as foreign keys.

500 Data Modeling: Entity-Relationship Data Model

Fig. 7 shows such a relational schema in tabular
form for the data model of Fig. 5. Figure 6 shows its
definition in the standard relational language SQL.
The data model has five entities, Customer, Salesper-
son, Order, Line Item, and Product. Five correspond-
ing tables are defined in the relational schema. Simi-
larly, columns are defined for each attribute in each
entity. In a relational schema all interconnections
among tables are represented by data values. Hence,
columns must be created to represent relationships.
For a one-to-many relationship, a column is created in
the table representing the entity on the “many” side
for each attribute (column) in the identifier (primary
key) of the table representing the entity on the “one”
side. These columns are termed “foreign keys.”

As illustrated in Figs. 6 and 7, the Customer table
has an “extra” column, spno (salesperson number) to
represent the one-to-many relationship between Sales-
person and Customer. It is designated in a Foreign Key
constraint to reference the Primary Key column, spno,
in the Salesperson table. The spno column in the Cus-
tomer table is constrained to be NOT NULL. This con-
straint specifies that each row of the Customer table
must have a value for that column. The Foreign Key
constraint specifies that the value of that column must
appear in the spno column of some row in the Sales-
person table. Together these implement the specified
relationship between Customer and Salesperson in the
data model having a minimum 1 and maximum 1 on
the Customer side. Removing the NOT NULL constraint
would implement a minimum 0 and maximum 1 rela-
tionship on the Customer side. The minimum 0 and
maximum many (unlimited) on the Salesperson side is
implicit in the Foreign Key representation. Enforcing
a minimum other than 0 or a maximum other than un-
limited on the Salesperson (many) side requires a pro-
cedurally implemented constraint.

The Line Item table similarly has two “extra”
columns: invoice_no (invoice number), representing
its many-to-one relationship with Invoice, and pno
(product number) representing its many-to-one rela-
tionship with Product. Again each is designated in a
Foreign Key constraint; however, while invoice_no is

designated to be NOT NULL, pno is not. This imple-
mentation requires each Line Item to have a related
Invoice, but does not require it to have a related Prod-
uct. Hence this schema implements the specified re-
lationships in the data model of Fig. 5.

A one-to-one relationship may be represented in
the table corresponding to either entity in the rela-
tionship. When one role in a one-to-one relationship
has a minimum of 0 and the other has a minimum of
1, the relationship is most commonly represented by
a foreign key in the table corresponding to the entity
on the minimum 0 side. Consider, for example, the
data model in Fig. 3. The Managing relationship could
be represented by a foreign key in either the Em-
ployee table or the Department table. Since it has a
minimum of 0 on the Department side, it would most
likely be represented by a foreign key column con-
strained to be NOT NULL in the table corresponding
to that entity. If this relationship was represented in
the table corresponding to the Employee table, the
foreign key column would not be constrained to be
NOT NULL and, in fact, would contain a NULL value
in each row corresponding to an employee who did
not manage a department, likely most of them.

B. Efficiency Issues in
Relational Database Design

This type of direct transformation from a data model
into a database schema may be inefficient for data-
base processing. Decisions related to efficiency of
implementation are part of physical database design.
There are numerous physical database design possi-
bilities. The following are illustrative.

1. Vertical and Horizontal Fragmentation

For efficiency reasons, an entity may be split vertically
or horizontally. This is termed fragmentation. Vertical
fragmentation assigns subsets of attributes to different
tables. Horizontal fragmentation assigns subsets of in-
stances to different tables. Of course, these ap-
proaches can be combined.

Data Modeling: Entity-Relationship Data Model 501

Figure 6 A relational database schema in tabular form (primary keys are underlined, foreign keys are in italic).

Vertical fragmentation can increase efficiency if clus-
ters of “frequently” used and “rarely” used attributes can
be identified. Frequently used attributes can be stored
in the table corresponding to the entity and rarely used
attributes can be stored in a separate table. This reduc-
tion in the size of the table corresponding to the entity
can significantly reduce processing requirements. Con-
sider, for example, an Employee entity used in a payroll
application. The Employee entity may contain attributes
such as emergency contact, emergency contact address,
and emergency contact telephone number that are
rarely, if ever, used in payroll processing. Segmenting
them to a separate table, related to the Employee table
by a foreign key reduces the size of the Employee table,
which is likely scanned for payroll processing.

Horizontal fragmentation can similarly increase effi-
ciency by reducing the size of the table corresponding

to an entity by identifying “rarely” used instances. This
technique is similar to “archiving” rarely used data.
Again considering an Employee entity used in a payroll
application, terminated employees must be retained for
end of year processing, but are no longer used in nor-
mal payroll processing. Segmenting them to a separate
table can reduce normal payroll processing time.

2. Attribute Replication

Efficiency can be increased by redundantly storing
specific attributes with related entities. Consider, for
example, the processing required to produce invoices
from the set of tables shown in Fig. 5. Assuming that
invoices require Customer, Order, Salesperson, Line
Item, and Product data, the production of this report
requires all five tables to be joined together. Redun-

502 Data Modeling: Entity-Relationship Data Model

Figure 7 A relational database schema definition in SQL.

dantly storing the required Salesperson attributes in
the Order table and the required Product attributes
in the Line Item table would eliminate two joins, sig-
nificantly reducing the computing effort to produce
it. Of course this replication increases the size of those
tables and can result in update anomalies since the
third normal form is violated. This approach is most
effective when the replicated data is small and is not
subject to frequent modification.

3. Entity Merging

Merging related entities that are frequently retrieved to-
gether into a single table may also increase retrieval ef-
ficiency. Merging the entity on the one side of a one-to-
many relationship into the entity on the many side is
similar to attribute replication, but replicates the entire
entity. This approach can be effective when combined
with judicious vertical fragmentation. Merging the en-
tity on the many side of a one-to-many relationship into
the entity on the one side violates first normal form. It
is not directly supported by RDBMSs although it is di-
rectly supported by object DBMSs. To implement this
strategy in an RDBMS a set of columns must be defined
for the maximum possible number of related instances.
It is most effective when the actual number of related
instances is fixed and relatively “small.” Consider, for
example, an inventory system that tracks the ending in-
ventory level for each product for each of the past 12
months. The data model for such a domain would have
an entity for Product related one to many to an entity
for Ending Inventory. The Ending Inventory entity
would need two attributes, Month and Ending Quan-
tity. The minimum and maximum cardinality on the
Ending Inventory side is 12. Merging that entity into
the Product entity would require 12 columns, one for
the ending inventory in each of the past 12 months.
The month would be built into the column name.

VII. SUMMARY AND DIRECTIONS
FOR FURTHER RESEARCH

Data modeling is a process by which the logical or
“natural” data structure of a domain of interest is rep-
resented using a predefined set of constructs. The set
of constructs is termed a data modeling formalism.
The product of data modeling is a logical data model.

This article has discussed the major constructs of
data modeling formalisms. It used a simple graphical
notation to illustrate these constructs. Approaches to
developing a data model were presented and illus-
trated. Finally, a simple way to transform a logical data
model into a database schema was presented and ef-
ficiency issues discussed.

Current research in data modeling is progressing
in several directions. These include the development
of modeling and design tools and techniques, user in-
terfaces based on data modeling constructs, usability,
semantics and constraints, quality and reliability met-
rics, and the interface with object technologies and
languages. A number of these are addressed in the ar-
ticles listed in the bibliography.

SEE ALSO THE FOLLOWING ARTICLES

Database Administration • Database Development Process •
Database Systems • Data Modeling: Object-Oriented Model •
Relational Database Systems

BIBLIOGRAPHY

Carlis, J. V., and Maguire, J. (2000). Mastering data modeling: A
user-driven approach. Reading, MA: Addison-Wesley.

Chen, P. P.-S. (1976). The entity-relationship model—Toward a
unified view of data. ACM Transactions on Database Systems,
Vol. 1, No. 1, 9–36.

Denna, E., Cherrington, J. O., Andros, D., and Hollander, A.
(1993). Event-driven database solutions. Irwin, Homewood, IL:
Business One.

Fowler, M., Kendall, S., and Booch, G. (1999). UML distilled,
Second Edition. Reading, MA: Addison-Wesley.

Hull, R., and King, R. (1987). Semantic database modelling:
Survey, applications, and research issues. ACM Computing
Surveys, Vol. 19, No. 3, 201–260.

Ling, T. W., and Ram, S. (1998). Conceptual modeling—ER ’98.
Berlin: Springer.

McFadden, F. R., Hoffer, J., and Prescott, M. (1999). Modern
database management, Oracle 7.3.4 Edition. Reading, MA:
Addison-Wesley.

Peckham, J., and Maryanski, F. (1988). Semantic data models.
ACM Computing Surveys, Vol. 20, No. 3, 153–189.

Snodgrass, R. T. (2000). Developing time-oriented database applica-
tions in SQL. San Francisco, CA: Morgan Kaufmann.

Teorey, T. (1994). Database modeling and design, the fundamental
principles, Second Edition. San Francisco, CA: Morgan
Kauffmann.

Data Modeling: Entity-Relationship Data Model 503

Data Modeling: Object-Oriented Data Model
Michalis Vazirgiannis
Athens University of Economics and Business

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 505

I. INTRODUCTION
II. MOTIVATION AND THEORY

III. INDUSTRIAL SYSTEMS—STANDARDS

IV. CONCLUSION—RESEARCH ISSUES AND PERSPECTIVES
V. CASE STUDY: OBJECT RELATIONAL SOLUTIONS FOR

MULTIMEDIA DATABASES

GLOSSARY

data model In data modeling we try to organize data so
that they represent as closely as possible a real world
situation, yet representation by computers is still fea-
sible. A data model encapsulates three elements: ob-
jects’ structure, behavior and integrity constraints.

encapsulation A property of the object-oriented
model, promoting data and operation indepen-
dence. This is achieved by hiding the internal struc-
ture and implementation details from the external
world simplifying thus the maintenance and usage
of a multitude of object classes in an application.

inheritance The ability of one class to inherit the
structure and behavior of its ancestor. Inheritance
allows an object to inherit a certain set of attributes
from another object while allowing the addition of
specific features.

object-oriented modeling It is an abstraction of the real
world that represents objects’ structural content and
behavior in terms of classes’ hierarchies. The struc-
tural content is defined as a set of attributes and at-
tached values and the behavior as a set of methods
(functions that implement object’s behavior).

polymorphism The ability of different objects in a
class hierarchy to have different behaviors in re-
sponse to the same message. Polymorphism derives
its meaning from the Greek for “many forms.” A
single behavior can generate entirely different re-
sponses from objects in the same group. Within
the framework of the program, the internal mech-
anism determines what specific name of different
purposes is known as function overloading.

relational model A data modeling approach having
found very successful industrial implementations
in DBMS. The fundamental modeling constructs
are the relations consisting of tuples of values each
one taking its semantics from an appropriate at-
tribute. The relations represent entities of the real
world and relationships among entities.

I. INTRODUCTION

A. Need for Data Modeling

The word “datum” comes from Latin and, literally in-
terpreted, means a fact. However, data do not always
correspond to concrete or actual facts. They may be
imprecise or may describe things that have never hap-
pened (e.g., an idea). Data will be of interest to us if
they are worth not only thinking about, but also worth
recording in a precise manner.

Many different ways of organizing data exist. For
data to be useful in providing information, they need
to be organized so that they can be processed effec-
tively. In data modeling we try to organize data so that
they represent as closely as possible a real world situa-
tion, yet representation by computers is still feasible.
These two requirements are frequently conflicting.
The optimal way to organize data for a given applica-
tion can be determined by understanding the char-
acteristics of data that are important for capturing
their meaning. These characteristics allow us to make
general statements about how data are organized and
processed.

It is evident that an interpretation of the world is
needed, sufficiently abstract to allow minor perturba-
tions, yet sufficiently powerful to give some under-
standing concerning how data about the world are re-
lated. An intellectual tool that provides such an
interpretation will be referred to as a data model. It
is a model about data by which a reasonable inter-
pretation of the data can be obtained. A data model
is an abstraction device that allows us to focus on the
information content of the data as opposed to indi-
vidual values of data.

B. Historical Overview: First and
Second Database Model Generations

Information systems demand more and more services
from information stored in computing systems. Gradu-
ally, the focus of computing shifted from process-
oriented to data-oriented systems, where data play an
important role for software engineers. Today, many
design problems center around data modeling and
structuring.

After the initial file systems in the 1960s and early
1970s, the first generation of database products was
born. Database systems can be considered intermedi-
aries between the physical devices where data are stored
and the users (humans) of the data. Database manage-
ment systems (DBMS) are the software tools that enable
the management (definition, creation, maintenance,
and use) of large amounts of interrelated data stored in
computer-accessible media. The early DBMSs, which
were based on hierarchical and network (Codasyl) mod-
els, provided logical organization of data in trees and
graphs. IBM’s IMS, General Electric’s IDS, Univac’s
DMS 110, Cincom’s Total, MRI’s System 200, and
Cullinet’s (now Computer Associates) IDMS are some
of the well-known representatives of this generation. Al-
though efficient, these systems used procedural lan-
guages, did not offer physical or logical independence, thus
limiting its flexibility. In spite of that, DBMSs were an
important advance compared to the files systems.

IBM’s addition of data communication facilities to
its IMS software gave rise to the first large-scale data-
base/data communication (DB/DC) system, in which
many users access the DB through a communication
network. Since then, access to DBs through commu-
nication networks has been offered by commercially
available DBMSs.

C. W. Bachman played a pioneering role in the de-
velopment of network DB systems (IDS product and
Codasyl DataBase Task Group, or DBTG, proposals).
The DBTG model is based on the data structure dia-
grams, which are also known as Bachman’s diagrams.

In the model, the links between record types, called
Codasyl sets, are always one occurrence of one record
type. To many, that is, a functional link. In its 1978
specifications, Codasyl also proposed a data definition
language (DDL) at three levels (schema DDL, sub-
schema DDL, and internal DDL) and a procedural
(prescriptive) data manipulation language (DML).

In 1969–1970, Dr. E. F. Codd proposed the rela-
tional model, which was considered an “elegant math-
ematical theory” without many possibilities of effi-
cient implementation in commercial products. In
1970, few people imagined that, in the 1980s, the re-
lational model would become mandatory (a “decoy”)
for the promotion of DBMSs. Relational products
like Oracle, DB2, Ingres, Informix, Sybase, etc., are
considered the second generation of DBs. These
products have more physical and logical indepen-
dence, greater flexibility, and declarative query lan-
guages (users indicate what they want without de-
scribing how to get it) that deal with sets of records,
and they can be automatically optimized, although
their DML and host language are not integrated.
With relational DBMSs (RDBMSs), organizations
have more facilities for data distribution. RDBMSs
provide not only better usability but also a more solid
theoretical foundation.

Unlike network models, the relational model is
value-oriented and does not support object identity.
Needless to mention, there is an important trade-off
between object identity and declarative features. As a
result of Codasyl DBTG and IMS support object iden-
tity, some authors introduced them in the object-
oriented DB class.

The initial relational systems suffered from perfor-
mance problems. While nowadays these products have
achieved wide acceptance, it must be recognized that
they are not exempt from difficulties. Perhaps one of
the greatest demands on RDBMSs is the support of in-
creasingly complex data types; also, null values, recur-
sive queries, and scarce support for integrity rules and
for domains (or abstract data types) are now other
weaknesses of relational systems. Some of those prob-
lems are solved in the current version of Structured
Query Language (SQL), SQL: 1999 (previously SQL3).

In the 1970s, the great debate on the relative mer-
its of Codasyl and relational models served to com-
pare both classes of models and to obtain a better un-
derstanding of their strengths and weaknesses.

During the late 1970s and in the 1980s, research
work (and, later, industrial applications) focused on
query optimization, high-level languages, the normal-
ization theory, physical structures for stored relations,
bugger and memory management algorithms, index-
ing techniques (variations of B-tress), distributed sys-

506 Data Modeling: Object-Oriented Data Model

tems, data dictionaries, transaction management, and
so on. That work allowed efficient and secure on-line
transactional processing (OLTP) environments (in
the first DB generation, DBMSs were oriented toward
batch processing). In the 1980s, the SQL language
was also standardized (SQL/ANS 86 was approved by
the American National Standard Institute, ANSI and
the International Standard Organization, ISO in
1986), and today, every RDBMS offers SQL.

Many of the DB technology advances at that time
were founded on two elements: reference models and
data models. ISO and ANSI proposals on reference
models have positively influenced not only theoretical
researches but also practical applications, especially in
DB development methodologies. In most of those ref-
erence models, two main concepts can be found; the
well-known three-level architecture (external, logical,
and internal layers), also proposed by Codasyl in 1978,
and the recursive data description. The separation be-
tween logical description of data and physical imple-
mentation (data application independence) devices
was always an important objective in DB evolution,
and the three-level architecture, together with the re-
lational data model, was a major step in that direction.

In terms of data models, the relational model has in-
fluenced research agendas for many years and is sup-
ported by most of the current products. Recently, other
DBMSs have appeared that implement other models,
most of which are based on object-oriented principles.

Three key factors can be identified in the evolution
of DBs: theoretical basis (resulting from researcher’s
work), products (developed by vendors), and practi-
cal applications (requested by users). These three fac-
tors have been present throughout the history of DB,
but the equilibrium among them has changed. What
began as a product technology demanded by users’
needs have always influenced the evolution of DB
technology, but especially so in the last decade.

Today, we are witnessing an extraordinary develop-
ment of DB technology. Areas that were exclusive of
research laboratories and centers are appearing in
DBMSs’ latest releases: World Wide Web, multimedia,
active, object-oriented, secure, temporal, parallel, and
multidimensional DBs. The need for exploiting the
Object-Oriented Model for such complex systems is
apparent.

II. MOTIVATION AND THEORY

A. Motivation

Although one might think that DB technology has
reached its maturity, the new DB generation has

demonstrated that we still ignore the solutions to
some of the problems of the new millennium. In spite
of the success of this technology, different “preoccu-
pation signals” must be taken into account. We iden-
tify the following architectural issues that need to be
solved in the light of new application domains:

• Current DBMSs are monolithic; they offer all
kinds of services and functionalities in a single
“package,” regardless of the users’ needs, at a very
high cost, and with a loss of efficiency

• About half of the production data are in legacy
systems

• Workflow management (WFM) systems are not
based on DB technology; they simply access DBs
though application programming interfaces (APIs)

• Replication services do not scale well over 10,000
nodes

• Integration of strictly structured data with loosely
structured data (e.g., data from a relational DB
with data from electronic mail)

On the other hand there is wealth of new application
domains that produce huge amounts of data and there-
fore call for database support. Such domains are com-
puter-aided design (CAD), computer-aided software
engineering (CASE), office-automation, multimedia
databases, geographic information systems (GIS), sci-
entific experiments, telecommunications, etc.

These application domains present some impor-
tant common characteristics that make their database
support by traditional relational systems problematic.
Such features include:

• Hierarchical data structures (complex objects)
• New data types for storing images or large textual

items
• No general-purpose data structure available
• Nonstandard application-specific operations
• Dynamic changes
• Cooperative design process among designers
• Large number of types
• Small number of instances
• Longer duration transactions

The database technology has to respond to these chal-
lenges in a way that the above requirements are ad-
dressed as database technology design features. In the
sequel we identify the shortcomings of current data-
base technology in the context of the new applications:

• Poor representation of “real-world” entities, need
to decompose objects over relations

Data Modeling: Object-Oriented Data Model 507

• Fixed build-in types; no set-valued attributes are
supported, thus complex and highly nested
objects cannot be represented efficiently

• Semantic overloading
• Poor support for integrity and enterprise

constraints
• No data abstraction such as aggregation and

generalization, thus inheritance and specialization
cannot be addressed

• Limited operations
• Difficulty handling recursive queries
• No adequate version control is supported

B. Object-Oriented Model

1. Historical Preview of
Object-Oriented Databases

Before we proceed with our discussion of data model-
ing, it is necessary to define, even if only approximately,
the elementary objects that will be modeled (i.e., what
a datum is). Suppose that we accept as a working defi-
nition of an atomic piece of data the tuple <object name,
object property value, time>. After all, a phenomenon or
idea usually refers to an object (object name) and to some
aspect of the object (object property), which is captured
by a value (property value) at a certain time (time).

Of these four aspects of data, time is perhaps the
most cumbersome aspect of data modeling. There-
fore, many data models completely drop the notion
of time and replace it either with other kinds of ex-
plicit properties or with orderings among objects. The
issues of Object-Oriented (OO) Models, object
structure–object Classes will be treated as the basis of
an object-oriented database management system
(OODBMS). Furthermore such a system must sup-
port Inheritance (single–multiple) and handle object
identity issues. Then OO languages providing persis-
tency (persistence by class, creation, marking, refer-
ence) are necessary so that users of an OODBMS are
able to define and manipulate database objects.

2. Object-Oriented Modeling
and Programming Concepts

Hereafter an overview of object-oriented concepts will
be presented. Object orientation has its origins in
object-oriented programming languages (OOPLS).
The “class” concept is introduced by SIMULA, where
as abstract data types encapsulation, message passing,
and inheritance features are further introduced by
the pioneering SMALLTALK. Another language of
this family is C�� that integrates the strengths of C

with object-oriented concepts. The newest OO lan-
guage is Java, inherently object-oriented providing a
wide selection of classes for different tasks (i.e., visu-
alization, network and task management, persistent
features). Its portability across platforms and operat-
ing systems made it a very attractive development en-
vironment, widely used and with important impact on
programming large-scale applications.

An object has an inherent state followed by its be-
havior, which defines the way the object treats its state
as well the communication protocol between the object
and the xternal world. We have to differentiate between
the transient objects in OOPLs and the persistent
objects—in object-oriented databases (OODBs). In the
first case the objects are eliminated from the main mem-
ory as soon as they are not needed whereas in the case
of OODBMSs objects are persistently stored and other
mechanisms such as indexing, concurrency, control,
and recovery are available. OODBMSs usually offer in-
terfaces with one or more OOPLs.

The three features that differentiate an object from
a relational tuple are

1. Object identity, a unique identifier generated
with the object creation and follows it throughout
its life cycle

2. Encapsulation features (promoting data and
operation independence), since the internal
structure and implementation details are not
accessible from the external world simplifying
thus the maintenance and usage of a multitude
of object classes in an application

3. Operator polymorphism and overloading, allowing
different behaviors to be grouped under the same
method and operator names; this facilitates design
and evolution of large sets of classes

Here after these features are further analyzed.

a. OBJECT IDENTITY, OBJECT STRUCTURE

AND TYPE CONSTRUCTORS

The object identity (OID) is generated by the sys-
tem when a new object is created and is unique and
immutable. Each OID is used only once and is invisi-
ble to the users.

An OODBMS offers a set of type constructors that
are used to define the data structures for an OO data-
base schema. The basic constructors offered created
atomic values (atom (integer, string, float, etc.), tuples,
and sets of objects. Other constructors create lists, bags,
and arrays of objects. It is also feasible to have attrib-
utes that refer to other objects called references—OID.

An object has an internal structure defined by a
triple (OID, type constructor, state). For instance, as-

508 Data Modeling: Object-Oriented Data Model

sume an object o � (i1, tuple, <manager: i3, start-date:
i5>). An object can be represented as a graph struc-
ture that can be constructed by recursively applying
the type constructors. Assume the following example:

contained package. Thus the external aspects of an
object are separated from its internal details. The ex-
ternal users of the object are only made aware of the
interface of the object type, i.e., name and parameters
of each operation, also called signature.

The functionality of an object is implemented by a
set of methods and messages. A method consists of a
name and a body that perform the behavior associ-
ated with the method name, whereas a message is sim-
ply a request from one object to another object ask-
ing the second object to execute one of its methods.

In the context of database applications dealing with
objects we distinguish between visible attributes, imple-
mented by external operators or query language pred-
icates or hidden attributes which are referenced only
through predefined operations. Assume the example:

Data Modeling: Object-Oriented Data Model 509

Example 1 Object identities (OIDs).

Define class Employee;
type tuple (...)
operations age: integer;

create_emp: Employee
destroy_emp: boolean;

end Employee;

If d is a reference to an Employee object, we can in-
voke an operation such as age by writing d.age. Of
course the main issue in OODBs is to have a mechanism
that makes the objects persistent, i.e., stored safely in
the secondary storage at appropriate times. The mech-
anisms for making an object persistent are called nam-
ing and reachability. The naming mechanism involves
giving an object a unique persistent name through
which it can be retrieved by this and other programs.
The following example illustrates this concept:

In this example the types Employee, Date, and De-
partment are defined. As the object structures are po-
tentially complex the issue of object equality becomes
interesting. Object equality is a concept that can be
viewed from two aspects: deep and shallow.

• Two objects are said to have identical states (deep
equality) if the graphs representing their states are
identical in every respect, including the OIDs at
every level.

• Two objects have equal states (shallow equality) if
the graph structures are the same and all the
corresponding atomic values in the graphs are also
the same. However, some corresponding internal
nodes in the two graphs may have objects with
different OIDs.

b. ENCAPSULATION

An important feature in the domain of OODBs is
the encapsulation that offers an abstraction mecha-
nism and contributes in information hiding since an
object encapsulates both data and functions into a self-

define class DepartmentSet:
type ...
operations ...

...
end DepartmentSet;
...

persistent name AllDepartments:
DepartmentSet;

...
d := create_dept;

c. TYPE HIERARCHIES AND INHERITANCE

A type can be defined by giving it a type name and
then listing the names of its public functions. Then it

is possible to define subtypes emanating from the ba-
sic types. For example:

The actual methods are instantiated as follows:

int max(int, int);
real max(real, real);

If the determination of an object’s type can be de-
ferred until runtime (rather than compile time), the
selection is called dynamic binding.

e. COMPLEX OBJECTS

A complex object, an important concept in the
object-oriented approach, is an item that is perceived as
a single object in the real world, but combines with
other objects in a set of complex a-part-of relationships.

We distinguish two categories of complex objects:
unstructured and structured ones. The unstructured
complex objects contain bitmap images, long text strings;
they are known as binary large objects (BLOBs),
OODBMSs provide the capability to directly process
selection conditions and other operations based on
values of these objects.

Such objects are defined by new abstract data types
and the user provides the pattern recognition pro-
gram to map the object attributes to the raw data.

The second category, structured complex objects, im-
plies that the object’s structure is defined by repeated
application of the type constructors provided by the
OODBMS. Here we distinguish two types of reference
semantics: (1) ownership semantics (is-part-of; is-
component-of), and (2) is-associated-with relationship.
The idea is that OODBMSs constitute a “marriage” be-
tween the concepts of object-oriented programming
(OOP), such as inheritance, encapsulation, and poly-
morphism, and well-founded and industry level sup-
ported database capabilities (see Fig. 1).

Conclusively, the ideas that were worked out in the
OODBMS area have been concentrated and codified
by the Object-Oriented Database System Manifesto.
This is an effort toward standardization and promot-
ing ideas that should be part of an object-oriented
database system. The most important concepts from
this manifesto follow:

• An OODBMS should support complex objects.
• Object identity is an important part of an object

and must be supported.
• Encapsulation must be supported as an integral

part of the system.
• Types or classes must be supported along with

inheritance features, so that types or classes must
be able to inherit from their ancestors.

• Dynamic binding must be supported.
• The DML must be computationally complete and

the set of data types must be extensible. Moreover

510 Data Modeling: Object-Oriented Data Model

PERSON: Name, Address, Birthdate,
Age, SSN

EMPLOYEE subtype-of PERSON: Salary,
HireDate, Seniority

STUDENT subtype-of PERSON: Major,
GPA

Each subtype inherits the structure and behavior
of its ancestor. It is also possible to redefine (over-
ride) an inherited property or method.

In some cases it is necessary to create a class that
inherits from more than one superclass. This is the
case of multiple inheritance which occurs when a cer-
tain subtype T is a subtype of two (or more) types and
hence inherits the functions of both supertypes. This
leads to the creation of a type lattice. In several cases
if the lattice grows integrity and ambiguity problems
may arise.

In other cases it is desirable that a type inherits
only part of structure and/or behavior of the a su-
pertype. This is the case of selective inheritance. The
EXCEPT clause may be used to list the functions in a
supertype that are not to be inherited by the subtype.

d. POLYMORPHISM

The term polymorphism integrates the various cases
where, during inheritance, redefinition of structure or
behavior is necessary. Polymorphism implies operator
overloading where the same operator name or symbol
is bound to two or more different implementations of
the operator, depending on the type of objects to
which the operator is applied. For instance the func-
tion Area should be overloaded by different imple-
mentations in the Geometry_Object example.

The process of selecting the appropriate method
based on an object’s type is called binding. In strongly
typed systems, this can be done at compile time. This
is termed early (static) binding.

On the other hand binding can take place at run-
time, in this case called dynamic binding. An exam-
ple follows:

template <type T>
T max(x:T, y:T) {

if (x > y) return x;
else return y;

}

The DBMS must provide a simple way of querying
data.

• Data persistence must be provided as a natural
feature of a database system.

• The DBMS must be capable of managing very
large databases.

• The DBMS must support concurrent users.
• The DBMS must be capable of recovery from

hardware and software failures.

Though these features are quite interesting and
promising, the impact on the database industry was
not as important as hoped. Instead the big database
industry tried to extend the well-established relational
technology by integrating some of the object-oriented
database concepts. This hybrid technology is known
as object relational. In the next section there is a re-
view of the main features of this technology.

C. The Object Relational Approach

Here we contrast and compare the relative strengths
and weaknesses of the relational and object-oriented

systems in order to motivate the need for object-
oriented modeling. The discussion will include user-
defined data types and set-based versus navigational
access to data. We also examine some simple model-
ing examples to illustrate the discussions.

1. A Quick Look at Relational
and Object-Oriented Databases

It is evident that the strengths of the relational para-
digm have revolutionized information technology. Re-
lational database technology was originally described
by E. F. Codd. Not long afterward, companies like
IBM and Oracle created very successful products. The
relational DB standard is published by ANSI, with the
current specification being X3H2 (SQL’92). The new
specification dealing with object extensibility has been
labeled X3H7. A relational DB stores data in one or
more tables or rows and columns. The rows corre-
spond to a record (tuple); the columns correspond to
attributes (fields in the record), with each column
having a data type like date, character, or number.
Commercial implementations currently support very
few data types. For example, character, string, time,

Data Modeling: Object-Oriented Data Model 511

Figure 1 OODBMS is an amalgamation between OOP and traditional database concepts.

date, numbers (fixed and floating point), and cur-
rency describe the various options. Any attribute
(field) of a record can store only a single value.

Relational DBs enforce data integrity via relational
operations, and the data themselves are structures to
a simple model based on mathematical set theory. Re-
lationships are not explicit but rather implied by val-
ues in specific fields, for example, foreign keys in one
table that match those of records in a second table.
Many-to-many relationships typically require an inter-
mediate table that contains just the relationships. Re-
lational DBs offer simplicity in modifying table struc-
ture. For example, adding data columns to existing
tables or introducing entire tables remains an ex-
tremely simple operation. The beauty of relational
DBs continues to be in its simplicity. The process of
normalization establishes a succinct clarity to the man-
agement and organization of data in the DB. Redun-
dancies are eliminated and information retrieval its
governed by the associations created between primary
and foreign keys. Why store the same piece of infor-
mation in two or more places when a logical connec-
tion can be established to it in one place? Referential
integrity (RI) has also made an important contribu-
tion because it enables business rules to be controlled
through the use of constraints. The role of constraints
is to prevent the violation of data integrity and,
thereby, its normalization.

The origins of OODBs trace their beginnings to
the emergence of OOP in the 1970s. Technically, there
is no official standard for object DBs. The book The
Object Database Standard: ODMG-V2.0, under the
sponsorship of the Object Database Management
Group (ODMG) (http://www.odmg.com), describes
an industry-accepted de facto standard. Object DBMSs
emphasize objects, their relationships, and the stor-
age of those objects in the DB.

Designers of complex systems realized the limita-
tions of the relational paradigm when trying to model
complex systems. Characteristics of object DBs include
a data model that has object-oriented aspects like class,
with attributes, methods, and integrity constraints; they
also have OIDs for any persistent instantiation of
classes; they support encapsulation (data and meth-
ods), multiple inheritance, and abstract data types.

Object-oriented data types can be extended to sup-
port complex data such as multimedia by defining
new object classes that have operations to support the
new kinds of information.

The object-oriented modeling paradigm also sup-
ports inheritance, which allows incremental develop-
ment of solutions to complex problems by defining
new objects in terms of previously defined objects.

Polymorphism allows developers to define operations
for one object and then share the specification of the
operation with other objects. Objects incorporating
polymorphism also have the capability of extending
behaviors or operations to include specialized actions
or behaviors unique to a particular object. Dynamic
binding is used to determine at runtime which
operations are actually executed and which are not.
Object DBs extend the functionality of object pro-
gramming languages like C�� or Java to provide full-
featured DB programming capability. The result is a
high level of congruence between the data model for
the application and the data model of the DB, result-
ing in less code, more natural data structures, and
better maintainability and greater reusability of code.
All of those capabilities deliver significant productiv-
ity advantages to DB application developers that dif-
fer significantly from what is possible in the relational
model.

2. Contrasting the Major Features of Pure
Relational and Object-Oriented Databases

In the relational DB, the query language is the means
to create, access, and update objects. In an object DB,
the primary interface for creating and modifying ob-
jects is directly via the object language (C��, Java,
SMALLTALK) using the native language syntax even
though declarative queries are still possible. Addi-
tionally, every object in the system is automatically
given an OID that is unique and immutable during
the object’s life. One object can contain an OID that
logically references, or points to, another object.
Those references prove valuable when in the associa-
tion of objects with real-world entities, such as prod-
ucts, customers, or business processes; they also form
the basis of features such as bidirectional relation-
ships, versioning, composite objects, and distribution.
In most ODBMSs, the OIDs become physical (the log-
ical identifier is converted to pointers to specific mem-
ory addresses) once the data are loaded into memory
(cached) for use by the object-oriented application.
No such construct exists in the relational DB. In fact,
the addition of navigational access violates the very
principles of normalization because OIDs make no
reliance on keys.

To further explore the divergent nature of rela-
tional and object-oriented DBs, let us look more
closely at the drawbacks of each. Our discussion even-
tually leads us to the justification behind the object-
relational paradigm.

In the following we explore the specifics of what it
takes to define the object-relational paradigm. A first

512 Data Modeling: Object-Oriented Data Model

issue is to enable object functionality in the relational
world. Two important aspects must be considered in
any definition of the object-relational paradigm. The
first is the logical design aspects of the architecture.
What data types will be supported? How will data be
accessed? The other aspect is the mapping of the log-
ical architecture to a physical implementation.

From a technological standpoint, certain capabili-
ties must be included in the list of logical capabilities,
or the DB will not qualify to the minimal require-
ments for being object-relational. Such capabilities
are behavior, collection types, encapsulation, inheri-
tance, and polymorphism.

a. BEHAVIOR

A method, in the purely object-oriented paradigm,
is the incorporation of a specific behavior assigned to
an object or element. A method is a function of a par-
ticular class.

b. COLLECTION TYPES

An aggregate object is essentially a data-type defi-
nition that can be composed of many subtypes cou-
pled with behavior. In Oracle 8, for example, there
are two collection types: VARRAYs and nested tables.
VARRAYs are suitable when the subset of information
is static and the subset is small. A suitable implemen-
tation of a VARRAY might be in the same context
where a reference entity might be used. The contents
of reference entities remain relatively static and serve
to validate entries in the referencing table. For ex-
ample, a reference entity called MARKETS can be
created to store the valid set of areas where a com-
pany does business. In the same way, a VARRAY might
be substituted to perform the same reference and val-
idation. VARRAY constructs are stored inline. That
means the VARRAY structure and data are stores in
the same data block as the rest of the row as a RAW
data type. Although they bear some similarity to
PL/SQL tables, VARRAYSs are fixed size.

c. ENCAPSULATION

Encapsulation is the definition of a class with data
members and functions. In other words, it is the mech-
anism that binds code and data together while pro-
tecting or hiding the encapsulation from outside of
the class. The actual implementation is hidden from
the user, who only sees the interface.

As an illustrative example, think of a plane engine.
You can open it and see that it is there, and the plane
pilot can start the ignition. The engine causes the
plane to move. Although you can see the motor, the

inner functions are hidden from your view. You can
appreciate the function that the motor performs with-
out ever knowing all the details of what occurs inside
or even how.

d. INHERITANCE

Inheritance is the ability of one class to inherit the
structure and behavior of its ancestor. Inheritance al-
lows an object to inherit a certain set of attributes
from another object while allowing the addition of
specific features.

e. POLYMORPHISM

Polymorphism is the ability of different objects in
a class hierarchy to have different behaviors in re-
sponse to the same message. Polymorphism derives its
meaning from the Greek for “many forms.” A single
behavior can generate entirely different responses
from objects in the same group. Within the frame-
work of the program, the internal mechanism deter-
mines specific names for different purposes and is
known as function overloading.

If we consider the perspective of moving OODBs
closer to the middle, we discover the following points.

• Object-relational DBs require a generalized object-
oriented programming language interface versus a
specific, hard-coded one. Normally, object-
oriented DBs are geared for a specific
programming language.

• Object-oriented DB architectures have been
known historically for their slow performance.

• Object-oriented DBs are, by design, limited in
terms of scalability.

• Object-oriented DBs are not designed for high
concurrency.

III. INDUSTRIAL SYSTEMS—STANDARDS

A. Standards—The Object
Model of the ODMG

ODMG was created at the initiative of a set of object
database vendors with the goal of defining and pro-
moting a portability standard for OODBs. It had eight
voting members (O2 Technology, Versant, Poet, Gem-
stone, Objectivity, Object Design, Uni SQL, IBEX), re-
viewing members (among which, CERN, Hewlett
Packard, Microsoft, Mitre, etc.), and academic mem-
bers (D. DeWitt, D. Maier, S. Zdonic, M. Carey,
E. Moss, and M. Solomon).

Data Modeling: Object-Oriented Data Model 513

It provides the potential advantages of having stan-
dards: (1) portability, (2) interoperability, (3) com-
pares commercial products easily and consists of the
modules:

1. Object model It describes the specific object model
supported by the ODMG system, being an
extension of the OMG (Object Management
Group) model.

2. Object Definition Language (ODL) It is used to
specify the schema of an object database having a
specific schema with a C�� binding.

3. Object query Language (OQL) An SQL like language
that can be used as a stand-alone language for
interactive queries or embedded in a
programming language.

In the following we provide an overview of the ODMG
model. ODMG addresses objects and literals. An object
has both an OID and a state where a literal has only a
value but no OID. An object is described by four char-
acteristics: identifier, name, lifetime, and structure. On
the other hand, three types of literals are recognized:
atomic, collection, and structured. The notation of
ODMG uses the keyword “interface” in the place of the
keywords “type” and “class.” Below is an example:

interface Object {
...
boolean same_as (...)
Object copy ();
void deleted ();

}
Interface Collection: Object {
...
boolean is_empty();
...

};

o.same_as (p)
q = o.copy()

1. Built-In Interfaces
for Collection Objects

Any collection object inherits the basic Collection in-
terface. Given a collection object o, the o.cardi-
nality() operation returns the elements in the col-
lection. O.insert_element(e) and o.remove_
element(e) insert or remove an element from the
collection O. The ODMG object model uses excep-
tions for reporting errors or particular conditions.
For example, the ElementNotfound exception in

the Collection interface would be raised by the o.re-
move_element(e) operation if e is not an element
in the collection o. Collection objects are further spe-
cialized into Set, List, Array, and Dictionary.

2. Atomic (User-Defined) Objects

In the ODMG model, any user-defined object that is
not a collection object is called an atomic object. They
are specified using the keyword class in ODL. The
keyword Struct corresponds to the tuple constructor.
A relationship is a property that specifies that two ob-
jects in the database are related together. For exam-
ple, work_for relationship of Employee and
has_emps relationship of Department, Inter-
faces, Classes, and Inheritance.

An interface is a specification of the abstract be-
havior of an object type, which specifies the operation
signatures. An interface is noninstantiable—that is,
one cannot create objects that correspond to an in-
terface definition.

A class is a specification of both the abstract be-
havior and abstract state of an object type, and is
instantiable.

Another object-oriented feature supported by
ODMG is inheritance, which is implemented by ex-
tends keyword.

The database designer can declare an extent for any
object type that is defined via a class declaration and it
contains all persistent objects of that class. Extents are
also used to automatically enforce the set/subset rela-
tionship between the extents of a supertype and its sub-
type. A key consists of one or more properties (attri-
butes or relationships) whose values are constrained
to be unique for each object in the extent.

3. The ODL

The ODL’s main use is to create object specifica-
tions—that is, classes and interfaces. The user can spec-
ify a database schema in ODL independently of any
programming language. Moreover it is feasible to use
the specific language bindings to specify how ODL
constructs that can be mapped to constructs in spe-
cific programming languages, such as C��, Java,
SMALLTALK. There may be several possible map-
pings from an object schema diagram (or extended
entity relational schema diagram) into ODL classes.

The mapping method follows the following steps:
(1) the entity types are mapped into ODL classes, and
(2) inheritance is done using extends. Here we have

514 Data Modeling: Object-Oriented Data Model

to stress that there is no direct way to support multi-
ple inheritance. Below is an example:

class Person extent persons
{
attribute struct Pname
...

};

Class Faculty extends Person (extent
faculty)

{
attribute string rank;
....

};

The class Faculty extends the class Person which is in
turn an extension of class person. Therefore the leaf
class Faculty contains all the attributes of all the an-
cestor classes (person and Person).

In the following example we have two classes (Rec-
tangle, Circle) emanating from the same class Geom-
etryObject.

Interface GeometryObject
{
attribute ...
...

};

Class Rectangle : GeometryObject
{
attribute ...
...
};
Class Circle : GeometryObject
{
attribute ...
...
};

4. The OQL

The OQL is the query language proposed for the
ODMG object model in order to be able to query
OODBs. It is designed to work closely with the pro-
gramming languages for which an ODMG binding is
defined, such as C��, SMALLTALK, and Java. It is
similar to SQL (the standard query language for rela-
tional databases) and the main difference is the han-
dling of path expressions related to the class frame-
work used. For example:

SELECT d.name
FROM d in departments
WHERE d.college = ‘Engineering’

This query results in the set of the names of the de-
partments on the Engineering college. The type of
the result is a bag of strings (i.e., duplicates allowed).
The query results have to involve in many cases path
expressions (i.e., the path from the root parent class
to the class required via inheritance links). The fol-
lowing example illustrates the use of path expressions
in OQL queries:

departments;
csdepartment;
csdepartment.chair;
csdepartment.has_faculty;
Csdepartment.has_faculty.rank (x)

SELECT f.rank
FROM f in csdepartment.has_faculty;

Then we can write the following query to retrieve the
grade point average of all senior students majoring in
computer science, with the result ordered by gpa, and
within that by last and first name:

SELECT struct (last_name:
s.name.lname, first_name:

s.name.fname, gpa: s.gpa)
FROM s in csdepartment.

has_majors
WHERE s.class = ‘senior’
ORDER BY gpa DESC, last_name ASC,

first_name ASC;

Another facility provided is the specification of views
as named queries. For instance we can define the fol-
lowing view:

DEFINE has_minors(deptname) AS
SELECT s
FROM s in students
WHERE s.minors_in.dname = deptname;

Then a potential query searching for the students
that took as minor Computer Science the following
query can be formed:

Has_minors(‘Computer Science’);

QOL also provides aggregate functions, and quantifiers.
The following example query returns the number of
students that took as minor Computer Science:

Data Modeling: Object-Oriented Data Model 515

count (s in has_minors(‘Computer
Science’));

avg (SELECT s.gpa
FROM s in students
WHERE s.major_in.dname = ‘Computer
Science’ and s.class = ‘senior’);

The following query illustrates the use of the “forall”
predicate. Are all computer science graduate students
advised by computer science faculty?

For all g in (
SELECT s
FROM s in grad_students
WHERE s.majors_in.dname =
‘Computer Science’)

: g.advisor in csdepartment.
has_faculty;

The following query illustrates the use of the “exists”
predicate. The query searches for any graduate com-
puter science major having a 4.0 gpa

exists g in (
SELECT s
FROM s in grad_students
WHERE s. majors_in.dname =
‘Computer Science’

AND g.gpa = 4;

5. Object Database Conceptual Design

An important issue that arises here is the conceptual
design of an object-oriented schema. Can we benefit
from the traditional design techniques applied in re-
lational databases? There are important differences
between conceptual design of object databases and
relational databases.

As regards relationships, object databases (ODB)
exploit object identifiers resulting in OID references
while a relational database system (RDB) references to
tuples by values or by externally specified/generated
foreign keys.

Regarding inheritance, the ODB approach exploits
inheritance constructs such as derived (:) and EX-
TENDS, and this is a fundamental feature of the ap-
proach, whereas RDBs do not offer any built in sup-
port for inheritance. Of course object relational
systems and extended RDB systems are adding inher-
itance constructs.

An important issue for compatibility and reusabil-
ity of data is the mapping of an extended entity rela-
tionship (EER) schema to an ODB schema. The fol-
lowing steps have to be followed:

Step 1: Create an ODL class for each EER entity type
or subclass

Step 2: Add relationship properties or reference
attributes for each binary relationship into the ODL
classes that participate in the relationship

Step 3: Include appropriate operations for each class
Step 4: An ODL class that corresponds to a subclass in

the EER schema inherits the type and methods of
its superclass in the ODL schema

Step 5: Weak entity types can be mapped in the same
way as regular types

Step 6: Declare a class to represent the category and
define 1:1 relationships between the category and
each of its superclasses

Step 7: An n-ary relationship with degree n > 2 can be
mapped into a separate class, with appropriate
references to each participating class.

B. OO Systems: O2, Object Store, etc.

In this section we refer briefly to existing object-oriented
and object-relational database industrial approaches.

1. Example of ODBMS—O2 System

This system has historical importance as it was the
only European DBMS and one of the few OODBMSs.
Its architecture is based on a kernel, called O2En-
gine, and is responsible for much of the ODBMS func-
tionality. The implementation of O2Engine at the sys-
tem level is based on a client/server architecture.

At the functional level, three modules (storage
component, object manager, schema manager) im-
plement the functionality of the DBMS.

Data definition in O2 is carried out using pro-
gramming languages such as C�� or Java. Data ma-
nipulation in O2 is carried out in several ways. O2
supports OQL as both an ad hoc interactive query
language and as an embedded function in a language.
There are two alternative ways for using OQL queries.
For example:

Q1:
d_Bag<d_Ref<Department>>
engineering_depts;

departments ->query(engineering_depts,
‘’this.college = “Engineering’’ ‘’);

Q2:
d_Bag<d_String>
engineering_dept_names;

516 Data Modeling: Object-Oriented Data Model

d_oql_Query q0(‘’select d.dname from
d in departments where
d.college = “Engineering” “);

d_oql_execute
(q0, engineering_dept_names);

Both queries (Q1and Q2) search for the names of the
departments of the college of Engineering.

2. Object Relational Systems—Complex
Types and Object Orientation

Object-relational DBs are the evolution of pure
object-oriented and relational DBs. The convergence
of those two disparate approaches came about as a re-
alization that there were inherent shortcomings in
the existing paradigms when considered individually.
Observers of information technology can still see the
debate that rages in the software community over the
ultimate character of object-relational DBs or object-
relational DBMSs (ORDBMS).

Industry experts are frequently critical of object-
relational DBs because they usually demonstrate a
limited or nonexistent ability to perform certain rela-
tional or object-oriented tasks in comparison to their
pure counterparts. A case in point would be the lim-
ited support for inheritance in object-relational DBs,
a feature fully supported in the object-oriented para-
digm. Others argue that inheritance is of such limited
consequence when employed in the storage of data
and datacentric objects that its pursuit is a waste of ef-
fort. Each point of view is almost always driven by the
particular background of the individual presenting
the criticism. Because the object-relational paradigm
is a compromise of two very different architectures,
the most effective definition of its ultimate character
will be devised by those who have an unbiased appre-
ciation for relational and object-oriented systems
alike.

An issue to be tackled can be the question whether
ORDBMSs should begin with a relational foundation
with added object-orientation of the reverse. From a
conceptual level relational DBs have been far more
successful than their OODBMS counterparts. It
should not be any surprise then, that virtually all ma-
jor vendors are approaching the object-relational
arena by extending the functionality of existing rela-
tional DB engines. A case in point would be IBM, Or-
acle, and Informix, whose efforts to create a “univer-
sal server” began by extending their core relational
engines.

Anything that causes such controversy should be
worth the effort, which begs two important questions:

First, what factors have led to the development of
object-relational DBs? And second, what characterizes
an accurate definition of an object-relational DB? The
general answer to the first question is that developers
need a more robust means of dealing with complex
data elements without sacrificing the access speed for
which relational DBs have become known. To answer
the second question, there are several characteristics
that, as a minimum, must be included to achieve a
true object-relational structure. Those characteristics
are the following:

• Retrieval mechanism, that is, a query language
like SQL but one adapted to the extended
features of the ORDBMS, the retrieval mechanism
must include not only relational navigation but
also object-oriented navigational support

• Support for relational features like keys,
constraints, indexes, and so on

• Support for referential integrity as it is currently
supported by the relational paradigm

• Support for the object metamodel (classes, types,
methods, encapsulation, etc)

• The ability to support user-defined data types
• Support for the SQL3 ANSI standard

A well known extension requirement regards spatial
information. Oracle, Informix, and IBM DB2 offer ca-
pabilities for user-defined data types and functions
that are applied to them. All of them propose the
nested storage model, where a complex attribute is
stored in an attribute (they call it in-line). They claim
it is more efficient when queries regarding an object
reposed since self-join is avoided. This is a good ar-
gument for choosing this approach.

DB2 Spatial extender provides a comprehensive set
of spatial predicates, including comparison functions
(contains, cross, disjoint, equals, intersects etc.), rela-
tionship functions (common point, embedded point,
line cross, area intersect, interior intersect, etc.), com-
bination functions (difference, symmetric difference,
intersection, overlay, union, etc.), calculation func-
tions (area, boundary, centroid, distance, end point,
length, minimum distance, etc.) and transformation
functions (buffer, locatealong, locate between, con-
vexhull, etc.).

The Informix Dynamic Server with Universal Data
Option offers type extensibility. So-called DataBlade
modules may be used with the system, thus offering
new types and associated functions that may be used
in columns of database tables. The Informix Geodetic
DataBlade Module offers types for time instants
and intervals as well as spatial types for points, line

Data Modeling: Object-Oriented Data Model 517

segments, strings, rings, polygons, boxes, circles, el-
lipses, and coordinate pairs.

Since 1996, the Oracle DBMS has offered a so-
called spatial data option, also termed “spatial car-
tridge,” that allows the user to better manage spatial
data. Current support encompasses geometric forms
such as points and point clusters, lines and line strings,
and polygons and complex polygons with holes.

IV. CONCLUSION—RESEARCH
ISSUES AND PERSPECTIVES

The presence of rich voluminous and complex data
sets and related application domains rises require-
ments for object oriented features in database sup-
port. Significant research has been devoted in this
area of integrating such object-oriented features in
database technology. Important effort has been com-
mitted to either as pure OODBMS or as extensions of
the relational approach (ORDBMSs).

The object-oriented model offers the advantageous
features regarding:

• Flexibility to handle requirements of new database
applications

• Complex objects and operations specification
capabilities

• OODBs are designed so they can be directly—or
seamlessly—integrated with software that is
developed using OOPLs

Nevertheless, there are several interesting issues for
further research in the context of object-oriented and
object relations database systems. Some of them are:

• View definition and management on the
ODB/ORDB schema

• Querying the schema, in terms of class names,
attributes, and behavior features

• Optimization in several levels such as path
expression queries, storage, and retrieval issues

• Access mechanisms, indexing, and hashing
techniques specialized for object-oriented and
object relations databases

• Dynamic issues such as schema evolution (class
removal or moving in the inheritance tree and
related instances management)

Last but not least one should take into account the re-
quirements and the tremendous potential of the
World Wide Web content viewed as a loosely struc-

tured database of complex objects. There the appli-
cability of the object-oriented approach both for mod-
eling and storage/retrieval is very promising.

V. CASE STUDY: OBJECT RELATIONAL
SOLUTIONS FOR MULTIMEDIA DATABASES

Hereafter we will present the soulutions provided by
different ORDMS for video storage and retrieval.
IBM’s DB2 system supports video retrieval via “video
extenders.” Video extenders allow for the import of
video clips and querying these clips based on attri-
butes such as the format, name/number, or descrip-
tion of the video as well as last modification time.

Oracle (v.8) introduced integrated support for a va-
riety of multimedia content (Oracle Integrated Multi-
media Support). This set of services includes text, im-
age, audio, video, and spatial information as native data
types, together with a suite of data cartridges that pro-
vide functionality to store, manage, search, and effi-
ciently retrieve multimedia content from the server. Or-
acle 8i has extended this support with significant
innovations, including its ability to support cross-
domain applications that combine searches of a num-
ber of kinds of multimedia forms and native support for
data in a variety of standard Internet formats, including
JPEG, MPEG, GIF, and the like. Oracle has packaged its
complex datatype support features together with man-
agement and access facilities into a product called Or-
acle 8i interMedia. This product enables Oracle 8i to
manage complex data in an integrated fashion with
other enterprise data, and permits transparent access to
such data through standard SQL using appropriate op-
erators. It also includes Internet support for popular
web-authoring tools and web servers. It offers online In-
ternet-based geocoding services for locator applications,
and powerful text search features.

Informix’s multimedia asset management technol-
ogy offers a range of solutions for media or publish-
ing organizations. In fact, Informix’s database tech-
nology is already running at the core of innovative
multimedia solutions in use. Informix Dynamic Server
with Universal Data Option enables effective, efficient
management of all types of multimedia content—in-
cluding images, sound, video, electronic documents,
web pages, and more. The Universal Data Option en-
ables query, access, search, and archive digital assets
based on the content itself. Informix’s database tech-
nology provides: cataloging, retrieval, and reuse of
rich and complex media types like video, audio, im-
ages, time series, text, and more—enabling viewer ac-

518 Data Modeling: Object-Oriented Data Model

cess to audio, video, and print news sources; high-
performance connectivity between your database and
Web servers providing on-line users with access to up-
to-the-minute information; tight integration between
your database and web development environments
for rapid application development and deployment;
and extensibility for adding features like custom news
and information profiles for viewers (Table I).

SEE ALSO THE FOLLOWING ARTICLES

Cohesion, Coupling, and Abstraction • Database Administra-
tion • Data Modeling: Entity-Relationship Data Model • Mul-
timedia • Object-Oriented Programming • Relational Data-
base Systems

BIBLIOGRAPHY

Atkinson, M., Bancillon, F., DeWitt, D., Dittrich, K., Maier, D.,
and Zdonik, S. (1992). The Object-Oriented Database Sys-
tem Manifesto. In Building an Object-Oriented Database System:
The Story of O2, Bancillon et al. (eds), San Francisco: Morgan
Kaufmann. Also in Proc. Int. Conf. Deductive Object-Oriented
Databases, Kyoto, Japan, Dec. 1989.

Bancillon, F., Briggs, T., Khoshafian, S., Valduriez, P. (1987).

FAD-a Simple and Powerful Database Language, Proceedings
of VLDB 1987.

Chou, Ç., et al. (1985). Design and implementation of the Wis-
consin storage system, Software-Practice and Experience, 15(10),
Oct. 1985.

Codd, E. F. (1970). A Relational Model for Large Shared Data
Banks, Communications of the ACM, 13, 377–387.

Copeland, G., and Khoshafian, S. (1986). Identity and Versions
for Complex Objects, Proceedings of the International Work-
shop on Object-Oriented Database Systems, September, Pacific
Grove, CA.

Dahl, O. J., and Nygaard, K. (1966). SIMULA—An ALGOL-
based simulation language. Communications of the ACM,
9(9):671–678.

Date, C. J., and Darwen, J. (1996). Foundation for object/relational
databases, the third manifesto. Reading, MA: Addison-Wesley.

Davis, J. R. (1998). IBM’s DB2 Spatial Extender: Managing Geo-
Spatial Information Within the DBMS. Technical report.
IBM Corporation.

Deux, Ï., et al. (1990). The story of O2, IEEE Transactions on
Knowledge and Data Engineering, 2(1), March 1990.

Dittrich, K. (1986). Object-Oriented Database Systems: The
Notion and the Issues. Proceedings of the International Work-
shop on Object-Oriented Database Systems, September, Pacific
Grove, CA.

Dittrich, K., and Dayal, U. (eds.). (1986). Proceedings of the In-
ternational Workshop on Object-Oriented Database Systems, Sep-
tember, Pacific Grove, CA.

Ehoshafian, S., (1990). Insight into object-oriented databases.
Information and Software Technology, 32(4).

Data Modeling: Object-Oriented Data Model 519

Table I Comparative Presentation of Multimedia Retrieval Capabilities of Commercial Object Relational Systems

QBIC Oracle Informix DB2

Color Percentage, layout (hist) Global, Local color Excalibur (Image Dblade)

Texture Similar Graininess, smoothness Excalibur (Image Dblade)

Shape Excalibur (Image Dblade)

Spatial Show position
relationships

Scene detection MEDIAstra (Video Dblade)

Object detection MEDIAstra (Video Dblade)

MPEG-4 approach

Captions & Manual annotation DbFlix—meta-data storage Description (img)
Annotations Time, frame, content based Format, frame rate,

approach. tracks (video)
Format, last update

(audio)

Extend Datablades DB2 Extenders
functionality

Sound Muscle Fish Audio Limited
(content based queries)

Other Feature layout Ideal for Video on Feature vector (Exc) Feature layout
Demand Video reproduction (Media) Voice to text

V
is

ua
l

In
fo

R
et

ri
ev

al

Goldberg, A., and Robson, D. (1982). Smalltalk 80: The lan-
guage and its implementation. Reading, MA: Addison-Wesley.
http://www.software.ibm.com/data/dbs/extenders.

Ìaier, D. (1986). Why Object-Oriented Databases Can Succeed
Where Others Have Failed, Proceedings of the International
Workshop on Object-Oriented Database Systems, September, Pa-
cific Grove, CA.

Informix DataBlade Technology (1999). Transforming Data
into Smart Data.

Khoshafian, S. (1993). Object Oriented Databases. New York: John
Wiley.

Kim, W. (1991). Introduction to Object-Oriented Database. Cam-
bridge. MA: The MIT Press.

Lynbaek, P., and Kent, W. (1986). A Data Modeling Methodol-
ogy for the Design and Implementation of Information Sys-
tems, Proceedings of the International Workshop on Object-
Oriented Database Systems, September, Pacific Grove, CA.

Maier, D., Stein, J. (1986). Indexing in an Object-Oriented
DBMS, Proceedings of the International Workshop on Object-
Oriented Database Systems, September, Pacific Grove, CA.

Maiers, R. (1990). Making Database Systems Fast Enough for
CAD, In Object-Oriented Concepts, Databases and Applications,
(Kim, W., and Lochovsky, F., eds.). Reading, MA: Addison-
Wesley Publishing.

Manola, F. (1989). An Evaluation of Object-Oriented DBMS Develop-
ments, GTE Laboratories Incorporated, TR-0066-10-89-165.

Oracle 8 SQL Type Data Definition Language. (1997). An Or-
acle Technical White Paper.

Piatini, M., and Diaz, O., eds. (2000). Advanced database tech-
nology and design. Norwood, MA: Artech House.

Stonebraker, M., Rowe, L., Lindsay, B., Gray, J., and Carey, M.
(1990). Third-Generation Data Base System Manifesto.
Memorandum No. UCB/ELR. M90/23, April. The Com-
mittee for Advanced DBMS Function, University of Califor-
nia, Berkeley, CA.

Tsichritzis, D., and Lochovsky, F. (1982). Data models. New York:
Prentice Hall.

Wilkinson, K., Lyngbaek, P., Hasan, W. (1990). The Iris Archi-
tecture and Implementation, IEEE Transactions on Knowledge
and Data Engineering, 2(1), March 1990.

520 Data Modeling: Object-Oriented Data Model

Data Warehousing and Data Marts
Zhengxin Chen
University of Nebraska, Omaha

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 521

I. OVERVIEW
II. OPERATIONAL SYSTEMS AND WAREHOUSE DATA

III. ARCHITECTURE AND DESIGN OF DATA WAREHOUSES
IV. DATA WAREHOUSES AND MATERIALIZED VIEWS
V. DATA MARTS

VI. METADATA
VII. DATA WAREHOUSE AND THE WEB

VIII. DATA WAREHOUSE PERFORMANCE
IX. DATA WAREHOUSES, OLAP, AND DATA MINING
X. CONCLUSION

GLOSSARY

data mart A departmental subset of the warehouse
data focusing on selected subjects. A data ware-
house could be a union of all the constituent data
marts.

data mining Also referred to as knowledge discovery
in databases, it is the nontrivial extraction of im-
plicit, previously unknown, interesting, and poten-
tially useful information (usually in the form of
knowledge patterns or models) from data.

data warehouse A subject-oriented, integrated, time-
varying, nonvolatile collection of data that is used
primarily in organizational decision making. It is a
collection of materialized views derived from base
relations that may not reside at the warehouse

metadata Data about data, or what the warehouse
data look like (rather than warehouse data them-
selves). In a warehousing environment, metadata
include semantic metadata, technical metadata,
and core warehouse metadata.

on-line analytical processing (OLAP) Applications
dominated by stylized queries that typically involve
group-by and aggregation operators for analysis
purpose.

Web The World Wide Web is a hypermedia-based sys-
tem that provides a simple “point and click” method
of browsing information on the Internet using
hyperlinks.

I. OVERVIEW

The complexity involved in traditional distributed
database systems (DDBS) has stimulated organiza-
tions to find alternative ways to achieve decision sup-
port. Data warehousing is an emerging approach for
effective decision support. According to the popular
definition given by the “godfather” of data ware-
housing technique, William Inmon (1996), a data
warehouse is a “subject-oriented, integrated, time-
varying, nonvolatile collection of data that is used pri-
marily in organizational decision making.” Although
considered by some business people as a low-key an-
swer for the “failed” DDBS, data warehousing does
take advantage of various techniques related to dis-
tributed and parallel computing.

Data warehousing provides an effective approach to
deal with complex decision support queries over data
from multiple sites. The key to this approach is to cre-
ate a copy (or derivation) of all the data at one location,
and to use the copy rather than going to the individual
sources. Note that the original data may be on different
software platforms or belong to different organizations.

There are several reasons for the massive growth of
volumes of data in the data warehouse environment:

1. Data warehouses collect historical data
2. Data warehouses involve the collection of data to

satisfy unknown requirements

3. Data warehouses include data at the summary
level, but may also include data at the very
detailed atomic or granule level

4. Data warehouses contain external data as well
(e.g., demographic, psychographics, etc.).

Significant amounts of external data are collected to
support a variety of data mining activities for predic-
tion or knowledge discovery. For example, data min-
ing tools would use this external data to predict who
is likely to be a good customer or how certain com-
panies are likely to perform in the marketplace.

Data warehouses contain consolidated data from
many sources (different business units), spanning
long time periods and augmented with summary in-
formation. Warehouses are much larger than other
kinds of databases, typical workloads involve ad hoc,
fairly complex queries, and fast response times are
important. Data warehousing encompasses frame-
works, architectures, algorithms, tools, and techniques
for bringing together selected data from multiple
databases or other information sources into a single
repository suitable for direct querying or analysis.
Data warehousing is especially important in industry
today because of a need for enterprises to gather all
of their information into a single place for in-depth
analysis, and the desire to decouple such analysis from
their on-line transaction processing (OLTP) systems.
Since decision support often is the goal of data ware-
housing, clearly warehouses may be tuned for deci-
sion support, and perhaps vice versa.

In its simplest form, data warehousing can be con-
sidered as an example of asynchronous replication, in
which copies are updated relatively infrequently. How-
ever, a more advanced implementation of data ware-
housing would store summary data or other kinds of
information derived from the source data. In other
words, a data warehouse stores materialized views
(plus some local relations if needed).

It is common in a data warehousing environment
for source changes to be deferred and applied to the
warehouse views in large batches for efficiency. Source
changes received during the day are applied to the
views in a nightly batch window (the warehouse is not
available to the users during this period). Most cur-
rent commercial warehousing systems focus on stor-
ing the data for efficient access, and on providing ex-
tensive querying facilities at the warehouse.
Maintenance of warehousing data (in a large degree,
maintenance of materialized views) is thus an impor-
tant problem.

The need for data warehousing techniques is justi-
fied largely due to decision support queries, which are ad
hoc user queries in various business applications. In

these applications, current and historical data are
comprehensively analyzed and explored, identifying
useful trends and creating summaries of the data, in
order to support high-level decision making in data
warehousing environment. A class of stylized queries
typically involve group-by and aggregation operators.
Applications dominated by such queries are referred
to as on-line analysis processing (OLAP), which refers to
applications dominated by stylized queries that typi-
cally involve group-by and aggregation operators for
analysis purpose. Such queries are extremely impor-
tant to organizations to analyze important trends so
that better decisions can be made in the future. In ad-
dition, most vendors of OLAP engines have focused
on Internet-enabling their offerings. The true promise
of the Internet is in making OLAP a mainstream tech-
nology, that is, moving OLAP from the domain of an-
alysts to consumers. E-commerce has emerged as one
of the largest applications of the Internet in decision
support. We will revisit issues related to OLAP after
we examine basic features of data warehousing.

II. OPERATIONAL SYSTEMS AND
WAREHOUSE DATA

In order to understand the nature of data warehous-
ing, we should first pay attention to the relationship
between the parallel universes of operational systems
and the warehouse data. Operational data stores (ODSs),
also called operational systems, feature standard, repet-
itive transactions that use a small amount of data as in
traditional database systems, while warehouse systems
feature ad hoc queries and reports that access a much
larger amount of data. High availability and real-time
updates are critical to the success of the operational
system, but not to the data warehouse. Operational
systems are typically developed first by working with
users to determine and define business processes.
Then application code is written and databases are
designed. These systems are defined by how the busi-
ness operates. The primary goal of an organization’s
operational systems is efficient performance. The de-
sign of both applications and databases is driven by
OLTP performance. These systems need the capacity
to handle thousands of transactions and return infor-
mation in acceptable user-response time frames, of-
ten measured in fractions of a second. By contrast,
data warehouses start with predefined data and vague
or unknown usage requirements. Operational systems
have different structures, needs, requirements and
objectives from data warehouses. These variations in
data, access, and usage prevent organizations from
simply using existing operational systems as data ware-

522 Data Warehousing and Data Marts

house resources. For example, operational data is
short-lived and changes rapidly, while warehouse data
has a long life and is static. There is a need for trans-
formation of operational data to warehouse data. The
architecture of a data warehouse differs considerably
from the design and structure of an operational sys-
tem. Designing a data warehouse can be more diffi-
cult than building an operational system because the
requirements of the warehouse are often ambiguous.
In designing a data warehouse, an organization must
understand current information needs as well as likely
future needs. This requires a flexible design that
ensures the data warehouse can adapt to a changing
environment.

Both operational and warehouse systems play an
important role in an organization’s success and need
to coexist as valuable assets. This can be done by care-
fully designing and architecting the data warehouse
so that it takes advantage of the power of operational
data while also meeting the unique needs of the or-
ganization’s knowledge workers.

III. ARCHITECTURE AND DESIGN
OF DATA WAREHOUSES

A. Data Warehouse Components

The data warehouse is an integrated environment, con-
taining integrated data, detailed and summarized data,
historical data, and metadata. An important advantage
of performing data mining in such an environment is
that the data miner can concentrate on mining data,
rather than cleansing and integrating data.

Data warehousing provides an effective approach
to deal with complex decision support queries over
data from multiple sites. According to a popular def-
inition, a data warehouse is a subject-oriented, inte-
grated, time-varying, nonvolatile collection of data
that is used primarily in organizational decision mak-
ing. The key to the data warehousing approach is to
create a copy of all the data at one location, and to
use the copy rather than going to the individual
sources. Data warehouses contain consolidated data
from many sources (different business units), span-
ning long time periods, and augmented with sum-
mary information. Warehouses are much larger than
other kinds of databases, typical workloads involve ad
hoc, fairly complex queries, and fast response times
are important. Since decision support often is the
goal of data warehousing, clearly warehouses may be
tuned for decision support, and perhaps vice versa.

A typical data warehousing architecture consists of
the following components (as in Fig. 1):

• A relational database for data storage. As the data
warehouse proper, it stores the corporate data.
Here data volumes are very high as multi-terabyte
data warehouses are beginning to appear more
frequently.

• Data marts. Departmental subsets of the warehouse
data focusing on selected subjects. The data mart is
where departmental data is stored, and often
various external data items are added. The data
volumes are usually 15–30% of warehouse sizes, and
the envelope is being pushed toward the terabyte
limit. These databases are also usually either based
on star schemas or are in a normalized form. They
mostly deal with the data space, but at times some
multidimensional analysis is performed.

• Back end. System components providing
functionality such as extract, transform, load and
refresh data and front end such as OLAP and data
mining tools and utilities.

• Metadata. The system catalogs associated with a
warehouse are very large, and are often stored
and managed in a separate database called a
metadata repository.

• Other components. These depend on the design
methods and the specific needs of the
organizations.

B. Data Warehouse Design

There are four different views regarding the design of
a data warehouse. The top-down view allows the se-
lection of the relevant information necessary for the
data warehouse. The data source view exposes the in-
formation being captured, stored, and managed by
operational systems. The data warehouse view includes
fact tables and dimension tables. The business query
view is the perspective of data in the data warehouse
from the viewpoint of the end user. The process of
data warehouse design can take several approaches.
The top-down approach starts with the overall design
and planning, and is useful in cases when the business
problems are clear and well understood. The bottom-
up approach starts with experiments and prototypes,
and is useful in the early stages of business modeling
and technology development. In addition, a combi-
nation of both can be used.

In general, data warehouse design process consists
of the following steps:

1. Choose a business process to model, such as
sales, shipments, etc.

2. Choose the grain of the business process. The
grain is the granularity (namely, fundamental,
atomic) level of the data used in the fact table.

Data Warehousing and Data Marts 523

The data stored there are the primary data based
on which OLAP operations can be performed.

3. Choose the dimensions that will apply to records
in the fact table(s). For example, time is a typical
dimension. Dimensions are important and based
on which various OLAP operations can be
performed.

4. Choose the measures that will populate each fact
table record. Measures are numeric additive
quantities such as sales amount or profit.

The architecture depicted in Fig. 1 is basically two-
tier, namely, warehouse and its front ends. A variation
of data warehouse architecture consists of three tiers:
the bottom tier is a warehouse database server, which
is typically a relational database system; the middle
tier is an OLAP server; and the top tier is a client,
containing query and reporting tools.

IV. DATA WAREHOUSES AND
MATERIALIZED VIEWS

A. Materialized Views

At the beginning of this article we provided a brief
discussion on data warehouses based on a business

perspective. However, this discussion requires some
further technical clarification. For example, we said
that a data warehouse consists of a copy of data ac-
quired from the source data. What does this copy look
like? In fact, we may need to distinguish between a
“true” copy (duplicate), a derived copy, approximate
duplicate, or something else. For this reason, we need
to examine the concept of data warehouse in more
depth. In fact, a data warehouse can be characterized
using materialized views and indexing. In the follow-
ing, we will examine these two issues.

According to fundamentals of database manage-
ment systems (DBMS), relational views are the most
important asset of the relational model. Recall that
we have the following basic concepts in relational
databases:

• Relation (base table): It is a stored table.
• External view (virtual view, or simply view): It is a

virtual table (derived relation defined in terms of
base relations).

• Materialized view: A view is materialized when it is
stored in the database, rather than computed
from the base relations in response to queries.

The general idea of the approach is to materialize
certain expensive computations that are frequently

524 Data Warehousing and Data Marts

Sources

Data Marts

Administration Repository
and Management

Data Sources

Operational
data

Extract

Transform

Load

Refresh

Data

Serve

OLAP

Data mining

Other tools

Figure 1 Data warehouse architecture.

inquired, especially those involving aggregate func-
tions, such as count, sum, average, max, etc., and to
store such materialized views in a multidimensional
database (called a data cube) for decision support,
knowledge discovery, and many other applications.

Commercial relational database products are used
to discard views immediately after they are delivered
to the user or to a subsequent execution phase. The
cost for generating the views is for one-time-use only
instead of being amortized over multiple and/or
shared results. Caching query results or intermediate
results for speeding up intra- and interquery process-
ing has been studied widely. All these techniques share
one basic idea: the reuse of views to save cost.

The benefit of using materialized views is signifi-
cant. Index structures can be built on the material-
ized view. Consequently, database access to the mate-
rialized view can be much faster than recomputing
the view. A materialized view is just like a cache, which
is a copy of the data that can be accessed quickly. Ma-
terialized views are useful in new applications such as
data warehousing, replication servers, chronicle or
data recording systems, data visualization, and mobile
systems. Integrity constraint checking and query opti-
mization can also benefit from materialized views, but
will not be emphasized in our current context.

We now discuss the issue of what materialized views
look like. The traditional relational database design
has put emphasis on normalization. However, data
warehouse design cannot be simply reduced to rela-
tional database design. In fact, frequently material-
ized views involve join operation, and they are no
longer in high normal forms as discussed in DBMS.
Although normalized data guarantees integrity con-
straints and avoiding anomalies, in the business com-
munity, it is not uncommon for people to feel that
normalized designs are hard to comprehend; denor-
malized designs tend to be more self-explanatory, even
though denormalized tables have longer records. Typ-
ical multi-attribute search-and-scan performance is
better on denormalized data because fewer tables are
involved than in normalized designs. Denormaliza-
tion data provide an intuitive productive environment
for users who need to be trained or retrained. On the
other hand, denormalization is the greatest cultural
hurdle for most incremental data mart design teams,
because they are used to deal with OLTP. Redundancy
of data is the result of denormalization. For example,
two relations along with the joined result coexist.

Another remark we want to make here is on the
impact of ER modeling to data warehouse design.
There are two schools of thought in enterprise data
warehouse design. The ER normalized school still
starts from the fundamentally normalized tables and

then spawn off subset data marts that are denormal-
ized. In contrast, Ralph Kimball and his school en-
dorse a consistent, denormalized star schema envi-
ronment across the entire enterprise data warehouses.

B. Indexing Techniques

Due to the close relationship between materialized
views and indexing, it is worthwhile to take a look at
the issue of indexing. Traditional indexing techniques
can be used, but there are also additional issues which
are unique in a data warehousing environment.

The mostly read environment of OLAP systems
makes the CPU overhead of maintaining indices neg-
ligible, and the requirement of interactive response
times for queries over very large datasets makes the
availability of suitable indices very important.

• Bitmap index. The idea is to record values for sparse
columns as a sequence of bits, one for each
possible value. For example, the biological gender
of a customer (male or female) can be represented
using bitmap index. This method supports efficient
index operations such as union and intersection;
more efficient than hash index and tree index.

• Join index. This method is used to speed up
specific join queries. A join index maintains the
relationships between a foreign key with its
matching primary keys. The specialized nature of
star schemas makes join indices especially
attractive for decision support.

Indexing is important to materialized views for two
reasons: indexes for a materialized view reduce the
cost of computation to execute an operation (analo-
gous to the use of an index on the key of a relation to
decrease the time needed to locate a specified tuple);
and indexing reduces the cost of maintenance of the
materialized views. One important problem in data
warehousing is the maintenance of materialized views
due to changes made in the source data. Maintenance
of materialized views can be a very time-consuming
process. There need to be some methods developed
to reduce this time (one method is use of supporting
views and/or the materializing of indexes).

V. DATA MARTS

A. Why Data Marts

As an important component of data warehousing
architecture, a data mart is a departmental subset on

Data Warehousing and Data Marts 525

selected subjects. Therefore, a data mart is an
application-focused data warehouse, built rapidly to
support a single line-of-business application. Data marts
still have all of the other characteristics of data ware-
houses, which are subject-oriented data that is non-
volatile, time-variant, and integrated. However, rather
than representing a picture of the enterprise data, it
contains a subset of that data which is specifically of in-
terest to one department or division of that enterprise.

The data that resides in the data warehouse is at a
very granular level and the data in the data mart is at
a refined level. The different data marts contain dif-
ferent combinations and selections of the same de-
tailed data found at the data warehouse. In some cases
data warehouse detailed data is added differently
across the different data marts, while in other cases a
specific data mart may structure detailed data differ-
ently from other data marts. In each case the data
warehouse provides the granular foundation for all of
the data found in all of the data marts. Because of the
singular data warehouse foundation that all data marts
have, all of the data marts have a common heritage
and are able to be reconciled at the most basic level.

There are several factors that lead to the popular-
ity of the data mart. As data warehouses quickly grow
large, the motivation for data marts increases. More
and more departmental decision-support processing
is carried out inside the data warehouse, as a result,
resource consumption becomes a real problem. Data
becomes harder to customize. As long as the data in
the data warehouse are small, the users can afford to
customize and summarize data every time a decision
support analysis is done. But with the increase in mag-
nitude, the user does not have the time or resources
to summarize the data every time a decision support
analysis is done. The cost of doing processing in the
data warehouse increases as volume of data increases.
The software that is available for the access and analy-
sis of large amounts of data is not nearly as elegant as
the software process smaller amounts of data. As a re-
sult of these factors, data marts have become a natural
extension of the data warehouse.

There are organizational, technological, and eco-
nomic reasons why the data mart is so beguiling and
is a natural out of the data warehouse. Data marts are
attractive for various reasons:

• Customization. When a department has its own data
mart, it can customize the data as the data flows
into the data mart from the data warehouse. The
department can sort, select, and structure their
own departmental data without consideration of
any other department.

• Relevance. The amount of historical data that is
needed is a function of the department, not the
corporation. In most cases, the department can
select a much smaller amount of historical data
than that which is found in the data warehouse.

• Self-determination. The department can do whatever
decision-support processing they want whenever
they want, with no impact for resource utilization
on other departments. The department can also
select software for their data mart that is tailored
to fit their needs.

• Efficiency. The unit cost of processing and storage
on the size of machine that is appropriate to the
data mart is significantly less than the unit cost of
processing and storage for the facilities that
houses the data warehouse.

B. Types of Data Marts

There are several kinds of data marts strategies, the
following are two important types:

1. Dependent data marts. The architectural principles
evolved into the concept of dependent data marts,
which are smaller subsets of the enterprise
warehouse specifically designed to respond to
departmental or line-of business issues. In this
strategy, data is loaded from operational systems
into the enterprise warehouse and then subdivided
into the smaller data marts. These marts rely on
the central warehouse for their data and metadata
rather than obtaining these from the operational
systems. While these data marts can solve some of
the performance issues and even some of the
political issues, the financial problems and
strategic issues were, if anything, exacerbated
because the enterprise warehouse must be built
before the data marts can be implemented.

2. Independent data marts. Independent data marts
have been viewed as a viable alternative to the
top-down approach of an enterprise warehouse.
An organization can start small and move quickly,
often realizing limited results in three to six
months. Proponents of this approach argue that
after starting with a small data mart, other marts
can proliferate in departments or lines of business
that have a need. In addition, by satisfying the
various divisional needs, an organization can build
its way to a full data warehouse by starting at the
bottom and working up.

526 Data Warehousing and Data Marts

C. Multiple Data Marts

In today’s environment, data marts have evolved to
more cost effectively meet the unique needs of busi-
ness lines. These marts can be built more quickly and
contain only the data relevant to the specific business
unit. For example, data marts may be divided based
on departmental lines or by product type. These marts
challenge the systems group in terms of managing the
ongoing changes along with ensuring data consistency
across the different marts. The architecture must pro-
vide for simplifying and reducing the costs in this
multiple data mart management process. A data mart
can overlap another data mart. Kimball et al. (1998)
advised to consider 10 to 30 data marts for a large or-
ganization. For an organization, careful studies and
plans are needed for developing multiple data marts.
A matrix method for identifying all the possible data
marts and dimensions was introduced.

Subsets of the data are usually extracted by subject
area and stored in data marts specifically designed to
provide departmental users with fast access to large
amounts of topical data. These data marts often pro-
vide several levels of aggregation and employ physical
dimensional design techniques for OLAP.

If a corporation begins their information architec-
ture with an enterprise data warehouse, they will
quickly realize the need for subsets of the data levels
of summary. A recommended approach is through
top-down development: we can spawn marts and select
subject area and summary from the enterprise data
warehouse. The other approach is where a data mart
is built first to meet specific user group requirements,
but is built according to a data plan and with roll-up
as a goal. The need will arise for the marts to partici-
pate in a hierarchy in which detailed information from
several subject-area data marts is summarized and con-
solidated into an enterprise data warehouse.

D. Networked Data Marts

Increasingly, multiple data mart systems cooperate in a
larger network creating a virtual data warehouse. This
results in networked data marts. A large enterprise may
have many subject-area marts as well as marts in differ-
ent divisions and geographic locations. Users or work-
groups may have local data marts to address local needs.
Advanced applications, such as the Web, extend data
mart networks across enterprise boundaries.

In the network data mart world, users must be able
to look at and work with multiple warehouses from a

single client workstation, requiring location trans-
parency across the network. Similarly, data mart ad-
ministrators must be able to manage and administer
a network of data marts from a single location.

Implementation and management of data mart net-
works not only imposes new requirements on the mart
relational database management system (RDBMS), but
more importantly requires tools to define, extract, move,
and update batches of information as self-consistent
units on demand. It also requires a whole new genera-
tion of data warehouse management software to sup-
port subset, catalog, schedule, and publish/subscribe
functions in a distributed environment.

VI. METADATA

A. Basics of Metadata

Data warehousing must not only provide data to
knowledge workers, but also deliver information about
the data that defines content and context, providing
real meaning and value. This information about data
is called metadata. The coming of data warehouses
and data mining has significantly extended the role of
metadata in the classical DBMS environment. Meta-
data describe the data in the database, they include
information on access methods, index strategies, and
security and integrity constraints, as well as policies
and procedures (optional).

Metadata become a major issue with some of the
recent developments in data management such as
digital libraries. Metadata in distributed and hetero-
geneous databases guides the schema transformation
and integration process in handling heterogeneity,
and are used to transform legacy database systems to
new systems. Metadata can be used for multimedia
data management (metadata itself could be multime-
dia data such as video and audio). Metadata for the
Web includes information about various data sources,
locations, and resources on the Web as well as usage
patterns, policies and procedures.

Metadata (such as metadata in repository) can be
mined to extract useful information in cases where the
data themselves are not analyzable. For example, the
data are not complete, or the data are unstructured.
The coming of data warehouses and data mining has
significantly extended the role of metadata in the clas-
sical DBMS environment. Metadata describe the data
in the database, they include information on access
methods, index strategies, security and integrity con-
straints, as well as policies and procedures (optional).
Every software product involved in loading, accessing,

Data Warehousing and Data Marts 527

or analyzing the data warehouse requires metadata. In
each case, metadata provides the unifying link between
the data warehouse or data mart and the application
processing layer of the software product.

B. Metadata for Data Warehousing

Metadata for warehousing include metadata for inte-
grating the heterogeneous data sources. Metadata can
guide the transformation process from layer to layer
in building the warehouse, and can be used to ad-
minister and maintain the warehouse. Metadata is
used to extract answers to the various queries posed.

Figure 2 illustrates metadata management in a data
warehouse. The metadata repository stores and main-
tains information about the structure and the content
of the data warehouse components. In addition, all
dependencies between the different layers of the data
warehouse environment, including operational layer,
data warehouse layer, and business layer, are repre-
sented in this repository.

Figure 2 also shows the role of three different types
of metadata:

1. Semantic (or business) metadata. These kinds of data
intend to provide a business-oriented description
of the data warehouse content. A repository
addressing semantic metadata should cover the
types of metadata of the conceptual enterprise
model, multidimensional data model, etc., and
their interdependencies.

2. Technical metadata. These kinds of data cover
information about the architecture and schema

with respect to the operational systems, the data
warehouse, and the OLAP databases, as well as
the dependencies and mappings between the
operational sources, the data warehouse, and the
OLAP databases on the physical and
implementation level.

3. Core warehouse metadata. These kinds of data are
subject-oriented and are based on abstractions of
the real world. They define the way in which the
transformed data are to be interpreted, as well as
any additional views that may have been created.

A successful data warehouse must be able to deliver
both the data and the associated metadata to users. A
data warehousing architecture must account for both.
Metadata provides a bridge between the parallel uni-
verses of operational systems and data warehousing.

The operational systems are the sources of meta-
data as well as operational data. Metadata is extracted
from individual operational systems. This set of meta-
data forms a model of the operational system. This
metadata includes, for example, the entities /records/
tables and associated attributes of the data source.

The metadata from multiple operational data
sources is integrated into a single model of the data
warehouse. The model provides data warehouse ar-
chitects with a business model through which they
can understand the type of data available in a ware-
house, the origin of the data, and the relationships
between the data elements. They can also provide
more suitable terms for naming data than are usually
present in the operational systems. From this business
model, physical database design can be engineered
and the actual data warehouse can be created.

528 Data Warehousing and Data Marts

Metadata
Repository

Front end tools: Ad-hoc queries, OLAP, data mining, etc.

Business layer
 Conceptual enterprise model
 Data model
 Knowledge model
 Multidimensional data model

Data warehouse layer
 Data warehouse
 Data marts

Operational layer
 Relational DBMS
 Legacy systems
 Flat files

Semantic
Metadata

Core
Warehouse
Metadata

Technical
Metadata

Figure 2 Metadata management in a data warehouse.

The metadata contained in the data warehouse and
data mart models is available to specialized data ware-
housing tools for use in analyzing the data. In this way
the data and metadata can be kept in synchronization
as both flow through the data warehouse distribution
channel from source to target to consumer.

C. Metadata in Data Marts

Metadata in the data mart serves the same purpose as
metadata in the data warehouse. Data mart metadata
allows the data mart decision-support user to find
out where data are in the process of discovery and
exploration.

Note that types of metadata form a hierarchy: on
the topmost are the metadata for the data warehouse,
underneath are metadata for mappings and transfor-
mations, followed by metadata for various data sources.
This observation explains the relationship between
metadata and multitiered data warehouse, which is built
to suit the customers’ needs and economics, spanning
the spectrum from an enterprise-wide data warehouse
to various data marts. Since multitiered data ware-
houses can encompass the best of both enterprise data
warehouses and data marts, they are more than just a
solution to a decision support problem. Multitiered
implies a hierarchy, with a possible inclusion of a net-
worked data mart layer within the hierarchy. In order
to build a hierarchy of data warehouses, a sound data
plan must be in place for a strong foundation. It makes
no difference whether a corporation starts at the bot-
tom of the hierarchy or the top—they must have a
goal in mind and a plan for relating the various levels
and networks. The data plan cannot be constructed or
managed without an active metadata catalog.

Development of data marts could provide tremen-
dous contribution to the metadata. Along with a ro-
bust metadata catalog, a tool that reverse-engineers
the various data marts’ metadata into a logical unit
would be of tremendous value. Reliable algorithms
can be used to scan the catalog and group the related
items from each data mart, suggesting how they should
be combined in a higher level data warehouse.

VII. DATA WAREHOUSE AND THE WEB

An appropriate platform for building data warehouses
and for broader deployment of OLAP is the Inter-
net/intranet/World Wide Web, for various reasons.

• The Web provides complete platform
independence and easy maintenance.

• The skills and techniques used to navigate and
select information, as well as the browser interface
are the same as for all other web-based applications.

• With increased security, the Internet can be used
as an inexpensive wide area network (WAN) for
decision-support and OLAP applications.

Web-enabled data warehouses deliver the broadest ac-
cess to decision support. In order to understand how to
create a web-based data warehouse architecture for max-
imum growth and flexibility, we need to take a look at
issues related to the Internet, as well as intranets.

A. The Impact of the Internet

The Internet has opened up tremendous business op-
portunities needing nontraditional categories of in-
formation. The true promise of the Internet is in mak-
ing OLAP a mainstream technology, that is, moving
OLAP from the domain of analysts to consumers.
E-commerce has emerged as one of the largest appli-
cations of the Internet in decision support. The basic
concepts of data warehousing and aggregation have
naturally made their way onto the Web. In fact, some
of the most popular web sites on the Internet are ba-
sically databases. For example, search engines such as
Alta Vista and Lycos attempt to warehouse the entire
Web. Aggregation as a means to navigate and com-
prehend the vast amounts of data on the Internet has
to also be recognized. Directory services such as Ya-
hoo and Excite attempt to aggregate the entire Web
into a category hierarchy and give users the ability to
navigate this hierarchy. The infrastructure for deci-
sion support is also in the process of improvement.

B. Intranets

Intranets are essentially secure mini-internets imple-
mented within organizations. An intranet can offer a
single point of entry into a corporate world of infor-
mation and applications. Intranets provide a powerful
solution for data warehousing. A key benefit of the in-
tranet technology is the ability to provide up-to-date
information quickly and cost-effectively. Some advan-
tages are listed below:

• Intranets allow the integration of information,
making it easy to access, maintain, and update. Data
warehouses can be made available worldwide on
public or private networks at much lower cost. Web
browsers can provide a universal application delivery
platform for any data mart or data warehouse user.

Data Warehousing and Data Marts 529

As a result, the enterprise can create, integrate, or
deploy new, more robust applications quickly and
economically. Use of intranets enables the
integration of a diverse computing environment into
a cohesive information work.

• Information disseminated on an intranet enables
a high degree of coherence for the entire
enterprise (whether the data content comes from
data marts or a central data warehouse), because
the communications, report formats, and
interfaces are consistent. An intranet provides a
flexible and scalable nonproprietary solution for a
data warehouse implementation. The intuitive
nature of the browser interface also reduces user
support and training requirements.

• The Internet can be easily extended into WANs or
extranets that serve remote company locations,
business partners, and customers. External users
can access internal data, drill through, or print
reports through secure proxy servers that reside
outside the firewall.

VIII. DATA WAREHOUSE PERFORMANCE

A. Measuring Data
Warehouse Performance

The massive amount data (in terabytes) of data ware-
houses makes high performance a crucial factor for
the success of data warehousing techniques. Success-
ful implementation of a data warehouse on the World
Wide Web requires a high-performance, scalable com-
bination of hardware, which can integrate easily with
existing systems. Data warehousing involves extracting
data from various sources transforming, integrating,
and summarizing it into relational management sys-
tems residing over a span of World Wide Web servers.
Typically as part of the client/server architecture, such
data warehouse servers may be connected to applica-
tion servers which improve the performance of query
and analysis tools running on desktop systems. Possi-
bly the most important factor to consider in arriving
at a high-performance data warehouse environment
is that of end-user expectations. These expectations
represent unambiguous objectives that provide direc-
tion for performance tuning and capacity planning
activities within the data warehouse environment.

The basis for measuring query performance in the
data warehouse environment is the time from the sub-
mission of a query to the moment the results of the
query are returned. A data warehouse query has two
important measurements:

1. The length of time from the moment of the
submission of the query to the time when the
first row/record is returned to the end user

2. The length of time from the submission of the
query until the row is returned

The data warehouse environment attracts volumes of
data that have never before been experienced in the
information processing milieu. In previous environ-
ments, volumes of data were measured in the thou-
sands (kilobytes) and millions (megabytes) of bytes of
data. In the data warehouse environment volumes of
data are measured in gigabytes and terabytes of data.
Thus, there are many orders of magnitude of differ-
ence between these measurements. Some aspects of
improving performance have already been discussed
earlier in this article, such as indexing and denormal-
ization. There are also other important aspects, such
as use of hardware architecture that is parallelized.

Optimizing data structures in the data warehouse en-
vironment is an important, but difficult issue, because
many different sets of requirements must be satisfied all
at once. Therefore great care must be taken in the phys-
ical organization of the data in the warehouse.

B. Performance Issues and
Data Warehousing Activities

Performance issues are closely tied to data warehous-
ing activities at various stages:

• Base level architecture-hardware and software—
Issues that need to be considered include whether
the hardware platform supports the volume of
data, the types of users, types of workload, and the
number of requests that will be run against it,
whether the software platform organizes and
manages the data in an efficient and optimal
manner, as well as others.

• Design and implementation of the data
warehouse platform based on usage and data—
There are various issues related to different
aspects, such as:
1. Database design. For example, we need to know

whether the different elements of data have
been profiled so that the occurrences of data
that will exist for each entity are roughly
approximated.

2. Usage and use profiles. For example, we need to
know whether the database design takes into
account the predicted and/or known usage of
the data.

530 Data Warehousing and Data Marts

• Creation of the programs and configuration of tools
that will make use of the data—For example, we
need to know whether the queries or other programs
that will access the data warehouse have been
profiled, information about the programmers, etc.

• Post warehousing development—After programs
are written and the data warehouse is being
populated, the ongoing system utilization needs to
be monitored and system guidelines—service
management contracts—need to be established.

If an organization follows these guidelines and care-
fully considers performance at each appropriate point
in time, the organization will arrive at a point where
performance is truly optimal.

A final remark that must be put here is data mart
performance. Although performance related to a data
mart shares many considerations with data warehouse
as a whole, limiting a data mart’s scope ensures that
the resulting data mart will fit within the scalability
limits of an OLAP database server and permits the
analysis at hand to be conducted without the distrac-
tions presented by extraneous data. Using an OLAP
database server, in turn, allows the use of OLAP in-
dexing and presummarization techniques to deliver
rapid response times and intuitive access.

IX. DATA WAREHOUSES,
OLAP, AND DATA MINING

A. Basics of OLAP

In this article we have repeatedly emphasized the close
relationship between data warehousing and OLAP. In
addition, in many cases data warehouses also play an
enabling technique for data mining. Therefore, it is
important to examine the relationship among data
warehouses, OLAP, and data mining.

OLAP, as a multidimensional analysis, is a method
of viewing aggregate data called measurements (e.g.,
sales, expenses, etc.) along a set of dimensions such
as product, brand, stored, month, city, state, etc. An
OLAP typically consists of three conceptual tokens.
Each dimension is described by a set of attributes. A re-
lated concept is domain hierarchy; for example, “coun-
try,” “state,” and “city” form a domain hierarchy. Each
of the numeric measures depends on a set of dimen-
sions, which provides the context for the measure.
The dimensions together are assumed to uniquely de-
termine the measure. Therefore, the multidimen-
sional data view a measure as a value in the multidi-
mensional space of dimensions.

There are several basic approaches to implement-
ing an OLAP:

• ROLAP (relational OLAP). OLAP systems that store
all information (including fact tables) as relations.
Note that the aggregations are stored with the
relational system itself.

• MOLAP (mulitdimensional OLAP). OLAP systems
that use arrays to store multidimensional datasets.

In general, ROLAP is more flexible than MOLAP, but
has more computational overhead for managing many
tables. One advantage of using ROLAP is that sparse
data sets may be stored more compactly in tables than
in arrays. Since ROLAP is an extension of the ma-
tured relational database technique, we can take ad-
vantage of using standard query language (SQL). In
addition, ROLAP is very scalable. However, one major
advantage is its slow response time. In contrast,
MOLAP abandons the relational structure and uses a
sparse matrix file representation to store the aggre-
gations efficiently. This gains efficiency, but lacks flex-
ibility, restricts the number of dimensions (7–10), and
is limited to small databases. (Remark on dimension:
a relation can be viewed as a 2D table or n � D table
(each attribute represents a dimension). One advan-
tage of using MOLAP is that dense arrays are stored
more compactly in the array format than in tables. In
addition, array lookups are simple arithmetic opera-
tions which result in an instant response. A disadvan-
tage of MOLAP is long load times. Besides, MOLAP
design becomes massive very quickly with the addi-
tion of multiple dimensions. To get the best of both
worlds, we can combine MOLAP with ROLAP. Other
approaches also exist.

B. Relationship between Data
Warehousing and OLAP

Having described the basic architecture of data ware-
houses, we may further describe the relationship
between data warehousing and OLAP as follows.
Decision-support functions in a data warehouse involve
hundreds of complex aggregate queries over large vol-
umes of data. To meet the performance demands so
that fast answers can be provided, virtually all OLAP
products resort to some degree of these aggregates. Ac-
cording to a popular opinion from OLAP Council, a
data warehouse is usually based on relational technol-
ogy, while OLAP uses a multidimensional view of ag-
gregate data to provide quick access to strategic infor-
mation for further analysis. A data warehouse stores

Data Warehousing and Data Marts 531

tactical information that answers “who” and “what”
questions about past events. OLAP systems go beyond
those questions; they are able to answer “what if ” and
“why” questions. A typical OLAP calculation is more
complex than simply summarizing data.

Most data warehouses use star schemas to represent
the multidimensional data model. In a star schema
there is a single fact table (which is at the center of a
star schema and contains most of the data stored in
the data warehouse), and a set of dimension tables
which can be used in combination with the fact table
(a single table for each dimension). An example of
star schema is shown in Fig. 3.

The star schema model of data warehouses makes
join indexing attractive for cross-table search, because
the connection between a fact table and its corre-
sponding dimension tables are the foreign key of the
fact table and the primary key of the dimension table.
Join indexing maintains relationships between at-
tribute values of a dimension and the corresponding
rows in the fact table. Join indices may span multiple
dimensions to form composite join indices. Data min-
ing algorithms can take advantage of this kind of fa-
cility. In fact, usually data mining algorithms are pre-
sented on a single table. Join indexing makes such
assumptions reasonable.

Join operations in a star schema may be performed
only between the fact table and any of its dimensions.
Data mining has frequently been carried out on a
view that is joined by the fact table with one or more
dimension tables, followed by possible project and se-

lect operations. In addition, to facilitate data mining,
such a view is usually materialized.

A very useful concept for OLAP is data cube, which
presents a materialized view involving multidimen-
sional data. The two most well-known operations for
OLAP queries are

1. Roll-up. This operation takes the current data
object and does a further group-by on one of the
dimensions. For example, given total sale by day,
we can ask for total sale by month.

2. Drill-down. As the converse of rule-up, this
operation tries to get more detailed presentation.
For example, given total sale by model, we can
ask for total sale by model by year.

Other operations include: pivot (its result is called a
cross-tabulation), slice (it is an equality selection, re-
ducing the dimensionality of data), and dice (it is the
range selection).

C. Integration of OLAP and Data
Mining in Data Warehouses

It has been noted that there are significant semantic
differences between data mining and OLAP. Although
both OLAP and data mining deal with analysis of data,
the focus and methodology are quite different. In this
section, we provide a much needed discussion on this
issue and use several examples to illustrate these dif-

532 Data Warehousing and Data Marts

Order

OrderNo
OrderDate

Product

ProdNo
ProdName
ProdColor
Category

Date

DateKey
Date
Month
Quarter
Year

City

CName
State
Country

Customer

CustomerNo
Cust.Name
Cust.Address

OrderNo

StoreID

CustomerNo

ProdNo

DateKey

CityName

Sales

ProfitStore

StID
StSize

Sales

Fact Table
Dimension tables Dimension tables

Figure 3 A star schema.

ferences. We point out the difference of data mining
carried out at different levels, including how different
types of queries can be handled, and how different se-
mantics of knowledge can be discovered at different
levels, as well as how different heuristics may be used.

We point out that different kinds of analysis can be
carried out at different levels: What are the features of
products purchased along with promotional items? The
answer for this query could be association rule(s) at
the granularity level, because we need to analyze actual
purchase data for each transaction which is involved in
promotional items (we assume information about pro-
motional items can be found in product price).

• What kinds of products are most profitable? This
query involves aggregation, and can be answered
by OLAP alone.

• What kinds of customers bought the most profitable
products? This query can be answered by different
ways. One way is to analyze individual transactions
and obtain association rules between products and
customers at the granularity level. An alternative
way is to select all most profitable products, project
the whole set of customers who purchased these
products, and then find out the characteristics of
these customers. In this case we are trying to answer
the query by discovering characteristic rules at an
aggregation level. (For example, customers can be
characterized by their addresses.)

The above discussion further suggests that data min-
ing at different levels may have different semantics.
Since most people are familiar with semantics of
knowledge discovered at the granularity level, here
we will provide a discussion emphasizing what kind of
difference is made by the semantics of knowledge dis-
covered at aggregation levels (which will be referred
to as aggregation semantics). Nevertheless, OLAP and
data mining should be and can be integrated for de-
cision support.

X. CONCLUSION

In this article we discussed the basics of data ware-
housing techniques, as well as related issues such as
OLAP and data mining. Due to the rich contents and
rapid development of this area, we can only present
the most fundamental ideas. Readers who are inter-
ested in more details of data warehousing are referred

to Inmon (1996), Kimball et al. (1998), and Singh
(1999). Readers interested in the relationship be-
tween data warehousing and data mining, particularly
detailed techniques of data mining, can find useful
materials in Han and Kamber (2000). Finally, for users
who are interested in a more global picture but with-
out much technical detail, Chen (1999) and Chen
(2001) should not make you disappointed.

There are also plenty of web sites available on data
warehousing and data marts. For example, http:
//www.dwinfocenter.org/articles.html contains nu-
merous articles related to data warehousing and data
marts applications. On the other hand, for research-
oriented readers, http://www-db.stanford.edu/ con-
tains very useful materials from the well-known Stan-
ford data warehousing project, including discussions
on various future research directions related to data
warehouses.

SEE ALSO THE FOLLOWING ARTICLES

Data Mining • Data Modeling: Entity-Relationship Model •
Data Modeling: Object-Oriented Model • Distributed Data-
bases • Model Building Process • Network Database Systems •
On-Line Analytical Processing (OLAP)

BIBLIOGRAPHY

Chaudhuri, S., and Dayal, U. (1997). An overview of data ware-
housing and OLAP technology. SIGMOD Record, 26(1), 65–74.

Chen, Z. (1999). Computational intelligence for decision support.
Boca Raton, FL: CRC Press.

Chen, Z. (2001). Data mining and uncertain reasoning: An inte-
grated approach. New York: John Wiley.

Han, J., and Kamber, M. (2000). Data mining: Concepts and tech-
niques. San Francisco: Morgan Kaufmann.

Harinarayan, V. (1987). Issues in interactive aggregation. Data
Engineering Bulletin, 20(1), 12–18.

Kimball, R., Reeves, L., Ross, M., and Thornthwaite, W. (1998).
The data warehouse lifecycle toolkit. New York: John Wiley.

Inmon, W. H. (1996). Building the data warehouse. New York:
John Wiley.

Inmon, W. H. (1999). Data warehouse performance. New York:
John Wiley.

Rundersteiner, E. A., Koeller, A., and Zhang, X. (2000). Main-
taining data warehouses over changing information sources.
Communications of the ACM, 43(6), 57–62.

Silberschatz, A., Korth, H., and Sudarshan, S. (1997). Database
system concepts, 3rd ed. New York: McGraw-Hill.

Singh, H. (1999): Interactive data warehousing. Upper Saddle
River, NJ: Prentice Hall.

Data Warehousing and Data Marts 533

Decision-Making Approaches
Theodor J. Stewart
University of Cape Town

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 535

I. THE DECISION-MAKING PROBLEMATIQUE
II. APPROACHES TO PROBLEM STRUCTURING

III. COGNITIVE BIASES IN DECISION MAKING

IV. MULTIPLE CRITERIA DECISION AID AND SUPPORT
V. RISK AND UNCERTAINTY IN DECISION MAKING

GLOSSARY

cognitive bias Any tendency by human decision mak-
ers to adopt simplifying heuristics, which result in
the selection of certain classes or types of action, for
reasons other than genuinely informed preference.

criterion Any particular point of view or dimension
of preference according to which decision alterna-
tives or courses of action can be compared in more-
or-less unambiguous terms.

decision support system A computer system which as-
sists decision makers in exploring the consequences
of decisions in a structured manner and in devel-
oping an understanding of the extent to which
each decision alternative or option contributes to-
ward goals.

goal programming A mathematical programming
technique for identifying decision alternatives or
courses of action which approach decision-making
goals most closely in an aggregate sense.

multiple criteria decision analysis (MCDA) A branch
of management science in which complex decision
problems are first decomposed into underlying uni-
tary criteria; once clarity has been obtained re-
garding preference orderings for each individual
criterion, these are gradually reaggregated to de-
velop a holistic preference ordering.

outranking An approach to MCDA in which decision
alternatives are compared pairwise in order to es-
tablish the strength of preference for and against
the assertion that one alternative is at least as good
as the other.

value function A numerical function constructed so as
to associate a preference score with each decision al-
ternative (either holistically or for one or more indi-
vidual criteria) in order to provide a tentative rank
ordering of such alternatives in a defensible manner.

value measurement An axiom-based theoretical foun-
dation for constructing value functions.

DECISION MAKING is a fundamental activity of all
management, and research and literature concerning
decision-making processes and paradigms occur in
many fields, including management theory, psychol-
ogy, information systems, management science, and
operations research. As the present volume is devoted
to information systems, the primary focus of this arti-
cle will be the manner in which the decision-making
process can be supported and guided by appropriate
decision support systems. We shall, on one hand, broaden
the view of “decision support” to include not only the
provision of interactive computer systems, but also
other modes of facilitation by which decision-making
effectiveness may be enhanced. On the other hand,
we shall restrict the concept of computerized decision
support systems to those systems which assist the de-
cision maker directly in exploring and evaluating al-
ternative courses of action. This is in contrast to other
common uses of the term which refer to any system
which processes or analyzes data needed for decision
making (including “data mining”), but without nec-
essarily providing direct support to the search for a
preferred course of action.

Our approach will be in essence constructive (some-
times termed prescriptive) in the sense that our main
thrust will be to present models that are neither fully
descriptive, i.e., indicating how unaided decisions are
actually made, nor normative in claiming that this is
how decisions should be made. By the constructive
(prescriptive) approach, we mean a process by which
decision makers can be assisted to develop prefer-
ences between alternative courses of action in an in-
ternally consistent and coherent manner, so that they
can have confidence that the emerging decision does
in fact satisfy their long-run goals. In discussing this
approach, we shall look at the structuring of decision
problems, empirical research on the psychology of
decision making, and the provision of quantitative de-
cision support aids.

I. THE DECISION-MAKING PROBLEMATIQUE

At an elementary level, decision making may be viewed
simply as a choice between a number of available
courses of action. This is naive. In virtually all real-
world settings, potential courses of action are seldom,
if ever, self-evidently available, simply awaiting a choice
between them.

At strategic planning levels, decision problems will
initially be totally unstructured. There may be no more
than a general feeling of unease that things are not
going as they should, that we are not achieving what
we ought, and that “something needs to be done.”
For example, a company might have previously had
an effective monopoly in a particular market, but over
the past year costs have been escalating, while one or
two other players are entering the market so that the
simple expedient of raising prices could cause rapid
erosion of market share. There is, however, incom-
plete knowledge of the causes of the cost escalations
and of how strong the emerging competition may
prove to be, but nevertheless “something has to be
done” before the situation gets out of hand. At this
stage, however, there may be a substantial lack of
awareness, not only about what courses of action are
open but even about what the organizational or per-
sonal goals actually are. What are we trying to achieve
by the interventions we might be planning to make?

Even when the decision problem may seem super-
ficially to be more clear-cut, the problem is in most
cases still only partially structured. The apparent deci-
sion problem may present itself as a choice between
some clear alternatives: Do we launch this new prod-
uct or not? Do we purchase this software system or the
other? Which of the options offered by our travel

agent should we take up for our vacation this year?
We say that these are only partially or semi-structured,
as there remain many issues that are not yet resolved.
Even for the options on the table, the consequences
have probably not been completely explored. Deci-
sion makers may still need to identify their decision
goals and objectives before they even know what con-
sequences are relevant to explore. The initial appar-
ent options may only be symptomatic of deeper un-
derlying problems, and when these become better
understood there may be a need to seek other alter-
native options. In fact, as the deeper issues are given
consideration, it may become evident that the prob-
lem is still to a large extent unstructured.

What the previous two paragraphs have sought to
indicate is that nontrivial management decision prob-
lems are essentially never fully structured at the outset
in the sense that the alternative courses of action, the cri-
teria by which each need to be assessed, and the conse-
quences of each alternative in terms of these criteria are
fully and completely known. Thus, the first step in any
decision support process is to provide an adequate de-
gree of structuring, so that informed decisions can be
made in accordance with a coherent set of objectives.
We shall return to this point in Section II.

Even once a requisite structure has been devel-
oped for a decision problem, it is not always true that
the decision itself is a simple choice between alterna-
tives. Roy (1996), for example, provides a classifica-
tion into a number of decision problematiques, which
with some modification and extension we might sum-
marize as follows:

1. Simple choice of one from among a number of
explicit alternatives.

2. Sorting of alternatives into a number of
categories: For example, a company might wish
to classify potential subcontractors into “good,”
“acceptable,” and “poor” categories for purposes
of awarding future contracts.

3. Ranking of alternatives: For example, potential
development projects might be ranked from
highest to lowest priority, with the intention
being that projects would be worked on in
priority order until time or other resources are
exhausted.

4. Designing alternatives or creating portfolios in
the sense of creating a complete strategy from
component elements in a coherent manner: For
example, policies for future land use in a region
may be constructed by a combination of public
sector investments, legislative programs controls,
tax incentives, etc.

536 Decision-Making Approaches

The decision support approaches described particu-
larly in Section IV can, in principle, be applied to any
of the situations described above, but the precise im-
plementation may need to be adapted to the relevant
problematique.

Ultimately, decisions may be approached in a num-
ber of different ways. At a risk of over-simplification, we
can identify at least three distinct approaches which may
be adopted in decision-making processes as follows:

1. The political or advocacy approach: Champions for
different courses of action prepare and present
the arguments favoring their preferred option.
This may occur in a formalized open forum or by
a process of lobbying. Options backed by
stronger and better arguments tend to survive at
the expense of others, until either by consensus
or formal voting procedures a winner ultimately
emerges. Political approaches tend to dominate
in multistakeholder contexts, when different
groups may have substantially divergent agendas.

2. The organizational approach: This is similar to the
political advocacy approach, but less directly
confrontational. Different sectors of the
organization may be tasked with establishing
“pros” and “cons” of alternative courses of action
from different perspectives. The organizational
approach may be found to dominate in group
decision-making contexts when group members
do, to a large extent, share common goals.

3. The analytical (or “rational”) approach: Here the
attempt is made to identify the full set of
alternatives from which the choice has to be
made and the degree to which each satisfies
explicitly stated management goals. In principle,
then, it remains only to select the alternative for
which this degree of satisfaction is maximized. A
purely rational approach probably only applies
for decision contexts involving a single decision
maker or at most a small relatively homogeneous
group. However, as we will be discussing, a
degree of analysis can provide valuable support to
the political and/or organizational approaches.

It is probable that none of the above approaches is
used in isolation, but that aspects of each are used in
any real problem. The modern decision support phi-
losophy aims at providing some form of analytical ba-
sis from which the political and organizational com-
ponents of the decision process can be supported and
made more effective and internally coherent. The de-
cision support system thus facilitates communication
between stakeholders in the process and the emer-

gence of a decision that is broadly satisfactory and
concordant with the organization’s goals. It is this
view of decision support which underlies the methods
of “decision analysis” discussed in the remainder of
this article.

II. APPROACHES TO PROBLEM STRUCTURING

As indicated at the start of the previous section, deci-
sion problems seldom, if ever, present themselves in a
neatly structured form as a simple choice between a
number of alternatives with the aim of achieving well-
defined objectives. On the other hand, the applica-
tion of the decision support procedures described
particularly in Section IV does require that the prob-
lem be given some degree of structure at least. Most
nontrivial decision-making contexts involve multiple
stakeholders, so that the structuring phase will in gen-
eral be a group effort, as will be assumed for purposes
of the discussion which follows.

The management literature is filled with many sug-
gestions for structuring decision problems, ranging
from relatively informal SWOT analysis (strengths,
weaknesses, opportunities, and threats) to sophisti-
cated computer-assisted brainstorming techniques.
The management science literature includes such con-
cepts as soft-systems methodology and cognitive map-
ping, many of which are reviewed in the volume edited
by Rosenhead and Mingers (2001). The underlying
basis of all of these methodologies is a two-phase ap-
proach, which may be described as:

1. A divergent phase, in which the aim is simply to
identify all issues and concerns relevant to the
decision at hand

2. A convergent phase, in which the connections and
interactions between these issues and concerns
are systematically explored in order to structure,
classify, and cluster them.

It has been our experience that the divergent phase
is often best carried out in a relatively low technology
manner in order to stimulate a maximum degree of
human interaction between participants, although
some groupware systems have been developed to
mimic the informal processes described here. A sim-
ple approach is to bring group members together in
some form of workshop, at which each participant is
provided with a set of cards or self-adhesive notelets
on which to jot down key points in response to a well-
defined question (such as, “What issues do we need
to take into consideration when responding to the

Decision-Making Approaches 537

entry of new competitors into the market?”). These
can then be placed up on a wall, initially in random
positions, to serve as a focus for discussion, during
which the cards or notelets can be moved around into
groups or clusters representing similar issues. In this
way, a shared vision of the decision problem emerges.

It is useful to guide the clustering by making use of
simple checklists, often represented by some form of
acronym. For example, the soft-systems methodology
developed by Checkland (1981) makes use of “CAT-
WOE” (Customers, Actors, Transformations, Worldview,
Owners of the problem and Environment, i.e., external
constraints and demands). The author and colleagues
have found it useful to build up a structure around a
“CAUSE” framework defined in the following:

• Criteria: The various points of view or perspectives
against which different courses of action need to
be evaluated and compared, for example, costs,
public image, worker morale, environmental
impacts. Management goals will ultimately need to
be expressed in terms of levels of performance for
each criterion.

• Alternatives: The courses of action which are
available to decision makers.

• Uncertainties: These may include both potentially
resolvable uncertainties due to lack of current
knowledge (e.g., whether or not a competitor will
be launching a new product this year) and
fundamentally unknowable risks (e.g., a major
earthquake in California).

• Stakeholders: Who has a concern in the outcome
of the decision? Who can influence the
consequences of a decision (including the
possibility of sabotaging it)? Who has the political
or organizational power to veto certain actions?

• Environment: What external constraints and
pressures limit the decision makers’ freedom of
action?

Once the key components building up a structured
view of the decision problem have been identified as
above, it is useful to guide the group into identifying
causative and associative links between these elements,
with the ultimate aim of building up a shared vision
of the manner in which choice of different courses of
action (i.e., the decisions) impact on the criteria (i.e.,
on goal achievement). The soft-systems methodolo-
gies of Checkland (1981) and the cognitive mapping
concepts described by Eden and Ackermann (1998)
provide useful tools in this regard, the latter being
well-supported by the Decision Explorer software. At
the end of the day, for purposes of applying formal

decision analytical approaches, it is necessary to sum-
marize the problem structure which emerges from
the structuring process in terms of a set (often just a
finite list) of alternative courses of action and a de-
scription of the impacts of each alternative on levels
of performance of each criterion, where any degree
of uncertainty in evaluating these impacts is clearly
identified. The structured decision problem thus be-
comes that of selecting the alternative which best sat-
isfies the goals implied by each criterion.

III. COGNITIVE BIASES IN DECISION MAKING

In the next section we shall be discussing technical
procedures of decision support. These generally re-
quire that the user, or “decision maker,” provide a va-
riety of value judgements as part of the process of
identifying a desired course of action. It is necessary,
therefore, for the decision support analyst to have
some understanding of the manner in which decision
makers may respond to the questions asked and the
potential for these responses to bias the results com-
ing from the decision support system.

Nontrivial decision-making situations must involve
decision makers in two key issues, namely, (1) man-
agement goals and objectives and (2) the uncertain-
ties and risks associated with achievement of them.
For decision-making processes to be effective, both
decision makers and analysts supporting them need
to be aware of biases and heuristics inherent in hu-
man judgements regarding these issues.

In a purely “rational” approach, all objectives would
be explicit at the start of the decision-making process,
and it would remain only to assess the extent to which
alternative courses of action satisfy these objectives.
Life is, however, seldom like that. Simon (1976) ar-
gued that people exhibit bounded rationality and
tend to “satisfice” rather than to “optimize.” This
means that decision makers tend to focus on a rela-
tively small number of objectives, namely, those which
are perceived to be the most critical or currently least
well satisfied. In developing and/or evaluating alter-
native courses of action, effort is directed initially at
seeking improvement on these objectives. Once an
adequate level of satisfaction has been achieved for
these objectives, then attention turns to other objec-
tives which now appear more pressing. Satisficing is
thus a common heuristic approach to decision mak-
ing. It can also be a powerful and useful heuristic,
and for this reason it is sometimes incorporated into
formal decision support systems, particularly the goal
programming approaches to be described in Section

538 Decision-Making Approaches

IV. Decision makers and decision analysts need to be
aware, however, that the quality of results obtained
will be dependent upon goals for each objective be-
ing demanding but still realistic. If such goals are in-
sufficiently demanding, the process might terminate
too early, but if the goals for the initial objectives are
made too unrealistically demanding, then potential
gains on other objectives may never be realized.

Certain biases derive from the group context in
which important decisions are often made (see, for ex-
ample, Janis and Mann, 1977). On the one hand, de-
fensive avoidance of conflict by some group members
can lead to procrastination (postponing a decision in
the hope that the conflict will vanish); attempts to
shift responsibility for the decision to other people or
organizational structures; and overemphasis on the fa-
vorable consequences of alternative courses of action,
while downplaying unfavorable consequences. Good
decision making requires that these conflict-avoidance
biases be recognized and confronted. A related prob-
lem in the group decision-making context is that of
“group-think,” in which the group moves to accep-
tance of a consensus (and overconfidence in the cor-
rectness of this consensus decision) without fully ex-
ploring consequences in terms of all goals or criteria.
Such group-think may arise, inter alia, through mem-
bers’ fear of ridicule or accusations of time-wasting
should they speak against a perceived majority view.
The multiple criteria decision analysis approach de-
scribed in Section IV seeks to counter these group bi-
ases by seeking to establish all relevant “criteria” quickly
and before conflict reaches destructive levels.

Some of the more detailed studies of biases in deci-
sion making have been undertaken within the context
of risk and uncertainty, the pioneering work being that
of the decision psychologists Kahneman and Tversky.
Examination of these biases does suggest that they may
be applicable to a broader range of human judgmen-
tal tasks than those of probability assessment and in-
ductive inference and may thus be relevant to the de-
signers of the decision support system. It is thus useful
to briefly record some of these biases here. It is beyond
the scope of the present article to review this topic in
detail (see, for example, Kahneman, Tversky and Slovic,
1982), but in the following few subsections we present
an outline of three commonly observed biases.

A. Availability

When asked to assess the probabilities or risks associ-
ated with specified events, people tend to associate
greater credibility with those events for which it is

easy to recall examples of similar outcomes in the past
or for which examples are easy to imagine. The prob-
lem is that some events generate considerably more
publicity than others and thus are easier to recall. For
example, a major airline crash will receive wide news
coverage for days or weeks after the event, whereas fa-
talities from motor accidents receive, at most, minor
coverage in local newspapers. As a result, many peo-
ple may tend to overestimate the risk from airline ac-
cidents and to underestimate the risk of road acci-
dents. Similarly, greater probabilities will be associated
with events for which it is easy to construct imaginary
scenarios, which may or may not be related to the in-
herent propensity for such events to happen.

A particular problem caused by the availability bias,
and related also to the next bias which we discuss
(“representativeness”), is that people find it easier to
recall instances which confirm prior prejudice (e.g.,
that a particular class of driver is more reckless than
others) than those which contradict it. This, in turn,
leads to enhanced estimates of the associated proba-
bilities and reinforcing of the prejudice.

Good decision-making practice should thus allow
time for free-thinking and brainstorming to enable to
the decision maker to explore and to imagine a wider
range of outcomes before committing to a final deci-
sion. Good decision support system design needs to
encourage and facilitate such processes.

B. Representativeness

Suppose we observe a sequence of eight tosses of a
coin. Most people will judge a sequence of heads and
tails given by HHHHHTTT as inherently more
surprising and less likely than a sequence such as
HHTTHTHH. Yet statistically both outcomes are
equally probable (1 in 256). The reason for the falla-
cious judgement appears to be that the latter is more
characteristic or “representative” of what we expect
from a random sequence. In other words, people rate
as more likely those outcomes which are viewed as
more representative of their expectations. For exam-
ple, when given a personality description of an indi-
vidual unknown to them, people will tend to consider
it most likely that the individual belongs to the occu-
pational group (such as engineer, lawyer, psycholo-
gist) for which the personality type appears typical
without taking into consideration important factors
such as the proportion of each occupational group in
the relevant population.

The representativeness bias may lead decision mak-
ers to ignore some critical information, such as base

Decision-Making Approaches 539

rate frequencies of outcomes as in the classification
into the occupational groups above. It can also lead
to substantially false conclusions regarding the exis-
tence or otherwise of patterns in data. For example,
the HHHHHTTT outcome may result in a conclusion
that “luck” has turned in some predictable manner
and that more tails can now be expected. In the same
way, managers may easily overreact to recent apparent
trends, leading to poor decision-making practice.

As with the availability bias, the best antidote to the
representativeness bias would be to take time to criti-
cally examine the data and to ensure that all relevant
data are properly taken into consideration, generally
through the use of formal statistical analysis.

C. Anchoring and Adjustment

In forecasting risks (i.e., probabilities) or future events
such as prices or demands, people will frequently start
from some initial nominal value and then adjust this
up or down as other factors are taken into considera-
tion. Such adjustments tend, however, to be insuffi-
cient to account for the new information, so the esti-
mates remain too tightly anchored to the initial values.
The initial values may be entirely randomly generated
(for example, during preliminary unstructured dis-
cussions) or may be linked to current situations or to
simple statistical trends. The result is that the ranges
of future variation may be seriously underestimated
and that decision makers may be overconfident in
their projections or forecasts so that risks are inade-
quately taken into consideration during the decision
process.

Once again, the bias needs active compensation by
building formal means of identifying alternative fu-
tures at an early stage of deliberation before estimates
are too solidly “anchored.” One means of achieving
this is by incorporation of scenario planning concepts
(see van der Heijden, 1996) into the total decision-
making process. We shall return to this concept in the
discussion of risk and uncertainty in Section V.

IV. MULTIPLE CRITERIA
DECISION AID AND SUPPORT

A. General Principles

Perhaps the most critical demand on decision makers
is the need to achieve balance between conflicting
goals or objectives. If consequences of decisions were
entirely one dimensional (e.g., maximization of

profit) or if it were possible to simultaneously opti-
mize all objectives, then no true “decision making” is
involved; the process can be left to a computer. Hu-
man decision making, involving the making of value
judgements or tradeoffs, comes into play when deci-
sion makers recognize many different goals or crite-
ria for comparing different courses of action that are
to a greater or lesser extent in conflict with each other.

Much of the management theory and management
science literature does recognize the existence of mul-
tiple goals, but very often this recognition is implicit
rather than explicit. A recent notable exception has
been the “balanced scorecard” concept introduced by
Kaplan and Norton (1996), in which the authors
clearly identify the need for balance between finan-
cial, customer-oriented, internal operation, and learn-
ing and growth goals in any organization, each of
which can be subdivided further. They give attention
particularly to the management structures necessary
to ensure such balance.

The most explicit recognition of multiple goals
may be found in the range of management science
techniques which have been classified as multiple cri-
teria decision-making (MCDM) methods, or multiple
criteria decision analysis or aid (MCDA). The charac-
terizing feature of these approaches is the establish-
ment of formal and to some extent quantified proce-
dures for the following three phases of the problem:

1. Identification of relevant criteria, i.e., points of
view or axes of preference according to which
possible courses of action can be distinguished.

2. Ranking, or possibly more extensive evaluation,
of alternative courses of action according to each
identified criterion.

3. Aggregation across criteria to establish an overall
preference ranking for the alternatives.

We now briefly expand on these three phases before
turning to some more detailed description of the tools
of MCDA, which as we shall see can be grouped into
three broad schools, namely, value measurement or
scoring methods, goal and reference point methods,
and outranking methods.

1. Identification of Criteria

A criterion is defined in this context as any concern, in-
terest, or point of view according to which alternative
courses of action can (more-or-less) unambiguously
be rank ordered. In selecting criteria for use in deci-
sion analysis, the following properties of the set being
chosen should be borne in mind:

540 Decision-Making Approaches

• Complete: Ensure that all substantial interests are
incorporated.

• Operational: Ensure that the criteria are
meaningful and understandable to all role players.

• Decomposable: Ensure as far as is possible that the
criteria are defined in such a way that meaningful
rank orders of alternatives according to one
criterion can be identified without having to think
about how well the alternatives perform according
to other criteria. (The so-called condition of
preferential independence.)

• Nonredundant: Avoid double counting of issues.
• Minimum size: Try to use as few criteria as possible

consistent with completeness, i.e., avoid
introduction of many side issues which have little
likelihood of substantially affecting the final
decision.

Typically, the identification of appropriate criteria to
be used requires a variety of brainstorming tech-
niques, but a review of these is beyond the scope of
this article. These issues are discussed further in some
of the literature listed in the Bibliography. In many
cases it is useful to structure the criteria into a hier-
archical value tree, starting with a broad overall goal
at the top, systematically broken down into increas-
ingly precise subgoals, until at the lowest level we have
the required set of criteria as described above. Such a
value tree is illustrated in Fig. 1, which is based on ex-
periences in applying MCDA to land use and water re-
sources planning in the eastern escarpment regions
of South Africa. The criteria are the right-hand boxes,

namely, household income, number of jobs, and so
on down to flood levels. The advantage of such a hi-
erarchical structure is that the application of MCDA
can be decomposed, for example, by first evaluating
alternatives within a subset of criteria (for example,
the three contributing to social benefits) and then ag-
gregating these to give a preference ordering accord-
ing to “social” issues (thus forming a supercriterion).
At a later stage, a further aggregation can combine so-
cial, economic, and environmental concerns.

Sometimes a criterion may directly be associated
with some measurable quantitative attribute of the
system under consideration, for example, cost mea-
sures or many of the benefits listed in the value tree
of Fig. 1. Such an association may facilitate the next
phase of the analysis, but is not critical to the use of
the tools to be described below. These can generally
be applied even for entirely qualitative criteria such as
the personal well-being of employees, provided that
alternatives can at least be compared with each other
on this basis (i.e., which of the two options contributes
more to the “personal well-being”).

2. Within-Criterion
Comparison of Alternatives

At this stage, alternatives are compared and evaluated
relative to each other in terms of each identified cri-
terion. The alternatives may be real courses of action
or may be hypothetical constructs (performance cat-
egories as described below) built up to provide a set
of benchmarks against which the real alternatives can

Decision-Making Approaches 541

Quality of life

Social benefits

Economic benefits

Environmental
benefits

Household income

Number of jobs

Water supply

Agricultural output

Forestry output

Secondary industry

Area conserved

Number of ecotypes
conserved

Total dissolved
solids

Dry season flow

Flood level

River status

Figure 1 Illustration of a value tree for a regional land use planning problem.

be evaluated. In both cases, however, the fundamen-
tal requirement is to be able to rank the alternatives
from best to worst in terms of the criterion under
consideration. If this cannot be done, then the defi-
nition of the criterion needs to be revisited.

An important feature of this process is that it is car-
ried out separately for each criterion and does not
need reduction to artificial measures such as mone-
tary equivalents. All that is required is for the decision
maker, expert, or interest group to be able to com-
pare alternatives with each other in terms of their
contribution to the goals represented by the criterion
under consideration. In some cases, criteria will be
qualitative in nature (for example, a criterion such as
personal well-being), so the rank ordering will have to
be subjective or judgmental in nature. For smaller
numbers of alternatives (say up to about seven or
nine), this creates no problem as it will generally be
possible to compare alternatives directly to generate
the required rank orderings or evaluations in an un-
ambiguous manner. For larger numbers of alterna-
tives, however, direct comparisons become more dif-
ficult, and it is convenient to define a small number
of performance categories, i.e., descriptions of different
levels of performance that may be achieved, expressed
as mini-scenarios (the hypothetical alternatives or out-
comes mentioned earlier). Each actual alternative is
then classified into that category which best matches
its performance in terms of this criterion or possibly
classified as falling between two adjacent categories.
Since the categories are preference ordered, this im-
plies a partial ordering of the alternatives, which is
usually adequate for the application of many MCDA
procedures (especially when linked to extensive sen-
sitivity studies).

3. Aggregation across Criteria

This is perhaps the most crucial phase, in which the
generally conflicting preference orderings corre-
sponding to the different criteria need to be recon-
ciled or aggregated to produce a final overall prefer-
ence ordering. The process can never be exact, as it
must inevitably involve imprecise and subjective judge-
ments regarding the relative importance of each crite-
rion. Nevertheless, with due care and sensitivity analy-
sis, a coherent picture can be generated as to which are
the most robust, equitable, and defensible decisions.

An important point to recognize is that the method
of aggregation is critically dependent upon the meth-
ods of evaluation of alternatives used in the previous
phase. Aggregation inevitably involves some assess-
ment of the importance of each criterion relative to

the other criteria. This is typically expressed in terms
of some form of quantitative “weight.” The meaning,
interpretation, and assessment of importance weights
is an often controversial aspect of MCDA practice,
since the appropriate numerical weights to be used in
any MCDA procedure must depend both on the spe-
cific procedure and on the context of the alternatives
under consideration. It is, however, also true that
many people will express judgements of relative im-
portance (e.g., that environmental issues are “much
more important,” or even something like “three times
as important,” in comparison with economic issues)
without concern for either the particular context or
the methods of analysis being used. It is fallacious to
incorporate such intuitive statements of relative im-
portance uncritically into MCDA (although this often
seems to be done). In the application of MCDA, care
must be taken to match the elicitation of importance
weights to methods used and the context.

The different schools of MCDA differ in the man-
ner in which they approach the second and third
phases mentioned earlier. The three schools are re-
viewed in subsections IV.B to IV.D. In order to de-
scribe the methods, it is useful at this stage to intro-
duce some notation. For purposes of discussion, we
shall suppose that a choice has to be made between a
discrete number of alternatives denoted by a,b,c,....
Many of the methods described below are easily gen-
eralized to more complicated settings, for example,
multiple objective linear programming, but this would
unnecessarily complicate the present discussion. We
suppose that m criteria have been identified, which
we shall index by i � 1,2,...,m. If criterion i can be as-
sociated with a quantifiable attribute of the system, we
shall denote the value of this attribute for alternative
a by zi(a). Note that even if the attribute is naturally
expressed in categorical terms (very good, good, etc.),
this is still “quantifiable” in our sense as we can asso-
ciate some numerical value with each category to rep-
resent the ordering.

B. Value Measurement or
Numerical Scoring Approaches

In this approach, we seek to construct some form of
value measure or score, V(a), for each alternative a. In
principle, the value measures do not need to possess
any particular numerical properties apart from preser-
vation of preference order, i.e., such that V(a) � V(b)
if and only if a is preferred to b.

Within the usual framework of MCDA, we start by
extracting partial values or scores for the alternatives

542 Decision-Making Approaches

as evaluated in terms of each criterion. These we de-
note by vi(a) for i � 1,2,...m. Where criteria are asso-
ciated with quantifiable attributes zi(a), it is evident
that these partial values need to be functions of the
attributes, i.e., vi(a) � vi(zi(a)). We shall return to this
case shortly, but let us first consider the general case
without necessarily making the assumption of the ex-
istence of such attributes.

Clearly, V(a) must be some function of the partial
values v1(a), v2(a),...,vm(a). We shall suppose that the
selection of a family of criteria satisfies the property
of preferential independence discussed under selec-
tion of criteria and that the partial values are con-
structed so as to satisfy an interval scale property [i.e.,
such that equal increments in any specific vi(a) have
the same impact or value in terms of tradeoffs with
other criteria, no matter where they occur in the avail-
able range of values]. It can be shown that under
these assumptions, it is sufficient to construct V(a) as
an additive function of vi(a), i.e.,

V(a) � �
m

i�1
wivi(a) (1)

where wi is an importance weight associated with cri-
terion i.

In applying value measurement theory, the key
practical points are those of assessing the partial val-
ues and the weights.

Partial values can be assessed by direct comparison
of alternatives or indirectly through an associated
quantitative attribute zi. Let us first examine the direct
comparison approach. A useful way to assess partial val-
ues in this case is by means of the so-called “ther-
mometer scale” illustrated in Fig. 2. For example, in a
problem such as that on which the value tree of Fig. 1
is based, we might need to compare m � 6 policy al-
ternatives, for example, involving three different pat-
terns of land use (farming, forestry, and conservation)
with and without the construction of a proposed large
dam. For convenience, we might label the alternatives
as “scenarios” A–F. Now consider a criterion such as
water supply to undeveloped rural communities in the
area. Since the desirability of each scenario from the
point of view of this criterion may involve considera-
tion of a number of poorly quantified issues such as
convenience of access to sufficient clean water, it may
not be possible to define a simple measure of perfor-
mance. By the process of direct comparison on the
thermometer scale, however, we can still get a mean-
ingful evaluation for use in the value function model.

We start simply by identifying the best and worst of
the six alternatives according to this criterion of rural

water supply. (This judgment is left to those consid-
ered best able to make such an assessment.) Suppose
that these are identified as scenarios C and E, respec-
tively. Then C is placed at the top of the scale (de-
noted for convenience in Fig. 2 by an arbitrary score
of 100) and E is placed at the bottom of the scale (de-
noted again for convenience at the 0 point of the
scale). A third alternative, say scenario A, is then se-
lected for evaluation by those performing the assess-
ment. It is placed on the scale between C and E in
such a way that the magnitudes of the relative spac-
ings, or “gaps,” between C and A and between A and
E represent the extent to which A is better than E but
worse than C. For example, the position shown for
scenario A in Fig. 2 is at about the 75% position, sug-
gesting that the gap from E to A (the extent to which
A is better than E) is about three times the gap from
A to C. Put in another way, we could say that moving
from E to A achieves 3⁄4 of the gain realized by moving
all the way from E to C. There is generally no need to
be overly precise in these judgments, as long as the
sizes of the gaps appear qualitatively correct.

Thereafter, each of the remaining alternatives are
examined one at a time and placed firstly in the cor-
rect rank position among the previously examined al-
ternatives. For example, B may then be placed below

Decision-Making Approaches 543

Figure 2 Illustration of a thermometer scale.

A. Once the ranking is established, the precise posi-
tion of the alternative is assessed, again taking into
consideration the gaps between it and the two alter-
natives just above and below it in the rank ordering.
In this process, the user may wish to readjust the po-
sitions of the previously examined alternatives. Figure
2 illustrates a final thermometer scale for all six pol-
icy scenarios (alternatives) evaluated according to this
criterion of “rural water supply.” The full rank order-
ing of the scenarios is C-F-A-B-D-E. The gap between
C and F is perceived to be relatively small, and even
A is not far behind, so that C, F, and A are all judged
to be relatively good in terms of this criterion. There
is then a big gap between A and B, so that the re-
maining three alternatives are perceived to be much
less satisfactory than C, F, and A, although there is lit-
tle choice between B and D which are still somewhat
better than E. It seems that people from widely dif-
fering backgrounds can relate relatively easily to dia-
grams such as Fig. 2 and do participate freely in ad-
justing the gaps to correspond to their own
perceptions of the values of the alternatives. Thus, the
thermometer scale diagram is not only a useful tool
for assessing partial values, but also for communica-
tion between groups.

Indirect evaluation requires the association of quan-
titative attributes zi(a) with all criteria. The evaluation
consists of two stages. We first evaluate a value func-
tion, say vi(zi), which associates scores with all possi-
ble values of the associated attribute zi between a spec-
ified minimum and maximum. In theory this should
be a smooth continuous function, but in practice it is
usually sufficient to use a piecewise linear function
with no more than four segments. Such a function
can be constructed using the thermometer scale idea
described previously, but applied to (say) five evenly
spaced numerical values for the attribute rather than
to policy alternatives directly. For example, one of the
other criteria shown in Fig. 1 was “dry season flow” in
the river. This was assessed by hydrologists in terms of
the percentage reduction in streamflows below cur-
rent conditions. Over the alternatives under consid-
eration, values for this attribute ranged between 0
and 20% below current levels. The value function was
thus approximated by comparing the impacts of five
possible levels (0, 5, 10, 15, and 20%) relative to each
other on a thermometer scale. The resulting value
function could then be represented as in Fig. 3. Once
the function has been assessed, the partial value score
for any particular alternative is obtained simply by
reading off the function value (on a graph such as
that illustrated in Fig. 3) corresponding to its attribute
value zi(a).

It is worth noting the nonlinearity in the shape of
the function in Fig. 3. This is quite typical. One of the
big dangers in using scoring methods such as those
described here is that users and analysts often tend to
construct straight-line functions as the easy way out
(often even viewing this as the “objective” or “ratio-
nal” approach). Research has shown clearly that the
results obtained from scoring methods can be quite
critically dependent upon the shape of the function,
so it is incumbent upon users of these tools to apply
their minds to the relative value gaps between differ-
ent levels of performance. Quite frequently, it is found
that the functions exhibit systematically increasing or
decreasing slopes (as in Fig. 3 where the slopes be-
come increasingly negative) or have an “S” (sig-
moidal) shape (or reverse S shape).

Once the partial values have been assessed as above,
the weights can also be evaluated. The algebraic im-
plication of Eq. (1) is that the weights determine the
desirable tradeoffs between the partial value scores
for the different criteria, and for this reason it is im-
portant to delay assessment of weights until the peo-
ple involved in the assessment have established a clear
understanding of the ranges of outcomes relevant to
each criterion. Various procedures have been sug-
gested for the weight assessment, but one of the sim-
plest and easiest to apply is that of “swing weighting.”
The users are presented with a hypothetical scenario
in which all criteria have the same score on the par-
tial value function scales. Often the 0 point is sug-
gested in the literature, but in our experience people
find it easier to start from a less unrealistically ex-
treme position, for example, one in which all partial
values are 50. The question is then posed: “If you

544 Decision-Making Approaches

Figure 3 Illustration of a value function.

could choose one and only one criterion to swing up
to the maximum partial value score of 100, which one
would it be?” This establishes the criterion having the
largest weight wi in Eq. (1). The question is then re-
peated, excluding the previously chosen criterion, to
establish the second largest weight, and so on. Once
we have the rank ordering of the weights in this way,
we can compare each criterion with the one known to
have the maximum weight, and we can then pose the
second question: “What is the value of the swing on
this criterion, relative to that for the criterion with
maximum weight, expressed as a percentage?” In
some software, the presentation of this question is fa-
cilitated by use of bar graphs, with the heights of the
bars representing the relative importance. This gives
relative values for the weights, which are usually then
standardized in some convenient manner, e.g., so that
the weights sum to 1.

The above methodology for fitting a preference
model of the form given by Eq. (1) is based on what
is sometimes termed “SMART” (simple multiattribute
rating technique). An alternative and apparently
widely used approach to fitting the same type of model
is the technique termed the analytic hierarchy process
(AHP). This approach is based on first assessing the
scores by pairwise comparison of the alternatives on
each criterion. In other words, each alternative is com-
pared with every other alternative in terms of the rel-
ative importance of its contribution to the criterion
under consideration. The comparisons are expressed
in ratio terms, interpreted as estimates of vi(a)/vi(b)
for the pair of alternatives a and b, and these ratios
are used to derive the individual scores. This process
is repeated for each criterion. The weights wi are as-
sessed in the same way by pairwise comparisons of cri-
teria, structured hierarchically (i.e., criteria at one
level in the hierarchy are compared only with others
sharing the same parent criterion at the next hierar-
chical level).

The AHP approach has appeared to be very popu-
lar and is widely described in most management sci-
ence texts. Reasons for the popularity seem to include
the natural language (semantic) scales on which the
comparisons may be made and the availability of user
friendly supporting software. Nevertheless, the process
is for most users somewhat of a black box, which in
the view of the author may hinder rather than facili-
tate good decision-making practice. A number of the-
oretical objections to the validity of the process have
also been raised, and references to discussions of these
are provided in Belton and Stewart (2002). It should,
however, also be noted that a number of modifica-
tions to the basic AHP approach have been proposed,

aimed at circumventing the more critical of these the-
oretical objections.

C. Goal and Reference Point Approaches

Goal Programming is a separate article in this ency-
clopedia. It is, however, useful to summarize some key
concepts within the broader multicriteria decision-
making framework discussed here.

Goal and reference point approaches are used pri-
marily when the criteria are associated with quantifi-
able attributes zi(a) and are thus possibly most appro-
priate to technical phases of analysis (i.e., in order to
shortlist alternatives for more detailed evaluation ac-
cording to qualitative, intangible, and subjective cri-
teria). The principle is quite simple. Instead of evalu-
ating tradeoffs and weights (as in Section IV.B), the
user simply specifies some desirable goals or aspirations,
one for each criterion. These aspirations define in a
sense a prima facie assessment by the user of what
would constitute a realistically desirable outcome.

Let gi be a goal or aspiration level specified for crite-
rion i. The interpretation of gi will depend on the
manner in which the corresponding attribute is defined:

• Maximizing sense: If the attribute is defined such
that larger values of zi(a) are preferred to smaller
values, all other things being equal (typically some
form of “benefit” measure), then the implied aim
is to achieve zi(a)�gi. Once this value is achieved,
further gains in zi(a) are of relatively much lesser
importance.

• Minimizing sense: If the attribute is defined such
that smaller values of zi(a) are preferred to larger
values, all other things being equal (typically some
form of “cost” measure), then the implied aim is
to achieve zi(a)�gi. Once this value is achieved,
further reductions in zi(a) are of relatively much
lesser importance.

Sometimes planners like to target some form of inter-
mediate desirable value, possibly something like a wa-
ter temperature which should not be too hot or too
cold. In this case, values of zi(a) in the vicinity of the
target value gi are desirable, with greater deviations on
either side to be avoided. Since the reasons for avoid-
ing deviations in each direction will generally be dif-
ferent, it is usually convenient to define two separate
criteria (“not too hot” and “not too cold”), each using
the same attribute, but with different aspiration levels.
For example, if the desired temperature range is
15–18�C, then the goal for the not too cold criterion

Decision-Making Approaches 545

will be temperature �15�C, while that for the not too
hot criterion will be temperature �18�C. Thus, for the
purposes of further explanation, we shall assume that
all attributes will be defined in one of the two senses
defined by the above-bulleted items.

The general thrust of the so-called goal program-
ming or reference point approaches to MCDA is based
firstly on defining deviational variables �i(a) corre-
sponding to the performance of each alternative in
terms of each criterion, measuring the extent to which
the goal is not met by alternative a, that is,

�i(a) � max{0,gi – zi(a)}

for attributes defined in a maximizing sense and

�i(a) � max{0,zi(a) – gi }

for attributes defined in a minimizing sense.
Algebraically (for purposes of inclusion in mathe-

matical programming code), the deviational variables
may be defined implicitly via constraints of the form:

zi(a) � �i(a) �gi

for attributes defined in a maximizing sense and

zi(a) – �i(a) �gi

for attributes defined in a minimizing sense, linked to
some process which minimizes all deviations as far as
is possible.

The key question at this stage relates to what is
meant by minimizing all deviations. Very often, a sim-
ple and effective approach is simply to choose the al-
ternative for which the sum of (possibly weighted) de-
viations is minimized. This is the basis of conventional
goal programming. Without going into any detailed
review at this stage, it is this author’s view that a more
robust approach is to use the so-called Tchebycheff
norm popularized in the approaches termed reference
point techniques. In essence, we then identify the alter-
native a which minimizes a function of the form

mmax
i�1

[wi�i(a)]�	 �
m

i�1
wi�i(a) (2)

where 	 is a suitably small positive number (typically
something like 0.01) and wi are weights reflecting the
relative importance of deviations on each goal. It is im-
portant to emphasize that these weights are related to
tradeoffs between attributes in the vicinity of the aspi-
ration levels and are dependent upon the specific scale
of measurement used. The best way to assess these
weights is to evaluate the allowable tradeoffs directly.

The above process can be applied in either the dis-
crete choice or the mathematical programming con-

texts. For discrete choice, the calculations for each al-
ternative are easily set up in a spreadsheet. For ex-
ample, suppose that we are evaluating six policy al-
ternatives in a regional water planning context and
that four critical criteria have been identified, associ-
ated with the four quantitative attributes: investment
cost ($m), water quality (ppm of contaminant), min-
imum flow levels in the river (m3/sec), and recre-
ational access (thousands of person days per annum).
Suppose that the values of these criteria for the six al-
ternatives are as follows:

Minimum Recreational
Costs Quality flow access

Alternative ($m) (ppm) (m3/sec) (person days)

Scenario A 93 455 1.8 160

Scenario B 127 395 1.9 190

Scenario C 88 448 1.5 185

Scenario D 155 200 2.5 210

Scenario E 182 158 3.1 255

Scenario F 104 305 1.7 220

Note that the first two attributes require minimization
and the latter two attributes require maximization.
Suppose that goals are specified as follows: $120m for
cost, 280 ppm for quality, 2.5 m3/sec for minimum
flow, and 225 person days for recreational access. The
unweighted deviations (�i(a)) can be computed as
follows:

Minimum Recreational
Alternative Costs Quality flow access

Scenario A 0 175 0.7 65

Scenario B 7 115 0.6 35

Scenario C 0 168 1 40

Scenario D 35 0 0 15

Scenario E 62 0 0 0

Scenario F 0 25 0.8 5

Suppose that the following tradeoffs have been as-
sessed as follows: a reduction of 0.1 m3/sec in the
minimum flow would be equivalent in importance to
changes of $4m in costs, 10 ppm in contaminants,
and 10,000 person days for recreational access. Arbi-
trarily setting w3 � 1 (numerical weight for the mini-
mum flow criterion), these tradeoffs translate into the
following weights for the other criteria: w1 � 0.025
(costs), w2 � 0.01 (quality), and w4 � 0.01. Using
these weights and 	 � 0.01, we obtain the following

546 Decision-Making Approaches

values of the function given by Eq. (2) for each of the
alternatives:

Scenario A 1.781

Scenario B 1.173

Scenario C 1.711

Scenario D 0.885

Scenario E 1.566

Scenario F 0.811

Scenario F is then indicated as the best compromise,
followed closely by scenario D. The remainder are
shown to be considerably worse in the sense of having
large deviations for one or more criteria.

For a small number of alternatives, as in the above
example, the goal programming or reference point
approach does not generate too much insight. The
methods come much more into their own, however,
when there are a large number of alternatives that
have to be screened and especially when the problem
has a mathematical programming structure. In the
linear programming case, the trick is to minimize a
new variable D, subject to the constraints D�wi �i(a),
to the constraints described above for implicitly defin-
ing the deviational variables and to the natural con-
straints of the problem. The proper setting up of the
problem for solution would generally require the as-
sistance of a specialist skilled in (multiobjective) lin-
ear programming, and we shall not attempt to pro-
vide all the details here.

D. Outranking Approaches

In essence, the outranking approach attempts to char-
acterize the evidence for and against assertions such as
“alternative a is at least as good as alternative b,” rather
than to establish any form of optimal selection per se.
Initially, alternatives are compared in terms of each
criterion separately, much as in value function ap-
proaches. The tendency is to make use of attribute
measures [which we have previously termed zi(a)] to
facilitate this comparison, although these attributes
may be expressed on some form of nominal scale. The
attribute values tend to be used in a relatively “fuzzy”
sense, however, so that (for example) alternative a will
only be inferred as definitely preferred to b if the dif-
ference zi(a) – zi(b) exceeds some threshold level.

In determining whether alternative a can be said to
be “at least as good as” alternative b, taking all criteria
into account, two issues are taken into consideration:

1. Which criteria are concordant with the assertion? A
measure of concordance is typically defined as the
sum of weights associated with those criteria for
which a is distinctly better than b, when the
weights are standardized to sum to 1. It must be
emphasized that the weights have a very different
meaning to the tradeoff interpretation described
for the other two schools of MCDA. For
outranking, the weights may best be seen as a
“voting power” allocated to each criterion,
representing in an intuitive sense the power to
influence outcomes that should be vested in each
criterion.

2. Which criteria are strongly discordant with the
assertion, to the extent that they could “veto” any
consensus? A measure of discordance for attributes
defined in a maximizing sense is typically defined
by the magnitude of zi(b) – zi(a) (since by
assumption zi(a)�zi(b) for discordant attributes,
when attributes are defined in a maximizing
sense) relative to some predefined norm. The
overall measure of discordance is then the
maximum of the individual measures for each
discordant criterion.

In order to illustrate the concordance and discor-
dance principles, consider the hypothetical compari-
son of two locations for a large new reservoir in an en-
vironmentally sensitive area which also contains a
number of villages. Suppose that the options are to be
compared in terms of four criteria: cost (in $m), num-
ber of people displaced, area of sensitive ecosystems
destroyed (in thousands of acres), and impact on
aquatic life (measured on a 0–10 nominal scale, where
0 implies no impact which is ecologically most desir-
able). Suppose assessments for the two locations have
been made as follows:

Cost Number Area lost Ecological
($m) displaced (‘000 acres) impact

Location A 18.15 200.15 30.15 7.15

Location B 25.15 450.15 5.15 4.15

Criterion 0.35 0.25 0.25 0.15
weight

Norm for 10.15 350.15 30.15 9.15
assessing
discordance

Location A is better than location B on cost and num-
ber displaced, and thus the concordance index for A
versus B is 0.35 � 0.25 � 0.6. Correspondingly, the
concordance for B versus A is 0.4.

Decision-Making Approaches 547

The discordant criteria for A compared to B are
area lost and ecological impact, with relative magni-
tudes 25/30 � 0.83 and 3/9 � 0.33, respectively, so
that the overall measure of discordance is 0.83. Simi-
larly, the measure of discordance for B compared to
A is the maximum of 0.7 and 0.71, i.e., 0.71.

The methods based on outranking principles com-
pare all pairs of available alternatives in the above
manner. Any one alternative a is said to outrank b if
the concordance is sufficiently high and the discor-
dance is sufficiently low. In some implementations,
the outranking is viewed as “crisp,” i.e., an alterna-
tive either does or does not outrank another, with
the decision being based on whether the concor-
dance exceeds a predefined minimum level and the
discordance does not exceed a predefined maximum
level. In other implementations a fuzzy degree of
concordance is constructed from the concordance
and discordance measures. In either sense, the re-
sult is a measure of the extent to which the evidence
favors one alternative over another. This could lead
to elimination of some alternatives and/or the con-
struction of a short list of alternatives for deeper
evaluation.

The techniques by which outranking methods es-
tablish partial or tentative rank orders of the alterna-
tives are technically very complicated and beyond the
scope of this article. Some details may be found in the
books of Roy (1996) and of Belton and Stewart (2002).

Outranking methods are relevant to situations in
which (1) there are a discrete number of alternatives
under consideration and (2) preference information
such as detailed value trade-offs are not easily avail-
able (typically because the analysis is being carried
out by expert groups on behalf of political decision
makers who have been unwilling or unable to provide
the sort of information required by the other two
schools of MCDA).

V. RISK AND UNCERTAINTY
IN DECISION MAKING

All nontrivial decision making has to contend in
some way with issues of risk and uncertainty. The fu-
ture is always unknown, and consequences of deci-
sions can never be predicted with certainty. Thus,
even with the most careful and detailed analysis, per-
haps as described in the previous section, the unex-
pected has to be expected! We thus conclude this ar-
ticle with a brief review of approaches that can be
used in dealing with risk and uncertainty in decision
making.

A. Informal Sensitivity
and Robustness Analysis

One approach is simply to subject the results of deci-
sion analysis, such as that described in Section IV, to
intensive sensitivity analysis. Each of the input as-
sumptions will be critically evaluated in order to es-
tablish a plausible range of values or outcomes (rec-
ognizing, however, the dangers inherent in the
anchoring and adjustment biases described in Section
III.C, which may lead to underestimation of the range).
The analysis may then be repeated for different as-
sumptions across these ranges. The aim ultimately is
to identify the course of action which is most robust in
the sense of performing well over all plausible ranges
of inputs, rather than that which optimizes perfor-
mance for a single set of assumptions or inputs.

Such sensitivity and robustness analysis is always to
be recommended as part of the decision-making
process. It must be realized, however, that this is not
the panacea for all problems of risk and uncertainty.
One of the difficulties is that the sensitivity analysis
tends to have to proceed in a fairly ad hoc fashion by
changing one or two input parameters at a time. In
complex systems, results may be insensitive to changes
in single inputs, but substantially more sensitive to cer-
tain combinations of inputs, and it is in general very
difficult to identify these critical combinations. Some
of the techniques from the soft-systems methodology
of Checkland (1981) can be of value in this regard.

B. Statistical Decision Theory

A separate article deals with decision theory, and the
reader is referred to that for more details. In essence,
however, statistical decision theory proceeds by estab-
lishing probability distributions on outcomes, using
both subjective information and available data. How-
ever, we need to recall again the potential biases in-
herent in subjective probability assessments, as dis-
cussed in Section III. Decision-making values and
goals are then captured in some form of utility func-
tion, representing the desirability of different out-
comes. With this information, we can, in principle,
identify the course of action which maximizes ex-
pected utility.

This is an approach which falls very much into the
category of rational approaches. While decision the-
ory can provide useful insights (as much through the
construction of probabilities and utilities as through
the subsequent analysis), it needs to be used with cau-
tion. Some of the underlying theoretical assumptions
have been challenged; consequently, the very exis-

548 Decision-Making Approaches

tence of a “utility function” which can be assessed sep-
arately from the probabilities has been questioned.
Furthermore, the extension of the utility function
concept to the multicriteria type of problem discussed
in Section IV raises a number of practical difficulties.
Stronger assumptions are required in this case, which
are even more difficult to verify, and the construction
of the resultant utility models requires judgmentally
rather demanding inputs from the decision maker.

C. Scenario Planning

The concepts around the use of scenarios to repre-
sent future structural uncertainties while considering
strategic planning options appear to have been de-
veloped within the Royal Dutch/Shell corporation
and have been thoroughly documented by van der
Heijden (1996). The idea is to construct, through an
intensive brainstorming session, a small number of fu-
ture scenarios. These are meant to be internally con-
sistent descriptions of possible futures, describing a
trajectory of changes in future conditions that band
together in a coherent manner. Typically, a relatively
small number (3–5) of detailed scenarios will be con-
structed, as it is important for decision makers to be
able to compare decision alternatives across different
scenarios, which becomes well nigh impossible if the
number of scenarios exceeds the “magic number 7.”

Scenario planning is similar to sensitivity analysis in
the sense that there is value in identifying courses of
action which are robust across all scenarios. The ap-
proach is, however, much more structured, and
greater attention is paid to relationships between vari-
ables and to avoidance of biases such as anchoring
and adjustment. To be done properly, scenario plan-
ning requires a considerable investment in time by se-
nior management, but this is well justified for strate-
gic decision making with far-reaching consequences.

D. Risk as a Criterion

In some cases, it is possible to include avoidance of risk
as a criterion and to handle it in the same way as the
other criteria discussed in Section IV. This is, for ex-
ample, routinely done in much of the portfolio invest-
ment analysis theory, where expectation and standard
deviation of returns may be viewed as distinct decision
criteria. In this case, the expectation is a measure of re-
turn under standard or expected conditions, while the
standard deviation measures probable range of out-
comes, i.e., the risk. What is thus intrinsically a mon-
ocriterion decision problem under uncertainty is ana-

lyzed as a bicriterion problem in which the uncertainty
is subsumed into one of the criteria.

The representation of risk, or risk avoidance, as a cri-
terion allows the powerful tools of MCDA (Section IV)
to be applied, which can be done at any level of detail
appropriate to the decision context. In some cases, rel-
atively “quick and dirty” tools will suffice if the decision
consequences are limited in extent; in other cases, a
deep analysis of risk preference is possible. The effec-
tive use of MCDA for this purpose is still a matter for
future research. It should be noted, however, that mea-
sures of risk other than standard deviation (e.g., prob-
abilities of certain undesirable or catastrophic conse-
quences) appear to be more appropriate in some
situations. The reader should also be warned that when
using value function models for the MCDA, nominal
“riskiness” scales (as an alternative to standard devia-
tion) may easily violate the underlying assumptions of
preferential independence and of the interval scale
property and should be used with considerable caution.

SEE ALSO THE FOLLOWING ARTICLES

Corporate Planning • Data Mining • Decision Support Sys-
tems • Decision Theory • Goal Programming • Strategic
Planning for/of Information Systems • Uncertainty

BIBLIOGRAPHY

Belton, V., and Stewart, T. J. (2002). Multiple Criteria Decision
Analysis: An Integrated Approach, Kluwer Academic Publish-
ers, Boston, MA.

Checkland, P. (1981). Systems Thinking, Systems Practice, Wiley,
New York.

Eden, C., and Ackermann, F. (1998). Making Strategy: The Journey
of Strategic Management, SAGE Publications, London.

Goodwin, P., and Wright, G. (1997). Decision Analysis for Man-
agement Judgement, 2nd ed., Wiley, New York.

Janis, I. L., and Mann, L. (1977). Decision Making, The Free
Press, New York.

Kahneman, D., Tversky, A., and Slovic, P. (1982). Judgement under
uncertainty: Heuristics and biases. Cambridge UP, Cambridge.

Kaplan, R. S., and Norton, D. P. (1996). The Balanced Scorecard,
Harvard Business School Press, Boston, MA.

Keeney, R. L. (1992). Value-Focused Thinking: A Path to Creative De-
cision Making, Harvard Univ. Press, Cambridge, MA.

Rosenhead, J., and Mingers, J., Eds. (2001). Rational Analysis for
a Problematic World Revisited, Wiley, New York.

Roy, B. (1996). Multicriteria Methodology for Decision Aiding,
Kluwer Academic Publishers, Dordrecht/Norwell, MA.

Simon, H. A. (1976). Administrative Behavior, 3rd ed., The Free
Press, New York.

van der Heijden, K. (1996). Scenarios: The Art of Strategic Con-
versation, Wiley, New York.

Von Winterfeldt, D., and Edwards, W. (1986). Decision Analysis and
Behavioral Research, Cambridge Univ. Press, Cambridge, UK.

Decision-Making Approaches 549

Decision Support Systems
Clyde W. Holsapple
University of Kentucky

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 551

I. INTRODUCTION
II. DECISIONS

III. DECISION SUPPORT SYSTEM FUNDAMENTALS

IV. CLASSIFICATION OF DECISION SUPPORT SYSTEMS
V. CONCLUSION

GLOSSARY

artificial intelligence A field of study and application
concerned with identifying and using tools and
techniques that allow machines to exhibit behavior
that would be considered intelligent if it were ob-
served in humans.

decision The choice of one from among a number of
alternatives; a piece of knowledge indicating a com-
mitment to some course of action.

decision making The activity that culminates in the
choice of an alternative; the activity of using knowl-
edge as raw materials in the manufacture of knowl-
edge about what to do.

decision support system (DSS) A computer-based sys-
tem composed of a language system, presentation
system, knowledge system, and problem-processing
system whose collective purpose is the support of
decision-making activities.

descriptive knowledge Knowledge about past, pres-
ent, and hypothetical states of an organization and
its environment.

knowledge-based organization An organization in
which the primary, driving activity is the manage-
ment of knowledge.

knowledge management The activity of representing
and processing knowledge.

knowledge-management technique A technique for
representing knowledge in terms of certain kinds
of objects and for processing those objects in vari-
ous ways.

knowledge system That subsystem of a decision sup-
port system in which all application-specific knowl-
edge is represented for use by the problem-

processing system. This includes knowledge of any
or all types (e.g., descriptive, procedural, reason-
ing) represented in a variety of ways (e.g., as data-
bases, spreadsheets, procedural solvers, rule sets,
text, graphs, forms, templates).

language system The subsystem of a decision support
system that consists of (or characterizes the class
of) all acceptable problem statements.

multiparticipant DSS A decision support system that
supports multiple participants engaged in a
decision-making task (or functions as one of the
participants).

presentation system The component of a DSS that con-
sists of all responses a problem processor can make.

problem-processing system That subsystem of a deci-
sion support system that accepts problems stated in
terms of the language system and draws on the
knowledge system in an effort to produce solutions.

procedural knowledge Knowledge about how to pro-
duce a desired result by carrying out a prescribed
series of processing steps.

reasoning knowledge Knowledge about what circum-
stances allow particular conclusions to be consid-
ered to be valid.

I. INTRODUCTION

Building on initial concepts introduced and demon-
strated in the 1970s, the field of decision support sys-
tems (DSS) has progressed to a stage where these sys-
tems are routinely used by decision makers around
the world. Organizations expend large sums to en-
sure that their employees, customers, suppliers, and

partners have computer-based systems that provide
the knowledge they need to make timely, sound deci-
sions. These DSS have many variants, being im-
plemented for a wide variety of decisional applica-
tions, facilitating various aspects of decision-making
processes, and utilizing a variety of technologies. They
range from systems that support individuals making
decisions to multiparticipant DSS, which support the
collaboration of multiple individuals in making a joint
decision, in making interrelated decisions, or in trans-
organizational decision making.

An appreciation of the objectives, characteristics,
uses, development, and impacts of decision support
systems begins with an understanding of decisions and
decision making. This leads to an examination of sup-
port, why decision makers need support, and what
kinds of decision support could be beneficial. Against
this background, consideration of computer-based sys-
tems that can deliver support for decisions unfolds. In-
cluded is a consideration of characteristics that dis-
tinguish such systems from other types of business
computing systems, an architecture of DSS compo-
nents, and an examination of various classes of DSS.
Classifications are based on technology used in devel-
oping the system and on whether the system supports
an individual versus a multiparticipant decision maker.

II. DECISIONS

Immersed in a competitive, knowledge-rich world,
managers are daily confronted with the task of mak-
ing decisions about allocations of their resources,
about handling disturbances to their operations and
plans, about taking advantage of new opportunities,
and about interacting or negotiating with others. Each
decision involves the use of knowledge of varying
kinds of amounts, and many can benefit from (or
even require) the use of technology known as DSS.
Similarly, managers in an organization’s suppliers,
partners, and competitors are faced with their own
decision challenges and accompanying knowledge
needs; these, too, can benefit from systems that help
meet those needs. Moreover, consumers make deci-
sions about products and services to satisfy their pref-
erences. Increasingly, web-oriented decision support
systems are available to supply knowledge for con-
sumers’ decisional efforts.

The study of DSS has many technical aspects. But
before delving into these, it is important to appreci-
ate the setting in which they are used. The setting is
a competitive, knowledge-rich world in which man-
agers make decisions about what to do with their or-

ganizations’ resources. Many decisions, ranging from
simple to complex, are made every day. Each decision
involves the use of knowledge of varying kinds and
amounts, and many can benefit from (or even re-
quire) the use of technology known as DSS.

A. Making a Decision

A classic view among management theorists is that a
decision is a choice about a course of action, about a
strategy for action, or leading to a desired outcome.
The classic view of decision making is that it is an ac-
tivity culminating in the selection of one from among
multiple alternative courses of action.

Decision-making activity identifies alternative
courses of action and selects one of them as the deci-
sion. The number of alternatives identified and con-
sidered could be very large. The work involved in be-
coming aware of alternatives often makes up a major
share of a decision-making episode. It is concerned
with such questions as where do alternatives come
from, how many alternatives are enough, should more
effort be devoted to uncovering alternatives, and how
can large numbers of alternatives be managed so none
is forgotten or garbled? One role of a DSS is to help
decision makers cope with such issues.

Ultimately, one of the alternatives is selected. But,
which one? This depends on a study of the alterna-
tives in an effort to understand their implications.
The work involved in selecting one of the alternatives
usually makes up a major share of a decision-making
episode. It is concerned with such questions as to
what extent should each alternative be studied, how
reliable is our expectation about an alternative’s im-
pacts, are an alternative’s expected impacts compati-
ble with our purposes, what basis should be used to
compare alternatives to each other, and what strategy
will be followed in arriving at a choice. Another role
of a DSS is to support the study of alternatives. Some
DSS may even recommend the selection of a particu-
lar alternative and explain the rationale underlying
that advice.

Complementing the classic view of decisions, there
is the knowledge-based view which holds that a deci-
sion is a piece of knowledge indicating the nature of
an action commitment. A decision could be a piece
of descriptive knowledge. For instance, “spend
$10,000 on advertising in the next quarter” describes
a commitment of what to do about advertising ex-
penditures. This decision is one of many alternative
descriptions (e.g., spend $5000) that could have been
chosen. A decision could be a piece of procedural

552 Decision Support Systems

knowledge, involving a step-by-step specification of
how to accomplish something. For instance, “deter-
mine the country with the most favorable tax struc-
ture, identify the sites within that country having suf-
ficient qualified work forces, then visit those sites to
assess their respective qualities of life, and, from
among those that are acceptable, locate the new fac-
tory at the site with the best transportation infra-
structure” is a chunk of procedural knowledge com-
mitting an organization to a certain sequence of
actions. It is one of many alternative procedures that
could have been chosen.

When we regard a decision as a piece of knowl-
edge, making a decision means we are making a new
piece of knowledge that did not exist before. We are
manufacturing new knowledge by transforming or as-
sembling existing pieces of knowledge. A DSS is a sys-
tem that aids the manufacturing process, just as ma-
chines aid in the manufacturing of material goods.
Not only is there the new piece of knowledge called
a decision, but the manufacturing process itself
may have resulted in additional new knowledge as by-
products. For instance, in manufacturing a decision,
we may have derived other knowledge as evidence to
justify our decision. We may have produced knowl-
edge about alternatives that were not chosen, includ-
ing expectations about their possible impacts. More
fundamentally, we may have developed knowledge
about improving the decision manufacturing process
itself. Such by-products can be useful later in making
other decisions.

1. Knowledge in Decision Making

A decision maker possesses a storehouse of knowl-
edge, plus abilities to both alter and draw on the con-
tents of that storehouse. This characterization holds
for all types of decision makers—individuals, teams,
groups, and organizations. In the multiparticipant
cases, both the knowledge and the abilities are dis-
tributed among participants. When using a DSS, a de-
cision maker’s storehouse is augmented by computer-
based representation of knowledge and the decision
maker’s ability to process knowledge is supplemented
by the DSS’s ability to process those representations.
From a decision-oriented perspective, three primary
types of knowledge have been identified: descriptive,
procedural, and reasoning. Each of these can exist in
explicit or tacit modes within a decision maker. Each
can be explicitly represented in and processed by a
DSS using a variety of computer-based techniques.

Knowledge about the state of some world is called
descriptive knowledge. Commonly referred to as data

or information, it includes descriptions of past, pres-
ent, future, and hypothetical situations. A decision
maker can acquire descriptive knowledge via observa-
tion and can produce it by transforming or assem-
bling existing pieces of knowledge. Knowledge about
how to do something is quite different from knowl-
edge of a state. Because it is concerned with step-by-
step procedure for accomplishing some task, it is
called procedural knowledge. As a decision maker
comes into possession of more or better procedural
knowledge, we say that decision maker is more skilled.

Reasoning knowledge specifies the conclusion that
can be drawn when a specified situation exists. A code
of conduct, a set of regulations, a customer service
policy, rules that prescribe forecasting approaches,
and rules used to diagnose causes of situations are all
examples of reasoning knowledge. Whereas proce-
dural knowledge is “know how” and descriptive knowl-
edge is “know what,” reasoning knowledge is “know
why.” By putting together pieces of reasoning knowl-
edge, we can reach logical conclusions and justify
them by citing other reasons. This activity is known as
drawing inferences. The reasoning knowledge that fu-
els an inference may be acquired or derived by a de-
cision maker. Either way, as a decision maker comes
to possess more or better knowledge, we say that de-
cision maker is more of an expert.

The raw materials that can go into a decision-
making process are pieces of descriptive, procedural,
and reasoning knowledge. These are common ingre-
dients in decision-making recipes. During the process,
varying amounts of descriptive, procedural, and rea-
soning knowledge may be added at different times in
different combinations. That is, pieces of different
types of knowledge can be made to interact, and the
value of one piece may depend on having another
available at the proper time. DSSs can store and use
these types of knowledge to supply it when needed in
a decision process or produce new knowledge for the
decision process.

2. Structured versus
Unstructured Decisions

When issues relevant to making a decision are well
understood, the decision tends to be structured. The
alternatives from which the choice is made are clear-
cut, and each can be readily evaluated in light of the
organization’s purposes and goals. Put another way,
all the knowledge required to make the decision is
available in a form that makes it straightforward to
use. Often times, however, the issues pertinent to
producing a decision are not well understood. Some

Decision Support Systems 553

issues may be entirely unknown to the decision maker,
which is a hallmark of unstructured decisions. The al-
ternatives from which a choice will be made are vague,
are difficult to compare and contrast, or cannot be
easily evaluated with respect to the organization’s pur-
poses and goals. It may even be that there is great dif-
ficulty in attempting to discover what the alternatives
are. In other words, the knowledge required to pro-
duce a decision is unavailable, difficult to acquire, in-
complete, suspect, or in a form that cannot be read-
ily used by the decision maker. A semistructured
decision lies between the two extremes: some aspects
of the decision-manufacturing activity may be struc-
tured, whereas others are not. Decision support sys-
tems can be developed to assist in structured, semi-
structured, or unstructured situations.

Consider the structured decision of selecting a
travel plan for making a regular monthly inspection
visit to a major supplier’s factory. From destination,
duration, allowable dates to travel, budget limits, trav-
eler preferences, and prior travel plans, the parame-
ters for the decision are well known. All that is miss-
ing for deciding on a satisfactory travel plan is a
characterization of alternatives that are available for
the upcoming trip (e.g., costs, times, amenities). Char-
acterizations of these alternatives could be found and
presented by a DSS each time such a decision is to be
made; the DSS might even rank the alternatives based
on known criteria. As part of making a semistructured
decision about amounts of a part to order from vari-
ous suppliers, a DSS might solve such problems as es-
timating demand or deriving an “optimal” allocation
scheme. The decision maker uses such solutions along
with other knowledge (e.g., supplier dependability in
part quality and delivery times, importance of culti-
vating ongoing supplier relationships, impacts on or-
ders of other parts from the same suppliers) in reach-
ing the decision. In the course of making an
unstructured decision about how to react to a revolu-
tionary technological or competitive change that may
impact the viability of a current product offering, a
DSS may be useful in “what if” analysis that shows im-
pacts of alternative courses of action or a DSS may
help explore internal and external knowledge sources
in order to stimulate or provoke insights about cop-
ing with the unprecedented situation.

3. Decision-Making Phases and
Problem Solving Flows

Three decision-making phases are widely recognized:
intelligence, design, and choice. Each one is suscep-
tible to computer-based support. The intelligence

phase is a period when the decision maker is alert for
occasions to make decisions, preoccupied with col-
lecting knowledge, and concerned with evaluating it
in light of the organization’s purpose. The design
phase is a period when the decision maker formulates
alternative courses of action, analyzes those alterna-
tives to arrive at expectations about the likely out-
comes of choosing each, and evaluates those expec-
tations with respect to the organization’s purpose.
During the design phase, the decision maker could
find that additional knowledge is needed. This would
trigger a return to the intelligence phase to satisfy
that need before continuing with the design activity.

In a choice phase, the decision maker exercises au-
thority to select an alternative. This is done in the face
of internal and external pressures related to the na-
ture of the decision maker and the decision context.
It can happen that none of the alternatives are palat-
able, that several competing alternatives yield very
positive evaluations, or that the state of the world has
changed significantly since the alternatives were for-
mulated and analyzed. Nevertheless, there comes a
time when one that is “good enough” or “best” must
be selected. If that time has not yet been reached, the
decision maker may return to one of the two earlier
phases to collect more up-to-date knowledge, formu-
late new alternatives, reanalyze alternatives, reevalu-
ate them, etc.

Within each phase of a decision-making process,
the decision maker initiates various subactivities. Each
of these activities is intended to solve some problem.
The decision maker might need to solve such prob-
lems as acquiring a competitor’s sales figures, predict-
ing the demand for a product, assessing the benefits
and costs of a new law, inventing a feasible way of pack-
aging a product into a smaller box, or finding out the
cultural difficulties of attempting to market a certain
product in foreign countries. The overall task of reach-
ing a decision is a superproblem. Only if we solve sub-
problems can we solve the overall decision problem.

A decision-making process is fundamentally one of
both recognizing and solving problems along the way
toward the objective of producing a decision. For
structured decisions, the path toward the objective is
well charted. The problems to be surmounted are rec-
ognized easily, and the means for solving them are
readily available. Unstructured decisions take us into
uncharted territory. The problems that will be en-
countered along the way are not known in advance.
Even when stumbled across, they may be difficult to
recognize and subsequently solve. Ingenuity and an
exploratory attitude are vital for coping with these
types of decisions.

554 Decision Support Systems

Decision support systems are developed to facili-
tate the recognizing and/or solving of problems
within a decision-making process. In the case of a
multiparticipant decision maker, they can assist
in communications and coordinating the problem-
solving flows among participants working on various
problems simultaneously, in parallel, or in some nec-
essary sequence.

B. The Need for Support

Computer systems to support decision makers are not
free. Not only is there the cost of purchasing or de-
veloping a DSS, there are also costs associated with
learning about, using, and maintaining a DSS. It is
only reasonable that the benefits of a DSS should be
required to outweigh its costs. Although some DSS
benefits can be difficult to measure in precise quanti-
tative terms, all the benefits are the result of a deci-
sion maker’s need for support. When a decision maker
needs support it is because of cognitive, economic, or
time limits, or because of competitive pressures.

Cognitive limits refer to limits in the human mind’s
ability to store and process knowledge. Because deci-
sion making is a knowledge-intensive activity, cognitive
limits substantially restrict an individual’s decision-
making efficiency and effectiveness. If these limits are
relaxed, decision-maker productivity can improve. A
DSS serves as an extension to a person’s innate knowl-
edge-handling skills, allowing problems to be solved
more reliably or rapidly.

To relax cognitive limits as much as possible, we
could consider forming a very large team. But as a
team incorporates more and more participants, the
proportion of activity spent in solving communication
and coordination problems rises relative to the prob-
lem solving directly concerned with making the deci-
sion. Thus increasing a team’s size runs into economic
limits not only in terms of paying and equipping more
participants, but also with respect to increased com-
munication and coordination costs. Decision support
systems can be a less expensive alternative by substi-
tuting for participants in performing knowledge han-
dling tasks or by facilitating the communication and
coordination among the participants in a decision
process.

A third limit that decision makers commonly en-
counter is a time limit. A decision maker may be
blessed with extraordinary cognitive abilities and vast
monetary resources but very little time. Time limits
can put severe pressure on the decision maker, in-
creasing the likelihood of errors and poor-quality de-

cisions. There may not be sufficient time to consider
relevant knowledge, to solve relevant problems, or to
employ a desirable decision-making strategy. Because
computers can process some kinds of knowledge
much faster than humans, are not error-prone, work
tirelessly, and are immune to stresses from looming
deadlines, DSSs can help lessen the impacts of time
limits.

Aside from relaxing limits on a decision maker, DSSs
are needed for another important reason. Decision
makers and organizations often find themselves in sit-
uations where their continued success—or even their
outright survival—depends on being competitive. If
one competitor successfully uses DSSs for better deci-
sion making and another does not, then the second
competitor will be at a competitive disadvantage. To
keep pace, it is prudent to consider using DSSs inter-
nally and providing them to customers, suppliers, and
partners. Beyond this, some organizations actively seek
out opportunities for using DSSs in innovative ways in
order to achieve competitive advantages.

To summarize, the nature of support a DSS can of-
fer to its user will normally include at least one of the
following:

1. It alerts the user to a decision-making
opportunity or challenge.

2. It recognizes problems that need to be solved as
part of the decision-making process.

3. It solves problems recognized by itself or by
the user.

4. It facilitates or extends the user’s ability to
process (e.g., acquire, transform, explore)
knowledge.

5. It offers advice, expectations, evaluations, facts,
analyses, or designs to the user.

6. It stimulates the user’s perception, imagination,
or creative insight.

7. It coordinates or facilitates interactions among
participants in multiparticipant decision makers.

III. DECISION SUPPORT
SYSTEM FUNDAMENTALS

One purpose of a DSS is to help problem-solving flows
go more smoothly or rapidly: stimulating the user to
perceive problems needing to be solved, breaking
problems posed by the user into subproblems, actually
solving problems posed by a user, and possibly com-
bining and synthesizing solutions of subproblems into
the solution of a larger problem. Traditional DSS
definitions suggest that the purpose of a DSS is to aid

Decision Support Systems 555

decision makers in addressing unstructured or semi-
structured decisions. However, some DSSs are used to
help with structured decisions by handling large vol-
umes of knowledge or solving complex subproblems
more rapidly and reliably than humans. Nevertheless,
the DSS emphasis is definitely on supporting decisions
that its users regard as less than fully structured. Ulti-
mately, the purpose of a DSS is to help a decision
maker manage knowledge. A DSS accepts, stores, uses,
derives, and presents knowledge pertinent to the de-
cisions being made. Its capabilities are defined by the
types of knowledge with which it can work, the ways in
which it can represent these various types of knowl-
edge, and its skills in processing these representations.

A. DSS Forerunners

One way to appreciate the characteristics of a DSS is
to compare and contrast them with traits of two other
major types of business computing systems: data pro-
cessing systems and management information systems
(MIS). Both predate the advent of computer-based
decision support systems. All three share the trait of
being concerned with record keeping. On the other
hand, the three kinds of business computing systems
differ in various ways, because each serves a different
purpose in the management of an organization’s
knowledge resources

In the 1950s and 1960s, data processing (DP) sys-
tems dominated the field of business computing.
Their main purpose was and is to automate the han-
dling of large numbers of transactions. At the heart of
a DP system lies a body of descriptive knowledge (i.e.,
data), which is a computerized record of what is
known as a result of various transactions having hap-
pened. In addition, a DP system endows the computer
with two major abilities related to this stored data:
record keeping and transaction generation. The first
enables the computer to keep the records up to date
in light of incoming transactions. The second ability
is concerned with the computerized production of
outgoing transactions based on the stored descriptive
knowledge, transmitted to such targets as customers,
suppliers, employees, or governmental regulators. Ad-
ministrators of a DP system are responsible for seeing
that record keeping and transaction generation abili-
ties are activated at proper times.

Unlike a DP system, the central purpose of MIS was
and is to provide managers with periodic reports that
recap certain predetermined aspects of an organiza-
tion’s past operations. Giving managers regular snap-
shots of what has been happening in the organization

helps them in controlling their operations. Whereas
DP is concerned with transforming transactions into
records and generating transactions from records, the
MIS concern with record keeping focuses on using
this stored descriptive knowledge as a base for gener-
ating recurring standard reports. An MIS department
typically is responsible for development, operation,
and administration of DP systems and the MIS.

Information contained in standard reports from an
MIS certainly can be factored into decision-making
activities. When this is the case, an MIS could be fairly
regarded as a kind of DSS. However, the nature of
support it provides is very limited due to several fac-
tors: its reports are predefined, they tend to be issued
periodically, and they are based only on descriptive
knowledge. The situation surrounding a decision
maker can be very dynamic. Except for the most struc-
tured kinds of decisions, information needs can arise
unexpectedly and change more rapidly than an MIS
can be built or revised by the MIS department.

Even when some needed information exists in a
stack of reports accumulated from an MIS, it may be
buried within other information held by a report,
scattered across several reports, not presented in a
fashion that is most helpful to the decision maker, or
in need of further processing. Report generation by
an MIS typically follows a set schedule. However, de-
cisions that are not fully structured tend to be re-
quired at irregular intervals or unanticipated times.
Knowledge needed for these decisions should be avail-
able on an ad hoc, spur-of-the-moment, basis. An-
other limit on an MIS’s ability to support decisions
stems from its exclusive focus on managing descrip-
tive knowledge. Decision makers frequently need to
manage procedural and/or reasoning knowledge as
well. They need to integrate the use of these kinds of
knowledge with ordinary descriptive knowledge.

B. DSS Traits and Benefits

Ideally, a decision maker should have immediate, fo-
cused, clear access to whatever knowledge is needed on
the spur of the moment in coping with semistructured
or unstructured decisions. The pursuit of this ideal sep-
arates DSS from their DP and MIS ancestors and sug-
gests traits we might expect to observe in a DSS:

1. A DSS includes a body of knowledge that
describes some aspects of the decision-maker’s
world, may specify how to accomplish various
tasks, and may indicate what conclusions are valid
in various circumstances.

556 Decision Support Systems

2. A DSS has an ability to acquire and maintain
descriptive knowledge and possibly other kinds of
knowledge as well.

3. A DSS has an ability to present knowledge on an
ad hoc basis in various customized ways as well as
in standard reports.

4. A DSS has an ability to select any desired subset
of stored knowledge for either presentation or
for deriving new knowledge in the course of
problem recognition and/or problem solving.

5. A DSS can interact directly with a decision maker
or a participant in a decision maker in such a way
that the user has flexibility in choosing and
sequencing knowledge management activities.

These traits combine to amplify a decision maker’s
knowledge-management capabilities and loosen cog-
nitive, temporal, and economic constraints.

The notion of DSSs arose in the early 1970s. Within
a decade, each of the traits had been identified as im-
portant and various DSSs were proposed or imple-
mented for specific decision-making applications. By
the late 1970s new technological developments were
emerging that proved to have a tremendous impact
on the DSS field and the popularization of DSSs in
the 1980s and beyond: microcomputers, electronic
spreadsheets, management science packages, and ad
hoc query interfaces.

Specific benefits realized from a particular DSS de-
pend on the nature of the decision maker and the de-
cision situation. Potential kinds of DSS benefits in-
clude the following:

1. In a most fundamental sense, a DSS augments
the decision maker’s own innate knowledge
management abilities. It effectively extends the
decision maker’s capacity for representing and
processing knowledge in the course of
manufacturing decisions.

2. A decision maker can have the DSS solve problems
that the decision maker alone would not even
attempt or that would consume a great deal of
time due to their complexity and magnitude.

3. Even for relatively simple or structured problems
encountered in decision making, a DSS may be
able to reach solutions faster and/or more
reliably than the decision maker.

4. Even though a DSS may be unable to solve a
problem facing the decision maker, it can be
used to stimulate the decision maker’s thoughts
about the problem. For instance, the decision
maker may use the DSS for exploratory browsing,
hypothetical analysis, or getting advice about
dealing with the problem.

5. The very activity of constructing a DSS may reveal
new ways of thinking about the decision domain
or even partially formalize various aspects of
decision making.

6. A DSS may provide additional compelling evidence
to justify a decision-maker’s position, helping the
decision maker secure agreement or cooperation
of others. Similarly, a DSS may be used by the
decision maker to check on or confirm the results
of problems solved independently of the DSS.

7. Due to the enhanced productivity, agility, or
innovation a DSS fosters within an organization, it
may contribute to an organization’s competitiveness.

Because no one DSS provides all these benefits to
all decision makers in all decision situations, there are
frequently many DSSs within an organization helping
to manage its knowledge resources. A particular deci-
sion maker may make use of several DSSs within a
single decision-making episode or across different
decision-making situations.

C. The Generic Architecture

Generally, DSS can be defined in terms of four es-
sential aspects: a language system (LS), a presentation
system (PS), a knowledge system (KS), and a prob-
lem-processing system (PPS). The first three are sys-
tems of representation. An LS consists of all messages
the DSS can accept. A PS consists of all messages the
DSS can emit. A KS consists of all knowledge the DSS
has stored and retained. By themselves, these three
kinds of systems can do nothing. They simply repre-
sent knowledge, either in the sense of messages that
can be passed or representations that have been ac-
cumulated for possible processing. These representa-
tions are used by the fourth element: the PPS, which
is the active part of a DSS, the DSS’s software engine.
As its name suggests, a PPS is what tries to recognize
and solve problems during the making of a decision.

Figure 1 illustrates how the four subsystems of a
DSS are related to each other and to a DSS user. Us-
ing its knowledge-acquisition ability, a PPS acquires
knowledge about what a user wants the DSS to do or
what is happening in the surrounding world. Such
knowledge is carried in LS messages that serve as user
requests or system observations. The PPS may draw
on KS contents when using its acquisition ability. The
knowledge-acquisition in the KS or an interpreted
message can cause the PPS’s other abilities to spring
into action. When a user’s request is for the solution
to some problem, the knowledge-selection/derivation

Decision Support Systems 557

ability comes into play. The PPS selectively recalls or
derives knowledge that forms a solution. When a user’s
request is for clarification of a prior response or for
help in stating a request, the selection/derivation abil-
ity may or may not be exercised, depending on
whether it needs the KS to produce the content of its
response. The PPS can issue a response to the user, by
choosing to present one of the PS elements. The pre-
sentation choice is determined by the processing, of-
ten drawing on KS contents.

This simple architecture captures the fundamental
aspects common to all DSSs. To fully appreciate the na-
ture of any particular DSS, one must know about re-
quests that make up its LS, responses that make up its
PS, knowledge representations allowed or existing in
its KS, and knowledge-processing capabilities of its PPS.

D. Tools for Developing DSSs

Development tools are essential for building DSSs. The
tools chosen for developing a particular DSS strongly
influence not only the development process, but also
the features that the resultant DSS can offer to a user.

A particular tool is oriented toward one or more knowl-
edge-management techniques (e.g., text, spreadsheet,
database, solver, or rule management). Conversely, a
particular technique (in its many possible variants) is
offered by more than one development tool. Thus,
tools can be categorized in terms of the knowledge-
management techniques they furnish. A spreadsheet
tool offers some variant of the spreadsheet technique
for knowledge management, a database tool provides
some variant of a database technique for managing
knowledge, etc. Although many tools tend to empha-
size one technique or another, vestiges of additional
techniques are often apparent. Some tools furnish
healthy doses of multiple techniques.

Tools can play different roles in a DSS develop-
ment process. An intrinsic tool (e.g., Microsoft’s Ex-
cel software) serves as the PPS of the developed DSS
and tends to furnish a ready-made LS and PS. With
such a tool, DSS development becomes a matter of
populating the KS with representations that the tool
is able to process. Because they do not require the
programming of a PPS, intrinsic tools are widely used
by nontechnical persons to build their own DSSs. A
partially intrinsic tool furnishes part of the DSS’s prob-

558 Decision Support Systems

Figure 1 A generic framework of decision support systems.

lem processor. The database control system used to
operate on database repositories is an example of
such a tool. An extrinsic tool does not participate in
a PPS, but helps the developer produce all or part of
the PPS or to create some portion of the KS contents.
Tools in these two categories are of interest primarily
to experienced or professional developers.

Another angle from which to examine develop-
ment tools involves the types of integration they per-
mit within DSSs. This approach is relevant whenever
multiple knowledge-management techniques are em-
ployed within the bounds of a single DSS. These tech-
niques may be integrated within a single tool or across
multiple tools. In the former case, nested and syner-
gistic integration are distinct possibilities. In the latter
case, integration can be via direct format conversion,
clipboard, or common format approaches.

IV. CLASSIFICATION OF
DECISION SUPPORT SYSTEMS

Decision support systems can be classified in terms of
the knowledge-management techniques used to de-
velop them. In many cases, the focus is on a single
technique, but compound DSSs employing multiple
techniques are also common. A different kind of clas-
sification distinguishes DSSs that incorporate artificial
intelligence methods from those that do not. Yet an-
other is concerned with DSSs for multiparticipant de-
cision makers.

A. Technique-Oriented Classes

One way of looking at KS contents and PPS abilities
is in terms of the knowledge-management techniques
employed by a DSS. This gives rise to many special
cases of the generic DSS architecture, each charac-
terizing a certain class of DSSs by restricting KS con-
tents to representations allowed by a certain knowl-
edge-management technique and restricting the PPS
abilities to processing allowed by that technique. The
result is a class of DSSs with the generic traits sug-
gested in Fig. 1, but specializing in a particular tech-
nique for representing and processing knowledge.

1. Text-Oriented DSSs

For centuries, decision makers have used the contents
of books, periodicals, and other textual repositories
of knowledge as raw materials in the making of deci-
sions. The knowledge embodied in text might be de-

scriptive, such as a record of the effects of similar de-
cision alternatives chosen in the past or a description
of an organization’s business activities. It could be
procedural knowledge, such as a passage explaining
how to calculate a forecast or how to acquire some
needed knowledge. The text could embody reasoning
knowledge, such as rules indicating likely causes of or
remedies for an unwanted situation. Whatever its type,
the decision maker searches and selects pieces of text
to become more knowledgeable, to verify impressions,
or to stimulate ideas.

By the 1980s, text management had emerged as an
important, widely used computerized means for rep-
resenting and processing pieces of text. Although its
main use has been for clerical activities, it can also be
of value to decision makers. A text-oriented DSS has
a KS comprised of textual passages of potential inter-
est to a decision maker. The PPS consists of software
that performs various manipulations on contents of
any of the stored text. It may also involve software that
can help a user in making requests. The LS contains
requests corresponding to the various allowed ma-
nipulations. It may also contain requests that let a
user ask for assistance covering some aspect of the
DSS. The PS consists of images of stored text that can
be projected on a console screen, plus messages that
can help the decision maker use the DSS.

When a DSS is built with a hypertext technique,
each piece of text in the KS is linked to other pieces
of text that are conceptually related to it. There are
additional PPS capabilities allowing a user to request
the traversal of links. In traversing a link, the PPS
shifts its focus (and the user’s focus) from one piece
of text to another. Ad hoc traversal through associ-
ated pieces of text continues at a user’s discretion.
The benefit of this hypertext kind of DSS is that it
supplements a decision maker’s own capabilities by
accurately storing and recalling large volumes of con-
cepts and connections that he or she is not inclined
personally to memorize. The World Wide Web fur-
nishes many examples of hypertext DSSs.

2. Database-Oriented DSSs

Another special case of the DSS framework consists of
those systems developed with a database (e.g., relational)
technique of knowledge management. These have been
used since the early years of the DSS field. Like text-
oriented DSSs, they aid decision makers by accurately
tracking and selectively recalling knowledge that satisfies
a particular need or serves to stimulate ideas. However,
the knowledge handled by a database-oriented DSS tends
to be primarily descriptive, rigidly structured, and often

Decision Support Systems 559

extremely voluminous. The computer files that make up
its KS collectively are called a database. The PPS has
three kinds of software: a database control system, an in-
teractive query processing system, and various custom-
built processing systems. One, but not both, of the lat-
ter two could be omitted from the DSS.

The database control system consists of capabilities
for manipulating database structures and contents.
These capabilities are used by the query processor
and custom-built processors in their effort at satisfy-
ing user requests. The query processing system is able
to respond to certain standard types of requests for
data retrieval (and perhaps for help). These requests
constitute a query language and make up part of the
DSS’s language system. Upon receiving an LS request,
the query processor issues an appropriate sequence
of commands to the database control system, causing
it to extract the desired values from the database.
These values are then presented in some standard list-
ing format for the user to view. Users may prefer to
deal with custom-built processors rather than stan-
dard query processors (e.g., faster responses, cus-
tomized presentation of responses, more convenient
request language). Such a processor is often called an
application program, because it is a program that has
been developed to meet the specific needs of a mar-
keting, production, financial, or other application.

3. Spreadsheet-Oriented DSSs

In the case of a text-oriented DSS, procedural knowl-
edge can be represented in textual passages in the KS.
About all the PPS can do with such a procedure is dis-
play it to the user and modify it at the user’s request.
It is up to the user to carry out the procedure’s in-
structions, if desired. In the case of a database-
oriented DSS, extensive procedural knowledge is not
easily represented in the KS. However, the application
programs that form part of the PPS can contain in-
structions for analyzing data retrieved from the data-
base. By carrying out these procedures the PPS can
show the user new knowledge (e.g., a sales forecast)
that has been derived from KS contents (e.g., records
of past sales trends). But, because they are part of the
PPS, a user cannot readily view, modify, or create such
procedures, as can be done in the text-oriented case.

Using the spreadsheet technique of knowledge
management, a DSS user not only can create, view,
and modify procedural knowledge held in the KS, but
also can tell the PPS to carry out the instructions they
contain. This gives DSS users much more power in
handling procedural knowledge than is achievable
with either text management or database manage-

ment. In addition, spreadsheet management is able to
deal with descriptive knowledge. However, it is not
nearly as convenient as database management in han-
dling large volumes of descriptive knowledge, nor
does it allow a user to readily represent and process
data in textual passages or hypertext documents.

Spreadsheet-oriented DSSs are in widespread use
today, being especially useful for studying implica-
tions of alternative scenarios. The KS of such a DSS is
composed of spreadsheet files, each housing a spread-
sheet. Each spreadsheet is a grid of cells, each having
a unique name based on its location in the grid. In
addition to its name, each cell can have a definition
and a value. The definition can be a constant (i.e., de-
scriptive) or a formula (i.e., procedural). The PPS al-
lows a user to change cell definitions, calculate cell
values, view those values, and customize the LS and
PS (e.g., via macros).

4. Solver-Oriented DSSs

Another special class of DSS is based on the notion of
solvers. A solver is a procedure consisting of instruc-
tions that a computer can execute in order to solve
any member of a particular class of problems. For in-
stance, one solver might be able to solve depreciation
problems while another solves portfolio analysis prob-
lems, and yet another solves linear optimization prob-
lems. Solver management is concerned with the stor-
age and use of a collection of solvers. A solver-oriented
DSS is frequently equipped with more than one solver,
and the user’s request indicates which is appropriate
for the problem at hand. The collection of available
solvers is often centered around some area of prob-
lems such as financial, economic, forecasting, plan-
ning, statistical, or optimization problems.

There are two basic approaches for incorporating
solvers into a DSS: fixed and flexible. In the fixed ap-
proach, solvers are part of the PPS, which means that
a solver cannot be easily added to or deleted from the
DSS nor readily modified. The set of available solvers
is fixed, and each solver in that set is fixed. About all
a user can choose to do is execute any of the PPS
solvers. This ability may be enough for many users’
needs. However, other users may need to add, delete,
revise, and combine solvers over the lifetime of a DSS.
This flexibility is achieved when solvers are treated as
pieces of knowledge in the KS. With this flexible ap-
proach, the PPS is designed to manipulate (e.g., cre-
ate, delete, update, combine, coordinate) solvers ac-
cording to user requests.

In either case, the KS of a solver-oriented DSS is
typically able to hold data sets. A data set is a parcel

560 Decision Support Systems

of descriptive knowledge that can be used by one or
more solvers in the course of solving problems. It usu-
ally consists of groupings or sequences of numbers or-
ganized according to conventions required by the
solvers. For example, PPS editing capabilities may be
used to create a data set composed of revenue and
profit numbers for each of the past 15 years. This data
set might be used by a statistics solver to give the av-
erages and standard deviations. The same data set
might be used by a forecasting solver to produce a
forecast of next year’s profit, assuming a certain rev-
enue level for the next year.

In addition to data sets, it is not uncommon for a
solver-oriented DSS to hold problem statements and
report format descriptions in its KS. Because the prob-
lem statement requests permitted by the LS can be
very lengthy, fairly complex, and used repeatedly, it
may be convenient for a user to edit them (i.e., cre-
ate, recall, revise them), much like pieces of text.
Each problem statement indicates the solver and
mode of presentation to be used in displaying the so-
lution. The latter may designate a standard kind of
presentation or a customized report. The format of
such a report is knowledge the user specifies and
stores in the KS.

5. Rule-Oriented DSSs

The knowledge-management technique that involves
representing and processing rules evolved within the
field of artificial intelligence, giving computers the
ability to manage reasoning knowledge. A rule has
the basic form: If (premise), Then (conclusion), Be-
cause (reason). A rule says that if the possible situation
can be determined to exist, then the indicated actions
should be carried out for the reasons given. In other
words, if the premise is true, then the conclusion is
valid. The KS of a rule-oriented DSS holds one or
more rule sets. Each rule set pertains to reasoning
about what recommendation to give a user seeking
advice on some subject. It is common for the KS to
also contain descriptions of the current state of af-
fairs, which can be thought of as values that have been
assigned to variables.

The problem processor for a rule-oriented DSS
uses logical inference (i.e., reasons) with a set of rules
to produce advice sought by a user. The problem
processor examines pertinent rules in a rule set, look-
ing for those whose premises are true for the present
situation. This situation is defined by current state de-
scriptions and the user’s request for advice. When the
PPS finds a true premise, it takes the actions specified
in that rule’s conclusion. This action sheds further

light on the situation, which allows premises of still
other rules to be established as true, causing actions
in their conclusions to be taken. Reasoning continues
in this way until some action is taken that yields the
requested advice or the PPS gives up due to insuffi-
cient knowledge in its KS. The PPS also has the abil-
ity to explain its behavior both during and after con-
ducting the inference.

B. Compound DSS

Each of the foregoing special cases of the generic DSS
framework supports a decision maker in ways that
cannot be easily replicated by a DSS oriented toward
a different technique. If a decision maker would like
the kinds of support offered by multiple knowledge-
management techniques, the options are use multiple
DSSs (each oriented toward a particular technique)
or a compound DSS which is a single DSS that
encompasses multiple techniques. Just like a single-
technique DSS, a compound DSS is a special case of
the generic framework shown in Fig. 1. Its PPS is
equipped with the knowledge-manipulation abilities
of two or more techniques and its KS holds knowl-
edge representations associated with each of these.

An oft-cited type of compound DSS combines the
database and flexible-solver techniques into a single
system in which the KS is comprised of a “model base”
and a database. Here, model base is the name given
to the solver modules existing in a KS (i.e., proce-
dural knowledge). The notion of data sets in a KS is
replaced by a formal database (i.e., descriptive knowl-
edge). Correspondingly, the PPS includes “model
base-management system” software for manipulating
solver modules in the model base portion of the KS
by selecting those pertinent to a problem at hand and
by executing them to derive new knowledge. This PPS
also includes database management system software
for manipulating data in the form of records held by
the database portion of the KS by selecting what data
are to be used by solver modules for the problem at
hand. A “dialog generation and management system”
is the name given to the PPS’s knowledge acquisition
and presentation abilities; it is concerned with inter-
preting user requests, providing help, and presenting
responses to a user.

A widely used kind of compound DSS combines
database and fixed-solver techniques. The database
(relational or multidimensional in structure) may be
a repository of real-time information or a data ware-
house, which is an archive of data extracted from
multiple MISs and DSSs. Warehouse contents are not

Decision Support Systems 561

updated, but rather replaced periodically with a new
composite of extracted data. Aside from offering ad
hoc query facilities, the PPS had a built-in portfolio of
solvers. Execution of these solvers is called on-line an-
alytical processing (OLAP).

C. Artificially Intelligent DSSs

Artificially intelligent DSSs are systems that make use
of computer-based mechanisms from the field of arti-
ficial intelligence (AI). Researchers in the AI field en-
deavor to make machines such as computers capable
of displaying intelligent behavior, or behavior that
would reasonably be regarded as intelligent if it were
observed in humans. A cornerstone of intelligence is
the ability to reason. This ability, in turn, represents a
principal area of research in the AI field, concerned
with the discovery of practical mechanisms that en-
able computers to solve problems by reasoning. An
example is the inference engine, which lies at the
core of the rule-management technique. Other AI ad-
vances finding their way into DSS implementations in-
clude natural language processing, machine learning,
pattern synthesis, and pattern recognition. An exam-
ple of the latter is data mining, which attempts to dis-
cover previously undetected patterns in large reposi-
tories of data (e.g., a data warehouse). Whereas OLAP
is directed toward deriving knowledge that satisfies
some goal, data mining is more exploratory in its at-
tempt to discover knowledge not previously conceived.

D. Multiparticipant DSS

Decision support systems that support multiple per-
sons jointly involved in making a decision or a series
of interrelated decisions are called multiparticipant
DSSs (MDSSs). They are subject to all the generic fea-
tures of DSS described previously. However, they have
added features, making them suitable for supporting
participants organized according to some structure of
interrelated roles and operating according to some
set of regulations. Multiparticipant DSS fall into two
major categories: group decision support systems
(GDSS) and organizational decision support systems
(ODSS).

A GDSS is devised to support situations involving
little in the way of role specialization, communication
restrictions, or formal authority differences among
participants in a decision. An ODSS supports a deci-
sion situation in which participants play diverse roles,
do not have completely open communication chan-

nels, and have different degrees of authority over the
decisions. Cutting across the GDSS and ODSS cate-
gories is another class of systems known as negotia-
tion support systems. A negotiation is an activity in
which participants representing distinct (often con-
flicting) interests or viewpoints attempt to reach an
agreement (i.e., joint decision) about some contro-
versial issue. A negotiation support system (NSS) is in-
tended to help the participants achieve an agreement.

1. The Generic MDSS Architecture

As Fig. 2 shows, an MDSS has an LS, PPS, KS, and PS.
Several kinds of users can interact with an MDSS: par-
ticipants in the decision maker being supported, an
optional facilitator who helps the participants make
use of the MDSS, optional external knowledge sources
that the MDSS monitors or interrogates in search of
additional knowledge, and an administrator who is re-
sponsible for assuring that the system is properly de-
veloped and maintained. The MDSS itself is generally
distributed across multiple computers linked into a
network. That is, the PPS consists of software on mul-
tiple computers. The associated KS consists of a cen-
tralized knowledge storehouse and/or decentralized
KS components affiliated with many computers.

Public LS messages are the kind that any user is
able to submit as a request to the MDSS. A private LS
message is one that only a single, specific user knows
how to submit to the MDSS. Semiprivate LS messages
are those that can be submitted by a subset of users.
When an MDSS does not provide a strictly public LS,
some users are allowed to issue requests that are off
limits to others or able to make requests in ways un-
known to others.

Similarly, a presentation system can have two kinds
of messages: public and private. Public PS messages
are those that do or can serve as responses to any
user. A private PS message is a response that can go
to only a single, specific user. A semiprivate PS mes-
sage is a response available to some users. An MDSS
that has only a public PS presents the same kind of
appearances to all users. When private or semiprivate
messages are permitted in a PS, some users are al-
lowed to get knowledge that is off limits to others or
able to see it presented in ways unavailable to others.
A PS response can be triggered by a request from a
user or by the PPS’s recognition that some situation
exists (e.g., in the KS or in the environment).

Figure 2 depicts a threefold classification of knowl-
edge: knowledge about the system itself, knowledge
about those with whom the system is related, and
knowledge about the decision domain. Shown in the

562 Decision Support Systems

upper right corner of Fig. 2, system knowledge in-
cludes knowledge about the particular infrastructure
of which the MDSS is the technological part (i.e.,
knowledge about participant roles and relationships
with which the MDSS must be concerned, plus knowl-
edge of the regulations that it must follow, facilitate,
or enforce), and knowledge about technical specifics
of the computers involved and their network linkages.
The remainder of the KS in Fig. 2 is partitioned into
two vertical slices: domain knowledge shown on the
left and relational knowledge shown on the right. Each
of these categories can have public and private parts.
Domain knowledge pertains to the subject matter
about which decisions are to be made. It can involve

any mix of knowledge types (descriptive, procedural,
reasoning). Some of this is public—available to be
shared by all interested users. Other domain knowl-
edge may be private, being accessible only to a partic-
ular individual user. Relational knowledge can also be
public or private. It is concerned with characterizing
the users of the MDSS, as distinct from roles they fill.

Observe that the problem-processing abilities identi-
fied in Fig. 2 include all those shown in Fig. 1: knowl-
edge acquisition, knowledge selection or deviation, and
knowledge presentation. Depending on the MDSS im-
plementation, each of these abilities can be exercised
by a user doing some individual work and/or by all par-
ticipants doing some collective work. As an example of

Decision Support Systems 563

Participant

Facilitator

External
knowledge

sources

Administrator

Public

Public

Presentation
system

Domain
knowledge

Relational
knowledge

Knowledge-
presentation

ability

Participant
coordination

ability

Knowledge-
selection/
derivation

ability

Knowledge-
acquisition

ability

Private

Private

A Multiparticipant Decision Support System

Languege
system

Problem processing
system

Knowledge
system

For participant 1

For participant 2

For participant 3

For facilitator

Request

Response

Shared
Knowledge
for public use

Knowledge
for private use•

•
•

•
•
•

Infrastructure
knowledge
• Roles
• Relationships
• Regulations
• Technology

System
knowledge

Figure 2 A generic MDSS architecture.

the former, a participant may work to produce a fore-
cast as the basis for an idea to be shared with other par-
ticipants. As an example of the latter, participants may
jointly request the MDSS to analyze an alternative with
a solver or provide some expert advice.

The problem processor for an MDSS can have a
participant-coordination ability. The coordination
ability embodies the technological support for an or-
ganizational infrastructure’s regulations. It helps reg-
ulate the filling of roles, behaviors of roles, and rela-
tionships between roles. It draws heavily on the KS’s
system knowledge; if there is no or little knowledge,
the coordination behaviors are programmed directly
into the PPS. In the latter case, the PPS rigidly sup-
ports only one approach to coordination. In the for-
mer case, it begins to approach the ideal of a gener-
alized problem processor—serving as a general-
purpose tool for building a wide variety of MDSSs in-
volving diverse coordination mechanisms. With such
a tool, development of each MDSS is accomplished by
specifying the coordination mechanism (along with
other knowledge) in the KS.

2. GDSS

Group decision support systems have been the most
extensively studied type of MDSS. They are a response
to the perceived need for developing better ways to
aid the group decision processes that are so com-
monplace today. The objectives of a GDSS are to re-
duce the losses that can result from working as a
group, while keeping (or enhancing) the gains that
group work can yield. There is a growing body of em-
pirical research that has examined the effects of GDSS
use on group performance. In broad terms, GDSS ef-
fects appear to depend both on situational factors
and specific aspects of the technology itself.

Three prominent situational factors are group size,
task complexity, and task type. Research results con-
sistently show that a GDSS increases group perfor-
mance (versus not using a GDSS) more for larger
groups than for smaller ones. Satisfaction of partici-
pants also tends to be greater as group size increases.
There is evidence suggesting that GDSSs may be more
appropriate for relatively complex decision tasks. For
decision-related tasks of generating ideas, knowledge,
alternatives, etc., GDSSs have been found to increase
greatly participant performance and satisfaction.

Researchers have also studied factors related to
GDSS technology itself: anonymity, parallelism, struc-
turing, and facilitation. The evidence is split on
whether the participant anonymity allowed by a GDSS

yields better performance than lack of anonymity. It
appears that the value of anonymity depends on the
task being done and on the specific participants in-
volved. Research has shown that enabling partici-
pants to work in parallel is a major benefit of GDSS
technology. Investigation of structuring has found
that group performance generally increases when a
GDSS structures participant interactions. However,
the specific structuring used must fit the situation;
otherwise performance is impaired. Studies of using
a facilitator versus not using one with a GDSS indi-
cate that outcomes are better with a facilitator. Re-
searchers have also found that repeated participant
experiences with a GDSS tend to yield increased
group performance.

3. ODSS

The notion of an ODSS has been recognized for a
long time in the DSS field. One early framework
viewed an organizational decision maker as a knowl-
edge processor having multiple human and multiple
computer components, organized according to roles
and relationships that divided their individual labors
in alternative ways in the interest of solving a decision
problem facing the organization. Each component
(human or machine) is an intelligent processor capa-
ble of solving some class of problems either on its own
or by coordinating the efforts of other components—
passing messages to them and receiving messages from
them. The key ideas in this early framework for ODSS
are the notions of distributed problem solving by hu-
man and machine knowledge processors, communi-
cation among these problem solvers, and coordina-
tion of interrelated problem-solving efforts in the
interest of solving an overall decision problem.

Research has identified three main themes that
ODSSs tend to have in common. First, an ODSS in-
volves computer-based technologies and may involve
communication technology as well. Second, an ODSS
accommodates users who perform different organiza-
tional functions and who occupy different positions
in the organization’s hierarchic levels. Third, an ODSS
is primarily concerned with decisions that cut across
organizational units or impact corporate issues. This
third theme should not be regarded as a necessary
condition for all ODSSs. However, it is particularly
striking in the case of enterprise resources planning
(ERP) systems. Although primarily touted as transac-
tion handling and reporting systems, ERP systems
have been shown by recent research to have substan-
tial decision support benefits.

564 Decision Support Systems

V. CONCLUSION

Over the past half century, advances in computer-
based technology have had an important impact on
the way in which organizations operate. In the new
millennium, continuing advances will revolutionize
the way in which we think about organizations and
work. The very nature of organizations is changing
from an emphasis on working with materials to an
emphasis on working with knowledge. Work with ma-
terial goods will increasingly be seen as a secondary
or almost incidental aspect of an organization’s mis-
sion. It will be little more than an automatic conse-
quence of knowledge processing and resultant deci-
sions. Furthermore, managing an organization’s
human and financial resources will also become ex-
ercises in knowledge management.

The knowledge-management efforts of tomorrow’s
knowledge workers will be aided and supported by
computers in ways described here, as well as in ways
just beginning to be apparent. Computer coworkers
will not only relieve us of the menial, routine, and
repetitive, they will not only be reactive, responding
to user’s explicit requests, but they will also actively
recognize needs, meet some of those needs on their
own, stimulate insights, offer advice, and facilitate
knowledge flows. They will highly leverage an organi-
zation’s uniquely human skills, such as intuition, cre-
ative imagination, value judgment, and the cultivation
of effective interpersonal relationships.

The knowledge-management perspective of deci-
sion making and decision support is symptomatic of a
major shift in the way in which organizations are
viewed. This shift is still in a relatively early stage, but
it will strongly affect the management of organiza-
tions, decision-manufacturing processes, decision
support needs, and even the fabric of society. In
a most fundamental sense, organizations will in-
creasingly be regarded as joint human-computer
knowledge-processing systems engaged in rich pat-
terns of decision-making episodes. Human partici-
pants in these systems, from the most highly skilled to
the least skilled positions, are knowledge workers
whose decisional efforts will be supported by the in-
creasingly powerful knowledge management capabil-
ities of their computer-based counterparts: decisions
support systems.

ACKNOWLEDGMENT

Portions of this article have been reproduced by permission
from Decision Support Systems: A Knowledge-Based Approach by
Holsapple and Whinston, 1996, West Publishing Company.

SEE ALSO THE FOLLOWING ARTICLES

Data, Information, and Knowledge • Decision-Making Ap-
proaches • Decision Theory • Executive Information Systems •
Expert System Construction • Group Support Systems • Hybrid
Systems • Knowledge Acquisition • Knowledge Management •
Strategic Planning

BIBLIOGRAPHY

Blanning, R., et al. (1992). Model management systems. Infor-
mation systems and decision processes (E. Stohr and S. Konsyn-
ski, eds.). Los Alamites, CA: IEEE Computer Society Press.

Bonczek, R. H., Holsapple, C. W., and Whinston, A. B. (1981).
Foundations of decision support systems. New York: Academic Press.

Dos Santos, B., and Holsapple, C. (1989). A framework for de-
signing adaptive DSS interfaces. Decision Support Systems, Vol.
5, No. 1.

George, J. F. (1991). The conceptualization and development
of organizational decision support systems. Journal of Man-
agement Information Systems, Vol. 8, No. 3.

Holsapple, C. W. (1995). Knowledge management in decision mak-
ing and decision support. Knowledge and Policy, Vol. 8, No. 1.

Holsapple, C. W., Joshi, K. D., and Singh, M. (2000). Decision
support applications in electronic commerce. Handbook of
electronic commerce (M. Shaw, R. Blanning, T. Strader, and
A. Whinston, eds.), Berlin: Springer-Verlag.

Holsapple, C. W., and Whinston (1987). Knowledge-based or-
ganizations. The Information Society, Vol. 5, No. 2.

Holsapple, C. W., and Whinston, A. B. (1996). Decision support
systems: A knowledge-based approach. St. Paul, MN: West Pub-
lishing Company.

Jacob, V., and Pirkul H. (1992). Organizational decision sup-
port systems. International Journal of Man-Machine Studies,
Vol. 36, No. 12.

Jessup, L.. and Valacich, J., eds. (1993). Group support systems:
New perspectives. New York: Macmillan.

Keen, P. G. W., and Scott Morton, M. S. (1978). Decision support sys-
tems: An organizational perspective. Reading, MA: Addison-Wesley.

Nunamaker, J., Jr. et al. (1989). Experiences at IBM with group
support systems. Decision Support Systems, Vol. 5, No. 2.

Simon, H. A. (1960). The new science of management decision. New
York: Harper & Row.

Sprague, R. H., Jr., and Carlson, E. D. (1982). Building effective
decision support systems. Englewood Cliffs, NJ: Prentice Hall.

Decision Support Systems 565

Decision Theory
Herbert A. Simon
Carnegie Mellon University

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 567

I. APPROACHES TO DECISION MAKING
II. ELEMENTS OF A THEORY OF CHOICE: THE ANATOMY OF

DECISION MAKING
III. NORMATIVE THEORIES OF DECISION

IV. THE DECISIONS OF BOUNDEDLY RATIONAL ACTORS
V. DECISION THEORIES INCORPORATING LEARNING

VI. DECISION MAKING IN ORGANIZATIONS
VII. CONCLUSION

GLOSSARY

alternative generation Creating different potential
courses of action among which a choice may be
made.

bounded rationality Behavior that is goal-oriented,
but only within the limits of human knowledge and
of ability to predict and compute the consequences
of particular courses of action.

game theory Theory of rational decisionmaking with
multiple actors whose goals may coincide or con-
flict or both, and who have complete or incom-
plete information about each other’s actions and
their consequences.

heuristic search Search for good courses of action
that examines only a few possible paths, choosing
these on the basis of previous experience or by
rules of thumb that have been effective in finding
good (not necessarily optimal) outcomes.

intuition in decision making Recognizing patterns
that give memory access to information that is use-
ful for searching selectively for good (satisficing)
alternatives.

multi-agent decision making Decision making that in-
volves the interaction and collaboration of several
(often many) people.

optimizing Finding the objectively best alternative in
a situation, according to some criterion. In com-
plex real life situations, people can seldom find the
optimum, but must satisfice.

organizational identification Decision making aimed
at furthering the organization’s goals, often against
self-interest. Identification derives from both cog-

nition (focus of attention and information envi-
ronment) and emotion (organizational loyalty.)

rationality Choice of behavior that is appropriate to
specified criteria (goals). It may be appropriate to
the real-world situation (substantively rational) or
to the situation as perceived by the actor (proce-
durally and boundedly rational).

satisficing Choice of action that meets criteria judged
by the actor to satisfy aspirations and to be attain-
able, but that does not claim to be the best of all
objectively possible actions.

DECISION THEORY is concerned with the ways in
which people choose courses of action, or ought (ra-
tionally) to choose them; that is, it describes and ex-
plains human decision-making processes, and it eval-
uates the rationality of the processes and the goodness
of the outcomes. Rationality refers to the appropri-
ateness of the actions chosen to the goals toward
which they are directed. This article will examine both
empirical and normative theories of decision.

I. APPROACHES TO DECISION MAKING

“Decision” and “choice” may refer only to the selec-
tion of an action from a given set of alternatives, or
may also embrace the discovery of the alternatives
from which to choose. Observation of decision
processes in daily life and in organizations reveals that
in making decisions, especially the important ones,
most of the thought and effort goes into finding and

improving alternatives. This article considers how al-
ternatives for decision are identified as well as how a
choice is made among them.

This article is especially concerned with how the
limits of human knowledge, and the limits of human
ability to search, calculate, and compare affect the
decision-making process. That is, it deals with the
bounded rationality of people amidst the complexity of
real-life decisions.

Section II discusses the components of the
decision-making process and their relations. Section
III reviews major theories of decision that are pri-
marily normative and prescriptive. Section IV exam-
ines theories that mainly describe and explain choice
empirically, with attention to the boundedness of hu-
man rationality. Section V discusses the role of learn-
ing processes in effective decision making.

Section VI examines the decisions made in organi-
zations. The motivations, knowledge, and problem
formulations of decision makers in hierarchical orga-
nizations of the kinds that conduct most economic
and governmental affairs in a modern industrial soci-
ety are greatly influenced by their organizational
environments.

Almost all of the normative theories of Section III
assume that alternatives are given. Theories treated in
Section IV, which also encompass the activity of gen-
erating alternatives, are usually called “problem solv-
ing,” “design,” or even “discovery” theories. These la-
bels disguise, but do not remove, their concern with
decision making.

Research under the explicit label of “decision the-
ory,” has mostly been pursued in economics, statistics,
operations research, and logic; research under the
other labels, and with much more attention to the
limits on human rationality, in cognitive psychology,
marketing, engineering and architectural design, phi-
losophy of science, and computer science. Until quite
recently, there has been very little communication be-
tween these two groups of research communities and
their literatures, an unfortunate chasm that this arti-
cle seeks to bridge.

A. Two Descriptions of Choice

The issues central to human decision making come
sharply into focus when we contrast descriptions that
approach it from opposite poles, one of them situated
in behaviorist psychology, the other in economics
and statistics—behavioral and global descriptions,
respectively.

1. Behavioral Choice Theory

Human behavior, as described by classical psychology,
consists of responses to stimuli. A particular signal to
an organism leads it to behave one way rather than
another. Of course the state of the organism (e.g.,
whether it is hungry and what it knows about finding
food), also affects the response to the stimulus (e.g.,
a sniff of prey). The response is triggered by the com-
bined internal and external signals.

Even an organism with multiple needs, but able
only to take actions for satisfying one need at a time,
can operate rationally to satisfy its many needs with
little more machinery than that just sketched. It re-
quires internal signals (thirst) that are transmitted
when inventories of need-satisfying substances (wa-
ter) are low, external signals that suggest directions of
search for need-satisfying situations, and a mecha-
nism that (1) sustains attention to sequences of acts
aimed at satisfying an active need, and (2) tends to in-
terrupt attention when another urgent need is sig-
naled. A system with these characteristics is rational in
choosing behaviors for surviving over indefinite peri-
ods of time.

The scheme can be elaborated further, for exam-
ple, to a traditional agricultural economy, where little
deliberative choice has to be made even among sow-
ing, cultivating, and harvesting because appropriate
sensory stimuli (seasons, the stages of plant growth)
focus attention at each time on the appropriate goal
and the activities relevant to reaching it.

In all of these scenarios, rationality means selecting
actions that will meet currently signaled needs and
signaling needs to replenish low inventories of the sat-
isfying means. The system may incorporate various
suboptimizations, but different wants are compared
only when there is competition for attention. This
kind of rationality, discussed in Section IV, is usually
called procedural, and reflects the boundedness of hu-
man rationality.

2. Global Choice

At the other extreme, neoclassical economics and
mathematical statistics assume that choice considers
much more than immediate internal and external
stimuli and (formally) treat decision making as choice
among alternative lives. As L. J. Savage, a major early
contributor to this theory, put it: “. . . a person has
only one decision to make in his whole life. He must
decide how to live, and this he might in principle do
once and for all.” This general notion is embedded in

568 Decision Theory

a structure of choice consisting of a utility function
that permits the expected utilities of all possible “lives”
to be compared and the life with highest expected
utility to be chosen.

After making this claim of unbounded global ratio-
nality, Savage does hasten to replace it by the more
modest claim that “. . . some of the individual decision
situations into which actual people tend to subdivide
the single grand decision do recapitulate in micro-
cosm the mechanism of the idealized grand decision.”

Of course, the reason why the global view of ratio-
nality requires all of life to be considered in each de-
cision is that actions today affect the availability not
only of all other present actions, but of future actions
as well. And the reason why this global procedure is
only followed piecemeal, if at all, lies in the bound-
edness of human rationality: the inability of human
beings (with or without computers) to follow it.

Theories of rational decision vary widely in the at-
tention they pay to the interrelatedness of choices at
each moment and over periods of time. To the extent
that they concern themselves with the optimal out-
comes of choice in the real world independently of
realizable choice processes, they are said to describe
substantive rationality.

The theories of Section III are largely theories of
substantive rationality. In actual application, they tend
to be applied to relatively small slices of a life and of
life’s decisions. To the extent that a substantive ratio-
nality model uses simplified submodels of the real world,
and subdivides decisions in such a way as to cut real-
world linkages, as it inevitably must, it provides only one
approximation among many alternatives, becoming in
its actual application another procedural theory.

II. ELEMENTS OF A THEORY OF CHOICE:
THE ANATOMY OF DECISION MAKING

To understand decision making is to understand the
nature and structure of actions, how potential actions
originate, and the criteria of choice among actions. The
examples of the previous section illustrate how wide a
range of possibilities this framework encompasses.

A. The Structure of Actions

A decision theory may deal with single actions, se-
quences of actions, permitting periodic revision, as
new information becomes available, and actions in
environments that contain other goal-oriented agents

(people, animals, or robots). The theory becomes
progressively more complex as it proceeds from each
of these stages to the next.

1. Discrete Decision-Action Sequences

The simplest actions, one-time actions, are carried
out without significant revision during execution.
Even such actions may be complex (e.g., constructing
a building), and arriving at decisions about the par-
ticulars of the action (e.g., designing the building)
may involve gradual discovery and evaluation of al-
ternatives through a process of search.

2. Temporal Sequences of Actions

Complex decisions require a whole structure of
choices. Even in design that precedes action, the ac-
tion is first defined in very general terms, then its de-
tails are gradually specified. As information revealed
during the latter stages of design requires reconsid-
eration of the earlier stages, there is no sharp line be-
tween generating alternatives and evaluating them.
Thus, early stages in designing a bridge might opt for
a suspension bridge, but subsequent discovery of un-
expected difficulties in foundation conditions might
cause a switch to a cantilever design.

A somewhat different scenario arises where choos-
ing a present action will have continuing effects on
the options for a whole sequence of future periods,
but where the contingent decisions beyond the first
can be revised at each successive decision point be-
fore new action is taken. Games like chess have this
characteristic, as do investment decisions, and deci-
sions about the rates of manufacturing operations.
Each choice of a current action creates a new situa-
tion with consequences for the availability and out-
comes of future actions.

A player in chess is only committed to a single move
at a time, but looks ahead at alternative successive
moves and the opponent’s possible replies in order to
evaluate the consequences of the immediate move.
There is no commitment to subsequent moves after
the opponent’s reply. The decision maker forms a
strategy in order to evaluate and choose an initial ac-
tion, but the remaining steps of the strategy can be re-
vised as the situation develops.

In the bridge design case, design decisions are re-
versible until the design is complete, but not (except
for minor, and usually costly, corrections) after con-
struction begins. All uncertainty about consequences
is supposed to be resolved before that time. In the

Decision Theory 569

case of chess, future actions remain reversible until
actual execution time. Where future actions are re-
visable, the passage of time will resolve some of the
uncertainties of the present, and this new knowledge
can be used to improve the later actions.

3. Decision Making with Multiple Agents

When outcomes depend on the simultaneous actions
of other agents (people, animals, or robots), these
other agents become an integral part of the uncer-
tainty with which each agent is faced. Even when all
are trying to achieve the same goal, each must try to
guess (or learn) what the others will do before decid-
ing what action is best for them (e.g., must predict on
which side of the street the others will drive).

The problem of multiple independent agents with
partially competing goals was first attacked systemati-
cally by Cournot in 1838, in his theory of two-firm oli-
gopoly, and again, nearly a century later, by Cham-
berlin in 1933, then in a far more general way by von
Neumann and Morgenstern in their 1944 treatise on
game theory. The principal contribution of these mon-
umental theorizing efforts was to demonstrate that
multi-person situations attack the very foundations of
decision theory, for they destroy the widely accepted
definition of rationality: The optimal (goal-maximiz-
ing) choice for each person is no longer determinable
without knowledge of the choices made by the others.

A plethora of alternative definitions of the criteria
for rational decision have been proposed by game
theorists in the past half century, with little resolution
as to which are to be preferred, either for normative
or descriptive theory. This problem will receive con-
tinuing attention throughout this chapter.

B. The Criteria or Goals for Decision

In decision theory, the discussion of choice criteria
has largely focused on two polar alternatives: opti-
mizing, that is, selecting the best alternative accord-
ing to some criterion; and satisficing, that is, selecting
an alternative (not necessarily unique) that meets
some specified standards of adequacy. Especially in
the context of multiple agents, there has also been
some discussion of variants of optimizing: minimax-
ing utility, or minimaxing regret.

1. Optimizing

Except in the multi-agent case, it seems at first blush
to be hard to fault optimization as a criterion for ra-

tional choice. How can one argue for action B if ac-
tion A is better in terms of the agreed-upon criterion?
A first difficulty, as already observed, is that in most
multi-agent choice environments there are as many
distinct utility functions as agents, so that “best” is not
defined, leaving no consensus about the criterion for
choice.

Even when the definition of “best” is clear, com-
putational complexity may hide the best alternative
from people and from even the most powerful com-
puters. In the finite game of chess (a space of perhaps
1020 branches), it still remains computationally in-
feasible to insure the discovery of the optimal move.
Yet chess is a game of perfect knowledge, where every
aspect of the situation is “knowable” to both players.
Games like bridge and poker, where each player has
private information, add another important layer of
complexity.

In the case of a single agent, assuming a compre-
hensive utility function that embraces all dimensions
of choice ignores the difficulty that people find, when
placed in even moderately complex choice situations,
in comparing utilities across dimensions—comparing
apples with oranges. In the field of marketing, a sub-
stantial body of empirical evidence shows that con-
sumers use a variety of choice procedures that avoid
such comparisons.

One common form of pseudo-optimization meets
computational limits by abstracting from the real-world
decision situation enough of its complexities so that
the optimum for the simplified situation can be found.
Of course this choice may or may not be close to the
real-world optimum. For example, in making sequen-
tial decisions, dynamic programming becomes a com-
putationally feasible method for choice if (and usually
only if) radical simplifying assumptions can be made.

Here “radical” could mean, for example, that the
problem’s cost functions can be closely approximated
by sums of quadratic terms. Dynamic programming
with a quadratic cost function has been used success-
fully to reduce costs by smoothing factory operations
and inventory accumulations. This procedure simpli-
fies the computations required for optimization by
many orders of magnitude, and finds satisfactory, if
not optimal, actions—provided that the quadratic ap-
proximation is not too far from the actual cost func-
tion. Moreover, with quadratic functions, only mean
values of future uncertain quantities (e.g., sales) need
be predicted, for the higher moments of the proba-
bilities are irrelevant under these circumstances.

A closely related method is used in computer chess
programs: a function is defined for evaluating the
“goodness” of positions, approximating as closely as

570 Decision Theory

possible the probability that they will lead to a won
game. Then, the legal moves and the opponent’s le-
gal replies are discovered by look-ahead search, as
deep as the available time (regulated by tournament
rules) permits. The estimated “goodness” is computed
for each of the end branches of this tree of possible
continuations; then each preceding move for the
player is assigned the goodness of the best branch
(maximum for the player), and each proceeding move
for the opponent is assigned the goodness of the op-
ponent’s best branch (minimum for the player), and
so on, until a “best” choice is reached for the im-
pending move. This procedure is called minimaxing.

Pseudo-optimizing and minimaxing with approxi-
mate evaluation functions are not optimizations, but
special cases of the satisficing methods that will be dis-
cussed below. If people had consistent and compre-
hensive utility functions and could actually compute the
real-world optimum, pure reasoning, employing only
knowledge of the utility function and of the external
world, would allow people to achieve substantive ratio-
nality and economists to predict their behavior. There
would be no need to study people’s psychological
processes. Neoclassical economics has generally be-
haved as if this research program were realizable.

As soon as we acknowledge that global optimiza-
tion is wholly infeasible in a world where human
knowledge and computational capabilities are lim-
ited, and where judgments of utility are altered by
shifts in attention and other internal psychological
changes, a host of alternative approximate decision
methods present themselves, and predicting human
behavior requires a knowledge of which of these ap-
proximate methods can be and actually are used by
people to arrive at their decisions.

Later, we will see examples of many decision situa-
tions where, for example, the appearance of modern
computers and of efficient algorithms for exploiting
their computing powers have drastically changed the
methods used to reach decisions. In its dependence
on human knowledge, an empirical decision theory
necessarily changes with the movements of history.

2. Satisficing

A large body of evidence shows that people rarely ac-
tually engage in optimization (except, as just men-
tioned, in pseudo-optimization after severe simplifi-
cation of the full situation). Instead, they generate
possible actions, or examine given ones until they
find one that satisfices or that reaches an acceptable
standard in terms of one or more criteria. Satisficing
has a number of attractive characteristics for humans

whose knowledge and computational abilities are lim-
ited, and who demonstrably have difficulty in com-
paring actions that differ along several, and often
among many, dimensions; for example, choosing
among buying a Buick car, a sailing sloop, or an oil
painting.

1. Satisficing does not require that all possible
actions (usually hard to define in any operational
way) be made available for comparison.

2. It does not require computing the consequences
of actions with precision.

3. It does not require deriving a single utility
ordering from multidimensional goals.

4. Unless the satisficing criteria are too strict, it
enormously simplifies the computational task of
finding an acceptable action.

With respect to 1, it is sometimes proposed to re-
tain optimization but to incorporate a search for al-
ternatives by comparing the expected cost of gener-
ating the next alternative with its expected advantage
over the best existing alternative, and halting the
process when it does not pay to search further. This
proposal requires estimating both the cost of gener-
ating alternatives and the expected value of the im-
provement, imposing a large additional computa-
tional burden (which usually also calls for unavailable
information).

With respect to 3, observation of people selecting
meals from restaurant menus shows how difficult
choice is in a multidimensional space even when the
dimensions are few. Empirical research, by Amos Tver-
sky, Maurice Allais, and many others, has demon-
strated that people do not possess a stable utility func-
tion over all of their wants and preferences that would
enable them to choose consistently among unlike
commodities. Choice depends heavily on context that
directs attention toward particular aspects of the
choice situation and diverts it from other aspects. This
contingency of choice on the focus of attention is il-
lustrated by, but extends far beyond, the well-known
phenomenon of impulse buying.

Linear programming has been, for a half century,
a widely applied computational tool for making com-
plex decisions. One reason for its practical impor-
tance is that it permits satisficing under the guise of
optimizing. In linear programming if there are n ap-
plicable criteria, then one (for example, cost) is se-
lected for optimization, and satisfactory levels of the
other n � 1 are set as constraints on acceptable ac-
tions, thereby wholly avoiding the comparison of
goals, but of course at the expense of ignoring the

Decision Theory 571

possibilities of substitutions with changes in price. In
the restaurant example, this could lead one to order
the cheapest meal meeting certain standards of taste
and nutrition, or with a different choice of the
dimension for optimization, to order the seafood
meal under $25, not containing eel and with the least
cholesterol.

With respect to 4, comparing the task of finding
the sharpest needle in a haystack with the task of find-
ing a needle sharp enough to sew with illustrates how
satisficing makes the cost of search independent of
the size of the search space, although dependent on
the rarity of satisficing solutions. In a world rich in in-
finite search spaces, this independence is essential if
a search method is to be practicable. Few people ex-
amine all the world’s unmarried members of the op-
posite sex of appropriate age before choosing a
spouse.

Satisficing is closely related to the psychological con-
cept of aspiration level. In many situations, people set a
plurality of goals or aspirations on the several dimen-
sions of choice (for example, housing, careers, cloth-
ing, etc.) and use these to define a satisfactory lifestyle
along each dimension. It is observed that when they
reach their aspiration on any dimension, the aspiration
tends to rise somewhat, and when they continue to fail
to reach it for some time, it tends to decline. Trade-offs
can reallocate income among dimensions without re-
quiring a unified utility function, making comparisons
of level only on single dimensions.

Such an apparatus for decision making amounts to
a linear programming or integer programming
scheme, with the constraints adjusting dynamically to
what is attainable. No special dimension need be se-
lected for maximization or minimization. The grad-
ual adjustments of aspiration levels will bring about
near uniqueness of available satisfactory alternatives,
and will take advantage of improving environments
and adapt to deteriorating ones. Which alternative
will be selected is likely to be highly path dependent,
varying with the history of changes in the environ-
ment and the decision maker’s responses to them.

C. Search Processes

Where the alternatives are not given at the outset,
they must be discovered or designed by a search
process, often called a design, problem solving, or dis-
covery process. When the space of alternatives is large,
or when uncertain consequences extend into the in-
definite future, search may have to be highly selective,
examining only a small fraction of the possibilities.

The space of conceivable alternatives is seldom small
enough to be searched exhaustively.

1. Selective Search

Some puzzle-like problems whose search space is al-
most trivially small are, nevertheless, quite difficult
for people. For example, in the Missionaries and Can-
nibals puzzle, which involves carrying a group of peo-
ple across a river in a boat of limited size requiring
multiple trips, and with the proviso that cannibals
must never be allowed to outnumber missionaries,
there are only about 20 legal problem states. Yet in-
telligent people, on their first encounter with the
problem, often take half an hour to solve it. In this
puzzle one or more essential moves are counterintu-
itive, appearing to retreat from the final goal, instead
of approaching it. In the subject’s early attempts to
solve the problem, these counterintuitive moves are
usually not even considered.

In most real-world decision situations, however, the
number of potential alternatives is very large and of-
ten infinite. These call for generating, with moderate
computation, a small menu that contains at least one
satisfactory alternative. A large part of problem-
solving theory is concerned with describing powerful
search heuristics for selecting promising paths. The
substitution of satisficing for optimizing is an impor-
tant heuristic of this kind.

2. Search under Uncertainty

In repeated decisions, the purpose of search goes be-
yond finding good initial alternatives and includes as-
sessing future consequences of a choice. For example,
in chess, it is trivial to generate the twenty or thirty le-
gal moves that face a player at any moment; the for-
midable computational challenge is to evaluate, usu-
ally by generating a tree of subsequent replies and
moves, which of these initial moves is better.

As the outcomes of future or present moves are sel-
dom known with certainty, computer chess programs,
as we have seen, assign to each terminal position in
their search a value estimated from the numbers,
kinds, locations, and mobilities of the pieces of each
player. The scheme can also allow some kind of pref-
erence for lower or higher risk due to uncertainty.
This approximate value is then used, as previously de-
scribed, to work backward, minimaxing to evaluate
the current move.

The fundamental differences between uncertainty
about nature and uncertainty about the behavior of
other actors have already been discussed. Where un-

572 Decision Theory

certainty resides in nature, a common procedure is to
maximize expected value, with perhaps some bias for
risk. Minimaxing in the face of nature’s uncertainty is
equivalent to regarding nature as malevolent and
preparing for the worst. In the case of uncertainty
about human actors, goals may range from the com-
pletely complementary to the wholly opposed, creat-
ing considerable difficulty in defining in any objective
way how other actors will respond to a decision
maker’s choice, hence making it hard to choose a
unique criterion for rational choice.

D. The Knowledge Base

The decision process must use its knowledge about
the external environment; but in virtually all real-
world situations, this knowledge is only a crude ap-
proximation to reality.

Knowledge may be obtained by sensing the envi-
ronment directly, by consulting reference sources, or
by evoking information previously stored in some
memory. To use any of these sources it must be ac-
cessed: sensory information, by focusing attention on
specific parts of the stimulus; external reference
sources, with the aid of more or less elaborate data-
mining processes; and memory, using recognition
processes to locate and bring to awareness relevant
stored information. An operational theory of decision
making must distinguish between the knowledge po-
tentially available and the knowledge actually accessi-
ble during decision processes that use these modes of
information retrieval.

Research has shown that a fundamental basis of ex-
pertise is the extensive use of memory, accessed by
recognition of familiar patterns in the material being
attended. These recognitions evoke already stored in-
formation relating to the patterns. The expert solves
by recognition, and thereby by use of previous knowl-
edge and experience, many problems or problem
components that less expert persons can only solve (if
at all) by extensive and time-consuming search. Much,
and perhaps most, of the sudden “aha’s,” “insight,”
“intuition,” and “creativity” that are characteristic of
expert behavior result from the recognition of famil-
iar patterns.

Both expert and novice behavior combine heuristic
search with recognition of patterns. What mainly dis-
tinguishes expert from novice is the availability to the
expert of a vastly bigger repertoire of patterns and as-
sociated information, making pattern recognition a
much larger component, and search a smaller compo-
nent of expert than of novice problem-solving behavior.

III. NORMATIVE THEORIES OF DECISION

Formal decision theory began mainly as a normative
science, initially providing advice to gamblers about
good strategies. The early exchanges on this topic, in
1654, between Blaise Pascal and Fermat, and Jakob
Bernoulli’s treatise on The Art of Conjecture in 1713
are key events in these beginnings. Today, the theory
exists in many versions; a number of the most impor-
tant are described here.

A. Classical Decision Theory

Classical decision theory has retained its early shape,
but with continuing debate about the interpretation
of probability and the means to be used for estimat-
ing it. The main line of development has led to the
theory of maximizing expected utility.

Both frequency theories of probability and subjec-
tive theories of probability as “degree of warranted
belief” have been entertained throughout the history
of decision theory. Probability takes care of natural
contingencies that may alter the consequences of
choice. Frequency interpretations can be used when
empirical evidence is available for estimating the prob-
abilities, especially when there is enough evidence so
that the law of large numbers assures close approxi-
mation of observed frequencies to probabilities.

As already noted, when uncertainties involve not
only the natural environment but also the behavior of
actors other than the decision maker, the situation be-
comes more complex, because all actors may be seek-
ing to adjust their behaviors to the expected behav-
iors of their collaborators and competitors. In some
special cases, however, like the economic theory of
perfect competition, these complexities are absent.

Suppose there exists a price for a commodity at
which the total quantity that will be offered by profit
maximizing sellers is equal to the total quantity that
will be offered by utility maximizing buyers. A seller
who supplies a larger or smaller quantity will lose
profit and a buyer who buys more or less will lose util-
ity, so no one has an incentive to alter his/her be-
havior, and the equilibrium of the market (under cer-
tain assumptions about the dynamical processes for
reaching equilibrium) is stable. Of course this stabil-
ity depends critically upon the assumption of perfect
competition, and uniqueness is not guaranteed with-
out additional assumptions, or anything but local op-
timality for each buyer and seller.

The Nash equilibrium, the generalization of this
result to any situation where no participant has an

Decision Theory 573

incentive to change behavior as long as the others
maintain theirs, describes one of the few cases where
the definition of rationality under optimizing as-
sumptions is not problematic in the presence of more
than a single agent. An application outside econom-
ics is the traffic flow problem, where cars are pro-
ceeding independently through a network of high-
ways. In this case, we can usually expect one or more
equilibrium distributions of traffic among the differ-
ent highways such that no single motorist could, on
average, shorten trip time by changing route as long
as the others maintained their patterns.

There is no guarantee that alternative equilibria
are equally efficient. A particular equilibrium pattern
might be improved, for most or even all drivers, if
they could all shift simultaneously to another pattern,
but no driver has a motive to shift pattern without
changes by the others; satisfaction of the conditions
for a Nash equilibrium guarantees only a local opti-
mum. In particular, it is not generally possible to reach
global optima by market forces alone without auxil-
iary processes and institutions that coordinate indi-
vidual behaviors to avoid inferior local optima.

B. Statistical Decision Theories;
Acceptance of Hypotheses

The standard procedures used to interpret statistical
findings and to base decisions upon them are closely
related to classical decision theory. Initially, the prob-
lem was conceived as that of computing a strength of
justifiable belief—sometimes expressed as the proba-
bility of the truth of a hypothesis. Thus, if the ques-
tion were whether a fertilizer made sufficient im-
provement in the yield of a crop to justify the cost of
applying it, experimental data would be used to com-
pute probability distributions of the yields with and
without the fertilizer. If there was “reasonable cer-
tainty” that the yield with the fertilizer was enough
greater than the yield without it to cover the extra
cost, it would be rational to apply it.

But what was reasonable certainty? An early answer,
called a “test of statistical significance,” was: If the
probability is “high” that the difference of yield is not
enough to cover the cost, then don’t use the fertilizer.

That simply raised the new question: What is high?
In contemporary statistical practice, this question is
often answered in purely conventional terms. By long
custom, more than 1 chance in 20 (0.05), or more
than 1 chance in a 100 (0.01) have come to be re-
garded as high. If the probability is greater than 0.01
or 0.05 that the fertilizer’s effects will not cover its

cost, then its effect is not “statistically significant,” and
it should not be used. Although there is no rational
basis for this rule, in some domains of science and ap-
plication it is deeply entrenched.

A step forward was taken by J. Neyman and E. S.
Pearson, who pointed out that one could err either by
using the fertilizer when it was uneconomical or by
failing to use it when it more than covered its cost;
consequently the decisionmaker should compare
these “errors of type 1 and type 2.” For example, if,
prior to the field experiment, the evidence indicated
a 50–50 chance that the fertilizer would be cost-
effective, then (if one accepts Bayes’ Principle), the
fertilizer should be used whenever the mean added
crop yield is worth more than the cost of fertilizer.
This is quite different from odds of 0.05 or 0.01.

A next step forward, taken by Abraham Wald in
1950, was to argue that net costs should be assigned
directly to errors of type 1 and type 2, that these costs
should be weighted by the probabilities of committing
the errors, and the alternative with the largest expected
balance of benefits over cost should be chosen.

C. Linear and Integer Programming

Linear and integer programming were mentioned in
Section II as methods for dealing with multidimen-
sional goals. They supplement a one-dimensional mea-
sure of utility with an unlimited number of linear con-
straints to represent the other dimensions. The
alternative is selected that maximizes the chosen di-
mension of utility while satisfying all of the constraints.
The optimal diet problem, described earlier, illus-
trated how this procedure avoids comparing the rela-
tive importance of incommensurable constraints, for
all of them have to be satisfied.

Linear programming (LP) has a further important
property: the alternatives that satisfy all the constraints
form a convex set. Given one point in the set, any
point in it with a higher utility can be found without
any backtracking. The popularity of LP was quickly es-
tablished after 1951, when George Dantzig introduced
a powerful search algorithm, the simplex method,
that exploits this convexity property and generally
finds the optimum with acceptable amounts of com-
putation even for problems containing thousands or
tens of thousands of constraints.

As soon as powerful electronic computers became
available, LP became a practical tool for making many
complex managerial decisions: to take two classical
examples, blending crude oils in the petroleum in-
dustry, and mixing commercial cattle feeds, which al-

574 Decision Theory

locate billions of dollars of raw materials in our econ-
omy each year.

In this case, bounded human rationality (aided by
computers) can be reconciled with optimization. But
this is only achieved by LP after the problem has been
redefined as a one-variable maximization problem
subject to linear constraints. Moreover, the procedure
assumes that the model embodies all the real-world
consequences of the decision it is making, which is
usually far from the case.

Here as elsewhere, the real-world situation must be
drastically simplified to fit the formal tools. The pro-
cedure may satisfice in the real world by optimizing in
an approximation to that world; it may even come close
to optimizing, although we cannot usually verify this.

The story of integer programming (IP) is similar.
Many real-world problems require integer solutions
(you cannot equip a factory with 3.62 machines, but
must settle for 3 or 4.). A variant of LP, which searched
for the optimal integral solution, was introduced by
Ralph Gomory in 1958, and increasingly powerful
methods for finding such solutions have steadily ap-
peared. Even when IP cannot find an optimum, it can
often reach satisficing solutions substantially better
than those attainable with less powerful methods.

D. Dynamic Programming

Similar lessons have been learned with dynamic pro-
gramming, whose computations are usually impracti-
cable for problems of any generality. Systems of dy-
namic equations are solvable in closed form only in
quite special cases, notably for linear systems with
constant coefficients. The problem becomes much
worse when uncertainty is introduced, for then a mul-
titude of possible outcomes must be considered, in-
creasing exponentially with the distance into the fu-
ture the system peers.

Again, we have seen that computationally tractable
approximations can be obtained by making the fur-
ther simplifying assumption that the costs can be ap-
proximated by sums of quadratic terms. But this ap-
proximation yields a second important simplification:
now only the expected values of the probabilities re-
main in the equations, so that only mean values over
all outcomes have to be estimated for each period.
These mean values are called certainty equivalents.
The standard deviations and higher moments of the
probability distributions now do not have to be esti-
mated at all.

There is no guarantee, of course, that particular
real-world situations can be approximated adequately

in these ways, but these forms of approximation illus-
trate the advantages that can be gained in many situ-
ations by optimizing a gross approximation (i.e., sat-
isficing) instead of attempting to optimize a realistic
detailed model of the situation.

E. Game Theory

Game theory in situations with multiple actors has al-
ready been discussed in Section II.A.3 and little needs
to be added. The attempt to build a general norma-
tive theory of what constitutes rationality in the choice
of moves in n person games has failed, not through
any lack of talent among the researchers who tackled
this problem, but from its fundamental intransigence.
Progress can be made only by extending the theory to
encompass both the degree of compatibility or in-
compatibility of the agents’ goals and their means of
communication and coordination of information and
behaviors.

Here, useful definitions of rationality in terms of
optimization are unlikely to be found, both because
of goal conflict and competition in multi-agent situa-
tions and because of the complexity of these situa-
tions when communication and coordination mecha-
nisms are brought into the picture.

But the matter need not be described quite so pes-
simistically. There has recently been, especially in ex-
perimental game theory, increasing exploration of sat-
isficing solutions for games that allow most or all agents
to reach satisfactory levels of aspiration. There are in-
numerable situations in the world today where ethnic,
religious, national, and other divisive loyalties have
created “unsolvable” social problems, creating a great
need for normative procedures for arriving at satisfic-
ing arrangements that will be acceptable (if sometimes
only minimally) to those engaged in such struggles. In
situations like these, we cannot afford to sacrifice the
attainable satisfactory for the unattainable “best.”

F. The Future of Normative Theories

For more than a century, the problem of defining ra-
tional decision making has been studied intensively
with the help of powerful formal tools. That study ar-
rived, first, at a body of theory focused on maximiz-
ing goal attainment, where goals are summarized in a
hypothesized multidimensional utility function. At a
second stage, uncertainty was brought into the pic-
ture, adding severely to the informational and com-
putational demands upon the theory.

Decision Theory 575

Then, the theory was gradually extended to multi-
agent systems, not only introducing new computa-
tional problems, but also making it extremely difficult
to reach consensus even on the definition of “ratio-
nality,” except in a few special cases.

In this literature, there were only a few attempts to
deal with the generation of the new alternatives. Al-
ternative generation, if considered at all, was viewed
as a search balancing costs of locating new alterna-
tives against their expected contribution to improving
decisions; but (1) this approach calls for estimating
search costs and benefits, only adding to an already
excessive computational burden, and (2) it does not
address the processes of alternative generation or the
nature of the alternatives discovered, but simply hy-
pothesizes a cost function for the process.

Although decision theorists are very far from solv-
ing these problems, they have learned much about
the structure they are seeking. More and more, they
are engaging in experimental and other behavioral
studies to deepen their understanding of how people
actually make decisions. As one consequence, the nor-
mative theory of decision is now making contact with
positive, empirical study to an unprecedented degree.
It has steadily become clearer that even a normative
theory must give major attention to the cognitive abil-
ities and limitations of the human agents who make
the decisions, and to the capabilities and limitations
of their computer aides.

The next section of this chapter turns to the em-
pirical theory of decision making, but also explores
the implications of the empirical theory for con-
structing a more general and viable normative theory
that can be applied to practical affairs. For, as deci-
sion making is a goal-oriented, hence normative, ac-
tivity, there is no great distance between an empiri-
cally supported positive theory of human decision
making and a normative theory that respects bounded
rationality and is applicable to real situations.

IV. THE DECISIONS OF BOUNDEDLY
RATIONAL ACTORS

The developments discussed in this section have
mostly taken place in cognitive psychology (problem
solving and learning theory), engineering and archi-
tecture (design theory), evolutionary theory (natural
selection), and history and philosophy of science (sci-
entific discovery). Cognitive science has emphasized
the empirical side, whereas design is basically a nor-
mative endeavor, but one that must be highly sensitive
to implementability, hence to the bounded rationality
of people and machines.

Although there is a considerable consensus about
the main features of these forms of decision theory,
they are best discussed in relation to their several dis-
ciplinary origins.

A. Problem Solving

Problem solving, which provided a major focus for re-
search during the first decades of artificial intelli-
gence and the so-called “cognitive revolution,” re-
mains a very active domain of study. Early research
studied mainly puzzle-like problems where the solver
did not require special information; emphasis was
upon search strategies and the heuristics for achiev-
ing selectivity. The main exception was research on
chess, which discovered the powerful role played by
recognition and knowledge retrieval as an aid to ex-
pert search.

When given a problem, human subjects typically
formulate a problem space to characterize the kinds
and numbers of objects involved, their properties
and the relations among them, and the actions that
can be taken to change one situation into another
while searching for one that satisfies the goal condi-
tions. Subjects usually try to measure the “closeness”
of the current problem situation to the goal in order
to select hill-climbing actions that move closer to the
goal.

A more selective and quite common search proce-
dure seeks solutions by means-ends analysis. Subjects
gradually learn that certain differences between cur-
rent situation and goal situation can be removed by
applying particular operators. They then can com-
pare current situations with goal situations to discover
the differences and apply the operators associated
with these differences. In many problem domains,
this means-ends process can solve problems by re-
moving differences successively.

With the achievement of a rather rich theory of
problem solving in puzzle-like domains, research
moved on to domains where solution depended heav-
ily upon special domain knowledge, and where search
heuristics were much more domain specific. One typ-
ical heuristic for the game of chess is the rule: “If
there is an open file (sequence of empty squares cross-
ing the board), consider placing a rook on it”—i.e.,
when you notice a particular pattern on the board
give serious consideration to a particular move. It has
been found that high-level expert chess players (mas-
ters and grandmasters) hold in memory a quarter mil-
lion or more patterns of pieces (each containing from
two or three to a dozen or more pieces) that are seen

576 Decision Theory

in games, and that they associate with each pattern
heuristic information, as in the example of the rook
move, that guides the choice of moves.

Even more recently, two other directions of re-
search on problem solving have gained prominence:
(1) the study of the acquisition of problem-solving
skills; and (2) the extension of research to more
loosely structured problem domains like architectural
design, scientific discovery, and even drawing and
painting.

Problem-solving theory almost always takes account
of uncertainty about the environment and about the
consequences of actions, but less frequently (with the
notable exception of research on chess and other
games) uncertainty about the behavior of other
agents.

B. Design Theory

Designing systems requires innumerable decisions
about system components and the relations among
them. Since the initial recognition of the capabilities
of computers to aid in design, and even to automate
design processes, there has been a rapid development
of design theory, focusing upon the generation and
evaluation of alternatives. Today, the theory is pur-
sued in computer science and cognitive science as
well as in architecture and all of the engineering
disciplines.

A notable early set of programs were written in
1955–1956 in FORTRAN by engineers at Westing-
house to design motors, generators, and transformers
automatically from customers’ specifications, produc-
ing designs that went directly to the manufacturing
floor. The programs could design about 70% of the
devices ordered that were not already shelf items.
They were modeled on procedures already regularly
used by the company’s engineers: find products al-
ready designed that are similar to the customer’s or-
der; use known function and parameter tables to mod-
ify the design to fit the customer’s specifications, and
apply simple optimization methods to improve device
components.

Today, we see increasing numbers of programs
that assist and collaborate with human designers.
Computer-aided design (CAD) and computer-aided
manufacture (CAM) are progressing from an aid to
draftsmen and schedulers to an increasingly auto-
mated component of the design process itself. A pow-
erful genetic algorithm can design electrical circuits
of high quality (e.g., low-pass filters with specific prop-
erties) with moderate computational effort. Design

programs are used routinely in the chemical industry
to discover and to assist in discovering reaction paths
for synthesizing industrial chemicals and biochemi-
cals. These are just examples from a sizeable popula-
tion of design programs in current use.

These programs have required their inventors to
develop the theory of the design process, which is no
longer simply an intuitive “skill” to be taught at the
engineering drawing board. The theory applies prin-
ciples of pattern recognition and heuristic search like
those that have emerged from the empirical study of
human decision making and problem solving.

To be sure, when computers participate in design,
their capabilities for rapid large-scale computation
and for rapid storage of huge amounts of informa-
tion—both far beyond human capabilities—are ex-
ploited, altering the balance between “brute force”
and selective search. But in view of the magnitude of
typical practical design problems, major use must be
made in these programs of the principles that guide
human problem solving: in particular, evocation of
knowledge by recognition, highly selective search, and
satisficing.

C. Theory of Discovery

A central theme in the research on decision-making
and problem-solving processes has been to expand
the domain of the investigation continuously to new
areas of knowledge and skill, beginning with well-
structured and simple puzzle-like problems, soon mov-
ing to problems where domain knowledge is impor-
tant, and gradually to problem areas that are poorly
structured and where “intuition,” “insight,” and “cre-
ativity” come into play.

One important area in this last category is scientific
discovery. Scientific discovery employs a collection of
diverse processes that include discovering lawful reg-
ularities in data, planning and designing experiments,
discovering representations for data, and inventing
scientific instruments. Each of these activities is itself
a complex decision process. This section provides two
illustrations, from a much larger number, of how evi-
dence from the domain of scientific discovery con-
tributes to the theories of procedural (satisficing)
rationality.

The first illustration is to discover a descriptive sci-
entific law is to find pattern in a body of data; to dis-
cover an explanatory law is to show how pattern in
data can be explained in terms of more detailed
processes. Thus, Kepler’s Third Law, P � aD3/2,
where P is the period of revolution of a planet about

Decision Theory 577

the sun, and D is its mean distance from the sun, is a
descriptive law. Newton later explained it by deducing
it mathematically from the laws of gravitational
attraction.

A law-discovery process, BACON, which has shown
great power in finding historically important descrip-
tive laws, is a very simple mechanism for choosing,
one-by-one, patterns that might fit the data, testing
for the goodness of fit, and if the fit is unsatisfactory,
using information about the discrepancy to choose a
different function. When one is found that fits ade-
quately, a law has been discovered.

BACON uses the method of generate-and-test, with
heuristics to guide generation of prospective laws. Its
law generator is responsive to discrepancies between
the hypotheses it produces and the data that guide it,
using the feedback to shape the next alternative it
generates. BACON frequently finds laws after gener-
ating only a few candidates, and has rediscovered
more than a dozen historically important laws of
physics and chemistry with no information other than
the data to be explained, and with no changes in the
program from one example to another.

BACON satisfices, terminating activity upon finding
a pattern that meets its criterion of accuracy. When the
standard is too low, it can find illusory “laws,” as Kepler
did in his first hypothesis about the revolution of the
planets (P � aD2), and which he corrected a decade
later. (With a stricter criterion, BACON finds this same
“law” as the second function it tries, but rejects it.)

The second illustration is experimentation which,
along with empirical observation, are major activities
in science, generally regarded in the philosophy of
science as means for testing hypothesis. In recent
years, there has been growing attention to experi-
ments and observation as the major means for gener-
ating new hypotheses. New and surprising phenom-
ena, whatever motivates their discovery, then initiate
efforts to explain them. The work of the great exper-
imenter and theorist, Michael Faraday, provides strik-
ing examples of these processes.

Faraday, in about 1821, conjectured, from a vague
belief in symmetry between electricity and magne-
tism, that, as currents created magnetic fields, mag-
netic fields “should” create adjacent electrical cur-
rents. After ten years of intermittent unsuccessful
experimenting, Faraday, in 1831, found a way to pro-
duce a brief transient current in a wire when a nearby
magnet was activated. In several months of work, with-
out any strong guidelines from theory, but with feed-
back from a long series of experiments, Faraday mod-
ified his apparatus, finally producing a continuous
current, the basis for the modern electric motor.

A computer program, KEKADA, capable of closely
simulating Faraday’s experimental strategy (as well as
the very similar strategy of Hans Krebs in his discov-
ery of the reaction path for the in vivo synthesis of
urea), has demonstrated the mechanisms used in such
searches. KEKADA’s model of experimentation be-
gins with extensive knowledge of the phenomena of
interest, accesses it by recognizing patterns of phe-
nomena, and uses heuristics to select promising ex-
perimental arrangements for producing relevant and
interesting phenomena. For example, when its ex-
pectations of experimental results based on previous
knowledge and experience are violated, KEKADA de-
signs new experiments to determine the scope of the
surprising phenomenon, and then designs experi-
ments to discover possible mechanisms to explain it.

V. DECISION THEORIES
INCORPORATING LEARNING

Effective problem solving in a knowledge-rich domain
depends vitally on prior knowledge of that domain,
which must have been “programmed in” or learned,
and stored with indexing cues to make it accessible.
An implementable theory of decision making must
specify what knowledge is available to the system, its
organization, and its mechanisms for knowledge ac-
quisition. Some knowledge and skill used in making
decisions is applicable in many domains, but much of
it is specific to one or a few domains.

Learning has been a central topic in psychology for
a century and recently in decision theory. In systems
aimed at either optimizing or satisficing, adaptive
mechanisms may gradually improve outcomes by
learning from experience. The improvement may
move asymptotically toward an optimum or, more
commonly, it may simply move toward higher satisfic-
ing levels. Adaptive mechanisms commonly under-
take selective search for alternatives to the current
strategy. Hence, the learning mechanisms are them-
selves decision mechanisms.

We cannot review the vast literature on learning, but
will mention some examples of learning mechanisms
to give some appreciation of their variety and power
and their importance to rational decision making.

1. Many problem-solving systems store solution paths
they find, and then use them as components of
paths for solving new problems. Thus, a theorem-
proving system may store theorems it has proved
and use them in proving new theorems.

2. Learning can change one’s knowledge of the

578 Decision Theory

problem space, hence of the best directions for
search; it can also be used to generate new
alternatives that enlarge the problem space. In
fact any alternative generator (e.g., BACON,
discussed earlier) is a learning mechanism.

In recent years, there has arisen a strong interest
in systems that create and evaluate new alternatives by
using learning mechanisms that imitate evolution by
natural selection. In genetic algorithms, systems
change by mutation, and changes that improve per-
formance are preferentially retained. A program was
mentioned earlier that designs electronic circuits in
this way by progressively assembling and modifying
sets of elementary components.

3. Generalizing, wherever uncertainty is present,
and where it is reasonable to assume some
reliable, if stochastic, process underlying the
uncertain events, and learning the relevant
probability distributions can aid rational decision
making. Research along this line divides into two
streams; one, associated with classical decision
theory, undertakes to describe optimal learning
processes; the other, associated with psychological
learning theory, undertakes to describe actual
human learning processes.

In a wide class of stochastic decision processes, cur-
rent decisions are optimal relative to current inexact
estimates of the relevant parameters that describe the
uncertain events, and at the same time, current data
are used continuously to revise these estimates and
update the parameters. A Bayesian probability model,
for example, may be used for this purpose.

So-called “connectionist” and “neural net” models
of cognitive processes make extensive use of proba-
bilistic processes of these kinds for learning, seeking
to maximize the probabilities of correct choices.

4. In addition to connectionist mechanisms, there
are powerful non-probabilistic discrimination
networks, like E. Feigenbaum’s EPAM, that learn.
Given a set of stimulus features, they apply
successive tests to find features that discriminate
among classes, building up classificatory trees
that categorize stimuli.

5. When decision processes take the form of systems
of if-then rules (productions), new rules can be
learned by examining worked-out examples, and
stored as productions that can be applied to
subsequent problems. A worked-out example
shows how the problem situation is steadily altered

step by step by the application of operators, to
remove differences between the current and the
goal situations. The learning system detects the
differences and the operators that remove them,
then constructs a new production whose “if” part
corresponds to the difference and whose “then”
part corresponds to the operator: “If [difference]
is present, then apply [operator].”

6. The ease or difficulty of learning may be strongly
influenced by what the learner already knows, with
existing knowledge sometimes discouraging new
learning that moves in novel directions. Thus, it
has been widely observed that radical technological
changes in industry typically cause great difficulties
in adaptation for existing organizations and give
birth to new organizations to exploit them.

VI. DECISION MAKING IN ORGANIZATIONS

The economy of Adam Smith’s time was predomi-
nantly an economy of markets; business organizations
of more than a modest size played in it an almost in-
significant role. The industrial revolution saw a great
burgeoning of large-scale organizations, greatly in-
creasing manufacturing and marketing efficiency.

The earliest large body of theory of organizational
decision making focused upon division of labor and
coordination through communications and authority
relations, comparing the efficiencies of various orga-
nizational arrangements. It was initially derived from
the practices of the large governmental and military
organizations that have existed for the past several
thousand years, and has been further developed by
the fields of public and business administration.

Within economics, an important effort has been
made in recent years to incorporate organizations in
(boundedly) rational decision theories by asking when
various classes of economic transactions will be car-
ried on through markets, and when within organiza-
tions. The transaction costs associated with particular
activities when conducted by markets and by organi-
zations are compared to determine where the eco-
nomic advantage between these two institutional
forms lies, under the usual assumption that agents
will pursue their self-interests (opportunism). The re-
search in this area pays a good deal of attention to
empirical verification of its theories, especially
through case studies of the experiences of particular
industries and historical analysis, and in this way avoids
the a priorism of classical theories of optimization.

The particular characteristics that distinguish orga-
nizations from other multi-agent structures are

Decision Theory 579

(1) their hierarchical organization of authority and
membership through an employment relation that im-
plies acceptance by employees of the organizational au-
thority, and (2) their central concern with problems of
coordination, where the correctness of a member’s de-
cisions depends on the decisions being made by many
others. Organization theory has to describe both the
processes for dividing complex tasks into nearly inde-
pendent subtasks and their corresponding organiza-
tional units, and the processes of coordinating units to
exploit their remaining interdependencies, balancing
the advantages of unit independence and coordination.

In addition to transaction costs and the problems of
opportunism, several other major features must be
added to create a credible theory of organizational de-
cision making. In particular, members of organizations
spend their working lives in environments that direct
their attention to organizational rather than personal
concerns, and that select the kinds of information they
receive and the beliefs they acquire. Moreover, mem-
bers typically acquire loyalties to goals of the organiza-
tions or of subdivisions within it. These processes of se-
lective learning and acquisition of organizational
loyalties, which collectively create organizational identi-
fication, greatly moderate the problem of keeping em-
ployees’ decisions consistent with organizational goals.

We can conceive, today, of a computerized organi-
zation whose programs would make this consistency
automatic. Real organizations fall far short of this con-
dition, and a decision theory for organizations must
address the problem of maintaining loyalty to organi-
zational goals and dealing with the shirking problem.
The decision processes of organizations, with their
central task of coordinating the interdependent deci-
sions of their component divisions and departments,
cannot be described simply as market transactions.

VII. CONCLUSION

Decision making is a ubiquitous human cognitive
function that is accomplished by recognizing familiar
patterns and searching selectively through problem
spaces (which themselves may need to be chosen or
even discovered) to arrive at a “satisficing,” or “opti-
mal” alternative.

In the course of time, two rather independent sets
of decision theories have emerged. Theories of sub-
stantive rationality purport to deal with the outcomes
of decision in the (idealized) real-world environment.
They have been little concerned with the psychology of
choice, beyond postulating that the agent orders pref-
erences consistently among all the (given) alternatives,

and they represent uncertainty by probability distribu-
tions. They seek to discover the decision that optimizes
goal achievement in the external environment.

Theories of procedural rationality purport to de-
scribe how decisions are actually made by human be-
ings, including how the alternatives are found. They
focus upon the processes that people actually use, tak-
ing account of the limits on human knowledge and
computational power.

It would be a mistake to draw an impassable line
between these two bodies of theory; indeed, interac-
tion between them accelerated rapidly in the closing
years of the 20th century. First, concern with incom-
plete information called attention to the complica-
tions that uncertainty adds to the decision process.
One response was to replace certain knowledge with
probabilities and to optimize expected values. An-
other was to introduce specific assumptions of irra-
tionality due to “ignorance.” A third was to replace
optimization with an adaptive learning system.

Second, growing interest in imperfect competition
and rationality in multi-agent situations called atten-
tion to the severe difficulty of defining rationality in
such situations, leading to experimental studies of
how people actually behave in these circumstances
and developing the psychologically motivated theory
of satisficing as an alternative to optimizing.

Third, a new interest developed in normative theo-
ries of decision that could be implemented on comput-
ers. In the world of design, optimizing means finding a
mathematical optimum in a simplified operative model
that can find satisficing solutions to real-world problems.

The two streams of substantive and procedural the-
ories are now converging, and the coming years will
produce an improved understanding of human deci-
sion processes as well as a growing collection of partly
or wholly automated man-machine systems for coping
with the decisions that people, business organizations,
and governments have to make.

SEE ALSO THE FOLLOWING ARTICLES

Corporate Planning • Cybernetics • Decision-Making Ap-
proaches • Decision Support Systems • Game Theory • Infor-
mation Measurement • Information Theory • Optimization
Models • Systems Science • Uncertainty

BIBLIOGRAPHY

Akin, O. (1986). The psychology of architectural design. London,
England: Pion, Ltd.

580 Decision Theory

Conlisk, J. (1996). Why bounded rationality, Journal of Economic
Literature, 34, 669–700.

Dixit, A., and Nalebuff, B. (1991). Thinking strategically: The compet-
itive edge in business, politics, and everyday life. New York: Norton.

Dym, C. L. (1994). Engineering design: A synthesis of views. Cam-
bridge, UK: Cambridge University Press.

Earl, P. E. (1983). The corporate imagination. Armonk, NY: M.E.
Sharpe.

Hogarth, R. M., and Reder, M. W., eds. (1986). Rational choice:
The contrast between economics and psychology. Chicago, IL: Uni-
versity of Chicago Press.

Kleindorfer, P. R., Kunreuther, H. C., and Schoemaker, P. J. H.
(1993). Decision sciences: An integrative perspective. Cambridge,
UK: Cambridge University Press.

Langley, P., Simon, H. A., Bradshaw, G. L., and Zytkow, J. M.
(1987). Scientific discovery: Computational explorations of the cre-
ative process. Cambridge, MA: The MIT Press.

March, J. G., and Simon, H. A. (1993). Organizations, 2nd ed.
Oxford, UK: Blackwell.

Newell, A., and Simon, H. A. (1972). Human problem solving. En-
glewood Cliffs, NJ: Prentice Hall.

Rumelhart, D. E., and McClelland, J. L. (1986). Parallel distrib-
uted processing (2 vols.). Cambridge, MA: The MIT Press.

Simon, H. A. (1997). Administrative behavior, 4th ed. New York:
Free Press, Macmillan.

Simon, H. A. (1996). The sciences of the artificial, 3rd ed. Cam-
bridge, MA: MIT Press.

Smith, V. L. (1991) Papers in experimental economics. Cambridge,
UK: Cambridge University Press.

von Neumann, J., and Morgenstern, O. (1944). Theory of games
and economic behavior. Princeton, NJ: Princeton University
Press.

Williamson, O. E. (1985). The economic institutions of captialism.
New York: The Free Press.

Decision Theory 581

Desktop Publishing
Reza Azarmsa
Loyola Marymount University

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 583

I. AN OVERVIEW OF DESKTOP PUBLISHING
II. UNDERSTANDING DESKTOP PUBLISHING

III. THE PROCESS OF DESKTOP PUBLISHING
IV. MATERIALS PRODUCED BY DESKTOP PUBLISHING
V. BENEFITS OF DESKTOP PUBLISHING

VI. EVOLUTION OF DESKTOP PUBLISHING
VII. TEX AND LATEX

VIII. PORTABLE DOCUMENT FORMAT
IX. ADOBE TYPE MANAGER

X. COMPARISON OF CONVENTIONAL
AND ELECTRONIC METHODS

XI. PUBLISHING CATEGORIES
XII. DESIGN ELEMENTS IN DESKTOP PUBLISHING

XIII. DESIGN PRINCIPLES
XIV. COLOR
XV. WAYS TO IMPROVE GRAPHICS

XVI. TYPOGRAPHY
XVII. WAYS TO IMPROVE TEXT

GLOSSARY

alignment The way text lines up on a page or in a
column.

ascender The portion of a lowercase letter that rises
above the main body or x height as in a “b.”

baseline The imaginary line on which a line of type
rests.

bullet A large, solid dot preceding text to add em-
phasis. Also known as a blob.

color separation The division of a multicolored orig-
inal into the primary process colors of yellow, ma-
genta, cyan, and black. A separate film is made for
each color and these are each printed in turn, thus
building up a color picture.

descender The portion of a letter that extends below
the baseline, as in the letter y.

dots per inch (dpi) The measure of resolution for a
video monitor or printer. High-resolution printers
are usually at least 1000 dpi. Laser printers typically
have a resolution of 300 dpi; monitors are usually
72 dpi.

drop cap A large initial letter at the beginning of the
text that drops into the line or lines of text below.

Encapsulated PostScript (EPS) A file format that en-
ables you to print line art with smooth (rather than
jagged) edges and to see and resize the graphic on
screen as it will print. These files can be produced

in graphic programs that produce PostScript code
(such as Illustrator and Free-Hand). The EPS im-
ages do not print well on non-PostScript printers.

grid A nonprinting design consisting of intersecting
horizontal and vertical lines that can be used for
the overall layout of a publication or for position-
ing drawn graphics, depending on the software.
Also called layout grid.

initial cap Large, capital letters (often ornamental)
that are found at the beginning of paragraphs or
chapters. These date back to European manuscripts,
where they were (and still are) considered works of
art. Before printing presses replaced hand letter-
ing, a few talented scribes drew the characters into
spaces left in the manuscripts for that purpose.

layout The arrangement of text and graphics on a page.
leading (Pronounced “ledding.”) The distance in

points from the baseline of one line of type to the
baseline of the next. Also called line spacing or in-
terline spacing.

phototypesetting The method of setting type photo-
graphically.

pica A typographic unit of measurement equal to
one-sixth of an inch. Twelve points equal one pica.

pixel (stands for picture element). Pixels are square
dots that represent the smallest units displayed on
a computer screen. Characters or graphics are cre-
ated by turning pixels on or off.

point A basic unit of typographic measurement.
There are 72 points to an inch.

PostScript Adobe Systems’ page description language.
Programs such as FreeHand use PostScript to
create complex pages including text and graphics
onscreen. This language is then sent to the printer
to produce high-quality printed text and graphics.

resolution Sharpness of definition of a digitized image
depending on the number of scan lines to the inch.

reverse lines White rules on a contrasting black,
shaded, or colored background.

sans serif Typefaces that do not have the small “fin-
ishing” lines at the end of each stroke of a letter.

serif Typefaces that have small “finishing” lines at the
end of each stroke of a letter.

template A dummy publication that acts as a model,
providing the structure and general layout for an-
other similar publication.

tracking The overall letterspacing in the text. Track-
ing can also be used to tighten or loosen a block
of type. Some programs have automatic tracking
options that can add or remove small increments
of space between the characters.

True Type An outline font format developed by Ap-
ple Computer Corporation and adopted by Mi-
crosoft Corporation. These fonts can be used for
both the screen display and printing, thereby elim-
inating the need to have font files for each
typeface.

typesetting Text produced by a laser printer or high-
quality machine known as a typesetter.

weight The degree of boldness or thickness of a let-
ter or font.

widow A single line of text or word at the top of a
page or column.

WYSIWYG (what you see is what you get) A display
mode that enables the user to see an image on
screen of how the text and graphics in a publica-
tion will appear on the printed page.

x-height The vertical height of a lowercase x and the
height of the bodies of all lowercase letters. Also
called mean line.

I. AN OVERVIEW OF DESKTOP PUBLISHING

Desktop publishing (DTP) is a phenomenon of desk-
top computing. Very few developments in microcom-
puters have grabbed the attention of computer users
quite like DTP. It began to be widespread when Ap-
ple Computer announced the LaserWriter laser
printer in January 1985.

The term desktop publishing is quite recent. Paul
Brainerd, “father” of the PageMaker software program,
is credited with coining the phrase. Simply, DTP refers
to the process of producing documents of typeset qual-
ity using equipment that can sit on a desktop. Users
can combine text and illustrations (both graphics and
photographs) in a document without the traditional
paste-up procedure often used in print shops, at the
cost for less than traditional offset printing.

Desktop publishing systems use the principle
known as WYSIWYG (pronounced wizzy-wig): What
you see is what you get. As the user keys text and
graphics into the computer, he or she can see exactly
how the output will appear on the page before print-
ing the final copy.

Another kind of software that contributed impor-
tantly to the new publishing process was the page de-
scription language PostScript. The PostScript lan-
guage, used by laser printers for page description,
makes these printers versatile type compositors. The
PostScript interpreter allows the page composition
language that controls the printer to combine text,
drawings, and photographs for printing.

Desktop publishing systems, including a micro-
computer, a laser printer, word processing software, a
page layout program, and graphic arts software, make
it easy to communicate graphically as well as textually.
Research indicates that textual communication is
processed primarily in the left lobe of the brain and
graphic communication is processed primarily in the
right lobe. The combination of textual and graphic
elements produces a powerful communications struc-
ture that facilitates simultaneous multichannel pro-
cessing by both the left and right lobes of the brain.
As a result, communication techniques that combine
both textual and graphic elements produce effective
results.

Research indicates that most people read typeset
documents about 27% faster than they read nontype-
set documents. They also tend to view typeset docu-
ments as more credible, more persuasive, and more
professional than nontypeset documents.

Desktop publishing is changing the way people
produce documents. It enhances the individual’s abil-
ity to control all or most of the process of producing
printed materials. This potential means that multital-
ented people with writing, illustrating, editing, and
designing skills can do the work effectively.

Users gain knowledge in a variety of disciplines—
writing, typesetting, graphic design, printing, and
computing. Controlling the publication process per-
mits authors to become more involved with the visual

584 Desktop Publishing

impact of their ideas on the reader. The relationship
between form and content may take on new meaning
when authors integrate ideas with words, type style,
graphics, and the other features involved in the pro-
duction of publications with a high level of visual im-
pact. Creating visually informative text gives the au-
thor a chance to gain a heightened sense of categories,
divisions, and orderly progression. Also affected are
small businesses, designers, and large corporations
that have brought the production process in-house.

II. UNDERSTANDING DESKTOP PUBLISHING

DTP provides the capability to produce reader- or
camera-ready originals without the need for compli-
cated prepress operations. The tools of production
generally consist of a computer system and relevant
software applications and are sufficiently compact to
fit on a desktop. They provide the user with total con-
trol over the content and form of the publication. In
general, prerequisite skills include a working knowl-
edge of word processing, a general understanding of
graphics, and a sense of what constitutes pleasing and
functional layout and design.

The significance of DTP is threefold. First, it pro-
vides the user with the tools to express thoughts and
ideas in text, graphic, and sometimes photographic
(halftone) form. These elements are pieces of the
publication production process that have traditionally
required the services of trade professionals to assem-
ble into final form. Second, the user has immediate
feedback on the appearance of the final publication.
The page relationships of the elements, their sizes,
and their physical characteristics are immediately vis-
ible and infinitely editable. Third, the paper output
from the system is in finished form, ready for distrib-
ution to small numbers of readers or for further re-
production and subsequent mass distribution.

III. THE PROCESS OF DESKTOP PUBLISHING

The DTP production process involves electronically
placing text and graphics on a page and reproducing
the page for distribution. Produce a newsletter, a pro-
posal, a resume, or a high school yearbook and you
follow the same procedures as publishers of books
and magazines, albeit on a less elaborate scale. No
matter the kind of document produced or the tech-
nique used, publishing procedure follows five basic
steps:

1. Plan the publication
2. Prepare the text
3. Prepare the charts and illustrations
4. Make up the publication’s pages (prepare them

for reproduction)
5. Reproduce the publication

Desktop publishing computerizes and accelerates the
publishing cycle. Often text is created in a software
application and then edited. Charts, graphs, illustra-
tions, rules (lines), boxes, or circles are drawn either
with DTP built-in tools or by other application soft-
ware. Text and charts are placed on the page and re-
sized and reshaped according to the predetermined
page specifications. When the page is complete, it
may be produced on a computer printer and then
can be reproduced on a photocopy machine or a com-
mercial printing press. Figure 1 illustrates the process
of desktop publishing.

IV. MATERIALS PRODUCED
BY DESKTOP PUBLISHING

Desktop publishing has enjoyed quick acceptance in
most areas of document production within business,
industry, government, and education. It is a step be-
yond word processing, providing users with the capa-
bility to produce better looking and more informa-
tionally potent documents.

The following is a list of some of the materials that
can be produced using desktop publishing.

Books Brochures Bulletins
Calendars Catalogs Certificates
Charts Cover sheets Curriculum materials
Diplomas Directories Documentation
Flow charts Flyers Graphs
Greeting cards Indexes Instructional materials
Letterhead stationery Magazines Manuals
Maps Memos Menus
Name tags Newsletters Newspapers
Notices Pamphlets Poetry
Programs Proposals Prospectuses
Resumes Schedules Signs
Slides Statements Tabloids
Testing materials Title pages Visual aids

V. BENEFITS OF DESKTOP PUBLISHING

Desktop publishing offers many advantages over the
traditional printing process. Even though the initial
costs of obtaining high-end DTP hardware and software

Desktop Publishing 585

are high, the system actually often saves money. Usu-
ally, the sense of accomplishment that comes with the
finished product and the flexibility regarding the print-
ing process are enough to justify that time. Additional
potential benefits to desktop publishing include:

1. Reduced typesetting time and costs
2. Better looking publications with improved

readability, credibility, and prestige
3. More control over the publishing process
4. Increased convenience to designers
5. Increased cooperation among students
6. Possibility for electronic distribution

Reduced typesetting time and costs are a very tangi-
ble benefit of DTP. Because word processing and page
composition programs allow you to directly create

and lay out your documents, there is no need for a
manual typesetting step. This eliminates typesetting
costs and time. Typesetting can often take days and
cost as much as $50 per page. For producing newslet-
ters or brochures on a regular basis, typesetting costs
and time can be a significant problem.

Desktop publishing can result in better quality pub-
lications because documents can be composed
quickly, allowing more time for revisions and addi-
tions. Many documents that would not merit the time
and expense of printing by traditional methods can
be produced in near typeset form with DTP equip-
ment. If documents are created using a word pro-
cessing program, it is a small additional step to com-
pose and print them.

More control is achieved over the publishing
process because the results are immediately available.

586 Desktop Publishing

This is a meaningless sentance that is meant to

enhance the realism oft his graphic.This is a

meaningless sentance that is meant to enhance the

 realism of this graphic.This is a meaningless sentance

that is meant toenhance the realism of this graphic.

This is a meaningless sentance that is meant to enhance

the realism of this graphic. This is a meaningless sent

ance that is meant to enhance the realism of this graph

ic.This is a meaningless sentance that is meant to

enhance the realism of this grahic.This is a meani

ngless sentance that is meant toenhance the realism of

 this graphic.This is a meaningless sentance that is

meant to enhance the realism of this graphic.

This is a meaningless sentance that is meant to

enhance the realism of this graphic.This is a

meanigless sentance that is meant to enhance

 the realism of this graphic.

This is a meaningless sentance that is meant to enhance the realism of

this graphic.This is a meaningless sentance that is meant to enhance the
realism of this graphic.This is a meaningless sentance that is meant to

enhance the realism of this graphic.This is a meaningless sentance that is
meant to enhance the realism of this graphic. This is a meaningless sentance
that is meant to enhance the realism of this graphic.This is a meaningless
sentance that is meant to enhance the realism of this graphic.This is a

meaningless sentance that is meant toenhance the realism of this graphic.
This is a meaningless sentance that is meant to enhance the realism of this
graphic.

This is a meaningless

sentance that is meant to enhance the realism of this graphic.This is a

meaningless sentance that is meant toenhance the realism of this graphic.

This is a paragraph

 in which it's

meaning is simply

 to take up space.

This is a paragraph

 in which it's

meaning is simply

 to take up space.

This is a paragraph

 in which it's

meaning is simply

 to take up space.

This is a paragraph

 in which it's

meaning is simply

 to take up space.

This is a paragraph

 in which it's

meaning is simply

 to take up space.

This is a paragraph

 in which it's

meaning is simply

 to take up space.

 Write and edit using your

word processing application
Word processing

 document

Produce your

 publicaton

Create illustrations using

your graphics application

Import graphics

 with a scanner
 or

Commercial printer Film Laser printer or

 Ink Jet printer

 Portable

Document File

This is a paragraph

in which its meaning

is simply to takke up

space.

This is more of the

same.

This is a paragraph

in which its meaning

is simply to takke up

space.

This is more of the

same.

This is a paragraph

in which its meaning

is simply to take up

space.

This is more of the

same.

This is a paragraph

in which its meaning

is simply to take up

space.

This is more of the

same.

Figure 1 Process of DTP. The DTP program provides a tool with which users can assemble text and illustrations into a page format.

This makes it much easier to try out ideas and see
what various options look like. In addition, potential
communication problems between the document de-
signer and the printer are avoided because they often
are the same person.

The availability of graphics and page composition
programs makes design work much easier and faster.
For example, a skilled artist can create technical il-
lustrations much more productively using a computer
than on paper. This is because it is possible to build
up libraries of “clip art” that can be reused. Features
such as automatic rescaling, rotating, and overlaying
make the drawing process faster. Similarly, page lay-
out can be accomplished much easier than manual
paste-up due to features such as automatic pagina-
tion, line-spacing control, text wraparound, automatic
hyphenation, and margin settings.

Finally, it is possible to send and exchange docu-
ments electronically, eliminating the time and costs of
physical delivery. Suppose you are editing a newslet-
ter that contains contributions from people all over
the country. The articles can be transmitted to you
from their personal computers to yours in a matter of
minutes. You can then edit the articles, compose the
newsletter, and transmit the complete newsletter to
the printing site. Alternatively, the newsletter could
be published electronically on the Internet, meaning
that people read it on their own computers as soon as
it is made available.

Desktop publishing creates interesting written com-
munications far beyond what can be created with an
ordinary word processor. Some of the advantages of a
DTP program are as follows:

1. Improves the appearance of documents
2. Reduces the time and number of steps required

to print pages
3. Produces customized documents
4. Produces camera-ready documents in a short

time
5. Reduces production costs
6. Offers more capabilities and flexibilities
7. Encourages creativity
8. Increases productivity
9. Makes the job more fun

VI. EVOLUTION OF DESKTOP PUBLISHING

A review of typesetting and printing advances offers a
good starting point for understanding how DTP builds
on and streamlines traditional publishing methods.

A. Ancient Times

Publishing coincided with the development of written
language. In ancient times, papyrus was used to pro-
duce printed material. Later, around the time of Je-
sus, the Chinese used bamboo to create a writing sur-
face. Before the invention of the printing press,
publications were hand-copied on pieces of paper or
other writing surfaces. The first form of printing in-
volved carving a message on a piece of stone or wood,
coating it with some type of ink, and pressing that
“plate” against a piece of paper. This method was
mostly used for reproducing artwork rather than for
printing characters.

B. Movable Type

In the fifteenth century, Johannes Gutenberg’s popu-
larization of movable type became one of the mile-
stones of European history—it reduced publishing
time and expense so books became more plentiful.
Until then, books had been handcopied or printed
from blocks of wood on which raised characters (let-
ters, numbers, and punctuation marks) and illustra-
tions were laboriously carved for each page. Movable
type at that time involved small wooden blocks with
individual characters that could be rearranged and
used repeatedly. This wood type was later replaced by
metal type for greater durability.

C. Linotype

The next important publishing innovation did not oc-
cur for four centuries. With the invention of the Lino-
type machine in the 1880s, publishers could set an en-
tire line of type at once rather than only character by
character. Although the process entailed melting lead,
it reduced publishing costs and production time.

D. Offset Printing and Phototypesetting

In the 1950s and 1960s, the publishing process trans-
formed from the “hot type” process involving molten
lead into a photographic “cold type” process that is
faster and cleaner. At this time, several photographic
printing processes were introduced that used a flat
plate rather than the raised type of earlier methods.
The most important new process was offset printing,
which is widely used today. Offset printing was soon
joined by computer-based phototypesetting, which

Desktop Publishing 587

projects images of columns of text onto photosensi-
tive paper. The paper is developed, cut into sections,
and pasted onto a sheet of heavy paper to produce a
camera-ready page mechanical—a paste-up of the
complete page for offset printing. Illustrations are
sized photographically and added as needed.

By the early 1980s, staff overhead presented a prob-
lem for a growing segment of the publishing industry:
businesses, government offices, and educational insti-
tutions that had become major publishers of bro-
chures, books, catalogs, and other phototypeset publi-
cations. The advent of microcomputers and software
development introduced DTP in 1985. This new de-
velopment gave businesses and educational institu-
tions an affordable publishing system anyone could
learn to use. For some, bringing publishing to the
desktop is known as the second publishing revolution.

E. Desktop Publishing

The term desktop publishing is credited to Paul Brain-
erd of Aldus Corporation, the father of PageMaker.
Desktop publishing actually originated in 1973, when
an experimental multifunction workstation was devel-
oped at the Xerox Palo Alto Research Center (PARC).
The workstation was called Alto. Because its designers
had graphics applications in mind, the Alto had a
high-resolution bit-mapped display screen and a
mouse pointing device.

Altos were assigned to a few selected sites, includ-
ing the White House, the House of Representatives,
the Senate, a few universities (especially Stanford),
and several undisclosed locations in the United States
and Europe. This large base of users provided input
as to what was right and what was wrong with the Alto
and with the various software packages that had been
developed for it. These packages included Bravo,
Gypsy, Markup, Draw, SIL, and Laurel for text editing
and formatting, creating pictures and diagrams, and
providing electronic mail by means of a central file
server.

None of the Alto machines were ever commercially
viable on cost grounds, and there was no affordable
printer. Apple Computers, inspired by the PARC sys-
tems, designed and marketed the Lisa desktop micro-
computer. This unit, released by Apple in 1983, had a
high-resolution screen, a mouse, a WIMP (windows,
icons, mice, and pointers) interface, and high-capacity
hard and floppy drives. Lisa was discontinued in 1984
when Apple produced the first Macintosh, which led to
a family of microcomputers that further extended the
idea of an integrated suite of applications emulating
the original PARC systems. The following year Apple

produced a laser printer with an output resolution of
300 dots per inch (dpi), which is generally considered
to have started the DTP revolution. This printer had a
plain-paper typesetter using a raster image processor
(RIP), which gave a resolution approximating profes-
sionally published documents. At 300 dpi a letter-size
page requires about 1MB of storage to be set up in the
RIP for printing manipulations.

The fact is that the new technology has spawned a
host of desktop publishers who are publishing—writ-
ing, producing, and distributing—to a readership,
and the publishing process has suddenly become de-
mocratized and affordable beyond the dreams of only
a few years ago.

Macintosh computers get credit for desktop pub-
lishing as we perceive it today. But today DTP is not
limited to Macs. Windows-based computers are, in
some respects, an ideal platform for the development
of a DTP system because they are popular, powerful,
and open. Using a Windows-based computer, the user
must specify what kind of graphics board is available.

Until recently, the interval between the develop-
ment of new technologies and their introduction into
printing has been quite considerable. In the case of
DTP, where some of the essential tools, such as text
and graphics processing, are already providing effec-
tive publishing experiences, the interval has been ex-
tremely short. Expectations have already been raised
by the early release of packages that claim to be DTP
systems because they provide simple manipulations of
both text and graphics on a single page. A particular
selling point of such systems has been their facility to
design pages of newspapers and magazines for deliv-
ery on the Internet system.

F. PostScript

PostScript is a computer graphics language that de-
scribes pages of text and graphics and reproduces the
descriptions on a printer, typesetting machine, or other
output device. PostScript was developed by Adobe Sys-
tems of Palo Alto, CA, for Apple’s LaserWriter printer.
PostScript is a widely accepted page description lan-
guage for the Macintosh and other computers, such as
the IBM PC series and compatibles.

PostScript describes pages by using mathematical
formulas that represent shapes rather than by speci-
fying individual pixels in a bit-mapped graphic image
(the small dots that make up an image are known as
picture elements, or pixels). PostScript translates im-
ages into the tiny dots that make up text, graphics,
and halftones on printed pages. PostScript encodes
typefaces into outlines that a laser printer reconstructs

588 Desktop Publishing

at the proper size and then fills in to solidify the out-
line. This approach has two clear advantages: com-
puter memory is conserved, and many different types
of output devices can recreate the standard PostScript
format at a wide range of resolutions.

PostScript’s unique system of typeface definition
creates characters in a wide variety of type styles and
sizes. This approach can cut typesetting costs consid-
erably, because typefaces are traditionally sold by the
font (a set of characters of a single typeface, type
style, and size). In other words, most typesetting ma-
chines require separate purchases for 9-point Times
Roman, 12-point Times Roman, 12-point Times Ro-
man italic, and so forth. On the other hand, a single
purchase gets you the Times Roman typeface for a
PostScript system in all the major type styles—plain
text, italic, bold, underline, outline, shadow, small
caps, superscript, and subscript—and in virtually any
type size (the Apple LaserWriter, for example, can
produce any size from 3 points up). You don’t pay
separately for each variation. It is also important to
keep in mind that PostScript doesn’t work only on
printers. For example, you can write PostScript pro-
grams to create special graphics effects. Computers
can use PostScript to describe text and graphics in a
standardized common format that other computers
or PostScript programmers can employ. Video dis-
plays can use PostScript to interpret page descrip-
tions, convert the results into bit-mapped images,
and display the images on a computer screen. Post-
Script provides a common language for various audi-
ences and devices that precisely and concisely de-
scribes pages of information that contain text,
graphics, or both (Fig. 2).

PostScript has emerged as a standard among page
description languages; many hardware and software
companies now make PostScript-compatible products
from page layout and graphics software for the Mac-
intosh and IBM PC to page printers and typesetting
machines.

VII. TEX AND LATEX

TeX is a typesetting language developed by Donald E.
Kunth and is designed to produce a large range of
documents typeset to extremely high-quality stan-
dards. For various reasons (e.g., quality, portability,
stability, and availability) TeX spread very rapidly and
can now be best described as a worldwide de facto
standard for high quality typesetting. Its use is partic-
ularly common in specialized areas, such as technical
documents of various kinds, and for multilingual re-
quirements. The TeX system is fully programmable.

LaTeX is a document preparation system for high-
quality typesetting. It is most often used for medium-
to-large technical or scientific documents, but it can
be used for almost any form of publishing. LaTeX is
not a word processor. The user must write in the com-
mands that control the layout and appearance of the
text. LaTeX is based on Donald E. Kunth’s TeX type-
setting language. It was first developed in 1985 by
Leslie Lamport, and is now being maintained and de-
veloped by the LaTeX3 project. LaTeX is available for
free by anonymous ftp.

VIII. PORTABLE DOCUMENT FORMAT

Portable Document Format (PDF) is designed to
be totally cross platform. The resulting PDF files can
be viewed and printed from several different plat-
forms (Mac or PC) with the page layout and typog-
raphy of the original document intact using Acrobat
Reader, as well as on other systems, including OS/2
and UNIX.

IX. ADOBE TYPE MANAGER

Adobe Type Manager (ATM) is a system software com-
ponent that automatically generates high-quality screen
font bitmaps from PostScript or OpenType outline font
data. With ATM, you can scale your fonts without the
characters appearing jagged, and you can also enable
“font smoothing,” which further improves the appear-
ance of your fonts on-screen by using your computer

Desktop Publishing 589

P
c

c
c

cc

c

c

c

c

c

c

c

c

c

d

d

d

m

Figure 2 PostScript outline of the letter P.

monitor’s color palette to intelligently improve the ren-
dering of characters. Also ATM allows you to print Post-
Script fonts on non-PostScript printers.

X. COMPARISON OF CONVENTIONAL
AND ELECTRONIC METHODS

In DTP process, every step in the design and produc-
tion, from conception to master copy, to short-run
production, can be accomplished electronically from
a desktop computer. Taken individually, each step in
the electronic production cycle is direct and well-
defined. Text can be electronically formatted in typo-
graphic detail; graphics created, or scanned; and all
these pieces can be assembled in DTP software.

A. Text Preparation

Conventional method—Creating handwritten copy or
composing copy on a typewriter requires very little
training or specialized computer knowledge, but there
is little flexibility or editing capability, and it is diffi-
cult to incorporate into a design process. The type-
writers of today come with microprocessors, create
disk files, and include such automatic editing or au-
thoring tools as spell checkers. They just don’t re-
quire the user to be computer literate.

Electronic method—Text prepared in a word
processor on a computer is easy to edit, makes use of
automated text tools, and incorporates into a page
composition scheme. Specialized computer knowl-
edge of operating systems and file structures is re-
quired, however, the strong advantages word proces-
sors offer compel their use.

B. Painting or Drawing

Conventional method—Paper and pen or pencil are
the traditional media of artists. Advantages include
low cost, ease of use, and many special effects that are
difficult to achieve on a computer. Contrarily, artwork
is not easily altered, is not very precise, and is hard to
adapt to a production process.

Electronic method—Computer paint and draw pro-
grams with digital file output are easy to alter, include
many special effects, are precise, and adapt easily to
an electronic production cycle. Disadvantages include
cost of equipment and lengthy rendering times. Elec-
tronic art is more frequently becoming the choice for
a production process, but not all artists are welcom-
ing the advantages of electronic art forms.

C. Photographic Images

Conventional method—Camera-generated artwork is
low-cost, high-quality, easy to generate, and can incor-
porate many special effects. But it is difficult to alter and
include into an electronic production process. Tradi-
tional photography is preferred in all situations except
where moderate quality is acceptable or where there is
access to very high quality computer equipment.

Electronic method—Using scanned artwork you can
alter an image and create certain special effects not of-
fered by film. Also, digital cameras and royalty-free pho-
tographs are readily available. Disadvantages are train-
ing and highly varying quality, depending on equipment.

D. Layout, Typesetting, and Composition

Conventional method—Paste-up boards, if in use, re-
sult in a high-resolution master. However, they are
time-consuming and expensive to produce.

Electronic method—Page layout programs have the
support of automation tools, offer device indepen-
dence, and are low cost and of good quality. Disad-
vantages include complex design strategy and lengthy
setup times for initial run. Desktop page layout is a
better choice for composing a page, particularly for
repetitive situations.

E. Printing Process

Conventional method—Letterpress, offset, gravure,
screen printing, and heat-transfer printing offer high
quality and low cost per unit, give better color repro-
duction, and offer large page sizes. Disadvantages in-
clude high setup costs and time and low adaptability
for mixed print runs.

Electronic method—Personal laser printers, inkjet
printers, and imagesetters are adaptable and have
short setup times. Quality is variable but can be from
good (laser printers or copiers) to excellent (for
imagesetters).

XI. PUBLISHING CATEGORIES

Publishing can be divided into four distinct areas:
business publishing, periodical publishing, book pub-
lishing, and personal publishing. All four areas can
benefit from DTP technology.

Business publishing involves the printing and distri-
bution of company materials. It includes business re-

590 Desktop Publishing

ports, brochures, catalogs, product documentation,
forms, letterheads, and corporate communications
such as internal memos, advertising and promotional
materials, and other items.

Periodical publishing is the printing and distribution
of materials on a regular basis. The materials are usu-
ally distributed to the same group of individuals or a
similar group at an interval that can be daily, as in the
case of newspapers; weekly, as in the case of newslet-
ters and magazines; monthly, as in the case of maga-
zines and journals; or even annually, as in the case
with some journals and reviews.

Periodical publishing also involves a coherent con-
tent and usually similar look from issue to issue. What
distinguishes book publishing from other types of
publishing is that it involves the printing and distrib-
ution of a single, cohesive work. Book publishing’s
production time is usually longer than that of other
types of publications.

Personal publishing is the printing and distribution
of materials by individuals. The materials can include
poetry, freelance writing, essays, reports, humor,
school papers, greeting cards, wedding and birth an-
nouncements; party invitations, personalized calen-
dars, etc. Personal publishing also encompasses artis-
tic uses of publishing such as the publication of poetry.
Often personal publishing overlaps with another type
of publishing, as in the case of people who publish a
book on their own or who send a periodical such as
a newsletter to friends, members of an organization,
or people with a common interest. The production of
essays, reports, and other such documents is another
area of personal publishing that benefits from DTP
technology. The option of publishing your own re-
ports can be an excellent method for dissemination
of scientific information, especially in the publish-or-
perish academic world. People in the personal cate-
gory of publishing usually publish for their own ben-
efit—financial gain and commercial success are not
usually the prime motivations.

XII. DESIGN ELEMENTS
IN DESKTOP PUBLISHING

The success of many DTP materials can be attributed
in large measure to the quality and effectiveness of
the graphic design. These are achieved through or-
ganizing preliminary thoughts, planning, and apply-
ing the techniques outlined in this section.

Many people who develop DTP materials have lit-
tle or no professional art background. To avoid pro-
ducing poor graphic materials, they can consider a

number of practical suggestions and guiding princi-
ples and then apply these as the need arises.

XIII. DESIGN PRINCIPLES

Effective graphic design is based on knowing the build-
ing blocks of design and when to use them. In graphic
design, everything is relative. Tools and techniques
that work in one situation will not necessarily work in
another. For example, it is impossible to define the
exact layout for informal balance or the appropriate
color for a newsletter or book cover.

In creating a visual, important design considera-
tions are best faced by starting with a preliminary
sketch of the intended visual. This is referred to as a
rough layout. At the rough layout stage, little atten-
tion is paid to rendering the artistic details, but care-
ful consideration is given to effective design.

Graphic design must be seen as a means of com-
munication rather than mere decoration. There
should be a logical reason for the way you employ
every graphic tool. That tool should relate to the idea
it expresses as well as to the environment in which the
final product will appear. The following guidelines
provide a framework for effective graphic design.

A. Planning

Design must be planned with consideration for the in-
tended audience. What is the basic message, and what
format will be used (newspaper, bulletin, poster)? The
more you define your project’s purpose and environ-
ment, the better you will do. You should also consider
the size and dimensions of the publication in addi-
tion to the resources, skills, techniques, materials,
and facilities that you can employ to produce the
publication.

It is useful to develop a grid or choose a pre-
designed one in template form. Shown in Fig. 3, the
grid adds continuity to a publication by defining where
margins, rules, columns, and other elements should
be on each page. Publications may be designed by
drawing thumbnail sketches. A thumbnail sketch is a
rough sketch of a page design. This technique helps
designers visualize the final product.

B. Organization

The visual and verbal elements of the design should
be arranged in a pattern that captures the viewer’s

Desktop Publishing 591

attention and directs it toward the relevant details.
The manipulation of line and space are the designer’s
primary tools. The arrangement should be clear
enough to attract and focus attention quickly. A con-
figuration pattern is usually found in effective design.
It may be established by the directional cues that are
developed to guide the viewer to see details in proper
sequence. Certain patterns guide the viewer’s eye
throughout the publication.

C. Simplicity

Generally speaking, the fewer elements in the design,
the more pleasing it is to the eye. Simplicity is the first
rule of design. Drawings should be bold, simple, and
contain only key details. Picture symbols should be
outlined. Use simple, easy-to-read lettering systems
and a minimum of different type styles in the same vi-
sual or series of visuals.

D. Balance

A psychological sense of equilibrium or balance is
achieved when the design elements in a display are
equally distributed on each side of the axis—either hor-
izontally, vertically, or both. There are two kinds of bal-
ance: formal and informal. When the design is repeated
on both sides, the balance is formal or symmetrical.

Informal balance is asymmetrical; the elements cre-
ate an equilibrium without being alike. Informal is
dynamic and attention-getting, unlike formal balance.
It requires more imagination from the designer. In-
formal balance is usually regarded as the more inter-
esting choice (Figs. 4 and 5).

E. Unity

Unity is the relationship that exists among the ele-
ments of a visual. These elements function together to
provide a single dominant visual to capture the reader’s
attention. Unity can be achieved by overlapping ele-

592 Desktop Publishing

Figure 3 A grid contributes to the continuity of a publication.

Figure 4 An example of formal balance. Formal balance, if
used too much, becomes monotonous.

ments, by using pointing devices such as arrows, and by
employing visual tools (lines, shape, color, texture, and
space). The single dominant visual helps organize the
reader’s eye movement throughout the publication.

F. Emphasis

Through the use of size, relationships, perspective,
lines, and such visual tools as color and space, em-
phasis can be given to the most important elements
in the publication (Fig. 6).

G. Contrast

Any element that is different from those surrounding
it will tend to stand out. The contrast or variation may
be in terms of size, shape, color, or orientation. Con-
trast also refers to the relative amount of space devoted
to text, artwork, and white space. You can create a high-
impact publication with definite light and dark areas as
well as lots of white space and illustrations.

XIV. COLOR

Color is an important adjunct to most visuals. Careful
use of color plays an important role: (1) to heighten
the realism of the image by depicting its actual colors;
(2) to point out similarities and differences and to
highlight important emphasis; and (3) to create a
particular emotional response.

Contemporary research in the psychology of motiva-
tion reveals that different colors stimulate more than the
visual sense. They have “taste”, for example, blue is sweet,
orange is edible. They have “smell”; pink, lavender, yel-
low, and green smell best. Colors also have psychological
connotations; dark red and brown evoke masculine im-
ages of earth, wood, and leather; gold, silver, and black
suggest the prestige and status associated with wealth.

When selecting colors for visual materials, atten-
tion should be given to their elements. The hue, which
is the specific color (red, blue, etc.), should be con-
sidered. Another element is the value of the color,
meaning how light or dark the color should appear in
the visual with relation to other visual elements. The
final component is the intensity or strength of the
color for its impact or coordinated effect.

Desktop Publishing 593

Figure 5 An example of informal balance. There are an infi-
nite number of possible designs in informal composition.

WorldWorld W hunger
can be solved by

better use of natural
resources around

the world

Figure 6 Using white space for emphasis.

Lorem ipsum dolor sit amet,
consectetuer adipiscing elit, sed
diam nonummy nibh euismod
tincidunt ut laoreet dolore
magna aliquam erat volutpat.

Ut wisi enim ad minim veniam,
quis nostrud exerci tation
ullamcorper suscipit lobortis
nisl ut aliquip ex ea commodo
consequat. Duis autem vel eum
iriure dolor in hendrerit in
vulputate velit esse molestie
consequat, vel illum dolore eu
feugiat nulla facilisis at vero
eros et accumsan et iusto odio
dignissim qui blandit praesent
luptatum zzril delenit augue
duis dolore te feugait nulla
facilisi.

Lorem ipsum dolor sit amet,
consectetuer adipiscing elit, sed
diam nonummy nibh euismod
tincidunt ut laoreet dolore
magna aliquam erat volutpat.

Ut wisi enim ad minim veniam,
quis nostrud exerci tation
ullamcorper suscipit lobortis

Duis autem vel eum iriure
doloin hendrerit in vulputate
velit esse molestie consequat,
vel illum dolore eu feugiat
nulla facilisis at vero eros et
accumsan et iusto odio
dignissim qui blandit praesent
luptatum zzril delenit augue
duis dolore te feugait nulla
facilisi. Nam liber tempor cum
soluta nobis eleifend option
congue nihil imperdiet doming
id quod mazim placerat facer.

Lorem ipsum dolor sit amet,
consectetuer adipiscing elit, sed
diam nonummy nibh euismod
tincidunt ut laoreet dolore
magna aliquam erat volutpat.

This graphic is reprinted by
premission of Dynamic
Graphics, Inc.

Possim Assum

Informal Balance

A. Using Color

Color can be the most important part of presentation
design. Used carefully, it can enhance your message,
provide richness and depth, and put a personal stamp
on your work. The most obvious reason for using
color is to show things as we see them in nature—
green trees, yellow bananas, and red bricks, for ex-
ample. Abstractions, such as statistics, ideas, and pro-
posals have no intrinsic colors, but color can be used
to represent symbolic associations. For instance, red
can suggest warning, danger, or financial loss. The
following points are some reasons for using color.

1. Advertisers try to establish associations of certain
colors with consumer products, sports teams, etc.
You can apply the same logic by developing
identifying color schemes for your presentation.

2. Use color to distinguish between like and unlike
elements. To clarify a flow chart, show file names
in red and program names in blue. Color can
distinguish elements or classes of information.

3. Indicate the importance or progression of data by
increasing the value and saturation level. Light-to-
dark or gray-to-bright sequences are excellent
ways to represent levels of importance. Use a
chromatic or a rainbow series to show a
graduated sequence.

4. You can draw attention to elements in your
presentation by choosing colors that are either
brighter or lighter than the rest. Suppose you
want to emphasize some of the words in a list.
On a dark gray, blue, or black background, use
light yellow or cream as your main text color. For
contrast, select full yellow (brighter) or white
(lighter) as the emphasis color. Do not try to
emphasize too much at once with several
different colors; they may cancel each other out.

5. Be sensitive to cultural biases as well. Some
people cannot accept pink as a serious color.
That does not mean that pinks are not valid
presentation colors. Pink is actually a serviceable
color, but be aware of personal prejudices.

6. The setting, the subject matter, and the
audience’s previous experience can create certain
expectations. Weigh all factors involved and
decide whether audience expectation is reason
enough to develop a color presentation.

7. Do not sacrifice readability for pleasing color.
Legibility takes precedence over all else in
presentation materials, and poor color choices
can interfere. Colors do not perform the same
way under all conditions: pure blue on dark

backgrounds is extremely hard to read, but blue
on white is fine. This isn’t an opinion; it is a fact
of human vision. Base your color choices on what
works well for the audience rather than on
personal taste.

B. The Color Wheel

You are probably familiar with the color wheel show-
ing the range of colors and their relationships to each
other (Fig. 7). Primary and secondary colors alternate
to form the circle. We are used to thinking of red,
blue, and yellow as the primary colors and green, or-
ange, and purple as the secondary colors. Comple-
mentary colors are ranged opposite each other on the
color wheel. The three sets of complements each pair
a primary with a secondary color.

In graphics, there are two methods of mixing col-
ors. The first mixes colors of projected light on your
computer screen, for example. The second method
mixes colors of pigment, like the ink on a printed
page. The differences between the two methods make
it very difficult to match what you see on the screen
with “hard copy” printed on paper or film.

Whether it is projected light or an opaque sub-
stance, a color can be described by its properties or
qualities—its hue, value (or lightness), and saturation.

594 Desktop Publishing

Red
(Primary)

Blue
(Primary)

YellowYellowY
(Primary)

Green
(Secondary)

Orange
(Secondary)

Purple
(Secondary)

Figure 7 Color wheel.

Each color within the spectrum or around the color
wheel is a hue (e.g., red or green). Value refers to the
shade or the degree to which a color approaches black
or white. Saturation is the intensity of a given hue.

C. Colors on Computer

The color you see on your computer screen is created
by mixing red, green, and blue (RGB) light. As more
colors are added, the image approaches white; as col-
ors are taken away, the image approaches black. The
color receptors in our eyes are sensitive to the addi-
tive primaries; that is the way we perceive the light
around us.

Computer color is mixed in RGB; pigment on pa-
per or film is mixed in CYM (cyan, yellow, and ma-
genta). If you make a color picture on screen and out-
put it to paper, your system must translate the colors
from additive to subtractive mode in order to move
from colors of light to pigment colors. The transla-
tion can cause minor (or major) discrepancies be-
tween screen colors and output colors. Be prepared
for this shift, first by identifying the degree to which
it occurs on your particular setup, and second by
choosing flexible palettes that do not depend too
much on precision in order to work well. If your out-
put is color film, you will probably notice less shift
than if you are working on paper.

D. Graduated Color

Graduated or ramped color is a special effect that al-
lows one color to dissolve into another with no dis-
cernible break. Software products differ in regard to
graduated color features. Some let the user specify
two end colors; others add a color specification for
the middle. Users sometimes choose the number of
steps to use in creating the blend. With other systems,
this is handled automatically by the software. Color
can ramp horizontally, vertically, or radially or in some
other way, according to individual program features.

Graduated color is an appealing, easy way to lend
depth to a picture. People are attracted to the im-
pression of process, transition, and motion associated
with graduated color. Backgrounds that ramp from
top to bottom suggest a horizon and the vault of the
sky. Traditionally, colors have been tricky to blend by
manual methods like airbrush, but computers are
ideal for this purpose. Whenever you come upon an
easy way to do what used to be difficult, it can seem
like magic. In the excitement, you may forget your

usual good judgment and go overboard. Color grad-
uations can fall into this category.

E. Using Black and White

Since you will not always be working in color, it is
good to be skilled at telling your story in black and
white, too. Aside from a few technical considerations,
the principles are much the same, whether your
palette is monochrome or multicolor. Contrast, fig-
ure/ground definition and readability still top the list
of design goals. Black and white means shades of gray
as well. The illusion of gray is created with various
black-and-white patterns. These patterns range from
finely spaced dots to representational repeats of brick
walls, with an infinite number of intermediate choices
(Fig. 8).

In commercial printing, ink density for a tint color
is controlled by sandwiching a screen between the
negative and printing plates. This screen stops light
where the printer does not want ink to print, and lets
light through where ink is desired. When a density of
50% is desired, the screen allows light through only
half the image area and stops it from hitting the other

Desktop Publishing 595

10% 20% 30% 40%

50% 60% 70% 80%

Figure 8 An example of shades of gray.

half. The screen acts as a light stencil. Screen densi-
ties are determined by the percent of coverage; reso-
lution is determined by the number of dpi—typically
85–150. Although this technology comes from the
commercial printer’s need to control ink coverage on
paper, most desktop graphics programs incorporate
some of these techniques for producing gray values
on laser printer output.

F. Texture

Texture is a visual element that may serve as a re-
placement for the sense of touch. Texture can be used
to give emphasis, to create separation, or to enhance
unity.

The feel for design is perhaps caught and not
taught. Examine some of the graphic materials that
are part of your everyday world—magazine advertise-
ments, outdoor billboards, television titles and com-
mercials, etc. You can find many ideas for designing
your own materials by studying the arrangement of el-
ements in such commercial displays. Imitation and
practice are the best ways to develop graphic design
skills.

XV. WAYS TO IMPROVE GRAPHICS

Graphic design is creative, subjective, and personal:
its functions are to inform, influence, educate, per-
suade, and entertain. The widespread use of laser
printers and easy-to-use graphics and layout software
have opened up the graphic arts to thousands of en-
thusiasts who otherwise might not have explored these
disciplines. The advent of microcomputers and their
prevalent use in education have made DTP readily
available.

During its short history, DTP has changed the look
of many of the things we read. Desktop publishing
theoretically allows any user to become a typographer,
paste-up artist, editor, writer, compositor, and graphic
artist, once specialized skills practiced only by people
with years of training and experience behind them.
Of course, an untrained user cannot be expected to
instantly acquire and use all these skills effectively.
The availability of DTP must be accompanied by an
attention to detail that leads to good design.

Graphics that can be used in DTP include pho-
tographs, line art (illustrations such as cartoons), dig-
itized logos, charts, and graphs produced with your
software package, and your own illustrations and dia-
grams produced with a paint or draw software pack-

age. Some color works such as photographs and trans-
parencies can be introduced if the appropriate equip-
ment is available.

Software packages exist that enable a user to be-
come a cartoonist and illustrator as well. If you want
to use cartoons and illustrations in your publication,
you can use one of the available clip art packages.
These contain sets of predrawn artwork, such as sym-
bols, that can be included in your design.

Tints (screens) and boxes are a form of graphics
that are an easy way to introduce variety and interest
to a page. A monochrome page can be easily en-
hanced with the use of a 10 or 20% gray tint. Screens
can be used effectively on a page that has only text
and can highlight logos, headlines, and subheads or
be laid over simple graphics.

A. Get Attention with Unusual Elements

Any unusual visual elements capture the reader’s at-
tention. For example, exaggerated quotation marks
draw attention to the text and an exaggerated drop
cap draws the eye immediately (Fig. 9).

596 Desktop Publishing

Figure 9 An exaggerated drop cap draws attention.

B
ecam suidt mande onatd stent spiri usore

idpar thaec abies 750sa Imsep pretu
tempu revol bileg rokam revoc tephe
rosve etepe tenov sindu turqu brevt elliu
repar tiuve tamia queso utage udulc vires
humus fallo 775eu Anetn bisre freun
carmi avire ingen umque miher muner
veris adest duner veris adest iteru quevi
escit billo isput tatqu aliqu diams bipos

itopu 800ta Isant oscul bifid mquec cumen
berra etmii pyren nsomn anoct reern oncit

quqar anofe ventm hipec oramo uetfu
orets nitus sacer tusag teliu ipsev
825vi Eonei elaur plica oscri eseli
sipse enitu ammih mensl quidi aptat
rinar uacae ierqu vagas ubesc rpore
ibere perqu umbra perqu antra erorp

netra 850at mihif napat ntint riora intui
urque nimus otoqu cagat rolym oecfu
iunto ulosa tarac ecame suidt mande

onatd stent spiri usore idpar thaec abies 875sa
Imsep pretu tempu revol bileg rokam revoc tephe rosve etepe tenov sindu turqu
brevt elliu repar tiuve tamia queso utage udulc vires humus fallo 900eu Anetn
bisre freun carmi avire ingen umque miher muner veris adest duner veris adest
iteru quevi escit billo isput tatqu aliqu diams bipos itopu 925ta Isant oscul bifid
mquec cumen berra etmii pyren nsomn anoct reern oncit quqar anofe ventm hipec
oramo

T mande onatd stent
spiri usore idpar thaec abies 1000a

Imsep pretu tempu revol bileg rokam
revoc tephe rosve etepe tenov sindu
turqu brevt elliu repar tiuve tamia
queso utage udulc vires humus fallo
1025u Anetn bisre freun carmi avire
ingen umque miher muner veris adest
duner veris adest iteru quevi escit billo
isput tatqu aliqu diams bipos itopu
1050a Isant oscul bifid mquec cumen
berra etmii pyren nsomn anoct reern
oncit quqar anofe ventm hipec oramo

uetfu orets nitus sacer tusag teliu ipsev
1075i Eonei elaur plica oscri eseli sipse
enitu ammih mensl quidi aptat rinar
uacae ierqu vagas ubesc rpore ibere
perqu umbra perqu antra erorp netra
1100a Isant oscul bifid mquec cumen
berra.

B. Vary Size and Use Special Effects

Normal size may be less interesting to the reader.
Altered size and special effects draw attention to the
visuals.

C. Reverse Type

Reverse type is usually white letters on a black, dark,
or color background. This type style is very useful for
headlines or short sentences (Fig. 10).

D. Shades of Gray

Shades of gray can contribute a great deal to the suc-
cess of a visual. The purpose of the shadow is to lend
a three-dimensional effect to the flat page and to draw
the reader’s attention to that area.

E. Contrast

A highlight of color on the printed page draws the
eye immediately. When you are limited to black and
white, you must be resourceful in gaining and retain-
ing your reader’s attention. Contrast is one of the
most effective ways of doing so (Fig. 11).

F. Use Bleed Techniques

“Bleeds” refer to extra areas of ink coverage that ex-
tend beyond the trim of the page. To bleed an ele-
ment means to imprint it to the edge of the paper. You
can bleed rules, borders, large letter forms, photos,
large solid areas, and other elements. A bleed gives
the page a feeling of expansiveness; the page seems
larger than it actually is, unbounded by margins.

XVI. TYPOGRAPHY

Type is nothing more than letters, and everybody has
worked with letters most of his or her life. First we see
typography in books and perhaps packaging. Then
advertising, brochures, parts lists, and manuals be-
came part of our typographic experience. Today, ty-
pographic communication in the form of newsletters,
annuals, reports, and proposals has been added to
our typographic exposure.

As an educator, you probably have a sense for what
looks good in type, what is easiest to read, and what is
accomplished by the most effective graphic communi-
cation. You know when a B looks like a B and when it
does not. You know that if a typewriter malfunctions
and sets letters so close to each other that the letters be-
gin to overlap, the end result will be difficult to read.
Consciously or subconsciously, you have gained knowl-
edge regarding typographic communication. Of course,
being familiar with typographic communication from a
reader’s viewpoint does not make one a typographer. It
is, however, a very important step in the right direction.

A. Type Style

Type style is the range of shapes and thicknesses within
a typeface family. Type style makes it possible to

Desktop Publishing 597

Figure 10 Reverse type.

MadRiver Blues
Figure 11 The high contrast players against a white background and the bold text create a good example of the use of contrast.

create legible text in a quick and consistent manner and
adds emphasis to the text as well. Letters may be changed
and arranged to create an interesting and highly effec-
tive document. Using a variety of type styles often adds
to the effectiveness of a publication. Words can be bold,
italic, shadow, outline, underlined, etc. Type style can be
modified to add contrast or emphasis to a publication.

B. Type Weights

Weight refers to the thickness of the lines that make
up letters and varies from light to heavy or even black
(Fig. 12). Although a single typeface may exist in a va-
riety of weights, no typeface currently offers every
weight, and weights are not consistent from one type-
face to another.

C. Typeface

Since the invention of movable type nearly 500 years
ago until recently, about 20 different typefaces were
available. The advent of computers and DTP added
more than thousands of different typefaces to the list,
and it is still growing. A typeface is classified as serif
or sans serif.

The serif, or cross-line, added at the beginning and
end of a stroke probably dates from early Rome (Fig.
13). The serif was either a way to get a clean cut at the
end of a chiseled stroke or an imitation of brush-
written letter forms. The serif first appeared in an-
cient Roman monuments, where the letters were chis-
eled in stone. Later on, serifs appeared in the hand-
written manuscripts prepared with quill pens by

medieval scribes. Serif, or Roman, typefaces are use-
ful in text because the serifs help distinguish individ-
ual letters and provide continuity for the reader’s eye.

In French sans means without. Sans serif typefaces
have no serifs (Fig. 14). In sans serif typefaces the
strokes of the letters are usually of nearly even thick-
ness, which tends to give them a very austere, me-
chanical appearance. This even, mechanical look
works against sans serif faces when they are used in
text applications. Their uniform strokes tend to melt
together before the human eye.

Sans serif typefaces are most useful in large point
sizes—in newspaper headlines, book titles, advertise-
ments, and chapter headings—or in small bursts that
are designed to contrast with surrounding serif type.
Sans serif type is typically used for signs because of the
simplicity of its letter forms and because it does not
seem to taper at a distance. These same characteristics
make sans serif type useful for highlighting amid serif
type, especially in listing, directory, and catalog formats.

D. Leading

Leading, or line spacing, is used to improve the ap-
pearance and readability of the publication. Leading
(pronounced ledding) originally referred to the prac-
tice of placing small strips of lead between lines of
type to make a page more readable. Although the job
is no longer done with actual lead, the purpose and
process are basically the same. Leading for lines of
type specifies the distance from the baseline of one
line to the baseline of the next line. It is usually at
least the height of the font to prevent the bottoms of
the letters on the top line from printing over the tops
of the letters on the bottom line.

For smaller sizes of type, line spacing is often set
one or two points (approximately 20%) greater than
the type size to increase legibility. For example, if the

598 Desktop Publishing

Figure 12 Type weights.

Figure 13 Examples of serif typefaces.

Figure 14 Examples of sans serif typefaces.

type size is 12 points, the recommended leading is 14
points and usually is shown as 12/14 (12-point type
with 14-point leading).

Leading that is too spacious makes the reader’s
eyes wander at the end of one line trying to find the
beginning of the next line. Closed leading can be
used as a design tool. Sometimes you might want to
tighten leading so that descenders (the portion of a
letter that extends below the baseline, as in the letter
y) from one line of type touch the ascenders (the por-
tion of a lowercase letter that rises above the main
body, as in the letter b) from the line below.

E. Word Spacing (Trackings)

Word spacing refers to the amount of space between
words in a line of type. When words are closer together,
more words can be included on each line. Word spac-
ing increases or decreases the density of type. In cer-
tain situations, that also can reduce the number of hy-
phenated words. If you reduce word spacing too much,
however, the text becomes difficult to read.

F. Paragraph Spacing

Adding space between paragraphs enhances readabil-
ity and makes each paragraph more like a self-
contained unit. Paragraph spacing can be adjusted in
many software packages.

G. Text Alignment

Text alignment determines how lines of text are
placed between the right and left margins. Lines can
be flush left (aligned on the left and ragged on the
right), flush right (aligned on the right and ragged
on the left), justified (aligned on both the left and
the right), or centered.

Often text is aligned flush left. This style creates an
informal, contemporary, and open publication where
each word is separated by equal space. Hyphenation
is kept to a minimum. Western readers normally read
from left to right; therefore, flush right/ragged left
should be used cautiously. When flush right/ragged
left is used, readers tend to slow their reading speed
and spend more time identifying words by putting to-
gether individual letters.

Justified type, or flush left/flush right, because the
text is forced together to fit in a line, is considered
more difficult to read. Also, justified text contains

more hyphenated words. Centered text is useful for
short headlines. If a centered headline is more than
three or four lines, however, readers have to search
for the beginning of each line (Fig. 15).

Text does not always have to be presented in either
justified or ragged right blocks. Often, it is desirable
to “wrap” copy around the contours of a graphic.

H. Indention

An indent is the amount of space a given line or para-
graph is inset from the normal margin of a paragraph
or from the column guides. Software packages offer
automatic and manual indent options. Indention en-
hances readability—especially when there is a large
number of consecutive paragraphs on a page. The
first line of a paragraph can have an indent or out-
dent. First-line indent is the most common. In this
style, the first line of each paragraph is indented from
the left margin (Fig. 16).

Hanging indent, or outdenting the first line, is the
opposite of the first-line indent. In this style, the first
line in a paragraph is at the left margin and the rest
of the lines in the paragraph are indented from the left
margin. Hanging indents are useful in bibliographical
references and directory listings—the telephone book
and a yearbook are typical examples (Fig. 17).

I. Tabs

Tabs are used to align text at a particular location on
the page, allowing great flexibility in formatting text.
Most DTP packages space words and letters propor-
tionally. Therefore, it is recommended to use tabs

Desktop Publishing 599

Figure 15 Flush left, flush right, justified, and centered text.

The butterfly, in the heart of
the pure blue sky, heard the
roar of the green valley’s
waterfall and its hunger for
sleep on an unknown
wildflower was making its
wings numb and heavy.

The butterfly, in the heart of
the pure blue sky, heard the

roar of the green valley’s
waterfall and its hunger for

sleep on an unknown
wildflower was making its

wings numb and heavy.

The butterfly, in the heart of
the pure blue sky, heard the
roar of the green valley’s wa-
terfall and its hunger for sleep
on an unknown wildflower was
making its wings numb and
heavy.

The butterfly, in the heart of
the pure blue sky, heard the

roar of the green valley’s
waterfall and its hunger for

sleep on an unknown
wildflower was making its
wings numb and heavy.

rather than spaces to align text; otherwise, the printed
text will be uneven. Tabs are especially useful in cre-
ating tables and columns.

J. Line Length

The length of a line of text, also known as the column
width, can affect readability and the overall look of a
publication. The line length can be as narrow as one
letter or as wide as the boundaries of the paper. If a
line of text is too long, a reader may become weary.
If a line is too short, the text may give a choppy ap-
pearance and may be difficult to read. A good rule of
thumb is to relate line length to type size: the bigger
the type size, the longer the line length can be. An ap-
propriate line length enhances the appearance of the
publication and increases its readability. A good-sized
line, depending upon the type of document, should
be from 8 to 15 words long.

K. Hyphenation

Hyphenation is the placing of a hyphen into a word
so the word can be broken between two lines of text.

Hyphenation can improve the appearance of your
publication by helping you avoid particularly unequal
line lengths in flush left/ragged right text and un-
sightly word spacing in justified text. Hyphenation is
an area of trade-offs. A break in the middle of a word
slows down reading. Desktop publishing programs of-
fer different hyphenation options. You can have the
program hyphenate the entire publication automati-
cally or you can turn off the automatic hyphenation
and hyphenate your document manually.

L. Drop Capital

An enlarged first character at the beginning of a para-
graph that extends (drops) into the following lines of
text is known as a drop capital. A drop capital breaks
up large blocks of text. Typically, drop capitals are
used to begin a chapter or section in a book or mag-
azine. Drop capitals provide an important visual tran-
sition between the headline and body copy. Drop cap-
itals can have the same or different character
attributes, such as font, size, color, and style, as the
rest of the text in the paragraph (Fig. 18).

M. Stick-Up Capital

An enlarged initial letter that extends above the body
text is called a stick-up capital. A stick-up capital is
used as a graphic element to draw attention to the be-
ginning of a story or chapter (Fig. 19).

N. Type Size

The type size of a letter (also called height or point size)
is measured by its vertical height, in points. One point
is equal to one-twelfth of a pica, which in turn is almost
exactly one-sixth of an inch. Therefore, there are 72
points per inch. Point is normally abbreviated “pt.” For
example, 72-pt. type would measure 72 points from the
top of its ascender to the bottom of its descender. This

600 Desktop Publishing

The butterfly, in the heart of the pure
blue sky, heard the roar of the green
valley’s waterfall and its hunger for sleep on
an unknown wildflower was making its
wings numb and heavy.

The valley, with its towering waterfall
and flower-strewn cliffs, grew small beneath
its wings. It felt the heavy load of the
water’s spray, carried by the gay breeze, on
its wing. It saw the world like a green and
swelling wave.

Figure 16 A first-line indent.

Azarmsa, Reza. Desktop Publishing
with QuarkXPress for Windows.
Needham Height, MA: Allyn &
Bacon, 1996.

Azarmsa, Reza. Desktop Publishing
with PageMaker for Windows.
Needham Height, MA: Allyn &
Bacon, 1996.

Figure 17 Outdents.

T
he butterfly, in the heart of the pure

blue sky, heard the roar of the green

valley’s waterfall and its hunger for

sleep on an unknown wildflower was making

its wings numb and heavy. The valley, with its

towering waterfall and flower-strewn cliffs,ffs,f

grew small beneath its wings.

Figure 18 An example of drop capital.

means that x heights, as well as ascenders and descen-
ders, will vary in size for different fonts even though
their point sizes are the same. Except for f, j, l, and t, the
body of lowercase letters rises to the x height (Fig. 20).

O. Letterspacing

Letterspacing refers to the amount of space between
each letter of a line or block of type. Each letter con-
sists not only of the letter itself but also a tiny amount
of space before and after the letter called the left- and
right-side bearing.

In general, it is desirable to keep the letterspacing
range to a minimum, as wide spacing fluctuations give
an uneven look to the page. Also, larger typefaces call
for tighter letterspacing. Some DTP packages allow
you to control the letterspacing.

P. Kerning

Kerning means the adjustment of space between pairs
of characters to create visually even text that is easy to
read. Most of the popular DTP programs are capable
of adding or subtracting space between characters in
minuscule increments. Certain pairs of letters appear
to be separated by too much space. According to the
Adobe type catalog Font & Function, the table below
shows the pairs that have a hard time “getting along.”

AO Aw TA Ve YA ex wa
AT FA Ta Vo Ya ey we
AV Ka Te Vu Ye ov wo
AW Ke To Vy Yo ow xc
AY Ko Tr WA Yu ox xe
Ac LY Tu Wa av oy xo
Ad Ly Tv We aw rw ya
Ae OV Tw Wo ay ry yc
Ao OW Ty Wr ev va yr
Au OX VA Wu ew vo yo
Av PA Va Wy

Too much word spacing breaks the line into separate
elements, inhibiting reading. It also creates gaps within
columns. When word spacing is greater than line spac-
ing, reading is difficult because the eye tends to move
from top to bottom instead of from left to right. Spac-
ing between words also affects your type’s appearance.
Kern word spaces in harmony with letterspaces to cre-
ate evenness and balance within a line or block of type.

Once you know the basic typographic rules and
have had a little firsthand experience with preparing
simple typographic communication, it becomes rela-
tively easy to produce a variety of documents.

A surprising amount of beautiful and efficient com-
munication can be created with just your printer’s core
fonts. More than 80% of all printed communication is
set with just these two typefaces, and this includes lots
of very creative and sophisticated graphic design work.

XVII. WAYS TO IMPROVE TEXT

The primary function of words is to communicate in-
stantly and effectively. A difference in type style not
only helps to attract the reader’s eye but also helps to
organize information in terms of importance. The fol-
lowing points may enhance the effectiveness of text.

A. Avoid Too Many Typefaces

Desktop publishing manufacturers loaded their soft-
ware with typefaces. In practice, this abundance can
create an absolute disaster in terms of good typographic
design, and overloads of typefaces should be avoided.

As a general rule, two typefaces (a headline face
and a body copy face) are adequate for most page
designs. A variety of textures and styles can be con-
veyed by your choice of leading (the space between
lines of type), weight (bold, light, or thin), size, and
alteration of spacing between letters.

B. Avoid Fancy Typefaces

Although you want distinctive type, do not choose a
typeface that is too elaborate. Fancy typefaces can be
very difficult to read.

Desktop Publishing 601

 he butterfly, in the heart of the pure blue

sky, heard the roar of the green valley’s

waterfall and its hunger for sleep on an un-

known wildflower was making its wings numb

and heavy. The valley, with its towering wa-

terfall and flower-strewn cliffs, grew smallffs, grew smallf

beneath its wings.

TT

Figure 19 An example of stick-up capital.

Type
Ascender

Descender
Baseline

x-height
WaistlineCap height

Figure 20 Type size anatomy.

C. Avoid All Caps

Uppercase type has its uses, but use of only caps slows
down readers. Some typefaces cannot be set in all caps.

D. Avoid Large Blocks
of Text in Italic or Bold

Try not to set a great deal of text in italic or bold, par-
ticularly if you are using small type. Also, italic’s small
size in all caps tends to fit badly and is thus more dif-
ficult to read.

Use italic type sparingly for emphasis or when irony
or humor is intended. It can also imply an interjected
conversational tone or a quotation. The use of italic can
preclude quotation marks. Italic type is often used to set
captions and the titles of books and other creative works.

E. Avoid Excessive Underlining

Underlining is a means of emphasis. However, the
availability of italic and bold types makes most un-
derlining unnecessary. More than a few underlined
words causes visual clutter and confusion. Also, it takes
more time for readers to separate the words from the
horizontal lines.

F. Control Widows and Orphans

A widow is a line, a word, or a syllable of text at the
end of a page or column that is separate from
the paragraph that it finishes, which is at the end of
the previous page or column. An orphan is a line, a
word, or a syllable of text at the bottom of a page or
column that is separate from the paragraph it begins,
which starts the next page or column.

Widows and orphans can be controlled in several
ways: edit the paragraph and omit unnecessary words;
substitute a shorter word for a longer one and tighten
the spacing of any loosely set line. (You can do this by
reducing the tracking gradually.) Also, widows and or-
phans can be eliminated by rejuggling the page or
the column lengths. Desktop publishing software
packages offer widow and orphan control, and you
can specify the number of lines of widows or orphans.

In short, DTP has changed the way people produce
documents. It has enhanced the individual’s ability to

control all or most of the process of producing printed
materials.

The temptation is to add many different graphic
and typographic elements in one publication. Such a
mixture, though, usually defeats the purpose of at-
tracting and keeping the reader’s attention. By keep-
ing your design simple and using graphics and type
selectively, you will produce the most effective and
pleasing publication.

SEE ALSO THE FOLLOWING ARTICLES

Copyright Laws • Electronic Mail • End-User Computing
Tools • Hyper-Media Databases • Internet Homepages •
Multimedia • Productivity • Speech Recognition • Spread-
sheets • Word Processing

BIBLIOGRAPHY

Azarmsa, R. (1998). Desktop publishing for educators: Using Adobe
PageMaker. Boston: Allyn & Bacon.

Bauermeister, B. (1988). A manual of comparative typography: The
PANOSE system. New York: Van Nostrand Reinhold.

Beaumont, M. (1987). Type: Design, color, character & use. Cincin-
nati, OH: North Light Books.

Brown, A. (1989). In print: Text and type in the age of desktop pub-
lishing. New York: Watson-Guptill.

Collier, D., and Floyd, K. (1989). Layouts for desktop design.
Cincinnati, OH: North Light Books.

Durbin, H. C. (1995). Desktop publishing systems. Easton, PA:
Durbin Associates.

Green, C. (1997). Desk top publisher’s idea. New York: Random
House.

Heinich, R. (1985). Instructional media and the new technology of
instruction, 2d ed. New York: John Wiley & Sons.

Henry, J. H. (1996). Do’s & don’ts of desktop publishing design.
Ann Arbor, MI: Promotional Perspectives.

Maxymuk, J. (1996). Using desktop publishing to create newsletters,
library guides, & web pages: A how-to-do-it manual for librarians.
New York: Neal-Schuman Publishers.

Parker, R. C. (1990). Looking good in print, 2nd ed. Chapel Hill,
NC: Ventana Press.

Seybold, J. W. (May 1987). The desktop-publishing phenome-
non, Byte, 12:149–165.

Shushan, R., Wright, D., and Lewis, L. (1996). Desktop Publish-
ing by Design, 4th ed. Redmond, WA: Microsoft Press.

Silver, G. A. (1997). Layout, design, & typography: For the desktop
publisher. Encino, CA: Editorial Enterprises.

Tilden, S. (1987). Harnessing desktop publishing: How to let the new
technology help you do your job better. Pennington, NJ: Scott Tilden.

Willams, J. B., and Murr, L. E. (Spring 1987). Desktop publish-
ing: New right brain documents, Library Hi Tech, 7–13.

602 Desktop Publishing

Developing Nations
Elia Chepaitis
Fairfield University

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 603

I. INTRODUCTION
II. CRITERIA: IMBALANCE AND UNDERDEVELOPMENT

III. THE CRITICALITY OF INFORMATION AND
COMMUNICATION TECHNOLOGY FOR DEVELOPMENT

IV. CHANGING MARKET CONDITIONS: AN
ACUTE PROBLEM FOR IS DEVELOPMENT

V. CHALLENGES IN SYSTEMS DESIGN:
INFORMATION INFRASTRUCTURES

VI. THE REGULATORY ENVIRONMENT:
POLITICAL AND CULTURAL CONTROL

VII. THE DIGITAL DIVIDE: INTERNATIONAL
PROJECTS AND ACTION PLANS

VIII. ICTS: TOOLS FOR PROJECT COORDINATION AND
RESEARCH DISSEMINATION

IX. ETHICS: BEYOND PIRACY AND PRIVACY
X. CONCLUSION

GLOSSARY

developing economies Formerly referred to as lesser-
developed countries, whose nations are character-
ized by a gross domestic product (GDP) under
2000, and high rates of illiteracy, infant mortality,
and an inadequate material infrastructure.

digital divide An intellectual construct used to de-
scribe two information environments, one for the
information “haves” and the other for the infor-
mation “have-nots.”

emerging economies Economies in transition from
communism to a market economy, generally used
for nations in the former Soviet bloc.

hard information infrastructure The sum of those
material factors, such as telephone lines or com-
puter networks, upon which computer and com-
munications systems rely.

ICTs (information and communication technologies)
Information systems that are also used for
communications.

information ethics Moral codes of behavior charac-
terized by integrity and fairness in the creation, dis-
semination, and ethical use of information.

information poverty An endemic problem, charac-
terized by a dearth of quality information.

IS (information system) A system that creates,
processes, stores, and outputs information.

soft information infrastructure The political, eco-
nomic, and sociocultural factors which affect in-
formation quality, management, and access.

I. INTRODUCTION

Information systems (IS) in developing, emerging,
and newly industrialized economies are vital for eco-
nomic prosperity and stability, and their development
is one of the greatest challenges of the early 21st cen-
tury. Increasingly, as the computer evolves as an in-
valuable communication device, IS are referred to as
information and communication systems (ICTs).

ICTs deeply affect the tempo and direction of so-
cial and political change in developing and transition
economies, especially where wealth and infrastruc-
tures are inadequate and unevenly distributed. More-
over, effective ICTs are necessary for survival in a
global economy, a competitive precondition for strate-
gic relationships.

Before the 1990s, before the advent of the Internet
and e-business, organizations in developing economies
who lacked the capacity for electronic data interchange
(EDI) often were bypassed by potential external part-
ners in favor of connected enterprises. In the 2000s,
at every level of economic development, connectivity
and information management are more critical for
prosperity and stability than ever.

Technology is not neutral: the danger that ICTs
will be more pernicious than benign in some devel-
oping areas has been researched extensively. How-
ever, in general, technologically and empirically,
greater opportunity exists in the early 21st century for
those previously excluded from the Information Age
since the advent of the global Internet and the intro-
duction of wireless communications.

II. CRITERIA: IMBALANCE
AND UNDERDEVELOPMENT

Developing economies, once referred to as lesser-
developed economies (LDCs), are characterized by a
poor infrastructure, inferior growth rates, an imbal-
anced economy, and extremely low personal incomes.
These economies lack necessary skills and resources
to escape a heavy reliance on production from agri-
culture or mineral resources. This imbalance is a
legacy of both external aggression and domination,
but also of internal factors: poor natural endowments,
inadequate human resources, political instability, and
social inequality. Developing economies tend to be
concentrated in Africa, Latin America, and the Mid-
dle East, and also in some states and clients of the for-
mer Soviet Union.

In the 1990s, a new classification, emerging
economies, was coined to describe postcommunist
countries that face an arduous transition to a market
economy.

Russia, Belarus, and Ukraine share endemic devel-
opmental obstacles with traditional developing
economies. Since 1980, numerous nations such as In-
dia, Brazil, Estonia, South Korea, and Turkey dramat-
ically improved their GDP and became known as newly
industrialized economies (NICs). However, these NICs
also feature imbalanced economies and are globally
competitive only in selective sectors. Clusters of
poverty within NICs and emerging economies in the
former Soviet Union resemble poverty in developing
economies. A discussion of information systems in un-
derdeveloped areas often applies to clusters in all
three types of economies; technological dualism is
common within all three models. Conversely, within
developing economies, oases of advanced ICTs re-
semble more prosperous nations.

Indeed, the rural poor in India (a newly industri-
alized country), Honduras (a developing country),
and Ukraine (an emerging economy) share numer-
ous problems with underdeveloped areas worldwide
who lag in the information revolution. Conversely,
wired clusters of urban, relatively affluent and cos-
mopolitan populations flourish within all three eco-

nomic models; these information-rich oases access
global information and communications and resem-
ble advanced economies. Current data do not reflect
the maldistribution of GDP, telephone lines, and per-
sonal computers within economies. However, World
Bank data illustrate the huge differences in informa-
tion systems availability between advanced economies
(the United States) on the one hand, and NICs, merg-
ing economies, and developing economies on the
other hand (Table I).

The correlation among GDP per capita, the num-
ber of telephone lines, and personal computer own-
ership is evident.

III. THE CRITICALITY OF INFORMATION
AND COMMUNICATION TECHNOLOGY
FOR DEVELOPMENT

At every economic level, but especially for developing
economies, information and communications are crit-
ical, both for internal economic development and
also for global competitiveness. Internally, informa-
tion can supplement and expand scarce resources
such as capital, know-how, labor, inventory, basic ma-
terials, and management skills. Also, unlike these re-
sources, information is not depleted when it is uti-
lized but increases in both quality and quantity.
Moreover, information can supplement factors of pro-
duction simultaneously, not one at a time, with sig-
nificant synergies emerging. For example, if informa-
tion resources are used to minimize inventory, less
capital, labor, and warehouses are required; also, more
current and complete knowledge of consumer pref-
erences, supply, and distribution is acquired. In
resource-poor environments, such optimization is crit-
ical not only for the expansion of wealth, but also for
the formulation of successful business strategies in
volatile and turbulent environments.

More dramatically, computers have emerged as es-
sential communication devices in the past decade,
compensating for egregious deficits in traditional
telecommunications infrastructures. The maturation
of wireless communications holds enormous promise
for impoverished areas that have been unable to af-
ford land-based telephone systems. Extended infor-
mation and communication systems facilitate joint
ventures with partners in advanced economies, im-
prove customer relations internally, and enable de-
veloping economies to participate in global markets
with flexibility and speed. They also can facilitate in-
expensive village-to-village communication and ex-
pand scarce services in fields such as medicine, bank-
ing, insurance, and education.

604 Developing Nations

However, the gap between wired and nonwired
communities threatens to become increasingly signif-
icant as ICTs mature and improve. The movements
toward increased bandwidth and toward the fusion of
information technologies in advanced economies may
deepen the digital divide, the gap between the infor-
mation “haves” and “have-nots.” Although advances
such as wireless communications convey “democratic”
and broad benefits, the rate of adoption is sporadic
and sluggish in developing areas and is not keeping
pace with changes in global markets.

Indeed, in 2002, although IS problems have
changed, the gap in ICT development relative to ad-
vanced economies resembles the gap in computeriza-
tion 20 years earlier (Table II).

IV. CHANGING MARKET CONDITIONS: AN
ACUTE PROBLEM FOR IS DEVELOPMENT

Developing countries face a dilemma: an adequate
telecommunications infrastructure is becoming

Developing Nations 605

Table I The Correlation among GDP/Capita, Telephone Lines, and Personal
Computers: A Wide Range of IS Development from Tanzania to the United Statesa

Country GDP/capita Telephone lines Personal computers

Algeria 1540 51.9 5.8

Bolivia 990 61.7 12.3

Columbia 2170 160.0 33.7

Egypt 1380 75.0 12.0

Guatemala 1680 55.0 9.9

Indonesia 580 29.0 9.1

Jordan 1620 61.8 13.9

Morocco 1190 52.6 10.8

Nigeria 250 3.9 6.4

Pakistan 510 18.4 4.3

Romania 1510 167.0 26.8

Russian Federation 1750 210.0 37.4

South Africa 3160 125.0 54.7

Tanzania 260 4.5 2.4

Uzbekistan 640 66.0 N/A

United States 31920 664.0 510.5

aWorld Bank Data Profiles of GDP, Telephone Lines, and Personal Computers in 1999.
“Indicators Database,” World Bank Group, July 2001.

Table II Changing Problems in IS in Developing Economies

1980 2002

High cost of hardware Political and cultural resistance

High level of education Lack of external partnerships

Lack of effective software Information quality

Development and use Internet access/content regulations

Poor electrical/telecommunications/ Financial market imperfections: lack of
education infrastructure credit; fraud; mistrust

Lack of EDI capability commercial law Inadequate property

Ethics and corruption Language
Urban–rural split

increasingly necessary to attract global business part-
ners (including customers); yet capital and partners
are necessary to construct that infrastructure. No
longer can developing economies rely on cheap labor
resources to attract direct and indirect investment, or
to ensure price competitive exports. Labor costs as a
percentage of the costs of production have been
steadily declining as a result of a confluence of fac-
tors, and typically represent 5 to 15% of the costs of
production, depending on the product. (High tech
products typically are tilted toward 5%, the lower end
of the range.) Labor markets are shifting dramatically
and nations that depend on low wage rates for com-
petitive advantage are in peril, in large part as a legacy
of the total quality movement (TQM). TQM empha-
sized superior design, continuous product improve-
ment, capital-intensive equipment and processes, and
less direct labor with less inspection. Enterprises are
shifting strategies away from island hopping across
low-wage markets with shoddy workmanship, unreli-
able infrastructures, and low quality cultures toward
high skilled labor and quality cultures.

To utilize ICTs for economic competitiveness, de-
veloping economies need capital, partners, and in-
formation resources as soon as possible. The move-
ment toward superior production technology and
processes is inexorable; ICTs are vital for quality im-
provements, integrated processes, a skilled workforce,
and cost containment. Producers in developing
economies find that affluent clusters in the domestic
market are neither loyal, local, nor captive. The mid-
dle to upper class urban householders are not only on
the privileged side of the digital divide, but also posi-
tioned to take advantage of e-commerce, improved
and affordable transportation, and global services.

V. CHALLENGES IN SYSTEMS DESIGN:
INFORMATION INFRASTRUCTURES

Systems designers must consider that information sys-
tems in developing and emerging economies are af-
fected by many of the same macro- and microeco-
nomic forces which shape the economy as a whole:
capital shortages, a lack of skilled labor, inefficient
distribution channels, poor resource endowments,
and remote locations or inhospitable terrain or cli-
mate. Information technology in many of these areas
is more important for communications than for com-
putation, but salient barriers to cost-effective infor-
mation ICTs in developing economies are confined to
the telecommunications infrastructure. In addition to
the technology infrastructure, the local information
infrastructure affects ICT effectiveness. The informa-

tion infrastructure is the context within which infor-
mation and communications are managed. Informa-
tion systems reside and develop in discrete environ-
ments which, although affected by global markets,
feature distinctive, nonglobal components: spatial,
material, cultural, institutional, organizational, politi-
cal, and economic elements. These components must
be considered integral and organic to any discussion
of international information infrastructures.

In both developed and emerging economies, ICT
effectiveness is affected by two information infra-
structures: hard and soft. The hard information in-
frastructure includes factors such as connectivity, elec-
trical supply, available bandwidth, wireless resources,
and the availability of IT vendors, maintenance, and
supplies (Table III).

The collection and manipulation of data, as well as
the dissemination of information and knowledge, also
depend on a soft information infrastructure: the le-
gal, political, economic, and social information envi-
ronment that impacts ICTs (Table IV). This “soft” in-
formation infrastructure is largely composed of
nontechnical elements: spatial, cultural, organiza-
tional, political, and economic variables which are
highly germane to the tempo and direction of eco-
nomic development.

For example, information quality may be variable
in emerging economies. Information quality is affected
by cultural, economic, and political variables such as
social trust, informal relationships, and commercial
law, respectively (Tables V–VII). These variables may
be intrinsic to a gray economy, may compensate for
unreliable distribution or credit mechanisms, or may
simply be traditional but atavistic.

Social characteristics that affect an information en-
vironment include habits of trust and integrity, lan-
guage and alphabets, occupational mobility, educa-
tional patterns, ethics and equity, and ways of knowing
(Table VII). Across information cultures, for exam-
ples, trust has a seminal impact not only on informa-
tion quality and access, but also on a range of fac-
tors—from the viability of e-business and web page

606 Developing Nations

Table III The Hard Information
Infrastructure

Communications

Wireless

Ground wire

Platforms: hardware and software

Electricity and other utilities

Transportation

design, to the degree of covertness in security. More-
over, trust has an egregious impact on information
ethics in cultures with well-established habits of se-
crecy and deception, and thus can cripple integrated
and extended ICTs. Within each list of soft factors,
some potential impacts are presented in Tables V–VII.
These environmental elements may not only be ubiq-
uitous, but also be dynamic and critical in ICT devel-
opment: they impact the accepted division of labor,
wealth creation, and market development signifi-
cantly. Also, political and legal factors are integral to
the information infrastructure: authority and legiti-
macy, the definition of rights and obligations, and cit-
izen/subject compliance affect information quality,
integrity, and access.

In the 21st century, information system developers
face a dynamic set of challenges: to understand, ex-
ploit, promote, and work around elements of hard
and soft information infrastructures to optimize eco-
nomic development. Since the information infra-
structure is not only a skeletal series of linkages but
also an organic membrane in which communications
pass and evolve, the internal information infrastruc-
ture itself changes and resists change. Especially in
emerging economies, the soft and organic informa-
tion infrastructure is the underbelly of successful ICT
development. One of the most significant issues in
ICT development in developing economies is the reg-
ulation of the Internet.

VI. THE REGULATORY ENVIRONMENT:
POLITICAL AND CULTURAL CONTROL

Government priorities shifted in past decades as in-
formation systems became affordable and powerful,
and as local computer retailers and maintenance in-
dustries proliferated. Also, popular culture and global

Developing Nations 607

Table IV The Soft Infrastructure

Political and legal variables

Economic and financial variables

Sociocultural variables

Table V The Soft Information Infrastructure Social and Cultural
Variables: Some Possible Impacts (in italics)

Information poverty: data integrity and completeness

Soft information: reticence, oral traditions, fraud, lack of knowledge worker skills

Existing elites: proprietary or hoarded data, monopolies

Indirect planning: tempo of decision making, external variables weighted

Traditional information content and format

Bargaining discourse: areas of extreme limited disclosure

Social capital, including trust language: possible mistrust of online data

Ways of knowing

Storytelling: information format neural nets, fuzzy logic

Message style: interface and output format

Nonverbal signals: agreements or malleable positions not textual

Timing of exchanges

Literacy and knowledge access

Occupational mobility

Language and alphabets/characters: dialect

Logic

Views of time

Team-building patterns: incremental problem-solving

Value on consensus: layers of duplicated and verified effort

Ethics: piracy desirable for infant economy

Equity: every worker reassigned if displaced

Codes of conduct: tolerance of cheating

communications popularized the collateral benefits
of ICTs, and more democratic governments suc-
cumbed to pressure for relatively unrestricted Inter-
net access.

However, throughout the world, the Internet poses
a dilemma: the value of connectivity must be balanced
against a range of problems such as fraud and pornog-
raphy, problems which encourage legal and political
controls. Regulations proliferate in some developing
economies, where often the government is the sole
Internet service provider (ISP), and prohibitions
against online political discussions are brutally en-
forced. Occasionally, the regulatory environment is
onerous, and compliance with cultural control and
political censorship can curtail ICTs aid to market de-
velopment (Tables VIII and IX).

In traditional international trade and investment,
developing economies often adopted regulations for
a variety of purposes: quotas and other on-tariff bar-
riers, luxury taxes on pricey imports, tariffs, protec-

tion for infant industry, special labor benefits, toler-
ance for intellectual property thefts, and special taxa-
tion of foreign enterprises.

Restrictions on online commerce often protect au-
thoritarian governments, fundamentalism, or socio-
cultural elites, rather than infant industry, labor, or
distressed sectors of the economy. Some governments
are hostile to the Internet, and political controls may
restrict ICT in critical developmental areas (Table
IX). The current regulatory environment often af-
fects partnerships which depend on e-commerce, mul-
tiple ISPs, and intellectual property. Restrictive poli-
cies reflect the priorities, tensions, traditions, and
tempo of economic development.

Government priorities have shifted in the past
decades as information systems became affordable
and powerful, and as local computer retailers and
maintenance industries proliferated. Also, popular
culture and global communications popularized the
collateral benefits of ICTs, and most democratic gov-

608 Developing Nations

Table VI The Soft Information Infrastructure Economic and Financial
Variables: Some Possible Impacts (in italics)

Financial institutions and practices: data integrity and availability

Accounting standards and practices: choice of models; information availability

Logistics and communication: procesing speed

Fiscal and monetary stability: range of real and nominal variability

Surplus and division of labor: disguised underemployment

Labor productivity: output per unit variable

GDP and distribution of wealth: marketing projections skewed

Wealth creation mechanisms: gray economy affects GDP reliability

Labor organization: hours worked, benefits, holidays

Table VII The Soft Information Infrastructure Political and Legal Variables:
Some Possible Impacts (in italics)

Authority and legitimacy: varying degrees of enforcement/interpretation

Property and other commercial law: ability to raise and protect capital

Well-defined rights and obligations

Regulation of the Internet: persistent digital divide

Successful appeal mechanisms

Functional bureaucracy

Citizen or subject loyalty/compliance: reliability of tax, GDPO data, nonconfiscatory
taxation, tariffs, and nontariff policy; confiscation, expropriation; nationalization

Conflict resolution mechanisms: degree of disclosure, methods of closure

Government aid: national priorities; fields necessary for demonstration of need

Supervision of electronic communities: privacy legislation; security of intellectual property

Developing Nations 609

Table VIII Internet Regulations: A Contrast between Common Legal Issues
in All Economies and Legal, Political, and Cultural Regulation Areas in
Developing Economics

Internet regulations

Common global legal issues Additional issues in developing economics

Fraud Political opinions and criticism

Privacy Regulated data collection

Theft of intellectual property Regulated computer ownership

Pornography Secularism in fundamentalist societies

Hacking Government ownership of ISPs

Cyberterrorism External news reports

Sabotage and electronic crime Constraints on intellectual property law

Prostitution rings Western culture

Gambling offshore Hardware, software, network costs

Taxation Maintenance

Anti-trust activity Information access

Table IX Political Resistance to Cyberspacea

Belarus Single, government-owned ISP (Belpak)

Burma State monopoly on Internet access; computer ownership must
be reported to the government

Tajikistan Single, government-owned ISP (Telecom)

Turkmenistan More restricted than Tajikistan

Usbekistan and Azerbaijan Private ISPs controlled by telecommunications ministry

Kazakhstan and Kyrgyzstan Private ISPs but exorbitant government fees for usage
and connection

China Users monitored and government-registered

Cuba Government-controlled Internet

Iran Censorship and blocked sites; content restrictions apply to
discussions on sexuality, religion, United States, Israel, and
selected medical and scientific data (anatomy)

Iraq No direct access to the Internet; official servers located in
Jordan; few citizens own computers

Libya Internet access impossible

North Korea Internet access impossible; government servers located in Japan

Saudi Arabia Science and Technology Center screens information offensive
to Islam values

Sierra Leone Opposition and online press persecuted

Sudan Single, government-owned ISP (Sudanet)

Syria Private Internet access illegal

Tunisia Two government-owned ISPs

Turkey February 2001 content restrictions

Vietnam Two government-owned ISPs

aFrom Reporters without Borders, “The Twenty Enemies of the Internet,” August 9, 1999, press
release: “Molly Moore, Turkey Cracks Down on Youths Using Internet,” Hartford Courant, February 4, 2001, A10.

ernments succumbed to pressure for unrestricted In-
ternet access.

VII. THE DIGITAL DIVIDE: INTERNATIONAL
PROJECTS AND ACTION PLANS

Since the 1970s, before computers evolved into po-
tent communication devices, international resolu-
tions, conferences, and manifestos called for a new in-
ternational information order for the poorest nations.
As the agencies of the United Nations turned their at-
tention from peacekeeping toward development, in-
formation was perceived as a key to affluence and in-
dependence. Resentment toward multinationals’
perceived monopoly on information resources fueled
a movement by nonaligned “Third World” nations to
embrace development programs subscribed to by
more than 90 members of the United Nations by the
1970s.

A 1976 UNESCO commission on communications
recommended balanced and equal access to informa-
tion, and specifically noted that “diverse solutions to
information and communication problems are re-
quired because social, political, cultural, and economic
problems differ from one country to another and
within a country, from one group to another.” The at-
tention of international agencies shifted from televi-
sion and telephones to computers and the Internet in
the following 20 years, and the issue of government-
controlled media emerged as salient and divisive.

Regional and national projects have been influ-
enced by the European Union’s resolutions on pri-
vacy, by the World Trade Organization’s studies of
mandatory data control standards, and by transna-
tional efforts to combat undesirable Internet content

and costs. More than ever, the fusion of information
technologies and the emergence of wireless commu-
nications have placed ICTs in the forefront of three
developmental problems: the need for capital, the
need for technical assistance, and the growing digital
divide.

VIII. ICTS: TOOLS FOR
PROJECT COORDINATION AND
RESEARCH DISSEMINATION

Numerous information systems journals, international
aid organizations, and national commissions are cur-
rently dedicated to the democratization of computing
and communication systems. An influential online
journal, Eldis, is sponsored by Sussex’s Institute of De-
velopmental Studies. Eldis published a World Eco-
nomic Report in 2001 which explores the impact of
ICTs on work in developing areas (Table X). This re-
port focuses on the disparity between positive impacts
of e-business in advanced economies, and the devas-
tating affects on labor in developing economies. On-
line research and reports on economic development
initiatives by scores of aid organizations, such as the
World Bank, USAID, and OECD, as well as multia-
gency reviews are available.

On a regional basis, within Africa alone, dozens of
projects are coordinated and expanded through ICTs,
such as Project Africa (centered in Senegal), the Le-
land Project (USAID), the Pan African Development
Information System (PADIS) Project, and Projet Afrinet
(French). Within Latin America, almost every country
hosts a Web site which publicizes the goals and strate-
gies of ICT adoption. Global audiences can reach Ar-
gentina, Bolivia, or Chile through UNESCO to read

610 Developing Nations

Table X World Economic Report 2001: An Excerpt of Issues for
Developing Economiesa

Life at work in the information economy

Irreversibility and speed

A widening digital divide

How will markets be affected

How will work organizations be affected

Education matters most of all

How will the quality of life and work be affected

Social factors and social choices for addressing negative consequences

aEldis, World Employment Report 2001, International Labor Organization
(ILO), 2001.

the latest statutes or development initiatives for ICTs.
UNESCO also maintains an Internet Public Policy Net-
work, G8 Global Information society Pilot Projects,
OECD infrastructure guidelines, and a current ASEAN
ICT Framework Agreements. The growth of virtual re-
search and development centers for ICT development
holds significant promise for swifter and more com-
prehensive responses to developmental challenges.

To move into the information economy, developing
countries must set priorities and learn from the mis-
takes of the early leaders. International aid organiza-
tions and forward-looking political leaders typically sup-
port the following goals: universal information access,
decision support systems, access to international infor-
mation highways, vibrant private sector leadership, and
global access to data within developing economies. How-
ever, the lack of capital, the question of intellectual
property, the liberalization of national communications
and public broadcasting services, and the development
of human resources are salient problems. For example,
not only have human resources been depleted by brain
drain out of the country before the Internet era, but
skilled workers can now work for foreign rather than
national enterprises online, without emigrating.

The most persistent digital divides may endure within
developing economies, if current patterns of economic
development mirror uneven patterns of growth and in-
vestment, and if political patronage and largesse is a
guide. Just as the gap between developing and advanced
economies has widened in the past decade, so the gap
between wired and nonwired populations will probably
increase within the poorest nations, similar to the pat-
terns we see in NICs like India today.

Patterns of economic development are uneven in
developing and emerging economies, and, barring
seismic political and cultural changes, the digital di-
vide will deepen along these lines, destabilizing the
economy and constraining balanced long-term growth.
The seismic fault lines of the digital divide will proba-
bly produce egregious inequity where there are rural,
mountainous, or interior regions with poor or nonex-
istent utilities; where dialects or minority languages
are spoken; where minority religions, castes, tribes, or
female populations are predominant; where invest-
ments in education are lacking or minimal; and where
political elites have no vested interest in popular sup-
port (Table XI). The digital divide is pernicious, not
only to producing an informed population and to link-
ing remote populations to global markets, but to
spreading the services of pharmacists, educators, physi-
cians, agronomists, managers, and technicians.

In advanced economies, the information highway
has opened opportunities to small nations, small busi-

nesses, innovative shops, and minority chat groups. In
developing areas, the potential for the democratic ex-
pansion of e-commerce depends on substantial exter-
nal aid, extensive economic integration, and respon-
sible political leadership.

IX. ETHICS: BEYOND PIRACY AND PRIVACY

Corruption, inequity, and immoral behavior in eco-
nomic development migrate to information systems.
In the 1990s, substantial intellectual and cultural re-
sources were used to identify and define ethical prob-
lems for in international business, to achieve a rough
consensus on priorities, and to design solutions. Un-
fortunately, these designers were often working with
arm-chair philosophers and social engineers who did
not focus on unethical behaviors within developing
areas. However, the will to address moral behavior was
established both globally and locally.

In advanced economies, information ethics
emerged as a logical and vital extension of computer
ethics. Before this extension, computer ethics focused
on software piracy and other crimes against property
such as the theft of computer time for personal use.
Social and economic issues surfaced, such as egre-
gious failure to develop ergonomic and user-friendly
information systems. In the 2000s, riveting problems
demand attention: security, unemployment, and eq-
uitable data access for a wide range of shareholders.
With the expansion of e-commerce and the need for
economic justice, not only ethicists and IS profes-
sionals, but also international organizations and global
consumer advocates seek effective professional and
moral codes of behavior.

In developing economies, the thrust and the cen-
trality of information ethics differ from those societies
with mature markets and global information systems.

Developing Nations 611

Table XI The Digital Divide: Developing Economies

Resources needed Most critical areas

Capacity building Fault lines across and between sectors

Technical assistance Deprivation along telephone systems

Capital Topography matters

Political leadership Political nonelites excluded
Agricultural–rural divisions
Littoral–inland splits
Industry-specific contrasts
Education levels
Language: the problem of dialect

Without the ethical development and use of informa-
tion, information poverty cannot be eradicated. In ad-
dition, the stakes are critical: first, establish stability,
popular trust, and a consensus on the new economic
order; second, focus on the expansion of wealth, op-
portunity, and equity. From Honduras to Russia, com-
puter and information ethics are preconditions for
both stable market mechanisms and the maturation
of information systems. The lack of information in-
tegrity and access contributes to low or stagnant
growth and cripples orderly transitions to an infor-
mation economy. Immoral ICT behaviors will become
immoral behaviors via ICTs without intervention, crip-
pling economic development from Mexico to China.
Mismanaged, hoarded, and distorted information re-
sults in missed opportunities and valuable partner-
ships, inefficient distribution and supply channels,
fraud, unproductive hidden assets abroad, egregious
personal aggrandizement, tax avoidance, and unfair
advantage—luxuries which developing economies
cannot afford.

The search for an ethical consensus draws upon
experience, development theory, and multicultural
resources, and represents a marked shift away from
utopianism and toward action-based pragmatism and
individual accountability. The stakes are enormous;
the evolution of information ethics affects not only
the viability of ICTs, but the digital divide within the
most needy societies. The success of open, integrated,
and extended systems depends upon the availability
of information technology as well as equitable and
honest information-handling behaviors and other
moral considerations. Information systems cannot suc-
ceed in environments with endemic corruption,
information-hoarding elites, illegality, and other moral
considerations. The significance of historical experi-
ence, consequence-oriented traditions, and culture
are germane but must not be overstated. Although
ethical problems in information management arise
from local economic, political, legal, and cultural fac-
tors, research on information ethics reveals a craving
for moral consensus at every stage of economic de-
velopment. At all levels of society, a debate on ethics
is taking place, conflicting ethical norms have sur-
faced, and strategies to deal with corruption sit at the
top of political and economic agendas. A critical mass
of evidence on unethical behavior has accumulated,
and the short- and longterm repercussions are self-
evident and instructive.

Action-based ethics feature three major reference
points: a reevaluation of existing practices and values
in developing economies, a critical analysis of the re-
lationships among ethics and a market economy both

internally and abroad, and a search across multiple
cultures and within layers of cultures for the identifi-
cation, definition, and solution to ethical problems.

Although intercultural transfers of moral norms,
or the “missionary position,” cannot be transferred
from advanced to developing economies, developing
economies are dynamic, instructive workshops and
laboratories positioned at the leading edge of ethical
inquiry in information ethics and other moral prob-
lems in economic development. The 1990s were a
time of severe trial and soul-searching. Substantial in-
tellectual and cultural resources are now available to
identify and define ethical problems with rigor, to
achieve a rough consensus on priorities, and to begin
to design solutions in a nation replete with arm-chair
philosophers and social engineers. Most importantly,
the will to address ethical questions and habits of in-
vestigation into novel and multiple resources have
been established.

X. CONCLUSION

An overview of research priorities and projects in the
past 20 years shows significant shifts in development
priorities and information systems (Table XII).

At present, information systems are mixed blessings
for developing countries. On the one hand, ICTs hold
the promise of assisting balanced and accelerated eco-
nomic development. On the other hand, ICTs are
deepening the digital divide, erasing the modest com-
parative advantages which developing areas have held
in cheap labor markets or other natural endowments.

Furthermore, the success of ICTs depends upon
economic and political reform and the success of
painful cultural disruptions. Economic developers
cannot succeed without broad infrastructure im-
provements, or without external supplies of capital
and technical assistance. Start-up costs, partnerships,
increased competition, and the globalization of do-
mestic markets are daunting challenges.

The development of information systems in devel-
oping economies is both critical and problematic.
The resource shortages, inequities, and cultural ob-
stacles which impede balance and wealth creation also
influence the effectiveness of ICTs. The limits of pro-
tectionism, tradition-based solutions, and cultural con-
gruence are clear. A timely movement toward open,
extended, and integrated ICTs is mandated. The in-
ternational, regional, and national programs for ICT
development require unprecedented investments but
promise to reap massive, long overdue benefits. The
campaign to spread the advantages of the informa-

612 Developing Nations

tion revolution to the poorest areas of the world is
one of the salient challenges of this generation.

SEE ALSO THE FOLLOWING ARTICLES

Digital Divide, The • Digital Goods: An Economic Perspective •
Economic Impacts of Information Technology • Electronic
Commerce • Ethical Issues • Future of Information Systems •
Global Information Systems • Globalization • Globalization
and Information Management Strategy • Internet, Overview •
People, Information Systems Impact on

BIBLIOGRAPHY

Amoako, K.Y. (1996). Africa’s information society initiative: An
action framework to build Africa’s information and com-
munication infrastructure. Information and Communication
for Development Conference Proceedings, Midrand, South Africa.

Avgerou, C., and Walsham, G. (2000). Information technology in
context. Aldershot: Ashgate.

Castells, M. (2000). The rise of the network society, Vol. I. New York:
Blackwells.

Chepaitis, E. (1990). Cultural constraints in the transference of
information technology to third world countries, in Interna-
tional Science and Technology: Philosophy, Theory and Policy
(Mekki Mtewa, Ed.). New York: St. Martin’s.

Chepaitis, E. (1993). After the command economy: Russia’s in-
formation culture and its impact on information resource

management. Journal of Global Information Management, Vol.
I, no. 2.

Chepaitis, E. (2001). The criticality of information ethics in
emerging economies: Beyond privacy and piracy. Journal of
Information Ethics.

Chepaitis, E. (2002). E-commerce and the information envi-
ronment in an emerging economy: Russia at the turn of the
century, in Global Information Technology and Electronic Com-
merce: Issues for the New Millennium. (Prashant Palvia et al.
Eds.), 53–73. Marietta, GA: Ivy League Publishing.

Davenport, T. (1997). Information ecology. New York: Oxford
Univ. Press.

Fukuyama, F. (1995). Trust: The social virtues and the creation of
prosperity. New York: Free Press.

Hedley, R. A. (2000). The information age: Apartheid, cultural
imperialism, or global village? in Social Dimensions of Infor-
mation Technology: Issues for the New Millennium. (G. David
Garson, Ed.), 278–290. Hershey, PA: Idea Group Publishing.

Iansiti, M. (1998). Technology integration: Making choices in a dy-
namic world. Cambridge, MA: Harvard Univ. Press.

Kannon, P.K., Change, A.-M., and Whinston, A. B. Electronic
communities in e-business: Their roles and issues. Informa-
tion Systems Frontiers, Vol. 1, No. 4, 415–426.

Tallon, P. P., and Kraemer, K. L. (2000). Information technol-
ogy and economic development: Ireland’s coming of age
with lessons for developing countries. Journal of Global Infor-
mation Technology Management, Vol. 3, No. 2, 4–23.

Wild, J. L., Wild, K. L., and Han, J. C.Y. (2000). International
business: An integrated approach: E-business edition. New York:
Prentice Hall.

World Bank Data Profiles. (July, 2001). World Bank Group.

Developing Nations 613

Table XII IS Research Areas

1980s 2000s

EDI e-commerce

National computer industries (Brazil) India’s software industry

Impact on rural/minority/female population Technological dualism

Brain drain Wireless

Networks Ethics and equity

TQM The digital divide

Globalization “Soft” factors

Joint ventures Information quality

Multinational investment Open, integrated, and extended systems

Systems design and maintenance International assistance

Digital Divide, The
Randal D. Pinkett
Building Community Technology (BCT) Partners, Inc.

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 615

I. THE DIGITAL DIVIDE
II. DIGITAL DIVIDE POLICY

III. CLOSING THE DIGITAL DIVIDE

IV. THE INTERNATIONAL DIGITAL DIVIDE
V. THE DIGITAL DIVIDE DEBATE

GLOSSARY

community-based organization (CBO) Private, non-
profit organizations that are representative of seg-
ments of communities.

community building An approach to community revi-
talization that is focused on strengthening the ca-
pacity of residents, associations, and organizations
to work, individually and collectively, to foster and
sustain positive neighborhood change.

community content The availability of material that is
relevant and interesting to some target audience
(e.g., low-income residents) to encourage and mo-
tivate the use of technology.

community network Community-based electronic net-
work services, provided at little or no cost to users.

community technology Community-based initiatives
that use technology to support and meet the goals
of a community.

community technology center (CTC) Publicly accessi-
ble facilities that provide computer and Internet
access as well as technical instruction and support.

community telecenter Similar to a community tech-
nology center, but community telecenter is a term
more commonly used in remote or rural areas out-
side of the United States.

digital divide A phrase commonly used to describe
the gap between those who benefit from new tech-
nologies and those who do not.

Free-Net Loosely organized, community-based, volunteer-
managed electronic network services. They provide
local and global information sharing and discussion
at no charge to the Free-Net user or patron.

ICT Information and communications technology in-
cluding computers and the Internet.

National Information Infrastructure (NII) An inter-
connected network of computers, databases, hand-
held devices, and consumer electronics.

nongovernmental organization (NGO) Similar to
CBOs, whereas NGO is a term more commonly
used outside of the United States.

I. THE DIGITAL DIVIDE

The digital divide is a phrase commonly used to de-
scribe the gap between those who benefit from new
technologies and those who do not. The phrase was
first popularized by the National Telecommunications
and Information Administration (NTIA) in the U.S.
Department of Commerce in their 1995 report
“Falling through the Net: A Survey of the Have Nots
in Rural and Urban America.” Thereafter, the NTIA
released three additional reports: “Falling through
the Net. II. New Data on the Digital Divide” in 1998,
“Falling through the Net. III. Defining the Digital Di-
vide” in 1999, and “Falling through the Net. IV. To-
ward Digital Inclusion” in 2000. In their most recent
report, the NTIA wrote:

A digital divide remains or has expanded slightly in
some cases, even while Internet access and computer
ownership are rising rapidly for almost all groups. For
example, the August 2000 data show that noticeable di-
vides still exist between those with different levels of in-
come and education, different racial and ethnic groups,
old and young, single and dual-parent families, and

those with and without disabilities. . . . Until everyone
has access to new technology tools, we must continue
to take steps to expand access to these information
resources.

Excerpts from the 1999 NTIA report include:

1. Income—Households with incomes of $75,000 and
higher were more than 9 times as likely to have a
computer at home (see Fig. 1), and more than 20
times as likely to have access to the Internet than
those with incomes of $5000 or less (see Fig. 2).

2. Education—The percentage-point difference
between those with a college education or better,
when compared to those with an elementary
school education, was as high as 63% for
computer penetration (see Fig. 3), and 45% for
Internet penetration (see Fig. 4).

3. Race—Black and Hispanic households were
approximately one-half as likely as households of
Asian/Pacific Islander descent, as well as White
households, to have a home computer (see Fig.
5), and approximately one-third as likely as
households of Asian/Pacific Islander descent, and
roughly two-fifths as likely as White households,
to have home Internet access (see Fig. 6).

4. Geography—Americans living in rural areas lagged
behind those in urban areas and the central city,
regardless of income level. For example, at the
lowest level of income ($5000 and below), those

in urban areas and the central city were almost
one and a half times as likely to have a home
computer (see Fig. 7) and more than twice as
likely to have Internet access than those in rural
areas (see Fig. 8).

5. Income and race—For households earning between
$35,000 and $74,999, 40.2% of Blacks and 36.8%
of Hispanics owned a computer, compared to
55.1% of Whites (see Fig. 9), while for
households earning between $15,000 and
$34,999, 7.9% of Blacks and 7.6% of Hispanics
had Internet access, compared to 17% of Whites
(see Fig. 10). A similar pattern emerged in each
income category.

Corroborating evidence can be drawn from a number
of related studies. In 1995, RAND’s Center for Infor-
mation Revolution Analyses (CIRA) published the re-
sults of a 2-year study entitled, “Universal Access to E-
Mail: Feasibility and Societal Implications.” Consistent
with the NTIA reports, they found “large differences
in both household computer access and use of net-
work services across income categories. . . large dif-
ferences in household computer access by educational
attainment . . . [and] rather large and persistent dif-
ferences across race/ethnicity in both household com-
puter access and network services usage.”

In 1997, Bellcore released the results of a national
public opinion survey entitled “Motivations for and
Barriers to Internet Usage: Results of a National Pub-

616 Digital Divide, The

Central City

U.S.

Urban

Rural

Under
$5000

$10,000-
$14,999

$20,000-
$24,999

$35,000-
$49,999

$75,000+

Income

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

%
 o

f U
.S

. h
ou

se
ho

ld
s

Figure 1 The 1998 computer penetration rates by income. Data from the U.S. Department of Commerce.

lic Opinion Survey.” In similar fashion to the NTIA,
they found that a disproportionately high 58% of
those with a household income below $25,000 re-
ported a lack of awareness of the Internet.

The Spring 1997 CommerceNet/Nielsen Internet
Demographic Study (IDS), conducted in December

1996/January 1997 by Nielsen Media Research, also
confirmed the NTIA’s observations. This study was
the first to collect data on patterns of use with com-
puters and communications technologies as a func-
tion of income and race. In 1998, using the IDS data,
Vanderbilt University released a report, “The Impact

Digital Divide, The 617

Central City

U.S.

Urban

Rural

Under
$5000

$10,000-
$14,999

$20,000-
$24,999

$35,000-
$49,999

$75,000+

Income

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

%
 o

f U
.S

. h
ou

se
ho

ld
s

Figure 2 The 1998 Internet penetration rates by income. Data from the U.S. Department of Commerce.

Central City

U.S.

Urban

Rural

Elementary Some H.S. H.S. diploma
or GED

Some
college

B.A. or
more

Education

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

%
 o

f U
.S

. h
ou

se
ho

ld
s

80.0

Figure 3 The 1998 computer penetration rates by education. Data from the U.S. Department of Commerce.

of Race on Computer Access and Use,” that examined
differences in PC access and Web use between African-
Americans and Whites. The most interesting finding
from their study was that income did not explain race
differences in home computer ownership. While 73%

of White students owned a home computer, only 33%
of African-American students owned one, a difference
that persisted when a statistical adjustment was made
for the students’ reported household income. They
concluded that “in terms of students’ use of the Web,

618 Digital Divide, The

Central City

U.S.

Urban

Rural

Elementary Some H.S. H.S. diploma
or GED

Some
college

B.A. or
more

Education

0.0

10.0

20.0

30.0

40.0

50.0

60.0

%
 o

f U
.S

. h
ou

se
ho

ld
s

Figure 4 The 1998 Internet penetration rates by education. Data from the U.S. Department of Commerce.

Other

White

Hispanic

Black

1984 1989 1994 1997 1998

Year

0.0

10.0

20.0

30.0

40.0

50.0

60.0

%
 o

f U
.S

. h
ou

se
ho

ld
s

16.8%-pts

21.5%-pts

23.4%-pts

Figure 5 The 1998 computer penetration rates by race. Data from the U.S. Department of Commerce.

Digital Divide, The 619

Other

White

Hispanic

Black

1994 1998

Year

0.0

5.0

10.0

15.0

20.0

25.0

%
 o

f U
.S

. h
ou

se
ho

ld
s

13.8%-pts

2.7%-pts

Figure 6 The 1998 Internet penetration rates by race. Data from the U.S. Department of Commerce.

Under
$5,000

$5,000-
$9,999

$15,000-
$19,999

$75,000+

Income

0.0

10.0

20.0

30.0

40.0

50.0

90.0

%
 o

f U
.S

. h
ou

se
ho

ld
s

60.0

70.0

80.0

Central City

U.S.

Urban

Rural

$10,000-
$14,999

$25,000-
$34,999

$35,000-
$49,999

$50,000-
$74,999

$20,000-
$24,999

Figure 7 The 1998 computer penetration rates by income by geographic location. Data from the U.S. Department
of Commerce.

particularly when students do not have a home com-
puter, race matters.” In 2000, Stanford University re-
leased a preliminary report, “Internet and Society,”
which focused on the digital divide, but with a no-
ticeably different explanation for the problem. Fo-
cusing on the Internet solely (to the exclusion of com-
puter ownership), they concluded that education and
age were the most important factors facilitating or in-
hibiting access. According to their analysis, “a college
education boosts rates of Internet access by well over
40 percentage points compared to the least educated
group, while people over 65 show a more than 40 per-
centage point drop in their rates of Internet access
compared to those under 25.” Regardless of the ex-
planatory construct, all of these statistics suggest that
the digital divide is a very real phenomenon.

In addition to the aforementioned studies, the dig-
ital divide has been framed along a number of other
dimensions, including inequities in computer and In-
ternet access, use, and curriculum design between ur-
ban and suburban schools, or predominantly minority
and predominantly White schools; the lack of partici-
pation of underrepresented groups in computer-

related and information technology-related fields and
businesses, and the dearth of online content, material,
and applications, geared to the needs and interests of
low-income and underserved Americans.

II. DIGITAL DIVIDE POLICY

The United States policy related to the digital divide
originates within the context of universal service which,
at its inception, referred to universal access to “plain
old telephone service” (POTS). This was later ex-
panded to include information and communications
technology (ICT). In 1913, the Kingsbury Commit-
ment placed the national telephony network of Amer-
ican Telephone and Telegraph (AT&T) under control
of the federal common carrier. In exchange, AT&T re-
ceived further protection from competition while
agreeing to provide universal access to wiring and re-
lated infrastructure. The Communications Act of 1934
extended this accord and ensured affordable tele-
phone service for all citizens by regulating pricing,
subsidizing the cost of physical infrastructure to re-

620 Digital Divide, The

Under
$5,000

$5,000-
$9,999

$15,000-
$19,999

$75,000+

Income

0.0

10.0

20.0

30.0

40.0

50.0

%
 o

f U
.S

. h
ou

se
ho

ld
s

60.0

70.0

Central City

U.S.

Urban

Rural

$10,000-
$14,999

$25,000-
$34,999

$35,000-
$49,999

$50,000-
$74,999

$20,000-
$24,999

Figure 8 The 1998 Internet penetration rates by income by geographic location. Data from the U.S. Department
of Commerce.

mote areas, and establishing the Federal Communica-
tions Commission (FCC). In the Communications Act
of 1934, the role of the FCC was described as follows:

For the purpose of regulating interstate and foreign
commerce in communication by wire and radio so as
to make available, so far as possible to all the people
of the United States, a rapid, efficient, nation-wide,

and world-wide wire and radio communications ser-
vice with adequate facilities at reasonable charges.

The FCC would then play the central role in ensuring
that national telephone service was both available and
affordable, whereas it would be almost 60 years before
telecommunications policy was revisited in the U.S. In
1993, the Clinton Administration released a report,

Digital Divide, The 621

Under $15,000 $15,000-$34,999 $35,000-$74,999 $75,000+

Income

0.0

10.0

20.0

30.0

40.0

50.0

90.0

%
 o

f U
.S

. h
ou

se
ho

ld
s 60.0

70.0

80.0

Other

White

Hispanic

Black

Figure 9 The 1998 computer penetration rates by income by race. Data from the U.S. Department of Commerce.

Under $15,000 $15,000-$34,999 $35,000-$74,999 $75,000+

Income

0.0

10.0

20.0

30.0

40.0

50.0

%
 o

f U
.S

. h
ou

se
ho

ld
s

60.0

70.0

Other

White

Hispanic

Black

Figure 10 The 1998 Internet penetration rates by income by race. Data from the U.S. Department of Commerce.

“National Information Infrastructure: Agenda for Ac-
tion,” which identified strategies for expanding the
National Information Infrastructure (NII)—an inter-
connected network of computers, databases, hand-
held devices, and consumer electronics. The report
addressed the following areas:

1. Promoting private sector investment, through
appropriate tax and regulatory policies

2. Extending the universal service concept to ensure
that information resources were available at
affordable prices

3. Acting as a catalyst to promote technological
innovation and new applications

4. Promoting seamless, interactive, user-driven
operation of the NII

5. Ensuring information security and network
reliability

6. Improving management of the radio frequency
spectrum

7. Protecting intellectual property rights
8. Coordinating with other levels of government

and with other nations
9. Providing access to government information and

improving government procurement

Meanwhile, in 1994, the NTIA in the U.S. Depart-
ment of Commerce began gathering data related to
computer and Internet access, by adding a series of
questions to the U.S. Census Bureau’s “Current Pop-
ulation Survey.” This resulted in the first of the four
“Falling through the Net” reports that highlighted
the digital divide—as defined in the report as the gap
“between those who have access to and use comput-
ers and the Internet.” Soon after, Congress passed the
Telecommunications Act of 1996 with the aim of
deregulating the telecommunications industry, thus
promoting competition, lowering the overall cost of
services to consumers, and expanding the notion of
universal service through the inclusion of additional
mechanisms that supported its provision. The
Telecommunications Act of 1996 also established one
of several major policy initiatives aimed at closing the
digital divide—the Universal Service Fund, also known
as the “E-Rate” Program.

The Universal Service Fund was administered by
the Universal Service Administration Company
(USAC), a private, not-for-profit corporation respon-
sible for providing every state and territory in the
United States with access to affordable telecommuni-
cations services. All of the country’s communities—
including remote communities—such as rural
areas, low-income neighborhoods, rural health care

providers, public and private schools, and public li-
braries, were eligible to seek support from the Uni-
versal Service Fund. To accomplish this task, USAC
administered four programs: the High Cost Program,
the Low Income Program, the Rural Health Care Pro-
gram, and the Schools and Libraries Program. Each
of these programs provided affordable access to mod-
ern telecommunications services for consumers, rural
health care facilities, schools, and libraries, regardless
of geographic location or socioeconomic status, via 20
to 90% discounts on telecommunications services, In-
ternet access, and internal connections. In addition
to USAC, a few of the other major policy initiatives of
the Clinton Administration included the following:

1. U.S. Department of Commerce, Technology
Opportunities Program—The Technology
Opportunities Program promoted the widespread
availability and use of advanced
telecommunications technologies in the public
and nonprofit sectors. As part of the NTIA, TOP
gave grants for model projects demonstrating
innovative uses of network technology. TOP
evaluated and actively shared the lessons learned
from these projects to ensure the benefits were
broadly distributed across the country, especially
in rural and underserved communities.

2. U.S. Department of Education, Community Technology
Center (CTC) Program—The purpose of the
Community Technology Centers program was to
promote the development of model programs
that demonstrated the educational effectiveness
of technology in urban and rural areas and
economically distressed communities. These
community technology centers provided access to
information technology and related learning
services to children and adults.

3. U.S. Department of Housing and Urban Development,
Neighborhood Networks Program—The
Neighborhood Networks initiative encouraged
the establishment of resource and community
technology centers in privately owned apartment
buildings that received support from HUD to
serve low-income people. The centers offered
computer training and educational programs, job
placement, and a diverse array of other support.
The goal of Neighborhood Networks was to foster
economic opportunity and encourage life-long
learning.

4. National Science Foundation, Connections to the
Internet Program—The Connections to the
Internet program encouraged U.S. research and
education institutions and facilities to connect to

622 Digital Divide, The

the Internet and to establish high performance
connections to support selected meritorious
applications. This included three connection
categories: (1) connections for K-12 institutions,
libraries, and museums that utilized innovative
technologies for Internet access; (2) new
connections for higher education institutions;
and (3) connections for research and education
institutions and facilities that had meritorious
applications with special network requirements
(such as high bandwidth and/or bounded
latency) that could not readily be met through
commodity network providers.

5. U.S. Department of Agriculture, Construction and
Installation of Broadband Telecommunications Services
in Rural America—The Rural Utilities Service
(RUS) was a loan program and the availability of
loan funds under this program to finance the
construction and installation of broadband
telecommunications services in rural America.
The purpose of the program was to encourage
telecommunications carriers to provide
broadband service to rural consumers where such
service did not currently exist. This program
provided loan funds, on an expedited basis, to
communities up to 20,000 inhabitants to ensure
rural consumers enjoyed the same quality and
range of telecommunications services that were
available in urban and suburban communities.

6. U.S. General Services Administration, Computers for
Learning Program—The Computers for Learning
(CFL) program transferred excess Federal
computer equipment to schools and educational
nonprofit organizations, giving special
consideration to those with the greatest needs.
Federal agencies used the CFL web site to
connect the registered needs of schools and
educational nonprofit organizations with available
government computer equipment.

III. CLOSING THE DIGITAL DIVIDE

Three primary models have emerged for closing the
digital divide. These efforts fall under the heading of
community technology, or community-based initiatives
that use technology to support and meet the goals of
a community. The first model is community networks, or
community-based electronic network services, pro-
vided at little or no cost to users. The second model
is community technology centers (CTCs), or publicly ac-
cessible facilities that provide computer and Internet
access as well as technical instruction and support.

The third model is community content, or the availabil-
ity of material that is relevant and interesting to some
target audience (e.g., low-income residents) to en-
courage and motivate the use of technology.

These approaches can be classified according to
what they provide: hardware, software, training, in-
frastructure, online access, or content. They can also
be classified according to the groups they target: in-
dividuals, schools, youth, community organizations,
and the general public, or specific groups such as a
neighborhood, racial or ethnic minorities, the home-
less, and the elderly. Each model is described in
greater detail below.

A. Community Networks

Community networks are community-based electronic
network services, provided at little or no cost to users.
In essence, community networks establish a new tech-
nological infrastructure that augments and restructures
the existing social infrastructure of the community.

Most community networks began as part of the
Free-Net movement during the mid-1980s. According
to the Victoria Free-Net Association, Free-Nets are
“loosely organized, community-based, volunteer-
managed electronic network services. They provide
local and global information sharing and discussion
at no charge to the Free-Net user or patron.” This in-
cludes discussion forums or real-time chat dealing
with various social, cultural, and political topics such
as upcoming activities and events, ethnic interests, or
local elections, as well as informal bartering, classi-
fieds, surveys and polls, and more. The Cleveland
Free-Net, founded in 1986 by Dr. Tom Grundner, was
the first community network. It grew out of the “St.
Silicon’s Hospital and Information Dispensary,” an
electronic bulletin board system (BBS) for health care
that evolved from an earlier bulletin board system,
the Chicago BBS.

In 1989, Grundner founded The National Public
Telecomputing Network (NPTN) which, according to
the Victoria Free-Net Association, “evolved as the pub-
lic lobbying group, national organizing committee,
and public policy representative for U.S.-based Free-
Nets and [contributed] to the planning of world-wide
Free-Nets.” NPTN grew to support as many as 163 af-
filiates in 42 states and 10 countries. However, in the
face of rapidly declining commercial prices for Inter-
net connectivity, and a steady increase in the demands
to maintain high-quality information services, NPTN
(and many of its affiliates) filed for bankruptcy in
1996. While a number of Free-Nets still exist today,

Digital Divide, The 623

many of the community networking initiatives that are
presently active have incorporated some aspects of the
remaining models for community technology—
community technology centers and community content.

The aforementioned study at RAND’s CIRA in-
volved the evaluation of the following five community
networks: (1) Public Electronic Network, Santa Mon-
ica, CA; (2) Seattle Community Network, Seattle, WA;
(3) Playing to Win Network, New York, NY; (4) Lati-
noNet, San Francisco, CA; and (5) Blacksburg Elec-
tronic Village (BEV), Blacksburg, VA. Their findings
included increased participation in discussion and de-
cision making among those who were politically or
economically disadvantaged, in addition to the fol-
lowing results:

• Improved access to information—Computers and the
Internet allowed “individuals and groups to tap
directly into vast amounts and types of
information from on-line databases and from
organizations that advertise or offer their products
and services online.”

• Restructuring of nonprofit and community-based
organizations—Computers and the Internet assisted
these organizations in operating more effectively.

• Delivery of government services and political
participation—Computers and the Internet
promoted a more efficient dissemination of local
and federal information and services and
encouraged public awareness of, and participation
in, government processes.

Examples of other community networks include Big
Sky Telegraph, Dillon, Montana; National Capital Free-
Net, Ottawa, Ontario; Buffalo Free-Net, Buffalo, New
York; and PrairieNet, Urbana-Champaign, Illinois.

B. Community Technology Centers

Community technology centers (CTCs), or community
computing centers, are publicly accessible facilities
that provide computer and Internet access, as well as
technical instruction and support. According to a
1999 study by the University of Illinois at Urbana-
Champaign, CTCs are an attractive model for a num-
ber of reasons. First, they are cost-effective when com-
pared to placing computers in the home. Second,
responsibility for maintaining computer resources is
assumed by an external agent. Third, knowledgeable
staff members are present to offer technical support
and training. Fourth and finally, peers and other com-
munity members are present, creating a pleasant so-

cial atmosphere. Consequently, CTCs are, by far, the
most widely employed strategy to-date for community
technology initiatives.

For more than two decades, significant public and
private funds have been invested in the development of
CTCs nationwide, including the Intel Computer Club-
house Network, the Community Technology Centers’
Network (CTCNet), PowerUp, the U.S. Department of
Education CTC program, the U.S. Department of Hous-
ing and Urban Development Neighborhood Networks
(NN) program, and more. CTCs have been the focus of
numerous studies relating to computer and Internet
access and use, and the factors influencing their effec-
tiveness have been well-researched and documented,
including determining space; selecting hardware, soft-
ware, and connectivity; scheduling and outreach; bud-
geting; funding, and more.

The Community Technology Centers’ Network
(CTCNet), housed at Educational Development Cen-
ter, Inc. (EDC), in Newton, Massachusetts, is a na-
tional membership organization that promotes and
nurtures nonprofit, community-based efforts to pro-
vide computer access and learning opportunities to
the general public and to disadvantaged populations.
CTCNet is a network of more than 350 affiliate CTCs
including multiservice agencies, community networks,
adult literacy programs, job training and entrepre-
neurship programs, public housing facilities, YMCAs,
public libraries, schools, cable television access cen-
ters, and after-school programs.

CTCNet has conducted two evaluations examining
the impact of computers and the Internet on individ-
uals and families. Their first evaluation, “Community
Technology Centers: Impact on Individual Partici-
pants and Their Communities,” was a qualitative study
that involved semistructured interviews with 131 par-
ticipants at five intensive sites: (1) Brooklyn Public Li-
brary Program, Brooklyn, NY; (2) Somerville Com-
munity Computing Center, Somerville, MA; (3) Old
North End Community Technology Center (ONE),
Burlington, VT; (4) New Beginnings Learning Center,
Pittsburgh, PA; and (5) Plugged In, East Palo Alto,
CA. The results of the study included:

• Increased job skills and access to employment
opportunities—Individuals were able to access
information and resources about job search and
employment opportunities (14%), improve job
skills including computer and literacy skills (38%),
and consider new, higher-wage, career options
that involved the use of technology (27%).

• Education and improved outlook on learning—
Individuals gained access to lifelong learning

624 Digital Divide, The

opportunities such as computer literacy and
mathematics programs (15%), changed their goals
for learning and educational attainment (e.g.,
decided to pursue a GED or more) (27%), and
improved their outlook and perspective on
learning (e.g., using the computer they “learned
that they can learn”) (27%).

• Technological literacy as a means to achieve individual
goals—Individuals obtained greater computer
awareness and new computer skills that increased
their comfort with technology as a tool for
accomplishing their goals (91%).

• New skills and knowledge—Individuals improved
their reading and writing (37%), mathematics
skills, and interest in science (8%).

• Personal efficacy and affective outcomes—Individuals
achieved greater personal autonomy (18%) and
feelings of pride and competence as a result of
success with computers (e.g., decided to stay off
drugs) (23%).

• Use of time and resources—Individuals found
productive uses for their time (15%) which
resulted in positive outcomes such as reduced
reliance on public assistance (4%).

• Increased civic participation—Individuals identified
new avenues for voicing their opinions on a range
of social and political issues (5%), gained access to
community, municipal, and government services
and resources, and demonstrated greater interest
in and engagement with current events (5%).

CTCNet’s second evaluation, “Impact of CTCNet Af-
filiates: Findings from a National Survey of Users of
Community Technology Centers,” was a quantitative
study that surveyed 817 people from 44 sites. This
evaluation corroborated the findings from the 1997
study and also found that more than one-third of
users with employment goals, half of users with edu-
cational goals, and more than half of users with goals
of self-confidence and overcoming fear reported
achieving their goals.

Examples of other CTCs include Computer Club-
house, Boston, Massachusetts; Austin Learning Acad-
emy, Austin, Texas; PUENTE Learning Centers, Los
Angeles, California; New Beginnings Learning Cen-
ter, Pittsburgh, Pennsylvania; and West Side Commu-
nity Computing Center, Cleveland, Ohio.

C. Community Content

Community content refers to the generation and avail-
ability of local material that is relevant and interesting

to a specific target audience (e.g., low-income resi-
dents) to encourage and motivate the use of technol-
ogy. Community content can be broadly classified
along two dimensions: information vs communication,
and active vs passive. The information vs communica-
tion dimension highlights the Internet’s ability to both
deliver information and facilitate communication. In-
terestingly, a 1997 study at Carnegie Mellon Univer-
sity found that people use the Internet more for com-
munication and social activities than they do for
information purposes. A simple example of the dif-
ference between these two forms of community con-
tent is the difference between reading and writing
about community-related matters (information), and
discussing and dialoguing about community-related
matters (communications).

Information-based community content takes the
form of databases and documents that can be accessed
online such as a directory of social service agencies, a
listing of recommended websites, or a calendar of ac-
tivities and events. Communications-centered com-
munity content takes the form of interactive, syn-
chronous tools such as chat rooms and instant
messaging, or asynchronous tools such as listservs (e-
mail lists) and discussion forums. Here, the distin-
guishing factor when contrasted with other forms of
content is that the nature of the information or com-
munication exchange is solely focused on, or of use
to, members of the community.

The active vs passive dimension, at one extreme,
positions community members as the active produc-
ers of community content, while at the other extreme,
it positions community members as the passive recip-
ients of community content, with varying degrees of
each designation found at each point along the con-
tinuum. A simple example that highlights the distinc-
tion between these two orientations toward commu-
nity content is the difference between browsing a
community website (passive) and building a commu-
nity website (active).

A passive disposition is static, unidirectional, and
sometimes described as “one-to-many” because content
is generated by a third party (one) and delivered to the
community (many). It typically manifests itself in the
form of centralized, one-way repositories of informa-
tion that can be accessed by community members such
as an information clearinghouse of city or municipal
services; an online entertainment guide that lists
movies, shows, live performances, and restaurants; or a
web portal of local news, weather, sports, etc. Here, the
distinguishing factor is that although very little, if any,
content is produced by the community, it is still in-
tended for the community. An active disposition is

Digital Divide, The 625

dynamic, multidirectional, and often described as
“many-to-many,” because content is generated by the
community (many) for the community (many). It typ-
ically manifests itself in the form of multiple-way, in-
teractive communication and information exchange
between end-users such as an online, neighborhood-
based, barter and exchange network, an e-mail listserv
for the purpose of online organizing and advocacy, or
a community-generated, web-based, geographic infor-
mation system (GIS) that maps local resources and
assets. Here, the distinguishing factor is that most, if
not all, content is produced by the community.

Community content was the focus of a report au-
thored by the Children’s Partnership, a children’s ad-
vocacy, nonprofit organization, entitled “Online Con-
tent for Low-Income and Underserved Americans.”
In the report, community content was defined ac-
cording to the following five categories:

• Information that is more widely available
• Information that can be customized by the user
• Information that flows from many to many
• Information that allows for interaction among

users
• Information that enables users to become

producers of information.

Based on an evaluation that included discussion with
user groups, interviews with center and community
network directors, interviews with other experts, and
analysis of the web, they concluded the following with
respect to low-income and underserved populations
and existing Internet content: (1) a lack of local in-
formation, (2) literacy barriers, (3) language barriers,
and (4) a lack of cultural diversity. This suggests that
while the web has emerged as a valuable resource for
mainstream users, additional effort must be made to
make the Internet more attractive to local community
residents and ethnic and cultural groups, as well as
more accessible to users with limited literacy, users
with disabilities, and nonnative English speakers.
Community content is an emerging strategy for com-
munity technology initiatives, and additional work will
be required to overcome these barriers.

Notable community content sites include CTCNet
(http://www.ctcnet.org), the Digital Divide Network
(http://www.digitaldividenetwork.org), the America
Connects Consortium (http://www.americaconnects.
net), the Children’s Partnership’s Content Bank
(http://www.contentbank.org), and the Community
Connector (http://databases.si.umich.edu/cfdocs/
community/index.cfm).

IV. THE INTERNATIONAL DIGITAL DIVIDE

Although the digital divide was initially recognized as
an issue within the domestic United States, the phrase
was very quickly adopted to encompass the disparities
in information and communications technology
(ICT) access and use across the globe. The following
is an overview of the digital divide in selected coun-
tries and continents.

A. Africa

Internet access arrived in Africa circa 1998, which
clearly explains why most African countries have ex-
perienced relatively low levels of computer and Inter-
net penetration when compared to other countries in
their region. In 1999, the United Nations Develop-
ment Program (UNDP) released the “World Report
on Human Development,” which identified Africa as
having 0.1% of the hosts on the Internet and the U.S.
as having 26.3%. In 2000, Nua estimated that there
were 407.1 million people online, of which 3.11 mil-
lion were in Africa (less than 1%) from among its 738
million people. That same year, the International
Telecommunications Union (ITU) reported that
while Africa represented 12.8% of the world’s popu-
lation, it had just 2% of wired telephones, 1.5% of
wireless telephones, and 1.5% of personal computers.

Efforts to close the digital divide and expand ICT
diffusion in Africa were bolstered in April 1995, when
the Lisbon Center for the Study of Africa (CEA), ITU,
United Nations Educational, Scientific and Cultural
Organization (UNESCO), International Development
Research Center (IDRC), and Bellanet International
held the “African Regional Symposium on Telematics
for Development” in Addis Abeba. One month later,
at the annual meeting of the CEA, ministers from var-
ious African countries gathered and passed Resolu-
tion 795, “Building the African Speedway for Infor-
mation,” which led to the implementation of a
national telecommunications infrastructure for the
purpose of planning and decision making, and the es-
tablishment of a committee comprised of ICT experts
charged with preparing Africa for the digital age. One
year later, the CEA Ministers passed Resolution 812,
which established an even broader initiative known as
the “African Information Society Initiative (AISI).”
AISI, the recognized plan for fostering an environ-
ment within Africa that could support broad deploy-
ment of ICT throughout the continent, was based on
the following nine points:

626 Digital Divide, The

1. Develop nation plans for building information
and communication infrastructure

2. Eliminate legal and regulatory barriers to the use
of information and communications technologies

3. Establish and enable an environment to foster
the free flow and development of information
and communications technologies in society

4. Develop policies and implement plans for using
information and communications technologies

5. Introduce information and communications
applications in the areas of highest impact on
socioeconomic development at the national level

6. Facilitate the establishment of locally based, low-
cost, and widely accessible Internet services and
information content

7. Prepare and implement plans to develop human
resources in information and communications
technologies

8. Adopt policies and strategies to increase access to
information and communications facilities with
priorities in servicing rural areas, grassroots
society, and other disenfranchised groups,
particularly women and youth

9. Create and raise awareness of the potential
benefits of African information and
communications infrastructure

In 1998, following the ITU Africa Telecomm Confer-
ence, African Telecomm Ministers established the
“African Connection” and the African Telecomms
Union (ATU) to further promote strategies to bring
ICT to the continent on a large-scale basis. This was
followed by a series of related conferences and fo-
rums focused on building the information and com-
munications infrastructure of Africa.

Alongside the efforts of AISI and ATU, certain
African countries have made noticeable progress to-
ward strengthening the availability and use of ICT
within their regions, mostly notably South Africa. Ac-
cording to Nua, in 2000 the largest share of Internet
users in Africa was located in Southern Africa, of
which South Africa alone represented roughly three-
quarters of the continent’s total users, followed by
Zimbabwe and Botswana. During the changeover years
to the post-apartheid South Africa, the Center for De-
veloping Information and Telecommunications Policy
was established in coordination with the transitioning
government of the African National Congress (ANC).
After the ANC came into complete power in 1994, a
process was undertaken to understand and subse-
quently address the disparity in ICT in South Africa,
which included the Information Society and Devel-

opment Conference (ISAD) in May 1996. This led to
the Telecommunications Act of 1996, which estab-
lished an independent regulatory agency for ICT in
South Africa and created the Universal Service Agency
(USA), a public agency responsible for overseeing
ICT-related initiatives throughout South Africa. Since
then, a number of initiatives have been undertaken
including training programs by the Department of
Labor and efforts to bring computers into schools by
2005 sponsored by the Department of Education and
led by nongovernmental organizations (NGOs) such
as SchoolNet and the Multi-Purpose Community Cen-
ters Program. South Africa has also witnessed the
emergence of various Internet Cafes (commercial ac-
cess sites) and USA telecenters (public access sites) in
addition to phoneshops, libraries equipped with com-
puters and Internet access, and other programs that
provide ICT training and support.

B. Australia

In 2000, the Australian Bureau of Statistics (ABS) re-
leased figures concerning the digital divide in Aus-
tralia, which determined that 40% of Australian house-
holds were connected to the Internet by the end of
the year, while 50% of Australian adults had accessed
the Internet during the past year. Their research also
identified the following factors related to computer
and Internet access: household income, showing that
households with an annual income above $50,000
were almost twice as likely to have a computer (77%)
and Internet (57%) at home than those below this fig-
ure (37 and 21%, respectively); region, showing that
households located in metropolitan areas (i.e., the
east coast of Australia) were more likely to have com-
puter and Internet access (59 and 40%, respectively)
when compared to nonmetropolitan areas (52 and
32%, respectively); family composition, showing that
households with children under 18 were more likely
to access computers and the Internet (48%) when
compared to their counterparts without children un-
der 18 (32%); age, showing that adults between the
ages of 18 and 24 were the most likely to have a com-
puter and Internet access at home (88%) and adults
above the age of 55 were the least likely to do so; em-
ployment status, showing that employed adults were
more than twice as likely to have a computer and In-
ternet access (82%) than unemployed adults (38%);
gender, showing that women (47%) were less likely
than males (53%) to use computers and the Internet;
and education, showing that computer and Internet

Digital Divide, The 627

access for adults with a bachelor’s degree (64%) was
more than twice the level of access among adults with
a secondary school education (28%).

Subsequently, in June 2001, the National Office of
Information Economy (NOIE) in the Commonwealth
Government of Australia released a report entitled
“Current State of Play,” which examined the digital di-
vide in Australia from an even broader perspective.
Their report corroborated the findings from the ABS
and focused on three areas: (1) readiness, or access
to ICT as indicated by levels of penetration and in-
frastructure; (2) intensity, or the nature, frequency,
and scope of ICT use; and (3) impacts, or the bene-
fits of ICT to citizens, businesses, and communities.
This information was then used to inform a variety of
national, regional, and local initiatives aimed at clos-
ing the digital divide.

Nationally, NOIE worked with the Department of
Communications, Information Technology and the
Arts, through the Networking the Nation (NTN) pro-
ject, which has provided online access primarily in
nonmetropolitan areas, created a multicultural web-
based portal with community information and con-
tent, established a national directory of organizations
providing subsidized access and free computers, of-
fered training programs aimed at women and the el-
derly, and more. Regionally and locally, NTN has
funded a number of programs such as AccessAbility,
an online resource to raise awareness concerning dis-
abled users of the Internet; Farmwide, which provides
assistance to residents who have to place long-distance
telephone calls to access the Internet; Building Addi-
tional Rural Networks (BARN), which supports net-
work infrastructure and innovative technology devel-
opment in rural areas, and more. Finally, to specifically
address the needs of indigenous people, NOIE has in-
stituted several programs such as the Remote Islands
and Communities Fund, which provides assistance for
the ICT needs of people in remote islands and com-
munities; the Open Learning Projects to Assist In-
digenous Australians, which offers funds for educa-
tional packages designed to serve indigenous students
and electronic networks to link indigenous postgrad-
uate students with other academic institutions; and
the Connecting Indigenous Community Links, which
provides public Internet access sites in seven indige-
nous communities.

C. Canada

Canada has been tracking statistics related to the dig-
ital divide through the “General Social Survey of In-

ternet Use,” and other similar surveys. The 2000 sur-
vey revealed that 53% of Canadians age 15 years and
older had used the Internet in the last 12 months.
The breakdown of Internet use in the last 12 months
along various social, geographic, and demographic
lines was 56% of men and 50% of women; 90% of
people aged 15 to 19 and 13% of people aged 65 to
69; 30% of people with an annual income below
$20,000 and 81% of people with an annual income
above $80,000; 79% of people with a university edu-
cation and 13% of people with less than a high school
diploma; 55% of people in urban areas and 45% of
people in rural areas; and as high as 61% of people
in Alberta and British Columbia and as low as 44% of
people in Newfoundland and New Brunswick.

Beginning in the early 1990s, Canada witnessed a
concerted effort to foster greater levels of civic par-
ticipation among its citizens by leveraging the affor-
dances of ICT. In 1992, the Victoria Free-Net and Na-
tional Capital Free-Net were founded, and modeled
after the Cleveland Free-Net in the United States.
These early Free-Nets were the predecessors for a
number of community networking initiatives in
Canada that aimed to engage citizens in the public
sphere. In 1994, Telecommunities Canada was cre-
ated as an umbrella and advocacy organization for
community networks, and between 1995 and 1998,
the number of Free-Nets in Canadian cities increased
from approximately 24 to 60. However, much like the
community networking movement in the United
States, a number of these Free-Nets experienced fi-
nancial difficulties that caused them to shift their fo-
cus or completely disband. Similarly, the Coalition for
Public Information (CPI), a federally incorporated,
nonprofit organization, was founded in 1993, as a
coalition of organizations, public interest groups, and
individuals with a mandate to foster universal access
to affordable, useable information and communica-
tions services and technology. With tremendous activ-
ity around ICT advocacy and policy between 1993 and
1999, CPI has since become dormant in its efforts to
take action related to these issues.

To further promote ICT access and use throughout
the country, the Canadian government has played a
very active role through its “Connecting Canadians”
initiative. These efforts involved a variety of government-
sponsored programs and activities aimed at making
Canada the most connected country in the world.
The initiative was based on the following six pillars:

• Canada Online—This included the creation of up
to 10,000 public Internet access sites in rural,
remote, and urban communities. It also involved

628 Digital Divide, The

connecting Canada’s public schools and libraries
to the Internet and upgrading Canada’s network
infrastructure.

• Smart Communities—These initiatives were focused
on promoting the use of ICT for community
development such as better delivery of heath care,
improved education and training, and enhanced
business and entrepreneurial opportunities.

• Canadian Content Online—A series of activities were
organized to digitize and make widely available
information and content related to Canadian
people, culture, and history. This also included
new application and software development to
support information and content delivery.

• Electronic Commerce—The Canadian Government
worked with specific provinces, territories,
businesses, and other community members to
implement their Electronic Commerce Strategy,
released in 1998, which identified strategies for
promoting greater availability and use of
electronic commerce as an integral component of
Canada’s economic landscape.

• Canadian Governments Online—A comprehensive
effort to deliver government services electronically
as a means to provide more efficient and effective
access to information and better respond to the
needs of Canadian citizens.

• Connecting Canada to the World—As an overarching
endeavor, the Connected Canadians initiative
aimed to establish Canada as a recognized leader
in the digital age, so as to bolster the country’s
attractiveness to foreign investors and global
businesses toward strengthening the overall
economy.

D. China

In China, the digital divide is a phrase that was first
referenced in the Okinawa Charter in Global Infor-
mation Society and referred to the new difference
among groups and polarization among the rich and
the poor because of the different level of information
and communication technologies among different
countries, areas, industries, enterprises, and groups in
the process of global digitalization. According to the
China Internet Network Information Center, by the
end of 2000, telephone penetration in China had
reached 398 million households (24.4%)—281 mil-
lion wired and 117 million wireless—computer pene-
tration had reached 30 million people (2.5%), and
Internet penetration had reached 18 million people
(1.5%), with noticeable differences between the more

affluent areas of eastern China, such as Beijing, Shang-
hai, and Guangdong, and the less developed provinces
of central and western China.

On September 25, 2000, the Chinese government
took a first and comprehensive step toward telecom-
munications policy by enacting the Telecommunica-
tions Statutes. This was done to encourage increased
investment in telecommunications infrastructure and
promote greater competition in the telecommunica-
tions industry, toward lowering prices for these ser-
vices. This included associated steps to break up the
then-monopoly China Telecom into three separate
companies for wired communications (China Tele-
com), wireless communications (China Mobile), and
paging/satellite communications (transferred to Uni-
com). Furthermore, the Chinese Ministry of Infor-
mation Industry (MII) began regulating access to the
Internet while the Ministries of Public and State Se-
curity (MSS) began monitoring its use. This included
Internet Information Services Regulations that
banned the dissemination of information that could
potentially subvert the government or endanger na-
tional security.

A number of initiatives were undertaken in China
to close the digital divide. The Digital Alliance was
formed as a result of the 2001 High Level Annual
Conference of Digital Economy and Digital Ecology
in Beijing. It included representatives from the
telecommunications industry, media industry, and
academia, with the aim of eliminating the gap be-
tween the developed countries and China, the eastern
and western regions of China, and different indus-
tries, social, and demographic groups. This was ac-
complished by providing technological resources, as-
sistance, consultation, and application development
for enterprises and community technology centers
throughout China.

A number of cities in China also implemented
strategies to deliver information and content elec-
tronically. For example, Shanghai completed an infor-
mation exchange network, international trade elec-
tronic data interchange (EDI) network, community
service network, social insurance network, and elec-
tronic commerce network. Similarly, Beijing under-
took a comprehensive online project that spanned the
areas of e-commerce, e-government, social insurance
and community service, and science, technology, and
education. Finally, in 1999, the Chinese government
released the “Framework of National E-Commerce
Development” and the International E-Commerce
Center of China under the Ministry of Foreign Trade
announced the Western Information Service Project,
both with the objective of promoting more widespread

Digital Divide, The 629

deployment and use of electronic commerce through-
out the region.

E. Europe

In Europe, efforts to close the digital divide have been
very closely aligned with efforts to establish an “infor-
mation society”—a new economy fueled by ICT—
among the member countries of the European Union.
Toward this end, the European Commission released
the results of a multinational survey called “Measur-
ing Information Society 2000,” that examined owner-
ship and use of digital technologies, interest and in-
tent to purchase digital technologies, use of the
Internet, and Internet connection speed, among oth-
ers indicators, for each of the member countries of
the European Union.

According to the report, looking across the entire
European Union, desktop computer ownership stands
at 35%, with measurable differences between men
(39%) and women (32%), people age 15 to 24 (46%)
and 55 and up (16%), people at lower and upper lev-
els of educational attainment (16% for people age 15
at the completion of formal schooling and 53% for
people age 20 and up at the completion of formal
schooling), as well as people at the lower and upper
quartile with respect to income (16 and 61%, respec-
tively). Similarly, Internet access stood at 18%, with
measurable differences between men (21%) and
women (16%), people age 15 to 24 (23%) and 55 and
up (8%), people at lower and upper levels of educa-
tional attainment (6% for people age 15 at the com-
pletion of formal schooling and 63% for people age
20 and up at the completion of formal schooling), as
well as people at the lower and upper quartile with re-
spect to income (8 and 37%, respectively).

Not surprisingly, the digital divide manifests itself
to a greater or lesser extent among the various coun-
tries located in the region. For desktop computer
ownership and Internet access, the countries with the
highest levels of home penetration were the Nether-
lands (66 and 46%, respectively), Denmark (59 and
45%, respectively), Sweden (56 and 48%, respec-
tively), Luxembourg (45 and 27%, respectively) and
Finland (45 and 28%, respectively), whereas the coun-
tries with the lowest levels of penetration were Spain
(34 and 10%, respectively), France (29 and 15%, re-
spectively), Ireland (28 and 17%, respectively), Por-
tugal (20 and 8%, respectively) and Greece (15 and
6%, respectively).

European efforts to establish an information soci-
ety began in 1993, when the Brussel’s European Coun-

cil convened a group of experts to draft the “Bange-
mann Report,” which identified the initial steps to-
ward its implementation. This was followed by the cre-
ation of the Information Society Project Office (ISPO,
later renamed the Information Society Promotion Of-
fice) in 1994, an entity responsible for coordinating
the activities of relevant public and private organiza-
tions. Subsequently, in 1995, the G7 Ministerial Con-
ference on the Information Society was held in Brus-
sels where eight core principles were identified for
fostering wider access and use of ICT throughout Eu-
rope. Another major milestone was achieved in 1997
at the Ministerial Conference on “Global Information
Networks,” where ministers of 29 European countries
met to identify strategies for reducing barriers, in-
creasing cooperation, and devising mutually support-
ive national and international agendas that would ad-
vance the development of telecommunications
infrastructure and services. Finally, in December 1999,
the eEurope Initiative was announced along with a
comprehensive plan, “eEurope: An Information Soci-
ety for All,” which delineated specific steps toward the
realization of an information society among the mem-
ber countries of the European Union. The key objec-
tives of eEurope were:

• Bringing every citizen, home, and school and
every business and administration into the digital
age and online

• Creating a digitally literate Europe, supported by
an entrepreneurial culture ready to finance and
develop new ideas

• Ensuring the whole process is socially inclusive,
builds consumer trust, and strengthens social
cohesion

This was accomplished by focusing on 10 priority ar-
eas, which included: (1) European youth in the digi-
tal age, (2) cheaper Internet access, (3) accelerating
e-commerce, (4) fast Internet for researchers and stu-
dents, (5) smart cards for secure electronic access, (6)
risk capital for high-tech small-to-medium sized en-
terprises (SMEs), (7) eParticipation for the disabled,
(8) healthcare online, (9) intelligent transport, and
(10) government online.

F. Latin America

According to Gartner Inc.’s Dataquest, access to
telecommunications infrastructure such as telephone
lines, and narrowband and broadband Internet con-
nections in Latin America still lags behind that of

630 Digital Divide, The

other developing areas. Their 2000 report “What Will
It Take to Bridge the Digital Divide in Latin Amer-
ica?” found that while 80% of United States residents
had a telephone connection, Latin America ranged
from a high of 24.5% in Chile to a low of 7.9% in
Peru. With respect to Internet access, while there were
more than 6 million broadband connections in the
United States, Latin America included only 4 coun-
tries with significant penetration including Brazil
(53,000 connections), Argentina (38,000 connec-
tions), Chile (22,000 connections) and Mexico
(20,000 connections). Similarly, according to “Nua In-
ternet Surveys 2001,” while the world’s share of Inter-
net users stood at 40% between the United States and
Canada, Latin America represented only 4% of this
total.

However, despite these statistics it is also clear that
Latin America represents a region that is adopting
ICT at a fairly aggressive rate. For example, according
to the Internet Software Consortium, Latin America
experienced the largest increase in Internet hosts in
1999 (136%), compared to North America (74%),
Asia (61%), Europe (30%), and Africa (18%). Simi-
larly, Latin American is leading the way with respect
to online content. For example, according to Funre-
des, in 2000, 10.5% of the world population were na-
tive English speakers, in addition to 6.3% who were
native Spanish speakers, and 3.2% who were native
Portuguese speakers. Latin countries made the great-
est strides toward increasing the number of Internet
sites being offered in their native language with Por-
tuguese and Spanish oriented sites leading the way
with 162% and 92% increases between 1998 and 2000,
versus a 20% decrease for English oriented sites dur-
ing the same period.

In addition to establishing access and providing
relevant content, there are two related issues that are
central to closing the digital divide in Latin America.
First is the need to reduce the relatively high rate of
illiteracy throughout the region, which prevents en-
tire segments of the population from even accessing
information online. This is particularly problematic
in countries such as Brazil, El Salvador, Guatemala,
Honduras, Nicaragua, and Haiti. Despite recent gains
to offer more content in the native languages of these
countries, this issue is only exacerbated by the fact
that English is still the dominant language in cyber-
space. Second is the need to further promote com-
petition in the ICT industry despite successful efforts
to privatize nearly all of the major telecommunica-
tions firms in each country. According to CEPAL’s Di-
vision of Production, Productivity and Management,
“the primary focus of privatization policies in the

telecommunication sector of Latin America might—
with the notable exception of Brazil—have not been
an increase in competition, but rather to maximize
foreign direct investment and establish access to the
international financial markets (Argentina) or to de-
fend an important national operator (Mexico).” Ac-
cording to the ITU, in the years following privatiza-
tion, investment in fixed-line telephone lines actually
fell in many countries but by the end of 2000 reached
approximately 80 million in Latin America and the
Caribbean, up from 60 million in 1998. Similarly, with
relatively greater levels of competition in the wireless
industry, the trend is now in the direction of a more
competitive and dynamic marketplace. For example,
in 2000 Pyramid Research estimated the percentage
of mobile Internet access at 0%, whereas other forms
of access were estimated at 93.4% (dial-up subscrip-
tion), 2.8% (dial-up free), 0.8% (cable-modem), 0.2%
(DSL), 0.9% (ISDN), and 1.9% (leased lines). In 2002,
Pyramid Research projects mobile Internet access to
increase to 14.7%, whereas the other forms of access
are projected to change to 46.5% (dial-up subscrip-
tion), 34.3% (dial-up free), 2.3% (cable-modem),
2.6% (DSL), 1.4% (ISDN), and 1.3% (leased lines),
respectively. In summary, CEPAL characterizes the
Latin American telecommunications industry as hav-
ing low competition in the fixed line segment,
medium competition in the mobile segment, and high
competition in the Internet segment.

V. THE DIGITAL DIVIDE DEBATE

Two issues have emerged in the debate surrounding
the digital divide since the phrase was first introduced
in the mid-1990s. The first issue is related to the fram-
ing of the problem. While several studies have mea-
sured the digital divide in terms of access to ICT, a
number of leading research and policy organizations
have recommended that the digital divide should in-
stead be measured against the outcomes that ICT can
be used as a tool to address, such as improvements in
the quality-of-life for community members. In 2001,
the Morino Institute, a nonprofit organization that
explores the opportunities and risks of the Internet
and the New Economy to advance social change, re-
leased a report, “From Access to Outcomes: Raising
the Aspirations for Technology Investments in Low-
Income Communities.” They wrote,

To date, most initiatives aimed at closing the digital
divide have focused on providing low-income com-
munities with greater access to computers, Internet
connections, and other technologies. Yet technology

Digital Divide, The 631

is not an end in itself. The real opportunity is to lift
our sights beyond the goal of expanding access to
technology and focus on applying technology to
achieve the outcomes we seek—that is, tangible and
meaningful improvements in the standards of living
of families that are now struggling to rise from the
bottom rungs of our economy.

The argument here is that access to technology alone,
without appropriate content and support, as well as a
vision of its transformative power, cannot only lead to
limited uses, but shortsighted ones as well. This sug-
gests that framing the digital divide in terms of access
obscures and oversimplifies its root causes—social and
economic inequities—whereas framing the digital di-
vide in terms of outcomes shifts the focus to more ap-
propriate indicators of social and economic equality.

The second issue is related to the use of ICT to im-
prove the lives of individuals, families, and communi-
ties. Many have argued that the digital divide is sim-
ply a modern day reflection of historical social and
economic divides that have plagued society for years.
Over the past decade, the community technology
movement has gathered momentum toward closing
the gap with programs targeted at access, training,
content, and more. However, over the past century
there has been a parallel effort to revitalize distressed
communities often referred to as the community
building movement—one that has wrestled with com-
plementary issues in its’ efforts to alleviate poverty by
instituting programs aimed at education, health care,
employment, economic development, and the like.

The community technology movement, primarily in
the form of community technology centers (CTCs),
and the community building movement, primarily in
the form of community-based organizations (CBOs),
have historically existed in separate, rather than holistic
spheres of practice. In 2001, PolicyLink, a national non-
profit, research, communications, capacity building,
and advocacy organization, released a report, “Bridging
the Organizational Divide: Toward a Comprehensive
Approach to the Digital Divide.” In this report they
coined this disconnect as the “organizational divide”
and wrote, “As we develop policies and programs to
bridge the Digital Divide we must ensure that these are
linked to broader strategies for social change in two
ways. First, we must allow the wisdom and experience of
existing community infrastructure to inform our work.
Second, we must focus our efforts on emerging tech-
nologies as a tool to strengthen and support the com-
munity infrastructure.” Demonstration projects such as
the Camfield Estates-MIT Creating Community Con-
nections Project in Roxbury, Massachusetts, were con-
ducted around this same time to serve as models for

how community technology and community building
could work in concert. The argument here is that lead-
ers in both of these fields must devise strategies to con-
nect these two movements toward unleashing their col-
lective transformative power. This suggests that from a
certain perspective the digital divide should actually be
envisioned as a digital opportunity.

SEE ALSO THE FOLLOWING ARTICLES

Developing Nations • Digital Goods: An Economic Perspec-
tive • Economic Impacts of Information Technology • Elec-
tronic Commerce • Ethical Issues • Future of Information
Systems • Global Information Systems • Globalization • In-
ternet, Overview • National and Regional Economic Impacts
of Silicon Valley • People, Information Systems on • Telecom-
muting

BIBLIOGRAPHY

Beamish, A. (1999). Approaches to community computing:
Bringing technology to low-income groups, in High technol-
ogy in low-income communities: Prospects for the positive use of in-
formation technology (D. Schön, B. Sanyal, and W. J. Mitchell,
Eds.), 349–368. Cambridge, MA: MIT Press.

Bishop, A P., Tidline, T. J., Shoemaker, S., and Salela, P. (1999).
Public libraries and networked information services in low-income com-
munities. Urbana-Champaign, IL: Graduate School of Library
and Information Science, University of Illinois at Urbana-
Champaign.

Cohill, A. M., and Kavanaugh, A. L. (1997). Community networks:
Lessons from Blacksburg, Virginia. Blacksburg, VA: Artech
House Telecommunications Library.

Contractor, N., and Bishop, A. P. (1999). Reconfiguring commu-
nity networks: The case of PrairieKNOW. Urbana-Champaign,
IL: Department of Speech Communication, University of
Illinois at Urbana-Champaign.

Hooper, P. (1998). They have their own thoughts: Children’s learn-
ing of computational ideas from a cultural constructionist perspec-
tive, unpublished Ph.D. dissertation. Cambridge, MA: MIT
Media Laboratory.

Morino, M. (1994). Assessment and evolution of community net-
working. Paper presented at Ties That Bind, Apple Com-
puter, Cupertino, CA.

National Telecommunication and Information Administration
(1995). Falling through the net: A survey of the “have nots” in
rural and urban America. Full Report, July. Available at
http://www.ntia.doc.gov/ntiahome/digitaldivide/.

National Telecommunication and Information Administration.
(1998). Falling through the net. II. New data on the digital di-
vide. Full Report, July. Available at http://www.ntia.doc.gov/
ntiahome/digitaldivide/.

National Telecommunication and Information Administration.
(1999). Falling through the net III: Defining the digital divide.
Full Report, July. Available at http://www.ntia.doc.gov/ntia-
home/digitaldivide.

632 Digital Divide, The

National Telecommunication and Information Administration.
(2000). Falling through the net. IV. Toward digital inclusion. Full
Report, October. (Available at http://www.ntia.doc.gov/nti-
ahome/digitaldivide/.

O’Bryant, R. (2001). Establishing neighborhood technology cen-
ters in low-income communities: A crossroads for social sci-
ence and computer information technology. In Townsend, A.
Projections: The MIT Student Journal of Planning—Making places
through information technology (2) 2, 112–127.

Pinkett, R. D. (2000). Bridging the digital divide: sociocultural con-
structionism and an asset-based approach to community technol-
ogy and community building. Paper presented at the 81st
Annual Meeting of the American Educational Research
Association (AERA), New Orleans, LA, April 24–28.
Available at http://www.media.mit.edu/~rpinkett/papers/
aera2000.pdf

Resnick, M., Rusk, N., and Cooke, S. (1998). The computer
clubhouse: Technological fluency in the inner city. in High

technology in low-income communities: Prospects for the positive use
of information technology (D. Schön, B. Sanyal, and W. J.
Mitchell, Eds.) 263–286. Cambridge, MA: MIT Press.

Schön, D. A., Sanyal, B., and Mitchell, W. J. (Eds.). (1999).
High technology and low-income communities: Prospects for the pos-
itive use of advanced information technology. Cambridge, MA:
MIT Press.

Shaw, A. C. (1995). Social constructionism and the inner city: De-
signing environments for social development and urban renewal,
unpublished Ph.D. dissertation. Cambridge, MA: MIT Me-
dia Laboratory.

Turner, N. E., and Pinkett, R. D. (2000). An asset-based ap-
proach to community technology and community building,
in Proceedings of Shaping the Network Society: The Future of the
Public Sphere in Cyberspace, Directions and Implications of Ad-
vanced Computing Symposium 2000 (DIAC-2000), Seattle, WA,
May 20–23. Available at http://www.media.mit.edu/~rpin-
kett/papers/diac2000.pdf.

Digital Divide, The 633

Digital Goods: An Economic Perspective
Claudia Loebbecke
University of Cologne

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 635

I. INTRODUCTION: CONCISE SUBJECT DEFINITION
II. DIGITAL GOODS: CORE OF THE DIGITAL ECONOMY

III. DEFINITION, PROPERTIES, AND DIFFERENTIATION
CRITERIA

IV. ISSUES OF LEGAL AND TECHNICAL PROTECTION

V. SELECTED PRICING ISSUES
VI. UNBUNDLING AND BUNDLING

VII. ON-LINE DELIVERED CONTENT
VIII. ECONOMICS OF DIGITAL CONTENT PROVISION ON

THE WEB

GLOSSARY

copyright One of several legal constructs introduced
to ensure that inventors of intellectual property re-
ceive compensation for the use of their creations.
Copyrights include the right to make and distrib-
ute copies; copyright owners have the right to con-
trol public display or performance and to protect
their work from alteration.

digital goods Goods that can be fully expressed in
bits so that the complete commercial business cy-
cle can be executed based on an electronic infra-
structure such as the Internet.

on-line delivered content (ODC) Data, information,
and knowledge tradable on the Internet or through
other on-line means. Examples include digital on-
line periodicals, magazines, music, education,
searchable databases, advice, and expertise. ODC
can be offered without a link to physical media.
ODC explicitly excludes executable software.

watermarking Hiding of data within digital content. A
technique for adding data that can be used to iden-
tify the owners of various rights, to record permis-
sions granted, and to note which rights may be at-
tached to a particular copy or transmission of a work.

I. INTRODUCTION: CONCISE
SUBJECT DEFINITION

Digital goods are goods that can be fully expressed in
bits so that the complete commercial business cycle

can be executed based on an electronic infrastructure
such as the Internet. This article first positions digital
goods at the core of the digital economy. It points to
the main economic characteristics of digital goods as
well as to criteria for differentiating among different
kinds of digital goods. In more detail, the article then
covers five specific areas relevant to digital goods:
(1) legal and technical protection, (2) pricing,
(3) bundling and unbundling, (4) peculiarities of on-
line delivered content, and (5) economics of digital
content provision on the Web.

II. DIGITAL GOODS: CORE
OF THE DIGITAL ECONOMY

A major characteristic of the digital economy is its
shift to the intangible. Terms with similar connotation
include intangible economy, internet economy, virtual econ-
omy, or information society.

The creation and manipulation of dematerialized
content has become a major source of economic value
affecting many sectors and activities. It profoundly
transforms economic relationships and interactions,
the way firms and markets are organized and how
transactions are carried out. The digital economy is
not limited to the Internet. Analog technologies such
as radio and TV are also to be considered integral
parts of the digital economy because these technolo-
gies are getting used to an increasing degree, and
further media integration is foreseeable in the near
future.

To some extent, the digital economy runs squarely
against the conventional logic of economics. Digital
goods are not limited by physical constraints and are
not limited to traditional economic characteristics,
such as “durable,” “lumpy,” “unique,” and “scarce.”
Instead, digital goods can simultaneously be durable
and ephemeral, lumpy and infinitely divisible, unique
and ubiquitous, scarce and abundant. The business of
purely digital goods is different from conventional
electronic business areas, which focus on trading or
preparing to trade physical goods or hybrids between
physical and digital goods. Trading of digital goods
demands new business models and processes.

Classical economic theory does not usually address
the issue of digital goods as tradable goods. The value
of digital goods, especially information, is tradition-
ally seen as derived exclusively from reducing uncer-
tainty. In the digital economy, however, digital goods—
information/content—are simultaneously production
assets and goods. This article focuses primarily on dig-
ital goods in their capacity as goods to be sold.

From a supplier’s perspective, the growing impor-
tance of digital goods as intangible assets and the re-
sulting complexity can be seen in the differences be-
tween book value and stock market values. These
differences can partly be explained by the crucial role
attributed to brands, content, publishing rights, and
intellectual capital, which may emerge via, be em-
bedded in, or be stimulated by digital goods.

Increasing discussions about information mar-
kets—mainly driven by information sciences—are tar-
geting the peculiar case of markets for specialized
digital goods such as knowledge or specialized infor-
mation. Research on information brokers, structur-
ing, retrieval, pricing of on-line databases, etc. repre-
sents an important point of reference. Despite all the
work during the past 50 years, the problem of classi-
fying, storing, and retrieving digital goods remains a

major problem regardless of media type. Multimedia
searching by document content is a technology that
has reached the initial demonstration phase, but is
still in its infancy. There is, essentially, no mature
method of storage for retrieval of text, images, and
sounds (including speech and music) other than
through the use of words, normally in the keyword
format. The challenge is to obtain the essential digi-
tal content rapidly and attractively. The implied chal-
lenge is to modernize the style of presentation to
make the key digital goods accessible with as little ef-
fort and time as possible. Major efforts are required
to establish the right mix of media to convey a par-
ticular type of digital good.

III. DEFINITION, PROPERTIES,
AND DIFFERENTIATION CRITERIA

Simply speaking, digital goods are goods that can be
expressed in bits and bytes. Table I shows selected
kinds of digital goods with some illustrations. Due the
variety of terms used, some comments are necessary.
A commonly quoted analysis provided by Shapiro and
Varian focuses on information that the authors define
as everything that is digitalized, i.e. can be shown as a
sequence of bits. As an example, for information
goods they mention books, magazines, films, music,
stock market prices, sporting events, and web sites.
Hence, the term information as applied by Shapiro
and Varian covers basically the same concepts as our
term digital goods stated above. In addition to such a
variety of information goods, we also include software
and interactive services such as chat rooms under the
term digital goods.

In the following, we first take a broader perspective
to help us understand and characterize the phenom-
enon of digital goods, including content and soft-

636 Digital Goods: An Economic Perspective

Table I Kinds of Digital Goods

Kinds of digital goods Illustrations

Searchable databases ➲ Restaurant guides, phone books

Dynamic information ➲ Financial quotes, news

On-line magazines and newspapers ➲ International, national, regional; general and special interest publications

Reports and documents ➲ Easy multiplication and indexing

Multimedia objects ➲ Music, video files, texts, and photos

Information services ➲ Offerings by travel agencies, ticket agencies, stock brokerages

Software ➲ Off-the-shelf products, customized products

Interactive services ➲ On-line forums, chat rooms, telephone calls, games

ware. We offer a discussion of special properties of
digital goods in this broad sense. After that we offer
some criteria for further differentiation among the
different kinds of digital goods. We then focus on the
equally common, even if narrower concepts, of digi-
tal content in general and on-line delivered content
more specifically.

In the legal literature, the concept of digital assets
is more common than that of digital goods. This con-
cept then tends to embrace everything that has value
and is available in digital form, or could be valuable
if it were changed into its digital form. The term dig-
ital goods is often used interchangeably with the term
intangible goods. However, in the literature the term in-
tangibility refers to two rather different concepts. Levitt
suggests that the terms goods and services be replaced
by tangibles and intangibles and hence observes that in-
tangible products are highly people intensive in their
production and delivery mode. This does not really
match with a more recent interpretation of intangi-
bility, which is suitable also for digital goods, aiming
at immaterial goods (not services), often expressible
in bits and bytes.

Digital goods are affected by electronic business
from their inception all the way to their use by an end
user, facilitating extensive transformations and prod-
uct innovations. They take advantage of the digitiza-
tion of the market and of distribution mechanisms.
Hence, they are particularly suited for electronic mar-
kets. The whole set of business processes can be han-
dled digitally, thus minimizing not only transaction
costs, but also order fulfillment cycle time. However,
as Shapiro and Varian state “. . . the so-called new econ-
omy is still subject to the old laws of economics.”

A. Economic Properties of Digital Goods

Digital goods possess some basic properties that dif-
ferentiate them from physical goods. Digital goods
are indestructible or nonsubtractive, meaning that they
are not subject to wearing out from usage, which can
often occur in the case of physical products. They are
easily transmutable; manipulation of digital products is
easier than that of physical products. Last, digital
goods are easily and cheaply reproducible.

Digital goods are characterized by high fixed costs
(first copy costs), dominated by sunk costs, and by low
variable and marginal costs. This constellation typi-
cally leads to vast economies of scale. In practice, dig-
ital goods can be copied at almost no cost and can be
transmitted with minimum delay to almost every-
where. This copying of digital products at almost no

marginal costs, the ease of transformation in the pro-
duction process, and the interactivity of the products
are reforming the production of digital goods com-
pared to the production economics of physical goods.

Costs for content creation (programming) for high-
end multimedia digital titles are often high. As a con-
sequence, companies that create digital goods have
an interest in reusing the same content as many times
as possible and in as many media as possible without
having to pay “first copy” costs again. We speak about
a systematic disconnection of production and usage,
which naturally has an impact on distribution. It leads
to the idea of windowing: Pay for content creation
once, then reuse it for free. To secure profitability,
the producer of digital goods must be able to recoup
at least its costs at the first showing of the product.

While a free exchange of information (digital
goods) is a crucial prerequisite for innovation, the in-
centives for innovation and investments are dimin-
ished by the difficulties of claiming property rights for
digital products. The digitization of content creates a
considerable degree of freedom for the provision and
the transformation of content.

Consumers are partly involved in the production
of information, i.e. the choice of content, mode of
display, transformation, etc., and therefore evolve into
prosumers. For some authors the role of prosumer is re-
stricted to the simultaneity of production and con-
sumption, and the nonstorability of services, extended
by processes of simple self-service.

The disconnection of production and usage leads
to the so-called “value paradox”: Only when products
are well known and highly in demand are they attrib-
uted a high value and the possibility of generating
revenues. That is why comparatively unknown
providers of digital goods distribute their products to
the widest possible public for free (e.g., artists or free-
ware coders). At the same time, customers are only
willing to pay for “scarce” products. Different from
physical products, scarcity in digital goods does not
come naturally. Instead it has to be reinforced by lim-
ited editions and individualization of the copies (e.g.,
through watermarking) or other restrictive measures.

A frequently applied distinction of products is that
made between search goods and experience goods. This
distinction is built on customers’ chances to judge the
value of a product. The quality of search goods can
be determined without actually using them. With ex-
perience goods, knowledge about quality is learned
from experiencing the product, i.e. from using the
good. Search features of a product can be evaluated
prior to its usage (e.g., price), but experience features
can be evaluated only after usage (e.g., taste). There

Digital Goods: An Economic Perspective 637

is also the additional category of “credence goods”
where, even after usage, consumers cannot judge the
value properly, because they are lacking some neces-
sary skills (e.g., clinical diagnostics). These three terms
offer a continuum of judgment, starting from search
products—which can be assessed easily—to experi-
ence products and finally credence products.

In many cases, digital goods tend to be experience
goods or even credence goods. To overcome the im-
plied difficulties for advertising and sales (why should
one buy information that one has already experienced
or tried?), many digital goods are sold based on strong
brands or teasers. For instance, without having expe-
rienced an article in a newspaper, the brand of the
newspaper leads to the expected sales. Further, teasers
such as abstracts or chapters serve as triggers for book
and magazine sales.

Digital goods, especially information and content
products, are often classified as public goods. Public
goods share two main characteristics: nonrivalry and
nonexclusiveness in usage. Nonrivalry is a product
feature normally given in the case of digital goods
due to the low costs and ease of reproduction. Nonex-
clusiveness is a feature of the legal system. In legal sys-
tems emphasizing private property, technical and le-
gal means are in place to prevent unwanted joint
usage. An automobile is protected by a lock (techni-
cal solution) or the threat of police punishment (le-
gal solution) to prevent its use by unauthorized per-
sons. In the digital world, copyrights grant creators of
digital products certain rights, which—at least sup-
posedly—can be enforced via technical or legal means.
Therefore, digital products cannot be generally
termed public goods, even when it is technically diffi-
cult to prevent unauthorized persons from using dig-
ital products. In addition, the basic laws and consti-
tutions of most countries grant citizens access to
“relevant news.” So such news in digital form offered,
for example, on the Internet could be characterized
as public goods. The specific article written about the
news, however, could be copyright protected and
hence not be a public good.

B. Criteria Used to Differentiate
among Digital Goods

Digital goods represent a variety of economic goods,
which require different business processes and eco-
nomic models. To distinguish within the group of dig-
ital goods, we use the following criteria: transfer mode,
timeliness, usage frequency, usage mode, external ef-
fects, and customizability. With them we are partially

following the discussion offered by Choi, Stahl, and
Whinston.

Concerning the transfer mode, we distinguish be-
tween delivered and interactive goods. Delivered
goods are transferred to the user as a whole or in
pieces, i.e. by daily updates, etc. Interactive goods or
services require a synchronous interaction with
the user. Examples are remote diagnostics, video-
conferences, and interactive computer games. Some
careful observation is necessary: Many services on the
Internet today are called “interactive,” although in re-
ality they are “supply on demand.” For instance, when
watching “interactive” television, the user merely
downloads pieces over time. Neither is a search en-
gine fully interactive, because searches are only or-
ders for personalized delivery. Most digital goods are
based on delivery as the transfer mode. Only a real-
time application with the need for consecutive ques-
tions and answers implies interactivity. Interactive
goods are by definition tailored to the specific user,
making problems of resale and copyright irrelevant.

The criterion of timeliness covers the constancy and
dependence of the value of digital goods over time.
Products like news, weather forecasts, or stock prices
normally lose value as time goes by. The timeliness of
any product correlates with the intended usage. For
instance, when planning an excursion, weather data
are only valuable ahead of time. On the other hand,
for scientists studying the accuracy of weather, fore-
casts deliver value only after the predicted day.

The third criterion is usage frequency. Some goods
are intended for single use. They lose their customer
value after or through use. For instance, the query on
a search engine has no recurring value. Other prod-
ucts are designed for multiple uses; examples include
software and games. The perceived total value of dig-
ital goods designed for multiple uses may well accu-
mulate with the number of uses. One can observe dif-
ferent patterns of marginal utility functions over time.
Computer games tend to become boring after a while,
leading to negative marginal utility. Software applica-
tions on the other hand often render learning effects,
leading to increasing marginal utility.

Regarding the usage mode, we can distinguish be-
tween fixed and executable goods. Fixed documents al-
low handling and manipulation in different ways and
by different means than executable goods. With exe-
cutable goods such as software, suppliers define the
form by which the good can be used. Furthermore, the
transformation of fixed documents into executable
software increases the possibilities of control by the
supplier. For example, suppliers could distinguish
among read-only access, sort-and-print access, and a

638 Digital Goods: An Economic Perspective

deluxe package that allows the user to make changes
to the data pool and to define any possible data queries.
Thus, differentiated products to be sold at varying
prices can be created out of a common data pool.

Another differentiation criterion within digital
goods is the external effects associated with products.
Products with positive external effects raise the value
for customers with increasing numbers of users. For
instance, the more participants who agree on a com-
mon standard, the more potential partners for ex-
change exist. In the same way, multi-user Dungeons
computer games deliver more opportunities through
a larger number of participants. But with restricted
capacities, too many participants can cause traffic jams
or obstructions, turning positive effects into negative
ones. Negative external effects imply a higher value
for users resulting from a lower number or restricted
number of other participants. This is especially ap-
plicable for exclusive information providing competi-
tive advantages, such as internal corporate informa-
tion used as the basis for speculation on the stock
exchange.

Customizability reflects the extent to which goods
can be customized to specific customer needs. An
electronic newspaper has a high degree of customiz-
ability in that an average customer is able to design a
personal version through combinations of articles.
But the articles themselves—being equal for all cus-
tomers—show low customizability. Consequently, the
level of analysis has to be specified (the entire, per-
sonalized newspaper or the standard article) in order
to be able to judge the customizability of digital goods.

IV. ISSUES OF LEGAL AND
TECHNICAL PROTECTION

Legal questions, usually interpreted in the sense of le-
gal protection of the value of digital products, are of
high interest. The development and the application
of legal rules have to take into account the properties
of digital products and the corresponding technical
possibilities and constraints.

Content creators and owners need to protect their
property. Traditional content media (such as paper
documents, analog recordings, celluloid film, canvas
paintings, and marble sculpture) yield degraded con-
tent when copied or require expensive and specialized
equipment to produce high-quality copies. The tech-
nical burden on traditional content creators (such as
book authors) for protecting their material has been
small. For digital goods, there is no obvious limit to the
value that can be added by creating and providing ac-

cess to digital content. High-quality copies (in fact,
identical copies) of digital content are easy to produce.

In this context, legal issues are partially dealt with
by application of already existing legal institutions
(civic law, criminal law, and international law) and
partially covered by rather new legal constructs (con-
cerning contracts or media).

A. Copyrights

Copyrights are one of several legal constructs relevant
to any business producing digital goods. However,
they are not new in the world of digital goods. They
have been introduced to ensure that inventors of in-
tellectual property receive compensation for the use
of their creations. In the international context, copy-
rights are granted on the basis of the Treaty of Bern,
the Treaty of Rome, and the Trade-Related Aspects of
Intellectual Property Rights (TRIPS) Agreement.
Copyrights have different components. The most no-
table component is the right to make and distribute
copies. In addition, copyright owners have the right
to control public display or performance and to pro-
tect their work from alteration. Further, content own-
ers hold the rights over derivative works, that is, the
creation of modified versions of the original.

As a means to protect intellectual capital, copy-
rights have gained special importance in the context
of digital goods. Because digital goods are easy and
cheap to duplicate, copyright protection is essential
for ensuring the above-mentioned compensation for
product inventors and creators. If creators cannot get
paid, what would ensure the continued creation of
digital goods? Therefore not only the creators but
also digital intermediaries and distributors have high
economic incentives to see to it that copyrights are re-
spected and remunerated. However, traditional copy-
right laws have not been designed for handling digi-
tized goods. Nationally and internationally updated
rule sets are under development.

B. Watermarking

Watermarking represents a technical solution foster-
ing the implementation of the above-mentioned copy-
rights. Digital watermarks are designed to add value
to legitimate users of the protected content and to
prevent piracy. In addition, digital watermarks can be
utilized for market research.

Following Acken, digital watermarking can be de-
fined as the hiding of data within the digital content.

Digital Goods: An Economic Perspective 639

It provides a technological way to add data that can
be used to identify the owners of various rights, to
record permissions granted, and to note which rights
may be attached to a particular copy or transmission
of a work. Digital watermarks are invisible when the
content is viewed. They indicate an original, but do
not control somebody’s access to it. This means that—
similar to an original signature—watermarks do not
prevent photocopying, which might be needed for
fair use.

Digital watermarks can add value for different le-
gitimate uses while increasing barriers to pirates. The
benefits depend on the particular digital good and
the associated and differentiated needs, burdens, and
benefits for their creators, distributors, and recipi-
ents. For many business applications, there is great
value in being able to reconstruct relevant events. In
accounting, the resulting timeline is called an audit
trail. For digital content, digital watermarks can be
used to indicate recipients or modifiers without the
administrative burden of keeping the associated in-
formation and links separate from the digital content
itself.

Digital watermarking needs to support scalability
to be able to match the different value requirements
of digital good. Some digital goods, for example, a
film classic like High Noon, carry high, long-term value.
Other digital goods, such as yesterday’s stock quotes,
have only limited value. The longer lasting the value
of digital goods is, the more time pirates have to break
the protection methods. Therefore, a scalable system
is required that renews itself over time.

V. SELECTED PRICING ISSUES

Production costs cannot be used as a guideline for
pricing because there is no link between input and
output. Mass consumption does not require mass pro-
duction. Economies of scale are determined by con-
sumption, not by production. Economies of scale in
digital goods production are limited; economies of
scale in digital goods distribution can be significant
due to a combination of the high fixed costs of cre-
ating the necessary infrastructure and the low variable
costs of using it. Economies of scale in distribution
are accentuated by consumption characteristics: Con-
sumers tend to use the supplier with the largest vari-
ety although they only take advantage of less than 5%
of the choices available.

Due to the issues that derive from the above-
mentioned characteristics of digital goods, neither
cost-based pricing nor competition-based pricing are

reasonable pricing strategies. Marginal costs are zero
or near zero. So by applying cost-based or competi-
tion-based pricing mechanisms, sales prices would
tend to zero or near zero. But prices near zero make
it impossible for producers to get back their high
fixed cost. So the only reasonable strategy for pricing
information goods is to set the price according to the
value the customer places on it. Because consumer
valuations are different, it is also important to differ-
entiate prices. Different approaches can be used as
the basis for price differentiation. Probably, the two
most popular ones are grouping and versioning.

Grouping refers to the distinction of prices among
different customer groups for the same product. Typ-
ical examples from the nondigital world are reduced
prices for students or elderly people. The problem for
grouping when selling digital goods over the Internet
lies in the difficulty of proving people’s identity and
“characteristics.” How do we check, for example,
whether a student number from an unknown univer-
sity is correct, how do we find out where the potential
customer is actually located. Technical verification
procedures are on the market, but rarely applicable
at reasonable effort and cost.

Versioning refers to price differentiation based on
slightly different product characteristics. Different
product versions are sold at different prices. Version-
ing is already familiar to us from nondigital informa-
tion goods; consider the pricing of hardcover versus
paperback books. For digital goods, Shapiro and Var-
ian suggest numerous ways to create different ver-
sions (see Table II).

A consumer’s willingness to pay is often influenced
by the consumption or nonconsumption of others.
Accordingly, it is not an adequate approach for as-
sessing the value of digital goods, given the ease of
replication/sharing and associated externalities. Fur-
thermore, the pricing of digital goods raises the fun-
damental issue of inherent volatility of valuation when
the value of digital goods is highly time sensitive. For
instance, stock market information may be worth mil-
lions in the morning and have little value in the
afternoon.

Finally, offering digital goods over an extended pe-
riod of time may lead to the establishment of electronic
communities. Electronic communities are likely to cre-
ate value in five different ways: usage fees, content
fees, transactions (commissions), advertising, and syn-
ergies with other parts of the business. Translating
these income opportunities to the more narrowly de-
fined area of digital goods, usage fees could be in the
form of fixed subscriptions, paying per page, or pay-
ing per time period independent of the quality of the

640 Digital Goods: An Economic Perspective

content. Content fees would most likely be based on
fixed amounts per page, but should tackle the issue
of valuing the content (quality/relevance). Commis-
sions and advertising income are triggered by attractive
digital goods on display. Strictly speaking, however,
the subsequent income would not stem from the dig-
ital goods, but from attracting customers to a page re-
gardless of its content or from offering some empty
space for third-party advertising in addition to the ac-
tual digital goods offered.

The range of pricing schemes for digital goods is
becoming broader and more sophisticated. Pricing
models may imply giving actual goods away for free
and then charging for complementary services, up-
dates, etc. They are developed for bundles of digital
products as well as for single units. Economists are de-
veloping theoretical solutions to these problem areas.
However, some of the mechanisms developed demand
an enormous amount of data, thus questioning the
trade-off between allocation efficiency and opera-
tional cost-effectiveness.

VI. UNBUNDLING AND BUNDLING

We see at least two different trends in the digital age:
(1) the trend toward unbundling and disintermedia-
tion because of the absence of former economies
of scale in printing and distribution of content, and
(2) the trend toward bundling as a tool to shift con-
sumer rents to the producers.

Traditionally, many digital goods have been bun-
dled solely to save on these costs:

• Transaction and distribution costs: the cost of
distributing a bundle of goods and administering
the related transactions, such as arranging for
payment

• Binding costs: the cost of binding the component
goods together for distribution as a bundle, such
as formatting changes necessary to include news
stories from wire services in a newspaper bundle

• Menu costs: the cost of administering multiple
prices. If a mixed bundling strategy is pursued,
where the available components are offered in
different combinations, then a set of n goods may
require as many as 2n prices (one for each subset
of one or more goods).

Yet these costs are much lower on the Internet than
they used to be for physical goods. Thus software and
other types of content may be increasingly disaggre-
gated and metered, as on-demand software applets or
as individual news stories and stock quotes. Such a
phenomenon is described as unbundling.

Unbundling also goes along with the separation of
digital goods from the delivery media. Traditionally
the pricing of content has been based on the delivery
medium—mostly measured in convenience—rather
than on actual quality. For instance, the price of a
book depends heavily on its printing quality and the
number of pages, while the price for an excellent
book is almost the same as for a poor one. Electronic
trading in digital goods technically allows unbundling.
The Internet is precipitating a dramatic reduction in
the marginal costs of production and distribution for
digital goods, while micropayment technologies are
reducing the transaction costs for their commercial
exchange. Content can be priced separately from the
medium allowing for price differentiation based on
the estimated value of the content. Unbundling, how-
ever, also raises problems as administration becomes
more complex.

On the other hand, the low marginal costs as well
as the low transaction costs of digital goods also lead
to other ways for the packaging of digital goods

Digital Goods: An Economic Perspective 641

Table II Approaches to Versioning of Digital Goods

Basis for versions of digital goods Illustrations

Delay ➲ Books, FedEx

User interface ➲ Search capability

Convenience ➲ More or less restricted time or place of service availability

Image resolution ➲ Higher resolution depending on storage format, etc.

Feature and functions ➲ Quicken vs. Quicken Deluxe, which includes a mortgage calculator.

Flexibility of use ➲ Allowing users to store, duplicate, or print information

Speed of operation ➲ Time to download or to execute programs

Capability ➲ Number of words for dictionary/voice recognition

through strategies such as site licensing, subscriptions,
rentals. These aggregation schemes can be thought of
as bundling of digital goods along some dimension.
For instance, aggregation can take place across prod-
ucts, as when software programs are bundled for sale
in a software suite or when access to various content
of an on-line service is provided for a fixed fee. Ag-
gregation can also take place across consumers, as
with the provision of a site license to multiple users
for a fixed fee, or over time, as with subscriptions.

Following Bakos and Brynjolfsson, aggregation or
bundling is a powerful strategy to improve profits
when marginal production costs are low and con-
sumers are homogeneous because of the changing
shape of the demand curve. The economic logic of
bundling is based on different consumers’ valuations
for bundled and unbundled goods.

The larger the number of goods bundled, the
greater the typical reduction in the variance. Because
uncertainty about consumer valuations hinders effec-
tive pricing and efficient transactions, this predictive
value of bundling can be valuable. For example, con-
sumer valuations for an on-line sports scoreboard, a
news service or a daily horoscope will vary. A monop-
olist selling these goods separately will typically maxi-
mize profits by charging a price for each good that ex-
cludes some consumers with low valuations for that
good and forgoes significant revenues from some con-
sumers with high valuation. Alternatively, the seller
could offer all the information goods as a bundle. Un-
der a very general set of conditions, the law of large
numbers guarantees that the distribution of valua-
tions for the bundle has proportionately fewer ex-
treme values. Such a reduction in buyer diversity typ-
ically helps sellers extract higher profits from all
consumers.

The law of large numbers makes it much easier to
predict consumers’ valuations for a bundle of goods
than their valuations for the individual goods when
sold separately. Thus, the bundling strategy takes ad-
vantage of the law of large numbers to average out
unusually high and low valuations, and can therefore
result in a demand curve that is more elastic near the
mean valuation of the population and more inelastic
away from the mean.

When different market segments of consumers dif-
fer systematically in their valuations for goods, simple
bundling will no longer be optimal. However, by of-
fering a menu of different bundles aimed at each
market segment, bundling makes traditional price
discrimination strategies more powerful by reducing
the role of unpredictable idiosyncratic components of
valuations.

In summary, bundled goods typically have a prob-
ability distribution with a lower variance per good
compared to the separated goods. Hence, bundling
can help to improve seller’s profits. One can show
that bundling could improve seller’s profits when con-
sumer preferences are negatively correlated.

VII. ON-LINE DELIVERED CONTENT (ODC)

Loebbecke introduces the concept of on-line deliv-
ered content as a special kind of digital goods. ODC
deserves further attention because the concept in-
cludes mainly those forms of digital goods that have
gained attention in the Internet age.

A. Concept, Examples, and Characteristics

On-line delivered content is data, information, and
knowledge that can be traded on the Internet or
through other on-line means. Examples include digi-
tal on-line periodicals, magazines, music, education,
searchable databases, advice, and expertise. The deci-
sive characteristic of ODC is its ability to be offered
independently of physical media by selling it through
a communication network. Whether ODC is then
transferred to a computer memory (e.g., with a print-
out or by burning a CD) or not is irrelevant for the
classification of the ODC. Streaming content like a
digital video transfer and the transfer of data that can
be looked at later off-line are both equally valid ODC
forms. ODC focuses on the content of digital prod-
ucts. For that reason, software products including
computer games are not covered by the ODC con-
cept. Different from common concepts of digital
goods, the term ODC, as defined and applied here, is
limited to stand-alone products consisting solely of
content/information. Hence, the term ODC implies
that only the content is the object of a transaction; no
physical product is shifted among suppliers, cus-
tomers, or other players. When trading ODC, the
complete commercial cycle—offer, negotiation, or-
der, delivery, payment—is conducted via a network
such as the Internet. Figure 1 illustrates this defini-
tion of ODC.

The ODC concept can be illustrated by three
examples:

1. Music. ODC refers to music that can be
downloaded from the Web. Afterwards, if desired,
it can be stored on a CD-ROM. ODC does not
include the ordering of a CD-ROM to be

642 Digital Goods: An Economic Perspective

delivered to one’s home, since ODC—by
definition—refers only to the content and
excludes the need for any physical medium.

2. Databases. Databases are offered by on-line
bookstores and various kinds of content are
offered on web pages maintained by TV stations.
The information/content contained in those web
sites is a form of ODC, even if it is usually not
traded separately. Possibilities for
commercializing such content could be pay per
view, pay per page, or pay per time concepts. By
trying to sell such content (instead of offering it
for free and counting on positive impact on
other product lines such as books or TV
programs) suppliers would rely on the actual
value that potential customers associate with it.

3. Tickets. Tickets on planes, trains, or to concerts
actually represent a counterexample. Certainly,
all paper-based products, like posters, calendars,
and all sorts of tickets, could be converted into or
replaced by digital counterparts. Further, one can
imagine ordering and receiving tickets for trains,
planes, or concerts on-line. In the near future,
technology will allow individuals to print tickets
(administered wherever) just as travel agencies or
event agencies do today. However, for consumers
this is not the full delivery cycle. They do not pay
for the piece of paper called a ticket, they pay for
being moved from point A to point B or for
attending a concert/stage performance. Those
services of “being moved” or “concert

performance” are the actual values bought, and
they will never be delivered via any technical
infrastructure (at least not within the limits of
current imagination). Therefore, a ticket, even if
bought and—with regard to the piece of paper—
delivered over the Web does not represent
unbundled, stand-alone value of content. It does
not belong to ODC as understood in this article.
(For simplicity reasons, this illustration leaves out
the possibility of reselling a ticket and thus giving
it a monetary function.)

In addition to the issues inherent in trading physi-
cal goods on the Web, trading ODC on the Internet
raises concerns such as version control, authentica-
tion of the product, control over intellectual property
rights (IPRs), and the development of profitable in-
tra- and interorganizational business models.

Most forms of ODC belong to the group of expe-
rience goods (see above), for which the quality of the
content is learned only from using/consuming the
good. However, treating ODC as an experience good,
i.e. letting potential clients “experience” ODC implies
giving the actual content away for free (i.e., not trad-
ing it) and, in all likelihood, counting on receiving
revenue via some synergy mechanisms. Once poten-
tial customers have experienced ODC, they have no
more reason to buy it. ODC suppliers will try to solve
this dilemma by shifting ODC as much as possible
into the category of search goods. Possible steps for
this are establishing strong brand reputation for Web
sites or publishers or offering abstracts, sample chap-
ters, or reviews as triggers to buy the whole product.

As a consequence of the characteristics of digital
goods such as indestructibility, transmutability, and
reproducibility, the exclusivity of ODC may be diffi-
cult to durably maintain. Sharing may be simultane-
ous or sequential; in any case it affects the allocation
of property rights. While a seller of a physical good
loses his or her property right, a seller of ODC may
continue to hold it. Even illegally sharing ODC often
causes positive network externalities, which may even
exceed the cost of sharing if caught. Once ODC has
positive network externalities, control over reproduc-
tion and sharing is the primary objective of copyright
protection.

Related to the issue of externalities is the issue of
value generation. Often there is no direct link be-
tween a transaction and the generation of value. Fur-
thermore, ODC value can hardly be measured in mon-
etary terms only. For instance, the appreciation of
free TV could be measured in time budgets allocated;
and appreciation of academic papers (increasingly

Digital Goods: An Economic Perspective 643

Figure 1 Conceptualization of ODC. [Adapted from Choi, S.,
Stahl, D., and Whinston, A. (1997). The economics of electronic
commerce. Indianapolis, IN: Macmillan Technical Publishing.]

often provided as ODC) may be measured in number
of quotes. Indirect value creation and the related
problem of ODC value measurement lead to the prob-
lem of adequately pricing ODC, as discussed later in
this chapter.

While the conventional logic of economics is con-
cerned with scarcity, the dematerialization logic in-
herent in ODC is concerned with abundance. Abun-
dance and resulting ODC overload (the huge variety
of ODC available to almost everybody) confront con-
sumers with a dilemma. They want to take advantage
of the increased choice of ODC, and at the same time,
they seek to minimize the costs of searching. To re-
spond to the first objective, new modes of consump-
tion have emerged: zapping, browsing, or surfing.
These are characterized by short attention span, la-
tency, high frequency of switching, and capricious-
ness. The distinction between consumption and non-
consumption becomes difficult, rendering pricing
problems even more intractable. The expanded
choice of content makes consumer choice more diffi-
cult, thus continuously raising the cost of acquiring
information about the content. To minimize these
costs, the choice is increasingly determined by crite-
ria other than product characteristics, e.g. brand fa-
miliarity or fashion. Low transaction costs lead to ex-
cessive volume of transactions that generate noise
rather than useful content. Abundance of products
and services stimulates the development of activities
whose purpose is to monitor, evaluate, and explain
their characteristics and performance.

B. Trading in ODC

While the offering of free ODC has become extremely
popular in the Internet area, only a few companies
have started trading. To trade in ODC, several roles
have to be fulfilled. The value chain depicted in Fig. 2
has been outlined by the European Commission for
the electronic publishing business. It differentiates be-
tween two layers. The content-related layer addresses
content creation, content packaging, and market mak-
ing. The infrastructure-related layer comprises trans-
portation, delivery support, and end-user interfaces.

The framework suggests the following strategic
roles to be played (Fig. 3). Online Networks manage
a full electronic marketplace, Community Organizers
focus on interest-centered target groups, Interactive
Studios create content with new levels of functional-
ity, Content Rights Agencies manage rights and match
content to market needs, and, finally, Platform
Providers create end-to-end, easy-to-use technical plat-
forms for authors, publishers, and end users. Rather

recent concepts suggest that such activities be orga-
nized as value networks instead of value chains. The
strategic roles to be fulfilled do not significantly
change, regardless of conceptualization in a chain or
in a web.

Syndication is also of particular interest as a busi-
ness model in the context of ODC trading. Syndica-
tion involves the sale of the same good to many in-
termediaries, who then integrate the good with others
and redistribute the whole. First, syndication can only
work with information goods since they can be dupli-
cated and consumed by infinite numbers of people
without becoming exhausted. Second, syndication re-
quires stand-alone, modular products that may func-
tion well as a part of a whole. Third, syndication re-
quires multiple points of distribution. The millions of
existing web sites theoretically offer many different
points of distribution.

In such an environment, trading in ODC can be
used to supply innovative content, especially differ-
ently packaged, more targeted information. It com-
bines communication with content, leading to higher
quality and thus added value to customers. Further-

644 Digital Goods: An Economic Perspective

Figure 2 Electronic publishing value chain. [From European
Commission (1996). Electronic publishing—Strategic developments
for the European publishing industry towards the year 2000. Brussels.]

Online networks Community organizers

Content rights agencies Platform providersInteractive studios

Figure 3 Strategic roles in electronic publishing. [From Eu-
ropean Commission (1996). Electronic publishing—Strategic de-
velopments for the European publishing industry towards the year
2000. Brussels.]

more, ODC customers are more in control of how
much and what kind of content they want to obtain.
When substituting print products by ODC, customers
will request additional value such as availability
(newest information, access to data from any loca-
tion), format (multimedia such as video clips and
sound), transparency and interactivity (user-friendly
downloading, search functions, etc.), and innovative
content (Fig. 4).

In summary, ODC refers to digital goods that are
manufactured, delivered, supported, and consumed
via the Internet or similar networks. Typical examples
of OCD are music, information, and expert knowledge.
For these types of goods, as for almost all kinds of dig-
ital goods, traditional economic models based on
scarcity and uniqueness leading to a market based on
demand and supply do not apply. Once created, ODC
is extremely easy and cheap to replicate, distribution
costs are almost zero, and most other transaction costs
except perhaps marketing and sales barely exist.

VIII. ECONOMICS OF DIGITAL
CONTENT PROVISION ON THE WEB

We distinguish four possibilities for profiting from
providing digital content on the Web: (1) increasing
the number of units sold, (2) increasing the margin
per unit sold, (3) selling digital content as stand-alone
product, and (4) generating advertising income from
web pages. In the first two cases, the digital good is a
free enhancement of the main, nondigitizable prod-
uct offered (cars, coffee, computers), which cannot
be delivered via the Internet. In the third setting, the
product offered consists of information and thus can
be transmitted digitally via the Internet (magazines,
music, etc.). For such a good, the term on-line deliv-
ered content was introduced in the previous section.

In the fourth setting, the focus is not on the actual
goods, but on the space for sale around the content
on the Web.

1. Increased number of units sold. Internet-based
marketing and public relations aim at increasing
awareness about a company and its product and
service range. As with traditional marketing, this
is costless for consumers; profit is made when the
marketing costs are compensated by additional
sales. Currently the largest potential in Internet-
based marketing is seen in attracting new
customers worldwide and in establishing distant,
long-term customer relationships. In most
instances it is difficult to discover how many
additional units are sold because of a web
presence. Further, some of these may be
substitutes for traditional sales (internal channel
cannibalization).

As long as overall worldwide or regional sales
do not increase, but almost every bookstore,
computer dealer, etc. is present on the Web (with
rather different offers), it is not obvious how they
all could increase their total turnover. It seems to
be more like a football league: Every team
gathers strength during the summer but by the
end of the following season there are few
winners, and there will always be some losers.

There is no doubt, however, that Internet-
based turnover is predicted to grow during the
next few years. But with more efficient business
processes and price transparency leading to
decreasing margins there is not too much reason
to foresee an increase in total (traditional and
Internet-based) turnover and especially profits.

2. Increased margin per unit sold. Larger margins per
unit could theoretically be achieved by lower
costs (efficiency) or by charging higher prices per
unit. Lower costs may be achieved by using the
Web for various processes such as internal
communications, receiving orders and payments,
or providing customer service (process/business
reengineering). Customers could, for instance,
download information from the company’s web
site and special requests could be answered via
(automatic) e-mail. From a more in-depth
perspective, most efficiency gains will result from
decreased working capital achieved by
introducing electronic commerce, e.g. Internet-
based activities. Higher prices charged per unit
need to be based on value added for customers.
This means that a particular book, computer, or
type of coffee that is advertised and sold via the
Internet is more expensive than if it were sold via

Digital Goods: An Economic Perspective 645

= ODC added value

Figure 4 Dimensions of ODC added value.

traditional marketing media and sales channels.
This notion is the reverse of the more popular
idea of selling cheaper via the Internet due to
economies of scale, improved transparency, and
fewer players in the value chain. If, however, the
Internet sale of a digital good provides no added
value, then competition may well squeeze prices
down to the level of the marginal cost of the
goods.

3. Digital content sold as stand-alone product. This is the
ODC situation, which was discussed at length in
the previous section.

4. Advertising income generated from web pages. The market
for advertising space on the web is booming. Only
those companies whose contents attract a certain
number of site visitors can sell additional space to
others who then place their ads. While this
opportunity for profit is gaining importance, it is
mainly suitable for those large companies whose
sites are well known and visited, e.g. TV stations,
newspapers, and magazines, etc. It does not appear
to be a feasible source of income for the millions of
small and medium sized enterprises (SMEs) that
also offer content on the Web.

Large company infrastructures to market specific
products are no longer required either for content
provision on the Web or for the actual sale of digital
goods. This causes an enormous growth of digital
products and service offerings. However, small con-
tent providers still mainly count on positive, but indi-
rect contributions of their Internet activities to their
overall cost–benefit structure. For SMEs to continu-
ously provide digital content on the Web, shifts in fi-
nancial flows along intercorporate value chains are
required. Table III outlines two scenarios regarding
potential sources of income for digital content
providers and the related shifts in intercorporate value
chains. To clarify the terminology of Table III, Inter-

net providers “transport” content from content
providers to customers. They are comparable to com-
mon carriers expecting payment for this intermediary
service. If they manage to enhance their service line
beyond transmission, e.g., with value-added services,
this should allow them to charge consumers for more
than just the transmission fee.

Scenario 1: Digital content providers receive payment
for their content directly from the consumers who
not only have to pay the Internet providers but
also the content providers for the information
they access. Competition for customers among
content providers would begin to develop; hence,
the quality of information is likely to improve.
The situation for Internet providers would mostly
stay the same, unless—due to the higher Internet
consumption price for users—the overall Internet
traffic would decrease drastically.

Scenario 2: Digital content providers receive payment
from Internet providers who forward part of their
income to the content providers. Internet
providers can only win in this scenario if the low
price of content and service in comparison to the
previous scenario would lead to a drastic increase
in overall Internet traffic. The situation for
consumers would remain mainly the same.

In summary, electronic media enable organizations
to deliver products and services more cost-effectively
and efficiently. In cases where the Internet is supposed
to support the traditional business (e.g., book sales),
the increasingly sophisticated services offered go be-
yond pure marketing efforts. They provide additional
value to customers. While these services constitute ex-
tra costs, they barely generate additional profits. Po-
tential clients take advantage of these services (e.g.,
search the bookstore database) without necessarily be-
coming customers. Involvement in Web-based activi-

646 Digital Goods: An Economic Perspective

Table III Shifts in Financial Flows along Intercorporate Value Chains

Content provider Internet provider Consumer

Currently Receives no payment Receives payment on Content mostly free,
for content provided time/volume basis pays for time and volume

Scenario 1 Receives payment based Receives payment on Pays for content,
on content directly time/volume basis time, and volume
from the consumer

Scenario 2 Receives a predefined Receives payment on Pays for time/volume
share from the time/volume/content
Internet provider basis and shares with

content provider

ties and increasingly also content provision on the
Web seems to have become compulsory in many in-
dustry sectors. If eventually all companies achieve sig-
nificantly lower cost for customized product and ser-
vice delivery, the result cannot be a competitive
advantage, but lower margins for the average player in
the sector. Offering content on the Web has to be at-
tractive for the providers in one of two ways: (1)
strengthening a company’s competitive position with
respect to its traditional products (e.g., higher turnover
as a consequence of Web activities, or (2) expanding
toward additional, profitable product lines (e.g., sell-
ing information/content-based products and services).

SEE ALSO THE FOLLOWING ARTICLES

Advertising and Marketing in Electronic Commerce • Busi-
ness-to-Business Electronic Commerce • Copyright Laws •
Desktop Publishing • Digital Divide, The • Economic Impacts
of Information Technology • Electronic Commerce, Infra-
structure for • Electronic Data Interchange • Marketing

BIBLIOGRAPHY

Acken, J. M. (1998). How watermarking adds value to digital
content. Communications of the ACM, Vol. 41, No. 7, 75–77.

Bakos, Y. (1998). The emerging role of electronic marketplaces
on the Internet. Communications of the ACM, Vol. 41, No. 8,
35–42.

Bakos, Y., and Brynjolfsson, E. (1999). Bundling information
goods: Pricing, profits and efficiency. Management Science,
Vol. 45, No. 12, 1613–1630.

Choi, S., Stahl, D., and Whinston, A. (1997). The economics of
electronic commerce. Indianapolis, In: Macmillan Technical
Publishing.

Evans, P. B., and Wurster, T. S. (Sep.–Oct. 1997). Strategy and
the new economics of information. Harvard Business Review,
71–82.

European Commission (1996). Electronic publishing—Strategic de-
velopments for the European publishing industry towards the year
2000. Brussels: ECSC.

Loebbecke, C. (1998). Content provision on the Web—An eco-
nomic challenge for TV stations. Australian Journal of Infor-
mation Systems, Vol. 6, Special Edition 1998—Electronic Com-
merce, 97–106.

Loebbecke, C. (1999). Electronic trading in on-line delivered
content. Proc. Thirty-Second Hawaii International Conference on
System Sciences (HICSS-32), A. Dennis and D. R. King (Eds.).

Shapiro, C., and Varian, H. R. (1998). Versioning: The smart way
to sell information. Harvard Business Review, 76(6), 106–114.

Shapiro, C., and Varian, H. R. (1999). Information rules: A strate-
gic guide to the network economy. Boston: Harvard Business
School Press.

Wang, R. Y. et al. (Summer 1998). Manage your information as
a product. Sloan Management Review, 95–105.

Werbach, K. (May–June 2000). Syndication: The emerging
model for business in the Internet era. Harvard Business Re-
view, 78(3), 84–93.

Digital Goods: An Economic Perspective 647

Disaster Recovery Planning
Ata Nahouraii Trevor H. Jones Donald Robbins
Indiana University of Pennsylvania Duquesne University Indiana University of Pennsylvania

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 649

I. INTRODUCTION
II. BACKGROUND

III. STANDARDS

IV. EMERGING TECHNOLOGIES
V. BACKUP/COPY RESTORATION TECHNIQUES

VI. CONCLUSION

GLOSSARY

access time Time and transfer time.
accounting Organization and the procedures that are

concerned with asset safeguarding, and the relia-
bility of financial records.

address modification The process of changing the
address part of a machine instruction.

auditing The examination of information by a third
party other than the user in order to establish sub-
stantive and compliance tests. The tests may be
conducted internally by internal auditors, or ex-
ternally by an external auditor.

audit software A collection of programs and routines as-
sociated with a computer that facilitates the evalua-
tion of machine-readable records for audit purposes.

audit trail A means for systematically tracing the pro-
cessing of a machine-generated output with the
original source (input) to verify the accuracy of the
processes.

auxiliary storage A supplemental part of a computer’s
permanent storage.

backup Pertaining to equipment or application pro-
grams that are available for use in the event of fail-
ure. This provision now is an important factor in
the design of every information processing system,
especially in the design of real-time systems where
a system failure may bring the total operations of a
business to a possible standstill.

block diagram A diagram of a system, computer, or
program represented by annotated boxes and in-
terconnecting lines to show relationship. It should
be noted, a flowchart is a special type of flow dia-

gram that shows the structure or sequence of op-
erations in a program or a process.

computer audit program A computer program writ-
ten for a specific audit purpose or procedure.

data Raw facts or an entity without any meaning.
disk storage A type of magnetic storage that uses one

or more rotating flat concentric plates with a mag-
netic surface on which data can be recorded by
magnetization.

documentation The collecting, organizing, storing,
and dissemination of documents or the informa-
tion recorded in documents.

systems analysis The examination of an activity, pro-
cedure, method, or technique in order to deter-
mine what must be specified, designed, developed,
and how the necessary operations may best be
accomplished.

A DISASTER RECOVERY AND CONTINGENCY PLAN
ensures a business’ survival when it is faced with a
technological and/or information systems break-
down. Its primary objective is to prevent a calamity
from occurring and to limit the impact of destructive
events related to computer-based information systems.
Most disaster recovery plans when put into effect, fail
to serve the intended purpose. The value of a prop-
erly implemented disaster recovery approach is that
prevention seeks to stop incidents before they can oc-
cur; and recovery restores services so that assets would
not be adversely affected. This manuscript attempts to
provide some insights as to the environment in which

these occurrences can happen, what resources should
be considered to achieve the goals of asset safeguard-
ing and maintaining successful information flow
within the organization, as well as alternatives for re-
covery should front end security fail and information
loss is imminent. Additionally, innovative technologi-
cal trends for information security and asset safe-
guards will be introduced.

I. INTRODUCTION

It is important to recall significant events that have
taken place which may, and have, affected the flow of
organizational information. Increasingly, terrorist in-
cidents and Internet abuses over the past years have
become more prominent and affect what approaches
are needed for implementing emergency response
plans (Table I). Examples of some of the most recent
high profile situations are:

• The bombing of the USS Cole and the sinking of
the Russian submarine Jursk

• The bombing of the Oklahoma Federal Building
and World Trade Center (1993)

• The San Francisco earthquakes and Chicago floods
• On September 11, 2001, three hijacked jetliners—

American Airlines Flight 11, United Airlines Flight
175, and American Airlines Flight 77—were
crashed into the north and south towers of the
World Trade Center, and the Pentagon,
respectively. The people of the United States stood
in shock and horror as this terrorist action took
place in less than an hour’s time, killing thousands
of people and leaving countless injured. The
World Trade Center housed many Wall Street
technology-based companies, banking firms, law
offices, and international trading firms.

When we investigate examples such as these we begin
to realize the significant economic impact they have.

Heavy winter storms, in 1994, caused a complete
collapse of the roof of the MAC card data center in
Northern New Jersey. Thousands of MAC transactions
and an unknown, substantial amount of revenue were
lost. World Trade Center systems could not be ac-
commodated because the banks’ alternate processing
facilities were already committed.

Recent crises in the state of California concerning
power generation have had negative impacts on busi-
ness. The Wall Street Journal reported in its January 26,
2001, issue that Phelps Dodge, the second largest cop-

per mining company, has had to close its operation
which affected 2350 employees.

Intrusion via software or user access also must be
considered as potential threats. Examples of security
breaches were brought to light by Hoffer and Straub in
1989 and also by Hein and Erickson in 1991. One such
example includes Ronald Cojoe’s attempt to use his
high-level system access and knowledge to defraud the
city of Detroit for $123,000. A more humorous example
is a malicious employee prank at the Calgary Herald.
The prank consisted of placing obscene messages in
files that seemed to randomly appear on the computer
screens of the newspaper’s reporters, editors, and man-
agement information systems staff. The Hamburg Chaos
Computer Club, which intruded into a variety of United
States and European corporate and government com-
puters in 1987 is another example of security break-
down. This incident, along with the observations of
Allen in 1977, Steinauer in 1986, Hootman in 1989,
Vacca in 1994, and Nahouraii in 1995 showed the weak-
nesses present in the security design of networks. Later
it became a prelude to a WORM attack by Robert T.
Morris, a first year computer science graduate student
at Cornell who created a code that could disrupt any
UNIX operating systems activity, making it inoperative.
A WORM is software that propagates itself across a net-
work and causes resources of one network to attack an-
other. On November 2, 1988, this type of code was un-
leashed over the Internet. The devastation resulted in
disruption of the operations of 6000 computers nation-
wide. Since 1988 at least 11 well-identified intrusions
causing deletion of files, distributed denial of service
(DDoS), or erasing hard drives have struck govern-
mental and corporations around the world. These
viruses, code named Michelanglo (1991), Word Con-
cept (1995), Wazzu (1996), Melissa (1999), Chernobyl
(1999), Explore.Zip (1999), BubbleBoy (1999), The
Love Bug (2000), Killer Resume (2000), Zombies
(1/2001), and most recently Anna (2/2001), generally
appear in the form of file attachments. DDoS assault
was launched against Network Associates’ DNS server.
The attack lasted for nearly 90 minutes and users had
difficulty connecting to Network Associates’ web servers.
A similar attack was also launched on Microsoft’s DNS
records the week before the realization that possible
weaknesses existed in the Berkeley Internet Name Do-
main (BIND), the most widely used implementation of
DNS according to P. J Connolly (Pj_conolly@infoworld.
com), a senior analyst in the InfoWorld Test Center.
However dramatic we might consider these circum-
stances to be, we should keep these occurrences in per-
spective. According to David Ballard, Product Market-
ing Manager for Veritas Software Corp., the number

650 Disaster Recovery Planning

Ta
bl

e
I

T
yp

es
 o

f
In

tr
us

io
ns P

hy
si

ca
l

T
ec

hn
ic

al
Fr

au
d/

P
as

si
ve

A
ct

iv
e

(v
ir

us
es

)
E

nv
ir

on
m

en
ta

l
em

be
zz

le
m

en
t

Fo
re

ig
n

/d
om

es
ti

c
co

lle
ct

io
n

to
 g

ai
n

 c
om

pe
ti

ti
ve

 e
dg

e
in

th
e

gl
ob

al
/m

ili
ta

ry
 a

re
n

a
Ty

pi
ca

lly
 t

ec
h

n
ic

al
 i

n
n

at
ur

e
ac

ti
vi

ty

In
te

re
st

s
as

 i
de

n
ti

fi
ed

 b
y

U
S

de
fe

n
se

 r
ep

or
t

in
cl

ud
es

:
R

ad
ia

ti
on

 t
ra

n
sf

er
 t

ec
h

.
E

qu
ip

m
en

t
te

st
in

g
an

d
di

ag
n

os
ti

c
so

ft
w

ar
e

In
fr

ar
ed

 s
ig

n
at

ur
e

m
ea

su
re

m
en

t
so

ft
w

ar
e

[I
R

]
Pe

n
et

ra
ti

on
 m

et
h

od
:

Ta
rg

et
in

g
in

te
rn

at
io

n
al

co
n

fe
re

n
ce

s
E

xp
lo

it
in

g
jo

in
t

re
se

ar
ch

/v
en

tu
re

s
C

o-
op

ti
n

g
of

 f
or

m
er

em
pl

oy
ee

s
[G

M
 v

s.
 V

W
].

Te
rr

or
is

ti
c

n
at

ur
e

to
 g

ai
n

po
lit

ic
al

/c
ul

tu
ra

l/
gl

ob
al

at
te

n
ti

on

E
n

vi
ro

n
m

en
ta

l
ca

us
es

Fr
au

d/
E

m
be

zz
le

m
en

t

H
is

to
ri

ca
l

in
ci

de
n

ts
ph

ys
ic

al

Pe
n

et
ra

ti
on

 m
et

h
od

:
19

93
: N

ew
 Y

or
k’

s
W

or
ld

Tr
ad

e
C

en
te

r
19

94
:I

sr
ae

li
E

m
ba

ss
y

in
 L

on
do

n
19

95
: J

ap
an

’s
 S

ub
w

ay
19

95
:F

ed
er

al
 B

ui
ld

in
g

in
 O

kl
ah

om
a

C
it

y
19

96
:S

ev
er

al
 b

om
bi

n
gs

in
 T

el
 A

vi
v

an
d

Je
ru

sa
le

m
 b

y
H

A
M

A
S

19
97

: K
ill

in
gs

 a
t

H
at

sh
ep

ut
 T

em
pl

e
in

E
gy

pt
20

00
: U

SS
C

ol
e

bo
m

bi
n

g.
20

01
:S

ep
te

m
be

r
11

th
W

or
ld

 T
ra

de
 C

en
te

r
an

d
Pe

n
ta

go
n

 a
tt

ac
ks

.

19
87

: C
h

ao
s

C
om

pu
te

r
C

lu
b

19
87

:I
B

M
 C

h
ri

st
m

as
 T

re
e

E
xe

c

19
88

: K
ev

in
 M

it
n

ic
k

at
ta

ck
 o

n
D

ig
it

al
 E

qu
ip

m
en

t

19
89

: “
N

o
N

uk
es

 W
or

m
”

19
90

:H
id

e
an

d
C

-e
ek

 T
ro

ja
n

H
or

se

19
91

: S
YS

M
A

N
.E

X
E

 T
ro

ja
n

H
or

se

19
95

:W
or

ld
 C

on
ce

pt

19
96

:W
az

zu

19
99

:M
el

is
sa

19
99

:C
h

er
n

ob
yl

20
00

:L
ov

e
B

ug

20
00

:K
ill

er
 R

es
um

e
D

ec
. ’

00
: K

ri
s

V
ir

us

19
89

:H
ur

ri
ca

n
e

H
ug

o

19
89

: S
an

 F
ra

n
ci

sc
o

E
ar

th
qu

ak
e

19
92

:C
h

ic
ag

o
Fl

oo
d

19
92

: A
n

dr
ew

 H
ur

ri
ca

n
e

19
94

:I
ow

a
Fl

oo
d

20
01

: A
h

m
ed

 A
ba

d
E

ar
th

qu
ak

e
(I

n
di

a)

19
91

:C
h

ar
le

s
K

ea
ti

n
g

de
fr

au
ds

 U
.S

.
Fe

d.
 H

om
e

L
oa

n
 B

an
ks

19
92

:L
oo

ti
n

g
of

 U
n

it
ed

 F
un

d
by

W
ill

ia
m

 A
ra

m
on

y,
 i

ts
 C

E
O

19
94

:C
al

if
. O

ra
n

ge
 C

ou
n

ty
 B

an
kr

up
tc

y

19
95

: T
h

e
Fa

ll
of

 B
an

k
of

 E
n

gl
an

d

19
95

:T
h

e
N

ew
 E

ra
 P

h
ila

n
th

ro
py

 f
ra

ud
by

 J
oh

n
 G

. B
en

n
et

19
95

:C
la

rk
 C

an
dy

, C
E

O
,M

ic
h

ae
l

C
ar

lo
w,

 d
ef

ra
ud

in
g

PN
C

B
an

k

19
99

:I
n

fo
rm

ix
-a

cc
ou

n
ti

n
g

ir
re

gu
la

ri
ti

es
—

X
er

ox
; L

uc
ce

n
t

one reason for loss of data is due to accidental deletion,
corruption, or other software errors.

There are often debates about the design require-
ments, specifications, and the language for the devel-
opment of an application program interface as an an-
cillary part of the disaster recovery tool. McEnrue and
Bourne studied various models of human perfor-
mance and reaction including psychological and cog-
nitive processes. In their study, subjects were intro-
duced to threatening situations posed by software that
led to computer site shutdowns in order to impede
data loss. In 1962, Hunt modified the previous model
by including synchronous systems and analyzed how
humans perceive security and take measures for safe-
guarding sensitive files with or without automated in-
formation systems. Similarly, in the 156 cases of com-
puter fraud that Allen studied, he found that 108 of
these cases involved addition, deletion, or modifica-
tion with input transactions. It should be noted that
no system is sufficiently secure to stop all breaches of
security. This is especially true in cases that involve
fire or flood incidents. As reported by Ron Weber as
well as Wayne and Turney, fire and water are often the
major causes for computer outages. Because of these
possibilities, a considerable amount of effort has been
devoted by information scientists, EDP auditors, psy-
chologists, and law enforcement analysts, to formu-
late a better description for the design and applica-
tion of disaster recovery and computer security.

With this in mind, designers and users have pro-
posed various control objectives and techniques
needed for emergency response. These include a va-
riety of operational procedures for disaster recovery
using recent emerging technologies such as biomet-
rics and authentication, the use of hot sites, cold sites,
firewalls, encryption, and steganography, that can be
installed on computers of differing sizes such as IBM,
Sun Stations, Microsoft Windows, Linux, or Unix
based operating systems.

In general, disaster expectations can be catego-
rized into four categories:

1. Physical. These include terroristic actions, and
input output devices failure, e.g., disk head
crashes or systems failure as a result of sudden
power surge or power interruptions caused by
lightening.

2. Technical. Virus intrusions are categorized here
as well as the detection of operating system or
application software faults (bugs).

3. Environmental. This may be the most noticeable
and newsworthy, but least considered. Examples
are flood, fire, and earthquake as well as more

insidious items such as a misplaced water main
which may freeze and burst causing subsequent
water damage.

4. Fraud/embezzlement. This category includes
deliberate and unauthorized data access, use, and
manipulation.

II. BACKGROUND

In the world of technology, in order for a company to
remain viable, top management must establish a pol-
icy to safeguard integration of the servers, software,
and storage systems. If the top management’s system
of controls are not reliable, it is unlikely that the via-
bility of the enterprise can be assured. The intent of
the controls is to strategically prevent fraud as well as
natural disaster that may occur. These controls are
generally assimilated into environmental controls by
management. Thus, environmental controls require a
well-planned, well-executed procedure that assures
successful communication, commerce, competitive-
ness, and growth both internally and among its ex-
ternal business so that the firm is always universally
functional. The enterprise must also safeguard against
the possibility of fraud execution or sabotage by im-
plementing internal controls that effectively fulfill the
auditing compliance standards.

1. Proper segregation of duties
2. Control over installations and changes
3. Control over system librarian and utilities
4. Password control
5. Control over programmable read only [Prom]

and erasable programmable read memory
[EPROM] programs

6. Control over Utility scan

These controls as suggested by Weber must be pe-
riodically reviewed for modification by management
so that it can detect easily the system security aberra-
tions caused by environmental hazards, I/O devices,
human error, or by computer abuse. Environmental
hazards include fires, floods, tornadoes, earthquakes,
facility management systems of nuclear power plants,
and other natural causes. I/O errors are input or out-
put devices. They include damage to disk packs by
faulty disk drives, reader’s error, off-line key to disk er-
rors or errors in application programs that destroy or
damage data, and mounting of incorrect files by the
operational staff. Computer abuse is the violation of
a computer system to perform malicious damage,
crime, or invasion of privacy. Therefore, management

652 Disaster Recovery Planning

should be alert that malicious damage, including de-
liberate sabotage, or intentionally attempting to de-
fraud profit, or loss reporting as a means for tax eva-
sion, or concealing performance to shareholders of
the commercially traded security stocks, will be visible
during internal audit.

Similarly, crimes that include embezzlement, in-
dustrial espionage, the sale of commercial secrets or
invasion of privacy by access to confidential salary in-
formation, and the review of sensitive data by a com-
peting company should be easily detected by the in-
ternal controls of top management. The frequency of
occurrence of computer abuse is difficult to deter-
mine, but the cost per incident reported is consid-
ered to be phenomenal.

To put it simply, if environmental controls are ab-
sent, so goes the enterprise. That is, in today’s econ-
omy, if the enterprise fails to connect with its external
suppliers and customers as a result of network crashes,
or when the databases fail without any asset safe-
guarding plan in place, a serious and unpredictable
problem ranging from embezzlement to system fail-
ures will result. Thus, internal controls, when placed
by management, should be prepared before a disaster
strikes.

III. STANDARDS

The Foreign Corrupt Practices Act holds the corpo-
rate executives accountable for failing to plan ade-
quately for a disaster. Fines of up to $10,000 and 5
years imprisonment may be levied for such a failure.
A similar legislation called the Computer Security Act
was approved by the United States Senate in 1987.
This legislation gives the United States National Bu-
reau of Standards a role in setting computer security
measures in the civilian sector as shown by Brandt in
1977. This act mandated that by l992 a computer sys-
tem or network must be certifiable as secure in four
areas as was previously mentioned by Mitch in 1988
and Miller in 1991:

• User identification
• Authentication
• Access control and file security
• Transmission security and management security

In response to these federal requirements, local
area network (LAN) vendors are developing software
that will support the foregoing requirements. In ad-
dition, banking laws, the federal system requirements,
the Securities and Exchange Commission along with

the Internal Revenue Service (IRS) all have regula-
tions dealing with the responsibility for controlling
exposures relating to disasters. For example, the Fed-
eral Reserve Board requires that when companies use
an Electronic Fund Transfer (EFT) system they must
have a recovery plan readily available for recovery
within 24 hours. This is discussed in the writings of
Wong, Monaco, and Sellaro in 1994. The Auditing
Standards Board of American Institute of Public Ac-
countant (AICPA) issued the Statement of Auditing
Standards (SAS) No. 82, “Consideration of Fraud in
Financial Statement Audits.” By increasing the proba-
bility of uncovering or detecting fraud, the AICPA in-
tends this standard to increase the integrity and reli-
ability of the financial statements.

The management security control generally is in-
terpreted as an environmental control by auditing
firms. These controls as suggested by Porter and Perry
in 1992 must have in place a set of objectives. These
objectives must:

1. Establish security objectives. These objectives
contain standards against which actual system
security can be judged.

2. Evaluate security risks. Management should
evaluate file maintenance and recovery security
risks for likelihood and cost of occurrence. For
example, flood or earthquake will have a low
probability of occurrence and a high cost per
occurrence, whereas damage to I/O devices
because of human negligence will occur more
frequently but at a low cost per incident.
Internal controls should estimate probabilities
and cost associated with each possible security
failure so that the expected values of loss when
computed may be used as guides to the
effectiveness of the security controls.

3. Develop a security plan. Management should
consider a plan that will be cost effective at an
acceptable level, should describe all controls,
and identify the purpose of their inclusion.

4. Assign responsibilities. Management should assign
accountability and assign responsibilities that
include implementation of the plan and
monitoring of the controls on an ongoing basis.

5. Test system security. The controls should be tested
by management to make sure the staff is
properly trained and that they are aware of the
consequences of possible disaster. This process
will determine where weaknesses exist in the
security plan and assure that the existing plan
provides recovery from security failures as
intended.

Disaster Recovery Planning 653

6. Test the physical isolation of the computer facilities.
Isolation can be accomplished by having a
separate building for the computer center or
having a secure location in the enterprise.

7. Test the use of construction standards. Security risks
can be reduced by adequate construction
standards. The walls and doors of the computer
facilities should be in compliance with American
Society of Mechanical Engineers (ASME)
earthquake structuctural specifications and
standards. Windows should be avoided
completely. Data files and documentation
should be stored in safes and vaults, power and
communication lines should be protected with a
secondary power company supplier or a stand
alone power generator.

8. Test the compliance with fire and water standards.
The risk of environmental damage can be
reduced by following construction standards for
fire which includes the use of fire-resistant walls,
floors, ceilings, and doors. Fire extinguishment
systems such as halon gas should be used to
extinguish fires and minimize damage to data
processing equipment and personnel. Water
standards include the use of pumps and drains
to minimize water damage from sprinklers or
floods. Watertight floors in the computer room
will help keep out water from floods or from
other parts of the building.

9. Evaluate system security. Regularly plan a pilot run
to test the recovery plan and the results of
testing should be used to evaluate the
effectiveness of controls in meeting disaster
recovery objectives.

10. Testing the installation of disaster recovery software.
This test is usually made to make sure the
software transparency exists as claimed by its
vendor. The test ensures that the data center
operating system platform can be easily revised
if needed.

In summary, management must include in their in-
ternal control policies and procedures needed in plan-
ning, building, and maintaining assets safeguarding
methods to guard against disaster. This is necessary
not only for fraud prevention but also for the impact
on the environment. According to Wayne and Turney
(1984), management must be certain that they have
evaluated the likelihood of failure and have adopted
procedures to expeditiously return the organization
to normal infrastructure functioning while minimiz-
ing data and asset loss, should a catastrophe occur.
Management must also ensure its computer security

to protect hardware and data against unauthorized
access, destructive programs, sabotage, environmen-
tal changes, and fraudulent use. The corporations
thus need to become increasingly vigilant about these
issues due to:

• An increase in installed micro-based computers in
their workplaces, currently being augmented and
superseded by personal digital assistants (PDA) or
other hand-held devices

• The use of automated systems to attain
competitive business advantages

• The sophistication of managers and employees in
computing technologies

• The increased volumes of sensitive data being
kept on various secondary storage devices which
are accessible through both internal and external
sources

• Greater interconnectivity of computers through
networks

• Increased investments in hardware, software, and
networking technologies

• The high cost of recovery as a result of data loss
• The sophistication of potential intruders and

digital viruses
• The arsenal of mobile computing tools
• The increasing cost effectiveness of e-commerce

and the consequential reliance on digital
technologies to support these models

• Crowded skies and increased digital information
movement created by the economy for consumers

Furthermore, management should continuously
address questions such as: What platforms should we
use? How do we plan for the unexpected? Will it grow
when we grow? Will it work with new technology in
the future? Will it build upon our current systems?
Can we link to our customers’ and suppliers’ systems?
Can open standards be used? What about outsourc-
ing? How do we finance all of this?

IV. EMERGING TECHNOLOGIES

The use of access control can be traced back to around
l000 B.C. when the Chinese developed a control sys-
tem to guard their imperial palaces. Each member of
the palace staff wore a ring engraved with intricate de-
signs that identified which areas of the palace they
were allowed to enter. Today, access controls range
from simple locks and keys to sophisticated systems
using biometrics’ physiological or physical techniques.
The private sector as well as governmental agencies

654 Disaster Recovery Planning

have assimilated the use of these techniques for their
security and recovery plans to safeguard their infor-
mation systems and data centers.

Biometrics identification systems are machines that
verify the identity of a person based on the examina-
tion and assessment of unique personal physiological
features (Fig. 1). Characteristics such as signatures,
retinal blood vessel patterns, fingerprints, hand geom-
etry, face prints, and speech are ideal as a basis for an
identification system because, unlike keys, they can-
not be lost or stolen. Biometry refers to the applica-
tion of statistical methods to describe and analyze
data concerning the variation of biological character-
istics obtained by either observation or experiment.
Biometrics identification systems require that the
characteristics of people who will be using the system
be gathered in advance. The importance of this was
discussed in the writings of Zalud (1989) and Rosen
(1990).

When making identification, biometrics systems
read in user’s characteristics and convert them into a
form in which they can be compared to a set of ref-
erence samples. Computer algorithms are used to
make the comparisons and verify identity. The success
of a biometrics method is based upon the character-
istic selected for comparison and the nature of the al-
lowances made for variations.

For signature verification, a person will create a
reference sample by signing his or her name about six
times with a special pen whose movement is recorded
by a computer. This information is stored as a refer-
ence sample, which is often referred to as a template.
The computer then evaluates the variations in the sig-
nature with the stored templates. If the matching pres-
sure and movements of the person signing are cor-
rectly matched, access is granted. Most of the
characteristics that the systems work with can vary
over time. Hands can swell from work, heat or aller-
gies, fingerprints can be marred by scratches or em-
bedded dirt, and voices can vary from colds. For these
reasons, identified by Rosen (1990), Miller (1991),
and Reynolds (1998), most of the machines allow for
some degree of variability in the measured character-
istics and update the file containing the reference
sample after each use.

Of equal importance is the retinal blood vessel
analysis introduced for commercial use as a security
system by Eyedentify Inc. Eyedentify’s system bases
verifications on the unique blood vessel patterns in
the retina of the user’s eye. Eyedentify’s retinal pat-
tern verifier is equipped with a lighted concentric cir-
cle eye target and a headset. The back of the eye is
similar to a map, and the machine reads only a small
area of this map. Since no one knows which portion

Disaster Recovery Planning 655

Figure 1 Face recognition system.

of the map is being read, there is no way to duplicate
or imitate a retinal pattern. As in signature matching,
which is prone to variation over time, a person’s reti-
nal patterns change if the subject experiences a heart
attack or becomes diabetic, as noted by Sherman
(1992).

Fingerprinting is one of the easiest ways to identify
a user and serves as the most obvious way to distin-
guish users. In 1990 Rosen stated fingerprinting can
range from the entire fingerprint to the exact por-
tions of the finger. Machines used for fingerprint
analysis have a cylindrical light that rotates around
the finger and reads the bumps and ridges from a sec-
tion of the finger. If the fingerprint matches the im-
age stored, access is granted.

For hand geometry, methods that measure hand
profile and thickness by light have been found very
dependable. Miller (1991), Rosen (1990), and Sher-
man (1992) stated that a reader uses light to con-
struct a three-dimensional image of a person’s hand,
examining such characteristics as finger length, width,
and hand thickness. Also, in 1990, Rosen noted that
the reference and template of the person’s hand is
updated following each verification.

Originally developed at MIT for law enforcement
agencies, face printing combines the use of “fuzzy
logic” and artificial intelligence algorithms. One sys-
tem called FaceTrac, captures images by calculating
distances between the eyes, thickness of the lips, an-
gle of cheekbones, and other features such as slope of
the nose . . . etc., and generates a profile for each fa-
cial characteristic. Such a system was installed during
Super Bowl XXXV at the Raymond James Stadium in
Tampa by Graphco Technologies, located in Pennsyl-
vania, which markets FaceTrac. The Graphco pro-
gram has the ability to measure up to 128 distinct fa-
cial features. The uniqueness of face printing is that
no matter what kind of camouflaging techniques one
may use to evade recognition, it can easily be un-
masked. Faceprinting systems, previously thought to
be too complex and expensive, can now be success-
fully developed. In 1992 Sherman explained that the
machine uses low-cost, microprocessor driven cam-
eras and fuzzy logic with neural networking firmware
for the recording of facial images. Facial printing is
an excellent method of identification because facial
imprints are less susceptible to change from mood
and nervousness. Its major advantage is that it doesn’t
require any physical contact with equipment.

Speech recognition is becoming more popular
within the field of biometrics (Figs. 2 and 3). As with
the fingerprint technique which analyzes patterns,
the voice technique not only measures the voice but

also other characteristics. Jaw opening and tongue
shape and position are identified. To use this, the
user enters a preassigned personal code on the
voicekey keypad and then utters the password into
the unit’s microphone. A decision to grant or deny ac-
cess is based on the matching of voice templates as de-
scribed by Rosen (1990) and Tiogo (1990).

Steganography, is a new entry in message delivery.
The word means “covered writing” in Greek. In con-
trast to data encryption or cryptography, where data
need to be decrypted and can easily be recognized as
an encrypted message, steganography aims to hide its
messages inside other harmless messages. The obvi-
ous message is so benign that it does not infer that it
carries a second message. David Kahn’s “The Code
Breakers” provides an excellent accounting of this
topic. Bruce Norman in his Secret Warfare: The Battle of
Codes and Ciphers recounts numerous examples in the
use of steganography during times of war. Null ci-
phers, commonly called unencrypted message, are
also employed by this technique. The method cam-
ouflages the real message into a phonetic message.

656 Disaster Recovery Planning

Figure 2 Voice recognition system illustration.

The advantage gained by the use of steganography is
that when it is detected, a new steganographic appli-
cation can be devised. The new application can be in
the form of drawings, varying lines, colors, or other
elements in pictures in order to conceal or reveal the
message. Some available programs are JDeg.Shell,
BPCS Steganography, PGM Stealth, and Piilo, a Unix-
based program which uses images to hide messages.

As we have discussed, biometrics may be used for
authentication and securing information resources.
However, the practical use of biometrics systems is
limited to verification. Verification means that the
machine accepts or rejects the claim of an unknown
person. The downside of these techniques is that they
do not identify users who are not part of its set of ref-
erence samples.

The physical techniques are the other methods for
computer security. These techniques are specifically
designed for the network’s safety by authorizing access
to the network users through the use of electronic “to-
kens.” The Digital Pathways Inc., of Mountain View,
California produces a hand-held authorization device
known as Secure Net Key. In 1987 the Delaware Valley
Disaster Recovery Information Exchange Group re-
ported that the device uses data encryption techniques
to safeguard data transmissions from unauthorized in-
trusions, thereby reducing potential abuse. This was
again stated by Taschek (1993) and Baig (1994). The
National Semiconductor Corp. has also recently intro-
duced a “Persona Card” which meets Computer Mem-

ory Card International Association (PCMCIA) stan-
dards and fits easily in the personal computer slots. It
is designed to transmit encrypted data to the source
for evaluation or processing. Security Dynamics of
Cambridge, MA. has also created an access card known
as “SECURE ID” which generates a random code every
60 seconds. Vacca (1994) reported that users must
present the latest code to gain access.

More recently, many organizations have adopted a
Single-Sign-On [SSO] approach for their computer se-
curity. This method is a software-driven technique which
permits users to gain access into multiple interrelated
applications using a limited number of passwords for
user’s identification and access control. Access control
requirements differ for systems based on centralized
concepts from those on decentralized format. Decen-
tralized security devices from high-tech, high-cost ran-
dom password generators, network routers, and call-
back modems require “firewall” configurations. Allen
(1977), and then Tiogo (1988) wrote that Information
Systems of Glenwood, Maryland, Harris Computer Sys-
tems in Ft. Lauderdale, Florida, and Digital Equipment
Corp. are among the companies that build firewall se-
curity gateways between private networks and Internet.
The idea is that all traffic must pass through the fire-
wall. The Sidewinder Fire Wall Software from Secure
Computing Corp. of Roseville, Minnesota, lets busi-
nesses strike back by feeding an intruder false data and
tracing him or her back to their computer.

Another company for physical security is Data Se-
curity Inc. of Redwood City, California. It produces
user software that uses cryptography where it employs
mathematical algorithms to scramble messages and
create “digital signatures the equivalent of finger-
prints” as explained by Snyder and Caswell (1989).
Data Security Inc. worked on a joint venture with En-
terprise Integration Technologies Corp. of Palo Alto,
California to produce a system called TERISA-Systems
which uses this cryptography technology to secure
transactions on the World Wide Web (WWW) servers
which was detailed by Nolle (1989), Rosen (1990),
Snyder and Caswell (1989), Steinauer (1986), and
Tiogo (1990).

V. BACKUP/COPY RESTORATION TECHNIQUES

The necessity for backup operations may be one of
the most overlooked and underplanned in the envi-
ronment of technology. Because of the regulatory re-
quirements, auditors now routinely verify an organi-
zation’s ability to recover from a disaster. However,
the necessity for backup operations is still one of the

Disaster Recovery Planning 657

Figure 3 Voice synthesis system illustration.

most overlooked and underplanned in the environ-
ment of technology. According to Info Security News
magazine (http://www. infosecnews. com):

• Companies begin meltdown in less than 5 days
after losing critical data.

• Fifty percent of companies that did not recover
within 10 days, never fully recovered.

• Ninety-three percent of those companies went out
of business within 5 years.

The various strategies and technologies employed
in backup operations vary according to the type of
operation, the function it is to serve, and the outcome
expected.

For centralized operations, the prevalent backup
technology remains the movement of data between
disk and local tape. This has been increasingly em-
ployed in enterprise-level applications where the vol-
umes of data stored for real-time access continues to
escalate, driven by technologies such as data ware-
houses. However, the use of tape backup procedures
has begun to come under efficiency pressure as the
operational windows for backups shrinks and the vol-
umes of data scale into the multi-terabyte environ-
ment. At the time of writing, various partnerships of
technology giants have demonstrated the ability to
backup data in excess of one terabyte per hour. How-
ever, as technologies and the use of technologies
change, different problems arise. Backups to tape are
sufficient when dealing with single or low number
source data, such as enterprise databases. However, as
employees move to remote computing, the number
of storage locations increases and can conceivably be
outside and disconnected from the enterprise. Strate-
gic Research Corp., in a survey of over 200 sites re-
ports that only 18% backed up workstations in addi-
tion to the servers. Alternatives to tape backups
include parallel backups with tape arrays as well as
real-time data replication through Redundant Array
of Independent Disk (RAID) configurations. Since
disk reads are superior to tape, backups can be per-
formed very efficiently, although at a higher cost.

For distributed environments, which are now be-
coming much more prevalent due to open system
configurations, techniques for the control of backup
operations are moving away from server centric to the
latest technology known as SAN (storage area net-
works). According to Dataquest, Inc., “software func-
tionality does not have to reside on the server. The
server does not always act as the intermediary for the
backup. It can go directly from the user to the backup
device.” Additionally, more people are putting the
software protocol, or agent, on the network. Soon the
SAN itself will be able to create the backup.

Imposed on the exact protocol for creating back-
ups are various site strategies and options for the phys-
ical storage of the backed up data. Off-site facilities
are generally classified into three categories:

1. Hot sites—Separate locations where classified
records, based on their priorities can be instantly
replicated. These sites have computer
workstations, file servers, their own functional
security, backup generators, and dedicated or
dial-up leased lines. This allows a failed operation
to immediately access copies of damaged data
and continue operations.

2. Warm sites—This refers to partially equipped
backup sites. They consist of peripheral
equipment in an off-line mode with minimal
CPU capacity to enable the continuation of
mission critical tasks only.

3. Cold sites—Sometimes referred to as “relocatable
shells.” These are sites without any resources,
except suitable power supplies, phone lines, and
ventilation. The shells are computer ready and
transportable to the disaster site for the salvage of
equipment and data where possible. The
platforms can be salvageable technology or
obtained on a short term leased basis.

Finally, one phenomenon which is finding its way
into many areas of technology adoption and manage-
ment, and which is observable within the area of
backup and recovery, is that of outsourcing. Due to
the scope and specialized and technical requirements
of this work, backup procedures, processes and tech-
nologies can now be outsourced to third parties al-
lowing removal of the management requirements and
expertise from mainstream operations. Internet capa-
bilities have particularly lent themselves to this for-
mat. For example, Datasave Services, PLC, provides a
service of data storage and archiving in an off-site for-
mat. The method is to transfer all changes of a cus-
tomer’s data to an off-site location where it is stored
on digital linear tape (DLT). This is archived via mo-
dem and the transfer is made overnight following en-
cryption. This provides for extremely high levels of
transport security while minimizing disruption to daily
operations.

Examples of corporations that provide systems for
supporting backup and restoration operations are

1. Data Recovery System (DRS): The Data Recovery
System, developed by Integrity Solutions Inc., is
located in Denver, Colorado. The DRS is
enhanced with a backward file recovery
capability which adds to all DRS/Update and

658 Disaster Recovery Planning

DRS/Recover. The backward file recovery uses
“before images” to speed up the recovery
process and reduce redundant backups. As
indicated in Software Magazine, this feature is
particularly useful when an abend(abnormal
end) occurs near the end of a large job. The
updated version of DRS also includes enhanced
reporting capabilities, journal merge options, a
compare facility, and control interval journaling.
DRS supports CICS/VS, Vsam files and DL/1,
and DB2 under DOS, AS400, or MVS/XA. The
price ranges from $2000 to $17,000, depending
on the size of mainframe selected.

2. The Data Center Planner: The Data Center
Planner, developed by Vycor Corp., is located in
Landover, Maryland. This is a series of PC
software packages for managing DP assets. The
Disaster Recovery Planner creates and maintains
an on-line disaster recovery plan; Supply
Planner controls data center supplies; PC
Manager controls the inventory of PCs,
including components and software; and
Communication Pioneer tracks voices and data
communication lines and wirepath.The price of
this software ranges from $995 to $5000.

3. VMCENTER II: The VMCENTER II was
developed by VM software, Inc., located in
Reston, Virginia. This software provides system
security and management of Direct Access
Storage Devices (DASD), operations,
performance, capacity, and recovery. Easy-to-use
screens simplify auxiliary devices such as tape or
disk mounting and scheduling tasks. The
installation and maintenance procedure is
centralized so that all components and features
can be administered by a single user. The price
ranges from $25,000 to $88,000, depending on
the machine use.

4. SPANEX: SPANEX is an automated job
scheduling and job restart system for MVS
operation developed by Westinghouse
Management Systems Software at Pittsburgh,
Pennsylvania, with which one of the authors was
involved. It provides allowance for daily schedule
variations and interaction with external or
noncomputer tasks or events. Controls may be
centralized or decentralized. The scheduler’s
restart facility is built-in, and automatically detects
the point of failure and initiates appropriate
recovery plan. The system is priced at $20,000
and it runs under IBM MVS. The software group
was sold to a British company in 1994.

5. STRATUS (a subsidiary of SGI): The STRATUS
system handles failure without complicated

housekeeping by hardwiring computer
components together. This system works on one
job at a time, but gives the job to two pairs of
independent Motorola microprocessors so that
it can compare results. Suppose the job at hand
is adding $2 to $3. Each microprocessor
crunches the numbers, and then the paired
microprocessor compares results. If the results
from one pair of microprocessors are $5 and $6,
then those processors are shut down
momentarily, while the computer simply uses
the result from the other pair.

6. Remote Journaling: Remote journaling offers a
higher level of data protection. Software
monitors update to Virtual Sequential Access
Method (VSAM) files in the IBM world. A
remote on-line log is kept of all updates of
records. If a failure occurs, data can be updated
back to the point of failure. It may take a few
hours to reconstruct files, depending on their
size and the number of updates made. Both
Sunguard and Comdisco Inc. offer remote
journaling. Earlier this year IBM announced a
plan to offer remote journaling software for its
IMS and DB2 database. Some users are using
distributed database management system
(DBMS) technologies to provide on-line remote
data protection.

7. Electronic Vaulting: Electronic vaulting is batch
transmission of data networks to a remote
location, while remote journaling, a more
advanced technology, remotely records data
updates as they occur. Database shadowing is the
most advanced of these new services. With this
technology, copies of entire databases are
maintained at remote places. Electronic
vaulting, which has existed in product form for
about two years, allows for the batch
transmission of critical data sets via T1 or T3 to
a remote site, usually adjacent to standby data
centers. One problem, however, is that products
are not necessarily designed for multivendor
environments. Sunguard Recovery Services of
Wayne, Pennsylvania, which was the first to offer
electronic vaulting services, originally marketed
this service for IBM mainframes customers, but
now covers all platforms of diverse systems.

8. The CTAM Method: Sheri Anderson, Senior Vice
President for Production Systems and Services at
Charles Schwab and Co. Inc. in San Francisco
has come to depend on what is known in the
disaster recovery business as the CTAM method
for protecting and accessing critical data in an
emergency. Chevy Track Access Method (CTAM)

Disaster Recovery Planning 659

works like this: users attempting to protect their
data, copy them onto tape periodically and
transport the tape by truck or jet to a second
location for safekeeping. If a disaster occurs at a
data center, the tapes can be rushed to a backup
data center, loaded, and run. Unfortunately
such an approach can result in loss of data if a
disaster occurs any time after the last backup,
and physically transporting tapes and loading
data into backup CPUs can take several hours or
even days. For this reason, several firms are
evaluating technologies for transporting copies
of important data to backup sites electronically.
Vendors in the booming disaster recovery
business are attempting to accommodate them
by offering products and services for electronic
vaulting and remote journaling of data. A few
have even announced full database shadowing,
which has the potential to recover all data back
to the point of failure in a matter of minutes.

9. IBM’s Business Recovery Service: IBM has set its
sights on the disaster recovery market with the
recent introduction of a service designed to
back up data for its large system customers in
the event of a disaster. IBM’s Business Recovery
Service (BRS) is designed to restore data on
mid-range and mainframe systems, as well as PCs
that are integrated into those environments
through LANs. Under BRS, firms will be able to
access backup data that is archived in one of 12
“hot sites” IBM is setting up across the nation.
For PC data recovery, clients will be able to set
up facilities closer to their home offices. In
putting together a recovery plan, IBM would put
together a solution that would define an
alternate site in proximity to the customer’s
office. In an event of a flood or fire we would
be able to go in and duplicate the work
environment. Working with IBM, clients will
develop a disaster recovery plan that stipulates
square footage required in an alternative facility
and also specifies cabling, LAN design, and
necessary equipment. Should a disaster occur,
clients will have access to equivalent systems for
data recovery, and IBM will provide technical
support. The fee for the disaster recovery
service, which is available on a limited basis,
range from $500 to $40,000 per month,
depending on systems configuration. For
example, pricing for a System/AS400 mid-range
“with a fairly rich configuration” will cost
approximately $40,000 per month. Clients can
subscribe to BRS for 1-, 3- or 5-year periods.

10. Ashton-Tate Corp.’s File Recovery, a subsidiary of
Borland: Ashton-Tate’s File Recovery is a recovery
program designed to diagnose and repair
damaged data files. Originally designed for its
Dbase File Recovery and now enhanced for PC-
based relational data bases, it is almost
completely automated. It successfully restores
damaged files, but suffers from poor
documentation and provides little guidance on
the type of damage or the steps required to
repair it.

VI. CONCLUSION

Protecting a business information system and com-
puter resources requires complete planning. The
Computer Virus Industry Association recommends
specific solutions to reduce problems regarding com-
puter security from errors of omission or deliberate
sabotage. These solutions have been outlined and dis-
cussed by multiple authors as well as the Delaware Val-
ley Disaster Recovery Information Exchange Group.
These solutions include:

1. Access control
2. Good documentation practices
3. Effective employee training
4. Proper dissemination of information
5. A system of checks and balances

Alternatively, Miller (1991) wrote that a business’
security system should have physical safeguards
(locks), administrative safeguards (policy), secondary
storage safeguards (write-protect), software safeguards
(access security), and communications safeguards
(data encryption). This checklist is a basic “blueprint”
to set up a successful computer security/disaster re-
covery planning system. Computer security involves
the protection of computer hardware, software, and
databases, from unauthorized use and possible delib-
erate destruction. Management has always been con-
cerned with the protection of business and its client
data. Management actions that can maximize security
include:

• Segregation of duties in the information system
environment

• Built-in internal and external system controls
• Audit trail for file and program access controls
• Use of security specialists
• Thorough personnel investigation before hiring
• Bonding of staff

660 Disaster Recovery Planning

• Prompt removal of discharged personnel
• Good documentation and crosstraining of

personnel

As technology and the need for data storage and
manipulation become more entwined and insidious
in daily lives and operations, the need to protect these
collections and allow for the recovery of damaged op-
erations becomes more important. Technologies deal-
ing with user and consumer access to these data con-
tinue to become more complex. Without adequate
safeguards for security and backup procedures for re-
covery, institutions and societies reliant on these types
of stored information become more susceptible to
unauthorized intrusion and disruption.

SEE ALSO THE FOLLOWING ARTICLES

Computer Viruses • Crime, Use of Computers in • Docu-
mentation for Software and IS Development • Firewalls • Se-
curity Issues and Measures • Systems Analysis

BIBLIOGRAPHY

Burch, J. G., Jr., and Sardinas, J. L., Jr. (1978). Computer control
and audit—A total systems approach. New York: John Wiley &
Sons.

Clowes, K. W. (1998). EDP auditing. Toronto: Holt, Rinehart
and Winston.

Garrett, P. (2001). Making, breaking codes: An introduction to cryp-
tology. Upper Saddle River, NJ: Prentice Hall.

Lynch, R. M., and Williamson, R. W. (1976). Accounting for man-
agement—Planning and control; 2nd ed. New York: McGraw-Hill.

Murdick, R. G., Ross, J. E. , and Claggett, J. R. (1984). Informa-
tion systems for modern management, 3rd ed. Englewood Cliffs,
NJ: Prentice Hall.

Pfleeger, C. P. (2000). Security in computing, 2nd ed. Upper Sad-
dle River, NJ: Prentice Hall PTR.

Porter, T. W., and Perry, W. E. (1991). EDP controls and auditing,
5th ed. Boston: Kent Publishing.

Rahman, M., and Halladay, M. (1988). Accounting information
systems—Principles, applications, and future directions. Engle-
wood Cliffs, NJ: Prentice Hall.

Stallings, W. (2000). Network security essentials: Applications and
standards. Upper Saddle River, NJ: Prentice Hall.

Weber, R. (1999). Information systems control and audit. Upper
Saddle River, NJ: Prentice Hall.

Disaster Recovery Planning 661

Discrete Event Simulation
Jerry Banks
AutoSimulations, Inc.

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 663

I. DEFINITION OF SIMULATION
II. SIMULATION EXAMPLE

III. MODELING CONCEPTS

IV. ADVANTAGES AND DISADVANTAGES OF SIMULATION
V. STEPS IN A SIMULATION STUDY

GLOSSARY

discrete-event simulation model One in which the
state variables change only at those discrete points
in time at which events occur.

event An occurrence that changes the state of the
system.

model A representation of a real system.
simulation The imitation of the operation of a real-

world process or system over time. Simulation in-
volves the generation of an artificial history of the
system, and the observation of that artificial history
to draw inferences concerning the operating char-
acteristics of the real system that is represented.

system state variables Collection of all information
needed to define what is happening within the sys-
tem to a sufficient level (i.e., to attain the desired
output) at a given point in time.

I. DEFINITION OF SIMULATION

Simulation is the imitation of the operation of a real-
world process or system over time. Simulation involves
the generation of an artificial history of the system,
and the observation of that artificial history to draw
inferences concerning the operating characteristics
of the real system that is represented.

Simulation is an indispensable problem-solving
methodology for the solution of many real-world prob-
lems. Simulation is used to describe and analyze the
behavior of a system, ask “what if ” questions about
the real system, and aid in the design of real systems.

Both existing and conceptual systems can be modeled
with simulation.

II. SIMULATION EXAMPLE

Consider the operation of a one-teller bank where
customers arrive for service between one and ten min-
utes apart in time, integer values only, each value
equally likely. The customers are served in a time be-
tween 1 and 6 minutes, also integer valued, and
equally likely. Restricting the times to integer values is
an abstraction of reality, since time is continuous, but
this aids in presenting the example. The objective is
to simulate the bank operation, by hand, until twenty
customers are served, and to compute measures of
performance such as the percentage of idle time of
the teller, the average waiting time per customer, etc.
Admittedly, twenty customers is far too few to draw
conclusions about the operation of the system for the
long run.

To simulate the process, random interarrival and
service times need to be generated. Assume that the
interarrival times are generated using a spinner that
has possibilities for the values 1 through 10. Further
assume that the service times are generated using a
die that has possibilities for the values 1 through 6.

Table I is called an ad hoc simulation table. The
setup of the simulation table is for the purpose of this
problem, but does not pertain to all problems.

Column 1, Customer, lists the 20 customers that ar-
rive to the system. It is assumed that Customer 1 ar-
rives at time 0, thus a dash is indicated in Row 1 of

Column 2, Time between Arrivals. Rows 2 through 20
of Column 2 were generated using the spinner. Col-
umn 3, Arrival Time, shows the simulated arrival times.
Since Customer 1 is assumed to arrive at time 0, and
there is a 5-minute interarrival time, Customer 2 ar-
rives at time 5. There is a 1-minute interarrival time
for Customer 3, thus, the arrival occurs at time 6. This
process of adding the interarrival time to the previous
arrival time is called bootstrapping. By continuing
this process, the arrival times of all 20 customers are
determined. Column 4, Service Time, contains the
simulated service times for all 20 customers. These
were generated by rolling the die.

Now, the simulation of the service process begins.
At time 0, Customer 1 arrived, and immediately be-
gan service. The service time was 2 minutes, so the
service period ended at time 2. The total time in the
system for Customer 1 was 2 minutes. The bank teller
was not idle since the simulation began with the ar-
rival of a customer. The customer did not have to wait
for the teller.

At time 5, Customer 2 arrived, and immediately be-
gan service as shown in Column 5. The service time
was 2 minutes so the service period ended at time 7
as shown in Column 6. The bank teller was idle from
time 2 until time 5, so 3 minutes of idle time occurred.
Customer 2 spent no time in the queue.

Customer 3 arrived at time 6, but service could not
begin until time 7 as Customer 2 was being served un-
til time 7. The service time was 6 minutes, so service
was completed at time 13. Customer 3 was in the sys-
tem from time 6 until time 13, or for 7 minutes as in-

dicated in Column 7, Time in System. Although there
was no idle time, Customer 3 had to wait in the queue
for 1 minute for service to begin.

This process continues for all 20 customers, and
the totals shown in Columns 7 (Time in System), 8
(Idle Time), and 9 (Time in Queue) are entered.
Some performance measures can now be calculated
as follows:

Average time in system � 72/20 � 3.6 minutes

% idle time � [34/99](100) � 34%

Average waiting time per customer � 10/20 �
0.5 minutes

Fraction having to wait � 5/20 � 0.25

Average waiting time of those that waited � 7/3 �
2.33 minutes

This very limited simulation indicates that the sys-
tem is functioning well. Only 25% of the customers
had to wait. About one-third of the time the teller is
idle. Whether a slower teller should replace the cur-
rent teller depends on the cost of having to wait ver-
sus any savings from having a slower server.

This small simulation can be accomplished by
hand, but there is a limit to the complexity of prob-
lems that can be solved in this manner. Also, the num-
ber of customers that must be simulated could be
much larger than 20 and the number of times that
the simulation must be run for statistical purposes
could be large. Hence, using the computer to solve
real simulation problems is almost always appropriate.

664 Discrete Event Simulation

Table I Ad Hoc Simulation

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Time Time Time

between Arrival Service Service service in Idle in
Customer arrivals time time begins ends system time Queue Time

1 — 0 2 0 2 2 0 0

2 5 5 2 5 7 2 3 0

3 1 6 6 7 13 7 0 1

—

—

—

18 4 84 5 84 89 5 0 0

19 7 91 3 91 94 3 2 0

20 7 98 1 98 99 1 4 0

Totals 72 34 7

III. MODELING CONCEPTS

There are several concepts underlying simulation.
These include system and model, events, system state
variables, entities and attributes, list processing, activ-
ities and delays, and finally the definition of discrete-
event simulation.

A. System, Model, and Events

A model is a representation of an actual system. Im-
mediately, there is a concern about the limits or
boundaries of the model that supposedly represents
the system. The model should be complex enough to
answer the questions raised, but not too complex.

Consider an event as an occurrence that changes
the state of the system. In the example, events include
the arrival of a customer for service at the bank, the
beginning of service for a customer, and the comple-
tion of a service.

There are both internal and external events, also
called endogenous and exogenous events, respec-
tively. For example, an endogenous event in the ex-
ample is the beginning of service of the customer
since that is within the system being simulated. An ex-
ogenous event is the arrival of a customer for service
since that occurrence is outside of the system. How-
ever, the arrival of a customer for service impinges on
the system, and must be taken into consideration.

This encyclopedia entry is concerned with discrete-
event simulation models. These are contrasted with
other types of models such as mathematical models,
descriptive models, statistical models, and input-
output models. A discrete-event model attempts to
represent the components of a system and their in-
teractions to such an extent that the objectives of the
study are met. Most mathematical, statistical, and
input-output models represent a system’s inputs and
outputs explicitly, but represent the internals of the
model with mathematical or statistical relationships.
An example is the mathematical model from physics,

Force � Mass � Acceleration

based on theory. Discrete-event simulation models in-
clude a detailed representation of the actual internals.

Discrete-event models are dynamic, i.e., the pas-
sage of time plays a crucial role. Most mathematical
and statistical models are static in that they represent
a system at a fixed point in time. Consider the annual
budget of a firm. This budget resides in a spread-
sheet. Changes can be made in the budget and the

spreadsheet can be recalculated, but the passage of
time is usually not a critical issue. Further comments
will be made about discrete-event models after several
additional concepts are presented.

B. System State Variables

The system state variables are the collection of all in-
formation needed to define what is happening within
the system to a sufficient level (i.e., to attain the de-
sired output) at a given point in time. The determina-
tion of system state variables is a function of the pur-
poses of the investigation, so what may be the system
state variables in one case may not be the same in an-
other case, even though the physical system is the same.
Determining the system state variables is as much an
art as a science. However, during the modeling process,
any omissions will readily come to light. (On the other
hand, unnecessary state variables may be eliminated.)

In the bank teller example, we might have the fol-
lowing system state variables—at clock time 5 we might
have system state variables LQ(5) � 0 and LS(5) � 1.
This is interpreted as the number in the queue at time
5 is 0, and the number in the system at time 5 is 1.

Having defined system state variables and given an
example, a contrast can be made between discrete-
event models and continuous models based on the
variables needed to track the system state. The system
state variables in a discrete-event model remain con-
stant over intervals of time and change value only at
certain well-defined points called event times. Con-
tinuous models have system state variables defined by
differential or difference equations giving rise to vari-
ables that may change continuously over time.

Some models are mixed discrete-event and contin-
uous. There are also continuous models that are
treated as discrete-event models after some reinter-
pretation of system state variables, and vice versa.

C. Entities and Attributes

An entity represents an object that requires explicit
definition. An entity can be dynamic in that it “moves”
through the system, or it can be static in that it serves
other entities. In the example, the customer is a dy-
namic entity, whereas the bank teller is a static entity.

An entity may have attributes that pertain to that
entity alone. Thus, attributes should be considered as
local values. In the example, an attribute of the entity
could be the time of arrival. Attributes of interest in

Discrete Event Simulation 665

one investigation may not be of interest in another in-
vestigation. Thus, if red parts and blue parts are be-
ing manufactured, the color could be an attribute.
However, if the time in the system for all parts is of
concern, the attribute of color may not be of impor-
tance. From this example, it can be seen that many
entities can have the same attribute or attributes (i.e.,
more than one part may have the attribute “red”).

D. Resources

A resource is an entity that provides service to dy-
namic entities. The resource can serve one or more
than one dynamic entity at the same time, i.e., oper-
ate as a parallel server. A dynamic entity can request
one or more units of a resource. If denied, the re-
questing entity joins a queue, or takes some other ac-
tion (i.e., diverted to another resource, ejected from
the system). (Other terms for queues include files,
chains, buffers, and waiting lines.) If permitted to
capture the resource, the entity remains for a time,
then releases the resource. In the bank example, the
teller is a resource.

There are many possible states of the resource.
Minimally, these states are idle and busy. But other
possibilities exist including failed, blocked, or starved.

E. List Processing

Entities are managed by allocating them to resources
that provide service, by attaching them to event no-
tices thereby suspending their activity into the future,
or by placing them into an ordered list. Lists are used
to represent queues.

Lists are often processed according to first in first
out (FIFO), but there are many other possibilities.
For example, the list could be processed by last in first
out (LIFO), according to the value of an attribute, or
randomly, to mention a few. An example where the
value of an attribute may be important is in shortest
processing time (SPT) scheduling. In this case, the
processing time may be stored as an attribute of each
entity. The entities are ordered according to the value
of that attribute with the lowest value at the head or
front of the queue.

F. Activities and Delays

An activity is a duration of time whose duration is
known prior to commencement of the activity. Thus,

when the duration begins, its end can be scheduled.
The duration can be a constant, a random value from
a statistical distribution, the result of an equation, in-
put from a file, or computed based on the event state.
For example, a service time may be a constant 10 min-
utes for each entity; it may be a random value from
an exponential distribution with a mean of 10 min-
utes; it could be 0.9 times a constant value from clock
time 0 to clock time 4 hours, and 1.1 times the stan-
dard value after clock time 4 hours; or it could be 10
minutes when the preceding queue contains at most
4 entities and 8 minutes when there are 5 or more in
the preceding queue.

A delay is an indefinite duration that is caused by
some combination of system conditions. When an en-
tity joins a queue for a resource, the time that it will
remain in the queue may be unknown initially since
that time may depend on other events that may occur.
An example of another event would be the arrival of
a rush order that preempts the resource. When the
preemption occurs, the entity using the resource re-
linquishes its control instantaneously. Another exam-
ple is a failure necessitating repair of the resource.

Discrete-event simulations contain activities that
cause time to advance. Most discrete-event simula-
tions also contain delays as entities wait. The begin-
ning and ending of an activity or delay is an event.

G. Discrete-Event Simulation Model

Sufficient modeling concepts have been defined so
that a discrete-event simulation model can be defined
as one in which the state variables change only at
those discrete points in time at which events occur.
Events occur as a consequence of activity times and
delays. Entities may compete for system resources,
possibly joining queues while waiting for an available
resource. Activity and delay times may “hold” entities
for durations of time.

A discrete-event simulation model is conducted
over time (“run”) by a mechanism that moves simu-
lated time forward. The system state is updated at
each event along with capturing and freeing of re-
sources that may occur at that time.

IV. ADVANTAGES AND DISADVANTAGES
OF SIMULATION

Competition in the computer industry has led to tech-
nological breakthroughs that are allowing hardware
companies to continually produce better products. It

666 Discrete Event Simulation

seems that every week another company announces
its latest release, each with more options, memory,
graphics capability, and power.

What is unique about new developments in the
computer industry is that they often act as a spring-
board for other related industries to follow. One in-
dustry in particular is the simulation-software indus-
try. As computer hardware becomes more powerful,
more accurate, faster, and easier to use, simulation
software does too.

The number of businesses using simulation is
rapidly increasing. Many managers are realizing the
benefits of utilizing simulation for more than just the
one-time remodeling of a facility. Rather, due to ad-
vances in software, managers are incorporating simu-
lation in their daily operations on an increasingly reg-
ular basis.

A. Advantages

For most companies, the benefits of using simulation
go beyond just providing a look into the future. These
benefits are mentioned by many authors and are in-
cluded in the following:

• Choose correctly. Simulation lets you test every
aspect of a proposed change or addition without
committing resources to their acquisition. This is
critical, because once the hard decisions have been
made, the bricks have been laid, or the material-
handling systems have been installed, changes and
corrections can be extremely expensive. Simulation
allows you to test your designs without committing
resources to acquisition.

• Time compression and expansion. By
compressing or expanding time simulation allows
you to speed up or slow down phenomena so that
you can thoroughly investigate them. You can
examine an entire shift in a matter of minutes if you
desire, or you can spend two hours examining all
the events that occurred during one minute of
simulated activity.

• Understand “Why?” Managers often want to
know why certain phenomena occur in a real
system. With simulation, you determine the answer
to the “why” questions by reconstructing the scene
and taking a microscopic examination of the system
to determine why the phenomenon occurs. You
cannot accomplish this with a real system because
you cannot see or control it in its entirety.

• Explore possibilities. One of the greatest
advantages of using simulation software is that once

you have developed a valid simulation model, you
can explore new policies, operating procedures, or
methods without the expense and disruption of
experimenting with the real system. Modifications
are incorporated in the model, and you observe the
effects of those changes on the computer rather
than the real system.

• Diagnose problems. The modern factory floor
or service organization is very complex—so complex
that it is impossible to consider all the interactions
taking place in one given moment. Simulation
allows you to better understand the interactions
among the variables that make up such complex
systems. Diagnosing problems and gaining insight
into the importance of these variables increases your
understanding of their important effects on the
performance of the overall system.

The last three claims can be made for virtually all
modeling activities, queueing, linear programming,
etc. However, with simulation the models can become
very complex and, thus, have a higher fidelity, i.e.,
they are valid representations of reality.

• Identify constraints. Production bottlenecks
give manufacturers headaches. It is easy to forget
that bottlenecks are an effect rather than a cause.
However, by using simulation to perform bottleneck
analysis, you can discover the cause of the delays in
work-in-process, information, materials, or other
processes.

• Develop understanding. Many people operate
with the philosophy that talking loudly, using
computerized layouts, and writing complex reports
convinces others that a manufacturing or service
system design is valid. In many cases these designs
are based on someone’s thoughts about the way the
system operates rather than on analysis. Simulation
studies aid in providing understanding about how a
system really operates rather than indicating an
individual’s predictions about how a system will
operate.

• Visualize the plan. Taking your designs beyond
CAD drawings by using the animation features
offered by many simulation packages allows you to
see your facility or organization actually running.
Depending on the software used, you may be able to
view your operations from various angles and levels
of magnification, even 3-D. This allows you to detect
design flaws that appear credible when seen just on
paper in a 2-D CAD drawing.

• Build consensus. Using simulation to present
design changes creates an objective opinion. You

Discrete Event Simulation 667

avoid having inferences made when you approve or
disapprove of designs because you simply select the
designs and modifications that provided the most
desirable results, whether it be increasing
production or reducing the waiting time for service.
In addition, it is much easier to accept reliable
simulation results, which have been modeled, tested,
validated, and visually represented, instead of one
person’s opinion of the results that will occur from a
proposed design.

• Prepare for change. We all know that the future
will bring change. Answering all of the “what-if ”
questions is useful for both designing new systems
and redesigning existing systems. Interacting with all
those involved in a project during the problem-
formulation stage gives you an idea of the scenarios
that are of interest. Then you construct the model so
that it answers questions pertaining to those
scenarios. What if an automated guided vehicle
(AGV) is removed from service for an extended
period of time? What if demand for service increases
by 10%? What if . . . ? The options are unlimited.

• Wise investment. The typical cost of a simulation
study is substantially less than 1% of the total amount
being expended for the implementation of a design
or redesign. Since the cost of a change or
modification to a system after installation is so great,
simulation is a wise investment.

• Train the team. Simulation models can provide
excellent training when designed for that purpose.
Used in this manner, the team provides decision
inputs to the simulation model as it progresses. The
team, and individual members of the team, can
learn by their mistakes, and learn to operate better.
This is much less expensive and less disruptive than
on-the-job learning.

• Specify requirements. Simulation can be used
to specify requirements for a system design. For
example, the specifications for a particular type of
machine in a complex system to achieve a desired
goal may be unknown. By simulating different
capabilities for the machine, the requirements can
be established.

B. Disadvantages

The disadvantages of simulation include the following:

• Model building requires special training. It is
an art that is learned over time and through
experience. Furthermore, if two models of the same
system are constructed by two competent

individuals, they may have similarities, but it is
highly unlikely that they will be the same.

• Simulation results may be difficult to interpret.
Since most simulation outputs are essentially
random variables (they are usually based on random
inputs), it may be hard to determine whether an
observation is a result of system interrelationships or
randomness.

• Simulation modeling and analysis can be time-
consuming and expensive. Skimping on resources
for modeling and analysis may result in a simulation
model and/or analysis that is not sufficient for
the task.

• Simulation may be used inappropriately.
Simulation is used in some cases when an analytical
solution is possible, or even preferable. This is
particularly true in the simulation of some waiting
lines where closed-form queueing models are
available, at least for long-run evaluation.

C. Offsetting the Disadvantages

In defense of simulation, these four disadvantages, re-
spectively, can be offset as follows:

• Simulators. Vendors of simulation software have
been actively developing packages that contain
models that only need input data for their
operation. Such models have the generic tag
“simulators” or templates.

• Output analysis. Most simulation-software
vendors have developed output-analysis capabilities
within their packages for performing very extensive
analysis. This reduces the computational
requirements on the part of the user, although they
still must understand the analysis procedure.

• Faster and faster. Simulation can be performed
faster today than yesterday, and even faster
tomorrow. This is attributable to the advances in
hardware that permit rapid running of scenarios. It
is also attributable to the advances in many
simulation packages. For example, many simulation
software products contain constructs for modeling
material handling using transporters such as
conveyors, and automated guided vehicles.

• Limitations of closed-form models. Closed-form
models are not able to analyze most of the complex
systems that are encountered in practice. In nearly
fourteen years of the author’s consulting practice
and current employment with a simulation software
and consulting vendor, not one problem was
encountered that could have been solved by a
closed-form solution.

668 Discrete Event Simulation

V. STEPS IN A SIMULATION STUDY

Figure 1 shows a set of steps to guide a model builder
in a thorough and sound simulation study.

1. Problem Formulation

Every simulation study begins with a statement of the
problem. If the statement is provided by those that
have the problem (client), the simulation analyst must
take extreme care to insure that the problem is clearly
understood. If a problem statement is prepared by
the simulation analyst, it is important that the client
understand and agree with the formulation. It is sug-
gested that a set of assumptions be prepared by the
simulation analyst and agreed to by the client. Even
with all of these precautions, it is possible that the
problem will need to be reformulated as the simula-
tion study progresses.

2. Setting of Objectives and
Overall Project Plan

Another way to state this step is “prepare a proposal.”
This step should be accomplished regardless of loca-
tion of the analyst and client, viz., as an external or
internal consultant. The objectives indicate the ques-
tions that are to be answered by the simulation study.
The project plan should include a statement of the
various scenarios that will be investigated. The plans
for the study should be indicated in terms of time that
will be required, personnel that will be used, hard-
ware and software requirements if the client wants to
run the model and conduct the analysis, stages in the
investigation, output at each stage, cost of the study
and billing procedures, if any.

3. Model Conceptualization

The real-world system under investigation is abstracted
by a conceptual model, a series of mathematical and
logical relationships concerning the components and
the structure of the system. It is recommended that
modeling begin simply and that the model grow un-
til a model of appropriate complexity has been de-
veloped. For example, consider the model of a man-
ufacturing and material-handling system. The basic
model with the arrivals, queues, and servers is con-
structed. Then, add the failures and shift schedules.
Next, add the material-handling capabilities. Finally,
add the special features. Constructing an unduly com-
plex model will add to the cost of the study and the
time for its completion without increasing the quality
of the output. Maintaining client involvement will en-

hance the quality of the resulting model and increase
the client’s confidence in its use.

4. Data Collection

Shortly after the proposal is “accepted” a schedule of
data requirements should be submitted to the client. In

Discrete Event Simulation 669

Figure 1 Steps in a simulation study. [Reprinted with permis-
sion from Banks, J., Carson, J. S., Nelson, B. L., and Nicol,
D. M. (2000). Discrete event system simulation, 3rd ed. Englewood
Cliffs, NJ: Prentice Hall.]

the best of circumstances, the client has been collecting
the kind of data needed in the format required, and can
submit these data to the simulation analyst in electronic
format. Oftentimes, the client indicates that the required
data are indeed available. However, when the data are
delivered they are found to be quite different than an-
ticipated. For example, in the simulation of an airline
reservation system, the simulation analyst was told “we
have every bit of data that you want over the last five
years.” When the study commenced, the data delivered
were the average “talk time” of the reservationist for
each of the years. Individual values were needed, not
summary measures. Model building and data collection
are shown as contemporaneous in Fig. 1. This is to in-
dicate that the simulation analyst can readily construct
the model while the data collection is progressing.

5. Model Translation

The conceptual model constructed in Step 3 is coded
into a computer recognizable form, an operational
model.

6. Verified?

Verification concerns the operational model. Is it per-
forming properly? Even with small textbook-sized mod-
els, it is quite possible that they have verification diffi-
culties. These models are orders of magnitude smaller
than real models (say 50 lines of computer code versus
2000 lines of computer code). It is highly advisable that
verification take place as a continuing process. It is ill
advised for the simulation analyst to wait until the en-
tire model is complete to begin the verification process.
Also, use of an interactive run controller, or debugger,
is highly encouraged as an aid to the verification process.

7. Validated?

Validation is the determination that the conceptual
model is an accurate representation of the real system.
Can the model be substituted for the real system for the
purposes of experimentation? If there is an existing sys-
tem, call it the base system, then an ideal way to validate
the model is to compare its output to that of the base
system. Unfortunately, there is not always a base system.
There are many methods for performing validation.

8. Experimental Design

For each scenario that is to be simulated, decisions
need to be made concerning the length of the simu-
lation run, the number of runs (also called replica-
tions), and the manner of initialization, as required.

9. Production Runs and Analysis

Production runs, and their subsequent analysis, are
used to estimate measures of performance for the sce-
narios that are being simulated.

10. More Runs?

Based on the analysis of runs that have been com-
pleted, the simulation analyst determines if additional
runs are needed and if any additional scenarios need
to be simulated.

11. Documentation and Reporting

Documentation is necessary for numerous reasons. If
the simulation model is going to be used again by the
same or different analysts, it may be necessary to un-
derstand how the simulation model operates. This
will enable confidence in the simulation model so
that the client can make decisions based on the analy-
sis. Also, if the model is to be modified, this can be
greatly facilitated by adequate documentation.

The result of all the analysis should be reported
clearly and concisely. This will enable the client to
review the final formulation, the alternatives that
were addressed, the criterion by which the
alternative systems were compared, the results of the
experiments, and analyst recommendations, if any.

12. Implementation

The simulation analyst acts as a reporter rather than
an advocate. The report prepared in Step 11 stands
on its merits, and is just additional information that
the client uses to make a decision. If the client has
been involved throughout the study period, and the
simulation analyst has followed all of the steps rigor-
ously, then the likelihood of a successful implemen-
tation is increased.

SEE ALSO THE FOLLOWING ARTICLES

Continuous System Simulation • Model Building Process •
Optimization Models • Simulation Languages • Software
Process Simulation

BIBLIOGRAPHY

Banks, J., ed. (1998). Handbook of simulation: Principles, methodol-
ogy, advances, applications, and practice. New York: John Wiley.

670 Discrete Event Simulation

Banks, J., Carson, J. S., Nelson, B. L., and Nicol, D. M. (2000).
Discrete event system simulation, 3rd ed. Upper Saddle River,
NJ: Prentice Hall.

Banks, J., and Norman, V. (November 1995). Justifying
simulation in today’s manufacturing environment. IIE
Solutions.

Carson, J. S. (1993). Modeling and simulation world views, in
Proceedings of the 1993 Winter Simulation Conference, (G. W.
Evans, M. Mollaghasemi, E. C. Russell, and W. E. Biles, eds.)

pp. 18–23, 1–4, Piscataway, NJ: Institute of Electrical and
Electronics Engineers.

Law, A. M., and Kelton, W. D. (2000). Simulation modeling and
analysis, 3rd ed. New York: McGraw-Hill.

Pegden, C. D., Shannon, R. E., and Sadowski, R. P. (1995). In-
troduction to simulation using SIMAN, 2nd ed. New York:
McGraw-Hill.

Schriber, T. J. (1991). An introduction to simulation using GPSS/H.
New York: John Wiley.

Discrete Event Simulation 671

Distributed Databases
M. Tamer Özsu
University of Waterloo

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 673

I. INTRODUCTION
II. DATA DISTRIBUTION ALTERNATIVES

III. ARCHITECTURAL ALTERNATIVES
IV. OVERVIEW OF TECHNICAL ISSUES

V. DISTRIBUTED QUERY OPTIMIZATION
VI. DISTRIBUTED CONCURRENCY CONTROL

VII. DISTRIBUTED RELIABILITY PROTOCOLS
VIII. REPLICATION PROTOCOLS

GLOSSARY

atomicity The property of transaction processing
whereby either all the operations of a transaction
are executed or none of them are (all-or-nothing).

client/server architecture A distributed/parallel
DBMS architecture where a set of client machines
with limited functionality access a set of servers
which manage data.

concurrency control algorithm Algorithm that syn-
chronize the operations of concurrent transactions
that execute on a shared database.

deadlock An occurrence where each transaction in a
set of transactions circularly waits on locks that are
held by other transactions in the set.

distributed database management system A database
management system that manages a database that is
distributed across the nodes of a computer network
and makes this distribution transparent to the users.

durability The property of transaction processing
whereby the effects of successfully completed (i.e.,
committed) transactions endure subsequent failures.

isolation The property of transaction execution which
states that the effects of one transaction on the
database are isolated from other transactions until
the first completes its execution.

locking A method of concurrency control where locks
are placed on database units (e.g., pages) on be-
half of transactions that attempt to access them.

logging protocol The protocol that records, in a sep-
arate location, the changes that a transaction makes
to the database before the change is actually made.

one copy equivalence Replica control policy that as-
serts that the values of all copies of a logical data
item should be identical when the transaction that
updates that item terminates.

query optimization The process by which the “best”
execution strategy for a given query is found from
among a set of alternatives.

query processing The process by which a declarative
query is translated into low-level data manipulation
operations.

quorum-based voting algorithm A replica control proto-
col where transactions collect votes to read and write
copies of data items. They are permitted to read or
write data items if they can collect a quorum of votes.

read-once/write-all protocol (ROWA) The replica
control protocol which maps each logical read op-
eration to a read on one of the physical copies and
maps a logical write operation to a write on all of
the physical copies.

serializability The concurrency control correctness cri-
terion that requires that the concurrent execution
of a set of transactions be equivalent to the effect of
some serial execution of those transactions.

termination protocol A protocol by which individual
sites can decide how to terminate a particular trans-
action when they cannot communicate with other
sites where the transaction executes.

transaction A unit of consistent and atomic execution
against the database.

transparency Extension of data independence to dis-
tributed systems by hiding the distribution, frag-
mentation, and replication of data from the users.

two-phase commit (2PC) An atomic commitment pro-
tocol that ensures that a transaction is terminated
the same way at every site where it executes. The
name comes from the fact that two rounds of mes-
sages are exchanged during this process.

two-phase locking A locking algorithm where trans-
actions are not allowed to request new locks once
they release a previously held lock.

I. INTRODUCTION

The maturation of database management system
(DBMS) technology has coincided with significant de-
velopments in computer network and distributed
computing technologies. The end result is the emer-
gence of distributed DBMS. These systems have started
to become the dominant data management tools for
highly data-intensive applications. Many DBMS ven-
dors have incorporated some degree of distribution
into their products.

A distributed database (DDB) is a collection of mul-
tiple, logically interrelated databases distributed over
a computer network. A distributed database management
system (distributed DBMS) is the software system that
permits the management of the distributed database
and makes the distribution transparent to the users.
The term “distributed database system” (DDBS) is typ-
ically used to refer to the combination of DDB and
the distributed DBMS. These definitions point to two
identifying architectural principles. The first is that
the system consists of a (possibly empty) set of query
sites and a nonempty set of data sites. The data sites
have data storage capability while the query sites do
not. The latter only run the user interface routines in
order to facilitate the data access at data sites. The
second is that each site (query or data) is assumed to
logically consist of a single, independent computer.
Therefore, each site has its own primary and sec-
ondary storage, runs its own operating system (which
may be the same or different at different sites), and
has the capability to execute applications on its own.
A computer network, rather than a multiprocessor
configuration, interconnects the sites. The important
point here is the emphasis on loose interconnection
between processors that have their own operating sys-
tems and operate independently.

II. DATA DISTRIBUTION ALTERNATIVES

A distributed database is physically distributed across
the data sites by fragmenting and replicating the data.

Given a relational database schema, fragmentation
subdivides each relation into horizontal or vertical
partitions. Horizontal fragmentation of a relation is ac-
complished by a selection operation that places each
tuple of the relation in a different partition based on
a fragmentation predicate (e.g., an Employee rela-
tion may be fragmented according to the location of
the employees). Vertical fragmentation divides a rela-
tion into a number of fragments by projecting over its
attributes (e.g., the Employee relation may be frag-
mented such that the Emp_number, Emp_name, and
Address information is in one fragment, and
Emp_number, Salary, and Manager information is
in another fragment). Fragmentation is desirable be-
cause it enables the placement of data in close prox-
imity to its place of use, thus potentially reducing
transmission cost, and it reduces the size of relations
that are involved in user queries. Based on the user
access patterns, each of the fragments may also be
replicated. This is preferable when the same data are
accessed from applications that run at a number of
sites. In this case, it may be more cost-effective to du-
plicate the data at a number of sites rather than con-
tinuously moving it between them. Figure 1 depicts a
data distribution where Employee, Project, and
Assignment relations are fragmented, replicated,
and distributed across multiple sites of a distributed
database.

III. ARCHITECTURAL ALTERNATIVES

There are many possible alternatives for architecting
a distributed DBMS. The simplest is the client/server
architecture, where a number of client machines access
a single database server. The simplest client/server
systems involve a single server that is accessed by a
number of clients (these can be called multiple-
client/single-server). In this case, the database manage-
ment problems are considerably simplified since the
database is stored on a single server. The pertinent is-
sues relate to the management of client buffers and
the caching of data and (possibly) locks. The data
management is done centrally at the single server. A
more distributed, and more flexible, architecture is
the multiple-client/multiple-server architecture where the
database is distributed across multiple servers that
have to communicate with each other in responding
to user queries and in executing transactions. Each
client machine has a “home” server to which it directs
user requests. The communication of the servers
among themselves is transparent to the users. Most
current DBMSs implement one or the other type of

674 Distributed Databases

the client/server architectures. A truly distributed
DBMS does not distinguish between client and server
machines. Ideally, each site can perform the func-
tionality of a client and a server. Such architectures,
called peer-to-peer, require sophisticated protocols to
manage data that is distributed across multiple sites.
The complexity of required software has delayed the
offering of peer-to-peer distributed DBMS products.

If the DDBSs at various sites are autonomous and
(possibly) exhibit some form of heterogeneity, they are
usually referred to as multidatabase systems or federated
database systems. If the data and DBMS functionality dis-
tribution is accomplished on a multiprocessor com-
puter, then it is referred to as a parallel database system.
These are different than a DDBS where the logical in-
tegration among distributed data is tighter than is the
case with multidatabase systems or federated database
systems, but the physical control is looser than that in
parallel DBMSs. In this article, we do not consider mul-
tidatabase systems or parallel database systems.

IV. OVERVIEW OF TECHNICAL ISSUES

A distributed DBMS has to provide the same func-
tionality that its centralized counterparts provide, such
as support for declarative user queries and their opti-
mization, transactional access to the database involv-
ing concurrency control and reliability, enforcement
of integrity constraints, and others. In the remaining
sections we discuss some of these functions; in this
section we provide a brief overview.

Query processing deals with designing algorithms that
analyze queries and convert them into a series of data

manipulation operations. Besides the methodological
issues, an important aspect of query processing is
query optimization. The problem is how to decide on a
strategy for executing each query over the network in
the most cost-effective way, however, cost is defined.
The factors to be considered are the distribution of
data, communication costs, and lack of sufficient lo-
cally available information. The objective is to opti-
mize where the inherent parallelism of the distrib-
uted system is used to improve the performance of
executing the query, subject to the above-mentioned
constraints. The problem is NP—hard in nature—
and the approaches are usually heuristic.

User accesses to shared databases are formulated
as transactions, which are units of execution that sat-
isfy four properties: atomicity, consistency, isolation, and
durability—jointly known as the ACID properties.
Atomicity means that a transaction is an atomic unit
and either the effects of all of its actions are reflected
in the database, or none of them are. Consistency
generally refers to the correctness of the individual
transactions; i.e., that a transaction does not violate
any of the integrity constraints that have been defined
over the database. Isolation addresses the concurrent
execution of transactions and specifies that actions of
concurrent transactions do not impact each other. Fi-
nally, durability concerns the persistence of database
changes in the face of failures. The ACID properties
are enforced by means of concurrency control algo-
rithms and reliability protocols.

Concurrency control involves the synchronization of
accesses to the distributed database, such that the in-
tegrity of the database is maintained. The concurrency
control problem in a distributed context is somewhat

Distributed Databases 675

Paris

San
FranciscoToronto

Boston

Communication
Network

Boston employees, Paris employees,
Boston projects

Toronto employees,
Toronto projects, Paris projects

San Francisco employees,
San Francisco projects

Paris employees, Boston employees,
Paris projects, Boston projects

Figure 1 A fragmented, replicated, and distributed database example.

different than in a centralized framework. One not
only has to worry about the integrity of a single data-
base, but also about the consistency of multiple copies
of the database. The condition that requires all the
values of multiple copies of every data item to con-
verge to the same value is called mutual consistency.

Reliability protocols deal with the termination of trans-
actions, in particular, their behavior in the face of fail-
ures. In addition to the typical failure types (i.e., trans-
action failures and system failures), distributed DBMSs
have to account for communication (network) failures
as well. The implication of communication failures is
that, when a failure occurs and various sites become
either inoperable or inaccessible, the databases at the
operational sites remain consistent and up to date.
This complicates the picture, as the actions of these
sites have to be eventually reconciled with those of
failed ones. Therefore, recovery protocols coordinate
the termination of transactions so that they terminate
uniformly (i.e., they either abort or they commit) at
all the sites where they execute. Furthermore, when
the computer system or network recovers from the
failure, the distributed DBMS should be able to re-
cover and bring the databases at the failed sites up to
date. This may be especially difficult in the case of net-
work partitioning, where the sites are divided into two
or more groups with no communication among them.

Distributed databases are typically replicated; that
is, a number of the data items reside at more than
one site. Replication improves performance (since
data access can be localized) and availability (since
the failure of a site does not make a data item inac-
cessible). However, management of replicated data
requires that the values of multiple copies of a data
item are the same. This is called the one copy equiva-
lence property. Distributed DBMSs that allow repli-
cated data implement replication protocols to enforce
one copy equivalence.

V. DISTRIBUTED QUERY OPTIMIZATION

Query processing is the process by which a declarative
query is translated into low-level data manipulation
operations. SQL is the standard query language that
is supported in current DBMSs. Query optimization
refers to the process by which the “best” execution
strategy for a given query is found from among a set
of alternatives.

In distributed DBMSs, the process typically involves
four steps (Fig. 2): (1) query decomposition; (2) data
localization; (3) global optimization; and (4) local op-
timization. Query decomposition takes an SQL query
and translates it into one expressed in relational alge-

bra. In the process, the query is analyzed semantically
so that incorrect queries are detected and rejected as
early as possible, and correct queries are simplified.
Simplification involves the elimination of redundant
predicates that may be introduced as a result of query
modification to deal with views, security enforcement,
and semantic integrity control. The simplified query is
then restructured as an algebraic query.

The initial algebraic query generated by the query
decomposition step is input to the second step: data lo-
calization. The initial algebraic query is specified on
global relations irrespective of their fragmentation or
distribution. The main role of data localization is to lo-
calize the query’s data using data distribution informa-
tion. In this step, the fragments that are involved in the
query are determined and the query is transformed
into one that operates on fragments rather than global
relations. As indicated earlier, fragmentation is defined
through fragmentation rules that can be expressed as
relational operations (horizontal fragmentation by se-
lection, vertical fragmentation by projection). A dis-
tributed relation can be reconstructed by applying the
inverse of the fragmentation rules. This is called a lo-
calization program. The localization program for a hori-
zontally (vertically) fragmented query is the union

676 Distributed Databases

QUERY
DECOMPOSITION

DATA
LOCALIZATION

CALCULUS QUERY ON DISTRIBUTED
RELATIONS

ALGEBRAIC QUERY ON DISTRIBUTED
RELATIONS

FRAGMENT QUERY

OPTIMIZED FRAGMENT QUERY
WITH COMMUNICATION OPERATIONS

LOCAL
OPTIMIZATION

OPTIMIZED LOCAL
QUERIES

GLOBAL
SCHEMA

FRAGMENT
SCHEMA

STATISTICS ON
FRAGMENTS

LOCAL
SCHEMA

CONTROL
SITE

LOCAL
SITES

GLOBAL
OPTIMIZATION

Figure 2 Distributed query processing methodology.

(join) of the fragments. Thus, during the data local-
ization step each global relation is first replaced by its
localization program, and then the resulting fragment
query is simplified and restructured to produce an
equivalent query that only involves fragments that con-
tribute to the query result. Simplification and restruc-
turing may be done according to the same rules used
in the decomposition step. As in the decomposition
step, the final fragment query is generally far from op-
timal; the process has only eliminated those queries
whose performance is likely to be worse (due to their
involvement of unnecessary fragments).

For a given SQL query, there is more than one pos-
sible algebraic query. Some of these algebraic queries
are “better” than others. The quality of an algebraic
query is defined in terms of expected performance.
The process of query optimization involves taking the
initial algebraic query and, using algebraic transforma-
tion rules, transforming it into other algebraic queries
until the “best” one is found. The “best” algebraic query
is determined according to a cost function that calcu-
lates the cost of executing the query according to that
algebraic specification. In a distributed setting, the
process involves global optimization to handle opera-
tions that involve data from multiple sites (e.g., join)
followed by local optimization for further optimizing
operations that will be performed at a given site.

The input to the third step, global optimization, is a
fragment query, that is, an algebraic query on frag-
ments. The goal of query optimization is to find an ex-
ecution strategy for the query that is close to optimal.
Remember that finding the optimal solution is com-
putationally intractable. An execution strategy for a dis-
tributed query can be described with relational algebra
operations and communication primitives (send/receive
operations) for transferring data between sites. The
previous layers have already optimized the query; for
example, by eliminating redundant expressions. How-
ever, this optimization is independent of fragment char-
acteristics such as cardinalities. In addition, communi-
cation operations are not yet specified. By permuting
the order of operations within one fragment query,
many equivalent query execution plans may be found.
Query optimization consists of finding the “best” one
among candidate plans examined by the optimizer.*

The final step, local optimization, takes a part of
the global query (called a subquery) that will run at a
particular site and optimizes it further. This step is
very similar to query optimization in centralized

DBMSs. Thus, it is at this stage that local information
about data storage, such as indexes, are used to de-
termine the best execution strategy for that subquery.

The query optimizer is usually modeled as consist-
ing of three components: a search space, a cost model,
and a search strategy. The search space is the set of al-
ternative execution plans to represent the input query.
These plans are equivalent, in the sense that they
yield the same result but they differ on the execution
order of operations and the way these operations are
implemented. The cost model predicts the cost of a
given execution plan. To be accurate, the cost model
must have accurate knowledge about the parallel ex-
ecution environment. The search strategy explores the
search space and selects the best plan. It defines which
plans are examined and in which order.

In a distributed environment, the cost function, of-
ten defined in terms of time units, refers to computing
resources such as disk space, disk I/Os, buffer space,
CPU cost, communication cost, etc. Generally, it is a
weighted combination of I/O, CPU, and communica-
tion costs. Nevertheless, a typical simplification made
by distributed DBMSs is to consider communication
cost as the most significant factor. This is valid for wide
area networks, where the limited bandwidth makes
communication much more costly than it is in local
processing. To select the ordering of operations it is
necessary to predict execution costs of alternative can-
didate orderings. Determining execution costs before
query execution (i.e., static optimization) is based on
fragment statistics and the formulas for estimating the
cardinalities of results of relational operations. Thus
the optimization decisions depend on the available sta-
tistics on fragments. An important aspect of query op-
timization is join ordering, since permutations of the
joins within the query may lead to improvements of
several orders of magnitude. One basic technique for
optimizing a sequence of distributed join operations is
through use of the semijoin operator. The main value
of the semijoin in a distributed system is to reduce the
size of the join operands and thus the communication
cost. However, more recent techniques, which consider
local processing costs as well as communication costs,
do not use semijoins because they might increase local
processing costs. The output of the query optimization
layer is an optimized algebraic query with communica-
tion operations included on fragments.

VI. DISTRIBUTED CONCURRENCY CONTROL

Whenever multiple users access (read and write) a
shared database, these accesses need to be synchronized
to ensure database consistency. The synchronization is

Distributed Databases 677

*The difference between an optimal plan and the best plan is
that the optimizer does not, because of computational intractabil-
ity, examine all of the possible plans.

achieved by means of concurrency control algorithms that
enforce a correctness criterion such as serializability.
User accesses are encapsulated as transactions, whose
operations at the lowest level are a set of read and
write operations to the database. Concurrency control
algorithms enforce the isolation property of transac-
tion execution, which states that the effects of one
transaction on the database are isolated from other
transactions until the first completes its execution.

The most popular concurrency control algorithms
are locking-based. In such schemes, a lock, in either
shared or exclusive mode, is placed on some unit of
storage (usually a page) whenever a transaction at-
tempts to access it. These locks can be two types:
shared, indicating that more than two transactions are
allowed to access the data, and exclusive, indicating
that the transaction needs to be the only one access-
ing data. Shared locks are also called read locks, since
two transactions can read the same data unit, while
exclusive locks are also called write locks, indicating
that two transactions cannot revise the values of the
data unit concurrently. The locks are placed accord-
ing to lock compatibility rules such that read-write,
write-read, and write-write conflicts are avoided. The
compatibility rules are the following:

1. If transaction T1 holds a shared lock on data unit
D1, transaction T2 can also obtain a shared lock
on D1 (no conflict).

2. If transaction T1 holds a shared lock on data unit
D1, transaction T2 cannot obtain an exclusive
lock on D1 (read-write conflict).

3. If transaction T1 holds an exclusive lock on data
unit D1, transaction T2 cannot obtain a shared
lock (write-read conflict) or an exclusive lock
(write-write conflict) on D1.

It is a well-known theorem that if lock actions on
behalf of concurrent transactions obey a simple rule,
then it is possible to ensure the serializability of these
transactions: “No lock on behalf of a transaction
should be set once a lock previously held by the trans-
action is released.” This is known as two-phase locking,
since transactions go through a growing phase when
they obtain locks and a shrinking phase when they re-
lease locks. In general, releasing of locks prior to the
end of a transaction is problematic. Thus, most of the
locking-based concurrency control algorithms are
strict in that they hold on to their locks until the end
of the transaction.

In distributed DBMSs, the challenge is to extend
both the serializability argument and the concurrency
control algorithms to the distributed execution envi-

ronment. In these systems, the operations of a given
transaction may execute at multiple sites where they
access data. In such a case, the serializability argu-
ment is more difficult to specify and enforce. The
complication is due to the fact that the serialization
order of the same set of transactions may be different
at different sites. Therefore, the execution of a set of
distributed transactions is serializable if and only if
the execution of the set of transactions at each site is
serializable, and the serialization orders of these trans-
actions at all these sites are identical.

Distributed concurrency control algorithms enforce
this notion of global serializability. In locking-based al-
gorithms there are three alternative ways of enforcing
global serializability: centralized locking, primary copy
locking, and distributed locking algorithm.

In centralized locking, there is a single lock table for
the entire distributed database. This lock table is
placed, at one of the sites, under the control of a sin-
gle lock manager. The lock manager is responsible
for setting and releasing locks on behalf of transac-
tions. Since all locks are managed at one site, this is
similar to centralized concurrency control and it is
straightforward to enforce the global serializability
rule. These algorithms are simple to implement, but
suffer from two problems. The central site may be-
come a bottleneck, both because of the amount of
work it is expected to perform and because of the
traffic that is generated around it; and the system may
be less reliable since the failure or inaccessibility of
the central site would cause system unavailability. Pri-
mary copy locking is a concurrency control algorithm
that is useful in replicated databases where there may
be multiple copies of a data item stored at different
sites. One of the copies is designated as a primary
copy and it is this copy that has to be locked in order
to access that item. All the sites know the set of pri-
mary copies for each data item in the distributed sys-
tem, and the lock requests on behalf of transactions
are directed to the appropriate primary copy. If the
distributed database is not replicated, copy locking
degenerates into a distributed locking algorithm.

In distributed (or decentralized) locking, the lock man-
agement duty is shared by all the sites in the system.
The execution of a transaction involves the participa-
tion and coordination of lock managers at more than
one site. Locks are obtained at each site where the
transaction accesses a data item. Distributed locking
algorithms do not have the overhead of centralized
locking ones. However, both the communication
overhead to obtain all the locks and the complexity of
the algorithm are greater.

One side effect of all locking-based concurrency

678 Distributed Databases

control algorithms is that they cause deadlocks. The de-
tection and management of deadlocks in a distributed
system is difficult. Nevertheless, the relative simplicity
and better performance of locking algorithms make
them more popular than alternatives such as timestamp-
based algorithms or optimistic concurrency control.

VII. DISTRIBUTED RELIABILITY PROTOCOLS

Two properties of transactions are maintained by re-
liability protocols: atomicity and durability. Atomicity
requires that either all the operations of a transaction
are executed or none of them are (all-or-nothing
property). Thus, the set of operations contained in a
transaction is treated as one atomic unit. Atomicity is
maintained in the face of failures. Durability requires
that the effects of successfully completed (i.e., com-
mitted) transactions endure subsequent failures.

The underlying issue addressed by reliability pro-
tocols is how the DBMS can continue to function
properly in the face of various types of failures. In a
distributed DBMS, four types of failures are possible:
transaction, site (system), media (disk), and communica-
tion. Transactions can fail for a number of reasons:
due to an error in the transaction caused by input
data or by an error in the transaction code, or the de-
tection of a present or potential deadlock. The usual
approach to take in cases of transaction failure is to
abort the transaction, resetting the database to its
state prior to the start of the database.

Site (or system) failures are due to a hardware fail-
ure (e.g., processor, main memory, power supply) or
a software failure (bugs in system code). The effect of
system failures is the loss of main memory contents.
Therefore, any updates to the parts of the database
that are in the main memory buffers (also called
volatile database) are lost as a result of system failures.
However, the database that is stored in secondary stor-
age (also called stable database) is safe and correct. To
achieve this, DBMSs typically employ logging protocols,
such as Write-Ahead Logging, which record changes
to the database in system logs and move these log
records and the volatile database pages to stable stor-
age at appropriate times. From the perspective of dis-
tributed transaction execution, site failures are im-
portant since the failed sites cannot participate in the
execution of any transaction.

Media failures refer to the failure of secondary stor-
age devices that store the stable database. Typically,
these failures are addressed by introducing redun-
dancy of storage devices and maintaining archival
copies of the database. Media failures are frequently

treated as problems local to one site and therefore
are not specifically addressed in the reliability mech-
anisms of distributed DBMSs.

The three types of failures described above are
common to both centralized and distributed DBMSs.
Communication failures, on the other hand, are
unique to distributed systems. There are a number of
types of communication failures. The most common
ones are errors in the messages, improperly ordered
messages, lost (or undelivered) messages, and line
failures. Generally, the first two of these are consid-
ered to be the responsibility of the computer network
protocols and are not addressed by the distributed
DBMS. The last two, on the other hand, have an im-
pact on the distributed DBMS protocols and, there-
fore, need to be considered in the design of these
protocols. If one site is expecting a message from an-
other site and this message never arrives, this may be
because (1) the message is lost, (2) the line(s) con-
necting the two sites may be broken, or (3) the site
that is supposed to send the message may have failed.
Thus, it is not always possible to distinguish between
site failures and communication failures. The waiting
site simply timeouts and has to assume that the other
site is incommunicado. Distributed DBMS protocols
have to deal with this uncertainty. One drastic result
of line failures may be network partitioning in which
the sites form groups where communication within
each group is possible but communication across
groups is not. This is difficult to deal with in the sense
that it may not be possible to make the database avail-
able for access while at the same time guaranteeing its
consistency.

The enforcement of atomicity and durability re-
quires the implementation of atomic commitment proto-
cols and distributed recovery protocols. The most popular
atomic commitment protocol is two-phase commit. The
recoverability protocols are built on top of the local
recovery protocols, which are dependent upon the
supported mode of interaction (of the DBMS) with
the operating system.

Two-phase commit (2PC) is a very simple and ele-
gant protocol that ensures the atomic commitment of
distributed transactions. It extends the effects of local
atomic commit actions to distributed transactions by
insisting that all sites involved in the execution of a
distributed transaction agree to commit the transac-
tion before its effects are made permanent (i.e., all
sites terminate the transaction in the same manner).
If all the sites agree to commit a transaction then all
the actions of the distributed transaction take effect;
if one of the sites declines to commit the operations
at that site, then all of the other sites are required to

Distributed Databases 679

abort the transaction. Thus, the fundamental 2PC
rule states: if even one site rejects to commit (which
means it votes to abort) the transaction, the distrib-
uted transaction has to be aborted at each site where
it executes, and if all the sites vote to commit the
transaction, the distributed transaction is committed
at each site where it executes.

The simple execution of the 2PC protocol is as fol-
lows (Fig. 3). There is a coordinator process at the site
where the distributed transaction originates, and par-
ticipant processes at all the other sites where the trans-
action executes. Initially, the coordinator sends a “pre-
pare” message to all the participants each of which
independently determines whether or not it can com-

mit the transaction at that site. Those that can com-
mit send back a “vote-commit” message while those
who are not able to commit send back a “vote-abort”
message. Once a participant registers its vote, it can-
not change it. The coordinator collects these mes-
sages and determines the fate of the transaction ac-
cording to the 2PC rule. If the decision is to commit,
the coordinator sends a “global-commit” message to
all the participants; if the decision is to abort, it sends
a “global-abort” message to those participants who
had earlier voted to commit the transaction. No mes-
sage needs to be sent to those participants who had
originally voted to abort since they can assume, ac-
cording to the 2PC rule, that the transaction is going

680 Distributed Databases

INITIAL

VOTE-ABORT

PREPARE

write abort
in log

No

Yes

write ready
in log

VOTE-COMMIT

Yes GLOBAL-ABORT

write commit
in log

No
GLOBAL-COMMIT

write abort
in log

Type of msg?
Abort

Commit

INITIAL

WAIT

READY

Ready to
commit?

write commit
in log

Any No? write abort
in log

ABORTCOMMIT

COMMITABORT

write
begin_commit

in log

(U
ni

la
te

ra
l a

bo
rt

)

ACK

ACK

write
end_of_transaction

in log

Coordinator Participant

Figure 3 2PC protocol actions.

to be eventually globally aborted. This is known as the
“unilateral abort” option of the participants.

There are two rounds of message exchanges be-
tween the coordinator and the participants; hence
the name 2PC protocol. There are a number of vari-
ations of 2PC, such as the linear 2PC and distributed
2PC, that have not found much favor among distrib-
uted DBMS vendors. Two important variants of 2PC
are the presumed abort 2PC and presumed commit 2PC.
These are important because they reduce the mes-
sage and I/O overhead of the protocols. Presumed
abort protocol is included in the X/Open XA stan-
dard and has been adopted as part of the ISO stan-
dard for Open Distributed Processing.

One important characteristic of 2PC protocol is its
blocking nature. Failures can occur during the commit
process. As discussed above, the only way to detect
these failures is by means of a timeout of the process
waiting for a message. When this happens, the process
(coordinator or participant) that timeouts follows a
termination protocol to determine what to do with the
transaction that was in the middle of the commit
process. A nonblocking commit protocol is one whose
termination protocol can determine what to do with a
transaction in case of failures under any circumstance.
In the case of 2PC, if a site failure occurs at the coor-
dinator site and one participant site while the coordi-
nator is collecting votes from the participants, the re-
maining participants cannot determine the fate of the
transaction among themselves, and they have to re-
main blocked until the coordinator or the failed par-
ticipant recovers. During this period, the locks that are
held by the transaction cannot be released, which re-
duces the availability of the database. There have been
attempts to devise nonblocking commit protocols (e.g.,
three-phase commit), but the high overhead of these
protocols has precluded their adoption.

The inverse of termination is recovery. When a
failed site recovers from the failure, what actions does
it have to take to recover the database at that site to
a consistent state? This is the domain of distributed re-
covery protocols. If each site can look at its own log and
decide what to do with the transaction, then the re-
covery protocol is said to be independent. For example,
if the coordinator fails after it sends the “prepare”
command and while waiting for the responses from
the participants, upon recovery, it can determine from
its log where it was in the process and can restart the
commit process for the transaction from the begin-
ning by sending the “prepare” message one more
time. If the participants had already terminated the
transaction, they can inform the coordinator. If they
were blocked, they can now resend their earlier votes

and resume the commit process. However, this is not
always possible and the failed site has to ask others for
the fate of the transaction.

VIII. REPLICATION PROTOCOLS

In replicated distributed databases, each logical data
item has a number of physical instances. For example,
the salary of an employee (logical data item) may be
stored at three sites (physical copies). The issue in this
type of a database system is to maintain some notion
of consistency among the copies. The most discussed
consistency criterion is one copy equivalence, which as-
serts that the values of all copies of a logical data item
should be identical when the transaction that updates
it terminates.

If replication transparency is maintained, transac-
tions will issue read and write operations on a logical
data item x. The replica control protocol is responsi-
ble for mapping operations on x to operations on
physical copies of x (x1, ..., xn). A typical replica con-
trol protocol that enforces one copy equivalence is
known as Read-Once/Write-All (ROWA) protocol.
ROWA maps each read on x [Read(x)] to a read on
one of the physical copies xi [Read(xi)]. The copy
that is read is insignificant from the perspective of the
replica control protocol and may be determined by
performance considerations. On the other hand, each
write on logical data item x is mapped to a set of writes
on all copies of x.

The ROWA protocol is simple and straightforward,
but it requires that all copies of all logical data items
that are updated by a transaction be accessible for the
transaction to terminate. Failure of one site may block
a transaction, reducing database availability.

A number of alternative algorithms have been pro-
posed which reduce the requirement that all copies
of a logical data item be updated before the transac-
tion can terminate. They relax ROWA by mapping
each write to only a subset of the physical copies. The
majority consensus algorithm is one such algorithm which
terminates a transaction as long as a majority of the
copies can be updated. Thus, all the copies of a logi-
cal data item may not be updated to the new value
when the transaction terminates.

This idea of possibly updating only a subset of the
copies, but nevertheless successfully terminating the
transaction, has formed the basis of quorum-based
voting for replica control protocols. The majority con-
sensus algorithm can be viewed from a slightly differ-
ent perspective: it assigns equal votes to each copy
and a transaction that updates that logical data item

Distributed Databases 681

can successfully complete as long as it has a majority
of the votes. Based on this idea, a quorum-based voting
algorithm assigns a (possibly unequal) vote to each
copy of a replicated data item. Each operation then
has to obtain a read quorum (Vr) or a write quorum (Vw)
to read or write a data item, respectively. If a given
data item has a total of V votes, the quorums have to
obey the following rules:

1. Vr � Vw � V (a data item is not read and written
by two transactions concurrently, avoiding the
read-write conflict);

2. Vw � Vr/2 (two write operations from two
transactions cannot occur concurrently on the
same data item; avoiding write-write conflict).

The difficulty with this approach is that transactions
are required to obtain a quorum even to read data.
This significantly and unnecessarily slows down read
access to the database. An alternative quorum-based
voting protocol that overcomes this serious perfor-
mance drawback has also been proposed. However,
this protocol makes unrealistic assumptions about the
underlying communication system. It requires that all
sites detect failures that change the network’s topology
instantaneously, and that each site has a view of the net-
work consisting of all the sites with which it can com-
municate. In general, communication networks cannot
guarantee to meet these requirements. The single copy
equivalence replica control protocols are generally con-
sidered to be restrictive in terms of the availability they
provide. Voting-based protocols, on the other hand,
are considered too complicated with high overheads.
Therefore, these techniques are not used in current
distributed DBMS products. More flexible replication

schemes have been investigated where the type of con-
sistency between copies is under user control. A num-
ber of replication servers have been developed or are be-
ing developed with this principle. Unfortunately, there
is no clear theory that can be used to reason about the
consistency of a replicated database when the more re-
laxed replication policies are used.

SEE ALSO THE FOLLOWING ARTICLES

Database Systems • Hyper-Media Databases • Management
Information Systems • Object-Oriented Databases • Rela-
tional Database Systems • Structured Query Language • Tem-
poral Databases

BIBLIOGRAPHY

Bernstein, P. A., and Newcomer, E. (1997). Principles of transac-
tion processing for the systems professional. San Mateo, CA: Mor-
gan Kaufmann.

Gray, J., and Reuter, A. (1993). Transaction processing: concepts
and techniques. San Mateo, CA: Morgan Kaufmann.

Helal, A. A., Heddaya, A. A., and Bhargava, B. B. (1997). Repli-
cation techniques in distributed systems. Boston, MA: Kluwer
Academic Publishers.

Kumar, V., (ed.) (1996). Performance of concurrency control mecha-
nisms in centralized database systems. Englewood Cliffs, NJ:
Prentice Hall.

Özsu, M. T., and Valduriez, P. (1999). Principles of distributed
database systems, 2nd ed. Englewood Cliffs, NJ: Prentice Hall.

Sheth, A., and Larson, J. (September 1990). Federated data-
bases: Architectures and integration. ACM Computing Sur-
veys, Vol. 22, No. 3, 183–236.

Yu, C., and Meng, W. (1998). Principles of query processing for ad-
vanced database applictions. San Francisco: Morgan Kaufmann.

682 Distributed Databases

Documentation for Software and IS Development
Thomas T. Barker
Texas Tech University

Encyclopedia of Information Systems, Volume 1
Copyright 2003, Elsevier Science (USA). All rights reserved. 683

I. DEVELOPMENT DOCUMENTATION
II. PURPOSE AND SCOPE OF

DEVELOPMENT DOCUMENTATION
III. DEVELOPMENT MODELS IN SOFTWARE
IV. TYPES OF DEVELOPMENT DOCUMENTS

V. USER DOCUMENTATION
VI. PURPOSE AND SCOPE OF USER DOCUMENTATION

VII. USER DOCUMENTATION
DEVELOPMENT METHODOLOGIES

VIII. TYPES OF USER DOCUMENTS

GLOSSARY

application A computer program, usually the “appli-
cation” of a file-sharing, client-server, router, or
other specialized technology.

developer A manager or producer within an organiza-
tion who is responsible for creating software programs.

development methodology A series of stages of a soft-
ware or hardware creation following a pattern based
on experience and theory of program design.

Information Process Maturity Model (IPMM) A tool
to create and measure processes used for technical
publications whereby a core process repeats and
replicates itself into a self-sustaining and constantly
improving activity.

software A set of computer instructions, called
“code,” designed to perform a purpose.

specifications (specs) A document containing re-
quirements for a computer program or software
manual. It tells the contents and purpose of the
program or document.

DOCUMENTATION FOR SOFTWARE AND INFORMA-
TION SYSTEMS DEVELOPMENT is the text or discourse
system whereby computer programs and systems used
by organizations and society are created, explained,
analyzed, and taught to the people who use them.
Documentation falls into two types: development doc-
umentation and user documentation. Development
documentation comprises those texts that support the

programming activities required to produce the com-
puter program. User documentation comprises those
texts that teach, guide, and support work by novice
and experienced users of the computer program. Of-
ten, but not always, these activities occur simultane-
ously, during development, so that the information
obtained through both program user requirements
research and audience analysis can inform and im-
prove the actual product development. More com-
monly, however, the program is fully or nearly devel-
oped before it is turned over to the writers for user
documentation.

The focus with documentation has traditionally
been on the implementation side of computer soft-
ware and hardware production, as opposed to the
marketing side or the social and cultural side. It ar-
ticulates activities associated with a recurrent cycle of
development and implementation leading to more
refined development and implementation. It uncov-
ers and makes available to others in the discourse
community the developers’ thinking on how to make
the best products possible within the constraints of
users and organizations. By its very nature, documen-
tation (especially the audience analysis and system
testing activities) captures the needs of a population
and makes it available in rich detail to those with the
necessary technical skill to respond appropriately with
yet better programs. In fact, the value of documenta-
tion comes from its ability to articulate important hu-
man activities, ones that operate at the very core of
the information revolution.

Software documentation, both of the development
and user type, has had to struggle against rejection by
the community of users it dedicates itself to serving
because of inconsistency in quality. Inconsistent qual-
ity has shaped the character of the documents pro-
duced to support computer programs. For instance,
poor quality in early spreadsheet documentation sent
writers to libraries and other design resources to re-
shape their work into something more functional and
user-based. Thus, inconsistent quality shaped a whole
trend in cognitive-psychology based document design
techniques. Current trends in usability testing indi-
cate another example of the shaping of design by re-
actions to charges of inconsistent quality.

In the area of development documentation, devel-
opers have to deal with a number of problems that
plague software engineering: flaws in the design and
development process, lack of quality assurance, and
lack of consistent testing of product. The most im-
portant charge lies in the area of consistency in de-
velopment. Because of the antiquated, design-first
model in use, developers and clients had little way to
realistically predict quality in software systems. Lack
of an efficient process led software developers to de-
velop more user-responsive methods—a process that
led to many failures as well as successes and continues
to this day.

I. DEVELOPMENT DOCUMENTATION

Development documentation comprises those docu-
ments that propose, specify, plan, review, test, and im-
plement the products of development teams in the
software industry. Those products include programs
as operating systems (Linux, Microsoft Windows), ap-
plication programs (Microsoft Quicken, Eudora), and
programming languages (C� �, Visual Basic). Devel-
opment documents reside on computer drives where
librarians—so designated members of a development
team—keep track of the information generated in
them, making the most recent versions available to
persons who will use it. Development documents in-
clude proposals, user or customer requirements de-
scriptions, test and review reports (suggesting prod-
uct improvements), and self-reflective documents
written by team members, analyzing the process from
their perspective. Most development documents go
into the company’s knowledge archive, a resource
that becomes increasingly important with the devel-
opment of new information tracking and control
called “knowledge management.”

II. PURPOSE AND SCOPE OF
DEVELOPMENT DOCUMENTATION

The purpose of development documentation is both
to drive development and track development. So it
serves to create product and also create information
about development itself. In driving development it
represents communication among members of the
development team. Table I shows the members of a
software development team and their duties.

The roles of development team members can vary
greatly depending on specific projects. For example,
some projects require intensive design, so a graphic
artist or design specialist may join the team, or the
quality assurance function might fall to separate per-
sons such as a usability tester or “configuration man-
ager” (someone who monitors the development stages
themselves and the communication among mem-
bers). But despite variations in the team, all members
contribute to improving the software quality.

The onset of electronic communication tools—
e-mail, file transfer, web pages—has greatly helped de-
velopment team members communicate among them-
selves about their work. As we will see below, useful
electronic forms such as discussion lists have developed
to allow for user information, in the form of require-
ments or suggestions, to enter in a meaningful way into
the development process and affect the outcome.

However, of the two purposes for development doc-
umentation, the tracking function, not the project
management function, has led to greater quality im-
provement in software because it allows managers and
team members (programmers, client representatives,
writers, and testers) to reflect on their efforts and im-
prove on them in subsequent development cycles.
Typically, tracking information consists of production
totals, cost totals broken down into categories of re-
source, cost per page of manuals, total man-hours on
a project broken down into project participants, lines
of code per hour, and lines of code per module. Track-
ing information also consists of usability data that
publication and production designers can apply to
the product cycle. Sophisticated project management
systems allow managers to track finely grained behav-
iors that, theoretically, allow for optimal performance.

Tracking information for development projects
surged with the introduction, during the 1980s, of
computerized management systems in business and in-
dustry—the same wave that put millions of novice users
in front of computer screens. Tracking information,
which has a predictive aspect, collects the data in a
timely fashion so managers can adjust the process.

684 Documentation for Software and IS Development

Tracking information also helps inform managers’ strat-
egy and enhance their strategic power in development
meetings. The information, collected efficiently and
analyzed correctly, helps support the writer as advocate
for user involvement in documentation. Finally, track-
ing information in the form of performance statistics
for individual development team members can affect
the hiring trends and, thus, the character of subse-
quent work in the mature organization.

III. DEVELOPMENT MODELS IN SOFTWARE

Development models derive from the engineering
community—such as the Software Engineering Insti-
tute at Carnegie Mellon University—or whatever dis-
cipline in which the product development occurred.
These models basically follow two patterns: the water-
fall method and the rapid application development
method (both described below). The waterfall
method benefits from the clear specification of the
product at the time of design, and then the execution
of that design specification through a series of stages
based on institutional departments until the product
is complete. The rapid application development
method benefits from the experience of building a
prototype or model of the entire product, and then
testing that model and reforming it according to the
test results until the product is complete. The third
pattern, the object modeling method, varies the pat-
tern of both types by allowing for both upfront design

and prototyping but providing an improved coordi-
nation with programming.

A. Waterfall Method and Its Documentation

The waterfall method of software documentation con-
sists of a series of stages called “phases” of the devel-
opment life cycle. The life cycle of the product in-
cludes the stages in Fig. 1. The waterfall method
derives its name from the stair-step fashion by which
development events proceed from one stage to an-
other. This development method assumes that all or
most of the important information about user re-
quirements is available to the development team at
the beginning of the project. The development team
(usually cross-functional) then follows the stages from
idea to implementation, with each stage building on
the next and not really going back. The process as-
sumes a sign-off from one phase to the next as each
phase adds value to the developing product. Because
of the phase-by-phase structure in this model, it is of-
ten used best to develop complex products requiring
detailed specifications and efficient team communi-
cation. The degree of communication required to
make this model work makes it difficult to handle in
anything but a mature organization where resources,
processes, and communication behaviors and proto-
cols are well established.

In the waterfall method of development a heavy
emphasis falls on the product specification document.

Documentation for Software and IS Development 685

Table I Software Development Team Members

Role on the
development team Duties Kinds of documents

Client Assess investment potential of the project; Requirements specifications, product
arrange for funding review forms

Developer Guides the project participants; arranges Proposal, project correspondence
with client

Project manager Organizes and keeps the project on schedule; Program specifications, document
provides resources for members specifications, project plan, review report

Designer Uses the software requirements document Design specifications
to create a design for the program

Programmer(s) Writes computer instructions that conform Computer program files, internal program
with the design specifications document documentation, test reports

Technical writer(s) Performs a user analysis; designs and writes User’s guide, user analysis report
user documentation

Quality assurance manager Plans and executes usability tests and process Test report, quality assurance report
checks

Seen as a blueprint for the entire project, the specifi-
cation document needs to communicate with all the
development team members (programmers, quality
control persons, writers, sponsors, clients, managers,
supervisors, and process control representatives). In
the best of projects the product specifications docu-
ment gets updated regularly to maintain its function
as the central, directing script of the development.
More commonly, however, the specification document
gets forgotten as the programmers default to what is
known as the code and fix process. The code and fix
process is extremely time consuming and inefficient
as it follows a random pattern of reacting to bugs and
problems instead of a coordinated, document-driven
process. The communication overhead required by
the code and fix process can soon wreck the schedule
and consume the entire remaining project budget.
Besides that drawback, often the market window for a
product would close up before this time-consuming
process resulted in marketable product.

B. Rapid Application Development
Method and Its Documentation

The rapid application development (or RAD) method
of development follows a different philosophy than
the waterfall method. It capitalizes on one main prob-
lem of the waterfall method: the gradual divergence
of what the programmers actually create from the
original specifications (a digression sometimes called
“code creep”). As illustrated in Fig. 2, the rapid ap-
plication development method places an emphasis on
user involvement (during cycles of testing) as an on-
going source of design innovation. In contrast to the

waterfall method, the idea is to use prototypes of
products (software program interface mockups) to
draw design requirements from actual users and im-
plement them quickly. Quick implementation (up to
1/3 the time used for the waterfall method) allows for
teams to work more responsively to market demands
and the demands of technological advances that also
drive development.

The rapid application development model requires
a very high-tech environment where software inter-
face design tools and publications management
processes allow for fast response to the ever-evolving
specification of user needs requirements. For exam-
ple, extensive usability testing often requires a lab or
coordination with other testing groups in an organi-
zation. Budgeting and managing of tests, recruiting of
test subjects, and planning for extra redesign meet-
ings can slow down a process designed to be flexible
and streamlined.

C. Object Modeling and Its Documentation

Object modeling is a software development method-
ology that requires the developers and customers to
express and record user requirements and develop-
ment tasks using a consistent, highly abstract annota-
tion system. Known as a modeling language, the an-
notation system for object modeling results in case
models (embodying user specifications) that allow all
the members of a development team to work in par-
allel, thus creating a very time-efficient method of
production (see Fig. 3).

686 Documentation for Software and IS Development

Product
Concept

Requirements
Analysis

System and
Software Design

Code and
Debug

Operation and
Maintenance

Figure 1 The waterfall method.

Product
Concept

Design and
Implement
Prototype

Usability Test

Release and
Maintain

Figure 2 The rapid application development method.

Object modeling allows developers and program-
mers to analyze the user’s experience (say, “renting a
video,” or “filling a shopping cart”) in ways that lead to
greater degree of control over programming and de-
velopment. This control comes from the ability of stan-
dardized languages such as the OPEN Process Specifi-
cation and the Unified Modeling Language to express
relationships among user requirements. Using the
video rental store as an example, the case of “user rents
a video” (which describes a user activity with the sys-
tem) can be made dependent on other cases, such as
“registers as a customer” and “has no outstanding
rentals.” With a finely grained analysis of dependencies
and relationships among user requirements universally
specified, the development team can cooperate inde-
pendently and with increased efficiency.

At the level of management of the documentation
process, the object modeling requires many of the
same documents as the waterfall or the rapid appli-
cation development methods. However, it relies heav-
ily on diagrams (such as the user case model diagram
or the business model diagram) and on declarations
of modeling standards used in the particular project.
These very complicated and conventional diagrams
play the key role in describing the abstract model of
user tasks and activities that lies at the heart of the ob-
ject modeling method.

IV. TYPES OF DEVELOPMENT DOCUMENTS

The genres of development documents fall into two
categories: internal and external. Internal development
documents track project status, report on changes,

tests, reviews, and all the other tasks surrounding or-
ganizational projects. External development docu-
ments are documents intended for customers and other
users of the finished software product.

A. Product Specification (Internal)

A product specification document, often referred to
as a product “spec” is the document that tells the per-
sons in the project (developers, programmers, writers,
marketers) what the outcomes or deliverables will be.
These deliverables include the program and user doc-
uments. The specification document itself contains an
overview of the concept for the software product, tools
for production, list of program features, user require-
ments, and overall design of the program code.

B. Project Management Plan (Internal)

A project management plan consists of statements
that describe the actions taken by the development
team using whatever method chosen to produce the
software project. Like project plan documents in other
engineering fields, it takes its shape and form from
engineering management models. The management
plan includes a schedule, project task list, list of re-
sponsibilities of team members, and any other docu-
ments (in an archive) relating to the project.

C. Internal Code Documentation (Internal)

Internal code documentation consists of written text
inside the actual program files that records informa-
tion about a specific modules of code. A program that
contains thousands of modules (each about a para-
graph or so of outline-looking words and symbols)
could contain an equal number of brief descriptive
paragraphs written by the programmers at the time the
code was written and tested. Internal code is written us-
ing special “remark” tags that distinguish the pro-
grammer’s notes from the program code itself. Inter-
nal code documentation can help users who adapt
programs (scripts such as java scripts and cgi scripts)
and require only an explanation of how a module works
and what variables are in it to make it work for them.

D. Test/Usability Report (Internal)

The test report is one of the most important informa-
tion gathering and synthesizing documents in the

Documentation for Software and IS Development 687

Product
Concept

Model of User
Case

Parallel Testing
and Production

Integration of
Testing and
Production

Final Testing
and Release

Figure 3 The object modeling development method.

array of development documents. It records the results
of the various forms of product testing done by pro-
grammers, writers, and, increasingly, usability experts
on the development team. Increasingly, with object
modeling models and rapid development, usability test-
ing has become not just something done after a pro-
gram is finished, but a method of development itself,
allowing software engineers and technical writers to
work closely with clients in application development.

Test reports usually contain descriptions of test situ-
ations, criteria for evaluators, test protocols, presenta-
tion of results, discussion of results, and a listing of rec-
tifications done to the product as a result of the test.

E. Maintenance Documentation (External)

Maintenance documentation is text, usually step-by-
step procedures, that inform programmers and sys-
tem administrators how to fix (sometimes called
“patch”) a program once it is in full operation. Main-
tenance also means resetting files after business cycles
and other routine, nonproblem oriented program-
ming. This kind of maintenance usually refers to large,
enterprise programs such as those used in govern-
ment, utilities, and manufacturing and shipping. Such
programs do not get replaced often and frequently
require programmers to add or alter functionality.
Programmers rely on maintenance documentation
(and internal code documentation, discussed above)
to keep the program running and responding to evolv-
ing user requirements.

F. System Overview Documents (Internal)

System overview documents are those documents that
describe the overall technical and functional struc-
ture of a program. Readers of these documents are
typically administrators in charge of the department
supported by the technology, and sometimes software
and hardware vendors interested in bidding on new
systems or reengineering the old ones. System
overviews themselves look like charts with boxes
arranged in ways that represent the whole system, use
cases, user scenarios, and other design and manage-
ment documents.

V. USER DOCUMENTATION

User documentation refers to texts directed to an au-
dience of users of computer systems (as opposed to
those who build, sell, and maintain it). Users make up

a very diverse group because they work in all fields of
industry, government, and education. The growth of
diversity of users, in fact, is one of the most interest-
ing stories in software documentation.

Before the mid to late 1970s “computers” consisted
of enormous mainframes that worked primarily with
numbers, creating counts and calculations for finance
and government. They maintained databases of tax,
payroll, inventory, and other business and govern-
ment related information.

User documentation (computer manuals) at this
time consisted of descriptions of systems, emphasizing
the control structure (modules) in the program and
the interface (menus). Descriptions of interfaces, for
example, emphasized menu structures (“Using the
Data Entry Screen”) instead of the familiar step-by-
step of today (“How to Enter Client Data”).

As computing technology became much smaller and
cheaper during the early 1980s, in the form of the per-
sonal computer, many people began using the com-
puting machine. These people, of course, did not have
the training in computer science to help them figure
out how to use software. So, overall, advancements such
as competing operating systems and ever increasing
processing speeds kept users dazed and confused.

To respond to the large population of naïve users
with highly technical information needs, technical com-
municators looked to related areas of research and be-
gan appropriating ideas to help get computer ideas
across to people who knew little about programs they
used. For example, the academic literature of this pe-
riod reflected explorations of cognitive psychology as a
feeder discipline for technical communication. Cogni-
tive psychology emphasizes understanding through men-
tal models. Writers and document designers reckoned
that they could help users master the hurdles of recon-
ceptualizing computers by using information structur-
ing and presentation methods developed in cognitive
psychology. Other disciplines explored for document
design solutions included: communications theory,
rhetoric, end-user computing, human factors, artificial
intelligence, and various information design theories
and methods (user-centered design, Information Map-
ping, Standard Typography for Organizing Proposals).

User documentation matured in the 1990s, ab-
sorbing the Internet and the shift from single com-
puters to networked, client/server configurations and
functioning much more efficiently as a delivery sys-
tem for technical information to naïve and intermit-
tent users. Documentation shifted in the early 1990s
to both print and online (using Microsoft’s WinHelp
help compiler program) and in the early 2000s is pre-
dominantly an online medium with print as a backup
media. The influences from feeder disciplines has re-

688 Documentation for Software and IS Development

sulted in a highly flexible information product, deliv-
ering information on demand employing a heavy re-
liance on usability-based development methods, min-
imal presentation, and single-sourced information
architectures.

VI. PURPOSE AND SCOPE
OF USER DOCUMENTATION

Along with the shift of users from geeks to the general
public, the purpose and scope of user documentation
have evolved from a focus on narrow-minded instruc-
tion in program features to a focus on integration of
software into workplace surroundings. Document de-
signers can reflect elements of the user’s workplace and
precise information needs in document products so
that the user is not only able to use the program but
flourish at work with it. The purpose of documentation,
thus, has grown to encompass designing the user’s
experience—taking a holistic and systematic view of the
user’s training and information needs—and respond-
ing to ensure peak performance. The next section
examines some of the methods currently in place for
developing software documentation.

VII. USER DOCUMENTATION
DEVELOPMENT METHODOLOGIES

Developing user documents follows methods derived
from two groups of researchers: the engineering com-
munity and the English studies community. In fact, as
the population of computer users changes, matures,
grows, and learns, methodologies have also changed.
Each methodology below implies a different method
of using information about user needs in document
development. The choice of method depends highly
on the type and style of organization, the organiza-
tional culture, and compatibility of publications pro-
duction and management with product development
and its teams.

In many workplaces, the real case aside, you use
the methodology you say you use, without making
sharp distinctions between one approach and another.
The terms “task analysis” and “minimalism” are used
fairly loosely.

A. Task Analysis

Of all the methodologies for developing successful
user documentation, the task analysis has gained more
followers and resulted in more overall productivity in

the workplace than any competing types of document
design. Certainly task-oriented manuals fit the infor-
mation rich workplace of today better than the
warmed-over system documentation that companies
used to shrink wrap and foist on the bewildered pub-
lic as “manuals.”

Overall the primary difference between task analy-
sis and the default method of document design lies in
the definition of the workplace “task” as the primary
unit of information. It localizes the solution to the
learning problem as one of content. As content, tasks
differ from jobs in that a job can consist of many tasks.
Tasks become the primary content development
method, breaking as they do into discrete stages and
easy-to-follow steps. In contrast to manuals using a de-
scriptive orientation (as characterized documentation
from the earlier era) tasks represent an organization
catering to the use of the program by a professional
in the workplace. Because tasks represent the struc-
ture of jobs and, ultimately organizations, task orien-
tation in manuals means that manuals reflect signifi-
cant information about the readers’ organization.

B. Minimalism

The minimalist methodology for organizing user doc-
umentation is based on the principles of cognitive
psychology and learning theory. Those theories posit
that the user brings an understanding or “schema” of
thought to a task and the idea of instruction is to
make sure that the learner’s schema, after the in-
struction, matches the appropriate one needed to op-
erate the software. For example, a learning of infor-
mation on financial transfers needs to acquire the
“schema” of electronic funds transfer (as in altering
computerized records) instead of the schema of phys-
ical funds transfer (as in an armored truck). The eas-
iest way to create the appropriate schema in the user’s
mind, minimalists argue, is to expose the learner to
the kinds of tools and expectations offered by a tech-
nology (a software program) and allow him or her to
make productive connections independently as part
of the learning.

The idea behind minimalism underlies other at-
tempts by instructional theorists to create “learning
environments” in which situations do the teaching.
Clearly, theorists reason, such learning would guaran-
tee an individual experience for each learner and
thus enhance the transfer of knowledge into the work-
place. Such experiential learning is based, in the case
of the primary minimalist researcher today, John Car-
roll, formerly of IBM, on the following four princi-
ples: (1) emphasize learner actions, (2) provide tools

Documentation for Software and IS Development 689

relevant to the user’s task, (3) support error recogni-
tion and recovery (to mirror natural learning), and
(4) support different learning purposes: doing, un-
derstanding, and locating.

While these principles underlie the minimalist ap-
proach, they belie the revolutionary nature of the
manuals its practitioners create. Minimalist manuals
bury the step-by-step approach, preferring stories
(“scenarios”) that mimic workplace actions. These
manuals also are a lot shorter than the compendium
types often produced using task orientation. Shorter
manuals with less verbiage allow for open-ended, yet
highly focused learning.

C. Usability

The usability approach to software documentation takes
its lead from the rapid design prototyping of its sibling
industry: software engineering. Like software engineer-
ing, the usability approach starts with an information
technology basis, for the simple reason that its main re-
quirement—repeated document testing—can hardly
work in the slow-poke world of print. The usability
approach seeks the solution to the software learning
problem in design issues. Design issues, such as naviga-
tion, hyperlinking, and so forth, can be measured and
improved based on user characteristics (as in usability
based system design). Thus, the emphasis in this
approach falls on navigation, structure, search and site
mapping, and other technically oriented measures that
attempt to achieve a usable information interface.

Drafts, help-system prototypes, and web help pages
are documents that lend themselves to the exhaustive
prototype testing and constant revision required of
the usability testing approach. The usability method
is also useful in the design of interface-based help sys-
tems such as performance enhancing, embedded help
systems.

D. Information Process Maturity Model

The most successful and fully developed model of
document production is, beyond doubt, the Informa-
tion Product Maturity Model (IPMM) described by
Joann Hackos and used in many organizations as the
foundation of their quality documentation processes.
Used to rank organizations and measure maturity of
processes, this model is not so much a methodology
as it is a model of how to run your methodology. It
encourages the publications managers to develop con-
sistency and measurability in processes.

The key to the IPMM, like the SEI CMM, is to iden-
tify key practices as part of a repeatable process, and
then convince your team and organization to follow
the process while at the same time developing ways to
measure and improve it. Once measurements are in
place the process just gets better and better, with con-
stant, monitored improvement as the goal. As you can
see, such an approach to developing publications
would require considerable interaction among diverse
groups of people: developers working in parallel or in
coordination with publications, personnel who moni-
tor and evaluate one another’s processes, managers
and supervisors who may need to be convinced of the
wisdom of the best practices approach, and so on.

VIII. TYPES OF USER DOCUMENTS

User documents fall into categories of purpose, and
there are three general purposes for reading associ-
ated with software use: reading to learn, reading to
do, and reading to understand. These three purposes
relate roughly to three kinds of documents: tutorials
that teach, procedures that guide action, and refer-
ence manuals that explain in detail. Other interesting
contrasts can be found among these purposes, but for
the most part they identify the top-level categories of
user documentation for software systems.

A. Procedural

Procedural documents are based on step-by-step units
organized into segments that, ideally, should follow
the user’s workplace activities. In fact, the procedure
gains its strength from the user’s interest not in the
document, but in using the document to put the pro-
gram to work. Procedural documents include users
guides and online help.

1. User’s Guide

The User’s Guide is the most popular and useful type
of user documentation because it essentially encapsu-
lates all that a user can do with a program between
two covers. Pages of users guides are filled with step-
by-step procedures that lead or “guide” the reader
from one action to another, chronologically to a spec-
ified end result. Examples of procedures include:

• How to install DocPro
• Using the Client Interview feature to set up

accounts

690 Documentation for Software and IS Development

• Printing your work
• Importing files from other word processors
• Obtaining server use statistics by IP number

User’s guides are usually organized by categories of
software features. Software features often are grouped
by most frequently used program modules or menus,
sequences of jobs or workplace tasks, or some other
method relating to the user’s need for intermittent as-
sistance. Information access in user’s guides usually
involves a table of contents, an index, a list of figures
and tables, header and footer information, and chap-
ter indicators (tabs, icons, colored pages, edge bleeds).

2. Online Help

Online help began as the online equivalent of the
user’s guide, but quickly developed into a variety of
formats for delivering step-by-step and other infor-
mation while the user was actually in front of the
screen and got, for some reason, stuck. For this rea-
son, online help satisfies the user’s need for point of
need troubleshooting by providing a variety of access
methods to documents.

The typical online help file contains what is known
as the three-pane layout: help buttons across the top
pane (back, next, etc.), clickable table of contents in
the left vertical pane (Getting Started, Setting up Ac-
counts, Adding New Vendors, etc.), and the informa-
tion (procedure or help topic) in the information
window or viewing area under the top pane. Because
of their electronic nature, help systems, usually de-
veloped using Microsoft’s help development program
WinHelp, can provide more than one table of con-
tents in the left-hand pane, where typically the access
methods are: (1) table of contents, (2) keywords, and
(3) index. The user can click on a simulated index
tab at the top of the left pane and select from the top-
ics listed to view a specific procedure in the right-
hand viewing area.

B. Reference

Reference documentation represents manuals whose
purpose it is to provide background information about
all the elements of a functionality of a program (and
sometimes its source code). Reference documenta-
tion is most familiar to advanced users who know how
to operate a program but also need to maintain it and
in some cases modify it. To perform these tasks users
need descriptive information about the features of
the software from a programmer’s point of view: What

source data files does the program use? What vari-
ables does the program identify?, and so on.

Reference documents take their organization from
the information they contain: patterning sections of
manuals on program modules, alphabetical order, nu-
merical order, and so on. For this reason they are of-
ten referred to as “system manuals.” Reference docu-
ments, whether online or hard copy, rely heavily on
indexes and search keywords to help experienced
users locate important but small amounts of informa-
tion quickly.

1. System Manual

The system manual is usually a system-oriented docu-
ment that lists functionalities and program parts and
explains what they do and how they do them. Often
this form of documentation consists of lists and tables
of data telling program modules, overviews of how
the systems work, and explanations of program logic.

A typical system manual might have the following
contents:

• Overview of System Modules
• Functional Modules
• Program Applets
• List of Data Files
• Database Specifications
• Program Integration Codes

2. Troubleshooting Manual

The troubleshooting manual is a hybrid of procedures
and tables that help maintenance programmers and
administrators configure and set up programs. Read-
ers for troubleshooting manuals are usually reacting
to problems with the system and usually seek a pro-
cedure or explanation to fill their information needs.
Troubleshooting manuals usually follow a problem-
by-problem organization, or take the form of a deci-
sion tree.

Problem Solution

System dead Check plug

System frozen Pull plug

3. FAQ and User-Based Documents

FAQs and user-based documents are a newer breed of
document that takes the idea of user functionality to
the next level: gaining the user’s participation in devel-
oping content for manuals. As the numbers of com-
puters grows with a system its users begin to apply it in

Documentation for Software and IS Development 691

different situations, and with communication technolo-
gies (Internet form and e-mail lists) can communicate
their questions, successes, and failures to one another
and back to the company. Documents so developed are
called user-based documents because their content con-
sists of the discourse among knowledgeable, fellow
users. Such documents also channel traffic away from
the help desk and support personnel, acting as a filter
for support center callers. The disadvantage, of course,
is that often the questions are so narrowly focused that
they don’t, in reality, get asked very frequently. The
other disadvantage of user-based documents is that they
lead to formulaic FAQs consisting of program features
repackaged as “questions,” as in: How do I use the Print
feature? What are the advantages of upgrading to a
more expensive version of this program?

C. Tutorial

Tutorial documentation is writing that intends to
teach a program to a user so that the user can per-
form the tasks from memory. Tutorials often focus on
the main tasks associated with what is referred to
as the “typical use” scenario. This scenario consists of
the steps a user takes to perform the most common
program tasks. Typical uses of a word processor, for
example, would include opening a program, entering
text, saving the text, and closing the program. The
idea behind tutorial user documentation is to en-
courage adoption of the program’s features by the
user by teaching him or her the basics and letting job
motivations take over. Tutorial user documentation
consists of quick start guides, job performance aids,
wizards, and demonstrations.

1. Quick Start Guide

The Quick Start Guide is a form of tutorial that takes
a subset of program functions (usually ones related
closely to the typical use scenario for the target reader)
and leads the reader through them as an introduc-
tion to the program. Quick start guides often will by-
pass the usual steps as an attempt to satisfy the user
who is impatient with plodding through the user’s
manual. Often they are detached from the main set
of documents and presented in brochure, pamphlet,
or poster-board media.

2. Job Performance Aid

Job performance aids are a kind of tutorial-on-
demand for users. Known as JPAs, performance aids

make training in the software more usable by making
it available when the user really needs it. The design
of performance-based documentation systems derives
from research on training and aims to provide op-
portunities for learning to the user while on the job.
In its more advanced forms job performance is in-
formed by knowledge management processes within
an organization. Because the user can determine
which training to implement and when, job perfor-
mance aids support autonomous learning—a pattern
consistent with current viewpoints of the knowledge-
managed workplace.

a. WIZARD

Wizards are types of online tutorial documents that
come to the user’s rescue when he or she faces a dif-
ficult—long, technically complicated—task and needs
teaching on the spot. Wizard information can en-
compass everything from basic skill instruction to
complicated, advance procedures (that only a “wiz-
ard” would know). Common situations requiring wiz-
ards would be setting up an initial web site (requiring
much configuration) or importing spreadsheets from
other programs. The wizard is a true hybrid form,
merging procedural aims (just guide and don’t teach)
and instructional aims (teach through performance
support). Wizards also rely on technological delivery,
as the most immediate media for delivering the in-
formation is the user’s computer, operating system,
and browser window.

Structurally the wizard technology interacts with
the user following a step-by-step sequence. Along the
way the wizard program performs the background
work (calling up screens, searching for programs,
checking for hardware, and so on) while the user can
focus on supplying just the specific information
needed in the workplace. For example, if I need to
register the person sitting across the desk from me, I
want to concentrate on getting the right information
from that person—name, address, e-mail, and so on—
and not have to worry about finding and opening the
registration database, checking and saving the infor-
mation, and closing the database. From my point of
view, all I need to see is a series of sentences explain-
ing what I’m supposed to submit and then confirma-
tion that I have performed the task successfully. To
the user the process is almost seamless.

b. EMBEDDED HELP

Embedded help is a form of performance aid that
includes procedural and other information in the in-
terface itself. An example of embedded help is those
sentences that appear above data entry fields that tell

692 Documentation for Software and IS Development

you whether the field requires case-sensitive text or
not. In other examples, you will find more elaborate
and systematized presentational methods. The goal of
all embedded help is to eliminate the need for a man-
ual or help system by providing screen task basics as
a part of the interface. Being part of the interface
means that embedded help systems rely on working
with software engineers to develop the interface.
While embedded help has the advantage of easy ac-
cess, it also gives little control over the content of the
help system to the user. Other examples of embedded
help include mouse-over text, popup text, stretch text,
and image alternative text.

SEE ALSO THE FOLLOWING ARTICLES

Database Development Process • End-User Computing Manag-
ing • End-User Computing Tools • Ergonomics • Prototyping •
System Development Life Cycle • Systems Design • User/Sys-
tem Interface Design

BIBLIOGRAPHY

Barker, T. T. (2002). Writing software documentation: A task-
oriented approach. New York: Allyn & Bacon.

Bødker, S. (1991). Through the interface: A human activity ap-
proach to user interface design. Hillsdale, NJ: Erlbaum.

Boehm, B. W. (1988). A spiral model of software development
and enhancement. IEEE Computing, Vol. 5, 61–72.

Carroll, J. M. (Ed.) (1998). Minimalism beyond the Nurnberg fun-
nel. Cambridge, MA: MIT Press.

Greenbaum, J., and Morten, K., (Eds.) (1991). Design at work:
Cooperative design of computer systems. Hillsdale, NJ: Erlbaum.

Haas, C. (1996). Writing technology: Studies on the materiality of lit-
eracy. Hillsdale, NJ: Erlbaum.

Hackos, J. T., and Redish, J. C. (1998). User and task analysis for
interface design. New York: J. Wiley.

Hutchins, E. (1995). Cognition in the wild. Cambridge, MA: MIT
Press.

Miller, C. R. (1984). Genre as social action. Quarterly Journal of
Speech, Vol. 70, 157–178.

Mirel, B. (1998). Applied constructivism’ for user documenta-
tion. Journal of Business and Technical Communication, Vol. 12,
No. 1, 7–49.

Nardi, B. A., and O’Day, V. L. (1999). Information ecologies: Us-
ing technology with heart. Cambridge, MA: MIT Press.

Norman, D. A., and Draper, S. W. (Eds.) (1986). User centered
system design: New perspectives on human-computer interaction.
Hillsdale, NJ: Erlbaum.

Winsor, D. (1999). Genre and activity systems: The role of doc-
umentation in maintaining and changing engineering ac-
tivity systems. Written Communication, Vol. 16, No. 2, 200–224.

Zuboff, S. (1988). In the age of the smart machine: The future of
work and power. New York: Basic Books.

Documentation for Software and IS Development 693

	0001
	0021
	0031
	0047
	0065
	0081
	0099
	0113
	0127
	0141
	0171
	0187
	0205
	0213
	0229
	0243
	0255
	0267
	0287
	0307
	0319
	0333
	0345
	0365
	0379
	0389
	0403
	0411
	0423
	0445
	0455
	0469
	0477
	0489
	0505
	0521
	0535
	0551
	0567
	0583
	0603
	0615
	0635
	0649
	0663
	0673
	0683
	Front.pdf
	Editor-in-Chief
	Senior Editors
	Associate Editors
	International Advisory Board
	Dedication
	Preface

