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Preface

Denotational semantics is concerned with the mathematical meaning of program�
ming languages� Programs �procedures� phrases	 are to be interpreted in cate�
gories with structure �by which we mean sets and functions to start with� and
suitable topological spaces and continuous functions to continue with	� The main
goals of this branch of computer science are� in our belief


� To provide rigorous de�nitions that abstract away from implementation
details� and that can serve as an implementation independent reference�

� To provide mathematical tools for proving properties of programs
 as in
logic� semantic models are guides in designing sound proof rules� that can
then be used in automated proof�checkers like Lcf�

Historically the �rst goal came �rst� In the sixties Strachey was writing
semantic equations involving recursively de�ned data types without knowing if
they had mathematical solutions� Scott provided the mathematical framework�
and advocated its use in a formal proof system called Lcf� Thus denotational
semantics has from the beginning been applied to the two goals�
In this book we aim to present in an elementary and uni�ed way the theory of

certain topological spaces� best presented as order�theoretic structures� that have
proved to be useful in the modelling of various families of typed ��calculi con�
sidered as core programming languages and as meta�languages for denotational
semantics� This theory is now known as Domain Theory� and has been founded
as a subject by Scott and Plotkin�
The notion of continuity used in domain theory �nds its origin in recursion

theory� Here the works of Platek and Ershov come to mind
 in Stanford and Novo�
Sibirsk� independently� they both exploited the continuity properties of recursive
functionals to build a theory of higher�order recursive functions� Recursion the�
ory is implicit in the basics of domain theory� but becomes again explicit when
e�ective domains are considered�
The topic is indebted to lattice theory and topology for ideas and techniques�

however the aims are di�erent� We look for theories that can be usefully applied to
programming languages �and logic	� Therefore a certain number of complications
arise that are not usually considered� Just to name a few
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� The topologies we are interested in satisfy only a weak separation axiom
�T�	� This stands in sharp contrast with classical topology based on T�� or
Hausdor� spaces� but it relates to the subject of pointless topology �Joh����

� In applications it is di�cult to justify the existence of a greatest element�
hence the theory is developed without assuming the existence of arbitrary
lub�s� that is we will not work with complete lattices�

� There are several models of computation� certainly an important distinction
is the possibility of computing in parallel or in series� hence the development
of various notions of continuous� stable� and sequential morphisms�

� There is a distinction between an explicitly typed program and its untyped
run time representation� hence the connection with realizability interpreta�
tions�

One of our main concerns will be to establish links between mathematical
structures and more syntactic approaches to semantics� often referred to as oper�
ational semantics� The distinction operational vs� denotational is reminiscent of
the distinction between �function as extension� or as a graph� �say� of a partial
recursive function	 and �function as a rule� or as an algorithm� �say� the speci�
�cation of a Turing machine	� The qualities of a denotational semantics can be
measured in the way it matches an independently de�ned operational semantics�
Conversely� an operational semantics� like any formal system� can be �blessed�
by soundness or even completeness results with respect to some denotational
semantics�
We shall therefore describe operational semantics as well as denotational se�

mantics� In our experience it is essential to insist on these two complementary
views in order to motivate computer scientists to do some mathematics and in
order to interest mathematicians in structures that are somehow unfamiliar and
far away from the traditional core of mathematics�

A description of the contents of each chapter follows� Unless stated otherwise
we do not claim any novelty for the material presented here� We highlight this
by mentioning some of the papers which were most in�uential in the writing of
each chapter�
Chapter � introduces the �rst concepts in domain theory and denotational

semantics
 directed complete partial orders� algebraicity� Scott topology� A basic
link between Scott continuity and computability �Myhill�Shepherdson theorem	
is established� As an application� the denotational semantics of two simple im�
perative languages are presented� and are shown to be equivalent to their formal
operational semantics �Sco��� Plo����
Chapter � introduces the untyped ��calculus� We establish several of the

fundamental theorems of ��calculus using a labelling technique due to L�evy� In
this way we prove the Church�Rosser property� the standardization theorem� and
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the �nite developments theorem� The same technique also yields the strong
normalization property for the simply�typed ��calculus� Finally� we show the
Syntactic Continuity theorem �a further evidence of the role of continuity in
the semantics of programming languages	 and the Sequentiality theorem� which
motivates the semantic study of sequentiality �Lev��� Ber����
Chapter � is a case study of the fundamental domain equation D � D � D�

which provides models of the untyped ��calculus� We detail the construction of
the D� models� obtained as suitable limits� The chapter is also a case study of
Stone duality
 the D� models can also be constructed out of certain theories of
�types�� or functional characters �Bar��� CDHL����
Chapter � is an introduction to the interpretation of simply�typed and un�

typed ��calculi in categories� In particular we develop the categorical models
of simply typed and type free ��calculus and illustrate the techniques needed to
prove the soundness and completeness of the related interpretations �LS��� Sco���
Chapter  gives a complete presentation of the problem of classifying the

largest cartesian closed categories of algebraic directed complete partial orders
and continuous morphisms� which was solved by Jung� following earlier work by
Smyth� Two important classes of algebraic cpo�s come out of this study
 bi�nite
domains� and L�domains �Jun��� Smy��a��
Chapter � presents the language Pcf of Scott�Plotkin�Milner� This is a sim�

ply typed ��calculus extended with �xpoints and arithmetic operators� For this
calculus we discuss the full abstraction problem� or the problem of the correspon�
dence between denotational and operational semantics �Sco��� Plo����
Chapter � presents the basic apparatus for the solution of domain equations�

It also includes material on the construction of universal domains� and on the
representation of domains by projections �Sco��� SP��� DR��� Sco��� ABL����
Chapter � studies ��calculi endowed with a reduction strategy that stops at ��

abstractions� We analyse in particular a call�by�value ��calculus and a ��calculus
with control operators� We introduce the semantic aspects of these calculi via a
unifying framework proposed by Moggi and based on the idea of computation�
as�monad �Plo�� Plo�� Mog��� Bou����
Chapter � concentrates on powerdomains constructions �loosely speaking a

powerset construction in domain theory	 and their applications to the semantics
of non�deterministic and concurrent computations� On the denotational side we
develop the theory of Plotkin�s convex powerdomain� On the syntactic side we
introduce a process calculus �Milner�s Ccs	 and its operational semantics based
on the notion of bisimulation� We interpret Ccs using a domain equation which
involves the convex powerdomain and relate the denotational semantics to the
operational one �Plo��� Mil��� Abr��a��
Chapter �� presents Stone duality �originally the correspondence between

Boolean algebras and certain topological spaces	� applied to domains� Algebraic
domains can be reconstructed from their compact elements� or from the opens
of their Scott topology� which can be viewed as observable properties� Elements
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are then certain kinds of �lters of properties� This idea can be exploited to the
point of presenting domain theory in logical form� as advocated by Martin�L�of
�a program which was carried out systematically by Abramsky	 �Joh��� ML���
Abr��b��
Chapter �� introduces the problem of the categorical interpretation of a typed

��calculus with dependent and second order types along the lines established in
chapter �� We �rst develop some guidelines in a categorical framework� and then
we apply them to the speci�c cases of categories of complete partial orders and
Scott domains� Two popular fragments of this typed ��calculus are considered
in greater detail
 the system LF of dependent types� and the system F of poly�
morphic types �Gir��� CGW��� AL��� Gir��� Rey��� HHP����
Chapter �� presents another theory of domains based on the notion of stable

morphism� Stability was introduced by Berry� as an approximation of the sequen�
tial behaviour of ��calculus� The de�nition of a stable function formalizes the
property that there is always a minimum part of a given input needed to reach
a given �nite output� We develop the theory along the lines of chapters � and 

we study stability on meet cpo�s� dI�domains and event structures �and coherence
spaces	� stable bi�nite domains �with an application to the construction of a re�
traction of all retractions	� and continuous L�domains �Ber��� Ama��a� Ama���
Chapter �� is devoted to linear logic� The simplest framework for stability �

coherence spaces � led Girard to the discovery of a new resource�sensitive logic�
In linear logic� hypotheses� or data are consumed exactly once� and multiple uses
�including no use	 are re�introduced by explicit connectives� Linear logic has a
rich model theory� We present only a few models
 the stable model� Ehrhard�s
hypercoherence model �which is closer to capturing sequential behaviour	� and
Winskel�s bistructures model �which combines the continuous and the stable
models	� Also continuity can be recast in the light of linear logic� as shown
by Lamarche �Gir��� Ehr��� Win����
Chapter �� addresses the semantic notion of sequentiality� which is aimed at

capturing sequential computation� as opposed to inherently parallel computation�
We start with Kahn�Plotkin sequential functions� which do not lead to a cartesian
closed category� But sequential algorithms� which are pairs �function� computa�
tion strategy	 yield a model of Pcf� They actually model� and are fully abstract
for and extension of Pcf with a control operator catch� Sequential algorithms
lend themselves to a game interpretation� On the other hand� a term model of
Pcf� from which a fully abstract model of Pcf is obtained by a quotient� can
also be described in a syntax�independent way using games� Games semantics
therefore appear as a powerful unifying framework� which is largely undeveloped
at the time this book is written �Cur��� AJ����
Chapter � is an elementary introduction to the ideas of synthetic domain

theory via the category of partial equivalence relations �per	� The category of
per�s is a useful tool in semantics� we exhibit an interpretation of system F� of a
type assignment system� and of a subtyping system� Towards the interpretation
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of recursion we introduce various re�ective subcategories of per�s� In this context
we prove a generalized Myhill�Shepherdson theorem �Hyl��� Ros��� FMRS���
Ama��b��
Chapter �� discusses some connections between the functional and concurrent

computational paradigms� As a main tool for this comparison we introduce the
basics of ��calculus theory� a rather economical extension of Milner�s Ccs� We
show that this calculus is su�ciently expressive to adequately encode a call�by�
value ��calculus enriched with parallel composition and synchronization operators
�MPW��� ALT���
Two appendices provide the basic material on recursion theory and category

theory �see �Rog��� Soa��� for the former and �ML��� BW�� AL��� for the latter	�
We refer to �Bar��� GLT��� for more advanced results on the syntactic aspects
of ��calculus�

Most people never manage to read a scienti�c book from the beginning to the
end� We guess this book will be no exception� In �rst approximation a precedence
relation � among the chapters can be de�ned as follows�

�� � � � � � � � � � � � � ��
� �  � �� ��
� � �� � �� � ��
 � � � �� � �

Clearly there are plenty of possible shortcuts� When using the book in an intro�
ductory graduate course or seminar it is perhaps a good idea to modulate the
amount of domain�theoretical constructions which are presented�

This book arises out of a joint e�ort to develop and integrate lecture notes
for graduate courses taught by the authors in the years ��������� in a number of
research institutions� A preliminary report of our work had appeared in �AC����
Constructive criticisms and corrections are welcome and can be addressed to
amadio�gyptis�univ�mrs�fr or curien�dmi�ens�fr�
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Notation

Set theoretical�

� empty set
� natural numbers
B two elements set
��� union� intersection of two setsS
�
T

union� intersection of a family of sets
Xc complement of X
P�X� parts of X
Pfin�X� �nite subsets of X
X ��n Y X is a �nite subset of Y
X ���n Y X is a �nite and nonempty subset of Y

�X cardinality of X
R� re�exive and transitive closure of R
fdigi�I indexed set
fxngn�� � fxngn��� fxngn�� equivalent notations for an enumerated set
x �� f�x�� �x�f�x� equivalent functional notations

Category theoretical�

C�D categories
C�a� b� morphisms from a to b
f � g composition of morphisms
hf� gi pairing of morphisms
L a R L left adjoint to R

��
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Domain theoretical�

�P��� preorder �re�exive and transitive�
f � �P���� �P ����� f is monotonic if it preserves the preorder
UB�X� upper bounds of X
MUB�X� minimal upper bounds �mub�s� of XW
X least upper bound �lub�V
X greatest lower bound �glb�

x 	 y elements with an upper bound �compatible elements�
x 
 y immediate predecessor
	 X� �X smallest upper� lower set containing X

O poset f��g with � � 
d� e step function
K�D� compact elements

Syntax�

BNF BackusNaur form for grammars
V �U�x� substitution of U for x in V
FV �M� free variables of M
BT �M� B�ohm tree of M
��M� syntactic approximant of M
	M vector of terms

Semantics�

f �e�d� environment update� f �e�d��x� �

�
e if x � d

f�x� otherwise

Recursion Theoretical�

fng� 
n function computed by the nth Turing machine
�� 	 convergence� divergence predicate
�� Kleene�s equality on partially de�ned terms



Chapter �

Continuity and Computability

As the computation of a computer program proceeds� some �partial	 information
is read from the input� and portions of the output are gradually produced� This
is true of mathematical reasoning too� Consider the following abstraction of a
typical highschool problem for simple equation solving� The student is presented
with three numerical �gures � the data of the problem �which might themselves
be obtained as the results of previous problems	� Call tem u� v� and w� The
problem has two parts� In part �� the student is required to compute a quantity
x� and in the second part� using part � as a stepping stone� he is required to
compute a quantity y� After some reasoning� the student will have found that�
say� x � �u� �� and that y � x� v� Abstracting away from the actual values of
u� v� w� x� and y� we can describe the problem in terms of information processing�
We consider that the problem consists in computing x and y as a function of
u� v� w� i�e�� �x� y	 � f�u� v� w	� A �rst remark is that w is not used �it was
probably placed there on purpose to confuse the student���	� In particular� if
computing w was itself the result of a long� or even diverging� computation� the
student would still be able to solve his problem� A second remark is that x
depends on u only� Hence� again� if �nding v is very painful� the student may
still achieve at least part � of his problem� Finally� y depends on both u and v�
If the actual value of y is needed to get the highest mark� then the student has
no escape but to solve the other problem whose output is v�
We use the symbol � to mark the absence of information� All what we have

described with English words can be formalised as follows �we assume u� v �� �	


f������	 � ����	
f�u����	 � ��u� ���	
f�u� v��	 � ��u� �� ��u� �	 � v	 �

Input and output data may be ordered according to their information contents�
Therefore we write


������	 � �u����	 � �u� v��	
����	 � ��u� ���	 � ��u � �� ��u� �	� v	 �

��
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The function f is monotonic with respect to this order� i�e�� if �x� y� z	 � �x�� y�� z�	�
then f�x� y� z	 � f�x�� y�� z�	� We are not concerned here with the order relation
between numbers� It is not relevant in the analysis of the student�s information
processing activity� We are also con�dent that he or she is good at computing
additions and multiplications �he might have a calculator���	�
Another example involving an open�ended view of computation is o�ered by

some popular programs running in the background at many academic institutions�
which compute larger and larger prime numbers� In this case� larger and larger
lists of prime numbers are obtained from scanning larger and larger portions of the
�in�nite	 list of natural numbers� and making the appropriate primality checks�
The currently produced list of prime numbers is an approximation of the in�nite
sorted list of all prime numbers� which is the ideal total output information�
Continuity arises as the formalisation of the slogan
 �any �nite part of the output
can be reached through a �nite computation�� The primality of an arbitrarily
large number can be �in principle	 checked in �nite time and by scanning a �nite
portion of the sorted list of natural numbers�
Complete partial orders and continuous functions are introduced in section

���� The following two sections sketch links with topology and recursion theory�
In section ���� we show that complete partial orders can be viewed as �quite
special	 topological spaces� In section ���� we indicate where all this came from

a theorem of recursion theory� due to Myhill and Shepherdson� shows that� in a
suitable sense� computability implies continuity� In section ���� we come back to
the order�theoretic treatment� and present basic domain constructions �product�
function space� smash product� lifting� and di�erent kinds of sums	� In section ���
we apply the material of the previous sections to give a denotational semantics
to a toy imperative language� In section ���� we consider a small extension of
this language� and we introduce continuation semantics �continuations will be
considered again in chapter �	�

��� Directed Completeness and Algebraicity

After giving the basic de�nitions concerning directed complete partial orders
and continuous functions� we immediately arrive at a simple� but fundamental
�xpoint theorem� which will be used to give meaning to loops �section ��	 and
to recursive de�nitions �section ���	�

De�nition ����� �dcpo� Given a partial order �D��	� a non�empty subset  �
D is called directed if

	x� y 
  � z 
  x � z and y � z�

In the sequel�  �dir D stands for� � is a directed subset of D� �when clear
from the context� the subscript is omitted�	 A partial order �D��	 is called a
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directed complete partial order �dcpo� if every  � D has a least upper bound
�lub�� denoted

W
 	 If moreover �D��	 has a least element �written ��� then it

is called a complete partial order �cpo�	

De�nition ����� �monotonic�continuous� Let �D��	 and �D���	 be partial
orders	 A function f 
 D � D� is called monotonic if

	x� y 
 D x � y� f�x	 � f�y	�

If D and D� are dcpo
s� a function f 
 D � D� is called continuous if it is
monotonic and

	 �dir X f�
�
 	 �

�
f� 	�

�Notice that a monotonic function maps directed sets to directed sets	� A �xpoint
of f 
 D � D is an element x such that f�x	 � x	 A pre�xpoint of f 
 D� D is
an element x such that f�x	 � x	 If f has a least �xpoint� we denote it by �x �f		

The most noteworthy example of a directed set is an in�nite ascending se�
quence x� � x� �    � xn    � Actually they are the ones that matter� Most
of domain theory can be formulated with partial orders that are complete only
with respect to ascending chains�

De�nition ����� ��	dcpo� A partial order �D��	 is called an ��dcpo if every
ascending sequence fxngn�� has a lub	

Clearly� dcpo�s are ��dcpo�s� We stick to directed sets� which have a more abstract
�avour�

Exercise ��� Show that the identity functions are continuous� and that the compo�
sition of two continuous functions is continuous�

De�nition ����
 The category Dcpo is the category of directed complete partial
orders and continuous functions	 The category Cpo is the full subcategory of
Dcpo whose objects are the cpo
s	

Example ����� �	 Given any set X� de�ne X� � X �f�g �where � �
 X�� and
x � y � �x � � or x � y		 Cpo
s de�ned in this way are called �at	 The two
elements at domain f���g is written O	 The boolean at domain f�� tt�� g is
written T	

�	 All partial orders without in�nite ascending chain are dcpo
s �this includes all
�nite partial orders�	

�	 X � Y �the set of partial functions between two sets X� Y �� endowed with
the following order� is a cpo�

f � g � �f�x	 �� �g�x	 � and f�x	 � g�x			

�where f�x	 � means �f�x	 is de�ned��� or equivalently graph�f	 � graph�g	
�where graph�f	 � f�x� y	 j f�x	 � and f�x	 � yg�	 The least element is the
everywhere unde�ned function� and lub
s are set�theoretic unions �of graphs�	
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The following proposition is the key to the interpretation of recursively de�ned
programs or commands�

Proposition ����� �Kleenes �xpoint� If D is a cpo and f 
 D � D is con�
tinuous� then

W
n�� f

n��	 is a �xpoint of f � and is the least pre�xpoint of f �hence
it is the least �xpoint of f� �	

Proof� From � � f��	� we get by monotonicity that �� f��	� � � � � fn��	� � � � is
an increasing chain� thus is directed� By continuity of f � we have

f�
�
n��

fn��		 �
�
n��

fn����	 �
�
n��

fn��	�

Suppose f�x	 � x� We show fn��	 � x by induction on n� The base case is clear
by minimality of �� Suppose fn��	 � x
 by monotonicity� fn����	 � f�x	� and
we conclude by transitivity� �

More assumptions on D make it possible to prove the existence of least �x�
points for all monotonic functions�

Exercise ��	 �Tarski�s �xpoint� Let D be a complete lattice �i�e�� D is a partial
order in which every subset has a lub�� Show that any monotonic function f � D � D

has a least �xpoint� which is
V
fx j f�x� � xg� and that the set of �xpoints of f is a

complete lattice�

An alternative proof of the �rst part of Tarski�s theorem appeals to a cardi�
nality argument� as suggested in the following exercise�

Exercise ��� Let D be a complete lattice� and f � D � D be a monotonic function�
Set f� � �� f��� � f � f�� and f��x� �

W
��� f

��x�� for all x� where � is an ordinal�
and � is a limit ordinal� Show that there is an ordinal � such that f� � �x�f�� Describe
a dual construction for the greatest �xpoint�

Next we introduce compact elements� which are used to model the notion of
�nite information�

De�nition ������ �compact� Let D be a dcpo	 An element d 
 D is called
compact �some authors say isolated� if the following implication holds� for each
directed  �

d �
�
 � �x 
  d � x�

We write K�D	 for the collection of compact elements of D� and we let d� e range
over compact elements	

Exercise ���� Show that the lub of two compact elements� if any� is compact�

�Why this fact is named after Kleene is explained in remark ������
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De�nition ������ �algebraic� A dcpo D is called algebraic if for all x 
 D the
set fd 
 K�D	 j d � xg� is directed and has lub x	 It is called an ��algebraic dcpo
if it is algebraic and K�D	 is denumerable	 The elements of fd 
 K�D	 j d � xg
are called the approximants of x� and K�D	 is called the basis of D	 We denote
by Adcpo and �Adcpo the full subcategories of Dcpo consisting of algebraic
and ��algebraic dcpo
s� respectively	 We also write

Acpo � Cpo �Adcpo � �Acpo � Cpo � �Adcpo�

Thinking of a directed set  as describing the output of a possibly in�nite
computation� and of the elements of  as describing the larger and larger portions
of the output produced as time passes� then the property of d being compact
means that only a �nite computing time is required to produce at least d� The
algebraicity requirement says that we want to bother only about those abstract
elements which can be described as the �limits� of their �nite approximations�

Example ������ �	 We have seen that X � Y is a cpo	 It is actually an
algebraic cpo� the compact elements are the functions that have a �nite domain
of de�nition	

�	 The powerset of natural numbers� P��	� ordered by inclusion� is an ��algebraic
cpo	

�	 Consider a signature ! consisting of symbols f with an associated arity
arity�f		 De�ne possibly in�nite terms as partial functions S from �� to ! sat�
isfying the following property�

S�un	 �� � f S�u	 � f with n � arity�f	�

The order is the restriction of the graph inclusion order on �� � !	

�	 The following is a minimal example of a non�algebraic cpo�

D � � � fa� bg with x � y i�

�����
y � b or
x � a or
x � m� y � n� and m � n �

Exercise ���� Let D be a dcpo� and K � K�D� be such that for any x � D the
set fd � K j d � xg is directed and has lub x� Show that D is algebraic� and that
K � K�D��

Exercise ���� De�ne a notion of ����algebraic ��dcpo �cf� de�nition ������� and
show that ��algebraic ��dcpo	s and ��algebraic dcpo	s are the same�

The following proposition formalises the idea that continuous means ��nite input
only is needed to produce �nite output��
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Proposition ������ ��		continuity� Let D and E be algebraic dcpo
s	

�	 A function f 
 D � E is continuous i� it is monotonic� and for each e 
 K�E	
and x 
 D such that e � f�x	� there exists d � x such that d 
 K�D	 and
e � f�d		

�	 f�d� e	 
 K�D	 �K�E	 j e � f�d	g� denoted by graph�f	 and called graph of
f determines f entirely	�

Proof� ��	 We �rst prove ��	� Let  be directed� We have
W
f� 	 � f�

W
 	

by monotonicity� To show f�
W
 	 �

W
f� 	� it is enough to prove that for any

compact e � f�
W
 	 there exists 	 
  such that e � f�		� By assumption there

exists d �
W
 such that d 
 K�D	 and e � f�d	� and the conclusion follows by

compactness of d� Conversely� if f is continuous and e � f�x	� take a directed
 � K�D	 such that x �

W
 � Then by continuity we can rephrase e � f�x	 as

e �
W
f� 	� and we conclude by compactness of e� For the second part of the

statement� notice

f�x	 �
�
fe j e � f�x	g �

�
fe j � d d � x and e � f�d	g�

�

De�nition ������ �e�ective continuity� If D and E are ��algebraic dcpo
s�
and if two surjective enumerations fdngn�� and fengn�� of the compact elements
of D and E are given� then f 
 D � E is called e�ectively continuous i� it is
continuous and the set f�m�n	 j en � f�dm	g is recursively enumerable	

Since a continuous function is determined in terms of compact elements� it is
natural to ask for a characterisation of those sets of pairs that arise as graph of
a continuous function�

De�nition ������ �approximable relation� If D and E are algebraic dcpo
s�
a relation R � K�D	 �K�E	 is called an approximable relation if it satis�es�

�AR�	 �d� e�	� �d� e�	 
 R � e� � e�
�AR�	 �d� e	 
 R� d� � d� e � e� � �d�� e�	 
 R �

Proposition ������ The approximable relations are exactly the graphs of con�
tinuous functions	

Proof� Clearly� the graph of a continuous functions satis�es �AR�	 and �AR�	�
Conversely� let R be an approximable relation� We de�ne f by

f�x	 �
�
fe j � d � x �d� e	 
 Rg�

�This de�nition of graph is a variant of the set�theoretical de�nition used in example �����
���	 which is well suited for continuous functions over algebraic cpo
s�
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We show that f is well�de�ned� We have to check that fe j � d � x �d� e	 
 Rg
is directed� Let �d�� e�	� �d�� e�	 
 R� with d�� d� � x� By algebraicity there exists
a compact d such that d�� d� � d � x� Then �d� e�	� �d� e�	 
 R by AR�� and
�d� e	 
 R for some e � e�� e� by AR�� hence e �ts� The proofs that f is mono�
tonic and graph�f	 � R are easy� �

Next we show how algebraic dcpo�s correspond to a completion process� similar
to that for obtaining real numbers from rationals�

De�nition ������ �ideal� Given a preorder �P��	� an ideal I is a directed�
lower subset of P 	 Write Ide�P 	 for the collection of ideals over P � ordered by
set�theoretic inclusion	 An ideal I is called principal if ��x 
 P I �� x		

Proposition ������ �ideal completion� �	 If P is a preorder� then Ide�P 	 is
an algebraic dcpo whose compact elements are exactly the principal ideals	

�	 If D is an algebraic dcpo� then D and Ide�K�D		 are isomorphic in Dcpo	

Proof� ��	 ��	 Let  be a directed set of ideals� De�ne
W
 as the set�theoretic

union of the ideals in  � It is easily checked that this is an ideal� thus it is the lub
of  in Ide�P 	� The directedness of f� x j � x � Ig follows from the directedness
of I� The rest of ��	 follows from the following obvious facts
 I �

S
f� x j� x � Ig�

and principal ideals are compact�

��	 The two inverse functions are x �� fd 
 K�D	 j d � xg and I ��
W
I� �

Ideal completion is a universal construction� characterised by an adjunction�
�The notion of adjunction is recalled in appendix B�	

Proposition ������ �ideal completion free� Ideal completion is left adjoint
to the forgetful functor U 
 Dcpo� P� where P is the category of partial orders
and monotonic functions� and where U takes a dcpo to the underlying partial order
and a continuous function to the underlying monotonic function	 Less abstractly�
given any partial order X and any dcpo D� any monotonic function f 
 X � D
extends uniquely to a continuous function "f 
 Ide�X	� D	

Proof� We de�ne the counity of the adjunction by 
�x	 �� x� Take a monotonic
f 
 X � D� The unique continuous extension "f of f to Ide�X	 is de�ned by
"f�I	 �

W
x�I f�x	� �

In a di�erent perspective� ideal completion determines an equivalence of cat�
egories�

Proposition ������ The ideal completion and the transformation D �� K�D	
determine an equivalence between Adcpo and the category of partial orders and
approximable relations	
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Proof� First we make sure that partial orders and approximable relations form
a category� Composition is de�ned as graph composition


R� �R � f�d� d��	 j � d� �d� d�	 
 R and �d�� d��	 
 R�g�

We only check that R��R satis�es AR�� Let �d� d��	 
 R� �d
�
�� d

��
�	 
 R

�� �d� d��	 
 R�
and �d��� d

��
�	 
 R

�� Then

�d� d�	 
 R for some d� � d��� d
�
� by AR�

�d�� d���	 
 R
�� �d�� d���	 
 R

� by AR�

�d�� d��	 
 R� for some d�� � d���� d
��
� by AR� �

The rest of the proposition follows easily from propositions ������ and ������� �

Exercise ���� Consider the �nite partial terms over a signature � � f�g �disjoint
union� including a special symbol � of arity �� ordered as follows
 s � t i� � s � t

can be established by the following rules


� � � t

� s� � t� � � � � sn � tn
f�s�� � � � � sn� � f�t�� � � � � tn�

Show that the ideal completion of this partial order is isomorphic to the set of �nite
and in�nite terms as de�ned in example �������

��� Dcpo�s as Topological Spaces

Any partial order �X��	 may be endowed with a topology� called Alexandrov
topology� whose open sets are the upper subsets of X� It has as basis the sets � x�
where x ranges over X� Conversely� with every topological space �X�#X	� one
may associate a preorder� called specialisation preorder� de�ned by

x � y i� 	U 
 #X x 
 U � y 
 U�

A T� topology is by de�nition a topology whose associated preorder is a partial
order� i�e�� if x �� y� then either there exists an open U such that x 
 U and y �
 U �
or there exists an open U such that y 
 U and x �
 U � Classical topology assumes
a much stronger separation axiom� known as T� or Hausdor�
 if x �� y� then there
exist disjoint opens U and V such that x 
 U and y 
 V � The topological spaces
arising from dcpo�s are not Hausdor�� They are not even T�� where T� is the
following intermediate property
 if x �� y� then there exists an open U such that
x 
 U and y �
 U � �Clearly� if T� holds� then x � y � x � y�	 We seek a T�
topology associated with a dcpo in such a way that


the specialisation order is the dcpo order� and
order�theoretic continuity coincides with topological continuity�

Recall that the opens of a topological space X are in one�to�one correspondence
with the continuous functions X � f���g� where the only non�trivial open
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of f���g is f�g� Precisely� the correspondence associates with an open its
characteristic function� and maps any f to f����	� The specialisation order for
this topology on f���g yields the �at cpo O �cf� section �	� So the open sets of
a dcpo D must be the sets of the form f����	� for f continuous from D to O� in
the order�theoretical sense� This motivates the following de�nition�

De�nition ����� �Scott topology� A subset A � D of a dcpo D is called Scott
open if�

�	 x 
 A and x � y � y 
 A�
�	  directed and

W
 
 A� �x 
  x 
 A�

The collection #S�D	 of Scott opens �which is clearly a topology� is called Scott
topology over D	

Exercise ��� Show that Ux � fy � D j y �� xg is Scott open�

Lemma ����� The specialisation order on �D�#S	 is �D��		 In particular� #S
is T�	

Proof� Call �� the specialisation order� It is obvious from the de�nition of Scott
topology that � � ��� Conversely� let x �� y and suppose x �� y� i�e�� x 
 Uy �cf�
exercise �����	� Then y 
 Uy by de�nition of �

�� contradicting re�exivity� �

Proposition ����� Let D� E be dcpo
s	 The continuous functions �in the topo�
logical sense� from �D�#S	 to �E�#E	 are exactly the morphisms in Dcpo	

Proof� Let f be #S �continuous� By lemma ������ f is monotonic �a continuous
function is always monotonic with respect to the specialisation order	� Suppose
f�
W
 	 ��

W
f� 	� i�e��

W
 
 f���UW f���	� Thus f�		 
 UW f��� for some

	 
  � since f���UW f���	 is Scott�open� But this contradicts f�		 �
W
f� 	�

The converse is easy and left to the reader� �

Proposition ����
 �Scott basis� If D is algebraic� then the sets � d� for d
compact� form a basis of #S 	

Proof� The sets � d are Scott�open� by de�nition of compactness� We have to
show that if � d � � d� �� �� then � d�� �� d � � d�� for some d��� that is� d� d� � d���
Let x 
� d � � d�� that is� d� d� 
 fe 
 K�D	 j e � xg� We �nd d�� by directedness�
We also have to show that if U is open and x 
 U � then x 
� d � U for some d

this trivially follows from the de�nition of opens and by algebraicity� �

Exercise ����� gives a topological justi�cation of ideal completion� Recall that
opens of a topological space can be viewed as the morphisms from that space
into O� Suppose that we are interested in the dual exercise� We have an abstract
topology� consisting a partial order of �opens� with arbitrary lub�s and �nite
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greatest lower bounds �glb�s	 distributing over them� Such a structure is called a
frame� �The set of opens of a topological space� ordered by inclusion� is a frame�	
Dually to the way of obtaining opens out of points� a way to recover points from
�abstract	 opens is to take the frame morphisms from A to O �i�e�� those that
preserve the frame structure	� whereO is considered as a frame� The construction
that takes a topological space to its frame of opens� then to the set of points of
this frame� is called soberi�cation� All these notions of abstract topology will be
developped in section �����

Exercise ��
 �ideals�points� Let �X��� be a partial order� Show that ideals of X
are in one�to�one correspondence with the points of the Alexandrov topology over X�
i�e�� the frame homomorphisms from �X to O� In other words� ideal completion is an
instance of soberi�cation�

��� Computability and Continuity

We give a recursion�theoretic characterisation of the set �� � �	 �e� �� � �	
of e�ectively continuous functions from � � � to � � �� Let f�ngn�� be an
enumeration of the set PR of partial recursive functions� We have

K�� � �	 � PR � � � ��

We recall theorem A����
 if A is a subset of PR such that fx j �x 
 Ag is
recursively enumerable �r�e�	� then for any partial recursive f 


f 
 A i� there exists a �nite function � � f such that � 
 A�

In particular� A is an upper subset�

Theorem ����� �Myhill	Shepherdson� �	 Let f be a total recursive function
that is extensional� i	e	� �f�m� � �f�n� whenever �m � �n	 Then there is a unique
continuous function F 
 �� � �	 � �� � �	 �extending� f � i	e	� such that
F ��n	 � �f�n� for all n	 Moreover� F is e�ectively continuous	

�	 Conversely� any e�ectively continuous function F 
 �� � �	 � �� � �	
maps partial recursive functions to partial recursive functions� and there is a
total �extensional� recursive function f such that F ��n	 � �f�n� for all n	

Proof� ��	 De�ne F� 
 PR� PR by F���n	 � �f�n�� The key property of F� is


�	 F��g	�m	 � n i� F���	�m	 � n for some �nite � � g �g 
 PR	�

We get this by theorem A����� taking A � fg 
 PR j F��g	�m	 � ng �m� n �xed	

a procedure in p that terminates when �p 
 A is given by
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computing f�p	� and then�
computing �f�p��m	 and checking �f�p��m	 � n�

Since F has to extend F�� it extends a fortiori the restriction of F� to �nite
functions� thus there is no choice for the de�nition of F 


F �g	�m	 � n i� F���	�m	 � n for some �nite � � g �g 
 � � �	�

�Hereafter � always ranges over �nite functions�	 We show that F is well de�ned�
Suppose that F���	�m	 � n and F����	�m	 � n� for some �nite �� �� � g� By
�	� we have F��g	�m	 � n and F��g	�m	 � n�� which forces n � n�� F extends
F� by de�nition� It is also continuous by de�nition� We show �nally that F is
e�ectively continuous� A procedure in �encodings of	 �� ��� which terminates when
�� � F ��	 � F���	� is obtained as a sequence of procedures in �� which terminate
when F���	�m	 � n� for all m� n such that ���m	 � n� Such procedures can be
obtained by pre�xing the procedure considered above with a �total	 procedure
taking � to an index p such that � � �p�
��	 Conversely� let F be e�ectively continuous� We build f as in the statement

by a simple application of the s�m�n theorem A���
 it is enough to show that
�p�m	 �� F ��p	�m	 is partial recursive� This in turn is equivalent to proving
that F ��p	�m	 � n is r�e� in p� m� n� We know from the e�ectivity of the
continuity of F that the predicate F ��	�m	 � n is r�e� in �� m� n� Whence
the following procedure for p� m� n
 try in parallel the successive ��s� checking
whether � � �p and F ��	�m	 � n� and stop when one such � has been found�
Continuity guarantees that the procedure will succeed if F ��p	�m	 � n� �

Exercise ��� Let F be as in the statement of Myhill�Shepherdson	s theorem ������
Show that the least �xpoint of F is in PR�

Remark ����� Forgetting about minimality� exercise �	�	� can be reformulated
as follows� for any total and extensional recursive function f 
 � � �� there
exists n� such that �f�n�� � �n�	 This is known as Kleene
s recursion theorem	
The proof followed here uses the �computable � continuous� direction of theorem
�	�	� and the proposition �	�	�	

��� Constructions on Dcpo�s

In this section we show how to construct new dcpo�s out of dcpo�s� First we
consider the product and function space constructions� Then we consider other
basic domain constructions
 lifting� smash product and sum�
Let D� E be two dcpo�s� The product D � E of D and E in the category

of sets becomes a product in the category of dcpo�s �for the categorical notion
of product� see appendix B	� when endowed with the following componentwise
order


�x� y	 � �x�� y�	 i� x � x� and y � y��
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Proposition ����� �dcpo of pairs� If D� E are dcpo
s� then D�E ordered as
above is a dcpo	 The statement also holds� replacing �dcpo� by �cpo�	

Proof� If  is directed in D � E� de�ne  D � fx j � y �x� y	 
  g� and
symmetrically  E� Then �

W
 D�

W
 E	 is the lub of  � If D� E are cpo�s� then

����	 is the minimum of D � E� �

If the dcpo�s are algebraic� the product in Dcpo coincides with the product
in Top� the category of topological spaces�

Exercise ��� Let D� E be dcpo	s� let �S be the Scott topology on D � E� and
let  be the product of the Scott topologies on D and E �a basis of  is fU � V j
U� V Scott openg�� Show  � �S� Show that if D� E are algebraic� then  � �S � �See
exercise ������ in Bar��� for a situation where  �� �S��

In general topology� it is not true that a continuous function of several argu�
ments is continuous as soon as it is continuous in each argument� but this is true
for dcpo�s�

Proposition ����� �argumentwise continuity� Let D� D�� and E be dcpo
s	
A function f 
 D � D� � E is continuous i� for all x 
 D the functions fx 

D� � E� and for all y 
 D� the functions fy 
 D� E� de�ned by fx�y	 � f�x� y	
and fy�x	 � f�x� y	� respectively� are continuous	

Proof� Let f 
 D �D� � E be continuous� and  be a directed subset of D��
Then �x� 	 � f�x� 		 j 	 
  g is a directed subset of D �D�� Thus

fx�
�
 	 � f�

�
�x� 		 �

�
f�x� 	 �

�
fx� 	�

Suppose conversely that f is continuous in each argument separately� Let  be
directed in D�D�� Let  D and  D� be as in the proof of proposition ������ Then

f�
�
 	 � f�

�
 D�

�
 D�	 �

�
f� D�

�
 D�	

�
�
f
�
f�	� D�	 j 	 
  Dg �

�
f� D� D�	 �

It remains to show
W
f� D� D�	 �

W
f� 	� One side is obvious since  �

 D � D�� Conversely� one uses directedness of  to check that each element of
 D � D� has an upper bound in  � �

Next we consider the construction of function spaces�

Proposition ����� �dcpo of functions� Let D� E be dcpo
s	 The set D�cont

E of continuous functions from D to E� endowed with the pointwise ordering
de�ned by

f �ext f
� i� 	x f�x	 � f ��x	

is a dcpo	 �We shall omit the subscripts cont and ext until chapter ��	� Moreover�
if E is a cpo� then D � E is a cpo	
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Proof� Let  be a directed set of functions� De�ne f�x	 �
W
 �x	� Let  � be

a directed subset of D� Then

f�
�
 �	 �

�
 �
�
 �	 �

�
f
�
g� �	 j g 
  g �

�
 � �	

�
�
f
�
 �	�	 j 	� 
  �g �

�
f� �	 �

For the last part of the statement� notice that the constant function �x�� is the
minimum of D � E� �

Exercise ��� ��x continuous� Show that the �xpoint functional �x � �D � D��
D of proposition ����� is continuous�

The material needed to show that D�E and D � E are categorical product
and function spaces are collected in exercises ����� and ������ We refer to sec�
tion ���� and in particular to exercises ������ and ������� for the full categorical
treatment�

Exercise ��
 Show the following properties
 ��� The projections �� and ��� de�ned
by ���x� y� � x and ���x� y� � y� are continuous� ��� Given continuous functions
f � D � E and g � D � E�� the pairing hf� gi de�ned by hf� gi�x� � �f�x�� g�x�� is
continuous�

Exercise ��� Show the following properties
 ��� The evaluation de�ned by ev�x� y� �
x�y� is continuous� ��� Given f � D�D� � E� show that ��f� � D � �D� � E� de�ned
by ��f��x��y� � f�x� y� is well�de�ned and continuous�

What is the situation for algebraic dcpo�s$ Unfortunately� if D� E are alge�
braic� D � E may fail to be algebraic� The story seems to begin well� though�
The following lemma shows how compact functions can be naturally constructed
out of compact input and output elements�

Lemma ����� �step functions� ��� Let D� E be cpo
s� d 
 D and e 
 K�E		
Then the step function d� e� de�ned as follows� is compact�

�d� e	�x	 �

�
e if x � d
� otherwise �

��� If D and E are algebraic� then f �
W
fd� e j �d� e	 � fg� for any f 	

Proof� ��	 If d� e �
W
 � then e � �d� e	�d	 �

W
ff�d	 j f 
  g� Since e is

compact� we get e � f�d	 for some f � i�e�� d� e � f �

��	 Notice that fd � e j �d� e	 � fg � g i� �e � f�d	 � e � g�d		 for all d� e
i� f � g� �

The trouble is that the sets fg j g � f and g compactg are not directed in
general �see exercise �����	� They become directed under a further assumption
on the domains� The following observation motivates the next de�nition
 if
d� e � f � d� � e� � f � and d � d�� then also e � e��
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De�nition ����� �Scott domain� A dcpo satisfying the following axiom is called
bounded complete �some authors say consistently complete��

x � y � x � y exists� for any x and y�

Bounded complete and algebraic cpo
s are often called Scott domains	

Exercise ���� Show that a dcpo D is bounded complete i� any non�empty upper
bounded subset of D has a lub i� any non�empty subset of D has a glb�

Exercise ���� Show that an algebraic dcpo is bounded complete i� d 	 d� � d �
d� exists� for any compacts d and d��

Suppose that E is bounded complete� then de�ne� for compatible d� e and
d� � e�


h�x	 �

���������
e � e� x � d and x � d�

e x � d and x �� d�

e� x �� d and x � d�

� otherwise �

It is easily checked that h is the lub of d� e and d� � e��

Theorem ������ �Scott CCC� If D is algebraic and E is a Scott domain� then
D � E is a Scott domain	 The compact elements of D � E are exactly the
functions of the form �d�� e�	 �    � �dn � en		

Proof� Let  be the set of lub�s of �nite non�empty bounded sets of step func�
tions �which always exist by a straightforward extension of the above construction
of h	� Then f �

W
fd� e j �d� e	 � fg implies f �

W
fg 
  j g � fg� which

shows that D � E is algebraic� since fg 
  j g � fg is directed by de�ni�
tion� and since  is a set of compact elements �cf� exercise ������	� Bounded
completeness for compact elements obviously follows from the de�nition of  � �
The terminology �CCC� is a shorthand for �cartesian closed category� �see

appendix B and section ���	�

Remark ������ The lub
s of �nite sets of step functions� when they exist� are
described by the following formula�

��d� � e�	 �    � �dn � en		�x	 �
�
fei j di � xg�

Exercise ���� Show that an algebraic cpo is a lattice �i�e�� it has all �nite lub	s and
glb	s� i� it has all �nite lub	s �cf� exercise �������� Show that if D� E are algebraic
lattices� then so is D � E�

There are larger full subcategories of algebraic dcpo�s and algebraic cpo�s that
are closed under the function space construction� This will be the subject matter
of chapter �
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Exercise ���� �non�algebraic �� Consider example �A� in �gure ��� �ahead��
Show that D is ��algebraic and that D� D is not algebraic� Hints
 ��� Show


a� a� b� b � f � id � f��� � �� f�a� � a and f�b� � b

�
�
n��

fn � f

where

fn�d� �

�
f�d� if d �� � or �d � m and m � n�
f�m� �� if d � m and m � n �

��� Notice that f � fm entails that f becomes constant� contradicting f � id � ���
Conclude that the set of approximants of the identity is not directed�

The following constructions play an essential role in the semantics of call�
by�value� which is addressed in chapter �� we introduce call�by�value semantics�
Most of the proofs are easy and omitted�

De�nition ������ �lifting� Let D be a partial order	 Its lifting D� is the partial
order obtained by adjoining a new element � �implicitly renaming the � element
of D� if any� below all the elements of D�

x � y in D� � x � � or �x� y 
 D and x � y in D	�

In particular� the �at domains� introduced in example ������ are liftings of discrete
orders�

De�nition ������ �partial continuous� strict� Let D� E be dcpo
s	

�	 A partial function f 
 D � E is called continuous if the domain of de�nition
dom�f	 of f is Scott open� and if f restricted to dom�f	 is continuous �in the
sense of either de�nition �	�	� � or proposition �	�	��	

�	 If D and E are cpo
s� a continuous function f 
 D � E is called strict if
f��	 � �	

�	 If D� D�� and E are cpo
s� a continuous function f 
 D �D� � E is called

left�strict if 	x� 
 D� f��� x�	 � ��
right�strict if 	x 
 D f�x��	 � ��

Given two dcpo�s D�E� the following sets are in bijective correspondence �in fact�
they are order�isomorphic	


�� the set of partial continuous functions from D to E�
�� the set of continuous functions from D to E��
�� the set of strict continuous functions from D� to E��

The transformations �all denoted as f �� "f 	 are


�More precisely� if f�
W
�� �	 then f�

W
�� 

W
ff��� j � � � and f��� �g �notice that since

dom�f� is open	 the right hand set is non�empty��
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� ��	 to ��	
 "f�x	 �

�
f�x	 if f�x	 �
� otherwise �

� ��	 to ��	
 "f is the restriction of f to fx j f�x	 �� �g �notice that this set
is open� cf� exercise �����	�

� ��	 to ��	
 "f�x	 �

�
f�x	 if x �� �
� if x � � �

� ��	 to ��	
 "f is the restriction of f to D�

The following proposition characterises this relationship in a more abstract man�
ner� We de�ne the image of a functor F 
 C� C� as the subcategory of C� whose
objects are �the objects isomorphic to	 Fa for some a 
 ObC� and whose arrows
are the morphisms Ff for some morphism f of C�

Proposition ������ �lifting as adjunction� �	 The lifting of a dcpo is a cpo	
Lifting is right adjoint to the inclusion functor from Dcpo to the category Pdcpo
of dcpo
s and partial continuous functions	

�	 The lifting functor is faithful� and its image is the category Scpo of cpo
s and
strict continuous functions	

�	 Lifting is left adjoint to the inclusion functor from Scpo to Cpo	

Proof� We only show how ��	 follows from ��	 and ��	 by categorical �abstract
nonsense�� Suppose that we have an adjunction F a G� with F 
 C � C� and
G 
 C� � C� Then call C� the image of G� and C� the full subcategory of C
whose objects are those of C�� There are inclusion functors Inc� 
 C� � C�

and Inc� 
 C� � C� It is easy to see that F � Inc� a Inc� � G� If moreover
G is faithful� and faithful on objects �i�e�� if Ga� � Gb� implies a� � b�	� then
G 
 C� � C� is actually an isomorphism of categories� so that� composing with
G�G��� the adjunction becomes

G � F � Inc� a Inc� �G �G
�� � Inc� �

If we take C � Dcpo� C� � Pdcpo� and the inclusion and lifting functors as F
and G� respectively� we obtain ��	� �

Remark ������ The two adjunctions have actually nothing to do speci�cally
with continuity� and can be reformulated in categories of partial orders and �par�
tial� monotonic functions �see section �	��	

De�nition ������ �smash product� Let D and E be two cpo
s	 Their smash
product is the subset D � E of D �E de�ned by

D � E � f�x� y	 j �x �� � and y �� �	 or �x � � and y � �	g

and ordered by the induced pointwise ordering	
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Smash products enjoy a universal property�

Proposition ������ �	 The smash product of two cpo
s D�D� is a cpo� and the
function � 
 D �D� � D �D� de�ned as follows is continuous�

��x� x�	 �

�
�x� x�	 if �x� x�	 
 D �E
����	 otherwise �

�	 The function � is universal in the following sense� for any E and any contin�
uous function f 
 D�D� � E that is both left�strict and right�strict� there exists
a unique strict continuous function "f 
 D �D� � E such that "f � � � f 	

Several notions of sums have been used to give meaning to sum types�

De�nition ������ �coalesced� separated sum� Let D�E be two cpo
s	 Their
coalesced sum D � E is de�ned as follows�

D � E � f��� x	 j x 
 Dnf�gg � f��� y	 j y 
 Enf�gg � f�g�

The separated sum of D and E is de�ned as D� � E�	

Thus� in a colesced sum� the two ��s are identi�ed� while in the separated sum� a
new � element is created and acts as a switch� because any two elements above
� are either incompatible or come from the same component D or E� None of
these two sum constructors yields a categorical coproduct in Cpo� The situation
is di�erent in Dcpo�

Exercise ���� Let D and E be two dcpo	s� Show that their disjoint union� ordered
in the obvious way� is a categorical coproduct in Dcpo�

��� Toy Denotational Semantics

Let us illustrate the use of domains with a denotational semantics for a simple
imperative language Imp� whose set of commands is given by the following syntax


Commands c 

� a jj skip jj c� c jj if b then c else c jj while b do c

where b and a range over two unspeci�ed sets Bexp and Act of boolean expressions
and of actions� respectively� The set of commands is written Com� We de�ne
the meaning of the commands of this language� �rst by means of rules� second
by means of mathematical objects
 sets and functions with structure� Thus we
specify their operational and denotational semantics� respectively� as discussed
in the preface� In Imp� these two semantics agree� We shall see later that it is
di�cult to achieve this goal in general �see section ���	�
With the unspeci�ed syntactic domains Bexp and Act we associate unspeci�ed

denotation functions �� �� 
 Bexp � �! � B	 and �� �� 
 Act � �! � !	� where !
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�

��a��� � ��

ha� �i � �� hskip� �i � �

hc�� �i � �� hc�� ��i � ���

hc�� c�� �i � ���

��b��� � tt hc�� �i � ��

hif b then c� else c�� �i � ��
��b��� � � hc�� �i � ��

hif b then c� else c�� �i � ��

��b��� � �
hwhile b do c� �i � �

��b��� � tt hc� �i � �� hwhile b do c� ��i � ���

hwhile b do c� �i � ���

Figure ���
 The operational semantics of Imp

is an unspeci�ed set of states �for example an environment assigning values to
identi�ers	� and B � ftt �� g is the set of truth values�
The operational semantics of Imp is given by the formal system described in

�gure ���� In this �gure� there are so�called judgments of the form hc� �i � ���
which should be read as
 �starting with state �� the command c terminates and
its e�ect is to transform the state � into the state ���� A proof� or derivation� of
such a judgment is a tree� all of whose nodes are instances of the inference rules�
The rules show that Imp has no side e�ects� The evaluation of expressions does
not change the state�

Lemma ��
�� �while rec� Set w � while b do c	 Then

w � if b then �c�w	 else skip

where � is de�ned by� c� � c� i� 	�� �� hc�� �i � ��� hc�� �i � ��	

Proof� By a simple case analysis on the last rule employed to show hc� �i � ���
where c stands for w and for if b then c�w else skip� respectively� �

Exercise ��� The following is a speci�ed version of Bexp and Act �the actions are
assignment commands� therefore we introduce a syntactic category Aexp of arithmetical
expressions�


Bexp b ��� tt jj � jj e � e jj e � e jj �b jj b� b jj b � b
Aexp e ��� i jj X jj e � e jj e� e jj e� e

Act a ��� �X �� e�

where i ranges over the set � of natural numbers� and X ranges over a set Loc of
locations� The set � is de�ned by � � Loc � �� ��� Complete the description of the
operational semantics� by rules like


hb� �i � tt

h�b� �i � � hX� �i � ��X�
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��� Prove that the evaluation of expressions is deterministic


he� �i � m and he� �i � n� m � n �similarly for Bexp�

�hint
 use structural induction� that is� induction on the size of expressions�� ��� Prove
that the evaluation of commands is deterministic


hc� �i � �� and hc� �i � ��� � �� � ���

�hint
 use induction on the size of derivations�� ��� Prove � � �� hwhile tt do c� �i � ���
�hint
 reason by contradiction� with a minimal derivation��

The denotational semantics of Imp is given by a function

�� �� 
 Com � �!� !	

i�e�� a function that associates with every command a partially de�ned function
from states to states� This function extends the prede�ned �� �� 
 Act � �! �
!	� The semantics employs the partial functions type ! � !� because loops
may cause non�termination� like in while tt do skip� The meaning of skip and
command sequencing are given by the identity and by function composition�
respectively� The meaning of conditionals is de�ned by cases� In other words�
the meanings of these three constructs is an obvious rephrasing of the operational
semantics


��skip��� � �

��c�� c���� � ��c������c����	

��if b then c� else c���� �

�
��c���� if ��b��� � tt
��c���� if ��b��� � � �

The denotational meaning of while is a �xpoint construction suggested by lemma
����� The full de�nition of �� �� by structural induction is given in �gure ����

Theorem ��
�� �op�den equivalence� The following equivalence holds� for
any c� �� ��� hc� �i � ��� ��c��� � ��	

Proof hint� ��	
 This is easily proved by induction on derivations�
��	
 This is proved by structural induction� and in the while case� by math�

ematical induction� Let ��while b do c��� � ��� i�e�� �x �%	��	 � ��� where

% � ���cond � h��b��� h� � ��c��� skipii�

Then since graph��x �%		 �
S
n�� graph�%

n��		� we have ��� ��	 
 graph�%n��		
for some n� Hence it is enough to prove

	n �%n��	��	 � � hwhile b do c� �i � %n��	��		
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��skip�� � id

��c�� c��� � ��c��� � ��c���

��if b then c� else c��� � cond � h��b��� h��c���� ��c���ii

��while b do c�� � �x ����cond � h��b��� h� � ��c��� idii	

� h � i is the set�theoretical pairing of f and g �cf� exercise �����	�

� cond 
 B� ����	� � is the conditional function
 cond �tt � ��� ��		 � ��
and cond�� � ��� ��		 � ���

� �x 
 ��! � !	 � �! � !		 � �! � !	 is the least �xpoint function �cf�
proposition �����	�

Figure ���
 The denotational semantics of Imp

by induction on n� The base case is obvious� because %���	 � � has an empty
graph� For the induction step� there are two cases


�� ��b��� � tt 
 then %n����	��	 � %n��	���	� where ��c��� � ��� by induction
hb� �i � tt � hc� �i � ��� and hwhile b do c� ��i � %n��	���	� Hence� by the
de�nition of the operational semantics


hwhile b do c� �i � %n��	���	 � %n����	��	�

�� ��b��� � � 
 then %n����	��	 � �� and by induction hb� �i � � � Hence� by the

de�nition of the operational semantics� hwhile b do c� �i � � � %n����	��	� �

��� Continuation Semantics 	

The language Imp lacks an essential feature of imperative programming� control opera
tors� which allow to break the normal �ow of a program� In chapter �� we shall discuss
control operators in the setting of functional programming� Here� we brie�y present a
simple imperative language Imp�� which is Imp extended with a go to statement� The
commands of Imp� are written using the following syntax�

Commands c ��� a jj skip jj c� c jj if b then c else c jj goto l jj l � c

where Bexp is as in Imp� and where l ranges over a set Lab of labels� We impose a
further condition� in a command� any occurrence of goto must always be in the scope
of a previously declared label� e�g� �l � c�� goto l is ruled out� Formally� we de�ne the
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following simple deductive system� whose judgments have the form L � c� where L is a
��nite� subset of labels�

L � a L � skip
L � c� L � c�

L � c�� c�

L � c� L � c�
L � if b then c� else c�

l � L
L � goto l

L � flg � c
L � l � c

The set Com� of the commands of language Imp� is de�ned as the set of the commands
c such that L � c for some L�

The semantics for Imp� is more di�cult than that of Imp� The inclusion of goto
complicates the task of determining �what to do next � In our �rst language� a com
mand acted as a state transformer� and handed its resulting state to the next command�
The presence of goto creates a new situation� In a command c�� c�� c� may jump to
a completely di!erent area of the program� so that c� is possibly not the �next com
mand � Consequently� we can no longer consider an interpretation where c� produces
a state that c� can start with� An appropriate way of approaching the semantics of
goto is by means of continuations� The main idea is that� since possible jumps make
future " or continuation " of the program unpredictable� then future must become a
parameter of the semantics� This guides us to the de�nition of the following sets�

Cont � �� �
Env � Lab � Cont �

Cont is called the set of command continuations� and Env is called the set of environ
ments� � �� � range over Cont� Env� respectively� The semantic function �� ��� for Imp�

has the following type�

��c��� � Env � �Cont � Cont��

First� we de�ne �� ��� on the subset Act of Com�� for which the function �� �� � Act �
�� � �� is available� Then the de�nition of �� ��� is extended to Com �� The full
de�nition is given in �gure ���� The tests are interpreted with the prede�ned function
�� �� � Bexp � ��� B� of section ��	�

Exercise �
� Show that if L � c� then ��c����� � ��c����� if ���l� � ���l� for all l � L�

Exercise �
� �while�goto� A while command can be encoded in Imp�� Speci�cally�
the e�ect of �while b do c� can be achieved by �l � if b then �c� goto l� else skip�� Use
this encoding to de�ne a translation � �� from Imp to Imp�� and show ��c�� � ��c�����id �
for every c � Com�

We turn to the operational semantics of Imp�� The key idea is to implement contin
uations by using a stack to store them� �In chapter �� similar techniques will be used
to implement an extension of �calculus with control operators�� The judgments have
the form hc� �� S� �i� ��� where c is a command� � is a partial function from labels to
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��a����� � � � ��a��

��skip��� � id

��c�� c���
�� � ��c���

�� � ��c���
��

��if b then c� else c���
���� � cond���b���� ��c���

����� ��c���
�����

��goto l����� � ��l�

��l � c����� � �x�������c��������l���

Figure ���
 The denotational semantics of Imp�

commands such that dom��� � c� S is a stack " or list " of pairs �c� ��� and �� �� are
states� It is convenient to use a slightly di!erent syntax for commands c�

d ��� a jj skip jj if b then c else c jj goto l jj l � c
c ��� empty jj d � c �

In other words� sequencing is also treated stackwise� with empty acting as an end
marker� The operational semantics is speci�ed as follows�

��a��� � �� hc� �� S� ��i � ���

h�a� c�� �� S� �i � ���
hc� �� S� �i � ���

h�skip� c�� �� S� �i� ��

��b��� � tt h�c�� c�� �� S� �i� ��

h�if b then c� else c��� c� �� S� �i� ��
��b��� � � h�c�� c�� �� S� �i � ��

h�if b then c� else c��� c� �� S� �i � ��

hc�� ��c��l�� �c�� �� � S� �i � ��

h�l � c��� c�� �� S� �i� ��
h��l�� �� S� �i� ��

h�goto l�� c� �� S� �i� ��

hc� �� S� �i� ��

hempty � ��� �c� �� � S� �i � ��

Exercise �
� �op�den�Imp�� � Show that the operational and denotational seman�
tics of Imp� agree in the following sense
 hc� �� S� �i � �� � ��c�������		S

��S��� � ��� where
the meanings of syntactic environments � and of syntactic continuations S are de�ned
as follows


�������l� � ����l���������� �recursive de�nition� where � is a �xed parameter�

��empty �� � id

���c� �� � S�� � ��c�������		S

��S�� �

In particular� we have hc� �� empty� �i � �� � ��c��emptyid� � ���



Chapter �

Syntactic Theory of the

��calculus

This chapter introduces the untyped ��calculus� We establish some of its funda�
mental theorems� among which we count the syntactic continuity theorem� which
o�ers another indication of the relevance of Scott continuity �cf� section ��� and
theorem �����	�

The ��calculus was introduced around ���� by Church as part of an investiga�
tion in the formal foundations of mathematics and logic� The related formalism
of combinatory logic had been introduced some years ealier by Sch�on�nkel� and
Curry� While the foundational program was later relativised by such results
as G�odel�s incompleteness theorem� ��calculus nevertheless provided one of the
concurrent formalisations of partial recursive functions� Logical interest in ��
calculus was resumed by Girard�s discovery of the second order ��calculus in the
early seventies �see chapter ��	�
In computer science� the interest in ��calculus goes back to Landin �Lan���

and Reynolds �Rey���� The ��notation is also instrumental in MacCarthy�s LISP�
designed around ����� These pioneering works have eventually lead to the de�
velopment of functional programming languages like Scheme or Standard ML�
In parallel� Scott and Strachey used ��calculus as a metalanguage for the de�
scription of the denotational semantics of programming languages� The most
comprehensive reference on ��calculus is Barendregt�s reference book �Bar���� A
more introductory textbook has been written by Hindley �HS���� We refer to
these books for more historical pointers�
In section ���� we present the untyped ��calculus� The motivation to prove a

strong normalisation theorem leads us to the simply typed ��calculus� Typed ��
calculi� and extensions of them� will be considered later in the book� particularly
in chapters �� ��� ��� In section ��� we present a labelled ��calculus which
turns out to be a powerful tool for proving many fundamental theorems of the
��calculus� One of them is the syntactic continuity theorem� The proof of this
theorem is a bit technical� and is the subject of section ���� Finally� section ���

�
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motivates the study of sequentiality� which will be undertaken in section �� and
chapter ��� Another fundamental theorem of the ��calculus is B�ohm�s theorem�
It is stated �but not proved	 as theorem �������

��� Untyped �
Calculus

We present the ��calculus� and its basic computation rule � the ��reduction� A
proof of the con�uence property is sketched� and the notion of standardisation is
de�ned�

De�nition ����� ��	calculus� The syntax of the untyped ��calculus ���calculus
for short� is given by

M 

� x jjMM jj �x�M

where x is called a variable� M�M� is called an application� and �x�M is called
an abstraction	 The set of all ��terms is denoted by &	

The following are frequently used abbreviations and terms


�x�   xn�M � �x���  �xn�M   	
MN�   Nn � �   �MN�	   Nn	

I � �x�x K � �xy�x
 � �x�xx S � �xyz��xz	�yz	 �

De�nition ����� �head normal form� A term �x�    xn�xM�   Mp� where x
may or may not be equal to one of the xi
s� is called a head normal form �hnf for
short�	

Remark ����� Any ��term has exactly one of the following two forms� either it
is a hnf� or it is of the form �x�    xn���x�M	M�   Mp �n � �� p � ��	

We next introduce occurrences� which provide a notation allowing to manip�
ulate subterms� Another tool for that purpose is the notion of context�

De�nition ����� �occurrence� Let M be a term� and u be a word over the
alphabet f�� �� �g	 The subterm of M at occurrence u� written M�u� is de�ned as
follows�

M�� �M
M�u � N

�x�M��u � N

M��u � N

M�M���u � N

M��u � N

M�M���u � N
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� �i�N�   Nn� � Ni

x� �N� � x

�C�C�	� �N� � C�� �N �C�� �N �

��x�C	� �N� � �x��C� �N�	

Figure ���
 Filling the holes of a context

where � is the empty word	 The term M�u may well not be de�ned	 If it is
de�ned� we say that u is an occurrence of M 	 The result of replacing the subterm
M�u by another term N is denoted M �N�u�	 We often write M �N�u� just to say
that M�u � N 	 We write�

� u � v �u is a pre�x of v� if �w �v � uw	� and

� u �� v �u and v are disjoint� if neither u � v nor v � u� or equivalently if
� �w�� w� �uw� � vw�		

Example ����


��x�xy	��� � y ��x�xy	�x���� � �x�xx

De�nition ����� �context� The contexts with numbered holes are de�ned by
the following syntax �where i 
 ���

C 

� � �i jj x jj CC jj �x�C �

If only one hole � �i occurs in a term� we denote it � � for short	

In �gure ���� we de�ne the operation of �lling the holes of a context by a �su��
ciently long	 vector of terms� Occurrences and contexts are related as follows�

Proposition ����� �occurrences � contexts� For every term M and every
occurrence u of M � there exists a unique context C with a unique hole occcur�
ring exactly once� such that M � C�M�u�	 Such contexts are called occurrence
contexts	

Free occurrences of variables are de�ned in �gure ��� through a predicate
Free�u�M	� We de�ne Bound �u� v�M	 �u is bound by v in M	 by

M�v � �x�P u � v�w M�u � x Free�w�P 	

Bound �u� v�M	
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Free��� x	

Free�u�M	

Free��u�MN	

Free�u�N	

Free��u�MN	

Free�u�M	 M�u �� x

Free��u� �x�M	

Figure ���
 Free occurrences

If we are not interested in the actual occurrences at which variables appear bound
or free� we can de�ne the sets FV �M	 and BV �M	 of free and bound variables
of M by

FV �M	 � fx j �u M�u � x and Free�u�M	g

BV �M	 � fx j �u� v M�u � x and Bound �u� v�M	g �

If M is a term and x �
 FV �M	� one often says that x is fresh �relatively to M	�
The de�nition of substitution of a term for a �free	 variable raises a di�culty

�there is a similar di�culty for the quanti�ers in predicate calculus	� We expect
�y�x and �z�x to be two di�erent notations for the same thing
 the constant
function with value x� But careless substitution leads to

��y�x	�y�x� � �y�y ��z�x	�y�x� � �z�y �

We want �z�y� not �y�y� as the result� We thus have to avoid the capturing of
free variables of the substituted term� This leads to the de�nition of substitution
given in �gure ���� The choice of z satisfying the side condition in the last clause
of �gure ��� is irrelevant
 we manipulate terms up to the following equivalence
�� called ��conversion


��	 C��x�M � � C��y��M �y�x�	� �y �
 FV �M		

for any context C and any termM �
The basic computation rule of ��calculus is ��reduction�

De�nition ����� ��	rule� The ��rule is the following relation between ��terms�

��	 C���x�M	N �� C�M �N�x��

where C is an occurrence context and M�N are arbitrary terms	 A term of the
form ��x�M	N is called a redex	 The arrow � may be given optional subscripts
u �to witness the occurrence of the redex being reduced� or � �to clarify that the
reduction is a ��reduction�	
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x�N�x� � N
y�N�x� � y �y �� x	
�M�M�	�N�x� � �M��N�x�	�M��N�x�	
��y�M	�N�x� � �z��M �z�y��N�x�	 �z �
 FV �M	 � FV �N		

Figure ���
 Substitution in the ��calculus

��x�M	N �M �N�x�

��	
M �M �

MN �M �N
��	

N � N �

MN �MN �
��	

M �M �

�x�M � �x�M �

Figure ���
 ��reduction

In �gure ���� we give an alternative presentation of ��reduction� by means of an
axiom and inference rules�

De�nition ����� �derivation� We denote by ��
� �or simply ��� the reexive

and transitive closure of ��� and use �� to express that at least one step is
performed	 The reexive� symmetric� and transitive closure of �� is denoted
simply with ��	 A derivation is a sequence of reduction steps M �u� M�    �un

Mn� written D 
M �� Mn� with D � u�    un	

Example ������

II � I SKK �� I
  �   ��x�f�xx		��x�f�xx		� f���x�f�xx		��x�f�xx			 �

The last two examples show that there are in�nite reduction sequences	 Moreover�
the last example indicates how �xpoints can be encoded in the ��calculus	 If we
set

Y � �f���x�f�xx		��x�f�xx		

then we have Y f �� f�Y f		

Another rule� in addition to �� is often considered


�
	 C��x�Mx�� C�M � �x �
 FV �M		�
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This is an extensionality rule� asserting that every term is a function �if it is
read backwards	� The 
�rule is not studied further in this chapter� but will be
considered in chapter ��

Remark ������ Any reduction sequence starting from a head normal form

�x�    xn�xM�   Mp

consists of an interleaving of independent reductions of M�� � � � �Mp	 By this we
mean�

��x�    xn�xM�   Mp�
� P 	� �N�� � � � Np

�
P � �x�   xn�xN�   Np and
	 i � p Mi �� Ni �

We omit most details of the proofs of the next results �see e�g� �HS���	�

Lemma ������ �	 If M �M �� then M �N�x��M ��N�x�	

�	 If N � N �� then M �N�x��� M �N ��x�	

Lemma ������ is the key to the proof of the following property� called local con�
�uence�

Proposition ������ �local con�uence� The ��reduction is locally conuent�
if M � N and M � P � then N �� Q and P �� Q for some Q	

The following is one of the fundamental theorems of the ��calculus�

Theorem ������ �Church	Rosser� The ��reduction is conuent� If M �� N
and M �� P � then N �� Q and P �� Q for some Q	

Proof hint� In section ���� the theorem will be proved completely as a conse�
quence of a powerful labelling method� Here we sketch an elegant direct proof
due to Tait and Martin�L�of� A strongly con�uent relation is a relation � that
satis�es

M � N�M � P implies �Q N � Q and P � Q�

By a straightforward paving argument� the strong con�uence of a relation� im�
plies the con�uence of ��� Unfortunately� ��reduction is not strongly con�uent


��x�   x    x   	N � ��x�   x    x   	N � �   N �   N �   
��x�   x    x   	N �   N   N    ���   N �   N �   

�by���� we mean that the reduction from   N   N    to   N �   N �    takes
at least two steps	� But parallel reduction� de�ned in �gure ��� is strongly con�
�uent� In a parallel reduction� several redexes can be simultaneously reduced
in one step� For example� we have   N   N    �   N �   N �   � Finally�
the con�uence of � easily follows from the following inclusions� which hold by
de�nition of parallel reduction
 � �� � ��� �

The following exercise states a negative result due to Klop �Klo���
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M �M

M �M � N � N �

��x�M	N �M ��N ��x�

M �M � N � N �

MN �M �N �

M �M �

�x�M � �x�M �

Figure ��
 Parallel ��reduction

Exercise ���� � Suppose that three constants D�F� S are added to the ��calculus�
together with the following new rewriting axiom


�SP � D�Fx��Sx�� x�

Show that con�uence fails for ���SP �� Hints CH���
 ��� Consider the following
so�called Turing �xpoint combinator


YT � ��xy�y��xx�y���xy�y��xx�y��

The advantage of this term over Y �cf� example ������� is that YT f is not only equal
to� but reduces to� f�YT f�� Set C � Y ��xy�D�F �Ey���S�E�xy���� and B � Y C� where
E is a free variable� ��� Notice that B �� A and B �� CA� where A � E�CB�� Show
that A and CA have no common reduct� by contradiction� taking a common reduct with
a minimum number of E	s in head position�

Another fundamental theorem of the ��calculus is the standardisation theo�
rem� It will fall out from the general technique of section ���� but we shall need
part of it to develop this technique� As a �rst approximation� a reduction from
M to N is standard when it does not reduce a redex if there is no need to reduce
it� For example

��x�y	�  	�� ��x�y	�  	�	 y

is not standard� because the �nal term y of the sequence could have been reached
without reducing the redex at occurrence � in ��x�y	�  	� since we have� directly


��x�y	�  	�	 y�

The standardisation theorem asserts that any derivation M �� N can be trans�
formed to a standard derivation fromM to N � To formalise the notion of standard
reduction� we need to de�ne the notion of residual� which formalises what a redex
in a termM becomes after the reduction of a di�erent redex of M �

De�nition ������ �residual� If u� v are redex occurrences in a term M � and
if M �u N � then v�u� the set of residuals of v after the reduction of u� is de�ned
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by

v�u �

���������
fvg �u �� v or v � u	
� �v � u	
fuw�w j Bound �u��w�� u��M	g �v � u�w	
fuwg �v � u��w	 �

The notation is easily extended to V�D� where V stands for a set of redex occur�
rences� and D for a derivation	

V�u �
S
fv�u j v 
 V g

V��uD	 � �V�u	�D �

Here is an informal description of v�u� LetM�u � ��x�P 	Q andM�v � ��y�R	S


� The second case is obvious
 a redex is entirely �consumed� when it is
reduced�

� The �rst and the last cases of the de�nition correspond to the situation
where the redex at v �remains in place��

� If u �� v� then N�v �M�v�

� If v � u� then M�u is a subterm of R or S� say of R� and N�v has the
form ��y�R�	S for some R��

� If v � u��w� the occurrence of the redex at v has to be readjusted�
and moreover the redex gets instantiated


P�w � ���x�P 	Q	���w �M�v � ��y�R	S
N�uw � �P 	�Q�x��w � �P�w	�Q�x� � ��y�R�Q�x�	S�Q�x� �

� In the third case� the subterm at occurrence v is a subterm of Q� and gets
copied by the substitution which replaces x by Q� In particular the redex
��y�R	S may be duplicated if there is more than one free occurrence of x
in P � If on the contrary x �
 FV �P 	� then v has no residual�

Example ������ For M � I���x��Ix	x	��x�Ix		� we have�

�������� � f���g ��� � f�g ��� � � ������ � f��g ����� � f���� ��g�

De�nition ������ �left� If u� v are redex occurrences of M � we say that u is to
the left of v if

u � v or �w� u�� v� �u � w�u� and v � w�v�	

or equivalently� if the �rst symbol of the redex at u is to the left of the �rst symbol
of the redex at v	
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De�nition ������ �standard� A derivation D 
 M � M� �u� M�    �un Mn

is called standard if

	 i� j � � i � j � n�� �u to the left of ui such that uj 
 u�Dij

where Dij 
Mi�� �ui Mi    �uj��
Mj��	 We then write M

stnd
�� �Mn	 A special

case of standard derivation is the normal derivation� which always derives the
leftmost redex	 We write M

norm�� �N if N is reached from M by the normal
derivation	 We denote with Val �M	 the abstraction� if any� characterised by

M� �M
norm�� �Val �M	 �Mn and 	 i � n Mi is not an abstraction�

Example ������ The derivation ��x�y	�  	 �� ��x�y	�  	 �	 y is indeed
standard	 Set u� � � and u� � �	 Then � � ��� � ��D��� and � is to the left of �
in ��x�y	�  		

Lemma ������ If D 
M
stnd
�� ��x�N � then D decomposes into

M
norm�� �Val �M	

stnd�� ��x�N�

Proof� By induction on the length ofD� IfM is already an abstraction� then the
statement holds vacuously� IfM � xM�   Mp� then all its reducts have the form
xN�   Np� hence the statement again holds vacuously� IfM � ��x�M	M�   Mp�
and the �rst step in D does not reduce the leftmost redex� then the de�nition
of standard implies that the terms in D all have the form M � ��x�P 	P�   Pp�
Hence the �rst step of D must be the �rst step of the normal derivation� The
conclusion then follows by induction� �

��� The Labelled �
Calculus

In this section� we introduce simple types� and show that simply typed terms are
strongly normalisable� Next we introduce L�evy�s labelled ��calculus� and prove a
more general strong normalisation theorem� The following fundamental theorems
of the ��calculus appear as simple consequences of this general theorem


the con�uence of ��reduction�
the standardisation theorem�
the �nite developments theorem of the ��calculus�
the syntactic continuity theorem�

In this section and in the following one� we follow �Lev��� and �Ber����

De�nition ����� �strongly normalisable� A ��term M is called strongly nor�
malisable if there is no in�nite ��derivation starting from M 	 We denote by SN
the set of strongly normalisable expressions	 A term which cannot be further
reduced is called a normal form	
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De�nition ����� �size�reduction depth� The size of a term M is de�ned as
follows�

size�x	 � � � size�MN	 � size�M	 � size�N	 � � � size��x�M	 � size�M	 � ��

If M 
 SN � the maximal length of a derivation starting from M is called the
reduction depth of M � and is denoted depth�M		

Con�uence and normalisation are the cornerstones of �typed	 ��calculus and
rewriting theory� They ensure that any term has a unique normal form� which is
a good candidate for being considered as the �nal result of the computation� The
two properties� imply the decidability of the equality� de�ned as the re�exive�
transitive and symmetric closure of �� To decide whether two terms M � N are
��equal� reduce M � N to their normal form� and check whether these normal
forms coincide �up to ��conversion	� As a stepping stone for our next results� we
show the standardisation theorem for strongly normalisable terms�

Lemma ����� If M 
 SN and M �� N � then M
stnd�� �N 	

Proof� By induction on �depth�M	� size�M		� The only non�trivial case is
M �M�M��

� If N � N�N� and M� �� N�� M� �� N�� then M�
stnd
�� �N�� M�

stnd
�� �N� by

induction� and we have M�M�
stnd�� �N�M�

stnd�� �N�N��

� Otherwise� M�M� �� ��x�N�	N� � N��N��x� �� N � with M� �� �x�N� and
M� �� N�� By induction and lemma ������


M�
norm�� ��x�P

stnd�� ��x�N��

HenceM�M�
norm
��

�
P �M��x�� Also� by lemma������� P �M��x��� N follows from

P �� N�� M� �� N� and N��N��x� �� N � Hence� by induction� P �M��x�
stnd
��

�N � We conclude by observing that pre�xing a standard derivation with a normal
derivation yields a standard derivation� �

Lemma ����� The following implication holds�

M �N�x�
stnd
�� ��y�P �

�
�M �� �y�Q and Q�N�x��� P 	 or
M �� M � � xM �

�   M
�
n and M ��N�x��� �y�P �

Proof hint� The statement follows quite easily from lemma ������� �

We now engage in an attempt to show that any term M is strongly normal�
isable� We know by the example   �   that this property does not hold

�Actually	 only the existence of an e�ective way to reduce a term to a normal form is
su�cient for this purpose�
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for arbitrary terms� But it holds for typed terms �and more generally for labelled
terms whose labels are bounded� as we shall see in section ���	� Types will be
introduced right after we discover a failure in our proof attempt�
We proceed by induction on size�M	� as in the proof of lemma ������ We

examine all the reduction paths originating fromM � The only non�trivial case is
M �M�M�� IfM� and M� never interact� then we conclude by induction on the
size� Otherwise� we have M� �� �x�N�� M� �� N�� and M �� N��N��x�� By
induction� N�� N� are strongly normalisable� Hence� strong normalisation can be
proved from the following property


��SN 	 M�N 
 SN �M �N�x� 
 SN �

Let us see how an attempt to prove ��SN 	 by induction on �depth�M	� size�M		
fails� The only interesting case is

M �M�M�� M��N�x��
� �y�P and M��N�x��

� N�

�as above	� We want to prove


��	 P �N��y� 
 SN �

By induction and lemma ������ we can apply lemma ������ We thus consider two
cases


�A	 M� �� �y�Q and Q�N�x��� P 
 Consider M � � Q�M��y�� The conclusion
P �N��y� 
 SN follows from


� M �� M �� hence depth�M �	 � depth�M	� and M ��N�x� 
 SN by
induction�

�
M ��N�x� � Q�N�x��M��N�x��y�

Q�N�x��� P and M��N�x��� N�

�
�M ��N�x��� P �N��y��

�B	 M� �� M � � xP�   Pn andM ��N�x��� �y�P 
 This is where we get stuck�
Think of   �

To get around the di�culty� it would be enough to have a new measure � for
which we could show� in case �B	


��	 ��N�	 � ��N	�

Then we could carry the whole argument� by induction on

���N	� depth�M	� size�M		�

Let us brie�y revisit the proof atttempt� Case �A	 is unchanged� since the in�
duction is applied to M ��N�x�� for which the �rst component of the ordinal is
the same as for M and N � Case �B	 is settled by the decreasing of the �rst
component of the ordinal� The simply typed ��calculus o�ers such a measure ��
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De�nition ����
 �simple types� The simple types are de�ned by the following
syntax�

� 

� � jj � � �

where � ranges over a collection K of basic types	 The size of a type � is de�ned
by

size��	 � � size�� � � 	 � size��	 � size�� 	 � ��

In other words� types are built from a collection of basic types �like natural
numbers� or booleans	 by a unique constructor� the function space constructor�
Next we introduce a syntax of raw typed terms�

De�nition ����� �raw typed� The raw simply�typed terms are ��terms� all of
whose occurrences are labelled by a type	 Formally� they are the terms P declared
by the following mutually recursive clauses�

M 

� x jj PP jj �x�P
P 

�M
 �

To a raw typed term P we associate an untyped term by stripping all type super�
scripts	 We denote the resulting term by erase�P 		

De�nition ����� �typed� The typed terms� or ���terms� are the raw typed
terms P satisfying the following constraints�

�	 All the free occurrences of x in P have the same superscript	

�	 If P � �M
�M
�	
�� then �� � ��� ��	

�	 If P � ��x�M
�	
� � then �� � ��� �� for some ��� and all free occurrences
of x in M have superscript ��	

The typed ��reduction is de�ned by

���	 P ���x�M � 	
��N
�u��u P �M � �N
�x
��u��

In this chapter� we consider typed ��calculus only in passing� on our way
to L�evy�s labelled ��calculus� Our presentation of the simply typed ��calculus
in de�nition ����� is rather ad hoc� A more standard presentation is by means
of sequents� Natural deduction and sequent presentations of the simply typed
��calculus are discussed in section ����

Lemma ����� �subject reduction� If erase�M
	 � N � then M
 � N �
 for
some N �
 such that erase�N �
	 � N 	

Theorem ����� �strong normalisation � simple types� In the simply typed
��calculus all terms are ���strongly normalisable	
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Proof� The argument attempted above now goes through� We prove

��SN�	 M � � N
 
 SN �M � �N
�x
� 
 SN

by induction on �size��	� depth�M	� size�M		� The typed version of the crucial
case �B	 is


M � �M
���
� M
�

�

M
���
� �� M �
��� � x
��			�
n�
���P 
�

�   P

n
n

M �
��� �N
�x
��� �y�P �

M
�

� �N

�x
��� N
�

� �

with � � �� �    � �n � �� � � � Then size���	 � size��	� Hence� de�ning
��N
	 as the size of the type of N � condition ��	 holds� �

We now turn to a more general system of labels�

De�nition ������ �labels� We de�ne a calculus of labels by the following syn�
tax�

� 

� e jj � jj � jj ���

where e ranges over an alphabet E of atomic labels �E stands for ��etiquette��	
We let �� � range over labels	 The height of a label l is de�ned as follows�

height�e	 � � �e 
 E	
height��	 � height ��	 � height��	 � �
height���	 � maxfheight ��	� height ��	g �

Labelled terms are de�ned in the same way as �raw	 typed terms�

De�nition ������ �labelled terms� Labelled terms P are de�ned by the fol�
lowing mutually recursive syntax�

M 

� x jj PP jj �x�P
P 

�M� �

We write � M� �M��� and height�M�	 � height ��		

Substitution for labelled terms is de�ned in �gure ���� We de�neM �P�x�� where
M ranges over labelled terms and P ranges over labelled terms or unlabelled
variables �the latter arise from ��conversion	� As for the typed terms� the erasure
of a labelled term is obtained by stripping o� the labels� The labelled version �lP
of ��reduction is de�ned relatively to a predicate P on labels


��lP	 P ����x�P 	�Q	��u��u P ��  �  P �� Q�x��u� if P��	 holds�

The label � is called the degree of the redex� Unrestricted labelled restriction is
de�ned as the labelled reduction with respect to the full predicate consisiting of
all labels�
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x��P�x� � �  P �P is a labelled term	
x��z�x� � z�

y��P�x� � y� �y �� x	
�P�P�	��P�x� � �P��P�x�P��P�x�	�

��y�P 	��P�x� � ��z�M �z�y��P�x�	� �z �
 FV �M	 � FV �N		

Figure ���
 Substitution in the labelled ��calculus

De�nition ������ �q	bounded� Let q 
 �	 A q�bounded predicate is a predi�
cate P such that �	� P��	� height ��	 � q		

Theorem ������ �strong normalisation � labels� If P is q�bounded for some
q� then all labelled terms are strongly �lP�normalisable	

Proof hint� Similar to the proof of theorem ������ We prove

��SN l
P	 P�N� 
 SN � P �N��x� 
 SN

by induction on �q � height ��	� depth�P 	� size�erase�P 			� The labelled version
of the crucial case �B	 is


P � �P�P�	


P� �� P � � �   �x�P�	��   Pn	�n

P ��N��x��� ��y�Q�	�

P��N��x��� Q� �

Since P �N��x��� ���y�Q�	�Q�	 � 	 � Q��� Q��y�� property ��	 is rephrased
here as height ��	 � height ��  Q�	� A fortiori it is enough to prove height ��	 �
height ��	 �notice the use of underlining	� This will follow from the following
claim


Claim� �   �M �P�	��   Pn	�n �� ��y�Q	� � height��	 � height��	

We prove the claim by induction on the length of the derivation� The only
interesting case is M � �x�P � If n � �� then � � �� If n � �� then

�   �M �P�	
��   Pn	

�n � �   ���  �  P ��  P��x�	   Pn	
�n

and we conclude by induction� since height��	 � height���  �  P ��  P��x�	�
Applying the claim to � � �� and M � � �  N�� we get height ��	 �

height ��	 � height��	� �
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Now we show how the con�uence property and the standardisation theorem
�general case	 follow from theorem �������

Lemma ������ If D 
 P �� Q and v 
 u�D� then P�u and Q�v have the same
degree	

Proposition �����
 If P is q�bounded� then �lP� reduction is conuent	

Proof� We get local con�uence by proving a labelled version of lemma �������
using lemma ������� Then we use Newman�s lemma �see exercise ������	
 �lP is
con�uent� since it is locally con�uent and strongly normalising� �

Exercise ���
 �Newman� Prove that any locally con�uent and strongly normalis�
ing system is con�uent� Hint
 use induction on the depth of the term from which the
two derivations originate�

Next we transfer labelled con�uence to the unlabelled calculus� We start
with a term M � which we label arbitrarily� That is� we construct P such that
erase�P 	 � M � If M �� M� and M �� M�� then� with unrestricted labelled
reduction� we get

P �� P�� P �
� P� with erase�P�	 �M�� erase�P�	 �M��

Next we construct a predicate P that �ts the situation
 P��	 i� � is the degree
of a redex reduced in P �� P� or P �� P�� This predicate is �nite� hence
bounded� Thus we can complete P� �� P�� P� �� P� by �lP�reduction� by
proposition ������ and we get M� �� erase�P�	 and M� �� erase�P�	� This
gives an alternative proof of theorem �������

Theorem ������ �standardisation� If M �� N � then M
stnd�� �N 	

Proof� By theorem ������ and �a labelled version of	 lemma ������ using P
de�ned as follows
 P��	 i� � is the degree of a redex reduced in M �� N � �

Corollary ������ �normal� If M has a normal form N � then M
norm
�� �N 	

Proof� By theorem ������� we have M
stnd�� �N � If at some stage the leftmost

redex was not reduced� it would have a residual in N 
 contradiction� since N is
a normal form� �

Next we de�ne the notion of development� and we prove the �nite develop�
ments theorem�

De�nition ������ �development� A derivation M �u� M�    �un Mn is rel�
ative to a set F of redex occurrences in M if u� 
 F � and ui is a residual of an
occurrence in F � for all i � �	 If moreover Mn does not contain any residual of
F � then M �u� M�    �un Mn is called a complete development �or development
for short� of M relative to F 	
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Theorem ������ ��nite developments	�� Let M � F be as above	 All reduc�
tions relative to F terminate� and they terminate on the same term	

Proof� Take P such that erase�P 	 � M � and de�ne P by
 P��	 i� � is the
degree of a redex of F � The conclusion then follows by lemma ������� �

In the following exercises� we propose a stronger version of the �nite develop�
ments theorem� and we indicate how simple types can be related to labels�

Exercise ���� ��nite developments��� � IfM �u N and v is a redex occurrence
of N that is not a residual of a redex occurrence inM � we say that v is created by u� ���
Let �� � be the degrees of the redexes u in M and v in N � Show height��� � height����
��� Show that if D � M �� N and D� � M �� N are two developments of M relative
to F � then G�D � G�D� for any derivation G originating from M � Hints
 There are
three cases of redex creation


��xy�M�N�N� �u � �� v � ��
I��x�M�N �u � �� v � ��
��x�C�xN ����x�M� �u � �� v � any occurrence of � �� �

Overlining is crucial in the proof of ���� Choose the initial labelling of M such that the
degrees of F are distinct letters of E�

Exercise ���� � Derive theorem ����� as a corollary of theorem ������� Hints
 Take
as E the �nite collection of the types of the subterms of M �the term we start from��
De�ne # from labels to types by

#��� � �
#��� � �� � �

#��� � 

#��� � �� � �

#��� � �

#��� � #���

#���� � #���

De�ne P��� as #��� �� For P whose labels all satisfy P� de�ne #�P � as the term
obtained by applying # to all labels� Say that P is well�behaved if all its labels satisfy
P and if #�P � is well typed� Show that any �lP�reduct Q of a well�behaved term P is
well� behaved� and that #�P � ���reduces to #�Q��

There exist many other proofs of �nite developments� of con�uence� and of
standardisation� In exercise ������� we propose a particularly simple recent proof
of �nite developments due to Van Raamsdonk �vR���� In exercises ������ and
������ we propose proofs of con�uence and of standardisation based on �nite
developments�

Exercise ���� Consider the set of underlined ��terms� de�ned by the following syn�
tax


M ��� x jjMM jj �x�M jj ��x�M�M�

Consider the least set FD of underlined terms containing the variables� closed under
abstraction and application� and such that� for all underlined M�N 


�M �N�x� � FD and N � FD�� ��x�M�N � FD�
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Show that FD is the set of all underlined terms� and exploit this to show the �nite
developments theorem� Hint
 �nite developments amount to the strong normalisation
of underlined ��reduction ��x�M�N �M �N�x��

Exercise ���� Show con�uence as a consequence of �nite developments� Hint
 con�
sider any development as a new notion of one step reduction�

Exercise ���� Show the standardisation theorem as a consequence of the �nite de�
velopments theorem� by the following technique� which goes back to Curry� Let D �
M� �u� M� �u� M� �� Mn be the reduction sequence to standardise� Take a left�
most �cf� de�nition ������� occurrence u in the set of redex occurrences of M that
have a residual reduced in D� Let M �u M��� and build the reduction sequence
M�� �� Mj� � Mj�� where each step is a �nite development of u�ui� where �because
u is leftmost� Mi �u M�i� and where u � uj� Continue the construction� applying it
to the sequence D� �M�� �� Mj� �Mj�� �� Mn� which is shorter than D�

��� Syntactic Continuity 	

Recall that a head normal form is a term of the form �x� � � �xn�xM� � � �Mp� We de�ne
an algebraic �or symbolic� semantics for the �calculus� We interpret the ��nite� �
terms as �potentially� in�nite terms� For this purpose� we need to introduce partial
terms �cf� exercise ������� to allow for a description of �nite approximations�

De�nition ��� �B�ohm trees� The set N is de�ned by

� � N

A� � N � � � Ap � N

�x� � � �xn�xA� � � �Ap � N

N is a subset of the set of partial ��terms� also called ��terms� de�ned by

M ��� � jj x jjMM jj �x�M

and inherits its order� de�ned by


� �M

M� �M �
� M� �M �

�

M�M� �M �
�M

�
�

M �M �

�x�M � �x�M �

The elements of the ideal completion �cf� proposition ������� N� of N are called B�ohm
trees� For any ��term M � we de�ne ��M� � N � called immediate aproximation of M �
as follows


��M� �

�
� if M � �x� � � �xn���x�M�M� � � �Mp

�x� � � �xn�x��M�� � � ���Mp� if M � �x� � � �xn�xM� � � �Mp

where p � � is assumed in the �rst case� The function � is extended to ��terms by
setting ���x� � � �xn��M� � � �Mp� � ��

Lemma ��� If M � N � then ��M� � ��N��
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Proof� By induction on the size of M � If M � �x� � � �xn�xM� � � �Mp� then the
reduction occurs in one of the Mi�s� and induction can be applied� �

De�nition ��� For any ��term M we de�ne BT�M� �
W
f��N� j M �� Ng�

BT �M� is called the B�ohm tree of M �

By lemma ����� and by con�uence� f��N� j M �� Ng is directed� for �xed M �
hence B�ohm trees are well de�ned� The immediate approximation ��M� can be un
derstood as the current approximation of BT �M�� obtained �roughly� by replacing
the redexes with ��s� It is sometimes called a partial normal form� If computation
proceeds� with M �� N � then ��N� may be a better partial normal form of M �

Example ���

If M � SN � then BT �M� is the normal form of M�
BT�$$� � ��
BT���x�f�xx�����x�f�xx��� �

W
n�� f

n����

The last example shows that B�ohm trees can be in�nite�

Proposition ��� If M � N � then BT�M� � BT �N��

Proof hint� Use the con�uence property� �

Lemma ��
 If M and N di�er only by the replacement of some �disjoint� occur�
rences of subterms of the form �x� � � �xn��M� � � �Mp by � or vice�versa� then BT �M� �
BT �N��

Proof hint� If M � N are as in the statement� then ��M� � ��N�� moreover� if
M � M �� then either ��M �� � ��N� or ��M �� � ��N �� for some N � such that
N � N �� �

Let M be a �term� and F be a set of redex occurrences in M � Then F determines
a context CM�F such that M � CM�F �	R�� where 	R enumerates

fM�u j u � F and �v � u� v �� F �g�

Lemma ��� Let M � F be as above� Then ��CM�F �	��� � ��M��

Proof� By the de�nition of � and by simple induction on the size of M � �

We say that a derivation M �u� M� � � � �un Mn does not touch a set F of redex
occurrences in M if none of the ui�s is a residual of an occurrence in F � We write

M

F
�� �Mn�

Lemma ��	 If D � M

F
�� �N � then CM�F �	���� CN�F�D�	���



��
� SYNTACTIC CONTINUITY � �

Proof� The one step case implies the multistep case straightforwardly� Let thus
D � u� There are two cases�

� u� � F u� � u � Then u��u � fu�g� hence CN�F�u�	�� � CM�F �	���

� u� � F �u � u� or u �	 u�� � Then CM�F �	���u CN�F�u�	���

�

When F is the set of all redexes in 	M � we write C� 	M �

 �M
�� �N for C� 	M �


F
�� �N �

Lemma ��� �inside�out� If C� 	M ��� P � then there exist 	N� Q such that

	M �� 	N� C� 	N �

 �N
�� �Q� and P �� Q

where 	M �� 	N has the obvious componentwise meaning�

Proof� Once more� we use labelled reduction� Assume that C� 	M � is labelled� Let P
consist of the degrees of the redexes reduced in C� 	M ��� P � Let 	N be the �lPnormal

forms of 	M � By �lPcon�uence� we have P �� Q and C� 	N ��� Q� for some Q� Let u

be an occurrence of a �redex in 	N � Since the components of 	N are normal� the degree
of u� which by lemma ������ is the degree of all its residuals� does not satisfy P � hence
u is not reduced in the derivation C� 	N ��� Q� �

Informally� the lemma says that reductions can be �rst carried out �inside �in the
terms 	M�� and then �outside only� In this outside phase� the actual nature of the
redexes in 	N is irrelevant� as formalised by the next lemma�

Lemma ���� If D � C� 	N �

 �N
�� �Q� then ��Q� � BT�C��� 	N����

Proof� Let F be the family of all the redex occurrences in 	N � By lemma ����� we
have C

C	 �N
�F �
	�� �� CQ�F�D�	��� Hence ��Q� � ��CQ�F�D�	��� � BT�C

C	 �N
�F �
	���� by

lemma ����� and by de�nition of B�ohm trees� We are left to prove

BT�C
C	 �N
�F �

	��� � BT�C��� 	N���

which follows from lemma ������ �

Finally� we can prove the main result of the section� the context operation is con
tinuous� This result is due to Hyland and Wadsworth� independently �Wad��� Hyl����
We follow the proof of L%evy �Lev����

Theorem ���� �syntactic continuity� For all contexts C� for any 	M and any
B � N � the following implication holds


B � BT�C� 	M ��� �� 	A � 	N � 	A � BT� 	M� and B � BT �C� 	A����
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Proof� If B � BT�C� 	M ��� then C� 	M � �� P for some P such that B � ��P �� By

lemma ����
� there exist 	N � Q such that 	M �� 	N � C� 	N �

 �N
�� �Q� and P �� Q� We

have�
��P � � ��Q� by lemma ������ and

��Q� � BT �C��� 	N��� by lemma ������ �

Take 	A � �� 	N�� Then

B � ��P � � ��Q� � BT �C� 	A���
	A � BT� 	M�� by de�nition of B�ohm trees�

�

Thus� informally� the proof proceeds by organizing the reduction in an insideout
order� and by noticing that the partial information gathered about the B�ohm trees of
	M during the inside phase is su�cient�

Exercise ���� �C�cont� Let M � N be ��terms such that M � N � Show that
BT �M� � BT�N�� This allows us to de�ne C � N� � N�� for any context C�
by

C�A� �
�
fBT�C�B�� j B � A and B is �niteg�

Show that C�BT�M�� � BT �C�M ��� for any M �

��� The Syntactic Sequentiality Theorem 	

The context operation is not only continuous� but also sequential� The syntactic se
quentiality theorem� due to Berry �Ber�
�� which we present in this section� motivates
a semantic investigation of sequentiality� which is covered in section ��	 and chapter
��� Two technical lemmas are needed before we can state the theorem�

Lemma ��� If M is an ��term and M �� M �� then there exists a mapping y from
the set fv�� � � �vng of occurrences of � in M � to the set of occurrences of � in M such

that N �� M ���N�vy���v�� � � � � �N�v
y
n��vn�� for any N � M �

In particular� if M �� M � and N � M � then there exists N � � M � such that N �� N ��

Lemma ��� If the normal derivation sequence from M contains only terms of the
form M � � �x� � � �xn���x�P

��M �
� � � �M

�
k� then BT�M� � ��

Proof� As in corollary ������� Suppose BT�M� �� �� Then there exists a derivation

M �� M �� � �x� � � �xn�yM
��
� � � �M

��
k

and we can suppose that this derivation is standard� by theorem ������� But the shape
of M �� forces this derivation to be actually normal� �

The following theorem asserts that the function BT is sequential� A general de�
nition of sequential functions will be given in section ����
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Theorem ��� �syntactic sequentiality� The B�ohm tree function satis�es the fol�
lowing property
 for any ��term M and any u such that BT �M��u � � and BT �P ��u ��
� for some P � M � there exists v� depending onM � u only� such that whenever N � M
and BT �N��u �� �� then N�v �� �

Proof� By induction on the size of u� Suppose BT �M��u � �� M � N � and
BT �N��u �� �� We distinguish two cases�

�� BT �M� �� �� Then

M �� M � � �x� � � �xn�yM �
� � � �M

�
k and

BT �M� � BT�M �� � �x� � � �xn�yBT�M �
�� � � �BT �M �

k� �

We observe that any N � � M � has the form N � � �x� � � �xn�yN
�
� � � �N

�
k� and also

that BT�N �� � �x� � � �xn�yBT�N �
�� � � �BT �N �

k�� Then u occurs in some BT�M �
i��

so that we can write BT �M ���u � BT�M �
i��u

� �� ��� for an appropriate proper
su�x u� of u� On the other hand� let N � M with BT �N��u �� �� and let
N � � M � be such that N �� N �� Then N �

i � M �
i and BT �N �

i��u
� � BT �N ���u �

BT �N��u �� �� We can thus apply induction to M �
i � u

�� and obtain an index
v at M �� u� It remains to bring this index back to M � This is done thanks to
lemma ������ the index at M � u is vy� in the terminology of this lemma� Indeed�
if N � M and N�vy � �� then by the lemma�

N �� N � hence BT �N� � BT �N ��
with N � � N and N ��v � � hence BT �N ���u � � �

Putting this together� we have BT�N��u � �� which shows that vy is a sequen
tiality index�

�� BT �M� � �� Suppose that the leftmost reduction sequence from M contains
only terms of the form M � � �x� � � �xn���x�P ��M �

� � � �M
�
k � Then the normal

sequence from N is the sequence described by lemma ������ whose terms are of
the same shape� which entails BT�N� � � by lemma ������ Hence the leftmost
reduction sequence from M contains a term M � � �x� � � �xn��M

�
� � � �M

�
k � The

only chance of getting BT �N �� �� � for an N � � M � is to increase M � in his head
�� which is therefore a sequentiality index at M �� u� As above� we use lemma
����� to bring this index back to M � �

Exercise ��� �C�seq� Show� as a corollary of theorem ������ that the function C
de�ned in exercise ������ is sequential� �The reader can refer to de�nition ������� or
guess a de�nition��
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Chapter �

D� Models and Intersection

Types

In this chapter we address the fundamental domain equation D � D� D which
serves to de�ne models of the ��calculus� By �equation�� we actually mean that
we seek a D together with an order�isomorphism D �� D� D� Taking D � f�g
certainly yields a solution� since there is exactly one function f 
 f�g � f�g�
But we are interested in a non�trivial solution� that is a D of cardinality at least
�� so that not all ��terms will be identi�ed' Domain equations will be treated in
generality in chapter ��
In section ��� we construct Scott�s D� models as order�theoretic limit con�

structions� In section ��� we de�ne ��models� and we discuss some properties of
the D� models� In section ���� we present a class of ��models based on the idea
that the meaning of a term should be the collection of properties it satis�es in a
suitable �logic�� In section ��� we relate the constructions of sections ��� and ����
following �CDHL���� Finally in section �� we use intersection types as a tool for
the syntactic theory of the ��calculus �Kri��� RdR����

��� D Models

In chapter �� we have considered products and function spaces as constructions
on cpo�s� They actually extend to functors �and are categorical products and
exponents� as will be shown in chapter �	� Here is the action of � on pairs of
morphisms of Dcpo�

De�nition ����� �� functor� Let D�D�� E�E � be dcpo
s and f 
 D� � D and
g 
 E � E� be continuous	 Then f � g 
 �D � E	� �D� � E�	 is de�ned by

�f � g	�h	 � g � h � f�

Notice the �reversal� of the direction
 f goes from D� to D� not from D to D��
This is called contravariance �cf� appendix B	�

�
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The association D �� D � D is not functorial in Cpo� because it is both
contravariant and covariant in D� But it becomes functorial in the category of
cpo�s and injection�projection pairs�

De�nition ����� �injection	projection pair� An injection�projection pair be�
tween two cpo
s D and D� is a pair �i 
 D � D�� j 
 D� � D	� written �i� j	 

D �ip D

�� such that
j � i � id and i � j � id

where � is the pointwise ordering� cf	 proposition �	�	�	 If only j � i � id holds�
we say that �i� j	 is a retraction pair and that D� is a retract of D	 Injection�
projection pairs are composed componentwise�

�i�� j�	 � �i�� j�	 � �i� � i�� j� � j�	

and the identity injection�projection pair is �id � id		

Proposition ����� If �i� j	 
 D �ip D� is an injection�projection pair� then i
determines j	 Moreover� if D is algebraic� then j is de�ned as follows�

j�x�	 �
�
fy j i�y	 � x�g�

Proof� Suppose that �i� j�	 is another pair� Then observe


j� � id � j � � j � i � j� � j � id � j�

The second part of the statement follows from the fact that an injection�projection
pair is a fortiori an adjunction� i�e�� i�d	 � x� i� d � j�x�	� Then

W
fd j i�d	 �

x�g �
W
fd j d � j�x�	g � j�x�	� �

Proposition ����� �	 For any injection�projection pair �i� j	 
 D �ip D�� i
maps compact elements of D to compact elements of D�	

�	 If D�D� are algebraic dcpo
s� a function i 
 D � D� is the injection part of
an injection�projection pair �i� j	 i� i restricted to K�D	 is a monotonic injection
into K�D�	 such that for any �nite M � K�D	� if i�M	 is bounded by d� in K�D�	�
then M is bounded in K�D	 by some d such that i�d	 � d�	

Proof� ��	 If i�d	 �
W
 �� then d � j�i�d		 � j�

W
 �	 �

W
j� �	 implies

d � j�	�	 for some 	� 
  �� Then i�d	 � i�j�	�		 � 	��

��	 Let �i� j	 be an injection�projection pair� By ��	� i restricted to K�D	 is a
monotonic injection into K�D�	� Suppose i�M	 � d�� ThenM � j�i�M		 � j�d�	�
Hence M is bounded in D� from which we deduce M � d for some d � j�d�	�
by algebraicity and by �niteness of M � Then d �ts since i�d	 � i�j�d�		 � d��
Conversely� let i 
 K�D	 � K�D�	 be as in the statement� It extends to a
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continuous function i 
 D � D�
 i�x	 �
W
fi�d	 j d � xg� Let j 
 D� � D be

de�ned by
j�x�	 �

�
fd j i�d	 � x�g�

We prove that j is well�de�ned� We have to check that fd j i�d	 � x�g is directed�
If i�d�	� i�d�	 � x�� then by algebraicity i�d�	� i�d�	 � d� for some d� � x�� and by
the assumption fd�� d�g � d with i�d	 � d�� This d �ts since a fortiori i�d	 � x��
It is easy to check j � i � id and i � j � id � �

Remark ����
 If moreover the lub
s of bounded subsets exist �cf	 exercise �	�	����
then the statement ��� of proposition �	�	� simpli�es� �if i�M	 is bounded by d� in
K�D�	� then M is bounded in K�D	 by some d in K�D	 such that i�d	 � d�� can
be replaced by� �if i�M	 is bounded in K�D�	� then M is bounded in K�D	 and
i�
W
M	 �

W
i�M	�	 Indeed� from i�M	 � d�� we deduce as above M � j�i�M		 �

j�d�	� i	e	�
W
M � j�d�	� from which i�

W
M	 � i�j�d�		 � d� follows	

The characterisation of injection�projection pairs at the level of compact elements
will be rediscussed in chapters � and ���

De�nition ����� �D�� Let �i� j	 
 D �ip D� be an injection�projection pair	
We de�ne �i�� j�	 � �i� j	� �i� j	 
 �D � D	�ip �D�cont D	 by

i��f	 � i � f � j j��f �	 � j � f � � i�

Given a cpo D� we de�ne the standard injection�projection pair �i�� j�	 
 D �ip

�D � D	 by
i��x	�y	 � x j��f	 � f��	�

The cpo D� is de�ned as follows�

D� � f�x�� � � � � xn� � � �	 j 	n xn 
 Dn and xn � jn�xn��	g

where �x�� � � � � xn� � � �	 is an in�nite tuple� standing for a map from � to
S
n��Dn�

and
D� � D Dn�� � Dn � Dn �in��� jn��	 � �in� jn	� �in� jn	

so that �in� jn	 
 Dn �ip Dn�� for all n	 We write xn for the nth component of x 

D�	 In the description of an element of D� we can omit the �rst components�
for example �x�� � � � � xn� � � �	 determines �j��x�	� x�� � � � � xn� � � �		

Remark ����� There may be other choices for the initial pair �i�� j�		 For exam�
ple the chosen �i�� j�	 is just the instance �i�� j�	 of the family �id� jd	 �d 
 K�D		
de�ned by

id�e	 � d� e �step function�
jd�f	 � f�d	 �

Hence the construction of D� is parameterised by D and �i�� j�		
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The lub�s in D� are de�ned pointwise
 �
W
 	n �

W
fxn j x 
  g �the conti�

nuity of the jn�s guarantees that
W
 indeed belongs to D�	�

Lemma ����� The following de�ne injection�projection pairs from Dn to D��

in��x	 � �kn��x	� � � � � knn�x	� � � � � knm�x	� � � �	

jn��x	 � xn

where knm 
 Dn � Dm is de�ned by

knm �

�����
jm � kn�m��� �n � m	
id �n � m	
im�� � kn�m��� �n � m	 �

We shall freely write x for in��x		 Under this abuse of notation� we have

x 
 Dn � xn � x m � n � xm � xn
x 
 Dn � in�x	 � x �xn	m � xmin�n�m�

x 
 Dn�� � jn�x	 � x x �
W
n�� xn �

Proof� We check only the second implication and the last equality�

� x 
 Dn � in�x	 � x 
 in�x	 stands for i�n�����in�x		� that is�

�k�n�����in�x		� � � � � k�n���n�in�x		� in�x	� � � � � k�n���m�in�x		� � � �	

which is �kn��x	� � � � � x� in�x	� � � � � knm�x	� � � �	� that is� x�

� x �
W
n�� xn
 By the continuity of jn�� we have

�
�
n��

xn	p � �
�
n�p

xn	p �
�
n�p

�xn	p �
�
n�p

xp � xp�

�

Remark ����� As a consequence of x �
W
n�� xn� a compact element of D� must

belong to Dn� for some n	

Lemma ������ The following properties hold�

� � 	n � p� x 
 Dn��� y 
 Dp x�yn	 � xp���y	�
� � 	n � p� x 
 Dp��� y 
 Dn xn���y	 � x�yp	n�

Proof� We check only the case p � n� ��
��	 By de�nition of in��� we have in���x	 � in�x�jn� Hence� as claimed� we have
in���x	�y	 � in�x�jn�y			 � in�x�yn		 � x�yn	� ��	 �x�in�y		n � jn�x�in�y			 �

jn���x	�y	 � xn���y	� �
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De�nition ������ We de�ne � 
 D� �D� � D� and G 
 �D� � D�	� D�

by
x�y �

W
n�� xn���yn	

G�f	 �
W
n��Gn�f	

where Gn�f	 
 Dn�� is de�ned by Gn�f	�y	 � f�y	n	

It is straightforward to check that these mappings are continuous�

Lemma ������ The following properties hold�

� � If x 
 Dn��� then x�y � x�yn	�
� � If y 
 Dn� then �x�y	n � xn���y	�

Proof� ��	 Using lemma ������� we have

x�y �
�
i�n

xi���yi	 �
�
i�n

x��yi	n	 � x�yn	�

��	 By continuity of jn� and by lemma ������� we have

�x�y	n �
�
p�n

�xp���yp		n �
�
p�n

xn���y	 � xn���y	�

�

Theorem ������ Let F �x	�y	 � x�y	 The maps F and G are inverse isomor�
phisms between D� and D� � D�	

Proof� � G � F � id 
 Thanks to lemma ������� we have Gn�F �x		 � xn���
Hence G�F �x		 �

W
n�� xn�� � x�

� F � G � id 
 We have to prove G�f	�x � f�x	 for any f 
 D� � D� and
x 
 D�� By continuity� we have G�f	�x �

W
n��Gn�f	�x� Since Gn�f	�x �

Gn�f	�xn	 by lemma ������� we have G�f	�x �
W
n�� f�xn	n� On the other hand

we have f�x	 �
W
n�� f�xn	 by continuity� hence f�x	 �

W
n���p�n f�xn	p� Finally�

observing that f�xn	p � f�xp	p� we have

G�f	�x �
�
n��

f�xn	n �
�

n���p�n

f�xn	p � f�x	�

�

We have thus obtained a solution to the equation D � D � D� The heuris�
tics has been to imitate Kleene�s �xpoint construction� and to build an in�nite
sequence D� � D� � � � �Hn�D�	� � � �� with H�D	 � D � D� In fact it can be
formally shown that
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� D� is in a suitable sense the least upper bound of the Dn�s� and� as a
consequence�

� D� is in a suitable sense the least D� �above� D for which �H�D�	 � D��
holds� and that moreover �H�D�	 �� D�� holds�

This is fairly general� and will be addressed in chapter � �see also exercises
������� ����� for an anticipation	�

Exercise ������ Show that� for any D� with a collection of ��n�� �n�	 
 Dn �ip

D� such that �	n ��n�� �n�	 � ���n����� ��n����	��in� jn		� there exists a unique
pair ����	 
 D� �ip D

� such that

	n ����	 � �in�� jn�	 � ��n�� �n�	�

�Hint� de�ne ��x	 �
W
�n�xn	� ��y	n � �n��y		� Recover the de�nition of

�F�G	 
 D� �ip HD� by taking

D� � HD�

���n����� ��n����	 � ��n�� �n�	� ��n�� �n�	 �

Exercise �����
 De�ne an �i�� j�	�H�algebra as a pair of two injection�projection
pairs ��� �	 
 D� �ip D

� and ��� 		 
 HD� �ip D
� such that

��� 		 �H��� �	 � �i�� j�	 � ��� �	 where H��� �	 � ��� �	� ��� �	

and de�ne an �i�� j�	�H�algebra morphism from ���� �	� ��� 			 to ����� ��	 
 D� �ip

D�
�� ���� 	�	 
 HD�

� �ip D
�
�	

as a morphism ��� �	 
 D� �ip D
�
� such that

��� �	 � ��� �	 � ���� ��	 and ��� �	 � ��� 		 � ���� 	�	 �H��� �	�

Show that ��i��� j��	� �G�F 		 is an initial �i�� j�	�H�algebra� that is� it has a
unique morphism into each �i�� j�	�H�algebra	

We end the section with a lemma which will be needed in the proof of lemma
�������	�

Lemma ������ For any f 
 Dn�� we have G�in� � f � jn�	 � f 	

Proof� We have G�in� � f � jn�	 �
W
p�nGp�in� � f � jn�	� Let y 
 Dp� From

Gp�in� � f � jn�	�y	 � in��f�jn��y			p

we get Gp�in� �f � jn�	�y	 � f�yn	 �with our abuse of notation	� hence Gp�in� �
f � jn�	 � k�n����p����f	 by lemma ������� and the conclusion follows� �
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��� Properties of D Models

We have not yet shown with precision why a solution to D � D � D gives a
model of the ��calculus� We shall �rst give a few de�nitions
 applicative structure�
prere�exive domain� functional ��model� and re�exive domain� The D� models
are re�exive� as are many other models of the ��calculus� A fully general �and
more abstract	 de�nition of model will be given in chapter �� Then we discuss
some speci�c properties of D� models�

De�nition ����� �pre	re�exive� An applicative structure �X� �	 is a set X
equipped with a binary operation �	 The set of representable functions X �rep X
is the set of functions from X to X de�ned by

X �rep X � ff 
 X � X j � y 
 X 	x 
 X f�x	 � y�xg�

A pre�reexive domain �D�F�G	 is given by a set D� a set �D� D� of functions
from D to D� and two functions F 
 D � �D � D� and G 
 �D � D�� D such
that F � G � id	 The uncurried form of F is written �	 Hence a pre�reexive
domain D is an applicative structure� and D �rep D � F �D	 � �D � D�	 If
moreover D is a partial order and �G�F 	 forms an injection�projection pair� then
�D�F�G	 is called coadditive	

Notice that the conjunction of F � G � id and G � F � id is an adjunction
situation� In coadditive pre�re�exive domains� we thus have

G�f	 � x� f � F �x	

which entails that


� G preserves existing lub�s �f � F �G�f		� g � F �G�g		 entail f � g �
F �G�f	 �G�g			�

� G maps compact elements to compact elements �cf� proposition �����	�

The functions F and G can serve to interpret untyped ��terms� As in uni�
versal algebra and in logic� the meaning of a term is given relative to a so�called
environment � mapping variables to elements of the model� Thus the meaning of
a term is to be written as an element ��M ��� of D� read as
 �the meaning of M at
��� This motivates the following de�nition�

De�nition ����� ��	model� A functional ��model ���model for short� is a pre�
reexive domain �D�F�G	 such that the interpretation of ��terms given by the
equations of �gure �	� is correctly de�ned	 In these equations� the point is to
make sure that �d���M ����d�x� 
 �D� D�	
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��x��� � ��x	

��MN ��� � F ���M ���	���N ���	

���x�M ��� � G��d���M ����d�x�	

Figure ���
 The semantic equations in a functional ��model

Proposition ����� �soundness� In a ��model� the following holds�

if M �� N� then ��M ��� � ��N ��� for any ��

Proof hint� Since F �G � id � we have

����x�M	N ��� � F �G��d���M ����d�x�		���N ���	

� ��M ������N ���x� �

Then the conclusion follows from the following substitution property� which can
be proved by induction on the size of M 
 ��M �N�x����� ��M ������N ����x�� �

We refer to chapter � for a more detailed treatment of the validation of �
�and 
	�

De�nition ����� �re�exive� A pre�reexive domain �D�F�G	 is called reex�
ive if D is a cpo and �D � D� � D � D	

Proposition ����
 A reexive domain is a functional ��model	

Proof� One checks easily by induction on M that ��d���M �����d��x� is continuous�
In particular� �d���M ����d�x� 
 �D � D�� �

The D� models are re�exive� The additional property G�F � id which they
satisfy amounts to the validation of the 
�rule �see chapter �	�

Remark ����� It should come as no surprise that the D� models satisfy 
 as
well as �� since for � we expect a retraction from D� � D� to D�� while the
construction exploits retractions from Dn to Dn � Dn which are the other way
around	

We now come back to D� and prove a result originally due to Park
 the
�xpoint combinator is interpreted by the least �xpoint operator in D�� The
proof given here is inspired by recent work of Freyd� and Pitts� about minimal
invariants� a notion which will be discussed in section ����
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Proposition ����� Let 	J 
 �D� � D�	� �D� � D�	 be the function de�ned
by

	J�e	 � G � �e� id	 � F

where � is used in the sense of de�nition �	�	�	 The function 	J has the identity
as unique �xpoint	�

Proof� Let � be a �xpoint of 	J � Considering �� id as elements of D�� we shall
prove that� for any n� �n � idn� i�e�� �for n � �	� �n � id 
 Dn�� � Dn��� The
general case �n � �	 is handled as follows� using lemma ������


�n���x	�y	 � ��� id	n���x	�y	 � ���� id	�x		n���y	
� �x � �	n���y	 � �x � �	�y	n �

On the other hand


�x � �n��	�y	 � x��n���y		 � x���y	n	 � �x � �	�y	n�

Then we can use induction


�n���x	�y	 � �x � �	�y	n � �x � �n��	�y	 � �x � id	�y	 � x�y	�

Hence �n���x	 � x� and �n�� � id � We leave the base cases n � �� � to the reader
�hint
 establish �rst that� in D�� ��y � �� and x��y	 � x� � x���		� �

Remark ����� �	 Proposition �	�	� does not depend on the initial choice of D��
but the proof uses the fact that the initial pair �i�� j�	 is the standard one �this is
hidden in the hint�	

�	 The functional 	J may seem a bit ad hoc	 A more natural functional would be
	 de�ned by� 	�e	 � G��e� e	�F 	 More generally� for a domain equation of the
form D � H�D	� with a solution given by inverse isomorphisms F 
 D � H�D	
and G 
 H�D	� D� we can set 	�e	 � G�H�e	�F 	 But replacing 	J by 	 in the
proof of proposition �	�	� fails to work in the base cases n � �� �	 On the other
hand� we shall see �proposition �	�	��� that the functional 	 works well with the
initial solution of D � H�D		 �Remember that we are not interested in the trivial
initial solution f�g of D � D � D	�

A fortiori� the identity is the least �xpoint of 	J � This fact can be used as
a tool to prove properties of D� by induction� We illustrate this with a simple
proof �adapted from �Pit��	 of Park�s result�

Proposition ����� �Park� Let Y � �y���x�y�xx		��x�y�xx			 then ��Y �� in D�

is the least �xpoint operator �cf	 proposition �	�	� and exercise �	�	��	

�The subscript J in �J comes from the term J  Y ��fxy�x�fy�� �see the discussion on the
relations between D� and B�ohm trees	 later in this section��
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Proof� Let f 
 D � D� Let  f � ���x�y�xx	����f�y� � G�x �� f�x�x		� We
have to prove  f � f � �x �f	 �the other direction follows from soundness� since
YM �� M�YM		� Consider

E � fe 
 D� � D� j e � id and e� f	� f � �x �f	g�

By continuity� E is closed under directed lub�s� also� obviously� � 
 E� We have
to show that id 
 E� By proposition ������ it is enough to show that if e 
 E�
then 	J�e	 
 E� We have


	J�e	� f	� f � G��e� id	�x �� f�x�x			� f

� �e� id	��x�f�x�x		� f	
� f�e� f	�e� f		
� f�e� f	� f	 since e � id
� f��x �f		 since e 
 E
� �x �f	 �

�

D� models and B�ohm trees� The rest of the section is an overview of early
independent work of Wadsworth and Hyland� relating D� models and B�ohm
trees �cf� de�nition �����	 �Wad��� Hyl���� They proved that the following are
equivalent for any two ��terms M and N 


�� M �op N � which means �cf� de�nition �����	

	C �C�M � has a head normal form � C�N � has a head normal form	�

�� BT �M	 ��� BT �N	 �the meaning of ��� is sketched below	

�� ��M �� � ��N �� in D� �for any choice of D�� but with the standard initial
�i�� j�		

The equivalence ��	���	 is called a full�abstraction property �cf� section ���	�
We brie�y indicate the techniques used to prove these equivalences�

��	� ��	 
 This is the hard core of the theorem� It is proved by contradiction� by
the so�called B�ohm�out technique� Roughly� the technique consists in associating
with a subterm P of a termM a context C with the property that C�M � ��� P �
In the proof by contradiction of ��	���	 we use a context associated with an
occurrence u where the two B�ohm trees di�er� If BT �M	�u �� # and BT �N	�u �
#� the associated context witnesses rightaway M ��op N �remember that for a
partial ��term P � by de�nition ��P 	 � # exactly when P is not a hnf	� �As
for the case where BT �M	�u �� # and BT �N	 �� #� see theorem �������	 The
following example should suggest the contents of ���� Consider �cf� proposition
�����	

I � �x�x and J � Y ��fxy�x�fy		�
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It can be proved �as in proposition �����	 that ��I�� � ��J �� in D�� But the B�ohm
tree of I is just I� while the B�ohm tree of J is in�nite


�xz��x��z��z���z��z� � � � �

These two B�ohm trees get equalised through in�nite 
�expansion of I


I � �xz��xz� � �xz�x��z��z�z�	 � � � � �

��	� ��	 
 This follows from the following approximation theorem


��M �� �
�
f��A�� j A � BT �M	g�

��	� ��	 
 A corollary of the approximation theorem is the adequacy theorem


��M �� � ��M has no head normal form � BT �M	 � #	�

Therefore M �op N can be rephrased as


	C ���C�N ��� � �	� ���C�M ��� � �	�

This holds� because we have ��C�M ��� � ��C�N ���� by the compositionality of the
interpretation in D�� The B�ohm�out technique was �rst used in the proof of
B�ohm�s theorem� which we now state�

Theorem ������ �B�ohm� Let M�N be ��terms which have both a �
�normal
form� and whose �
�normal forms are distinct	 Then any equation P � Q is
derivable from the system obtained by adding the axiom M � N to �
	

Proof hint� Given �xed M�N as in the statement� the proof consists in asso�
ciating with any pair of terms P�Q a context CP�Q such that C�M � ��� P and
C�N � ��� Q� The induction is based on the size of M�N � We only describe a
few typical situations� First we can assume without loss of generality that M
and N have no head ��s� since they can be brought to that form by contexts of
the form � �x� � � � xn� Notice that here 
�interconvertibility is crucial� since in this
process� say� �x�Nx and N are identi�ed� We now brie�y discuss examples of the
di�erents cases that may arise


�� Base case
 M � x �M and N � y �N �y �� x	� Then we take

C � ��xy�� �	���u�P 	���v�Q	�

�� M � xM� and N � xN�N�� We turn this di�erence in the number of
arguments into a base case di�erence� in two steps� First� a context � �y�y��
with y�� y� distinct� yields xM�y�y� and xN�N�y�y�� Second� we substitute
the term �� � �z�z�z�zz�z�� called applicator� for x� Altogether� we set
D � ��x�� �y�y�	��� and we have

D�M � ��� y�M�y� and D�N � ��� y�N�N�y�

which is a base case situation�
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�� M � xM�M�� N � xN�N�
 Then M ���� N implies� say� N� ���� N�� It is
enough to �nd D such that D�M � ��� M� and D�N � ��� N�� because then
one may conclude by an induction argument� In �rst approximation we
are inclined to substitute the projection term �� � �z�z��z� for x� yielding
M�����x� and N�����x�� But we do not want the substitution of �� in M�

and N�� To avoid this� we proceed in two steps
 First we apply the two
terms to a fresh variable z and substitute �� for x� then we substitute
�� for z� Formally� we take D � D��D��� where D� � ��x�� �z	��� and
D� � ��z�� �	��� Then

D�M � ��� M�����x� and D�N � ��� N�����x��

The substitution of �� turns out to be harmless� We make such substitu�
tions by applicators into a parameter of the induction� together with P�Q�
so that above we can have by induction a context CP�Q����x with the prop�
erty that

CP�Q����x�M�����x�� ��� P and CP�Q����x�N�����x�� ��� Q�

For full details on the proof� we refer to �Kri���� �

In other words� adding M � N leads to inconsistency� To prove the theorem�
one may assume that M�N are distinct normal forms� and the place where they
di�er may be �extracted� like above into a context C such that C�M � �� �xy�x
and C�N � �� �xy�y� from which the theorem follows immediately� As a last
remark� we observe that B�ohm�s theorem gives us already a limited form of �full
abstraction��

Corollary ������ Let M�N be ��terms which have a �
�normal form	 Then
��M �� � ��N �� in D� i� M ��� N 	

Proof� � M ��� N � ��M �� � ��N ��
 by soundness�

� ��M �� � ��N ���M ��� N 
 ifM�N have distinct normal forms� then by B�ohm�s
theorem and by soundness ��P �� � ��Q�� for any P�Q� in particular ��x�� � ��y��� which
is contradicted by interpreting these terms with a � such that ��x	 �� ��y	 �D�

contains at least two elements	� �

��� Filter Models

In this section we introduce the syntax of intersection types� which leads to the
de�nition of a class of re�exive domains� Intersection types provide an extended
system of types that allows to type all terms of the ��calculus� Therefore the
philosophy of these �types�� which were originally called functional characters in
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�CDC���� is quite di�erent from the main stream of type theory� where the slogan
is
 �types ensure correction in the form of strong normalisation� �cf� theorem
�����	� Coppo and Dezani�s characters� or types� are the simple types �built with
� only� cf� de�nition ����	� supplemented by two new constructions
 binary
intersection and a special type �� with the following informal typing rules �see
exercise ������	


any term has type ��
a term has type � ! � i� it has both types � and ��

As an illustration� to type a self application of a variable x to itself� we can
give to x the type �� � � 	 ! �� and we get that xx has type � � On the other
hand� it can be shown that the application of  � �x�xx to itself can only be
typed by �� In section ��� we shall further discuss the use of intersection types
in the investigation of normalisation properties�
Turning to semantics� functional characters can be used to give meaning to

terms� using the following philosophy
 characters are seen as properties satis�ed
by terms� in particular� the property � � � is the property which holds for a
term M if and only if� whenever M is applied to a term N satisfying �� MN
satis�es � � The meaning of a term is then the collection of properties which it
satis�es�
Another way to understand the language of intersection types is to see them

as a formal language for presenting the compact elements of the domain D which
they serve to de�ne� Recall that the topological presentation of domains �section
���	 provides us with a collection of properties
 the opens of the Scott topology�
or more speci�cally the opens in the basis of Scott topology� that is� the sets of
the form � d� where d is a compact of D� Hence� in this approach


� Types �� � represent compact elements d� e of D� the association being bi�
jective� but antimonotonic �observe that d � e i� � e �� d	�

� � � � represents the step function �cf� lemma �����	 d � e 
 D � D�
which is a �compact	 element of D� since it is intended that D � D � D�

� � ! � represents d� e� and � represents � �intersection types give a lattice

all �nite lub�s exist	�

These remarks should motivate the following de�nition�

De�nition ����� �eats� An extended abstract type structure �eats for short� S
is given by a preorder �S��	� called the carrier� whose elements are often called
types� which�

� has all �nite glb
s� including the empty one� denoted by �� and

� is equipped with a binary operation � satisfying�
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���	 ��� ��	 ! ��� ��	 � � � ��� ! ��	

���	
�� � �� � � � �

��� � 	 � ���� � �	
��	 � � � � � 	

Remark ����� �	 The structure of a preorder having all �nite glb
s can be ax�
iomatised as follows�

� � �
� � �

�� � ��� �� � ��
�� � ��

� ! � � � � ! � � �
� � � ! �

� � �� � � � �

�� ! � 	 � ��� ! � �	

�	 Inequation ���	 expresses contravariance in the �rst argument and covariance
in the second argument �cf	 de�ntion �	�	��	

�	 Thanks to inequation ���	� the two members of ���	 are actually equivalent	

Lemma ����� In any eats� the following inequality holds�

���� ��	 ! ��� � ��	 � ��� ! ��	� ��� ! ��	�

Proof� The statement is equivalent to

���� ��	 ! ��� � ��	 � ���� ! ��	� ��	 ! ���� ! ��	� ��	

which holds a fortiori if �� � �� � ��� ! ��	� �� and ��� �� � ��� ! ��	� ���
Both inequalities hold by ���	� �

A way to obtain an eats is via a theory�

De�nition ����� Let T be the set of types constructed from a non�empty set At
of atoms and from a signature f���!����g �with the arities in superscript�	 The
formulas have the form � � � � for �� � 
 T 	 A theory consists of a set Th of
formulas closed under the rules de�ning an eats	 Thus a theory produces an eats
with carrier T 	 We denote this eats also by Th	 For any set ! of formulas�
Th�!	 denotes the smallest theory containing !	 We denote with Th� the free
theory Th��		

Remark ����
 The assumption At �� � is important� otherwise	 everything
collapses� since � �� � ! � � � � �� where �� is the equivalence associated with
the preorder �	

Another way to obtain an eats is by means of an applicative structure�
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De�nition ����� �ets� Let �D� �	 be an applicative structure	 Consider the fol�
lowing operation on subsets of D�

A� B � fd 
 D j 	 e 
 A d�e 
 Bg�

A subset of P�D	 is called an extended type structure �ets for short� if it is closed
under �nite set�theoretic intersections and under the operation � just de�ned	

Lemma ����� An ets� ordered by inclusion� is an eats	

We have already observed that the order between types is reversed with re�
spect to the order in the abstract cpo semantics� Accordingly� the role of ideals
is played here by �lters�

De�nition ����� ��lter� A �lter of an inf�semi�lattice S is a nonempty subset
x of S such that

�� � 
 x� � ! � 
 x
� 
 x and � � � � � 
 x �

The �lter domain of an eats S is the set F�S	 of �lters of S� ordered by inclusion	

Remark ����� Equivalently� in de�nition �	�	�� the condition of non�emptyness
can be replaced by� � 
 x	

The following properties are easy to check


� For each � 
 S� � � is a �lter�

� Given A � S� the �lter A generated by A �i�e�� the least �lter containing
A	 is the intersection of all �lters containing A� It is easily seen that

A �
�
f� ��� !    ! �n	 j ��� � � � � �n 
 Ag�

� In particular for a �nite A � f��� � � � � �ng� we have A �� ��� !    ! �n	�

Proposition ������ If S is an eats� then F�S	 is an algebraic complete lattice	

Proof� The minimum and maximum elements are � � and S� respectively� The
nonempty glb�s are just set�theoretic intersections� The lub�s are obtained byW
A �

S
A� Two instances of lub�s can be given explicitly


� If A is directed� then
S
A is a �lter� hence

W
A �

S
A� To see this� let

�� � 

S
A� Then � 
 x� � 
 y for some x� y 
 A� By directedness �� � 
 z for

some z 
 A� since z is a �lter� we have � ! � 
 z� hence � ! � 

S
A�

� � �� � � � f�� �g �� �� ! � 	�
It follows that f� � j � 
 xg is directed� for any �lter x� and since it is clear that
x �

S
f� � j � 
 xg� we obtain that F�S	 is algebraic and that the �nite elements

are the principal �lters � �� �
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De�nition ������ Let S be an eats� let x� y 
 F�S	� and f be a function F�S	�
F�S		 We de�ne�

x�y � f� j �� 
 y �� � 
 xg

G�f	 � f�� � j � 
 f�� �	g �

We write F for the curried form of �	

Lemma ������ For any x� y 
 F�S	� x�y is a �lter� and the operation � is
continuous	

Proof� We check only that x�y is a �lter


� � 
 x�y
 Take � � �� Then � 
 x�y since � � � � � implies � � � 
 x�

� Closure under intersections
 Let ��� �� 
 x�y� and let ��� �� 
 y such that
�� � ��� �� � �� 
 x� Then �� ! �� � �� ! �� 
 x� by lemma ������ hence
�� ! �� 
 x�y�

� Upward closedness
 by covariance� �

Remark ������ Notice the role of the axiom � � � � �� which guarantees the
non�emptyness of x�y	

Exercise ���� Consider the following interpretation of ��terms


��x��� � ��x�

��MN ��� � ���M ��������N ����

���x�M ��� � G��d���M ����d�x��

where F and G are as in de�nition ������ and where � maps variables to �lters� �Unlike
in de�nition ������ we do not suppose F � G � id �� On the other hand� consider the
formal typing system of �gure ���� involving judgments of the form & � M � �� where
M is an untyped ��term� � � S� and & is a partial function from �a �nite set of�
variables to S� represented as a list of pairs of the form x � �� �A slightly di�erent one
will be used in section ����� Show ��M ��� � f� j & �M � �g� where ��x� �	 � whenever
x � � is in &�

We next examine how F and G compose�

Lemma �����
 In an eats� the following holds for any �� � 
 S� x 
 F�S	�

�� � 
 x� � 
 x� � ��

Proof� ��	 This follows obviously from � 
� �� Conversely� � 
 x� � � implies
�� � � 
 x for some �� � �� hence � � � 
 x by contravariance� �

Lemma ������ Let F�G be as in de�nition �	�	��	 Then G � F � id	




�
� FILTER MODELS ��

�

x � � � &

& � x � �

& �M � � �  & � N � �

& �MN � 

& � fx � �g �M � 

& � �x�M � � � 

& �M � �

& �M � � & �M � 

& �M � � � 

& �M � � � � 

& �M � 

Figure ���
 Intersection type assignment

Proof� Let f � F �y	 � �x��y�x	� If � 
 G�f	� then � � ���� ��	!  ! ��n �
�n	� where �i 
 y� � �i �� � i � n	� or� equivalently� �i � �i 
 y� from which
� 
 y follows� by de�nition of a �lter� �

Proposition ������ Let F�G be as in de�nition �	�	��	 We have

F �G � id on F�S	� F�S	
F �G � id on F�S	�rep F�S	 �

Proof� � F � G � id 
 We have to prove f�x	 � G�f	�x� for every f 
 F�S	�
F�S	 and every �lter x� If � 
 f�x	� then by continuity � 
 f�� �	 for some
� 
 x� Hence � � � 
 G�f	 by de�nition of G� and � 
 G�f	�x by de�nition of
��

� F �G � id 
 Since F�S	�rep F�S	 � F �F�S		� we can reformulate the state�
ment as F �G � F � F � it then follows from lemma ������� �

The situation so far is as follows� An eats gives rise to a coadditive prere�exive
domain based on the representable functions� This domain does not necessarily
give rise to a ��model� because there may not exist enough representable functions
to guarantee that �d���M ����d�x� is always representable� The following proposi�
tion characterises the eats� which give rise to re�exive domains� with the above
choice of F�G�

Proposition ������ For any eats S� F�S	 �rep F�S	 � F�S	 � F�S	 �and
hence �F�S	� F�G	 is reexive� if and only if �for any types�

�Fre	 ���� ��	 !    ! ��n � �n	 � � � � �
V
f�i j � � �ig � ��

Proof� We begin with two observations


�� By proposition ������� any representable function f is represented by G�f	�
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�� The compact continuous functions in F�S	 �cont F�S	 are the functions
of the form f � �� �� �� ��	 !    ! �� �n �� �n	� i�e�� such that

f�x	 ��
	
f�i j �i 
 xg

�cf� remark ������	� In particular� �i 
 f�� �i	 for every i� hence �i � �i 

G�f	�

Suppose �rst that all continuous functions are representable� Then the above
f is represented by G�f	� Let �� � be as in the assumption of �Fre	� We have

� 
 G�f	� � � � f�� �	 ��
	
f�i j � � �ig

since � � � 
 G�f	 and F �G � id � Hence
V
f�i j � � �ig � � �

Conversely� suppose that �Fre	 holds� We show that the compact functions
f �cf� observation ��		 are representable� We �rst show


G�f	 �� ��� � ��	 !    ! ��n � �n	�

� � ��� � ��	 !    ! ��n � �n	 � G�f	
 this follows from �i � �i 
 G�f	�
shown above�

� G�f	 �� ���� ��	!    ! ��n � �n	
 it is enough to show that � 
 f�� �	�
implies ��� � ��	 !    ! ��n � �n	 � � � � � That is� the converse of
�Fre	 holds� This is proved using lemma �����


��� � ��	 !    ! ��n � �n	 �
	

fij
�
ig

��i � �i	

�
	

fij
�
ig

�i�
	

fij
�
ig

�i

� �� � �

Now we can prove that G�f	 represents f � that is� for all �


G�f	� � � ��
	
f�i j � � �ig�

� G�f	� � � � f�� �	
 Let � 
 G�f	� � �� that is� let �� � � be such that
�� � � 
 G�f	� Then ���� ��	!  !��n � �n	 � ��� ��� By �Fre	� we
have

V
f�i j �� � �ig � � � A fortiori

V
f�i j � � �ig � � � that is� � 
 f�� �	�

� f�� �	 � G�f	� � �
 This always holds� by proposition �������

Finally� consider an arbitrary continuous function f � and let  be the set of
its approximants� Then

G�
�
 	�x � �

�
G� 		�x �

�
��

G�		�x �
�
��

	�x	 � �
�
 	�x	�
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�

Many eats� satisfy �Fre	� including Th� �next exercise	� and the theories
ThV de�ned in section ����

Exercise ���� Show that Th� satis�es �Fre��� Hint
 reformulate the goal for an
arbitrary formula � �  � exploiting the fact that an arbitrary formula can be written
as an intersection of formulas which are each either �� or an atom� or of the form
�� � ���

��� Some D Models as Filter Models

We are now interested in recasting some D� models in terms of �logic�� that is
in terms of �lter models built on a theory� We restrict our attention to an initial
D� which is an algebraic lattice�

Exercise ��� Show that if D� is an algebraic lattice� then so is D�� for an arbitrary
choice of �i�� j���

De�nition ����� Let �D�F�G	 be a reexive �coadditive� domain	 Let v 
 D �
D� and w 
 D� � D be inverse order�isomorphisms	 Let F �� G� be de�ned by

F ��x�	 � v � F �w�x�		 � w

G��f �	 � v�G�w � f � � v		 �

Then �D�� F �� G�	� which is clearly a reexive �coadditive� domain� is called iso�
morphic to �D�F�G		

In the following de�nition we �o�cialise� the inversion of order involved in
the logical treatment�

De�nition ����� Let D be an algebraic lattice	 We set

K�D	 � f� d j d 
 K�D	g

and order it by inclusion	 �Hence� up to isomorphism� K�D	 is �K�D	��		�

Theorem ����� If D is an algebraic lattice and if �D�F �� G�	 is a reexive coad�
ditive domain� then K�D	 can be equipped with an eats structure in such a way
that the associated �F�K�D		� F�G	 is isomorphic to �D�F �� G�		

Proof� By lemma ����� applied to the applicative structure D� it is enough to
prove that K�D	 is closed under �nite intersections and under the � operation�
We have

�� d	 ! �� e	 �� �d � e	
� � � D�
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We show

� d�� e �� G��d� e	

where the left� denotes the operation introduced in de�nition ������ and where
d� e is a step function� Indeed� we have

z 
� d�� e� z�d � e� F ��z	 � d� e� z � G��d� e	

where the last equivalence follows by coadditivity� Hence K�D	 forms an ets
�notice that G��d� e	 is compact by coadditivity	� The �lters over K�D	 are in
order�isomorphic correspondence with the ideals overK�D	� We �nally check that
the operations F�G are the operations F �� G�� up to isomorphism� For x� y 
 D�
we have

f� f j f � xg�f� d j d � yg � f� e j � d � y �G��d� e	 � x	g�

So what we have to show is

e � x�y� � d � y �G��d� e	 � x	

which by coadditivity is equivalent to

e � F ��x	�y	� � d � y �d� e � F ��x		

which follows by continuity of F ��x	� Matching G against G� amounts to show

f� f j f � G��g	g � f� d�� e j e � g�d	g

which can be rephrased as

f� f j f � G��g	g � A where A � f� G��d� e	 j d� e � gg�

� f� f j f � G��g	g � A
 By the continuity of G�� if f � G��g	� then

f � G��d� � e� �    � dn � en	

for some d�� e�� � � � � dn� en such that d� � e� � g� � � � � dn � en � g� Hence

� G��d� � e�	� � � � � � G
��dn � en	 
 A�

Then� since G� preserves lub�s�

� G��d� � e� �    � dn � en	 � � �G��d�� e�	 �    �G��dn � en		
� � G��d�� e�	 �    � � G��dn � en	 
 A

from which we get � f 
 A�

� A � f� f j f � G��g	g
 It is obvious that A � f� f j f � G��g	g� �

Now we investigate under which conditions a �lter domain can be presented
by a theory �recall de�nition �����	�
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De�nition ����
 Suppose that S is an eats� and that an interpretation V 
 At �
S �which obviously extends to V 
 T � S� is given	 Then S� V induce a theory
SV � f� � � j V ��	 � V �� 	g	

Lemma ����� If S is an eats and V 
 At � S is such that its extension V 
 T �
S is surjective� then SV is isomorphic to S� in the sense that their collections of
�lters are isomorphic	

Proof� The inverse maps are x �� V �x	 and y �� V ���y	� The surjectivity
of V guarantees that V �V ���y		 � y� In the other direction� x � V ���V �x		
holds obviously� If � 
 V ���V �x		� then V ��	 � V �� 	 for some � 
 x� hence
� � � 
 SV � from which � 
 x follows since x is a �lter� �

Summarizing� to get a presentation of a domain by a theory� we should make
sure that the domain is an algebraic lattice� is re�exive and coadditive� and we
should �nd a surjection from types to the compact elements of the domain� We
apply this discussion to the D� models �D�� F�G	 constructed from a latticeD��

Lemma ����� If V 
 At � K�D�	 is such that for each d 
 K�D�	 there exist
� 
 T such that V ��	 �� d� then V 
 T � K�D�	 is surjective	

Proof� Recall that by remark ����� a compact element of D� is a compact
element of Dn for some n� We use induction over n� The case n � � is the
assumption� Take a compact element c � �a� � b�	 �    � �an � bn	 of Dn���
We have by induction

� a� � V ���	� � � � � � an � V ��n	 and � b� � V ���	� � � � � � bn � V ��n	�

Hence


V ��i � �i	 � � ai�� bi
� � G��ai� bi	 by theorem �����
� � �ai� bi	 by lemma ������� and

since in� � �ai � bi	 � jn� � ai� bi �

We conclude that � c � V ���� � ��	 !    ! ��n � �n		� �

We now de�ne a theory for the D� model based on D� � f���g and the
standard pair �i�� j�	 �cf� de�nition �����	� We take At � f�g� and de�ne V ��	 ��
�� Then obviously V satis�es the assumption of lemma ������ So all we need now
is a syntactic characterisation of ThV as Th�!	 for some �nite set ! of axioms�

Theorem ����� Let D�� V be as above	 Set ! � f� � � � �� � � � � �g	
Then ThV � Th�!		 Hence D� is isomorphic to F�Th�!			
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Proof� The second part of the statement follows from the �rst part


D� is isomorphic to F�K�D�		 by theorem �����
F�K�D�		 is isomorphic to F�ThV 	 by lemma ����� �

We also deduce from these isomorphisms that ThV satis�es �Fre	� by proposi�
tion ������� We now show the �rst part�

� Th�!	 � ThV 
 It su�ces to check V ��	 � V �� � �	


x 
 V �� � �	 ��� � �� �	 � 	 y x�y � � � x � ��

The latter equivalence follows from the fact that D��s � element ��� � � � ��� � � �	
is D��s �� since i���	 � �x�� is D��s � element� and since it is easily seen that
i��	 � � implies i���	 � � where �i� j �	 � �i� j	� �i� j	�

� ThV � Th�!	
 We pick �� � � 	 
 ThV and proceed by induction on the
sum of the sizes of �� � � Clearly� it is enough to prove �� � � � 
 Th�!	 for some
��� � � such that � � ��� � � � � 
 Th�!	 �in particular for � �� �

�� where �� is
the equivalence associated with the preorder �� of Th�	� Clearly� from any � we
can extract �� �� � such that �� has a smaller size than � and has one of the
following forms


� or
���� � ���	 !    ! ��

n
� � �n� 	 �n � �	 or

���� � ���	 !    ! ��
n
� � �n� 	 ! � �n � �	 �

Similarly for � � Exploiting this fact� the problem of verifying �� � � 	 
 Th�!	
can be limited without loss of generality to � � � and � � �� � ��


� � � �
 We consider the three possible forms of �


� � � �
 this case is impossible� since � � � �
 ThV �

� � � ���� � ���	 !    ! ��
n
� � �n� 	
 Then � � �� � �	 
 ThV � since

�� � �	 
 ThV � Let I � fi j � � �i� 
 ThV g� By �Fre	� we have
V
i�I �

i
� � � 
 ThV � We can apply induction to both ��

V
i�I �

i
� andV

i�I �
i
�� �� from which � � � � 
 Th�!	 follows by lemma ������ where

� � � � � � � � � � �

� � � ���� � ���	 !    ! ��
n
� � �n� 	 ! �


Then obviously � �� � �

� � � �� � ��
 We consider the three possible forms of �


� � � �
 Replacing � by � � �� we get � � �� by �Fre	� and
� � �� 
 Th�!	 by induction applied to �� ��� Hence �� � � 
 Th�!	�
with �� � � � � � ��
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� � � ���� � ���	!   ! ��
n
� � �n� 	
 The reasoning is the same as for the

corresponding case for � � �� We de�ne now I � fi j �� � �i� 
 ThV g�
and we apply induction to ���

V
i�I �

i
� and

V
i�I �

i
�� ���

� � � ���� � ���	 !    ! ��
n
� � �n� 	 ! �


The reasoning is a variation of the previous case� We replace � by
� � �� we keep the same I� and we apply induction to ���

V
i�I �

i
� andV

i�I �
i
� ! �� ��� �

There are more liberal conditions allowing to get Th � Th�!	 for some �nite
!�

Exercise ��� Let Th be a theory satisfying �Fre��� and in which every atom � is
equivalent to a �nite conjunction �� of types of the form � � � or �� � ��� Show that
Th � Th���� where

� � �Th � f�� � � � � � �m � � j ��� � � � � �m� � � Atg� � f� � �� j � � Atg�

Hints
 ��� Reason by induction on the number of occurrences of�� ��� The inequations
�� � � � � � �m � � might lead to loops when replacing ��� � � � � �m� � by ��� � � � � � ��n� ���
hence they are added explicitly�

Exercise ���� �Park�s D�� Apply exercise ����� to show that the D� model based
on D� � f��g and �i�� j�� �cf� remark ������ is isomorphic to F�Th��Park ��� with
�Park � f� � � � �g� Hint
 use the same function V � but notice that� unlike in the
standard D� model� it is not the case here that D�	s  is D�	s � since i���� � �x�x

is not D�	s  element�

��� More on Intersection Types 	

In this section� following original work of Coppo and Dezani� we study intersection
types from a syntactic point of view �and without considering an explicit preordering
on types� as we did in order to construct a model�� Intersection types are used to give
characterisations of the following predicates over �terms� �has a head normal form �
�has a normal form � and �is strongly normalisable � The �rst two characterisations
can be derived as corollaries of a logical formulation of the approximation theorem �cf�
section ����� Our presentation follows �Kri
���

Systems D# and D� Recall the set T of intersection types from de�nition ������
The typing system D� is de�ned in �gure ���� The only di!erence with the system
presented in �gure ��� is the replacement of the last rule by the more restricted rules
��E�� and ��E��� Another di!erence is that we let now M range over �terms �cf�
de�nition ������� The rule ��� allows to type ��

The restriction of D� obtained by removing � in the BNF syntax of T � as well as
the rule ���� is called D� In D only �terms� i�e�� terms without occurrences of �� can
be typed�
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�

x � � � &

& � x � �

& �M � � �  & � N � �

& �MN � 

& � fx � �g �M � 

& � �x�M � � � 

���
& �M � �

��I�
& �M � � & �M � 

& �M � � � 

��E��
& �M � � � 
& �M � �

��E��
& �M � � � 
& �M � �

Figure ���
 System D#

Remark ��� Because of axiom ���� in a provable judgement & � M � � of D�� all
free variables of M are not always declared in &� This property holds however in D�

We state a number of syntactic lemmas�

Lemma ��� �weakening� If & �M � � and & � &� �that is� if x � � is in & then it
is in &��� then &� �M � ��

Lemma ��� If &� x� � ��� � � � � xk � �k � �k �M � �� if N�� � � � � Nk are ��terms� and if
& � Ni � �i for all i	s such that xi � FV �M�� then & �M �N��x�� � � � � Nk�xk� � ��

Proof hint� By induction on the length of the proof of &� x� � ��� � � � � xk � �k �M � ��
�

Remark ��� Lemma ����� encompasses both substitution and strengthening� Substi�
tution corresponds to the situation where & � Ni � �i for all i � k� Strengthening corre�
sponds to the situation where x�� � � � � xk �� FV �M�
 then &� x� � ��� � � � � xk � �k �M � �
implies & �M � ��

Lemma ��� If &� x � � �M �  � then &� x � � � �� �M �  for any ���

Proof� By induction on the length of the proof of &� x � � � M �  � We only look at
the base cases�

&� x � � � x � � � Then &� x � � � �� � x � � � ��� and &� x � � � �� � x � � follows by
��E��

&� x � � � y �  �y �� x�� Then also &� x � � � �� � y �  � �
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Lemma ��
 If & �M � � and &� �M � �� then & � &� �M � �� where the variables
declared in & � &� are those declared in & or &�� and where �viewing the environments
as functions�

& � &��x� �

�����
 �  � if &�x� �  and &��x� �  �

 if &�x� �  and &��x� is unde�ned
 � if &��x� �  � and &�x� is unde�ned �

Proof� The statement follows from lemma ��	�� and from a repeated application of
lemma ��	�	� �

De�nition ��� �prime type� An intersection type is called prime if it is either an
atomic type � or an arrow type � �  � Every type is thus a conjunction of prime types
�called its prime factors� and of some �	s� and� by ��E�� if & � M � � and if �� is a
prime factor of �� then & �M � ���

Lemma ��	 Let & �M � �� with � prime� Then


�� If M � x� then �x � ��� � &� where � is a prime factor of ���

�� If M � �x�N � then � � �� � �� and &� x � �� � N � ���

�� If M � M�M�� then & �M� �  and & �M� �  � ��� for some � ��� such that � is
a prime factor of ���

Proof� First we claim that a proof of & � M � � contains a proof & � M � �� which
does not end with a ��I� nor ��E� rule and is such that � is a prime factor of ��� To
prove the claim� we generalise the assumption �a proof of & � M � � to� �a proof of
& � M � ��� where � is a prime factor of ��� � We proceed by induction on the length
of the proof of & �M � ��� and consider the last rule used�

��I� Then ��� � �� � ��� and �� being a prime factor of ���� is a prime factor of �� or
��� thus we can apply induction to the left or right premise of the ��I� rule�

��E� Then the premise of the rule is of the form & � M � ��� �  or & � M �  � ����
and �� being a prime factor of ���� is also prime factor of ��� �  or  � ����

The claim is proved� Let & �M � �� be as in the claim� it is a conclusion of one of
the three rules of the simply typed �calculus �without intersection types��

M � x � Then �x � ��� � &�
M � �x�N � Then �� � �� � ��� hence �� is prime� which entails � � ���
M � M�M� � Obvious�

�

Proposition ��� �subject reduction� If & �M � � and M �� M
�� then & �M � �

��

Proof hint� In the crucial axiom case� use lemmas ��	�� �case �� and ��	��� �
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Lemma ���� �expansion� �� In D�� if & �M �N�x� �  � then & � ��x�M�N �  �

�� In D� if & �M �N�x� �  and if & � N � � for some �� then & � ��x�M�N �  �

Proof� We prove ���� indicating where the additional assumption comes in for ����
We may assume by lemma ��	�� that x is not declared in &� The statement follows
obviously from the following claim�

� � �& � N � � and &� x � � �M � ��

The claim is proved by induction on �size�M�� size����

�  � �� Obvious� taking � � ��

�  � � � �� By ��E� and by induction� we have

& � N � �� &� x � �� �M � �
& � N � �� &� x � �� �M � � �

We set � � �� � ��� and we conclude by ��I� and lemma ��	�	�

�  prime�

� M � x� Then the assumption is & � N �  � Take � �  �

� M � y �� x� Then the assumption is & � y �  � Take � � � �in D� take the
assumed type of N��

� M � �y�P � By lemma ��	�� ��� we have  � � � � and

&� y � � � P �N�x� � ��

By induction we have

&� y � � � N � � and &� x � �� y � � � P � ��

Since we can �must� make sure that y is not free in N � the conclusion follows
from lemma ��	���

� M � M�M�� We can apply induction since size�M��� size�M�� � size�M��
Using lemma ��	�� ���� we have

& � N � �� &� x � �� �M� � 
�� �  �

& � N � �� &� x � �� �M� �  ��

with  prime factor of  �� As above� we set � � �� � ��� �

Remark ���� Unlike subject reduction� which holds widely in type systems� lemma
������ is peculiar of intersection types�

Theorem ���� �subject equality� If & �M � � and M �� M
�� then & �M � � ��
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Proof� One direction is proposition ��	�
 and the other is easily proved by induction
using lemmas ��	��� and ��	��� �

We shall prove the strong normalisation theorem and the approximation theorem
making use of an elegant technique called the computability method� The method will
be used again in sections ��� and ���	�

De�nition ���� �N �saturated� Let N � �� A subset X � � is called N �saturated
if

�N � N �M�N�� � � � � Nn � � �M �N�x�N� � � �Nn � X � ��x�M�NN� � � �Nn � X �

�in this implication n is arbitrary� in particular it can be ���

Proposition ���� The N �saturated sets form an ets� �cf� de�nition �������

Proof hint� The statement is obvious for intersections� As for function types� the
Ni�s in the de�nition of saturated set serve precisely that purpose� �

Lemma ���� For any interpretation V �cf� de�nition ������ by N �saturated sets
such that � � V ��� � N � for any provable x� � ��� � � � � xk � �k � M � �� and for any
N� � V ����� � � � � Nk � V ��k�� we have M �N��x�� � � � � Nk�xk � � V ����

Proof� By induction on the length of the proof of x� � ��� � � � � xk � �k �M � ��

� & � x � �� The conclusion is one of the assumptions�

� Application� By induction we have

M �N��x�� � � � � Nk�xk� � V �� � � and N �N��x�� � � � � Nk�xk� � V ���

hence �MN��N��x�� � � � � Nk�xk� � V �� by de�nition of V �� � ��

� Abstraction� We have to prove ��x�M �N��x�� � � � � Nk�xk��N � V ��� for any
N � V ���� By induction we have M �N��x�� � � � � Nk�xk��N�x� � V ��� and the
concusion follows by the de�nition of N saturated set� noticing that a fortiori
N � N by assumption�

� ���� Obvious� since V ��� � ��

� ��I�� Obvious by induction� since V �� � � � V ��� � V ���

� ��E�� �or ��E���� Follows from the implicit order� V �� � � � V ���� �

Remark ���
 Notice that we have used induction on types to construct V ��� at all
types� and that we have used induction on �typing proofs of� terms to prove the state�
ment� The core of the computability method indeed resides in this elegant separation
of inductions� to be contrasted with their combinatorial combination in the proof of
theorem ������
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The following characterisation of strongly normalisable terms� provides in particular
an alternative proof of strong normalisation for the simply typed �calculus �theorem
����
��

Theorem ���� �strong normalisation � intersection types� Any ��term M is
strongly normalisable i� & �M � � is provable in D for some &� ��

Proof� � � We take N � SN � the set of strongly normalisable terms� and we
interpret the atomic types � by setting V ��� � N � Our proof plan goes as follows� We
show� for all ��

�� V ��� is N saturated�
�� x � V ��� for all variables x�
�� V ��� � N �

By these conditions lemma ��	��	 can be applied� with N� � x�� � � � � Nk � xk� yielding
M � N � Therefore all we have to do is to prove the three conditions�

��� By lemma ��	���� the condition boils down to the veri�cation that N is N 
saturated� We proceed by induction on depth�N� � depth�M �N�x�N� � � �Nn� �cf� de�
nition ������� It is enough to prove that all the one step reducts P of ��x�M�NN� � � �Nn

are in N �

� P � M �N�x�N� � � �Nn� By assumption�

� P � ��x�M ��NN� � � �Nn� By induction� since

depth�M ��N�x�N� � � �Nn� � depth�M �N�x�N� � � �Nn��

� If the reduction takes place in one of the Ni�s� the reasoning is similar�

� P � ��x�M�N �N� � � �Nn� By induction� since depth�N �� � depth�N� �notice that
if x �� FV �M�� then the depth of M �N�x�N� � � �Nn does not change� whence the
notion of N saturated��

��� and ��� We actually strengthen ��� into

��� N� � V ����

where N� � fxM� � � �Mp j p � � and � i � p Mi � Ng� We shall prove ���� and ���
together� as a consequence of the following properties� which we shall establish �rst�

�A� N� � N �
�B� N� � �N � N���
�C� �N� � N � � N �

�A� Any reduct of xM� � � �Mp is of the form xN� � � �Np where the Ni�s are reducts of
the Mi�s� Therefore all elements of N� are strongly normalisable�

�B� The M�� � � � �Mp in the de�nition of N� serve precisely that purpose�
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�C� Let M � N� � N � Then Mx � N � and a fortiori M � N �

Now we can prove ���� and ���� The two properties hold at basic types because we
have chosen V ��� � N � and by �A�� The intersection case is obvious� Let thus � �
�� � ��� By induction we have V ���� � N and N� � V ����� hence N � N� � V ����
and ���� at � then follows by �B�� Similarly� we use induction and �C� to prove ��� at
��

��� By induction on �depth�M�� size�M��� and by cases�

� M � �x� � � � xm�xN� � � �Nn� with x �� x�� � � � � xm� By induction and by lemmas
��	�� and ��	��� we have $ � N� � ��� � � � �$ � Nn � �n for some $ � &� x� �
�� � � � � xm � m� x �  � Then we have� using lemma ��	�	�

&� x �  � ��� � � � � � �n � �� �M � � � � � � � m � ��

� M � �x� � � � xm�xiN� � � �Nn� Similar to the previous case�

� M � �x� � � �xm���x�N�PN� � � �Nn� Then by induction $ � P � � and $ �
N �P�x�N� � � �Nn �  for some $ � &� x� � �� � � � � xm � m� We claim that
$ � ��x�N�PN� � � �Nn �  � from which & � M � � � � � � � m �  follows�
This is proved by induction on n �cf� theorem ��	����� the base case n � � being
lemma ��	��� ���� �

In the following three exercises� we present the logical approximation theorem� and
derive as corollaries characterisations of the terms having a head normal form and of
the terms having a normal form� We follow �RdR
���

Exercise ���	 �logical approximation� � We de�ne the following notion of �par�
allel normal reduction�� denoted with

norm
�� 


��x�P �QM� � � �Mn
norm
�� P �Q�x�M� � � �Mn

P
norm
�� Q

xM� � � �Mi��PMi�� � � �Mn
norm
�� xM� � � �Mi��QMi�� � � �Mn

M
norm
�� N

�x�M
norm
�� �x�N

Show that the following implication holds� for any &�M� �


& �M � � � �N M
norm
�� �N and & � ��N� � ��

Hints �refering to the proof of theorem �������
 ��� The following easy property is
useful
 in D�� if & � M � � and M � N � then & � N � �� ��� One should now deal
with typed versions of the predicates N and N�� Speci�cally� set

N �&� �� � fM � � j �N �M
norm
�� �N and & � ��N� � ��g

N��&� �� � fM � N �&� �� jM has the form xM� � � �Mpg �

��� Formulate and prove typed versions of properties �A� �B�� and �C� �plus a property
saying that the predicates at � �  are the intersections of the predicates at � and ��
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as well as of properties ���� ����� and ��� �in the latter the type should be restricted to
a non�trivial one� see exercise ������� ��� In the proof of �C�� observe that if

Mx
norm
�� ���y�M�x

norm
�� M �x�y�

norm
�� �P

then
M

norm
�� ��y�M

norm
�� ��y�P �y�x��

��� Formulate interpretations of the form V �&� �� �making use of the operation � de�
�ned in proposition ����� for the arrow case�� and prove a version of lemma �������

Exercise ���� Show that the following are equivalent for a ��term M 


� � M �� N for some head normal form N�

� � M
norm
�� �N for some head normal form N �cf� de�nition ��������

� � M is typable with a non�trivial type in D��

where the non�trivial types are de�ned as follows
 atomic types are non�trivial� � � 
is non�trivial provided one of � or  is non�trivial� and � �  is non�trivial provided
 is non�trivial� Hints
 � can ony have a trivial type� Any term xM� � � �Mn is typable
in any environment x � � � � � � � � � ��

Exercise ���� Show that the following are equivalent for a ��term M 


� � M is normalisable�
� � the leftmost reduction from M terminates �cf� proposition ��������
� � & �M � � in D� for some &� � where � does not occur�

On the way� show the following properties


� If & � M � �� where M is a ��normal form and where � does not occur in &� ��
then � does not occur in M �

� Every � normal form M is typable in D�

Exercise ���� Show that the logical approximation theorem still holds� replacing the
type system D� by the type system of �gure ���� �Warning
 this involves revisiting a
number of syntactic lemmas� typically lemma �������



Chapter �

Interpretation of ��Calculi in

CCC�s

In �rst approximation� typed ��calculi are natural deduction presentations of
certain fragments of minimal logic �a subsystem of intuitionistic logic	� These
calculi have a natural computational interpretation as core of typed functional
languages where computation� intended as �
�reduction� corresponds to proof
normalization� In this perspective� we reconsider in section ��� the simply typed
��calculus studied in chapter �� We exhibit a precise correspondence between the
simply typed ��calculus and a natural deduction formalization of the implicative
fragment of propositional implicative logic�
Next� we address the problem of modelling the notions of �
�reduction and

equivalence� It turns out that simple models can be found by interpreting types
as sets and terms as functions between these sets� But� in general� which are the
structural properties that characterize such models$ The main problem consid�
ered in this chapter is that of understanding what is the model theory of simply
typed and untyped ��calculi� In order to answer this question� we introduce in
section ��� the notion of cartesian closed category �CCC	� We present CCC�s
as a natural categorical generalization of certain adjunctions found in Heyting
algebras� As a main example� we show that the category of directed complete
partial orders and continuous functions is a CCC�
The description of the models of a calculus by means of category�theoretical

notions will be a central and recurring topic of this book� We will not always
fully develop the theory but in this chapter we can take advantage of the sim�
plicity of the calculus to go into a complete analysis� In section ���� we describe
the interpretation of the simply typed ��calculus into an arbitrary CCC� and we
present some basic properties such as the substitution theorem� The interpreta�
tion into a categorical language can be seen as a way of implementing ��renaming
and substitution� This eventually leads to the de�nition of a categorical abstract
machine�
In section ���� we address the problem of understanding which equivalence is

��
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induced on terms by the interpretation in a CCC� To this end� we introduce the
notion of ��theory� Roughly speaking� a ��theory is a congruence over ��terms
which includes �
�equivalence� It turns out that every CCC induces a ��theory�
Vice versa� one may ask
 does any ��theory come from the interpretation in a
CCC$ We answer this question positively by showing how to build a suitable
CCC from any ��theory� This concludes our development of a model theory for
the simply typed ��calculus� Related results will be presented in chapter � for
Pcf� a simply typed ��calculus extended with arithmetical operators and �xed
point combinators�
In section �� we introduce logical relations which are a useful tool to establish

links between syntax and semantics� In particular� we apply them to the problem
of characterizing equality in the set�theoretical model of the simply typed ��
calculus� and to the problem of understanding which elements of a model are
de�nable by a ��term�
In section ��� we regard the untyped ��calculus as a typed ��calculus with a

reexive type� We show that that every CCC with a re�exive object gives rise
to an untyped ��theory� We present a general method to build a category of
retractions out of a re�exive object in a CCC� We give two applications of this
construction� First� we hint to the fact that every untyped ��theory is induced
by a re�exive object in a CCC �this is the analogue of the result presented in
section ��� for the simply typed ��calculus	� Second� we adopt the category of
retractions as a frame for embedding algebraic structures in ��models� Following
Engeler� we describe a method to encode standard mathematical structures in
��models�
This chapter is mainly based on �LS��� Sco��� Cur��� to which the reader

seeking more advanced results is addressed�

��� Simply Typed �
Calculus

In chapter �� we have presented a simply typed ��calculus in which every subterm
is labelled by a type� This was well�suited to our purposes but it is probably
not the most illuminating treatment� So far� we have �mainly	 discussed the
��calculus as a core formalism to compute functions�as�algorithms� The simply
typed ��calculus receives an additional interpretation
 it is a language of proofs
for minimal logic� Let us revisit simple types �rst� by considering basic types as
atomic propositions and the function space symbol as implication

At 

� � jj �� jj   
� 

� At jj ��� �	 �

Forgetting the terms for a while� we brie�y describe the provability of formulas
for this rudimentary logic� We use a deduction style called natural deduction
�Pra��� A formula � is proved relatively to a list ��� � � � � �n of assumptions� The
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� � i � n

��� � � � � �n " �i
��� � � � � �n� � " �
��� � � � � �n " �� �

��� � � � � �n " �� � ��� � � � � �n " �
��� � � � � �n " �

Figure ���
 Natural deduction for minimal implicative logic

formal system described in �gure ��� allows us to derive judgments of the form
��� � � � � �n " �� which are called sequents�
An important remark with a wide range of possible applications �How��� is

that proofs in natural deduction can be encoded precisely as ��terms� To this
aim hypotheses are named by variables� Raw terms are de�ned by the following
BNF �in the following� we feel free to spare on parentheses	


v 

� x jj y jj � � �
M 

� v jj ��v 
 ��M	 jj �MM	 �

A context ( is a list of pairs� x 
 �� where x is a variable� all variables are distinct�
and � is a type� We write x 
 � 
 ( to express that the pair x 
 � occurs in (� A
judgment has the shape ( " M 
 �� Whenever we write ( " M 
 � it is intended
that the judgment is provable� We also write M 
 � to say that there exists a
context ( such that ( " M 
 �� A termM with this property is called well�typed�
Provable judgments are inductively de�ned in �gure ���� We may omit the labels
on the ��abstractions when the types are obvious from the context� It is easily
seen that any derivable judgment admits a unique derivation� thus yielding a
one�to�one correspondence between proofs and terms�

Yet another presentation of the typing rules omits all type information in the
��terms� The corresponding typing system is obtained from the one in �gure ���
by removing the type � in �x 
 ��M � In this case a term in a given context can
be given several types� For instance the term �x�x can be assigned in the empty
context any type � � �� for any �� To summarize� we have considered three
styles of typing


��	 A totally explicit typing where every subterm is labelled by a type �see
section ���	�

��	 A more economic typing� where only the variables bound in abstractions are
labelled by a type� This style is known as �typing )a la Church��
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�Asmp	
x 
 � 
 (
( " x 
 �

��I	
(� x 
 � " M 
 �

( " �x 
 ��M 
 � � �

��E	
( "M 
 �� � ( " N 
 �

( "MN 
 �

Figure ���
 Typing rules for the simply typed ��calculus

��	 A type assignment system� where an untyped term receives a type� This is
known as �typing )a la Curry��

In the �rst system� the term itself carries all the typing information� We
note that once we have labelled free variables and ��abstractions the label of
each subterm can be reconstructed in a unique way� In the two other systems�
)a la Church and )a la Curry� a separate context carries type information� In the
system )a la Church� the context together with the types of bound variables carry
all the necessary information to reconstruct uniquely the type of the term� In
the system )a la Curry� a term� even in a given environment� may have many
types� In general� the problem of deciding if an untyped ��term has a type in
a given context is a non�trivial one� This is referred to as the type�inference or�
equivalently� type reconstruction problem�

Type reconstruction algorithms are quite relevant in practice as they relieve
the programmer from the burden of explicitly writing all type information and
allow for some form of polymorphism� For the simply typed discipline presented
here� it can be shown that the problem is decidable and that it is possible to
represent by a type schema �a type with type variables	 all derivable solutions
to a given type reconstruction problem �Hin���� On the other hand� the type�
inference problem turns out to be undecidable in certain relevant type disciplines
�e�g� second order �Wel���	�

In this chapter� we concentrate on the interpretation of ��terms with explicit
type information� We regard these calculi )a la Church as central� by virtue of
their strong ties with category theory and proof theory� The interpretation of
type assignment systems has already been considered in chapter �� and it will be
further developed in chapter ��

Exercise ��� This exercise gives a more precise relation between the three systems
mentioned above� Let M
 be a totally explicitly typed term� Let x
�� � � � � � x
nn be its
free variables� Let erase be the function that erases all type information in a ��term�
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Show that x� � ��� � � � � xn � �n � erase�M� � � is derivable� De�ne a function semi�
erase such that x� � ��� � � � � xn � �n � semi�erase�M� � � is �a la Church derivable�
Conversely� from a derivation �a la Curry of x� � ��� � � � � xn � �n � M � �� construct a
totally explicitly typed term N
� whose free variables are x
�� � � � � � x
nn � and such that
erase�N
� � M � Design a similar transformation from a derivation �a la Church�
Investigate how these transformations compose�

Exercise ��� Show that the structural rules of exchange� weakening� and contraction
are derived in the system above� in the sense that� if the premises are provable� then
the conclusion is provable�

�exch� &� x � �� y � �&� �M � � � &� y � � x � ��&� �M � �
�weak� & �M �  and x � � �� & � &� x � � �M � 
�contr� &� x � �� y � � �M �  � &� z � � �M �z�x� z�y� �  �z fresh� �

We consider two basic axioms for the reduction of terms �cf� chapter �	

��	 ��x 
 ��M	N �M �N�x�
�
	 �x 
 ���Mx	�M if x �
 FV �M	

we denote with��� their compatible �or contextual	 closure �cf� �gure ���	� and
with ��

�� the re�exive and transitive closure of ����

Exercise ��� �subject reduction� Show that well�typed terms are closed under re�
duction� formally


& �M � � and M ��� N � & � N � � �

Theorem ����� �con�uence and normalization� ��� The reduction relation
��

�� is conuent �both on typed and untyped ��terms�	

��	 The reduction system ��� is strongly normalizing on well�typed terms� that
is if M 
 � then all reduction sequences lead to a �
�normal form	

We have already proved these properties in chapter � for the untyped ��
reduction� Using subject reduction �exercise �����	 the proof�techniques can be
easily adapted to the typed case� The following exercise provides enough guide�
lines to extend the results to �
�reduction�

Exercise ��� In the following ��� means reduction in � or � step�

��� If M �� M� and M �� M� then there is an N such that M� �
��
� N and

M� ���
� N �

��� If M �� M� and M �� M� then there is an N such that M� �
��
� N and

M� ��
� N �

��� If M �� � �� N then M �� � �� N or M �� � ��
� N � where M �R�

� �R�
N

stands for �P �M �R�
P and P �R�

N��
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�Asmp	
x 
 � 
 (
( " x 
 �

��I	
( "M 
 � ( " N 
 �
( " hM�Ni 
 � � �

��E�	
( "M 
 � � �

( " ��M 
 �
��E�	

( "M 
 � � �

( " ��M 
 �

Figure ���
 Typing rules for a calculus of conjunction

��� Cartesian Closed Categories

The reader will �nd in appendix B some basic notions of category theory� Next�
we motivate the introduction of CCC�s as the combination of two more elementary
concepts�

Example ����� �conjunction and binary products� Let us consider a sim�
ple calculus in which we can pair two values or project a pair to one of its com�
ponents	

Types� At 

� � jj �� jj   
� 

� At jj �� � �	

Terms� v 

� x jj y jj   
M 

� v jj hM�Mi jj ��M jj ��M

This calculus corresponds to the conjunctive fragment of minimal logic	 Its typing
rules are shown in �gure �	�	

It is intuitive that a cartesian category �i�e� a category with a terminal object
and binary products	 has something to do with this calculus� Let us make this
intuition more precise


��	 We interpret a type � as an object ����� of a cartesian category C� The
interpretation of the type � � � is the cartesian product ������ ��� ���

��	 If types are objects� it seems natural to associate terms to morphisms� If M
is a closed term of type � we may expect that its interpretation is a morphism
f 
 �� ������ where � is the terminal object� But what about a termM such that
x� 
 ��� � � � � xn 
 �n " M 
 �$ The idea is to interpret this term as a morphism
f 
 �   ��� ������	�    � ���n��	� ������

This example suggests that types can be seen as objects and terms as morphisms�
We do not wish to be more precise at the moment �but see section �	 and leave
the following as an exercise�

Exercise ��� De�ne an interpretation of the typed terms of the calculus of conjunc�
tion into a cartesian category�
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There is a well�known correspondence between classical propositional logic
and boolean algebras
 a formula is provable i� it is valid in every boolean algebra
interpretation� Heyting algebras play a similar role for intuitionistic �or minimal	
logic�

De�nition ����� �Heyting algebras� A Heyting algebra H is a lattice with
lub operation �� glb operation !� greatest element �� least element �� and with a
binary operation � that satis�es the condition

x ! y � z i� x � y� z �

Exercise ��� Heyting algebras abound in nature� Show that the collection � of open
sets of a topological space �X��� ordered by inclusion can be seen as a Heyting algebra
by taking

U � V �
�
fW � � jW � �XnU�� V g �

For our purposes the important point in the de�nition of Heyting algebra is
that the implication is characterized by an adjoint situation �in a poset case	� as
for any y 
 H the function ! y is left adjoint to the function y�

	y 
 H � ! y	 a �y � 	 �

In poset categories the interpretation of proofs is trivial� For this reason Heyting
algebras cannot be directly applied to the problem of interpreting the simply
typed ��calculus� However combined with our previous example they suggest
a natural generalization
 consider a cartesian category in which each functor
�A has a right adjoint � 	A� In this way we arrive at the notion of CCC� The
adjunction condition can be reformulated in a more explicit way� as shown in the
following de�nition�

De�nition ����
 �CCC� A category C is called cartesian closed if it has�

��	 A terminal object �	

��	 For each A�B 
 C a product given by an object A � B with projections
�A 
 A�B � A and �B 
 A�B � B such that�

	C 
 C	f 
 C � A	g 
 C � B �'h 
 C � A�B ��A � h � f and �B � h � g	 �

h is often denoted by hf� gi� where h � i is called the pairing operator	 �� and ��
are equivalent notations for �A and �B respectively	

��	 For each A�B 
 C an exponent given by an object BA with ev 
 BA�A� B
such that

	C 
 C	f 
 C �A� B �'h 
 C � BA �ev � �h� id	 � f	 �

h is often denoted by &�f	� & is called the currying operator� and ev the evaluation
morphism	
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In the followingBA and A� B are interchangeable notations for the exponent
object in a category�

Exercise ��
 Given a CCC C� extend the functions Prod�A�B� � A � B and
Exp�A�B� � BA to functors Prod � C�C� C and Exp � Cop �C� C�

Exercise ��� Show that a CCC can be characterized as a category C such that the
following functors have a right adjoint
 �i� the unique functor ' � C � �� �ii� the
diagonal functor $ � C � C �C de�ned by $�c� � �c� c� and $�f� � �f� f�� �iii� the
functors �A � C� C� for any object A�

It is possible to skolemize the de�nition of CCC� that is to eliminate the
existential quanti�cations� using the type operators �� � � 	� � 	� � and the term
operators #� h � i� &� 	� In this way the theory of CCC�s can be expressed as a
typed equational theory as shown in the following�

Exercise ��	 Show that a CCC can be characterized as a category C such that the
following equations hold�

� There are � � C and !A � A� �� such that for all f � A� ��

�'� f � !A �

� There are �� � A � B � A and �� � A � B � B� for any A�B � C� and hf� gi �
C � A � B for any f � C � A� g � C � B� such that for all f � C � A� g � C � B�
h � C � A�B�

�Fst� �� � hf� gi � f
�Snd� �� � hf� gi � g

�SP � h�� � h� �� � hi � h �

� There are ev � BA � A � B for any A�B � C� and ��f� for any f � C � A � B�

such that for all f � C �A� B� h � C � BA�

��cat� ev � ���f�� id� � f

��cat� ��ev � �h� id�� � h

where f � g � hf � ��� g � ��i�

Exercise ��� Referring to exercise ����� prove that �SP� is equivalent to

�DPair� hf� gi � h � hf � h� g � hi
�FSI� h��� ��i � id

and that ��cat� and ��cat� are equivalent to

�Beta� ev � h��f�� gi� f � hid� gi
�D�� ��f� � h � ��f � �h� id��
�AI� ��ev� � id �



���� CARTESIAN CLOSED CATEGORIES �

Exercise ���� Show that the following categories are cartesian closed
 �a� �Finite�
Sets� �b� �Finite� Posets and monotonic functions� On the other hand prove that the
category pSet of sets and partial functions is not cartesian closed� Hint
 consider the
existence of an isomorphism between pSet��� �� �� and pSet��� ���

One can now formally prove that the category of directed complete partial
orders �dcpo�s	 and maps preserving lub�s of directed sets is cartesian closed
using propositions ����� and ������ Exercise ����� does not say directly that the
product construction in Dcpo yields a categorical product� This follows from
the following general �meta	�property�

Exercise ���� Let C�C� be categories� and F � C � C� be a faithful functor� Sup�
pose that C� has products� and that for any pair of objects A and B of C there exists
an object C and two morphisms � � C � A and � � C � B in C such that


F �C� � F �A�� F �B�� F ��� � ��� F ��� � ��

and for any object D and morphisms f � D � A� g � D � B� there exists a morphism
h � D � C such that F �h� � hF �f�� F �g�i� Show that C has products� Explain why
this general technique applies to Dcpo�

In a similar way one can verify that the function space construction in Dcpo
yields a categorical exponent� The check is slightly more complicated than for the
product� due to the fact that the underlying set of the function space in Dcpo
is a proper subset of the function space in Set�

Exercise ���� Let C� C� be categories� and F � C � C� be a faithful functor�
Suppose that the assumptions of exercise ������ hold� and use � to denote the cartesian
product in C� Suppose that C� has exponents� and that for any pair of objects A and
B of C there exists an object C of C� a mono m � FC � FBFA and a morphism
� � C � A � B such that
 ��� F ��� � ev � �M � id�� and ��� for any object D and
arrow f � D�A� B� there exists a morphism k � D� C such thatm�F �k� � ��F �f���
Show that C has exponents� Apply this to Dcpo�

Theorem ������ �Dcpo CCC� Dcpo is a cartesian closed category	 The or�
der for products is componentwise� and the order for exponents is pointwise	 Cpo
is cartesian closed too	

Proof� We can apply the exercises ����� and ������� A direct proof of cartesian
closure is also possible and easy� For the last part of the statement� notice that
����	 is the minimum of D � E� and that the constant function �d�� is the
minimum of D � E� �
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�Asmp	 ��x� 
 ��� � � � � xn 
 �n " xi 
 �i�� � �n�i
��I	 ��( " �x 
 ��M 
 �� � �� � &���(� x 
 � "M 
 � ��	
��E	 ��( "MN 
 � �� � ev � h��( " M 
 �� � ��� ��( " N 
 ���i

Figure ���
 Interpretation of the simply typed ��calculus in a CCC

��� Interpretation of �
Calculi

We explain how to interpret the simply typed ��calculus in an arbitrary CCC�
Suppose that C is a CCC� Let us choose a terminal object �� a product functor
� 
 C � C � C and an exponent functor �
 Cop �C � C� Then there is an
obvious interpretation for types as objects of the category which is determined by
the interpretation of the atomic types� The arrow is interpreted as exponentiation
in C� Hence given an interpretation ����� for the atomic types� we have


���� � �� � ������ ��� �� �

Consider a provable judgment of the shape x� 
 ��� � � � � xn 
 �n " M 
 �� Its
interpretation will be de�ned by induction on the length of the proof as a morphism
from ��(�� to ������ where we set ( � x� 
 ��� � � � � xn 
 �n and ��(�� � �� ������� � � ��
���n��� We will take the convention that � associates to the left� We denote with
�n�i 
 ��(��� ���i�� �i � �� � � � � n	 the morphism
 ������  ���� where �� is iterated
�n� i	 times�
The interpretation is de�ned in �gure ���� The last two rules need some

explanation� Suppose C � ��(��� A � ������ and B � ��� ���

� ��I	 If there is a morphism f 
 C�A� B then there is a uniquely determined
morphism &�f	 
 C � BA�

� ��E	 If there are two morphisms f 
 C � BA and g 
 C � A� then one
can build the morphism hf� gi 
 C � BA � A and composing with ev one gets
ev � hf� gi 
 C � A�

Sometimes� we write ��M �� as an abbreviation for ��( "M 
 ���� When compos�
ing the interpretation of the judgment ( " M 
 � with an environment� that is
a morphism in C��� ��(���� we will freely use the notation ��M �� � hd�� � � � � dni which
relies on an n�ary product�
In section �� we will work with a simply typed ��calculus enriched with a set

of constants C� We suppose that each constant is labelled with its type� say c
�
The typing system is then enriched with the rule


( " c
 
 �
����	
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We denote with &�C	 the collection of well�typed terms� The interpretation is
�xed by providing for each constant c
 a morphism fc 
 �� ������ The judgment
( " c 
 � is then interpreted by composing with the terminal morphism


��( " c
 
 ��� � fc�' ����	

The interpretation in �gure ��� is de�ned by induction on the structure of a
proof of a judgment ( " M 
 �� In the simple system we presented here a
judgment has a unique proof� However� in general� there can be several ways of
deriving the same judgment� therefore a problem of coherence of the interpretation
arises� namely one has to show that di�erent proofs of the same judgment receive
the same interpretation� Note that in the simply typed calculus the coherence
problem is avoided by getting rid of the structural rules� This trick does not
su�ce in more sophisticated type theories like LF �see chapter ��	 where the
derivation is not completely determined by the structure of the judgment� In this
case term judgments and type judgments are inter�dependent�

Exercise ��� Show that if & � M �  and x � � �� & then &� x � � � M �  �cf�
exercise ������ and ��&� x � � �M �  �� � ��& �M �  �� � ���

Exercise ��� Given two contexts &� x � �� y � �&� and &� y � � x � ��&� de�ne an
isomorphism 
 between the corresponding objects� Hint
 if & � z � � and &� is empty
then 
 � hh�� � ��� ��i� �� � ��i � �C �A��B � �C �B��A� Show that �cf� exercise
������

��&� x � �� y � �&� �M � ��� � ��&� y � � x � ��&� �M � ��� � 
 �

The next step is to analyse the interpretation of substitution in a category�

Theorem ����� �substitution� If (� x 
 � " M 
 � � and ( " N 
 � then ���
( " M �N�x� 
 � � and ��� ��( " M �N�x� 
 � �� � ��(� x 
 � " M 
 � ���hid� ��( " N 
 ���i	

Proof� ��	 By induction on the length of the proof of (� x 
 � " M 
 � � The
interesting case arises when the last deduction is by ��I	


(� x 
 �� y 
 � "M 
 � �

(� x 
 � " �y 
 ��M 
 � � � �

We observe ��y 
 ��M	�N�x� � �y 
 ��M �N�x�� We can apply the inductive
hypothesis on (� y 
 �� x 
 � " M 
 � � �note the exchange on the assumptions	 to
get (� y 
 � " M �N�x� 
 � � from which ( " ��y 
 ��M	�N�x� 
 � � � � follows by
��I	�
��	 We will use the exercises ����� and ����� on the interpretation of weakening

and exchange� Again we proceed by induction on the length of the proof of
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(� x 
 � "M 
 � and we just consider the case ��I	� Let
�������������������������

f� � ��( " �y 
 ��M �N�x� 
 � � � ��� 
 C � B�B

g� � ��(� y 
 � "M �N�x� 
 � ��� 
 C �B � B�

f� � ��(� x 
 � " �y 
 ��M 
 � � � ��� 
 C �A� B�B

g� � ��(� y 
 �� x 
 � " M 
 � ��� 
 �C �B	�A� B �

f� � ��( " N 
 ��� 
 C � A
g� � ��(� y 
 � " N 
 ��� 
 C �B � A
g�� � ��(� x 
 �� y 
 � " M 
 � ��� 
 �C �A	�B � B � �

We have to show f� � f� � hid� f�i� knowing by induction hypothesis that g� �
g� � hid� g�i� We observe that f� � &�g�	� f� � &�g��	� and g�� � g� � �� where
� � hh�� ���� ��i� �� ���i is the iso given by exercise ������ Moreover g� � f� ����
We then compute

f� � hid� f�i � &�g��	 � hid� f�i
� &�g�� � �hid� f�i � id		 �

So it is enough to show g� � g�� � �hid� f�i � id	� We compute on the right hand
side

g�� � �hid� f�i � id	 � g� � � � hh��� f� � ��i� ��i
� g� � � � hh��� g�i� ��i
� g� � hid� g�i �

�

The categorical interpretation can be seen as a way of compiling a language
with variables into a language without variables� The slogan is that variables are
replaced by projections� for instance ��� " �x 
 ��x 
 � � ��� � &���	� In other
words� rather than giving a symbolic reference in the form of a variable� one
provides a path for accessing a certain information in the context� � As a matter
of fact the compilation of the ��calculus into the categorical language has been
taken as a starting point for the de�nition of an abstract machine �the Categorical
Abstract Machine �CAM	� see �CCM���	 in the style of Landin�s classical SECD
machine �Lan��� �see �Cur��� for a comparison	� The purpose of these machines
is to provide a high�level description of data structures and algorithms used to
reduce e�ciently ��terms� In the CAM approach� a fundamental problem is that
of orienting the equations that characterize CCC�s as de�ned in exercise ������ In
the following we drop all type�information and we restrict our attention to the
simulation of ��reduction �the treatment of the extensional rules raises additional
problems	� Hardin �Har��� has studied the term rewriting system described in
�gure ��� The most important results are


� E is con�uent and strongly normalizing �

�de Bruijn conventions for the representation of variables as distances from the respective
binders	 as well as standard implementations of environments in abstract machines �cf� chapter
�� follow related ideas�
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�Beta	 ev � h&�f	� gi � f � hid� gi

�E	

�����������������������������

�f � g	 � h � f � �g � h	
id � f � f
�� � id � ��
�� � id � ��
�� � hf� gi � f
�� � hf� gi � g
hf� gi � h � hf � h� g � hi
&�f	 � h � &�f � hh � ��� ��i	

Figure ��
 A rewriting system for the ��categorical equations

� E � Beta is con�uent �on a subset of categorical terms which is large enough
to contain all the compilations of ��terms	�
The proof of strong normalization of E is surprisingly di�cult �CHR���� Sim�

pler results have been obtained with a related calculus called ���calculus �ACCL����
More results on abstract machines which are related to the CAM are described
in chapter ��

��� From CCC�s to �
Theories and back

We study the equivalence induced by the interpretation of the simply typed ��
calculus in a CCC� It turns out that the equivalence is closed under �
�conversion
and forms a congruence�

De�nition ����� ��	theory� Let T be a collection of judgments of the shape
( " M � N 
 � such that ( " M 
 � and ( " N 
 �	 T is called a ��theory if it is
equal to the smallest set containing T and closed under the rules in �gure �	�	

We note that the congruence generated by the axioms � and 
 is the smallest
��theory� To every CCC we can associate a ��theory�

Theorem ����� Let C be a CCC and let �� �� be an interpretation in the sense
of �gure �	� of the simply typed ��calculus de�ned over C	 Then the following
collection is a ��theory	

Th�C	 � f( "M � N 
 � j ( " M 
 ��( " N 
 �� ��( "M 
 ��� � ��( " N 
 ���g �
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��	
( " �x 
 ��N 
 � � � y �
 FV �N	
( " �y 
 ��N �y�x� � �x 
 ��N 
 �� �

��	
( " ��x 
 ��M	N 
 �

( " ��x 
 ��M	N �M �N�x� 
 �

�
	
( " �x 
 ���Mx	 
 � � � x �
 FV �M	

( " �x 
 ���Mx	 �M 
 �� �

�weak 	
( "M � N 
 � x 
 � �
 (
(� x 
 � "M � N 
 �

�re	
( "M 
 �

( "M �M 
 �

�sym	
( "M � N 
 �
( " N �M 
 �

�trans	
( "M � N 
 � ( " N � P 
 �

( "M � P 
 �

��	
(� x 
 � "M � N 
 �

( " �x 
 ��M � �x 
 ��N 
 � � �

�appl	
( "M � N 
 �� � ( " M � � N � 
 �

( " MM � � NN � 
 �

�asmp	
( "M � N 
 � 
 T
( " M � N 
 �

Figure ���
 Closure rules for a typed ��theory
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Proof� We have to check that Th�C	 is closed under the rules presented in
�gure ���� For ��	 we observe that �� �� is invariant with respect to the names of
bound variables�

��	 Let ��( " ��x 
 ��M	N 
 � �� � ev � h&�f	� gi� where f � ��(� x 
 � "M 
 � �� and
g � ��( " N 
 ���� By the substitution theorem ��( " M �N�x� 
 � �� � f � hid� gi�
and we compute

f � hid� gi � ev � �&�f	 � id	 � hid� gi � ev � h&�f	� gi �

�
	 By the following equations


��( " �x 
 ��Mx 
 � � � ��
� &�ev � h��(� x 
 � " M 
 � � � ��� ��(� x 
 � " x 
 ���i	
� &�ev � h��( "M 
 �� � �� � ��� ��i	
� &�ev � ���( "M 
 �� � ��� id		
� ��( "M 
 � � � �� �

For �weak 	 we use the exercise ������ The rules �re	� �sym	� �trans	 hold since
Th�C	 is an equivalence� Finally� ��	� �apl	 follow by the de�nition of the inter�
pretation of abstraction and application� �

Exercise ��� Show that there are in�nitely many ��theories� Hints
 Interpret the
atomic types as �nite sets and consider the resulting ��theory� Then analyse the ���
normal forms of type ��� ��� ��� ���

Next� we show how to generate a CCC starting from a ��theory� The con�
struction consists essentially in taking types as objects of the category and
�open	 terms quotiented by the ��theory as morphisms �cf� Henkin�s term model
�Hen��	� We take the following steps


��	 We extend the language with constructors for terminal object and product�
as well as the relative equations


Types
 At 

� � jj �� jj � � �
� 

� At jj � jj � � � jj �� �

Terms
 v 

� x jj y jj � � �
M 

� v jj # jj hM�Mi jj ��M jj ��M jj �v 
 ��M jjMM �

�� Typing Rules� The rules of the simply typed calculus ��gure ���	� plus the
rules for conjunction ��gure ���	� plus


�#	
( " # 
 �

�
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�� Equations� The rules of the pure ��
�theory ��gure ���	 plus


�#	
( " M 
 �
( "M � #

�SP 	
( "M 
 � � �

( " h��M���Mi �M 
 � � �

���	
( " hM�Ni 
 � � �

( " ��hM�Ni �M 
 �
���	

( " hM�Ni 
 � � �

( " ��hM�Ni � N 
 �
�

We denote with T � the collection of judgments provable in the ��theory T
extended with the constructors and rules given above�

��	 We now associate to T � a CCC C�T �	 as follows�

�� The objects are the types of the extended language�

�� The morphisms are equivalences classes of terms according to the equiva�
lence induced by T �� More precisely

C�T�	��� � � � f�x 
 � "M 
 � � j x 
 � "M 
 �g
�x 
 � "M 
 � � � fy 
 � " N 
 � j" �x 
 ��M � �y 
 ��N 
 �� � 
 T �g �

�� The structure associated to every CCC is de�ned as follows


�id	 �x 
 � " x 
 ��
�comp	 �x 
 � "M 
 �� � �y 
 � " N 
 � � � �y 
 � " M �N�x� 
 ��
�term	 '
 � �x 
 � " # 
 ��
�proj	 �� � �x 
 � � � " ��x 
 �� �� � �x 
 � � � " ��x 
 � �
�pair	 h�x 
 � "M 
 ��� �x 
 � " N 
 � �i � �x 
 � " hM�Ni 
 � � � �
�eval	 ev
�� � �x 
 �� � � 	� � " ���x	���x	 
 � �
�curry	 &��x 
 �� � " M 
 � �	 � �y 
 � " �z 
 ��M �hy� zi�x� 
 � � � � �

�� We leave to the reader the veri�cation of the equations associated to a CCC�

��	 Finally we have to verify that the ��theory associated to C�T �	 is exactly T ��
To this end one checks that ��x� 
 ��� � � � � xn 
 �n "M 
 ��� � �x 
 � "M ��n�ix�x� 

��� where � � �   �� � ��	�    � �n	�

We can summarize our constructions as follows�

Theorem ����� �from �	theories to CCCs� Given any ��theory T over the
simply typed calculus with products and terminal object we can build a CCC C�T 	
such that the ��theory associated to C�T 	 coincides with T 	

Remark ����
 ��� It is possible to see the constructions described here as repre�
senting an equivalence between a category of CCC�s and a category of ��theories
�LS���	

��� It is possible to strengthen the previous theorem by considering a theory
T over the simply typed ��calculus without products and terminal object	 Then
one needs to show that it is possible to add conservatively to T the equations �#	�
���	� ���	� and �SP 	 �see �Cur���� chapter �� for a description of suitable proof
techniques�	
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��� Logical Relations

Logical relations are a quite ubiquitous tool in semantics and in logic� They
are useful to establish links between syntax and semantics� In this section� log�
ical relations are de�ned and applied to the proof of three results of this sort

Friedman�s completeness theorem �Fri���� which characterizes �
�equality� and
Jung�Tiuryn�s and Siebers�s theorems �JT��� Sie��� on the characterization of
��de�nability�
Logical relations are predicates de�ned by induction over types� relating mod�

els of a given ��calculus with constants &�C	� To simplify matters� throughout
the rest of this section� we make the assumption that there is only one basic type
�� We de�ne next �binary	 logical relations� to this end we �x some terminology�
Recall that an interpretation of simply typed ��calculus in a CCC C is given as
soon as the basic type � is interpreted by an object D� of C� We shall summa�
rize this by calling the pair M � �C�D�	 a model� We write ����� � D
� hence
D
�� � D
 � D� �
If there are constants� then the constants must also be interpreted� but we

leave this implicit to keep notation compact�
We shall make repeated use of the hom�sets of the form C���D�� It is thus

convenient to use a shorter notation� We shall write� for any object D of C


C���D� � D �

As a last preliminary to our de�nition� we point out the following instrumental
isomorphisms which hold in any cartesian closed category� for any objects A and
B


C�A�B� �� C��� BA� �

Here is the right�to�left direction �the other is left to the reader	


"f � &�f � ��	 �

De�nition ��
�� �logical relation� LetM � �C�D�	 and M� � �C��D��	 be
two models	 A logical relation is a relation R� � D� � D��	 These relations
are extended to all types �including product types� by the following de�nitional
equivalences�

R� � f�id � id	g

hd� ei R
� hd�� e�i � �dR
 d� and eR� e�	

f R
�� f � � 	 d� d� �dR
 d� � �ev � hf� di	R� �ev � hf �� d�i	 �

Thus� at every type� R
 � D
 �D�
	 We shall write� for any f� f � 
 D
 � D� �

f R
�� f � whenever "f R
�� "f � �
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A logical relation is called C�logical if ��c��MR
 ��c��M�� for all constants �where �
is the type of c�	 Notice that if C is empty� i	e	 if our language is the simply
typed ��calculus without constants� then C�logical is the same as logical	

Remark ��
�� The above de�nition is much in the spirit of the computability
predicates used in section �	�	 The only di�erence is that computability predicates
are de�ned on terms� while logical relations are de�ned on elements of models	

The following is known as the fundamental lemma of logical relations�

Lemma ��
�� Let R be a C�logical relation� then� for any closed term M of type
��

��"M ��MR

 ��"M ��M� �

Proof hint� We extend the statement to open terms as follows� For any
x� 
 ��� � � � � xn 
 �n "M 
 � � and for any d� R
� d��� � � � � dn R


n d�n


��M �� � hd�� � � � � dni R� ��M �� � hd��� � � � � d
�
ni �

The proof of this extended statement is by induction on the size of M � For
the abstraction case� one uses the following equation� which is consequence of the
equations characterizing CCC�s �cf� exercise �����	
 ev �h&�f	�d� ei � f�hd� ei� �

A more concrete description of models� and of logical relations� can be given
when the models are extensional� i�e� when the morphisms of the model can be
viewed as functions�

De�nition ��
�� �enough points� A category C with terminal object � is said
to have enough points if the following holds� for any a� b and any f� g 
 C�a� b��

	h 
 �� a �f � h � g � h	 � f � g �

If the underlying category of a model M has enough points� we say that M is
extensional	

Extensional models and logical relations can be described without using the
vocabulary of category theory� The price to pay is that the de�nition is syntax�
dependent� We leave it to the reader to convince himself that the following
constructions indeed de�ne �all	 extensional models and logical relations�
A simply�typed extensional applicative structure �cf� section ���	M consists

of a collection of sets D
� such that� for all �� � � D
�� is �in bijection with	 a set
of functions from D
 to D� �
With any sequence ��� � � � � �n of types we associate a setD
� �����
n �abbreviated

as D�
	 as follows� With the empty sequence we associate a singleton set f#g� and
we de�ne D�
�� � D�
 �D� �
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An interpretation function is a function �� �� mapping any typing judgement
x� 
 ��� � � � � xn 
 �n " M 
 � to a function from D�
 to D� �for closed terms
" M 
 � � we consider freely ��"M 
 � �� as an element of D� 	� which has to satisfy
the following �universally quanti�ed	 properties


��" c 
 ��� 
 D


��x� 
 ��� � � � � xn 
 �n " xi 
 �i����d	 � di
��( " MN 
 � ����d	 � ���( "M 
 � � � ����d		���( " N 
 �����d		

���( " �x 
 �� M 
 � � � ����d		�e	 � ��(� x 
 � "M 
 � ����d� e	 �

There is an additional condition dealing with weakening� which we omit here�
and which serves in the proof of theorem ������ These clauses characterize the
interpretation function except for constants�
An extensional modelM consists of an extensional applicative structure to�

gether with an interpretation function �� ��M �the subscript is omitted when clear
from the context	�
In this concrete framework� a logical relation is now a relation R� � D��D���

extended to all types �using function types only	 by the following de�nitional
equivalence


f R
�� f � � 	 d� d� �dR
 d�	� �f�d	R� f�d�		 �

We shall freely use this concrete presentation in the sequel� when dealing with
extensional models�

Exercise ��� Establish formal links between the above formulations and categories
with enough points� Hint
 given a model described concretely� consider the category
whose objects are sequences ���� � � � � �m� of types and whose morphisms are vectors
�d�� � � � � dn� � ���� � � � � �m�� ��� � � � � n� where di � D


��			�
m��i for all i�

Exercise ��
 �extensional collapse� LetM � �C� D�� be a model� and consider
the logical relations R de�ned by R� � f�d� d� j d � D�g� Consider the category �C�
whose objects are the types built freely from � using �nite products and function types�
and whose arrows from � to  are equivalence classes with respect to R
�� � Show that
�C� is a CCC with enough points� called the extensional collapse of C�

We next give two applications of logical relations� The �rst application is
in fact itself a family of applications� Logical relations may be useful to prove
inclusions of theories� thanks to the following lemma�

Lemma ��
�� Let R be a logical relation between two modelsM andM�	 Sup�
pose that R
 is functional for all �� i	e	 for all d� d�� d���

dR
 d� and dR
 d�� � d� � d�� �

Then� for any closed terms M�N of the same type�

��M ��M � ��N ��M � ��M ��M� � ��N ��M� �
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Proof� Let � be the common type of M�N and let d be the common value of
��M ��M and ��N ��M� By two applications of lemma ���� we have dR
 ��M ��M� and
dR
 ��N ��M�� and the conclusion follows from the assumption that R is functional�
�

We would like to have su�cient conditions on R� to prove that R is functional�
Clearly� one should require R� to be functional to start with� In practice R� may
be more than functional� Often we want to compare �extensional	 models which
interpret basic types the same way and which di�er in the choice of the functions
�or morphisms	 in the interpretation of function types� In other words� R� is
often the identity �an example is provided by exercise ����	� It turns out that
surjectivity �a property a fortiori enjoyed by the identity	 is a useful property to
carry along an induction� Indeed� let us attempt to prove that if R� is functional
and surjective� then R
 is functional and surjective for all ��
Once we know that R
 is functional� we freely say that R
�d	 is de�ned and

equal to d� if dR
 d�� Also� we assume that we have proved surjectivity at type �
by building a function i
 
 D�
 � D
 such that i
�d�	R
d� for all d�� Equivalently�
we assume that at type �� there exists a partial function R
 
 D
 � D�
 and
a total function i
 
 D�
 � D
 such that R
 � i
 � id � Similarly� we suppose
that these data exist at type � � We want to show that R
�� is functional� and
to construct i
�� such that R
�� � i
�� � id �

� Functional
 Using the formulation of R
 and R� as partial functions� the
de�nition of f R
�� f � reads


	 d 
 D
 R
�d	 � � f ��R
�d		 � R� �f�d		 �

Suppose that f R
�� f �� Then� for any d� 
 D�



f ��d�	 � f ��R
�i
�d�			 by surjectivity at �
� R� �f�i
�d�			 by the de�nition of R
�� �

Hence f � is unique� More precisely


R
�� �f	 � � R
�� �f	 � R� � f � i
 �

� Surjective
 We claim that all we need to know about i
�� is the following�
for any f � 
 D�
�� 


�y	 	 d 
 D
 R
�d	 � � i
�� �f �	�d	 � i��f ��R
�d			 �

Let us prove that if i
�� satis�es �y	� then R
�� � i
�� � id � that is� by
the de�nition of R
�� � for any f � 
 D�
�� 


	 d 
 D
 R
�d	 � � f ��R
�d		 � R� �i
�� �f �	�d		 �
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Indeed� we have� under the assumption that R
�d	 �


R� �i
�� �f �	�d		 � R� �i��f ��R
�d				 by �y	
� f ��R
�d		 by surjectivity at � �

In the above proof schema� we have used extensionality of bothM and N � The
proof schema is easily instantiated in the following theorem�

Theorem ��
�� �Friedman� Let F � fD
g be the full type hierarchy over an
in�nite set D�� i	e	 F � fD
g is the extensional model for which D
�� is the
set of all functions from D
 to D� 	 Then� for any ��terms�

��M ��F � ��N ��F � M ��� N �

Proof� ��	 Since F is extensional� it validates �
�

��	 We turn syntax into an extensional model� by setting D�
 to be the set
of all �
 equivalence classes of �open	 terms of type �� That this makes an
extensional model is proved as follows� We de�ne an application function � by
�M ���N � � �MN �� Suppose that for all �P �� �M ���P � � �N ���P �� Then in particular�
for a fresh x� �Mx� � �Nx�� i�e� Mx ��� Nx� Then


M ��� �x�Mx ��� �x�Nx ��� N �

Therefore we have an extensional model� Now we are ready to use the proof
schema� with the term model as M�� and F as M� We need a surjection from
D� to D��� It is clearly enough to live with a denumerable set of variable names�
Therefore we can consider the set of terms as denumerable� The sets D�
 are
then at most denumerable� They are not �nite� since we can have in�nitely
many di�erent �
�normal forms x� xx�� xx�   xn� � � � at any given type �� In
particular� D�� is in�nite and denumerable� Then� given any in�nite D�� we can
pick a �total	 surjection R� 
 D� � D��� More precisely� we can pick a function
i� 
 D�� � D� such R� � i� � id � We are left to exhibit a de�nition of i
��

satisfying �y	� But property �y	 actually gives a de�nition of the restriction of
i
�� �f �	 to the domain of R
� Since we are in the full type hierarchy� we can
choose any value for i
�� �f �	�d	 when R
�d	 �� �

The above proof� which is essentially the original proof of �Fri���� uses the
fullness of model F quite crudely� There exists another proof of Friedman�s
theorem� as a corollary of a powerful theorem known as Statman�s ��section
theorem� whose range of applications to various completeness theorems seems
wider than what can be achieved by the above proof schema�
Statman�s theorem states that in order to prove a completeness theorem� it

su�ces to prove it for terms of type � � ��� �� �	� �� �� What is special
about this type$ If there are no constants� the closed normal forms of type �
are exactly the �encodings of	 binary trees constructed over a signature ff� cg
consisting of a symbol f or arity � and a symbol c of arity ��
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Theorem ��
�� ��	section� Let C be a class of models of the simply�typed ��
calculus	 The following properties are equivalent�

��	 For any type �� and any closed terms M�N of type ��

	M 
 C ��"M ��M � ��" N ��M � M ��� N �

��	 For any closed terms M�N of type � � ��� �� �	� �� ��

	M 
 C ��"M ��M � ��" N ��M � M ��� N �

Proof� Statement ��	 obviously implies ��	� The other direction is an immediate
consequence of the following lemma ������ �

De�nition ��
��� �rank� The rank of a simple type � is de�ned as follows�

rank��	 � � �� base type	
rank��� �    � �k � �	 � � � �maxfrank��i	 j i � � � � � kg	 �

We say that a type � is at most rank n if rank�� 	 � n	 If there is only one base
type �� the types of rank at most � are thus the types �n� where�

�� � � �n�� � �� �n �

Lemma ��
��� If M�N are closed simply�typed ��terms of type �� and if M ����

N � then there exists a closed simply�typed ��term P of type � � � �where � is
as in the statement of theorem �	�	�� such that PM ���� PN 	

Proof hint� The proof makes use of the notion of extended �
�normal form�
An extended �
�normal form of type �� �    � �n � � is a term of the form
�x�    xn�u�M�x�   xn	    �Mkx�    xn	� where each Mj is itself an extended
�
�normal form� Note that extended �
�normal forms are not normal forms in
general� whence the quali�cation �extended�� Using strong �
 normalisation� it
is easily shown that for anyM there exists a unique extended �
�normal form N
such that M ��� N � The proof of the statement is decomposed in two claims�

�� Let M�N be two di�erent closed extended �
�normal forms of a type � of
rank at most �� Then there exists a closed term L of type �� � depending
only on �� such that LM ���� LN �

�� Let M�N be two di�erent closed extended �
�normal forms of type �� �
   � �n � �� Then there exist terms V�� � � � � Vn� whose free variables have
types of rank at most �� such that MV�   Vn ���� NV�   Vn�
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The statement follows from these claims� taking


P � �x�L���y�xV�   Vn	

where �y is a list of the free variables in V�� � � � � Vn� and where L is relative to
��y�MV�� � � � Vn and ��y�NV�� � � � Vn�
Both claims are proved by induction on the size of M�N � For claim � let us

�x � � �� �    � �n � �� We pick free variables x 
 � and g 
 �� �� � and
de�ne the following terms


� � x �i� �	 � �gxi	 �

Suppose� say� that �i � �� �� �� Then we set


Pi � �y�y��gi�gy�y�	 �

Finally� we take

L � �w��g��x�wP�   Pn

which depends on � only� Suppose� say� that M � ��x� xi�M��x	�M��x	� Then


LM ��� �gx�gi�g�M�
�P 	�M�

�P 		 �

If N has a di�erent head variable� say xj� then similarly LN is �
�equal to a
term which starts with �gx�gj� which cannot be �
 equal to a term starting with
�gx�gi �these pre�xes are preserved until the normal form is reached	� Suppose
thus that N has the same head variable� i�e� N � ��x� xi�N��x	�N��x	� Since the
type of xi has rank �� M��x has type �� i�e� M� has type �� Similarly� M�� N��
and N� have type �� On the other hand M ���� N implies� say� M� ���� N�� We
can thus apply induction to M� and N�


M�
�P ��� LM�gx ���� LN�gx ��� N�

�P �

On the other hand� since


LN ��� �gx�gi�g�N�
�P 	�N�

�P 		

LM ��� LN would implyM�
�P ��� N�

�P and M�
�P ��� N�

�P � Contradiction�

We turn to the second claim� The interesting case is again when M and N
have the same head variable� We suppose that M � N � and �i are as above� Now
M��x is not necessarily of base type� By induction applied to M� and N�� there is
a vector �U of terms U�� � � � � Um such that M�

�U ���� N�
�U at type �� In particular

m � n� where n is the length of �x� We set �with h� y�� y� fresh and of rank at
most �	


Vi � �y�y��h�y�Un��   Um	�Uiy�y�	
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and Vp � Up if p �� i and p � n� The trick about Vi is the following property


�	 Vi��uv�v�h� ��� Ui

from which �M�
�V Un��   Um	��uv�v�h� � M�

�U follows� and similarly for N��
Therefore


M�
�V Un��   Um ���� N�

�V Un��   Um

which entails the claim� since M�V reduces to a term which starts with

h�M�
�V Un��   Um	

and similarly for N�� �

We now show how theorem ���� yields Friedman�s theorem as a corollary� All
we have to check is that if two trees built only using application from variables
g 
 �� �� � and c 
 � are di�erent� then their semantics in F are di�erent� We
assume more precisely that D� is �� and we pick a pairing function pair which
is injective and such that


	m�n �m � pair�m�n	 and n � pair�m�n		 �

Then we interpret g by �the curried version of	 pair� and c by any number� say
�� It is easy to prove by induction that if s� t are two distinct trees� then their
interpretations are di�erent� using these two properties of pair � This shows the
hard implication in the equivalence stated in theorem ����� and completes thus
our second proof of Friedman�s theorem�

We now come back to logical relations� As a second kind of application� we
consider the so�called de�nability problem� Given an extensional model M� is
it possible to characterize the elements d such that d � ��M �� for some closed
M$ A positive answer was given by Jung and Tiuryn �JT���� It is an elegant
construction� based on Kripke logical relations� which we de�ne next �in the
particular setting we need	�

De�nition ��
��� A Kripke logical relation over an extensional model M is
given by a family of sets R�

�
 � �D�
 � D� 	 satisfying the following so�called
Kripke�monotonicity condition�

f 
 R�
�
 � �	 ��� f � � 
 R�

�
� �
�
	 �

where ���d� �d�	 � �d	 A Kripke logical relation is extended to all types as follows�

f 
 R�����
�
 � 	 ���� g 
 R��

�
� �
�
��d�d�� f��d	�g��d� �d�		 
 R��

�
� �
�
�

We write R� for R�
�
 when �� is of length �	 An element d 
 D
 is called invariant

under R if d 
 R
	 A Kripke C�logical relation is a Kripke logical relation such
that ��c�� is invariant for all c 
 C	
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Each set R�
�
 can be viewed as a relation over D

� whose arity is the cardinality
of D�
� In this sense� Kripke logical relations are of variable arities� It is easy to
check that Kripke�monotonicity extends to all types


f 
 R�
�
 � �	 ��� f � � 
 R�

�
� �
�
	 �

Theorem ��
��� LetM be an extensional model	 Then d is de�nable� i	e	 d �
��M �� for some closed term M � if and only if d is invariant under all Kripke
C�logical relations	

Proof� ��	 This is a variant of the fundamental lemma of logical relations�
The statement needs to be extended to subscripts �� and to open terms� The
following extended statement is proved straightforwardly by induction on M �
For any x� 
 ��� � � � � xn 
 �n " M 
 � � for any ��� for any f� 
 R

��
�
 � � � � � fn 
 R

�n
�
 


��M �� � hf�� � � � � fni 
 R
�
�
 �

��	 We actually prove a stronger result� We exhibit a single Kripke logical
relation which characterizes de�nability� This relation S is de�ned as follows


S�
�
 � f��M �� j �x 
 �� " M 
 �g �

The proof that S satis�es Kripke�monotonicity requires an additional assumption
on the interpretation function in the concrete description of extensional model�
which we detail now� If �x 
 �� " M 
 � is a provable judgment� then �x 
 ��� �x� 
 ��� "
M 
 � is also provable� for any ���� We require


���x 
 ��� �x� 
 ��� " M 
 � �� � ���x 
 �� "M 
 � �� � � �

Kripke monotonicity follows straightforwardly� We next claim


	 �� �� S�
�
 � f��M �� j �x 
 �� "M 
 �g �

Then the statement follows� taking the empty ��� We prove the two inclusions of
the claim by mutual induction on the size of the type � � for � � �� � ��


��	 By induction applied at �� �$	� we have


���x 
 ��� y 
 �� " y 
 ���� 
 S
��
�
���

�

Let f 
 S�����
�
 � By de�nition of S at ��� ��� we have

��dd�� f��d	�d�	 
 S
��
�
���

�

By induction applied at �� ��	� there exists �x 
 ��� y 
 �� " M 
 �� such that� for

all �d� d�

���x 
 ��� y 
 �� "M 
 ������d� d�	 � f��d	�d�	 �
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It follows that ���x�M �� � f �

�$	 Let �x 
 �� " M 
 �� � ��� Let g 
 S��
�
� �
�
� By induction applied at �� ��	�

there exists �x 
 ��� �x� 
 ��� " N 
 �� such that g � ��N ��� We have to prove


���x 
 ��� �x� 
 ��� "MN 
 ���� 
 S
��
�
� �
�

which holds by induction applied at �� �$	� �

If we restrict our attention to terms whose type has at most rank �� and if
we require that the constants in C also have a type of rank at most �� then we
can get around variable arities� The following theorem is due to Sieber� It was
actually obtained before� and provided inspiration for� theorem ������ Given an
extensional modelM � fD
g� and a function f 
 D
 � given a matrix fdijgi�p�j�n�
we wonder whether there exists a closed term M such that� for each line of the
matrix� i�e�� for all i � p


��M ���di�	    �din	 � f�di�	    �din	

and we consider to this aim C�logical relations of arity p� containing the columns
of the matrix� If we can exhibit such a logical relation which moreover does not
contain the vector �f�d��	    �d�n	� � � � � f�dp�	    �dpn		� then the answer to our
question is negative� by the fundamental lemma� Sieber�s theorem asserts that
this method is complete�

Theorem ��
��� Consider a set C of constants whose types have at most rank
�	 Let M be an extensional model for &�C	� and let � � �� �    � �n � � be
a type with rank at most �	 Let fdijgi�p�j�n be a matrix where dij 
 D
j � for any
i� j� and let� for all i � p�

ei � f�di�	    �din	 �

The following properties are equivalent�

��	 There exists "M 
 � such that� for all i � p�

��M ���di�	    �din	 � ei �

��	 For every p�ary C�logical relation R� the following implication holds�

�z	 �	 j � n �d�j� � � � � dpj	 
 R
j 	 � �e�� � � � � ep	 
 R� �

��	 The logical relation S de�ned at � by�

S� � f�a�� � � � � ap	 j � " N 
 � 	 i � p ��N ���di�	    �din	 � aig

contains �e�� � � � � ep		
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Proof� ��	� ��	 This implication holds by the fundamental lemma�

��	 � ��	 Suppose that we have shown that S is C�logical� Then� by ��	�
S satis�es �z	� The conclusion will follow if we prove that S in fact satis�es
the hypothesis of �z	� If N and �a�� � � � � ap	 are as in the de�nition of S�� it is
convenient to call N a witness of �a�� � � � � ap	� If �d�j� � � � � dpj	 is at base type�
then we take ��x�xj as witness� If �d�j� � � � � dpj	 have types of rank at most �� say
��� we have to check� for any �a�� � � � � ap	� �b�� � � � � bp	 
 S�


�d�j�a�	�b�	� � � � � dpj�ap	�bp		 
 S
� �

Since �a and �b are at base type �this is where we use the restriction on types of
rank � in the statement	� by de�nition of S� there are witnesses N and P for
them� Then ��x�xj�N�x	�P�x	 is a witness for �d�j�a�	�b�	� � � � dpj�ap	�bp		�
The argument to show that S is C�logical is similar to the argument just used

�left to the reader	�

��	� ��	 Obvious by de�nition of S� �

If the base domain D� is �nite� then all the D
 �s are �nite� and the complete
behaviour of f can be described by a matrix� By the characterization ��	 of
theorem ������ the de�nability problem is then decidable at rank at most �
 try
successively all C�logical relations R �there are �nitely many of them	�
The following proposition� due to Stoughton �Sto���� paves the way towards

a more realistic decision procedure� We call intersection of two logical relations
S� and S� the relation S� de�ned at � by


S�
� � S�

� � S
�
� �

We write S� � S��S�� We can similarly de�ne an arbitrary intersection of logical
relations� When C consists of constants whose types have at most rank �� then
any intersection of C�logical relations is C�logical�

Proposition ��
��
 The relation S in theorem �	�	������ is the intersection of
all the C�logical relations satisfying 	j � n �d�j � � � � � dpj	 
 R
j 	

Proof� Let S� be the intersection mentioned in the statement� We have S�� �
S�� Conversely� if �a�� � � � � ap	 
 S�� then� by de�nition of S� there exists an N
such that 	 i � p ��" N ���di�	    �din	 � ai� which implies �a�� � � � � ap	 
 S� by the
fundamental lemma� and by the de�nition of S�� �

By this proposition� it is enough to construct progressively S�� starting from
the assumptions that S� contains the vectors �d�j� � � � � dpj	 �j � n	� If the con�
struction �nishes without having met �e� then there is noM for f and fdijgi�p�j�n�
We illustrate this with an example which will be important in the sequel�
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Very Finitary Pcf� We set C � f���� if then g� We set D� � O� the �at
domain f���g� and we build the model in the category of partial orders and
monotonic functions� The meanings of " � 
 � and " � 
 � are � 
 D� and
� 
 D�� The last constant is a unary test function


if � then d � � if � then d � d �

This language is known as Very Finitary Pcf �Finitary Pcf is coming next� and
Pcf is the subject of chapter �	� We claim that there is no closed term M in
this language such that


��M ����	��	 � �
��M ����	��	 � �
��M ����	��	 � � �

We begin the construction of S�� It should contain the two columns ������	 and
������	� Since it has to be a C�logical relation� it also has to contain ������	
and ������	� It is easy to see that this set of pairs makes if then invariant�
We have completed the de�nition of S�� Since S� does not contain ������	�
there is no M meeting the above speci�cation�

On the other hand� if the decision procedure yields a positive answer� it would
be nice to produce the de�ning term as well� Here is an indication of how this
may be done� We refer to �Sto��� for details� We now consider a function F 

��� �� �	� � such that


F �g�	 � � F �g�	 � � F ��	 � �

where g� is a function such that g���	��	 � �� g� is a function such that
g���	��	 � �� and � is the constant � function� We exhibit a closed term
M such that


��M ���g�	 � � ��M ���g�	 � � ��M ����	 � � �

We begin the construction of S� as we did in the previous example� but now
we build pairs ��d� P 	� where �d is a member of S�� and where P is a term� We
start with �������	��	� �������	��	� and ��g�� g���	� g	� where g is a variable
of type �� �� �� By de�nition of a logical relation� S� has to contain


�g���	��	� g���	��	����	��		 � ������	 �

We form the pair �������	� g��	��		 to keep track of how we obtained this new
vector� Similarly� we obtain �������	� g��	��		� Finally� taking these two new
vectors as arguments for g� we build the vector which we are seeking


�������	� g�g��	��		�g��	��			 �

The termM � �g�g�g��	��		�g��	��		 satis�es the requirements� by construc�
tion�
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Finitary Pcf� The same counter�example and example also live in the follow�
ing language� called Finitary Pcf� We now set C � f�� tt�� � if then else g�
We set D� � B�� the �at domain f�� tt �� g� Again� we build the model in the
category of partial orders and monotonic functions� The meanings of " � 
 ��
" tt 
 �� and " � 
 � are � 
 D�� tt 
 D�� and � 
 D�� The last constant is the
usual conditional


if � then d else e � � if tt then d else e � d if � then d else e � e �

The advantage of Finitary Pcf �and of its associated model	 over Very Fini�
tary Pcf is that it allows for an elegant characterization of the C�logical relations
�also due to Sieber	� which we give now�

De�nition ��
��� ��Sieber	�sequential� The C�logical relations for Finitary
Pcf and its monotonic function model are called sequential relations	 Consider
the following n�ary relations Sn

A�B over B�� where A � B � f�� � � � � ng�

�d�� � � � � dn	 
 S
n
A�B � �� i 
 A di � �	 or �	 i� j 
 B di � dj	 �

A Sieber�sequential relation is an n�ary logical relation S such that S� is an
intersection of relations of the form Sn

A�B	

The word �sequential� will be justi�ed in section ���

Theorem ��
��� A logical relation over Finitary Pcf is sequential if and only
if it is Sieber�sequential	

��	 All base type constants are invariant� since constant vectors satisfy trivially
the second disjunct in the de�nition of Sn

A�B� We check only that the conditional
is invariant� If its �rst argument d � �d�� � � � � dn	 satis�es the �rst disjunct� or
the second disjunct with the common value equal to �� then the result vector e �
�e�� � � � � en	 satis�es the same property by strictness of the conditional function�
Otherwise� if� say� di � � for all i 
 B� then the coordinates ei for i 
 B are those
of the second argument� Since A � B� this entails e 
 Sn

A�B�

��	 Let R be n�ary and sequential� and let S be the intersection of all Sn
A�B�s

containing R�� We prove S � R�� We pick d � �d�� � � � � dn	 
 S� and we show�
by induction on the size of C � f�� �� � � � � ng


� e � �e�� � � � � en	 
 R
� �	 i 
 C ei � di	 �

If C � fig is a singleton� then we choose e � �di� � � � � di	� We suppose now that
�C � �� and we distinguish cases�

�� di � � for some i 
 C
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�a	 R� � Sn
Cnfig�C
 Then d 
 S

n
Cnfig�C� by de�nition of S� and either dk � �

for some k 
 Cnfig� or all dj �s are equal� for j 
 C� Since di � �� the
latter case is rephrased as
 all dj�s are �� Recalling that �C � �� we
have thus� in either case


� k 
 Cnfig dk � � �

We apply induction to both Cnfig and Cnfkg� obtaining v 
 R� and
w 
 R�� respectively� There are again two cases


i� If vi � di�� �	� then v works for C�

ii� If vi �� �� say� vi � tt � consider the term


M � �xy� if x then y else x

and set


f � ��M �� and e � �f�v�	�w�	� � � � � f�vn	�wn		 �

First� e 
 R� by sequentiality of R� Second� we show that e
coincides with d over C� By de�nition of M � for any x� y� we have
f�x	�y	 � x or f�x	�y	 � y� This implies that e does the job over
Cnfi� kg� over which v and w coincide� Since v coincides with d
over Cnfig� we have vk � dk � �� hence f�vk	�wk	 � � � dk�
since f is strict in its �rst argument� Finally� since vi � tt � we
have f�vi	�wi	 � wi � di�

�b	 R� �� Sn
Cnfig�C
 Let u 
 R�nSn

Cnfig�C� By de�nition of S
n
Cnfig�C� there

exists k 
 C such that

uk �� ui �negation of 	 j� k 
 C uj � uk	
uk �� � �negation of � j 
 Cnfig uj � �	 �

We suppose� say� that uk � tt � Let� as in the previous case� v and w
be relative to Cnfig and Cnfkg� respectively� We now consider the
term N � �xyz� if x then y else z� and we set


g � ��N �� and e � �g�u�	�v�	�w�	� � � � � g�un	�vn	�wn		 �

We check that e works for C� Let j 
 Cnfig� since u �
 Sn
Cnfig�C� we

have uj �� �� Hence g�uj	�vj	�wj	 passes the test� and is either vj
or wj� For j 
 Cnfi� kg� both are equal to dj � Suppose now that
j � k� We have g�uk	�vk	�wk	 � vk � dk� Finally� let j � i� We
know from above that ui �� uk� If ui � �� then g�ui	�vi	�wi	 � � � di
since g is strict in its �rst argument� If ui �� �� then ui � � � hence
g�ui	�vi	�wi	 � wi � di�
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�� 	 i 
 C di �� �
 We treat this case more brie�y� There are two cases


�a	 R� � Sn
C�C 
 Then d 
 Sn

C�C by the de�nition of S� and we can take a
constant vector e�

�b	 R� �� Sn
C�C 
 We take u 
 R� such that ui �� � for all i 
 C and such

that ui �� uj are di�erent for some i� j in C� say� ui � tt and uj � � �
Let


C� � fk 
 C j uk � uig C� � fk 
 C j uk � ujg �

We can apply induction to C� and C�� obtaining v and w� Then the
proof is completed with the help of N � �xyz� if x then y else z� �

Here is an example of the use of Sieber�sequential relations� taken from �Sie����

Exercise ���	 Show that there is no term of Finitary Pcf of type ��� �� ��� �
such that


F �g�� � tt F �g�� � tt F �g�� � tt F ��� � �

where g�� g�� g� are such that


g������ � � tt g��� ��tt� � tt
g��tt���� � tt
g�����tt� � tt �

Hints
 ��� Notice that ��� �� ���� �� S�
f�����g�f�������g� ��� The relations S�

f���g�f���g and

S�
f���g�f���g arise when trying to prove that �g�� g�� g���� � S

�
f�����g�f�������g�

Exercise ���� Let g�� g� be the functions whose minimal points are described by


g��� ������� � � g��tt��tt��tt� � tt
g������ ���� � � g��tt��tt��� � � tt �

Show that there is no closed term M of Finitary Pcf of type �� � � � � � �� � �
such that g� and g� are the only minimal points of ��M ��� Generalise this to �rst�order
functions g� et g� �of the same type� whose minimal points are described by


g��A�� � a� g��B�� � b�
g��A�� � a� g��B�� � b�

where a� �� b�� a� �� b�� A� 	 A� �i�e� �A A � A�� A��� B� �	 B�� B� �	 A� and A� �	 B��
�Hint
 Find g� such that �g�� g�� g�� � S�

f���g�f�����g��

It is presently unknown whether the de�nability problem for Finitary Pcf is
decidable at all types� �See also the related open problem at the end of section
����	 On the other hand� Loader has shown that de�nability is undecidable for
�Finitary ��calculus�� that is� ��calculus without constants� and whose base types
are interpreted by �nite sets �Loa����
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��� Interpretation of the Untyped �
Calculus

We recall the grammar and the basic computation rule of the untyped ��calculus
�cf� chapter �	�

Terms 
 v 

� x jj y jj � � �
M 

� v jj ��v�M	 jj �MM	

��reduction 
 ��x�M	N �M �N�x� �

In order to use the work done in the typed case� it is useful to represent the
untyped calculus as a typed calculus with a special type 	� and the following
typing rules


x 
 	 
 (
( " x 
 	

(� x 
 	 "M 
 	
( " �x 
 	�M 
 	

( "M 
 	 ( " N 
 	
( "MN 
 	

Observe that if a type 	 � 	 could contract into a type 	 in the introduction rule�
and vice versa� if the type 	 could expand into a type 	 � 	 in the elimination
rule� then we would have the same rules as in the simply typed ��calculus� In
other words� we can apply the standard apparatus provided we have a type whose
elements can be seen both as arguments and as functions� The following de�nition
makes this intuition formal�

De�nition ����� An object D in a CCC C is called re�exive if there is a pair
�i� j	� called retraction pair� such that�

i 
 DD � D� j 
 D � DD� j � i � id �

We simply write DD � D to indicate the existence of a retraction pair	

The domain�theoretical construction described in section ��� can be used to
build re�exive objects in the category of cpo�s� Next� we describe a di�erent
construction with a set�theoretical �avour that serves the same purpose� The
resulting models are usually called graph�models�

Example ����� �graph	model� Let A be a non�empty set equipped with an in�
jective coding h � i 
 Pfin�A	 � A � A In the following we denote with a� b� � � �
elements of A� with �� �� � � � elements of Pfin�A	� and with X�Y� � � � elements of
the powerset P�A		 We de�ne for f 
 Dcpo�P�A	�P�A	��

Graph�f	 � fh�� ai j a 
 f��	g 
 P�A	 �

Vice versa for X 
 P�A	� we de�ne Fun�X	 
 P�A	� P�A	 as follows�

Fun�X	�Y 	 � fa j �� �h�� ai 
 X and � � Y 	g �
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Proposition ����� Given any non�empty set A with an injective coding h � i 

Pfin�A	� A � A the complete lattice P�A	� ordered by inclusion� is a reexive
object in Dcpo� via the morphisms Graph and Fun	

Proof� We take the following elementary steps


� Graph is monotonic
 f � g � Graph�f	 � Graph�g	�

� Graph preserves directed lub�s� namely ffigi�I directed impliesGraph�
W
i�Iffig	

�
S
i�I Graph�fi	� We observe h�� ai 
 Graph�

W
i�Iffig	 i� a 
 �

W
i�Iffig	��	 �S

i�I fi��	 i� a 
 fi��	� for some i 
 I�

� Fun is monotonic in both arguments
 if X � X �� Y � Y � then Fun�X	�Y 	 �
Fun�X �	�Y �	�

� Fun is continuous in both arguments
 if fXigi�I � fYjgj�J are directed then
Fun�

S
i�I Xi	�

S
j�J Yj	 �

S
i�I�j�J Fun�Xi	�Yj	�

� �Graph� Fun	 is a retraction
 Fun�Graph�f		�X	 � f�X	� Notice that this is
the only condition that depends on the assumption that the coding is injective� �

The construction of the graph�model is parametric with respect to the choice
of the set A and of the coding h � i� If we de�ne a coding h � i 
 Pfin��	��� �
where � is the collection of natural numbers� then we obtain a family of re�exive
objects also known as P��	 graph�models�

Exercise �
� Build an example of a coding h � i � Pfin���� � � ��

The so called DA graph�models are obtained by a �free construction� of the
coding function� Let At be a non empty set� We suppose that elements in At are
atomic� in particular they cannot be regarded as pairs� De�ne
�����

A� � At
An�� � An � f��� a	 j � 
 Pfin�An	� a 
 Ang
A �

S
n�� An �

Exercise �
� Verify that h � i � Pfin�A�� A � A de�ned as h�� ai � ��� a� is the
desired coding�

Having veri�ed the existence of various techniques to build re�exive objects in
CCC�s� we introduce in �gure ��� the interpretation of the untyped ���calculus
in these structures� This is the same as the interpretation of the simply typed
��calculus up to insertion of the maps i� j which collapse the hierarchy of types to
D� The notion of ��theory �cf� de�nition �����	 is readily adapted to the untyped
case�
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�Asmp	 ��x� 
 	� � � � � xn 
 	 " xi 
 �i�� � �n�i
��I	 ��( " �x 
 	�M 
 	�� � i � &���(� x 
 	 "M 
 	��	
��E	 ��( " MN 
 	�� � ev � hj � ��( "M 
 	��� ��( " N 
 	��i

Figure ���
 Interpretation of the untyped ��calculus in a CCC

De�nition ����� Let T be a collection of judgments of the shape ( "M � N 
 	
such that ( "M 
 	 and ( " N 
 		 T is an untyped ��theory if it is equal to the
smallest set containing T and closed under the rules obtained from �gure �	� by
replacing all types with the type 		

Every interpretation induces an untyped ��theory�

Theorem ����� Let C be a CCC with a reexive object D and �� �� be an in�
terpretation of the untyped ��calculus de�ned over C in the sense of �gure �	�	
Then the following collection is an untyped ��theory

Th�C	 � f( " M � N 
 	 j ( " M 
 	�( " N 
 	� ��( "M 
 	�� � ��( " N 
 	��g �

Proof hint� The proof of this result follows the same schema as in the typed
case� The crucial point is to verify the substitution theorem� �

Next we describe a general construction� called Karoubi envelope that given a
re�exive object D in a CCC� produces a new CCC of retractions over D� Apart
for its intrinsic interest� this construction can be adapted to reverse the previous
theorem� namely to show that every untyped ��theory is the theory induced by a
re�exive object in a CCC� a result very much in the spirit of theorem ������ The
construction is similar to that described next in the proof of theorem ������ The
di�erence is that rather than starting with a re�exive object in a CCC one starts
from a ��theory and the related monoid of terms and composition �see �Sco���
for details	�

De�nition ����� �Karoubi envelope� Let C be a CCC and D be a reexive
object in C	 The Karoubi envelope is the category Ret�D	 of retractions over D
de�ned as follows�

Ret�D	 � fr 
 D � D j r � r � rg
Ret�D	�r� s� � ff 
 D � Djs � f � r � fg �

Theorem ����� If C is a CCC and �D� i� j	 is a reexive object in C then
Ret�D	 is a CCC	
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Proof� The proof is a matter of translating ��calculus encodings into the cate�
gorical language and checking that everything goes through� Here we just remind
the reader of the encoding� When we write ��terms for building morphisms it is
intended that one has to take the interpretations of such ��terms�

In the untyped ���calculus we can de�ne a �xed point combinator Y �
�f���x�f�xx		��x�f�xx		� and terms for pairing and projections


� � � � �x��y��p�pxy� p� � �p�p��x��y�x	� p� � �p�p��x��y�y	

so that p��x� y� � x� p��x� y� � y�

� Terminal Object� In a CCC we have a unique morphism # 
 D� �� Moreover
if we take Y ��x�x	 we get a morphism from � to D� From this follows � � D�
Then we take the retraction determined by � as the terminal object in Ret�D	�

� Product� The pairing and projections de�ned above show that D�D � D via
a retraction that we denote with h � i 
 D �D � D� ���� ��	 
 D � D �D� If r
and s are retractions then we de�ne their product as


r � s � �x�hr����x		� s����x		i �

� Exponent� If r and s are retractions then de�ne their exponent as


r� s � �x�i�s � j�x	 � r	 �

�

As a second application of the category of retractions� we use Ret�D	 as a
frame for an abstract formulation of Engeler�s theorem �Eng��� on the embedding
of algebras in ��models� In the following� C is a CCC with enough points �cf�
de�nition ����	 and D is a re�exive object in C� Let ! � f�nii gi�I be a �nite
signature� that is a �nite collection of names of operators �i with the relative arity
ni� We are interested in a notion of !�algebra in which the carriers are objects
in Ret�D	 and the operators are maps in Ret�D	 of the appropriate type�

De�nition ������ �!D	algebra� A !D�algebra is a pair �r� ffigi�I	 where r 

Ret�D	� and for all i 
 I� fi 
 Dni � D� rni stands for r�    � r ni times� and
r � fi � rni � fi	 A morphism of !D�algebras h 
 �r� ffigi�I	 � �r�� fgigi�I	 is a
morphism h 
 D � D such that r� � h � r � h� and for all i 
 I� h � fi � rni �
gi � �h � r	ni 	

Theorem ������ �embedding !D	algebras� There is a !D�algebra �id� fFigi�I	
such that any other !D�algebra �r� ffigi�I	 can be embedded into it by a monomor�
phism	
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Proof� For the sake of simplicity we just consider the case ! � f��g� Assume
that h � i� and ��� �� are� respectively� the pairing and the projections de�nable in
the ��calculus as in the proof of theorem ������ We take F � ��x�� x�	����x�	x� �
We note that recursive de�nitions are available in the untyped ��calculus thanks
to the �xed point combinator� Given the !D�algebra �r� ffg	 we de�ne recursively
a morphism � 
 D � D as follows


��a	 � ha� �x���f�a� ��x		i �

The basic idea of the embedding is to put into the data the information on the
behaviour of the operations de�ned on them� In the �rst place let us observe that
� is a mono as �we use the enough points hypothesis	


��a	 � ��b	 � a � �����a		 � �����b		 � b �

Clearly � � r 
 r � id in Ret�D	 as � � r � id � � � r � r� Also since r�f�rx� ry		 �
f�rx� ry	 we have


F ���ra	� ��rb		 � ��x���f�ra� ��x			��rb	 � ��f�ra� ����rb			
� ��f�ra� rb		 � �� � r	�f�ra� rb		�

Therefore � � r 
 �r� ffg	� �id� fFg	 is a !D�algebras mono�morphism� �

Remark ������ The following describes a schema for coding �nite signatures
which suggests how to generalize the previous proof	 Given ! � f�� f�� � � � � � f

n
n g

de�ne�
��a	 � ha�

h��f�a	�
h�x���f�a���x		�
     
h�x� � � � �xn���fna	���x�	    ���xn	� #i   i

where�
F� � �x���������x		

F� � �x������������x			
     

Fn � �x������    ���x	   	 with n� � ��
s �



Chapter �

CCC�s of Algebraic Dcpo�s

In this chapter� we provide a �ner analysis of algebraicity� The central result �
which was conjectured by Plotkin and was �rst proved in �Smy��a� � is that there
exists a maximumcartesian closed full subcategory �full sub�CCC	 of �Acpo �the
category of ��algebraic cpo�s	� Jung has extended this result
 he has characterised
the maximal cartesian closed full subcategories of Acpo and Adcpo �and of
�Adcpo as well	�

In section ��� we de�ne continuous dcpo�s� Theyr are dcpo�s where approxi�
mations exist without being necessarily compact� Continuous lattices have been
investigated in depth from a mathematical perspective �GHK����� Our interest
in continuous dcpo�s arises from the fact that retracts of algebraic dcpo�s are not
algebraic in general� but are continuous� Much of the technical work involved
in our quest of maximal full cartesian closed subcategories of �d	cpo�s involves
retracts
 they are smaller� hence easier to work with� In section ��� we intro�
duce two cartesian closed categories
 the category of pro�nite dcpo�s and the
category of L�domains� both with continuous functions as morphisms� In section
��� we show that the algebraic L�domains and the bi�nite domains form the two
maximal cartesian closed full subcategories of Acpo� and derive Smyth�s result
for �Acpo with little extra work� In section ��� we treat more sketchily the
situation with Adcpo� The material of sections �� and �� follows �Jun���� In
section �� we show a technical result needed in section ��
 a partial order is a
dcpo if and only if all its well�founded subsets have a lub�

��� Continuous Dcpo�s

In order to de�ne algebraic dcpo�s� we �rst introduced the notion of compact
element� and then we de�ned algebraicity� The de�nition of continuous dcpo�s is
more direct� and more general�

���
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De�nition 
���� �continuous dcpo� Let D be a dcpo	 For elements x� y 
 D�
we say that x is way�below y� and write x% y� if

 directed� y �
�
 � � 	 
  x � 	�

D is called continuous if for any x in D� � x � fy j y % xg is directed and has
x as lub	

Notice that by de�nition x is compact i� x % x� We leave the proof of the
following easy properties as an exercise


If x% y� then x � y�
If x� � x% y � y�� then x�% y��

Clearly� algebraic dcpo�s are continuous� but the converse does not hold�

Exercise ��� �cont�nonalg� Show that the interval ��� �� of real numbers is contin�
uous but not algebraic� Hint
 Prove that x" y i� x � � or x � y�

Lemma 
���� In a continuous dcpo� x % y holds i� the following implication
holds�

 directed� y �
�
 � � 	 
  x � 	�

Proof� Suppose y �
W
 � � 	 
  x � 	� for all  � Since y �

W
�� y	� we

have x � y� for some y�% y� Hence x% y since x � y�% y� �

Lemma 
���� Let D be a dcpo and x 
 D	 If  �� x is directed and x �
W
 �

then � x is directed and x �
W
�� x		

Proof� If y % x� y� % x� then by de�nition y � a� y� � a� for some a� a� 
  �
By directedness we have a� a� � y�� for some y�� 
  � Hence y� y� � y�� 
� x� The
inequality x �

W
�� x	 follows from the obvious inequality

W
 �

W
�� x	� �

The density property of the real line is generalised as follows�

Lemma 
���
 �interpolation� In a continuous dcpo D� if x % y � then there
exists z 
 D such that x% z % y	

Proof� Consider  � fa 
 D j � a� 
 D a % a� % yg� If we show that
 is directed and

W
 � y� then we can conclude� since by de�nition x % y

implies x � a for some a 
  � hence x 
  � The set  is non�empty� since
the directedness of � y implies a fortiori its non emptyness� Thus one can �nd
at least an a� % y� and then at least an a % a�� Suppose that a % a� % y
and b % b� % y� By directedness� there exists c� 
 D such that a�� b� � c� % y�
Hence a� b % c�� and by directedness again a� b � c % c� for some c� which
is in  since c % c� % y� Hence  is directed� Since a % a� % y implies
a % y� we have

W
 �

W
� y� Conversely� if y� % y� then � y� �  � henceW

� y �
W
y���y

W
� y� �

W
 � �
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Lemma 
���� In a continuous dcpo D� minimal upper bounds �mub
s� of �nite
sets of compact elements are compact	

Proof� Let A � K�D	 be �nite� and x 
 MUB�A	� Let a 
 A� Since a% a � x�
we have a % x� By directedness there exists x� 
� x � UB�A	� Then x� � x
and x 
 MUB �A	 imply x� � x� Finally� x � x� % x means exactly that x is
compact� �

We move on to retractions and projections �cf� de�nition ������ and exer�
cise ������ which shows important ways of constructing retractions out of other
retractions	�

De�nition 
���� �retraction� projection� In a category� an arrow r 
 D� D
is a retraction� or an idempotent� if r�r � r	 In Dcpo the image of a retraction�
endowed with the induced ordering� is called a retract	 If a retraction r is such
that r � id� we say that r is a projection	

Projections are determined by their images�

Proposition 
���� For two projections p� p� over the same dcpo D� one has
p � p� i� p�D	 � p�D�		

Proof� Suppose p � p�� If y 
 p�D	� then y � p�y	 � p��y	 � y since
p � p� � id � hence y � p��y	 
 p��D	� Conversely� notice that for any projection
p and any x 
 D one has p�x	 � maxfy 
 p�D	 j y � xg� Then p � p� follows
obviously� �

Lemma 
���� Fix a dcpo D and x 
 D	

� � � x is a retract of D�
� � If x is compact� then � x is a retract of D�

Proof� ��	 � x � r�D	 where

r�y	 �

�
y if y � x
x otherwise �

We check that r is continuous� If
W
 � x� then 	 	 
  	 � x� hence r�

W
 	 �W

 �
W
r� 	� If

W
 �� x� then � 	 
  	 �� x� Then we have r�		 � x� which

implies
W
r� 	 � x � r�

W
 	�

��	 If x � d is compact� we have � d � s�D	 where

s�x	 �

�
x if x � d
d otherwise �
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If
W
 � d� then � 	 
  d � 	� We set  � �  � � 	� since obviously

s�
W
 �	 �

W
s� �	� we deduce s�

W
 	 �

W
s� 	� If

W
 �� d� then 	 	 
  	 �� d�

so that s�
W
 	 � d and s� 	 � fdg� hence s�

W
 	 �

W
s� 	� �

Retractions are at the heart of our interest in continuous dcpo�s� Indeed�
retracts of algebraic dcpo�s are not algebraic in general� but only continuous �see
exercise �����	�

Proposition 
����� �continuous retracts� A retract r�D	 of a dcpo D is a
subdcpo	 If D is continuous� then r�D	 is continuous	

Proof� Let  � r�D	 be directed� Then r�
W
 	 �

W
r� 	 �

W
 � since

	 	 
  r�		 � 	� Suppose that x% y 
 r�D	� We show that r�x	 is way�below
y in r�D	� If y �

W
 � with  � r�D	� then x % y implies x � 	 for some

	 
  � hence r�x	 � r�		 � 	� Since y � r�y	 � r�
W
� y	 �

W
fr�x	 j x% yg� we

conclude by lemma ����� �

Exercise ���� Show that any continuous dcpo D is isomorphic to a projection of
Ide�D��

We end the section with a topological exercise� Continuous lattices were met
�and named so	 by Scott in his quest of spaces whose topology could be entirely
understood from an underlying partial order �Sco����

Exercise ���� Let D be a continuous cpo� Show the following properties


� � # x is Scott open� and these opens form a basis of Scott topology�
� � If D is a complete lattice� then � x � D x �

W
f
V
U j x � Ug�

� � x" y � y � �	 x�� �the interior of 	 x��

Exercise ���� �injective spaces� A topological space D is called injective if when�
ever X � Top� Y � X� and f � Y � D are given� with f continuous for the induced
subspace topology� there exists a continuous extension f � X � D of f � Show that the
following properties are equivalent for a T� space


� � D is injective�
� � D is a retract of a product of copies of O�
� � D is a continuous lattice and its topology is Scott topology�

Hints
 Every space X is homeomorphic to a subspace of a product (U��XO of copies
of O� An injective subspace Y of a space X is a retract of X
 take idY � X � Y �
O is continuous� and continuous lattices are stable under products and retractions �cf�
proposition �������� If D is a continuous lattice� Y � X� and f � Y � D� then de�ne
f by
 f�x� �

W
f
V
ff�y� j y � Y � Ug j x � Ug�
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��� Bi�nite Domains and L
Domains

Recall that� if D and E are algebraic� then the step functions d� e are compact
�lemma �����	 � but D � E need not be algebraic �exercise �����	� One way
to ensure algebraicity is to impose bounded completeness �theorem ������	 on D
and E� But this assumption can be weakened�

De�nition 
���� Let �P��	 be a preorder� and let A � P 	 The set of minimal
upper bounds �mub
s� of A is denoted MUB�A	� and is called complete if

	 y 
 UB �A	 �x 
 MUB�A	 x � y�

Consider a continuous function f � and two step functions d � e � f � d� �
e� � f � We want to constuct a compact upper bound h of d � e and d� � e�

such that h � f � Suppose that MUB �d� d�	 is complete� Then we may choose e��

such that e�� � f�d��	 for each d�� 
 MUB�d� d�	� and set h��d��	 � e��� In general�
one has to consider in turn the compatible pairs d���� d

��
� 
 MUB�d� d�	� leading

to the construction of a new function h�� and so on� At each step we have by
construction hn � f � There are two di�erent further assumptions that allow us
to stop this chain� and to ensure that each hn is monotonic �which implies its
continuity by construction	 and compact�

�� Strengthen the completeness assumption to


	 y 
 UB �d� d�	 � 'x 
 MUB�d� d�	 x � y�

Then the sequence of the hn�s stops at h�� since there are no compatible
distinct minimal upper bounds of fd� d�g� Moreover� the above e�� can be
de�ned canonically as the only member of MUB �e� e�	 below f�d��	� This
canonicity allows us to prove that h� is compact �hint
 if h� �

W
 � take

f 
  such that e � f�d	 and e� � f�d�	� and show h� � f	�

�� Impose �niteness conditions on minimal upper bounds
 if MUB�d� d�	 is
�nite� and if the process of taking minimal upper bounds of minimal upper
bounds� and so on� terminates� then the above construction stops at some
hn� Moreover the �niteness of the description of hn allows to prove that it
is compact�

This discussion had only a motivating purpose� since we only addressed the
construction of a compact upper bound of compacts of the form d� e� not of any
pair of compact approximations of f � The two kinds of assumptions correspond to
L�domains and pro�nite domains� respectively� The rest of the section is devoted
to their study� We �rst introduce the pro�nite dcpo�s �a terminology due to
Gunter	 and show that they form a cartesian closed full subcategory of Adcpo�
We recall that Dcpo is a cartesian closed category and that lub�s of functions
are de�ned pointwise�
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De�nition 
���� �pro�nite� Let D be a dcpo D	 A projection is called �nite if
its image is �nite	 We say that D is pro�nite if the �nite projections p 
 D� D
form a directed set whose lub is the identity	 We denote with Prof the category
of pro�nite dcpo
s and continuous functions	 A pro�nite dcpo which is moreover
a cpo is called bi�nite	 We denote with Bif the full subcategory of bi�nite cpo
s	

The terminology �bi�nite�� due to Taylor� comes from a more categorical
characterisation of pro�nite and bi�nite dcpo�s to be found in chapter �
 they are
limits and colimits at the same time �whence �bi�	 of families of �nite �d	cpo�s�
The bi�nite domains have been �rst explored in �Plo���� under the name SFP
�Sequence of Finite Projections	� The following proposition justi�es the name of
�nite projections�

Proposition 
���� Let D be a cpo and p 
 D � D be a projection such that
im�p	 is �nite	 Then every element in im�p	 is compact in D and p is compact
in D � D	 Moreover� if D is bi�nite� then all compact projections over D have
a �nite image	

Proof� We suppose x � p�x	 and x �
W
 � with  directed in D � D� Then


x �
�
 � x � p�x	 � p�

�
 	 �

�
p� 	

Since im�p	 is �nite� there is 	 
  such that
W
p� 	 � p�		� hence x � p�		 � 	�

Next� we suppose p �
W
 � with  directed set in D� We have just proven that


	x 
 im�p	�	x 
  �x � p�x	 � 	x�x		

Since im�p	 is �nite� we have that �	 
  	x 
 im�p	 �x � 	�x		� Hence
	y �p�y	 � 	�p�y		 � 	�y		� Finally� suppose D is bi�nite� say id �

W
i�I pi

with im�pi	 �nite� Let p be a compact projection� Then p �
W
i�I�pi � p	� and

there is i such that p � pi � p � id � p � p� Hence p � pi � p and im�p	 � im�pi	
which is �nite� �

Proposition 
���� �pro�nite 	 CCC� �	 Every pro�nite dcpo D is algebraic�
with�

�	 Pro�nite dcpo
s �bi�nite cpo
s� respectively� and continuous maps form a carte�
sian closed category	

Proof� ��	 IfD is pro�nite� then x �
W
fp�x	 j p �nite projectiong� for any x� It

is enough to show that p�x	 is compact� for any �nite projection p� If p�x	 �
W
 �

then p�x	 � p�p�x		 �
W
p� 	� Since p� 	 is �nite� there exists 	 
  such thatW

p� 	 � p�		� Then p�x	 � p�		 � 	�

��	 It is enough to check that if D�E 
 Prof are pro�nite� then D � E�D �
E 
 Prof� For D � E� take the set of projections p � q � hp � ��� q � ��i� where
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p� q are �nite projections� For D � E� de�ne� for any pair of �nite projections
p� q on D� E


r�f	 � �x �� q�f�p�x				

�cf� exercise �����	 Clearly f is the lub of these r�f	�s� As for the �niteness of
im�r	� observe


� there are �nitely many functions from p�D	 to q�E	�

� every f such that r�f	 � f restricts to a function f 
 p�D	� q�E	� and is
determined by this restriction� because f�x	 � f�p�x		 for any x� �

When there are only denumerably many �nite projections� a pro�nite dcpo is
called ��pro�nite� This name is justi�ed by the following exercise�

Exercise ��� Show that an ��pro�nite dcpo is ��algebraic�

We shall give an alternative characterisation of pro�nite dcpo�s�

De�nition 
���� �properties m� M� We say that a partial order �Y��	

� satis�es property m �notation Y j� m� if for all X ��n Y the set MUB �X	
of mub
s of X is complete� i	e	� �	 y 
 UB�X	 �x 
 MUB �X	 x � y	�

� satis�es property M �notation Y j� M� if it satis�es property m� with the
additional condition that MUB �X	 is �nite for any �nite subset X	

Theorem 
���� Let D be an algebraic cpo	 D is a bi�nite domain i� the fol�
lowing properties hold�

�	 K�D	 j� m�

�	 U��X	 �
S
n�� U

n�X	 is �nite for any �nite subset of compact elements
X�where U is an operator on subsets de�ned by

U�X	 �
�
fMUB�Y 	 j Y ��n Xg�

Proof� Notice that in particular� X � U�X	 for any X� and MUB �X	 � U�X	
if X is �nite� Therefore properties ��	 and ��	 imply that K�D	 j�M �� �

��	 LetD be a bi�nite domain� We recall thatK�D	 �
S
fp�D	 j p �nite projectiong�

If X ��n K�D	� then X � p�D	 for some p� by directedness and proposition �����
Call Z the set of mub�s of X in p�D	� which exists� is �nite� and is complete in

�Algebraic dcpo
s D such that K�D� satis�es property M are sometimes called ��� SFP�
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p�D	� since p�D	 is �nite� We �rst show
 Z � MUB�X	� Indeed suppose z 
 Z�
z� 
 UB �X	� and z� � z� Then

p�z�	 
 UB�X	 since p�X	 � X
p�z�	 � z since p�z�	 � z� �

This contradicts the de�nition of Z� Thus Z � MUB �X	� We next show that
Z is a complete set of mub�s of X in D� Take y 
 UB �X	� then� as argued
above� p�y	 
 UB �X	� and by completeness of Z one may �nd z 
 Z such that
z � p�y	� and a fortiori z � y� The completeness of Z forces Z � MUB�X	�
Therefore MUB�X	 is �nite and complete� and MUB �X	 � p�D	� Similarly�
MUB�Y 	 � p�D	 for any Y ��n X� From there we deduce that Un�X	 � p�D	
for any n� observing that each subset of X is a fortiori included in p�D	�

��	 Let A be a �nite set of compacts� Then we claim


	 y 
 D U��A	� � y is directed

�i�e�� according to a terminology which will be introduced in de�nition ������
U��A	 is normal	�
This is shown as follows
 if x� x� 
 U��A	� � y� then MUB�x� x�	 � U��A	�

and by completeness MUB�x� x�	� � y �� �� By the claim we can set

pA�y	 �
�
�U��A	� � y	�

It is left to the reader to check that this gives a directed set of �nite projections
having id as lub� �

Notice that� in the proof of ��	� we have used only mub�s of pairs� The
following result goes in the same direction�

Lemma 
���� Let �D��	 be a partial order	 If MUB �X	 is complete and �nite
for every subset X such that �Y � �� then MUB �X	 is complete and �nite for
every �nite subset X	

Proof� Let X � fa�� � � � � ang� We construct

M� � MUB�a�� a�	 � � � � � Mn �
�

x�Mn��

MUB�x� an	�

If x is an upper bound of X� then by completeness x dominates an element of
M�� Continuing in the same way� we �nd an element y of Mn below x� Suppose
moreover x 
 MUB�X	
 then x � y� since by construction Mn � UB �X	� We
have proved MUB�X	 �Mn� Since Mn is �nite� MUB �X	 is a fortiori �nite� �

Exercise ��� Let X be �nite� Show that if there exists Y ��n	 X such that � x �	
X � y � Y y � x� then MUB�X� is �nite and complete�
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�A� D � ��f�� a� bg �where � � fn j n 
 �g is a copy of �	� ordered as follows


x � y i�

���������
x � � or
x � a and y 
 � or
x � b and y 
 � or
x � n� y � m� and m � n

In this example� U�fa� bg	 fails to be complete�

�B� D � fa� bg � �� ordered as follows


	n a� b � n

In this example� U�fa� bg	 fails to be �nite�

�C� D � fa� bg � �L � �R �where �L � fnL j n 
 �g and �R � fnR j n 
 �g	�
ordered as follows


	m�n a� b � mL� nR
m � n� mL � nL and mR � nR
m � n� mL � nR and mR � nL

In this example� U��fa� bg	 fails to be �nite�

Figure ��
 Dcpo�s that fail to be pro�nite

Exercise ���� Show that D is bi�nite i� the conditions stated in theorem ����� hold�
replacing the operator U by the operator U ��X� �

S
fMUB�Y � j Y � X and �Y � �g�

Show that if D is bi�nite� then U��X� � U ���X��

Figure �� illustrates how an algebraic dcpo may fail to be pro�nite� The
function spaces of examples �A	 and �C	 are not algebraic �cf� exercise �����
and proposition ����	� The function space of example �B	 is algebraic� but not
��algebraic� It is an example of L�domain� which we shall introduce next�

De�nition 
����� �L	domain� An L�domain� is a cpo D such that

	A ��n D 	x 
 UB �A	 � 'y � x y 
 MUB�A	�

Notice that in the de�niton of L�domain we have traded the �niteness condi�
tion of property M against a uniqueness assumption�

�See also de�nition ������ and exercise �������



��� CHAPTER �� CCC�S OF ALGEBRAIC DCPO�S

Example 
����� The following is a minimal example of a �nite partial order
which is not an L�domain� D � fa� b� c� d� eg with a� b � c� d � e	

For algebraic cpo�s� we can limit ourselves to �nite sets of compact elements�

Exercise ���� Show that an algebraic cpo is an L�domain i�

�A ��n K�D� � x � UB�A� � 'y � x y � MUB�A��

Hint
 if A � fx�� � � � � xng� consider the sets fe�� � � � � eng� where the ei	s approximate
the xi	s�

Exercise ���� ��� Show that one can restrict de�nition ������ to the A	s which have
cardinal � without loss of generality �hint
 the uniqueness is essential�� ��� Show that�
if D is algebraic� we may restrict ourselves to compacts� i�e�� A ��n K�D��

Hence L�domains are �locally� bounded complete
 any bounded subset is
bounded complete�

Proposition 
����
 A cpo D is an L�domain i�

D j� m and U��A	 � U�A	 for all �nite subsets A of D�

Proof� ��	 Property m holds a fortiori� To show U��A	 � U�A	� it is enough
to prove U��A	 � U�A	� Let x 
 MUB �B	� for a �niteB � U�A	� and let Ab be a
�nite subset of A of which b is a mub� for any b 
 B� We show x 
 MUB�

S
b�BAb	�

By construction x 
 UB �
S
b�BAb	� Suppose x � y 
 UB �

S
b�B Ab	� By property

m� y � b� for some mub b� of Ab� By uniqueness of the mub of Ab below x� we
get b� � b� Hence y � B and y � x�

��	 Let x � A ��n D� By property m there exists a 
 MUB �A	 such that
a � x� Let a� � x be such that a� 
 MUB�A	� By applying m again� there exists
b 
 MUB �a� a�	 such that b � x� Since U��A	 � U�A	� we have b 
 U�A	� i�e��
b 
 MUB�A�	 for some A� � A� Since a� a� 
 UB�A	� we get a � b � a�� This
proves the uniqueness of a� �

So far� we have made use of the dcpo structure only� The following proposition
involves step functions� which are de�ned with the help of ��

Proposition 
����� �L	CCC� The category of L�domains and continuous func�
tions is cartesian closed	 The full subcategory L of algebraic L�domains is carte�
sian closed	

Proof� Suppose that f� g � h are in D � E� Then f�x	� g�x	 � h�x	� De�ne
k�x	 as the minimum upper bound of f�x	� g�x	 under h�x	� This function k is
the minimum upper bound of f� g under h �to check the continuity of k� given  �
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one works in � h�
W
 		� If D and E are algebraic� then we already know that any

h is the lub of the set of compact functions below it� We have to check that this
set is directed� This follows from the bounded completeness of � h �cf� theorem
������ 	� �

As a last result in this section we show that the terminal object� products�
and exponents in a full subcategory of Dcpo� if any� must be those of Dcpo�

Proposition 
����� Let C be a full subcategory of Dcpo	 We denote by ��
� the product and the exponent in Dcpo	 We write D �� E when D and E
are isomorphic in Dcpo� which amounts to D and E being isomorphic in the
category of partial orders	 Then the following properties hold�

�	 If C has a terminal object "�� then "� is a one point cpo	

�	 If C has a terminal object "� and products D "�E� then D "�E �� D � E	

�	 If C has terminal object "�� binary products� and exponents Dc�E� then
Dc�E �� D � E	

Proof� ��	 If "� is terminal and has distinct elements x� y� then the constant
functions z �� x� z �� y 
 "� � "� are continuous and distinct
 contradiction� In
the sequel we freely confuse x 
 d and x 
 "�� D�

��	 Let D�E 
 C� Consider the products


�D "�E�c���c��	 in C with pairing denoted by bh�bi
�D � E� ��� ��	 in Cpo with pairing h� i �

We show that hc���c��i 
 D "�E � D � E is an isomorphism in Cpo


� hc���c��i is injective
 We have� for any x� x� 
 "�� D "�E


hc���c��i � x � hc���c��i � x� � c�� � x � c�� � x� and c�� � x � c�� � x�
� bhc���c��bi � x � bhc���c��bi � x�
� x � x� �

� hc���c��i is surjective
 Let �y� z	 
 D � E� We have
 �y� z	 � hc���c��i�bhy� zbi	�
since c���bhy� zbi	 � y and c���bhy� zbi	 � z�

� If �y� z	 � �y�� z�	� then bhy� zbi � bhy�� z�bi
 We can assume the existence of an
object C 
 C containing at least two elements c� c�� such that c � c�
 indeed� if
C only admits objects of cardinality � then the proposition is trivially true� and
if C contains only discretely ordered sets� then in particular D�E are discretely
ordered� and so are D "�E �as an object of C	 and D � E �by the de�nition of
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product in Dcpo	� With this �xed C� for any D and x� x� 
 D such that x � x��
we can build a continuous map fx�x� 
 C � D as follows


fx�x��y	 �

�
x if y � c
x� otherwise �

With the help of these functions� we have

bhy� zbi � bhfy�y� � fz�z�bi � c bhy�� z�bi � bhfy�y� � fz�z�bi � c��
Thus� by monotonicity of bhfy�y� � fz�z�bi� we get bhy� zbi � bhy�� z�bi�
��	 Given ��	 and ��	� we may work directly with the standard product ��
Consider the exponents


�Dc�E� "ev	 in C� with currying denoted by "&
�D � E� ev	 in Cpo� with currying denoted by & �

We show that &� "ev	 
 �D "�E	� �D� E	 is an iso�

� &� "ev	 is injective
 If &� "ev	�h	 � &� "ev	�h�	� then "ev � �h � id	 � "ev � �h� � id	
by the bijectivity of &� This entails


h � "&� "ev � �h� id		 � "&� "ev � �h� � id		 � h��

� &� "ev	 is surjective
 Let f 
 D � E� We have f � &� "ev	�"&�ev	�f		 since

&� "ev	 � "&�ev	 � &� "ev � �"&�ev	� id		 � &�ev	 � id �

� g � g� � "&�ev	�g	 � "&�ev	�g�	
 Consider fg�g� 
 C � �D� E	� We have

"&�ev	�g	 � "&�ev � �g � id		

� "&�ev � ��fg�g� � c	� id		

� "&�ev � �fg�g� � id	 � �c� id		

� "&�ev � �fg�g� � id		�c	 �

Let k � "&�ev � �fg�g� � id		� Then "&�ev	�g	 � k�c	 and "&�ev	�g�	 � k�c�	� The
conclusion follows� �

��� Full Sub
CCC�s of Acpo 	

This section is devoted to Jung�s classi�cation theorem for algebraic dcpo�s� Both L
domains and bi�nite domains satisfy propertym� We shall �rst prove that this property
is necessary� Actually we prove that bicompleteness is necessary �which is stronger��
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De�nition ��� �bicomplete� A partial order �D��� is called bicomplete if both D
and Dop � �D��� are directed complete�

Proposition ��� If �D��� is bicomplete� then it sati�es property m�

Proof� By Zorn�s lemma� Consider A ��n D and x � UB�A�� Let B �� x �UB�A��
In B� every chain is a fortiori codirected in D� and its glb is clearly in B� Hence B has
a minimal element� which is clearly a minimal upper bound of A� �

Jung�s theorem relies on three propositions� 	����� 	����� and 	����� We shall also
need a theorem due to Markowsky� whose proof is given in section 	�	� a partial order
is a dcpo if and only if any nonempty wellordered subset of D has a lub�

Proposition ��� A continuous dcpo D with continuous function space D � D is
bicomplete�

Proof� The proof is by contradiction� By proposition 	�	��� we may assume that
there exists a nonempty opwellordered subset B of D which has no glb� Let A be
the �possibly empty� set of lower bounds of B� Notice that by the assumption on B
we have A �B � �� We de�ne the following function r on D by

r�x� �

�
x if x � AV
fb � B j b � xg if x �� A �where the glb is meant in B� �

� r is well de�ned� We �rst prove that the set C of lower bounds in B of fb � B j b � xg
is not empty� Since x �� A� we have x �� b� for some b� � B� A fortiori� if b � x� then
b �� b�� But B is a total order� hence b� � b� which proves b� � C� Thus� since we
assumed that B is opwellordered� the maximum of C exists and is

V
fb � B j b � xg�

In particular we have x �� A� r�x� � B�

� r � r � r� r�D� � A �B� and r is the identity on A � B�

� r is continuous� If
W
$ � A� then $ � A� hence r�

W
$� �

W
$ �

W
r�$�� IfW

$ �� A� then � �� b� for some b� � B� � � $ �i�e�� � �� A�� Hence $� � A � �� where
$� � $� 	 �� and r�$�� � B� Clearly

W
$� �

W
$ and

W
r�$�� �

W
r�$�� Hence it is

enough to prove
W
r�$�� � r�

W
$��� We proceed by contradiction� Let b� � r�

W
$��� IfW

r�$�� �� b�� then a fortiori r��� �� b� for any � � $�� But we have

r��� �� b� � b� �� fb � B j b � �g � � b � B b� � b � ��

�For the last equivalence� notice that
W
$ �� A implies b� � B� and recall that B is a

chain�� Since B is opwellordered� the nonempty set fb j � � $g has a maximum b��

for some ��� � $� But then we have�

b� � b�� �
W
$ by construction

b� � r�
W
$�� � fb � B j b �

W
$�g implies b� � b�� �

Contradiction� Hence r is continuous� We know from exercise ����
 that D� � D� is a
retract of D � D� where D� � r�D� � A � B� It is continuous� by proposition 	������
The rest of the proof consists in obtaining a contradiction to the continuity of D� � D��
It goes via successive claims�
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Claim �� If A �� �� then there exist x� " x � A and y� " y � A such that x� and y�

have no upper bound in A�

We �rst show that A� �$ A is not directed� By continuity of D� the lub of A� would
be larger than any element of A� and still belong to A� but since A is not empty� we
know that it has no maximum by the assumption on B� contradiction� Hence there
exists x�� " x � A and y�� " y � A such that x�� and y�� have no upper bound in A��
Let x� and y� be obtained by interpolation� x�� " x� " x and y�� " y� " y� Suppose
that x� and y� have an upper bound z in A� then� by directedness of $ z� x�� and y��

would have an upper bound in A�� This completes the proof of claim ��

Claim �� � f � D� � D� f " id and f�B� � B�

Claim � is obvious if A is empty� since then B � D�� If A �� �� let x�� y� be as in claim
�� Since x� " x �

W
ff�x� j f " idg� we have x� � g�x� for some g " id � Similarly

y� � h�y�� Let f be an upper bound of g� h in $ id � Then x� � f�x� and y� � f�y��
Let b be an element of B� Then b is an upper bound of x and y� since x� y � A� Hence
f�b� � f�x� � x�� Similarly f�b� � y�� Thus� by claim �� f�b� � D� n A � B� This
completes the proof of claim ��

Since B is opwellordered� we can de�ne a predecessor function� pred�b� is the
maximum b� such that b� � b �there is at least one such b�� otherwise b would be a
minimum of B� contradicting our assumption on B�� De�ne� for each b � B� a function
gb � D

� � D� by

gb�x� �

�
pred�f�x�� if x � B and x � b

x otherwise �

where f is given by claim ��

Claim �� �� gb is continuous� for all b � B�

�� fgb j b � Bg is directed and has id as lub�

�� There is no gb such that f � gb�

Claim � contradicts f " id � Thus we are left with the proof of claim ��

��� If f � gb� then f�b� � gb�b� � pred�f�b��� a contradiction to the de�nition of pred �

��� We prove that fgb j b � Bg is actually a chain by proving b� � b � gb � gb� �
The only interesting case is when x � B and b� � x � b� Then gb�x� � pred�f�x�� �
f�x� � x � gb��x�� The equality id �

W
fgb j b � Bg follows from the remark that

gpred�b��b� � b for all b � B�

��� It is easily checked that gb is monotonic� Let $ be directed in D�� The interesting
case is

W
$ � B� Then � � B for some � � $� as otherwise we would have $ � A �and

hence
W
$ � A�� We can choose � to be the maximum of B�$� since B is wellordered�

Then
W
$ � � � $� and the continuity of gb follows by monotonicity� �

Remark ��� This proof generalises the situation presented in exercise �������

The hypotheses of the previous proposition are actually redundant�
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Exercise ��� ���cont � cont� Show that a dcpo with continuous function space
is continuous� Hint
 use the claim proved in proposition ������

Proposition ��
 �L�M� Let D and E be algebraic cpo	s satisfying property m� If
D � E is continuous� then E is an L�domain or K�D� j� M �

Proof� By contradiction� Suppose that E is not an Ldomain and that K�D� �j� M �
Then �cf� exercise 	������ there exists c in E� two compacts a�� a� � c� and two distinct
mub�s b�� b� of fa�� a�g below c� Since D j� m� also K�D� j� m by lemma 	����� Since
K�D� �j� M � by lemma 	���� there exist x� and x� in K�D� such that MUB�x�� x�� is
in�nite� Assume moreover that D� E is continuous� Then we de�ne g � D� E by

g�d� �

���������
� if d �� x� and d �� x�
a� if d � x� and d �� x�
a� if d �� x� and d � x�
b� if d � x� and d � x� �

We leave the reader check that g is continuous and is a mub of the step functions
x� � a� and x� � a�� In particular g is compact� We shall contradict the compactness
of g� We de�ne f by replacing b� by c in the last line of the de�nition of g� Clearly
g � f � We shall exhibit a directed set of functions which has f as lub� but none of which
dominates g� For each �nite subset A of MUB�x�� x��� de�ne a function fA � D � E

by

fA�d� �

�������������

� if d �� x� and d �� x�
a� if d � x� and d �� x�
a� if d �� x� and d � x�
b� if d � MUB�x�� x��nA
c otherwise �

We have to check that the fA�s are continuous� and form a directed set with lub f � We
leave this to the reader� with the following hint� to prove the continuity� observe that

x�� x� compact�
�

$ � MUB�x�� x��� $ has a maximum�

Suppose g � fA for some A� and pick d � MUB�x�� x��nA� We should have b� � g�d� �
fA�d� � b�� Since we assumed b� �� b�� this contradicts the minimality of b�� �

Proposition ��� LetD be a dcpo with algebraic function space and such that K�D� j�
M � Then D is bi�nite�

Proof� Suppose that U� is in�nite� for some �nite A � K�D�� We set B� �
A�Bn�� � Un���A�nUn�A�� By our assumption� for each n� Bn�� �� �� We construct a
tree in the following way� The nodes are �nites sequences bn � � � b� where bi � B

i for all
i� and where� for each i � n� bi belongs to a subset of U i�A� of which bi�� is a mub� The
root is the empty sequence� the predecessor of bn � � � b� is bn�� � � � b�� By construction�
and by property M � this is a �nitely branching tree� We show that for any b � U��A�
there exists a node bn � � � b� such that b � bn� which entails that the tree is in�nite� Let
n be minimum such that b � Un�A�� we have a fortiori b � Bn� By de�nition of Un�A�
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we can �nd a subset B of Un���A� of which b is a mub� If B were also a subset of
Un���A�� then we would not have b � Bn� Hence we can build bn�� � � � b� as desired�
Since the tree is in�nite and �nitely branching� by K�onig�s lemma it has an in�nite
branch � � � bn � � � b�� which in particular forms an in�nite strictly increasing sequence in
U��A�� Now we use the algebraicity of D� D� We have

id �
�
ff j f is compact and f � idg�

In particular a �
W
ff�a� j f is compact and f � idg� for a compact� implies a � f�a�

for some f � By directedness we can �nd a compact f � id for which � a � A �a � f�a���
We claim�

� a � U��A� �a � f�a���

Suppose that we know � a � Un�A� �a � f�a��� Let a be a mub of A� � Un�A�� Then
a � f�a� � f�A�� � A� implies f�a� � a�

By the claim we have f�bn� � bn for all n� and f�c� � c follows by continuity for
c �

W
bn� We shall get a contradiction by proving the following claim�

Claim� If D is a dcpo which has a continuous function space� and if f " id � then
f�d�" d for all d�

If the claim is true� then c � f�c�" c� hence c is compact� But a lub of a strictly
increasing sequence is not compact� contradiction�

We prove the claim by appealing again to a �retract trick� Let $ be such that
d �

W
$� Set z �

W
$� Since � z � D� is a retract of D �cf� lemma 	���
�� D� � D�

is continuous� as a retract of D � D� We show that f " id also holds in D� � D�

�notice that since f � id � f maps D� into D��� For this� it is enough by lemma 	���� to
consider a directed $� � D� � D� such that id �

W
$� in D� � D�� Each g in $� can

be extended to D by setting

g�x� � x whenever x �� z�

Hence $� can be viewed as a directed subset in D � D� and has clearly id as lub
there too� It follows that f � g for some g � $�� and the inequality holds a fortiori
in D� � D�� We have proved f " id in D� � D�� Consider the family of constant
functions x �� � for each � � $� It forms a directed set with lub the constant x �� z�
We have �x �� z� � id �in D� � D��� Hence f � �x �� �� for some � � $� In particular
f�d� � �� This ends the proof of the claim and of the proposition� �

Theorem ��	 The categories Bif and L are the two maximal cartesian closed full
subcategories of Acpo�

Proof� We have already proved that Bif and L are cartesian closed� By proposition
	������ if C is a cartesian closed full subcategory of Acpo� we know that the exponents
of C are the exponents of Cpo� Let D � C� Since both D and D� D are algebraic� D
is bicomplete by proposition 	����� hence� by proposition 	����� D j� m� Thus we can
apply proposition 	���� to any D�E � C� Combining with proposition 	���� applied to
D� we get� for any D�E � C�

K�D� is bi�nite or E is an algebraic Ldomain�
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Suppose now that C is neither a subcategory of L nor a subcategory of Bif� Then
there is an object D of C which is not bi�nite and an object E of C which is not an
Ldomain� contradiction� �

The analysis is simpli�ed in the case of �algebraic cpo�s� thanks to the following
proposition�

Proposition ��� If D is an �algebraic� cpo and D � D is ��algebraic� then K�D� j�
M �

Proof� We already know from proposition 	���� that D is bicomplete� hence that
K�D� j� m� Assume that MUB�a�� a�� is in�nite for some compacts a�� a�� We build
uncountably many mub�s of a� � a� and a� � a�� Since they are all compact� this
contradicts the �algebraicity of D� We pick two distinct mub�s b�� b� of a�� a�� For
any S � MUB�a�� a��� we de�ne fS � D� D by

fS�d� �

�������������

� if d �� a� and d �� a�
a� if d � a� and d �� a�
a� if d �� a� and d � a�
b� if � s � S d � s
b� if � s � MUB�a�� a��nS d � s �

To see that fS is wellde�ned� we use the fact that D is an Ldomain by proposition
	����� if d � MUB�a�� a��� there is exactly one mub of a�� a� below d� We omit the rest
of the proof� �

Exercise ���� �Smyth� Show that the category �Bif of ��bi�nite cpo	s and con�
tinuous functions is the largest cartesian closed full subcategory of �Acpo�

��� Full Sub
CCC�s of Adcpo 	

In this section� we present a brief account of Jung�s results in the case of algebraic
dcpo�s� that is� we relax the assumption that the domains have a �� There are four
maximal cartesian closed full subcategories of Adcpo� The duplication with respect
to to the previous section comes from the following discriminating proposition� which
is  orthogonal to the discriminating proposition 	�����

Proposition ��� �F�U� Let D and E be continuous dcpo	s satisfying property m�
If D� E is continuous� then D has �nitely many minimal elements or E is a disjoint
union of cpo	s�

Proof� By contradiction� We thus assume that D has in�nitely many minimal ele
ments and that E is not a disjoint union of cpo�s� First notice that the collection of
minimal elements of E can be alternatively described as MUB���� Hence by property
m� E can be described as E �

S
f	 e j e is a minimal element of Eg� Our assumption

implies that there exists an upper bounded pair fe�� e�g of distinct minimal elements
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of E� By property m one can �nd a mub e of e�� e�� The constant function x �� e� is
minimal� hence compact in D � E �minimal implies compact in a continuous dcpo��
For any �nite set A of minimal elements of D� we de�ne a function fA by

fA�x� �

�
e if x �	 A
e� otherwise �

This de�nes a directed family of continuous functions which has x �� e as lub �the
monotonicity of fA follows from e� � e�� Hence one must have �x �� e�� � fA for some
A� which entails e� � e�� But e� is minimal and e� �� e�� contradiction� �

The property of �niteness of the set of minimal elements is not strong enough to
be closed under function spaces� But a strengthening will do�

De�nition ��� �root� Given a dcpo D � the set U���� is called the root of D�

Proposition ��� Let D be a �continuous� dcpo such that D � D satis�es property
m and has �nitely many minimal elements� Then D has a �nite root�

Proof� With each element d of the root we associate the canonical retraction rd onto
� d de�ned in lemma 	���
� We show that if d �� d�� then rd and rd� have no common
lower bound� We can assume say d �� d�� Then if f � rd� rd�� we have�

f � rd � f�d� � d

f � rd� � f�d� � rd��d� � d� �

In fact� because d is in the root of D� f�d� � d implies f�d� � d� This is obvious if d
is a minimal element of D� and the property propagates to all elements of the root �cf�
the proof of proposition 	������ Hence d � f�d� � d�� contradicting the assumption�
Since D � D j� m� there exists a minimal function md below each rd� The md�s are
all distinct� since md � md� would entail that frd� rd�g has a lower bound� Hence if the
root of D is in�nite� then D � D has in�nitely many minimal elements� contradiction�
�

Quite orthogonally� the results of the previous section can be exploited�

Lemma ��� ��L��M� Let D and E be algebraic dcpo	s satisfying property m� If 	 e
is not an L�domain and if K�	 d� �j� M � for some compacts e� d of E�D� respectively�
then D � E is not continuous�

Proof� Obvious consequence of proposition 	���� and exercise ����
� �

Corollary ��� ��L��B� If D and E are algebraic dcpo	s satisfying property m and
if D � E is an algebraic dcpo� then either all basic Scott opens 	 d �d � K�D�� are
bi�nite or all 	 e	s �e � K�E�� are L�domains�

Proof� Lemma 	���� is applicable by proposition 	����� Suppose that a Scottopen
	 e is not an Ldomain� then� by the lemma� � d K�D� j� M � We conclude by noticing
that proposition 	���� is applicable to 	 d thanks to the following claim�
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Claim� If D � D� is algebraic and d� d� are compact� then 	 d�	 d� is algebraic�

The claim follows from the observation that 	 d �	 d� is orderisomorphic to
	 �d� d��� �

Theorem ��
 There are exactly four maximal cartesian closed full subcategories of
Adcpo� with the following respective classes of objects


�UL� the disjoint unions of algebraic L�domains�
�UB� the disjoint unions of bi�nite cpo	s�
�FL� the dcpo	s with a �nite root

whose basic Scott opens 	 d are algebraic L�domains�
�FB� the pro�nite dcpo	s�

Proof� We omit the veri�cations that these four categories are cartesian closed� We
also leave it to the reader to verify that the pro�nite dcpo�s are the dcpo�s with a
�nite root such that all 	 d�s are bi�nite� The proof proceeds like the proof of theorem
	����� exploiting not only the discrimination L)M �in its variant �L)�B�� but also the
discrimination F)U� We use B� L� F� U as abbreviations for bi�nite� Ldomain� �nite
root� disjoint union of cpo�s� respectively� Let C be a cartesian closed full subcategory
ofAdcpo� By corollary 	���	 on one hand� and by combining proposition 	���� �applied
to D � D and E� and 	���� on the other hand� we get� as in the proof of theorem
	�����

�C � B or C � L� and �C � F or C � U��

Assume now that C is not included in any of UL� UB and FL� Let D�� D�� D� � C
witness these noninclusions� and let D be an arbitrary object of C� Then we proceed
by cases�

� D� �� U� Then D�D� � F since C � F or C � U� By noninclusion� we have
D� �� L� which implies D � B since C � B or C � L�

� D� �� L� Similarly we deduce that D � B and D � F� using witness D�� �

Exercise ��� Show that the category �Prof of ��pro�nite dcpo	s and continuous
functions is the largest cartesian closed full subcategory of �Adcpo�

��� Completeness of Well
Ordered Lub�s 	

We prove the theorem of �Mar��� which we used in the proof of proposition 	����� The
proof assumes some familiarity with ordinals and cardinals� We simply recall that every
set can be wellordered� that ordinals are canonical representatives of isomorphisms
classes of wellorderings� and that cardinals are the least ordinals of a given cardinality�
We write �$ for the cardinal of $

Proposition ��� �Markowsky� �� A partial order D is a dcpo i� any non�empty
chain of D has a lub�

�� Let D be a partial order� D is a dcpo i� any non�empty well�ordered subset of D
has a lub�
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Proof� ��� clearly implies ���� but ��� serves as a stepping stone to ����

��� We �rst prove the following claim�

Claim �� Let $ be an in�nite directed set� There is an ordinal and a family f$�g���
of directed subsets of $ indexed over the cardinal � of $� such that�

�A� � � � � $� % $��
�B� $� is �nite if � is �nite� �$� � �� if � is in�nite� and
�C� $ �

S
��� $��

In order to prove the claim� we �rst �x a choice uF of an upper bound of F for any
F ��n $� Let fx�g��� be a bijective indexing of $� We construct $� and we prove
properties �A�� �B�� and �C� together by trans�nite induction�

� � � �� $� � fx�g�

� � � � � �� We set�

$��� � $� � fxg where � is the least index such that x � $n$�

$��i�� � $��i � fuF j F ��n $��ig

$� �
�
i��

$��i �

�It will be part of the proof to show that indeed $n$� is nonempty��

� � is a limit ordinal� We set $� �
S
���$��

By construction� the $��s are directed and property �A� holds� Property �C� can be
rephrased as $ � $� � and thus follows from property �B� by minimality of �� Property
�B� clearly holds for � � �� For �nite ordinals � � � � �� the de�nition of $� boils
down to $� � $��� � fu����

g� which is therefore �nite� For in�nite ordinals� the limit
ordinal case is obvious� If � � � � �� then �$��i � �$� for any i� Hence

�$� � ��$� � �� � �$� � �� � ���

This completes the proof of �B�� We next prove that property �B� at � ensures the
wellde�nedness of $���� This is clear for �nite �� Suppose thus that � is in�nite� that
� � � � � � �� and that $ � $� � Then � � �$ � �$� � ��� which contradicts the
minimality of � since � � ��

We prove ��� by contradiction� Let � be the least ordinal for which there exists a
directed $ of cardinal � such that

W
$ does not exist� and let f$�g be as in the claim�

Then
W
$� exists for each � � �� by the minimality of �� The collection f

W
$� j � � �g

forms a chain by �A�� and its lub is the lub of $ by �C�� Contradiction�

��� It is enough� by ���� to show that for any chain X � D there exists a subset Y of X
which is wellordered by the restriction of the order of D and is such that

W
Y �

W
X �

Let fx�g�� be a bijective indexing of X by an ordinal �� We assign to each � � � an
element y� � X and a subset X� of X � or �stop as follows�
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� � � �� y� � x� and X� � Xnfx � X j x � y�g�

� � � � � �� If X� � �� then �stop � otherwise� set�

y� � x� � where �� is the least element of f� j x � X�g
X� � X�nfx � X� j x � y�g �

� � is a limit ordinal� If
T
���X� � �� then �stop � otherwise� set�

y� � x� � where �� is the least element of f� j x �
T
���X�g

X� �
T
���X�nfx �

T
���X� j x � y�g �

Claim �� The following properties hold for every � at which y�� X� are de�ned�

�D� x � XnX�� � � � � x � y� �
�E� � � �� y� � y��

�F� x� � y��

The three properties are proved by induction on ��

�D� If � � �� we have x �� X� � x � x�� If � � � � �� then �A� follows by induction
from �x �� X� � �x �� X� or x � y���� If � is a limit ordinal� then �A� similarly follows
from

x �� X� � �� � � � x �� X�� or x � y��

�E� If � � � � �� then by induction it is enough to check y� � y�� Suppose y� � y��
Then y� �� X� by �D�� contradicting the de�nition of �� If � is a limit ordinal� if � � ��
and if y� � y� � we get a similar contradiction from y� �

T
���X��

�F� If � � �� then a fortiori y� � x�� If � � � � �� then for any � � � we have by
induction x� � y� � hence x� �� X� by �D�� which� by de�nition of �� entails �� � �� If
�� � � then a fortiori x� � y�� If �� � �� then x� �� X� by minimality of ��� and

x� � y� for some � � �� by �D�
y� � y� by �E� �

We use a similar reasoning if � is a limit ordinal� This completes the proof of claim ��
The set Y � fy� j y� is de�nedg is wellordered by �E�� Since Y � X � we are left

to show X �
W
Y � This follows from �F� if y� is de�ned for any index� Otherwise� the

construction of the y��s has reached a �stop at some �� There are two cases�

� � � � � � and X� � �� Then X �
W
Y follows from �D��

� � is a limit ordinal and
T
���X� � �� Let x � X � then x �� X� for some � � ��

and the conclusion again follows from �D�� �
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Chapter �

The Language PCF

We have provided semantics for both typed and untyped ��calculus� In this
chapter we extend the approach to typed ��calculus with �xpoints ��Y �calculus	�
we suggest formal ways of reasoning with �xpoints� and we introduce a core
functional language called Pcf� originally due to Scott �Sco���� and thoroughly
studied by Plotkin �Plo���� Pcf has served as a basis for much of the theoretical
work in semantics� We prove the adequacy of the interpretation with respect to
the operational semantics and we discuss the full�abstraction problem� which has
triggered a lot of research� both in syntax and semantics�
In section ��� we introduce the notion of cpo�enriched CCC� which serves to

interpret the �Y �calculus� In section ���� we introduce �xpoint induction and
show an application of this reasoning principle� In section ���� we introduce the
language Pcf� we de�ne its standard denotational semantics and its operational
semantics� and we show a computational adequacy property
 the meaning of
a closed term of base type is de�ned if and only if its evaluation terminates�
In section ��� we address a tighter correspondence between denotational and
operational semantics� known as full abstraction property� We show how a fully
abstract model of Pcf can be obtained� by means of a suitable quotient of an
�in�nite	 term model of Pcf� In section ��� we introduce Vuillemin�s sequential
functions� which capture �rst�order Pcf de�nability�

��� The �Y 
Calculus

The �Y �calculus is the typed ��calculus extended with a family of constants Y 


of type �� � �	� � for each type � �Y for short	� with the following reduction
rule


�Y 	 YM �M�Y M	�

It is also convenient to consider a special constant #
 at each type �to be inter�
preted by �	�

��
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De�nition ����� �cpo	enriched	CCC� A cartesian closed categoryC is called
a cpo�enriched cartesian closed category if all homsets C�a� b� are cpo
s� if compo�
sition is continuous� if pairing and currying are monotonic� and if the following
strictness conditions hold �for all f of the appropriate type��

� � f � � ev � h�� fi � ��

Remark ����� Notice that our de�nition of a cpo�enriched CCC involves the
cartesian closed structure of the category� thus in our terminology a cpo�enriched
CCC is not just a cpo�enriched category which happens to be cartesian closed	

Lemma ����� In a cpo�enriched CCC pairing and currying are continuous	

Proof� We consider the case of currying only �the argument is the same for
pairing	� In order to prove &�

W
 	 �

W
f&�f	 j f 
  g� it is enough to check

that
W
f&�f	 j f 
  g satis�es the characterizing equation


ev � �
�
f&�f	 j f 
  g � id	 �

�
 �

The monotonicity of & guarantees that f&�f	 j f 
  g is directed� Hence by
continuity of composition �and pairing	 we have

ev � �
�
f&�f	 j f 
  g � id	 �

�
fev � �&�f	� id	 j f 
  g �

�
 �

�

The following de�nition was �rst given by Berry �Ber����

De�nition ����� �least �xpoint model� A least �xpoint model is a cpo�enriched
cartesian closed category where # and Y are interpreted as follows�

��#�� � �

��Y �� �
�
n��

���f�fn#��

where Mn# �M�   �M#	   	� n times	

The fact that the sequence of the ���f�fn#���s is increasing follows from the as�
sumptions of monotonicity in the de�nition of cpo�enriched CCC�

Proposition ����
 In a least �xpoint model� the �Y 	 rule is valid	

Proof� Exploiting the continuity of the composition and pairing� we have

��YM �� � ev � h
W
n�����f�f

n#��� ��M ��i �
W
n����M

n#��
��M�YM	�� � ev � h��M ���

W
n����M

n#��i �
W
n����M

n��#�� �

�



���� FIXPOINT INDUCTION ���

Proposition ����� Cpo is a cpo�enriched CCC	 In particular� for any cpo D�
Fix 
 �D � D	� D� de�ned by Fix�f	 �

W
n�� f

n��	 is continuous	

Exercise 
�� Consider the extension of the simply typed ��calculus with a collection
of constants Yn �n � �� and rules


�Yn� Yn��M �M�YnM��

Prove that the system obtained by adding these rules to the ��rule is strongly normal�
izing� Hint
 adapt the proof of theorem ������

Exercise 
�	 Let C be a cpo�enriched cartesian�closed category such that currying
is strict� i�e� ���� � �� Adapt the de�nition of B�ohm tree given in chapter � to the
�Y �calculus by setting ���	x�Y M� � � �Mp� � � �p � ��� Show that the following holds


��M �� �
�
f����N��� jM �� Ng�

Hints
 ��� Extend the meaning function by setting
 ��Yn�� � ���f�fn���� ��� Show that
��M �� �

W
n�� ��Mn��� where Mn is obtained from M by replacing all its occurrences of Y

by Yn� ��� Consider the normal form N� of Mn� Show that it is the result of replacing
all the occurrences of Y by Y� in a reduct N of M � and use the strictness assumptions
to show ��N��� � ����N����

Exercise 
�� A class of continuous functionals FD � �D � D� � D� ranging over
all cpo	s D� is called a �xpoint operator if FD�f� is a �xpoint of f � for any D and
f � D � D� It is called moreover uniform if the following holds


� f � D � D� g � E � E� h � D � E �h � f � g � h� h�FD�f�� � FD�g��

where h is supposed strict� Show that Fix is the unique uniform �xpoint operator�

��� Fixpoint Induction

A key motivation for denotational semantics lies in its applications to the proof
of properties of programs� An important tool is �xpoint induction� If we want
to show that a property P holds of a term YM � then� knowing that the meaning
of YM is the lub of the sequence �� F ��	� F �F ��		� � � �� where F is the meaning
of M � it is enough to check the following properties�

� The meaning of property P� say ��P��� is a sub�dcpo of the domain D associated
to the type of YM 
 in full� ��P�� is closed under limits of non�decreasing chains�
such predicates are called inclusive�

� Both properties � 
 ��P�� and 	x�x 
 ��P��� F �x	 
 ��P��	 hold�

This is summarised by the following inference rule� known as �xpoint induc�
tion principle

P inclusive � 
 P 	x�x 
 P � F �x	 
 P	
Fix�F 	 
 P
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where P � D� for a given cpoD� and F 
 D � D is continuous� Such an inference
rule is a step towards mechanizing proofs of programs� What is needed next is a
formal theory for proving that some predicates are inclusive �see exercise �����	�

Remark ����� The su�ciency of the above conditions� hence the validity of
�xpoint induction� follows immediately from the Peano induction principle on
natural numbers	 Thus� mathematically speaking� it is not strictly necessary to
formulate the above principle explicitly	 One can prove � 
 ��P��� F ��	 
 ��P���
F �F ��		 
 ��P��� � � � and use Peano induction to conclude �if ��P�� is inclusive�	
The interest of stating an explicit induction principle is to enable one� ��� to
write lighter proofs� as F �x	 is easier to write than F �F �� � � ��	 � � �		� and ��� to
insert it in a mechanical proof�checker like Lcf �Pau���	

Exercise 
�� ��� Let D be a cpo� Show that � and D are inclusive predicates in D�
Show that x � x and x � y are inclusive in D � D� ��� Let D and E be cpo	s and
f � D � E be continuous� Let R be inclusive in E� Show that f���R� is inclusive�
��� Let D be a cpo and P �Q be inclusive in D� Then show that P � Q and P �Q are
inclusive� ��� Let D and E be cpo	s and R be inclusive on D�E in its �rst argument�
Show that the predicate � y �xRy� is inclusive on D� ��� Let D and E be dcpo	s and
P �Q be inclusive in D�E respectively� Show that P�Q is inclusive in D�E� and that
P � Q is inclusive in D � E� where P � Q � ff � D� E j � d � P f�d� � Qg�

As an illustration� we carry in some detail the proof of the following propo�
sition� due to Beki*c� which shows that n�ary �xpoints can be computed using
unary �xpoints�

Proposition ����� Let D�E be cpo
s and f 
 D � E � D� g 
 D � E � E
be continuous	 Let �x�� y�	 be the least �xpoint of hf� gi	 Let x� be the least
�xpoint of f � hid� hi� where h � Fix � &�g	 
 D � E �hence h�x�	 is such that
g�x�� h�x�		 � h�x�	�	 Then x� � x� and y� � h�x�		

Proof� �x�� y�	 � �x�� h�x�		 
 De�ne the predicateQ�u� v	 as �u� v	 � �x�� h�x�		�
This is an inclusive predicate �see exercise �����	� Thus we may start the �xpoint
induction engine� The base case is obvious� Suppose that �u� v	 � �x�� h�x�		�
We want to show that f�u� v	 � x� and g�u� v	 � h�x�	� By monotonicity we
have f�u� v	 � f�x�� h�x�		 and g�u� v	 � g�x�� h�x�		� But f�x�� h�x�		 � x�
since x� is a �xpoint of f � hid� hi� This settles the inequality f�u� v	 � x�� By
de�nition of h� we have h�x�	 � g�x�� h�x�		� which settles the other inequality�

�x�� h�x�		 � �x�� y�	 
 We de�ne a second predicate R�u	 as �u� h�u		 � �x�� y�	�
We leave the base case aside for the moment� and suppose that R�u	 holds� We
have to prove R�f�u� h�u			� We have f�u� h�u			 � f�x�� y�	 � x� by mono�
tonicity� and by de�nition of �x�� y�	� We need a little more work to obtain
h�f�u� h�u			 � y�� It is enough to check h�x�	 � y�� By de�nition of h� y� we
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have h�x�	 � g�x�� h�x�		� and y� � g�x�� y�	� We de�ne a third inclusive pred�
icate S�u	 as u � y�� remembering that h�x�	 is the least �xpoint of &�g	�x�	�
The base case is obvious� Suppose that u � y�� Then g�x�� u	 � g�x�� y�	 � y��
Hence �xpoint induction with respect to S allows us to conclude h�x�	 � y��
We are left with the base case with respect to R
 ��� h��		 � �x�� y�	 follows a
fortiori from h�x�	 � y�� �

Let us shortly analyse this proof
 we have focused in turn on each of the
least �xpoint operators involved in the statement� exploiting just the fact that
the other least �xpoints are �xpoints�

��� The Programming Language Pcf

Scott �Sco���� and then Plotkin �Plo���� introduced a particular simply typed �Y �
calculus�Pcf� which has become a quite popular language in studies of semantics�
It has two basic types
 the type � of natural numbers� and the type o of booleans�
Its set of constants is given in �gure ����The language Pcf is interpreted in
Cpo as speci�ed in �gure ��� �for the interpretation of # and Y � cf� de�nition
�����	� We use the same notation for the constants and for their interpretation�
to simplify notation� This interpretation is called the continuous model of Pcf�
More generally� we de�ne the following notion of standard model�

De�nition ����� �standard� Let C be a least �xpoint model	 If we interpret �
and o by objects D� and Do such thatC���D�� and C���Do� are �order�isomorphic�
to �� and B�� if the basic constants are interpreted as in �gure �	�� and if the
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Do � B� where B� � f�� tt �� g
D� � �� �at domain on natural numbers
D
�� � D
 �cont D

� exponent in Cpo

succ�x� �

�
� if x � �
x� � if x �� �

pred�x� �

�
� if x � � or x � �
x� � otherwise

zero*�x� �

�����
� if x � �
tt if x � �
� otherwise

if x then y else z �

�����
� if x � �
y if x � tt
z if x � �

Figure ���
 Interpretation of Pcf in Cpo

�rst�order constants behave functionally as speci�ed in �gure �	� �replacing� say�
succ�x	 by ev � hsucc� xi�� then we say that we have a standard model of Pcf�

Recall that if C has enough points� then the model is called extensional �cf�
de�nition ����	�

De�nition ����� �order	extensional� Let C� D�� and Do be as in de�nition
�	�	�	 Suppose moreover that C has enough points and that the order between
the morphisms is the pointwise ordering� like in Cpo	 Then the model is called
order�extensional	

Operational semantics of Pcf� We equipPcf with an operational semantics
which is adequately modelled by any standard model� It is described in �gure
��� by means of a deterministic evaluation relation �op�

Exercise 
�� Let add l � Y ��fxy�if zero*�x� then y else succ�f�pred�x��y��� Com�
pute add l � � using the rules in �gure ����

Exercise 
�� Imitate the techniques of chapter � to establish that the rewriting sys�
tem � speci�ed by the eight axioms of �gure ��� �applied in any context� is con�uent�
and that if M �� N and N is a normal form� then M ��

op N � Hint
 prove suitable
versions of the standardisation and Church�Rosser theorems presented in chapter ��

Next we investigate the relationships between the denotational and the oper�
ational semantics of Pcf�
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��x�M�N �op M �N�x�
YM �op M�YM�
succ�n� �op n� �
pred�n� �� �op n
zero��	� �op tt
zero��n� �� �op �
if tt then N else P �op N
if � then N else P �op P

M �op M
�

MN �op M
�N

M �op M
�

if M then N else P �op if M � then N else P

M �op M
�

succ�M��op succ�M ��

M �op M
�

pred�M��op pred�M ��

M �op M
�

zero��M��op zero��M ��

Figure 
�� Operational semantics for Pcf
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De�nition ����� �Pcf program� We call programs the terms of Pcf which
are closed and of basic type�

For example� ��x�x�� and add l � � �cf� exercise 
����� are programs�

Theorem ����� �adequacy� Any standard model C of Pcf is adequate� i�e��
for all programs of type � �and similarly for type o��

��n P ��
op n�� ��P �� � n�

Proof� ��� Follows by soundness of the continuous model�

��� The key idea is to decompose the problem into two subproblems� one which
will be proved by induction on types� the other by induction on terms� We use
the notation of section ���� and write D� � C���D� �� The induction on types
comes into play by a de�nition of a family of relations R� � D��PCF o

� � for each
type �� where PCF o

� is the set of closed terms of type �� Here is the de�nition
of these �logical�like� relations �Ro is analogous to R� �

R� � f�x�M� j x � � or �x � n and M ��
op n�g

R��� � f�f�M� j 	 e�N �eR� N � ev 
 hf� ei R� MN�g �

The statement is a part of the following claim� For each provable judgement
x�  ��� � � � � xn  �n � M  �� for each n�tuple �d�� N��� � � � � �dn� Nn� such that
di R�i Ni for i � �� � � � � n� we have

���x  �� �M �� 
 hd�� � � � � dni R
� M �N��x�� � � � � Nn�xn��

We set M � � M �N��x�� � � � � Nn�xn�� etc� � � We proceed with the simplest cases
�rst�

M � xi Then ��M �� 
 hd�� � � � � dni � di� and M �N��x�� � � � � Nn�xn� � Ni� hence
the sought result is di R�i Ni� which is among the assumptions�

M � NQ By induction ��N �� 
 hd�� � � � � dniR��� N � and ��Q��
 hd�� � � � � dni R� Q��
By de�nition of R��� � ev 
 h��N �� 
 hd�� � � � � dni� ��Q�� 
 hd�� � � � � dnii R� N �Q�� i�e�
��M �� 
 hd�� � � � � dni R� M ��

M � �x�Q We have to show� for each dR� N 

ev 
 h��M �� 
 hd�� � � � � dni� di R
� M �N i�e� ��Q�� 
 hd�� � � � � dn� di R

� ��x�Q��N�

By induction we have

��Q�� 
 hd�� � � � � dn� di R
� Q�N��x�� � � � � Nn�xn� N�x��
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Since ��x�Q��N �op Q�N��x�� � � � � Nn�xn� N�x�� we can conclude provided the
following property holds� for all �

�Q�� f R� M and M � �op M � f R� M ��

M � n In this case� nR� M holds trivially� Similarly for tt and � �

M � succ Let dR� P � We have to show ev 
 hsucc� diR� succ�P �� There are two
cases

d � �  Then ev 
 hsucc� di � ev 
 hsucc��i � �
d � n  Then ev 
 hsucc� di � n� � �

In both cases ev 
 hsucc� di R� succ�P �� The reasoning is similar for pred� zero��
and if then else �

M � Y  We have to show ��Y ��R������� Y � that is� ev 
 h��Y ��� gi R� YM � for all
g R��� M � We assume the following properties �cf� inclusive predicates�� for all
�

�Q�� �R� M
�Q�� ffngn�� non decreasing implies �	n fn R� M�� �

W
n�� fn�R

� M�

By �Q��� the conclusion follows if we show

ev 
 h���f�fn���� gi R� YM �for all n��

We set dn � ev 
 h���f�fn���� gi� Since dn � ��fn���
 g� we have dn�� � ev 
 hg� dni
for all n� Therefore� we only have to show

�� d� R� YM  Since d� � ����� 
 g� this follows from �Q�� and from the left
strictness of composition�

�� �d R� YM� � �ev 
 hg� di R� YM� Since g R��� M by assumption� we
have ev 
 hg� di R� M�Y M�� and the conclusion then follows by �Q���

Properties �Q�� and �Q�� are obvious at basic types� For a type � � � �
�Q�� follows by induction from the inference �M � �op M� � �M �N �op MN�
and �Q�� follows from the strictness equation ev 
 h�� di � �� �Q�� follows at
basic types from the fact that non�increasing sequences are stationary in a �at
domain� and at functional types from the preservation of limits by continuity�
This completes the proof of the claim� �

��� The Full Abstraction Problem for Pcf

In general� given a programming language� the speci�cation of the operational
semantics is given in two steps
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�� Evaluation a collection of programs is de�ned� usually a collection of closed
terms� on which a partial relation of evaluation is de�ned� The evaluation
is intended to describe the dynamic evolution of a program while running
on an abstract machine�

�� Observation a collection of admissible observations is given� These obser�
vations represent the only mean to record the behavior of the evaluation of
a program�

In this fashion� an observational equivalence can be de�ned on arbitrary terms
M and N as follows M is observationally equivalent to N if and only if whenever
M and N can be plugged into a piece of code P � so to form correct programs
P �M � and P �N �� then M and N are not separable �or distinguishable� by any
legal observation� On the other hand any interpretation of a programming lan�
guage provides a theory of program equivalence� How does this theory compare
to observational equivalence� We will say that an interpretation �or a model� is
adequate whenever it provides us with a theory of equivalence which is contained
in the observational equivalence� Moreover we call an adequate model �equation�
ally� fully abstract if the equivalence induced by the model coincides with the
observational equivalence�

In this section we discuss the situation for Pcf� We have de�ned the programs
as the closed terms of base type� We have de�ned an evaluation relation �op�
What can be observed of a program is its convergence to a natural number or
to a boolean value� The principal reason for focusing on programs is that they
lead to observable results� This stands in contrast with expressions like �x�x�
which are just code� and are not evaluated by �op unless they are applied to an
argument� or more generally unless they are plugged into a program context� A
program context for a Pcf term is a context C �cf� de�nition ����
� such that
C�M � is a program�

De�nition ����	 �observational preorder� We de�ne a preorder �obs� called
observational preorder� between Pcf terms M�N of the same type� as follows�

M �obs N � 	C �C�M ���
op c � C�N ���

op c�

where C ranges over all the contexts which are program contexts for both M and
N � and where c � n jj tt jj � �

Remark ����
 By exercise ��	�
 and by theorem ��	��� equivalent de�nitions for
�obs are�

M �obs N � 	C program context �C�M ��� c � C�N ��� c�
M �obs N � 	C program context ���C�M ���� ��C�N ���� �
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De�nition ����� �fully abstract� A cpo�enriched CCC is said to yield an in�
equationally fully abstract �fully abstract for short� model of Pcf if the following
equivalence holds for any Pcf terms of the same type�

M �obs N � ��M �� � ��N ���

It is a consequence of the adequacy theorem that the direction ��� holds for
the continuous model �and in fact for any standard model�� But the converse
direction does not hold for the continuous model� There are several proofs of this
negative result� all based on a particular continuous function por  B��B� � B�

de�ned by

por�x� y� �

���
��

tt if x � tt or y � tt
� if x � � and y � �
� otherwise �

�� Plotkin �rst proved that the continuous model is not fully abstract� He gave
the following terms

M� � �g�if P� then if P� then if P� then � else tt else � else �
M� � �g�if P� then if P� then if P� then � else � else � else �

where P� � g tt �� P� � g � tt � and P� � g � � � These terms are designed in
such a way that

tt � ��M����por� � ��M����por� � � �

On the other hand M� �obs M�� This is proved thanks to two key syntactic
results

�a� Milner�s context lemma �Mil���� This lemma� proposed as exercise 
�����
states that in the de�nition of �obs it is enough to let C range over so�
called applicative contexts� of the form � �N� � � �Np� Applying this lemma
to M��M�� we only have to consider contexts � �N � By the de�nition of
�op� we have for i � �� �

�Mi�N ��
op c�

���
��

N tt ���
op tt

N � tt ��
op tt

N � � ��
op � �

�b� The second syntactic result that we use is that there is no N such that

N tt ���
op tt N � tt ��

op tt N � � ��
op � �

This result is a consequence of the following more general result� Pcf is a
sequential language� in the following sense If C is a closed program context
with several holes� if

��� C��� � � � ����� � � and �M�� � � � �Mn ��� C�M�� � � � �Mn��� � �
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then there exists an i called sequentiality index� such that

	N�� � � � � Ni��� Ni��� � � � � Nn ��� C�N�� � � � � Ni����� Ni��� � � � � Nn��� � � �

This result is an easy consequence of �the Pcf version of� Berry�s syntactic
sequentiality theorem ����� �see exercise 
����� and of the adequacy theo�
rem 
���
� Here� it is applied to C � N � �� �� observing that we can use
N � � ��

op � to deduce that there is no c such that M����
op c�

Another way to prove the non�existence ofN is by means of logical relations�
We have treated essentially the same example in section ����

�� Milner has shown that in an extensional standard fully abstract model of Pcf�
the interpretations of all types are algebraic� and their compact elements must
be de�nable� i�e� the meaning of some closed term� This is called the de�nability
theorem �for a proof� we refer to �Cur�
��� One can use this result to cut down
the path followed in ��� and go directly to step �b�� In reality� there is no cut
down at all� since the proof of the de�nability theorem uses the context lemma�
and exploits terms in the style of M��M��

Exercise ����� �context lemma� � Let M and M � be two closed Pcf terms of the
same type such that� for all closed terms N�� � � � � Nn such that MN� � � �Nn is of basic
type� the following holds�

MN� � � �Nn �
�
op c � M �N� � � �Nn �

�
op c�

Show thatM �obs M
�� Hint� proceed by induction on �length of the reduction C�M ���

op

c� size of C�M ���

Exercise ����� �syntactic sequentiality for Pcf� Prove the Pcf version of theo�
rem ��	�
� and show the corresponding corollary along the lines of exercise ��	�	�

The converse of the de�nability theorem also holds� and is easy to prove�

Proposition ����� If C is an order�extensional standard model of Pcf in which
all cpo�s interpreting all types are algebraic and are such that all their compact
elements are de�nable� then C is fully abstract�

Proof� Suppose that M �obs M
�� It is enough to check ��M ����d� � ��M �����d� for

all compact �d � d� � � � dn� Then the conclusion follows using contexts of the form
� �N� � � �Nn� �

Exercise ����� �uniqueness� Show� as a consequence of proposition ��	�� and of the
de�nability theorem� that all order�extensional standard models of Pcf are isomorphic
�in a suitable sense��



���� THE FULL ABSTRACTION PROBLEM FOR PCF ���

In fact� this �unique� fully abstract model exists� and was �rst constructed by
Milner as a quotient of the term model of Pcf� Since then� a lot of e�orts have
been made to provide more �semantic� constructions of this model �this is known
as the full abstraction problem for Pcf�� In particular� the non�de�nability of
por prompted the study of sequentiality� which is the subject of section 
�� and
of chapter ��� A weaker notion� stability� appeared on the way� and is the subject
of chapter ���

Remark ����� Gunter has proposed a simple semantic proof of M� �obs M�� In
the stable model of Pcf� to be de�ned in chapter �� we have ��M��� � ��M���� In
the stable model� one retains only functions which satisfy the following property
�speci�ed here for a type like o � o� o��

	x f�x� � � � � y minimum �y � x and f�y� � ���

In particular� por is rejected �take x � �tt � tt�� then ��� tt� and �tt ��� are both
minimal� but there is no minimum�� and this is why we have ��M��� � ��M���� Now�
because the direction � holds for the stable model� which is standard� we have
M� �obs M��

Pcf B�ohm trees� In the rest of this section� we sketch a construction of the
fully abstract model of Pcf� based on a notion of B�ohm tree for Pcf� and due
independently to Hyland and Ong� and to Abramsky� Jagadeesan and Malacaria
�HO��� AJM���� Often� our de�nitions are given for types built over � only� The
extension of the constructions to the full Pcf type hierarchy is straightforward�

De�nition ���� �Pcf B�ohm tree� We de�ne the set T raw of raw Pcf B�ohm
trees� and the auxiliary set Braw as follows �T ranges over T raw � and B ranges
over Braw��

T � ��x  ���B

B � � jj n jj case x�T �F � �n � 	�
F  	 
 Braw �dom�F � �nite� �

We endow T raw with a subtree ordering� which is the least congruence satisfying�

� � T �for any T �
F �n� � � F �n� � F ��n� for any n � 	

F � F �

The set T raw can be viewed as a subset of the set of �raw� terms in ��C�� with

C � f�� n� caseX j n � 	�X ��n 	g

taking casedom�F � to encode ��y�case xT� � � �Tn �F �� The constants are typed as
follows�

� �  � � n  � � caseX  ��X���
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There are no constants � �  � at non�basic types� A correctly typed raw Pcf

B�ohm tree is called a �nite B�ohm tree� The sets of correctly typed terms of T raw

and Braw are denoted T and B� We denote with T � the ideal completion of
�T ��� �cf� proposition ����� We use P�Q to range over T�� while S� T�B
always denote �nite trees� The completion is done at every type� and we write
� � P  � whenever � � S  � for any �nite approximation of P �

Next we de�ne a category whose morphisms are trees of T ��

De�nition ����	� The category BTPcf has the following objects and mor�
phisms�

� The objects of BTPcf are the sequences �� of Pcf types�

� BTPcf���� �� �� with �� � ��� � � � � �n� consists of a vector of trees �x  �� � Pi  �i
in T �� for i � �� � � � � n�

Given �� and � in the list ��� we de�ne a projection morphism �x  �� � ���	�  � by
induction on � � �� � � � � � �p � �� as follows�

���	� � ��y� case x����	��� � � � ����	�p� �id�

where id is the identity function mapping n � 	 to � n  �� If �� � ��� � � � � �n�
then the identity morphism id  �� � �� is de�ned by� id � ���	��� � � � � ���	�n �

Remark ����		 The projection and identity morphisms are in�nite trees� due
to the presence of the identity function �n�n in their de�nition� which introduces
in�nite horizontal branching�

In order to de�ne composition� we proceed in two stages� First� we de�ne
the composition of �nite morphisms� i�e� �nite trees� Given �T � BTPcf����

����

and S � BTPcf�
���� ����� we form ���x�S��T � and reduce it to its normal form R�

applying �� as well as the following rules

�� case n �F ��

�
F �n� if F �n� �
� otherwise

��� case � �F �� �
��� case �case M �F �� �G�� case M �H� �

where H has the same domain as F and H�n� � case F �n� �G�� We set

S 
 ��T � � R�

Finally� composition is extended to in�nite trees by continuity

P 
 ��Q� �
�
fS 
 ��T � j S � P� �T � �Qg�
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We now have to justify all this carefully� We have to show that

�� R always exists�
�� R � T �

�� The lub in the de�nition of P 
 ��Q� exists�
�� composition satis�es the monoid laws�

As for ���� we rely on the following theorem due to Breazu�Tannen and Gallier
�BTG����

Theorem ����	
 Let ��C� be a simply�typed � ��calculus with constants whose
type has rank at most � Let R be a set of strongly normalising rewriting rules
for �rst�order terms written with the �uncurried� signature C� Then the rewriting
system � �R �with the curried version of R� over ��C� is strongly normalizing�

We instantiate R as �� � ��� � ����

Proposition ����	� The system �� � ��� � ���� considered as a �rst�order
rewriting system� is strongly normalizing�

Proof� We use a technique inspired from exercise ������� We call  the set
of �rst�order terms built over the uncurried signature C � f�� n� caseX j n �
	�X ��n 	g� We de�ne a subset of ! de�ned as the least set closed under the
following rules� where F � ! stands for 	n �F �n� �� F �n� � !�

�� s � ! if s � �� n� or x�
�� case s �F � � ! if s � �� n� or x and if F � !�
�� case �case s �F �� �G� � ! if G � ! and if case s �H� � !�

where H is as in rule ����

We claim that for all s and F � if s �  and G � !� then case s �G� � !� We
prove this by induction on the size of s only

� If s � �� n� or x� then case s �G� � ! by ����

� If s � case t �F �� then we have to prove case t �H� � !� which holds by
induction� provided we prove �rst H � !� But this holds by induction too�
since H�n� � case F �n� �G��

The claim a fortiori implies that ! is closed under case � �� hence ! �  � The
interest of the presentation of  as ! is that we can prove strong normalisation
of s by induction on the proof of s � !� as follows

��� Then s is in normal form�

�This theorem is actually proved in �BTG��� for the polymorphic ��calculus�
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��� Then we know by induction that F �n� is strongly normalizing whenever
F �n� is de�ned� and we conclude by noticing that a reduct of s is either
case s �F �� �where F pointwise reduces to F ��� or �� or t� where t is a reduct
of F �n� for some n�

��� We know by induction that G is pointwise strongly normalizing� and that
case s �H� is strongly normalizing� In particular� s is strongly normalizing�
and� by the de�nition of H� F is pointwise strongly normalizing� Therefore
an in�nite reduction from case �case s �F �� �G� can only be of the form

case �case s �F �� �G��� case �case s� �F ��� �G��� case s� �H ��

where H � is de�ned from F � and G� as H is de�ned from F and G� It
follows that case s� �H �� is a reduct of case s �H�� and is therefore strongly
normalizing� �

Exercise ������ � Prove directly that ���� is strongly normalizing� by adapting the
proof of theorem 
����� Hint� prove by contradiction that the set of ���� strongly
normalisable terms is closed under case ��� exploiting the strong normalisation of �
alone� and proposition ��	��
� the two kinds of reduction �do not mix��

To establish that R � T � we de�ne a subset " of ��C� �with C as above��
within which all the reductions which interest us take place� The syntax of raw
terms of " is de�ned as follows

T � ��x�B jj ���x�T ��S �length��S� � length��x��
B � � jj n jj case A �F � �n � 	�

A � xT� � � �Tn jj B jj ���x�B��S �length��S� � length��x��
F  	 
 B �dom�F � �nite� �

We de�ne the following multiple version �� of ��reduction

���� ���x�T ��S� T ��S��x��

The following properties are easily checked

� The set " is stable under the reductions ��� �� and �

� The ���� normal form of a term of " is a ����normal form� and belongs to
T �

Hence R � T � The fact that P 
 ��Q� is well�de�ned is a consequence of the
following property� which is easy to check if S � S� and if S � T � then T � T ��
where� is ���� reduction� It follows from the claim that fS 
 ��T � j S � P� �T �
�Qg is directed�
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We now show that the monoid laws hold� We examine associativity �rst� By
de�nition� �S 
 �T� � � �Tn�� 
 ��T �� is the normal form of

���x�����x�S�T� � � �Tn��T �

while S 
 �T� 
 ��T �� � � �Tn 
 ��T ��� is the normal form of

���x�S������x��T���T �� � � � ����x��Tn��T ���

and these two terms are �� equal to ���x�S��T���T ���x�� � � �Tn��T ���x���� Hence asso�
ciativity holds for �nite trees� which implies the associativity for in�nite trees by
continuity�

As for the identity laws� consider� say� S 
 id � We construct by induction
on S a �nite subtree idS � id such that S 
 idS � S� We only examine the
essential case S � case xi �T �F �� We choose idS �least� such that idT � idS for

each T � �T and such that the i�th component of idS has the form case �G� with
dom�F � � dom�G� �and of course G�n� � n whenever G�n� ��� One reasons
similarly for the other identity law�

The product structure is trivial by construction� since the morphisms of the
category are vectors products of objects and pairing of arrows are their concate�
nations� while projection morphisms are de�ned with the help of the morphisms
���	�� Finally� the exponent structure is also obvious� We set

�� � ��� � � � �n� � ��� � �� � � � ��� �n�

and use multiple abstraction to de�ne currying�

Theorem ����	� The category BTPcf is a standard model of Pcf� in which
all compact elements of the interpretations of all types are de�nable �by terms
without Y ��

Proof hint� We have already sketched the proof that BTPcf is a CCC� The
homsets are obviously cpo�s� and it is easy to check thatBTPcf is a cpo�enriched
CCC� The only closed trees of basic type are the trees n and �� ThePcf constants
are given their obvious interpretation� e�g� ��succ�� � �x�case x �succ�� where the
second occurrence of succ is the usual successor function on 	� The fact that
all compact elements are de�nable is tedious� but easy� to verify� with arguments
similar to the ones we have used to justify the identity laws� For example� the
tree case x �F � where F ��� � � and F ��� � � is de�ned by

if pred x then � else �if pred�pred�pred x�� then � else ���

�
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We have thus obtained a standard model whose compact elements are all de�
�nable� What we lack is extensionality� By extensional collapse �cf� exercise
����
�� we can obtain a category �BTPcf� with enough points� It remains to
see whether this category is cpo�enriched� It turns out that it has enough limits
to make it possible to interpret Y and the �Y ��rule� and thus to obtain a fully
abstract model of Pcf because the category �BTPcf� inherits fromBTPcf the
property that all its �compact� elements are de�nable �see exercises 
����
 and

������� However �BTPcf� is �a priori� not the unique order�extensional model
of Pcf �cf� exercise 
������ To obtain the latter� we go through a slightly more
involved construction� We build a logical�like collapse relation over compact Pcf
B�ohm trees� and we then perform an ideal completion of the quotient� This guar�
antees by construction that the resulting category �BTPcf�

� is cpo�enriched�
However there is still a subtle point in showing that extensionality is preserved
by the completion� For this� we have to resort to �nite projections �cf� section
����� We give more details in exercises 
����� and 
������

Exercise ������ Let C be a cpo�enriched CCC� and let �C� be its extensional collapse
�cf� exercise 	����� whose homsets are ordered pointwise� ��� Show that �C� is rational
�in the terminology of �AJM���� i�e� satis�es the following properties� ��� all homsets
have a �� ��� for any A�B and any f � A � B � A� the sequence ffngn�� de�ned
by f� � � and fk�� � f � hid � fki has a lub� �
� those lub�s are preserved by left
and right composition� ��� Show that if C is a standard model of Pcf� then �C� is an
order�extensional model of Pcf�

Exercise ������ Show that �BTPcf� is a fully abstract model of Pcf� Hints� use
exercise ��	���� and adapt the proof of proposition ��	�� to the rational case�

Exercise �����	 Let C be a cpo�enriched CCC whose homsets are all algebraic� and
which satis�es�

�� Compact morphisms are closed under composition� currying� and uncurrying�

�� For any compact f there exists a compact morphism idf � f such that f � idf �
idf � f � f �


� For any type �� interpreted by D�� there exists a sequence of compact morphisms
�D�

n � C�D�� D�� such that
W
n�� �

D�

n � id and �for all �� �� �D���

n � ��	fx�g�f�h�x������
h�D�

n � �D�

n i�
	� Moreover� at base types� f�D�

n � h j h � 	� D
g is �nite� for all n�

De�ne a logical�like relation R on compact morphisms �hence such that R� �
K�D��� where D� is the interpretation of � and where A � C�	� A��� by setting

R
 � f�d� d� j d 	 K�D
�g

and by extending R to all types as in de�nition 	���� De�ne a category �C�� whose
objects are the types and whose homsets are the ideal completions of the sets of R�	�

equivalence classes �in the terminology of de�nition 	����� ordered pointwise� Show
that �C�� is an order�extensional cpo�enriched CCC� and that there is a functor from
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C to �C�� which preserves the cartesian closed structure� Show that the functor maps
compact morphisms surjectively onto compact morphisms� Hint� Show that ��n� has a
�nite image �cf� proof of proposition ���	�� and exploit the fact that for any compact
f there exists n such that �n � f � f � by ��� and �
��

Exercise �����
 Show that BTPcf satis�es the conditions stated in exercise ��	����
and that �BTPcf�

� is the unique fully abstract model of exercise ��	���

Remark ����
� What we have done to construct the fully abstract model can
be summarised as� �complete� then quotient �the base�� and �nally complete��
Originally� Milner had not gone through the �rst of these steps� An advantage
of the presentation chosen here is that� �� it is reasonable �and simpler than
Milner�s original construction� to stop at the second stage �exercise ��
���� ���
it singles out some general conditions to obtain an extensional least �xpoint model
out of least �xpoint model�

The category BTPcf is a full subcategory of two categories of games� con�
structed recently by Hyland and Ong� and by Abramsky� Jagadeesan� and Malaca�
ria �HO��� AJM���� The striking point about these categories of games is that
their construction does not refer to the syntax�

It is presently unknown whether the fully abstract model of Pcf can be
e�ectively presented� i�e� whether its elements can be recursively enumerated� A
related open problem is whether the observational equivalence is decidable for
Finitary Pcf� A positive answer for this problem would follow from a positive
answer to the de�nability problem for Finitary Pcf �cf� section �����

Exercise ������ Using Statman�s ��section theorem 	���� show that for any simply
typed 	�terms M�N � considered as Pcf terms� M �obs N i� M ��� N � Hint� proceed
as in the proof of Friedman�s theorem via the ��section theorem�

��� Towards Sequentiality

We have already pointed out that ��calculus is sequential �theorem ������� In
section ���� we have exhibited an example of an inherently parallel function which
is not de�nable in a ��nitary version of� Pcf� In this section� we give further
evidence of the sequential nature of Pcf� We de�ne sequential functions in a
restricted setting� which will be later extended in chapter ��� We show that
the compact de�nable �rst�order functions of the continuous model of Pcf are
exactly the �compact� �rst�order sequential functions�

De�nition ����	 �sequential function �Vuillemin�� LetD� D�� � � � �Dn be �at
cpo�s� and let f  D� � � � � � Dn � D be monotonic �hence continuous�� Let
x � �x�� � � � � xn� � D� � � � � �Dn� and suppose that f�x� � �� We say that f is
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sequential at x if either f�z� � � for all z � x� or there exists i such that xi � �
and

	 y � �y�� � � � � yn� �y � x and f�y� � ��� yi � ��

We say then that i is a sequentiality index for f at x�

The above de�nition goes back to �Vui���� The following easy proposition
o�ers an alternative de�nition of sequential functions over �at cpo�s�

Proposition ����
 Let D � X� be a �at cpo� The sets of sequential functions
from products of �at domains to D are alternatively de�ned as follows� by induc�
tion on their arity n�

Arity �  Any monotonic function f  D � D is sequential�

Arity n � �  Given n� i � n� X � 	� and a set

ffx  D� � � � �Di�� �Di�� � � � �Dn � D j x � Xg

then the following function f is sequential�

f�x�� � � � � xi����� xi��� � � � � xn� � �
f�x�� � � � � xi��� x� xi��� � � � � xn� � fx�x�� � � � � xi��� xi��� � � � � xn� �

Moreover� the compact sequential functions are exactly the functions obtained as
above� with X �nite at each induction step�

Proof� In both directions� the proof goes by induction on the arity� The two
parts of the statement are proved together� If f is sequential� then we pick a
sequentiality index i at �� and we de�ne the fx�s by the second equation in
the statement� They are clearly sequential� hence induction applies to them�
If f is compact� X cannot be in�nite� as otherwise f would be the lub of an
in�nite sequence of functions obtained by cutting down X to its �nite subsets�
Conversely� let f constructed as in the statement and x such that f�x� � � and
f�z� � � for some z � x� There are two cases

xi � �  Then i is a sequentiality index at x�

xi � j � �  Then j � X and by induction fj has a sequentiality index at
�x�� � � � � xi��� xi��� � � � � xn�� which is a sequentiality index of f at x�
If theX�s are all �nite� then the description of f is �nite� from which compactness
follows easily� �

Exercise ����� Show that the C�logical relations� where C is the set of all the constants
of Pcf�including Y �� are exactly the Sieber sequential relations of de�nition 	�����
Hint� show that at each type �� the set of invariant elements of a Sieber sequential
relation forms an inclusive predicate�
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Hence �compact� sequential functions on �at domains can be described by
sequential �programs�� which can actually be written as Pcf terms� as the fol�
lowing proposition shows�

Theorem ����� For a compact �rst�order function f of the continuous model of
Pcf�and more generally for a function from a product of �at domains to a �at
domain�� the following properties are equivalent�

� f is sequential�

�� f is de�nable in the following restriction ��C �� of Pcf �with � of base type��

C � � f�� n� tt �� � pred� zero�� if then else g�

	� f is de�nable in Pcf�


� f is invariant under all k � ��ary relations Sk�� �k � �� de�ned at ground
type by

�x�� � � � � xk��� � Sk�� � �� j � k xj � �� or �x� � � � � � xk�� � ����

These relations are special cases of Sieber sequential relations� cf� de�nition

����� More precisely� Sk�� � Sk��

f�		kg	f�		k��g�

Proof� ��� � ��� It is easy to check by induction on terms that the functions
de�ned by the restricted syntax are monotonic� It is also easy to see that the re�
stricted syntax allows to encode all compact sequential functions� as characterised
in proposition 
���� �cf� proof of theorem 
������� Hence the interpretation func�
tion is a surjection from the restricted syntax to the set of compact �rst�order
sequential functions�

���� ��� Obvious by inclusion�

���� ��� This follows from lemma ����� and from exercise 
�����

��� � ��� Suppose that f is not sequential� Then there exists x � �x�� � � � � xn�
such that

f�x� � �
J � fj � n j xj � �g � �
	 j � J � yj � �y�j� � � � � ynj� ��	 i � J yij � xi� and yjj � � and f�yj� � �� �

Without loss of generality� we can assume that J � f�� � � � � kg for some k � �
�and � n�� We claim that �yi�� � � � � yik� xi� � Sk�� for all i � n� This follows from
the following easy case analysis�

i � J  then yi� � � � � � yik � xi�
i � J  then yii � ��
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Hence� by invariance �f�y��� � � � � f�yk�� f�x�� � Sk��� which contradicts the def�
inition of Sk��� since we have assumed f�yj� � � for all j � k and f�x� � �� �

We don�t know how to extend this correspondence to higher orders� Both the
model of sequential algorithms and the strongly stable model� which is built in
chapter �� and section ����� respectively� contain non Pcf�de�nable functionals
such as the functionals presented in exercises ������ and �������

Exercise ����� Show that every Pcf de�nable �rst�order function in a standard model
of Pcf is sequential� Hint� given a closed term M � call Mn the term obtained by
replacing Y by 	f�fn�� and let Pn be the normal form of Mn� Show that the Pn�s form
a directed set� and exploit this to show that they all contribute to a single sequential
function de�ned as in proposition �����



Chapter �

Domain Equations

This chapter presents general techniques for the solution of domain equations
and the representation of domains and functors over a universal domain� Given
a category of domains C we build the related category Cip �cf� chapter �� that
has the same objects as C and injection�projection pairs as morphisms �section
����� It turns out that this is a suitable framework for the solution of domain
equations� The technique is applied in section ��� in order to solve a predicate
equation� The solution of the predicate equation is used in proving an adequacy
theorem for a simple declarative language with dynamic binding� The category
of injection�projection pairs is also a suitable framework for the construction of
a universal homogeneous object �section ����� The latter is a domain in which
every other domain �not exceeding a certain size� can be embedded� Once a
universal object U is built� it is possible to represent the collection of domains
as the domain FP�U� of �nitary projections over U � and functors as continuous
functions over FP�U�� In this way� one obtains a poset�theoretical framework
for the solution of domain equations that is more manageable than the general
categorical one �section �����

A third approach to the solution of domain equations consists in working with
concrete representations of domains like information systems� event structures�
or concrete data structures �introduced in de�nitions �	������ ������ and �������
respectively�� At this level� domain approximation can be modeled by means of
inclusions relating the representing structures� and domain equations can be then
solved as ordinary �xpoint equations� As in the �nitary projections approach the
solutions obtained are exact solutions �F �D� � D� and not merely F �D� �� D��
This was �rst remarked by Berry in the framework of concrete data structures�
We do not detail this approach here �a good reference is �Win����Chapter�����
See however exercises �	����� and ��������

�
�
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��� Domain Equations

One of the earliest problems in denotational semantics was that of building a
model of the untyped ����calculus� This boils down to the problem of �nding
a non�trivial domain D isomorphic to its functional space D � D �cf� chapter
��� Following work by Wand� Smyth and Plotkin �Wan��� SP���� we present
a generalization of the technique proposed by Scott �Sco��� for the solution of
domain equations�

An 	�chain is a sequence fBn� fngn�� such that fn  Bn � Bn�� for all n� We
write fn	m � fm��
� � �
fn for m � n� The general categorical de�nition of colimit
�cf� section B��� specializes to 	�chains as follows� A cocone fB� gngn�� of the
	�chain fBn� fngn�� is given by an object B� and a sequence fgn  Bn � Bgn��
satisfying gn�� 
 fn � gn for all n� A cocone fB� gngn�� is a colimit if it is an
initial object in the category of cocones� that is if for any other cocone fC� hngn��
there exists a unique morphism k  B � C such that k 
 gn � hn for all n�

Let T  K � K be an endo�functor� We outline some rather general results
that guarantee the existence of an initial solution for the equation TX �� X� It
will be shown next that these results can be usefully applied to the solution of
domain equations�

De�nition ��	�	 �T �algebra� Let T K� K be an endo�functor� A T �algebra
is a morphism �  TA � A� T �algebras form a category� If �  TA � A
and �  TB � B are T �algebras then a morphism from � to � is a morphism
f  A� B such that f 
 � � � 
 Tf � �

Lemma ��	�
 Every initial T �algebra is an isomorphism�

Proof� Let �  TA� A be initial� Then T�  TTA� TA is also a T �algebra
and by initiality there is i  A� TA such that

i 
 � � T� 
 T i � T �� 
 i� � �����

We observe that � is a morphism �of T �algebras� from T� to �� By composition
and initiality we get � 
 i � id� By the equation ��� above we derive

T �� 
 i� � T �id� � id � i 
 � �

So i is the inverse of �� �

The following proposition will appear natural if one thinks of categories as cpo�s
and of functors as continuous functions�

�A stronger notion of T �algebra is given in de�nition B���	 in the case T is the functor
component of a monad�
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Proposition ��	�� Let C be a category with initial object and 	�colimits and
T  C � C be a functor that preserves 	�colimits� Then there is an initial
T �algebra�

Proof� Let 	 be the initial object� Consider the uniquely determined mor�
phism z  	 � T	� By iterating T on this diagram we get an 	�diagram
D � fT i	� T izgi��� By assumption there is an 	�colimit of D� say C � fA� figi���
satisfying fi � fi�� 
 T iz� for all i�

Now consider TC � fTA� Tfigi��� By assumption TC is an 	�colimit of
TD � fTT i	� TT izgi��� Since we can restrict C to a cocone of TD we have
determined a unique morphism h  TC � C�

Moreover� we want to prove that the T �algebra h  TA � A is initial� This
goes in three steps

��� Observe that any T �algebra� �  TB � B� gives rise to a cocone fB� gBi gi��
where

gBi � � 
 T� 
 TT� 
 � � � 
 T i��� 
 T izB i � 	� zB  	� B �

It is enough to check that gBi�� 
 T
iz � gBi � which follows from � 
 TzB 
 z � zB�

��� Any morphism of T �algebras u  �� �� where �  TA�� A� and �  TB �
B� induces a morphism between the related cocones over D� as de�ned in ����
Suppose � 
 Tu � u 
 �� Then

u 
 gA
�

i � u 
 � 
 T� 
 � � � 
 T i��� 
 T izA�

� � 
 Tu 
 T� 
 � � � 
 T i��� 
 T izA�

� � � �
� � 
 T� 
 � � � 
 T i��� 
 T izB
� gBi �

Hence there is at most one T �algebra morphism u  h� ��

��� To prove existence we relate morphisms in CoconefT i	� T izgi�� to mor�
phisms of T �algebras� Given h  TA � A� �  TB � B there is a uniquely
determined morphism l  A � B on the induced cocones over D� We observe
that T l is a morphism from fTA� Tfigi�� to fTB� TgBi gi�� of cocones over TD�
Moreover� � is a morphism from fTB� TgBi gi�� to fB� g

B
i gi�� of cocones over TD

as gBi�� � � 
 TgBi � By initiality of TC on TD it follows that l 
 h � � 
 T l� �

When solving domain equations� we may wish to start the construction of the
	�diagram with some morphism z  X � TX� where X is not necessarily an
initial object �cf� de�nition ����
�� In the poset case this corresponds to looking
for the least �xed point of a function f  D � D� above a given point d such
that d � f�d�� If D is an 	�dcpo� and f is 	�continuous then we can compute
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the solution as
W
n�� f

n�d�� This is the least element of the set fe � D j f�e� �
e and d � eg�

We provide a categorical generalization of this fact� Suppose that the cate�
gory C and the functor F satisfy the conditions in proposition ������ Given a
morphism z  X � TX we can build an 	�diagram D � fT iX�T izgi��� Using
the hypotheses we can build its colimit fA� figi�� and a morphism h  TA� A�

The problem is now to determine in which framework h is initial� In �rst
approximation it is natural to consider T �algebras �  TB � B together with a
morphism zB  X � B �as B has to be �bigger� than X�� If we mimic step ���
in the proof of proposition ������ that builds a cocone out of a T �algebra� we see
that we need the following property

zB � � 
 TzB 
 z �����

Generalizing step ��� presents a new di#culty� It appears that a T �algebra mor�
phism l  � � �� where �  TB � B� and �  TC � C� should also satisfy

l 
 zB � zC �����

The following categorical formalization shows that this is just an instance of the
problem we have already solved� but with respect to a related category C � X�
and a related functor Tz�

De�nition ��	�� Given a category C and an object X � C� we de�ne the slice
category C � X as follows �there is a related slice category C � X which is
introduced in example B����

C � X � ff  X � B j B � Cg �C � X��f� g� � fh j h 
 f � gg �

Also given a functor T  C� C� and a morphism z  X � TX we de�ne a new
functor Tz  C � X � C � X as follows�

Tz�f� � Tf 
 z Tz�h� � Th �

Proposition ��	�� Let C be a category with initial object and 	�colimits and
T  C � C be a functor that preserves 	�colimits� The category C � X has
initial object and 	�colimits� moreover given a morphism z  X � TX� the
functor Tz preserves 	�colimits�

Proof hint� The commutation conditions displayed in equations ��� and ���
arise as a consequence of the abstract de�nitions� We show that there is a mor�
phism h  TA� A which is the initial Tz�algebra� �

Consider the functor � Cop � C � C� de�ned in every CCC� that given
objects A� B returns the exponent A � B �with the standard extension to
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morphisms�� We would like to �nd solutions to equations such as X � X � D�
or X � X � X� We recall from chapter � that there is no way we can look
at �X�X � D� or �X�X � X as �covariant� functors� We will introduce new
structures that allow us to see the problem as an instance of the one solved by
proposition ������ In the �rst place we present the notion of injection�projection
pair in an O�category �Wan����

De�nition ��	�� �O�category� A category C is called an O�category if �� ev�
ery hom�set is an 	�directed complete partial order� and ��� composition of mor�
phisms is a continuous operation with respect to the orders of the hom�sets�

Next we formulate some familiar notions �cf� chapter �� in the framework of
O�categories�

De�nition ��	�� �retraction� injection� projection� Let C be an O�category�
and let A�B � C�

��� A retraction from A to B is a pair �i� j� such that i  A � B� j  B � A�
j 
 i � idA �we write then A � B��

��� An injection�projection from A to B is a pair �i� j� which is a retraction as
above and such that i 
 j � idB �we write then A�B��

��� A projection on A is a morphism p  A� A such that p 
 p � p and p � idA�

Example ��	�� Cpo is an O�category� ordering the morphisms pointwise� We
note that in an injection�projection pair� injection and projection are strict �cf�
de�nition �
��� functions�

De�nition ��	� Let C be an O�category� The category Cip has the same objects
as C and injection�projection pairs as morphisms�

Cip�A�B� � f�i� j� j i  A� B� j  B � A� j 
 i � idA� i 
 j � idBg �

Composition is given by �i� j� 
 �i�� j�� � �i 
 i�� j� 
 j�� identities by �id� id��

Proposition ��	�	� Let C be an O�category� Then�

��� Cip is a category in which all morphisms are monos�

��� If C has a terminal object� if each hom�set C�A�B� has a least element �A	B�
and if composition is left�strict �i�e� f  A � A� implies �A�	A�� 
 f � �A	A����
then Cip has an initial object�

Proof� ��� Suppose �i� j� 
 �i�� j�� � �i� j� 
 �i��� j���� That is �i 
 i�� j� 
 j� �
�i 
 i��� j�� 
 j�� Since i is a mono� i 
 i� � i 
 i�� implies i� � i��� Therefore� by
proposition ������ j� � j���

��� Let � be the terminal object in C� We show that � is initial in Cip� Given
A � C� we �rst show ���	A��A	�� � Cip��� A�� On one hand� �A	� 
 ��	A � id�
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since � is terminal� on the other hand ��	A
�A	� � �A	A � idA since composition
is left strict� There are no other morphisms in Cip��� A� since �A	� is the unique
element of C�A� ��� �

We are now in a position to suggest what the category of injection�projection
pairs is good for� Given a functor F  Cop � C � C� we build a functor F ip 
Cip �Cip � Cip which coincides with F on objects� In particular the exponent
functor is transformed into a functor which is covariant in both arguments� We
then observe that F ip�D�D� �� D in Cip implies F �D�D� �� D in C�

In other words� we build a related structure� Cip� and we consider a related
problem� F ip�D�D� �� D� whose solutions can be used for the initial problem�
The advantage of the related problem is that we only have to deal with covariant
functors and therefore we are in a favorable position to apply proposition ������
Towards this goal� it is natural to look for conditions on C that guarantee that
Cip has 	�colimits �we already know that under certain conditions it has an initial
object� as well as for conditions on F that guarantee that F ip is 	�cocontinuous�
i�e� it preserves 	�cochains �cf� section B����

De�nition ��	�		 �locally continuous� LetC be an O�category and F  Cop�
C� C be a functor �the generalization to several arguments is immediate�� We
say that F is locally monotonic �continuous� if it is monotonic �continuous� w�r�t
the orders on the hom�sets�

Exercise ������ Verify that the product and exponent functors on Cpo are locally
continuous�

There is a standard technique to transform a covariant�contravariant mono�
tonic functor on C into a covariant functor on Cip�

De�nition ��	�	� Given F  Cop � C � C de�ne F ip  Cip � Cip � Cip as
follows�

F ip�c� c�� � F �c� c��
F ip��i� j�� �i�� j��� � �F �j� i��� F �i� j ��� �

Exercise ������ Verify that F ip as de�ned above is a functor�

The following result points out that the 	�colimit of fDn� �in� jn�gn�� in Cip

can be derived from the 	op�limit of fDn� jngn�� in C� One often refers to this
situation as limit�colimit coincidence�

Theorem ��	�	� �limit�colimit coincidence� Let C be an O�category� If C
has 	op�limits then Cip has 	�colimits�
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Proof� Consider an 	�chain fDn� fngn�� in Cip where we denote with f�n 
Dn � Dn�� the injection and with f�n  Dn�� � Dn the embedding�

Let fC� g�n gn�� � limCfDn� f
�
n gn��� We show that Dm can be made into a

cone for fDn� f
�
n gn��� for all m� There is a natural way to go from Dm to Dn via

the morphism hm	n  Dm � Dn which is de�ned as follows

hm	n �

���
��

id if m � n
f�n 
 � � � 
 f

�
m�� if m � n

f�n�� 
 � � � 
 f
�
m if m � n �

It is enough to check that f�n 
 hm	n�� � hm	n� Hence a unique cone morphism
g�m  Dm � C is determined such that g�n 
 g

�
m � hm	n� for all n� We note that

g�m 
 g
�
m � id� since hm	m � id� And we observe

g�m 
 g
�
m � g�m�� 
 f

�
m 
 f

�
m 
 g

�
m�� � g�m�� 
 g

�
m�� �

Hence fg�m 
 g
�
mgm�� is a chain and we write k �

W
m�� g

�
m 
 g

�
m� We claim that

��� k � id� and ��� if fC� gngn�� is a cocone of fD� fngn�� in Cip such thatW
m�� g

�
m 
 g

�
m � id then the cocone is a colimit�

��� It is enough to remark that k is a cone endomorphism over fC� g�mgm�� as

g�m 
 k � g�m 
 �
W
i�� g

�
i 
 g

�
i � � g�m 
 �

W
i�m g�i 
 g

�
i �

�
W
i�m g�m 
 g

�
i 
 g

�
i �

W
i�m hi	m 
 g

�
i � g�m �

��� Let fB� lmgm�� be another cocone� We de�ne

p� �
�
m��

l�m 
 g
�
m  C � B p� �

�
m��

g�m 
 l
�
m  B � C �

It is easy to check that p  C � B in Cip� Moreover p is a morphism of cocones
between fC� gmgm�� and fB� lmgm��� Finally suppose q is another morphism
with this property� Then

�q�� q�� � �q� 
 �
W
m�� g

�
m 
 g

�
m�� �

W
m�� g

�
m 
 g

�
m� 
 q

��
� �

W
m�� q

� 
 g�m 
 g
�
m�
W
m�� g

�
m 
 g

�
m 
 q

��
� �

W
m�� l

�
m 
 g

�
m�
W
m�� g

�
m 
 l

�
m�

� �p�� p�� �

�

We can extract from the previous proof the following useful information�

Proposition ��	�	� Let C be an O�category� and let fDn� fngn�� be an 	�chain
in Cip� with a cocone fC� gngn��� Then fC� gngn�� is a colimit i�

W
n�� g

�
n 
 g

�
n �

id�
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We now show how to build 	op�limits in the category Cpo�

Proposition ��	�	� The category Cpo has 	op�limits�

Proof� Consider an 	op�chain in Cpo fDn� fngn�� where fn  Dn�� � Dn� We
de�ne

D � f�  	 �
�
n��

Dn j ��n� � Dn and fn���n � ��� � ��n�g

with the pointwise ordering � �D � i� 	n � 	 ���n� �Dn ��n��� It is easy to
verify that this makes D into a cpo� Now fD� gngn�� is a cone with gn��� �
��n�� Suppose fE� hngn�� is another cone� Then a continuous function k 
fE� hngn�� � fD� gngn�� is completely determined by the equation k�e��n� �
�gn 
 k��e� � hn�e�� �

Therefore� as an instance of theorem ������� we obtain

colimCpoipfDn� fngn�� � limCpofDn� f
�
n gn�� �

This result is applied to bi�nite domains in the following�

Proposition ��	�	� The category Bif ip has 	�colimits�

Proof� Given an 	�chain in Bif ip fDn� fngn�� let fD� gngn�� be its 	�colimit
in Cpoip which exists by proposition ������ and theorem ������� It remains to
verify that D is bi�nite� Since Dn is bi�nite for any n � 	� we have

W
i�In pn	i � id

where fpn	igi�In is a directed set of �nite projections over Dn� We compute

id �
W
n���g

�
n 
 g

�
n � �

W
n���g

�
n 
 �

W
i�In pn	i� 
 g

�
n �

�
W
n��

W
i�In�g

�
n 
 pn	i 
 g

�
n �

�
W
n��	i�In�g

�
n 
 pn	i 
 g

�
n � �

We note that g�n 
 pn	i 
 g
�
n is a �nite projection and that the set fg�n 
 pn	i 


g�n gn��	i�In is directed by proposition ������ �

We now turn to functors� The following result relates local continuity and
preservation of 	�colimits�

Proposition ��	�	 Let C be an O�category with 	op�limits� If F  Cip�C� C
is a locally continuous functor then F ip  Cip �Cip � Cip preserves 	�colimits�

Proof� We have already observed that if F is locally monotonic then F ip is a
functor� Let f�Dn� En�� �fn� gn�gn�� be an 	�diagram in Cip �Cip with colimit
f�D�E�� �hn� kn�gn�� built as in the previous theorem ������� To show that the
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cocone fF ip�D�E�� F ip�hn� kn�gn�� is a colimit for fF ip�Dn� En�� F ip�fn� gn�gn��
it is enough to verify that �cf� proposition �����
��

n��

F �h�n � k
�
n � 
 F �h

�
n � k

�
n � � idF �D	E� �

This is proven as followsW
n�� F �h

�
n � k

�
n � 
 F �h

�
n � k

�
n � �

W
n�� F �h

�
n 
 h

�
n � k

�
n 
 k

�
n �

� F �
W
n�� h

�
n 
 h

�
n �
W
n�� k

�
n 
 k

�
n �

� F �idD� idE� � idF �D	E� �

�

To summarize the method� we suppose given

� An O�category C such that the hom�sets have a least element� composition is
left strict� and C has �certain� 	op�limits�

� A locally continuous functor F  Cop �C� C�

We can apply the previous constructions and build

� The category Cip which has an initial object and 	�colimits�

� The functor F  Cip �Cip � Cip which preserves 	�colimits�

Therefore we �nd an initial solution for F ip�X�X� �� X in Cip� The initial
solution also gives a solution for the equation F �X�X� �� X in C�

Exercise ����� Show the existence of a non�trivial domain D such that D 
� D�D 
�
D � D� Hint� consider the system D 
� D� E and E 
� E � E�

Exercise ������ Let � �� be the lifting functor �see de�nitions ��	��� and ������ Show
that the equations D 
� D � �D�� and D 
� �D�� � �D�� have a non�trivial initial
solution in Cpoip�

Exercise ������ Explain how to build two non�isomorphic� non�trivial solutions of the
equation D 
� D � D� Hint� one can start the construction with a cpo which is not a
lattice�

Combining theorem ������ and proposition ������ we get the following so�
called minimal invariant property� which gives a powerful tool for reasoning in
recursively de�ned domains �Pit����

Proposition ��	�
� �minimal invariant� Let C be an O�category with a ter�
minal object and 	op�limits� and such that each hom�set has a least element�
and composition is left�strict� Let F  Cop � C be locally continuous� Let
i  F �C� � C be an order�isomorphism constructed as indicated in the proof of
proposition ���	� We de�ne   C�C�C�� C�C�C� as follows�

�f� � i 
 F �f� 
 i��

Then i is a minimal invariant� by which is meant that the function  is continuous
and has id as least �xed point�
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Proof� The statement follows from proposition �����
 and from the following
claim

	n � 	 n��� � g�n 
 g
�
n

where fC� gngn�� is constructed as in the proof of theorem ������� The base case
follows from left�strictness of composition� The induction case follows from the
fact that �i� i��� is an iso from fF �C�� hngn�� to fC� gn��gn��� with h�n � F �g�n �
and h�n � F �g�n �� �

In the cpo case� we have seen that least �xed points are actually least pre�
�xpoints �proposition ������� The following exercise gives a version of this for a
contravariant functor �Pit����

Exercise ������ ��� Under the assumptions of proposition �����
� suppose that f �
A � F �B� and g � F �A� � B are given �think of the functor H � Cop � C �
Cop �C de�ned by H�A�B� � �F �B�� F �A���� Show that there exists a unique pair of
morphisms h � A� C and k � C � B such that�

F �k� � f � i�� � h and g �G�h� � k � i

��� Show that id is in fact the unique �xpoint of �� �
� Prove a version of ��� and
��� and of proposition �����
 for a functor F � Cop �C� C� Hints� For uniqueness�
proceed as in the proof of theorem ������ take f � i��� g � i� Consider again� as a
heuristics� an associated functor H � � Cop �C� Cop �C�

We have seen �almost� a minimal invariant at work in proposition ������ We
shall use another one to prove an adequacy result in section ����

We conclude this section with a version of Cantor�s theorem on spaces of
monotonic functions� Cantor�s theorem states that there is no surjection from
D to P�D� in the category of sets� It follows that the problem �D � D� � D
has no non�trivial solution in this category �otherwise P�D� � �D � �� � �D�
D� � D�� This result can be generalized to the category of partially ordered sets
and monotonic morphisms �cf� �GD
��� �a posteriori� this provides a justi�cation
for jumping directly from set�theoretic to continuous functions�� In the following
O � f���g is the two points poset with � � �� and �D� E� denotes the poset
of monotonic morphisms� with D�E posets�

Proposition ��	�
� Let P be a poset� There is no monotonic surjection e 
P � ��P � O�� O��

Proof� First we build a monotonic surjection e�  ��P � O�� O�� �P op � O��
To this end we de�ne

f  P op � �P � O� fxy �
�
f� j x � yg �
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We observe that f is monotonic and injective as

fx � fz i� 	y �x � y � z � y� i� z � x �

Next we de�ne e��F � � F 
 f � We verify the surjectivity� Suppose d  P op � O�
let

Hd  �P � O�� O Hd�h� �
�
fdx j fx � hg �

Hd is clearly monotonic� Surjectivity follows from the computation

e��Hd��z� � Hd�fz� �
�
fdx j fx � fzg �

�
fdx j z � xg � dz �

Suppose by contradiction that there is a monotonic surjection e  P � ��P �
O�� O�� By composition with e� we derive the existence of a surjection s  P �
�P op � O�� We apply a diagonalization trick de�ning

c� c�  P op � O c�x� � s�x��x� c��x� �
�
fc�y� j x � yg

where � � � and � � �� Note that c� is monotonic� Let w be such that
c� � s�w�� We claim that there is a y � w such that c�y� � �� If c�w� � � take
w� Otherwise� if c�w� � � then s�w��w� � �� that is c��w� � �� Hence c�y� � �
for some y � w�

Suppose then c�y� � �� We derive a contradiction as follows

� s�y��y� � � by de�nition of c�

� s�y��y� � � because

c�y� � � � c��y� � � by de�nition of c�

� s�w��y� � � since c� � s�w�
� s�y��y� � � by left monotonicity of s and y � w �

�

Corollary ��	�
� If �P � P � � P in the category of posets and monotonic
morphisms then �P � ��

Proof� Since the empty poset is not a solution suppose �P � �� If all elements in
P are incomparable then Cantor�s theorem applies� Otherwise� let x� � x� � P �
Then the pair �i�O� P� j  P � O� de�ned by

i�y� �

�
x� y � �
x� y � �

j�x� �

�
� x� � x
� otherwise

shows O � P � We observe that D � D� and E � E � implies �D� E� � �D� � E���
By �P � O� � �P � P � � P we derive ��P � O� � O� � P � contradicting the
previous proposition ������� �
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n��� � n

x��� � ��x����
�let x bedyn M in N���� � N ���M
x��

Figure ��� Operational semantics of Dyn

��� Predicate Equations �

In proving properties of programs
 one is often faced with predicates� We have seen
their use in chapter �
 in particular for the proof of the adequacy theorem ����� If the
semantics of a language involves recursively de�ned domains
 then proving properties of
programs may involve recursively de�ned predicates
 and the existence of the solutions
to these predicate equations may be troublesome
 just as we had troubles with con�
travariance in solving domain equations� We treat an example of Mulmuley �Mul���

borrowing our techniques from Pitts �Pit���
 to which we refer for a general treatment�
Our example consists in proving an adequacy theorem for a simple declarative language
Dyn
 based on dynamic binding
 whose syntax is given by�

Ide ��� x jj y jj � � �
M ��� n jj Ide jj let Ide bedyn M in M �

where n ranges over natural numbers and where x� y � � � range over a set Ide of identi�
�ers� The intended value of�

let x bedyn  in let y bedyn x in let x bedyn � in y

is �
 because in computing the value of y it is the last value of x
 namely �
 which is used�
In contrast
 the 	�term �	x��	y��	x�y���x� evaluates to � We say that 	�calculus is
static� In the static discipline
 the declaration of x which is used when evaluating y is
the one which is immediately above y in the program text�

The operational semantics of Dyn is described via rewriting rules on pairs �M���

written M ���
 until eventually a constant n is reached� In the pairs M ���
 M ranges
over the set Exp of terms and � ranges over the set of syntactic environments which
are functions from Ide to Exp� The rules are given in �gure ��	� These rules should be
contrasted with the rules for the environment machines described in section ��� In both
cases a natural implementation relies on a stack to pile up unevaluated expressions�
However
 in dynamic binding we just save the code
 whereas in static binding we
memorise the code with its environment �a closure��

A denotational semantics of this language can be given with the help of a semantic
domain D satisfying the equation D � Ide � �D � ��� The meaning ��M �� of a term
M is as a partial function fromD �ranged over by � to �
 de�ned in �gure ��� �without
an explicit mention of the isomorphism i � D � Ide � �D � ����
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��n���� � n

��x���� � �x��� ��x��� ��
��let x bedyn M in N ���� � ��N �������M ��
x��

Figure ��� Denotational semantics of Dyn

These semantic equations look �the same� as the rules de�ning the operational
semantics� It requires however a non�trivial proof to show the following adequacy
property of the denotational semantics with respect to the operational semantics�

If M is a closed term of Dyn
 then M ���� n i� ��M ����� � n


where �� is the identity syntactic environment and � is the constant � function�
We �rst need to formulate adequacy for any term� We de�ne a semantic mapping

from syntactic environments to semantic environments in the following way�

������x� � ����x��� �

The general adequacy result that we want to prove is�

For any M and �
 M ����� n i� ��M ��������� � n �

��� We proceed by induction on the length of the derivation of M ��� to n�

� n� We have ��n��������� � n by the �rst semantic equation�

� x�
��x��������� � ������x��������

� ����x����������
� n by induction �

� let x bedyn M in N �

��let x bedyn M in N ��������� � ��N �����������M ��
x�� � ��N �������M
x���� � n �

�� The proof involves a predicate � � �D � �� � Exp satisfying the following
mutually recursive speci�cation�

� � f�f�M� j � �� �� 	 � �f�� � or M ����� f���g
� � f�� �� 	 D � �Ide � Exp� j � x 	 Ide ��x�� ��x�� 	 �g �

The whole point of this section is to prove that � exists� Meanwhile
 assuming its
existence
 we end the proof of adequacy� We prove by induction on the size of M that
���M ���M� 	 ��
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� n� This case holds vacuously since we always have ��n���� � n and n��� � n

regardless of what  and � are�

� x� Let �� �� 	 �� In particular
 ��x�� ��x�� 	 �� By the speci�cation of �
 we
have thus�

�x��� � or ��x������ �x���

which by the de�nition of the two semantics can be rephrased as�

��x���� � or x����� ��x���� �

� let x bedyn M in N � Let �� �� 	 �� First
 exploiting induction on M 
 we get
���M ���M�� 	 �� The conclusion follows by applying induction to N �

We are now left with the proof of the existence of �� We set�

H�E� � Ide � �E � �� G�E� � �E � ��� Exp �

We have H � Cpoop � Cpo� The ordering on H�E� is obtained as follows� E � �
is isomorphic to E � �� �cf� de�nitions 	���	� and 	���	��
 and given a domain D�

Ide � D� is the product of copies of D� indexed over Ide
 ordered pointwise� Remark
that f�g � � �and hence H�f�g�� has in�nitely many elements
 which makes the
initial solution of H�D� � D non�trivial�

We �extend� H to predicates as follows� For R � G�E�
 we de�ne H�R� �
G�H�E�� as the set of pairs �f�M� such that�

�  	 H�E�� � 	 Ide � Exp �� x ��x�� ��x�� 	 R�� �f�� � or M ����� f��� �

The predicate � is a �xpoint for the following function K � P�G�D��� P�G�D���

K�R� � f�f�M� j �f � i�M� 	 H�R�g

where i � H�D�� D is the minimal invariant �cf� proposition ��	����
The trouble is that
 because H is contravariant in E
 the function K is anti�

monotonic� The sequence fKn���gn�� is a zigzag � � K��� � K���� � � � instead of
being an increasing sequence
 and therefore we cannot build a �xpoint for K right
away� However
 K gives rise to a continuous function�

L � ��P�G�D������ �P�G�D������� ��P�G�D������ �P�G�D������

de�ned by L�S�� S�� � �K�S��� K�S���
 which has a �xed point �R�� R�� �cf� exercise
��	����� For reasons linked with the particular K we have at hand
 we in fact have
R� � R�
 as we shall prove now� It is enough to establish R� � R�
 by the symmetric
speci�cation of R� and R��

We introduce more ingredients� Since H acts on relations as well as on objects and
morphisms
 we are led to examine the relationships between morphisms and relations
more closely� Given f � E � E�
 R � G�E� and R� � G�E��
 we write�

f � R� R� � � �g�M� 	 R� �g � f�M� 	 R �
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The following are easily established facts�

�R	� If f � R� R� and f � � R� � R��
 then f � � f � R� R���

�R�� id � R� R� if and only if R� � R�

�R� If f � R� R�
 then H�f� � H�R��� H�R��

Moreover
 we restrict our attention to predicates R satisfying the following properties�

�I	� Closure under directed lub�s� �� � 	 � ���M� 	 R�� �
W
��M� 	 R�

�I�� �M ���M� 	 R�

�I� �n 	 � ��	�n�M� 	 R�M ���� n��

We denote with I�E� �I for �inclusive�
 cf� section ���� the collection of predicates
over G�E� satisfying properties �I	� through �I�� Clearly
 I�E� has a bottom element

which is�

f�	�n�M� jM ���� ng � f���M� jM 	 Expg �

Moreover
 H is compatible with �I	� through �I��

�R�� H maps I�E� to I�H�E���

We only check that H�R� satis�es �I�� If �	�n�M� 	 H�R�
 then since ��� x� 	 R

for all x
 we haveM ���� n� The converse direction follows from the fact thatM ���� n
implies M ����� n for any ��

From now on
 we shall assume that all predicates satisfy �I	� through �I�� The
following further facts will be needed�

�R�� For any directed � � �E � E��
 �� � 	 � � � R� R���
W
� � R� R��

�R�� � � R� R�
 for any R�R��

Fact �R�� is a consequence of �I	�
 by the continuity of the composition operation�
Properties �I�� and �I� serve to establish �R��
 as we show now� Let �d�M� 	 R��
There are two cases� If d is strict
 then d � � � �
 and �d � ��M� 	 R follows by �I���
If d � 	�n
 the conclusion follows by �I�� We now have all the needed material�

By property �R��
 the function K restricts to a function from I�D� to I�D�� Hence
we can take the solution �R�� R�� in �I�D����� �I�D����� By �R��
 by the minimal
invariant property of i
 and by �R��
 our goal can be reformulated as�

�n � � �n��� � R� 	 R� �

The base case of our goal holds by �R��� By �xpoint induction �cf� section ����
 we are
left to show�

f � R� � R� � ��f� � R� � R�

which by �R	� is proved as follows�

i�� � R� � H�R�� �K�R�� � R��
H�f� � H�R��� H�R�� �by �R��
i � H�R��� R� �K�R�� � R�� �

Remark ����� Our proof uses only the fact that �R�� R�� is a �xpoint �in I�D��� not
that this is the least one� So� in the end� we get not only that � exists� but also that it
is the �unique� solution of K�R� � R �cf� exercise �����	��
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��	 Universal Domains

We discuss a technique for the construction of a universal domain and we apply it
to the category of bi�nite domains and continuous morphisms� In this section by
bi�nite domain we intend the 	�bi�nite �or SFP domains� described in chapter
�� In the �rst place� we introduce the notion of algebroidal category �cf� �BH�
��
which generalizes to categories the notion of algebraicity already considered for
domains�

De�nition ����	 �category of monos� A category K is called a category of
monos if every morphism of K is mono�

Example ����
 Sets with injections form a category of monos�

De�nition ����� �compact object� Let K be a category of monos� An object
A � K is compact if� for each 	�chain fBn� fngn�� with colimit fB� gngn�� and
any h  A� B� there exists n and kn  A� Bn such that h � gn 
kn� We denote
with K�K� the collection of compact objects�

Remark ����� We note that for any n there is at most one kn� asK is a category
of monos and therefore gn 
 kn � gn 
 k�n � h implies kn � k�n� Moreover� if
gn 
 kn � h then we can set kn�� � fn 
 kn as gn�� 
 fn 
 kn � gn 
 kn � h�

De�nition ����� �algebroidal category� A category of monosK is algebroidal
if�

��� K has an initial object�

��� Every 	�chain of compact objects has a colimit�

��� Every object is the colimit of an 	�chain of compact objects�
An algebroidal category is 	�algebroidal if the collection of compact objects� K�K��
is countable up to isomorphism and so is the hom�set between any two compact
objects�

Remark ����� The categories of 	�algebraic dcpo�s considered in this book are
	�algebroidal� The category of ordinals is a notable example of non 	�algebroidal
category �non�limit ordinals cannot be enumerated up to isomorphism��

Exercise ����� Let S be the category of Scott domains �see de�nition ��	���� Show
that Sip is not an algebroidal category� How would you modify the de�nition in order to
include Sip among the algebroidal categories� Hint� A directed diagram in a category
C is a functor D � I � C� where I is a directed set� Show that� ��� Sip has colimits
of directed diagrams� ��� Each object is the colimit of a directed diagram of compact
objects�
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Next we de�ne the notion of universal object� In particular we will be interested
in universal� homogeneous objects� as they are determined up to isomorphism� In
this section we follow quite closely �DR��� �see also �GJ�	��� More generally� the
terminology and the techniques used in this section are clearly indebted to model
theory�

De�nition ����� Let U be an object in a category K of monos� and let K� be a
full subcategory of K� Then we say that�

��� U is K��universal if 	A � K� �f  A� U �

��� U is K��homogeneous if�

	A � K� 	f  A� U 	g  A� U �h  U � U �h 
 g � f� �

��� U is K��saturated if�

	A�B � K� 	f  A� U 	g  A� B �k  B � U �k 
 g � f� �

��� K� has the amalgamation property if�

	A�B�B� � K� 	f  A� B 	f �  A� B�

�C � K� �g  B � C �g�  B�� C �g 
 f � g� 
 f �� �

Remark ���� De�nition ��	�� requires the existence of certain morphisms but
not their uniqueness�

Proposition ����	� LetBif ip be the category of 	�bi�nite domains and injection�
projection pairs� Bif ip is an 	�algebroidal category and the collection of compact
objects has the amalgamation property�

Proof� To check thatBif ip is a category of monos with initial object it is enough
to verify that Bif has a terminal object� the hom�sets have a least element and
composition is left strict �cf� proposition �����	��

Let D � Bif � By proposition ������ D is compact in Bif ip i� the cardinality
of D is �nite� Moreover� by de�nition of bi�nite domain� each object in Bif ip

is an 	�colimit of compact objects� By proposition ������� each 	�diagram of
�compact� objects in Bif ip has a colimit�

Next we verify that Bif ip has the amalgamation property� Let us consider
three �nite posets �E���� �D������ �D����� with morphisms hi  E � Di�
i � �� �� in Bif ip� Without loss of generality we assume E � D� �D�� then

	e� e� � E �e � e� i� e �� e
� i� e �� e

�� �

Now we de�ne the amalgam as the set F � E � �D�nE�� �D�nE� where f �F f �

i�
�i � f�� �g �f� f � � Di� f �i f

�� or
�e � E �f �i e �j f

�� for i � j� i� j � f�� �g �
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It is easy to verify that �F is a partial order� We are left with the de�nition
of the morphisms ki  Di � F � i � �� �� We take the inclusions for k�i � and we
de�ne

k�� �f� �

�
f f � D�

h�� �f� otherwise �

k�� is de�ned symmetrically� It can be easily checked that ki is a morphism in
Bif ip� and that k� 
 h� � k� 
 h�� �

Theorem ����		 Let K be an 	�algebroidal category of monos� The following
properties are equivalent�

��� There is a K�universal� K�K��homogeneous object �universal homogeneous
for short��

��� There is a K�K��saturated object�

��� K�K� has the amalgamation property�
Moreover a K�universal� K�K��homogeneous object is uniquely determined up to
isomorphism�

Proof� The proof of this theorem is an immediate consequence of the following
lemmas� The main di#culty lies in the proof of ���� ��� �see lemma �������� �

Lemma ����	
 LetK be an algebroidal category of monos and let U� V be K�K��
saturated� Then�

	A � K�K�	f  A� U 	g  A� V �i  U � V iso �i 
 f � g� �

Proof� Let f�Ui� fi�gi�� and f�Vj � gj�gj�� be 	�diagrams of compact objects
whose colimits are fU� ligi�� and fV� l�igi�� respectively� Given f  A � U and
g  A� V � by compactness of A we have

�f�n�  A� Un� �ln� 
 f
�
n�
� f� �by compactness of A�

�pn�  Un� � V �pn� 
 f
�
n�
� g� �by saturation�

�h��  Un� � Vn� �l
�
n�

 h�� � pn�� �by compactness� �

We show how to iterate this construction once more� By saturation �pn�  Vn� �
U �pn� 
 h

�
� � ln��� By compactness �h

�
�  Vn� � Un� �ln� 
 h

�
� � pn��� We proceed

inductively building Vn� � Un� � � � � We may suppose n� � n� � � � � We observe
ln� 
 h

�
� 
 h

�
� � pn� 
 h

�
� � ln�� It is then possible� using the h�i � to see V as

�the object of� a cocone for f�Ui� fi�gi�� and U as �the object of� a cocone for
f�Vj � gj�gj��� by which the existence of the isomorphisms h and k which commute
with f and g follows� �

Lemma ����	� Let K be an algebroidal category of monos� The following prop�
erties hold�
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��� For any object U the following are equivalent� �a� U is K�universal and
K�K��homogeneous� �b� U is K�K��universal and K�K��homogeneous� �c� U is
K�K��saturated�

��� A K�universal� K�K��homogeneous object is determined up to isomorphism�

��� If there is a K�universal and K�K��homogeneous object then K�K� has the
amalgamation property�

Proof� ��� We prove the equivalence as follows

�a�� �b� Immediate� by de�nition�

�b� � �c� Let A�B � K�K�� f  A � U � g  A � B� By K�K��universality
�g�  B � U � By K�K��homogeneity �h  U � U�h 
 g� 
 g � f�� So h 
 g� gives
saturation�

�c� � �a� Since there is an initial object 	� U is K�K��universal by saturation
applied to the �unique� morphisms f  	 � U and g  	 � A� U is also K�K��
homogeneous by lemma ������� It remains to show that U is K�universal� Let
A � K and let f�Ai� fi�gi�� be an 	�chain in K�K� whose colimit is A� Take
advantage of K�K��saturation to build a cocone with object U for such 	�chain�
Then there is a morphism from A to U �

��� Apply lemma ������ with A � 	�

��� Let A�B�B� � K�K�� f  A � B� f �  A � B�� By K�K��universality
�h  B � U � By K�K��saturation �h�  B� � U�h 
 f � h� 
 f ��� Now consider
an 	�chain in K�K� whose colimit is U and use the compactness of B and B� to
factorize h and h� along some element of the 	�chain� �

In the next lemma we use �for the �rst time� the countability conditions that
distinguish an 	�algebroidal category from an algebroidal one�

Lemma ����	� Let K be an 	�algebroidal category of monos� If K�K� has the
amalgamation property then it is possible to build a K�K��saturated onbject�

Proof� We use the hypothesis that K is 	�algebroidal to build an enumeration
up to isomorphism of the compact objects Ho � fAigi�� and an enumeration of
all quintuples Mo � f�Bi� Ci� gi� hi� ji�gi��� where Bi� Ci � Ho� gi� hi  Bi � Ci�
and ji � 	� such that each quintuple occurs in�nitely often� We build an 	�chain
f�Ui� fi�gi�� such that Ui � Ho and the following properties hold� where we set
fj	i  Uj � Ui� and fj	i � fi�� 
 � � � 
 fj 

��� 	i � 	 �ki  Ai � Ui�

��� Given i consider the corresponding quintuple in the enumeration� If j � ji � i
and Uj � Ci then

�k  Ui � Ui���k 
 fj	i 
 hi � fi 
 fj	i 
 gi� �
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A consequence of ��� is that� for all C � Ho and j su#ciently large� we can �nd
g  C � Uj� We also note that if g� h  B � C with B�C � Ho� and C � Uj�
then �B�C� g� h� j� will appear in�nitely often in the enumeration� so we can �nd
an i such that �B�C� g� h� j� � �Bi� Ci� gi� hi� ji� and �j ��ji � i�

Then we de�ne U as the colimit of the 	�chain f�Un� fn�gn��� While condition
��� is natural� condition ��� may seem rather obscure� First observe that if we
just want to build a K�K��universal object� that is satisfy condition ���� then it is
enough to set U� � A� and proceed inductively using the amalgamation property
on the �uniquely determined� morphisms f  	� Un and g  	� An��� So� given
lemma ������� condition ��� has to do with the fact that we want U to be K�K��
saturated� Let us see how this is used� Let B�C � Ho and g  B � C� h  B � U �
By ��� and B � K�K� we have

�j �g�  C � Uj � h
�  B � Uj� h � fj	� 
 h

�� �

where fj	�  Uj � U � Let g� � g 
 g�� Choose i large enough so that

j � i and �B�Uj� g
�� h�� j� � �Bi� Ci� gi� hi� ji� �

By ���� �k  Ui � Ui�� �k 
 fj	i 
 h� � fi 
 fj	i 
 g��� From this� saturation follows�
Finally we show how to build the 	�chain f�Ui� fi�gi��� Set U� � A�� the �rst

element in the enumerationHo� Next suppose to have built Ui and consider Ai���
As observed above there are f  	� Ui and g  	 � Ai��� By amalgamation we
get� for some U �

i � two morphisms f
�  Ui � U �

i and g
�  Ai�� � U �

i �

� If j � ji � i and Uj � Ci then apply amalgamation to f � 
 fj	i 
 hi and
f � 
 fj	i 
 gi obtaining k  U �

i � U �
i�� and k

�  U �
i � U �

i��� It just remains to select
Ui�� isomorphic to U

�
i�� and in Ho�

� Otherwise it is enough to choose an object Ui�� in Ho isomorphic to U �
i � The

morphism from Ai�� to Ui�� is then immediately obtained by composition� �

Corollary ����	� The category Bif ip has a universal homogeneous object�

Proof� We have shown in proposition �����	 that Bif ip is an 	�algebroidal
category with the amalgamation property� Hence theorem ������ can be applied�
�

Figure ��� draws a rough correspondence between domain theoretical and
category theoretical notions�

��� Representation

We are interested in the problem of representing subdomains of a domain D
as certain functions over D� In particular we concentrate on retractions and
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in a cpo D in Cpoip in Cpo

� initial object terminal object
directed lub ��colimits �op�limits
monotonic functor F ip functor F �not always�
continuous ��cocontinuous locally continuous
algebraic algebroidal

Figure ��� Domain�theoretical versus category�theoretical notions

projections� the idea being that subdomains are represented by the image of
such morphisms� When working with continuous cpo�s� not every retraction �or
projection� corresponds to a domain �i�e� an 	�algebraic cpo�� For this reason�
one focuses on the collection of �nitary retractions� which are by de�nition those
retractions whose image forms a domain�

The theory is simpler when dealing with ��nitary� projections� Then it is not
di#cult to show that the collection of �nitary projections FP�D� over a bi�nite
domain D is again a bi�nite� In other words the collection of subdomains of a
bi�nite domain can be given again a bi�nite domain structure� Having found
a representation of domains� we address the problem of representing domain
constructors� e�g� product� exponent� sum� lifting� It turns out that the basic
domain constructors we have considered so far can be represented in a suitable
technical sense�

The collection Ret�D� of retractions on a cpo D� is the collection of �xpoints
of the functional �f�f 
 f � and the image r�D� of a retraction r on D� coincides
with the collection of its �xpoints� Hence general results on �xpoints can be
immediately applied� We will see that under suitable hypotheses Ret�D� and
r�D� enjoy certain algebraic properties�

De�nition ����	 Let D be an algebraic cpo and r � Ret�D�� We say that r is
�nitary if r�D� with the induced order is an algebraic cpo� We say that r is a
closure if id � r�

Proposition ����
 Let D be a cpo� Then�

��� If f  D � D is a continuous morphism then Fix�f� � fd � D j f�d� � dg
is a cpo�

��� Ret�D� � Fix��f  D � D�f 
 f� is a cpo�

��� If r � Ret�D� then r�D� � Fix�r� is a cpo�
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Proposition ����� Let D be an algebraic cpo and r � Ret�D�� Then K�r�D���
the collection of compacts in r�D�� can be characterized as follows�

K�r�D�� � frd j d � K�D� and d � rdg �

In particular� if p is a projection then K�p�D�� � p�D� � K�D�� and if c is a
closure then K�c�D�� � c�K�D���

Proof� Suppose ry � K�r�D��� Since D is algebraic ry �
W
fx � K�D� j x �

ryg� So

ry � r�ry� � r�
�
fx � K�D� j x � ryg� �

�
frx j x � K�D� and x � ryg �

Since ry � K�r�D��� we have �z �ry � rz and z � K�D� and z � ry�� This z
gives the desired representation of ry� Vice versa suppose d � K�D� and d � rd�
Let $ � r�D� directed� Then

d � rd �
�
$ � �y � $�rd � ry � y� �

The statements concerning projections and closures are an immediate corollary
of this characterization of the compact elements� �

Proposition ����� If D is a bounded complete cpo and r � Ret�D� then r�D�
is bounded complete�

Proof� Let X � r�D� and suppose y � r�D� is an upper bound for X� Then X
is bounded in D and therefore

W
DX exists� We show

W
r�D�X � r�

W
DX��

� 	x � X �x �
W
DX� implies 	x � X �x � rx � r�

W
DX��� So r�

W
DX� is an

upper bound�

� If y is an upper bound for X in r�D� then it is also an upper bound for X
in D� so

W
DX � y� This implies r�

W
DX� � ry � y� So r�

W
DX� is the lub in

r�D�� �

Let D be an �	��algebraic cpo and r � Ret�D�� Can we conclude that r�D�
is again an �	��algebraic cpo� The answer is no� In general it can only be shown
that r�D� is a continuous cpo �see chapter ���

Example ����� Let Q and R be the rational and real numbers� respectively� Let
D � D� � D� where D� � f�	� q� j q � Qg� and D� � f�	� r�j r � R � f�gg�
ordered by inclusion� Consider the projection p de�ned by�

p��	� q�� � �	� q� p��	� r�� � �	� r� �

The domain D is an 	�algebraic complete total order with D� as compact ele�
ments� On the other hand im�p� fails to be algebraic�
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For the collection Ret�D� things get even worse� For example it has been shown
by Ershov �see exercise ������	 in �Bar���� that the collection of retractions over
P�	� is not a continuous lattice� hence a fortiori not the image of a retraction�
This also shows that the collection of �xpoints of a continuous function does not
need to be a continuous cpo� as Ret�D� � Fix��f�f 
 f��

We will consider retractions again in the context of stable domain theory
�section ������ For the time being we will concentrate on the simpler case of
�nitary projections� Let D be a bi�nite domain� The notion of �nitary projection
over D provides an adequate representation of the idea of subdomain� moreover
the collection of �nitary projections over D� FP�D�� is again a bi�nite domain�
This is a powerful result that has applications for instance to the interpretation of
higher�order calculi �see section ������ The following notion of normal subposet
is useful in studying projections�

De�nition ����� �normal subposet� Let �P��� be a poset� A subset N � P
is called a normal subposet if 	x � P �� x��N is directed� We denote with N�P �
the collection of normal subposets of P ordered by inclusion�

Theorem ����� Let D � Bif � Then�

��� There is an isomorphism between the collection of normal subposets of the
compact elements and the �nitary projections over D� N�K�D�� �� FP�D��

��� FP�D� is an 	�algebraic complete lattice�

Proof� We remark that if p is a projection and x � D then

�� x� � p�D� � �� p�x�� � p�D� �

Moreover� if p is a �nitary projection then K�p�D�� � N�K�D��� We use the
hypothesis that p�D� is algebraic to show 	x � D �� x� � K�p�D�� � �� p�x�� �
K�p�D�� that is directed�

We now proceed with the proof of statement ��� while leaving ��� as an
exercise� If p is a �nitary projection then de�ne Np � K�p�D��� This is a normal
subposet of K�D� by the remark above� Vice versa� if N � N�K�D�� we de�ne

pN �d� �
�
��� d� �N� �

This is well de�ned because �� d� �N is directed� These two functions de�ne an
isomorphism between FP�D� and N�K�D��� �

Exercise ����	 Show that if D is a Scott domain then FP�D� � �D� D�� Hint� given
f � D � D consider Xf � fx 	 K�D� j x � fxg and de�ne Nf � U��Xf�� The set Nf

corresponds to a �nitary projection pNf
� Set � � �D � D�� �D� D� as ��f� � pNf

�
Note that this property fails for bi�nite domains �cf� exercise ���	�����
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Let U be a universal domain for some relevant category of domains� say Bif�
Then every domain is isomorphic to the image of a �nitary projection over U �
Furthermore� it can be shown that certain basic operators over domains can be
adequately represented as continuous functions over FP�U�� As a fall�out� one
gets a technique to solve domain equations via the standard Kleene least��xed
point theorem�

Observe that there is an injective function Im from the poset FP�U� to the
category Bif ip �this is immediately extended to a functor�

Im � �p � FP�U��p�U� �

Let F  Bif ip �Bif ip � Bif ip be a binary functor� The representation problem
for F consists in �nding a continuous function RF  FP�U� � FP�U� � FP�U�
such that the following holds� modulo order�isomorphism

F �p�U�� q�U�� � RF �p� q��U� �

Proposition ���� Product and Exponent are representable�

Proof� In showing that Bif is a CCC �proposition ������� one uses the fact
that if p � FP�D� and q � FP�D� then ��d� e���p�d�� q�e�� � FP�D � E� and
�f��q 
 f 
 p� � FP�D � E�� If U is a universal �homogeneous� domain for Bif ip

then we may assume the existence of the injection�projection pairs

���u� u���hu� u�i� �u�����u�� ���u���  �U � U�� U �i� j�  �U � U�� U �

It just remains to combine the two ideas to de�ne the operators representing
product and exponential

��p� q���u�hp����u��� q����u��i ��p� q���u�i�q 
 j�u� 
 p� �

For instance� in the case of the exponential� we compose ��p� q���u��q 
 u 
 p� 
FPU � FPU � FPU�U with �r�i 
 r 
 j� �

Remark ����	� It is good to keep in mind that Im is not an equivalence of
categories between FP�U� and Bif ip� as FP�U� is just a poset category� This
point is important when one interprets second order types �see section �	��

Exercise ������ ��� Verify in detail that we can apply the �xed point proposition �����
to the domain FP�U� in order to get initial solutions of domain equations in Bif ip� ���
Consider the representation problem for the operators of coalesced sum and lifting� �
�
Consider the representation problem in the case we replace ��nitary� projections with
��nitary� retractions�

Finally� we point out that our results about the limit�colimit coincidence
�theorem ������� and the existence of a universal homogeneous object �theorem
������� can be also applied to categories of cpo�s and stable functions �cf� exercise
���������



Chapter �

Values and Computations

When considering the ��calculus as the kernel of a programming language it is
natural to concentrate on weak reduction strategies� that is strategies where eval�
uation stops at ��abstractions� In presenting the semantic counterpart of these
calculi it is useful to emphasize the distinction between value and computation�
A �rst example coming from recursion theory relies on the notions of total and
partial morphism� In our jargon a total morphism when given a value always
returns a value whereas a partial morphism when given a value returns a possi�
bly in�nite computation� This example suggests that the denotation of a partial
recursive algorithm is a morphism from values to computations� and that values
are particular kinds of computations�

In domain theory the divergent computation is represented by a bottom el�
ement� say �� that we add to the collection of values� This can be seen as
the motivation for the shift from sets to �at domains� More precisely� we have
considered three categories �cf� de�nition ��������

� The category Dcpo in which morphisms send values to values� say D � E�
This category is adapted to a framework where every computation terminates�

� The category pDcpo which is equivalent to the one of cpo�s and strict func�
tions� and in which morphisms send values to computations� say D � �E��� This
category naturally models call�by�value evaluation where functions� arguments are
evaluated before application�

� The category Cpo in which morphisms send computations to computations�
or �D�� � �E��� In the models of the untyped ��calculus that we have presented
the distinction value�computation can actually be hidden by regarding � as an
element with the same status of a value�

Another framework where the distinction between values and computations
is useful is that of �xpoint extensions of typed ��calculi� Consider for example a
simply typed ��calculus and its Curry�Howard correspondence with the minimal
propositional logic of implication �cf� chapter ��� Suppose that we want to
enrich the calculus with a �xed point combinator on terms� say Y � allowing for

���
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fully recursive de�nitions� Which type should we assign to Y � One possibility
considered in chapter 
 is to introduce a family of combinators Y � of type ���
�� � �� Then the correspondence with the logic is blurred as Y ���x  ��x� has
type � for any type%proposition �� i�e� every type is inhabited%provable� Another
possibility is to regard Y ���x  ��x� as a computation of a proof� that is to assign
to Y � the type �c��� � c���� � c���� where c��� is the type representing the
computations over �� Then� at the cost of a complication of the formal system�
we may keep a correspondence between propositions and a subset of types�

In these examples� we have roughly considered computations as values en�
riched with an element denoting the divergent computations� There are however
other possible notions of computations that arise in the study of programming
languages� For instance� if we wish to model non�determinism then a computa�
tion may consist of a collection of values representing the possible outcomes of a
program�

Which are then the common properties of these notions of computation� The
notion of monad that we describe in section ��� seems to provide a good gen�
eral framework� We present a general technique to produce a monad out of a
category of partial morphisms� In particular the familiar category of dcpo�s is
revisited in this perspective� In section ��� we introduce a call�by�value version
of the language Pcf studied in chapter 
 which re�ects the properties of the
function space in a category of partial morphisms� By a variant of the technique
presented in theorem 
���
� we prove the adequacy of the semantic interpretation
with respect to the operational semantics� In section ��� we describe a class of
abstract machines� known as environment machines� for the mechanical evalua�
tion of weak ��calculi� In section ��� we consider the full abstraction problem
for the call�by�value ��calculus� We show that a canonical �lter model is fully
abstract for the calculus enriched with a parallel join operator� In section ��� we
revisit the continuation based semantics introduced in section ��
 from a monadic
viewpoint� We introduce a typed call�by�value ��calculus enriched with control
operators for the manipulation of the execution �ow and study its Continuation
Passing Style �Cps for short� translation into a standard ��calculus� The typ�
ing of control operators allows to push from intuitionistic to classical logic the
Curry�Howard correspondence between typed ��calculi and propositional calculi�
In this respect Cps translations can be regarded as a way to extract an e�ective
content form a classical proof� We also discuss simple variants of environment
machines which can handle control operators�


�� Representing Computations as Monads

In this section� following �Mog���� we present the notion of computation�as�
monad� The monads of partial computations� continuations� and non�deterministic
computations will be our leading and motivating examples�
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Monads �or triples� are an important category�theoretical notion� we refer
to section B�� for some basic constructions and to �BW��� ML��� for a deeper
analysis� What is important here� is to state which are the basic computational
properties we wish to formalize� Suppose that C is our category of data types�
An endofunctor T  C� C de�nes how to go from a certain collection of values
to the computations over such values� A natural transformation �  idC � T
determines how a value can be seen as a computation� Another natural transfor�
mation �  T � � T explains how to �atten a computation of a computation to
a computation� These requirements plus certain natural commutation properties
are expressed by the following equations �cf� de�nition B�����

�A 
 �TA � �A 
 T�A � idTA �A 
 �TA � �A 
 T�A �

We say that a monad satis�es the mono requirement if �A is a mono� for any
object A�

Example ��	�	 We give three basic examples of monads with a computational
�avour in the category of sets� We leave to the reader the needed veri�cations
�these monads satisfy the mono requirement��

� Partial computations� De�ne � ��  Set� Set as�

�X�� � X � f�Xg� where �X �� X

�f���z� �

�
f�z� if z � X
�Y otherwise

where f  X � Y

�X�x� � x

�X�z� �

�
z if z � X
�X otherwise �

� Non�deterministic computations� De�ne P  Set� Set as�

P �X� � Pfin�X� P �f��a� � f�a�� where f  X � Y
�X�x� � fxg �X�z� �

S
z �

� Continuations� We suppose given a set of results� R� containing at least two
elements� In order to understand the basic trick behind the notion of computa�
tion� one should think of the double negation interpretation of classical logic into
intuitionistic logic �TvD���� Let �X � �X � R�� and de�ne C  Set� Set as�

C�X� � ��X
C�f� � �g � ��X��h � �Y�g�h 
 f�� where f  X � Y
�X�x� � �h � �X�h�x�
�X�H� � �h � �X�H��g � ��X�g�h�� �
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First� let us concentrate on the monads of continuations and non�deterministic
computations� We introduce two variants of the imperative language studied in
chapter �� and analyse their interpretations in suitable monads �for the sake of
simplicity we leave out recursion and expressions��

LC s � a jj skip jj s& s jj stop
LN s � a jj skip jj s& s jj s � s �

In LC we have introduced a statement stop whose intuitive e�ect is that of ter�
minating immediately the execution of a program and return the current state�
As already discussed in section ��
 the �direct� semantics used in section ��� is
not adequate to interpret commands which alter in some global way the control
�ow� For instance we should have ��stop& s�� � ��stop��� for any s� which is hopeless
if we insist in stating ��stop& s�� � ��s�� 
 ��stop��� The notion of continuation was
introduced in section ��
 precisely to model operators that explicitly manipulate
the control �ow�

Let ' be the collection of states� It is natural to take ' as the collection of
results� Then the monad of continuations is given by

C�'� � '� �'� '� �

The semantics of a program is a morphism from ' to C�'�� The interpretation
for LC is de�ned as follows �

��skip�� � �� ��a�� � �� 
 a� for a  '� '
��s�& s��� � �� 
 C���s���� 
 ��s��� ��stop�� � ����f�� �

Exercise 	���� Verify that ��a� b�� � 	��	f�f�b�a���� and ��stop� s�� � ��stop���

In LN we have introduced an operator � for the non�deterministic composition
of two statements� The intuition is that the statement s��s� can choose to behave
as either s� or s�� It is then natural to consider the interpretation of a statement
as a morphism from ' to Pfin�'�� where ' is the collection of states� Hence�
using the monad of non�deterministic computations we de�ne

��skip�� � �� ��a�� � �� 
 a� for a  '� '
��s�& s��� � �� 
 P ���s���� 
 ��s��� ��s�� s��� � �����s���� � ��s���� �

An obvious remark is that the interpretations for LC and LN are formally
identical but for the fourth clause� As a matter of fact we have been using a
general pattern in these interpretations which goes under the name of Kleisli
category� Given a monad �T� �� �� over a category C the Kleisli category KT is
formed as follows

KT � C KT �d� d�� � C�d� Td��
idd � �d  d� Td f 
 g � �d�� 
 Tf 
 g for g  d� d�� f  d� � d�� in KT �

�This de�nition is slightly more abstract
 but equivalent to the one presented in section ����
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The reader will �nd in �Mog��� more information on this construction� and on its
use in the interpretation of a meta�language where the notion of computation is
treated abstractly� as a monad with certain desirable properties� Going back to
the monads of power�sets� we hint to an application to the modelling of parallel
computation� We illustrate the idea on yet another variant of the imperative
language considered above

LP s � a jj skip jj s& s jj s k s �

The intuitive semantics of s� k s� is that of a parallel execution of the state
transformations performed by s� and by s�� Since s� and s� share the same state
di�erent orders of execution might generate di�erent �nal results� as is clear� for
instance� in the program x � �&x � 	 k x � �� which upon termination can
associate to x either 	 or ��

In de�ning the semantics one has to establish what modi�cations of the state
are atomic� i�e� are executed as non�interruptible operations� For instance if we
assume that assignment is an atomic operation then the program x � 	 k x � �
will terminate with x having value 	 or �� and nothing else� The semantics of
a program is a collection of sequences of state transformations� For instance we
can take

��s�� � Pfin��'� '���

where �' � '�� are non�empty �nite sequences of functions� In this case it
is clear that we can distinguish the interpretations of x � 	&x � x � � and
x � �� The interpretation of a parallel composition is an operator that shu�es
the sequences in all possible combinations�

Exercise 	���� De�ne an interpretation of the language LP in Pfin���� �����

In the presence of divergent programs things are a bit more complicated�
What is needed is an analogous of the power�set construction in a category of
domains� Various solutions to this problem will be presented in chapter �� Let
us provisionally call PD the powerdomain operator� The interpretation of the
imperative language with recursion is given in a domain of resumptions �see� e�g��
�Plo���� which is the least solution of the following equation

R � '� PD�' � �'�R�� �

A resumption is a function that takes a state and returns a collection of elements
that can be either a state or a pair �state� resumption�� Intuitively� a program is
interpreted as a possibly in�nite sequence of state transformations �cf� exercise
������ each state transformation in the sequence models an operation that the
program can perform atomically on the memory�
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Partial morphisms� In example ����� we have de�ned the monad of partial
computations over Set� We show next that the monad of partial computations
can be derived in a systematic way from a general notion of partial morphism�
We then apply this connection between partial morphisms and monads of partial
computations to the categories of domains introduced in the previous chapters�

It is standard to consider an equivalence class of monos on an object as a
generalized notion of subset� A partial morphism from a to b can then be repre�
sented as a total morphism from a subset of a to b� In most interesting examples
the domain of convergence of a partial morphism is not arbitrary� For instance
it is open �as in Dcpo�� recursively enumerable� etcetera� It is then reasonable
to look for a corresponding categorical notion of admissible mono as speci�ed by
the following de�nition�

De�nition ��	�� �admissible family of monos� An admissible family of monos
M for a category C is a collection fM�a� j a � Cg such that�
�� If m � M�a� then m is a mono m  d� a�
��� The identity on a is in M�a�� ida � M�a��
�	� M is closed under composition i�e�

m�  a� b � M�b��m�  b� c � M�c� � m� 
m�  a� c � M�c� �

�
� M is closed under pullbacks i�e�

m  d� b � M�b�� f  a� b � f���m� � M�a� �

An admissible family of monos M on C enjoys properties which are su#�
cient for the construction of a related category of partial morphisms pC� � A
representative for a partial morphism from a to b is a pair of morphisms in C�
�m� f�� where m  d� a � M�a� determines the domain and f  d � b the func�
tional behavior� The category pC has the same objects as C and as morphisms
equivalence classes of representatives of partial morphisms� namely

pC�a� b� � f�m� f � j m  d� a � M�a�� f  d� bg

where �m  d� a� f  d� b� is equivalent to �m�  d� � a� f �  d� � b� i� there is
an iso i  d� d� in C such that m� 
 i � m and f � 
 i � f �

To specify domain and codomain of a partial morphism� we write �m� f �  a 

b� and we write �m� f�  a 
 b for a representative� Given �C�M� there is a
canonical embedding functor� Emb  C� pC� de�ned as

Emb�a� � a� Emb�f� � �id� f � �

�We refer to �CO��
 Mog��
 RR��� for extended information on the origins and the devel�
opment of the theory� The de�nition of pCCC can already be found in �LM����
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De�nition ��	�� �lifting� Given a category enriched with a collection of ad�
missible monos� say �C�M� and an object a in C the lifting of a is de�ned as a
partial morphism� open  �a�� 
 a� such that �cf� de�nition �
����

	b � C	f  b 
 a�(f �  b� �a���f � open 
 f �� � �����

The following theorem characterizes the lifting as the right adjoint of the embed�
ding functor and shows that it induces a monad �cf� section �����

Theorem ��	�� �� The partial category �C�M� has liftings i� the embedding
functor has a right adjoint� ��� The lifting functor induces a monad over C�

Proof hint� If f  b 
 a then we de�ne f �  b � �a�� according to condition
���� ��� ��� We de�ne a lifting functor� Lift  pC� C� as

Lift�a� � �a��� Lift�f� � �f 
 opena�
�� where f  a 
 b �

Next we de�ne a natural iso

�  pC� � �� C� �Lift �� �a	b�f� � f � �

��� Given the natural iso � � we de�ne

�a�� � Lift�a�� opena � ����id�a��� �

��� This is a mechanical construction of a monad out of an adjunction �cf� section
B���� We de�ne �a � �ida��� and �a � ���a����	a�opena 
 open�a��

�� �

Exercise 	���� Find a notion of admissible mono in Set that generates the monad of
partial computations de�ned in the example ���������

The notion of partial cartesian closed category �pCCC� arises naturally when
requiring closure under the partial function space�

De�nition ��	�� �pCCC� Let M be an admissible collection of monos on the
category C� The pair �C�M� is a pCCC �partial cartesian closed category� if C
is cartesian and for any pair of objects in C� say a� b� there is a pair

�pexp�a� b�� peva	b  pexp�a� b�� a 
 b�

�pev for short� with the universal property that for any f  �c � a� 
 b there
exists a unique h  c � pexp�a� b� �denoted p�a	b	c�f�� or p��f� for short� such
that pev 
 �h� ida� � f �
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In other words� for any object b there is a functor partial exponent on b� say
b 
  pC� C� that is right adjoint to the product functor � b  C� pC

pC� � b� � �� C� � b 
 � �

By instantiating this natural isomorphism� we obtain the following version of
currying a� b 
 c �� a� �b 
 c�� By virtue of this isomorphism we can safely
confuse b 
 c with pC�b� c�� We remark that in any pCCC the lifting can be
de�ned as �a�� � �
 a� with the morphism open � pev 
 hid� (i�

Every pCCC has an object '� called dominance� that classi�es the admissible
subobjects �in the same sense as the object of truth�values � classi�es arbitrary
subobjects in a topos��

Proposition ��	� �dominance� In every pCCC the object ' � ���� � �
 ��
called dominance� classi�es the admissible monos in the following sense� where
� � p��(�  � � '�

	a	m � M�a��(�  a� ' such that �m� (� is a pullback for ����� �����

Exercise 	���� Given a partial category de�ne an admissible subobject functorM� � �
Cop � Set� Show that the classi�er condition ��� can be reformulated by saying that
there is a natural isomorphism between the functor M� �� and the hom�functor C� ����

Exercise 	����� Show that in a pCCC the following isomorphism holds� a � � 
�
a � 	�

In order to practice these de�nitions� let us consider the familiar category of
directed complete partial orders and continuous morphisms �Dcpo�� In Dcpo
we can choose as admissible monos �i�e� subobjects� the ones whose image is a
Scott open� Then the dominance is represented by Sierpinski space O� the two
points cpo� The dominance O classi�es the admissible monos because any Scott
open U over the dcpo D determines a unique continuous morphism� f  D � O
such that f����� � U �this point was already discussed in section ��� and it will
be fully developed in section �	����

De�nition ��	�	
 Let Dcpo be the category of dcpo�s and continuous mor�
phisms� We consider the following class of monos in Dcpo�

m  D � E � MS i� im�m� � �S�E� �

We leave to the reader the simple proof of the following proposition�

Proposition ��	�	� �� The classMS is an admissible family of monos for the
category Dcpo� ��� The related category of partial morphisms is a pCCC�
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We conclude by relating various categories of dcpo�s� Let D�E be dcpo�s�
A partial continuous morphism f  D 
 E is a partial morphism such that its
domain of de�nition is a Scott open �Dom�f� � �S�D�� and its total restric�
tion� fjDom�f�  Dom�f� � E� is Scott continuous� We denote with pDcpo the
category of dcpo�s and partial continuous morphisms�

Let D�E be cpo�s� Recall from de�nition ������ that a strict continuous
morphism f  D � E is a �Scott� continuous morphism such that f��D� � �E�
We denote with sCpo the category of cpo�s and strict continuous morphisms�

Exercise 	����� ��� Calculate the dominance of �MS�Dcpo�� ��� De�ne the equiva�
lences among the category of partial morphisms generated by �MS �Dcpo�� the category
sCpo� and the category pDcpo�


�� Call�by�value and Partial Morphisms

We apply the idea of distinguishing between total and divergent computations
which is implicit in the monad of partial computations to the design of a variant
of the language Pcf �see chapter 
�� This gives us the opportunity to revisit the
general problem of relating the interpretation of a programming language with
the way the programming language is executed�

We may start from the following question �reversing the historical evolution
of the topic� for which kind of simply typed ��calculus does a pCCC provide
an adequate interpretation� A crucial point is that we follow a call�by�value
evaluation discipline� hence in an application the evaluator has to diverge if the
argument diverges� To be more precise� we have to �x the rules of evaluation and
observation� We stipulate the following

��� The evaluator has to stop at ��abstractions�

��� It is possible to observe the termination of a computation of a closed term
at all types� equivalently one may say that programs have arbitrary� possibly
functional� types�

Contrast these design choices with the de�nition of the evaluator �op in chapter

� There evaluation followed a call�by�name order and observation of termination
was allowed only at ground types� As in chapter 
� we wish to relate operational
and denotational semantics� The technical development of the adequacy proof
goes through three main steps�

��� A language based on a �xed point extension of the simply typed ��calculus
is introduced and a call�by�value evaluation of closed terms is de�ned�

��� A standard interpretation of the language in the pCCC pDcpo is speci�ed�

��� A notion of adequacy relation is introduced which allows to relate closed
terms and denotations�

It is �rst proved that the evaluation of a closed term converges to a canonical
term i� its denotation is a total morphism� As a corollary� a result of adequacy
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� � �  �

�Asmp�
x  � � �
� � x  �

�
I�
�� x  � � M  �

� � �x  ��M  � 
 �
�
E�

� � M  � 
 � � � N  �
� � MN  �

�Y �
� � M  �� 
 ��
 �

� � Y �M  �

Figure ��� Typing rules for the call�by�value typed ��calculus

of the interpretation with respect to a natural observational preorder is obtained�
The related proof technique introduces a family of adequacy relations indexed
over types that relate denotations and closed terms� These adequacy relations
are a variant of the relations already de�ned in the adequacy proof for PCF
�chapter 
�� They combine ideas from the computability technique �a technique
used for proofs of strong normalization� see theorems �����	 and �������� with
the inclusive predicates technique discussed in chapter 
�

Call�by�value �Y �calculus� We consider a variant of the �Y �calculus de�ned
in chapter 
 suited to the call�by�value viewpoint� Types and raw terms are
de�ned by the following grammars� We distinguish a special type � which is
inhabited by the constant �� This type corresponds to the terminal object and
it is used to de�ne a lifting operator� according to what can be done in every
pCCC�

Type Variables tv � t jj s jj � � �
Types � � � jj tv jj �� 
 ��
Term Variables v � x jj y jj � � �
Terms M � � jj v jj ��v  ��M� jj �MM� jj �Y �M� �

Contexts � are de�ned as in chapter �� Provable typing judgments are inductively
de�ned in �gure ��� �in the following we often omit the type label from the Y
combinator��

The types of the Y clause may seem a bit puzzling at a �rst glance� One can
give a semantic justi�cation by recalling that in a pCCC we de�ne the lifting as
�a�� � ��
 a�� on the other hand the partial function space� say
� relates to the
total function space� say�� as a 
 b � a� �b��� So ��
 ��
 � is the �same�
as ����� � ����� and the implicit type we give to Y is ����� � ����� � �����
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���
� �� �

�
I� �x  ��M �� �x  ��M

�
E�
M �� �x  ��M � N �� C � M ��C ��x� �� C

MN �� C

�Y �
M��x  ��Y M� �� C

YM �� C
�x fresh�

Figure ��� Evaluation rules for the call�by�value typed ��calculus

that is the usual type of a �xed�point combinator over ����� One good reason to
restrict recursion to lifted objects is that these objects do have a least element( A
continuous function over a directed complete partial order without a least element
does not need to have a �x�point�

Evaluation� In chapter 
 we have de�ned the reduction relation as the re�ex�
ive� transitive closure of a one�step reduction relation �op� In the following we
follow a di�erent style of presentation in which evaluation is presented as a re�
lation between programs� i�e� closed terms� and canonical forms� In the case
considered here� the canonical forms are the closed� well�typed terms C�C �� � � �
that are generated by the following grammar �other examples of de�nition of the
evaluation relation can be found in section ����

C � � jj ��v  ��M� �

The evaluation relation �� relates closed terms and canonical forms of the same
type� Its de�nition is displayed in �gure ����

We write M � if �C �M �� C�� Note that the de�nition of the relation ��
gives directly a deterministic procedure to reduce� if possible� a closed term to a
canonical form� In particular� canonical forms evaluate to themselves�

Interpretation� In order to de�ne an interpretation of our call�by�value ��
calculus we concentrate on the category of directed complete partial orders and
partial continuous morphisms� Then� as usual� there is a least �xed point operator
over lifted objects that is calculated as the lub of an inductively de�ned chain�

Let Dcpo be the collection of dcpo�s� We give a type interpretation that
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��� ��� � �  ��� �(		
��
�Asmp� ���x�  ���� � � � � �xn  �n� � xi  �i�� � �n	i
�
I� ��� � �x  ��M  � 
 � �� � p������ x  � �M  � ���
�
E� ��� � MN  � �� � pev 
 h��� �M  � 
 � ��� ��� � N  ���i
�Y � ��� � YM  ��� �

W
n�� f�n�

Figure ��� Interpretation of the call�by�value ��calculus in pDcpo

depends on an assignment �  tv� Dcpo as follows

����� � � �the terminal object�
��t�� � ��t�
��� 
 � �� � �����
 ��� �� �the partial exponent� �

The interpretation of a judgment �x�  ���� � � � � �xn  �n� � M  � is a partial
morphism of type ������ ������ � � � � � ���n�� 
 ����� �� associates to the left� as
de�ned in �gure ����

� If � M  �� that is the term is closed� then the interpretation f � ��� 
 ��� is
either a divergent morphism or a point in ������ We write f � in the �rst case and
f � in the second case� We also write M � if ��M �� �� and we denote with � the
diverging morphism�

� In ���� (		
�� is the unique total morphism into ��

� In �
E�� the operation h � i is a partial pairing� that is it is de�ned only if its
arguments are both de�ned�

� In �Y �� let g be ��� �M  ��
 ��
 ���� f�	� be the divergent morphism� and
f�n � �� � pev 
 hg� id 
 f�n�i� The morphism id  a 
 pexp��� a� is uniquely
determined by the identity over a� and the morphism opena  pexp��� a�
 a�

As in chapter � we can proceed by induction on the size of the typing proof
to establish the following properties of substitution�

Lemma ��
�	 �substitution� If �� x  � � M  � � and � � C  � then ��
� � M �N�x�  � � ��� ��� �M �N�x�  � �� � ���� x  � �M  � �� 
 hid� ��� � C  ���i�

Adequacy� We want to prove that given a well typed closed term M � M � i�
M �� It is easy to show that if M � then M � as the interpretation is invariant
under evaluation and the interpretation of a canonical form is a total morphism�
In the other direction the naive attempt of proving �M � � M �� by induction
on the typing of M does not work� Therefore� we associate to every type � an
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adequacy relation R� relating denotations and closed terms of type � �cf� chapter

�� Adequacy relations enjoy the property

�f R�M and f �� � M �

moreover they enjoy additional properties so that a proof by induction on the
typing can go through�

De�nition ��
�
 �adequacy relation� A relation S � ��� 
 ��� � �o
� is an

adequacy relation of type � if it satis�es the following conditions�

�C��� �fSM and f ���M �
�C��� �fSM and M �� C and M � �� C�� fSM �

�C��� �SM� for any M � �o
�

�C��� �ffngn�� directed in ���
 ��� and 	n fn SM�� �
W
n�� fn�SM �

We denote with AR� the collection of adequacy relations of type �� For any type
�� the relation f���M� jM � �o

�g� is an adequacy relation of type ��

It is interesting to observe certain geometric properties of adequacy relations�
To this end we make explicit a cpo structure on the collection of closed terms�
De�ne an equivalence relation� say  � on terms by stating that

M  N i� �M � and N �� or �C �M �� C and N �� C� �

Given a type � consider the quotient �o
��  � with a �at order obtained by as�

suming that the equivalence class of diverging terms is the least element� and all
other equivalence classes are incomparable�

We can now consider E � ��� 
 ��� � ��o
��  � as the product cpo� By

de�nition� a set P � E is an admissible predicate �cf� inclusive predicates in
section 
��� if it is closed under directed sets� Note that any admissible predicate
P determines a relation SP over ���
 ���� �o

� as follows

�f�M� � SP i� �f� �M �	� � P �

Adequacy relations can be seen as a particular case of admissible predicates�

Exercise 	���� Let U � f�f� �M �	� j f � implies M �g and L � f��� �M �	� j
M closedg� Verify that U and L are admissible predicates� Next show that the ad�
missible predicates included between L and U are in bijective correspondence with the
adequacy relations�

De�nition ��
�� Given an assignment �  tv�
S
t�tvARt� such that ��t� � ARt

for any t� we associate to every type � a relation R� � ���
 �����o
� as follows�

R� � f�f�M� j f � or �f � and M ��g
Rt � ��t�
R��� � f�f�M� j �f � � M �� and 	d�N �dR� N � �pev 
 hf� di�R� MN�g �
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Proposition ��
�� The relation R� is an adequacy relation of type �� for any
type ��

Proof� We proceed by induction on the structure of ��

� By de�nition of R�

t By de�nition of ��

� 
 � We verify the four conditions�
�C��� By de�nition of R��� �
�C��� Suppose �fR���M and M �� C and M � �� C�� First observe

�M �� C and M � �� C and MN �� C �� impliesM �N �� C � �����

The interesting case arises if pev 
 hf� di �� Then we have to show

pev 
 hf� diR� MN implies pev 
 hf� diR� M
�N

that follows by induction hypothesis on � and property ����
�C��� �R��� M because pev 
 h�� di �� �� and dR� N implies� by induction
hypothesis on � � �R� MN �
�C��� pev 
 h

W
n�� fn� di �

W
n�� pev 
 hfn� di� but 	n �fnR��� M� and dR� N

implies 	n �pev 
 hfn� diR� MN�� The thesis follows by �C��� over R� � �

Theorem ��
�� If � � M  �� � � �x�  ���� � � � � �xn  �n�� and diR� Ci�
i � �� � � � � n then ���� �M  ��� 
 hd�� � � � � dni�R�M �C��x�� � � � � Cn�xn��

Proof� By induction on the length of the typing judgment� We adopt the
following abbreviations hd�� � � � � dni � �d and �C��x�� � � � � Cn�xn� � ��C��x��

��� ���� � �  ��� 
 �d�R� �� by de�nition of R��

�Asmp� diR�i Ci � by assumption�

�
I� We show �p������ x  � � M  � ��� 
 �d�R��� ��x  ��M ��C��x��� The �rst

condition that de�nes R��� follows by the fact that �x  ��M ��C��x� �� For the
second suppose dR� N � N �� C� and the application is de�ned� then by inductive
hypothesis we have

����� x  � �M  � �� 
 h�d� di�R� M ��C��x��C�x� �

We observe

��� pev 
 hp������ x  � �M  � ��� 
 �d� di � ����� x  � � M  � ��� 
 h�d� di�

��� M ��C��x��C�x� �� C � implies ��x  ��M ��C��x��N �� C �

��� Hence by condition �C��� follows

�pev 
 hp������ x  � �M  � ��� 
 �d� di�R� ��x  ��M ��C��x��N �
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�
E� We show �pev 
 h��� � M  � 
 � ��� ��� � N  ���i 
 �d�R� �MN���C��x��

By induction hypothesis ���� � M  � 
 � �� 
 �d�R��� M ��C��x� and ���� � N 

��� 
 �d�R� N ��C��x�� The result follows by the de�nition of R��� �

�Y� We show �
W
n�� f�n�
 �d�R� YM ��C��x�� We prove by induction that� for each

n� �f�n� 
 �d�R� Y M ��C��x�� The case n � 	 follows by �C���� For the induction
step we observe

�pev 
 hg� id 
 f�n�i�R� M��x  ��Y M ��C��x�� �

by induction hypothesis on � � M  �� 
 ��
 �� Now we use �C��� to conclude

pev 
 hg� id 
 f�n�iR� YM ��C��x�� Hence by �C��� we have the thesis� �

Corollary ��
�� �� If �M  � then M � implies M ��
��� If � � M  �� � � N  �� and ��� � M  ��� � ��� � N  ��� then in any context
C such that � C�M �  � and � C�N �  � we have C�M � � implies C�N � ��

Proof� ��� We apply the theorem ����
 in the case the context is empty�

��� We prove by induction on the structure of a context C that for any M�N
such that � C�M �  � and � C�N �  � �

��� �M  ��� � ��� � N  ��� � ��� C�M �  � �� � ��� C�N �  � �� �

Next apply the adequacy theorem to show C�M � � � C�M � � � C�N � � �
C�N � �� �


�	 Environment Machines

The e#cient reduction of ��terms is an important research topic �see� e�g�� �PJ�����
A central problem is the implementation of the substitution operation� In ��
calculus theory substitution is considered as a meta�operation whose de�nition
involves renaming of bound variables and a complete visit of the term in which
the substitution is carried on� In implementations� it is tempting to distribute the
price of substitution along the computation� The idea is to record the substitution
in a suitable data structure� the environment� which is kept on the side during
the evaluation� The environment is accessed whenever the actual �value� of a
variable is needed�

The weak ��calculus� Based on this idea we present a class of machines known
as environment machines which are related to the Categorical Abstract Machine
mentioned in section ��� �see �Cur��� for the exact connection�� We concentrate
on the implementation of the weak ��calculus� a ��calculus in which reduction
cannot occur under ��s� Terms are de�ned as usual� we omit types since they are
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���
��x�M�N �M �N�x�

���
M �M �

MN �M �N
���

N � N �

MN �MN �

Figure ��� Reduction rules for the weak ��calculus

��x�M�V �v M �V�x�
M �v M

�

MN �v M
�N

N �v N
�

V N �v V N
�

Figure ��� Call�by�value reduction strategy

not relevant to our discussion� The rules for weak reduction are shown in �gure
����

Note that the reduction relation�� generated by these rules is not con�uent�
For instance consider ��y��x�y��II�� where I is �z�z� This term can be reduced
to two distinct normal forms �x�II and �x�I� Call�by�name and call�by�value
are two popular reduction strategies for the weak reduction�

� In the call�by�name strategy rule ��� is omitted� We denote the resulting
reduction relation with �n�

� By de�nition� a value V is a term which begins with a ��abstraction� The
call�by�value reduction strategy is presented in �gure ����

Exercise 	���� Formalize a call�by�name version of the typed 	�calculus de�ned in
section ���� De�ne a translation of call�by�name in call�by�value according to the type
translation � � � � �	 � �� � � � where � is the exponentiation operator for the
call�by�name calculus�

In the study of abstract machines implementing a given strategy� one is often
interested in the evaluation relation that we conventionally denote with ��� in
order to distinguish it from the reduction relation �an example of evaluation
relation was given in �gure ����� The evaluation relation relates terms to values
�or canonical forms�� The evaluation relations ��n and ��v for call�by�name and
call�by�value� respectively� are shown in �gure ��
�
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V ��n V

M ��n �x�M
� M ��N�x� ��n V

MN ��n V

V ��v V

M ��v �x�M
� N ��v V

� M ��V ��x� ��v V

MN ��v V

Figure ��
 Evaluation relation for call�by�name and call�by�value

x�e�� e�x�
M �e�� � � � � ��x�P ��e��
MN �e�� P �e��N �e��x��

e�x�� c

M �e��M �e�c�x��

Figure ��� Weak reduction for the calculus of closures

Exercise 	���� Let s stand for n or v� Show that� �i� ��s��
�
s � and �ii� the relations

��s and �s are incomparable with respect to the inclusion relation�

A weak calculus of closures� Next we formalize the idea of environment� To
this end we de�ne a calculus of closures which are pairs of ��terms and environ�
ments� Environments and closures are mutually de�ned as follows

� An environment is a partial morphism e  Var 
 Closures where Dom�e�
is �nite �in particular the always unde�ned morphism is an environment�� and
Closures is the set of closures�

� A closure c is a term M �e� where M is a term and e is an environment�

In general we evaluate closures M �e� such that FV �M� � Dom�e�� The evalua�
tion rules for weak reduction are displayed in �gure ���� In the second rule�M �e�
can be already of the form ��x�P ��e��� Observe that the schematic formulation of
this rule is needed in order to keep environments at top level�

Environments can be regarded as a technical device to �x the non�con�uence
of the weak ��calculus� Indeed it is shown in �Cur��� that the relation �� is
con�uent on closures� Next we formalize the evaluation relations for the call�by�
name and call�by�value strategies� By de�nition� a value v is a closure ��x�M��e��
The rules are shown in �gure ����



�	� CHAPTER 
� VALUES AND COMPUTATIONS

e�x� ��n v

x�e� ��n v

M �e� ��n �x�M
��e�� M ��e��N�x�� ��n v

MN �e� ��n v

e�x� ��v v

x�e� ��v v

M �e� ��v �x�M
��e�� N �e� ��v v

� M ��e��v��x�� ��n v

MN �e� ��n v

Figure ��� Evaluation rules for call�by�name and call�by�value

�x�e�� s� � �e�x�� s�
�MN �e�� s� � �M �e�� N �e�  s�
��x�M �e�� c  s� � �M �e�c�x��� s�

Figure ��� Environment machine for call�by�name

Abstract machines� The evaluation rules described in �gure ��� are pretty
close to the de�nition of an interpreter� What is still needed is a data structure
which keeps track of the terms to be evaluated or waiting for their arguments
to be evaluated� Not surprisingly� a stack su#ces to this end� In the call�by�
name strategy� we visit the term in a leftmost outermost order looking for a
redex� During this visit the terms that appear as arguments in an application
are piled up with their environment in the stack� Therefore the stack s can be
regarded as a possibly empty list of closures that we denote with c�  � � �  cn�
The related environment machine is described in �gure ��� as a rewriting system
on pairs �M �e�� s� of closures and stacks �this formulation is due to Krivine�� At
the beginning of the evaluation the stack is empty�

In the call�by�value strategy� we need to know if what is on the top of the
stack is a function or an argument� For this reason� we insert in the stack markers
l for left and r for right that specify if the next closure on the stack is the left
or right argument of the evaluation function� Therefore a stack is de�ned as a
possibly empty list of markers m � fl� rg and closures m�  c�  � � �mn  cn� The
related environment machine is described in �gure ���	�
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�x�e�� s� � �e�x�� s�
�MN �e��s� � �M �e�� r  N �e�  s�
�v� r  c  s� � �c� l  v  s�
�v� l  �x�M �e�  s� � �M �e�v�x��� s�

Figure ���	 Environment machine for call�by�value


�� A FA Model for a Parallel ��calculus

We build a �lter model for an untyped� call�by�value ��calculus adapting the
techniques already introduced in chapter �� Following �Bou��� we show that this
model is fully abstract when the calculus is enriched with a join operator �t�
allowing for the parallel evaluation of ��terms� Evaluation converges as soon as
one of the terms converges� The join operator fails to be sequential in the sense
described in section ��� and so one can show that it cannot be de�ned in the pure
��calculus� Indeed it can be shown that in the calculus extended with the join
operator every compact element of a canonical model based on Scott continuity
is de�nable �i�e� it is the interpretation of a closed term of the �t�calculus� a
similar result was stated in chapter 
 for Pcf enriched with a parallel or�� This
result entails the full abstraction of the model�

The �t�calculus� We introduce a call�by�value� untyped ��calculus enriched
with a join operator t and construct a model for it as the collection of �lters over
a speci�cally tailored eats �cf� de�nition ������� The language of terms is de�ned
as follows

v � x jj y jj � � �
M � v jj �v�M jjMM jjM tM �

Canonical forms are the closed terms generated by the following grammar

C � �v�M jj C tM jjM t C �

Finally� the evaluation relation is de�ned inductively on closed terms as shown
in �gure ����� As usual we write M � if �C �M �� C��

Exercise 	���� Observe that a term may reduce to more than one canonical form�
Consider the reduction relation naturally associated to the evaluation relation de�ned
in �gure ����� Observe that this relation is not con�uent� e�g� �	x�	y�x��II t II� ��
	y��I t I� and �	x�	y�x��II t II� �� 	y��II t I�� This is a typical problem of weak
	�calculi �cf� section ��
�� De�ne a suitable calculus of closures �where environments
are evaluated� and show its con�uence �a solution is described in �Bou�	���
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M �� �x�M � N �� C � M ��C ��x� �� C

MN �� C

M ��M� tM� M�N tM�N �� C

MN �� C

C �� C

M �� C

M tN �� C tN

N �� C

M t N ��M t C
M �� C N �� C �

M tN �� C t C �

Figure ���� Evaluation relation for the �t�calculus

We have already proved in section ��� the adequacy of a model for a call�by�
value ��calculus in which the function space is composed of the partial continuous
functions� In the following� we build a �lter model over an eats for call�by�value�
which is a solution of the equation D � D 
 D� � More precisely we work with
total morphisms and build the initial solution of the equation D � D � �D��
in the category of algebraic complete lattices and injection�projection pairs �this
solution exists by the techniques presented in chapter � and generalized in chapter
��� � In a lattice the t operator can be simply interpreted as the lub� In the
de�nition of eats for call�by�value we have to axiomatize the strict behaviour of
the 
 operator�

De�nition ����
 �v�eats� An eats for call�by�value �v�eats� is a preorder having
all �nite glb�s and enriched with a binary operation
 which satis�es the following
properties �as usual 	 denotes a top element��

���
�� � � � � � �

� 
 � � �� 
 � �
��� � 
 �� ! � �� � �� 
 � � ! �� 
 � ��

��� � 
 	 � 	 
 	 ��� �� ! �	 
 	��
 � � � 
 � �

Rule ��� and Inequality ��� are inherited from the eats axiomatization� Inequality
��� says that 	 
 	 is the largest de�ned element� The inequality � � 	 
 	

�In op� cit� similar results are obtained for call�by�name
 in this case one works with the
equation D  �D � D���

�Following Boudol
 an equivalent presentation of the domain D is as the initial solution of
the system of domain equations D  �V ��
 and V  V � D�
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states that � is a value� this is used in the 
�elimination rule in �gure �����
Inequality ��� states that functions are strict� in other terms the behaviour on
unde�ned elements is irrelevant� for instance we can derive 	 
 � � �	 
 	�

� � Given a v�eats S� consider the collection of �lters F�S� ordered by inclusion�
We write x � if 	 
 	 � x and x � otherwise� We de�ne a strict application
operation as follows�

De�nition ����� �strict application� Given a v�eats S and x� y � F�S� de�ne

x�vy �

�
f� j � 
 � � x� � � yg if x � and y �
� 	 otherwise �

De�nition ����� �representable function� Let S be a v�eats� A strict func�
tion f over F�S� is representable if �x	y �f�y� � x�vy��

Proposition ����� Let S be a v�eats� Then� �� F�S� is an algebraic complete
lattice� ��� The strict application operation is well�de�ned and continuous in both
arguments� In particular every representable function is strict continuous�

Proof hint� ��� Follow the corresponding proof in proposition �����	� ���
Simple veri�cation� �

Proposition ����� Let T be the smallest theory including an element 	 and
satisfying the conditions in de�nition ��
�� �cf� de�nition 	�	�
�� Then every
strict continuous function over F�T � is representable�

Proof hint� First show that in the initial v�eats !i�I�i 
 �i � � 
 � implies
!�
�i�i � � � where �� �i � 	 
 	� Then the proof follows the schema presented
in proposition ������� �

Exercise 	���� Show that if T is de�ned as in proposition ��	�� then F�T � is isomor�
phic to the initial solution of the equation D � D� �D�� in the category of algebraic
complete lattices and embedding projections pairs�

De�nition ����� �interpretation� Let S be a v�eats� We de�ne an interpre�
tation function �� ��  �t�term � �Env � F�S��� where Env � V ar � F�S�
with generic element �� When interpreting a closed term we omit writing the
environment as it is irrelevant� As usual if x � S then x denotes the least �lter
containing x�

��x��� � ��x� ��MN ��� � ��M ����v��N ���

���x�M ��� � f� 
 � j � � ��M ����� ��x�g ��M tN ��� � ��M ���� ��N ��� �



��� CHAPTER 
� VALUES AND COMPUTATIONS

x  � � �
� � x  � � � M  	

�� x  � � M  �
� � �x�M  � 
 �

� � M  � 
 � � � N  � � � 	 
 	

� �MN  �
� �M  � � � N  �
� �M tN  � ! �
� �M  � � � M  �

� �M  � ! �
� �M  � � � �

� �M  �

Figure ���� Typing rules for the �t�calculus

Next we de�ne a typing system that allows to compute the interpretation� in
the sense that the interpretation of a term is the collection of types that we can
assign to it� Types �� �� � � � are elements of a v�eats� Contexts � are de�ned as
usual� The typing system is displayed in �gure �����

An environment � is compatible with a context � if x  � � � implies � � ��x��
In this case we write � � ��

Proposition ���� For any term of the �t�calculus the following holds�

��M ��� � f� j � �M  ��� � �g �

Proof� " By induction on the length of the derivation we prove that

	�	� � � �� � M  � � � � ��M ���� �

� First we observe a weakening property of the typing system �cf� lemma ������

if �� x  � �M  � then �� x  � ! �� �M  � �����

Second� we note that for any environment �� the following set is a �lter

f� j �� �� � � and � �M  ��g �����

By induction on the structure of M we show that for all �� n � 	

� � ��M ����� ���x�� � � � � � �n�xn� � �� �� � � and �� x�  ��� � � � � xn  �n �M  � � �

Let us consider the case �x�M � Fix an environment �� By ��� it is enough to
show that � � ��M ����� ��x� implies � � �x�M  � 
 � � for some �� By induction
hypothesis� �� x  � �M  � � and we conclude by 
�introduction� �
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Full abstraction� We outline the proofs of adequacy and full abstraction of
the �t�calculus with respect to the �lter model built on the initial v�eats� The
adequacy proof follows a familiar technique already discussed in section ���� We
start by specifying when a closed term realizes a type�

De�nition ����	� We de�ne a family of relations R� over closed terms as fol�
lows�

R� � �o
t �all closed terms�

R��� � R� �R�

R��� � fM jM � and 	N � R� �N � � MN � R� �g �

We write j�M  � if M � R� and x�  ��� � � � � xn  �n j�M  � if for all Ni such
that Ni � and j� Ni  �i �i � �� � � � � n� we have j�M �N��x�� � � � � Nn�xn�  ��

Proposition ����		 If � �M  � then � j�M  ��

Proof hint� We prove by induction on � that ��� ��x�M�N �Q � R� i�

M �N�x��Q � R� whenever N� �Q �� and ��� �M tN��P � R� i� �M �P tN �P � � R��
Moreover� we verify that � � � implies R� � R� by induction on the derivation
of � � � � Finally� we prove the statement by induction on the length of the
typing proof� �

Corollary ����	
 For any closed �t�term M � M � i� ��M �� � i� � M  	 
 	�

Proof� We prove that M �� C implies ��M �� � ��C�� by induction on the length
of the proof of the evaluation judgment� We observe that for any canonical form
C� � C  	 
 	� and that R��� is the collection of convergent �closed� terms� �

This concludes the kernel of the adequacy proof� The full abstraction proof
relies on the de�nability of the compact elements of the model� To this end�
we inductively de�ne closed terms M� of type �� and auxiliary terms T� � for
� � 	 
 	� in �gure �����

Exercise 	����� The de�nitions in �gure ���
 are modulo equality� where � � � if
� � � and � � �� Check that we associate a term to every type� and that equal types
are mapped to the same term�

Theorem ����	� For all types �� � such that � � 	 
 	 the following holds�

��M��� �� � ��T����vx �

�
��I�� if � � x
� 	 otherwise �



��� CHAPTER 
� VALUES AND COMPUTATIONS

M� � �
M��� �M� tM�

M��� � �x��T�x�M� �� � 	 
 	�
T��� � �f�I
T��� � �f��T�f��T�f� ��� � � 	 
 	�
T��� � �f�T��fM�� �� � 	 
 	�

Figure ���� De�ning compact elements

Proof� By induction on �� We just consider two cases� Case M��� � We check

� � � ���T��� � �
�� � � � � 
 � � �� 
 � � �

Case M��� � We use � �� � � �� �� ! � �� �

We have derived the adequacy of the interpretation from the soundness of
the typing system with respect to the realizability interpretation �proposition
�������� Symmetrically� the full abstraction result will be obtained from a com�
pleteness property of the typing system �which follows from the de�nability the�
orem ��������

De�nition ����	� Let M�N be closed terms� A logical preorder M �L N is
de�ned as� 	� �j�M  � � j� N  ���

Corollary ����	� Let M�N be closed terms� If M �L N then ��M �� � ��N ���

Proof� It is enough to show j� M  �� implies � M  �� by induction on ���
Let us consider the case for �� � � 
 � � From � M�  � we derive j� M�  ��
by proposition ������� Without loss of generality we assume � � 	 
 	� Then
M� �� It follows j�MM�  � � By induction hypothesis �MM�  � � We conclude
by the following chain of implications

� MM�  � � � � ��M �� � � � �� 
 � � ��M ��� � � ��

� �M  �� 
 �� � � �� � � M  � 
 � �

�

This result virtually concludes the full abstraction proof� It just remains to
formally de�ne an operational preorder and to verify that it coincides with the
preorder induced by the model�
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De�nition ����	� An applicative simulation S is a binary relation on closed
terms such that whenever MSN � �� M � implies N �� and ��� for all P � P �
implies �MP �S �NP �� Let �sim be the largest applicative simulation�

Proposition ����	� Let M�N be closed terms� If ��M �� � ��N �� then M �sim N �

Proof� It follows from the observation that f�M�N� j ��M �� � ��N ��g is a simula�
tion� �

Proposition ����	 If M �sim N then M �L N �

Proof� We suppose M �sim N � We prove by induction on � that j� M  �
implies j� N  �� �

Corollary ����
� Let M�N be closed terms� Then ��M �� � ��N �� i� M �sim N i�
M �L N �

Proof� By corollary �����
 and propositions ������� ������� �

Exercise 	����� ��� Let M�N be closed 	t�terms� De�ne�

M �apl N i� �P�� � � � � Pn�MP� � � �Pn � � NP� � � �Pn �� �

Show that M �apl N i� M �sim N � ��� Let M�N be arbitrary terms� De�ne�

M �op N i� �C such that C�M �� C�N � are closed �C�M � � � C�N � �� �

Show that for M�N closed� M �op N i� M �apl N �this is called context lemma in
the context of the full abstraction problem for Pcf� cf� chapter ���


�� Control Operators and Cps Translation

Most programming languages whose basic kernel is based on typed ��calculus�
also include control operators such as exceptions or call�with�current�continuation
�see for instance Scheme or ML�� In the following we show how to type certain
control operators and how to give them an adequate functional interpretation� As
already hinted in example ������ the monad of continuations is a useful technical
device to approach these problems�
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A ��calculus with control operators� As in section ���� we consider a simply
typed call�by�value ��calculus� This language is enriched with a ground type
num� numerals 	� �� � � �� and two unary combinators C for control and A for
abort� Formally we have

Types � � num jj �� 
 ��
Terms v � x jj y jj � � �

M � n jj x jj �v  ��M jjMM jj CM jj AM �

We brie�y refer to the related calculus as the �C�calculus� In order to formalize
the behaviour of the control operators C and A it is useful to introduce the notion
of �call�by�value� evaluation context E �cf� �FFKD����

E � � � jj EM jj ��x  ��M�E �

Note that an evaluation context is a context with exactly one hole which is not
in the scope of a lambda abstraction� Using evaluation contexts one can provide
yet another presentation of the reduction relation� First� we de�ne a collection
V of values as follows

V � n jj �v  ��M �

If we forget about type labels the one step reduction relation on terms is de�ned
as follows

��v� E���x�M�V � � E�M �V�x��
�C� E�CM � �M��x�AE�x�� x �� FV �E�
�A� E�AM � �M �

We can now provide a syntactic intuition for what a continuation for a given
term is� and for what is special about a control operator� A redex $ is de�ned
as follows

$ � ��v�M�V jj CM jj AM �

Given a term M � E�$�� the current continuation is the abstraction of the
evaluation context� that is �x�E�x�� We will see later that there is at most one
decomposition of a term into an evaluation context E and a redex $� A control
operator is a combinator which can manipulate directly the current continuation�
In particular the operator A disregards the current continuation and starts the
execution of its argument� while the operator C applies the argument to �x�AE�x��
when �x�E�x� is the current continuation�

We illustrate by an example the role of control operators in functional pro�
gramming� We want to write a function F  Tree�num�
 num where Tree�num�
is a given type of binary trees whose nodes are labelled by natural numbers� The
function F has to return the product of the labels of the tree nodes� but if it �nds
that a node has label 	� in this case it has to return zero in a constant number of
steps of reduction� Intuitively the termination time has to be independent from
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�C�
� �M  ���
� � CM  �

�A�
� �M  num
� � AM  num

where �� � � 
 num �

��v� E���x  ��M�V � � E�M �V�x��
�C� E�CM � �M��x  ��AE�x�� where CM  �
�A� E�AM � �M

Figure ���� Typing control operators and reduction rules

the size of the current stack of recursive calls� There is a simple realization of this
speci�cation that just relies on the abort operator A �more involved examples
can be found in �HF����

let F �t� � F ���x�Ax�t
where F � � �k�Y ��f��t�� if empty�t�� then 	

else if val �t�� � 	 then k	
else val �t�� � f�left �t��� � f�right �t���� �

At the beginning of the computation we have F �t� � F ���x�Ax�k�� If at some
point the exceptional branch �if val �t�� � 	 � � �� is selected then the following
computation is derived� in some evaluation context E

E���x�Ax�	�� E�A	�� 	 �

By applying a Cps translation �to be de�ned next� it is possible to obtain a purely
functional program with a similar behaviour� This is an interesting result which
�nds applications in compilers� design �App���� On the other hand� one should
not conclude that we can forget about control operators� Cps translations tend
to be unreadable� and programming directly in Cps style is a tricky business�
In practice� control operators are directly available as primitives in functional
languages such as ML and Scheme� We refer to �FFKD��� for a syntactic analysis
of a ��calculus with control operators�

Typing control operators� It is possible to type the operators C and A coher�
ently with the reduction rules as shown in �gure ���� �this typing naturally arises
in proving subject reduction� cf� proposition ������� A program is a closed term
of type num� The reduction rules ��v�� �C�� �A� de�ne a deterministic procedure
to reduce programs� In the following a subscript C indicates that we refer to the
full �C�calculus�
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Proposition ����	 �unique decomposition� Suppose �C M  � � Then either
M is a value or there is a unique evaluation context E and redex $ such that
M � E�$��

Proof� By induction on the structure of M � The only interesting case is when
M �M �M ��� Then M is not a value� �C M �  � 
 �� and �C M ��  � � for some �
�note that we cannot type A� and C alone��

� M � is a value� Then M � � �x  ��M�� If M �� is a value take E � � �
and $ � ��x  ��M��M ��� Otherwise� if M �� is not a value then� by inductive
hypothesis� there are E�� $� such that M �� � E��$��� Then take E �M �E� and
$ � $��

� M � is not a value� Then� by inductive hypothesis� there are E�� $� such that
M � � E��$��� Then take E � E�M

�� and $ � $�� �

Proposition ����
 �subject reduction� If �C M  num and M �C N then
�C N  num�

Proof� Suppose there are E�$ such that M � E�$�� There are three cases to
consider according to the shape of the redex�

� $ � ��x  ��M�V � This requires a simple form of the substitution lemma� We
observe that x  � �C M  � and �C V  � implies �C M �V�x�  � �

� $ � CM � Suppose �C CM  �� Then �C M  ��� and x  � �C E�x�  num�
Hence x  � �C AE�x�  num� which implies �C �x  ��AE�x�  ��� and �nally
�C M��x  ��AE�x��  num�

� $ � AM � �C AM  num forces �C M  num� Also by de�nition of program
�C E�AM �  num� �

The previous propositions show that the rules ��V �� �C�� �A� when applied to
a program de�ne a deterministic evaluation strategy which preserves the well�
typing�

Remark ����� One may consider other control operators� A popular one is the
call�with�current continuation operator �callcc�� The typing and reduction rule
for the callcc operators can be formalized as follows�

�� k  �� � M  �
� � callcc��k�M�  �

E�callcc��k�M��� ��k�kM���x�AE�x�� �

Exercise 	���� ��� Find a simulation of the callcc operator using the C operator� ���
Evaluate the expression C�	k��	x�n��km�� following a call�by�value and a call�by�name
order�
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x � �k�kx MN � �k�M ��m�N��n�mnk��
n � �k�kn CM � �k�M ��m�m��z��d�kz��x�x�
�x�M � �k�k��x�M� AM � �k�M ��x�x�

Figure ���� Cps translation

Cps translation� Next we describe an interpretation of the �C�calculus into
the �C�calculus without control operators� We begin with a translation of types�

num � num � 
 � � � 
 ��� �

The interpretation of the arrow follows the monadic view where we take num as
the type of results� From another point of view observe that replacing num with
� one obtains a fragment of the double�negation translation from intuitionistic
to classical logic� The rule for typing the C operator can then be seen as stating
the involutive behaviour of classical negation�

Note that the translation involves both types%formulas and terms%proofs� In�
deed a variant of the translation considered here was used by Friedman to extract
algorithmic content from a certain class of proofs in �classical� Peano arithmetic
�see �Fri��� Gri�	� Mur��� for elaborations over this point�� We associate to a
term M a termM without control operators so that

x�  ��� � � � � xn  �n �C M  � implies x�  ��� � � � � xn  �n �M  ��� �

The de�nition is presented in �gure ���� �we omit types�� This is known as
Continuation Passing Style translation�

Before giving the explicit typing of the translation we recall three basic com�
binators of the continuation monad�

M  � ��M� � �k  �� �kM  ���
M  � 
 � ��M � �k  ��� ��h  �� �k��x  num �h�Mx��
M  ����� ��M� � �k  �� �M��h  ��� �hk�  ��� �

The explicitly typed Cps translation is given in �gure ���
�
It is now a matter of veri�cation to prove the following� where conventionally

�� x  � � �� x  � �

Proposition ����� �typing Cps translation� With reference to the transla�
tion in �gure ���� if � �C M  � then � �C M  ��� �



��	 CHAPTER 
� VALUES AND COMPUTATIONS

x � �k  �� �kx  ��� if x  �
n � �k  �num �kn  ��num
�x  ��M � �k  �� 
 � �k��x  � �M�  ��� 
 �
MN � �k  �� �M��m  � 
 � �N��n  � �mnk��  ���
CM � �k  �� �M��m  ��� �m��z  � ��d  �num �kz��x  num �x�  ���
AM � �k  �num �M��x  num �x�  ��num

Figure ���
 Typing the Cps translation

Exercise 	���� There are many possible Cps translations which from a logical view
point correspond to di�erent ways to map a proof in classical logic into a proof in
constructive logic� In particular verify that� consistently with the proposed typing� one
can give the following translation of application�

MN � 	k � �� �N�	n � ��M�	m � � � ��mnk�� �

The main problem is to show that the Cps translation adequately represents
the intended behavior of the control operators� Suppose �C M  num� the desired
result reads as follows

M ��
C n i� M id �� n�

The di#culty in proving this result consists in relating reductions ofM andM id �

Example ����� It is not the case that for a provable judgment � M  num�
M �C N implies M id �� N id� Consider for instance ��x�x��An��C n� Note
��x�x��An��� �k�n� whereas n � �k�kn�

An optimized translation� Given a termM � a new translation hMi � �k�M k
is de�ned with the following relevant properties

��� M �� hMi

��� if M  num and M � N then M id �� N id �

This optimized translation is instrumental to the proof of the adequacy of the
Cps translation �cf� following theorem �������� We limit our attention to the
fragment of the calculus without control operators� An extension of the results
to the full calculus is possible but it would require a rather long detour �see
�DF����� The translation considered here� also known as colon translation �cf�
�Plo���� performs a more careful analysis of the term� the result is that a certain
number of redexes can be statically reduced� By this� we can keep term and
Cps�translation in lockstep� hence avoiding the problem presented in example
������
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De�nition ����� We de�ne a ��translation on values� Expected typing� if V  �
then ��V �  ��

��n� � n ���x  ��M� � �x  ��M �

Lemma ���� For any V � M ���V ��x� �M �V�x��

We associate to every evaluation context E a well�typed closed term ��E� as
follows

��� �� � �x�x
��E�� �N �� � �m�N��n�mn��E��
��E�V � ��� � �n���V �n��E� �

Let K be the image of the function � with generic element K�

De�nition ����	� We de�ne a semi�colon translation on pairs M K� where M
is closed and K � K� Expected typing� if M  � and K  �� then M K  num
�note the double use of �����

V K � K��V �
V�V�K � ��V����V��K
V�N K � N �n���V��nK
MN K �M �m�N��n�mnK� �

We observe that if � � M  � then � � hMi  ���� Next we prove three
technical lemmas that relate the standard and optimized Cps translations�

Lemma ����		 If � M  �� K � K� and � K  �� then MK �� M K�

Proof� By induction on M and case analysis of the semi�colon translation� For
instance let us consider

MNK � ��k�M ��m�N��n�mnk���K �

By induction hypothesis on M � MNK �� M �m�N��n�mnK� �MN K� �

Lemma ����	
 If � M  � and M is not a value then

E�M ���E�� �M ��E��E�� �

Proof� By induction on E� For instance let us consider E � E��� �N �� By
induction hypothesis on E�

E���M �N ���E�� � �M �N ��E��E�� ���
�M �m�N��n�mn��E��E�� ����
�M ��E��E��� �N ��� �

�
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Lemma ����	� If � V  � and � ��E�  �� then V ��E��� E�V �id�

Proof� By induction on the structure of E�

� If E�V � is a value then E � � ��

� Otherwise we distinguish three cases ��� E � E��� �N �� N not a value� ���
E � E��� �V��� and ��� E � E��V�� ��� For instance let us consider case ���

V ��E��� �N �� � V �m�N��n�mn��E�� ���
� ��m�N��n�mn��E�� ������V �
� N��n���V �n��E�� ���
�� N �n���V �n��E�� ��� �by lemma �������
� V N ��E�� ��
� E��V N �id �by lemma �������
� E�V �id �

�

Theorem ����	� �adequacy Cps�translation� Suppose �C M  num� where
M does not contain control operators� Then M �� n i� M id �� n �

Proof�

��� Suppose M �� n� By lemma ������ M id �� M id � We show M � M �

impliesM id �� M �id �

E���x�M�V �id � ��x�M�V ��E� �by lemma �������
� ��x�M���V ���E�
�M �V�x���E� �by lemma ������

�� M �V�x���E� �by lemma ��������
�� E��V�x�M �id if �V�x�M is a value �by lemma �������
� E��V�x�M �id otherwise �by lemma ������� �

��� By strong normalization of ��reduction� M �� m for some numeral m�
hence by ��� M id �� m� On the other hand� by hypothesis M id �� n� and by
con�uence n � m� �

Exercise 	����� Given a program M show that when following a call�by�name evalu�
ation of M �id all redexes are actually call�by�value redexes� that is the rhs of the redex
is always a value� This fact is used in �Plo�� to simulate call�by�value reduction in a
call�by�name 	�calculus�
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�x�e�� s� � �e�x�� s�
�MN �e�� s� � �M �e�� N �e�  s�
��x�M �e�� c  s� � �M �e�c�x��� s�
�CM �e�� s� � �M �e�� ret�s��
�AM �e�� s� � �M �e�� �
�ret�s�� c  s�� � �c� s�

Figure ���� Call�by�name environment machine handling control operators

Environment machines and control operators� Environment machines
provide a simple implementation of control operators� The stack of environment
machines corresponds to the current evaluation context� The implementation of
control operators then amounts to the introduction of operations that allow to
manipulate the stack as a whole� To this end we introduce an operator ret that
retracts a stack into a closure� Roughly� if the stack s corresponds to the evalu�
ation context E then the closure ret�s� corresponds to the term �x�AE�x�� We
consider �rst the situation for call�by�name� The syntactic entities are de�ned
as follows �note that the collection of closures is enlarged to include terms of the
shape ret�s���

Terms M � v jj �v�M jjMM jj CM jj AM
Environments e  V ar 
 Closures
Closures c �M �e� jj ret�s�
Stack s � c�  � � �  cn �

The corresponding machine is described in �gure ����� The formalization for
call�by�value is slightly more complicated� Value closures and stack are rede�ned
as follows �as usual m stands for a marker�

Value Closures vc � ��v�M��e� jj ret�s�
Stack s � m�  c� � � �mn  cn �

The corresponding machine is described in �gure ����� The last rule deserves
some explanation if ret�s� corresponds to �x�AE�x�� vc corresponds to V � and
s� corresponds to E� then the rule implements the reduction

E����x�AE�x��V �� E��AE�V ��� E�V � �

It is possible to relate environmentmachines and Cps interpretations �LRS����
We give a hint of the connection� Consider the following system of domain
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�x�e�� s� � �e�x�� s�
�MN �e�� s� � �M �e�� r  N �e�  s�
�vc� r  c  s� � �c� l  vc  s�
�vc� l  �x�M �e�  s� � �M �e�vc�x��� s�
�CM �e�� s� � �M �e�� r  ret�s��
�AM �e�� s� � �M �e�� �
�vc� l  ret�s�  s�� � �vc� s�

Figure ���� Call�by�value environment machine handling control operators

equations where D is the domain of interpretation of closures� that is terms with
an environment e � Env � C is the domain of continuations with generic element
k� and R represents a domain of results���

��
D � C � R
C � D � C k � C
Env � Var � D e � Env �

We interpret the terms as follows� where stop is an arbitrary but �xed element
in C� and ret�k� � ��c� k���ck�

��x��e k � e�x�k
��MN ��e k � ��M ��e h��N ��e� ki
���x�M ��e hd� ki � ��M ��e�d�x� k
��CM ��e k � ��M ��e hret�k�� stopi
��AM ��e k � ��M ��e stop �

Note that in the interpretation we work up to isomorphism� If we regard the
continuation k as representing the stack s and hret�k�� stopi as representing ret�s�
then this interpretation follows exactly the pattern of the call�by�name machine
described in �gure �����

Exercise 	����� � De�ne a Cps interpretation for call�by�value which corresponds to
the machine described in �gure �����
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Powerdomains

In example ����� we have presented a monad of non�deterministic computations
which is based on the �nite powerset� We seek an analogous of this construc�
tion in the framework of domain theory� To this end� we develop in section
��� the convex� lower� and upper powerdomains in categories of algebraic cpo�s
�Plo�
� Smy���� In order to relate these constructions to the semantics of non�
deterministic and concurrent computation we introduce in section ��� Milner�s
Ccs �Mil���� a simple calculus of processes interacting by rendez�vous synchro�
nization on communication channels� We present an operational semantics for
Ccs based on the notion of bisimulation� Finally� in section ��� we give a fully
abstract interpretation of Ccs in a domain obtained from the solution of an
equation involving the convex powerdomain �Abr��a��

��� Monads of Powerdomains

We look for a construction in domain theory which can play the role of the �nite
�or �nitary� subsets in the category of sets� The need for this development clearly
arises when combining recursion with non�determinism� One complication is that�
in the context of domain theory� there are several possible constructions which
address this problem� Their relevance might depend on the speci�c application
one is considering� In the following we concentrate on three powerdomains which
rely on the notion of semi�lattice�

De�nition �	�	 A semi�lattice is a set with a binary operation� say �� that is
associative� commutative� and absorptive� that is�

�x � y� � z � x � �y � z�� x � y � y � x� x � x � x �

From our perspective we regard the binary operation of a semi�lattice as a
loose generalization of the union operation on powersets� We seek a method
for generating freely this algebraic structure from a domain� We illustrate the

���
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construction for preorders and then extend it to algebraic cpo�s� Let us consider
semi�lattices whose carrier is a preorder�

De�nition �	�
 A preordered semi�lattice is a structure �P��� �� where �P���
is a preorder� �P� �� is a semi�lattice� and the semi�lattice operation is monotonic�
that is x � x� and y � y� implies x�y � x��y�� Moreover� we say that a preordered
semi�lattice �P��� �� is a join preordered semi�lattice if it satis�es x � x � y� and
a meet preordered semi�lattice if it satis�es x � y � x�

Incidentally� we note in the following exercise that every semi�lattice gives rise to
a poset with speci�c properties�

Exercise 
���� Given a semi�lattice �P� �� de�ne x �� y i� x � y � y� Show that
�P���� is a poset with lub�s of pairs� Exhibit a bijective correspondence between semi�
lattices and posets with lub�s of pairs�

However� we are looking in the other direction we want to build a semi�lattice
out of a poset� We de�ne the category in which we can perform this construction�

De�nition �	�� We denote with SP the category of preordered semi�lattices
where a morphism f  �P��� �� � �P ����� ��� is a monotonic function f  �P��
�� �P ����� such that f�x � y� � f�x� �� f�y�� Let JSP �MSP� be the full
subcategory of SP composed of join �meet� preordered semi�lattices�

The category SP has a subcategory of semi�lattices whose carriers are alge�
braic cpo�s with a continuous operation �� and whose morphisms are continuous�

De�nition �	�� We denote with SAcpo the category of preordered semi�lattices
�P��� �� such that �P��� is an algebraic cpo� the operation � is continuous� and
a morphism f  �P��� �� � �P ����� ��� is a continuous function f  �P��� �
�P ����� such that f�x � y� � f�x� �� f�y�� Let JSAcpo �MSAcpo� be the full
subcategory of SAcpo composed of join �meet� preordered semi�lattices�

We show that given an algebraic cpo there is a freely generated semi�lattice in the
category SAcpo� In view of the technique of ideal completion �cf� proposition
������� this problem can be actually decomposed in the problem of freely gener�
ating a semi�lattice in the category SP� and then completing it to a semi�lattice
in the category SAcpo� So� let us consider the situation for preorders �rst� We
�x some notation� Let P�

fin�X� denote the non�empty �nite subsets of X�

� P is the category of preorders and monotonic maps�

� Forget  SP� P is the functor that forgets the semi�lattice structure�
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Theorem �	�� The functor Forget  SP� P has a left adjoint Free  P� SP
that is de�ned as�

Free�P � � �P�
fin�P ���c���� Free�f��X� � f�X�

where the semi�lattice operation is the set�theoretical union� and the so�called
convex preorder is de�ned as�

X �c Y i� 	x � X �y � Y �x � y� and 	y � Y �x � X�x � y� �

Proof� The natural transformation �P	S  P�P�Forget�S�� � SP�Free�P �� S� is
de�ned as

�P	S�f��X� � f�x�� � � � � � f�xn�

whereX � fx�� � � � � xng � P
�
fin�P � and � is the binary operation in S� The inverse

is de�ned as ���P	S�h��p� � h�fpg�� We have to verify that these morphisms live in
the respective categories�

� �P	S�f� is monotonic� Suppose fx�� � � � � xng � X �c Y � fy�� � � � � ymg� By the
de�nition of the convex preorder we can �nd two multisets X � � fjw�� � � � � wljg
and Y � � fjz�� � � � � zljg in which the same elements occur� respectively� as in X
and Y and such that wi � zi� i � �� � � � � l� By monotonicity of f � and of the
binary operation in S� we have

f�w�� � � � � � f�wl� �S f�z�� � � � � � f�zl�

and by absorption

�P	S�f��X� � f�w�� � � � � � f�wl�� �P	S�f��Y � � f�z�� � � � � � f�zl� �

� �P	S�f� is a morphism in SP� Immediate by associativity and absorption� We

leave to the reader the veri�cation that ���P	S is well de�ned as well as the check
of the naturality of � � �

Remark �	�� The adjunction described in theorem ���� canonically induces
�cf� theorem B����� a convex monad �Pc� f g�

S
�� where�

Pc�D� � �P
�
fin�D���c�

f g  D � Pc�D�� f g�d� � fdgS
 Pc�Pc�D��� Pc�D��

S
fx�� � � � � xmg � x� � � � � � xm �

Theorem ����
 can be adapted to join and meet preordered semi�lattices by
following the same proof schema�
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Theorem �	�� The forgetful functors Forget  JSP� P and Forget MSP�
P have left adjoints FreeJSP  P� JSP and FreeMSP  P�MSP� respectively�
de�ned as�

FreeJSP�P � � �P�
fin�P ���l���

FreeMSP�P � � �P�
fin�P ���u���

FreeJSP�f��X� � FreeMSP�f��X� � f�X�

where the semi�lattice operation is the set�theoretical union� and the so�called
lower and upper preorders are de�ned as� �

X �l Y i� 	x � X �y � Y �x � y�
X �u Y i� 	y � Y �x � X�x � y� �

Example �	� We consider the poset O � f���g where as usual � � ��
We suppose that the semantics of a non�deterministic program is an element of
P�
fin�O� � ff�g� f�g� f���gg� � expressing divergence and � convergence� The

convex� lower� and upper preorders induce three distinct preorders on P�
fin�O�� In

the convex preorder f�g �c f���g �c f�g� in the lower preorder f���g � f�g�
and in the upper preorder f�g � f���g� In this context� the lower preorder can
be associated to partial correctness assertions� as it compares the outcomes of
a program neglecting divergence� whereas the upper preorder can be associated to
total correctness assertions� as it collapses programs that may diverge� The convex
preorder is the most discriminating� as it compares computations with respect to
both partial and total correctness assertions�

Let us see how theorem ����
 can be extended to the category Acpo of alge�
braic cpo�s and continuous functions via the ideal completion�

� There is a functor Forget  SAcpo� Acpo�

� Let Ide  P � Acpo be the ideal completion from preorders to algebraic
cpo�s which is left adjoint to the relative forgetful functor� Similarly� one can
de�ne a functor SIde  SP � SAcpo� which makes the ideal completion of the
semi�lattice and extends the monotonic binary operation to a continuous one�

De�nition �	�	� Let D be an algebraic cpo and let x stand for c� l� or u� Then
we de�ne a function Px� �  Acpo� Acpo as follows� �

Px�D� � Ide�P�
fin�K�D����x� �

Proposition �	�		 �� If D is �nite then Pc�D� can be characterized as the
collection of convex subsets with the convex partial order� Namely� we have
�fCon�u� j u � P�

fin�D�g��c�� where Con�u� � fd j �d�� d�� � u �d� � d � d��g�

�Observe the combination of the terminologies for semi�lattices and preorders� the lower
preorder occurs with join preordered semi�lattices
 and the upper preorder occurs with meet
preordered semi�lattices� Note that X �c Y i� X �l Y and X �u Y �

�Note the di�erence between
 say
 Pc� � as de�ned in remark �����
 and Pc� � as de�ned here�
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��� For the �at domain �	�� the order Pc��	��� is isomorphic to the following
set with the convex preorder� fu j u � P�

fin�	�g � fu � f�g j u � 	g�

Proof hint� ��� This follows from the observation that K�D� � D and the fact
that the ideal completion of a �nite set does not add any limit point� ��� Left as
an exercise� Note that every computation with a countable collection of results
may also diverge� �

Exercise 
����� Characterize Px�D� when x equals u or l and D is �nite or �����

The function Pc� � can be extended to a functor which is left adjoint to the
forgetful functor�

Proposition �	�	� There is a left adjoint Free to the forgetful functor Forget 
SAcpo� Acpo�

Proof hint� We de�ne Free�D� � Pc�D�� Given f  D � E� we de�ne Free�f�
on the principal ideals by

Free�f��� fd�� � � � � dmg� � fu � P
�
fin�K�E�� j u �c ffd�� � � � � fdmgg �

Note that this is an ideal� and that Free�f� can be extended canonically to Pc�D��
�

Exercise 
����� Prove the analogous of proposition �����
 for the categories JSAcpo
and MSAcpo�

Exercise 
����� Show that the category of Scott domains is closed under the lower
and upper powerdomains constructions� Hint� it is enough to prove that every pair
of compact elements which is bounded has a lub� On the other hand� show that the
category of Scott domains is not closed under the convex powerdomain construction�
Hint� consider the domain T� where T � f�� tt�� g�

Exercise 
����� Let D be a bi�nite domain and let fpigi�I be the associated directed
set of image �nite projections such that

W
i�I pi � idD� Show that

W
i�I Pc�pi� � Pc�id��

Conclude that bi�nite domains are closed under the convex powerdomain� Extend this
result to the lower and upper powerdomains�

��� Ccs

The semantics of the programming languages considered so far associates to every
input a set of output values� For instance� a �nite set if the computation is non�
deterministic but �nitely branching �cf� example ���������� On the other hand�
system applications often require the design of programs which have to interact
repeatedly with their environment �e�g� other programs� physical devices�� � ���
In this case the speci�cation of a program as an input�output relation is not
adequate� In order to specify the ability of a program to perform a certain action
it is useful to introduce the simple notion of labelled transition system�
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De�nition �
�	 A labelled transition system �lts� is triple of sets �Pr�Act���
where �� Pr �Act� Pr�

We have adapted our notation to a process calculus to be introduced next� Pr
stands for the collection of processes and Act for the collection of actions� We
write p

�
� q for �p� �� q� ��� to be read as p makes an action � and becomes q�

De�nition �
�
 A lts is said to be image �nite if� for all p � Pr� � � Act� the
set fp� j p

�
� p�g is �nite� An image �nite lts can be represented as a function

� Pr �Act� Pfin�Pr��

Next we present �a fragment of� Milner�s Calculus of Communicating Systems
�Ccs� �Mil���� Ccs is a model of computation in which a set of agents interact by
rendez�vous synchronization on communication channels �syntactically one can
think of an agent as a sequential unit of computation� that is as a process that
cannot be decomposed in the parallel composition of two or more processes��

In general several agents can compete for the reception or the transmission on
a certain channel� however each accomplished communication involves just one
sending and one receiving agent� Moreover any agent may attempt at the same
time a communication on several channels �a non�deterministic sum is used for
this purpose��

In Ccs communication is pure synchronization� no data are exchanged be�
tween the sender and the receiver� Therefore� it is not actually necessary to
distinguish between input and output� All we need to know is when two interac�
tions are one dual of the other� This idea can be formalized as follows� Let L be a
�nite collection of labels �we make this hypothesis to simplify the interpretation
described in section ����� Each label l � L has a complement l which belongs to
L � fl j l � Lg� The overline symbol can be understood as a special marker that
one adds to an element of L� The marker is chosen so that L and L are disjoint�

We denote with a� b� � � � generic elements in L�L� The complement operation
is extended to L by making it involutive� that is a � a� Finally we de�ne the
collection of actions Act � L�L�f�g� where � �� L�L� We denote with �� �� � � �
generic elements in Act�

The actions a� amay be understood as complementary input%output synchro�
nization operations on a channel� The action � is an internal action in the sense
that a process may perform it without the cooperation of the environment�

In �gure ���� we de�ne a calculus of processes which includes basic combina�
tors for termination� sequentialization� non�deterministic sum� parallel composi�
tion� and restriction�

A process is well�formed if it is �i� closed� that is all process variables are
in the scope of a �x operator� and �ii� guarded� that is all �bound� process
variables are preceded by a pre�x� for instance �xX�a�X is guarded whereas
�xY���xX�a�X��Y is not� In the following we always assume that processes are
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Process variables� V � X�Y�Z� � � �
Processes� P � 	 jj V jj ��P jj P � P jj P j P jj Pna jj �xV�P

Figure ��� Syntax Ccs

well�formed� these are the objects for which an operational semantics is de�ned�
The intuitive operational behaviour of the process operators is as follows� 	 is
the terminated process which can perform no action� a�P is the pre�xing of
a to P � that is a�P performs the action a and becomes P � P � P � is the non�
deterministic choice �sum� between the execution of P and that of P �� The choice
operator presented here is very convenient in the development of an algebra of
processes� On the other hand its implementation on a distributed architecture
requires sophisticated and expensive protocols� For this reason most parallel
languages adopt a restricted form of non�deterministic choice� P j P � is the
parallel composition of P and P �� Pna is the process P where the channel a has
become private to P � This operation is called restriction� Finally� �x is the least
�x�point operator with the usual unfolding computation rule� We de�ne next
a lts on processes� The intuitive interpretation of the judgment P

�
� P � is the

following

� If � � � then P may reduce to P � by means of an internal autonomous
communication�

� If � � a then P may reduce to P � provided the environment supplies a dual
action a�

The de�nition of the lts proceeds non�deterministically by analysis of the process
expression structure� The rules are displayed in �gure ���� The rules �sum�
and �comp� have a symmetric version which is omitted� Given a process P one
may repeatedly apply the derivation rules above and build a possibly in�nite tree
whose edges are labelled by actions�

Exercise 
���� ��� Show that any process without a �x operator generates a �nite
tree� ��� Verify that any Ccs process generates an image �nite lts� �
� Consider the
non�guarded process P � �xX���X�� a��� j b���� Verify P

a
� � j b�� j � � � j b��� for an

arbitrary number of b���s� Conclude that Ccs with unguarded recursive de�nitions is
not image �nite�

The tree representation is still too concrete to provide a reasonable semantics
even for �nite Ccs processes built out of pre�xing and sum� In the �rst place
the sum should be commutative and associative� and in the second place two
identical subtrees with the same root should collapse into one� In other words
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��P
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�
� P �
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�
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Figure ��� Labelled transition system for Ccs

the sum operator of Ccs should form a semi�lattice with 	 as identity� For
processes generating a �nite tree� it is possible to build a canonical set�theoretic
representation� We de�ne inductively

ST� � � STn�� � Pfin�Act� STn� ST� �
S
fSTn j n � 	g �

If P generates a �nite tree then let ��P �� � f��� ��P ���� j P
�
� P �g� For instance one

can compute

��a�	 j a�	�� � f�a� f�a� ��g�� ��� ��� �a� f�a� ��g�g �

Exercise 
���� Verify that the previous interpretation is well�de�ned for processes
generating a �nite tree and that it satis�es the semi�lattice equations�

There are serious di#culties in extending this naive set�theoretic interpreta�
tion to in�nite processes� For instance one should have

���xX�a�X�� � f�a� f�a� f�a� � � �

This seems to ask for the construction of a set A such that A � f�a�A�g� As�
suming the standard representation of an ordered pair �x� y� as fx� fx� ygg we
note that this set is not well�founded with respect to the belongs to relation as
A � fa�Ag � A� This contradicts the foundation axiom which is often added to�
say� Zermelo�Fraenkel set�theory �see e�g� �Jec�����

On the other hand it is possible to remove the foundation axiom and de�
velop a non�standard set�theory with an anti�foundation axiom which assumes
the existence of sets like A �see in particular �Acz��� for the development of the
connections with process calculi�� In section ���� we will take a di�erent approach
which pursues the construction of a set�theoretical structure in domain theory re�
lying on the convex powerdomain� The initial idea� is to associate to ���xX�a�X��
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the lub of elements of the shape f�a� f�a� � � � � f�a���g � � ��g�g� modulo a suitable
interpretation of the set�theoretical notation�

In the following we develop the operational semantics of Ccs� To this end we
introduce the notion of bisimulation �Par��� which is a popular notion of equiva�
lence on lts�s� Let �Pr�Act��� be a lts� We de�ne an equivalence relation over
Pr that can be characterized as the greatest element of a collection of relations
known as bisimulations or� equivalently� as the greatest �x�point of a certain
monotonic operator de�ned on the powerset of binary relations on Pr�

De�nition �
�� �operator F� Let �Pr�Act��� be a given lts� We de�ne
F  P�Pr � Pr�� P�Pr � Pr� as�

F�X� � f�p� q� j 	p�� � �p
�
� p� � �q� �q

�
� q� and �p�� q�� � X�� and

	q�� � �q
�
� q�� �p� �p

�
� p� and �p�� q�� � X��g �

De�nition �
�� The operator F is iterated as follows�

F� � Pr � Pr F
�� � F�F
�
F� �

T

�� F


 for � limit ordinal �

Proposition �
�� The operator F is a monotonic operator over P�Pr � Pr��

Proof hint� In the de�nition ������ the relation X occurs in positive position�
�

It follows from exercise ����� that the operator F has a greatest �x�point �gfp��
where gfp�F� �

T

�� F


� for some ordinal ��

Proposition �
�� If the lts is image �nite then the operator F preserves codi�
rected sets� in particular gfp�F� �

T
k�� F

k�

Proof� Suppose fSigi�I is a codirected set of relations over Pr� The interesting
point is to show �

i�I

F�Si� � F�
�
i�I

Si� �

Suppose 	i � I �pSi q� and p
�
� p�� By hypothesis� 	i � I �q� �q

�
� q� and p� Si q���

Moreover� the set Q � fq� j q
�
� q� and �i � I �p� Si q��g is �nite� and the

set fSigi�I is codirected� It follows that there has to be a q� � Q such that
	i � I �p� Si q��� To see this� suppose q�� q�� � Q� p� Si q�� and p� Sj q

��� for i� j � I�
Then �k � I �Si� Sj " Sk�� Moreover� �q��� � Q �pSk q����� from which pSi q

���

and pSj q
��� follows� By applying a symmetric argument on Q we can conclude

pF�
T
i�I Si� q� �

De�nition �
� �bisimulation� Let �Pr�Act��� be a given lts� A binary re�
lation S � Pr � Pr is a bisimulation if S � F�S��
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Exercise 
���� Show that� �i� the empty and identity relations are bisimulations�
�ii� bisimulations are closed under inverse� composition� and arbitrary unions� and
�iii� there is a greatest bisimulation� Verify that bisimulations are not closed under
��nite� intersection�

De�nition �
�		 Let Pr be the collection of Ccs processes� Let F be the oper�
ator related to Ccs bisimulation� We denote with � the largest Ccs bisimulation
and we set �
� F
�

Exercise 
����� Show for Ccs that 
�
�� Hint� apply exercise ����
 and proposition
������

Exercise 
����� Prove that 
 is a congruence for pre�xing� sum� parallel composition�
and restriction� Hint� to prove that P 
 Q it is enough to �nd a bisimulation S such
that P S Q� Let �Pr� be the collection of equivalence classes generated by the greatest
bisimulation 
 on the set of Ccs processes� Extend the operations  and j to �P � and
prove that ��Pr�� � ���� is a semi�lattice� and that ��Pr�� j� ���� is a commutative monoid�

The previous exercise suggests that bisimulation equivalence captures many
reasonable process equivalences� However� as stated it is still unsatisfactory as
the internal action � and an input�output action on a channel are treated in the
same way� This implies that for instance� the process ����a�	 is not bisimilar to
the process ��a�	� One needs to abstract to some extent from the internal actions�
A standard approach to this problem� is to consider a weak labelled transition
system in which any action �in the sense of the lts de�ned in �gure ���� can be
preceded and followed by an arbitrary number of internal � �actions�

De�nition �
�	� Labelled weak reduction� say
�
�� is a relation over Ccs pro�

cesses which is de�ned as follows�

P
a
� P � i� P �

�
����

a
� ��

�
���P �

P
�
� P � i� P �

�
���P � �

Weak bisimulation is the greatest bisimulation relation built on top of the weak
lts �which is uniquely determined according to de�nition �������

The properties of weak bisimulation with respect to Ccs operators are de�
scribed in �Mil���� We will meet again this equivalence in chapter �
� for the time
being we just observe some basic properties�

Exercise 
����� Verify that the following equations hold for weak�bisimulation�

����P � ��P P  ��P � ��P ���P  ��Q�  ��Q � ���P  ��Q� �
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��	 Interpretation of Ccs

We de�ne an interpretation of Ccs in the bi�nite domain D which is the initial
solution of the domain equation

D � Pc��Act�D���# ���� �����

where # is the coalesced sum �cf� de�nition �������� � �� is the lifting �cf� de��
nition �����
�� and � is the one point cpo� The role of the adjoined element ����
is to represent the terminated process 	 �cf� �Abr��b��� We denote with F the
functor associated to Pc��Act� ���# �����

We will show that the related interpretation captures bisimulation �a full
abstraction result�� To this end� we will introduce a notion of syntactic approxi�
mation �de�nition ������� A syntactic approximation plays a role similar to that
of �nite B�ohm trees in the ��calculus �cf� de�nition ������ it provides an ap�
proximate description of the operational behaviour of a process� It turns out
that syntactic approximations� are interpreted in the domain D by compact el�
ements� The key lemma ������ relates syntactic and semantic approximations�
Full abstraction� is then obtained by going to the limit�

The existence of an initial solution to equation ��� can be proven by the tech�
nique already presented in section ��� and generalized in section ���� However�
in order to relate denotational and operational semantics of Ccs it is useful to
take a closer look at the structure of D� The domain D is the 	�colimit in Bif ip

of the 	�chain fF n���� F n�f��gn�� where the morphism f�  �� F ��� is uniquely
determined in Bif ip �cf� theorem �������� We note that� for each n � 	� the
domain F n��� is �nite� Therefore the ideal completion has no e�ect� and we have
that F n����� �� �P�

fin��Act � F n������ # ������c�� Every compact element in
D can be regarded as an element in F n���� for some n � 	� and� vice versa�
every element in F n��� can be regarded as a compact element in D� It is actually
convenient to build inductively the collection of compact elements�

De�nition ���	 �compacts� The sets Kn� for n � 	� are the least sets such
that�

f�g � K� � � Kn��

�i � Act� di � Kn�m � �
f���� d��� � � � � ��m� dm�g � Kn��

�i � Act� di � Kn�m � 	
f�g � f���� d��� � � � � ��m� dm�g � Kn��

�

Proposition ���
 For any n � 	� �� Kn � Kn��� and ��� if d� d� � Kn then
d � d� � Kn�

Proof hint� By induction on n� �
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It is easy to verify that elements in Kn are in bijective correspondence with ele�
ments in F n���� The bijection becomes an order isomorphism when the elements
in K �

S
n��Kn are ordered as follows�

De�nition ���� �order� Let � be the least relation on K such that �I� J can
be empty��

	i � I �j � J ��i � ��j and di � d�j�
	j � J �i � I ��i � ��j and di � d�j�
f��i� di� j i � Ig � f���j � d

�
j� j j � Jg

	i � I �j � J ��i � ��j and di � d�j�

f�g � f��i� di� j i � Ig � f���j� d
�
j� j j � Jg

	i � I �j � J ��i � ��j and di � d�j�

f�g � f��i� di� j i � Ig � f�g � f���j� d
�
j� j j � Jg

�

This provides an explicit description of the compact elements� We can assume
D � Ide�K��� with the inclusion order� and K�D� � f� d j d � Kg� We denote
with I� J elements in D� We can explicitly de�ne a chain fpngn�� of image �nite
projections on D by

pn�I� � I �Kn �����

In �gure ��� we de�ne inductively on K monotonic functions corresponding to
the Ccs operators� Of course� these functions can be canonically extended to
continuous functions on D� In general� given f  Kn � K we de�ne )f  Dn � D
as

)f�I�� � � � � In� �
�
f� f�d�� � � � � dn� j dj � Ij� j � �� � � � � ng �����

Next we de�ne a notion of syntactic approximation of a process� Syntactic ap�
proximations can be analysed by �nite means both at the syntactic level� as it is
enough to look at a �nite approximation of the bisimulation relation �proposition
������� and at the semantic level� as they are interpreted as compact elements �def�
inition ������� To this end we suppose that the language of processes is extended
with a constant �� The notion of labelled transition system and bisimulation for
this extended calculus are left unchanged �so � behaves as 	� operationally��

De�nition ���� We de�ne inductively a collection of normal forms Nk�

� � N�

	i � I �Ni � Nk� �I � 	

'i�I�i�Ni � Nk��
�

If I � f�� � � � � ng then 'i�I�i�Ni is a shorthand for ���N� � � � � � �n�Nn� Con�
ventionally 	 stands for the empty sum� We consider terms up to associativity
and commutativity of the sum� hence the order of the summands is immaterial�
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Nil � K Nil � �
Pre�  K � K Pre��d� � f��� d�g
Sum  K� � K Sum�d� d�� � d � d�

Resa  K � K
Resa�f�g� � f�g
Resa��� � �
Resa�f��i� di� j i � Ig� � f��i� Resa�di�� j i � I� �i �� fa� agg �I � ��
Resa�f�g � f��i� di� j i � Ig� � f�g � f��i� Resa�di�� j i � I� �i �� fa� agg

Par  K� � K
Par�f�g� d� � Par�d� f�g� � f�g
Par��� d� � Par�d� �� � d

Par�f��� d�g� f���� d��g� �
f���Par�d� f���� d��g��g�
f���� Par�f��� d�g� d���g�
f��� Par�d� d��� j � � �� � L � Lg

Par�fdi j i � Ig� fdj j j � Jg� �
S
i�I	j�J Par�di� dj� ��I � �J � �� �I� �J � ��

Figure ��� Interpretation of Ccs operators on compact elements
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De�nition ���� �syntactic approximation� For any process P � we de�ne a
k�th approximation �P �k � Nk as follows�

�P �� � � ���P �k�� � ���P �k
�P � P ��k�� � �P �k�� � �P ��k�� ��xX�P �k�� � ���xX�P�X�P �k��

�P �k�� � 'i�I�i�Pi
�Pna�k�� � 'f�i��Pina�k j i � I� �i �� fa� agg

�P �k�� � 'i�I�i�Ni �P ��k�� � 'j�J�j�N
�
j

�P j P ��k�� �

���
��
'i�I�i��Ni j 'j�J�j�N

�
j�k�

'j�J�j��'i�I�i�Ni j N �
j�k�

'f���Ni j N �
j�k j i � I� j � J� �i � �jg �

To show that the de�nition is well�founded we de�ne a measure n�x on processes
that counts the number of recursive de�nitions at top level

n�x �	� � n�x �X� � n�x ���P � � 	
n�x �Pna� � n�x �P �
n�x �P j P �� � n�x �P � P �� � maxfn�x �P ��n�x �P ��g
n�x ��xX�P � � � � n�x �P � �

By the hypothesis that recursive de�nitions are guarded we have n�x ��xX�P � �
� � n�x �P ��xX�P�X���

Exercise 
���� Prove that the de�nition of k�th approximation is well�founded� by
induction on �n� n�x�P �� P ��

Proposition ���� Let P�Q be processes� Then�

P � Q i� 	k � 	 ��P �k �
k �Q�k� �

Proof� First� we observe that for any process P 

�P �� � � � N�

�P �k�� � 'f���P ��k j P
�
� P �g � Nk�� �

It follows that for any process P � and for any k � 	� �P �k �k P � Combining with
proposition ����� and using the transitivity of the relation �k we can conclude
that

P � Q i� 	k � 	 �P �k Q� i� 	k � 	 ��P �k �
k �Q�k� �

�
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De�nition ���� We de�ne an interpretation in K of the normal forms �with
reference to the operators in �gure ��	��

�����K � f�g ��	��K � �
����N ��K � Pre����N ��K� ��N �N ���K � Sum���N ��K� ��N ���K� �

Proposition ��� Let N�N � � Nn be normal forms� for n � 	� Then ��
��N ��K � Kn� and ��� N �n N � i� ��N ��K � ��N ���K�

Proof hint� By induction on n� �

The interpretation of normal forms is canonically lifted to all processes� by
taking the continuous extensions �cf� equation ���� of the functions de�ned in
�gure ���� and interpreting �x as the least �x�point� This is spelled out in the
following de�nition�

De�nition ���	� �interpretation� Let V be the collection of process vari�
ables� and let �  V � D be an environment� We interpret a process P in
the environment � as follows�

��	��� �� ���
����P ��� �

S
f� �f��� d�g� j d � ��P ���g

��P � P ���� �
S
f� �d � d�� j d � ��P ���� d� � ��P ����g

��Pna��� �
S
f� �Resa�d�� j d � ��P ���g

��P j P ���� �
S
f� �Par�d� d��� j d � ��P ���� d� � ��P ����g

���xX�P ��� �
S
n�� In with I� �� �f�g�� In�� � ��P ����In�X�

��X��� � ��X� �

Exercise 
����� Prove that the function 	d���P ���d
X � is continuous�

Lemma ���	
 �approximation� For any process P � n � 	�

pn���P ��� � ��P ���Kn � ���P �n�� �

Proof hint� By induction on �n�n�x �P �� P �� We consider a few signi�cative
cases�

��P We compute

����P ���Kn�� �
S
f� �f��� d�g� j d � ��P ���Kng

�
S
f� �f��� d�g� j d � ���P �n��Kg

�� �f��� ���P �n��K�g� �� ������P �n����K� �

�xX�P A direct application of the induction hypothesis

���xX�P �� �Kn�� � ��P ��xX�P�X��� �Kn��

�� ����P ��xX�P�X��n����K�
�� �����xX�P �n����K� �
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P j P � We have

��P j P ��� �Kn�� �
S
f� �Par�d� d��� j d � ��P ��� d� � ��P ���g �Kn��

�
S
f� �Par�d� d��� j d � ��P ���Kn��� d

� � ��P ��� �Kn��g �Kn��

�
S
f� �Par�d� d��� j d � ���P �n����K� d� � ���P ��n����Kg �Kn��

�� �Par����P �n����K� ���P ��n����K�� �Kn�� �� ����P j P ��n����K� �

�

Theorem ���	� �full abstraction� Let P�Q be Ccs processes� Then�

P � Q i� ��P �� � ��Q�� �

Proof� By proposition ������ P � Q i� 	k � 	 ��P �k �k �Q�k�� By propo�
sition ������ 	k � 	 ��P �k �k �Q�k� i� 	k � 	 ���P �k�� � ���Q�k��� By lemma
������� ���P �k�� � pk���P ���� and since

W
k�� pk � id � we have ��P �� � ��Q�� i�

	k � 	 �pk���P ��� � pk���Q����� �

Remark ���	� �� Not all compact elements in D are de�nable by a Ccs pro�
cess� Indeed� if this was the case then full abstraction would fail� For instance
we would have P � � � P � whereas in general ��P � ��� � ��P ��� It is possible
to re�ne the bisimulation relation by taking diverging elements into account �cf�
�Abr�b��� ��� At the time of writing� the denotational framework described here
has not been adapted in a satisfying way to capture weak bisimulation�
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Stone Duality

We introduce a fundamental duality that arises in topology from the consideration
of points versus opens� A lot of work in topology can be done by working at the
level of opens only� This subject is called pointless topology� and can be studied
in �Joh���� It leads generally to formulations and proofs of a more constructive
nature than the ones �with points�� For the purpose of computer science� this du�
ality is extremely suggestive points are programs� opens are program properties�
The investigation of Stone duality for domains has been pioneered by Martin�L�of
�ML��� and by Smyth �Smy��b�� The work on intersection types� particularly in
relation with the D� models� as exposed in chapter �� appears as an even earlier
precursor� We also recommend �Vic���� which o�ers a computer science oriented
introduction to Stone duality�

In sections �	�� and �	�� we introduce locales and Stone duality in its most
abstract form� In sections �	�� and �	�� we specialise the construction to Scott
domains� and to bi�nite domains� On the way� in section �	��� we prove Stone�s
theorem every Boolean algebra is order�isomorphic to an algebra of subsets of
some set X� closed under set�theoretic intersection� union� and complementation�
The proof of Stone�s theorem involves a form of the axiom of choice �Zorn�s
lemma�� used in the proof of an important technical lemma� known as Scott
open �lter theorem� In contrast� the dualities for domains can be proved more
directly� as specialisations of a simple duality� which we call the basic domain
duality� �We have not seen this observation in print before�� Once the dualities
are laid down� we can present the domain constructions �logically�� by means
of formulas representing the compact opens� This programme� which has been
carried out quite thoroughly by Abramsky �Abr��b�� is the subject of sections
�	�� and �	�
�

���
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��� Topological Spaces and Locales

If we abstract away from the order�theoretic properties of the opens of a topology�
we arrive at the following de�nition�

De�nition 	��	�	 �locale� A locale� or a frame� is an ordered set �A��� satis�
fying the following properties�

� every �nite subset of A has a greatest lower bound�

�� every subset of A has a least upper bound�

	� the following distributivity property holds� for any x � A and Y � A�

x ! �
�
Y � �

�
fx ! y j y � Y g�

In particular� there is a minimum�the empty lub� and a maximum�the empty
glb�� For any topological space �X��X�� the collection �X� ordered by inclusion�
is a locale� The elements of a locale will be often called opens� even if the locale
does not arise as a topology� We make some remarks about this de�nition

� Condition ��� is implied by condition ���� which in fact implies that all glb�s
exist� But the maps we consider being those which preserve �nite glb�s and
arbitrary lub�s� it is natural to put condition ��� explicitly in the de�nition
of a locale�

� Locales are equivalently de�ned as complete Heyting algebras� where a com�
plete Heyting algebra is a complete lattice which viewed as a partial order
is cartesian closed �cf� de�nition ����� and example B������

De�nition 	��	�
 �frames�locales� The category Frm of frames is the cate�
gory whose objects are locales� and whose morphisms are the functions preserving
�nite glb�s and all lub�s� The category Loc of locales is de�ned as Frmop� Locales
and frames are named such according to which category is meant�

Since we develop the theory of locales as an abstraction of the situation with
topological spaces� it is natural to focus on Loc for any continuous function
f  �X��X� � �Y��Y �� the function f�� is a locale morphism from �X to �Y �

De�nition 	��	�� The functor �  Top � Loc� called localisation functor� is
de�ned by

��X��X� � �X ��f� � f���

The two�points �at domain O � f���g �cf� example ����
� lives both in
Top �endowed with its Scott topology f�� f�g� f���gg� and in Loc� and plays
a remarkable role in each of these categories



���� TOPOLOGICAL SPACES AND LOCALES ���

Top For any topological space �X��X�� the opens in �X are in one�to�one
correspondence with the continuous functions from �X��X� to O�

Loc O considered as a locale is terminal in Loc let �A��� be a locale� and
f  A � f���g be a locale morphism� Then f��� � � and f��� � ��
since the minimum and maximum elements must be preserved�

The fact that O is terminal in Loc suggests a way to recover a topological
space out of a locale� The standard categorical way of de�ning a point in an
object A is to take a morphism from the terminal object� We shall thus de�ne
points of a locale A to be locale morphisms g  f���g � A� One may approach
the reconstruction of points from opens in a perhaps more informative way by
analyzing the situation of the locale �X of some topological space X� If we try
to recover a point x out of the locale �X� the simplest idea is to collect all the
opens that contain it� The fact that the mapping x �� fU j x � Ug is injective
is exactly the property of the topology to be T�� Any set F � fU j x � Ug �x
�xed� has the following properties

�� It is closed under �nite intersections�
�� It is upward closed�
�� If P � �X and

S
P � F� then U � F for some U in P�

The �rst two conditions are those de�ning �lters �cf� chapter ��� We abstract
the three properties together in the following de�nition� which generalises and
extends de�nition ������

De�nition 	��	�� ��completely coprime� �lter� Let A be a partial order� A
�lter over A is an ideal over Aop� that is� a non�empty subset F such that�

� If x � F and x � y� then y � F �

�� 	x� y � F �z � F z � x� y�

A �lter F in �a complete lattice� A is called completely coprime if�

	� 	Y � A �
W
Y � F � � y � Y y � F �

We consider two restrictions of condition �	� �in a lattice� in a dcpo� respectively��

��� 	Y ��n A �
W
Y � F � � y � Y y � F �

���� 	Y �dir A
W
Y � F � � y � Y y � F �

A �lter satisfying ���� is called coprime� and a �lter satisfying ����� is called a
Scott�open �lter �indeed� ����� is the familiar condition de�ning Scott opens� cf�
de�nition ����� We write�

F�A� for the set of �lters of A�
Spec�A� for the set of coprime �lters of A�
Pt�A� for the set of completely coprime �lters of A�

All these sets are ordered by inclusion�
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Remark that if � �
W
� � F � then F is not coprime� In particular� coprime

�lters are proper subsets�

Here is a third presentation of the same notion� The complement G of a
completely coprime �lter F is clearly closed downwards� and is closed under
arbitrary lub�s� In particular G �� �

W
G�� and we have� by conditions ��� and

��� 	
P �

�
G �P �nite� � �p � P p �

�
G�

De�nition 	��	�� ��co�prime� Let �X��� be a partial order� An element x of
X is called prime if

	P ��n X �
	
P exists and

	
P � x�� � p � P p � x�

Dually� a coprime element is an element y such that for any �nite Q � X� if
W
P

exists and x �
W
Q� then x � q for some q � Q�

Notice that a prime element cannot be � ��
V
��� Dually� the minimum� if it

exists� is not coprime�

Exercise ����� Show that if �X��� is a distributive lattice� then z 	 X is coprime
i� it is irreducible� i�e�� z � x � y always implies x � z or y � z�

Thus the complements of completely coprime �lters are exactly the sets of
the form � q� where q is prime� and there is a one�to�one correspondence be�
tween prime opens and completely coprime �lters� The following proposition
summarises the discussion�

Proposition 	��	�� �points� The following are three equivalent de�nitions of
the set Pt�A� of points a locale A�

locale morphisms from O to A�
completely coprime �lters of A�
prime elements of A�

We write x j� p to mean x�p� � �� p � x� or p � x� depending on how points
are de�ned� The most standard view is p � x �completely coprime �lters��

We have further to endow the set of points of a locale A with a topology�

Proposition 	��	�� For any locale A� the following collection fUpgp�A indexed
over A is a topology over Pt�A�� Up � fx j x j� pg� This topology� being the
image of p �� fx j x j� pg� is called the image topology�

Proof� We have Up � Uq � Up�q� and
S
fUp j p � Bg � UWB for any B � A�

�such thattionThe Basic Duality The following result states that we did the right
construction to get a topological space out of a locale� We call spatialisation� or
Pt� the operation which takes a locale to its set of points with the image topology�
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Proposition 	��	� �� a Pt� The spatialisation A �� Pt�A� provides a right
adjoint to the localisation functor � �cf� de�nition ���	�� The counity at A is
the map p �� fx j x j� pg �in Loc�� and the unity is the map x �� fU j x � Ug
�in Top��

Proof hint� Take as inverses

f �� �p �� f���fy j y j� pg�� �f  X � Pt�B� �in Top�� p � B�
g �� �x �� fp j x � g�p�g� �g  �X � B �in Loc�� x � X� �

�

Theorem 	��	�	� �basic duality� The adjunction � a Pt cuts down to an
equivalence� called the basic duality� between the categories of spatial locales and
of sober spaces� which are the locales at which the counity is iso and the topological
spaces at which the unity is iso� respectively�

Proof� Cf� exercise B�
��� �

We shall restrict the basic duality to some full subcategories of topological
spaces and locales�

The following is an intrinsic description of sober spaces� We recall that the
closure A of a subset A is the smallest closed subset containing it�

Proposition 	��	�		 �sober�irreducible� Let �X��X� be a T��space� The
following are equivalent�

 � �X��X� is sober�

� � each irreducible �cf� exercise ����� closed set is of the form fxg for some x�

	 � each prime open is of the form Xnfxg for some x�

Proof� Looking at the unity of the adjunction� sober means �all the completely
coprime �lters are of the form fU j x � Ug�� Unravelling the equivalence of
de�nitions of points� this gets reformulated as �all the prime opens are of the
form

S
fU j x � Ug�� which is the complement of fxg� �

Remark 	��	�	
 Any set of the form fxg is irreducible� so that in sober spaces�
the irreducible closed sets are exactly those of the form fxg for some x�

By de�nition of spatiality� a locale A is spatial if and only if� for all a� b � A

�	x � Pt�A� x j� a� x j� b� � a � b

or equivalently a � b� �x � Pt�A� x j� a and x j� b� Actually� it is enough to
�nd a Scott�open �lter F such that a � F and b � F � But a form of the axiom
of choice is needed to prove this�
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Theorem 	��	�	� �Scott�open �lter� Let A be a locale� The following prop�
erties hold�

� For every Scott�open �lter F � we have
T
fx � Pt�A� j F � xg � F �

�� A is spatial i� for all a� b � A such that a � b there exists a Scott�open �lter
F such that a � F and b � F �

Proof� ��� " is obvious� We prove � by contraposition� Suppose a � F � We
want to �nd an x such that F � x and a � x� We claim that there exists a prime
open p such that p � F and a � p� Then we can take x � fc j c � pg� Consider
the set P of opens b such that b � F and a � b� It contains a� and every chain
of P has an upper bound in P �actually the lub of any directed subset of P is in
P � because F is Scott open�� By Zorn�s lemma P contains a maximal element q�
We show that q is prime� Suppose that S is a �nite set of opens� and that b � q
for each b in S� Then b$q is larger than q� and thus belongs to F � by maximality
of q� Since F is a �lter� it also contains

V
fb $ q j b � Sg � �

V
S� $ q� which is

therefore larger than q� by maximality of q� A fortiori
V
S � q� Hence q is prime

and the claim follows�

��� One direction follows obviously from the fact that a point is a fortiori a Scott
open �lter� Conversely� if a � F and b � F � by ��� there exists a point x such
that F � x and b � x� Then x �ts since a � F and F � x imply a � x� �

We shall not use theorem �	����� for the Stone dualities of domains� But
it is important for Stone�s theorem �section �	���� Another characterisation of
sobriety and spatiality is obtained by exploiting the fact that in the adjunction
� a Pt the counity is mono �by de�nition of the topology on Pt�A�� the map
p �� fx j x j� pg is surjective� hence� as a locale morphism� is a mono��

Proposition 	��	�	� Spatial locales and sober spaces are those topological spaces
which are isomorphic to �X for some topological space X� and to Pt�A� for some
locale A� respectively�

Proof� By application of lemma B�
�
 to the adjunction � a Pt � �

We now exhibit examples of sober spaces� If a topological space is already T��
one is left to check that the mapping x �� fU j x � Ug reaches all the completely
coprime �lters�

Proposition 	��	�	� T��spaces are sober�

Proof� Let W be a prime open& in particular its complement is non�empty�
Suppose that two distinct elements x� y are in the complement� and take disjoint
U� V containing x� y respectively� Then U �V � being empty� is a fortiori contained
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inW � but neither U nor V are� contradicting primeness ofW � Thus a prime open
W is necessarily the complement of a singleton fxg� We conclude by proposition
�	����� �in a T��space� fxg � fxg�� �

In exercise ����
 we have anticipated that algebraic dcpo�s are sober� This
provides an example of a non�T� �even non�T�� cf� chapter �� sober space� Ac�
tually� more generally� continuous dcpo�s �cf� de�nition ������ are sober� Before
proving this� we exhibit a friendlier presentation of fxg in suitable topologies on
partial orders�

Proposition 	��	�	� Given a poset X� and a topology � over X� the following
are equivalent�

 � 	x � X fxg �� x�
� � weak � � � Alexandrov �
	 � � ���

where the weak topology is given by the basis fXn � x j x � Xg� and where � is
the specialisation ordering de�ned by ���

Proof� ��� � ��� If x � A �A closed�� then � x � A� since � � Alexandrov �
Moreover � x is closed� since weak � �� Hence fxg �� x�

��� � ��� If fxg �� x� then a fortiori � x is closed� hence weak � �� If A is
closed and x � A� then fxg � A� hence � � Alexandrov �

���� ��� We have ���� �x � U� x � y� y � U�� � � Alexandrov �

� �weak � �� � �� � �� Suppose x � y� Then Xn�� y� is an open
containing x but not y� hence x � y�

� ���� and � � Alexandrov �� �weak � �� We have to prove that any
Xn�� x� is in �� Pick y � Xn�� x�� i�e�� y � x� Then � �� implies that
there exists an open U such that y � U and x � U � Since � � Alexandrov
implies z � U for any z � x� we have U � Xn�� x�� �

Proposition �	����
 applies in particular to the Scott topology �S � since weak �
�S �cf� exercise ������ and since �S � Alexandrov by de�nition�

Proposition 	��	�	� The Scott topology for a continuous dcpo is sober�

Proof� Let A be closed irreducible� and consider B �
S
a�A � a� �cf� de�nition

������� We �rst prove that B is directed� Suppose not let d� d� � B such that
there exists no a � A and d�� % a such that d� d� � d��� We claim

� d � � d� �A � ��

�We refer to section ��� for the de�nition of Alexandrov topology and specialisation ordering�
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Indeed� suppose d� d� % a for some a � A� Then by directedness of � a there
would exist d�� % a such that d� d� � d��� contradicting our assumption about
d� d�� This proves the claim� which we rephrase as

A � �Dn � d� � �Dn � d���

But this contradicts the irreducibility of A� since � d and � d� are open �see
exercise �������� and since d� d� � B can be rephrased as

A � � d � � and A� � d� � ��

Hence B is directed� Since closed sets are closed downwards� we have B � A�
Hence

W
B � A since A is closed� We show that

W
B is an upper bound of A

this follows immediately from the de�nition of continuous dcpo if a � A� then
a �

W
� a �

W
B� Therefore A �� �

W
B� �

W
B� �

Scott topologies are not always sober�

Proposition 	��	�	� �Johnstone� Consider 	 � f�g� ordered by� n � n� i�
n � n� in 	 or n� � �� Consider the following partial order on the set D �
	 � �	 � f�g��

�m�n� � �m�� n�� i� �m � m� and n � n�� or �n� �� and n � m���

This forms a dcpo� Its Scott topology is not sober�

Proof� We �rst check that we have a dcpo� We claim that any element �m���
is maximal� Let �m��� � �m�� n�� if m � m� and � � n�� then � � n�� while
the other alternative �n� �� and � � m�� cannot arise because m� ranges over
	� In particular� there is no maximum element� since the elements �m��� are
comparable only when they are equal�

Let $ be directed� If it contains some �m���� then it has a maximum�
Otherwise let �m�� n��� �m��� n��� be two elements of $ a common upper bound in
$ can only be of the form �m���� n����� with m��� � m� � m��� Hence $ � fmg�$��
for some m and some $� �dir 	� It is then obvious that $ has a lub�

Next we observe that a non�empty Scott open contains all elements �p����
for p su#ciently large� Indeed� if �m�n� � U � then p � n � �m�n� � �p����
In particular� any �nite intersection of non�empty open sets is non empty� In
other words � is a prime open� or� equivalently� the whole space 	� �	 �f�g� is
irreducible� By lemma �	����
� we should have D �� x for some x� but we have
seen that D has no maximum� �

Nevertheless� sober spaces have something to do with Scott topology�

Proposition 	��	�	 The specialisation order of any sober space �X��� forms
a dcpo� whose Scott topology contains ��
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Proof� Let S be ��directed� We show that its closure S is irreducible� Let
S � F� � F�� and suppose S & F� and S & F�� Let x � SnF� and y � SnF�� and
let z � x� y in S� Since S � F� � F�� we have� say� z � F�� Then x � F� by
de�nition of � contradiction� Therefore S � fyg for some y�

� y is an upper bound Pick s � S and suppose y � U � Then S � fyg � XnU �
and a fortiori s � U � Hence s � y� We claim

If S � U � �� then y � U�

Indeed� S � U � � implies S � U � �� and a fortiori y � U � The rest of the
statement follows from the claim

� y is the least upper bound Let z be an upper bound of S� and suppose z � U �
Then S � U � � by de�nition of �� and y � U follows by the claim�

� Any open is Scott open By the claim� since we now know that y �
W
S� �

Exercise ����� Show that the statement of proposition ������� can actually be strength�
ened by replacing �Its Scott topology is not sober� by� �There is no sober topology whose
specialisation order is the order of D�� Hint� use proposition ��������

��� The Duality for Algebraic Dcpo�s

We recall that in algebraic dcpo�s the basic Scott�open sets have the form � a �a
compact�� and have the remarkable property that if � a �

S
i Ui� then � a � Ui

for some i� This motivates the following de�nition�

De�nition 	��
�	 �coprime algebraic� Let �A��� be a partial order� A com�
pact coprime is an element a such that� for all B � A� if

W
B exists and a �

W
B�

then a � b for some b � B� A poset �D��� is called coprime algebraic if each
element of D is the lub of the compact coprimes it dominates� We write C�D�
for the set of compact coprime elements of D�

Remark 	��
�
 In de�nition ����� we do not specify under which lub�s we
assume A to be closed� In this chapter we are concerned with complete lattices�
and in chapter ��� we shall have to do with bounded complete coprime algebraic
cpo�s�

Lemma 	��
�� �lower�set completion� A complete lattice is coprime alge�
braic i� it is isomorphic to the lower set completion of some partial order �X����
de�ned as Dcl �X� � fY � X j Y is a lower subsetg� In particular� a coprime
algebraic partial order is a �spatial� locale� since Dcl �X� is Alexandrov�s topology
over �X ���

Proof� Like the proof of proposition ������� �
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Exercise ����� Show that �compact coprime� de�ned as above is the same as �com�
pact and coprime�� Show that a partial order A is coprime algebraic i� it is an algebraic
dcpo such that all �nite lub�s of compact coprime elements exist� and such that every
compact is a �nite lub of compact coprimes�

Lemma 	��
�� Let A be a coprime algebraic locale� The points of A are in one�
to�one correspondence with the �lters over the set C�A� of compact coprimes of
A�

Proof� The inverses are G ��� G and F �� fx � F j x compact coprimeg� �

Proposition 	��
�� �duality � algebraic dcpo�s� The basic duality cuts down
to an equivalence between the category Adcpo of algebraic dcpo�s and continuous
functions� and the category of locales arising as lower set completions of some
partial order�

Proof� By lemma �	����� any coprime algebraic locale is spatial� By proposition
������� any algebraic dcpo is isomorphic to Ide�X� for some partial order �X����
By lemma �	���� we have

Ide�X� � F�Xop� � Pt�Dcl �Xop���

�We omit the proof that the topology induced by Pt on Ide�X� is Scott topology��
Therefore� up to isomorphism� the class of algebraic dcpo�s is the image under Pt
of the class of coprime algebraic locales� The statement then follows �cf� exercise
B�
���� �

We call the duality algebraic dcpo�s % coprime algebraic locales the basic
domain duality� The key to this duality is that both terms of the duality have a
common reference� namely the set C�A� of compact coprimes on the localic side�
the set K�D� of compacts on the spatial side� with opposite orders

�K�D���� �� �C�A�����

We shall obtain other dualities for various kinds of domains as restriction of the
basic domain duality� through the following metalemma�

Lemma 	��
�� If �S� is a property of algebraic dcpo�s and �L� is a property
of locales such that any algebraic dcpo satis�es �S� i� its Scott topology satis�es
�L�� then the basic domain duality cuts down to a duality between the category
of algebraic dcpo�s satisfying �S� and the category of coprime algebraic locales
satisfying �L��

Proof� Cf� exercise B�
��� �

Here are two examples of the use of lemma �	�����
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Proposition 	��
�� �duality � algebraic cpo�s� The basic domain duality res�
tricts to an equivalence between the category Acpo of algebraic cpo�s and con�
tinuous functions on one side� and the category of locales arising as lower set
completions of a partial order having a largest element�

Proof� By lemma �	����� with �has a minimum element� for �S�� and �has a
maximum compact coprime� for �L�� If D satis�es �S�� then � � �ts� If � x
is the maximum compact coprime of �D� then � y �� x for any other compact
coprime� i�e�� x is minimum� �

Proposition 	��
� �duality � Scott domains� The basic domain duality cuts
down to an equivalence between the category of Scott domains �cf� de�nition
�
��� and continuous functions on one side� and the category of locales arising
as lower set completions of a conditional lower semi�lattice �i�e�� a poset for which
every �nite lower bounded subset has a glb��

Proof� Take �has a minimum element� and binary compatible lub�s� as �S��
and �compact coprimes form a conditional lower semi�lattice� as �L�� and notice
that x $ y exists i� � x� � y have a glb� �

We can use exercise �	���� to get an alternative description of the posets
arising as lower set completions of conditional lower semi�lattices

Proposition 	��
�	� The following conditions are equivalent for a coprime al�
gebraic partial order A�

� A is isomorphic to the lower set completion of a conditional lower semi�
lattice�

�� Finite glb�s of compacts are compact and any �nite glb of compact coprimes
is coprime or ��

Proof� By proposition �	����� ��� can be replaced by

��� The compact coprimes of A form a conditional lower semi�lattice�

Also� since all lub�s exist in A� glb�s also exist and are de�ned by�
fx j 	 p � P x � pg �

�
fq j q compact coprime and 	 p � P q � pg�

Now� consider a �nite set P of compact coprimes� There are two cases

P has no compact coprime lower bound then
V
P �

W
� � ��

P has a compact coprime lower bound then
V
P � ��

���� � ��� We already know that A is a locale& a fortiori it is distributive� Let
d � a�$� � �$am and e � b�$� � �$bn be two compacts� Then d!e �

W
i	j�ai!bj��
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It is enough to check that each ai ! bj is compact� If fai� bjg has no compact
coprime lower bound� then a� ! bj � �� which is compact� Otherwise� ai ! bj is
compact by assumption�

��� � ���� We have to prove that� in case �b��
V
P is compact and coprime�

It is compact by the �rst part of the assumption� By the second part of the
assumption�

V
P is either coprime or �� Since �b� implies

V
P � ��

V
P is

coprime� �

Information Systems An alternative description of Scott domains is obtained
by starting� not from a conditional upper semi�lattice� but from a partial order
equipped with a weaker structure� which we �rst motivate� Let A be a conditional
upper semi�lattice� Let I�� I�� I � Ide�A� be such that I�� I� � I� Then the lub
of I�� I� is given by the following formula

I� $ I� � fa j a �
�
X for some X ��n I� � I�g�

This suggests us to consider the collection of the �nite bounded subsets X of A�
and the pairs �X� a� with the property a �

W
X� It turns out that we actually do

not need to be so speci�c about this structure� It is enough to have a distinguished
collection Con of �nite subsets over whichX ranges� and an �entailment� relation
� consisting of pairs �X� a�� This view leads us to Scott�s notion of information
system �Sco���� whose axioms we shall discover progressively�

Given a partial order A of tokens� a subset Con of �nite subsets of A� and
a relation �� Con � A� we construct a �completion� whose elements are the
non�empty subsets x � A which satisfy

�� X ��n x� X � Con�
�� �X ��n x and X � a�� a � x�

If A is a conditional upper semi�lattice� if Con is the boundedness predicate and
X � a is de�ned by a �

W
X� then it is easily checked that conditions ��� and ���

together characterise the ideals of A �notice that ��� is weaker than directedness�
and ��� is stronger than downward closedness�� A directed union $ of elements
is an element if X ��n

S
$� then by directedness X ��n x for some x � $� and

��� and ��� for
S
$ follow from ��� and ��� applied to x�

Candidates for the compact elements are the elements of the form X � fa j
X � ag� The sets X are not necessarily �nite� but can be considered �nitely
generated from X� We expect thatX � X and that X is an element �which by
construction is the smallest containing X�� This is easily proved thanks to the
following axioms

�A� �X � Con and a � X�� X � a�
�B� X � Y � Con � X � Con�
�C� X � a� X � fag � Con�
�D� �fa�� � � � � ang � a and X � a�� � � � �X � an�� X � a�
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Axiom �D� is exactly condition ��� for X� As for ���� we check� say� that if
a�� a� � X � then fa�� a�g � Con� First� an easy consequence of �A� and �D� is

�X � Y � Con and X � a�� Y � a�

Applying this toX�X�fa�g �which is inCon by �C�� and a�� we obtainX�fa�g �
a�� and deduce fa�� a�g � Con by �A� and �B��

The elements X form a basis Consider an element x and fX j X � xg �
fX j X � xg� This set is directed� since if X��X� � x� then X� � X� � x and
X��X� � X� �X�� Its union is x thanks to the following axiom

�E� 	 a � A fag � Con�

We are left to show that X is compact� This follows easily from X � x i�
X � x� Finally� we address bounded completeness� If x�� x� � x� then

x� $ x� � fa j �X � x� � x� X � ag�

De�nition 	��
�		 We call information system a structure �A�Con��� satis�
fying the above axioms �A���E�� and we write D�A�Con��� for the set of its
elements ordered by inclusion�

Theorem 	��
�	
 The class of all bounded complete algebraic dcpo�s is the class
of partial orders which are isomorphic to D�A�Con���� for some information
system�

Proof� We have done most of the work to establish that D�A�Con��� is al�
gebraic and bounded complete� Conversely� given D� we take the �intended�
interpretation discussed above A � K�D�� X � Con i� X has an upper bound�
and X � d i� d �

W
X� �

Theorem �	����� is an example of a representation theorem� relating abstract
order�theoretic structures �Scott domains� with more concrete ones �information
systems�� Event structures� concrete data structures� considered in sections �����
����� respectively� will provide other examples of representation theorems�

Exercise ������ In our treatment� we have not included the axiomatisation of the
minimum element� Show that this can be done by means a special token �which Scott
has called ���

Information systems allow for an attractive characterisation of injection�projec�
tion pairs� in the line of proposition ����� and remark ������

Exercise ������ Show that� for any two bounded complete algebraic dcpo�s D�D��
there exists an injection�projection pair betweenD and D� i� there exist two information
systems �A�Con��� and �A��Con����� representing D and D� �i�e�� such that D� D� are
isomorphic to D�A�Con���� D�A��Con������ respectively�� and such that

A � A� Con � Con� �A ���� ��Con � A��
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��	 Stone Spaces �

In this section we focus on algebraicity on the localic side
 and prove Stone�s theorem�
The �algebraic cpo line� �section 	���� and the �algebraic locale line� will be related
when addressing Stone duality for bi�nite domains �section 	�����

Proposition ����� Algebraic locales� i�e�� locales which viewed as cpo�s are algebraic�
are spatial�

Proof� Let a �� b� By theorem 	��	�	
 it is enough to �nd a Scott�open �lter F such
that a 	 F and b �	 F � By algebraicity
 we can �nd a compact d such that d � a and
d �� b� Then the �lter F �� d is Scott�open and �ts� �

Proposition ����� �� The ideal completions of sup�semi�lattices are the algebraic
complete lattices �i�e�� the algebraic cpo�s with all lub�s��

�� The ideal completions of lattices are the algebraic complete lattices whose compact
elements are closed under �nite glb�s�


� The ideal completions of distributive lattices are the algebraic locales whose compact
elements are closed under �nite glb�s�

Proof� �	� Let A be an algebraic complete lattice� Then K�A� is a sup� semi�lattice

since the lub of a �nite set of compacts is always compact� Conversely
 it is enough to
de�ne binary lub�s
 since the existence of directed and binary lub�s implies the existence
of all lub�s� De�ne a � b �

W
fd � e j d� e 	 K�A�� d� a and e � bg�

��� Obvious�

�� Let X be a distributive lattice� We show that A � Ide�X� is distributive� We
have
 for ideals�

I � J � fz j  a 	 I� b 	 J z � a � bg�
i�I

Ii � fz j  i�� � � � � in� a� 	 I�� � � � � an 	 In z � a� � � � � � ang �

Hence
 if z 	 J � �
W
i�I Ii�
 then z � a � �a� � � � � � an� for some a 	 J and a� 	

Ii� � � � � � an 	 Iin 
 hence z � �a � a�� � � � � � �a � an� by distributivity of X 
 and
z 	

W
i�I�J � Ii�� �

De�nition ����� �coherent locale� Locales arising as ideal completions of distribu�
tive lattices are called coherent �or spectral�� A topological space is called coherent if
its topology is coherent�

In particular
 coherent topological spaces are compact �the total space is the empty
glb��

Proposition ����� �duality � coherent� The basic duality cuts down to an equiv�
alence between the category of coherent topological spaces and the category of coherent
locales�
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Proof� Coherent locales are a fortiori algebraic locales
 hence they are spatial by
proposition 	���	� The statement follows �cf� exercise B������ �

It is then possible to combine the correspondences�

coherent spaces ! coherent locales ! distributive lattices�

However
 these correspondences do not extend to dualities of the respective �natural�
categories of continous functions
 locale morphisms
 and DLatop morphisms
 where
DLat is the category of distributive lattices and lattice morphisms� The reason is that
a locale morphism does not map compact elements to compact elements in general�
However
 this will be true of Stone spaces�

As for coprime algebraic locales
 the points of a coherent locale enjoy a simple
characterisation�

Lemma ����� Let A be a coherent locale� Then the points of A are in one�to�one
correspondence with the coprime �lters over K�A��

Spec�K�A�� � Pt�A��

Proof� The inverse mappings are� G ��� G and F �� fx 	 F j x compactg� We check
only that � G is coprime� Let x� y 	� G� Let g 	 G be such that g � x� y� Since G is
completely coprime
 we may assume that g is compact� Since A is an algebraic lattice

we can write

x � y � �
�
fd j d � xg� � �

�
fe j e � xg� �

�
fd� e j d � x� e � xg�

By compactness
 g � d� e
 for some d� e 	 K�A�� Hence d� e 	 G
 and we have d 	 G

or e 	 G
 since G is prime
 implying x 	� G or y 	� G� �

Remark ����� The following table should help to compare lemmas ����� and ���
��

F�C�A��
� Pt�A� �lter lower set completion
Spec�K�A��
� Pt�A� prime �lter ideal completion �

We move on to Stone spaces� There are several equivalent de�nitions of Stone
spaces �Joh���� We choose the one which serves to prove the duality�

De�nition ����� �Stone space� A Stone space is a T��space whose topology is co�
herent�

Proposition ����	 �duality � Stone� The Stone spaces are the topological spaces
whose topology is isomorphic to the ideal completion of a Boolean algebra� The three
following categories are equivalent�

�� Stone spaces and continuous functions�

�� The category of locales arising as ideal completions of Boolean algebras�
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� Boolop � where Bool is the category of Boolean algebras and lattice morphisms�
that is� the functions preserving �nite glb�s and lub�s�

Proof� Let �X��X� be a Stone space� We show that K��X� is Boolean� In compact
T��spaces
 compact subsets are closed
 and hence the compact subsets are the closed
subsets� Hence the compact open subsets are the closed open subsets
 which are closed
under set�theoretic complementation�

Conversely
 let B be a Boolean algebra
 and consider two distinct coprime �lters
G�� G� of B� Combining proposition 	��	�� and lemma 	����
 the opens of Pt�Ide�B��
are the sets Ub � fG j b 	� Gg� We look for b�� b� in B such that G� 	 Ub� 
 G� 	 Ub�
and Ub� � Ub� � ��

� G� 	 Ub� 
 G� 	 Ub� � Since G� �� G�
 we can pick
 say
 b� 	 G�nG�� We have
 setting
b� � �b��

b� � b� � 	 � b� � b� 	 G� �G� �lter�
� b� 	 G� or b� 	 G� �coprimeness�
� b� 	 G� �b� �	 G�� �

A fortiori
 b� 	 G�� b� 	 G� imply G� 	 Ub� 
 G� 	 Ub� �

� Ub� � Ub� � �� Suppose not
 and let G be such that b� 	� G and b� 	� G� We have�

b� � b� � � � � 	� G �� G is a �lter�
� � 	 G �de�nition of � G�
� G � B �G �lter� �

But G � B contradicts the primeness of G�
The categories �	� and ��� are equivalent by restriction of the basic duality� The

equivalence between categories ��� and �� follows from the following claim� the mor�
phisms of category ��� map compact elements to compact elements� The claim is proved
easily by taking advantage of spatiality and of the duality �	�!���� We have seen that
the compact opens are the closed opens� The claim then follows from the observation
that for any continuous function f in Top
 f�� maps closed subsets to closed subsets�
�

��� Stone Duality for Bi�nite Domains �

In order to relate propositions 	����� and 	����
 we have to understand under which
conditions the Scott topology of an algebraic dcpo is coherent�

Proposition ����� An algebraic dcpo D is coherent as a topological space i� it has
a minimum element and its basis satis�es property M �cf� de�nition ������

Proof� Recall from the proof of proposition 	����� that the compact coprimes of the
Scott topology � of D are the � d�s �d 	 K�D��� Therefore
 the compacts of � are the
�nite unions � d� � � � �� � dm�

� M � coherent� We have to check that the compacts of � are closed under �nite
intersections� For the empty intersection
 take � �� For the binary intersection
 observe
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that �� d� � � � �� � dm� � �� e� � � � �� � en� is a union of sets � di� � ej 
 which can be
written as

� di� � ej � UB�di� ej�
� � x� � � � �� � xp �where MUB�di� ej� � fx�� � � � � xpg� �

� coherent �M � Let Y � fy�� � � � � yqg be a �nite subset of K�D�� Then

UB�Y � � � y� � � � �� � yq
� � x� � � � �� � xp �for some x�� � � � � xp� by coherence� �

�

De�nition ����� �coherent algebraising� A coherent locale is called coherent al�
gebraising � if it coprime algebraic�

Thus �coherent algebraising� means �coherent  coprime algebraic�� The following
proposition provides an alternative de�nition of coherent algebraising locale�

Proposition ����� A bounded complete algebraic cpo D is coprime algebraic i� it
satis�es the following decomposition property�

every compact d �� � is a �nite lub of compact coprimes�

Proof� ��� Let d be compact
 and let X � fe � d j e compact coprimeg� We have�

d �
W
X �by coprime algebraicity�

d � e� � � � � � en for some e�� � � � � en 	 X �by bounded completeness and algebraicity� �

Hence d � e� � � � � � en�

�� Putting together the algebraicity and the decomposition property
 we have for
any x 	 D�

x �
W
fd � x j d compactg

�
W
fe� � � � � � en j e�� � � � � en compact coprime and e� � � � � � en � xg

�
W
fe � x j e compact coprimeg �

�

Proposition ����� �duality � algebraic � M� The basic domain duality cuts down
to an equivalence between the category of algebraic cpo�s whose basis satis�es M and
the category of coherent algebraising locales�

Proof� The statement follows from proposition 	����	� we apply lemma 	����� with
�has a minimum element and the basis satis�es M� for �S�
 and �coherent� for �L���

The following lemma indicates the way to axiomatise bi�nite domains logically�

�A more standard terminology for this is �coherent algebraic�� We prefer to use �algebrais�
ing�
 to stress that one refers to the algebraicity of the Stone dual cpo
 rather than to the
algebraicity of the locale �which is also relevant and is part of the de�nition of �coherent���
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Lemma ����� Let D be an algebraic cpo� The following properties hold�

�� K�D� satis�es M i� ��X ��n K�D�  Y ��n K�D�
T
x�X�� x� �

S
y�Y �� y���

�� D is bi�nite i�

�X ��n K�D�  Y ��n K�D�
X � Y and ��Z� � Y  Z� � Y

T
x�Z�

�� x� �
S
y�Z�

�� y�� �

Proof� �	� follows from the following claim
 for X ��n K�D��

 Y ��n K�D�
�
x�X

�� x� �
�
y�Y

�� y�� MUB�X� � Y and MUB�X� is complete�

��� It is easy to check that MUB�X� is the set of minimal elements of Y �

�� Take Y � MUB�X��

��� By the claim
 the equivalence can be rephrased as� D is bi�nite i�

�X ��n K�D�  Y ��n K�D�
X � Y and ��Z � Y MUB�Z� � Y and MUB�Z� is complete� �

and by de�nition
 D bi�nite means� �X ��n K�D� U��X� is �nite�

��� Take Y � U��X��

�� By induction on n
 we obtain Un�X� � Y for all n
 and since Y is �nite the
sequence fUn�X�gn�� becomes stationary� �

Proposition ����� �duality � bi�nite� The basic domain duality cuts down to an
equivalence between the category of bi�nite cpo�s and the category of coherent algebrais�
ing locales A satisfying the following property�

�� � "clos�

�
�X ��n C�A�  Y ��n C�A�
X � Y and ��Z � Y  Z� � Y

V
Z �

W
Z�� �

Proof� The statement follows from lemma 	������ we apply lemma 	����� with �bi��
nite� for �S�
 and the property of the statement as �L�� �

In �gure 	��	
 we summarise the dualities for domains that we have proved in this
chapter�

��� Scott Domains in Logical Form �

We present domains via their compact open sets
 constructed as �equivalence classes
of� formulas� Abramsky has called this �domains in logical form�� As a �rst step in
this direction
 we show how to present the compact opens of D � E in terms of the
compact opens of D and E� When we write �D
 we mean the Scott topology on D�
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sober spaces ! spatial locales
� �

algebraic dcpo�s ! coprime algebraic locales coherent spaces ! coherent locales
� �

algebraic cpo�s whose basis satis�es M ! coherent algebraising locales
�

bi�nite cpo�s ! coherent algebraising locales satisfying �� � "clos�
�

Scott domains !

�
coprime algebraic locales where
compact coprimes form a conditional lower semi�lattice

with�

coprime algebraic � lower set completion of a partial order

coherent � ideal completion of a distributive lattice

�

�
algebraic  
closure of compacts under �nite glb�s

coherent algebraising �

�
ideal completion of a distributive lattice  
every compact is a �nite lub of compact coprimes

�

�
coprime algebraic  
closure of compacts under �nite glb�s

coprime algebraic  compact coprimes
form a conditional lower semi�lattice



�

�
coherent algebraising  glb�s of
compact coprimes are coprime or �

Figure �	�� Summary of dualities
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Proposition ����� If D and E are algebraic cpo�s such that D� E is algebraic and
its basis satis�es M � then�

�� For any U 	 K��D� and V 	 K��E�� the following set is compact�

U � V � ff � D � E j f�U� � V g�

�� Any compact open of D � E is a �nite union of �nite intersections of such sets
U � V � where U� V are moreover coprime�

Proof� �	� Let U �� d� � � � �� � dm and V �� e�� � � �� en� The de�nition of U � V

can be reformulated as

U � V � ff � D � E j � i  j f�di� � ejg

�
�
i

�
�
j

�� �di � ej��� �

Each � �di � ej� is compact
 therefore each
S
j�� �di � ej�� is compact� the conclusion

follows by propositions 	����	 and 	�����

��� The compact opens of D � E are the subsets of the form � f� � � � �� � fp where
each f i is compact
 hence is of the form �d� � e�� � � � � � �dq � eq�
 that is�

� f i �� �d� � e��� � � � � �dq � eq��

Then the conclusion follows from the observation that � d �� e �� �d � e�
 for any
compact d� e� �

A second step consists in constructing a logical theory based on these sets U � V 

now considered as �atomic� formulas� We seek a complete theory in the sense that if
two di�erent formulas u� v present two opens ��u��� ��v�� such that ��u�� � ��v��
 then u � v

is provable�

Proposition ����� Let D�E be Scott domains� Then the set of compact opens of
D � E is order�isomorphic to the partial order associated to a preorder " de�ned as
follows� The elements of " are formulas de�ned by�

U 	 K��D� V 	 K��E�

U � V 	 "

� i 	 I ui 	 " �I �nite�V
i�I ui 	 "

� i 	 I ui 	 " �I �nite�W
i�I ui 	 "

and the preorder is the least preorder closed under the following rules �where � stands
for the equivalence associated with the preorder��
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u � u
u � v v � w

u � w
u � �v � w� � �u � v� � �u � w�

� i 	 I ui � v �I �nite�W
i�I ui � v

ui �
W
i�I ui

� i 	 I u � vi �I �nite�

u �
V
i�I vi

V
i�I vi � vi

U � � U V � V �

U � � V � U � V
U � �

T
i�I Vi� �

V
i�I�U � Vi�

�
S
i�I Ui�� V �

V
i�I�Ui � V �

U coprime

U � �
S
i�I Vi� �

W
i�I�U � Vi�

Proof� Proposition 	����	 gives us a surjection �� �� from " to �D � E �interpreting
��� as ����� The soundness of the rules de�ning the preorder is easy to check
 and im�
plies that the surjection is monotonic� All what we have to do is to prove completeness�
if ��u�� � ��v��
 then u � v is provable� By proposition 	����	
 each formula u is provably
equal to a �nite disjunction of formulas of the form

V
i�I�Ui � Vi�
 with the Ui�s and the

Vi�s coprime� We know from proposition 	����	� that ��
V
i�I�Ui � Vi��� �

T
i�I�Ui � Vi�

is either coprime or �� The proof goes through two claims�

Claim 	� If the Ui�s and Vi�s are coprime and
T
i�I�Ui � Vi� � �
 then

V
i�I�Ui �

Vi� � � ��
W
�� is provable�

Since Ui� Vi are coprime
 we can write Ui �� di
 Vi �� ei
 and Ui � Vi �� �di � ei��
Therefore


V
i�I�Ui � Vi� �� � i� fdi � ei j i 	 Ig has an upper bound i� fdi � ei j i 	

Ig has a lub i�

� J � I fdj j j 	 Jg has an upper bound � fej j j 	 Jg has an upper bound�

Hence
T
i�I�Ui � Vi� � � i� there exists J � I such that

T
j�J Uj �hence is coprime


by proposition 	����	�� and
T
j�J Vj � �� Now the subclaim is proved as follows�

	
i�I

�Ui � Vi� �
	
j�J

�Uj � Vj� �
	
j�J

��
�
j�J

Uj�� Vj� � �
�
j�J

Uj�� �
�
j�J

Vj��

The last formula can be written �
T
j�J Uj� � �

S
��
 and since

T
j�J Uj is coprime
 we

have
�
�
j�J

Uj�� �
�
j�J

Vj� �
�

��

By the subclaim
 we can eliminate the conjunctions
V
i�I�Ui � Vi� such that

T
i�I�Ui �

Vi� � �� Call u�� v� the resulting u� � u��� � � ��u
�
m � u and v� � v��� � � �� v

�
n � v� Then

we can write
��u���� �� f�� � � � � ��u

�
m�� �� fm

��v���� �� g�� � � � � ��v
�
n�� �� gn
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and

��u�� � ��v�� � ��u��� � ��v��� � � p � fp � ��v���
� � p fp 	 ��v

��� � � p  q fp � gq � � p  q ��u�p�� � ��v
�
q��

which brings us to the following second claim�

Claim 
 �coprime completeness�� If u� v both have the form
V
i�I�Ui � Vi�


with the Ui�s and Vi�s coprime
 if ��u�� � ��v��
 and if ��u
���� ��v��� are coprime
 then u � v is

provable�

By the de�nition of
V

 we can assume that v is reduced to one conjunct� v � U �

V �� �d� e�� Then
 setting Ui �� di and Vi �� ei for all i
 the assumption ��u�� � ��v��
reads as d� e �

W
i�I�di � ei�
 or
 equivalently�

e � �
�
i�I

�di � ei���d� �
�
fej j dj � dg�

Setting J � fj j dj � dg
 we have� U �
T
j�J Uj and

T
j�J Vj � V � Then	

i�I

�Ui � Vi� � �
�
j�J

Uj�� �
�
j�J

Vj� � U � V�

We now complete the proof of the completeness claim�

��u�� � ��v�� � � p  q ��u�p�� � ��v
�
q�� � � p  q u�p � v�q

� u� �
W
k��		m u�k �

W
l��		n u

�
l � v� � u � u� � v� � v �

�

The last step consists in further �syntaxizing� domains
 by de�ning a language of
formulas
 not only for K���D� E��
 but also for K��D�
 K��E�
 and more generally
for all types� Since the axioms used to describe K���D� E�� involve coprimeness at
the lower types
 the coprimeness predicate has to be axiomatised as well�

De�nition ����� Let f��� � � � � �ng be a �xed collection of basic types� and letD��� � ��Dn

be �xed Scott domains associated with ��� � � � � �n� Consider�

� The following collection of types�

� ��� �i �i � 	� � � � � n� jj � � ��

� The formal system for deriving typed formulas given in �gure ����� We writeV
� � 	 and

W
� � ��

� The formal system for deriving two kinds of judgements

u � v �with u � v standing for � �u � v and v � u��
C�u� ��u is coprime��

given in �gure ���
�
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U 	 K��Di�

U 	 "��i�
u 	 "��� v 	 "���
u� v 	 "�� � ��

� i 	 I ui 	 "��� �I �nite�V
i�I ui 	 "���

� i 	 I ui 	 "��� �I �nite�W
i�I ui 	 "���

Figure �	�� Domain logic formulas

u � u
u � v v � w

u � w
u � �v � w� � �u� v�� �u � w�

� i 	 I ui � v �I �nite�W
i�I ui � v

ui �
W
i�I ui

� i 	 I u � vi �I �nite�

u �
V
i�I vi

V
i�I vi � vi

U� V 	 K��Di� U � V

U � V

u� � u v � v�

u� � v� � u� v

u� �
V
i�I vi� �

V
i�I�u� vi� �

W
i�I ui�� v �

V
i�I�ui � v�

C�	�
C�u�

u� �
W
i�I vi� �

W
i�I�u� vi�

U 	 K��Di� U coprime

C�U�

C�u� u � v

C�v�

�C � Scott�
� i 	 I C�ui� and C�vi� � J � I �

V
j�J vj � ��

V
j�J uj � ��

C�
V
i�I�ui � vi��

Figure �	�� Domain Logic entailment and coprimeness judgments
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x � u 	 #
# � x � u

# �M � u � � # u � v

� �M � v

# �M � u� v # � N � u

# �MN � v

# � fx � ug �M � v

# � 	x�M � u� v

� i 	 I # � fx � uig �M � v �I �nite�

# � fx �
W
i�I uig �M � v

� i 	 I # �M � ui �I �nite�

# �M �
V
i�I ui

Figure �	�� Domain logic typing judgments

��U �� � U ��u� v�� � ��u��� ��v��
��
V
i�I ui�� �

T
i�I ��ui�� ��

W
i�I ui�� �

S
i�I ��ui��

Figure �	�� Semantics of formulas

� The �type� system whose judgements have the form # �M � u� where M is a 	�
term and # is a set consisting of distinct pairs x � v� given in �gure ���	� All the
free variables of M are declared in #� and � � # means� � � fx� � u�� � � � � xn �
ung� # � fx� � v�� � � � � xn � vng� and ui � vi for all i�

The denotational semantics of types and of simply typed 	�terms are de�ned as in
chapter 	� ��� � � �� � ����� � ��� ��� etc��� The meaning of the formulas of "���� for all
�� is given in �gure ���� Validity of the three kinds of judgements is de�ned in �gure
�����

Theorem ����� The following properties hold�

j� u � v i� ��u�� � ��v��

j� C�u� i� ��u�� is coprime

x� � u�� � � � � xn � un j�M � u i� �  ��� i �xi� 	 ��ui���� ��M �� 	 ��u���

Figure �	�
 Semantics of judgments
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� � u � v is provable i� j� u � v�
� � C�u� is provable i� j� C�u��

 � # �M � u i� # j�M � u

Proof hint� �	� and ��� have been already proved in substance in proposition 	������
�� is proved via a coprime completeness claim �cf� proposition 	������� For an u
such that ��u�� is coprime
 i�e�
 ��u�� �� d for some compact d
 ��M �� 	 ��u�� reads d �
��M ��� Then the coprime completeness claim follows from the following almost obvious
equivalences�

d � ��MN �� i�  e �d� e� � ��M �� and e � ��N �� by continuity
�d� e� � ��	x�M �� i� e � ��M ���d
x� by de�nition of d� e �

�

��� Bi�nite Domains in Logical Form �

We sketch how the logical treatment just given for Scott domains can be adapted to
bi�nite cpo�s�

De�nition ����� �Gunter joinable� A �nite subset � � K�D� � K�E� is called
Gunter joinable if

� d� 	 K�D� f�d� e� 	 � j d � d�g has a maximum in ��

Any Gunter joinable set � induces a function G��� de�ned by

G����x� � maxfe j  d �d� e� 	 � and d � xg�

Lemma ����� If �� �� are Gunter joinable� then�

� � G��� �
W
fd� e j �d� e� 	 �g�

� � d� � e� � G����  d� e �d � d�� e� � e and �d� e� 	 ���

 � G��� � G����� � �d�� e�� 	 ��  d� e d � d�� e� � e and �d� e� 	 ��

Proof� �	� follows from the following remark� by de�nition of G���
 if G��� �� �

then G����x� � �d� e��x� for some �d� e� 	 ��

��� First recall that d� � e� � G��� can be reformulated as e� � G����d���

�� Then d� � e� � d� e
 and a fortiori d� � e� � G����

��� By de�nition of G���
 G����d�� � e for some �d� e� 	 � with d � d��

�� is an obvious consequence of ���� �

Proposition ����� IfD�E are bi�nite� then K�D� E� � fG��� j � is Gunter joinableg�
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Proof� Clearly
 each G���
 as a �nite lub of step functions
 is compact� Conversely

we know from proposition ����� that the compact elements of D � E have the form
r�f�
 where f � D � E is a continuous function
 and r is a �nite projection de�ned
from two �nite projections p � D � D and q � E � E by r�f��x� � q�f�p�x���� We
have to �nd a � such that r�f� � G���� We claim that the following does the job�

� � f�p�y�� q�f�p�y���� j y 	 Dg�

� � is �nite� by the �niteness of the ranges of p� q�

� � is Gunter joinable� Let x 	 D� We claim�

p�x� � maxfp�y� j y 	 D and p�y� � xg�

Then obviously �p�x�� q�f�p�x���� is the maximum of f�d� e� 	 � j d � xg�

� r�f� � G���� We have�

r�f�x�� � q�f�p�x��� by de�nition of r
G����x� � q�f�p�x��� by de�nition of G��� �

�

The following equivalent formulation of Gunter joinable subsets is due to Abramsky

and is more easy to capture in logical form�

Proposition ����� Let f�di� ei� j i 	 Ig � K�D�� K�E� be �nite� Then f�di� ei� j
i 	 Ig is Gunter joinable i�

� J � I  K � I MUB�fdj j j 	 Jg� � fdk j k 	 Kg and � j 	 J� k 	 K ej � ek�

Proof� ��� Let m 	 MUB�fdj j j 	 Jg�
 and let �dk� ek� � maxf�di� ei� j di � mg�
We claim� m � dk� Since dk � m by de�nition
 it is enough to show that dk 	 UB�fdj j
j 	 Jg�
 which follows from the obvious inclusion fdj j j 	 Jg � f�di� ei� j di � mg�
This inclusion also implies � j 	 J ej � ek�

�� Let d 	 K�D�
 J � fj j dj � dg
 and let K be as in the statement� By property
M there exists k 	 K such that d � dk� But then k 	 J by de�nition of J 
 and since
dk is both an upper bound and an element of fdj j j 	 Jg
 it is a maximum of this set�
Moreover
 since ej � ek
 for all j 	 J 
 we have that �dk� ek� is the desired maximum��

Exercise ����� ��� Show that the statement of theorem ����	 remains true after the
following two changes in de�nition ����
� ��� D�� � � � � Dn are now �xed bi�nite cpo�s�
��� Axiom �C � Scott� of de�nition ����
 is replaced by the following axiom�

�C � bi�nite�

� i 	 I C�ui� and C�vi�
� J � I  K � I

V
j�J uj �

W
k�K uk and � j 	 J� k 	 K vj � vk

C�
V
i�I�ui � vi��

Hints� The principal di�culty is to make sure that any u can be written as a disjunction
of formulas of the form

V
i�I�ui � vi� where the ui�s and the vi�s satisfy the conditions

of rule �C � bi�nite�� Remove faulty disjunctions and replace them by disjunctions of
conjunctions� Design a terminating strategy for this�



Chapter ��

Dependent and Second Order

Types

The main goal of this chapter is to introduce ��calculi with dependent and second
order types� to discuss their interpretation in the framework of traditional domain
theory �chapter �� will mention another approach based on realizability�� and to
present some of their relevant syntactic properties�

Calculi with dependent and second order types are rather complex syntactic
objects� In order to master some of their complexity let us start with a discussion
from a semantic viewpoint� Let T be a category whose objects are regarded as
types� The category T contains atomic types like the singleton type �� the type
nat representing natural numbers� and the type bool representing boolean values�
The collection T is also closed with respect to certain data type constructions�
For example� if A and B are types then we can form new types such as a product
type A�B� a sum type A�B� and an exponent type A� B�

In �rst approximation� a dependent type is a family of types indexed over
another type A� We represent such family as a transformation F from A into the
collection of types T� say F  A� T� As an example of dependent type we can
think of a family Prod �bool  nat � T that given a number n returns the type
bool � � � � � bool �n times��

If the family F is indexed over the collection of all types T� say F  T� T�
then we are in the realm of second order types� As an example of a second order
type we can think of a family Fun  T� T that given a type A returns the type
A� A of functions over A�

If types� and the collection of types T� can be seen as categories then we can
think of dependent and second order types as functors� Let us warn the reader
that in this preliminary discussion we are considering a simpli�ed situation� In
general we want to combine dependent and second order types� For example� we
may consider the family Poly�P rod  T�nat � T that takes a type A� a number
n� and returns the type A� � � � �A �n times��

Probably the most familiar examples of dependent and second�order types

�
�
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arise in logic� If ��x� is a formula depending on the variable x then we can
think of ��x� as a family of propositions indexed over the universe of terms
U � say �  U � Prop� This is a dependent type� On the other hand� if we
consider a formula ��X�� parametric in a formula variable X then we can think
of ��X� as a family of propositions indexed over the universe of propositions� say
�  Prop � Prop� This is a a second order type� If we allow quanti�cations
over variables we can form the formulas 	x��� and �x��� This is the realm of
�rst�order logic� If moreover we allow quanti�cations over formula variables we
can form the formulas 	X��� and �X��� and we are in the realm of second order
logic�

Dependent types also appear in several type systems �or generalized logics�
such as DeBruijn�s Automath �dB�	�� Martin�L�of�s Type Theory �ML���� and
Edinburgh LF �HHP���� Second order types appear in a rather pure form in
Girard�s system F �Gir��� �which is equivalent to a system of natural deduction
for minimal� implicative� propositional second order logic�� they also appear� for
instance� in the Calculus of Constructions �CH��� but there they are combined
with dependent types and more�

Let us now look at the interpretation� Given a family A  U � Prop we
can obtain two new propositions 	UA� and �UA where we understand 	U as a
meet or a product� and �U as a join or a sum� In general� given a family of
types F  I� T indexed over a category I we are interested in building two new
types that we may denote� respectively� with *IF and 'IF � and that correspond�
respectively� to the product and the sum of the family F �

Relying on this informal discussion� we can summarize the contents of this
chapter as follows� The main problem considered in section ���� is to provide a
concrete domain�theoretical interpretation of the constructions sketched above�
In particular� we build a category of domains that is �closed� under �certain�
indexed products� and �certain� indexed sums� The �rst simple idea is to interpret
types as domains of a given category C� and the collection of types as the related
category Cip of injection�projection pairs� What is then a dependent type F
indexed over some domain D� Since every preorder can be seen as a category� it
is natural to ask that F is a functor from D to Cip� Analogously a second order
type will be seen as an endo�functor over Cip� However this will not su#ce� for
instance we will need that the family F preserves directed colimits� namely it is
cocontinuous�

In section ���� we provide a syntactic formalization of the semantic ideas
sketched above� To this end we introduce a calculus of dependent and second
order types and discuss some of its basic properties� We call this calculus �P��
calculus� following a classi�cation proposed in �Bar��a� �the �P� stands for pos�
itive logic and the ��� for second order�� We also brie�y discuss an interpre�
tation of the �P��calculus which relies on the domain�theoretical constructions
introduced in section ����� The interpretation is presented in a set�theoretical
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notation� a general categorical treatment would require an amount of category�
theoretical background that goes beyond our goals� In this respect let us mention
�AL��� which contains a rather complete analysis of the categorical structure
needed to interpret second order types from the viewpoint of indexed category
theory and internal category theory� Several approaches to the categorical se�
mantics of dependent types have been considered� we refer to �JMS��� for an
account based on �brations�

In section ���� we describe another interpretation of type theories based on
the idea that types denote retractions� In this respect we take two di�erent
but related approaches� First� we further develop the properties of the domain of
�nitary projections studied in section ���� In particular we show how to represent
dependent and second order types in this structure� It turns out that certain �size
problems� encountered in the domain constructions described in section ���� can
be avoided in this context� Second� we present an extension of the ���calculus
called ��p�calculus in which �p� is a constant that denotes the retraction of all
retractions� We de�ne a simple� adequate translation of the �P��calculus in the
��p�calculus�

The �P��calculus can be seen as the combination of two systems of indepen�
dent interest the system LF of dependent types and the system F of second
order types� We reserve the sections ���� and ���� to a careful presentation of
the syntactic properties of these two systems the main result being that both
systems enjoy the strong normalization property �this property is enjoyed by the
�P��calculus as well and can be proved by combining the techniques for system
F and system LF�� We also discuss two interesting applications that illustrate
the expressive power of these systems ��� The system LF has been proposed
as a tool for the encoding of certain recurring aspects of logical systems such
as ��conversion and substitution� We illustrate this principle by presenting an
adequate and faithful representation of �rst�order classical logic in LF� ��� The
system F can represent a large variety of inductively de�ned structures and func�
tions de�ned on them by iteration�

���� Domain�Theoretical Constructions

In set theory we may represent a family of sets as a function F  X � Set� More
precisely� we consider a graph given as f�x� Fx�gx�X� In this way we do not have
to speak about the class of sets� We formulate some basic constructions that will
be suitably abstracted in the sequel� In the �rst place we can build the �disjoint�
sum of the sets in the family as

'XF � f�x� y� j x � X and y � Fxg �

Observe that there is a projection morphism p  'XF � X that is de�ned as
p�x� y� � x� On the other hand we can build a product of the sets in the family
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as
*XF � ff  X �

�
x�X

Fx j 	x � X �fx � Fx�g �

There is another way to write *XF using the notion of section of the projection
morphism p  'XF � X �the weakness of this method is that it requires the
existence of 'XF �� A section is a morphism s  X � 'XF such that p 
 s � idX�
in other words for any x � X the section s picks up an element in Fx� It is then
clear that the collection of sections of p is in bijective correspondence with *XF �

Exercise ������ Verify that the de�nitions of �XF and �XF can be completed so to
obtain sum and product of the objects in the family in the category of sets�

Exercise ������ Suppose that the family F � X � Set is constant� say F �x� � Y for
each x in X� Then verify that �XF 
� X � Y � and �XF 
� X � Y �

Exercise ������ Show that every small category with arbitrary products is a poset �this
is an observation of Freyd�� Hint� We recall that a category is small if the collection of
its morphisms is a set� Given two distinct morphisms f� g � a� b in the small complete
category C consider �Ib� The cardinality of C�a��Ib� exceeds that of MorC when I is
big enough�

Remark 		�	�� Observe that in the de�nition of 'XF and *XF it is important
that X is a set� so that the graph of F is again a set� and so are 'XF and *XF �
This observation preludes to the problem we will �nd when dealing with second
order types� In the interpretation suggested above neither the graph of a family
F  Set� Set nor 'SetF and *SetF turn out to be sets�

In the following we generalize the ideas sketched above to a categorical setting�
Given a family F as a functor F  X � Cat� the category 'XF provides the
interpretation of the sum� On the other hand� the product is represented by the
category of sections� say *XF � of the �bration p  'XF � X that projects 'XF
onto X� A section s of p is a functor s  X� 'XF such that p 
 s � idX�

Dependent types in Cat� Let F  X� Cat be a functor where X is a small
category� we de�ne the categories 'XF�*XF � and the functor p  'XF � X as
follows

'XF � f�x� y� j x � X� y � Fxg
'XF ��x� y�� �x

�� y��� � f�f� �� j f  x� x�� �  F �f��y�� y�g
id�x	y� � �idx� idy�
�g� �� 
 �f� �� � �g 
 f� � 
 �Fg�����

The category 'XF is often called the Grothendieck category� The functor p 
'XF � X is de�ned as

p�x� y� � x p�f� �� � f �
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The category *XF is de�ned as

*XF � fs  X � 'XF j p 
 s � idXg
*XF �s� s

�� � f�  s� s� j � is a cartesian natural transformationg

where a cartesian natural transformation �  s � s� is a natural transformation
determined by a family f�idx� �x�gx�X with s�x� � �x� y�� s��x� � �x� z�� and
�x  y � z �so the �rst component of the transformation is constrained to be the
identity�� Observe that for a section s we have s�x� � �x� y�� for all x � X� and
s�f� � �f� ��� for all f �MorX�

The next issue concerns the specialization of these de�nitions to the categories
of cpo�s and Scott domains� The problem is to determine suitable continuity
conditions so that the constructions of sum and product return a �domain�� say
an algebraic cpo�s� It turns out that everything works smoothly for dependent
types� On the other hand second order types give some problems�

��� The sum of a second order type is not in general a domain�

��� The product of a second order type is only equivalent� as a category� to a
domain�

��� Bi�nite domains are not closed under the product construction �this moti�
vates our shift towards Scott domains��

Dependent types in Cpo� We re�ne the construction above to the case where
F  D � Cpoip is a functor� D is a cpo� and Cpoip is the category of cpo�s and
injection�projection pairs� In other terms X becomes a poset category D and the
codomain of the functor is Cpoip� By convention� if d � d� in D then we also
denote with d � d� the unique morphism from d to d� in the poset category D�
If f  D � E is a morphism in Cpoip then we denote with f� the injection and
with f� the projection�

Proposition 		�	�� �dependent sum in Cpoip� LetD be a cpo and F  D �
Cpoip be a functor� then the following is a cpo�

'DF � f�d� e� j d � D� e � Fdg� ordered by
�d� e� �� �d�� e�� i� d �D d� and F �d � d����e� �F �d�� e

� �

Proof� By proposition ������ the category Cpoip is the same as the category
where a morphism is the injection component of an injection�projection pair� The
latter is a subcategory of Cat� It is immediate to verify that �'DF���� is a poset
with least element ��D��F ��D���

Next let X � f�di� ei�gi�I be directed in 'DF � Set for d �
W
i�I di�

X � �d�
�
i�I

F �di � d���ei�� �
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We claim that this is well de�ned and the lub of X in 'DF �

� fF �di � d���ei�gi�I is directed� Since X is directed

	i� j��k�di � dk� dj � dk� F �di � dk�
��ei� � ek� F �dj � dk�

��ej� � ek� �

Hence F �di � d���ei� � F �dk � d�� 
 F �di � dk���ei� � F �dk � d���ek�� and
similarly for j�

�
W
X is an upper bound for X immediate� by de�nition�

�
W
X is the lub� If �d�� e�� is an upper bound for X then it is clear that d � d��

Next we observe

F �d � d����
W
i�I F �di � d���ei�� �

W
i�I F �d � d����F �di � d���ei��

�
W
i�I�F �di � d����ei�� � e� �

�

Exercise ������ Verify that the de�nition of �DF is an instance of the de�nition in
Cat�

Proposition 		�	�� �dependent product in Cpoip� Let D be a cpo and F 
D � Cpoip be a functor� then the following is a cpo with the pointwise order
induced by the space D � 'DF �

�*DF � � fs  D � 'DF j s continuous� p 
 s � idDg �

Proof� First we observe that p  'DF � D is continuous as for any f�di� ei�gi�I
directed set in 'DF we have� taking d �

W
i�I di

p�
W
i�I�di� ei�� � p�

W
i�I di�

W
i�I F �di � d���ei��

�
W
i�I di �

W
i�I p�di� ei� �

We can also de�ne a least section as s�d� � �d��F �d��� Next we remark that for
any directed set fsigi�I in �*DF � we have� for any d � D

p 
 �
�
i�I

si��d� � p�
�
i�I

si�d�� �
�
i�I

p�si�d�� � d �

Hence the lub of a directed set of sections exists and it is the same as the lub in
D � 'DF � �

We given an equivalent de�nition of continuous section�

De�nition 		�	�� Let D be a cpo and F  D � Cpoip be a functor� Consider
f  D �

S
d�D Fd such that fd � Fd� for each d � D� We say that f is

cocontinuous if F �d � d����fd� � fd�� and for any fdigi�I directed in D� such
that

W
i�I di � d�

f�d� �
�
i�I

F �di � d���f�di�� �



����� DOMAIN�THEORETICAL CONSTRUCTIONS ���

Clearly �*DF � is isomorphic to

ff  D �
S
d�D Fd j 	d �fd � Fd� and f is cocontinuousg� ordered by

f � g i� 	d � D �fd �Fd gd� �

Exercise �����
 Verify that the de�nition of ��DF � in Cpoip corresponds to select a
full subcategory of cocontinuous sections out of the general construction described for
Cat�

Dependent types in Scott domains� We denote with S �S for Scott� the cat�
egory of algebraic� bounded complete� cpo�s �Scott domains for short� cf� chapter
��� The following hypotheses su#ce to guarantee that the constructions de�ned
above return Scott domains

� The domain of the family is a Scott domain�

� The codomain of the family is the category Sip of Scott domains and injection�
projection pairs�

� Less obviously� the functor F is cocontinuous in a sense which we de�ne next�

De�nition 		�	�	� �directed colimits� A directed diagram is a diagram in�
dexed over a directed set� We say that a category has directed colimits if it has
colimits of directed diagrams� We say that a functor is cocontinuous if it preserves
colimits of directed diagrams�

Applying the theory developed in section ��� it is easy to derive the following
properties�

Proposition 		�	�		 �� The category Sip has directed colimits�

��� Given a Scott domain D and a functor F  D � Sip� F is cocontinuous i�
for any fdigi�I directed in D such that

W
i�I di � d�

�
i�I

F �di � d�� 
 F �di � d�� � idF �D� �

��� A functor F  Sip � Sip is cocontinuous i� for any Scott domain D and any

directed set fpigi�I of projections over D�

�
i�I

pi � idD �
�
i�I

F �pi� � idF �d� �

Proposition 		�	�	
 �dependent sum and product in Scott domains� Let
D be a Scott domain and F  D � Sip be a cocontinuous functor� then the cpo�s
'DF and �*DF � are Scott domains�
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Proof� � 'DF is bounded complete� Let X � f�di� ei�gi�I be bounded in 'DF

by �d�� e��� Then �i� fdigi�I is bounded in D by d� and therefore �
W
i�I di � d�

�ii� Moreover fF �di � d���ei�gi�I is bounded by F �d � d����e�� as

F �di � d����ei� � F �d � d���F �di � d���ei� � e� implies
F �di � d���ei� � F �d � d����e�� �

Hence we set e �
W
i�I F �di � d���ei�� It is immediate to check that �d� e� is the

lub�

� 'DF is algebraic� We claim

��� K�'DF � " f�d� e� j d � K�D� and e � K�F �d��g � K�

��� For any �d� e� � 'DF � � �d� e� �K is directed with lub �d� e��

Proof of ���� Let d� � K�D�� e� � K�F �d���� and X � f�di� ei�gi�I be directed
in 'DF with d� �

W
i�I di � d� and F �d� � d���e�� �

W
i�I F �di � d���ei�� By

hypothesis� d� and e� are compact� F �d� � d���e�� is also compact� hence we
can �nd j such that d� � dj � F �d

� � d���e�� � F �dj � d���ej�� that implies
F �d� � dj���e�� � ej� That is �d�� e�� � �dj � ej�� Hence �d�� e�� � K�'DF ��

Proof of ���� The set is directed because 'DF is bounded complete� Given �d� e�
we consider �i� fdigi�I � K�D� directed such that

W
i�I di � d� and �ii� 	i � I

fei	jgj�Ji � K�F �di�� directed such that
W
j�Ji ei	j � F �di � d���e��

Then the following equations hold �the last one by cocontinuity of F �

W
i�I	j�Ji�di� eij� � �d�

W
i�I	j�Ji F �di � d���ei	j��

� �d�
W
i�I F �di � d���

W
j�Ji ei	j��

� �d�
W
i�I F �di � d��F �di � d���e�� � �d� e� �

� �*DF � is bounded complete� Suppose fsigi�I is a bounded set in �*DF �� Since
bounded completeness is preserved by exponentiation we can compute

W
i�I si in

D � 'DF � It remains to show that p 
 �
W
i�I si� � idD� We observe that for any

d � D
p��
�
i�I

si��d�� � p�
�
i�I

si�d�� �
�
i�I

p�si�d�� � d �

� �*DF � is algebraic� We consider the step sections �cf� lemma ������ �d� e� for
d � K�D�� e � K�F �d��� de�ned as

�d� e��x� �

�
�x� F �d � x���e�� if d � x
�x��F �x�� otherwise

�

One can verify that �d� e� is compact in �*DF �� It remains to observe that for any
s � �*DF �� f�d� e� j �d� e� � sg determines s� �
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Second order types in Scott domains� We look for an interpretation of
second order types as domains� Suppose that F  Sip � Sip is a cocontinuous
functor� Then� as an instance of the general categorical construction� we can
form the category 'SipF � It is easily veri�ed that 'SipF does not need to be a
preorder as there can be several injection�projection pairs between two domains�
We therefore concentrate our e�orts on products� To this end we spell out the
notion of cocontinuous section�

De�nition 		�	�	� Let F  Sip � Sip be a cocontinuous functor� A cocontinu�
ous section s is a family fs�D�gD�Sip such that�

f  D � E in Sip � F �f���s�D�� � s�E� ������

and for any D � Sip for any ffi  Di � Dgi�I such that ff�i 
 f
�
i gi�I is directed

we have� �
i�I

�f�i 
 f
�
i � � idD � s�D� �

�
i�I

�Ffi�
��s�Di�� ������

Let �*ip

SF � be the collection of cocontinuous sections with the pointwise partial
order

s � s� i� 	D � Sip �s�D� � s��D�� �

The problem with this partial order is that the cocontinuous sections are not sets�
hence a fortiori �*SipF � cannot be a Scott domain� However there is a way out of
this foundational problem� namely it is possible to build a Scott domain which
is order isomorphic to �*SipF �� To this end we observe that the compact objects
�cf� de�nition ������ in Sip are the �nite bounded complete cpo�s� and that there
is an enumeration So � fCigi�� up to order�isomorphism of the compact objects�
We de�ne �*Sipo F � as the collection of sections fs�D�gD�Sipo such that

s  D � E in Sipo � F �f���s�D�� � s�E� ������

This is the monotonicity condition ���� in de�nition ������� restricted to the
subcategory Sipo �there is no limit condition� as S

ip
o is made up of compact objects��

We observe that �*Sipo F � with the pointwise order is a poset� The following
theorem is due to �Coq���� after �Gir�
�� The basic remark is that a cocontinuous
section is determined by its behaviour on Sipo �

Theorem 		�	�	� �second order product� Let F  Sip � Sip be a cocontin�
uous functor then� �� �*SipF � is order isomorphic to �*Sipo F �� and ��� the poset
�*Sipo F � is a Scott�domain�

Proof hint� ��� Any cocontinuous section s � �*SipF � determines by restriction
a section res�s� � �*Sipo F �� Vice versa given a section s � �*Sipo F � we de�ne its
extension ext�s�� as follows

ext �s��E� �
�
f�Ff���s�D�� j D � Sipo and f  D � E in Sipg ������
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The set f�Ff���s�D�� j D � Sipo and f  D � E in Sipg is directed� Given
f�  D� � E� f�  D� � E we can �nd D� � Sipo and g�  D� � D�� g�  D� � D��
g  D� � E such that g 
 g� � f� and g 
 g� � f��

The section ext�s� satis�es condition ���� because given g  E � E� we
compute

�Fg���ext�s��E�� � �Fg���
W
f�Ff���s�D�� j D � Sipo and f  D� Eg�

�
W
fF �g 
 f���s�D�� j D � Sipo and f  D � Eg

�
W
fF �h���s�D�� j D � Sipo and h  D � E �g � �ext�s���E�� �

With reference to condition ���� we need to check that

ext �s��D� �
�
i�I

�Ffi�
��ext�s��Di��

�the other inequality follows by condition ������ According to the de�nition of
ext consider D� � Sipo and f  D� � D� We can �nd j � I and h  D� � Dj such
that fj 
 h � f � Then

F �f���s�D��� � F �fj 
 h���s�D���
� F �fj����Fh���s�D���� � F �fj���ext �s�Dj��� �

It is easily checked that res and ext are monotonic� We observe that s�D� �
ext �s��D� if D � Sipo � To show � consider the identity on D� and to prove � use
condition ����� It follows res�ext �s�� � s�

To prove ext �res�s�� � s we compute applying condition ����

ext �res�s���D� �
W
f�Ff����res�s���D��� j D� � Sipo and f  D

� � Dg
�
W
f�Ff���s�D��� j D� � Sipo and f  D

� � Dg � s�D� �

��� The least element is the section f�DgD�Sipo � The lub s of a directed set fsigi�I

is de�ned as s�D� �
W
i�I si�D�� Bounded completeness is left to the reader� To

show algebraicity� we de�ne for D � Sipo and e � K�FD� the section

�D� e��D�� �
�
f�Ff���e� j f  D� D� in Sipg ������

Compact elements are the existing �nite lub�s of sections with the shape ����� �

Hence� although �*SipF � is not a poset because its elements are classes� it is
nevertheless order�isomorphic to a Scott domain �*Sipo F �� Figure ���� summarizes
our results on the closure properties of the ' and * constructions in the categories
Cpoip and Sip�

Exercise ������� Consider the identity functor Id � Sip � Sip� Prove that ��SipId� is
the cpo with one element� Hint� let s be a cocontinuous section and D a Scott domain�
Then there are two standard embeddings� inl and inr� of D in D  D� where  is
the coalesced sum� The condition on sections requires that s�D  D� � inl�s�D�� �
inr�s�D��� but this forces s�D� � �D�
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F  D � Cpoip� F functor� D cpo � 'DF� �*DF � cpo�s

F  D � Sip� F cocont�� D Scott domain � 'DF� �*DF � Scott domains

F  Sip � Sip� F cocont� � �*SipF � �� �*Sipo F � Scott domain

Figure ���� Dependent and second order types in Cpoip and Sip

Remark 		�	�	� �� Exercise ��� hints at the fact that cocontinuous sec�
tions satisfy certain uniformity conditions� namely the choice of the elements has
to be invariant with respect to certain embeddings� In practice syntactically de�
�nable functors are �very� uniform so we can look for even stronger uniformity
conditions in the model� Here is one that arises in the stable case �see chapter �
and �Gir���� and that leads to a �smaller� interpretation of certain types� Every
section s satis�es the following uniformity condition�

h  D � E in Sip implies s�D� � �F �h����s�E�� ����
�

This condition implies the standard condition in the continuous case� In the stable
case one considers stable injection projection pairs �cf� section ��
� and the
sections s are such that for all D� s�D� is stable� ��� It can be proved that bi�nite
domains are not closed with respect to the �*BifF � construction �see �Jun�����
The basic problem arises from the observation that Sipo does not need to satisfy
property M �cf� de�nition �������

The following two exercises require the knowledge of stability theory and of
coherence spaces �chapters �� and ���� The �rst exercise witnesses the di�erence
between the stable and the continuous interpretation� The second presents the
uniformity condition as a requirement of stability�

Exercise ������� ��� Show that� in the stable setting just described� the interpretation
of �t�t � t is �isomorphic to� O� ��� In contrast� show that in the continuous setting
the interpretation of �t�t� t is in�nite� Hints� For ���� consider a section s� Show that
if xe 	 trace�s�E������ then x � feg� make use of two injections from E into E � e��
where e� is coherent with all the events of x� Show that x �� � with a similar method �e�

being now incoherent with e�� Show that if s is not � for all D� then s�feg���� � id �
and hence s�D� is the identity everywhere� For ���� consider the �non�stable� functions
de�ned by s�D��x� � x if x bounds at least n compact elements of D� and s�D��x� � �
otherwise�
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Exercise ������	 �Moggi� Let s be a section satisfying the condition in the proof
of theorem ������	 and consisting of stable functions� Show that s satis�es the uni�
formity condition ���� i� s� viewed as a functor in the Grothendieck category� pre�
serves pullbacks� Hints� ��� Show that f � �D� x� � �D�� x�� and f � � �D� x� �
�D�� x��� form the limit cone of a pullback diagram in the Grothendieck category i�
x � F �f���x�� � F �f ����x���� ��� Show that for any stable injection�projection pair
f � D � D�� the pair of f and f forms the limit cone of a pullback diagram�

���� Dependent and Second Order Types

We introduce the typing rules of the �P��calculus� a ��calculus with depen�
dent and second order types� We restrict our attention to the introduction and
elimination rules for products� The syntactic categories of the �P��calculus are
presented as follows�

Variables v � x jj y jj � � �
Contexts � � � jj �� v  � jj �� v  K
Kinds K � tp jj *v  ��K
Type Families � � v jj *v  ��� jj *v  tp�� jj �v  ��� jj �M
Objects M � v jj �v  ��M jj �v  tp�M jjMM jjM� �

Contexts� type families� and objects generalize the syntactic categories we have
already de�ned in the simply typed case �cf� chapter ��� Kinds form a new
syntactic category� which is used to classify type families� so� intuitively� kinds
are the �types of types�� The basic kind is tp which represents the collection of all
types� More complex kinds are built using the * construction and are employed
to classify functions from types to the collection of types �type families�� The
formal system is based on the following judgments�

Well formed kind � � K  kd
Well formed type family � � �  K
Well formed object � �M  � �

The formal rules are displayed in �gure ����� In the following we will use A�B� � � �
as meta�symbols ranging over objects� type families� kinds� and a special constant
kd which is introduced here just to have a uniform notation�

A well�formed context has always the shape x�  A�� � � � � xn  An where Ai

is either a kind or a type �that is a type family of kind tp� but not a function
over types�� Note that Ai might actually depend on the previous variables� Syn�
tactically this entails that the rule of exchange of premises is not derivable in
the system& the order of hypotheses is important� Semantically we remark that
a context cannot be simply interpreted as a product� We will see next that the
product is replaced by the Grothendieck category �cf� exercise �������
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The formation rules for kinds are directly related to those for contexts� indeed
we use � � tp  kd to state that the context � is well�formed� One can consider
a slightly less synthetic presentation in which one adds a fourth judgment� say
� � ok � which asserts the well�formation of contexts�

We remark that not all premises in the context can be ��abstracted� In
particular� type families cannot be abstracted with respect to kinds� and objects
can be abstracted only with respect to types and the kind tp� By convention we
abbreviate *x  A�B with A� B� whenever x �� FV �B��

In the �P��calculus it is not possible to type a closed type family �x  ��� 
*x  ��tp in such a way that � actually depends on x� In the applications �e�g�� see
section ����� we enrich the calculus with constants such as Prod �bool  nat � tp�

Finally� we note that the rules *I and *E for type families and objects follow
the same pattern�

Kinds and types are assigned to type families and objects� respectively� mod�
ulo ��conversion �rules �tp�Eq� and �Eq��� Formally� we de�ne the relation � as
the symmetric and transitive closure of a relation of parallel ��reduction which
is speci�ed in �gure ����� This is a suitable variation over the notion of parallel
��reduction that we have de�ned in �gure ��� to prove the con�uence of the un�
typed ���calculus� Note that the de�nition of the reduction relation does not rely
on the typability of the terms� Indeed this is not necessary to obtain con�uence
as stated in the following�

Proposition 		�
�	 �con�uence� If A� A� and A� A�� then there is B such
that A�� B and A��� B�

Proof hint� Show that if A� A� and B � B� then A�B�x�� A��B��x�� �

We state three useful properties of the �P��calculus� We omit the proofs
which go by simple inductions on the length of the proof and the structure of the
terms�

Proposition 		�
�
 Type uniqueness� If � � A  B and � � A  B� then

B � B��

Abstraction typing� If � � �x  A�A�  *x  B�C then �� x  A � A�  C and
A � B�

Subject reduction� If � � A  B and A� A� then � � A�  B�

Let us brie�y discuss two relevant extensions of the �P��calculus

� When embedding logics or data structures in the �P��calculus it is often useful
to include ��conversion as well �cf� sections ���� and �����

��� �x  A��Bx� � B x �� FV �B� �
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�K���
� � tp  kd

�K�kd�
� � K  kd x �� dom���

�� x  K � tp  kd

�K�tp�
� � �  tp x �� dom���
�� x  � � tp  kd

�K�*�
�� x  � � K  kd � � �  tp

� � *x  ��K  kd

Well formed kind

�tp�Asmp�
x  K � � � � tp  kd

� � x  K
�tp�Eq�

� � �  K � � K �  kd K � K �

� � �  K �

�tp�*�
�� x  � � �  tp � � �  tp

� � *x  ���  tp
�tp�*��

�� x  tp � �  tp
� � *x  tp��  tp

�tp�*I�
�� x  � � �  K � � �  tp
� � �x  ���  *x  ��K

�tp�*E�
� � �  *x  ��K � �M  �

� � �M  K�M�x�

Well formed type family

�Asmp�
x  � � � � � tp  kd

� � x  �
�Eq�

� � M  � � � �  tp � � �

� �M  �

�*I�
�� x  � �M  � � � �  tp
� � �x  ��M  *x  ���

�*E�
� � M  *x  ��� � � N  �

� � MN  � �N�x�

�*�
I�

�� x  tp �M  �
� � �x  tp�M  *x  tp��

�*�
E�

� � M  *x  tp�� � � �  tp
� �M�  � ���x�

Well formed object

Figure ���� Typing rules for the �P��calculus
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A� A� B � B�

��x  C�A�B� A��B��x�
A� A� B � B �

AB � A�B�

A� A� B � B�

�x  A�B � �x  A��B�

A� A� B � B �

*x  A�B� *x  A��B�

A� A

A� C B � C

A � B

Figure ���� Parallel ��reduction and equality for the �P��calculus

The system with ���conversion is still con�uent and strongly normalizing but
the proof of this fact is considerably harder than the one for ��conversion� A
basic problem is that con�uence cannot be proved without appealing to typing�
Consider

N � �x  ����y  ��M�x x �� FV �M�
N �� �x  ��M �x�y�
N �� �y  ��M �

It is not possible to close the diagram unless � and � are convertible� This is
proven by appealing to judgments of the shape � � � � �  K�

� The following rules can be used to formalize the '�construction on dependent
types� Observe the introduction of the constructor h � i and destructors fst � snd
which generalize the familiar operators associated to the cartesian product�

�tp�'�
�� x  � � �  tp
� � 'x  ���  tp

�'I �
� �M  � �� x  � � N  �
� � hM�N �M�x�i  'x  ���

�'E�
�

� �M  'x  ���
� � fstM  �

�'E�
�

� � M  'x  ���
� � sndM  � �fstM�x�

�

Interpretation in Scott domains� We interpret the �P��calculus in the cat�
egory of Scott domains and injection�projection pairs by appealing to the con�
structions introduced in section ����� The interpretation is given in a naive
set�theoretical style� our goal being to suggest how the sum and product con�
structions can be used in an interpretation�

In �rst approximation the interpretation of a context � such that � � tp  kd�
is a category� say ������ the interpretation of tp is the category Sip of Scott domains
and injection�projection pairs� the interpretation of a type� � � �  tp� is a
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functor F � ��� � �  tp�� from ����� to Sip� and the interpretation of a term�
� � M  �� is a section of the Grothendieck �bration p  '		
��F � ������ Note
that the interpretations are inter�dependent� and they are de�ned in �gure ����
by induction on the derivation of the judgment� We use a set�theoretical style�
in a rigorous approach we should make sure that the de�ned objects exist in
the domain�theoretical model� Another aspect which we ignore is the soundness
of the equality rules� Indeed� one should verify that ��reduction is adequately
modelled ��CGW��� carries on this veri�cation for second order types��

We start with the trivial category �� and we use the Grothendieck category
to extend the context� The interpretation of a kind judgment is a functor from
the context interpretation to Cat� We de�ne the interpretation parametrically
on y � ������ Given a variable� say x� occurring in the well formed context � we
write yx for the projection of the x�th component of the vector y � ������

Exercise ������ Extend the interpretation to handle the rules for dependent sum
stated above�

���	 Types as Retractions

We present two approaches which are based on the interpretation of types as
�particular� retractions over a domain� In the �rst approach� we develop the
properties of �nitary projections �cf� chapter �� towards the interpretation of
dependent� and second order types� In the second approach� we present a purely
syntactic interpretation of the �P��calculus into the ��p�calculus� which is a
��calculus enriched with a constant p that plays the role of a retraction of all
retractions�

In section ���� we have discussed how to represent countably based Scott
domains as �nitary projections over a universal domain U � In the following we
brie�y describe the construction of the operators ' and * in this framework �see
�ABL�
��� Suppose that U is a Scott domain such that

U � U �U via ���u� u���hu� u�i� �u���fst u�� �sndu���  U � U � U
�U � U� � U via �i� j�  �U � U�� U

We also know that �see exercise ������

FP�U� � �U � U� via �idFP�U�� �� �

We set � � i 
 � 
 j � FP�U�� We suppose the following correspondences

� A projection p � FP�U� represents the domain im�p��

� A function f  U � U such that f � � 
 f 
 p represents a cocontinuous
functor from the domain im�p� to the category Sip� where f�d� � im�fd� and
f�d � d�� � �id � f�d���
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�K��� ����� � 	
�K�kd� ��#� x � K�� � �		
����# � K � kd��
�K�tp� ��#� x � ��� � �		
����# � � � tp��

Context interpretation

�K��� kd� tp� ��# � tp � kd���y� � Sip

�K��� ��# � �x � ��K � kd���y� � ��Gy	y
��F �y� y���

where� Gy � ��# � � � tp���y�
and F �y� y�� � ��#� x � � � K � kd���y� y��

Kind interpretation

�tp�Asmp� ��# � x � tp���y� � yx
�tp��� ��# � �x � ��� � tp���y� � ��Gy	y

��F �y� y���
where� Gy � ��# � � � tp���y�
and F �y� y�� � ��#� x � � � � � tp���y� y��

�tp���� ��# � �x � tp�� � tp���y� � ��Sip	y
��F �y� y���

where� F �y� y�� � ��#� x � tp � � � tp���y� y��
�tp��I� ��# � 	x � ��� � �x � ��K���y� � 	y� 	 Gy����#� x � � � � � K����y� y��

where� Gy � ��# � � � tp���y�
�tp��E� ��# � �M � K�M
x����y� � ���# � � � �x � ��K���y�����# �M � ����y��

Type family interpretation

�Asmp� ��# � x � ����y� � yx
��I� ��# � 	x � ��M � �x � ��� ���y� � 	y� 	 Gy����#� x � � �M � � ����y� y��

where� Gy � ��# � � � tp���y�
��E� ��# �MN � � �N
x����y� � ���# �M � �x � ��� ���y�����# � N � ����y��
���

I� ��# � 	x � tp�M � �x � tp�� ���y� � 	y� 	 Sip����#� x � tp �M � � ����y� y��
���

E ��# �M� � � ��
x����y� � ���# �M � �x � tp������y�����# � � � tp���y��

Object interpretation

Figure ���� Interpretation of the �P��calculus in Sip
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It has already been remarked in �����	 that FP�U� and Sip �more precisely�
the subcategory of countably based domains� are not equivalent categories as
FP�U� is just a poset� As a matter of fact we get a di�erent model of the �P��
calculus where� in particular� one can interpret the second order '�construction
as a domain�

De�nition 		���	 �' and * constructions in FP�U�� Let p � FP�U�� and
f  U � U be such that f � � 
 f 
 p� We de�ne�

'pf � �u�hp�fst u�� �f�fst u���sndu�i  U � U
*pf � �u�i��x�j�fx���ju��px��  U � U �

Exercise ������ Show that under the hypotheses of de�nition ���
��� �pf��pf 	
FP�U��

When f  im�p�� Sip is regarded as a functor� the sum and product construc�
tions de�ned in propositions ������ and ������� respectively� apply� In particular
we have

'im�p�f � f�d� e� j pd � d and �fd�e � eg
�*im�p�f � � f�  U � U j � 
 p � � and 	d ��fd���d� � �d�g �

We can then show that 'pf and *pf are �nitary projections representing the
�right� domains�

Exercise ������ Show that under the hypotheses of de�nition ���
�� the following
isomorphims hold�

im��pf� 
� �im�p�f and im��pf� 
� ��im�p�f � �

Exercise ������ Compute ��Id� Compare the corresponding domain with the one
obtained in exercise �������

Exercise ������ Consider the formal system for the 	P��calculus with the identi�ca�
tion tp � kd� This system has been shown to be logically inconsistent �all types are
inhabited� by Girard� However� not all terms are equated� To prove this fact propose
an interpretation of the calculus in the domain of �nitary projection� Hint� the �nitary
projection � represents the type of all types �see �ABL�����

We now turn to the syntactic approach� We present an extension of the
untyped ���calculus with a constant p whose properties are displayed in �gure
���� �by convention� let P 
Q stand for �x�P �Qx�� with x fresh�� The intention
is to let p denote the retraction of all retractions� On this basis� �p�� states that
elements in the image of p are retractions� �p�� entails that p is a retraction as
p
p � pp
pp � pp � p� and �p�� states that all retractions are in the image of p�
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�p�� �px� 
 �px� � px
�p�� pp � p

�p��
M 
M �M

pM �M

Figure ���� Additional rules for the ��p�calculus

hkdi � p
htpi � p
hxi � x
h*x  A�Bi � �z��t���x�hBi��hAit��z�hAit�� z� t �� FV �A� � FV �B�
h�x  A�Bi � ��x�hBi� 
 hAi
hABi � hAihBi

Suppose �i � x�  A�� � � � � xi  Ai� i � �� � � � � n�
hAi
 � hAi�P��x�� � � � � Pn�xn��
Pi�� � hAi��i
ixi
P� � hA�ix�

Figure ���
 Translation of the �P��calculus into the ��p�calculus

We want to show that �i� every model of the ��p�calculus is also a model of
the �P��calculus� and �ii� there are models of the ��p�calculus� Point �ii� is a a
corollary of theorem �������� In particular� we will we will see that every re�exive
object in the category of bi�nite �stable� domains and stable morphisms �there
are plenty of them� can be canonically extended to a model of the ��p�calculus�

We remark that the �nitary projection model presented above� although based
on similar ideas� does not provide a model of the ��p�calculus if we interpret �as
it is natural� p as the projection �� The problem is that the rule �p�� requires
that every retraction is in � image �a similar problem would arise in models based
on �nitary retractions��

In order to address point �i�� we exhibit a syntactic translation of the �P��
calculus into the ��p�calculus which preserves equality� By combining �i� and
�ii� we can conclude that every model of the ���calculus based on bi�nite stable
domains� canonically provides a �non�trivial� interpretation of the �P��calculus�

Let us give some intuition for the interpretation� A type or a kind is rep�
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resented as a retraction� say r� An object d has type r if d � r�d�� When
interpreting the ��abstraction �x  A�B the retraction hAi is used to coerce the
argument to the right type� A similar game is played in the interpretation of
*x  A�B which resembles *pf in de�nition ������� Note that if x �� FV �B� then
h*x  A�Bi � �z�hBi 
 z 
 hAi� which is the way to build a functional space in
Karoubi envelope �cf� de�nition ��
���� Another special case is when A � tp�
then we obtain �t��z�hBi�pt�x��z�pt��� Here the type of the result �hBi�pt�x��
depends on the input type �pt�� The translation is de�ned in �gure ���
� it
respects typing and reduction as stated in the following�

Proposition 		���� �� If � � A  B then hAi
 ��p hBi
hAi
�

��� If � � A  B and A� B then hAi
 ��p hBi
�

Proof� In the �rst place we observe that hA�B�x�i
 ��p hAi
�hBi
�x�� Next
we prove the two statements simultaneously by induction on the length of the
typing proof� We consider some signi�cative cases�

�K��� We apply axiom �p���

�K�*� Let Q � h*x  ��Ki
� We prove pQ ��p Q by showing Q 
Q ��p Q� To
this end we expand the left hand side of the equation and apply the inductive
hypotheses phKi
	x�� ��p hKi
	x�� and ph�i
 ��p h�i
�

�tp�Asmp� There is a shorter proof of � � K  kd� Then by induction hypothesis
we know phKi
 ��p hKi
� We conclude observing that hxi
 ��p hKi
x�

�tp�Eq� There are shorter proofs of � � K  kd and � � K �  kd� By con�uence
we know that K and K � have a common reduct� By applying the second part
of the statement above we can conclude that hKi
 ��p hK �i
� By inductive
hypothesis we know hKi
h�i
 ��p h�i
� Combining with the previous equation
we get the desired result�

�tp�*I� By expanding de�nitions as in the �K�*� case�

�*E� We observe

hMNi
 ��p �h*x  ��� i

hMi
��hNi
� ��p h� �N�x�i


�hMi
hNi
� �

For the second part of the statement we proceed by induction on the typing and
the derivation of a ��reduction� For instance consider the case ��x  A�B�C �
B�C�x�� If ��x  A�B�C is typable in a context � then we can extract a proof
that � � C  A� By ��� we know hAi
hCi
 ��p hCi
� Hence we can compute
h��x  A�B�Ci
 ��p ��x�hBi
��hAi
hCi
�� Which is convertible to hBi
�hCi
�x��
�
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���� System LF

The system LF corresponds to the fragment of the �P��calculus in which we drop
second order types� Formally one has to remove the following rules �tp�*��� �*�

I��
and �*�

E��

It has been shown that the system can faithfully encode a large variety of
logical systems �AHMP���� We will highlight some features of this approach by
studying the encoding of a Hilbert style presentation of classical �rst�order logic
with equality and arithmetic operators� Dependent products play a central role
in this encoding� From this one may conclude that dependent products are more
�expressive� than simple types� �

On the other hand from the view point of the length of the normalization
procedure dependent types do not add any complexity� As a matter of fact we
show that the strong normalization of system LF can be deduced from the strong
normalization of the simply typed ��calculus via a simple translation� �

Remark 		���	 Kinds� type families� and objects in ��normal form have the
following shapes where recursively the subterms are in ��normal form�

Kind� *x�  �� � � �*xn  �n�tp
Type family� �x�  �� � � � �xn  �n�*y�  �� � � � ym  �m�xM� � � �Mk

Object� �x�  �� � � � �xn  �n�xM� � � �Mk �

In order to de�ne precise encodings of logics in LF it is useful to introduce the
notion of canonical form� Roughly a term is in canonical form if it is in � normal
form and ��expansion is performed as much as possible� Canonical forms can be
regarded as a way to avoid the problematic introduction of full ���conversion�

De�nition 		���
 The arity of a type or kind is the number of *�s in the pre�x
of its ��normal form �which is to say the number of arguments�� Let � � A  B
be a derivable judgment� The arity of a variable occurring in A or B is the arity
of its type or kind�

De�nition 		���� Let � � A  B be a derivable judgment� The term A is in
canonical form if it is in ��normal form and all variable occurrences in A are fully
applied� where we say that a variable occurrence is fully applied if it is applied to
a number of arguments equal to the variable�s arity�

�It is known that the validity of a sentence is a decidable problem for propositional logic
and an undecidable one for �rst�order logic� Dependent types can be connected to predicate
logic in the same way simple types were connected to propositional logic in section ����

�From a logical view point this relates to the well�known fact that the cut�elimination
procedures in propositional and �rst�order logic have the same complexity�
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Individuals t � x jj 	 jj s�t�
Formulas � � t � t jj �� jj � ' � jj 	x��

�eq�� t � t
�eq��

t � t�

t� � t

�eq��
t � t� t� � t��

t � t��
�eq��

t � t�

��t�x� � ��t��x�

�pp�� � ' �� ' ��
�pp�� �� ' �� ' ��� ' ��� ' �� ' �� ' ���

�pp�� ��� ' ��� ' �� ' ��
�mp�

� ' � �

�

�pc��
�

	x��
�pc��

	x��
��t�x�

Figure ���� First�order logic with equality

In �gure ���� we give a presentation of classical �rst�order logic �FOL� with
equality and arithmetic operators� In �gure ���� we encode the language in the
system LF� To this end we build a context �FOL composed of

� The declaration of two new types �� o corresponding to the collection of indi�
viduals and formulas� respectively�

� The declaration of objects )	� )s corresponding to the arithmetic operators and
objects )�� )'� )�� )	 corresponding to the logical operators�

Next we de�ne a function d e that translates terms into objects of type � and
formulas into objects of type o� Note in particular that

� Variables are identi�ed with the variables of system LF�

� ��abstraction is used to encode the quanti�er 	�

These features are essential to inherit the de�nitions of ��renaming and substi�
tution available in the meta�theory� i�e� in LF� The correspondence between the
language of FOL and its encoding in LF is quite good�

Proposition 		���� There is a bijective correspondence between terms �formu�
las� having free variables in x�� � � � � xn and terms M in canonical form such that
�synFOL� x�  �� � � � � xn  � �M  � ��synFOL� x�  �� � � � � xn  � �M  o��

A second task concerns the encoding of the proof rules� The complete de��
nition is displayed in �gure ����� The basic judgment in FOL is that a formula
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�synFOL

������
�����
Constant types �� o  tp

Constant terms )	  � )s  �� �
)�  �� �� o )'  o � o� o

)�  o � o )	  ��� o�� o

dxe � x d	e � )	
ds�t�e � )sdte
dt � t�e � )�dtedt�e d�te � )�dte

d� ' ��e � )'d�ed��e d	x��e � )	��x  ��d�e�

Figure ���� Coding FOL language in LF

holds� say � �� Correspondingly we introduce a dependent type T  o� tp� This
is the point where dependent types do play a role( We also note that the rule
�tp�*E� is used to type the proof encodings� The basic idea is to introduce a series
of constants which correspond to the proof rules in such a way that objects of
type T �d�e� relate to proofs of the formula �� The property of the proof encoding
can be stated as follows� �

Proposition 		���� There is a bijective correspondence between proofs of a for�
mula � from the assumptions ��� � � � �m and with free variables x�� � � � � xn� and
terms M in canonical form such that�

�synFOL��
rl
FOL� x�  �� � � � � xn  �� y�  T �d��e�� � � � � ym  T �d�me� �M  T �d�e� �

For instance� to the proof x�x
�x�x�x� we associate the term pc���x  ��)�xx��eq���

Next we turn to the strong normalization problem for the system LF� This is
proven via a translation in the simply typed ��calculus which is speci�ed in �gure
����	� The function t applies to kinds and type families whereas the function j j
applies to type families and objects� The function t forgets the type dependency
by replacing every variable by the ground type o and ignoring the argument of a
type family� The function j j re�ects all possible reductions of the LF term� In
order to translate terms of the shape *x  A�B we suppose that the simply typed
��calculus is enriched with a family of constants � having type o� �t�A�� o��
o� In the �rst place� we observe some syntactic properties of these translations�

Lemma 		���� IfM is an object then� �� t�A�M�x�� � t�A�� and ��� jA�M�x�j �
jAj�jM j�x��

�Detailed proofs for propositions ������ and ������ can be found in �HHP�	��
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Judgment T  o� tp

Rules �rlFOL

��������������������
�������������������

eq�  *x  i�T � )�xx�
eq�  *x� y  i��T � )�xy�� T � )�yx��
eq�  *x� y� z  i��T � )�xy�� T � )�yz�� T � )�xz��
eq�  *f  �� o�*x� y  i��T � )�xy�� T � )��fx��fy���
pp�  *f� g  o�T �f )'g )'h�
pp�  *f� g� h  o�T ��f )'�g )'h�� )'��f )'g� )'�f ' h���
pp�  *f� g  o�T ��)�f )')�g� )'�g )'f��
mp  *f� g  o�T �f )'g�� T �f�� T �g�

pc�  *F  �� o��*x  ��T �Fx��� T �)	F �

pc�  *F  �� o�*x  ��T �)	F �� T �Fx�

Figure ���� Coding FOL proof rules in LF

t�tp� � o
t�x� � o
t�*x  A�B� � t�A�� t�B�
t��x  A�B� � t�B�
t�AB� � t�A�

jxj � x
jABj � jAjjBj
j*x  A�Bj � �jAj��x  t�A��jBj�
j�x  A�Bj � ��y  o��x  t�A��jBj�jAj �y fresh�

Figure ����	 Translation of LF in the simply typed ��calculus
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Proof hint� By induction on the structure of A� �

Lemma 		���� If � � A  B and A � A�� where A is a kind or a type family�
then t�A� � t�A���

Proof� By induction on the proof of the reduction� In the basic case ��x 
A�B�C � B�C�x� we use the fact that� by the typability hypothesis� C is an
object� �

The translations t and j j preserve typing�

Proposition 		���� If � � A  B and B � kd then t��� � jAj  t�B�� where
t�x�  A�� � � � � xn  An� � x�  t�A��� � � � � xn  t�An��

Proof hint� By induction on the length of the proof� �

Finally we can show that the translation re�ects reductions� which� by the
strong normalization of the simply typed ��calculus� implies immediately the
strong normalization of system LF�

Theorem 		��� If � � A  B� B � kd� A� A�� and in the reduction A� A�

we �nd at least one ��reduction� then jAj ��
� jA

�j�

Proof� By induction on the derivation of A � A�� For instance� suppose we
derive ��x  A�B�C � A��C ��x� from B � B� and C � C �� Then

j��x  A�B�Cj � ���y  o��x  t�A��jBj�jAj�jCj
� ��x  t�A��jBj�jCj
�� ��x  t�A��jB�j�jC �j by induction hypothesis
� jB�j�jC �j�x� � jB��C ��x�j by lemma �����
 �

�

Remark 		���	� By combining the results on con�uence and strong normaliza�
tion it is possible to prove that it is decidable if a judgment is derivable in the
system LF�

���� System F

System F is the fragment of the �P��calculus where dependent types and type
families are removed� Formally we eliminate the rules �K�*�� �tp�*I�� and
�tp�*E�� With these restrictions� types cannot depend on objects and the equal�
ity rules �tp�Eq� and �Eq� can be dispensed with� as type equality becomes ��
conversion� Note that in the type *x  ��� � the type � never depends on x and
therefore we can simply write � � � � Finally we remark that the rules for the
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�Asmp�
x  � � �
� � x  �

��I�
�� x  � � M  �

� � �x  ��M  �� �
��E�

� �M  �� � � � N  �
� �MN  �

�	I�
� �M  � t �� FVt���

� � �t�M  	t��
�	E�

� �M  	t��
� �M�  ����t�

Figure ����� Typing rules for system F

kind �and context� formation are redundant� Namely we can represent a context
as a list x�  ��� � � � � xn  �n �as in the simply typed ��calculus�� where the types
�i may depend on type variables� According to these remarks we give a more
compact presentation of system F� Since we have eliminated the kinds� we need
some notation to distinguish between type variables �i�e� variables of type tp�
and term variables �i�e� variables of type �� where � has kind tp� we denote the
former with t� s� � � � and the latter with x� y� � � � Terms and types are de�ned as
follows

Types tv � t jj s jj � � �
� � tv jj �� � jj 	tv��

Terms v � x jj y jj � � �
M � v jj �v  ��M jjMM jj �tv�M jjM� �

Note that the type of all types is never explicitly mentioned� 	t� � � � is an abbre�
viation for *t  tp� � � � and �t� � � � is an abbreviation for �t  tp� � � �

A context � is a list x�  ��� � � � � xn  �n� so the type variables declarations are
left implicit� We denote with FVt��� the collection of type variables that occur
free in types occurring in �� Derivable typing judgments are speci�ed in �gure
������ Mutatis mutandis� the system is equivalent to the one presented in section
�����

Exercise ������ Show that in system F ���reduction is locally con�uent on well�typed
terms�

The system F was introduced by Girard �Gir��� as a tool for the study of the
cut�elimination procedure in second order arithmetic �PA��� more precisely the
normalization of system F implies the termination of the cut�elimination proce�
dure in PA�� By relying on this strong connection between system F and PA�

it was proven that all functions that can be shown to be total in PA� are repre�
sentable in system F� This is a huge collection of total recursive functions that
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goes well beyond the primitive recursive functions� System F was later redis�
covered by Reynolds �Rey��� as a concise calculus of type parametric functions�
In this section we illustrate the rich type structure of system F by presenting a
systematic method to code �nite free algebras and iterative functions de�ned on
them�

In the following an algebra S is a sort S equipped with a t�uple of constructors

fnii  S � � � � � S� �z 
ni times

� S for i � �� � � � � k� k � 	� ni � 	 �

We inductively de�ne a collection of total computable functions over the ground
terms of the algebra as follows�

De�nition 		���
 The collection of iterative functions f  Sn � S over an
algebra S is the smallest set such that�

� The basic functions fnii � constant functions� and projection functions are iter�
ative functions�

� The set is closed under composition� If f�  Sm � S� � � � � fn  Sm � S� and
g  Sn � S are iterative then ��x�g�f���x�� � � � � fn��x�� is iterative�

� The set is closed under iteration� If hi  Sni�m � S are iterative functions for
i � �� � � � � k then the function f  Sm�� � S de�ned by the following equations is
iterative�

f��x� fi��y�� � hi��x� f��x� y��� � � � � f��x� yni�� i � �� � � � � k �

Iterative de�nitions� generalize to arbitrary algebras primitive recursive de��
nitions �cf� appendix A�� The basic idea is to de�ne a function by induction on
the structure of a closed term� hence we have an equation for every function of
the algebra�

Exercise ������ Consider the algebra of natural numbers ��� s�� ���� Show that the
iterative functions coincide with the primitive recursive ones� Hint� the de�nitions by
primitive recursion are apparently more general but they can be simulated using pairing
and projections�

De�nition 		���� �coding� In �gure �� we associate to an algebra S a type
� of system F� and to a ground term a of the algebra a closed term a of type ��

Example 		���� If we apply the coding method to the algebra of natural numbers
de�ned in exercise ���	 we obtain the type 	t��t � t� � �t � t�� The term
s�� � � �s	� � � �� can be represented by the term �t��f  t � t��x  t�f�� � � �fx� � � ���
which is a polymorphic version of Church numerals�
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Given S� fnii  S � � � � � S� �z 
ni times

� S� i � �� � � � � k

Let � � 	t���� � � � � �k � t
where �i � t� � � � � t� �z 

ni times

� t

fni �a�� � � � � an� � �t��x�  �� � � � �xk  �k�xi�a�t�x� � � � �ant�x�

Figure ����� Coding algebras in system F

Exercise ������ Explicit the coding of the following algebras� the algebra with no oper�
ation� the algebra with two ��ary operations� the algebra of binary trees �T� nil�� couple���

Proposition 		���� There is a bijective correspondence between the ground terms
of the algebra S and the closed terms of type � modulo ���conversion�

Proof� Let M be a closed term in ��normal form of type �� Then M has to
have the shape

M � �t��x�  �� � � � �xi  �i�M
� i � k �

If i � k and M � is not a ��abstraction then M � has the shape �� � � �xjM�� � � �Mh�
and so we can ��expand M � without introducing a ��redex� By iterated ��
expansions we arrive at a term in � normal form of the shape

�t��x�  �� � � � �xk  �k�M
�� �

where M �� has type t� it is in � normal form� and may include free variables
x�� � � � � xk� We claim that M �� cannot contain a ��abstraction

� A ��abstraction on the left of an application would contradict the hypothesis
that M is in � normal form�

� A ��abstraction on the right of an application is incompatible with the ��rst�
order� types of the variables �i�

We have shown that a closed term of type � is determined up to �� conversion by
a termM �� which is a well�typed combination of the variables xi� for i � �� � � � � k�
Since each variable corresponds to a constructor of the algebra we can conclude
that there is a unique ground term of the algebra which corresponds to M ��� �

Having �xed the representation of ground terms let us turn to the represen�
tation of functions�
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De�nition 		���� A function f  Sn � S is representable �with respect to the
coding de�ned in �gure ��� if there is a closed term M  �n � �� such that
for any ground term �a� M�a ��� f��a��

Proposition 		��� The iterative functions over an algebra S are representable�

Proof� We proceed by induction on the de�nition of iterative function� The
only non�trivial case is iteration� Let hi  Sni�m � S be iterative functions for
i � �� � � � � k� and the function f  Sm�� � S be de�ned by

f��x� fi��y�� � hi��x� f��x� y��� � � � � f��x� yni�� i � �� � � � � k ������

where �x � x�� � � � � xm� We represent f with the function

f � �x�  �� � � � �xm  ���x  ��x��h��x� � � � �hk�x�

where we know inductively that hi represents hi� Note that iteration is already
built into the representation of the data� We prove by induction on the structure
of a ground term a that for any vector of ground terms �b� f�ba ��� f��b� a��

� If a � f�i then f�bf
�
i �

� f�i ��h��b� � � � �hk�b� �
� hi�b � hi��b�� the last step holds

by induction hypothesis on hi�

� If a � fni �a�� � � � � an� then f��b� fi�a�� � � � � an�� � hi��b� f��b� a��� � � � � f��b� an��� by
equation ����� Then by induction hypothesis on hi

f��b� fi�a�� � � � � an�� � hi��b� f��b� a��� � � � � f��b� an�� � hi�bf��b� a�� � � � f��b� an� �

On the other hand we compute

f�bfni �a�� � � � � an�

� fni �a�� � � � � an���h��b� � � � �hk�b�

� �hi�b��a���h��b� � � � �hk�b�� � � � �an��h��b� � � � �hk�b�� �

and we observe that by induction hypothesis on a

f��b� ai� � f�bai � ai��h��b� � � � �hk�b�� �

�

Exercise ������ Consider the case of algebras which are de�ned parametrically with
respect to a collection of data� For instance List�D� is the algebra of lists whose ele�
ments belong to the set D� This algebra is equipped with the constructors nil � List�D�
and cons � D � List�D� � D� De�ne iterative functions over List�D� and show that
these functions can be represented in system F for a suitable embedding of the ground
terms in system F� Hint� The sort List�D� is coded by the type �t�t� �t� r � t�� t�
where r is a type variable� and generic elements in List�D� are represented by �free�
variables of type r�
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In system F it is also possible to give weak representations of common type
constructors� We explain the weakness of the representation in the following
example concerning products�

Example 		���		 For �� � types of system F de�ne�

��� � 	t���� � � t�� t �

Pairing and projections terms can be de�ned as follows�

hM�Ni � �t��f  �� � � t�fMN
��M �M���x  ���y  ��x�
��M �M� ��x  ���y  ��y� �

Note that �ihM��M�i ��� Mi but pairing is not surjective� i�e� h��M���Mi ���

M �

Exercise ������� Study the properties of the following codings of sum and existential�

� � � �t��� � t�� �� � t�� t
 t�� � �s���t�� � s�� s �

We conclude by proving the core of Girard�s celebrated result all terms ty�
pable in system F strongly normalize� The proof is based on the notion of re�
ducibility candidate already considered in de�nition ������ and in the adequacy
proof of section ���� In order to make notation lighter we will work with untyped
terms obtained from the erasure of well�typed terms�

De�nition 		���	� The erasure function er takes a typed term and returns an
untyped ��term� It is de�ned by induction on the structure of the term as follows�

er�x� � x er��x  ��M� � �x�er�M� er�MN� � er�M�er�N�
er��t�M� � er�M� er�M� � � er�M� �

In system F we distinguish two �avours of ��reduction the one involving a
redex ��x  ��M�N which we call simply � and the one involving a redex ��t�M��
which we call �t� Erasing type information may eliminate some reductions of the
shape ��t�M�� �M ���t�� however this does not a�ect the strong normalization
property as shown in the following�

Proposition 		���	� Let M be a well�typed term in system F� Then�

��� If M �� N then er�M��� er�N��

��� If M ��t N then er�M� � er�N��

��� If M diverges then er�M� diverges�
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Proof� We leave ����� to the reader� For ���� we observe that sequences of
�t�reductions always terminate� Hence we can extract an in�nite reduction of
er�M� from an in�nite reduction of M � �

De�nition 		���	� �reducibility candidate� Let SN be the collection of un�
typed ���strongly normalizable terms� A set X � SN is a reducibility candidate
if�

��� Qi � SN � i � �� � � � � n� n � 	 implies xQ�� � � � � Qn � X�

��� P �Q�x�Q�� � � � � Qn � X and Q � SN implies ��x�P �QQ�� � � � � Qn � X�
We denote with RC the collection of reducibility candidates and we abbreviate
Q�� � � � � Qn with �Q�

Proposition 		���	� �� The set SN is a reducibility candidate�

��� If X � RC then X � ��

��� The collection RC is closed under arbitrary intersections�

��� If X�Y � RC then the following set is a reducibility candidate�

X � Y � fM j 	N � X �MN � Y �g �

Proof� ��� We observe that P �Q�x��Q � SN and Q � SN implies ��x�P �Q�Q �

SN � Proceed by induction on ln�P �� ln�Q�� ln�Q��� � � �� ln�Qn�� where ln�P �
is the length of the longest reduction�

��� By de�nition x � X�

��� Immediate�

��� Here we see the use of the vector �Q� For instance let us consider the second

condition� To show ��x�P �Q�Q � X � Y observe 	Q� � X �P �Q�x��QQ� � Y �

since by hypothesis P �Q�x��Q � X � Y � �

De�nition 		���	� Given a type environment �  Tvar � RC we interpret
types as follows�

��t��� � ��t�
���� � ��� � ������� ��� ���
��	t����� �

T
X�RC �������X�t� �

Theorem 		���	� �strong normalization of system F� Given an arbitrary
type environment �� and a derivable judgment x�  ��� � � � � xn  �n � M  � � if
Pi � ���i���� for i � �� � � � � n then er�M��P��x�� � � � � Pn�xn� � ��� ����

Proof� We abbreviate �P��x�� � � � � Pn�xn� with ��P��x�� We proceed by induction
on the length of the typing proof� The case �Asmp� follows by de�nition�
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��I� We have to show �x�er�M���P��x� � ���� � ���� By inductive hypothesis we

know er�M���P��x��P�x� � ��� ���� for all P � ������� We conclude using property ���
of reducibility candidates�

��E� By the de�nition of ��

�	I� We have to show er�M���P ��x� �
T
X�RC ��� ����X�t�� By the side condition

on the typing rule we know ���i��� � ���i����X�t�� for an arbitrary X � RC � By

inductive hypothesis er�M���P��x� � ��� ����X�t�� for an arbitrary X � RC �

�	E� We have to show er�M���P��x� � ��� �����������t�� By inductive hypothesis

er�M���P��x� �
T
X�RC ��� ����X�t�� Pick up X � ������� �

The formal statement of theorem ������� can be regarded as a syntactic ver�
sion of the fundamental lemma of �unary� logical relations �cf� ������� The
following exercises present two variations over this result�

Exercise ������
 We say that a set X of untyped 	�terms is saturated �or closed by
head expansion� if P �Q
x�Q�� � � � � Qn 	 X implies �	x�P �QQ�� � � � � Qn 	 X� Following
de�nition ������ associate a saturated set to every type and prove the analogous of
theorem �������

Exercise ������ We say that a term is neutral if it does not start with a 	�abstraction�
The collection RC � �cf� �GLT���� is given by the sets X of strongly normalizing terms
satisfying the following conditions�

�	� M 	 X and M �� M
� implies M � 	 X�

��� M neutral and �M ��M �� M
� �M � 	 X� implies M 	 X�

Carry on the strong normalization proof using the collection RC ��

Exercise ������� Extend the strong normalization results for system F to ���reduction�
where the � rule for type abstraction is� 	t�Mt� M t 
	 FV �M��

Remark 		���

 Note that ��expansion in system F does not normalize� as�
�x  	t�t�x � �x  	t�t��t�xt� � � �

Remark 		���
� It is possible to reduce the strong normalization of the �P��
calculus to the strong normalization of system F by a translation technique that
generalizes the one employed in section �
 for the system LF �GN���
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Stability

The theory of stable functions is originally due to Berry �Ber���� It has been
rediscovered by Girard �Gir�
� as a semantic counterpart of his theory of dilators�
Similar ideas were also developed independently and with purely mathematical
motivations by Diers �see �Tay�	a� for references��

Berry discovered stability in his study of sequential computation �cf� theorem
���� and of the full abstraction problem for Pcf �cf� section 
���� His intuitions
are drawn from an operational perspective� where one is concerned� not only with
the input�output behaviour of procedures� but also with questions such as �which
amount of the input is actually explored by the procedure before it produces an
output�� In Girard�s work� stable functions arose in a construction of a model
of system F �see chapter ���& soon after� his work on stability paved the way to
linear logic� which is the subject of chapter ���

In section ���� we introduce the conditionally multiplicative functions� which
are the continuous functions preserving binary compatible glb�s� In section ����
we introduce the stable functions and the stable ordering� focusing on minimal
points and traces� Stability and conditional multiplicativity are di�erent in gen�
eral� but are equivalent under a well�foundedness assumption� They both lead
to cartesian closed categories� In section ���� we build another cartesian closed
category of stable functions� based on a characterisation of stable functions by
the preservation of connected glb�s� This category involves certain L�domains
satisfying a strong distributivity axiom� which are investigated in section ���
�

In the rest of the chapter� we impose algebraicity� as in chapter �� In Section
���� we introduce event domains and their representations by event structures�
and we show that they form a cartesian closed category� Berry�s dI�domains are
examples of event domains� and Girard�s coherence spaces �which give rise to a
model of linear logic� are examples of dI�domains� In section ���� we discuss the
stable version of bi�niteness� Within this framework a remarkably simple theory
of retractions can be developed� Figure ���� summarises the cartesian closed
categories described in this chapter�

The present chapter is based on �Ber��� �sections ����� ����� ������ �Win�	�

���
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�section ������ �Tay�	a� �sections ���� and ���
�� and �Ama��a� �section ������

���� Conditionally Multiplicative Functions

In this section we focus on functions preserving the compatible binary glb�s�
We therefore work with cpo�s which have such glb�s� Moreover� this partial glb
operation is required to be continuous� This condition ensures that function
spaces ordered by the stable ordering are cpo�s�

De�nition 	
�	�	 �meet cpo� A cpo �D��� is called a meet cpo if

 � 	x� y �x � y� x ! y exists��
� � 	x 	$ �dir D �x � �

W
$�� x ! �

W
$� �

W
fx !  j  � $g��

�

The condition ��� of de�nition ������� which expresses the continuity property
of binary glb�s� can be relaxed� Morevover� it comes for free in an algebraic cpo�

Lemma 	
�	�
 � In a meet cpo� as soon as x ! �
W
$� exists� then the dis�

tributivity equality x ! �
W
$� �

W
fx !  j  � Xg holds�

�� An algebraic cpo is a meet cpo i� condition �� of de�nition ��� holds�

Proof� ��� We apply condition ��� with x ! �
W
$� in place of x

�x ! �
�
$�� ! �

�
$� �

�
f�x ! �

�
$�� !  j  � Xg �

�
fx !  j  � Xg�

��� To check x ! �
W
$� �

W
fx !  j  � Xg� it is enough to check that every

compact e such that e � x! �
W
$� is also such that e �

W
fx!  j  � Xg� which

is clear since� by the de�nition of compact elements� e �
W
$ implies e �  for

some  � $� �

In particular� in bounded complete cpo�s the glb function is de�ned every�
where and is continuous� Some �counter��examples are given in �gure �����

De�nition 	
�	�� �conditionally multiplicative� LetD and D� be meet cpo�s�
A function f  D � D� is called conditionally multiplicative� or cm for short if

	x� y � D x � y� f�x ! y� � f�x� ! f�y��

We write D �cm D� for the set of cm functions from D to D��

The fonction por considered in section 
�� is an example of a continuous
functions which is not cm

por��� tt� ! por�tt��� � tt � � � por������
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�A� f�� a� b� c� dg� ordered as follows�

� minimum a � c� d b � c� d

is a meet cpo which is not bounded complete�

�B� f�� a� b� c� d� eg � ordered as follows�

� minimum a � c� d b � c� d c� d � e

is not a meet cpo �condition ��� of de	nition �
���� is violated��

�C� � � fa� bg� described in example ����� to give an example of a non�algebraic
cpo� also fails to be a meet cpo �condition �
� of de	nition �
���� is violated��

Figure �
��� Meet cpo structure� example� and counter�examples

The following function from T� to O due to Berry �and independently to
Kleene� see section ���� is a stable function�

gustave�x� y� z� �

���������
� if x � tt and y � �
� if x � � and z � tt
� if y � tt and z � �
� otherwise �

The simplest way to verify that this function is stable is by checking that its min�
imal points� i�e�� the mimimal elements �x� y� z� of T� such that gustave�x� y� z� �
� �see de	nition �
�
���� are pairwise incompatible� Indeed� if �x�� y�� z�� �
�x�� y�� z��� gustave�x�� y�� z�� � � and gustave�x�� y�� z�� � �� then �x�� y�� z��
and �x�� y�� z�� dominate the same minimal point �x� y� z� by the incompatibility
of distinct minimal points� hence �x� y� z� � �x�� y�� z�� � �x�� y�� z��� and

gustave��x�� y�� z�� � �x�� y�� z��� � � � gustave�x�� y�� z�� � gustave�x�� y�� z���

The main di�culty in getting a cartesian closed category of cm functions
resides in making the evaluation morphism ev stable� The pointwise ordering
�ext on functions does not work� Consider the identity function id � and the
constant function � � �x��� both in O �cm O� Then id �ext �� so that if ev
were to be stable� we should have that ev �id ��� and ev �id ��� � ev ����� are
equal� But in fact

ev �id ��� � ev ����� � � �� �� � � ev �id ����
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To overcome the di�culty� Berry de	ned the stable ordering �st� Actually� the
goal of making ev cm forces the de	nition of �st given next� Indeed� suppose
f �st g and y � x� Then we must have

f�y� � ev �f � g� x � y� � ev �f� x� � ev �g� y� � f�x� � g�y��

De�nition ������ �stable ordering �cm�� Let D and D� be two meet cpo�s�
and f� f � � D �cm D�� We de�ne f �st f

� by

	x� x� �x � x� 
 f�x� � f�x�� � f ��x���

In particular� if f �st g� then f �ext g �take x � x��� �From now on� to avoid
ambiguities� we use ext for the pointwise ordering� cf� de�nition ��	�	��

Lemma ������ The relation �st of de�nition �
���	 is a partial order�

Proof� Re�exivity is obvious� For the transitivity� assume f �st f
�� f � �st f

���
and x � x��

f�x� � f�x�� � f ��x� � f�x�� � f ��x�� � f ���x� � f�x�� � f ���x��

Antisymmetry follows from the antisymmetry of �ext � �

Exercise ������ Suppose that D�D� are meet cpo�s and let f� f � � D �cm D�� ���
Show that f �st f

� i�

f �ext f
� and � x� x� �x � x� � f�x� � f ��x�� � f�x�� � f ��x���

��� Show that if f �st f �� then � x� x� �x � x� � f�x� � f ��x�� � f�x�� � f ��x���

�	� Conversely� assuming that D� is a distributive meet cpo �see de
nition ���������
show that if

f �ext f
� �for �ext � and � x� x

� �x � x� � f�x� � f ��x�� � f�x�� � f ��x��

then f �st f
�� Hint for �	�� one uses exactly the information in the assumption to show

that the pointwise lub of f� f � is their lub in the stable ordering� see the proof of theorem
������	�

Exercise ������ Show that if f �ext g �st h and f �st h� then f �st g�

Exercise ������ Let f� g � D � E� with f continuous� g cm� and f �st g� Show that
f is cm�

Theorem �����	 �cm 
 CCC� The category of meet cpo�s and conditionally
multiplicative functions is a cpo�enriched CCC�
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Proof� The veri	cation that the composition of two cm functions is cm is
immediate� As for the cpo�enriched CCC structure� we content ourselves with
the veri	cations that D �cm D�� ordered by the stable ordering� is a meet cpo�
and that the evaluation morphism ev is cm ��

Directed lub�s and binary compatible glb�s are de	ned pointwise �and there�
fore the continuity property of � comes for free�� Let H �dir D �cm D�� and
de	ne h by h�x� �

W
ff�x� j f � Hg�

 h is cm�

h�x� � h�y� � �
�
f�H

f�x�� � �
�
f�H

f�y�� �
�
ff�x� � g�y� j f� g � Hg�

We conclude by observing that f�x� � g�y� � k�x� � k�y� � k�x � y� if k is an
upper bound of f� g in H�

 h is an upper bound of H� Let f� � H and x � y�

f��y��h�x� �
�
ff��y��f�x� j f � Hg �

�
ff��x��f�y� j f � Hg � f��x��h�y��

A similar argument shows that it is the least upper bound in the stable ordering�

If f �st g� we de	ne f � g by �f � g��x� � f�x� � g�x�� We check f � g �st f �
Let x � y�

�f � g��y� � f�x� � g�y� � f�x� � g�x� � f�y�
� g�y� � f�x� � g�x� � f�y� � f�x� � g�x�

�cf� exercise �
������ Suppose k �st f� g� We show k �st f � g� Let x � y�

�f � g��x� � k�y� � f�x� � k�x� � k�x��

The stability of ev follows from the de	nition of the stable ordering�

ev �f� x� � ev �g� y� � f�x� � g�y� � f�y� � g�x�
� f�x� � f�y� � g�x� � g�y� � ev �f � g� x � y� �

�

Exercise ������� Show that the following combination of order�theoretic compatible
binary glb�s �where �h� z� is an upper bound of �f� x�� �g� y��� borrowed from Tay��a��
o�ers an attractive picture of the proof that ev is cm�

�f � g��x � y� � �f � g��x� � f�x�
� �f � g stable� � �f � g �st f� �

�f � g��y� � �f � g��z� � f�z�
� �f � g �st g� � �de
nition� �

g�y� � g�z� � h�z�

�In all the CCC�s presented in this chapter� the pairing and currying are the set�theoretical
ones �cf� exercises ������ and ������	� We have written one of the proofs �theorem �����
	 in
full detail�
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�A� f�� a� b� c� dg� ordered as follows�

� minimum a� b� c � d

�B� f�� a� b� c� dg� ordered as follows�

� minimum a � d b � c � d

Figure �
�
� Examples of non�distributive 	nite lattices

Exercise ������� Show that the composition operation on meet cpo�s is cm�

If we assume bounded completeness of the domains� we are led to introduce
distributivity to maintain cartesian closure�

De�nition ������� �distributive cpo� A cpo is called distributive if it is boun�
ded complete �cf� de�nition ��	��� and satis�es

	x� y� z fx� y� zg compatible 
 x � �y � z� � �x � y� � �x � z��

Some counterexamples are given in 	gure �
�
�

Theorem ������� The category of distributive meet cpo�s and cm functions is
a cpo�enriched CCC�

Proof� Let f �st g� We show that f � g de	ned pointwise is also the stable lub
of f� g� Let h�x� � f�x� � g�x��

 h is stable� On one end we have

h�x � y� � �f�x� � f�y�� � �g�x� � g�y��

and on the other end we have

h�x� � �f � g��y� � �f�x� � g�x�� � �f�y� � g�y���

By distributivity we have

�f�x� � g�x�� � �f�y� � g�y�� �
�f�x� � f�y�� � �g�x� � g�y�� � �f�x� � g�y�� � �g�x� � f�y�� �
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The conclusion follows from the observation that f �st g impliesf�x� � g�y� �
g�x� � f�y�� hence f�x� � g�y�� g�x� � f�y� � f�x� � f�y��

 h is a stable upper bound� Let x � y� We have

h�x� � f�y� � �f�x� � f�y�� � �g�x� � f�y�� � f�x� � �f�x� � g�y�� � f�x��

 h is the stable lub� Let f� g �st k and x � y� We have�

k�x� � h�y� � �k�x� � f�y�� � �k�x� � g�y�� � �k�y� � f�x�� � �k�y� � g�x��
� k�y� � h�x� � h�x� �

�

���� Stable Functions

Stable functions can be de	ned on arbitrary cpo�s� Their de	nition brings us
closer to an operational intuition�

De�nition ������ �stable� Let D and D� be cpo�s� A function f � D � D� is
called stable if it is continuous and if� for any x � D� x� � D� such that x� � f�x�

�x� � x �x� � f�x�� and �	 y � x �x� � f�y� 
 x� � y����

This uniquely determined x� is written m�f� x� x��� and is called a minimal point
of f �relative to x��� We write D �st D

� for the set of stable functions from D
to D�� The following set is called the trace of f 

trace�f� � f�x� x�� � D �D� j x� � f�x� and x � m�f� x� x��g�

The function m�f� � � is called the multi�adjoint of f �the situation x� � f�y�
versus m�f� x� x�� � y is reminiscent of an adjunction��

In computational terms� m�f� x� x�� represents the amount of x which is �read�
by f in order to �write� �at least� x�� Stable functions can also be described by
glb preservation properties� as we now explain�

Proposition ������ �� Let D and D� be cpo�s� and let f � D �st D
�� Then for

any bounded X � D such that
V
X exists� f�

V
X� �

V
f�X��


� Conversely� if D and D� have all non�empty bounded glb�s� then a continuous
function preserving all such glb�s is stable�
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Proof� ��� f�
V
X� is a lower bound of f�X� by monotonicity� Suppose that

z� � f�X�� Let y � X� Then z� � f�y�� Let z� � m�f� y� z��� Pick x � X� Then
z� � x by the minimality of z�� since z� � f�x� and x � y� Hence z� �

V
X� and

z� � f�z�� 
 z� � f�
V
X�� Hence f�

V
X� is the glb of f�X��

�
� Let y � f�x�� Consider z� � fz j z � x and y � f�z�g� We claim that z� is
m�f� x� y�� This amounts to y � f�z��� which holds since

f�z�� �
�
ff�z� j z � x and y � f�z�g�

�

In section �
��� we shall see that stable functions preserve even more glb�s �the
connected ones� provided they exist�� Meanwhile� going from �more� to �less�� by
proposition �
�
�
� stable functions on meet cpo�s are conditonally multiplicative�
Berry has provided the following example of a cm� non stable function� Let

D � � � f�g with � � � � � � n � � � � � � � ��

Let f � D � O be de	ned by� f��� � �� f�n� � �� Then f is cm� but m�f� ����
does not exist� If we prevent the existence of in	nite descending chains� then cm
and stable are equivalent notions�

Proposition ������ If D and D� are algebraic meet cpo�s� and if K�D� is well�
founded� then f � D � D� is stable i� it is cm�

Proof� Let f be cm� Consider x� � f�x�� By continuity� x� � f�d� for some
compact d � x� If d is not minimum with that property� then for some compact
d� � x we have x� � f�d�� and d �� d�� Hence x� � f�d� � f�d�� � f�d � d���
In this way we construct a strictly decreasing chain d � d � d� � � � � that must
eventually end with e satisfying the de	nition of m�f� x� x��� �

The stable ordering between stable functions can be de	ned in terms of min�
imal points�

De�nition ������ �stable ordering �stable�� Let D� D� be cpo�s� and f� f � �
D �st D

�� We write f �st f
� i�

f �ext f
� and 	x� x� �x� � f�x� 
 m�f� x� x�� � m�f �� x� x����

Equivalently� �st can be de�ned by the inclusion of traces

f �st f
� i� trace�f� � trace�f ���

It is immediate that �st is a partial order� called the stable ordering� We write
f �st g to mean that f� g are compatible with respect to �st�
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Exercise ������ Show that the stable ordering can be equivalently de
ned as follows�
f �st f

� i� �f �ext f
� and � x� x� �x� � f�x� � � y � x �x� � f ��y�� x� � f�y�����

The next lemma shows that the stable ordering just de	ned coincides with
the stable ordering on the underlying cm functions�

Lemma ������ Let D and D� be two cpo�s� and f� f � � D �st D
�� The following

equivalence holds

f �st f
� � 	x� x� �x � x� 
 f�x� � f�x�� � f ��x��

�in particular� the glb�s f�x�� � f ��x� exist��

Proof� �
� f�x� is a lower bound of ff�x��� f ��x�g� If z� � f�x�� and z� � f ��x��
then m�f� x�� z�� � x� since z� � f ��x� and by de	nition of m�f �� x�� z��� Hence
z� � f�x� since y � m�f� x�� z���

��� In particular� taking x � x�� we get f �ext f
�� hence m�f �� z� z�� � m�f� z� z���

for z� � f�z�� From the implication� we get that for any z� � z� z� � f ��z�� implies
z� � f�z��� which shows m�f� z� z�� � m�f �� z� z��� �

Lemma ����� Let D�D� be cpo�s and let f � D �st D
�� The following proper�

ties hold

�� If �� �dir D�� and if
W

�� � f�x�� then

m�f� x�
�

��� �
�
fm�f� x� ��� j �� � ��g�


� If D and D� are bounded complete� and if x�� � f�x� and x�� � f�x�� then

m�f� x� x�� � x��� � m�f� x� x��� �m�f� x� x���

�provided these lub�s exist��

�� If D and D� are algebraic� then f � D � D� is stable i� for any compact
x � K�D�� x� � K�D��� such that x� � f�x�� m�f� x� x�� exists�

Proof� We only prove ���� Let x � D� x� � D�� not necessarily compact� We
have�

m�f� x� x�� �
W
fm�f� x� d�� j d� compact and d� � x�g by ���

m�f� x� d�� � m�f� d� d�� for some d by continuity�

�

Theorem ������ �stable 
 CCC� The category of distributive meet cpo�s� and
stable functions is a cpo�enriched CCC �cf� de�nition �������

�Bounded completeness comes in to get products� Distributivity comes in to show that
binary compatible lub�s are stable�
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Proof� First of all� we need to check that the composition of two stable functions
is stable� Let f � D �st D

� and f � � D� �st D
��� and let x�� � f ��f�x��� Then we

claim�
m�f � � f� x� x��� � m�f� x�m�f �� f�x�� x�����

Indeed� for y � x� we have� m�f �� f�x�� x��� � f�y� i� x�� � f ��f�y��� We leave
the reader check that the set�theoretic product� with the componentwise ordering
and the usual projections and pairing� is a categorical product� Notice that for
f � D �st D

�� g � D �st D
���

m�hf� gi� x� �x�� x���� � m�f� x� x�� �m�g� x� x����

We check in detail that D �st D
� is a categorical exponent� We 	rst show that

D �st D
� is a cpo� Let H �dir D �st D

�� Then a fortiori H is directed for �ext �
Consider h de	ned by h�x� �

W
ff�x� j f � Hg� We check that h is stable by

showing m�h� x� x�� �
W
f�H m�f� x� x� � f�x��� for all x� x� such that x� � h�x��

Let y � x� We have� using the continuity of glb�s�

m�h� x� x�� � y � x� � h�y� �
�
f�H

�x� � f�y�� � x��

On the other hand we have�
f�H

m�f� x� x� � f�x�� � y � 	 f � H x� � f�x� � f�y�

which can be rephrased as� 	 f � H x� � f�x� � x� � f�y�� Thus we are left to
show�

	 f � H �x� � f�x� � x� � f�y� �
�
f�H

�x� � f�y�� � x���

� 
�
W
f�H�x� � f�y�� �

W
f�H�x� � f�x�� � x� � h�x� � x��

� �� Let f� � H� We have �cf� exercise �
������

x� � f��x� �
W
f�H�x� � f�y� � f��x�� �

W
f�H�x� � f�x� � f��y��

� x� � f��y� � h�x� � x� � f��y� �

Hence h is stable� Next we show� 	 f � H f �st h� Let f � H and x� � f�x��
Since f �ext h� we have m�h� x� x�� � m�f� x� x��� On the other hand� since
m�h� x� x�� �

W
f�H m�f� x� x� � f�x��� we have

m�f� x� x�� � m�f� x� x� � f�x�� � m�h� x� x���

Finally let k be an upper bound of H in the stable order� We show h �st k�

m�h� x� x�� �
�
f�H

m�f� x� x� � f�x�� �
�
f�H

m�k� x� x� � f�x�� � m�k� x� x���
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This completes the proof that D �st D
� is a cpo�

Binary compatible glb�s exist� and are de	ned pointwise� for f� g �st h� de	ne
k�x� � f�x� � g�x�� This is a continuous function by continuity of the glb
operation� Let x� � k�x�� and y � x� Then we have

�x� � k�y� � �m�f� x� x�� � y� and �m�g� x� x�� � y� � m�h� x� x�� � y�

since m�f� x� x�� and m�g� x� x�� are both equal to m�h� x� x�� by assumption�
Hence m�k� x� x�� � m�h� x� x��� Thus k is stable� k �st f � and k �st g� Fi�
nally� suppose k� �st f� g� Then m�k�� x� x�� � m�f� x� x�� � m�g� x� x��� hence
m�k�� x� x�� � m�k� x� x��� This completes the proof that k � f � g �with respect
to the stable ordering�� The continuity property f � �

W
H� �

W
h�H�f �h� follows

from the fact that the operations are de	ned pointwise�
Binary compatible lub�s exist too� Suppose f� g �st h� and de	ne k�x� �

f�x��g�x�� The proof that k is stable and is the lub of f� g in the stable ordering is
completely similar to the proof of directed completeness D �st D

�� One replaces
everywhere uses of the continuity of the glb operation by uses of its distributivity�
The distributivity equation follows from the fact that the operations are de	ned
pointwise� Thus we have proved that D �st D

� is a distributive meet cpo�

We now prove that ev is stable� Consider �f� x� and x� such that x� � f�x� �
ev �f� x�� We show that m�ev � �f� x�� x�� � �g� z�� where z � m�f� x� x�� and
g � �y�x� � f�y � z�� �By bounded completeness� all binary glb�s exist� thus g is
well�de	ned and continuous� cf� lemma �
���
�� First� z � x by de	nition� We
check g �st f � We have �for y � y��

g�y�� � f�y� � x� � f�y� � z� � f�y� � x� � f�y� � z � y� � g�y��

Second� we check x� � g�z�� We actually even have x� � g�z��

g�z� � x� � f�z � z� � x� � f�z� � x��

Finally� let �f�� x�� � �f� x� be such that x� � f��x��� Then a fortiori x� � f�x���
hence z � x�� Next we show g �ext f��

g�y� � f��y� � x� � �f�y � z� � f��y�� � x� � f��y � z�
� x� � f��y � z� � f�x�� � x� � �f�y � z� � f��x���
� �x� � f��x��� � f�y � z� � g�y� �

Finally� we prove g �st f� � Let y � y��

g�y���f��y� � x��f�y��z��f��y� � x��f��y��z��f�y� � x��f�y��z��f�y� � g�y��

This completes the proof that m�ev � �f� x�� x�� � �g� z�� and hence that ev is
stable�
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Next we show that ��f��x� is stable� Let m�f� �x� x��� x��� � �y� y��� We show
that m���f��x�� x�� x��� � y�� Since �y� y�� � �x� y��� we have x�� � f�x� y��� that
is� x�� � ��f��x��y��� If z� � x� and x�� � ��f��x��z��� then �y� y�� � �x� z��� and
in particular y� � z�� This proves the stability of ��f��x�� and also that ��f� is
monotonic� if x � x�� then

m���f��x�� x�� x��� � m���f��x��� x
�� x��� � y��

Finally� we check that ��f� is stable� We show� for g �st ��f��x��

m���f�� x� g� �
�

T where T � fy j y � x and g �st ��f��y�g�

We have to check that g �st ��f��
V
T �� For any x�� since g�x�� � f�y� x�� for any

y � T � we have by stability �cf� proposition �
�
�
�

g�x�� �
�
y�T

f�y� x�� � f�
�

T� x��

i�e�� g �ext ��f��
V
T �� By exercise �
����� g �st ��f��x� and ��f��

V
T � �st

��f��x� imply g �st ��f��
V
T �� Thus we have established the CCC structure�

Finally� we check that � is monotonic� Suppose f �st g� We 	rst show
��f� �ext ��g�� i�e�� 	x ��f��x� �st ��g��x�� Recall that m���f��x�� x�� x��� � y��
where y� is the second component of m�f� �x� x��� x���� Since f �st g� we have
m�g� �x� x��� x��� � m�f� �x� x��� x���� Hence

m���f��x�� x�� x��� � m���g��x�� x�� x����

Next� suppose y � x� We have to check ��f��y� � ��f��x� � ��g��y�� By
the pointwise de	nition of binary compatible glb�s� this amounts to f�y� x�� �
f�x� x�� � g�y� x��� which holds since f �st g� �

Exercise �����	 
trace factorisation �Tay	�b� Show that trace�f�� ordered by the
induced componentwise order� is a cpo� Consider the following functions�

� � trace�f�� D ��x� x�� � x
�� � trace�f�� D� ���x� x�� � x�

h � D� trace�f� h�x� � f�m�f� x� f�x��� f�x�� j x � Dg �

��� Show that � a h� i�e�� �x�� y�� � h�x� 	 x� � x� ��� A monotonic function
f � X � Y between two partial orders is called a 
bration if for any pair �x� y� such
that y � f�x�� there exists an element ��f� x� y� of D such that�

���� ��f� x� y� � x
���� f���f� x� y�� � y

���� � z � x �f�z� � y � z � ��f� x� y�� �

Show that �� � trace�f� � D� is a stable 
bration� by which we mean that it is stable�
and that it is a 
bration with ��f� � � as multi�adjoint� �Equivalently� a stable 
bration
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can be de
ned as a 
bration �with ��� which is stable �with m� and is such that all 
bers
are groupoids� i�e�� all subsets f���x� consist of non comparable points�� �	� Show that
the sets

M of functions with a left adjoint and
E of stable 
brations

form a factorisation system for stable functions� by which we mean� �a� Any stable
function f factorises as f � �� 
 h� with h � M and �� � E� �b� M and E contain the
order�isomorphisms and are closed under composition with order�isomorphisms� �c�
For every commuting square g 
h � l 
 f where h � M and l � E� there exists a unique
stable � �called diagonal 
ll�in� such that l
� � g and �
h � f � �The unique diagonal

ll�in property allows us to show the uniqueness of the E�M factorisation��

Exercise ������� Show that the category of cpo�s and stable functions is not cartesian�
Hints� consider example �B� in 
gure ���� �ahead�� Call this domain D and de
ne a
pair of functions f � D � O and g � D � O such that the pairing fails to be stable�

Exercise ������� � Develop a theory of stable� partial functions by analogy with the
continuous case� Discuss lifting and sum in this framework�

���� dI�domains and Event Structures

We now address algebraicity� In continuous domain theory� the compact functions
are 	nite lub�s of step functions d � e �cf� proposition ������ Step functions are
stable� but they do not serve as approximations of functions as in the continuous
case� In the continuous case� one simply has �d � e� �ext f i� e � f�d��
However it is not true in general that e � f�d� �or even m�f� d� e� � d� implies
�d � e� �st f � The point is that for e� � e� one may have m�f� d� e�� � d� which
precludes �d � e� �st f � since m�d � e� d� e�� � d� This suggests to �saturate�
our candidate d � e by forming a lub �d � e�� � � � � �di � ei� � � � �� with ei � e
and di � m�f� d� ei�� To ensure the 	niteness of this saturation process� one is
lead to assume the following property I� which may be read as �	nite is really
	nite��

De�nition ������ �dI
domain� Let D be an algebraic cpo� Property I is de�
�ned as follows

�I� Each compact element dominates �nitely many elements�

An algebraic� bounded complete and distributive cpo satisfying property I is called
a dI�domain�

Exercise ������ Show that an algebraic domain satis
es I i� each compact element
dominates 
nitely many compact elements� Hint� for any y � x the approximants of y
are also approximants of x� hence are 
nitely many�
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Clearly� property I implies well�foundedness� hence under the assumption that
property I is satis	ed stable functions are the same as cm functions�

The dI�domains are due to Berry� who showed that they form a cartesian
closed category� In fact� distributivity is not needed� We take a concrete ap�
proach� based on event structures� An event structure can be perceived as the
speci	cation of how to build data out of distinct discrete pieces� or events� re�
specting consistency and causality requirements� These intuitions come from the
theory of concurrency� and� indeed� event structures have been investigated in
connection with Petri nets� Winskel �Win��� Win��� noticed that they could be
used for domain theory� and this is what concerns us here� Any event structure
generates a cpo� and dI�domains are recast from a subclass of event structures
satisfying an axiom corresponding to distributivity�

De�nition ������ �event structure� An event structure �E�Con��� �E for
short� is given by

 a set E whose elements are called events�

 a non�empty predicate Con � Pfin�E�� called consistency� satisfying

�� Con� �X � Con and Y � X� 
 Y � Con�

 a relation �� Con � E� called the enabling relation� if X � e� we say that
X is an enabling of e�

Enablings serve to de�ne proof trees for events� A proof of an event e is a tree
labelled by events� formed recursively as follows� If � e� then e is a proof of e� If
t�� � � � � tn are proofs of e�� � � � � en� and if fe�� � � � � eng � e� then the tree formed by
placing a root labelled with e above t�� � � � � tn is a proof of e�

A state �or con�guration� of an event structure E is a subset x of E which
is

 consistent� that is� 	X ��n E X � Con

 safe� that is� for any e � x there exists a proof tree for e whose nodes are
all in x�

We write D�E�Con ��� for the collection of states� ordered by inclusion�

An event structure is called stable if for any state x� for any X�Y � and e such
that e � x� X ��n x� Y ��n x� then X � e and Y � e 
 X � Y �

A partial order is called �stable� event domain if it is generated by some �sta�
ble� event structure� i�e�� if it is isomorphic to D�E�Con ��� for some �stable�
event structure �E�Con����
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The stability condition on event structures allows us to de	ne the glb of two
compatible states as their set�theoretic intersection�

Proposition ������ Event domains are Scott domains satisfying property I�
The minimum element is the empty state which is indi�erently written � or
�� Stable event domains are dI�domains�

Proof� Let E be an event structure� We 	rst show that D�E�Con ��� �D for
short� is a bounded complete cpo� Let � be a directed set of states� and consider
its set�theoretic union x� We prove that x is a state� Let X ��n x� Then� by
directedness� X ��n � for some � � �� Hence X � Con� Safety is obvious for a
union� Let now x� y� z be states such that x� y � z� The set�theoretic union of
x and y is again a state� by the same argument� The algebraicity of D follows
from the observation that 	nite states are compact� and that every state x is the
union of the 	nite states underlying the proof trees of the events e � x� Moreover
the compact states are exactly the 	nite ones� from which property I follows�

Let us now assume that E is stable� Distributivity follows from the set�
theoretic distributivity of intersection over union� since the binary compatible
glb of two states is its intersection� thanks to the condition of stability� �

We shall see that in fact dI�domains and stable event domains are the same
�proposition �
�������

Example ������ Consider E � fe�� e�� e�� e�g� and � given by

� e� � e� fe�� e�g � e� fe�� e�g � e��

And consider the two following consistency predicates Con� and Con�� described
by their maximal elements

fe�� e�� e�g � Con� fe�� e�� e�g � Con�

fe�� e�� e�� e�g � Con� �

Then �E�Con���� is a stable event structure� and �E�Con���� is an event struc�
ture which is not stable �consider fe�� e�� e�� e�g��

Where does the consistency predicate and the enabling come from� We let
them arise from the consideration of a of a stable function f � viewed as a state
�anticipating theorem �
������

 If �d�� e��� �d�� e�� � trace�f� and if d�� d� � d� then e�� e� � f�d�� Therefore
f�d�� e��� �d�� e��g should not be consistent if d� � d� and e� �� e��

 If �d�� e�� �d�� e� � trace�f� �with d� �� d��� then d� �� d� by de	nition of
a stable function� Therefore f�d�� e��� �d�� e��g should not be consistent if
d� � d�� d� �� d�� and e� � e��
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 Let �d� e� � trace�f� and e� � e� Then e� � f�d� implies �m�f� d� e��� e�� �
trace�f�� Thus the should be closed under some form of enabling� such that
�m�f� d� e��� e�� occurs in the proof of �d� e� in trace�f� �cf� the discussion
on step functions at the beginning of the section��

Theorem ������ �event domains 
 CCC� The category of event domains and
stable �or cm� functions is a cpo�enriched CCC�

Proof� We only give the construction of the product and exponent objects�
Speci	cally� given E and E�� we construct E�E� and E � E� in such a way that
D�E �E�� is the product of D�E� and D�E�� in Poset� and that D�E � E�� �
D�E� �st D�E��� We de	ne E �E� as follows�

 The collection of events is the disjoint union of E and E��

 Consistency is de	ned componentwise� X is consistent i� both X � E and
X � E� are consistent�

 The enabling relation is the disjoint union of the component enabling rela�
tions�

We de	ne E � E� as follows�

 Events are pairs �x� e�� where x is a 	nite state of E� and e� � E��

 A 	nite set f�xi� e�i� j i � Ig is consistent i�

	J � I fxj j j � Jg bounded 
 fe�j j j � Jg � Con� and
	 i� j e�i � e�j 
 �xi � xj or xi �� xj��

 f�xi� e�i� j i � Ig � �x� e�� i� 	 i xi � x and fe�i j i � Ig � e��

Axiom �� Con� is trivially satis	ed� We show that there is an order�isomorphism
between D�E� �st D�E �� ordered by the stable ordering and D�E � E�� ordered
by inclusion� With f � D�E� �st D�E�� we associate�

trace�f� � f�x� e�� j e� � f�x� and �y � x 
 e� �� f�y��g�

We show that trace�f� is a state� Consider f�xi� e�i� j i � Ig � trace�f� and
J � I such that fxj j j � Jg has a bound x� Then fe�j j j � Jg � f�x�� hence is
consistent� The second condition follows from the de	nition of stable function�
As for safety� consider �x� e�� � trace�f� and a proof of e� in f�x�� We can attach
to any node e�� in this proof the minimal point under x where f reaches e��� In
this way we obtain a proof of �x� e�� in trace�f��

�This de�nition of trace is a variation of the one given in de�nition ������� taylored to event
structures�
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That f �st g is equivalent to trace�f� � trace�g� is just the de	nition of the
stable ordering �cf� de	nition �
�
�� see also lemma �
�
������� The converse
transformation is de	ned as follows� Given a state z of E � E�� we de	ne

fun�z��x� � fe� j � y �y� e�� � z and y � xg�

We 	rst have to check that fun�z��x� is a state� Its consistency follows from the
	rst condition in the de	nition of higher�order consistency� Its safety follows from
the safety of z� noticing that all the nodes in a proof of �y� e�� � z have the form
�y�� e���� with y� � y� The de	nition of fun�z� ensures that it is continuous �notice
that the y in the right hand side is 	nite�� As for the stability� suppose that y�
and y� are minimal under x relative to e�� Then by the de	nition of fun�z�� it
must be the case that �y�� e��� �y�� e�� � z� hence y� � y� by the de	nition of
higher�order consistency�

Finally� it is easy to check that trace and fun are inverse bijections� �

The distributivity plays no role in the proof of theorem �
����� But it can be
added without harm�

Theorem ����� �dI
domains 
 CCC� The category dI
Dom � of stable event
domains and stable functions is a cpo�enriched CCC�

Proof hint� Check that E � E� is stable if E and E� are stable� �

What we lack at this point are representation theorems� in the style of theorem
���
��
� giving an abstract order�theoretic characterisation of event domains and
stable event domains� Droste �Dro��� has provided a representation theorem for
event domains �adapted from �Win����� We present this material in the form of
a �di�cult� exercise� which relies on the following de	nition�

De�nition ������ In a partial order� a prime interval is de�ned as a pair of
elements x� y such that x � y� i�e�� x � y and � � z x � z � y�

Prime intervals capture the intuition of an event as a discrete increment�

Exercise �����	 � Show that the event domains are the algebraic cpo�s which satisfy
I as well as the following two axioms on compact elements�

�C� �x � y� x � z� y �� z� y � z�� �y  z exists� y � y  z� z � y  z�
�S� �x� x�� �� �y� y��� x � y � x� � y� �

In axiom �S�� �x� x�� stands for a prime interval� and �� stands for the re�exive� sym�
metric and transitive closure of the relation �x� y� � �z� y  z� �where x� y� z satisfy the

�This name will be justi�ed by proposition �������



��� CHAPTER ��� STABILITY

assumptions of �C��� The idea is to take as events the equivalence classes of prime inter�
vals� Hints� If x� y are compact and x � y� there exists x � z� � � � � � zn � y� Such a
sequence is called a chain from x to y� If z�� � � � � zm and z��� � � � � z

�
n� are two chains from

x to y� then for any equivalence class e of prime intervals �fi j �zi� zi��� � eg � �fj j
�z�j � z

�
j��� � eg� Show the following implication� x � x� � y � y� � ���x� x�� �� �y� y����

If distributivity is assumed� then the characterisation is much friendlier� the
stable event domains are exactly dI�domains�

Proposition ������� The following classes of cpo�s coincide

� � stable event domains�

 � dI�domains�
� � coprime algebraic Scott domains �cf� de�nition ���
��� satisfying I�

Proof� ��� 
 �
� This is the second statement of proposition �
����

�
� 
 ��� Let D be a dI�domain�We use the characterisation given in proposition
������ and show that the compact elements of D are 	nite lub�s of compact
coprime elements� We follow a proof of Zhang �Zha���� We 	rst claim�

Claim� The compact coprimes are those compact elements that cover exactly
one element�

To prove the claim� we notice that by property I� for any compact d� fe j e �
dg is 	nite� and if d� � d� d� � d and d� �� d�� then we must have d� � d� � d�
and hence d is not coprime� Conversely� if d covers exactly one element d�� let
d �

W
X for a 	nite bounded X� By distributivity we get d �

W
fd � x j x � Xg�

Pick x � X� If d � x �� d� by property I we can 	nd an element covered by d
above d � x� which by assumption means d � x � d�� Hence at least one d � x
must be such that d�x � d �and hence d is coprime� as otherwise we would have
d �

W
fd � x j x � Xg � d��

Now we show that any compact element d �� � is a lub of 	nitely many
compact coprimes� Consider the tree rooted at d formed by taking as sons of the
root all the distinct elements d�� � � � � dn covered by d if there are at least two such
elements� and continuing so recursively� Notice that di �� � for all i� otherwise
we would have

di � � � d
di � � � dj � d �picking j �� i��

Then d is the lub of all the leaves of the tree� which are coprime since they cover
exactly one element�

��� 
 ��� Let D be as in ���� We de	ne �E����� as follows�

E consists of the compact coprime elements of D�
Con consists of the 	nite bounded subsets of E�
fe j e � dg � dfor any d � E� i�e�� the unique enabling of e is fe j e � dg�
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This is clearly an event structure� and the uniqueness of enablings makes it a
fortiori stable� We show that D is order�isomorphic to D�E�Con ���� To x � D
we associate g�x� � fe j e compact coprime and e � xg� g�x� is consistent since
it is bounded� and it is safe since by property I any event has a unique 	nite
proof tree� Conversely� to any state y � D�E�Con��� we associate

W
y which

exists by bounded completeness� The composition
W
�g is the identity of D by

de	nition of coprime�algebraic� If e� �
W
y� then e� � e for some e � y since e� is

compact coprime� Then� by the de	nition of enabling� e� occurs in the proof tree
of e and is therefore in y by safety� Hence g �

W
is the identity on D�E�Con����

�

Special classes of stable event structures are those of Girard�s qualitative
domains� and of Girard�s coherence spaces� Coherence spaces will be discussed
at length in section �����

De�nition ������� �qualitative domain� Qualitative domains are event do�
mains all of whose events are initial �� f� e j e � Eg� Then� clearly�
Con � K�D�E��� If moreover Con is speci�ed by means of a re�exive and sym�
metric relation �

	� i�e�� �X � Con � 	x� y � X x �
	 y�� then we say that we

have a coherence space �see de�nition ��������

Exercise ������� Show that the qualitative domains are the dI�domains in which the
compact coprime elements p are atomic� i�e�� � � p�

Exercise ������� Show that the category of qualitative domains and stable functions
is a cpo�enriched CCC�

Exercise ������� Show that the dI�domains are the distributive cpo�s such that the

nite stable projections �see de
nition ������ ahead� form a directed set �with respect
to the stable ordering� which has as lub the identity� Use this characterisation to give
another proof that the category of dI�domains and stable functions is cartesian closed�
Hints� consider for each X ��n K�D� the projection de
ned by p�x� �

W
fd�x j d � Xg�

proceed as in the proof of proposition ������

Exercise ������� 
stable neighborhoods �Zha	�� Let D be an ��algebraic meet
cpo satisfying property I� ��� Characterise ff����� j f � D �st Og� ��� Such sets are
called stable neighborhoods� Prove that they are closed by intersection but not by union�
�	� Show that there is no topology for which the stable functions are continuous� Hint�
consider the stable functions from O � O to O� There are four possible choices of a
topology for O� show that for each choice the sets of stable and continuous functions do
not coincide� ��� Characterise stable functions as those functions that preserve stable
neighborhoods by inverse image�

Exercise ������� Show that property I may not be preserved by the function space
construction with the pointwise ordering� Hints� take ��� � O� � O� de
ne fn�x� �
� i� x � n� and consider the step functions fn � ��
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Exercise ������� ��� If D is a complete ��algebraic lattice with property I� show�
�D �st O� �� K�D� � with the �at ordering on K�D�� ��� On the other hand� given a
�at cpo E�� show that �E� �st O� �� �P�E���� � O� where � is the coalesced sum
�cf� de
nition ��������

���� Stable Bi�nite Domains �

We investigate the stable version of bi	niteness
 Stable projections are better behaved
than the continuous ones
 Stable bi	nite domains enjoy a characterisation similar to
that for bi	nite domains �cf
 theorem �
�
�
 They lend themselves to a simple theory
of retractions
 In particular� there is a retraction of all retractions
 Also� there exists
a universal bi	nite domain


Proposition ������ Let D be a meet cpo� and let p� q � D�st D
� be such that p� q �st

id � Then�

� � p 
 q � p � q�
� � p is a projection�
	 � im�p� is downward closed�

Proof
 ��� Remark 	rst that since p and q are bounded their glb exists
 Next observe

qd � d� p�qd� � pd� qd � �p � q��d��

��� For p � q we obtain from ���� p�pd� � pd � pd � pd


��� d � pd� � pd � p�pd�� � d � pd� � d � d �

Proposition ��
�
� justi	es the following de	nition


De�nition ������ 
stable projection Let D be a meet cpo� A stable function p �
D �st D such that p �st idD is called a stable projection� If moreover im�p� is 
nite� p
is called 
nite� A stable injection�projection pair is an injection�projection pair whose
projection is a stable projection�

Now we de	ne stable bi	nite domains �cf
 de	nition �
�
��


De�nition ������ 
stable bi�nite A meet cpo D is called a stable bi
nite domain
if the 
nite stable projections p � D �st D form a directed set which has as lub the
identity �in the stable ordering�� We call Bif� the category of stable bi
nite domains
and stable functions�

Proposition ������ 
stable bi�nites�CCC �� Stable bi
nite domains are alge�
braic and satisfy property I� The compact elements are those of the form p�x�� where
p is a 
nite stable projection�

�� The category Bif� of stable bi
nites and stable functions is cartesian closed�
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Proof
 Cf
 the proof of proposition �
�
�


��� The satisfaction of I follows from proposition ��
�
� ���


��� All we have to do is to check that if p� q are 	nite stable projections� then both
p� q and r de	ned by r�f� � �x�q�f�p�x��� are stable projection


� �d� e� � �d�� e�� � �p�d�� q�e�� � �p�d�� � d� q�e�� � e� � �p�d��� q�e���� �d� e�


� We have to show that f �st g implies r�f� � r�g�� id � that is� for all d�

qn�f�p�d��� � q�g�p�d���� f�d��

We set ��d� � q�f�p�d��� and 	�d� � q�g�p�d���� f�d�
 Observe�

f�p�d�� � f�d�� q �st id � q�f�p�d��� � q�f�d��� f�p�d��

f�d� � g�d�� q �st id � q�f�d�� � q�g�d��� f�d�

p�d� � d� f �st g � f�p�d�� � f�d�� g�p�d�� �

Therefore� ��d� � q�g�d��� f�d� � g�p�d��
 On the other hand�

g�p�d��� g�d�� q �st id � 	�d� � q�g�d��� g�p�d��� f�d��

So ��d� � 	�d�
 �

Exercise ������ A stable bi
nite domain D is called a stable ��bi
nite domain if it is
��algebraic� ��� Show that D is a stable ��bi
nite domain i� id is the lub of a countable
increasing chain of 
nite stable projections� ��� Show that the stable ��bi
nite domains
form a full sub cartesian closed category of Bif��

Characterisation of stable bi�nites� The main result here is a characterisation
of the objects in Bif�
 Roughly they are algebraic meet cpo�s satisfying a combination
of properties M �de	nition �
�
�� and I that we call �MI��
 In 	rst approximation�
the combined property �MI�� consists in asking that the iteration of the operator
that computes the mub�s and the operator that computes the principal ideals on a
	nite collection of compacts returns a 	nite collection
 It is convenient to decompose
property I in simpler properties


De�nition ������ Let D be a cpo� We de
ne the three properties I�� I�� and I� as
follows�

�I�� Every decreasing sequence of compacts is 
nite�

�fxngn�� � K�D� and �n � � xn � xn���� fxngn�� is 
nite�

�I�� Every increasing sequence of compacts under a compact is 
nite�

�fxg � fxngn�� � K�D� and �n � � xn � xn�� � x�� fxngn�� 
nite�
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�I�� The immediate predecessors of a compact are in 
nite number�

x � K�D�� pred�x� is 
nite

where pred�x� � fy � D j y � xg

Proposition ������ Let D be an algebraic cpo� Then it has property I i� it has
properties I�� I�� and I��

Proof
 ��� Observe that fxngn�� and pred�x� are contained in � d �where d is an
appropriately chosen compact�


��� Let d � K�D�
 First observe that � d � K�D�
 If there is a non compact element x
under d� then � x�K�D� is directed since D is an algebraic cpo� and

W
�� x�K�D�� � x


So we can build an in	nite strictly ascending chain under d� contradicting I�
 Property
I� also implies that pred�d� is complete in the sense that

e 
 d� � e� � pred�d� e � e� 
 d�

Otherwise we can again build a strictly growing chain under d
 Now de	ne

X� � fdg Xn�� �
�
fpred�x� j x � Xng �Xn�

Then� S
n��Xn �� d and �n � � Xn�� � Xn �by property I��

� x � K�D� pred�x� is 	nite �by property I���

Hence all Xn�s are 	nite� which implies that � d is 	nite�
 �

Figure ��
� presents typical situations where property I fails


Lemma ������ �� If D is an algebraic cpo satisfying property I�� then K�D� j� m

�cf� de
nition �������

�� If D is an algebraic meet cpo such that K�D� j� m� then D is an L�domain �cf�
de
nition �������

	� Stable bi
nite domains are L�domains�

Proof
 ��� Given any upper bound y of X � there exists a compact y� � y that is also
an upper bound forX 
 By the property I� there exists y�� � y� such that y�� � MUB�X�

Otherwise we could build an in	nite decreasing chain under y�


��� Let A � K�D� and x � UB�A�� and suppose y�� y� � x and y�� y� � MUB�A�

Then y� � y� � MUB�A�� which forces y� � y�
 We then conclude by exercise �
�
��


��� This follows immediately from ��� and ���� since stable bi	nite domains are alge�
braic and satisfy property I by proposition ��
�
�
 �

�This is the contrapositive of K�onig�s lemma adapted to directed acyclic graphs�
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A I� fails for f�g � �� with � � fn j n � �g� ordered as follows�

� minimum �m � n i� n � m�


B I� fails for � � f�� ag� ordered as follows�

x � y i� y � a or �y � � and x � � � f�g� or �x� y � � and x � y�


C I� fails for � � f�� ag� ordered as follows�

�n � � � � n � a

Figure �
��� Failure of property I

As a consequence� the operator U �cf
 theorem �
�
� is idempotent for stable
bi	nite domains �cf
 proposition �
�
���
 This indicates that a more liberal operator
than U has to be introduced in order to characterise stable bi	niteness in a way similar
to the characterisation of bi	niteness
 We have already exploited the fact that images
of projections are downward closed
 This should motivate the following de	nition


De�nition �����	 
property �MI��  Let �P��� be a poset� and let X ��n P � We
set U� �X� � U�� �X��� Let �U����X� be the least set containing X and closed with
respect to the U� operator� We say that X has property �MI�� if �U����X� is 
nite�
If D is an algebraic meet cpo� then we say that D has property �MI�� if

�X ��n K�D� X has property �MI���

Let D be an algebraic meet cpo
 If D has property �MI�� then it also has property
I and property M � as if x� y � K�D� then

� x � �U����fxg� and U�fx� yg� � �U����fx� yg��

The converse does not hold� see example ��
�
��


Theorem ������� A cpo D is a stable bi
nite i� D is an algebraic meet cpo with
property �MI���

Proof
 Cf
 the proof of theorem �
�

 ��� If X ��n K�D�� then X � p�D� for
some 	nite stable projection
 The argument in the proof of theorem �
�
 yields not
only U�X� � p�D�� but also �U���X� � p�D�


��� Let A ��n K�D�� and consider pA de	ned by pA�y� �
W
��U ����A�� � y�


Notice the use of the �U �� operator� instead of U 
 The fact that B � �U ����A� is
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downward closed serves in establishing pA �st id � �A � B � pA �st pB�� and that
pA is stable
 We only check pA �st id 
 Let x � y
 We check pA�y� � x � pA�x�

Since pA�D� � �U����A� is downward closed� we have pA�y� � x � �U����A�� hence
pA�y� � x � pA�X� by de	nition of pA
 �

This characterisation of stable bi	nites allows us to prove that the category of event
domains is a full subcategory of the category of stable bi	nites


Exercise ������� Show that any event domain is stable bi
nite� Hints� In a Scott
domain� all glb�s exist� and U�X� � f

W
Y j Y ��n X and Y boundedg� for all 
nite X�

Show that �U����X� �
S
X� for any n�

We now list without proof some results from �Ama��a� towards the goal of a Smyth like
theorem� is Bif� the maximum cartesian closed full subcategory of ��algebraic meet
cpo�s and stable functions� It turns out that properties M � I� � and I� are necessary
to enforce the ��algebraicity of function spaces
 One can also show that property I�
is necessary under a rather mild hypothesis
 The necessity of property �MI�� is still
open
 In the 	rst place� a stable version of theorem �
�
� holds� in any full subcategory
of algebraic meet cpo�s if the terminal object� the product� and the exponent exist then
they coincide up to isomorphism with the ones de	ned in Cpo�
 The proof is basically
the same as in the continuous case
 Here is a summary of the results in �Ama��a�

� If D and D�st D are ��algebraic meet cpo�s� then D has properties M � I� and
I�
 �PropertyM is not necessary if we do not ask for the countability of compact
elements
�

� If D and D�st D are ��algebraic meet cpo�s and� for each d � K�D�� � d�st� d
is an ��algebraic meet cpo� then D has property I�


The following properties serve as stepping stones in the proof
 If D and D �st D are
��algebraic meet cpo�s� then�

If d � D� then � d is an ��algebraic lattice

If d � K�D� and � d is distributive� then � d is 	nite

If � d is distributive for each d � K�D�� then D has property I�

Of the two following examples ��
�
�� and ��
�
��� the 	rst� due to Berry� illustrates
a situation where I� does not hold� while the second shows that M�I does not imply
�MI��


Example ������� Let D be example �B� from 
gure ���	� This domain is a well�
founded chain� hence D �st D � D �cm D � D �cont D� We claim that any
continuous function h such that h�a� � a is compact� If h �st

W
K� then

a � h�a� �
�
fk�a� j k � Kg

hence a � k�a� for some k � K� by compactness of a� We prove the following subclaim�

�h�a� � a � k�a� � a � h �st k�� h � k�
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Indeed� k�x� � k�x� � h�a� � k�a� � h�x� � h�x�� By the subclaim we have h � K�
which proves a fortiori that h is compact� But the set fh j h�a� � ag is not countable
�any monotonic function from natural numbers to natural numbers yields an h in the
set� and a diagonalisation argument can be applied�� Therefore D � D� ordered by the
stable ordering� is not ��algebraic�

Example ������� Let D � f�g � �B � �T where �B � fnB j n � �g and �T � fnT j
n � �g� ordered as follows�

� is the minimum�
nB � nT � �n� ��T �n � ��
nB � �n� ��T �n � �� �

Observe that �U����fiTg� � D and that iT is compact� If D were bi
nite there would
exist a 
nite stable projection pn such that pn�iT � � iT � which implies �U����fiTg� �
im�pn�� Contradiction� As a matter of fact this example also shows that the iteration
of the U� operator does not need to collapse at any 
nite level�

Example ��
�
�� also serves to illustrate the case of a compact function with an
in	nite trace
 Let D be as in this example
 Clearly trace�idD� is in	nite
 We show
that idD �id for short� is a compact element of the functional space
 We write f �k id
if � i � k f�iB� � iB and f�iT � � iT 
 We 	rst claim�

f �k id � f �st id� f �k�� id �

This follows from

f �st g� �k� ��B � kT � f��k � ��B� � kT � �k � ��B � �k � ��B

�f��k� ��T � � �k � ��T is proved similarly�


kB � f��k� ��T � � f �st g� kB � �k � ��T � kB � f�kB� � f��k � ��T � � kB�

�k � ��B � f��k� ��T � � �k � ��B � f��k� ��B� � f��k� ��T ��

f��k � ��T � � �k � ��T � This follows obviously from f �st id 


Applying the claim repetitively� we get that if f �� id �and f��� � �� and f �st id �
then f � id 
 Suppose now that id �

W
� �cf
 remark ��
�
���
 Then we may choose

f � � such that f �� id � hence f � id � and id is compact


A retraction of all retractions� Scott �Sco��� has shown that the collection of
	nitary retractions �cf
 de	nition 
�
�� over a bounded complete algebraic cpo D is the
image of a 	nitary retraction over the space D �cont D of continuous functions
 In the
stable case Berardi �Ber��� was apparently the 	rst to observe that when working over
dI�domains the image of a stable retraction is still a dI�domain
 It was then possible to
adapt Scott�s technique to show that the set of retractions over a dI�domain is itself the
�image of a� retraction
 We shall give the corresponding of Berardi�s result for stable
bi	nites
 The proof exploits the fact that stable bi	nites can be described as directed
colimits of stable projections
 A retraction of all retractions serves to provide a model
for a type theory with a type of all types �see exercise ��
�
��
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Proposition ������� Let D be a stable bi
nite and rD be a stable retraction over D�
Then r�D� is a stable bi
nite�

Proof
 Let p � D �st D be a 	nite projection
 De	ne q � r 
 p 
 r
 We have
q �st r 
 id 
 r � r� moreover im�q� is 	nite
 Moreover� since the lub of the p�s is id �
the lub of the q�s is r
 �

We give a simple proof of the fact that the collection Ret�D� of the stable retractions
over a stable bi	nite D is a retract of its functional space D �st D
 The keyvault of
the construction is to observe that given f � D �st D� with im�f� 	nite� there is a
natural way to associate to f a retraction� namely iterate f a 	nite number of times

First we recall a simple combinatorial fact


Lemma ������� Let X be a set and let f � X � X� with im�f� 
nite� Then �ffk j
k � �g � Ret�X� � ��

Proof
 First observe � k � � im�fk��� � im�fk�
 Since im�f� is 	nite the following
h is well de	ned� h � minfk � � j im�fk��� � im�fk�g
 Hence the restriction of f to
im�fh� is a permutation �being a surjection from im�fk� onto itself�
 Let n � �im�fh��
then �fh�n� is the identity on im�fh�� and therefore is a retraction over X 
 As for the
uniqueness observe that if f i 
 f i � f i and f j 
 f j � f j for i� j � � then f i � f ij � f j 

�

Lemma ������� Let D be a stable bi
nite domain� Then for any f � D �st D and
any p �st id �

�f�f 
 p 
 f�k j k � �g � Ret�D� � ��

Proof
 The 	niteness of im�p� implies the 	niteness of im�f 
 p 
 f� � f�im�p 
 f���
and the conclusion then follows from lemma ��
�
��
 �

Lemma ������� If D is a meet cpo� then Ret�D� is a meet cpo �with the order induced
by D �st D��

Proof
 Analogous to the continuous case
 �

Theorem ������� Given a stable bi
nite D the collection Ret�D� of stable retractions
is a retract of the functional space D�st D�

Proof
 In the hypotheses of lemma ��
�
�� we write

fp � f 
 p 
 f kp � �im�p�� �

Note that kp is a multiple of the least k such that fkp � Ret�D�� and is independent
from f 
 The crucial remark is that

r � Ret�D�� rp � Ret�D�

because by the de	nition of stable order� for any x�

rp �st r 
 r � r� rp�x� � r�x�� rp�rp�x�� � rp�r�x��� r�rp�x�� � rp�x��
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Notice that the form of fp has been precisely chosen to have rp�rd� � rpd and r�rpd� �
rpd
 We de	ne � � �D�st D��st Ret�D� as follows�

��f� �
�

p�st id

�fp�
kp �

We check that this de	nition is correct
 First� we observe� for p �st q�

�fp�
kp � �fp�

kpkq �st �fq�
kpkq � �fq�

kq �

It follows that f�fp�kp j p �st idg is directed
 Hence ��f� is de	ned and is a retraction�
since the join of a directed set of retractions is a retraction
 Also� � is a retraction�
because

r � Ret�D�� ��r� �
�

p�st id

�rp�
kp �

�
p�st id

rp � r 
 r � r�

Next we show that � preserves binary compatible glb�s
 Suppose f� g �st h
 Since the
composition operation is cm �cf
 exercise ��
�
���� we have

��f � g� �
W
p�st id

��f � g�p�kp �
W
p�st id

�fp � gp�kp

�
W
p�st id

�fp�
kp � �gp�

kp � �
W
p�st id

�fp�
kp� � �

W
p�st id

�gp�
kp�

� ��f�� ��g� �

It remains to show that � preserves directed sets
 Let H be a directed set in D �st D

We have

�
W
H�p � �

W
H� 
 pp 
 �

W
H� �

W
h�H�h 
 pp 
 h� �

W
h�H hp

�
W
h�H hp�

kp �
W
h�H�hp�

kp �

Hence

��
�
H� �

�
p�st id

��
�
H�p�

kp �
�

p�st id

�
h�H

�hp�
kp �

�
h�H

�
p�st id

�hp�
kp �

�
h�H

��h��

�

Exercise ������	 �� Let D be a meet cpo and suppose that p is a stable projection�
Show that if D is an ����algebraic meet cpo �stable bi
nite� then im�p� is an ���
�algebraic meet cpo �stable bi
nite��

�� Show that if D is a stable bi
nite then Prj �D� �� �idD� is a stable bi
nite and a
lattice�

Exercise ������� Show that the identity is always a maximal element in the stable
ordering� �In particular� the only stable closure is the identity��

Exercise ������� Let D be the cpo of example �����A�� Show that it is not the case
that Prj �D� is �the image of� a projection of D �st D� Hints� Consider p�� p�� f
de
ned by

p��x� �

�
a if x � a
� otherwise

p��x� �

�
b if x � b
� otherwise

f�x� �

�
d if x � c
x otherwise �
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Show that p�� p� are stable projections� that f is stable� and that p�� p� �st f � Suppose
that � � �D �st D� �st Prj �D� is a projection� Then p�� p� �st ��f� �st f � Derive a
contradiction by showing that there is no stable projection p such that p�� p� �st p other
than id� using that MUB�fa� bg� � fc� dg�

We end the section with a brief account of universality in the stable bi	nite frame�
work �DR���


Proposition ������� Let Bif�
ips be the category whose objects are the ��algebraic

cpo�s which are stable bi
nite domains and whose arrows are the stable injection�
projection pairs �notation� �i� j� � D�ips

D��� The following properties hold�

�� Bif�
ips is an ��algebroidal category and the collection of compact objects has the

amalgamation property�

�� Bif�
ips has a universal homogeneous object�

Proof hint
 ��� The proof follows the pattern of the one for the continuous case
 Let
us just show that Bif�

ips has the amalgamation property
 Consider three 	nite posets
�E���� �D������ �D����� with functions �h�i � h

�
i � � E �ips

Di� �i � f�� �g�� in Bif�
ips


Without loas of generality we may assume E � D� �D�
 Then

� e� e� � E e � e� 	 �e �� e
� and e �� e

���

Now we de	ne the amalgam as F � E � �D�nE�� �D�nE�
 It is helpful to recall that
E is downward closed in Di� so we de	ne�

f �F f � 	 � i � f�� �g f� f � � Di and f �i f
��

We are left with the de	nition of the morphisms �k�i � k
�
i � � Di �ips

F �i � f�� �g�

Take the inclusions for k�i 
 De	ne�

k�� �f� �

�
f if f � D�

h�� �f� otherwise �

k�� is de	ned symmetrically


��� By theorem 
�
��
 �

Exercise ������� Prove that Cpo� has limits of �op �diagrams� By analogy with what
was done in chapter �� study the representation problem of the functors over Bif�ips as
stable function over Prj �U�� where U is some universal �homogeneous� domain� Show
that product and exponent are representable�

���	 Connected glb
s �

Following Taylor �Tay��a�� we focus on a characterisation of stable functions by the
property of preservation of all connected glb�s
 This leads to another cartesian closed
category of stable functions� exploiting a di�erent kind of distributivity �of connected



����� CONNECTED GLB	S � �
�

glb�s over directed lub�s�� whereas in the previous section we had focused on distribu�
tivity of binary glb�s over binary compatible lub�s
 In section ��
�� we investigate the
objects of the latter category in more depth


First we introduce the notions of connected set and of connnected meet cpo
 These
notions are related with those of L�domain and of continuous dcpo investigated in
chapter �


De�nition ������ 
connected Let X be a partial order� We say that Y � X is
connected if for any two points x� y of Y there exists a zigzag between them in Y � that
is� x � z� � z� � � � � � zn � y� where � stands for � or �� and where zi � Y for all i�

The notion of zigzag induces a natural equivalence relation over any subset Y � X �
for x� y in Y � write x � y if there exists a zigzag from x to y in Y 
 The equivalence
classes for this relation can be seen as the disjoint connected components of Y 


Proposition ������ If X is a connected partial order� then its Alexandrov topology
is locally connected� i�e�� every open is a disjoint union of connected opens� If D is a
connected dcpo� then its Scott topology is locally connected�

Proof
 First note that if Y is upper closed� then the connected components are
also upper closed� and that if X is a cpo and if Y is Scott open� then the connected
components are also Scott open


Let U� V be opens such that U � V � � and Y � U � V 
 Suppose that x �
z� �z� � � � ��zn � y is a zigzag in Y from x � U to y � V 
 Let i be such that zi � U and
zi�� � V 
 Then� since U� V are upper closed� either zi � V or zi�� � U � contradicting
U � V � �
 Conversely� if Y cannot be divided in components� then it has only one
equivalence class for the zigzag relation� i
e
� it is connected in the graph�theoretic
sense
 �

Lemma ������ A partial order X has compatible binary glb�s i� any zigzag� viewed
as a collection of points� has a glb�

Proof
 By induction on the length of the zigzag� in the notation of de	nition ��
�
�

If the last � is �� then clearly z��� � ��zn � z��� � ��zn��� if it is �� then z��� � ��zn��
and zn both have zn�� as an upper bound� hence z� � � � � � zn � �z� � � � � � zn��� � zn
exists
 �

De�nition ������ In a partial order X� a multilub of a subset Y � X is a set J of
upper bounds of Y that is multiversal� i�e�� such that any upper bound x of Y dominates
a unique element of J�

Proposition ������ For a partial order� the following properties are equivalent�

� � All compatible binary glb�s and codirected glb�s exist�
� � All connected glb�s exist�
	 � All � x�s have all glb�s�
� � All � x�s have all lub�s�
� � All subsets have multilub�s�

We call such partial orders L partial orders�



�
� CHAPTER ��� STABILITY

Proof
 ���� ��� Let Y � X be connected
 Let Z be the set of the glb�s of all 	nite
zigzags in Y �Z is well de	ned by lemma ��
�
��
 Clearly� if Z has a glb� then its glb is
also the glb of Y 
 Thus it is enough to show that Z is codirected
 Let z�� � � �� zn � Z
and z�� � � � � � z

�
n� � Z
 Then by connectedness one may build a zigzag between zn and

z��
 Then the glb of the zigzag obtained by joining these three zigzags is in Z and is a
lower bound of z� � � � � � zn and z�� � � � � � z�n� 


���� ��� Let Y �� x
 Then Y � fxg is connected� hence has a glb in X � which is the
same as the glb of Y �this includes the limit case Y � ��


��� � ��� Let x�� x� be a bounded pair
 Its glb exists in � x� for any upper bound x
of x�� x�� and is their glb in X 
 For codirected glb�s� notice that if Y is codirected� and
x � Y � then Y and Y � � x have the same glb if any


���	 ��� For a partial order� having all glb�s is equivalent to having all lub�s


��� � ��� Let Y � X 
 Consider the collection Z of all upper bounds of Y 
 We form
the set J � f

Wz Y j z � Zg� where
Wz denotes a lub taken in � z
 Clearly� this is a set

of upper bounds of Y � and by construction every upper bound z � Z of Z dominatesWz Y � J 
 We are left to show the uniqueness� if z �
Wz� Y � then

Wz� Y �
Wz Y sinceWz� Y is an upper bound of Y in � z
 Next� z� �

Wz Y follows� since z� �
Wz� Y 


Finally we have
Wz Y �

Wz� Y �whence the uniqueness�� since since
Wz Y is an upper

bound of Y in � z�


���� ��� Obvious
 �

The terminology of L partial order is in accordance with that of L�domain �cf

de	nition �
�
���� as shown in exercise ��
�
�


Exercise ������ ��� Show that a cpo is an L partial order i� all its 
nite subsets
have multilub�s� �Hint� use characterisation ��� of proposition �������� ��� Show that�
relaxing the 
niteness assumption� proposition ������ provides a sixth characterisation
of L partial orders�

Proposition ������ �� Let D and D� be cpo�s� and lef f � D � D� be stable� Then
for any connected X � D such that

V
X exists� f�

V
X� �

V
f�X��

�� If all connected glb�s exist� the stable functions are exactly the continuous functions
preserving connected glb�s�

Proof
 ��� f�
V
X� is a lower bound of f�X� by monotonicity
 Suppose that z� �

f�X�
 We show that all m�f� x� z���s are equal� for x ranging over X 
 This follows obvi�
ously from the fact that for two comparable x�� x�� we have m�f� x�� z�� � m�f� x�� z��

Let z stand for this common value
 Then we have z �

V
X and z� � f�z�
 Therefore

z� � f�
V
X�


��� This follows from proposition ��
�
�� observing that the preservation of the glb of
a bounded set M can be rephrased as the preservation of the glb of the connected set
M � fxg� where x is an upper bound of M 
 �
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To get cartesian closedness� similarly to the cm case� a property of distributivity
�or continuity of glb�s� is required� namely that connected glb�s distribute over directed
lub�s
 Equivalently� the domains are required to be continuous L�domains �see section
��
��


De�nition ������ 
connected meet cpo A connected meet cpo is a cpo which is
an L partial order such that connected glb�s distribute over directed lub�s� that is� if
f�jgj�J is an indexed collection of directed sets� and if f

W
�j j j � Jg is connected�

then �
j�J

�
�

�j� �
�
f
�
j�J

xj j fxjgj�J � �j�J�jg�

Theorem �����	 
continuous L�domains � CCC The category CLDom	 of con�
nected meet cpo�s and stable functions is a cpo�enriched CCC�

Proof
 The composition of two stable functions is stable� because a monotonic func�
tion maps connected sets to connected sets
 As for cm functions and stable functions�
directed lub�s and binary compatible glb�s of stable functions are de	ned pointwise


Let H �dir D �st D
�
 The lub of H is h de	ned by h�x� �

W
ff�x� j f � Hg
 We

check that h is stable
 Let X � fxi j i � Ig be connected�

h�
V
X� �

W
f�H�f�

V
X��V

i�I h�xi� �
V
i�I�
W
f�H f�xi�� �

W
f
V
i�I fi�xi� j ffigi�I � �i�IHg �

The distributivity gives us too many glb�s� we are only interested in the families ffig
which are constant
 We cannot use the same argument as in the cm case� because we
do not have an upper bound available for a family like ffig
 We claim��

i�I

fi�xi� �
�
ffi�xj� j i� j � Ig ��

�
i�I

fi�
�
X���

The claim can be reformulated as � i� j
V
i�I fi�xi� � fi�xj�� For 	xed i� we prove the

inequality
V
i�I fi�xi� � fi�xj� by induction on the length of the zigzag from xi to xj 


Let xk be the point preceding xj in the zigzag
 Thus by induction
V
i�I fi�xi� � fi�xk�


There are two cases�

� xk � xj �
V
i�I fi�xi� � fi�xj� follows obviously by monotonicity


� xj � xk� Let f � H be such that fi� fj � f 
 We have

fi�xj� � fi�xk� � f�xj� � fi�xk� � fj�xj��

Using induction� we get�
i�I

fi�xi� � fi�xk�� fj�xj� � fi�xj��

�This name will be justi�ed by theorem �������



��� CHAPTER ��� STABILITY

Turning back to the stability of h� we are left to show��
f�H

�f�
�
X�� �

�
f
�
i�I

fi�
�
X� j ffigi�I � �i�IHg�

��� Take the constant family f 


���
V
i�I fi�

V
X� �

W
i�I fi�

V
X� �

W
f�H�f�

V
X��


Let K be a connected subset of D �st D
 Its glb k is de	ned by k�x� �
V
f�K f�x�


� k is stable� the preservation of glb�s is obvious� but the continuity requires a proof�
which is somewhat dual to the proof of stability of

W
H 
 We write K � ffi j i � Ig


k�
W
�� �

V
i�I�
W
fi���� �

W
f
V
i�I fi�i� j figi�I � �i�I�gW

k��� �
W
��
 k�� �

We claim� �
i�I

fi�i� �
�
ffj�i� j i� j � Ig ��

�
i�I

k�i���

The claim can be reformulated as � i� j
V
i�I fi�i� � fj�i�
 For 	xed i� we prove the

inequality
V
i�I fi�i� � fj�i� by induction on the length of the zigzag from fi to fj 


Let fk be the point preceding fj in the zigzag
 Thus by induction
V
i�I fi�i� � fk�i�


There are two cases�

� fk � fj �
V
i�I fi�i� � fj�i� follows obviously by monotonicity


� fj � fk � Let  � � such that i� j � 
 We have

fj�i� � fk�i� � fj�� � fk�i�� fj�j��

Using induction� we get�
i�I

fi�i� � fk�i�� fj�j� � fj�i��

Turning back to the continuity of k� we are left to show��
��


k�� �
�
f
�
i�I

k�i� j figi�I � �i�I�g�

��� Take the constant family 


���
V
i�I k�i� �

W
i�I k�i� �

W
��
 k��


� k is a lower bound of K� Let x � y� and let f� � K
 We have to prove that
z � f��x�� k�y� implies z � k�x�� i
e
� z � f��x� for all f� � K
 It is enough to check
this for f� �st f� or f� �st f��

� f� �st f�� then a fortiori f� �ext f�� hence z � f��x� � f��x�


� f� �st f�� then a fortiori z � f��x�� f��y�� hence z � f��x�� f��y� � f��x�
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� k is the greatest lower bound of K� Suppose k� �st K
 We show k� �st k
 Let x � y�
and let f� � K� k�x� � k��y� � k�x� � f��x� � k��y� � k�x� � k��x� � k��x�
 �

Summarizing� we have obtained cartesian closure for two categories of stable func�
tions exploiting two di�erent sorts of distributivity� the �compatible� distributivity of
binary meets over binary joins� and the distributivity of connected glb�s over directed
lub�s� respectively
 The proof techniques are quite di�erent too� since Berry�s proof
uses the de	nition of stability through minimal points� while in Taylor�s category the
techniques used for meet cpo�s and cm functions are extended to the connected glb�s


Exercise ������� Show that a dI�domain satis
es the distributivity of connected glb�s
over directed lub�s� Hint� go through stable event structures�

���� Continuous L�domains �

In this section we show that connected meet cpo�s can be alternatively presented as
continuous L�domains
 We call continuous lattice a partial order which is both a
complete lattice and a continuous cpo �cf
 de	nition �
�
��
 We 	rst investigate some
properties of continuous lattices
 Recall example B
�
�� if X� Y are partial orders which
have all glb�s �i
e
� are complete lattices�� a monotonic function f � X � Y has a left
adjoint i� f � X � Y preserves all glb�s


Remark ������ The complete lattice assumption in example B���	 can be weakened
to the requirement that the glb�s of the form

V
fz j y � f�z�g exist� �They are the ones

involved in the proof��

Remark ������ Stable functions do not preserve enough glb�s to have a left adjoint�
the set fz j y � f�z�g is not bounded in general� nor connected� But stable func�
tions preserve enough glb�s to be characterised as having a multi�adjoint �cf� de
nition
�������� Indeed� the proof of proposition ������ is a variation of the proof of example
B���	�

We shall apply example B
�
� to �subclasses of� continuous dcpo�s
 First we char�
acterise continuous dcpo�s by an adjunction property


Proposition ������ A dcpo D is continuous i�
W

� Ide�D�� D has a left adjoint�

Proof
 ��� Call g the left adjoint of
W

 For any ideal I and any x we have� x �

W
I

i� g�x� � I 
 We show that g�x� � �x�


�  �x� � g�x�� We have x �
W
g�x� by adjointness
 Hence if y ! x� we have

y � g�x� by de	nition of ! and of ideal
 Thus  �x� � g�x� is directed� and
x �

W
� �x�� since x dominates  �x�


� g�x� � �x�� If y � g�x�� then for any ideal I such that x �
W
I we have y � I 


Hence for any directed � such that x �
W
�� we have y �  for some  � ��

which means exactly y ! x
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��� Obvious
 �

Proposition ������ A complete lattice D is continuous i� arbitrary glb�s distribute
over directed lub�s� that is� if f�jgj�J is an indexed collection of directed sets� then�

j�J

�
�

�j� �
�
f
�
j�J

xj j fxJgj�J � �j�J�jg�

Proof
 We 	rst show that ideals are closed under intersection
 Let fIjgj�J be a
collection of ideals
 Take x�� x� �

T
j�J Ij 
 In each Ij we can pick yj � x�� x�
 ThenV

j�J yj is an upper bound for x�� x� in
T
j�J Ij 


By proposition ��
�
� and example B
�
�� D is continuous i�
W

preserves the inter�
section of ideals
 Hence D is continuous i�� 	

j�J

Ij �
�
j�J

�
�
Ij� for any fIjgj�J

which is equivalent to the equality of the statement since � f
V
j�J xj j fxJgj�J �

�j�J�jg �
T
j�J � ��j�
 �

We can require less glb�s
 Indeed� connectedness su�ces to make the above proof
work
 We now adapt proposition ��
�
� to L�domains� i
e
� L partial orders which are
complete �cf
 de	nition �
�
���


Lemma ������ Let D be an L�domain� If fIjgj�J is an indexed collection of ideals of
D� and if f

W
Ij j j � Jg is connected� then

T
j�J Ij is an ideal�

Proof
 Take x�� x� �
T
j�J Ij � and pick yj � x�� x� in each Ij 
 We show that the

collection fyjgj�J is connected
 Indeed� for any j�� j� � J � we have

yj� �
�
Ij� � � � � �

�
Ij� � yj� �

Hence
V
j�J yj exists� and is a bound for x�� x� in

T
j�J Ij 
 �

Theorem ������ An L�domain D is continuous i� it is a connected meet cpo�

Proof
 We adapt the proof of proposition ��
�
�
 We know that D is continuous i�
W

preserves the intersection of ideals� provided �enough of these intersections exist� by
remark ��
�
�� we have to check that fI j y �

W
Ig satis	es the conditions of lemma

��
�
�� y �
W
�� y� implies � y � fI j y �

W
Ig� from which the connectedness of

f
W
I j y �

W
Ig follows
 Therefore D is continuous i�

W
�
T
j�J Ij� �

V
j�J�

W
Ij� for any

collection fIjgj�J of ideals such that f
W
Ij j j � Jg is connected
 This is equivalent to

the following property for any collection of directed sets �j such that f
W
�j j j � Jg

is connected� �
f
�
j�J

xj j fxjgj�J � �j�J�jg �
�
j�J

�
�

�j�

provided the glb�s
V
j�J xj in the equality exist
 Since f

W
�j j j � Jg is connected�

we also have that f
W
�j j j � Jg � fxj j j � Jg is connected� and its glb is the glb of

fxj j j � Jg
 �
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� CONTINUOUS L�DOMAINS � ���

��� meet cpo�s and cm functions

���� distributive meet cpo�s and cm functions

�
� distributive meet cpo�s and stable functions

��� connected meet cpo�s and stable functions

Domains satisfying I �stable � cm�

�� stable bi	nite domains axiomatised via�

 	nite stable projections

 property �MI��

��� event domains axiomatised via�

 event structures �concrete�

 I� �C�� �S� �abstract�

��� dI�domains axiomatised via�

 d� I �abstract�

 coprime algebraic � I �abstract�

 bounded complete � 	nite projections �abstract�

 coprime event structures �concrete�

 stable event structures �concrete�

��� qualitative domains

��� coherence spaces

��� � ��� � ��� �

���������
��� � �� �exercise �
����� � ���
���� � ���
�
�
��� �exercise �
������

Figure �
�� CCC�s of stable and cm functions
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Chapter ��

Towards Linear Logic

Girard�s linear logic �Gir��� is an extension of propositional logic with new con�
nectives providing a logical treatment of resource control� As a 	rst hint� consider
the linear ��terms� which are the ��terms de	ned with the following restriction�
when an abstraction �x�M is formed� then x occurs exactly once in M � Linear
��terms are normalised in linear time� that is� the number of reduction steps
to their normal form is proportional to their size� Indeed� when a 
�reduction
��x�M�N occurs � it involves no duplication of the argument N � Thus all the
complexity of normalisation comes from non�linearity�

Linear logic pushes the limits of constructivity much beyond intuitionistic
logic� and allows in particular for a constructive treatment of �linear� negation�
A proper proof�theoretic introduction to linear logic is beyond the scope of this
book� In this chapter� we content ourselves with a semantic introduction� By
doing so� we actually follow the historical thread� the connectives of linear logic
arose from the consideration of �a particularly simple version of� the stable model�

In section ����� we examine stable functions between coherence spaces� and
discover two decompositions� First the function space E � E� is isomorphic
to a space � E� � E�� where � constructs the space of linear functions� and
where  is a constructor which allows reuse of data� Intuitively� linear functions�
like linear terms� can use their input only once� On the other hand� the explicit
declaration of reusability  allows to recover all functions and terms� The second
decomposition is the linear version of the classical de	nition of implication� E �
E� is the same as E� � E�� where � is the negation of linear logic and where �
is a disjunction connective �due to resource sensitiveness� there are two di�erent
conjunctions and two di�erent disjunctions in linear logic��

In section ���
� we introduce the categorical material needed to express the
properties of the new connectives� We introduce a sequent calculus for linear
logic� and we sketch its categorical interpretation�

In the rest of the chapter� we investigate other models in which linear logic can
be interpreted� In section ����� we present Bucciarelli�Ehrhard�s notion of strong
stability� and Ehrhard�s model of hypercoherences �BE�� Ehr���� Strongly stable

���
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functions provide an extensional �although not an order�extensional� higher�order
lifting of 	rst�order sequentiality �cf� section ����� A non�extensional treatment
of sequentiality� where morphisms at all orders are explicitly sequential� and in
which a part of linear logic can also be interpreted� is o�ered in chapter �� In
section ��� we present the model of bistructures� which combines the stable
order of chapter �
 and the pointwise order of chapter � in an intriguing way
�CPW���� Finally� in section ����� we show that also Scott continuous functions
lend themselves to a linear decomposition based on the idea of presentations of
�Scott� topologies �Lam���

Summarizing� linear logic cuts accross most of the �avours of domain theory
met in this book� continuity� stability� and sequentiality�

���� Coherence Spaces

Coherence spaces o�er an extremely simple framework for stability� They were
brie�y mentioned in section �
���

De�nition ������ �coherence space� A coherence space �E��	� �E for short�
is given by a set E of events� or tokens� and by a binary re�exive and symmetric
relation �

	 over E� E is called the web of �E��	�� and we sometimes write
E � j�E��	�j� A state �or clique� of E is a set x of events satisfying the following
consistency condition

	 e�� e� � x e� �	 e��

We denote with D�E� the set of states of E� ordered by inclusion� If �E��	� is a
coherence space� its incoherence� is the relation 	

� de�ned by

e� 	� e� � ��e� �	 e�� or e� � e��

Clearly� coherence can be recovered from incoherence�

e� �	 e� � ��e� 	
� e�� or e� � e��

Since a coherence space E is a special case of event structure �cf� de	nition
�
������� we already know from proposition �
��� that D�E� is a dI�domain
whose compact elements are the 	nite states� whose minimum is � � �� and
whose bounded lub�s are set unions�

De�nition ������ We call Coh the category whose objects are coherence spaces
and whose homsets are the stable functions

Coh�E�E �� � D�E� �st D�E���

�Notice that the incoherence is not the complement of the coherence� since the coherence
and the incoherence are both re�exive�
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Proposition ������ The category Coh is cartesian closed�

Proof� The category Coh can be viewed as a full subcategory of the category of
dI�domains� and the following constructions show that the terminal dI�domain is
a coherence space� and that the products and the exponents of coherence spaces
are coherence spaces�

 � � ��� ��

 The events of E �E� are either either e��� with e � E� or e��
� with e� � E�

�with an explicit notation for disjoint unions�� and the coherence is

�e��i� �	 �e��j� � i �� j or �i � j and e� �	 e���

 The events of E � E� are pairs �x� e��� where x is a 	nite state of E� and
where e� � E�� and the coherence is

�x�� e
�
��

�
	 �x�� e

�
�� � �x� � x� 
 �e��

�
	 e�� and �x� �� x� 
 e�� �� e������

The proposition thus follows as a corollary of theorem �
����� �

The key observation that served as a starting point to linear logic is that the
dissymetry in the pairs �state�event� indicates that � should not be taken as
primitive� Instead� Girard proposed a unary constructor  and a binary construc�
tor � such that E � E� � � E� � E��

De�nition ������ �linear exponent � coherence spaces� The linear expo�
nent E � E� of two coherence spaces E and E� is the coherence space whose
events are the pairs �e� e�� where e � E and e� � E�� and whose coherence is given
by

�e�� e
�
��

�
	 �e�� e

�
�� � �e� �	 e� 
 �e��

�
	 e�� and �e� �� e� 
 e�� �� e������

Lemma ������ In E � E�� the following equivalences hold �and thus may al�
ternatively serve as de�nition of coherence�

��� �e�� e���
�
	 �e�� e��� � �e� �	 e� 
 e��

�
	 e��� and �e��

	
� e�� 
 e� 	� e��

�
� �e�� e���
	
� �e�� e��� � e� �	 e� and e��

	
� e�� �

Proof� The equivalence ��� is clearly a rephrasing of the equivalence given in
de	nition ����� �turning �e��

	
� e�� 
 e� 	

� e�� into ��e� 	
� e�� 
 ��e��

	
� e�����

We next show that �
� is equivalent to ���� We have� by successive simple Boolean
manipulations�

���e� �
	 e� 
 e��

�
	 e��� and �e��

	
� e�� 
 e� 	� e���

� �e� �	 e� and ��e��
�
	 e���� or �e��

	
� e�� and ��e� 	� e���

� e� �
	 e� and ���e��

�
	 e��� or �e��

	
� e�� and ��e� 	� e����

� e� �
	 e� and e��

	
� e�� and ���e��

�
	 e��� or ��e� 	� e��� �
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We next observe�

e� �	 e� and e��
	
� e�� 
 ��e�� e

�
�� � �e�� e

�
�� or ��e��

�
	 e��� or ��e� 	� e����

which we use as follows�

�e�� e���
	
� �e�� e��� � �e�� e��� � �e�� e��� or ���e�� e���

�
	 �e�� e����

�

�
�e�� e��� � �e�� e��� or
�e� �	 e� and e��

	
� e�� and ���e��

�
	 e��� or ��e� 	� e����

� e� �	 e� and e��
	
� e�� �

�

The states of E � E� are in one�to�one correspondence with the linear func�
tions from D�E� to D�E��� which we de	ne next�

De�nition ������ �linear function� Let �E��	� and �E ���	� be two coherence
spaces� A stable function f � D�E� � D�E�� is called linear if

f��� � � and
	x� y �x � y 
 f�x � y� � f�x� � f�y�� �

We write D�E� �lin D�E �� for the set of linear functions from D�E� to D�E���

Proposition ����� Let E and E� be coherence spaces� A stable function f �
D�E� � D�E�� is linear if and only its trace �cf� theorem �
����� consists of
pairs of the form �feg� e��� Hence we freely write� for a linear function

trace�f� � f�e� e�� j e� � f�feg�g

Moreover� trace is an order isomorphism from D�E� �lin D�E�� �ordered by the
stable order� to D�E � E�� �ordered by inclusion��

Proof� �
� Let f be linear� and let �x� e�� � trace�f�� and suppose that x
is not a singleton� If x � �� then e� � f���� and this violates f��� � ��
Otherwise� since in a coherence space any subset of a state is a state� x can
be written as x� � x�� with x�� x� � x� Then e� �� f�x�� and e� �� f�x�� by
de	nition of a trace� therefore e� �� f�x�� � f�x�� � f�x�� � f�x��� violating
f�x� � f�x� � x�� � f�x�� � f�x���

��� Suppose that f��� �� �� and let e� � f���� Then ��� e�� � trace�f�
by de	nition of a trace� violating the assumption on trace�f�� Suppose that
x� � x�� and let e� � f�x� � x��� Then there exists �feg� e�� � trace�f� such that
feg � �x� � x��� which obviously implies feg � x� or feg � x�� and therefore
e� � f�x�� or e� � f�x���

Finally� the isomorphism D�E� �lin D�E�� �� D�E � E�� follows from the
observation that a set � of pairs �e� e�� is a state of E � E� i� f�feg� e�� j �e� e�� �
�g is a state of E � E�� �



����� COHERENCE SPACES ���

Remark ������ A computational interpretation of the characterisation of a lin�
ear function f given in proposition ������ can be given as follows� In order to
produce an atomic piece of output e�� f needs to build� or explore� or consume an
atomic piece of input e� In contrast� if �x� e�� is in the trace of a stable function
f and if x is not a singleton� then f needs to look at x �more than once�� specif�
ically x times� before it can produce e�� In this framework� events can be viewed
as units of resource consumption �see remark �	���

 for a di�erent �avour of
resource counting��

Proposition �����	 The composition of two linear functions f and g is linear�
and its trace is the relation composition of trace�f� and trace�g��

Proof� Let� say� f � D�E� � D�E�� and g � D�E�� � D�E ���� The 	rst part
of the statement is obvious using the characterisation of linearity by lub and
meet preservation properties� We show trace�g � f� � trace�g� � trace�f�� Let
�e� e��� � trace�g � f�� By linearity� there exists e� such that �e�� e��� � trace�g��
and e� � f�feg� �that is� �e� e�� � trace�f��� We now show trace�g� � trace�f� �
trace�g � f�� Let �e� e�� � trace�f� and �e�� e��� � trace�g�� Since e� � f�feg� and
e�� � g�fe�g�� we have e�� � g�f�feg��� that is� �e� e��� � trace�g � f�� �

This characterisation of the composition of linear functions by trace compo�
sition holds in general for dI�domains�

Exercise ������� Show the dI�domain version of proposition �	����� Hint� traces
then consist of pairs of prime elements�

De�nition ������� The category Cohl is the category whose objects are coher�
ence spaces� and whose morphisms are the linear functions

Cohl�E�E �� � D�E� �lin D�E ���

Proposition ������� The category Cohl is cartesian� The terminal object and
the products are those of Coh�

Proof hint� The projection functions are linear� and the pairing of two linear
functions is linear� �

De�nition ������� �exponential �coherence spaces� Let �E��	� be a co�
herence space� The exponential  E �pronounce �of course E�� or �bang E�� is
the coherence space whose events are the �nite states of E� and whose coherence
is given by �x� �	 x� � x� � x���

Proposition ������� The operation  extends to a functor  � Coh � Cohl
which is left adjoint to the inclusion functor �� Cohl � Coh
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Proof hint� The natural bijections from Coh�E�E �� to Cohl� E�E�� are ob�
tained by replacing the pairs �x� e�� by pairs �fxg� e�� in the traces� �

Remark ������� Here are some more abstract comments on the adjunction
 a�� The �nite states of D� E� can be seen as presentations of the states
of E� via the lub operation associating

W
X with X � fx�� � � � � xng� There are

two presentations of � �� and f�g� It follows that D� E� contains a lifting of
D�E�� �cf� de�nition ��	����� Keeping this in mind� it becomes clear how an
arbitrary function from D�E� to D�E�� becomes a strict function from D� E� to
D�E�� �cf� proposition ��	�����

The second equivalence of the statement of lemma ������ naturally suggests
a further decomposition of E � E� as E� � E�� where the new constructors �

and � are de	ned as follows�

De�nition ������� �linear negation � coherence spaces� Let �E��	� be a
coherence space� The linear negation E� �pronounce �E perp�� of a coherence
space �E��	� is de�ned as E� � �E�	���

De�nition ������ �par � coherence spaces� Let E� E� be coherence spaces�
Their multiplicative disjunction E � E� �pronounce �E par E��� is the coherence
space whose events are pairs �e� e�� where e � E and e� � E�� and whose incoher�
ence is given by

�e�� e
�
��

	
� �e�� e

�
�� � �e� 	� e� and e��

	
� e����

Other connectives can be de	ned by De Morgan duality� The dual of � is
another disjunction �� called additive� The dual of � is written �� The dual of
 is written � and called �why not�� The dual of � is the tensor product� whose
direct de	nition� dictated by �E � E��� � E� � E��� is as follows�

De�nition ������� �tensor � coherence spaces� The tensor product �or mul�
tiplicative conjunction� E�E� of two coherence spaces E and E� is the coherence
space whose events are pairs �e� e�� where e � E and e� � E �� and whose coherence
is given by

�e�� e
�
��

�
	 �e�� e

�
�� � �e� �	 e� and e��

�
	 e����

Finally� there is a connective called tensor unit�

I � �f�g� id��

The dual of I is written �� These connectives obey some categorical construc�
tions� which ensure that they allow to interpret linear logic� Some of them were
already discussed in this section �propositions ������ and �������� The rest will
be completed in the next section�

�Actually� this containment is strict� For example� �O is isomorphic to O � O� which has
four elements� while �O	� has three elements and is not a coherence space�
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���� Categorical Interpretation of Linear Logic

The connectives introduced in section ���� fall into three groups� which Girard
has named as follows�

multiplicatives� I����� �� and linear negation�
additives� �� ������
exponentials�  � ��

In 	gure ���
� we present a sequent calculus for linear logic� A much better
presentation of the proofs of linear logic is by means of certain graphs called
proof nets� which forget some irrelevant details of syntax� and are the gate to a
geometric understanding of logic and computation� This goes beyond the scope
of this book� We simply refer to �Gir��� and �Dan���� and mention that sequential
algorithms introduced in chapter � are in the same spirit� The sequents of 	gure
���
 are of the form � !� where ! is a list of formulas� possibly with repetitions�
In the rule �Exchange�� ��!� means any permutation of the list !�

Here are brief comments on this proof system�

 There are no weakening and contraction rules� Weakening allows to add as�
sumptions to a sequent� contraction allows to identify repeated assumptions
with a single assumption� They express the two aspects of non�linearity �cf�
de	nition �������� weakening allows non�strictness� while contraction allows
repeated use of resources�

 The rule ��� expresses a splitting of resources� ! for A� and � for B� Multi�
plicative connectives correspond to a form of parallelism without communi�
cation� The corresponding categorical notion is that of monoidal category�
introduced below�

 The rule ��� expressed sharing of resources� ! is used both by A and B�
The corresponding categorical construction is the product

 The exponential rules regulate the explicit reusability of resources� Rule
�Promotion� says that a formula proved under reusable assumptions is itself
reusable� Rule �Dereliction� says that a resource that can be used once is a
resource which can be used n times� for some n� Since n can in particular be
�� some information is lost when this rule is applied� Rules �Contraction�
and Rule �Weakening � say that reusable data can be duplicated�

We now sketch the categorical interpretation of the formlas and proofs of linear
logic� We 	rst introduce a few categorical notions� building upon the structure
of monoidal category �ML��� Bar��b��

De�nition ������ �monoidal� A monoidal category is a category C equipped
with
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LOGICAL RULES

�Axiom�
� A�A� �Cut�

� A�! � A���
� !��

�Exchange �
� !

� ��!�

MULTIPLICATIVES

�I� � I ���
� !

� ��!

���
� A�! � B��
� A�B�!��

���
� A�B�!
� A � B�!

ADDITIVES

��� � ��!

���
� A�! � B�!

� A�B�!
���

� A�!
� A�B�!

� B�!
� A�B�!

EXPONENTIALS

�Promotion�
� A� �B�� � � � � �Bn

� A� �B�� � � � � �Bn

�Dereliction�
� A�!
��A�!

�Contraction�
��A� �A�!
��A�!

�Weakening �
� !

��A�!

Figure ����� Sequent calculus for linear logic
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 a functor � � C �C � C� called tensor product�

 a distinguished object I� called tensor unit� and

 natural isomorphisms� also called canonical isomorphisms

� � A� �B � C� � �A�B� � C
�l � I �A � A
�r � A� I � A

satisfying the following two so�called coherence equations

��� �� � � � � �� � id� � � � �id � ��
��� �� ��r � id� � � � id � �l �

Where do the two coherence equations of de	nition ���
�� come from� As ob�
served by Huet �unpublished�� a good answer comes from rewriting theory �which
came much after monoidal categories were de	ned in ���� by Mac Lane�� Con�
sider the domains and codomains of the canonical isomorphisms and of the
equated arrows as the left and right hand sides of rewriting rules and rewrit�
ing sequences� respectively�

��� A� �B � C� � �A�B� � C
��l� I �A � A
��r� A� I � A

�� � �� A� �B � �C �D�� �� ��A�B� � C� �D
�� � �� A� �B � I� �� A�B �

Then the two coherence equations correspond to equating di�erent reduction
sequences� � � � encodes

A� �B � �C �D�� � �A�B� � �C �D� � ��A�B� � C� �D

while �� � id� � � � �id � �� encodes

A� �B � �C �D�� � A� ��B � C� �D� �� ��A�B� � C� �D�

Similarly� the two sides of the second equation encode

A� �I �B� � �A� I� �B � A�B
A� �I �B� � A�B �

More precisey� these reductions correspond to the so�called critical pairs of the
rewriting system on objects induced by �� �l� and �r� We pursue this in exercise
���
�
�
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Exercise ������ 
coherence � monoidal �� Find all the critical pairs of the rewrit�
ing system underlying �� �l� and �r� and show that the corresponding equations between
canonical isomorphisms are derivable from the two equations given in de
nition �	�����

�� Prove the so�called coherence theorem for monoidal categories� every two canonical
arrows �that is� written by means of the canonical isomorphisms and their inverses only�
with the same domain and codomain are equal� Hints� ��� There are three other critical
pairs� exploit the fact that �� �l� and �r are isos� ��� Remove 
rst ���� ���l � and ���r �
and proceed as in the proof of Knuth�Bendix theorem �con�uence of critical pairs implies
local con�uence� HO����

De�nition ������ �symmetric monoidal� A symmetric monoidal category is
a monoidal category together with an additional natural isomorphism � � A�B �
B �A satisfying

�� � �� � � � � id
��� �� � � � � � � �� � id� � � � �id � �� �

The coherence theorem case still holds in the symmetric monoidal case� but needs
more care in its statement� clearly we do not want to identify � � A�A � A�A
and id � A � A � A � A� Category theorists exclude this by speaking� not of
terms� but of natural transformations�

� � ���A�B��A�B� � ���A�B��B�A� id � ���A�B��A�B� � ���A�B��A�B��

do not have the same codomain� A more elementary point of view is to restrict
attention to linear terms for objects�

Exercise ������ 
coherence � symmetric monoidal � Show that� in a symmet�
ric monoidal category� any two canonical natural transformations between the same
functors are equal� Hints� Use monoidal coherence� and the following presentation of
the symmetric group by means of the transpositions �i which permute two successive
elements i and i� ��

�i 
 �i � id �i 
 �j � �j 
 �i �j � i � �� �i 
 �i�� 
 �i � �i�� 
 �i 
 �i���

De�nition ������ �monoidal closed� A monoidal closed category is a monoi�
dal category C such that for any object A the functor �C��C � A� has a right
adjoint� written �B��A � B�� In other words� for every objects A�B� there
exists an object A � B� called linear exponent� and natural bijections �for all
C�

�l � C�C �A�B� � C�C�A � B��

We write ev l � ���
l �id��
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Notice that there are no accompanying additional coherence equations for
monoidal categories� This comes from the di�erence in nature between the con�
structions � and �� the latter is given together with a universal construction
�an adjunction�� while the 	rst is just a functor with some associated isomor�
phisms� This di�erence is often referred to as the di�erence between �additional
structure� ��� and �property� ���� The notion of dualising object� introduced
next� is �additional structure��

De�nition ������ ��
autonomous� A symmetric monoidal closed category C
is called ��autonomous if it has a distinguished object �� called dualising object�
such that for any A the morphisms �called canonical�

�l�ev l � �� � Cl�A� �A � �� � ��

have an inverse� If no ambiguity can arise� we write A� for A � �� and A��

for �A����

Proposition ����� Let C be a ��autonomous category�

� � There exists a natural bijection between C�A�B� and C�B�� A���

 � There exists a natural isomorphism �A � B�� �� A�B��
� � There exists a natural isomorphism I �� ���

Proof hint� ��� By functoriality of �� with every f � A � B we can associate
�f � �� � B� � A�� In the other direction� starting from g � B� � A�� we
arrive at �g � �� � A�� � B��� which up to natural isomorphism is in C�A�B��

�
� In one direction� by associativity� and using ev l twice� we get a morphism
from �A�B�� � �A � B� to �� In the other direction� we exploit the following
chain of transformations�

C��A � B��� A�B�� �� C��A�B���� �A � B���� �by ����
�� C��A�B���� A � B� �� is dualising�
�� C�A � B��� A � B� �C is closed�
�� C�A � B�A � B� �� is dualising� �

��� We proceed similarly� as suggested by

id � I �� �� � � �
ev l � I� �� I� � I � � �

�

Part ��� of proposition ���
�� shows in restrospective that the name � for the
dualising object is deserved� we can indeed understand it as the multiplicative
false� Often� the linear negation comes 	rst in the semantics� The following
approach is thus helpful�
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Proposition ������ Suppose that C is a symmetric monoidal category� and that
� �� � Cop � C is a functor �which we shall call the dualising functor� which is
given together with

� � A natural isomorphism A �� A���

 � A natural bijection C�I� �A�B���� �� C�A�B��

Then C is monoidal closed� with � de�ned by A � B � �A�B����

Proof� We have�

C�A�B � C� � C�A� �B �C���� �by de	nition�
�� C�I� �A� �B � C������� �by �
��
�� C�I� �A� �B � C����� �by ����
�� C�I� ��A�B� � C���� �by associativity�
�� C�A�B�C� �by �
�� �

�

Remark �����	 The above data are close to ensuring that C is ��autonomous�
Indeed� from A �� A�� and

A � I� � �A� I���� �� �A� I�� �� A�

we obtain A �� �A � I�� � I�� However� one would need to impose tedious
coherence axioms relating the natural isomorphisms and bijections of proposition
���
��� in order to ensure that this isomorphism is indeed the one obtained by
twisting and currying the evaluation morphism� One such condition is that the
composition of isomorphisms

C�A�B� �� C�I� �A�B���� �� C�I� �B��A��� �� C�I� �B��A����� �� C�B�� A��

has to be the action of the functor � on C�A�B��

The last ingredient we need is the notion of comonad� which is dual to that
of monad �cf� de	nition B������

De�nition ������� �comonad� A comonad over a categoryC is a triple �T� �� ��
where T � C � C is a functor� � � T � idC� � � T � T � are natural transforma�
tions� and the following equations hold

�TA � �A � idTA T�A � �A � idTA �TA � �A � T�A � �A�

The following derived operation is useful� For all f � TA � B� one constructs
��f� � TA� TB as follows

��f� � f � ��

We de�ne the co�Kleisli category cKT �often simply called Kleisli category� as
follows� The objects of cKT are the objects of C� and for any A�B

cKT �A�B� � C�TA�B��
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The identity morphisms are given by �� and composition �cK is de�ned by

g �cK f � g � ��f��

As with monads� every adjunction induces a comonad�

Proposition ������� Every adjunction �L�R� �� ��� where F � C � C� and G �
C� � C� induces a comonad �F � G� �� �� on C�� where � is the counit of the
adjunction� and where � � F�G� i�e� �B � F ��GB� �for all B�� The Kleisli
category associated with the comonad is equivalent to the full subcategory of C
whose objects are in the image of R�

We follow �Bar��b� See��� in our de	nition of a category allowing to interpret
linear logic� Recently� it was pointed out by Bierman that Seely�s de	nition does
not validate all the proof reductions rules one would wish for� He proposed a
satisfactory de	nition of a model of intuitionistic linear logic� We refer to �Bie���
for details �see also remarks ���
��� and ���
�

�� Here we stick to Seely�s style of
de	nition� which is more synthetic and is good enough for introductory purposes�

De�nition ������� � �
autonomous category� A  ��autonomous category is
a structure consisting of the following data

�� A ��autonomous category Cl which is at the same time cartesian�


� A comonad � � �� �� over Cl� called the exponential� together with the pre�
ceding structure by two natural isomorphisms

 �A�B� �� � A� � � B�  � �� I�

Remark ������� If Cl is only symmetric monoidal closed �that is� if it is not
equipped with a dualising object�� but has the rest of the structure of a  ��autonomous
category� then we can interpret in it intuitionistic linear logic only�

Remark ������� It is often the case that the comonad  � F �G is de�ned via
an adjunction F a G between two functors F � C � Cl and G � Cl � C� By
proposition ���
���� if each object of C is isomorphic to some object in the image
of G� then the Kleisli category associated with the comonad is equivalent to C�
This is a fortiori the case when G is the �surjective� identity on objects� as in the
stable model�

We next complete the work of section ���� and show that coherence spaces
form a  ��autonomous category�

Theorem ������� The category Cohl together with the comonad on Cohl in�
duced by the adjunction  a� is a  ��autonomous category whose Kleisli category
is equivalent to Coh�
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Proof� For the symmetric monoidal structure� we just notice that at the level
of events the canonical isomorphisms are given by

��e� e��� e��� � �e� �e�� e���� �e� �� � e ��� e� � e�

There is a natural bijection Cohl�I�E� �� E� since ��� e�� �	 ��� e�� boils down to
e� �	 e�� Hence we have

Cohl�I� �E � E����� ��



�E �E����





� jE � E�j
�� Cohl�E�E�� by proposition ������ �

Then the closed structure follows from proposition ���
���
To see that Cohl is ��autonomous� we set � � I� �� I�� and we observe the

trace of �l�ev l � �� � A � �A � �� � �� which is f�e� ��e� ��� ��� j e � Eg� It
clearly has as inverse the function whose trace is f���e� ��� ��� �e j e � Eg�

That Coh is equivalent to the Kleisli category follows from remark ���
���
We are left to verify the two natural isomorphisms� The 	rst one holds by propo�
sition ���
���� For the second one� notice that D��� is a singleton� �

We examine some consequences of our de	nition of  ��autonomous category�

Proposition ������� If Cl is a  ��autonomous category� then the associated co�
Kleisli �Kleisli for short� category K�Cl� is cartesian closed�

Proof� As product on objects and as pairing of arrows we take the product on
objects and the pairing of arrows of Cl� As projections we take � � � and �� � ��
We check one commutation diagram�

�� � �� �cK hf� f �i � � � �� � ��hf� f �i��
� � � hf� f �i � f �

Next we de	ne A � B � � A� � B� The natural bijections are obtained via the
following chain� where we abbreviate K�Cl� as C�

C�A�B�C� � Cl� �A�B�� C� �� Cl�� A�� � B�� C�
�� Cl� A� � B� � C� � Cl� A�B � C�

� C�A�B � C� �

�

Conversely� the 	rst of the natural isomorphisms of de	nition ���
��
 is im�
plied by the CCC structure of the Kleisli category�

Proposition ������ Let Cl be a ��autonomous category which is at the same
time cartesian� and which is equipped with a comonad � � �� �� such that the associ�
ated Kleisli category is cartesian closed� Then there exists a natural isomorphism
from � A� � � B� to  �A�B��
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Proof� Note 	rst that the assumptions of the statement are slightly redundant
since we have already seen that the cartesian structure on the Kleisli category
is implied� We still denote with C the Kleisli category� We derive the desired
isomorphisms by exploiting the following chains of transformations�

Cl� �A�B��  �A�B�� � C�A�B�  �A�B��
�� C�A�B � �A�B��
� Cl� A� � B� � �A�B��
�� Cl�� A� � � B��  �A�B�� �

We obtain the desired arrow from � A� � � B� to  �A � B� by starting from
id � �A�B� � �A�B�� The arrow in the other direction is constructed similarly�
�

Remark ������� It would be more agreeable to have the other natural isomor�
phism  � �� I implied as well� but the categorical structure considered here is not
rich enough to provide us with an arrow from I to  �� This anomaly is repaired in
the setting of �Bie���� where the existence of an isomorphism I �� I is postulated�

Another implied structure is that each object of the form  A is endowed with
the structure of a comonoid� there are two arrows

e �  A � I d �  A � � A� � � A�

satisfying the three �categorical versions of the� comonoid laws �see exercise
���
����� These arrows are constucted as follows�

e �  � � �the second  is  � A � ��
d ��  �hid� idi�

where �� is to be read as �composition with the isomorphisms  � �� I and  �A�
A� �� � A� � � A���

Exercise ������	 Let d and e be as just de
ned� Show that the following equations
are satis
ed�

�l 
 �e" id� 
 d � id
�r 
 �id " e� 
 d � id
� 
 �id " d� 
 d � �d" id� 
 d
� 
 d � d �

This implicit comonoid structure may serve as a guide in constructing a  ��
autonomous category� Some authors have even insisted that  should be a free
comonoid construction� We content ourselves with the following exercise and the
following remark�

Exercise ������� Show that� for any symmetric monoidal category C� the category
Com�Cl� whose objects are comonoids �A� d� e� over C and whose morphisms are
comonoid morphisms �i�e� morphisms of Cl which commute with d� e in the obvious
sense� is cartesian� and that the forgetful functor U � Com�C�l � Cl maps products
to tensor products�
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Remark ������� Exercise ���
�
� suggests a �recipe� for constructing a  ��
autonomous category out of a cartesian and ��autonomous category Cl�

 Focus on an appropriate �full� subcategory C of Com�Cl� which has the
same products as Com�Cl��

 Construct an adjunction of the form U � G between C and Cl�� where U
is the restriction of the forgetful functor to C�

Then� setting  � U �G� the natural isomorphism  �A�B� �� � A� � � B� comes
for free

G�A�B� �� G�A� �G�B� �right adjoints preserve limits�
U�G�A� �G�B�� � �U�G�A�� � �U�G�B�� cf� exercise ���
�
� �

Interpretation of linear logic proofs� Finally� we sketch the interpretation
of the sequents of linear logic in a  ��autonomous category Cl� A proof of a
sequent � A�� � � � � An is interpreted by a morphism f � I � �A� � � � � � An�
�confusing the formulas with their interpretations as objects of Cl�� The rules
are interpreted as follows�

�I� � I is interpreted by id � I � I�

��� Obvious� since � is the dual of I �cf� proposition ���
����

��� If f � I � �A � !� and g � I � �B � ��� then by the isomorphisms
A � ! �� ! � A �� !� � A �and similarly B � � �� �� � B� and by
uncurrying� we can consider f � !� � A and g � �� � B� Then we form
f � g � !� � �� � A�B which by similar manipulations yields�

f � g � I � �A�B� � �!� � ���� � �A�B� � �! � ���

��� Obvious by associativity of ��

�Axiom� Since A � A� �� A � A� we interpret � A�A� by the currying of the
identity considered as from I �A to A�

�Cut� Similar to ���� from f � I � �A � !� and g � I � �A� � �� we get
ev l � � � �f � g� � !� � �� � �� which we can read as a morphism from I to
�! � �� � � �� ! � ��

�Exchange � By associativity and commutativity�

��� Interpreting � � � ! amounts to give an arrow from !� to �� Since � is
terminal� we take the unique such arrow�

��� The pairing of f � I � �A � !� and g � I � �B � !� yields hf� gi � !� �
�A�B��
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��� Given f � I � �A � !�� we build f � � � A� � B� � !� which we can
consider as a morphism from I to �A�B� � !�

�Dereliction� Given f � I � �A � !�� we build f � � �  �A�� � !� where � is the
	rst natural transformation of the comonad�

�Weakening � Let f � I � !� Then we can consider that f � d � �A�� � !
�where d comes from the comonoid structure induced on  A� is a proof of ��A�!�

�Contraction� This case is similar to the case �Weakening�� replacing d by e�

�Promotion� Let f � I � �A ��B� � � � � ��Bn�� which we can consider as an
arrow from  �B�

� � � � � � B�
n � to A� Here we have made an essential use of the

natural isomorphisms required in the de	nition of  ��autonomous category� Then
we can consider ��f� �  �B�

� � � � ��B�
n � � A as a proof of � A� �B�� � � � � �Bn�

Remark ������� The interpretation given above for the rule �Promotion� has
the drawback of appealing explicitly to products� This is a bit odd since linear
logic without additive connectives� but with exponentials� is interesting enough�
In the setting of �Bie���� the existence of isomorphisms  �A�B� �� � A�� � B� is
postulated� Then �Promotion� is interpreted as follows� Let f � I � �A ��B� �
� � � ��Bn�� which we can consider as an arrow from  �B�

� � � � � �� �B�
n � to A�

Consider

� � � � �� � �  �B�
� � � � � �� �B�

n � �   �B�
� � � � � ��  �B�

n � �� � �B�
� � � � � �� �B�

n ���

Then  f � ��� � � �� �� can be considered as an arrow from  �B�
� �� � � �� �B�

n � to
 A� hence is a valid interpretation for � A� �B�� � � � � �Bn�

Remark ������� In some models� like the sequential model presented in chapter
�	� the terminal object is the unit� Then we can de�ne projections �l � A�B � A
and ��l � A�B � B as follows� One goes� say� from A�B to A� � �using that
� is terminal� and then to A by a coherent isomorphism� A consequence is that
the usual weakening rule

� !

� A�!

is valid� Indeed� given f � I � !� we build f � �l � I � A� � !� Intuitionistic
linear logic plus weakening is called a�ne logic and can be interpreted in any
symmetrical monoidal closed category which has a  and where the terminal object
is the unit�

���� Hypercoherences and Strong Stability

In this section� we investigate Ehrhard�s hypercoherences� They have arisen from
an algebraic characterisation of sequential functions �see theorem ���������
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De�nition ������ �hypercoherence� A hypercoherence is a pair �E�!�� where
E is a set� called the web of E� and where ! is a subset of P�

fin�E�� called atomic
coherence �or simply coherence�� such that for any a � E� fag � !� We write
!� � fu � ! j u � �g� and call !� the strict atomic coherence� If needed
from the context� we write E � j�E�!�j �or simply E � jEj� and ! � !�E�� A
hypercoherence is called hereditary if

	u � !� v �v � u 
 v � !��

A state of a hypercoherence �E�!� is a set x � E such that

	u ��
�n x u � !

where u ��
�n x means that u is a �nite and non�empty subset of x� We call D�E�

the set of states of E� ordered by inclusion�

Proposition ������ Let �E�!� be a hypercoherence� The poset D�E�� ordered
by inclusion� is a qualitative domain �cf� de�nition �
������� whose compact
elements are the �nite states�

Proof� We observe that singletons are states� and that the de	nition of state
enforces that �u � K�D�E�� and v � u� imply v � K�D�E��� �

Remark ������ Since any qualitative domain can be obviously viewed as a hered�
itary hypercoherence� we can say in view of proposition �����
 that qualitative
domains and hereditary hypercoherences are the same �see proposition �����
���
But of course there are more hypercoherences than those arising naturally from
qualitative domains �see de�nition ������	��

The atomic coherence gives also rise to a collection of distinguished subsets
of states� enjoying some interesting closure properties� They will allow us to get
a more abstract view of the morphisms of the hypercoherence model� in the same
way as linear or stable functions are more abstract than their representing traces�
We need a technical de	nition�

De�nition ������ �multisection� Let E be a set� and let u � E and A �
P�E�� We write u � A� and say that u is a multisection of A� i�

�	 e � u �x � A e � x� and �	x � A � e � u e � x��

Remark ������ If both u and A are �nite� u �A holds exactly when we can �nd
a list of pairs �e�� x��� � � � � �en� xn� such that ei � xi for all i and

u � fei j � � i � ng A � fxi j � � i � ng�
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De�nition ������ �state coherence� Let �E�!� be a hypercoherence� We de�
�ne a set C�E� � P�

fin�D�E��� called the state coherence of �E�!�� as follows

C�E� � fA ��
�n D�E� j 	u ��

�n E u � A 
 u � !g�

We recall the convex ordering from theorem ������ Given a partial order D and
two subsets B�A of D� we write B �c A for

�	 y � B �x � A y � x� and �	x � A � y � B y � x��

�Notice that this obeys the same pattern as the de	nition of ���

Lemma ����� Let �E�!� be a hypercoherence� The state coherence C�E� sat�
is�es the following properties

� � If x � D�E�� then fxg � C�E��

 � If A � C�E� and B �c A� then B � C�E��
� � If A ��

�n D�E� has an upper bound in D�E�� then A � C�E��
	 � If A ��

�n D�E� and � � A� then A � C�E��

Proof� ��� If u � fxg� then a half of the de	nition of � says u � x� and u � !
then follows by de	nition of a state�

�
� Let A � C�E�� B �c A� and u � B� It follows from the de	nitions of �c and
� that u � A� and from A � C�E� that u � !�

��� This follows from ��� and �
�� since we can express that A has an upper
bound z as A �c fzg�

�� If � � A� then we cannot 	nd a u such that u � A� and the condition
characterising A � C�E� holds vacuously� �

De�nition ������ �strongly stable� Let �E�!� and �E��!�� be hypercoherences�
A continuous function f � D�E� � D�E�� is called strongly stable from �E�!� to
�E��!�� if

	A � C�E� �f�A� � C�E�� and f�
�

A� �
�

f�A���

We call HCoh the category of hypercoherences and strongly stable functions�

Strongly stable functions are to form �up to equivalence� the Kleisli category
of our model� We turn to the de	nition of the linear category�

De�nition �����	 �linear exponent � hypercoherences� Let �E�!�� �E��!��
be two hypercoherences� The linear exponent E � E� is the hypercoherence whose
events are the pairs �e� e�� where e � E and e� � E�� and whose atomic coherence
consists of the �nite non�empty w�s such that

��w� � ! 
 ����w� � !� and ����w� � � 
 ��w� � ����
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De�nition ������� The category HCohl is the category whose objects are hy�
percoherences� and whose morphisms are given by

HCohl�E�E�� � D�E � E��

for all E�E�� with identity relations and relation composition as identities and
composition�

Proposition ������� The data of de�nition ������� indeed de�ne a category�

Proof� The only non�obvious property to check is that the relation composition
of two states is a state� Suppose thus that �E�!�� �E��!��� and �E���!��� are given�
as well as � � D�E � E�� and �� � D�E� � E��� � We 	rst claim that if �e� e��� �
�� � �� then there exists a unique e� � E� such that �e� e�� � � and �e�� e��� � ���
Let w� be a 	nite non�empty subset of W � � fe� j �e� e�� � � and �e�� e��� � ��g
�e� e�� 	xed�� Considering f�e� e�� j e� � w�g� we obtain that w� � !� since feg � !�
Then� considering f�e�� e��� j e� � w�g� we get w� � � since fe��g � �� Therefore
W � is also a singleton� Let now w be a 	nite non�empty subset of �� �� such that
��w� � !� Consider

u � f�e� e�� � � j � e�� �e�� e��� � �� and �e� e��� � wg
v � f�e�� e��� � �� j � e �e� e�� � � and �e� e��� � wg �

The claim implies that u and v are 	nite� We have ��u� � ��w� by de	nition
of u and of �� � �� It follows that ���u� � !� since we have assumed ��w� � !�
But ���u� � ��v�� hence ���w� � ���v� � !��� If furthermore ���w� � �� then
��v� � � � ���u�� and ��u� � � � ��w�� �

Proposition ������� The category HCohl is cartesian� If �E�!� and �E��!��
are hypercoherences� their product E � E� is de�ned as follows

 Events are either e�� where e � E or e��
 where e� � E ��

 The atomic coherence consists of the ��nite non�empty� subsets w such that

�wdE� � 
 wdE�� !�� and �wdE�� � 
 wdE� !�

where� say� wdE� fe j e�� � wg�

We have

D�E � E�� �� D�E� �D�E��
A � C�E �E�� � �AdE� C�E� and AdE�� C�E���

where� say� AdE� fudEj u � Ag� The terminal object is the empty hypercoher�
ence�
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Proof� The projection morphisms and pairing are given by

� � f�e��� e� j e � Eg
�� � f�e��
� e�� j e� � E�g
h�� ��i � f�e��� e��� j �e��� e� � �g � f�e��� e��
� j �e��� e�� � ��g �

The only point which requires care is the veri	cation that h�� ��i is a morphism�
Let w ��

�n h�� ��i be such that ��w� � !� Notice that� in order to tell something
about ���w�dE � we are led to consider wE � f�e��� e� j �e��� e��� � wg� If ��wE� is a
strict subset of ��w�� we don�t know whether ��wE� is in the atomic coherence of
E� unless �E�!� is hereditary �see remark ��������� These considerations should
help to motivate the de	nition of !�E�E��� Indeed� all we have to check is that if
���w�dE�� � then ���w�dE� ! �the other implication being proved similarly�� The
assumption ���w�dE�� � implies w � wE� ��wE� � !��� and ���w�dE� ���wE� �
!� If moreover ���w� � �� then� say� ���w� � fe��g� hence ���wE� � feg�
which entails ��wE� � �� and ��w� � � since ���w� � fe��g a fortiori implies
���w�dE�� ��

We show that �x��xdE� xdE�� de	nes a bijection �actually an order isomor�
phism� from D�E � E�� to D�E� � D�E��� All what we have to do is to show
that this mapping and its inverse have indeed D�E� �D�E�� and D�E � E�� as
codomains� respectively� This follows easily from the following observation �and
from the similar observation relative to E���

	u ��
�n xdE �u � ! � fe�� j e � ug � !�E � E����

The same observation serves to prove the characterisation of C�E �E��� since in
order to check that A � C�E �E��� we need only to consider u�s such that either
udE� � or udE�� �� �

Remark ������� The cartesian product of two hereditary hypercoherences is not
hereditary in general� Indeed� given any �nite u � E and u� � E�� where� say�
u �� !�E�� we have fe�� j e � ug � fe��
 j e� � u�g � !�E � E�� as soon as both
u and u� are non�empty� but fe�� j e � ug �� !�E � E��� �See also proposition
���������

The full subcategory of hereditary hypercoherences� being equivalent to that of
qualitative domains� has a product� though� which is given by the same set of
events� but a di�erent atomic coherence� consisting of the w�s such that

wdE� ! and wdE�� !��

The product structure gives rise to an interesting class of hypercoherences�
which are the key to the link between sequentiality and strong stability� and which
are therefore at the root of the theory of hypercoherences and strong stability�
Coherence spaces �E��	� are special qualitative domains� and can therefore be
seen as hereditary hypercoherences� But they can also be endowed with another
hypercoherence structure� which we de	ne next�
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De�nition ������� �� Let �E��	� be a coherence space� It induces a hyperco�
herence �E�!L�� called linear hypercoherence� where

!�
L � fu ��

�n E j � e�� e� � E �e� �� e� and e� �
	 e��g�


� Let X be a set� The hypercoherence X� � �X� ffxg j x � Xg� is called the �at
hypercoherence associated to X� Clearly� D�X�� � X�� whence the name and
the notation�

Proposition ������� Let E�� � � � � En be �at hypercoherences� Let E be the prod�
uct of E�� � � � � En in the category of coherence spaces� Then �E�!L� is the product
of E�� � � � � En in HCohl�

Proof� Without loss of generality� we consider a product of three �at hyperco�
herences E�� E�� and E�� By de	nition� the product hypercoherence consists of
those w�s such that

����w� �� � or ���w� �� � or ���w� � �� and
����w� �� � or ���w� �� � or ���w� � �� and
����w� �� � or ���w� �� � or ���w� � �� �

Under the assumption w � ��we have� say�

����w� �� � or ���w� �� � or ���w� � �� 
 ����w� �� � or ���w� �� ��

hence the strict coherence of the product consists of the w�s such that

����w� �� � or ���w� �� �� and
����w� �� � or ���w� �� �� and
����w� �� � or ���w� �� ��

or �generalising from � to n�

� i� j � n i �� j and ��i�w� �� � and �j�w� �� ��

which by proposition ������ and by de	nition is the linear coherence on E� �

We have now all the ingredients to show where strong stability comes from�

Theorem ������� Suppose that E�� � � � � En� E are �at hypercoherences� A func�
tion f � D�E�� � � � ��D�En� � D�E� is sequential i� it is strongly stable from
�E� � � � �� En�!L� to E�

Proof� By proposition �������� �E�� � � ��En�!L� is the product E�� � � ��En

in HCohl� Hence� by proposition ������
�

A � CL�E� � 	 i � f�� � � � � ng �i�A� � C�Ei�
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where CL�E� is the state coherence associated with !L� If A � fx�� � � � � xkg and
xj � �x�j� � � � � xnj� for all j � k� then we can rephrase this as

fx�� � � � � xkg � CL�E� � 	 i � f�� � � � � ng �� j � k xij � �� or �xi� � � � � � xik �� ���

On the other hand� by theorem ����� f is sequential i� it is invariant under the
relations Sk�� de	ned by

�x�� � � � � xk��� � Sk�� � �� j � k xj � �� or �x� � � � � � xk�� �� ���

The conclusion then follows from the following easy observations�

 �xi�� � � � � xi�k���� � Sk�� may be rephrased as �xi�� � � � � xik� � C�D� andV
��j�k xij � xi�k���� hence

V
��j�k xj � xk�� and

�x�� � � � � xk��� � Sn
k�� � �x�� � � � � xk� � C��D� � � � ��Dn�L��

 f�
V
A� �

V
f�A� can be rephrased as 	x x �

V
A 
 f�x� �

V
f�A�� �

Lemma ������ In E � E� � E��� the following equivalences hold �and thus
may alternatively serve as de�nition of atomic coherence�

��� w � !�� � ���w� � ! 
 ���w� � !�� and ���w� � !� 
 ���w� � !���
�
� w � !��� � ��w� �� ! or ���w� � !�� �

Proof� The equivalence ��� is just a rephrasing of the equivalence given in
de	nition ������� By Boolean manipulations� we get successively�

right hand side of ���

�

�
���w� �� ! and ���w� �� !� or ���w� � !���� or
����w� � !� and ���w� �� !�� or ���w� � !����

� ��w� �� ! or ���w� � !�� or ����w� � !� and ��w� �� !�� �

Now we suppose that w � �� Then either ��w� � � or ���w� � �� If ���w� � ��
then ���w� � !� is the same as ���w� � !��� Similarly� if ���w� � �� then
��w� �� !� is the same as ��w� �� !� Hence� under the assumption w � ��

����w� � !� and ��w� �� !�� 
 ���w� �� ! or ���w� � !���

and the right hand side of ��� boils down to the right hand side of �
�� which
completes the proof� �

As in the stable case� the equivalence �
� of lemma ������� directly suggests
a de	nition of tensor product and of linear negation�
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De�nition ������� �tensor � hypercoherences� Let �E�!� and �E��!�� be
hypercoherences� Their tensor product E � E� is the hypercoherence whose web
is E �E�� and whose atomic coherence consists of the non�empty �nite w�s such
that ��w� � ! and ���w� � !�

De�nition ������	 �linear negation � hypercoherences� Let �E�!� be a hy�
percoherence� The linear negation E� of E is the hypercoherence whose web is
E� and whose atomic coherence is P�

fin�E�n!�� Or� alternatively� u � !��E�� i�
u �� !�E��

Proposition ������� The category HCohl is ��autonomous� Its unit is the
unique hypercoherence whose web is the singleton f�g�

Proof� The proof is a straightforward adaptation of the proof of theorem
���
���� We even have




�E � E����



 � HCohl�E�E��� �

De�nition ������� �exponential � hypercoherences� Let �E�!� be a hyper�
coherence� The exponential  E is the hypercoherence whose events are the �nite
states of E and whose atomic coherence consists of the the A�s such that

	u ��
�n E �u � A 
 u � !��

Proposition ������� The operation  extends to a functor  � HCoh � HCohl
which is left adjoint to the inclusion functor �� HCohl � HCoh de�ned as
follows

� �E�!� � �E�!� � ��� � fun���

where
fun����x� � fe� j � e �e� e�� � � and e � xg�

Proof� We exhibit inverse bijections between D� E � E�� and HCoh�E�E ���
Given a strongly stable function f � we de	ne

trace�f� � f�x� e�� j e� � f�x� and �	 y � x e� �� f�x��g�

Conversely� given � � D� E � E��� we de	ne

fun����x� � fe� j � y �y� e�� � � and y � xg�

This de	nition of fun extends that given in the statement� up to the identi	cation
of events e with singletons feg� Therefore� the subsequent proof also establishes
that � is well�de	ned� That trace and fun are inverses is proved exactly as in
theorem �
����� We prove that trace and fun are well�de	ned�

 trace�f� is a state� Let w� ��
�n trace�f�� and suppose that ��w�� � !� E� �

C�E�� By de	nition of trace� ���w�� � f���w���� Hence ���w�� � !�� Suppose
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moreover that ���w�� � fe�g� Then e� �
V
f���w��� � f�

V
��w���� Let z �V

��w�� be such that �z� e�� � trace�f�� Then� by minimality� z is equal to each
of the elements of ��w���

 fun��� is strongly stable� First of all� we have to check that f�x� � D�E��� for
any �	nite� x � D�E�� Let v� ��

�n f�x�� Let w� � f�z� e�� � � j z � x and e� �
v�g� By de	nition� w� is 	nite and non�empty� Hence w� � !�E � E��� We have
��w�� � !� E� since ��w�� is bounded� Hence v� � ���w�� � !�� Next we prove
that fun��� is strongly stable� Let A � C�E�� and let v� � fun�A�� Let

w� � f�z� e�� � � j �z � x for some x � A and e� � v��g

and let x � A� Since v�� fun�A�� there exists e� � v� such that e� � fun�x�� Hence
there exists z � ��w�� such that z � x� by de	nition of fun and w�� It follows that
��w�� �c A� Hence ��w�� � C�E� by lemma ������� This entails v� � ���w�� � !��
Hence fun�A� � C�E��� We show moreover that

V
fun����A� � fun����

V
A�� Let

e� �
V
fun����A�� i�e� fe�g � fun����A�� Then� instantiating above v� as v� � fe�g

�and the corresponding w��� we have ��w�� � �� since ���w�� � fe�g � �� Let
��w�� � fxg� Then x � A by de	nition of w�� hence e� � fun�x� � fun����

V
A��

�

Proposition ������� �� The categoryHCohl is equivalent to the category of hy�
percoherences and linear and strongly stable functions� Notice that this is slightly
redundant� since the preservation of bounded glb�s� which is part of our de�nition
of linear function �cf� de�nition ������� is a consequence of strong stability�


� The full subcategory ofHCohl whose objects are the hereditary hypercoherences
is equivalent to the category of qualitative domains and linear functions�

Proof� ��� This is proved as in the stable case �cf� proposition ��������

�
� We have already observed �remark ������� that at the level of objects qual�
itative domains are the same as hereditary hypercoherences� We claim that if
�E�!� is hereditary� then

A � C�E� � �� � A� or �A is bounded��

The direction � holds in any hypercoherence� by lemma ������� Suppose con�
versely that A � C�E�� � �� A� and A is not bounded � i�e�

S
A is not a state�

Then there exists u �
S
A which is not in the atomic coherence !� Let v be such

that u � v and v � A �such a v exists� since � �� A�� We reach a contradiction as
follows�

v � ! by de	nition of the state coherence
u � ! by hereditarity �

Suppose that �E�!� and �E��!�� are hereditary hypercoherences� We show that
f � D�E� � D�E�� is linear and strongly stable i� it is linear� We only have to
check that �linear implies strongly stable�� If f is linear and A � C�E�� there are
two cases� by the claim�
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 � � A� Then� by linearity� � � f�A� �hence f�A� � C�E���� and

f�
V
A� � f��� � � �

V
f�A��

 A is bounded� Then f�A� is bounded� and f�
V
A� �

V
f�A� by stability�

�

Proposition ������� The category HCohl� together with the comonad induced
by the adjunction of proposition �����

� is a  ��autonomous category�

Proof� We are left to check the natural isomorphisms� The isomorphism  � �� I
is immediate as with coherence spaces� We check  �E�E�� �� � E�� � E�� �notice
that we did not prove that HCoh is cartesian closed� this will rather follow as a
corollary� cf� proposition ���
����� We have

j �E � E��j � K�D�E �E���
�� K�D�E� �D�E���
� K�D�E�� �K�D�E���
� j Ej � j E�j
� j� E� � � E��j

and

A � !� �E � E ��� � A � C�E � E��
� �AdE� C�E� and AdE�� C�E�� �by proposition ������
�
� �AdE� AdE�� � !�� E� � � E��� �

�

���� Bistructures �

Berry �Ber�� combined the stable approach and the continuous approach by de	ning
bidomains� which maintain extensionality and stability together� and thus o�er an
order�extensional account of stability �cf
 sections �
� and �
��
 His work was then
revisited by Winskel� resulting in a theory of stable event structures �Win���
 The
account o�ered here� based on �CPW��� is informed by linear logic �which was not
available at the time of �Ber�� Win���
 We introduce a ���autonomous category of
event bistructures� where the de	nition of composition is proved correct by means of
an interaction between two order relations over events


We build up on coherence spaces �cf
 section ��
��
 Let E and E� be two coherence
spaces
 Recall that the structure E � E� has as events the pairs �x� e�� of a 	nite state
of E and an event of E�� that these events� when put together to form a higher�order
state �� describe the minimal points of the function represented by �� and that the
inclusion of states naturally corresponds to the stable ordering
 In E � E�� there
arises a natural order between events� which is inspired by contravariance�

�x�� e
�
�� �

L �x� e�� 	 �x � x� and e�� � e���
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The superscript L will be explained later
 The order �L allows us to describe the
pointwise order between stable functions� at the level of traces


De�nition ������ Let E and E� be two coherence spaces� We de
ne a partial order
v on D�E � E�� by � v � 	 � �x� e�� � � � x� � x �x�� e�� � �� or� equivalently�

� v � 	 � e�� � � � e��� �e�� �L e��� and e��� � ���

Proposition ������ Let E and E� be coherence spaces� and f� g � D�E� �st D�E���
Then the following equivalence holds� f �ext g 	 trace�f� v trace�g��

We shall see �lemma ��
�
��� that � v � can be factored as � vL � � �� where �
is the part of � used in the check of � v � �notice that� given �x� e�� the x� is unique�


Next we want to force stable functionals to be order extensional� that is� we want
to retain only the functionals H such that ��� � �� v � � H��� � H���� �where
we freely confuse functions with their traces�� which� by the de	nition of vL� can be
rephrased as

��� � �� vL � � H��� � H�����

Therefore we ask for

� e��� � H � e���� �e���� �R e��� � � e���� � H e���� �L e���� �

where the order �R is de	ned by

���� e
�
�� �

R ��� e��	 �� vL �� and e�� � e���

De�nition ������ 
bistructure A bistructure �E�����L��R� �or E for short� is
given by a set E of events� by a re�exive and symmetric binary relation �� on E� called
coherence relation� and by partial orders �L and �R� satisfying the following axioms�

�B�� � e�� e� � E �e� �L e� � e� �� e��

where e� �L e� means � e � E �e �L e� and e �L e��� and where e� �� e� means
��e� �� e�� or e� � e� �cf� section �	����

�B�� � e�� e� � E �e� �
R e� � e� �� e��

where � is upward compatibility with respect to �R�

�B	� � e�� e� � E �e� � e� � �� e � E e� �
L e �R e���

where �� ��L � �R���

�B�� The relation #� ��L � �R�� is a partial order�

�B�� � e � E fe� � E j e� # eg is 
nite�

Remark ������ In the presence of axiom �B��� which is the bistructure version of
axiom I� axiom �B�� is equivalent to requiring the non�existence of in
nite sequences
fengn�� such that for all n en�� � en� where e � e� means e # e� and e �� e��
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The axioms of bistructures are strong enough to imply the uniqueness of the decom�
position of �� ��L � �R��� and that � is a partial order


Lemma ������ Let E be a bistructure� For all e�� e� � E� the following properties
hold�

�e� �
L e� and e� �

R e�� � e� � e�
e� � e� � � �e �e� �L e �R e�� �

Proof
 ��� If e� �L e� and e� �R e�� then e� �� e� and e� �� e�� which implies e� � e�
by de	nition of ��


��� Suppose that e� �
L e �R e� and e� �

L e� �R e�
 Then e� �
L e� and e� �

R e��
therefore e� � e� by ���
 �

Lemma ������ The relation �� ��L � �R�� of de
nition �	���	 is a partial order�

Proof
 We only have to prove that � is antisymmetric
 Suppose e � e� � e� and
let �� �� be such that e �L �� �R e� and e� �L � �R e
 We factor e � �� for some ����
e �L ��� �R �
 Since e �L ��� �R e� we get

��� � e by lemma ��
�
�
� � e by the antisymmetry of �R �

We then have e� �L � � e �L �� �R e�� and

�� � e� by lemma ��
�
�
e � e� by the antisymmetry of �L �

�

We next de	ne states of bistructures


De�nition ������ Let E � �E�����L��R� be a bistructure� A state of E is a subset
x of E satisfying�

� e�� e� � x �e� �� e�� �consistency�
� e � x � e� �R e � e� �e� �L e� and e� � x� �extensionality� �

We write �D�E��v�vR� for the collection of states of E� equipped with two orders vR

and v� which are called the stable order and the extensional order� respectively� and
which are de
ned as follows�

vR is the set�theoretic inclusion
x v y 	 � e � x � e� � y �e �L e�� �

Observe that axiom �B�� enforces the uniqueness of e� in the extensionality condition
of states� and of e� in the de
nition of v� We also de
ne a third relation vL between
states by

x vL y 	 x v y and �� y� � D�E� �x v y� and y� v
R y� � y� � y��
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We shall next examine some properties of the three relations vR� v� and vL


Lemma ������ Let E be a bistructure� and let x � D�E�� If e is in the � downward
closure of x� then it is in the �L downward closure of x�

Proof
 Let e� � x be such that e � e��

� e� e �L e� �
R e� �by factorisation�

� e� � x e� �L e� �by extensionality� �

Then e �L e� 	ts
 �

Lemma �����	 Let vR and v be as in de
nition �	����� Then� for all states x� y�

�x v y and y vR x� � x � y�

Proof
 Let e � x� and let e� � y be such that e �L e�
 Then� since a fortiori e� � x
and e �L e�� we conclude that e � e� � y
 �

De�nition ������� Let E be a bistructure� and let x � D�E�� We write #x for the
re�exive and transitive closure of the following relation #�

x between events of x�

e� #
�
x e� 	 �e�� e� � x and � e e� �

L e �R e�� �

The following is a key lemma


Lemma ������� Let E be a bistructure� let x� y � D�E� and e� � E such that x �R y
and e� � x � y� Then the following implication holds� for any e � x �in particular�
e� � y��

e� #x e� � e� #y e��

Proof
 It is clearly enough to show this for the one step relation #�
x
 Let thus e

be such that e� �L e �R e� By extensionality of y� and since e� � y� there exists
e�� � y such that e �L e��
 But �B�� and the consistency of y force e�� � e�� hence
e� � e�� #y e�
 �

Lemma ������� Let vR�v� and vL be as in de
nition �	����� The following proper�
ties hold�

�� v is �vL � vR��� and satis
es �B	��

�� For all states x� y� x vL y � �� e � y � e� � x� e� � y e #y e� �L e���

	� vL is a partial order�

Proof
 ��� Let x v y
 The subset fe� � y j � e� � x e� �L e�g represents the part of
y actually used to check x v y
 But we have to close this subset to make it extensional

De	ne thus

y� � fe � y j � e� � x� e� � y e #y e� �
L e�g�

which is clearly consistent� as a subset of y
 If e � y� and e� �
R e� since y is extensional�

there exists e� � y such that e� �L e�� and e� � y� by construction
 Thus y� is a state
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We show x vL y�
 Suppose that x v y�� v
R y�� and let e � y�
 Let by construction

e� � x and e� � y be such that e #y e� �
L e�
 Since x v y��� e� �

L e�� for some e�� � y��

On one hand we have e� �L e�� by construction� on the other hand e� �

� e�� follows
from e� � y�� e

�
� � y��� and y�� v

R y�
 Hence e� � e��� which implies e � y�� by lemma
��
�
��
 Hence y� v

R y��� which completes the proof of x vL y�
 The decomposition
x vL y� vR y shows that v is contained in �vL � vR��
 The converse inclusion is
obvious


��� follows obviously from the proof of ���


��� The re!exivity and the antisymmetry follow from �vL� � �v�
 Let x vL y� vL y�
and let e � y
 By ���� there exist e� � e� � y� and e�� � x such that e #y e

� and e� #x e
�
��

or in full�

e� � e� �L e� �R e� � � � �L e�i�� � e e�j�� � y for all � � j � i

e�� �
L e�� �

R e�� � � � �
L e��i��� � e� e��j�� � y� for all � � j � i� �

Since y� v y and e�� � y�� there exists e��� such that e�� �L e��� and e��� � y
 Since
e�� �

R e�� �
L e���� there exists e

��
� such that e�� �

L e��� �
R e���
 Since y is extensional� there

exists e��� � y such that e��� �
L e���
 In order to continue this lifting of the e�i�s relative to

y� to a sequence of e��i �s relative to y� we have to make sure that e�� �
L e����

e�� �
L e���� � y for some e���� � y since y� v y

e���� � e��� since e�� �
L e��� � e

�
� �

L e���� � and e���� e
���
� � y �

Continuing in this way� we get

e�� � e�� �
L e��� �

R e��� � � � �
L e���i��� � e� � e� �

L e� �
R e� � � � �

L e�i�� � e

with e�j�� � y for all � � j � i and e���j�� � y for all � � j � i�� which completes the

proof of x vL y
 �

We explore some of the 	niteness and completeness properties of these two orders


Lemma ������� Let E be a bistructure� let e � x � D�E�� Then there exists a 
nite
state �e�x such that e � �e�x vR x and �� y � D�E� �e � y vR x�� ��e�x vR y���

Proof
 Similar to that of lemma ��
�
��
 We just exhibit the de	nition of �e�x�

�e�x � fe� � x j e� #x eg�

The 	niteness of �e�x follows from axiom �B��
 �

Proposition ������� Let E be a bistructure� The following properties hold�

� � All v and vR directed lub�s exist in �D�E��v�vR��
� � The v and vR lub�s of a vR directed set coincide�
	 � A state is v compact i� it is vR compact i� it is 
nite�
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Proof
 ��� Let � be v directed
 We show�

z � fe �
�

� j e is �L maximal in
�

�g is the v lub of ��

We 	rst check that z is a state
 If e�� e� � z� then e� � �� e� � � for some �� � � �

Let  � � be such that �� � v 
 Then by de	nition of z and v� it follows that
e�� e� � 
 Therefore e� �� e�
 If e � z and e� �

R e� let  � � be such that e � 

By extensionality of � there exists e� �  such that e� �L e�
 By de	nition of z and
by �B�� and �B�� �cf
 remark ��
�
��� we can 	nd e� � z such that e� �

L e�
 Hence
z is a state
 It is obvious from the de	nition of z that  v z holds for any  � ��
and that if z� is an v upper bound of � then z v z�
 The vR bounded lub�s exist� if
X � D�E� and if x is an vR upper bound of X � then

S
X is consistent as a subset of

x and extensional as a union of extensional sets of events


��� Let � be vR directed
 We prove that tR� � t� �
S
� �where tR and t are

relative to vR and v� respectively�
 We have to show that any e �
S
� is �L maximal


Suppose there exists e� �
S
� such that e �L e�
 Then a fortiori e �L e�� and since by

vR directedness e�� e� �  for some  � �� we get e � e�


��� We decompose the proof into three implications�

� x is 	nite � x is v compact� Let fe�� � � � � eng v t�
 There exist e��� � � � � e
�
n �

t� such that ei �L e�i for all i
 Let �� � � �n � � such that e�i � i for all i� and
let  � � be such that i v  for all i
 Then by the �L maximality of e��� � � � � e

�
n

we get e�i �  for all i
 Hence fe�� � � � � eng v 


� x is v compact � x is vR compact� If x vR tR�� then a fortiori x v t��
therefore x v  for some  � �
 We show that actually x vR  holds
 Let e � x�
and let e� �  such that e �L e�
 Then we get e � e� from e� e� �

S
�


� x is vR compact � x is 	nite� We claim that� for any z� fy j y 	nite and y vR

zg is vR directed and has z as lub
 The directedness is obvious
 We have to
check that z vR fy j y 	nite and y vR zg� that is� for all e � z� there exists a
	nite y such that y vR z and e � y
 The state �e�x �cf
 lemma ��
�
��� does the
job
 �

We de	ne a monoidal closed category of bistructures


De�nition ������� 
linear exponent � bistructures LetE and E� be two bistruc�
tures� The linear exponent bistructure E � E� is de
ned as follows�

events are pairs �e� e�� where e � E and e� � E��

�e�� e
�
��
�
� �e�� e

�
��	 e� �� e� and e��

�
� e���

�e�� e��� �
L �e� e��	 e �R e� and e�� �

L e��

�e�� e
�
�� �

R �e� e��	 e �L e� and e�� �
R e��

As for coherence spaces � the coherence in the linear exponent can be de	ned by either
of the following equivalences �cf
 lemma ��
�
���

�e�� e���
�
� �e�� e��� 	 �e� �� e� � �e��

�
� e�� and �e� �� e� � e�� �� e�����

�e�� e
�
��
�
� �e�� e

�
�� 	 �e� �� e� � e��

�
� e��� and �e��

�
� e�� � e� �� e�� �
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The de	nition of linear exponent suggests what the linear negation should be� and
what the connective � should be
 We shall de	ne these connectives rightaway� and
prove that they are correctly de	ned
 The correctness of the de	nition of E � E� will
then follow


De�nition ������� 
linear negation � bistructures Let �E�����L��R� be a bistruc�
ture� The linear negation E� is de
ned by

E� � �E�����R��L��

Proposition ������� E� is a well�de
ned bistructure�

Proof
 We put subscripts that make clear to which bistructures we refer
 We have

e� �
L
E� e� 	 e� �

R
E e� � e� ��E

e� 	 e� ��E� e�

and similarly for �B��
 The satisfaction of �B�� to �B�� follows from

��L
E� � �R

E� � �R � �L� and ��L
E� � �R

E� � �R � �L��

�

De�nition ������� 
par � bistructures Let E and E� be two bistructures� The
bistructure E � E� is de
ned as follows�

events are pairs �e� e�� where e � E and e� � E��
�e�� e

�
��
�
� �e�� e

�
��	 e� �� e� and e��

�
� e���

�e�� e
�
�� �

L �e� e��	 e� �
L e and e�� �

L e��
�e�� e��� �

R �e� e��	 e� �R e and e�� �
R e��

Proposition ������	 E � E� is a well�de
ned bistructure�

Proof
 �B�� Let �e�� e
�
�� �

L �e� e��
 We have e� �� e from e� �
L e and e��

�
� e� from

e�� �
L e�


�B�� Let �e�� e��� �
R �e� e��� and suppose �e�� e���

�
� �e� e��
 As in the previous case�

we have e� �� e and e��
�
� e�� which� combined with the de	nition of �e�� e

�
��
�
� �e� e���

gives e� � e and e�� � e�


The other axioms follow from the componentwise de	nition of the orders
 �

Proposition ������� Let E� E�� and E�� be bistructures� let � � D�E � E�� and
� � D�E� � E���� The graph composition � 
 � of � and � is a state of E � E���

Proof
 Let �e�� e����� �e�� e
��
�� � � 
 �� and let e��� e

�
� � E� be such that

�e�� e
�
�� � � �e��� e

��
�� � � �e�� e

�
�� � � �e��� e

��
�� � ��

Suppose e� �� e�
 Since �e�� e
�
��� �e�� e

�
�� � � we have e��

�
� e��
 Since �e��� e

��
��� �e

�
�� e

��
�� �

�� we have e���
�
� e���
 Similarly� e���

�
� e��� implies e� �� e�
 Thus � 
 � is consistent
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We now check that � 
 � is extensional
 Let �e� e��� � � 
 �� and �e�� e
��
�� �

R �e� e���

Thus e �L e� and e��� �

R e��� and there exists e� such that �e� e�� � � and �e�� e��� � �

By extensionality of �� and since �e�� e

�� �R �e� e��� there exists �e�� e
�
�� � � such that

�e�� e
�� �L �e�� e

�
��� that is� e� �R e� and e� �L e��
 By extensionality of �� and since

�e��� e
��
�� �

R �e�� e���� there exists �e��� e
��
�� � � such that e�� �R e�� and e��� �L e���
 By

extensionality of �� and since �e�� e��� �
R �e�� e���� there exists �e�� e��� � � such that

e� �
R e� and e�� �

L e��
 In this way we build sequences such that

e �L e� �
R e� �

R e� �
R � � � �e� e��� �e�� e

�
��� �e�� e

�
��� � � �� �

e� �L e�� �
R e�� �

L e�� �
R � � �

e�� �R e��� �
L e��� �

L � � � �e�� e���� �e��� e
��
��� � � � � � �

By axiom �B��� the sequence fe�ngn�� becomes stationary
 Let i be such that e��i �
e��i��
 Then we have�

�e�i� e
��
�i��� � � 
 � since by construction �e�i� e

�
�i� � � and �e��i��� e

��
�i��� � �

�e�� e
�
�� �

L �e�i� e
��
�i��� since by construction e� �R e�i and e��� �

L e���i�� �


 �

Thus we have all the ingredients to de	ne a linear category of bistructures


De�nition ������� We de
ne the category BSl as follows� objects are bistructures�
and for any E�E �� we set

BSl�E�E
�� � D�E � E���

Composition is relation composition� and the identities are the identity relations� idE �
f�e� e� j e � Eg�

Remark ������� The morphisms of BSl� unlike in the case of coherence spaces� do
not enjoy a simple abstract characterisation as �linear and extensional functions�� Re�
call that linearity amounts to requiring all minimal points to be prime� In coherence
spaces� events are in one to one correspondence with the prime states� which are sin�
gletons feg� In the present framework� feg has no reason to be extensional in general�
and there may be several ways to extend feg into a minimal state� These considera�
tions should explain why we have chosen to concentrate on a concrete description of
the morphisms of BSl�

Next we de	ne a tensor product
 Its de	nition is dictated by �and its correctness
follows from� the equation �E " E��� � E� � E��


De�nition ������� 
tensor � bistructures Let E and E� be two bistructures� The
bistructure E � E � is de
ned as follows�

events are pairs �e� e�� where e � E and e� � E��

�e�� e
�
��
�
� �e�� e

�
��	 e� �� e� and e��

�
� e���

�e�� e��� �
L �e� e��	 e� �L e and e�� �

L e��

�e�� e
�
�� �

R �e� e��	 e� �
R e and e�� �

R e��
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The operation " is extended to a functor as follows� Let � � D�E� � E �
�� and

� � D�E� � E�
��� and set

� " � � f��e�� e��� �e
�
�� e

�
��� j �e�� e

�
�� � � and �e�� e

�
�� � �g�

Theorem ������� The category BSl is ��autonomous� The unit is de
ned by I �
�f�g� id� id � id��

Proof
 The proof is a straightforward extension of the proof thatCohl is ��autonomous
�theorem ��
�
���
 We have� say�

��e�� e
�
��� e

��
�� �

L
E	E��E�� ��e�� e

�
��� e

��
�� 	 e� �

R
E e� and e�� �

R
E� e�� and e��� �

R
E�� e���

	 �e�� �e
�
�� e

��
��� �

R
E��E��E��� �e�� �e

�
�� e

��
����

�

Remark ������� Like in the coherence model� we have I� � I�

We now de	ne a related cartesian closed category of order�extensional stable maps


De�nition ������� We de
ne the category BS as follows� objects are bistructures�
and for any E�E�� BS�E�E �� consists of the functions from D�E� to D�E�� which are
vR stable and v monotonic�

We did not require v continuity in de	nition ��
�
��� because it is an implied property


Lemma ������� Let E and E� be bistructures� If f � D�E�� D�E�� is vR continuous
and v monotonic� then it is also v continuous�

Proof
 Let fe�� � � � � eng v f�x�
 There exist e��� � � � � e
�
n � f�x� such that ei �L e�i for

all i
 By vR continuity� there exists a 	nite x� v
R x such that e��� � � � � e

�
n � f�x���

hence fe�� � � � � eng v f�x��
 �

De�nition ������� 
product � bistructures Let E and E� be two bistructures�
The bistructure E �E� is de
ned as follows�

events are either e�� where e � E or e��� where e� � E��

�e��i��� �e��j�	 i � j and e� �� e��
�e��i� �L �e��j�	 i � j and e� �L e��

�e��i� �
R �e��j�	 i � j and e� �

R e��

Proposition ������	 The category BSl is cartesian� The terminal object is � �
��� �� �� ���

We now relate the categories BSl and BS through an adjunction that corresponds
to the fundamental decomposition E � E� � ��E� � E�
 We de	ne an �inclusion 
functor �� BSl � BS as follows
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De�nition ������� We set

� �E� � E � ����x� � fe� j � e � x �e� e�� � �g�

Proposition ������� The data of de
nition �	���	� de
ne a functor from BSl to BS�

Proof hint
 To check that� ��� is vmonotonic� we use a technique similar to the one
used in the proof of proposition ��
�
�� �application is a special case of composition�
 �

The following connective � allows us to go the other way around� from BS to BSl


De�nition ������� 
exponential � bistructures LetE be a bistructure� The bistruc�
ture �E is de
ned as follows�

the events are the 
nite states of E�
x� �� x� 	 x� �R x��

�L is vL�
�R is vR �

Proposition ������� �E is a well�de
ned bistructure�

Proof
 Obviously� vR is a partial order
 By lemma ��
�
��� vL is a partial order and
�B�� holds
 And �B�� holds a fortiori� by de	nition of ��


�B�� By the de	nition of ���E we can rephrase �B�� as

�x� �
L x� and x� �

R x��� x� � x��

Let x� vL x�� x�� and let e � x�
 Let e� � x� and e� � x� be such that e #x� e� �
L e�


Exploiting x� v x� and x� �
R x�� we get e� � x�� and e � x� then follows by lemma

��
�
��
 This completes the proof of x� vR x�
 The converse inclusion is proved
symmetrically� exploiting x� vL x� and x� v x�


�B�� We show that ��L � �R�� is antisymmetric
 Since vR and wL are both partial
orders� we can consider a sequence x� v

R x�� w
L x� � � �x

�
n�� w

L xn � x� and prove that
x� � x�� � x� � � � � � x�n�� � xn
 The proof goes through two claims


Claim �� X �
T
i�


n xi is a state


X is clearly consistent as a subset of� say� x�
 Let e � X and e� �R e
 Since
e � xi� there exists ei� � xi such that e� �

L ei�� for all i � �
 Since xi v x�i��� there

exists e�i� � x�i�� such that ei� �
L e�i� � for all i � �
 But from e� �L e�i� � e� �

L ei��� and

xi�� vR x�i�� we conclude e�i� � ei��� � therefore ei��� �L ei�
 On the other hand� from
e� �

L e��� e� �
L en� and x� � xn� we obtain e

�
� � en� 
 Since �

L is a partial order� we get
e�� � � � � � ei� � � � �� en� � hence e

�
� � X 
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Claim �� x�� v
R X 


Let e� � x��
 By lemma ��
�
��� we can 	nd e�� � x�� and e� � x� such that
e� #x��

e�� �
L e�
 We continue in this way and 	nd

e�� � x��� e� � x� such that e� #x��
e�� �

L e�� � � � �

e�n�� � x�n��� en � xn � x� such that en�� #x�n��
e�n�� �

L en �

We continue round the clock� generating en�i � xi� e�n�i � xi� � � � � ekn�i � xi
 Since xi
is 	nite� there exist k�� k� for which ek�n � ek�n � x�
 By the antisymmetry of # �in
E�� we obtain

ek�n � ek�n�� � � � �� e�k����n � � � �� ek�n�

Therefore ek�n � X � since ek�n�i � xi for all i
 Our next goal is to carry this back to
e�� and show e� � X 
 Suppose that we have proved em � X 
 We have

em � e�m�� since em� e
�
m�� � x�m�� and em �L e�m��

em�� #X e�m�� since by assumption em � X �

Hence em�� � X 
 Finally� we arrive at e� � X 


We can now prove �B��
 From x� vR x�� vR X we get x� � x�� � X 
 From
x�� w

L x� and x�� � X vR x� we get x�� � x� by remark ��
�
�� and� progressively�
x� � x�� � x� � � � � � x�n�� � xn� as desired


�B�� Let x be a 	nite state
 Let x � fe j � e� � x e # e�g
 This set is 	nite
 It follows
from lemma ��
�
�� that any y such that y �wL � vR�� x is a subset of x� from which
�B�� follows
 �

Lemma ������� Let E and E� be bistructures� A function f � D�E�� D�E �� is vR

continuous i�� for any e�� x� e� � f�x� implies e� � f�y� for some 
nite y vR x�

Proof
 If f is continuous and e� � f�x�� then �e��f�x� v
R f�x� �cf
 lemma ��
�
����

and by continuity there exists a 	nite x� such that �e��f�x� v
R f�x��� hence a fortiori

e� � f�x��
 Conversely� let fe�� � � � � eng v
R f�x�
 Then let x�� � � � � xn be 	nite and such

that ei � f�xi� for all i
 Then
S
i�


n xi is 	nite� and fe�� � � � � eng v

R f�
S
i�


n xi�
 �

Theorem ������� The operation � extends to a functor � � BS � BSl which is left
adjoint to ��

Proof
 The correspondences between states of �E � E� and the stable and order�
extensional functions are as follows�

f $� trace�f� � f�x� e�� j e� � f�x� and �y vR x and e� � f�y�� y � x�g
� $� fun����z� � fe� j � y vR z �y� e�� � �g �

We show that trace�f� is a state
 It is a set of events of �E � E� by lemma ��
�
��

Let �x�� e���� �x�� e

�
�� � trace�f� with x� �

� x�� i
e
 x� �R x�
 Let x be such that
x�� x� �

R x
 Then e��
�
� e��� since e��� e

�
� � f�x�
 Suppose moreover e�� � e��
 Then

x� � x�� by stability
 This completes the proof of consistency
 Let �x� e�� � trace�f� and
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�x�� e
�
�� �

R �x� e��
 We look for �x�� e
�
�� � trace�f� such that �x�� e

�
�� �

L �x�� e
�
��
 From

e� � f�x� we get that e� is in the � downward closure of f�x�� by v monotonicity
 Since
e�� �

R e�� e�� is in the �L downward closure of f�x�� by lemma ��
�
�� that is� e�� � f�x��
for some e�� �

L e��
 Therefore� by the de	nition of the trace� �x�� e
�
�� � trace�f� for some

x� v
R x�
 This pair 	ts� and this completes the proof of extensionality


In the other direction� the vR stability of fun��� is obvious from the de	nition
of fun and the consistency of �
 We check that fun��� is v monotonic
 Let y v z�
and let e� � fun����y�
 Let x� v

R y be such that �x�� e
�� � �
 Let x� be such that

x� vL x� vR z
 Since �x�� e
�� vL �x�� e

��� by extensionality there exists �x�� e
�
�� � �

such that �x�� e
�� vL �x�� e

�
��
 We have e� �L e��� and e�� � f�z� since e�� � f�x�� and

x� vR z
 �

The required isomorphisms relating additives and multiplicatives are as follows�

� �� �� I � The only state of � is �� which corresponds to the unique event � of I 


� ��A� B� �� ��A�" ��B�� By the de	nition of product� x is a state of E � E� i�
x� � fe � E j �e��� � xg and x� � fe � E j �e��� � xg are states of E�E� and
x � x� � x�
 This establishes a bijective correspondence x % �x�� x�� between
the events of ��A� B� and those of ��A�" ��B�


Altogether� we have constructed a ���autonomous category of bistructures


���	 Chu Spaces and Continuity

The Chu construction �see �abPC�� Bar��b�� allows to construct a ��autonomous cat�
egory out of a monoidal category with 	nite limits
 Here we present the construction
over the category of sets� which is enough for our purposes
 By imposing some order�
theoretic axioms� we arrive at the notion of casuistry
 Roughly speaking� a casuistry
is a dcpo together with a choice of an appropriate collection of Scott opens
 A linear
morphism between two casuistries is a function whose inverse image maps chosen opens
back to chosen opens
 For any continuous function f � the inverse image f���U� of a
chosen open U is open� but is not necessarily a chosen open
 An exponential construc�
tion allows to 	ll the gap between the morphisms of casuistries and the continuous
functions
 The material of this section is based on �Lam���


De�nition ������ 
Chu space Let K be a set� A Chu space over K �Chu space for
short� is a triple A � �A�� A

�� h � i� where A� and A
� are sets and h � i� is a function

from A� � A� to K� called agreement function� A morphism f �A� B of Chu spaces
is a pair �f�� f

�� of functions� where f� � A� � B� and f� � B� � A�� satisfying� for
all x � A�� 	 � B��

���� hf��x�� 	i � hx� f��	�i�

The mapping h � i can be equivalently presented as a function l � A� � �A� � K� or
a function r � A� � �A� � K�� If l is injective� we say that A is left�separated� and
symmetrically� if r is injective� we say that A is right�separated� A separated Chu space



��
 CHAPTER ��� TOWARDS LINEAR LOGIC

is a Chu space which is both left and right�separated� We write Chu for the category
of Chu spaces� and Chus for the full subcategory of separated Chu spaces�

There are two obvious forgetful functors � and � �covariant and contravariant� re�
spectively� from Chu to the category of sets�

A� � A� �f�� f
��� � f�

A� � A� �f�� f
��� � f� �

Lemma ������ The following are equivalent formulations of �����

���l� l�f��x�� � l�x� 
 f�

���r� r�f��	�� � r�	� 
 f� �

Lemma ������ Every right�separated Chu space is isomorphic to a Chu spaceA where
A� is a set of functions from A� to K� and where hx� fi � f�x�� If moreover K �
f���g� every right�separated Chu space is isomorphic to a Chu space A� where A� is
a set of subsets of A�� and where agreement is membership� Such a Chu space is called
right�strict� Left�strict separated Chu spaces are de
ned similarly�

Example ������ Every topological space �X�"� is a right�strict Chu space� It is left�
separated exactly when it is T� �cf� section ����� Moreover� the morphisms between
topological spaces viewed as Chu spaces are exactly the continuous functions �see lemma
�	������ so that topological spaces and continuous functions may be considered a full
subcategory of Chus�

Lemma ������ A morphism of right�separated Chu spaces A and B is equivalently
de
ned as a function f� � A� � B� such that

� 	 � B� �� � A� r�	� 
 f� � r����

If moreover A and B are right�strict� this condition boils down to

� 	 � B� f���	� � A��

Proof
 Let �f�� f
�� be a morphism
 Then f� satis	es the condition of the statement by

���r�
 Conversely� the injectivity of r guarantees the uniqueness of �� hence the formula
of the statement de	nes a function f� � B� � A�
 �

Lemma ������ Let A and B be Chu spaces� and suppose that A is right�separated
and that B is left�separated� Then a morphism from A to B is equivalently de
ned as
a function h � A� � B� � K whose curryings factor through lB and rA�

Proof
 Let �f�� f�� be a morphism
 Then the required h is de	ned by�

h�x� 	� � hf��x�� 	i � hx� f��	�i

and the factorisations are given by ���l� and ���r�� respectively
 Conversely� the two
factorisations determine two functions f� � A� � B� and f� � B� � A�� and ���� holds
by construction
 �
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De�nition ������ 
tensor � Chu spaces Let A and A� be two Chu spaces� Their
tensor product A"A� is de
ned as follows�

� �A"A��� � A� �A���

� �A "A��� consists of the pairs of functions �f� g�� with f � A� � A�� and g �
A�� � A�� which satisfy hx� g�x��i � hx�� f�x�i� for all x � A�� x

� � A���

� h�x� x��� �f� g�i� hx� g�x��i � hx�� f�x�i�

De�nition ������ 
linear negation � Chu spaces The linear negation of a Chu
space is de
ned as follows �where � is as in de
nition �	���	��

�A�� A
�� h � iA�

� � �A�� A�� h � i 
 ���

Proposition �����	 �� The category Chu is ��autonomous� The tensor product is
as given in de
nition �	����� the unit is I � �f�g� K� ��� and the dualising object is
� � �K� f�g� ���

�� There exists a natural bijection Chu�I�A��� A��

Proof
 For the symmetric monoidal structure� we just check that A" I �� A
 The �

component of A" I is A� � f�g� which is A� up to natural bijection
 An element of
the � component of A" I can be considered as a pair of a function f � A� � K and an
element � � A�
 Looking at the condition linking f and �� we see that it boils down
to the de	nition of f as �x�hx� �i


By a similar reasoning� we get ���
 To establish the closed structure� we rely on
proposition ��
�
�
 The dualising functor is given by de	nition ��
�
�
 The required
isomorphisms A�� �� A are actually identities
 We verify the bijections�

Chu�I� �A"B���� �� Chu�A�B��

Let f �A� B�
f � �A"B��� by the de	nition of "
f � �A"B���� by the de	nition of � �

We conclude by using ���
 To see that Chu is ��autonomous� we proceed essentially
as in proposition ��
�
��� the canonical morphism from A to �A � �� � � is the
identity modulo identi	cations similar to those used above for proving A" I �� A
 �

Lemma ������� 
slice condition The tensor product of two right�separated Chu
spaces A and A� is right�separated� and can be reformulated as follows�

� �A"A��� � A� �A���

� �A " A��� consists of the functions h � A� � A�� � K whose curryings factor
through A� and A��� that is such that� for some f and g�

#l�h� � r 
 f #l�h 
 �� � r 
 g�
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� h�x� y�� hi� h�x� y��

If moreover A and A� are right�strict� then the reformulation says that �A " A���

consists of the subsets U of A� � B� satisfying the following condition� called slice
condition�

�� x � A� fx� j �x� x�� � Ug � A��� and �� y � A�� fx j �x� x�� � Ug � A���

Proof
 By de	nition of � and by proposition ��
�
�� an element of �A " B�� can
be described as a morphism of Chu�A�B��
 The conclusion then follows from lemma
��
�
�
 �

Unlike right�separation� left separation has to be forced upon the tensor product
structure


Lemma ������� With every Chu space A we associate a left�separated Chu space Al

as follows�

� �Al�
� � A��

� �Al�� � A�� �� where � is the equivalence relation de
ned by

x� � x� 	 �� � A� hx�� �i � hx�� �i�

� h�x�� �i � hx� �i�

If moreover A is right�separated� then Al is separated� There is a symmetric construc�
tion Ar which forces right separation�

Proposition ������� The statement of proposition �	���� holds true replacing Chu
by Chus and rede
ning the tensor product as A"s B � �A"B�l� �We shall omit the
subscript in "s if no ambiguity can arise��

Proof
 The proof is by a straightforward adaptation of the proof of proposition ��
�
�

Notice that f �A� B reads as f � �A"s B

��� since �A"s B
��� � �A"B���
 �

Our last step consists in adding directed lub�s� more precisely directed unions
 Fron
now on� we assume that K � f���g� and confuse freely a function h into K with the
set it is the characteristic function of


De�nition ������� 
casuistry A casuistry is a separated Chu space A such that
both A� and A� are dcpo�s under the induced orders de
ned by

x � x� 	 l�x� � l�x��

�and symmetrically for A��� and moreover l�
W
�� �

S
l��� for any directed �� and

similarly for r� We call Cas the full subcategory of Chus whose objects are casuistries�
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Exercise ������� Given a right�strict Chu space A� we say that x � A� is empty
if �U � A� x �� U � Consider now two casuistries A and B� Show that� for any
�x� y� � �A"s B���

�x� y� �

�
f�x� y�g if neither x nor y are empty
the empty element of �A"s B�� otherwise �

Lemma ������� A topological space �X�"� viewed as a Chu space is a casuistry i�
its topology is T�� its specialisation order is a dcpo� and every open is Scott open�

Proof
 A topology is a fortiori closed under directed unions
 Thus the requirement
concerns X 
 Notice that l�

W
�� �

S
l��� reads as

�U � "
�

� � U 	 ��  � �  � U��

�

Lemma ������� All morphisms between casuistries preserve directed lub�s�

Proof
 It is enough to check l�f�
W
��� �

S
l�f����
 We have

l�f�
W
��� � fU j f�

W
�� � Ug

� fU j
W
� � f���U�g

and we conclude by exploiting that f���U� is Scott open
 �

Proposition ������� The category Cas is ��autonomous� and all the constructions
are the restrictions of the constructions on Chus� Lub�s in �A"s B�� are coordinate�
wise�

Proof
 Let A and B be casuistries
 We sketch the proof that A"s B is a casuistry

Consider a directed subset � of �A"sB�� � �A"B��
 The reason why

S
� satis	es the

slice conditions �cf
 lemma ��
�
��� is that a slice of a directed union is a directed union
of slices
 Consider now a directed subset � of �A"s B��
 Without loss of generality�
we can assume that the empty element is not in �� hence �cf
 exercise ��
�
��� that
� � A� � B�
 We claim�

l�
�
�����

�
������ �

�
l����

In the direction &� one 	rst establishes pointwise monotonicity�

�x� � x� and y� � y�� � l�x�� y�� � l�x�� y���

If �x�� y�� � U � then x� � fx j �x� y�� � Ug
 Hence

x� � fx j �x� y�� � Ug since fx j �x� y�� � Ug is open and x� � x��

We have obtained �x�� y�� � U � from which we obtain �x�� y�� � U by a similar reason�
ing� now using the slice fy j �x�� y� � Ug
 The direction � is proved similarly� making
use of the fact that the slices are Scott open by de	nition of casuistries
 �
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Proposition ������� The categories Chu� Chus� and Cas are cartesian� The ter�
minal object is �f�g� �� �with vacuous h � i�� The product in Chu is given by

�A�A��� � A� � A��
�A�A��� � A� � A�

h�x� x��� �i �

�
hx� �i if � � A�

hx�� �i if � � A�� �

In Chus� and Cas� right separation has to be forced� and the product �s �or � if no
ambiguity can arise� is given by

A�s A
� � �A�A��r�

If A and A� are right�strict� then we can reformulate their product �in Chus� and Cas�
as follows�

�A�A��� � A� � A��
�A�A��� � fU � A� j U � A�g � fA� U � j U � � A�g �

The order induced on A� � A�� is the pointwise ordering�

Proof
 We only show that � is terminal� and that the induced order on prod�
ucts is pointwise
 By the vacuity of ��� being a morphism into � amounts to be�
ing a function to �� � f�g
 Suppose that �x� x�� � �y� y��� and that x � U 
 Then
�x� x�� � U � A� � �A �A���
 Hence �y� y�� � U � A�� i
e
 y � A
 Similarly we get
x� � y�
 The converse direction is proved similarly
 �

Finally� we de	ne an adjunction between the category of casuistries and the category
of dcpo�s


Proposition ������	 Consider the two following functors �� Dcpo � Cas and � �
Cas� Dcpo� de
ned as follows�

� �D��� � �D� �S�D���� � �f� � f
��X�� X

�� h � i� � �X���� ��f� � f

where �S�D� denotes Scott topology �cf� de
nition ������� and where � in the second
line is the induced ordering �cf� de
nition �	����	�� Then �a �� Moreover� the induced
comonad � 
 �� written simply �� satis
es the isomorphisms of de
nition �	������ i�e�
casuistries together with � form a ���autonomous category� whose Kleisli category is
equivalent to the category Dcpo�

Proof
 To establish the adjunction� we have to prove that� given �D��� and �X�� X
���

�� a function f � D � X� is a Chu morphism from �D� �S�D���� to �X�� X
���� i� it is a

directed lub preserving function from �D��� to �X����
 If f is a Chu morphism� then
it preserves directed lub�s with respect to the induced orders by lemma ��
�
��
 But
�cf
 lemma �
�
�� the induced� or specialised� order of a Scott topology is the original
order� i
e
 �
 �� id 
 Hence f preserves the lub�s with respect to the order � of D
 If f
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preserves directed lub�s� then it is continuous with respect to the Scott topologies� and
a fortiori it is a Chu morphism from �D� �S�D���� to �X�� X

����� since X� � �S�X��
by proposition ��
�
��


We already observed that � 
 �� id � hence a fortiori � is surjective on objects
 As a
consequence �cf
 remark ��
�
���� the Kleisli category is equivalent to Dcpo� and thus
is cartesian closed� which in turn entails the isomorphisms ��A � B� �� ��A� " ��B��
by proposition ��
�
�
 We are left to show �� �� I 
 Recall that I � formulated as a
right�strict Chu space� is �f�g� f�� f�gg�
 We have

I� � ����� and I� is the Scott topology over f�g�

�

Remark ������� We have expressed the comonad for the stable model and for the
hypercoherence model via an adjunction of the form � a �� while we just presented a
continuous model via an adjunction of the form � a �� One should not take that too
seriously� In each situation� we have called � the obvious inclusion at hand� But both
the stable � and the continuous � are faithful functors� in particular� morphisms in
Cas can be considered as special Scott�continuous functions �those mapping �chosen�
opens to chosen opens��

A more liberal � �leading to a larger Kleisli category�� also taken from �Lam���� is
described in exercise ��
�
��


Exercise ������� Call a topological space �X�"� anti�separated if fx j �x� x� � Ug �
"� for any subset U of X �X satisfying the slice condition �cf� lemma �	������� Show
that Dcpo is a full subcategory of the category �Cas of anti�separated topological
spaces which moreover viewed as Chu spaces are casuistries� Show that Cas together
with the following de
nition of � yields a ���autonomous category whose Kleisli category
is equivalent to �Cas�

�A � the smallest anti�separated topology on A� containing A��

Hints� ��� The anti�separation condition says that the diagonal function �x��x� x� is
continuous from X �viewed as a separated Chu space� to X "X� ��� Follow the guide�
lines of remark �	������ ��� In order to prove U a �� give an inductive de
nition of
��A���
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Chapter ��

Sequentiality

This chapter is devoted to the semantics of sequentiality� At 	rst�order� the
notion of sequential function is well�understood� as summarized in theorem �����
At higher orders� the situation is not as simple� Building on theorem ��������
Ehrhard and Bucciarelli have developped a model of strongly stable functions�
which we have described in section ����� But in the strongly stable model an
explicit reference to a concept of sequentiality is lost at higher orders� Here
there is an intrinsic di�culty� there does not exist a cartesian closed category
of sequential functions �see theorem �������� Berry suggested that replacing
functions by morphisms of a more concrete nature� retaining informations on
the order in which the input is explored in order to produce a given part of the
output� could be a way to develop a theory of higher�order sequentiality� This
intuition gave birth to the model of sequential algorithms of Berry and Curien�
which is described in this chapter�

In section ��� we introduce Kahn and Plotkin�s �	liform and stable� concrete
data structures and sequential functions between concrete data structures� This
de	nition generalizes Vuillemin�s de	nition ������ A concrete data structure con�
sists of cells that can be 	lled with a value� much like a PASCAL record 	eld can
be given a value� A concrete data structure generates a cpo of states� which are
of sets of pairs �cell�value�� also called events �cf� section �
���� Cells generalize
the notion of argument position that plays a central role in Vuillemin�s de	nition
of sequential function� Kahn�Plotkin�s de	nition of sequential function is based
on cells� and reads roughly as follows� for a given input x and output cell c�� if c�

is 	lled in f�y� for some y � x� then there exists a cell c� depending on x and c�

only� such c is 	lled in any such y� In other words� it is necessary to compute the
value of c in order to 	ll c"� Such a cell c is called a sequentiality index at �x� c���
The category of sequential functions on concrete data structures is cartesian� but
not cartesian closed�

In section ��
� we de	ne sequential algorithms on concrete data structures�
They can be presented in di�erent ways� We 	rst de	ne an exponent concrete
data structure� whose states are called sequential algorithms� The notion of ab�

���
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stract algorithm provides a more intuitive presentation� An abstract algorithm
is a partial function that maps a pair of a �	nite� input state x and an output
cell c� to either an output value v� �if �c�� v�� � f�x� or to an input cell c� where c
is a sequentiality index at �x� c��� Hence sequential algorithms involve an explicit
choice of sequentiality indexes� Many functions admit more than one sequen�
tiality index for a given pair �x� c��� For example� adding two numbers requires
computing these two numbers� In the model of sequential algorithms� there exist
two addition algorithms� one which computes the 	rst argument then the second
before adding them� while the other scans its input in the converse order� We
show that sequential algorithms form a category� Due to the concrete nature of
the morphisms� it takes some time until we can recognize the structure of a cate�
gory� A third presentation of sequential algorithms as functions between domains
containing error values is given in section ���

In section ���� we present a linear decomposition of the category of sequen�
tial algorithms� We de	ne symmetric algorithms� which are pairs of sequential
functions� mapping input values to output values� and output exploration trees
to input exploration trees� respectively� It is convenient to work with sequential
data structures� which are a more symmetric reformulation of �	liform and stable�
concrete data structures� Sequential data structures and symmetric algorithms
are the objects and morphisms of a symmetric monoidal closed category called
AFFALGO� which is related to the category of seauential algorithms through
an adjunction� The category AFFALGO is also cartesian� Moreover the unit is
terminal� Due to this last property� our decomposition is actually an a�ne de�
composition �cf� remark ���
�
��� The category of symmetric algorithms is a full
subcategory of a category of games considered by Lamarche �Lam�
b�� Related
categories are studied in �Bla�
� Bla�
� AJ�
��

In section �� we investigate an extension of Pcf with a control operator
catch �cf� section ����� and show that the model of sequential algorithms is fully
abstract for this extension�

���� Sequential Functions

First we de	ne the concrete data structures �cds�s�� We give some examples
of cds�s� and de	ne the product of two cds�s� We then de	ne Kahn�Plotkin
sequential functions �KP���� which generalise the 	rst�order sequential functions
of de	nition ������ The category of cds�s and sequential functions is cartesian but
not cartesian closed�

De�nition ������ A concrete data structure �or cds� M � �C� V�E��� is given
by three sets C� V � and E of cells� of values� and of events� such that

E � C � V and 	 c � C � v � V �c� v� � E
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and a relation � between �nite parts of E and elements of C� called enabling
relation� We write simply e�� � � � � en � c for fe�� � � � � eng � c� A cell c such that
� c is called initial� Proofs of cells c are sets of events de�ned recursively as
follows If c is initial� then it has an empty proof� If �c�� v��� � � � � �cn� vn� � c� and
if p�� � � � � pn are proofs of c�� � � � � cn� then p� � f�c�� v��g � � � � pn � f�cn� vn�g is a
proof of c� A state is a subset x of E such that

�� �c� v��� �c� v�� � x 
 v� � v��


� if �c� v� � x� then x contains a proof of c �

The conditions ��� and �
� are called consistency and safety� respectively� The
set of states of a cds M� ordered by set inclusion� is a partial order denoted
by �D�M���� �or �D�M������ If D is isomorphic to D�M�� we say that M
generates D� We assume moreover that our cds�s are well�founded� stable� and
	liform� by which we mean

 Well�founded The re�exive closure of the relation �� de�ned on C by

c� �� c i� some enabling of c contains an event �c�� v�

is well founded� that is� there is no in�nite sequence fcngn�� such that
� � � cn�� �� cn �� � � � c��

 Stable For any state x and any cell c enabled in x� if X � c� X � � c� and
X�X � � x� then X � X ��

 Filiform All the enablings contain at most one event�

Remark ������ Well�foundedness allows us to reformulate the safety condition
as a local condition


�� If �c� v� � x� then x contains an enabling fe�� � � � � eng of c�

Remark ������ Almost all the constructions of sections �	�� and �	�
 go through
for well�founded and stable cds�s that are not necessarily well�founded� But it sim�
pli�es notation to work with �liform cds�s� In particular� in a �liform cds� a proof
of a cell boils down to a sequence �c�� v��� � � � � �cn� vn� such that �ci� vi� � ci�� for
all i� Filiform cds�s are in any case enough for our purposes� We shall make it
explicit when �stable�� or ��liform� are essential�

De�nition ������ Let x be a set of events of a cds� A cell c is called

	lled �with v� in x i� �c� v� � x
enabled in x i� x contains an enabling of c
accessible from x i� it is enabled� but not �lled in x �
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We denote by F �x�� E�x�� and A�x� the sets of cells which are �lled� enabled�
and accessible in or from x ��F�� �E� and �A� as �Filled�� �Enabled� and �Ac�
cessible��� respectively� We write

x �c y if c � A�x�� c � F �y� and x � y
x �c y if x �c y and x � y �cf� de�nition �
����� �

Proposition ������ �� Let M be a cds� The partial order �D�M���� is a Scott
domain whose compact elements are the �nite states� Upper�bounded lub�s are set
unions�


� If M is stable� then �D�M���� is a dI�domain� For any upper�bounded set X
of states of M� the set intersection

T
X is a state of M� and hence is the glb of

X in D�M��

Proof� We only check the last part of the statement� Let z be an upper bound
of X� and c � F �

T
X�� By stability� c has the same proof in all the elements of

X� namely the proof of c in z� �

Example ������ �� Flat cpo�s� The �at cpo X� is generated by the following
cds� which we denote by X� to avoid useless in�ation of notation

X� � �f�g�X� f�g �X� f��g��


� The following cds LAMBDA � �C� V�E��� generates the �possibly in�nite�
terms of the untyped ��calculus with constants� including # �cf� de�nition 
�����
�the typed case is similar�

C � f�� �� 
g� V � f�g � fx� �x j x � Varg � Cons E � C � V
� � �u� �x� � u� �u� �� � u�� u


where Var is the set of variables and Cons is the set of constants� For example�
the term t � ��x�y�x is represented by f��� ��� ��� �x��� ���� y�� �
� x�g� Here cells
are occurrences� cf� de�nition 
���	�

Products of cds�s are obtained by putting the component structures side by
side� and by renaming the cells in each cds to avoid confusion�

De�nition ����� LetM andM� be two cds�s� We de�ne the productM�M� �
�C� V�E��� of M and M� by

C � fc�� j c � CMg � fc��
 j c� � CM�g
V � VM � VM�

E � f�c��� v� j �c� v� � EMg � f�c��
� v�� j �c�� v�� � EM�g
�c���� v�� � c�� � �c�� v�� � c �and similarly for M�� �

Clearly� M�M� generates D�M� �D�M�� �the ordered set product��
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De�nition ������ �sequential function �Kahn
Plotkin�� LetM and M� be
two cds�s� A continuous function f � D�M� � D�M�� is called sequential at x if
for any c� � A�f�x�� one of the following properties hold

��� 	 y � x c� �� F �f�y��
�
� � c � A�x� 	 y � x �f�x� �c� f�y� 
 x �c y�

A cell c satisfying condition �
� is called a sequentiality index of f at �x� c��� The
index is called strict if ��� does not hold� If ��� holds� then any cell c in A�x�
is a �vacuous� sequentiality index� The function f is called sequential from M
to M� if it is sequential at all points� We denote by M �seq M

� the set of these
functions� A sequential function is called strongly sequential if� for any cell c�

and any state x where it has a strict index� this index is unique�

Examples of sequential functions are given in lemma ����� and in exercises
�����
� ������ and 
��� The concrete data structures and the sequential
functions form a cartesian category�

Lemma �����	 �� The identity functions� the �rst and second projection func�
tions� and the constant functions are strongly sequential� the composition and the
pairing of two sequential functions is sequential�


� If M and M� are cds�s and f � D�M� � D�M�� is an order�isomorphism�
then f is sequential�

The sequential functions are stable� but not conversely� The counter�example
given in the proof of the next proposition is due to Kleene and Berry� indepen�
dently�

Proposition ������� LetM andM� be two cds�s� The following properties hold�

�� Sequential functions from M to M� are stable�


� If g is sequential� if f is continuous� and if f �st g� then f is sequential� and
for any x and c� � A�f�x��� if f has a strict index at x� then c� � A�g�x��� and
any index of g at x for c� is also an index of f at x for c��

�� There exist stable functions that are not sequential�

Proof� ��� If x � y and g�x � y� � g�x� � g�y�� then g�x � y� �c� g�x� � g�y��
for some c�� Let c be a sequentiality index at �x � y� c��� Then x � y �c x and
x � y �c y� Let v and w be such that �c� v� � x and �c� w� � y� By proposition
������ x � y implies v � w� which in turn implies c � F �x� y� by stability� This
contradicts c � A�x � y�� Hence g is stable�

�
� Let f be such that f �st g� and let c� � A�f�x��� If c� � F �g�x��� then
c� � A�f�y�� for any y � x� since F �f�x�� � F �f�y�� � F �g�x��� If c� � A�g�x���
x � y and f�x� �c� f�y�� then a fortiori g�x� �c� g�y�� and x �c y� where c is a
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�strict� index of g at �x� c��� Hence f is sequential� and c is a strict index of f at
�x� c���

��� Let BK be the following stable function from �B��� to O�

BK �x� y� �

���������
� if x � tt and y � �
� if x � � and z � tt
� if y � tt and z � �
� otherwise �

One checks easily that BK has no index at � for �� �

Exercise ������� Show that the restriction of any stable function to a principal ideal
� x is sequential�

Exercise ������� Let M and M� be two cds�s and let ��� �� be a stable injection�
projection pair from D�M� to D�M�� �cf� de
nition �������� Show that � and � are
strongly sequential�

Exercise ������� �� We say that a cds M � �C� V�E�'� is included in a cds M� �
�C�� V �� E��'�� �and we write M �M�� if

C � C� V � V � E � E� '�'� �

Show that �id � �x��x� �E� is a stable injection�projection pair from D�M� to D�M���

�� Conversely� givenD�D�� each generated by some cds� and a stable injection�projection
pair ��� �� from D to D�� show that there exist two cds�s M and M� such that

D �� D�M� D� �� D�M�� M �M� �

Exercise ������� De
ne a cds B�OHM of B�ohm trees� and show that theorem ����	
reads as� BT is sequential from LAMBDA to B�OHM�

The following exercise justi	es the terminology of stable cds�

Exercise ������� Let M be a cds� ��� Show that the functions c � D�M� � D�O�
de
ned by c�x� � � i� c � F �x� are linear �cf� de
nition �	������ ��� Show that M is
stable i� the functions c are stable� �	� Show that if M is stable and 
liform� then it
is sequential� by which we mean that the functions c are sequential�

We now show that the category of cds�s and sequential functions is not carte�
sian closed�

Theorem ������� The category SEQ of cds�s and sequential functions is not
cartesian closed�
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Proof� The following simple proof is due to Ehrhard �Ehr���� �The original
proof �Cur��� was similar to the proof of proposition ��
����� First we observe
that if a category C has enough points� �cf� de	nition enough�points�CCC��
then the products� projections and pairings are the set�theoretical ones� Also�
we can take C�A�B� as the underlying set of the exponent A � B� and the
application and currying are the set�theoretical ones �due to the bijection between
C��� A � B� and C�A�B��� We assume that SEQ is cartesian closed� The proof
by contradiction goes through successive claims�

�� For any M and M�� the function �y�� � M �M� is the minimum of D�M �
M��� To establish �y�� � f �f 	xed and arbitrary�� consider g � O �D�M� �
D�M��� de	ned by�

g�x� y� �

�
� if x � �
f�y� if x �� � �

The function g is sequential� and therefore is a morphism of Seq� Hence we can
consider ��g�� which is a fortiori monotonic�

�y�� � ��g���� � ��g���� � f�


� For any M� there exists an �initial� cell c in M � O such that

	 f � D�M � O� �f �� �y�� 
 c � F �f���

Indeed� the set�theoretical application� being the evaluation morphism� is sequen�
tial� It is non�strict in its second argument �ev �f��� � f��� �� � for� say� any
constant function di�erent from �y���� Hence ev has a sequentiality index of the
form c�� at ������� ��� Let then f � D�M � O� be such that f �� �y��� i�e��
� � F �ev�f� z�� � F �f�z�� for some z� By sequentiality we get c � F �f��

�� Finally� consider the following form h of the conditional function fromO��B�

to O�

h��x� y�� z� �

�����
� if z � �
x if z � tt
y if z � � �

Then we have

��h������ � �z�� ��h������ �� �z�� ��h������ �� �z��

from which we derive�

c �� F ���h������� by claim �
c � F ���h������� and c � F ���h������� by claim 
 �

But this contradicts the sequentiality of ��h�� �



��� CHAPTER ��� SEQUENTIALITY

���� Sequential Algorithms

A sequential function having at a given point more than one sequentiality index
may be computed in di�erent ways according to the order in which these indices
are explored� For example the addition function on �� � �� has ��� and ��
 as
sequentiality indices at �� The left addition computes ���� then ��
� whereas the
right addition does the same computations in the inverse order� The sequential
algorithms formalise these ideas� For all cds�s M and M�� we de	ne an exponent
cds M � M�� whose states are called the sequential algorithms from M to M��
We give an abstract characterisation of a sequential algorithm by a function
describing both its input�output behaviour and its computation strategy� The
characterisation serves to de	ne the composition of sequential algorithms�

De�nition ������ �exponent cds� If M and M� are two cds�s� the cds M �
M� is de�ned as follows

 If x is a �nite state of M� and if c� is a cell of M�� then xc� is a cell of
M � M��

 The values and the events are of two types� called �valof� and �output��
respectively

� If c is a cell ofM� then valof c is a value ofM �M�� and �xc�� valof c�
is an event of M �M� i� c is accessible from x�

� if v� is a value of M�� then output v� is a value of M � M�� and
�xc�� output v�� is an event of M �M� i� �c�� v�� is an event of M��

 The enablings are also of two types

�yc�� valof c� � xc� i� y �c x ��valof��
�x�c��� output v

�
�� � xc� i� x � x� and �c��� v

�
�� � c� ��output�� �

A state of M � M� is called a sequential algorithm� or simply an algorithm� If
a and x are states of M � M� and M� respectively� we write

a�x � f�c�� v�� j � y � x �yc�� output v�� � ag�

The function �x��a�x� is called the input�output function computed by a�

Example ������ �� The left addition algorithm ADD l � �� ��� � �� consists
of the following events

���� valof ����
�f����� i�g�� valof ��
� �i � ��
�f����� i�� ���
� j�g�� output i � j� �i� j � �� �
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ORsl � ���� valof ����
�f����� i�g�� valof ��
� �i � B�
�f����� i�� ���
� j�g�� output OR�i� j�� �i� j � B�

ORsr � ���� valof ��
�
�f���
� i�g�� valof ���� �i � B�
�f���
� i�� ����� j�g�� output OR�j� i�� �i� j � B�

ORl � ���� valof ����
�f����� tt�g�� output tt�
�f������ �g�� valof ��
�
�f������ �� ���
� j�g�� output j� �j � B�

ORr � ���� valof ��
�
�f���
� tt�g�� output tt�
�f���
�� �g�� valof ����
�f���
�� �� ����� j�g�� output j� �j � B�

Figure ���� The four disjunction algorithms

The right addition algorithm ADD r is de�ned similarly�


� There are four di�erent disjunction algorithms from B� � B� to B�� The
two algorithms �ORsl and ORsr� compute the disjunction function that is strict
in both its arguments� They are similar to ADD l and ADD r� The two algorithms
ORl and ORr compute the left and right addition functions that are strict in
one of their arguments only� respectively� The four algorithms are described in
�gure �	��� In this �gure� OR is the usual interpretation of disjunction over
B � ftt �� g�

Lemma ������ Let M and M� be two cds�s� If M� is well founded ��liform��
then M � M� is well founded ��liform��

Proof� We observe that if xc� �� yd�� then x � y �with y 	nite� or c� �� d� �

The stability condition is essential to ensure that �x��a�x� is a function from
D�M� to D�M��� The following example shows that this is not true in general�
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Let

M � �fcg� fvg� f�c� v�g���
with � c

M� � �fc��� c
�
�� c

�
�g� f�� 
g� f�c�i� j� j � � i � � and � � j � 
g���

with � c�� � c�� �c��� �� � c�� �c��� �� � c��

where M� is not stable� since c�� has two enablings in f�c��� ��� �c��� ��g� We choose
a and x as follows�

a � f��c��� output ��� ��c��� valof c�� �f�c� v�gc��� output ���

��c��� output ��� �f�c� v�gc��� output 
�g

x � fc� vg �

Then a and x are states of M � M� and M� respectively� but a�x is not a
state of M�� since it contains both �c��� �� and �c��� 
��

The following is a key technical proposition�

Proposition ������ Let M and M� be cds�s� and let a be a state of M � M��
The following properties hold

�� If �xc�� u�� �zc�� w� � a and x � z� then x � z or z � x� if x � z� there exists a
chain

x � y� �c� y� � � � yn�� �cn�� yn � z

such that 	 i � n �yic�� valof ci� � a� If u and w are of type �output�� then x � z�


� The set a�x is a state of M�� for all x � D�M��

�� For all xc� � F �a�� xc� has only one enabling in a� hence M � M� is stable�

	� The function �x��a�x� is stable�

Proof� We prove ���� �
� and ��� together� by induction on c�� At each induction
step we prove ���� �
�� and ���� where �
�� is the following property�


�� The set �a�x�c� � f�d�� v�� j � y � x �yd�� output v�� � a and d� ��� c�g is a
state� for all x � D�M��

Property �
� is indeed a consequence of ��� and �
��� by �
��� the set a�x is safe�
and� by ���� it is consistent�

�
�� Let x be a state of M� and let �d�� v�� � �a�x�c�� Then� by de	nition�
� y � x yd� � F �a�� By analyzing a proof of yd� in a� we check easily that d� is
enabled in �a�x�c�� Suppose �d�� v���� �d

�� v��� � �a�x�c� � Then

� y�� y� � x �y�d
�� output v���� �y�d

�� output v��� � a

whence we derive y� � y� by induction hypothesis ���� and v�� � v�� by consistency
of a� Hence �a�x�c� is a state�
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��� We 	rst remark that the last assertion of ��� follows from the others� since if
x �� z� then the existence of a chain between x and y as described in the statement
entails that u or w is of type �valof�� Let s and t be two proofs of xc� and zc� in
a� respectively� here is the detail of s until the 	rst enabling of type �output� is
met�

�xc�� u�� �xk��c
�� valof ck���� � � � � �x�c

�� valof c��� �x�c
�� u��� �x�c

��� output v����

The following properties hold� by de	nition of the enablings of M � M��

 If k � �� then u� � u�

If k � �� then � c� u� � valof c�� and 	 i � k xi �ci xi�� �we write x � xk��

 �c��� v��� � c��

Similar properties hold in t� replacing x� x�� � � � � xk� x
�� u�� c�� � � � � ck��� c

��� v�� by

z� z�� � � � � zm� w�� d�� � � � � dm��� c
��� v���

First we prove that x� � z�� Let y be such that x� z � y� The set �a�y�c�� which
is a state by induction hypothesis �
��� contains �c��� v��� and �c��� v���� which are
two enablings of c�� We have�

c�� � c�� �since M� is stable��
x� � z� �by the induction hypothesis �����

Property ��� clearly holds if m � � or k � �� Hence we may suppose k�m �� �
and k � m �by symmetry�� We show by induction on i that xi � zi if i � k�
Using the induction hypothesis we may rewrite xi�� �ci�� xi as zi�� �di�� xi
�note that ci�� � di�� by consistency of a�� As we also have zi�� �di�� zi and
xi � zi� we derive xi � zi� If k � m� the chain x � zk �dk zk�� � � � � �dm�� z has
the property stated in ���� If k � m� then x � z�

��� We exploit the proof of ���� if we start with the assumption that x � z� then
the part of the proof s which we have displayed coincides with the corresponding
part of the proof t� in particular� xc� has the same enabling in both proofs� Hence
xc� has only one enabling in a�

�� Finally� we prove that �x��a�x� is stable� We 	rst check continuity� Let X be
directed� let �c�� v�� � a��

W
X�� and let x �

W
X be such that �xc�� output v�� � a�

Since x is 	nite� � y � X x � y� Hence �c�� v�� � a�y� As for the stability� let
x � y� and let c� � F �a�x� � F �a�y�� Then� by ��� there exists z � x� y and v�

such that �zc�� output v�� � a� hence �c�� v�� � a��x � y�� �

Now we present an abstract characterisation of sequential algorithms� Intu�
itively� if a sequential algorithm a contains �xc�� u�� an information on the compu�
tation of a at x is given� if u � output v�� then a�x contains �c�� v��� if u � valof c�
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then the contents of c must be computed in order to 	ll c� �we show in proposition
��
�� that the function computed by a is indeed sequential�� These informations
remain true at y � x� supposing in the second case that c is still not 	lled in y�
As yc� is not 	lled in a� the �indications� given by a are not limited to cells 	lled
in a� For example ADD l �indicates� valof ��� at f���
� ��g as well as at �� The
following de	nition and proposition formalise these ideas�

De�nition ������ �abstract algorithm� Let M and M� be cds�s� An abstract
algorithm from M to M� is a partial function f � CM�M� � VM�M� satisfying
the following axioms� for any states x and cells c�

�A�� If f�xc�� � u� then �xc�� u� � EM�M��

�A
� If f�xc�� � u� x � y and �yc�� u� � EM�M�� then f�yc�� � u�

�A�� Let f �y � f�c�� v�� j f�yc�� � output v�g� Then

f�yc��  
 �c� � E�f �y� and �z � y and c� � E�f �z� 
 f�zc��  ���

We write f�xc�� � � if f is not de�ned at xc�� When writing f�xc�� � u� we
suppose u �� �� An easy consequence of �A�� is that f �z is a state� We denote by
�A�M�M����� the set of abstract algorithms from M to M� ordered as follows

f � f � i� �f�xc�� � u 
 f ��xc�� � u��

It will be convenient �when de	ning the composition of algorithms� to extend
an abstract algorithm f to a partial function from D�M� � C� to VM�M� � We
keep the same name f for the extended function�

f�xc�� � u i�

�
f�yc�� � u for some 	nite y � x and
either �u � valof c and c � A�x��� or u � output v� �

Exercise ������ Show that an abstract algorithm between two cds�s M and M� may
be axiomatised as a partial function from D�M� � C� to VM�M� which satis
es the
following axiom in addition to the axioms �A��� �A��� and �A	��

�A�� If f�xc�� � u� then f�yc�� � u� for some 
nite y � x�

The abstract algorithms may be viewed as pairs ��x��f �x�� i� where i� which
may be called a computation strategy� is the function de	ned by �restricting� f
to its control aspects� that is� i�xc�� � c i� f�xc�� � valof c�

Exercise ������ Show that an abstract algorithm from a cds M to a cds M� may
equivalently be de
ned as a pair of a sequential function f from M to M�� and of a
computation strategy i for it� which is a partial function i � D�M� � C� � C that
satis
es the following axioms�
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�� If i�xc�� � c� then c � A�x� and c� � A�f�x���
�� If i�xc�� � c� then i�yc�� � c for some 
nite y � x�

	� If c� � A�f�x�� and c� � F �f�y�� for some y � x� then i�xc�� is de
ned and
is a sequentiality index for f at �x� c���

�� If i�xc�� � c� if x � y and c � A�y�� then i�yc�� � c�
�� If i�xc�� � c and y � x is such that c� � A�f�y��� then i�yc�� is de
ned�

The next theorem relates the abstract algorithms with the states of the ex�
ponent cds�s�

Proposition ������ Let M and M� be cds�s� Let a be a state of M � M�� Let
a� � CM�M� � VM�M� be given by

a��xc�� � u i� � y � x �yc�� u� � a and �xc�� u� � EM�M��

Let f � A�M�M��� We set

f� � f�xc�� u� j f�xc�� � u and �y � x 
 f�yc�� �� u�g�

The following properties hold

�� For all a � D�M � M��� a� is an abstract algorithm from M to M��


� For all f � A�M�M��� f� is a state of M � M��

�� � �� is an isomorphism from �D�M � M����� onto �A�M�M������ and has
� �� as inverse� if f� f � � A�M�M�� and f � f �� then ��x��f �x�� �st ��x��f ��x���

Proof� ��� Let a be a state of M �M�� Clearly� a� satis	es �A�� and �A
� by
de	nition� Suppose a��yc�� � u� then �x � y �xc�� u� � a� Let s be a proof of xc�

in a� with the notation of the proof of proposition ��
�� Since �c��� v��� � a�x�
we have c� � E�a�x�� Clearly� a�x � a��x � a��y �if �xc�� output v�� is an event
of M � M�� so is �yc�� output v���� hence c� � E�a��y�� Suppose z � y and
c� � E�a��z�� As a��z � a�z � a�x� c� has the same enabling in a�x and a�z� So�
by de	nition of a�z�

� z� � z �z�c
��� output v��� � a�

By proposition ��
�� we get z� � x�� whence we derive x� � z� Let i be
maximum such that xi � z� We prove a��zc�� � a��xic��� hence a fortiori
a��zc�� �� � �we have a��xic

�� �� �� since xic
� � F �a��� The case where i � k

and u is of type �output� is trivial� since then� as above� �zc�� u� is an event
of M � M�� We prove that �zc�� valof ci� is an event� that is� ci � A�z� �if
i � k and u is of type �valof� we write u � valof ck�� First� ci � E�z�� since
ci � A�xi� � E�xi� � E�z�� Suppose ci � F �z�� We distinguish two cases�

 i � k� Then xi�� � z� since xi �ci xi�� and xi�� � z� This contradicts the
maximality of i�
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 i � k� Then a��yc�� � valof ck implies �yc�� valof ck� � EM�M� � which
implies ck � A�y�� This contradicts ck � F �z� � F �y��

�
� Let f be an abstract algorithm from M to M�� We prove that f� is a state
of M � M�� It is consistent by de	nition� since �xc�� u� � f� 
 f�xc�� � u� We
prove by induction on c� that

f�nc� � f�yd�� w� � f� j d� ��� c�g

is safe� which will imply the safety of f�� If �xc�� u� � f�� then by �A�� f �x
contains an enabling �c��� v��� of c�� Let x� � x be minimal such that f�x�c��� �
output v��� that is� �x�c��� output v��� � f�� We construct a chain

x� �c� x� � � � �xk�� �ck�� xk � x

as follows� Suppose that we have built the chain up to i� with xi � x� Then we
de	ne ci by f�xic�� � valof ci �f�xic�� �� � by �A��� and is not of type �output�
by minimality of x�� Then xi �ci x� since f�xc�� � f�xic

�� would again contradict
the minimality of x� we choose xi�� characterised by xi �ci xi�� � x� We show
by induction�

	 i � k �xic
�� valof ci� � f�

which together with the induction hypothesis will establish the safety of f�nc��
Suppose that there exists z � xi such that f�zc�� � valof ci� By �A�� again� f�

would contain �z�c��� output v��� such that �c��� v��� � c�� By induction� we may
suppose that a � f�nc���f�nc�� is safe� it is actually a state �consistency follows
from a � f��� Hence a�x is a state by proposition ��
�� whence we derive
c�� � c�� by stability� and� x� � z� by proposition ��
�� which implies x� � z�
Let j be maximum � i such that xj � z� Then j � i� hence f�zc�� � valof cj
by maximality of j� contradicting f�zc�� � f�xic��� since cj � F �xi�� This shows
�xic�� valof ci� � f�� and ends the proof of �
��

��� Let a� a� � M � M�� Clearly �a��� � a� Reciprocally� if �xc�� u�� �zc�� w� � a
and x � z� we have u �� w� since u is valof c for some c � F �z�� It follows easily
that a � �a���� If a � a�� then a� � a�� is an immediate consequence of the
de	nition of � ��� Let f� f � � A�M�M��� One checks easily f � �f��� by �A���
and �f��� � f by �A
�� Let f � f �� We 	rst prove the last assertion of ���� If
x� y � D�M� and y � x� we have to prove �f �x�� �f ��y� � f �y� that is� for any c��

�f�xc�� � output v� and f ��yc�� � output v�� 
 f�yc�� � output v��

We proceed by induction on c�� Since f � f �� we only have to prove f�yc�� �� ��
and hence to show c� � E�f �y�� As f �x � f ��x and f ��y � f ��x� c� has the same
enabling �c��� v��� in f �x and f ��y � Hence f�xc��� � f ��yc��� � output v��� whence
we derive by induction f�yc��� � output v��� proving c� � E�f �y��
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Finally� we prove f� � f ��� Suppose �xc�� u� � f�� Then f ��xc�� � f�xc�� �
u� Suppose f ��yc�� � u for some y � x� Then c� � E�f ��y�� As we also have
c� � E�f �x�� we obtain c� � E�f �y� by what has just been proved� Hence
f�yc�� �� �� implying f�yc�� � f ��yc�� � u and contradicting the minimality
of x� �

We now relate abstract algorithms to sequential functions�

Proposition �����	 Let M and M� be cds�s� If a� a� � D�M � M��� we write

a �ext a
� i� �	x � D�M� a�x � a��x��

The partial orders �D�M � M��� �ext �� � �ext � and �M �seq M���st� are
isomorphic� in particular� for any a � D�M �M��� �x��a�x� is sequential�

Proof� First we prove that if a � D�M � M��� then �x��a�x� is sequential�
If c� � A�a�x� and if there exist y � x and v� such that �c�� v�� � a�y� then
a��yc�� � output v�� and by �A�� a��xc�� � u �� �� Speci	cally� u has the form
valof c� since c� � A�a�x�� and c � F �y� by �A
�� and c � A�x� by �A��� Hence
�x��a�x� is sequential and has c as index at x for c�� By proposition ��
���

	 a � a� � D�M � M�� ��x��a�x� � a��x� �st ��x��a��x� � a���x��

So we only have to prove� for all g� g� � M �seq M
� such that g �st g

��

� a� a� � D�M � M�� �g � ��x��a�x��� g� � ��x��a��x�� and a � a���

We build a and a� progressively� For any cell c�� we de	ne the sets �Xn
g��c��n�� and

a function Vg��c� as follows� by induction on n�

 X�
g��c� � fx � me�g�� c�� j � z � x c� � F �g��z��g

where me�g�� c�� is the set of the minimal x�s such that c� � E�g��x�� �the
elements of X�

g��c� are 	nitely many and incompatible��

 For all x � Xn
g��c� �

� Vg� �c��x� � valof c if c� � A�g��x�� and if c is an arbitrarily chosen
sequentiality index of g� at �x� c���

� Vg� �c��x� � output v� if �c�� v�� � g��x��

 Xn��
g��c� is the smallest set such that� for all x � Xn

g��c�� y � D�M��

�Vg��c��x� � valof c� x �c y� �� z � y c� � F �g��z���� 
 y � Xn��
g��c� �



�� CHAPTER ��� SEQUENTIALITY

The de	nition of Vg��c� is unambiguous� since Xn
g��c� �Xm

g��c� � � �n �� m� follows
easily from

	x� x� � X�
g��c� x �� x� 
 x �� x��

So Vg� �c� is well de	ned� Let Xg��c� �
S
fXn

g��c� j n � �g� We de	ne likewise Xg�c��
Vg�c� such that Xg��c� contains Xg�c� and Vg�c� is the restriction of Vg� �c� to Xg�c� �this
may be done by proposition �������� Let

a� �
�
f�xc�� Vg��c��x�� j x � Xg��c�� c

� � C �g�

We de	ne likewise a� By construction� a and a� are consistent� and a � a�� We
check that a� is safe� This is clear by construction for an event �xc�� Vg��c��x��
where x � Xn

g��c� and n � �� If n � �� then by construction x � me�g�� c��� hence
x is minimal such that d� � F �g��x��� for some d� �� c�� Then safety follows
from the fact that by construction Xg��c� contains all minimal points z such that
d� � g��z�� for all d� � C �� Finally� it is evident by construction that �c�� v�� � g��x�
i� �c�� v�� � a��x� The same arguments can be applied to a� �

Exercise ������� Let M and M� be cds�s� Show that a function f � D�M�� D�M��
is sequential if and only if it is continuous and sequential at any compact point� Hint�
Use proposition �������

Exercise ������� Let M and M� be cds�s� and let f be a strongly sequential function�
Show that there exists a minimum algorithm a such that f � �x��a�x��

Exercise ������� Let M and M� be two �well�founded and stable� sequential cds�s�
Show that M�M� and M�M� are sequential �cf� exercise ���������

We next de	ne the composition of sequential algorithms� using their abstract
characterisation� We 	rst discuss the composition of sequential algorithms infor�
mally� If a and a� are algorithms from M to M� and from M� to M��� respectively�
then the input�output function of a� � a should be the composition of the input�
output functions of a and a�� that is� for any state x of M�

�a� � a��x � a���a�x��

How can this equation help in the characterisation of the events of a� � a� By
de	nition of the operator � we obtain

� z � x �zc��� output v��� � a� � a � � z� � a�x �z�c��� output v��� � a��

This equivalence allows us to describe events that are �almost� in a� � a� Using
the notation of proposition ��
��� we get

�a� � a���xc��� � output v�� i� a����a�x�c��� � output v���
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The equation does not characterise events belonging to a� � a� but events where
�a��a�� is de	ned� Hence it seems natural to de	ne the composition of sequential
algorithms using their abstract characterisation�

What about the computation strategy of a� � a� The de	nition of sequential
functions suggests an output�directed computation� �in order to compute c�� the
index c has to be computed�� Hence it is natural to compose these strategies� if
a� indicates valof c� at a�x for c��� and if a indicates valof c at x for c�� then a� � a
indicates valof c at x for c��� which is summarised by the following equivalence�

�a� � a���xc��� � valof c i�

�
a����a�x�c��� � valof c� and
a��xc�� � valof c �

The next proposition shows that these equivalences indeed de	ne an abstract
algorithm�

Proposition ������� LetM� M� and M�� be cds�s� and let a and a� be two states
of M � M� and M� � M��� respectively� The function f � CM�M�� � VM�M�� �
de�ned as follows� is an abstract algorithm from M to M��

f�xc��� �

���������
output v�� if a����a�x�c��� � output v��

valof c if

�
a����a�x�c��� � valof c� and
a��xc�� � valof c �

Proof� �A��� �A
� If f�xc��� � output v�� and x � y� then �xc��� output v��� is an
event� since it follows from the de	nition of a�� that �c��� v��� � EM�� � and

a�x � a�y 
 a����a�y�c��� � output v�� � f�yc����

If f�xc��� � valof c� x � y and c � A�y�� then a����a�x�c��� � valof c� and
a��xc�� � valof c� hence c � A�x�� since �xc�� valof c� is an event� Also� c � A�y�
implies a��yc�� � valof c� In particular� c� �� F �a�y�� hence c� � A�a�y� by �A��
applied to a�� Then we obtain a����a�y�c��� � valof c� by �A
� applied to a���
which yields f�yc��� � valof c�

�A�� If f�yc��� �� �� then a����a�y�c��� �� �� Hence c�� � E�f �y�� since it is
easily checked that f �y � a���a�y� � Moreover if z � y and c�� � E�f �z�� then
a�z � a�y and c�� � E�a���a�z��� whence we derive a����a�z�c��� �� � by �A��
applied to a��� If a����a�z�c��� � output v��� then f�zc��� � output v�� by de	nition�
If a����a�z�c��� � valof c�� then c� � A�a�z� � E�a�z�� We show a��yc�� �� ��
There are two cases�

�� c� � F �a�y�� Then a��yc�� �� � by de	nition of a�y�


� c� � A�a�y�� Then a����a�y�c��� � valof c� by �A
� applied to a��� which
forces a��yc�� � valof c� for some c� since f�yc�� �� ��
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In both cases� a��yc�� �� �� hence a��zc�� �� � by �A�� applied to a�� moreover
a��zc�� is of type �valof�� since the contrary would imply c� � F �a�z�� Hence
f�zc��� �� �� �

We remark that the de	nition of f in proposition ��
��� makes sense� since we
have seen that an abstract algorithm can be extended to �a subset of� D�M��C��

Theorem ������� Cds�s and sequential algorithms form a category called ALGO�
Let a� a�� and f be as in proposition �	�
���� We de�ne the composition a� � a of
a� and a by the following equation

a� � a � f��

For any cds M there exists a unique algorithm id such that �x��id �x� is the
identity function� It is characterised by

id��xc� � output v i� �c� v� � x
id��xc� � valof c i� c � A�x� �

In particular� the input�output function of a� � a is the composition of the
input�output functions of a and a��

���� Algorithms as Strategies

We 	rst de	ne sequential data structures� which enhance the implicit symmetry
between events and enablings in a 	liform cds� Then we de	ne the a�ne expo�
nent S � S� of two sequential data structures S and S�� The states of S � S�

are called a�ne algorithms� Like sequential algorithms� a�ne algorithms can
be equivalently presented abstractly� The abstract a�ne algorithms are called
symmetric algorithms� A symmetric algorithm is a pair �f� g� of a function f
from input strategies to output strategies� and of a partial function g from out�
put counter�strategies to input counter�strategies� The composition of two a�ne
algorithms can be de	ned either abstractly �proposition ������ or concretely
�proposition �������� The concrete description serves to establish the monoidal
closed structure of the category of a�ne algorithms� while the abstract charac�
terisation serves to de	ne a functor cds from the category of sequential data
structures and a�ne algorithms to the category of concrete data structures and
sequential algorithms� Finally� we show that cds has a left adjoint� which together
with the a�ne exponent yields a decomposition of the exponent of ALGO�

De�nition ������ A sequential data structure �sds for short� S � �C� V� P � is
given by two sets C and V of cells and values� which are assumed disjoint� and
by a collection P of non�empty words p of the form

c�v� � � � cnvn or c�v� � � � cn��vn��cn
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where n � � and where ci � C and vi � V for all i� Thus any p � P is alternating
and starts with a cell� Moreover� it is assumed that P is closed under non�empty
pre�xes� We call the elements of P positions of S� We call move any element of
M � C�V � We use m to denote a move� A position ending with a value is called
a response� and a position ending with a cell is called a query� We use p �or s�
or t�� q� and r� to range over positions� queries� and responses� respectively� We
denote by Q and R the sets of queries and responses� respectively�

A strategy of S is a subset x of R that is closed under response pre�xes and
binary non�empty glb�s

r�� r� � x� r� � r� �� � 
 r� � r� � x

where � denotes the empty word� A counter�strategy is a non�empty subset of Q
that is closed under query pre�xes and under binary glb�s� We use x� y� � � � and
�� 
� � � � to range over strategies and counter�strategies� respectively�

Both sets of strategies and of counter�strategies are ordered by inclusion� They
are denoted by D�S� and D��S�� respectively� Notice that D�S� has always a
minimum element �the empty strategy� written � or ��� while D��S� has no
minimum element in general� If a partial order is isomorphic to some D�S�� it
is called an sds domain generated by S�

Among the strategies are the sets of response pre	xes of a response r� By
abuse of notation we still call r the resulting strategy� It is easy to see that those
r�s are exactly the prime elements of D�S� �cf�de	nition ��������

De�nition ������ Let x be a strategy

 If qv � x for some v� we write q � F �x� �q is �lled in x��
 If r � x and q � rc for some c� we say that q is enabled in x�
 If q is enabled but q �� F �x�� we write q � A�x� �q is accessible from x��

Likewise we de�ne r � F ���� r � A��� for a response r and a counter�strategy ��

Sds�s and �	liform� cds�s are essentially the same notion� as shown in propo�
sition ������ lemma ������ and exercise ������

Proposition ������ Let S � �C� V� P � be an sds� and let Q and R be the asso�
ciated sets of queries and responses� Let cds�S� � �Q�R�E���� with

E � f�q� qv� j qv � Pg � c if c � C � P �q� qv� � qvc if qvc � P�

Then cds�S� is a �liform cds and D�cds�S�� is isomorphic to D�S��

Proof� With a strategy x of S� we associate cds�x� � f�q� qv� j qv � xg� which
is consistent and safe by the de	nition of a strategy� More precisely� consistency
follows from the closure under glb�s� and safety follows from the closure under
pre	xes� This transformation is clearly bijective� �
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Proposition ������ If S is an sds� then D�S� is a dI�domain� whose compact
elements are the �nite strategies� D��S� enjoys the same properties �except for
the existence of a minimum element�� Upper bounded lub�s and glb�s are set�
theoretic unions and intersections�

Proof� The proof is similar to the proof of proposition ������ �The 	rst part
of the statement is a consequence of propositions ����� and ������� �

Lemma ������ Let M be a well�founded� stable� and �liform cds� For any cell
c� any two distinct proofs t� and t� of c� there exists a common pre�x s� a cell d�
and two distinct values v� and v� such that s� �d� v�� is a pre�x of t� and s� �d� v��
is a pre�x of t��

Proof� We proceed by induction on c� We observe�

t� � t� is safe by construction
t� � t� is not a state by stability
no cell is repeated along t�� nor along t� by well�foundedness �

These observations entail that �d�w�� � t� and �d�w�� � t� for some cell d ��� c
and for some distinct w� and w�� If the proofs of d in t� and t� are distinct� the
conclusion follows by applying induction to d� If the proofs are the same� then
the conclusion follows rightaway� �

Remark ������ Conversely� the property stated in lemma �	���� implies that M
is stable� hence we could have used it to de�ne the notion of stable ��liform� cds�

Exercise ������ Let M � �C� V�E�'� be a well�founded� stable� and 
liform cds�
Show that sds�M� � �C� V� P �� where

P � fc�v� � � � cnvncn�� j �c�� v��� � � � � �cn� vn� is a proof of cg �

frcv j rc � P and �c� v� � Eg �

is an sds such that D�sds�M�� and D�M� are isomorphic� Hint� use lemma ���	���

Example ������ �� Flat cpo�s� In the setting of sds�s

X� � �f�g�X� f�g � f�v j v � Xg��


� The following generates B�
� �see de�nition �	���	� for the general case�

�f���� ��
g� ftt�� g� f���� ��
g � f�����tt � ������ � ���
�tt � ���
�� g��

�� An sds generating the partial terms over a signature� say� $ � fa�� f�� g�g�
where the superscripts indicate the arities� is given as follows C � f�� �� 
g�
V � $� and P consists of the positions respecting the arities the positions ending
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with a are maximal� the positions ending with f can only be followed by �� and
the positions ending with g can be followed by � or 
� All the positions start
with � �which serves only to that purpose�� For example� the strategy representing
g�a� f�a�� is

f�g� �g�a� �g
f� �g
f�ag�

Here is a counter�strategy

f�� �f�� �f�f�� �f�g
� �g�g�

In example ����� ���� a counter�strategy can be read as an exploration tree� or a
pattern� The root is investigated 	rst� if the function symbol found at the root is
g� then its left son is investigated next� otherwise� if the function symbol found at
the root is f � then its son is investigated next� and the investigation goes further
if the symbol found at node � is either f or g�

A more geometric reading of the de	nitions of sds� strategy and counter�
strategy is the following�

 An sds is a labelled forest� where the ancestor relation alternates cells and
values� and where the roots are labelled by cells�

 A strategy is a sub�forest which is allowed to branch only at values�

 A counter�strategy � is a non�empty sub�tree �if it contained c� and c� as
positions of length �� they should contain their glb� which is �� contradicting
� � P � which is allowed to branch only at cells�

The pairs cell % value� query % response� and strategy % counter�strategy
give to sds�s a �avour of symmetry� These pairs are related to other important
dualities in programming� input % output� constructor % destructor �cf� example
����� ����� It is thus tempting to consider the counter�strategies of an sds S as
the strategies of a dual structure S� whose cells are the values of S and whose
values are the cells of S� However� the structure obtained in this way is not an
sds anymore� since positions now start with a value� We refer to �Lam�
a� for
an elaboration of a theory of sds�s with polarities� where both S and S� can live
�see also exercises ����
� and �������

We now o�er a reading of sds�s as games� An sds can be considered as a game
between two persons� the opponent and the player� The values are the player�s
moves� and the cells are the opponent�s moves� A player�s strategy consists in
having ready answers for �some of� the opponent�s moves� Counter�strategies are
opponent�s strategies� The following proposition makes the analogy more precise�

De�nition �����	 �play� Let S be an sds� x be a strategy and � be a counter�
strategy of S� one of which is �nite� We de�ne x �� called a play� as the set of
positions p which are such that all the response pre�xes of p are in x and all the
query pre�xes of p are in ��
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Proposition ������� Given x and � as in de�nition �	����� the play x � is
non�empty and totally ordered� and can be confused with its maximum element�
which is uniquely characterised as follows

x � is the unique element of x �A��� if x � is a response
x � is the unique element of � �A�x� if x � is a query �

Proof� A counter�strategy is non�empty by de	nition� and contains a �unique�
query c of length �� which is also in x � by de	nition of a play� Suppose that
p�� p� � x �� We show that p� and p� are comparable� by contradiction� Thus
suppose p� � p� � p� and p� � p� � p�� Let q� be the largest query pre	x of p��
let r� be the largest pre	x of p� which is a response or �� and let q� and r� be
de	ned similarly� We show�

p� � p� � q� � q� � r� � r��

The inequality q� � q� � p� � p� follows by the monotonicity of �� For the
other direction� we remark that by the maximality of q�� p� � p� � p� implies
p� � p� � q�� and� similarly� we deduce p� � p� � q�� which completes the proof
of p� � p� � q� � q�� The equality p� � p� � r� � r� is proved similarly� But by
de	nition of a strategy and of a counter�strategy� q� � q� is a query� and r� � r� is
either a response or �� The equalities just proven imply that p��p� is of both odd
and even length� contradiction� Thus x � is totally ordered� It has a maximum
element� since the 	niteness of x or � implies the 	niteness of x ��

To prove the rest of the statement� we 	rst observe that x�A��� � x � and
��A�x� � x �� by de	nition of x �� We next show that x�A��� and ��A�x�
have at most one element� If p�� p� � x � A���� then by the 	rst part of the
statement p� and p� are comparable� say p� � p�� But if p� � A��� and p� � p��
then p� � F ���� contradicting the assumption p� � A���� Hence p� � p�� The
proof is similar for � � A�x�� Finally� if x � viewed as a position is a response�
then x � � x� x � is enabled in �� and the maximality of x � implies that x �
is not 	lled in �� Hence x � � x �A���� i�e�� x �A��� � fx �g� �

De�nition ������� �winning� Let x and � be as in de�nition �	����� If x �
is a response� we say that x wins against �� and we denote this predicate by x���
If x � is a query� we say that � wins against x� and we write x��� thus � is the
negation of �� To stress who is the winner� we write

x � �

�
x � � when x wins
x � � when � wins �

The position x � formalises the interplay between the player with strategy
x and the opponent with strategy �� If x � is a response� then the player wins
since he made the last move� and if x � is a query� then the opponent wins�
Here is a game�theoretic reading of x �� At the beginning the opponent makes
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a move c� his strategy determines that move uniquely� Then either the player is
unable to move �x contains no position of the form cv�� or his strategy determines
a unique move� The play goes on until one of x or � does not have the provision
to answer its opponent�s move� As an example� if x and � are the strategy and
counter�strategy of example ����� ���� then x � � �g�a� and the player wins�
We show a few technical lemmas�

Lemma ������� Let S be an sds� x be a strategy and � be a counter�strategy of
S� The following properties hold

�� If x��� then �x � �����

� If x�� and x � y� then y�� and x � � � y � ��
�� If x�� and y � x� then y���

Similar implications hold with the assumptions x��� �x�� and � � 
�� and
�x�� and 
 � ��� respectively�

Proof� The properties ��� and �
� follow obviously from the characterisation of
x� � as the unique element of x�A���� Property ��� is a consequence of �
� by
contraposition� �

Lemma ������� Let S be an sds� x be a strategy and q be a query of S� The
following implications hold

�� q � F �x� 
 x�q�

� q � A�x� 
 x�q�
�� �q � F �x�� y � x� y�q� 
 q � F �y��

Similar implications hold with a counter�strategy and a response of S�

Proof� If q � F �x�� then qv � x for some v� hence qv � x �A�q�� which means
x�q� If q � A�x�� then q � q � A�x�� which means x�q� If q � F �x�� y � x� and
y�q� let q�v� be the unique element of y � A�q�� In particular� q� � q� Suppose
q� � q� then q�v� � qv � q�� since q�v� �� q� On the other hand� the glb of q�v�
and qv� cannot be a query� by de	nition of a strategy� contradiction� �

The converse of lemma ������ ��� is not true� we may have x� q � q�v� and
q � q�v�� with v� �� v��

Lemma ������� Let S � �C� V� P � be an sds� x be a strategy and let q � A�x��
The following properties hold

�� For any r � x� q � r is � or is a response� and thus� for any qv � P � x � fqvg
is a strategy�


� If q� �� q and q� � A�x�� then q� � q is a strict pre�x of q� and q and is � or a
response

Similar properties hold with a counter�strategy � and a response r such that r �
A���
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Proof� We prove only ���� Let q � r�c� We claim that q � r � r�� Suppose
q � r �� r�� Then q � r � q since q � r � q � r�c� Hence q � r� contradicting
q � A�x�� The claim in turn implies q � r � r� � r� The conclusion follows� since
by de	nition of a strategy r� � r is � or is a response� �

Lemma ������� Let S be an sds� and let x � D�S� and q � F �x�� Then
x� q � fr � x j q �� rg is a strategy�

Proof� Since fr � R j q �� rg is closed under response pre	xes� so is x� q� �

Lemma ������� If r�� r� � R and r� � r� is � or is a response� then fr � R j
r � r� or r � r�g is a strategy� and is r� � r��

Proof� fr � R j r � r� or r � r�g is obviously closed under response pre	xes�
Pick r�� r� in this set� If they are both pre	xes of� say� r�� then they are compa�
rable� hence� say� r� � r� � r� is a response� Thus we may suppose� say� r� � r��
r� �� r�� r� � r�� and r� �� r�� This entails r� � r� � r� and r� � r� � r�� and
therefore r� � r� � r� � r�� �

Exercise ������� Let S and S� be sds�s� Show that a continuous function f � D�S��
D�S�� is sequential i�� for any pair �x� ��� � K�D�S��� K�D��S��� such that f�x����

and f�z���� for some z � x� there exists � � K�D��S��� called generalised sequentiality
index �index for short� of f at �x� ���� such that x�� and for any y � x� f�y���� implies
y���

We next de	ne the a�ne exponent of two sds�s� which will serve to de	ne the
morphisms of a category of a�ne algorithms�

De�nition ������� Given sets A�B � A� for any word w � A�� we de�ne wdB
as follows

�dB� � wmdB�

�
wdB if m � AnB
�wdB�m if m � B �

De�nition ������	 �a�ne exponent � sds� Given two sds�s S � �C� V� P �
and S� � �C �� V �� P ��� we de�ne S � S� � �C ��� V ��� P ��� as follows� The sets C ��

and V �� are disjoint unions

C �� � frequest c� j c� � C �g � fis v j v � V g
V �� � foutput v� j v� � V �g � fvalof c j c � Cg �

P �� consists of the alternating positions s starting with a request c�� and which are
such that

sdS�� P �� �sdS� � or sdS� P �� and
s has no pre�x of the form s�valof c��request c���

We often omit the tags request � valof � is� output � as we have just done in the
notation sdS� sdCV �and similarly for sdS���
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We call a�ne sequential algorithms �or a�ne algorithms� from S to S� the
strategies of S � S�� The identity sequential algorithm id � D�S � S�� is de�ned
as follows

id � fcopycat�r� j r is a response of Sg

where copycat is de�ned as follows

copycat��� � �
copycat�rc� � copycat�r��request c��valof c�
copycat�qv� � copycat�q��is v��output v� �

The word copycat used in the description of the identity algorithm has been
proposed by Abramsky� and corresponds to a game�theoretic understanding� the
player always repeats the last move of the opponent�

Remark ������� The de�nition also implies that P � contains no position of the
form sv�v� Suppose it does then since �sv�v�dS� P � s contains a pre�x s�c such
that �sv�v�dS� ��s�c�dS�v� Let m be the move following s�c in sv�� Then

m �� V since �sv�v�dS� ��s�c�dS�v�
m �� C � by the de�nition of S � S� �

The constraint �no scc�� can be formulated more informally as follows� Think�
ing of valof c as a call to a subroutine� the principal routine cannot proceed further
until it receives a result v from the subroutine�

Example ������� �� It should be clear that the following is an a�ne algorithm
which computes the boolean negation function

f�request ���valof ���
�request ���valof ���is tt��output � ��
�request ���valof ���is � ��output tt�g �


� On the other hand� the left disjunction function cannot be computed by an
a�ne algorithm� Indeed� attempting to write an sds version of the algorithm ORl

of example �	�
�
 would result in

f�request ���valof �����
�request ���valof �����is tt��output tt��
�request ���valof �����is � ��valof ��
��
�request ���valof �����is � ��valof ��
��is tt ��output tt��
�request ���valof �����is � ��valof ��
��is � ��output � �g �

which is not a subset of the set of positions of �B��� � B�� because the projec�
tions on �B��� of the last two sequences of moves are not positions of �B����

�� Every constant function gives rise to an a�ne algorithm� whose responses
have the form �request c����output v

�
�� � � � �request c

�
n��output v�n��
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request c� valof c

�������������������������������������������

is v� � � �
���

is vi valof d

�������������������

���

is w output v�

�������
request c�� � � �
���
request c�m � � �

���
���
is vn � � �

Figure ��
� A generic a�ne algorithm

Remark ������� Example �	���
� suggests the di�erence between a�ne and
general sequential algorithms� Both kinds of algorithms ask successive queries
to their input� and proceed only when they get responses to these queries� An
a�ne algorithm is moreover required to ask these queries monotonically each
new query must be an extension of the previous one� The �unit� of resource con�
sumption �cf� remark ������� is thus a sequence of queries�responses that can be
arbitrarily large� as long as it builds a position of the input sds� The disjunction
algorithms are not a�ne� because they may have to ask successively the queries
��� and ��
� which are not related by the pre�x ordering�

A generic a�ne algorithm� as represented in 	gure ��
� can be viewed as
a �combination� of the following �generic� output strategy and input counter�
strategy �or exploration tree��

input counter�strategy output strategy

c

�������������������������������

v� � � �
���

vi d

���������
���
w
���

���
vn � � �

c� v�

�������
c�� � � �
���
c�m � � �

An alternative presentation of the a�ne exponent� due to Lamarche �Lam�
b�
is given in exercise ����
��
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Exercise ������� This exercise is based on a small variant of the presentation of an
sds� whose advantage is to give a tree structure rather than a forest structure to the
sds and to strategies� In this variant� an sds is a structure �C� V � f�g� P � where � is
a distinguished element that does not belong to V �nor C�� and where all positions of
P start with � �this being the only place where � can occur�� In this setting� strategies
have to be non�empty� We say that a move m � C � �V � f�g� has�

polarity � if m � V � f�g
polarity 
 if m � C �

��� Establish a precise correspondence between sds�s and the present variants of sds�s�
��� Based on these variants� construct the a�ne exponent of two sds�s �C� V � f�g� P �
and �C�� V � � f�g� P �� along the following lines�

�a� The moves of the a�ne exponent are pairs �m�m�� of moves m � C � V and
m� � C� � V � whose polarities are not in the combination �
� ���

�b� The moves �m�m�� of polarity 
 and those of polarity � are as indicated by the
following table�

m m� �m�m��
� � �
� 
 


 � unde
ned

 
 �

�c� One moves only on one side at a time� if �m�m�� is a move� it is followed by a
move of the form �n�m�� or �m�n���

We next state a key technical property�

Lemma ������� Let � � S � S� be an a�ne algorithm between two sds�s S and
S�� The following properties hold�

�� The function �s��sdS� sdS�� is an order�isomorphism from � to its image�
ordered componentwise by the pre�x ordering�


� If two elements s� and s� of � are such that �s�dS� � �s�dS� is either � or is a
response� and if s�dS� and s�dS� are comparable� then s� and s� are comparable�

�� If two elements s� and s� of � are such that �s�dS�� � �s�dS�� is a query� and
if s�dS and s�dS are comparable� then s� and s� are comparable�

Proof� �
��or ���� 
 ��� It is obvious that �s��sdS� sdS�� is monotonic� Suppose
that s�dS� sdS� s�dS�� sdS�� and s� �� s� Then s � s� by the second part of the
statement� and by monotonicity sdS� s�dS and sdS�� s�dS�� Hence s�dS� sdS�
s�dS�� sdS�� and s � s� follows� since s � s� would imply either sdS� s�dS or
sdS�� s�dS��

�
� Let t � s� � s�� which is � or is a response� since � is a strategy� Suppose
that t � s� and t � s�� If t has the form t�c� then t � s� and t � s� imply



�� CHAPTER ��� SEQUENTIALITY

that tv� � s� and tv� � s� for some v� and v�� which must be di�erent since
t � s�� s�� but then �s�dS�� �s�dS� is a query� contradicting the assumption� If t
is � or has the form t�v

�� then t � s� and t � s� imply that tc�� � s� and tc�� � s�
for some c�� and c��� which must be di�erent since t � s� � s�� this contradicts
the assumption that s�dS� and s�dS� are comparable� Hence t � s� or t � s�� i�e��
s� � s� or s� � s�� The proof of ��� is similar� �

Remark ������� Any pair �sdS� sdS�� in the image of � under the mapping
�s��sdS� sdS�� is either a pair of responses or a pair of queries� It is a pair of
responses i� s ends with a value v�� it is a pair of queries i� s ends with a cell c�

There exists a more abstract description of a�ne algorithms� which we shall
come to after some preliminaries�

De�nition ������� �a�ne function� Let S and S� be two sds�s� We call a
function f � D�S� � D�S�� a�ne when it is stable and satis�es the following
condition

r� � f�x� 
 �� r � x r� � f�r���

Equivalently� an a�ne function can be de	ned as a stable function preserving
lub�s of pairs of compatible elements� The de	nition applies also to �partial�
functions g � D��S�� � D��S��

If a fonction f � D�S� � D�S�� is a�ne� then it is natural to adopt the
following de	nition of trace�

trace�f� � f�r� r�� j r� � f�r� and �	 r� � r r� �� f�r���g � �R � f�g� �R�

�and likewise for g � D��S�� � D��S���

Lemma ������ The composition of two a�ne functions is a�ne� and its trace
is the relation composition of the traces of f and g�

Proof� This is a straightforward variant of �the dI�domain version of� proposi�
tion ������ �cf� exercise ��������� �

Proposition ������� Any a�ne function f between two sds�s is strongly se�
quential�

Proof� Let q� � A�f�x�� be such that r� � q�v� � f�z� for some v� and z � x�
Let r be the unique response such that �r� r�� � trace�f� and r � z� Let q be
the unique query such that q � r and q � A�x�� Now consider z� � x such
that q� � F �f�z���� and de	ne r�� � q�v��� r�� q� similarly� By lemma ����� �
�� if
q� �� q� then q� � q is a strict pre	x of q� and q� and is � or a response� But then
q � r and q� � r� imply q�� q � r�� r� Therefore r� � r by lemma ������� which
implies r�� � r� by de	nition of a trace� Therefore v�� � v�� hence r�� � r�� which
implies r� � r by stability� and q� � q by construction� Thus q is a sequentiality
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index of f at �x� q��� Suppose now that q� is another sequentiality index of f at
�x� q��� Let z be as above� and consider z � q and z � q� �cf� lemma ��������
By a�nity� f�z� � f�z � q� � f�z � q��� therefore� say� q� � F �f�z � q��� which
contradicts the fact that q is a sequentiality index� �

The converse is not true� there are strongly sequential functions that are not
a�ne� the left and the right disjunction functions are examples�

Now we are ready to give an abstract description of a�ne algorithms�

De�nition ������	 �symmetric algorithm� Let S and S� be two sds�s� A
symmetric algorithm from S to S� is a pair

�f � D�S� � D�S��� g � D��S�� � D��S��

of a function and a partial function that are both continuous and satisfy the
following axioms

�L� �x � D�S�� �� � K�D��S���� f�x����� 


�
x�g���� and
m�f� x� ��� � x � g����

�R� ��� � D��S��� x � K�D�S��� x�g���� 


�
f�x���� and
m�g� ��� x� � f�x� � �� �

where m�f� x� ��� is the minimum y � x such that f�y���� �m�g� ��� x� is de�ned
similarly�� We set as a convention� for any x and any �� such that g���� is
unde�ned

x�g���� and x � g���� � ��

Thus the conclusion of �L� is simply m�f� x� ��� � � when g���� is unde�ned� In
contrast� when we write x�g���� in �R�� we assume that g���� is de�ned� �This
convention is consistent with the setting of exercise �	���
��� The collection of
symmetric algorithms is ordered componentwise by the pointwise ordering

�f�� g�� � �f�� g�� i� ��	x f��x� � f��x�� and �	� g����  
 g���� � g�������

These axioms enable us� knowing f and g� to reconstruct the traces of f and g�
They also imply that f and g are a�ne �and sequential�� Moreover� g allows to
compute the sequentiality indices of f � and conversely�

Proposition ������� Let f and g be as in the previous de�nition� Then f and
g are a�ne and satisfy the following two axioms

�LS� If x � D�S�� �� � K�D��S����f�x���� and f�y���� for some y � x� then
x�g����� and x � g���� is a sequentiality index of f at �x� ����

�RS� If �� � D��S��� x � K�D�S��� x�g���� and x�g�
�� for some 
� � ��� then
f�x����� and f�x� � �� is a sequentiality index of g at ���� x��
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Proof� We 	rst show that f is a�ne� Suppose q�v� � f�x�� Then f�x��q�� By
�L�� x�g�q�� and f�r��q�� where r � x � g�q��� Let q��v

�
� � f�r� � q�� and suppose

q�� � q�� On one hand q��v
�
� � A�q�� implies q��v

�
� �� q�� On the other hand�

q��v
�
� � f�x� since q��v

�
� � f�r� and r � x

q��v
�
� � q� since q�v�� q��v

�
� � f�x� �

Hence q�� � q�� and moreover v�� � v� since q�v�� q��v
�
� � f�x�� We have proved

f�r� � q� � q�v�� and a fortiori q�v� � f�r��

We now prove that Axiom �L� implies property �LS�� Suppose x � D�S� and
�� � K�D��S���� f�x���� and f�y���� for some y � x� By �L�� we have f�r������
where r� � y � g����� which implies r� �� x since f�x����� Let r be the largest
response pre	x of r� contained in x� and let rc be such that rc � r�� We claim
that x g���� � rc� From r� � A�g����� and rc � r�� we get rc � g����� We
have r � x by construction� thus rc is enabled in x� If rc is 	lled in x� it must
be 	lled with the same value v in x and r�� contradicting the maximality of r�
Hence rc � g�����A�x�� which proves the claim� The proof of �LS� is completed
by observing that rc � r�� r� � y imply rc � F �y�� �

A familiar feature of stability is not apparent in de	nition ����
�� the order
is not de	ned as Berry�s stable ordering� But the stable ordering is a derived
property�

Exercise ������� Show that if �f�� g�� � �f�� g�� �cf� de
nition ���	����� then f� �st

f� and g� �st g�� Hint� apply �LS� to �f�� g��� �R� to �f�� g��� and �LS� to �f�� g���

We show the equivalence between the two presentations of a�ne algorithms�
as strategies� and as pairs �f� g��

Theorem ������� Let S and S� be two sds�s� Given � � D�S � S��� we de�ne
a pair �f� g� of a function and a partial function as follows

f�x� � fr� j r� � sdS� and sdS� x for some s � �g
g���� � fq j q � sdS and sdS�� �� for some s � �g�

By convention� if for some �� the right�hand side of the de�nition of g is empty�
we interpret this de�nitional equality as saying that g���� is unde�ned�

Conversely� given a symmetric algorithm �f� g� from S to S�� we construct an
a�ne algorithm � � D�S � S�� as follows� We build the positions s of � by
induction on the length of s

 If s � �� if sdS and sdS� are responses� and if q� � �sdS��c
� for some c��

then

sc�c � � if �sdS�c � g�q��
sc�v� � � if q�v� � f�sdS� �
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 If s � �� if sdS and sdS� are queries� and if r � �sdS�v for some v� then

svc � � if rc � g�sdS��
svv� � � if �sdS��v

� � f�r� �

�The cases in the de�nition of � are mutually exclusive� by �L���

These two transformations de�ne order�isomorphisms between D�S � S���
ordered by inclusion� and the set of symmetric algorithms from S to S�� ordered
pointwise componentwise�

Proof� We check only that �f� g� satis	es �L�� If x � D�S�� �� � K�D��S��� and
f�x����� let q�v� � f�x� � ��� and let s � � be such that q�v� � sdS� and sdS� x�
Then s ends with v� �cf� remark ����
��� We claim�

i� sdS� x � g����
ii� sdS� m�f� x� ��� �

�i� Since sdS� x� we are left to show sdS� A�g������ Since q�v� � f�x� � ��� we
have q�v� � A����� hence q� � ��� We 	rst show that sdS is enabled in g����� Let
sdS� qv� and let s� be the least pre	x of s such that s�dS� q� We claim that
s�dS�� ��� By the de	nition of s�� and since s ends with v�� s� is a strict pre	x of
s and s�dS�� sdS�� Hence s�dS�� q�� which implies the claim� Since s�dS� q� the
claim implies q � g���� by de	nition of g� and that sdS� qv is enabled in g�����
Suppose now that sdS is 	lled in g����� Then there exist c and s� � � such that
�sdS�c � s�dS and s�dS�� ��� By lemma ����� ��� and by lemma ����
 ����
s and s� are comparable� But� since�sdS�c � s�dS� we cannot have s� � s� and
since s�dS�� �� and sdS�� A����� we cannot have s � s�� contradiction�

�ii� By de	nition of f � we have sdS�� f�sdS�� hence f�sdS����� Suppose now
that y � x and f�y����� By lemma �����
 �
�� f�y� � �� � f�x� � ��� thus
q�v� � f�y�� Let s� � � be such that q�v� � s�dS� and s�dS� y� By lemma ����

�
�� s and s� are comparable� Since s ends with v� and since s�dS�� sdS�� s� can�
not be a proper pre	x of s� Thus s � s�� and this entails sdS� y since sdS� s�dS
and s�dS� y� �

The de	nition of f �the function computed by �� in theorem �����
 is so
compact that it may hide the underlying operational semantics� The application
of � to a strategy x of S involves an interplay between � and x that is very
similar to the situation described in de	nition ������ We have already suggested
that an a�ne algorithm �contains� input counter�strategies� Let � be the generic
algorithm of 	gure ��
� and let x be the following input strategy� represented
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suggestively as a forest� �����������������
c vi

�������
d w
���
d� � � �

���
c� � � �

The matching of � against x results in the �play� cv�dw�
We turn to the composition of a�ne algorithms�

De�nition ������� Let S� S� and S�� be sds�s� and let �f� g� and �f �� g�� be sym�
metric algorithms from S to S� and from S� to S��� We de�ne their composition
�f ��� g��� from S to S�� as follows

f �� � f � � f and g�� � g � g��

Proposition ������� The pair �f ��� g��� in de�nition �	����� indeed de�nes a
symmetric algorithm�

Proof� We only check axiom �L�� Suppose f ��f�x������� By �L� applied to
�f �� g��� we have f�x��g������ and m�f �� f�x�� ���� � f�x�� g������� By �L� applied
to �f� g�� from f�x��g������ we get x�g�g������� and m�f� x� g������� � x� g�g��������
We have to prove m�f ��f� x� ���� � x� g�g�������� We set r � x� g�g�������� Since
m�f� x� g������� � r� we have f�r��g������� We claim that f ��f�r������� Suppose
the contrary� that is� f ��f�r������� Then� by �LS� applied to �f �� g�� at �f�r�� �����
we have f�r��g������� which contradicts our previous deduction that f�r��g�������
Hence the claim holds� We are left to prove that� for any y � x such that
f ��f�y������� then r � y� Since m�f� x� g������� � r� this second claim can be
rephrased as f�y��g������� We set r� � f�x� � g������� Since f�y� � f�x� and
since m�f �� f�x�� ���� � r�� we have r� � f�y� by the 	rst claim� But r��g������ by
de	nition of r� and by lemma �����
 ���� and the conclusion follows by lemma
�����
 �
�� �

De�nition ������� The category AFFALGO is de�ned as follows� Its objects
are the sequential data stuctures and its morphisms are the a�ne algorithms� If
� � D�S � S�� and �� � D�S� � S���� if �f� g� and �f �� g�� are the symmetric
algorithms associated with � and ��� respectively� then ���� is the a�ne algorithm
��� associated with �f � � f� g � g���

We interchangeably look at morphisms as a�ne algorithms or as symmetric
algorithms� In particular� there are two descriptions of the identity morphism�

Exercise ������� Show that �id � id� is the symmetric algorithm corresponding to the
strategy id described in de
nition ���	����



����� ALGORITHMS AS STRATEGIES ��

Alternatively� composition can be de	ned operationally� This idea goes back
to �BC���� The form presented here is� mutatis mutandis� due to Abramsky
�AJ�
��

Lemma ������ Let � and �f� g� be as in the statement of theorem �	����
�
Then we have the following equalities� where r� r� range over responses and q� q�

range over queries

��� trace�f� � f�r� r�� j r � sdS and r� � sdS� for some s � �g
�
� trace�g� � f�q�� q� j q� � sdS� and q � sdS for some s � �g �

Proof� ��� If r � sdS and q�v� � r� � sdS�� for some s � �� then a fortiori
sdS� r� thus r� � f�r�� Suppose that r� � f�r�� for some r� � r� Let s� � �
be such that r� � s�dS� and s�dS� r�� Then �s�dS� s�dS�� � �sdS� sdS��� which
by lemma ����
 implies s� � s� But by the de	nition of S � S�� r� � sdS�
implies that s ends with v�� and hence s�dS�� sdS�� contradicting r� � s�dS��
Thus �r� r�� � trace�f�� Reciprocally� if �r� r�� � trace�f�� then let s � � be such
that r� � sdS� and sdS� r� Then� by minimality of r� we must have sdS� r� The
proof of �
� is similar� �

Proposition ������� Let S � �C� V� P �� S� � �C �� V �� P �� and S�� � �C ��� V ��� P ���
be three sds�s� Let � � D�S � S��� �� � D�S� � S���� Then

�� � � � fsdSS��j s � L�S�S��S���� sdSS�� �� and sdS�S��� ��g

where L�S�S��S��� denotes the set of words in �C � V �C � � V � �C �� � V ���� such
that two consecutive symbols are not such that one is in C � V and the other is
in C �� � V ���

Proof hint� One veri	es easily that this de	nes a strategy of S � S��� Then�
by lemma ������� and by the injectivity of �s��sdS� sdS�� �lemma ����
�� it is
enough to check

f�sdS� sdS��� j s � L�S�S��S���� sdSS�� �� and sdS�S��� ��g �
f�p� p��� j p � s�dS� s�dS�� s�dS�� and p�� � s�dS��� for some s� � �� s� � ��g�

Obviously� the left�hand side is included in the right�hand side� taking s� � sdSS�
and s� � sdS�S��� For the other direction we construct s from s� and s� by re�
placing every c�v� in s� by the corresponding portion c�c�v� � � � cnvnv� of s�� By
construction s � L�S�S��S���� �

This alternative de	nition of composition is convenient to establish the sym�
metric monoidal structure of the category AFFALGO�

De�nition ������	 �tensor � sds� Let S � �C� V� P � and S� � �C �� V �� P �� be
two sds�s� We de�ne the sds S � S� � �C ��� V ��� P ��� as follows� The sets C �� and
V �� are disjoint unions
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C �� � fc�� j c � Cg � fc��
 j c� � C �g
V �� � fv�� j v � V g � fv��
 j v� � V �g �

P �� consists of the alternating non�empty positions s which are such that

sdS� P � f�g and sdS�� P � � f�g� and
s has no pre�x of the form scv� �

Let S��S��S���S
�
� be sds�s� and let �� � D�S� � S��� and �� � D�S� � S���� We

de�ne ����� � D��S��S�� � �S���S���� as follows� It consists of the positions
of �S� � S�� � �S�� � S��� whose projections on S� � S

�
� and on S� � S�� are in ��

and in ��� respectively�

As for de	nition ������� the second constraint in de	nition ������ implies
that P �� contains no position of the form sc�v�

Exercise ������� Construct the tensor product along the same lines as in exercise
���	��	� using the following table of polarities �which is obtained through the encoding
of S " S� as �S � S������

m m� �m�m��
� � �
� 
 


 � 


 
 unde
ned

Proposition ������� The data of de�nition �	����� indeed de�ne a functor
which� together with the empty sds ��� �� �� as unit� turns AFFALGO into a
symmetric monoidal category�

Proof� The coherent isomorphisms are based on the bijective correspondences
wich associate� say� a move m�� in S��S��S��� to the move m���� in �S�S���S���
�

Proposition ������� The category AFFALGO is symmetric monoidal closed�

Proof� Loosely� ��S � S�� � S��� and S � �S� � S��� coincide �up to tags��
Given � � D�S� � S� and � � D�S � �S� � S����� in order to turn a position s
whose projection on S� � �S� � S��� is in � � � into a position whose projection
on �S��S���S�� is in the corresponding composed morphism from S��S� to S���
we replace every portion c�v� of s by c�c�v�v� �cf� the description of id�� �

The category AFFALGO is also cartesian�

De�nition ������� �product � sds� Let S � �C� V� P � and S� � �C �� V �� P ��
be two sds�s� We de�ne S� S� � �C ��� V ��� P ��� as follows

 C �� and V �� are as in de�nition �	������
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 P �� � fp�� j p � Pg � fp��
 j p� � P �g where p�� is a shorthand for the
position formed by tagging all the moves of p with �� and similarly for p��

Proposition ������� The category AFFALGO is cartesian� The binary prod�
ucts are as speci�ed in de�nition �	���	�� and the terminal object is the empty
sds ��� �� ���

Proof� It is easily seen that D�S � S�� is the set�theoretical product of D�S�
and D�S��� and that D��S � S�� is the disjoint union of D��S� and D��S���
The 	rst projection is the symmetric algorithm ��� inl� where � and inl are the
set�theoretical projection and injection� respectively� Similarly� the second pro�
jection is ���� inr �� If �f� g� � S � S� and �f �� g�� � S� � S��� then h�f� g�� �f �� g��i is
de	ned as �hf� f �i� �g� g���� where h � i and � � � denote the set�theoretical pairing
and copairing� �

Thus� in AFFALGO� the empty sds is both the unit of the tensor and a
terminal object� It is this property which makes AFFALGO a model of a�ne
logic �cf� remark ���
�
���

Finally� we relate the two categories ALGO and AFFALGO by an adjunc�
tion�

Proposition ������� The mapping cds from sds�s to cds�s de�ned in proposi�
tion �	���� extends to a functor cds � AFFALGO � ALGO as follows� Let S
and S� be two sds�s� and let �f� g� be a symmetric algorithm from S to S�� We
de�ne an abstract algorithm cds�f� g� � cds�S� � cds�S�� as follows

cds�f� g��xq�� �

�
valof �x � g�q��� if x�g�q��
output q�v� if q�v� � f�x�

where we freely confuse x � D�S� with the associated state cds�x� � D�cds�S���
�As in theorem �	����
� the cases in the de�nition of cds�f� g� are mutually
exclusive��

Proof� We only prove cds�f � � f� g � g�� � cds�f �� g�� � cds�f� g�� Given x and
q��� there are three cases�

 q��v�� � f ��f�x��� Then� obviously�

cds�f � � f� g � g���xq��� � output q��v�� � �cds�f �� g�� � cds�f� g���xq����

 x�g�g��q����� Then f�x��g��q��� by �R�� It follows that cds�f �� g���f�x�q��� �
valof q�� where q� � f�x� � g��q���� We claim that x�g�q��� Suppose not�
since q� � g��q��� and x�g�g��q����� this would entail f�x��q� by �RS�� which
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is a contradiction since the contrary holds by de	nition of q�� Then� by the
claim� cds�f� g��xq�� � valof q� where q � x � g�q��� It follows that

cds�f � � f� g � g���xq��� � valof q � �cds�f �� g�� � cds�f� g���xq���

since x � g�q�� � x � g�g��q���� by lemma �����
�

 cds�f ��f� g�g���xq��� � �� In particular q��v�� �� f ��f�x��� hence �cds�f �� g���
cds�f� g���xq��� could only be de	ned if we had

f�x��g��q��� and x�g�f�x� � g��q�����

But then we would have x�g�g��q����� contradicting the assumption� �

We now show that the functor cds has a left adjoint�

De�nition ������� �exponential � sds� Let M � �C� V�E��� be a ��liform�
cds� The following recursive clauses de�ne a set P� of alternating words over
C � V 

rc � P� if c � A�state�r��
rcv � P� if rc � P� and state�rcv� � D�M�

where state is the following function mapping responses �or �� of P� to states of
M

state��� � � state�rcv� � state�r� � f�c� v�g�

The sds �C� V� P�� is called  M� We de�ne an abstract algorithm � � M � cds� M�
by

��x�rc�� �

�
valof c if state�r� � x and c � A�x�
output �rcv� if state�r� � f�c� v�g � x �

�Hence ��x � fr j state�r� � xg��

Remark ������ The reader should compare the de�nitions of sds�M� �exercise
�	����� and of  M� In sds�M�� positions are made from the proofs of the cells of
M� in  M� they encode �safety respecting� enumerations of the events contained
in the �nite states of M� Back to example �	���
�� it should be now clear that�
say� ORl can be considered as an a�ne algorithm from  ��B���� to B��

Theorem ������� The transformation  described in de�nition �	���	� extends
to a functor  � ALGO � AFFALGO which is left adjoint to cds� with � as
unity� Moreover� the co�Kleisli category associated to the comonad  � cds �
AFFALGO � AFFALGO is equivalent to ALGO� We shall freely abbreviate
 � cds as  �

Proof hint� Let a � D�M � cds�S���� We associate a response of  M � S�

with each event �xq�� u� of a as follows�
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 If xq� is enabled in a by �x�q�� valof c�� �with x � x��f�c�� v��g for some v���
and if sc� is the response associated with �x�q�� valof c��� then the response
associated with �xq�� u� is

sc�v�c if u � valof c
sc�v�v

� if u � output �q�v�� �

 If xq� is enabled in a by �xq��� output �q��v
�
��� �with q� � q��v

�
�c
� for some

c��� and if sv�� is the response associated with �xq��� output �q��v
�
���� then the

response associated with �xq�� u� is

sv��c
�c if u � valof c

sv��c
�v� if u � output �q�v�� �

We denote with ��a� the set of responses associated to the events of a in this way�
We omit the tedious veri	cation of the two equations�

cds���a�� � � � a ��cds��� � �� � ��

Roughly� the mapping � makes the proofs of cells explicit� while cds �undoes�
the job of � by �	ltering� input states against the positions of �� The second part
of the statement follows from the fact that any object M of ALGO is isomorphic
to an object of the form cds�S� �speci	cally� to cds�sds�M��� cf� exercise �������
�

Theorem ������	 The category ALGO is cartesian closed� There are natural
isomorphisms in AFFALGO between � S� � � S�� and  �S� S���

Proof� The 	rst part of the statement is a consequence of the second part� by
proposition ���
���� For the second part� notice�

 A cell of  �S�S�� is of the form� say� �c�����v���� � � � �cn��� where c�v� � � � cn
is a query of S� while the corresponding cell of � S�� � S�� is �c�v� � � � cn����

 A position � S�� � S�� encodes a shu&ing of safety respecting enumerations
of a strategy x of S and of a strategy x� of S�� which is the same as the
encoding of a safety respecting enumeration of �x� x��� �

Exercise ������� Let S � �C� V� P � be an sds� and consider the sds�

S� � �V � f
 j� gC� f
p j p � Pg��

Show that this operation extends to a functor fromAFFALGO to AFFALGOop which
is adjoint to itself�

We end the section with some remarks and comparisons� and by stating two
open problems�

 A more abstract setting for sequential algorithms� into which our theory can be
embedded� has been developped by Bucciarelli and Ehrhard �BE���� The basic
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idea is to abstract from a cell c by axiomatizing it as a predicate �c is 	lled�
�cf� exercise �������� Bucciarelli and Ehrhard de	ne sequential structures of the
form �X��X

�� where X� plays the role of D�M�� and where X� is a set of linear
functions from X� to O� Their morphisms are de	ned in the style of exercise
��
���

 Sequential algorithms bear a striking similarity with the oracles that Kleene has
developed in his late works on the semantics of higher�order recursion theory� In
a series of papers �Kle��� Kle��� Kle�
� Kle���� he developed up to rank � a theory
of unimonotonous functions� which are closely related to sequential algorithms
�see �Buc��� for a precise correspondence�� He lacked synthetic tools to develop
a theory at all ranks�

 Berry�Curien�s sequential algorithms� as well as Ehrhard�s hypercoherences
�cf� section ������ yield standard models of Pcf� Indeed� it is easily checked that
ALGO and HCoh are cpo�enriched CCC�s� and we know from theorem ����
that the standard interpretations of all 	rst�order constants of Pcf are sequential
and strongly stable� Ehrhard �Ehr��� has proved that the hypercoherence model
of Pcf is actually the extensional collapse of the model of sequential algorithms
�cf� exercise ������ This quite di�cult result relies on the following steps�

�� For any hypercoherence �E�!�� any A � C�E� and any n � A� there exists
G � C��n

�� and a strongly stable function g � �n
� � E such that g�G� � A�


� Every compact element y of the model at any type � is 
� Pcf�de	nable�
which means that there exists a term x� � ��� � � � � xn � �n � M � � �
with ��� � � � � �n of rank at most 
 �cf� de	nition ������� such that y �
��M ���x�� � � � � xn� for some x�� � � � � xn�

�� The 
�Pcf�de	nability allows to prove the surjectivity �hence the function�
ality� cf� section ��� of the logical relation between the model of sequen�
tial algorithms and the hypercoherence model generated by the identity at
ground types�

Exercise ������� 
the semantics as an interpreter � Show that the interpreta�
tion function of Pcf in ALGO is actually computed by a sequential algorithm �repre�
senting Pcf terms through a cds� like LAMBDA� cf� example ��������

We mention the following two pen problems�

�� Denoting simply by ���� the �natural� algorithm that computes the semantic
function ���� �cf� exercise ������� and denoting likewise by BT the minimum
algorithm computing BT � does the equality �of algorithms� ���� � ���� � BT
hold� In other words� does the semantic evaluation respect the indications
of sequentiality provided by the syntax itself�
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� If a and a� are two de	nable algorithms such that a � a�� can we 	nd N
and N � such that N � N � �in the sense of de	nition 
������ a � ��N ��� and
a� � ��N ���� In other words� does the order on algorithms re�ect the syntactic
ordering�

���� Full Abstraction for Pcf � catch �

In this section we extend the language Pcf with an operation catch� which is inspired
from the constructions �catch and �throw found in several dialects of LISP
 The
model of sequential algorithms is fully abstract for this extension of Pcf� called Spcf

This stands in sharp contrast with the situation of this model with respect to Pcf �cf

section �
��
 The material of this section is adapted from �CF��� CCF���


Observing sequential algorithms� Before we come to the proper subject of this
section� we present a third characterisation of sequential algorithms� in addition to the
descriptions as states and as abstract algorithms
 Although sequential algorithms are
not functions in the ordinary sense� it would be useful to be able to compare two
algorithms by applying them to �extended� inputs
 The explicit consideration of an
error element allows this


De�nition ������ 
observable state We assume once and for all that there exists
a reserved� non�empty set Err of error values� which is disjoint from any set V of values
of any cds M � �C� V�E�'�� We stress this by calling an element of V a proper value�
Unless stated otherwise explicitly� we assume that Err is a singleton� and we write
Err � feg�

Given a cds M � �C� V� E�'�� we call observable state of M a set x of pairs �c� w��
where either �c� w� � E or w � Err� satisfying the conditions that de
ne a state of
a cds� The set of observable states of M is denoted DO�M�� Note that states are a
fortiori observable states� this may be stressed by calling the states of M error free�
With each observable state x� we associate an error�free state x�e de
ned by

x�e � x �E�

This de	nition implies that enablings are not allowed to contain error values� be�
cause the enabling relation is part of the structure of a cds� which we did not change

In the tree representation of an observable state� error values can occur only at the
leaves
 As an example� the cds �� has �up to isomorphism� �� � Err as its set of
extended states
 Next we explain how sequential algorithms act on observable states


De�nition ������ Let M and M� be two cds�s� Every sequential algorithm a � M �
M� determines an observable input�output function from DO�M� to DO�M��� de
ned
by

a�x � f�c�� output v�� j � y � x �yc�� output v�� � ag �
f�c�� e� j � y � x �yc�� valof c� � a and �c� e� � xg �
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On error free states� this de	nition agrees with the de	nition of a�x given in def�
inition ��
�
�
 The second component of the union is only �active when the input
contains error values� and �implements a propagation of these values to the output


Lemma ������ The function �x��a�x� � DO�M� � DO�M
�� of de
nition ������ is

well de
ned and continuous�

Proof
 Continuity obviously follows from the de	nition
 We have to show that a�x is
�i� consistent� and �ii� safe
 We claim that once c� is 	xed� then there is at most one y
which ensures that c� is 	lled in a�x
 Property �i� immediately follows from the claim

We prove the claim by contradiction
 There are three cases�

�
 �y�c
�� output v���� �y�c

�� output v��� � a
 Then y� � y� by proposition ��
�
�� con�
tradicting the assumption


�
 �y�c
�� output v��� � a� �y�c

�� valof c�� � a and �c�� e� � x
 By proposition ��
�
��
y� 
 y�� and moreover c� must be 	lled in y�� and hence in x� with a proper
value� since y� is error free
 This contradicts the consistency of x� since we also
assumed �c�� e� � x


�
 �y�c�� valof c�� � a� �c�� e� � x and �y�c�� valof c�� � a� �c�� e� � x
 Then� say�
y� 
 y�� and the reasoning is the same as in case �


Next we show safety
 From the above analysis� it follows that a�x is the dis�
joint union of f�c�� output v�� j � y � x �yc�� output v�� � ag and f�c�� e� j � y �
x �yc�� valof c� � a and �c� e� � xg
 The 	rst of these sets is a��x�e�� which is a state
by proposition ��
�
�
 If c� is 	lled in the second set� then by de	nition �yc�� valof c� � a
for some y� which entails c� � A�a�y� and c� � E�a�x�
 �

The following proposition shows what the consideration of errors is useful for


Proposition ������ Let M and M� be two cds�s� If a�x � a��x for all x � DO�M��
then a � a��

Proof
 The proof is by contradiction
 Let yc� be a minimal cell of M�M� such that
yc� is 	lled in a� and is either not 	lled� or 	lled with a di�erent value in a�
 We shall
call witness an observable z such that a�z �� a��z
 There are two cases�

�
 If �yc�� output v�� � a� then �c�� v�� � a�y
 If �c�� output v�� �� a��y� then y is a
witness
 If �c�� output v�� � a��y� then� since y is error free� there exists z � y
such that �zc�� output v�� � a�


�
 If �yc�� valof c� � a� then �c�� e� � a��y � f�c� e�g�
 If �c�� e� �� a���y � f�c� e�g��
then y � f�c� e�g is a witness
 If �c�� e� � a���y � f�c� e�g�� then� by de	nition of
the observable input�output function�

� z � y � f�c� e�g �zc�� valof c�� � a�� and �c�� e� � y � f�c� e�g�

Then z � y� since z is error free and z � y � f�c� e�g
 Also� �c�� e� � y � f�c� e�g
implies c� � c� since y is error free
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Both cases � and � reduce to the situation where �yc�� u� � a and �zc�� u� � a�� for
some z � y and for some u
 This forces z 
 y� since by assumption �yc�� u� �� a�

Also� �zc�� u� � a� by the minimality assumption
 But the conjunction of �yc�� u� � a�
�zc�� u� � a� and y 
 z is excluded by proposition ��
�
�� which forces u � valof c and
y 
c z for some c� and precludes �zc�� valof c� to be an event
 �

We gather more material in exercises ��
�
�� ��
�
� and ��
�
�


Exercise ������ LetM be a cds Let a � DO�M� ���� Show the following properties�
for any cell x� � E�a��

��� a�x � f��� n�g 	 �x�� output n� � a

��� �a�x � � and a��x � f�c� e�g� � f��� e�g� 	 �x�� valof c� � a
��� a�x � f��� e�g 	 �x�� e� � a �

Generalise these properties for a � DO�M� � � � � �Mn � ���� Hint� these properties
are variations of proposition �������

Exercise ������ Let M and M� be two cds�s� The observable input�output function
of an observable algorithm� that is� of an observable state of M � M�� is de
ned as
follows�

a�x � f�c�� output v�� j � y � x �yc�� output v�� � ag �
f�c�� e� j � y � x �yc�� e� � ag �
f�c�� e� j � y � x �yc�� valof c� � a and �c� e� � xg �

�Here we do not assume that Err is a signleton� and e is used to denote a generic
element of Err�� Show that the statement of proposition ������ fails for observable
algoithms if Err � feg� and holds if Err contains at least two elements� Hint� Consider
a � f���� valof ��g and a� � f���� e�g� between� say� two �at domains�

Exercise ������ Let M and M� be two cds�s� ��� Show that there exists an order�
isomorphism between D�M � M�� and the pointwise ordered set of functions h from
DO�M� to DO�M

�� which are�

� error�sensitive� For any x and c� such that c� � A�h�x�� and c� � F �h�z�� for
some z � x� there exists c � A�x�� called sequentiality index� such that

� y � x �h�x� 
c� h�y� � x 
c y�
� e � Err h�x � f�c� e�g� � h�x� � f�c�� e�g �

� error�re�ecting� For any c�� e and y� if �c�� e� � h�y�� then h has a sequentiality
index c at �x� c�� for some x 
 y� and �c� e� � y�

��� Show that sequentiality indexes of error�sensitive functions are unique �for 
xed x
and c��� �	� Show that this isomorphism extends to an isomorphism from DO�M �
M�� to the set of pointwise ordered error�sensitive functions from DO�M� to DO�M���
Hints� use proposition ������� for the surjectivity of the mapping from a to �x��a�x��
proceed as in the proof of proposition �������
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$ 'M � �

$ ' catch�M� � � $ ' e � �

Figure ���� The additional constants of Spcf and of Spcf�Err�

Exercise ������ Show that the category whose objects are cds�s and whose arrows are
observable algorithms �cf� exercise ������� is cartesian closed� Hint� use the charac�
terisation given in exercise �������

We come now to the proper subject of this section
 We extend Pcf with a family
of unary operators catch at each Pcf type �
 The resulting extended language is called
Spcf
 Just as in the semantics� it may be convenient to introduce explicit errors in
the syntax
 We thus occasionally work with Spcf�Err�� which is Spcf plus constants
e � Err of basic type� which are interpreted using error values with the same name

The typing rules for the constants of Spcf and of Spcf�Err� are summarized in 	gure
��
�
 As for Pcf� a program is a closed term of basic type� and " is an additional
constant such that ��' "�� � �� at each basic type


As for Pcf� we use the same name for the operator catch and for its interpretation
in the category ALGO� i
e
� we write

��$ ' catch�M� � ��� � catch� 
 ��$ 'M � ���

where the right�hand side catch is given in 	gure ��
�
 In this 	gure� and in the rest
of this section� we shall adopt the following conventions�

� ��� denotes the initial cell � � � ��� of �the interpretation of� any type


� We freely switch between curryied and uncurryied algorithms �for example� in
the third line of 	gure ��
�� ������i is a cell of �� � � � � � �m�


The algorithm catch asks its unique argument about the value of its initial cell
��what do you do if you know nothing about your argument ��
 If this cell is 	lled
with output n� i
e
� if the argument is the constant n� then catch outputs m � n
 If
instead the argument asks about the initial cell of its ith argument� then catch outputs
i� �


Operational semantics� We next describe the operational semantics of Spcf
 It
is convenient to use evaluation contexts �cf
 section �
��
 They have a unique hole�
where �the next reduction takes place 
 They are declared as follows�

E ��� � � jj fE jj EM jj catch���x�E�

where f � fsucc� pred � zero�� condg and where �x abbreviates x� � � � xn �the intended
subscripts may vary�
 In particular� n may be �� i
e
� catch�E� is an evaluation context

We denote by E�M � the result of 	lling the hole of E with M 
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catch����


��m����� � f���� valof �����

�f����� output n�g�� output m� n�� �n � ��

�f����� valof ������i�g�� output i� �g �� � i � m�

Figure ��� Interpretation of catch in ALGO

M � M �

E�M � $� E�M ��

catch��x� � � � xm�E�xi�� � i� � �i � m� xi free in E�xi��
catch��x� � � � xm�n� � m� n
catch�f� � � �f � fsucc� pred � zero�� condg�

Figure ���� Operational semantics for Spcf

The rules are given at two levels� there are axioms of the form M � M �� and
evaluation steps of the form E�M � $� E�M ��
 The axioms are those for Pcf plus three
axioms for catch
 The evaluation rule and the additional axioms are given in 	gure
��
�
 The catch rules deserve some explanation
 The constant catch is a so�called
control operator
 If the argument of catch is strict in its ith argument� then the value
i� � is returned
 It the argument f of catch is a constant function� then catch returns
that constant �plus the arity of f � since the outputs �� � � � � m�� have a special meaning
in this context�
 The reader may check that catch�add l� $�

� � and catch�add r� $�
� ��

where add l and add r are the Pcf terms denoting the left and right addition algorithms
�cf
 exercise �
�
��


We extend the operational semantics to Spcf�Err� �cf
 	gure ��
�� by adding a
second evaluation rule�

E�e� $� e�

Exercise �����	 Show that the following properties hold�

� If E� E� are evaluation contexts� then E�E�� is an evaluation context�

� If M $�M � �� e� then E�M � $� E�M ��� if M $� e� then E�M � $� e�

Exercise ������� 
Soundness Show that if M $�M �� then ��M �� � ��M ����

Exercise ������� � Show the following properties�
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��� If M" � � �" $��
e � then catch�M� $��

e�

��� If catch�M� $��
e � then M" � � �" $��

e�

�	� If M" � � �" $�� n� where M is of type �� � � � ��m � �� then catch�M� $�� n�m�

��� If MQ� � � �Qm $��
e �m � �� � where all Qj �s are " � except Qi � ��y�e � and if

M" � � �" $��
e does not hold� then catch�M� $�� i� ��

Exercise ������� 
adequacy � ��� Let M be a Spcf�Err� program� Show that the
following equivalences hold�

��M �� � n 	 M $�� n

��M �� � e 	 M $��
e �

��� Let M be a Spcf program� Show that the following equivalence holds�

��M �� � n 	 M $�� n�

Hints� for ���� adapt the proof of theorem ��	��� and use exercise �������� for ���� use
��� and the observation that if M is an Spcf term and M $�� n in Spcf�Err�� then
M $�� n in Spcf�

Full abstraction� We 	rst prove� by a semantic argument� that Spcf is a sequential
language �cf
 section �
��


Proposition ������� If C is a Spcf program context with several holes� if

��' C�"� � � � �"��� � � and �M�� � � � �Mn ��' C�M�� � � � �Mn��� �� �

then there exists an i� called sequentiality index� such that�

�N�� � � � � Ni��� Ni��� � � � � Nn

�
��' C�N�� � � � � Ni���"� Ni��� � � � � Nn��� � �
��' C�N�� � � � � Ni��� e� Ni��� � � � � Nn��� � f��� e�g �

�Here� M�� � � � �Mn� N�� � � � � Nn are ranging over closed Spcf terms��

Proof
 Let a � ��' �x� � � �xn�C�x�� � � � � xn���
 We have� by the validity of 	� for all
closed M�� � � � �Mn�

��' C�M�� � � � �Mn��� � a���'M���� � � � ���'Mn���

We have�

�M�� � � � �Mn ��' C�M�� � � � �Mn��� �� � � a �� �

��' C�"� � � � �"��� � � � � �n ������ output n� � a� �

Hence ����� valof ������i� � a for some i� and the conclusion follows by the de	nition of
the composition of sequential algorithms
 �
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We recall the �semantic formulation of the� full abstraction property� which we want
to prove for ALGO with respect to Spcf�

�M�N ��C ��' C�M ��� � ��' C�N ����	 ��M �� � ��N ��

where C ranges over program contexts
 We have been used to link full abstraction and
de	nability� cf
 section �
�
 However� proposition �
�
� applies to an order�extensional
model
 By proposition ��
�
�� this is 	ne for Spcf�Err� �see exercise ��
�
��� but not
for Spcf
 Fortunately� we can use contexts other than the applicative ones to show full
abstraction for Spcf from de	nability


Lemma ������� Let M be a cds� and let x� y � D�M�� If x �� y� then there exists a

nite sequential algorithm a �M� �� such that a�x �� a�y�

Proof
 Let c be a minimal cell such that �c� v� � F �x� and either c �� F �x� or c is
	lled in y with a di�erent value
 Let �c�� v��� � � � � �cn� vn� be the proof of c in x
 De	ne

x� � �� � � � � xn � xn�� � f�cn��� vn���g� xn�� � xn � f�c� v�g�

Then we set

a � f�x��� valof c��� � � � � �xn�� valof cn�� �xn���� output ��g�

We have ��� �� � a�x and ��� �� �� a�y� hence a�x �� a�y
 �

Theorem ������� 
de�nability for Spcf Let � be a Pcf type� Any 
nite state d
of the cds M� interpreting � in ALGO is de
nable�

Proof
 Let B � K�D�M���			��k�
��
 We take � � � without loss of generality
 Let

� � B� � � � � � B��� ��b�� B
� � � � � � B � B

be a chain from � to B� where �b�� is an abbreviation for b�� � � � b
�
k�
 We shall associate

with B� a term x� � ��� � � � � xk � �k ' P
� � �� as well as an injection i� fromA�B���F �B�

into the set of occurrences of " in P�
 The construction is by a lexicographic induction
on �rank���� �B� �cf
 de	nition �
�
���


�Base case� P � � "�

The only initial cell of M���			��k�
 is ���� and we associate with it the unique occur�
rence of " in P � 


�Induction case� Let P��� � C�"�� where C is the context corresponding to �b�� �that
is� u � i�����b���� where u is the unique occurrence of the unique hole � � of C�
 We
distinguish the following cases�

�
 ��b��� output n� � B
 Then we set P� � C�n�
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�
 ��b��� valof c�i� � B� for some c � A�b�i �
 Any cell in �A�B���� � F �B�� nA�B��
has the form b� � � � bi��bbi�� � � � bk�� where b � bi�f�c� u�g for some u� and is thus
determined by this u
 Let �i � �� � � � � � �l � � and c � a� � � �al�
 The set
U� of the u�s can be decomposed as follows�

U� �

���������
foutput n�� � � � � output nq�g �
fvalof c����� � � � � valof c�q� ��g � � � ��
fvalof cj��j� � � � � valof cjqj �jg � � � ��
fvalof cl��l� � � � � valof clql �lg �

We further analyze the type �j � �� � � � � � �p � �
 Let us consider an
auxiliary type ��j � �� � � � � � �p � � � � � � � �� of p � qj arguments
 Cells

�and observable states� can be injected from M�j to M��j in the following way�
a cell d � z� � � � zp� becomes %d � z� � � � zp� � � ���� and an observable state a

becomes %a � f� %d� u� j �d� u� � ag
 We set

a�j � caj � f�ccj�� valof ���p� ���g � � � �� f�dcjqj � valof ���p� qj��g�

In particular� if qj � �� then a�j � aj 
 Since rank���j� � rank��j� 
 rank����� we
can apply induction and get terms M �

�� � � � �M
�
l de	ning a

�
�� � � � � a

�
l
 We set� for all

j � l�
Mj � �z� � � � zp�M

�
jz� � � � zpyj� � � �yjqj

where yj�� � � � � yjqj are fresh and distinct variable names
 Finally we de	ne �using
the syntax of section �
���

R � case catch�S� �F �

where
S � ��y� � � ��yl�xiM� � � �Ml ��yj stands for yj� � � �yjqj � �

and where F is the partial function that places an " at branches matching the
elements of U�
 More precisely�

F �r� �

���������������

" if r 
 q� � � � �� ql
" if r � q� � � � �� ql � n�




" if r � q� � � � �� ql � nq�
unde	ned otherwise

To keep notation readable� we shall write

�valof cjm�j instead of q� � � � �� qj�� �m� �
�output nm instead of q� � � � �� ql � nm �

We set P��� � C�R�


The proof goes via two successive claims
 The de	nition of i� for � � � will be
given in the proof of the second claim
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Claim �� Let c � a� � � �al�� nm �m � q��� and cjm �m � qj� be as above� and let
d�� � � � � dk be observable states such that c � E�di�
 The following properties hold


��� �c� output nm� � di 	 ����� output nm� � ��S����d�� � � � � dk�

��� �c� valof cjm�j� � di 	 ����� valof ��p�m� � ��S����d�� � � � � dk�

��� �c� e� � di 	 ����� e� � ��S����d�� � � � � dk� �

For all observable states d�� � � � � dk� e��� � � �elql � we have� by de	nition of S�

��S����d�� � � � � dk���e�� � � � ��el � di����M�����e��� � � � ����Ml����el��

Thus we are led to examine the ��Mj ����ej �s
 For all observable states z�� � � � � zp� we have�
by de	nition of Mj �M

�
j � and a�j �

��Mj ����ej�z�� � � � �zp � ��M �
j ���z�� � � � �zp��ej

� a�j �z�� � � � �zp��ej

�

�
f��� e�g if �m � qj �cjm � �z and ejm � f��� e�g�
aj�z�� � � � �zp otherwise

where cjm � �z is a shorthand for

cjm � z�m � � �zpm� and �z�m � z�� � � � � zpm � zp��

We single out two consequences of this computation
 First� setting �ej � ��� we get

��Mj ����� � aj � hence

�y� ��S����d�� � � � � dk����� � � � ��� � di�a� � � � �al �

Second� if ejm � f��� e�g and ej� � � � � � ej�m��� � ej�m��� � � � �ejqj � �� then

�z� ��Mj ����ej � aj � f�cjm� e�g�

We now prove property ��� of the claim


����� output nm� � ��S����d�� � � � � dk�
	 ��S����d�� � � � � dk���� � � � �� � f��� nm�g
	 di�a� � � � �al � f��� nm�g �by �y��
	 �c� output nm� � di �by exercise ��
�
� ���� �

Properties ��� and ��� are proved much in the same way� making use of �y�� �z� and
exercise ��
�
� ���� and of exercise ��
�
� ���� respectively


Claim �� For any b� � � � bk� � A�B��� F �B� �abbreviated as �b��� for any observable
states d�� � � � � dk� and for any x� � ��� � � � � xk � �k ' N � ��

��C�N �����d�� � � � � dk� �

�
��N ����d�� � � � � dk� if bi � di for all i � k
B�

�d�� � � � �dk otherwise
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where C is the context associated with �b�


We 	rst show that the statement follows from claim �
 More precisely� we prove�

���x� � � � xk�P
��� � B��

By proposition ��
�
� it is enough to show� for all observable d�� � � � � dk�

��C�"�����d�� � � � � dk� � B�
�d�� � � � �dk�

If bi � di for all i� then

��C�"���d�� � � � � dk��� � ���d�� � � � � dk� �by the claim�
� �

� B�
�d�� � � � �dk �by exercise ��
�
�� since �b� � A�B��� �

Otherwise� the conclusion is given by claim � directly


We now prove claim �
 We write P��� � C�"�� where C is the context associated
with�b��� and P� � C�R�
 Consider�b� � A�B���F �B� �hence� in particular� �b� �� �b���

There are two cases�

�I� �b� � A�B����
 Then we set i���b�� � i�����b��
 We write P��� � D�"��"���� where
D is a context with two holes � � and � �� occurring each once and corresponding to
�b�� and �b�� respectively
 Let now d�� � � � � dk be observable states
 We distinguish three
cases


�A� � i � k bi � di
 By induction we have� for all N �

��� ��C�"��N ������d�� � � � � dk� � ��N ����d�� � � � � dk��

In particular� ��C�"��m������d�� � � � � dk� � f��� m�g �m arbitrary�
 By induction�
we can also suppose that di � ��Qi�� for some Qi� for all i
 Let D � C� �Q��x�

Then ��D�"��m���� � f��� m�g by what we just noticed
 It follows that � � is not a
sequentiality index
 Hence the sequentiality index� which exists by proposition
��
�
��� is � ��
 In particular�

��� ��C�R��"������d�� � � � � dk� � ��

We have to prove ��C�R��N ������d�� � � � � dk� � ��N ����d�� � � � � dk�� for all N 
 We
distinguish two cases


�a� ��N ����d�� � � � � dk� �� �� Then the conclusion follows from ��� by monotonic�
ity


�b� ��N ����d�� � � � � dk� � �� Then the conclusion boils down to ���


�B� �� j bj �� dj� and �� i � k b�i � di�
 By induction� we have� for all L�

��� ��C�L��"������d�� � � � � dk� � ��L����d�� � � � � dk��

and our goal is to prove ��C�R��N ������d�� � � � � dk� � B�
�d�� � � � �dk� for all N 
 We

distinguish three cases
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�a� ��b��� output n� � B�
 Then B�
�d�� � � � �dk � f��� n�g� by the de	nition of �


On the other hand� R � f��� n�g by construction� and the conclusion then
follows from ��� by monotonicity


�b� ��b��� valof c�i� � B� and �c� e� � di
 Then B�
�d�� � � � �dk � f��� e�g
 On

the other hand� by claim �� we have ��catch�S�����d�� � � � � dk� � f��� e�g�
hence ��R����d�� � � � � dk� � f��� e�g The conclusion follows again from ��� by
monotonicity


�c� ��b��� valof c�i� � B� and �c� e� �� di
 Then B
�
�d�� � � � �dk � �
 On the other

hand� since all the branches of R are "�s� we have

��R����d�� � � � � dk� �� � � ��catch�S�����d�� � � � � dk� � f��� e�g�

Hence� by claim ��� and from the assumption �c� e� �� di� we get

��� ��R����d�� � � � � dk� � ��

Reasoning as with ��� above� we conclude from ��� that � � is the sequen�
tiality index
 Hence� for all N �

��� ��C�"��N ������d�� � � � � dk� � ��

The conclusion then follows from ��� and ���


�C� �� j bj �� dj� and �� j� b�j� �� dj��
 By induction we have� for all N and L�

��� ��C�"��N ������d�� � � � � dk� � B�
�d�� � � � �dk

���� ��C�L��"������d�� � � � � dk� � B�
�d�� � � � �dk �

There are two cases�

�a� B�
�d�� � � � �dk �� �
 Then the conclusion follows from ��� by monotonicity


�b� B�
�d�� � � � �dk �� �
 Then since ���� ���� hold in particular for N � f��� e�g�

L � f��� e�g� respectively� we conclude that neither � � nor � �� can be
sequentiality indexes
 Hence the conclusion ��C�R��N �����d�� � � � � dk� � �
follows� as otherwise there would exist a sequentiality index� by proposition
��
�
��


�II� �b� �� A�B����
 This can only happen if �b�� is 	lled with some valof c�i in B�� and
if �b has the following form�

bj � b�j if j �� i

bi � b�i � f�c� u�g for some u �

By construction� this u is associated with one of the branches of R� which we represent
by means of a context R � Cu�"�
 Then we de	ne i���b�� as the occurrence of � � in
C�Cu�
 We distinguish the same cases as for �I�
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�A� � i � k bi � di
 Our goal is to show ��C�Cu�N ������d�� � � � � dk� � ��N ����d�� � � � � dk�

Since we have a fortiori b�i � di for all i� we have by induction�

�� ��C�Cu�N ������d�� � � � � dk� � ��Cu�N �����d�� � � � � dk��

On the other hand� we have ��catch�S�����d�� � � � � dk� � �u by claim �� since
�c� u� � di
 By the de	nition of Cu� this implies �for all N��

��� ��Cu�N �����d�� � � � � dk� � ��N ����d�� � � � � dk��

Then the conclusion follows from �� and ���


�B� �� j bj �� dj� and �� i � k b�i � di�
 It follows from these assumptions that
b �� di� and that �c� u� �� di
 We still have �� by induction
 Our goal is to show
��C�Cu�N ������d�� � � � � dk� � �B��� � f��b��� valof c�i�g��d�� � � � �dk� for all N 
 By
de	nition of �� we have�

��� �B��� � f��b��� valof c�i�g��d�� � � � �dk �

�
f��� e�g if �c� e� � di
� otherwise �

On the other hand� by the de	nition of Cu� we can have ��Cu�N �����d�� � � � � dk� �� �
only if either of the two following properties hold


�a� ��catch�S�����d�� � � � � dk� � �u 
 This case is impossible by claim �� since
�c� u� �� di


�b� ��catch�S�����d�� � � � � dk� � f��� e�g
 By claim ���� this happens exactly when
�c� e� � di� and then ��Cu�N �����d�� � � � � dk� � f��� e�g

The conclusion follows from this case analysis and from ���


�C� �� j bj �� dj� and �� j� b�j� �� dj��
 We have� for all L�

���� ��C�L�����d�� � � � � dk� � B���
�d�� � � � �dk �by induction�

� B�
�d�� � � � �dk �since b�j� �� dj�� �

Then the conclusion follows by instantiating ���� to L � Cu�N �
 �

Theorem ������� 
full abstraction for Spcf The model of sequential algorithms
is fully abstract for Spcf�

Proof
 Let M and N be such that ��M �� �� ��N ��
 We can assume M�N closed since
currying is monotonic
 By lemma ��
�
�� and by theorem ��
�
��� there exists an
algorithm a de	ned by a closed term F such that

��' FM �� � �a���'M ��� �� �a���' N ��� � ��' FN ���

The context C � F � � witnesses M ��obs N 
 �

Exercise ������� Adapt the proof of theorem ������� to show that the model of ob�
servable algorithms �cf� exercise ������� is fully abstract for Spcf�Err��



Chapter ��

Domains and Realizability

Kleene �Kle�� 	rst introduced a realizability interpretation of Heyting arith�
metic �HA� as a tool for proving its consistency� This interpretation provides a
standard link between constructive mathematics �as formalized in HA� and clas�
sical recursion theory� Moreover� it has the merit of giving a solid mathematical
content to Brouwer�Heyting�Kolmogorov explanation of constructive proofs �see�
e�g�� �TvD�����

Let us consider Peano arithmetic formalized in an intuitionistic 	rst order
logic with equality and a signature with symbols � for zero� and s for successor�
Let N be the intended interpretation of the signature over the structure of natural
numbers� We write N j� t � s if the formula t � s is valid in N � We de	ne a
realizability binary relation k� � � � Form between numbers and formulae� by
induction on the formulae� as follows�

nk�t � s if N j� t � s
nk�� � � if ��nk�� and ��nk�� ���
nk�� � � if ���n � � and ��nk��� or ���n � � and ��nk���
nk�� � � if for each m �mk�� implies fngmk��� �
�
nk�	x�� if for each m �fngm  and fngmk���m�x�� ���
nk��x�� if ��nk�����n�x�

where� ��� ��� ��� are the 	rst and second projections with respect to an injective
coding h � i � �� � �� �
� fngm is the n�th Turing machine applied to the
input m� ��� m is a numeral in the system HA corresponding to the natural
number m� We note that the formula � is never realized� t  denotes the
fact that the expression t is de	ned� Kleene�s equality �� is de	ned as t �� s
i� �t  � s  � and �t  
 t � s�� In the standard equality the arguments are
supposed de	ned t � s implies t  and s  � Whenever ts  it is the case that
t  and s  �

Let us turn towards potential applications of this interpretation� To any
formula � in HA we can associate the set ����� of its realizers ����� � fn j nk��g�
It is easy to prove a soundness theorem saying that any provable formula in HA


�
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has a non empty collection of realizers �i�e� it is realizable�� The consistency of
HA is an immediate corollary� More interestingly� realizability can be used to
check the consistency of various extensions of Heyting arithmetic� For instance
let us consider the formalization in HA of two popular axiom schemata known
as Church Thesis �CT � and Markov Principle �MP�� In the following � is a
primitive recursive predicate� i�e� a formula without unbounded quanti	cations�

 �CT � 	n�� m���n�m� � �k�	n��m����n�Um�� Tknm�

Where U is a function and T is a predicate �called Kleene predicate� such that
k�n� �� U��mTknm� �� is the minimalization operator� cf� appendix A�� In�
tuitively� Um is the 	nal result of a computation m� and Tknm holds i� the
program k with input n produces a terminating computation m� Church thesis
states that any single�valued relation over the natural numbers that is de	nable
in HA is computable by some recursive function� The reason being that from
any �constructive� proof of a '�

� sentence� 	n�� m���n�m�� we can �e�ectively�
extract an algorithm that given n 	nds the m such that ��n�m��

 �MP� �	n����n� � ���n�� � ���n���n�� � �n���n�

The intuition behind �MP� is the following� if we have a decidable predicate
�	n����n� � ���n�� and an oracle that tells us that such predicate is non�empty
����n���n�� then we can e�ectively 	nd an element satisfying the predicate
simply by enumerating the candidates and checking the predicate on them�

�CT � and �MP� are not provable in HA but they can be consistently added to it�
This fact� which is not obvious� can be proved by showing that �CT � and �MP�
are realized in Kleene interpretation�

Having provided some historical and technical perspective on realizability we
can outline the main theme of this chapter� Our goal is to generalize Kleene in�
terpretation in two respects� ��� We want to model Type Theories �not just HA��
�
� We want to interpret Proofs(Programs and not just Propositions(Types� In
order to obtain some results in this direction we will concentrate on a special
class of �realizability models�� Two basic features of these models are�

��� Types can be regarded as constructive sets�

�
� There is a distinction between a typed value and its untyped realizers�

The 	rst feature relates to a general programme known as synthetic domain the�
ory �see �Hyl���� that advocates the construction of a mathematical framework
in which data types can be regarded as sets� A number of examples show that
classical set theory is not well�suited to this purpose� think of models for recur�
sive functions de	nitions� untyped ��calculus� and polymorphism� On the other
hand some promising results have been obtained when working in a universe of
constructive sets� In particular realizability has been the part of constructive
mathematics that has been more successful in implementing this plan� Histori�
cally this programme was 	rst pushed by Scott and his students McCarty and
Rosolini �McC�� Ros���� whose work relates in particular to the e�ective topos



��

�Hyl�
� �but see also �Mul��� for another approach�� Related results can be found
in �Ama��� AP��� FMRS�
� Pho���� In a realizability universe the size of func�
tion spaces� and dependent and second order products can be surprisingly small�
A typical result is the validity of a Uniformity Principle which plays an important
role in the interpretation of second order quanti	cation as intersection �more on
this in section ���
��

The second feature relates to the way �constructivity� is built into the re�
alizability model� We rely on a partial combinatory algebra �pca� which is an
untyped applicative structure satisfying weaker requirements than a ��model�
We build over a pca� say D� a set�theoretical universe where every set� say X�
is equipped with a realizability relation k�X � D �X� If dk�Xx then d can be
regarded as a realizer of x� Morphisms between the �sets� �X� k�

X
� and �Y� k�

Y
�

are set�theoretical functions between X and Y that can be actually realized in
the underlying pca in a sense that we will make clear later� In the program�
ming practice there is a distinction between the explicitly typed program which
is o�ered to the type�checker� and its untyped run time representation which is
actually executed� Intuitively the typed�terms �x � nat�x and �x � bool�x may
well have the same run�time representation� say �x�x� This aspect is ignored by
the domain�theoretical interpretation we have considered so far� In this interpre�
tation �x � nat�x and �x � bool�x live in di�erent universes� Realizers can also
be regarded as untyped �implementations� of typed programs� Models based on
realizability o�er a two�levels view of computation� one at a typed and another
at an untyped level� This aspect will be exploited to provide an interpretation of
type�assignment �section ����� and subtyping systems �section ������

The technical contents of the chapter is organised as follows� In section ����
we build a category of D�sets over a pca D� These are sets equipped with a
realizability relation �as described above� and provide a nice generalization of
Kleene realizability�

In section ���
 we interpret system F �cf� chapter ��� in the category of partial
equivalence relations �per� which is a particularly well behaved subcategory of the
category of D�sets�

In section ���� we exploit the two�levels structure of realizability models to
interpret type�assignment systems which are formal systems where types are as�
signed to untyped terms �cf� section ����� We prove a completeness theorem by
relying on a standard term model construction�

In section ��� we study the notion of partiality in the category of partial
equivalence relations and obtain in this way a pCCC of per�s� We exploit the
dominance $ of the pCCC to de	ne an �intrinsic� preorder on the points of a
per� The full subcategory of the per�s for which this preorder is a partial order
�i�e� antisymmetric� forms a re�ective subcategory of the category of per�s� We
refer to these per�s as separated per�s or $�per�s for short�

In section ���� we work with Kleene�s pca ��� �� and we introduce a subcat�
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egory of complete separated per�s which have lub�s of �e�ectively given� chains�
In this framework we prove a generalization of Myhill�Shepherdson theorem �cf�
chapter �� asserting that all realized functions are Scott�continuous�

In section ���� we concentrate on a D� ��model and identify in this framework
a full subcategory of complete� uniform per�s� where we can solve recursive domain
equations up to equality�

In section ���� we introduce a theory of subtyping for recursive types and
present a sound interpretation in the category of complete uniform per�s�

�	�� A Universe of Realizable Sets

In Kleene interpretation the basic realizability structure is given by the collection
of natural numbers with an operation of partial application of a number� seen as
a program� to another number� seen as an input� A convenient generalization of
this notion is that of partial combinatory algebra �cf� �Bet�����

De�nition ������ �partial combinatory algebra� A partial combinatory al�
gebra �pca� is a structure D � �D� k� s� �� where k� s � D� � � D � D � D� and
kxy � x� sxy  � and sxyz �� xz�yz��

In the following� the application t�s is abbreviated as ts� Whenever ts  it is
the case that t  and s  � In pca�s it is possible to simulate ��abstraction� Let
D be a pca and let t be a closed term over the pca enriched with a constant d
for every element d � D� Clearly every term either denotes an element in D or
is unde	ned� Given a term t we de	ne inductively on the structure of t� a new
term ��d�t in which the element d is �abstracted��

��d�d � skk
��d�t � kt �d does not occur in t�
��d�ts � s���d�t����d�s� �

It is easy to verify that for any d � D� ���d�t�d �� t�

Example ������ ��� An important example of pca is Kleene�s ��� �� where � is
the set of natural numbers and n�m is the n�th Turing machine applied to the
input m� �
� Another canonical example of pca is that of a non�trivial domain D
that is a retract of its partial function space� �D � D� � D� in the category of
directed complete partial orders and partial continuous morphisms�

Given a pca we have to decide how to interpret formulas and proofs� and
more generally types and programs� In Kleene interpretation� formulas are inter�
preted as subsets of natural numbers� on the other hand no mention is made of
morphisms� hence no obvious interpretation of proofs is available�
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The 	rst attempt could consist in interpreting types as subsets of the realiz�
ability structure� But in order to have a model of type theory we need at least
a CCC� so which are the morphisms� It is clear that� to build an interesting
structure� morphisms have to be somehow realized� It appears that some struc�
ture is missing to get a CCC� for this reason we seek a 	ner description of types�
Rather than identifying types with a collection of realizers we consider a type as
a partial equivalence relation �per� over the collection of realizers� There is now
an obvious notion of morphism that makes the category into a CCC�

Supposing A�B� � � � binary relations over a set D we write dAe as an abbre�
viation for �d� e� � A and we set�

�d�A � fe � D j dAeg �A� � f�d�A j dAdg jAj � fd � D j dAdg �

De�nition ������ �partial equivalence relations� Let D be a pca� The cat�
egory of per�s over D �perD� is de�ned as follows

perD � fA j A � D �D and A is symmetric and transitiveg
perD�A�B� � ff � �A� � �B� j �� � D 	d � D �dAd 
 �d � f��d�A��g �

If � is a realizer for the morphism f � A � B� i�e� 	d � D �dAd 
 �d �
f��d�A��� we may denote f with ���A�B �consistently with the de	nition of expo�
nent in perD given in the following proposition��

Theorem ������ �perD is a CCC� The category� perD� of partial equivalence
relations over a pca D is cartesian closed�

Proof� Mimicking what is done in the ��calculus� we can de	ne pairing as
hd�� d�i ! ��p��pd��d�� and projections as ��d ! dk and ��d ! d�k�skk���

 Terminal object� We set � � D �D� For any d � D the �constant function�
��e�d realizes the unique morphism from a per A into ��

 Product� We de	ne for the product per�

dA�B e i� ��dA��e and ��dB ��e �

It is immediate to verify that pairing and projections in the pca realize the pairing
and projections morphisms of the category�

 Exponent� We de	ne for the exponent per�

hBA k i� 	d� e �dAe 
 hdB ke� �

Morphisms can be regarded as equivalence classes� The evaluation is realized by
��d����d����d�� the natural isomorphism � is realized by ������c���a��ha� ci� �

The following exercises should motivate the shift from subsets of D to per�s�
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Exercise ������ One can identify the subsets of the realizability structure with those
per�s that have at most one equivalence relation� Show that the full subcategory com�
posed of these per�s is cartesian closed� but each object is either initial or terminal�

Exercise ������ Consider a category of per�s over the pca D� say C� in which� as
above� per�s have at most one equivalence relation but where morphisms are de
ned as
follows� C�A�B� � f� � D j �d � D �d � jAj � �d � jBj�g� Show that C is not
cartesian closed�

Exercise ������ Show that perD has all 
nite limits and colimits�

Given a pca D we introduce the category of D�sets in which we can pin�
point a full re�ective sub�category of modest sets� say MD� that is equivalent
to perD� The category of D�sets intuitively justi	es our claim of working in a
�constructive� universe of sets� Formally one can show that D�sets form a full
subcategory of the e�ective topos �Hyl�
�� �

De�nition ������ A D�set is a pair �X� k�X� where X is a set and k�X � D�X
is an onto realizability relation that is 	x � X �d � D dk�Xx� A morphism of
D�sets� say f � �X� k�X� � �Y� k�Y �� is a function f � X � Y � such that

�� � D 	d� x �dk�Xx 
 �dk�Y f�x�� �

A D�set �X� k�X� is modest if the relation k�X is single valued� that is dk�Xx
and dk�Xy implies x � y� We denote with D�set the category of D�sets and with
MD the full subcategory of modest sets�

Proposition �����	 ��� The categories MD and perD are equivalent�
�
� The category MD is a re�ective subcategory of D�set�

Proof� ��� To the modest set �X� k�X� we associate the per P �X� k�X� de	ned
as�

dP �X� k�X� e i� �x � X �dk�Xx and ek�Xx� �

�
� The basic observation is that if f � �X� k�X� � �Y� k�Y � where �Y� k�Y � is
modest then�

dk�Xx and dk�Xy 
 f�x� � f�y� �

If f is realized by � then �dk�Y f�x� and �dk�Y f�y�� which forces f�x� � f�y��
Let us now describe how to associate a modest set �Y� k�

Y
� to a D�set �X� k�

X
��

First we de	ne a relation R over X as�

xRy i� �d � D �dk�Xx and dk�Xy� �

�A topos is an intuitionistic generalization of set theory formalized in the language of category
theory�
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��x��� � ��x�
���x�P ��� � ��d���P ����d�x�
��PQ�� � ���P �������Q����

Figure ����� Interpretation of ��terms in a pca

Let R� denote the equivalence relation obtained by the transitive closure of R�
We consider the quotient set Y � �X�R� equipped with the relation k�

Y
de	ned

as follows�

dk�
Y

�x�R� i� �z � �x�R� dk�
X
z �

The pair �Y� k�Y � is the modest set we looked for� �

�	�� Interpretation of System F

We de	ne an interpretation of system F �cf� chapter ��� in the category of per�s�
Since perD is a CCC we already know how to interpret the simply typed fragment
of system F� On the other hand the interpretation of the clauses �	I� and �	E�
is more problematic� In order to show that the interpretation is well de	ned we
introduce an auxiliary interpretation of the underlying untyped ��terms which
allows to express a certain uniformity of the main interpretation with respect to
type abstraction and type application�

De�nition ������ �type interpretation� Let Tvar be the set of type variables�
Given a type environment� say � � Tvar � perD� the interpretation of a type is
a per de�ned by induction as follows

��t��� � ��t�
��� � � ��� � ��� ���������

��	t����� �
T
A�perD �������A�t� �

Let V ar denote the set of term variables and � � V ar � D be an environment�
In 	gure ���� we de	ne the interpretation of an untyped ��term in the pca D�

Theorem ������ Suppose ! � M � �� where ! ! x� � ��� � � � � xn � �n� then for
any type assignment �� and for any di� ei such that di ������ei� for i � �� � � � � n� we
have

���er�M� � �����d��x�� �������� ���er�M� � �����e��x�� �
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Proof� This is a simple induction on the length of the typing judgment� and can
be regarded as yet another variation on the fundamental lemma of logical rela�
tions ����� �Asmp� is satis	ed by hypothesis� The interpretations for ��I� and
��E� just use the realizers of the natural transformation � and of the evaluation
morphism� The crucial point is �	I� where we use the side condition t �� FVt�!��
�	E� follows by the interpretation of second order quanti	cation as intersection�
��

The basic idea is to interpret a typed term as the equivalence class in the ap�
propriate per of the interpretation of the erased term� Given ! ! x� � ��� � � � � xn �
�n and � type environment let

��!��� � �� � � �� � �������� � � � � � ���n���� �

The interpretation of a term ! � M � � should be a morphism f � ��!��� � �������
Equivalently� we can determine this morphism by taking the equivalence class of
a realizer � in the exponent per ��������������� The existence of the realizer � follows
by theorem ���
�
� Hence we have the following de	nition�

De�nition ������ �typed term interpretation� Given a type environment �
the interpretation of a judgment ! � M � � in system F is de�ned as follows

��! � M � ���� � ���d���er�M���� ��n�id��xi��������������

where �n�i�d� � ������� � � ���d���� with �� iterated �n� i� times�

Exercise ������ ��� Show that two terms with the same type and with identical era�
sures receive the same interpretation in per models� ��� Verify that 	��convertible terms
are equated in per models�

The interpretation in perD can be extended to handle dependent types� In
the following we outline some results in this direction�

De�nition ������ Given a D�set �X� k�
X

� and a function F � X � D�set we
de�ne the D�set ��'XF �� k��F � as follows �cf� section �����

 �'XF � � ff � 'XF j �� � D�k��Ffg�

 �k��F f if 	x � X 	d � D �dk�Xx 
 �dk�F �x�f�x��

If we look at modest sets as the collection of types then a function F � X �
MD can be regarded as a dependent type� It is easy to prove the following
exercise�

Exercise ������ In the hypotheses of de
nition ������� if F � X �MD then the D�set
���XF �� k��F � is modest� Hint� check that k��F is single valued using the fact that
the realizability relations associated to modest sets are single valued�
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The construction de	ned above can be shown to be a categorical product in
a suitable framework�

Exercise ������ � De
ne an interpretation of the system LF �cf� chapter ��� in the
category of D�sets�

In 	gure ���� we have interpreted second order universal quanti	cation as
intersection� Actually� this interpretation is compatible with the idea that a
universal quanti	cation is interpreted as a product� We hint to this fact and
refer to �LM�
� for a more extended discussion� Since MD is not a small category
we consider transformations F � perD � MD� Moreover we regard the collection
of per�s as a D�set� say per

D
� by equipping it with the full realizability relation

per
D

� �perD�D � perD��

Proposition ������ Given a function F � per
D
�MD� we have

��'perF �� k��F � ��
	

A per

P �F �A�� �

Where if �X� k�X� is a modest set then P �X� k�X� is the corresponding per� as
de�ned in proposition �������

Proof hint� The isomorphism from the product to the intersection is realized
by �����d�� for some d� � D� and its inverse is realized by ��d��d��d� �

�	�� Interpretation of Type Assignment

We consider the problem of building complete formal systems for assigning types
to untyped ��terms �CF��� BCD��� Hin���� In chapter  we have referred to
this approach as typing )a la Curry and we have pointed out its relevance in the
de	nition of algorithms that reconstruct automatically the type information that
is not explicitly available in the program�

We develop a type assignment system that is parametric with respect to� ���
a ��theory E� and �
� a collection of typing hypotheses B on variables and closed
��terms� To interpret type assignment we introduce type structures which are a
slight generalization of per models�

De�nition ������ A type frame T is made up of three components
��� A �
�model �D� ���
�
� A collection T � perD closed under exponentiation

X�Y � T implies Y X � T �

��� A collection �T � T � � Set�T� T � closed under intersection

F � �T � T � implies
	
A�T

F �A� � T �
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Condition ��� is natural since we consider systems to assign types to ��terms
and not to combinators� Conditions �
� and ��� are obvious generalizations of
properties satis	ed by the per model� The type interpretation de	ned in ���
��
generalizes immediately to an arbitrary type frame�

De�nition ������ The types of system F are interpreted in a type frame T para�
metrically with respect to a type environment � � Tvar � T as follows

��t��� � ��t�
��� � � ��� � ��� ���������

��	t����� �
T
A�T �������A�t� �

A type frame is a type structure whenever the interpretation of intersection is
correct� that is for any �� �A � T��������A�t� � �T � T � �cf� de�nition of ��model
in chapter ���

De�nition ������ A type structure has no empty types if 	A � T �A �� ���

Exercise ������ Give an example of type structure without empty types�

A type free ��term is interpreted in the �
�model �D� �� according to the
de	nition ��
�
� We recall that the interpretation is parametric in an environment
��

De�nition ������ �basis� A basis B is a set fPi � �igi�I where Pi is either a
closed untyped ��term or a variable� and all variables are distinct�

Let us 	x an untyped ��theory� say E� �cf� chapter �� We de	ne a system
to assign types to untyped ��terms assuming a basis B and modulo a ��theory
E� For instance� we may be interested in a system to type terms under a basis
B � f�x�x � t � sg and modulo the ��� rule� The basis B asserts that every
term having type t has also type s and the rule ��� forces extensionality�

De�nition ������ �type assignment system� Given a ��theory E we de�ne
in �gure ���
 a type assignment system whose judgments are of the form B � P �
�� where B is a basis� P is an untyped ��term� and � is a type of system F�

De�nition ����� �interpretation� Let T be a type structure over the ��model
D and let Th�D� be the ��theory induced by D �cf� chapter 	�� We write T j� E
if E � Th�D�� Given a type structure T such that T j� E we write

B j�T P � � if 	� � V ar � D� � � Tvar � T ��� � j� B 
 �� � j� P � ��
�� � j� P � � if ��P ��� � j������j
�� � j� fPi � �igi�I if 	i � I ��� � j� Pi � �i� �

When the type structure is �xed we omit writing T �
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�Asmp�
P � � � B

B � P � �

�Eq�
B � P � � � P �E P �

B � P � �

�weak �
B � P � � B �B� well�formed

B �B� � P � �

�rmv�
B � fx � �g � P � � x �� FV �P �

B � P � �

��I�
B � fx � �g � P � �
B � �x�P � � � �

���
I �

B � �x�Px � � � � x �� FV �P �
B � P � � � �

��E�
B � P � � � � B � Q � �

B � PQ � �

�	I�
B � P � � t �� FVt�B�

B � P � 	t��

�	E�
B � P � 	t��
B � P � ����t�

Figure ���
� Type assignment system for second order types
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Proposition ������ �soundness� Let T be a type structure without empty types
such that T j� E� If B � P � � �modulo E� then B j�T P � ��

Proof� The statement is not obvious because of the ��I� rule� For the sake of
simplicity we suppose �� � closed� Then we have�

x � � j� x � � i� j�����j � j��� ��j
j� �x�x � � � � i� ����� � ��� �� �

For this reason we have to generalize our statement� We de	ne�

��x���y�P ! �x� � � � �xn��y� � � � �ym�P
�� � �� � � ! �� � � � � � �n � �� � � � � � �m � �

where n�m � �� fx� � ��� � � � � xn � �ng � B� yj �� dom�B�� for j � �� � � � �m�
With these conventions we show by induction on the length of the derivation�
B � P � � 
 B j� ��x���y�P � �� � �� � �� �

Remark �����	 For a type structure with empty types the rule �rmv � is not
sound as from an hypothesis which is never realized we can derive everything�
For instance we have fx � 	t�tg j�per �x�x � 	t�t and j��per�x�x � 	t�t� If we
eliminate the rule �rmv� then the type assignment system is sound for arbitrary
type structures�

The type assignment system in 	gure ���
 is sound and complete to derive all
judgments which are valid in type structures without empty types� This result
can be extended to arbitrary type structures �Mit���� In this case one introduces
additional rules to reason about types� emptyness� For instance� one may enrich
the basis with assertions empty��� which hold if ��s interpretation is empty and
then add the following typing rules�

fx � �� empty���g � M � �
B � fx � �g � M � � B � fempty���g � M � �

B � M � �
�

Exercise ������� Check the soundness of the typing rules above�

Theorem ������� �completeness� Let E be a ��theory and B be a basis� It is
possible to build a type structure without empty types TE�B over the term �
�model
induced by the ��theory E so that

B � P � � i� B j�TE�B P � � �

Proof� The proof can be decomposed in two parts� ��� The proof that we can
conservatively adjoin to the basis B a countable collection of type assignments
xi � �� where � is any type� i � �� and xi is a fresh variable� �
� The construction
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of a type structure starting from a basis B� containing countably many type
assignments xi � ��

Proof of ���� Let  be an injective substitution from �type� variables to �type�
variables such that Varncod� � and Tvarncod� � are in	nite� We observe that�

B � P � � i�  �B � P � ��

where the substitution is distributed componentwise� Given �i� a basis B� �ii� an
enumeration of the types f�igi�� where each type occurs countably many times�
�iii� an injective substitution  as above� and �iv� a sequence fxigi�� of distinct
variables such that fxigi�� � cod� � � �� we de	ne�

B� � f �P � �� j P � � � Bg � fxi � �igi�� �

The following facts can be easily veri	ed�

 Given a type structure without empty types T such that T j� E�

B j�T P � � i� B� j�T  �P � �� �

Hint� Since types are non�empty we can canonically extend any �� � such that
�� � j� B to ��� �� such that ��� �� j� B��

 If B� �  �P � �� then B � P � �� Hint� Use 	rst compactness �if there is
a proof� there is a proof that uses a 	nite part of the basis� to get a derivation
with respect to a 	nite basis� then use �rmv� to eliminate the remaining adjoined
variables�

Proof of �
�� Given a basis B� as above� we de	ne a type structure TE�B without
empty types as follows�

��� Let D be the term �
�model induced by the ��theory E �cf� chapter �� Let
�P � denote a generic element in D� that is the equivalence class of P modulo E�

�
� We consider the collection of per�s T � fh�i j � typeg de	ned as follows�

�P �h�i�Q� i� B � � P � � and B� � Q � � �

��� As for the type functionals we consider the �de	nable� ones�

�T � T � � fF � T � T j ��� t F �h� i� � h����t�ig �

Next we verify that this is a type structure without empty types�

 The type structure is without empty types because xi � 	t�t � B��

 Closure under exponentiation amounts to verify�

�P �h� � � i�Q� i� 	�P ��� �Q�� ��P ��h�i�Q�� 
 �PP ��h� i�QQ��� �
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Hint� The direction ��� follows from the following deduction where x is a variable
adjoined to the basis B�

B� � x � � 
 B � � Px � �

 B � � �x�Px � � � � by ��I�

 B � � P � � � � by ���

I � �

 Closure under intersection follows from�

�P �h	t��i�Q� i� for all � ��P �h����t�i�Q�� �

If B � P � � then B j�TE�B P � �� by soundness� Vice versa suppose B j�TE�B P � ��
Then B� j�TE�B  �P � ��� Pick up the environment �o� �o de	ned as�

�o�x� � �x� �o�t� � hti �

One can check �o� �o j� B�� From this we know �o� �o j�  �P � �� which is the
same as B� �  �P � ��� Hence we can extract a proof of B � P � �� �

�	�� Partiality and Separation in per

In the following we concentrate on the problem of giving a per interpretation of
type theories including recursion on terms and types� As usual we are naturally
led towards a notion of complete partially ordered set� At the same time we
want to stay faithful to our goal of regarding data types as particular sets of
our realizability universe� Hence we look for a collection of �sets� on which it is
possible to 	nd an intrinsic order that is preserved by all set�theoretical functions�
The method will be that of restricting the attention to full subcategories of perD�
Hence� as in the classical approach described in chapter � we restrict our attention
to certain sets endowed with structure� however� as opposed to that approach�
we consider all �set�theoretic� functions and not just the continuous ones� The
fact that functions are continuous is a theorem and not an hypothesis�

In chapter � we have introduced some basic notions about partial cartesian
closed categories �pCCC� and their properties� We recall that every pCCC has an
object $� called dominance� that classi	es the admissible subobjects� In a pCCC
the morphisms from an object a to the dominance $ play the role of convergence
tests� These tests induce a preorder �a on the points of an object� The idea
of ordering points by tests bears a striking analogy with the one encountered in
operational semantics of ordering terms by observations� Following �Ros��� we
focus on the full subcategory of separated objects� which are composed of those
objects for which �a is antisymmetric�

By convention� we write x � a to indicate that x is a point of a� that is a
morphism x � � � a� Since we will be dealing with CCC�s and pCCC�s we
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confuse points in the objects a � b and a � b with morphisms in C�a� b� and
pC�a� b�� respectively� For instance� f � a � b can be seen both as a morphism
from a to b and as a point in a � b� We introduce a convergence predicate� say
"� as follows� if x � a� p � �m� f � � a � b� with m � d � a� f � d � b then�

p � x " i� �h � � � d �m � h � x��

We write p � a � b and p � a � �b�� interchangeably� When x is a point� we shall
often abbreviate p � x with px�

De�nition ������ �intrinsic preorder� Let �C�M� be a pCCC with dominance
$� and a be an object of C� We de�ne a preorder �a� called intrinsic preorder�
on the points of a as

x �a y i� 	p � a � $ �p � x " implies p � y "� �

The intuition is that x is less then y in a� if every convergence test p � a � $
that succeeds on x also succeeds on y� In the following we also write p �x � p � y
for �p � x "
 p � y "� and p � x �� p � y for �p � x "� p � y "��

De�nition ������ �category of $
objects� Given a pCCC �C�M� with dom�
inance $ we denote with $C the full subcategory of C whose objects enjoy the
property that the intrinsic preorder is anti�symmetric� An object a such that �a

is a partial order is called a $�object or� equivalently� a separated object�

Proposition ������ Let �C�M� be a pCCC with dominance $� Then
��� Morphisms preserve the intrinsic preorder�
�
� $�objects are closed under subobjects�
��� Moreover� if �C�M� has enough points and a is an object then $a is a $�
object�

Proof� ��� Let f � a � b and x� y � a� Suppose x �a y� then given any
p � b � $ we have by hypothesis p � f � x � p � f � y� since p � f � a � $� Hence
f � x �b f � y � b�

�
� Let m � a � b be a mono and b be a $�object� If x and y are two distinct
points in a then m � x and m � y are two distinct points in b� Hence� since b is
a $�object� they are separable by a morphism p � b � $� Then the morphism
p �m separates the points x and y�

��� If f� g � $a and f �� g then� by the enough point assumption� there is a x � a
such that ��f � x �� g � x�� Take �h � $a�h � x � $a � $ as separator for f and
g� �

Partiality is explicitly given in a pca D� and by generalizing basic facts of
recursion theory �i�e� r�e� sets are exactly the domains of computable functions�
it also provides a notion of semi�computable predicate on D� We elaborate this
point in the following�
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De�nition ������ Let D be a pca� for any d � D let dom�d� � fe � D j de  g�
Then we de�ne a collection of semi�computable predicates on D as follows

$�D� � fdom�d� j d � Dg �

The collection of predicates $�D� induces a re	nement preorder on D de	ned
as �this is the untyped intrinsic preorder��

d �D e i� 	W � $�D� �d � W 
 e � W � �

We observe that the operation of application preserves this preorder�

	e � D �d �D d� 
 ed �D ed�� �

Moreover� if the pca is not total then $�D� can be seen as a basis for a topology as�
��� ��D � $�D�� taking respectively the always divergent and always convergent
morphism� �
� If W�W � � $�D� then W �W � � dom���d����x���y�c��ed��e�d�� �
$�D�� where c � D�

We show that given any per� say A� $�D� induces a collection� say $�A��
of semi�computable predicates on A� From this structure it is easy to obtain a
family MD of admissible monos on perD that turns the category into a pCCC�

De�nition ������ Let A � perD� Then we de�ne

$�A� � fB � perD j �B� � �A� and �W � $�D� �jAj �W � jBj�g �

In other words B belongs to $�A� if the equivalence classes in B form a subset
of those in A and there is a set W � $�D� that separates �B� from the other
equivalence classes in �A��

Proposition ������ Let D be a non�total pca� Then $�A� enjoys closure prop�
erties analogous to $�D� ��� �� A � $�A�� and �
� If B�B� � $�A� then
B�� � $�A�� where B�� is the per corresponding to the partial partition �B� � �B���

Proof hint� By applying the related properties of $�D�� �

Remark ����� We observe that if d �D d�� A � perD� and d� d� � jAj then
a fortiori �d�A �A �d��A� Suppose B � $�A� and �d�A � �B�� then there is a
W � $�D� such that jAj � W � jBj� But by hypothesis d� � W and therefore
�d��A � �B�� This fact corresponds to the intuition that if two elements cannot be
separated in the type free universe of the realizability structure D then a fortiori
they cannot be separated in the typed structure of per�s�

De�nition ������ De�ne MD as the following family of monos

m � A� � A � MD�A� i� A� � $�A� and m is the inclusion morphism �
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Note that the morphism m is realized by the identity� It is easy to check
that this collection of monos is indeed admissible� The conditions for identity
and composition are clear� Let us consider the case for the pullbacks� Assume
f � A � B and m � C � B with � realizer of f and jBj � dom��� � jCj� To
construct the pullback consider W � � dom���d����d�� and the related admissible
subobject of A� We leave to the reader the proof of the following propositions�

Proposition �����	 The category �perD�MD� of per�s and partial morphisms
is equivalent to the category pperD de�ned as follows

ObpperD � ObperD
pperD�A�B� � ff � �A� � �B� j �� � D 	d

dAd 
 ���d  � f��d�A�  � and ��d  
 �d � f��d�A��g �

Proposition ������� The category �perD�MD� is a pCCC� The partial expo�
nent is de�ned as

f pexp�A�B� g i� 	d� e �dAe
 fd ��B ge�

where ��B is Kleene equality relativized to B� namely t ��B s i� �t  � s  � and
�t  
 tBs��

We remark that the category perD has enough points� The terminal object
is any per with one equivalence class� say � � D � D� The dominance is $ �
� � � � f���g� where � � fd � D j 	e �de  ��g� and � � fd � D j 	e �de  �g�
We can then specialize de	nition ����
 as follows�

De�nition ������� The category �perD is the full subcategory of perD whose
objects are $�objects�

Proposition ����� can be used to establish some elementary facts about
�perD�

Theorem ������� The category $perD is a full re�ective subcategory of perD�

Proof� The simple idea for obtaining a $per L��A� from the per A is to collapse
equivalence classes that cannot be separated by $�A�� Given a per A and the
intrinsic preorder �A we de	ne an equivalence relation� #A� on �A� as�

�d�A #A �e�A i� d� e � jAj and �d�A �A �e�A and �e�A �A �d�A �

Let the re�ector L� � per� $per be as follows�

dL��A�e i� �d�A #A �e�A for A � per
L��f���d�L��A�� � f��d�A� for f � A � B �
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One can easily verify that� ��� L��A� is a $per� Actually it is the least $per
containing A �as a relation�� �
� dL��A� e implies f��d�A� � f��e�A�� as B is
separated� ��� Every morphism from a per A to a $per B can be uniquely
extended to a morphism from L��A� to B� From these facts it is easy to exhibit
the natural isomorphism of the adjunction� �

The following corollary summarizes our progress� We have managed to build
a full sub�category of per�s that has the same closure properties of perD� and
moreover has an intrinsic notion of partial order that will turn out to be useful
in the interpretation of recursion�

Corollary ������� The category $perD is cartesian closed and it has all limits
and colimits of perD�

Proof� The existence of limits and colimits is guaranteed by the re�ection� Let
us check that $perD is closed under the usual de	nition of exponent in perD�
Suppose B � $perD and f� g � A � B� Suppose that f and g are distinct� then
there is a point x � A such that fx� gx are distinct and� by hypothesis� separable
by means of k � B � $� Then the morphism �h � A � B�k�hx� separates f and
g� �

�	�	 Complete per
s

We are interested in 	nding an analogous of the notion of ��completeness in a
realizability framework� In the 	rst place we need an object N that can play
the role of the natural numbers� More precisely a natural number object �nno�

is a diagram �
�
� N

s
� N that is initial among all diagrams of the shape�

�
x
� A

f
� A� In this section we work over Kleene�s pca ��� �� and we de	ne as

nno�

N � ffng j n � �g �

In particular we shall make use of the fact that for K � fn j nn  g and O �
fK�Kcg� fKcg �� $�O��

We will concentrate on �N ��complete $per�s� that is $per�s such that any
ascending sequence on them� that is de	nable as a morphism in the category� has
a lub with respect to the intrinsic order�

When restricting the attention to complete $per it is possible to prove a vari�
ant of Myhill�Shepherdson�s theorem �see chapter �� asserting that all morphisms
preserve lub�s of chains� This will arise as a corollary of the fact that for any per
A the elements of $�A� are Scott opens�

A corollary of this result is that the full subcategory of complete� separated
per�s can be seen as a sort of pre�O�category in that the morphisms are partially
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ordered� there are lub�s of de�nable chains� and the operation of composition
preserves this structure�

When stating the completeness condition for a $per A we will only be inter�
ested in the existence of the lub�s of the chains� ! � N � A� that are de	nable as
morphisms from the nno N to A�

De�nition ������ We write ! � AS�A� �AS for ascending sequence� if

! � N � A and 	n � N �!n �A !�n � ��� �

Remark ������ Observe that whenever we select a subset of the equivalence
classes of a �separated� per we can naturally consider it as a �separated� per�
For example AS�A� is a subset of �N � A� and U � $�A� is a subset of �A��

According to a constructive reading the existence of the lub of every ascending
sequence implies the existence of a method to 	nd this lub given a realizer for
the sequence� Indeed as soon as we consider the problem of the closure of the
collection of N �complete objects with respect to the function space constructor it
becomes important to have a realizer that uniformly� for every ascending sequence
of a given type� computes the lub �we refer to �Pho��� for more information on
the closure properties of this category�� This motivates the following de	nition�

De�nition ������ A separated per A is complete if 	! � AS�A��
W
A !� where

the existence of lub has to be interpreted constructively� that is

��A � AS�A� � A	! � AS�A� ��A�!� �
�
A

!� �

Since the morphism �A� if it exists� is uniquely determined we will simply
indicate with A rather than with �A��A� a complete separated per�

Remark ������ The category of complete separated per�s is non�trivial as every
separated object A in which all elements are incomparable is complete �one can
de�ne �A � �! � AS�A��!���� where � is the zero of the nno� as every ascending
sequence is constant��

Remark ������ The de�nition of completeness highlights the di�erence between
a classical set�theoretical de�nition �say in a system like ZF � and a constructive
one� When working in a realizability universe it is a good habit to read de��
nitions and theorems constructively� This approach will not be pursued in this
introductory chapter� the problem being that a rigorous exposition requires some
background on the internal logic of the e�ective topos� basically a higher order in�
tuitionistic type theory that includes principles like the countable axiom of choice
�AC��� the computability of all the morphisms on natural numbers �Church The�
sis�� the Uniformity Principle� and Markov Principle �see �Hyl�
���
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De�nition ������ Let A be a per� A subset U of �A� is a Scott open �cf� de�ni�
tion ��
��� and we write U � � �A� i�
��� 	x� y � A �x � U and x �A y 
 y � U�� and
�
� 	! � AS�A� ��

W
A ! � U 
 �n � N�!n � U���

Note that this de	nition makes sense in any preorder� It is immediate to check
that � �A� de	nes a topology over �A��

Theorem ����� If A is a separated� complete per and U � $�A� then U �
� �A��

Proof� The 	rst condition of upward closure follows by the de	nition of intrinsic
order� Take x � U and suppose x �A y� Then y � U as�

x �A y i� 	U � $�A� �x � U 
 y � U� �

The proof of the second condition takes advantage of the speci	c recursion�
theoretical character of the pca ��� ��� indeed the following argument is a keyvault
of the theory�

Consider the set K � fn j nn  g and the per O � fK�Kcg� We observe
fKg � $�O� and fKcg �� $�O�� The predicate nn  i means that the computa�
tion nn of the n�th machine applied to the input n will stop in at most i steps�
This is a decidable predicate�

Now let us proceed by contradiction assuming there is ! � AS�A� such that�

�
�
A

! � U and 	n � N ��!n � U� �

The crucial idea is to build a function h � O � A mapping K to !n� for some n�
and Kc to

W
A !� By the pullback condition we derive the contradiction�

h���U� � fKcg � $�O� �

For any n we de	ne an ascending sequence �i�c�n� i� � N � A� In the following
�k � i�nn  k is the least element k � i such that nn  k�

c�n� i� �

�
!i if ��nn  i�
!��k � i�nn  k� otherwise �

We observe that for any given n if n � K then �i�c�n� i� coincides with the
ascending sequence ! up to the 	rst k such that nn  k and then becomes
de	nitely constant� on the other hand if n � Kc then �i�c�n� i� coincides with
!� We note that �i�c�n� i� � AS�A�� Using the existence of a morphism �A that
uniformly realizes the lub of ascending sequences we de	ne a morphism h � O � A
such that�

h��n�O� � �A��i�c�n� i�� �

We have just observed h��n�O� �
W
A ! if n � Kc and h��n�O� � f!n j n � Ng

otherwise� from this we can obtain the desired contradiction� �
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Remark ������ For the logically inclined reader we mention that this proof by
contradiction can be turned into a constructive proof via Markov Principle�

De�nition �����	 Let A�B be separated per�s� We say that f � A � B preserves
chains if

	! � AS�A� ��
�
A

! � A 
 ��
�
B

f � ! � B and f�
�
A

!� �
�
B

f � !�� �

Proposition ������� Suppose A�B are complete separated per�s� Then any
morphism f � A � B preserves chains and it is Scott continuous�

Proof� ��� Consider ! � AS�A� and assume �
W
A ! � A� In order to show

�
W
B f � ! � f�

W
A !� we prove that for any upper bound y � B of f � ! � AS�B�

we have f�
W
A !� �B y� We recall that�

f�
�
A

!� �B y i� 	U � $�B� �f�
�
A

!� � U 
 y � U� �

Now U � $�B� implies� by the pullback condition of admissible domains� f���U� �
$�A�� that is by theorem ������� f���U� � � �A�� Since f�

W
A !� � U � we haveW

A ! � f���U�� that implies by the de	nition of open set �n � N �!n � f���U���
Therefore �n � N �f�!n� � U�� and this implies y � U �

�
� We take U � � �B� and we consider f���U�� This is upward closed by the
fact that f is monotonic� Moreover� let ! � AS�A� and suppose �

W
A ! � f���U��

Then by hypothesis f�
W
A !� �

W
B f � ! � U � Therefore �n � N�f�!n� � U� i�e�

!n � f���U�� �

Extensional per�s� � So far the theory has been developed in a rather synthetic
and abstract way
 To use the theory in practice it is often useful �if not necessary� to
have a concrete presentation of the denotational model
 For instance we would like to
characterize the order on function spaces� to compute lub�s explicitly�� � � In the following
we introduce a category of extensional per�s for which we can provide answers to these
questions �an even more concrete category based on a di�erent pca will be presented
in the next section�
 The initial idea is to look at per�s of the shape &A
 First we need
to develop a few notions


De�nition ������� 
&�linked A per A is &�linked if for all x� y � �A��

x �A y � �f � & � A �f� � x and f� � y� �

We note that if f� � x and f� � y then x �A y� by monotonicity
 We shall prove
in proposition ��
�
�� that all complete separated per�s are &�linked�� but there are
separated per�s which are not &�linked
 The proof of this fact relies on a rather deep
recursion�theoretical result
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De�nition ������� Let X� Y � � be sets� We say that X is many�reducible to Y and
write X �m Y if there is a total recursive function f such that�

x � X i� f�x� � Y �

The following proposition is due to Post �a proof can be found in �Soa���


Proposition ������� Any r�e� set X is many reducible to the set K � fn j nn �g�
There is an r�e�� non�recursive set to which K cannot be many�reduced�

Proposition ������� ��� If X is a r�e� non�recursive set then A � fX�Xcg is a
separated per where Xc 
A X�
��� The dominance & is isomorphic to the separated per fK�Kcg�
�	� There is an r�e� set such that fX�Xcg is not &�linked�

Proof
 ��� If a partial morphism from fX�Xcg to the terminal object converges on
Xc and diverges on X then it contradicts the hypothesis that X is not recursive


��� We recall that & � f���g where � � fn j �mnm ��g and � � fn j �mnm �g

From & to fKc� Kg consider the morphism realized by the identity
 In the other
direction consider the map realized by ��n���m�nn


��� First we observe for X� Y � ��

X �m Y i� �h � fX�Xcg � fY� Y cg mono such that h�X� � Y �

Then pick up a r
e
� non�recursive set X to which K cannot be many�reduced
 The
separated per fX�Xcg is not &�linked
 �

Hence� we can build two separated per�s having the same order as Sierpinski space
that are not isomorphic�

Exercise ������� Show that there is a set X ( � such that fX�Xcg is not separated�

De�nition ������� Let A � �i�IAi be a product in per with projections f�igi�I � We
say that A is ordered pointwise if

x �A y i� �i � I ��i 
 x �Ai
�i 
 y� �

Proposition ������� ��� The dominance & is &�linked�
��� Let A � �i�IAi be a product of &�linked per�s with projections f�igi�I� Then A is
ordered pointwise and &�linked�
�	� If A is &�linked and �B� � �A� then B is &�linked and the order on B is the
restriction of the order on A�

Proof
 ��� Take the identity function


��� Consider x� y � ��IAi such that �i � I ��i 
 x �Ai
�i 
 y� �x is pointwise smaller

than y�
 By hypothesis�

�i � I �fi � & � Ai �fi 
 � � �i 
 x and fi 
 � � �i 
 y� �



����� COMPLETE PER�S ���

By de�nition of product there is a morphism hfii � �� ��IAi such that �i � hfii � fi�
Then we can derive�

�i � hfii � � � fi � � � �i � x
�i � hfii � � � fi � � � �i � y �

Then hfii � � � x and hfii � � � y� and A is ��linked� In the proof we have only used
the hypothesis that x is pointwise less than y� The map hfii proves that x �A y�

	
� If x �A y then there is a morphism f � �� A such that f	�� � x and f	�� � y�
If x� y � B then f can be restricted to f � � � � B� By monotonicity it follows
x � f �	�� �B f �	�� � y� Vice versa� suppose x �B y� f � A� �� and f	x� � �� then
f can be restricted to B� and by de�nition of intrinsic ordering f	y� � �� �

De�nition ������� The pointwise order �ext on functions f� g � A� B is de�ned as�

f �ext g i� �x � A 	f � x �B g � x� �

The following theorem provides the basic insight into the structure of �A�

Theorem ������� Let A be a per� Then� ��� The per �A is separated and ��linked�
�	� The intrinsic order on �A coincides with the pointwise order�
�
� The per �A is complete�

Proof� We start with the construction of a lub� Let ASext	�A� be the collection of
functions � � N � 	�A� such that �	n� �ext �	n��� that is the collection of ascending
sequences with respect to the pointwise order� We de�ne a function � � ASext	�A� �
�A 	looking at � as � ��

�	�� � �x � A��z � �if 	�n�	n�	x� �� then � �

It is immediately veri�ed that �	�� is the lub of � with respect to the pointwise order�
Next� suppose f� g � A � � and f �ext g� We build h � � � 	�A� such that

h	K� � g and h	Kc� � f � This will prove that �A is ��linked and that the pointwise
and intrinsic orders coincide� Consider a family of chains c	n� i� � A � � de�ned as
follows 	cf� proof theorem �������

c	n� i�	x� �

�
g	x� if nn � i
f	x� otherwise �

We observe that for all n� �i�c	n� i� � ASext 	�A� and that�

�	�i�c	n� i�� �

�
g if n 	 K
f if n 	 Kc �

Then we can de�ne h as speci�ed above� By proposition �����	��� we can conclude
that �A is ��linked� Finally observe that since pointwise and intrinsic order coincide�
the function � proves that �A is complete� �

Basically the same proof technique is used to prove the following result�
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Proposition ������� If A is a complete and separated per then A is ��linked�

Proof� Let x �A y and consider the following family of chains�

c	n� i� �

�
y if nn � i
x otherwise �

Fixed n� the ascending sequence �i�c	n� i� is apparently innocuous� as it can take at
most two values� However for a general per we do not know how to compute the lub
of this sequence� For complete per�s we can use �A to de�ne�

h	n� � �A	�i�c	n� i�� �

Observe that h � fK�Kcg � A with h	K� � y and h	Kc� � x� �

Next we consider a condition stronger than separation and ��linkage which is due
to �FMRS����

De�nition ������� 	extensional per
 A per A is extensional if there is a per B

such that �A� 
 ��B�� We denote with exper the full sub�category of extensional per�s�

Exercise ������� Show that the following is an equivalent de�nition of extensional
per� A is an exper if there is X 
 D such that �A� 
 ��Diag�X��� where Diag	X� �
f	x� x� j x 	 Xg� Hint� for A per� ��A� 
 ��Diag�jAj���

Proposition ������� Let �A� 
 ��B� be an extensional per� Then�
��� A is separated and ��linked�
�	� If f� g � A then f �A g i� �b � B 	f � b �� g � b��

Proof� 	� By proposition ����
� every per �B is separated� and separated per�s
are closed under subobject� By theorem ������ �B is ��linked and by proposition
������ ��linked per�s are closed under subobjects obtained by selecting a subset of
the quotient space�

	�� By proposition ������ f �A g i� f ��B g� By theorem ������ we know that
the order on �B is pointwise� �

Theorem ������� The category exper is reective in the category of separated per�s�

Proof� We use A � � as a linear notation for �A� We already know that every
extensional per is separated� We de�ne a re�ector Lex � �per� exper as follows�

�Lex	A�� � f���u�ud��A����� j d 	 jAjg �

This is an exper as by de�nition �Lex	A�� 
 �	A� ��� ��� The universal morphism
eA � A� Lex	A� is the one realized by ��d���u�ud� Intuitively it takes an element d to
the collection of its neighbourhoods ��u�ud� By construction eA is an epi� moreover it
is also a mono if A is separated� Note that Lex can also work as a re�ector from per
to exper�
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Next we show that if B is extensional then eB � B � Lex	B� is an iso� Sup�
pose �B� 
 �C � ��� We take e��B � Lex	B� � B as the morphism realized by
��i���c�i	��u�uc�� Let us try to type� semantically� this term� First one can check that�

��i���c�i	��u�uc� 	 j		B � ��� ��� 	C � ��j �

Since B 
 	C � ��� we can �coerce� u from B to C � �� Since Lex	B� 
 	B �
��� �� we can also type the term as follows�

��i���c�i	��u�uc� 	 jLex	B�� 	C � ��j � 	���

Finally� looking at the de�nition of Lex	B� we can prove

��i���c�i	��u�uc� 	 jLex	B�� Bj �

Suppose � Lex	B� �
�� Then there is f 	 jBj such that

� 	B � ��� ���v�vf 	B � ��� � �� �

We compute�

	��i���c�i	��u�uc��	��v�vf� � ��c�	��v�vf�	��u�uc��
� ��c�	��u�uc�f
� ��c�fc �

From the typing �� we derive�

��c��	��u�uc� 	C� ����c�fc 	C � ����c���	��u�uc� �

Since� ��c�fc	C � ��f and f 	 jBj� it follows ��c��	��u�uc�B��c���	��u�uc�� To show
that e��B is an iso� we compute the realizers�

	��i���c�i	��u�uc��	��dw�wd�f � 	��i���c�i	��u�uc��	��w�wf�
� ��c�	��w�wf�	��u�uc�
� ��c�fc �

Vice versa 	��dw�wd�	��c�fc� � ��w�w	��c�fc�� Finally� given 	 	 jA� Bj we de�ne
	� 	 jLex	A�� Lex	B�j as follows�

	� � ��i���u�i	��a�u		a�� �

If f � �	�A�B set Lex	f� � �	��Lex�A��Lex�B�� �

Theorem ������� ��� The categories of extensional per�s and complete extensional
per�s are closed under arbitrary intersections�

�	� The category of complete extensional per�s �cexper� is reective in exper�
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Proof hint� 	� If �Ai� 
 ��Bi � for i 	 I � then �
T
i�I Ai� 
 ��

S
i�I

Bi �� This shows that
exper is closed under arbitrary intersections� Note that the �xed point combinator
� de�ned in the proof of theorem ����� has a realizer that works uniformly on all
ascending sequence� This realizer can be used to prove that

T
i�I Ai is complete if the

Ai�s are complete�

	�� Suppose �A� 
 ��B�� We de�ne the re�ection Lc	A� as the least cexper such that�

�A� 
 Lc	A� 
 ��B� �

If 	k�f � A� B for A exper and B cexper then let Lc	f� � �	�BLc�A� � We use the fact
that realized functions are continuous to show that Lc	f� is well�de�ned� �

Exercise ������ Show that the category of �complete� extensional per�s is cartesian
closed�

To summarize we have proven the following re�ections when working over the pca
	
� ���

cexper � exper � �per � per � 
�set �

From left to right� theorem ������� theorem ������� theorem ������ and proposition

����� The category of complete separated per�s can also be shown to be re�ective

in �per when appropriately formulated in the internal language of the e�ective topos

�Pho���� however this proof lies outside the realm of our introductive approach to

realizability�

���� Per�s over D�

We identify a category of complete uniform per�s �cuper�s�	 which is a full sub

category of the category of per�s when working over a speci�c D� �
model�

De�nition ������ Let D be the initial solution of the equation�

D  �D � D� � �D �D�

in the category of cpo�s and injection�projection pairs where � is the coalesced
sum�

We note that in general inl � C � C � C � and inr � C � � C � C � form
the injection part of an injection
projection pair� We de�ne D�  f�g and
Dn��  �Dn � Dn���Dn�Dn� with injection projection pairs �in� jn� � Dn � D�

We remark that D is bi�nite� Let pn  jn � in � D � D be a projection
such that im�pn�  in�Dn�� We consider the following injection
projection pairs�
�i�� j�� � �D � D� � D and �i�� j�� � D � D � D� As usual we de�ne for
d� e � D�

hd� ei  i��d� e�
de  j��d��e�
dn  pn�d� �
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The application de has the properties required for a pca� We will use the following
properties �cf� section �����

hd� ein��  hdn� eni
dn��e  dn��en  �den�n �

Exercise ����� Prove the properties above following section 
���

In this section D stands for the domain speci�ed in de�nition ������� When

ever we speak of a relation we intend by default a binary relation over D� For
A � perD we let An  A � �im�pn� � im�pn��� In order to distinguish indexes
from approximants we write indexes in superscript position	 so din is the n
th
approximant of the i
th element�

De�nition ������ A relation R is�
��� pointed if ��D��D� � R�
��� complete if for all directed X � A	

W
X � A� �

�
� uniform if A 	 
 and �n � � �dAe � dn Aen��

The uniformity condition will play an important role in proving that the
associated quotient space is algebraic and in solving domain equations�

Proposition ������ The category of complete uniform per�s is cartesian closed�

Proof hint� We de�ne the terminal object as �  D �D� For the product let

d �A� �A�� e i� �i�j��d��Ai �i�j��e�� for i  �� � �

The exponent is de�ned as usual�

f BA g i� �d� e �dAe� fdB ge� �

Let us check that BA is uniform if A�B are� From �B�	 �BA� follows�
Suppose f BA g and dAe� To show fndB gne observe�

dAe � dnAen � fdn B gen � �fdn�nB �gen�n

and we know �fdn�n  fn��d� �

Exercise ����� Following section ���	 de�ne an interpretation of system F in cu�
per�s�

Complete per�s �cper�s for short� are closed under intersections� Then we can
complete a per to a cper as follows�

�In this section �complete� has a di�erent meaning than in the previous section�
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De�nition ������ �completion	 Let A be a per over D�� The least complete
per containing A is de�ned as�

A 
�
fB j B cper and B  Ag �

In the following we give an inductive characterization of A�

De�nition �����
 Let R be a binary relation on D� We de�ne�

Sup�R�  f
W
X j X directed in Rg �directed closure�

TC�R� 
T
fS j S transitive and S  Rg �transitive closure� �

Proposition ������ ��� If R is symmetric �pointed� then Sup�R� and TC�R�
are symmetric �pointed��
��� If A is a pointed per then TC�Sup�A�� is a pointed per�

Proof� Immediate� �

De�nition ������ Let A be a pointed per� De�ne

A���  A
A��� ��  TC�Sup�A�����
A��� 

S
���A��� �� limit ordinal� �

Let A be a pointed per� Then for cardinality reasons there is some 	 such
that A�	�  A� The following lemma points out the e�ect of the completion
process on the function space and on uniformity�

Lemma ������ ��� If A and B are pointed per�s then BA � BA�
��� If A is a uniform per then A is a cuper�

Proof� ��� By induction on � we show that BA � B���A���� The base and limit
case are clear� Suppose f BA g� We distinguish two cases�

� If d 
W
i�I d

i and e 
W
i�I e

i	 where f�di� ei�gi�I is directed in A��� then
f�fdi� gei�gi�I is directed in B��� and therefore�

�fd� ge�  �
�
i�I

fdi�
�
i�I

gei� � Sup�B���� �

� If dTC�Sup�A����� e then we can apply the previous case to each edge of the

path connecting d to e�

��� By induction on � we show that A��� is uniform� The base and limit cases
are clear� Suppose dA�� � �� e� Again we distinguish two cases�

� If d 
W
i�I d

i and e 
W
i�I e

i	 where f�di� ei�gi�I is directed in A���	 we show
dn Sup�A���� en by observing that �

W
i�I d

i�n 
W
i�I�d

i�n and f��di�n� �ei�n�gi�I
is directed in A���� Hence Sup�A���� is uniform�

� Suppose d� TC�Sup�A����� dk because d� Sup�A���� d� � � � dk�� Sup�A���� dk�
Then �d��n Sup�A���� �d��n � � � �dk���n Sup�A���� �dk�n	 as Sup�A���� is uniform
by the previous case� Therefore �d��n TC�Sup�A����� �dk�n� �
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Exercise ������ Show that the category of complete per�s is reective in the category
of pointed per�s� and that the category of complete uniform per�s is reective in the
category of uniform per�s�

The intrinsic preorder �A on a cuper A induces a preorder on jAj as follows

De�nition ������� �induced preorder	 Let A be a cuper and d� e � jAj� We
de�ne�

d �A e i� �d�A �A �e�A �

In the following we characterize the induced preorder�

De�nition ������� Let A be a cuper� De�ne �A TC�A� ��D �jAj����

Lemma ������� Let A be a cuper� Then �A is a uniform preorder on jAj�

Proof� We observe that A � ��D �jAj�� is uniform and that transitive closure
preserves uniformity� �

Lemma ������� Let d � K�D� be a compact element and let A be a cuper� Then
the following set is a Scott open�

W �d�  fe � D j �e� �d �A e� �D e�g �

Proof� Clearly W �d� is upward closed� Suppose e 
W
i�I e

i � W �d� for feigi�I
directed� From d �A e� �D

W
i�I e

i we derive�

�n� j �d  dn �A e�n �D �
�
i�I

ei�n  ejn � ej� �

This follows from the uniformity of �A and the fact that im�pn� is �nite� We can
conclude ej � W �d�� �

Remark ������� Let d � K�D� be a compact element and A be a cuper� Then
U�d�  f�e�A j d �A eg � ��A�� It is enough to observe W �d� � jAj  jU�d�j�

Lemma ������
 Let d � K�D� be a compact element and A be a cuper� Then�

d �A e i� d �A e �

Proof� By remark ������ it follows d �A e implies d �A e� Vice versa	 suppose
d �A e and not d �A e� Build the Scott open W �d� as in lemma ������� and
the sub
per U�d� as in remark �������� Then �d�A � U�d� and �e�A 
� U�d� which
contradicts d �A e� �
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Theorem ������� Let A be a cuper� Then�
��� The induced preorder is the least complete preorder containing �A�
��� The preorder �A is uniform�

Proof� We denote with �c
A the least complete preorder containing �A�

��� We already know that �A��A� Hence �c
A��A since �A is complete� Vice

versa	 suppose d �A e� Then �n �dn �D d �A e�� So �n �dn �A e� and by lemma
�������	 �n �dn �A e�� By completeness d 

W
n�� dn �c

A e�

��� We know from lemma ������� that �A is uniform and we have already
observed in lemma ������� that the completion process preserves uniformity� �

Theorem ������� Let A be a separated cuper� Then ��A���A� is a bi�nite do�
main�

Proof� Clearly ��A���A� is a poset with least element ���A�

� We show that any �in�nite� directed set f�di�Agi�I has a lub� Given J � � J we
say that J � is co�nal with J if�

�i � J �j � J � �di �A dj� �

Let Xn  fe � D j �i � I �j � I �di �A dj and e  djn�g	 in other words e � Xn

if there is a subset J of I	 co�nal with I	 and such that �j � J �e  djn�� We
remark�

� Xn � im�pn� � jAj is �nite since im�pn� is �nite� Moreover Xn is non
empty
since at least one element in im�pn� will be hit in�nitely often when projecting
elements in the directed set�

� �e � Xn �e� � Xn�� �e �D e��� We show this by induction on n� If n  � then
e  � and every e� will do� If e � Xn then there is a J 	 co�nal with I such that
J � I and �j � J �djn  e�� Since im�pn� is �nite there is J � � J co�nal with
J �hence with I� and an element e� such that �j � J � �djn��  e��� Then e � e�

since e  djn �D djn��  e�	 and e� � Xn��	 by construction�

Hence we can build a sequence fengn�� such that en � Xn and en �D en���
By completeness we have

W
n�� e

n � jAj� We claim�

�
i�I

�di�A  �
�
n��

en�A �

In the �rst place we show that �i � I �di �A

W
n�� e

n�� By completeness and
uniformity it is enough to prove�

�i � I �m � � �dim �A

�
n��

en� �
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We observe�
�i � I �m � � �j � I di �A dj and djm  em �

By uniformity	 we have dim �A djm	 and djm  em �D

W
en� Finally we note�

�n � � �i � I en �A di

as �i �en  din �D di�� Given �d�A upper bound for f�di�Agi�i it is immediate to
show

W
n�� e

n �A d�

� Next let us prove that the quotient space is �
algebraic� We claim�

��� If d � K�D� � jAj then �d�A is compact in ��A���A��
Suppose �d�A �A

W
i�I x

i	 for fxigi�I directed� Consider the chain fengn�� we
have built above� Then d �A

W
n�� e

n Hence�

�m� p� j �d  dm �A �
�
n��

en�m  epm �A ep �A dj� �

��� �d � jAj ��d�A 
W
n���dn�A��

We observe dn �D dn�� implies dn �A dn�� and moreover	 if �n � � dn �A e then
by completeness

W
n�� dn �A e�

� To prove that ��A���A� is bi�nite we consider the sequence fprjn � A � Agn��
where prjn is the function realized by the projection pn� �

Corollary ������ All morphisms in the full subcategory of separated	 complete	
uniform per�s are Scott continuous�

Proof� Consider f � A � B and f�di�Agi�I directed in �A�� The existence ofW
i�I f��d

i�A� is guaranteed by the monotonicity of f and theorem �������� It
remains to prove�

f�
�
i�I

�di�A� �B

�
i�I

f��di�A� �

Suppose �k�f and consider the chain fengn�� built in theorem �������� Then we
have ��

W
n�� e

n� �
W
n�� �e

n� Also	 since �n�i � I �en �A di�	 we have	 by mono

tonicity �n � � �i � I ��en �B �di�� Hence we can conclude �

W
n�� �e

n�B �BW
i�I f��d

i�A�� �

Domain equations can be solved in the category of cuper�s	 by an adaptation
of the traditional approach based on injection
projection pairs �AP���� In the
following we follow a more direct path that exposes an interesting metric structure
on the space of cuper�s �Ama��c��

De�nition ������� De�ne a closeness function c � cuper� � ��f�g as follows�

c�A�B� 

�
maxfn j An  Bng if A 	 B
� otherwise

�
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The distance d � cuper� � R is de�ned as

d�A�B� 

�
��c�A�B� if A 	 B
� otherwise

�

The space cuper resembles spaces of in�nite labelled trees �AN���� Roughly
speaking these spaces are compact if the collection of distinct objects up to the
n
th level is �nite�

Proposition ������� ��� �cuper� d� is a metric space�
��� The space is an ultra
metric	 that is d�A�C� � maxfd�A�B�� d�B�C�g�
�
� The space is �Cauchy� complete�

Proof� The �rst point is left to the reader� For the second point observe that�

An  Bn and Bm  Cm � Ak  Ck where k  minfn�mg �

For the third point	 let fAigi�� be a Cauchy sequence	 that is�

��  ��n� �i� j � n� �d�A
i� Aj� � �� �

We build A  limi��A
i by stages� We note that�

�n  ��kn �i � knA
i
n is constant �

Let Bi  Aki
i � We observe that fBigi�� is a chain of cuper�s with respect to

inclusion� Let B 
S
i�� B

i� We claim that B  limi��A
i� To this end it is

enough to check�
�i��Bi  �B����i �

In other terms the completion operation does not add new approximating ele

ments� This can be shown by induction on � �cf� proof lemma ��������� �

An operator f over a metric space �X� d� is contractive if there is a constant
c such that � � c � � and

�x� y d�f�x�� f�y�� � c d�x� y� �

A well
known result known as Banach�s theorem states that contractive operators
over a complete metric space have a unique �xed point �exercise��� It turns out
that exponent and product type constructors are contractive� It follows that the
related recursive type equations have a unique solution in cuper up to equality�
This fact is applied in exercise �������

Proposition ������� Let d��A�B�� �A�� B���  maxfd�A�A��� d�B�B ��g� Then�
��� d�BA� B�A�

� � ��
��d��A�B�� �A�� B����
��� d�A�B�A� �B �� � ��
��d��A�B�� �A�� B����

Proof hint� We note that� Ak  A�
k and Bk  B�

k � �BA�k��  �B �A�

�k���
The factor ��
�� comes form de�nition ������� and the properties of D� models�
�
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���� Interpretation of Subtyping

We present an application of the category cuper to the development and inter

pretation of a theory for the subtyping of recursive types� Let us start with an
intuitive explanation of what subtyping is� Various theories of subtyping have
been proposed in the literature on software engineering �see	 e�g�	 �Car��	 Lis�����
Their principal aim is to support a certain cycle of software development where
programs evolve over time as they are restructured and new functionalities are
added� Such theories support an incremental design of software systems and es

tablish under which conditions the programmer is allowed to reuse previously
created modules�

Such reuse may require the introduction of explicit or implicit coercions whose
e�ect on the semantics of the program has to be clearly understood by the pro

grammer� A formalization of this concept in the context of typed languages can
be given in two steps�

� Introduce a relation of subtype denoted by �� If � and � are types	 the
intuitive interpretation of � � � �read as � is a subtype of � � is� every �
value
can be coerced to a � 
value�

� Speci�y nature and use of such coercions�

In other terms the two basic questions in the design of a typed �
calculus with
subtypes are whether two types are in the subtype relation	 and whether a term
has a type�

In the approach to be formalized next we take the view that � is a subtype
of � if for every term M of type �	 say M � �	 and for every possible choice
of a run time code d for M �henceforth we will say that d is a realizer for M�	
there is a unique term N � � �up to semantic equivalence� that has d among its
realizers� This approach is inspired by model
theoretical considerations �BL���
as one can give a precise mathematical meaning to our informal statements in
the framework of per
models� For the time being let us anticipate the pragmatic
consequences of our view of subtyping and coercions�

� Coercions are uniquely determined�

� Coercions do not produce run
time code	 hence there is no need for recompi

lation�

� The speci�c �implementation� of a data
type becomes relevant	 as subtyping
is not invariant under isomorphism� For instance the types � � �� � � and
� � ��� � � � are isomorphic but they are incomparable with respect to the
subtyping relation�

De�nition ���
�� �interpretation of subtyping	 Let T be a type structure
�cf� de�nition ��
���� We write T j � � � if for any �	 ������ � ��� ����

Remark ���
�� ��� In the semantic framework developed for type assignment
systems we have that T j � � � i� T j �x�x � � � � � ��� Let A�B be per�s	 if
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A � B then there is a unique morphism c � A � B in per that has the identity
�formally the combinator skk� among its realizers� We refer to this morphism
as the coercion morphism from A to B� Incidentally the vice versa also holds� if
c � A � B is a coercion morphism then A � B�

In order to discuss the impact of this interpretation of subtyping on language
design we consider a simply typed �
calculus with recursive types	 the ���

calculus for short� The language of types is de�ned as follows�

tv �� t jj s jj � � �
� �� tv jj � jj � jj � � � jj �tv�� �

Here � and � are two constant types that denote the least and greatest type
in the subtyping relation	 respectively� The type �t�� is intended to denote the
�least� solution of the equation t  ��t�� The language of terms is de�ned as
follows�

v �� x jj y jj � � �
M �� v jj �v � ��M jj MM jj fold�tv	
M jj unfold�tv	
M �

Besides the usual rules for the simply typed �
calculus we have rules for folding
and unfolding recursive types�

� � M � ���t��
t�
� � fold�t	
M � �t��

� � M � �t��
� � unfold�t	
M � ���t��
t�

�

Following our informal discussion on subtyping we want to de�ne a formal theory
to derive when � � � and enrich the typing system with the following rule

�Sub�
� � M � � � � �

� � M � �
�

We introduce in �gure ���� a formal theory for deriving subtyping judgments on
recursive types� The theory is composed of two groups of rules�

��� The �rst group de�nes the least congruence induced by the the rules ��
��	
�fold�	 and ��	�� In the ��	� rule the condition � � t is read as t is contractive
in � and means that � can be rewritten by unfolding into a type of the shape
�� � ��� For instance �s��t � s� � t but �s�t �
t� The rules for type equivalence
are inspired by classical results on regular languages �see	 e�g�	 �Sal����� The ��	�
rule should be regarded as a syntactic version of Banach�s theorem �cf� section
������

��� The second group of rules is used to derive proper inequalities� The basic
judgment has the shape � � � � � 	 where � � t� � s�� � � � � tn � sn	 ti� si are
type variables	 and n � �� The rule ��� resembles the one introduced for �lter
models in chapter �� The intuition for the premise of the rule ��� is that the
following holds� for all per�s A�B	 if A � B then ������A
t�� ��� ���B
s��
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Rules for equality

	re�
� � �

	sym�
� � �

� � �

	tr�
� � � � � �

� � �
	���

� � � � � � �

� � � � �� � � �

	��
� � �

t�� � t��
	���

t�t � �

	fold�
t�� � ��t���t�

		�
����t� � � ��� ��t� � � � � � t

� � � �
�

Rules for subtyping

	eq�
� � �

� � � � �
	tr�

� � � � � � � � � �

� � � � �

	Asmp�
t � s 	 �

� � t � s

	��
� � � � �

	��
� � � � �

	��
� � �� � � � � � � � �

� � � � � � �� � � �
	�

�� t � s � � � � t �	 FV 	��� s �	 FV 	��

� � t�� � s��

Figure ����� Subtyping recursive types

Exercise ������ Derive the following judgments�

t�	s� t� � t�	s � 	s� t��
t�	t� 	t� t�� � t�		t� t�� t�
s�	� � s� � � � 	s�	s� s�� �

Next we interpret the ���
calculus in cuper�s�

De�nition ���
�� The type interpretation is parametric in � � Tvar � cuper
and is de�ned as follows�

������  f��D��D�g
������  D �D

��� � � ���  ��� ���		


�

���t�����  Fix��A��������A
t��
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Fix�f� 

���
��

x if f is contractive and f�x�  x
f��D��D�g if f  id
unde�ned otherwise

�

Exercise ������ Verify that the type interpretation is always de�ned �cf� proposition
�����	
��

De�nition ���
�� We write t� � s�� � � � � tn � sn j � � � if for all type envi�
ronments �	 if ��ti� � ��si� for i  �� � � � � n then ������ � ��� ����

Theorem ���
�
 If � � � � � then � j � � � �

Proof hint� By induction on the length of the derivation� We have already
observed that rule ��	� is a syntactic version of Banach�s theorem� The only rule
that deserves an additional comment is ���� If f is contractive or the identity and
C is the least cuper then the Cauchy sequence ffn�C�gn�� converges to Fix�f��
Suppose f� g are contractive or the identity	 the semantic reading of the rule goes
as follows�

�A�B �A � B � f�A� � g�B��
Fix�f� � Fix�g�

�

From the premises we can prove by induction fn�C� � gn�C�� From this we can
draw the conclusion Fix�f� � Fix�g�� �

Exercise ������ Prove that the following inequality holds in the cuper�s interpretation
but is not derivable in the system �with empty context� � � �� � � � �� It is shown
in �AC�
� that the system extended with the inequality above is complete with respect
to a modi�ed interpretation�

The term interpretation follows the interpretation of system F in the category
of per�s de�ned in section ����� The constants fold and unfold are interpreted by
the identity	 as recursive equations are solved up to equality� More results on this
theory of subtyping can be found in �AC���� Two important points that hint to
the practical relevance of the theory sketched above are�

��� It is decidable if � � � � � �

��� There is an algorithm that decides if a term is typable	 and if this is the case
the algorithm returns the least type that can be assigned to the term�



Chapter ��

Functions and Processes

The functional view of computation �nds perhaps its most serious limitation in
the analysis of concurrent systems �cf� chapter ��� The challenge is then to cope
with the problems o�ered by concurrent systems while retaining some of the
mathematically brilliant ideas and techniques developed in the pure functional
setting�

In this chapter we introduce a simple extension of Ccs known as �
calculus�
The �
calculus is a rather minimal calculus whose initial purpose was to represent
the notion of name or reference in a concurrent computing setting� It turns
out that the �
calculus allows for simple encodings of various functional and
concurrent models� It can then be used as a privileged tool to understand in
which sense functional computation can be embedded in a concurrent model�

Section ���� is dedicated to the introduction of some basic theory of the �

calculus� In section ���� we illustrate the expressive power of the �
calculus by
encoding into it a concurrent functional language	 the �k
calculus for short	 that
can be regarded as the kernel of concurrent extensions of the Ml programming
language such as Lcs	 Cml and Facile where an integration of functional and
concurrent programming is attempted�

���� ��calculus

In chapter � we have presented a calculus of processes	 Ccs	 in which interaction
arises as rendez�vous synchronization on communication channels� This compu

tation paradigm is enhanced in the �
calculus �see �MPW���	 after �AZ��	 EN����
by allowing�

� Channel names as transmissible values�

� The generation of new channels�

Because of these essential features the development of the �
calculus theory along
the lines known for Ccs �labelled transition system and related bisimulation�
leads to a series of complications which can be hard to appreciate for a beginner�

���
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For this reason we follow a di�erent approach� We present �rst the �
calculus
as a programming language� Technically this means to specify abstractly how a
�
calculus program can be evaluated and to explain how this evaluation can be
implemented� Once a reasonably clear implementation model has been sketched
we introduce a notion of observation as the capability of a process to commit to a
certain communication and we derive a notion of barbed equivalence on processes�

Barbed equivalence is a natural relation by which two �
terms can be com

pared �MS���� Unfortunately it is di�cult to relate two processes using this
approach	 as we always have to work with arbitrary contexts� This motivates
the quest for a characterization of barbed equivalence which is better suited to
mechanical veri�cation� Towards this end	 we introduce a labelled transition sys

tem and a related notion of ��bisimulation� A central result	 whose proof we
present here	 says that �
bisimulation and barbed equivalence coincide� As an
application of this characterization we show the decidability of equivalence for a
special class of �nite control processes�

The Language� We suppose that there is a countable collection of channel
names that we denote with a� b� � � � Processes are speci�ed by the following gram

mar�

n �� a jj b jj � � �
P �� � jj nn�P jj n�n��P jj �nP jj �P j P � jj �n  n�P jj ���P � � � �� ��P � jj A��n� �

� � is the process which is terminated and that can be garbage collected� Usually

we omit writing �	 e�g� ab stands for ab��

� ab�P is the process that sends the channel name b on the channel a and becomes
P �

� a�b��P is the process that receives a channel name	 say c	 on the channel a and
becomes P �b
c�� The formal parameter b is bound in a�b��P 	 in general bound
names can be renamed�

� �aP is the process that creates a new name di�erent from all the existing
ones and becomes P � The name a is bound in �aP � We denote with FV �P � the
collection of names occurring free in P �

� �P j P � is the parallel composition of two processes�

� �a  b�P is the matching construct� If the match holds then execute P else
terminate�

� ���P � � � � � �n�P is a guarded sum	 where all alternative processes commit
on an input�output action� The pre�x � is an abbreviation for an input�output
guard	 i�e� � �� nn jj n�n��

� We denote with A�B� � � � agent identi�ers� For every agent identi�er there is a
unique de�ning equationA�a�� � � � � an�  P where all free names in P are included
in fa�� � � � � ang and all occurrences of an agent identi�er in P are preceded by
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�ab�P � P �� j �a�c��Q�Q�� � P j Q�b
c� �a  a�P � P

P � Q

D�P � � D�Q�
where D �� � � jj D j P jj �nD

P � P � P � � Q� Q� � Q

P � Q

Figure ����� Reduction for the �
calculus

an input�output pre�x� When writing processes guarded sum has priority over
parallel composition�

Structural Equivalence� The basic computation rule in �
calculus is�

ab�P j a�c��Q� P j Q�b
c� ������

Unlabelled reductions like those in rule ���� represent internal communications
and correspond to the � 
transitions in Ccs� The reduction rule ���� is not su�

cient to represent all possible internal communications� In order to have a greater
 exibility we de�ne a relation �	 called structural equivalence	 which is the small

est congruence on processes generated by the following equations�

� Renaming� c�a��P � c�b��P �b
a�	 �aQ � �bQ�b
a�	 for b 
� FV �c�a��P � and
b 
� FV ��aQ�� We denote with �� the congruence that identi�es terms di�ering
only by the name of their bound variables�

� Parallel composition is an associative and commutative operator with � as
identity�

� The order of the guards in the sum is irrelevant� By convention whenever we
write ��P �Q we intend that Q denotes the rest of the guard	 if there is any�

� Restriction commutations� �aP j Q � �a �P j Q�	 for a 
� FV �Q��

� Equation unfolding� any agent identi�er can be replaced by its de�nition�

Remark ������ �standard form	 Every term without matching is structurally
equivalent to a term�

�a� � � � �ak �Q� j � � � j Qm�

where Qi is a guard	 namely Qi � �i���Pi��� � � �� �i�ni �Pi�ni	 for i  �� � � � �m and
k�m� ni � � �conventionally take the parallel composition equal to � if m  ���
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Reduction� The reduction relation is presented in �gure ����� In the �rst place	
the reduction rule ���� is generalized in order to take into account guarded sums�
Second	 it is assumed that rewriting is modulo structural equivalence	 and third	
reduction can be performed in certain contexts D �note that it is not possible to
reduce under an input�output guard	 a bit like in the weak �
calculus where it is
not possible to reduce under �
abstraction	 see section ����� There is also a rule
taking care of matching� In order to understand the role of the various rules we
invite the reader to consider the following examples�

� Channel Transmission� a process sends on the channel b a channel name a
which allows interaction with a process receiving on a�

�a ��b �ba j b�c��ce� j a�d��R�� �� �a �bR��e
d� ������

� Scope Intrusion� when receiving a channel under the scope of a restriction one
has to avoid name clashes �on a in the example��

ba j �a �b�c��Q j S� � �a� �Q�a�
a��a
c� j S�a�
a�� a� fresh ������

� Scope Extrusion� when transmitting a restricted name	 the scope of restriction
has to be enlarged to the receiving process	 this phenomenon is called scope
extrusion �in the example a is the extruded name��

�a �ba�P j R� j b�c��Q� �a �P j R j Q�a
c�� a 
� FV ��cQ� ������

Implementation� In this section we de�ne an abstract machine which ad

dresses two implementation problems� substitution and new name generation�
These problems are speci�c of the �
calculus as opposed to Ccs�

In order to implement substitution we can import the ideas already developed
for environment machines �cf� chapter ��	 hence reduction is de�ned on closures
which are pairs of code and environment� Name generation requires a new idea�
In the �
calculus reduction rules	 name generation is treated implicitly via �

renaming and structural equivalence	 in an implementation this is not admissible�

We describe an abstract machine as a term rewriting system modulo an as

sociative and commutative operator representing parallel composition� Guarded
sum	 matching	 and agent de�nitions are omitted in the following discussion� The
machine can be extended to deal with these features without particular di�cul

ties�

� Channels are represented as strings�

� Process code syntax di�ers from process syntax for the insertion of a commit

ment operator �� This operator is used to represent the fact that the evaluation of
the pre�x is terminated and the process is ready to commit on a communication�

C �� � jj nn�C jj n�n��C jj �nC jj �C j C� jj nn � C jj n�n� � C �
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��� �� �� � �
�C j C �� �� �� � �C� �� ���k�C �� �� ���
��aC� �� �� � �C� ��ch���
a�� ���
�ab�C� �� �� � �a�b� � C� �� �� if ��a�  a� and ��b�  b�

�a�b��C� �� �� � �a��b� � C� �� �� if ��a�  a�

�ab � C� �� ��k�a�c� � C �� ��� ��� � �C� �� ��k�C �� ���b
c�� ���

Figure ����� An environment machine for the �
calculus

� An environment � is a total function mapping channel names to channel names�
Initially the environment is the identity function� The substitution operation is
not carried out but it is recorded in the environment� The actual value of a
channel name is obtained by application of the environment function�

� A channel generator is a string in f�� �g�	 we denote with � a generic string
and with � the empty string� We suppose that there is an injective function ch
that associates to every string � a channel name ch����

� A process descriptor is a triple �C� �� ���

� We suppose that there is an associative and commutative operator k on process
descriptors having � as identity� This is the only structural equivalence on which
we rely�

� The process P is compiled into �P� id� ��� Initially all names in P are distinct
from a name ch���	 for any ��

With the conventions above	 an environment machine to reduce �
terms is de

scribed in �gure ���� as a �nite collection of term rewriting rules�

Exercise ����� Reduce 	�a ba�a	a��ab�� j a	c��cd�d	c���� id� ���

Exercise ����� � ��� The machine in �gure ���	 solves at once the substitution and
the name generation problem� Describe a simpler machine which handles the name
generation problem only� leaving substitution as a meta�operation� �	� Formulate a
theorem that relates reduction in the ��calculus to reductions in the abstract machine
speci�ed in ����

There are other implementation problems that relate to concurrent languages
in general and that will not be studied here� For instance	 we may note that the
machine described in �gure ���� reduces modulo associativity and commutativity�
Algebraic manipulations are needed in order to bring in a contiguous position two
process descriptors committed on dual communications� Moreover the selection
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of the term to be reduced next is non
deterministic� In practice we need an
e�cient and distributed way to perform communications� This task may include�

� The de�nition of a scheduler to order the jobs execution on a processor�

� The introduction of data structures to know which process wants to commu

nicate on which channel�

� The execution of non
trivial protocols that guarantee a coherent selection of
communications	 while avoiding deadlock �see	 e�g�	 �BS�����

Barbed Equivalence� We now turn to the issue of stating when two processes
are equivalent� We postulate that what can be observed of a process is its capa

bility of committing �engaging� on an input�output communication on a visible
�i�e� non
restricted� channel� From this a notion of process equivalence is derived
as follows�

De�nition ������ �commitment	 A relation of immediate commitment P � 	
where 	 �� n jj n is de�ned as follows�

P � c if P � ��c �c�a��P � P � j Q� c 
� f�cg
P � c if P � ��c �cd�P � P � j Q� c 
� f�cg �

Moreover	 de�ne �� as the re�exive and transitive closure of the reduction rela�
tion �� Then a weak commitment relation P �� 	 is de�ned as�

P �� 	 if �P � �P �� P � and P � � 	� �

De�nition ������ �barbed �bi�	simulation	 A binary relation S between pro�
cesses is a �strong� barbed simulation if PSQ implies�

�P � �P � P � � �Q� �Q� Q� and P �SQ��� and
�	 �P � 	 � Q � 	� �

S is a barbed bisimulation if S and S�� are barbed simulations� The largest
barbed bisimulation is denoted with



�� By replacing everywhere � by �� and �

by �� one obtains the notion of weak barbed bisimulation� The largest weak barbed

bisimulation is denoted with


�� �

The relation


� �or



�� fails to be a congruence	 in particular P



� P � does not

imply P j Q


� P � j Q �already in Ccs	 a�b



� a�c does not imply a�b j a



� a�c j a��

This motivates the introduction of the following de�nition�

�The adjective barbed relates to a pictorial representation of the reductions and commit�
ments of a process� In this representation the commitments are the barbs and the internal
reductions are the wires connecting the barbs�
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De�nition ������ �barbed equivalence	 We de�ne a relation � of strong barbed
equivalence and a relation � of weak barbed equivalence as follows�

P � P � if �Q �P j Q


� P � j Q�

P � P � if �Q �P j Q


� P � j Q� �

Exercise ����� � Which operators of the ��calculus preserve � and �� Hint� theo�
rem �����	� can be helpful as it provides a characterization of strong barbed equivalence�

Polyadic ��calculus� We introduce some additional concepts and notations
for the �
calculus� So far we have assumed that each channel may transmit
exactly one channel name� In practice it is more handy to have a calculus where
tuples of channel names can be transmitted at once� This raises the problem of
enforcing some sort discipline on channels	 as emitting and receiving processes
have to transmit and accept	 respectively	 a tuple of the same length� A simple
sort discipline can be de�ned as follows� Every channel is supposed to be labelled
by its sort� Sorts are used to constraint the arity of a channel� A channel of sort
Ch�s�� � � � � sn� can carry a tuple z�� � � � � zn	 where zi has sort si	 for i  �� � � � � n�
For instance	 if n  � then the channel can be used only for synchronization �as
in Ccs�	 and if the sort is Ch�o� then the channel can only transmit some ground
data of type o�

Simple sorts s �� o jj Ch�s�� � � � � sn� �n � ��

The syntax for processes is extended in the obvious way�

P �� n�n� � � � � n��P jj n�n� � � � � n��P jj � � �

Well
formed processes have to respect the sort associated to the channel names�
For instance	 a�b�� � � � bn��P is well formed if P is well formed	 a has sort Ch�s�� � � � � sn�
and bi has sort si	 for i  �� � � � � n� Mutatis mutandis	 reduction is de�ned as in
�gure ����� We call the resulting �
calculus polyadic�

Exercise ����� ��� De�ne a translation from the polyadic to the monadic ��calculus�
Hint translation� hc	a�� � � � � an��P i � �b cb�ba� � � � ban�hP i� �	� Check that � �reduction
is adequately simulated�

Labelled Transition System� The aim is to de�ne a labelled transition sys

tem �lts� �cf� section ���� for the �
calculus which describes not only the com

putations that a process can perform autonomously �the � transitions� but also
the computations that the process can perform with an appropriate cooperation
from the environment�

De�nition ������ �actions	 We postulate that a process can perform �ve kinds
of actions ��

� �� � jj nn jj nn jj n jj n �
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We can provide the following intuition for the meaning of each action�

� The � action corresponds to internal reduction as de�ned in �gure �����

� The cd and cd actions are complementary and they correspond	 respectively	
to the input and the output on channel c of a �global� channel name d�

� The c and c actions are also complementary and they correspond	 respectively	
to the input and the output on channel c of a �new� channel�

The notions of �global� and �new� are intended as relative to a given collection
of channels which is visible to the environment� To represent this collection we
introduce next the notion of context� It is possible to de�ne the lts without
referring to contexts as shown later in �gure ����� At �rst	 we prefer to stick to
a more redundant notation which allows for an intuitive explanation of the rules�

De�nition ������ �context	 A context � is a �nite	 possibly empty	 set of
channel names� We write c�� � � � � cn �n � �� for the set fc�� � � � � cng	 and �� c for
the set � � fcg where c 
� ��

To consider a process in a context we write � � P 	 it is always intended that
the context contains all channel names free in P � We are now ready to de�ne an
lts as an inference system for judgments of the shape �� � P �

�
� ��� � P �� to be

read as the process P in the context � can make an action � and become P � in
the context ��� The actions � 	 cd and cd leave the context unchanged whereas
the actions c and c enrich the context with a new channel�

In �gure ���� the only �structural rule� is �
renaming� In order to keep the
system �nitely branching we suppose that the collection of channel names Ch is
linearly well
ordered and we let fst be a function that returns the least element in
a non
empty set of channel names� In practice we pick the �rst name that does
not occur in the current context �and hence is not free in the process at hand��
The symmetric version of the rules �sync�	 �syncex�	 and �comp� are omitted�

To some extent all that matters in the computation of the transitions are
the distinctions between channel names� In particular note that the choice of the
new names is completely arbitrary� We invite the reader to carry on the following
exercise which is useful in the proof of the following propositions�

Exercise ������ ��� Let � be an injective substitution on channel names� Relate
transitions of � � P and �� � �P � �	� Relate the transitions of � � P and �� � P for
FV 	P � 
 � 
 ���

De�nition ������� ���bisimulation	 A binary relation S on processes is a
�strong� ��simulation if whenever PSQ and �  FV �P j Q� the following holds�

�P � �� � P
�
� �� � P �� � �Q� �� � Q

�
� �� � Q� and P �SQ�� �

The relation S is a ��bisimulation if S and S�� are ��simulations� We denote
with �� the greatest ��bisimulation�
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�out�
� � cd�P

cd
� � � P

�in�
d � �

� � c�a��P
cd
� � � P �d
a�

�outex �
�� c � P

dc
� �� c � P � c  fst�Chn��

� � �cP
d
� �� c � P �

�inex �
a  fst�Chn��

� � c�a��P
c
� �� a � P

�sync� � � P
dc
� � � P � � � Q

dc
� � � Q�

� � P j Q

� � � P � j Q�

�syncex �
� � P

d
� �� c � P � � � Q

d
� �� c � Q�

� � P j Q

� � � �c �P � j Q��

���
��� c � P �

�
� ��� c��� � P �� c  fst�Chn�� c not in �

�� � �cP �
�
� ����� � �cP ��

�comp�
� � P

�
� �� � P �

� � P j Q
�
� �� � P � j Q

�match�
� � �c  c�P


� � � P

�sum�
�� � �i�Pi�

�
� ��� � P ��

�� � ���P� � � � �� �n�Pn�
�
� ��� � P ��

��x �
� � P ��c
�a�

�
� �� � P � A��a�  P

� � A��c�
�
� �� � P �

�rename�
P �� P

� � � P � �
� �� � Q� Q� �� Q

� � P
�
� �� � Q

Figure ����� A labelled transition system for the �
calculus
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De�nition ������� Let Pr be the collection of processes� We de�ne a function
F � P�Pr � Pr� � P�Pr � Pr� by P F�S�Q if�

���P ������ ��  FV �P j Q� and � � P
�
� �� � P ��

� �Q� �� � Q
�
� �� � Q� and P �SQ��

and symmetrically�

Exercise ������ Let ��� Pr�� ����� F	���� and ���
T
��� �

�� for � limit ordi�
nal� Prove that �cf� proposition ��	���� ��� F is monotonic� �	� S is a ��bisimulation
i� S 
 F	S�� �
� If fXigi�I is a codirected set� then F	

T
i�I Xi� �

T
i�I F	Xi�� ���

The greatest ��bisimulation �� exists and coincides with ���

Proposition ������� Let � be an injective substitution on names� Then for any
processes P�Q	 P �� Q i� �P �� �Q�

Proof hint� We show that the following relation is a �
bisimulation�
f�P�Q� j �� injective on FV �P j Q� such that �P �� �Qg� �

Exercise ����� In the de�nition of ��bisimulation we consider transitions with re�
spect to a context � � FV 	P j Q�� This requirement can be relaxed� Consider a sharp�
ened de�nition of the functional F � say F�� where the condition �� � FV 	P j Q��
is replaced by the condition �� � FV 	P j Q��� Let �� be the greatest �xpoint of the
functional F�� Check that ������ Hint� ��
 F�	����

Exercise ������ ��� Show that all structurally equivalent processes are ��bisimilar�
�	� Which operators preserve ��bisimulation � Hint� ��bisimulation is not a preserved
by the input pre�x� that is P �� Q does not imply a	b��P �� a	b��Q� �
� De�ne the
notion of weak ��bisimulation �cf� de�nition ��	�����

We hint to a presentation of the labelled transition system which does not use
contexts� We suppose that the actions are rede�ned as follows�

� �� � jj nn jj nn jj n�n� jj n�n� �

This di�ers from de�nition ������ because the new name b that is being received
or emitted is explicitly indicated in a�b�� a�b� �which replace	 respectively	 the
actions a� a�� The name b is bound in these actions� More generally we de�ne
the following functions on actions	 where fn stands for free names	 bn stands for
bound names	 and n for names	 where n���  bn��� � fn��� and�

fn�� �  
 fn�a�b��  fn�a�b��  fag fn�ab�  fn�ab�  fa� bg
bn�� �  
 bn�a�b��  bn�a�b��  fbg bn�ab�  bn�ab�  
 �

The labelled transition system is de�ned in �gure ����	 where the symmetric
version of the rules �sync�	 �syncex�	 and �comp� are omitted� Comparing with
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P
�
� Q

Figure ����� A labelled transition system without contexts
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the system in �gure ���� we note that the rules are in bijective correspondence
with those of the new system� Name clashes in the new system are avoided by
inserting suitable side conditions on the rules ��� and �comp�� In a sense we trade
contexts against side conditions� The de�nition of bisimulation can be adapted
to the lts without contexts as follows�

De�nition ������� Let Pr be the collection of processes� We de�ne an operator
F � P�Pr � Pr� � P�Pr � Pr� as�

P F�S�Q if �P � �� �bn��� � FV �Q�  
 and P
�
� P ��

� �Q� �Q
�
� Q� and P � S Q�� �and symmetrically�

where the transitions are computed in the lts de�ned in �gure ����� A relation S
is a bisimulation if S � F�S�� We de�ne ���

S
fS j S � F�S�g�

The condition bn����FV �Q�  
 is used to avoid name clashes �cf� rule �comp���
As expected	 the two de�nitions of bisimulation turn out to be the same�

Exercise ������ � For all processes P�Q� P �� Q i� P ��� Q�

Characterization of Barbed Equivalence� The de�nition of �
bisimulation
is technically appealing because the check of the equivalence of two processes can
be performed �locally� that is without referring to an arbitrary parallel context
as in the de�nition of barbed equivalence� On the other hand the de�nition
of �
bisimulation is quite intensional and clearly contains a certain number of
arbitrary choices� the actions to be observed	 the selection of new names	� � �The
following result	 �rst stated in �MS���	 shows that strong �
bisimulation and
barbed equivalence are two presentations of the same notion	 and it justi�es	 a
posteriori	 the choice of the actions speci�ed in de�nition ������ �this choice is not
obvious	 for instance the �late� �
bisimulation �rst studied in �MPW���	 which
is based on a di�erent treatment of the input action	 is strictly stronger than
barbed equivalence��

Theorem ������ Strong barbed equivalence and strong ��bisimulation coincide�

Proof� We �rst outline the proof for a Ccs
like calculus following the notation
in section ���� Ccs can be seen as a �
calculus in which the transmitted names
are irrelevant� Formally	 we could code a�P as a�b��P and a�P as �b ab�P 	 where
b 
� FV �P ��

� P �� Q � P � Q� We observe that�

��� P �� Q � P


� Q�

��� P �� Q � P j R �� Q j R	 for any R�

Hence	 P �� Q implies P j R


� Q j R	 for any R	 that is P � Q�
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� P � Q � P �� Q� This direction is a bit more complicated� We de�ne
a collection of tests R�n�L� depending on n � � and a �nite set L of channel
names	 and show by induction on n that�

�L �L  FV �P j Q� and �P j R�n�L��


� �Q j R�n�L��� � P �n Q�

If the property above holds then we can conclude the proof by observing�

P


� Q � �R �P j R



� Q j R�

� �n � � �P j R�n�L�


� Q j R�n�L�� with L  FV �P j Q�

� �n � � �P �n Q�
� P �� Q
� P �� Q by exercise ������� �

We use an internal sum operator � which is a derived n
ary operator de�ned as
follows�

P� � � � � � Pn � �a �a�P� j � � � j a�Pn j a� a 
� FV �P� j � � � j Pn� �

We note that P�� � � ��Pn

� Pi for i  �� � � � � n� We suppose that the collection

of channel names Ch has been partitioned in two in�nite well
ordered sets Ch�

and Ch��� In the following we have L ��n Ch��� We also assume to have the
following sequences of distinct names in Ch��

fan j n � �g
fb�n j n � � and 	 � f�g � fa� a j a � Ch��gg
fb��n j n � � and 	 � fa� a j a � Ch��gg �

Commitments on these names permit to control the execution of certain parallel
contexts R�n�L� which we de�ne by induction on n � � as follows�

R��� L�  a�� and for n  �
R�n�L�  an � �bn �R�n� �� L�� �

�fb�n � ����b��n �R�n � �� L��� j � � L � Lg �

We suppose n  �	 FV �P j Q� � L	 �P j R�n�L��


� �Q j R�n�L��	 and

P
�
� P �� We proceed by case analysis on the action � to show that Q can match

the action �� We observe that the parallel contexts R�n�L� can either perform
internal reductions �which always cause the loss of a commitment� or o�er a
communication ��

� � � Then�
�P j R�n�L��


� �P j �b



n �R�n � �� L��� �

To match this reduction up to barbed bisimulation we have�

�Q j R�n�L��

� �Q j �b



n �R�n � �� L��� �
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We take two steps on the left hand side�

�P j �b


n �R�n � �� L���

�

�
�P � j R�n� �� L�� �

Again this has to be matched by �we have to lose the b


n commitment and
R�n � �� L� cannot reduce without losing a commitment��

�Q j �b


n �R�n � �� L���

�

�
�Q� j R�n � �� L�� �

We observeQ

� Q�� We can conclude by applying the inductive hypothesis�

� � a The case � � a is symmetric� We may suppose a � L�

�P j R�n�L��

� �P j �b

a

n � a��b�
a

n �R�n � �� L���� �

To match this reduction up to barbed bisimulation we have�

�Q j R�n�L��

� �Q j �b

a

n � a��b�
a

n �R�n� �� L���� �

We take three steps on the left hand side�

�P j �b
a

n � a��b�
a

n �R�n � �� L����

�

�
�P � j R�n� �� L�� �

Again this has to be matched by�

�Q j �b
a

n � a��b�
a

n �R�n � �� L����

�

�
�Q� j R�n � �� L�� �

We observeQ
a
� Q�� We can conclude by applying the inductive hypothesis�

� Next we generalize the de�nitions in order to deal with the �
calculus� We
assume to have the following sequences of distinct names in Ch��

fbn� b�n j n � �g
fc�n j n � � and 	 � f�� aa�� a� aa�� a j a� a� � Ch��gg
fc��n j n � � and 	 � faa�� a� aa�� a j a� a� � Ch��gg
fd�n j n � � and 	 � fa j a � Ch��gg
fen j n � �g �

The test R�n�L� is de�ned by induction on n as follows� When emitting or
receiving a name which is not in L	 we work up to injective substitution to show
that P �n Q�

R	�� L� � b� � b��� and for n � �

R	n� L� � bn � b�n�
	cn � R	n� � L�� �

�fcaa
�

n � 	aa��	c�
aa�

n � R	n� � L�� j a� a� 	 Lg �

�fcan � �a�� 	aa���	c�
a

n � R	n� � L� fa��g�� j a 	 Lg �

�fcaa
�

n � a	a����	c�
aa�

n � 	�a�� � a��d
a�

n �R	n� � L�� j a� a� 	 Lg �

�fcan � a	a����	c�
a

n � 	�f�a�� � a��d
a�

n j a� 	 Lg � en �R	n� � L� fa��g�� j a 	 Lg �
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Here we pick a�� to be the �rst name in the well
ordered set Ch��nL� In order to
take into account the exchange of new names between the observed process and
the test R�n�L�	 we have to generalize the statement as follows�

�L�L� �L  FV �P j Q�� L� � L and �L� �P j R�n�L��


� �L� �Q j R�n�L����

� P �n Q�

One can now proceed with an analysis of the possible actions of P mimicking
what was done above in the Ccs case� �

The proof technique presented here can be extended to the weak case as stated
in the following exercise�

Exercise ������ � Show that weak barbed bisimulation coincides with the 
�approximation
of weak ��bisimulation� and that the latter coincides with ��bisimulation on image ��
nite labelled transition systems �cf� de�nition ��	�
� proposition ��	��� and exercise
���������

Finite control processes� We restrict our attention to processes which are
the parallel composition of a �nite number of processes de�ned by a �nite system
of �regular� recursive equations �we also allow some channels to be restricted��
W�l�o�g� we suppose that these equations have the following standard form�

A�c�� � � � � cn�  ���A���c�� � � � �� �m�Am� �cm�

where the rhs of the equation is taken to be � if m  �	 and �i is either a
standard guard or the output of a new channel	 say �c dc	 that we abbreviate as
d�c�� The parameters �cj are drawn from either c�� � � � � cn or the bound variable in
the pre�x �j� Our main goal is to show that bisimulation is decidable for this class
of processes �the argument we give is based on �Dam����� First	 let us consider
some processes that can be de�ned in the fragment of the �
calculus described
above�

Example ������� ��� The following process models a �persistent� memory cell
�we write with in and we read with out��

Mem�a�  in�b��Mem�b� � out a�Mem�a� �

��� The system �a �G�a� j F �a�� is composed of a new name generator G�a� and
a process F �a� that forwards one of the last two names received�

G�a�  a�b��G�a� F �a�  a�c��F ��a� c�
F ��a� c�  a�d��F ���a� c� d� F ���a� c� d�  ac�F �a� � ad�F �a� �
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Note that if we try to compute the synchronization tree associated to	 say	
the process G�a� we may end up with an in�nite tree in which an in�nite number
of labels occur� We need some more work to capture the regular behaviour of
the process� To �x the ideas suppose that we want to compare two processes P�	
P�� The process Pi	 i  �� � consists of the parallel composition of n processes�
Each one of these processes is described by a system of m equations	 of the shape
A��c�  Q� Always for the sake of simplicity	 we suppose that each agent identi�er
A depends on k parameters� Then the state of the process P� is described by a
vector�

P� � ��a �Aj���c�� j � � � j Ajn��cn��

where � � jh � m� The element Ajh��ch�	 for � � h � n determines the equation
and the parameters being applied at the h
th component� Similarly we suppose
that the state of the process P� is described by a vector�

P� � ��b �Bj��
�d�� j � � � j Bjn� �dn�� �

The basic restriction that is satis�ed by the processes Pi is that recursion does not
go through parallel composition� This allows to bound the number of processes
running in parallel �in our case the bound is n� and is exploited in proving the
following result�

Proposition ������� It can be decided if two processes having the structure of
P� and P� above are bisimilar�

Proof� Suppose that we compare P� and P� by applying the de�nition of �

bisimulation� It is clear that at any moment of the computation each process may
depend at most on nk distinct channel names� We may suppose that the free
channel names in P� and P� form an initial segment in the ordering of the channel
names �if this is not the case we can always apply an injective substitution��
Moreover we identify the process �cP with the process P whenever c 
� FV �P ��

Hence the size of the vectors of restricted channels �a and �b is bound�

Next we select a set of channel names � which is the initial segment of the
ordered channel names of cardinality �nk��� There is a �nite number of processes
of the shape P� or P� which can be written using names in �� So we can �nd
Pr� �fin Pr such that P�� P� � Pr�	 and if �  FV �P j P �� and � � P

�
� �� � P ��

then P �� � Pr� up to renaming and elimination of useless restrictions� We observe�

P� � P� i� �n � � �P� �
n P�� i� �n � � �P���

n ��Pr� � Pr���P�� �

The sequence Pr��Pr�  ��� ��Pr��Pr���  � � � converges in a �nite number
of steps since Pr� is �nite� �
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���� A Concurrent Functional Language

Programming languages that combine functional and concurrent programming	
such as Lcs �BGG���	 Cml �Rep��� and Facile �GMP��	 TLP����	 are starting
to emerge and get applied� These languages are conceived for the programming
of reactive systems and distributed systems� A main motivation for using these
languages is that they o�er integration of di�erent computational paradigms in
a clean and well understood programming model that allows formal reasoning
about programs� behaviour�

We de�ne a simply typed language	 called �k	 �rst presented in �ALT���	
and inspired by previous work on the Facile programming language �GMP��	
TLP���	 Ama��� whose three basic ingredients are�

� A call
by
value �
calculus extended with the possibility of parallel evaluation
of expressions�

� A notion of channel and primitives to read
write channels in a synchronous
way! communications are performed as side e�ects of expression evaluation�

� The possibility of dynamically generating new channels during execution�

The �k
calculus should be regarded as a bridge between programming languages
such as Facile and Cml �Rep��� and theoretical calculi such as the �
calculus�
To this end it includes abstraction and application among its basic primitives�
Bene�ts of having a direct treatment of abstraction and application include� �i�
A handy and well
understood functional fragment is available	 this simpli�es the
practice of programming� �ii� The distinction between sequential reduction and
inter
process communication makes more e�cient implementations possible� �iii�
It is possible to reduce to a minimum the primitives which have to be added to
the sequential language	 e�g� there is no need of pre
�xing and recursion	 and
all bindings can be understood as either �
bindings or �
bindings� In a slightly
di�erent formulation	 the latter can be actually reduced to the former	 we keep
both binders though to simplify the comparison with the �
calculus�

We start by �xing some notation for the �k
calculus	 ignoring typing issues
for the time being� There is a universe of expressions e� e�� � � � inductively gener

ated by the following operators� �
abstraction ��x�e�	 application �ee��	 parallel
composition �e j e��	 restriction ��x e�	 output �e�e��	 and input �e"��

The evaluation of an expression follows a call
by
value order	 if the evaluator
arrives at an expression of the form c�v or c" �where c is a channel and v is a
value� then it is stuck till a synchronization with a parallel expression trying to
perform a dual action occurs� As a programming example consider the following
functional F that takes two functions	 evaluates them in parallel on the number
� and transmits the product of their outputs on a channel c �we suppose to have
natural numbers with the relative product operation ���

F � �f��g��y �y��f�� j y��g�� j c��y"� y"�� �
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In order to implement the parallel evaluation of f� and g� a local channel y and
two processes y��f�� and y��g�� are created� Upon termination of the evaluation
of	 say	 f� the value is transmitted to the third process c��y"� y"�� When both
values are received their product is computed and sent on the channel c�

Our �rst task is to provide the �k
calculus with a natural �operational� notion
of equivalence� To this end we de�ne the relations of reduction and commitment
and build on top of them the notions of barbed bisimulation and equivalence
following what was done in section ���� for the �
calculus� Our second task is
that of showing that there is an adequate translation of the �k
calculus into the
�
calculus� This serves two goals�

� The encoding of the call
by
value �
calculus and the transmission of higher

order processes gives a substantial example of the expressive power of the �

calculus�

� It elucidates the semantics of the �k
calculus�

A Concurrent ��calculus� We formally present the �k
calculus	 de�ne its
semantics and illustrate its expressive power by some examples�

� Types are partitioned into values types and one behaviour type�

� �� o jj �� � �� jj Ch��� jj �� � b� �value type�
b �behaviour type�
� �� � jj b �value or behaviour type� �

� An in�nite supply of variables x
� y
� � � �	 labelled with their type	 is assumed
for any value type �� We reserve variables f� g� � � � for functional types � � ��
Moreover	 an in�nite collection of constants c
� d
� � � � is given where � is either
a ground type o or a channel type Ch����	 for some value type ��� In particular
there is a special constant �o� We denote with z� z�� � � � variables or constants�

v �� x jj y jj � � �
e �� c
 jj v
 jj �v
�e jj ee jj e�e jj e" jj �vCh�
� e jj � jj �e j e� �

� Well
typed expressions are de�ned in �gure ����� All expressions are con

sidered up to �
renaming� Parallel composition has to be understood as an
associative and commutative operator	 with � as identity� Note that expres

sions of type behaviour are built up starting with the constant �	 for instance
��x � o����cCh�
��d
� � b�

Expressions having a value type are called value expressions and they return a
result upon termination� Expressions having type b are called behaviour expres

sions and they never return a result� In particular their semantics is determined
only by their interaction capabilities� Since we are in a call
by
value framework it
does not make sense to allow behaviours as arguments of a function� The types�
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�Asmp�
z
 � �

���
� � b

��I�
e � �

�x
�e � � � �
��E�

e � � � � e� � �
ee� � �

���
e � Ch��� e� � �

e�e� � o
�"�

e � Ch���
e" � �

���
e � �

�xCh�
� e � �
�j�

e � b e� � b
e j e� � b

Figure ����� Typing rules for the �k
calculus

grammar is restricted accordingly in order to avoid such pathologies� It should
be remarked that the interaction capabilities of an expression are not re ected
by its type�

Next we describe a rewriting relation �up to structural equivalence� which is
supposed to represent abstractly the possible internal computations of a well

typed �k
expression� On top of this relation we build a notion of observation	
and notions of barbed bisimulation and equivalence�

De�nition ������ A program is a closed expression of type b� Values are speci�
�ed as follows� V �� c jj v jj �v�e�

In the de�nition above	 variables are values because evaluation may take place
under the � operator� In the implementation these variables can be understood
as fresh constants �cf� abstract machine for the �
calculus��

Local evaluation contexts are standard evaluation contexts for call
by
value
evaluation �cf� section ����� For historical reasons � and " are written here in in�x
and post�x notation	 respectively� If one writes them in pre�x notation then local
evaluation contexts are literally call
by
value evaluation contexts�

E �� � � jj Ee jj ��v�e�E jj E�e jj z�E jj E" �

Local evaluation contexts do not allow evaluation under restriction and parallel
composition� In order to complete the description of the reduction relation we
need to introduce a notion of global evaluation context C�

C �� � � jj ��v C� jj �C j e� �

Consider the following equations� associativity and commutativity of the parallel
composition	 e j �  e	 and the following laws concerning the the restriction
operator �	



��� CHAPTER ��� FUNCTIONS AND PROCESSES

�	� E���x�e�V � � E�e�V
x�� �� � E�z�V � j E��z"�� E��� j E��V �

�cxt�
e� e�

C�e�� C�e��
���

e � e� e� � e�� e�� � e�

e � e�

Figure ����� Reduction rules for the �k
calculus

��j� �x e j e� �� �x �e j e�� x 
� FV �e��
��X� �x �y e �� �y �x e
��E� E��x e� �� �xE�e� x 
� FV �E�� E�e� � b �

We de�ne the relation � as the least equivalence relation on �k
expressions that
contains the equations above and is closed under global contexts	 that is e � e�

implies C�e� � C�e��� It would be also sensible to ask closure under arbitrary
contexts	 we do not this to simplify the following comparison with the �
calculus�

Using the notion of local evaluation context two basic reduction rules are
de�ned in �gure ����� The rule �	� corresponds to local functional evaluation
while the rule �� � describes inter
process communication� The reduction relation
describes the internal computation of a program	 therefore it is assumed that
E�E� have type b� The de�nition of the rewriting relation is extended to all
global contexts by the �cxt� rule ��gure ������

The derivation tree associated to a one
step reduction of an expression has
the following structure	 up to structural equivalence� �i� at most one application
of the �cxt� rule	 and �ii� one application of one of the basic reduction rules �	�
and �� �� We write e�r e

� if the rule applied in �ii� is r � f	� �g� We observe that
by means of structural equivalences it is always possible to display a behaviour
expression as follows�

�x� � � � �xn �E����� j � � � j Em��m��

where n�m � �	 if m  � then the process can be identi�ed with �	 and � ��
��v�e�V jj z�V jj z"� It is interesting to note that purely functional computations
always terminate�

Proposition ������ Let e be a program� Then all its reduction sequences not
involving the communication rule �� � are �nite�

Proof� We outline three basic steps� First	 we observe that it is enough to
prove termination for a calculus having just one channel for every value type�
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This allows elimination of restriction� Second	 we translate types as follows�
hoi  o! hbi  o! h� � �i  h�i � h�i! hCh���i  h�i� Third	 we associate
to the �k
operators �� "� �� j variables with a suitable types� For instance to j we
associate a variable xj with type o � �o � o�� It is then possible to translate
�k into a simply typed �
calculus �which is known to be strongly normalizing	 cf�
theorem ������� In the translation every 	
reduction in �k induces a 	
reduction
in the translated term� From this one can conclude the termination of every
	
reduction sequence in �k� �

A �xed point combinator� If we allow � reductions	 then a program in the
�k
calculus may fail to terminate� Indeed behaviours can be recursively de�ned
by means of a �xed point operator Y � ��o � b� � b�� b� This is obtained by a
simple simulation of the �xed point combinator for call
by
value �cf� section ����
YV � �f��V �V where �V � �x�f��w�xx�� Being in a simply typed framework
one expects problems in typing self
application� The way
out is to simulate self

application by a parallel composition of the function and the argument which
communicate on a channel of type o � b �this exploits the fact that all behaviour
expressions inhabit the same type�� In the following e�e� abbreviates ��w����e�e���

Yb � �f��y ��b j y��w��b� where �b � ��x�f��w��x� j y�x���y" �

Using Yb one may for instance de�ne a behaviour replicator Rep e	 such that
Rep e � e j Rep e	 as follows� Rep e � Yb��xo�b��x� j e���

Barbed equivalence� It is easy to adapt the notion of barbed bisimulation
and barbed equivalence to the �k
calculus� Having already de�ned the reduction
relation it just remains to �x the relation of immediate commitment� The relation
e � 	 where e is a program �cf� de�nition �������	 	 �� c jj c	 and c is a constant	
is de�ned as follows�

e � c if e � C�E�c�V �� e � c if e � C�E�c"�� �

As usual let �� be the re exive and transitive closure of � and de�ne a weak
commitment relation e �� 	 as e �� 	 if �e� �e �� e� and e� � 	�� The notions
of barbed bisimulation and barbed equivalence are then derived in a mechanic
way� A binary relation S between programs is a �weak� barbed simulation if
eSf implies� ��� �e� �e �� e� implies �f � �f �� f � and e�Sf ���	 and ��� �	 �e ��
	 implies f �� 	�� S is a barbed bisimulation if S and S�� are barbed simulations�

We write e


� f if e S f for some S barbed bisimulation�

De�nition ������ �congruent equivalence	 Let e� e� be well typed expressions
of the �k�calculus� Then we write e � e� if for all contexts P such that P �e� and

P �e�� are programs	 P �e�


� P �e���
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Remark ������ ��� By construction � is a congruence with respect to the oper�
ators of the calculus� ��� It is easy to prove that if e � � then ��x�e�V � e�V
x��

The following exercises relate the �k
calculus to two previously introduced
topics� environment machines and continuations	 and consider a variant of the
calculus based on asynchronous communication�

Exercise ����� � De�ne an abstract machine that executes �k�programs by combining
the abstract machines de�ned for the call�by�value ��calculus �section ��
� and for the
��calculus �section ������

Exercise ���� � Extend the calculus with a control operator C �cf� section ����
de�ned according to the following typing and reduction rules�

e � 	� � b�� b

Ce � � E�Ce�� e	�x
�E�x��
�

The intuition is that the operator C catches the local evaluation context� De�ne a Cps
translation from the �k�calculus with control operator to the �k�calculus�

Exercise ����� � Consider a variant of the �k�calculus with an �asynchronous� out�
put operator ��a� �when speaking on the telephone we communicate synchronously� when
sending a letter we communicate asynchronously�� This calculus can be regarded as a
restriction of the �k�calculus in which an output is always followed by the terminated
process� Typing and reduction are de�ned as follows�

e � Ch	�� e� � �

e�ae� � b E�z�� j z�aV � E�V �
�

This calculus can be regarded as a restriction of the �k�calculus by writing e�ae� as 	�x �
o���	e�e��� De�ne a translation from the �k�calculus into the corresponding calculus
having asynchronous output� Hint� it is convenient to suppose �rst that the target
calculus has the control operator de�ned in the previous exercise� Then the idea is
to translate an input with an asynchronous output� rather than receiving a value one
transmits the local evaluation context� Symmetrically one translates an output with an
input� rather than transmitting a value one receives the local evaluation context where
the value has to be evaluated� say hc�V i � C	�g�	�f�	fhV i j g���c�� hc�i � C	�f�c�af��

Con�uent reduction in the ��calculus� We introduce some additional con

cepts and notations for the �
calculus� As for the �k
calculus we assume a con

stant � of sort o� We may omit writing the process �� As usual	 �a stands for
a�� � � � � an �n � ��� The process #��c��a��P � with free variables �b stands for a recur


sively de�ned process A��b� satisfying the equation A��b�  c��a���P j A��b��	 where

f�ag � f�bg  
� The operator #� is traditionally called replication� For the sake of
simplicity we also assume the following equivalences concerning the replication
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operator� The �rst allows for the unfolding of the replication operator and the
second entails the garbage collection of certain deadlocked processes�

�#��� #�P � P j #�P �#��� �x#��x��y��P � � � ������

We will consider structurally congruent two �
terms which are in the congruent
closure of the equations ����� It is useful to identify certain special reductions
which enjoy an interesting con�uence property�

De�nition ������ Administrative reductions� We write Q �ad Q
� if for some

context D with one hole	 Q � D��u �u�z j u��x��P �� and Q� � D�P ��z
�x��	 where
u 
� FV �P � f�zg�

Beta reductions� We write Q �beta Q� if for some context D with one hole	
Q � D��f �f�z j #��f��x��P � j P ��� and Q� � D��f �P ��z
�x� j #��f��x��P � j P ���	 where
f 
� FV �P �	 and f cannot occur free in P � in input position	 that is as f��y��P ���

We note that administrative reductions always terminate� Moreover we ob

serve the following con uence property�

Proposition ������ Suppose P � P� and P �ad�beta P�� Then either P� � P�

or there is P � such that P� �ad�beta P
� and P� � P ��

Proof hint� By a simple analysis of the relative positions of the redexes� In
particular	 we note that if two beta
reductions superpose then they both refer to
the same replicated receiving subprocess� �

Translation� We introduce a translation of the �k
calculus into the �
calculus
and we discuss some of the basic properties of the translation� Notably	 we pro

duce an optimized translation to which the standard translation reduces by means
of administrative reductions� The basic problem is that of �nding a simulation of
function transmission by means of channel transmission� The idea is that rather
than transmitting a function one transmits a pointer to a function �a channel� and
at the same time one �stores� the function by means of the replication operator�
Let us consider the following reduction sequence in �k�

c���x�e� j ��f��fn j fm��c"�� �n
x�e j �m
x�e �

Supposing that there is some translation d e such that�

dc���x�e�e  �f �cf j #��f�x��dee�� d��f��fn j fm��c"e  c�f���fn j fm� �

Then by parallel composition of the translations the following simulating reduc

tion sequence in the �
calculus is obtained�

�f �cf j #��f�x��dee�� j c�f���fn j fm� � �f �#��f�x��dee� j fn j fm� ��

�f �#��f�x��dee� j �n
x�dee j �m
x�dee� � d�n
x�e j �m
x�ee �
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De�nition ������ �type translation	 A function d e from �k types into �
sorts is de�ned as follows�

doe  o dCh���e  Ch�d�e�
d� � ��e  Ch�d�e� Ch�d��e�� d� � be  Ch�d�e� Ch��� �

In �gure ���� a function d e from well
typed �k
expressions into well
sorted
�
processes is de�ned� It is possible to statically assign one out of three �colours�
to each �
variable involved in the translation� The colours are used to make the
functionality of a channel explicit and classify the possible reductions of translated
terms� To this end	 we suppose that in the expression e to be translated all
variables of functional type � � � are represented with f� g� � � � Variables of
channel or ground sort in the �k
term are represented by x� y� � � � and channels
used for �internal book keeping� in the translation are represented by u� t� v� � � �
Thus we suppose that �
variables are partitioned in three in�nite sets� u� t� w� � � �!
f� g� � � �! and x� y� � � � Furthermore	 we let r� r�� � � � ambiguously denote constants
�c� c�� � � ��	 variables �x� y� � � ��	 and variables �f� g� � � ���

The translation is parameterized over a �fresh� channel u� If e � � is a value
expression then u has sort Ch�d�e� and it is used to transmit the value �or a
pointer to the value� resulting from the evaluation of the expression e� If e � b is
a behaviour expression then u is actually of no use	 we conventionally assign the
sort Ch�� to the channel u �we choose to parameterize the behaviour expressions
too in order to have a more uniform notation�� Each rule using variables r actually
stands for two rules	 one in which r is replaced by a variable x� y� � � � or a constant
and another where it is replaced by a variable f� g� � � � In the translation only the
variables x� y� � � � can be instantiated by a constant� Note the use of polyadic
channels in the translation of �
abstraction�

As expected	 reductions in the �k
calculus are implemented by several reduc

tions in the �
calculus� The need for a �ner description of the computation in
the �
calculus relates to two aspects�

��� In the �
calculus there is no notion of application� The implicit order of
evaluation given by the relative positions of the expressions in the �k
calculus
has to be explicitly represented in the �
calculus� In particular the �computa

tion� of the evaluation context is performed by means of certain administrative
reductions�

��� In the �
calculus it is not possible to transmit functions� Instead	 a pointer
to a function which is stored in the environment by means of the replication
operator is transmitted� �There is an analogy with graph reduction of functional
languages	 see �Bou��� for a discussion��

Before analysing the encoding of call
by
value we hint to the encoding of call

by
name	 as de�ned in �gure ���� The translation is given parametrically with
respect to a fresh name a which should be interpreted as the channel on which
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dreu  ur
d�r�eeu  �f �uf j df � �r�ee�

where df � �r�ee #��f�r� w��deew�
dee�eu  �t �w �deet j t�f���de�ew j w�r��f �r� u���
de�e�eu  �t �w �deet j t�x���de�ew j w�r��xr�u���
de"eu  �t �deet j t�x��x�r��ur�
d�x eeu  �x deeu
d�eu  �
de j e�eu  deeu j de�eu

Figure ����� Expression translation

the term will receive a pair consisting of �a pointer to� its next argument	 and
the channel name on which to receive the following pair�

��x��a  xa
���x�M ��a  a�x� b����M ��b
��MN ��a  �b �c ���M ��b j b�c� a� j #��c�d����N ��d�� �

Exercise ������ � Prove that ��	�x�M�N ��a� ��M �N�x���a�

For more results on this translation we refer to �San��	 BL��� where a char

acterization of the equivalence induced by the �
calculus encoding on �
terms
can be found� Related work on the representation of �higher
order� processes in
the �
calculus can be found in �Mil��	 Ama��	 San��	 Tho���� The following is
a challenging programming exercise�

Exercise ������ � De�ne a translation of the �t�calculus �section ���� in the ��
calculus which simulates reduction�

We now turn to a detailed analysis of the �
calculus encoding for call
by
value�
This requires the introduction of some technical de�nitions�

De�nition ������� Given a process P in the ��calculus let �P be its normal
form with respect to administrative reductions on channels coloured u� t� w� � � � A
binary relation R between programs in �k�calculus and programs in the ��calculus
is de�ned as follows	 where u is some fresh channel	 Vi are ��abstractions and
the substitution is iterated from left to right	 as Vj may depend on fi for i � j�

e�Vn
fn� � � � �V�
f�� R P if
�P � ��f� � � � �fn �deeu j df� � V�e j � � � j dfn � Vne� �
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The relative complexity of the de�nition of the relation R relates to the points
��
�� above� The translated term may need to perform a certain number of
administrative reductions before a reduction corresponding to a reduction of the
�k
calculus emerges� We get rid of these administrative reductions by introducing
the notion of normal form �P � A second issue concerns the substitution of a value
for a variable which in the �
calculus is simulated by the substitution of a pointer
to a value for a variable� Therefore	 we have to relate	 say	 the term e�V
f �
with the term �f��dee j df � V e�� It will be convenient to use the following
abbreviations�

� �f stands for �f� � � � �fn
�df � V e stands for df� � V�e j � � � j dfn � Vne

��V
f � stands for �Vn
fn� � � � �V�
f�� �n � �� �

In order to analyse the structure of �� �f �deeu j �df � V e� we de�ne an optimized
translation� The optimization amounts to pre
computing the initial administra

tive steps of the translation �a similar idea was applied in section ����� To this
end	 we de�ne an open redex and an open evaluation context	 as a redex and an
evaluation context	 respectively	 in which a functional variable may stand for a
value �cf� de�nition �������� For instance	 fV is an open redex	 and fE is an
open evaluation context� In this way we can speak about redexes which arise
only after a substitution is carried on�

We note that if e ��V
f � � E��� then e � E�����	 where ��� E� are open redex

and evaluation context	 respectively	 and �� ��V
f � � �	 E� ��V
f � � E� This
remark is easily extended to the case where�

e ��V
f � � ��x �E����� j � � � j En��n�� �

In the following de�nitions and proofs the reader may at �rst skip the part in

volving the input
output operators and concentrate on the �
calculus fragment
of the �k
calculus�

De�nition ������� �open context translation	 The translation is de�ned on
open contexts E such that E 	 � �� We assume that V is a ��abstraction�

h�u��eiu  �w �u��f��deew j w�r��f �r� u��
hV �u��iu  �f �df � V e j u��r��f�r� u��
hf �u��iu  u��r��f�r� u�
h�u��"iu  u��x��x�r��ur
h�u���eiu  �w �u��x���deew j w�r��xr�u���
hz��u��iu  u��r��zr�u�
hE�u��eiu  �t �w �hE�u��it j t�f��deew j w�r��f�r� u��
hV E�u��iu  �w �f �df � V e j hE�u��iw j w�r��f�r� u��
hfE�u��iu  �w �hE�u��iw j w�r��f �r� u��
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hE�u��"iu  �w �hE�u��iw j w�x��x�r��ur�
hE�u���eiu  �t �w �hE�u��it j t�x��deew j w�r��xr�u��
hz�E�u��iu  �t �hE�u��it j t�r��zr�u�� �

Lemma ������� �administrative reductions	 Suppose that E is an open eval�
uation context such that E 	 � �	 and that Vj are ��abstractions which may depend
on fi for i � j� Then�

� �f �dE�e�eu j �df � V e� ��
ad �

�f �u� �deeu� j hE�u��iu j �df � V e� �

Proof� By induction on the structure of the evaluation context� There are ��
cases to consider	 following the context translation in the de�nition ������� above�
We present two typical cases for illustration�

Case Ee��

� �f �dE�e�e�eu j �df � V e� �

� �f �t �w �dE�e�et j t�f��de�ew j w�r��f �r� u� j �df � V e���
ad �by ind� hyp��

� �f �t �w �u� �deeu� j hE�u��it j t�f��de�ew j w�r��f �r� u� j �df � V e� �

� �f �u� �deeu� j hE�u��e�iu j �df � V e� �

Case V E�

� �f �dV E�e�eu j �df � V e� �

� �f �t �w �f �df � V e j tf j t�f��dE�e�ew j w�r��f�r� u� j �df � V e� �ad

� �f �t �w �f �df � V e j dE�e�ew j w�r��f�r� u� j �df � V e� ��
ad �by ind� hyp��

� �f �t �w �f �u� �df � V e j deeu� j hE�u��iw j w�r��f�r� u� j �df � V e� �

� �f �u� �df � V e j deeu� j hV E�u��iw j �df � V e� �

�

Remark ������� ��� From the previous lemma ������ we can prove that if
e � e� then �deeu � �de�eu� ��� Lemma ������ immediately extends to a general
behaviour expression e � ��x �E����� j � � � j Em��m�� as the expression translation
distributes with respect to restriction and parallel composition�

The following translation pre
computes the administrative reductions in an
open redex and it is needed in the following proposition�

De�nition ������
 �open redex translation	 In the following open redex trans�
lation we assume that V is a ��abstraction�

f��r��e�rgu  �f �df � �r��ee j f�r� u��
f��f ��e�V gu  �f �f � �df � �f ��ee j df � � V e j f�f �� u��
ffrgu  f �r� u�
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ffV gu  �f � �df � � V e j f�f �� u��
fz"gu  z�r��ur
fz�rgu  zr�u�
fz�V gu  �f � �df � � V e j zf ��u�� �

Proposition ������� The administrative normal form of the behaviour expres�
sion e � ��x �E����� j � � � j Em��m�� can be characterized as �supposing Ei 	 � �	
for i  �� � � � �m	 otherwise just drop the context translation��

�deeu � ��x �u� � � � um �f��gu� j hE��u��iu j � � � j f��gum j hEm�um�iu� �

Proof hint� By remark ������� and the observation that translations of open
evaluation contexts and redexes do not admit administrative reductions� �

With the help of the optimized translation described above	 we derive the fol

lowing lemma	 which relates reductions and commitments modulo the relation
R�

Lemma ������� The following assertions relate reductions and commitments�

��� If eRP and e � e� then �P � P � and e�RP ��

��� Vice versa	 if eRP and �P � P � then e � e� and e�RP ��

��� Suppose eRP � Then e � 	 i� �P � 	�

Proof� ��� By analysis of the redex	 following the open redex translation in
de�nition �������� We consider only two cases which should justify the de�nition
of the relation R� As a �rst case suppose eRP and�

e � E���f ��e�V � ��V
f � �� E�e�V
f
��� ��V
f � � e�

�P � �� �f �dE���f ��e�V �eu j �df � V e� �

Then �P �beta P
�	 where�

P � � � �f �f � �u� �deeu� j hE�u��iu j df � � V e j �df � V e�

and observe e�RP �	 since e� � E�e��V
f �� ��V
f � and by the administrative reduction
lemma ��������

�P � � �� �f �f � �dE�e�eu j df � � V e j �df � V e� �

As a second case suppose eRP and�

e � �E�c�fi� j E
��c"�� ��V
f � �� �E��� j E

��fi�� ��V
f � � e� �

�P � �� �f �dE�c�fi�eu j dE��c"�eu j �df � V e� �
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Then �P � P
�	 where�

P � � � �f �u� �u� �d�eu� j hE�u��iu j dfieu� j hE
��u��iu j �df � V e�

and observe e�RP �	 since by the administrative reduction lemma ��������

�P � � �� �f �dE��� j E��fi�eu j �df � V e� �

��� Same analysis as in ���� ��� This follows by the de�nition of the relation R
and by the characterization of the administrative reduction normal form� �

Theorem ������ Let e� e� be programs in �k� Then deeu


� de�eu i� e



� e��

Proof� The previous lemma ������� allows to go back and forth between �weak�
reductions and �weak� commitments �modulo R�� Hence one can de�ne the
following relations and show that they are barbed bisimulations�

S  f�e� e�� j �P�P � �eRP


� P �R�� e��g

S�  f�P�P �� j �e� e� �P R�� e


� e�RP ��g �

�

Unfortunately	 this result does not extend to barbed equivalence	 as there are
equivalent �k
terms whose �
calculus translations can be distinguished� The re

lationships between �
calculus and �
calculus remain to be clari�ed� For instance
it is not known whether there is a �natural� fully
abstract translation of the call

by
value �
calculus into the �
calculus	 or in another direction	 whether there
is a �reasonable� extension of the �
calculus that would make the translation
considered here fully
abstract�
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Appendix A

Memento of Recursion Theory

In this memento	 functions are always partial	 unless otherwise speci�ed� The
symbol � � � is used for �is de�ned� ��is unde�ned��� A de�nition of the form
�f�x� � y i� P� has to be read �f�x� � i� P 	 and P implies f�x�  y�� We
abbreviate x�� � � � � xn into �x� We also write	 for two expressions s and t	

s � t i� �s � and t � and s  t� or �s  and t  ��

A�� Partial Recursive Functions

Partial recursive	 or computable functions	 may be de�ned in a number of equiva

lent ways� This is what Church�s thesis is about� all de�nitions of computability
turn out to be equivalent� Church�s thesis justi�es some con�dence in �semi

formal� arguments	 used to show that a given function is computable� These
arguments can be accepted only if at any moment	 upon request	 the author of
the argument is able to fully formalize it in one of the available axiomatizations�
The most basic way of de�ning computable functions is by means of comput

ing devices of which Turing machines are the most well known� A given Turing
machine de�nes	 for each n	 a partial function f � �n � �� More mathemat

ical presentations are by means of recursive program schemes	 or by means of
combinations of basic recursive functions�

Theorem A���� �G�odel�Kleene	 For any n	 the set of Turing computable func�
tions from �n to � is the set of partial recursive functions from �n to �	 where
by de�nition the class of partial recursive �p�r�� functions is the smallest class
containing�

� � � � � � de�ned by ��x�  ��

� succ � � � � �the successor function��

� Projections �n�i � �n � � de�ned by �n�i�x�� � � � � xn�  xi�

and closed under the following constructions�

���
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� Composition� If f� � �m � �� � � � � fn � �m � � and g � �n � � are p�r�	 then
g � hf�� � � � � fni � �m � � is p�r��

� Primitive recursion� if f � �n � �	 g � �n�� � � are p�r�	 then so is h de�ned
by�

h��x� ��  f��x�
h��x� y � ��  g��x� y� h��x� y�� �

� Minimalisation� if f � �n�� � � is p�r�	 so is g � �n � � de�ned by g��x� 
�y��f��x� y�  ��	 where �y�P means� the smallest y such that P �

The source of partiality lies in minimalisation� The total functions obtained
by the combinations of G$odel
Kleene	 except minimalisation	 are called primitive
recursive� The partial recursive functions which are total are called the recursive
functions� The set of partial recursive functions from �n to � is called PRn �we
write PR for PR���

Lemma A���� �encoding of pairs	 The following functions are recursive and
provide inverse bijections between � � � and ��

h � i � � � � � � de�ned by� hm�ni  �m��n� �� � ��
�� � � � � where ���n� is the exponent of � in the prime decomposition of n� ��
�� � � � � de�ned by� ���n�  ��n� ��
����n� � ��
��

We say that a function f � � � � � � is p�r� i� f � h��� ��i � � � � is
p�r�� Turing machines can also be coded by natural numbers �a Turing machine
is determined by a �nite control which can be described by a �nite string on a
�nite alphabet which in turn can be represented by a natural number�� We call�

Tn the Turing machine which has code n�
�mn the partial function from �m to � de�ned by Tn �we write �n for ��n��
Wm

n  dom��mn � �we write Wn for W �
n ��

If f  �mn �W  Wm
n �	 we say that n is an index of f �W ��

Lemma A���� �enumeration of PR	 The mapping �n��n is a surjection of �
onto PR�

As a �rst consequence	 there are total functions which are not recursive�

Exercise A���� Show that f de�ned by

f	n� �

�
	n	n� �  if 	n	n� �
� otherwise

is not recursive� �But g de�ned by g	n� � 	n	n� �  i� 	n	n� � is p�r� see following
theorem A������ Show that there exist recursive� non primitive recursive functions�
Hint� For the last part use an enumeration f�ngn�� of the primitive recursive functions�
and take �x��x	x� � �
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The next theorem says that arguments of a partial recursive function can be
frozen	 uniformly�

Theorem A���� �s�m�n	 For each m�n there is a total recursive m � � ary
function smn �s for short� such that for all �x  x�� � � � � xm	 �y  ym��� � � � � ym�n

and p � �m�n
p ��x� �y� � �ns�p��x���y��

Proof hint� We can �pre�x� to Tp instructions that input the frozen argument
�x� �

Theorem A���� �universal Turing machine	 There exists a Turing machine
TU computing	 for any n	 the function �n

U � �n�� � � de�ned by� �n
U�p� �y� 

�np��y��

Proof hint� Informally	 TU decodes its �rst argument p into the machine Tp	
and then acts as Tp on the remaining arguments� �

A�� Recursively Enumerable Sets

The theory of computable functions can be equivalently be presented as a theory
of computable predicates�

De�nition A���� �decidable and semi�decidable	 A subset W of �n is called
decidable	 or recursive	 when its characteristic function � de�ned by

��x� 

�
� if x � W
� otherwise

is recursive� A subset W of �n is called primitive recursive	 when its characteristic
function is primitive recursive� A subset W of �n is called semi
decidable	 or
recursively enumerable �r�e��	 when its partial characteristic function �p ��p�x� �
i� x � W � is partial recursive�

Clearly	 every decidable set is semi
decidable� A central example of a recursive
set is the following�

Proposition A���� �convergence in t steps	 Given a Turing machine T com�
puting the partial recursive function f 	 the set f��x� y� t� j f��x� � y in t steps of Tg
is recursive�

Proof� Given a Turing machine T computing f 	 the obvious informal algorithm
is� perform at most t steps of T starting with input �x	 and check whether result
y has been reached� �
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Remark A���� A more careful analysis shows that the characteristic function
of f��x� y� t� j f��x� � y in t stepsg can be de�ned by means of primitive recursion
only�

There are a number of equivalent characterizations of recursive and recursively
enumerable sets�

Proposition A���� The set W � �n is r�e� i� one of the following conditions
holds�

��� W  dom�f�	 for some partial recursive function f �

��� There exists a recursive set W � � �n�� such that W  f�x j �y��x� y� � W �g�

��� W  
 or W  im�h�	 for some recursive function h � �n � ��

��� W  im�h�	 for some partial recursive function h � �n � ��

Proof� ��� If W  dom�f�	 then its partial characteristic function is � � f 	
where � is constant ��

��� Let W be f�x j �y��x� y� � W �g� Then W  dom���x��y����x� y� � W ����
Conversely	 if W  dom�f�	 take W �  f��x� y�jf��x� � in y stepsg�

��� If W  dom�f� 	 
	 pick an element �a � W � De�ne�

g��x� y� 

�
�x if f��x� � in y steps
�a otherwise

Then W  im�g�  im�h� �where h is the composition of g with the encoding
from �n to �n����

��� IfW  im�h�	 we have by proposition A���� that f��x� y� t� j h��x� � y in t stepsg
is recursive� Thus W  dom���x��z��z  hy� ti and h��x� � y in t steps��� �

Remark A���� The encodings quoted among others in the proof of proposition
A�����
� �hide� a useful technique	 known as dovetailing� the informal way of
obtaining h is by trying the �rst step of f���	 the �rst step of f���	 the second
step of f���	 the �rst step of f���	 the second step of f���	 the third step of f���	
the �rst step of f��� � � �

Exercise A��� Show that if W 
 
n�� is r�e�� then f�x j �y� 	�x� y� 	 Wg is r�e��
Hint� Consider a recursive W � such that W � f	�x� y�j�z	�x� y� z� 	W �g is r�e� �

Proposition A���
 W � �n is recursive i� W and its complement W c are
semi�decidable�
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Proof� If W is decidable	 it is semidecidable	 and W c is decidable �with charac

teristic function ! � �	 where � is the characteristic function of W �� Conversely	
if W and W c are both semi
decidable	 let W � and W �� be recursive and such that

W  f�x j �y��x� y� � W �g W c  f�x j �y��x� y� � W ��g �

Let �� and ��� be the characteristic functions of W � and W ��	 respectively� Then

W  dom���x��y��Y � h��� ���i��x� y�  ���

where Y is any recursive function restricting to the boolean union over f�� �g�
The function ��x��y��Y �h��� ���i��x� y�  ��� is p�r� by construction	 and moreover
is total since W �W c  �n� �

The following is a useful characterization of partial recursive functions�

Proposition A���� A function f is p�r� i� its graph f��x� y� j f��x� � yg is r�e�

Proof� If f is p�r�	 then by proposition A���� f��x� y� t� j f��x� � y in t stepsg is
recursive� We conclude by proposition A���� ��� that f��x� y� j f��x� � yg is r�e�	
since f��x� � y i� f��x� � y in t steps for some t�

Conversely	 if f��x� y� j f��x� � yg is r�e�	 let W � be a recursive set such that
f��x� � y i� ��x� y� t� � W � for some t� Then f can be written as

�� � ���x��z��z  hy� ti and ��x� y� t� � W ���

and thus is p�r�� �

Here is an example of a semi
decidable	 non decidable predicate�

Proposition A���� ��� The set K  fx j x � Wxg is semi�decidable� ��� The
set fx j x 
� Wxg is not r�e� �

Proof� ��� We have K  im��x��x�x��  im��U � hid� idi�	 thus K is r�e� by
proposition A�������� ��� Suppose fx j x 
� Wxg  dom�f� for some PR function�
Let n be an index of f � We have� �x �x 
� Wx i� x � Wn�� We get a contradiction
when taking x  n� �

Exercise A����� Show that fxj	x is recursiveg is not r�e�� Hint� Consider g	x� �
	f�x�	x� � � where f is a claimed enumeration of the recursive functions�
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A�	 Rice�Shapiro Theorem

We end up this memento with an important theorem	 widely used in theoretical
computer science� It gives evidence to the thesis� computable implies continuous
�cf� theorem ����� and proposition ��������� A partial function � such that dom���
is �nite is called �nite� Clearly �nite functions from � to � are computable�
Partial functions may be ordered as follows�

f � g i� �x �f�x� � y�� �g�x� � y� �

Theorem A���� �Rice�Shapiro	 Let A be a subset of PR such that A� 
fxj�x � Ag is r�e�� Then	 for any partial recursive f 	 f � A i� there exists
a �nite function � � f such that � � A�

Proof� Let T be a Turing machine computing the partial characteristic function
of K  fx j x � Wxg�

�"� Suppose f � A	 and �� � f �� 
� A�� Let g be the partial recursive function
de�ned by g�z� t� � y i� T starting with z does not terminate in less than t steps	
and f�t� � y� One has	 by de�nition of g�

�t�g�z� t� 

�
f if z 
� K
� if z � K� where � ��n f �

Thus our assumption entails z 
� K i� �t�g�z� t� � A� Let s be a recursive func

tion	 given by theorem A����	 such that g�z� t� � �s�z��t�� The above equivalence
can be rephrased as� z 
� K i� s�z� � A�� But the predicate on the right is r�e��
contradiction�

��� Suppose f 
� A and � � A	 for some �nite � � f � We argue as in the
previous case	 de�ning now g by

g�z� t� � y i� ���t� � or z � K� and f�t� � y �

�

Corollary A���� �Rice	 If B � PR	 B 	 
 and B 	 PR	 then fx j �x � Bg is
undecidable�

Proof� Let A be as in the statement of Rice
Shapiro theorem	 and let � be the
totally unde�ned function� If � � A	 then	 by the theorem	 A must be the whole
of PR�

Now suppose that fx j �x � Bg is decidable� Then B and Bc both satisfy the
conditions of the Rice
Shapiro theorem� Consider the totally unde�ned function
�� We have� � � B or � � Bc� We deduce that either B  PR or Bc  PR�
contradiction� �



Appendix B

Memento of Category Theory

Category theory has been tightly connected to abstract mathematics since the
�rst paper on cohomology by Eilenberg and Mac Lane �EM��� which establishes
its basic notions� This appendix is a pro
memoria for a few elementary de�nitions
and results in this branch of mathematics� We refer to �ML��	 AL��� for adequate
introductions and wider perspectives�

In the mathematical practice	 category theory is helpful in formalizing a prob

lem	 as it is a good habit to ask in which category we are working in	 if a certain
transformation is a functor	 if a given subcategory is re ective	� � �Using category
theoretical terminology	 one can often express a result in a more modular and
abstract way� A list of �prescriptions� for the use of category theory in computer
science can be found in �Gog����

Categorical logic is a branch of category theory that arises from the observation
due to Lawvere that logical connectives can be suitably expressed by means of
universal properties� In this way one represents the models of	 say	 intuitionistic
propositional logic	 as categories with certain closure properties where sentences
are interpreted as objects and proofs as morphisms �cf� chapter ���

The tools developed in categorical logic begin to play a central role in the
study of programming languages� A link between these two apparently distant
topics is suggested by�

� The role of �typed� �
calculi in the work of Landin	 McCarthy	 Strachey	 and
Scott on the foundations of programming languages�

� The Curry
Howard correspondence between systems of natural deduction and
typed �
calculi�

� The categorical semantics of typed �
calculi along the lines traced by Lambek
and Scott�

The basic idea in this study is to describe in the categorical language the �models�
of a given programming languages� For instance	 in the case of the simply typed
�
calculus the models correspond to the cartesian closed categories �cf� chapter
���

���
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This approach has been fairly successful in describing data types by means of
universal properties� At present it is unclear if such program will be successful
on a larger variety of programming languages features� It is however a recognized
fact that ideas from categorical logic play a central role in the study of functional
languages� Moreover promising attempts to describe categorically other features
of programming languages such as modules	 continuations	 local variables	� � � are
actively pursued�

B�� Basic De
nitions

A category may be regarded as a directed labelled graph endowed with a partial
operation of composition of edges which is associative and has an identity�

De�nition B���� �category	 A categoryC is a sextuple �Ob�Mor�dom� cod�id� comp�
where Ob is the class of objects	 Mor is the class of morphisms and�

dom �Mor � Ob cod � Mor � Ob
id � Ob � Mor comp � Comp �Mor

where Comp  f�f� g� � Mor �Mor j dom�f�  cod�g�g� Moreover�

id � f  f � id  f �identity�
f � �g � h�  �f � g� � h �associativity�

where f � g is a shorthand for comp�f� g�	 we write f � g only if �f� g� � Comp	
and we omit to write the object to which id is applied in �identity��

Let C be a category	 a� b � Ob	 then

C�a� b�  ff � Mor j dom�f�  a and cod�f�  bg

is the homset from a to b� We also write f � a� b for f � C�a� b�	 and a � C for
a � Ob� When confusion may arise we decorate the components Ob�Mor� � � � of
a category with its name	 hence writing ObC�MorC� � � � A category C is small if
MorC is a set	 and it is locally small if for any a� b � C	 C�a� b� is a set�

Example B���� �basic categories	 We just specify objects and morphisms� The
operation of composition is naturally de�ned� The veri�cation of the identity and
associativity laws is immediate�

� Sets and functions	 Set�

� Sets and partial functions	 pSet�

� Sets and binary relations�

� Every pre�order �P��� induces a category P with �P�a� b�  � if a � b and
�P�a� b�  � otherwise�
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� Any set with just an identity morphism for each object �this is the discrete
category��

� Every monoid induces a category with one object and its elements as mor�
phisms�

� Posets �or pre�orders� and monotonic functions�

� Groups and homomorphisms�

� Topological spaces and continuous functions	 Top�

� Directed unlabelled graphs and transformations that preserve domain and codomain
of edges�

De�nition B���� �dual category	 Let C be a category� We de�ne the dual
category Cop as follows�

ObCop  ObC Cop�a� b�  C�b� a�
idop  id f �op g  g � f �

Remark B���� �dual property	 Given a property P for a category C and rel�
ative theorems it often makes sense to consider a dual property P op to which
correspond dual theorems� This idea can be formalized using the notion of dual
category as follows� given a property P for a category C we say that C has
property P op if Cop has property P �

Example B���� �categories built out of categories	 ��� A subcategory is
any sub�graph of a given category closed under composition and identity�

��� If C and D are categories the product category C�D is de�ned by�

ObC�D  ObC �ObD� �C�D���a� b�� �a�� b���  C�a� a���D�b� b�� �

��� If C is a category and a � C	 the slice category C � a is de�ned as�

C � a 
S
b�CC�b� a�	 �C � a��f� g�  fh j g � h  fg�

De�nition B���� �terminal object	 An object a in a category C is terminal
if �b � C��f � b� a� We denote a terminal object with � and with �b the unique
morphism from b to ��

De�nition B���
 �properties of morphisms	 Let C be a category�

� A morphism f � a� b is a mono if �h� k �f � h  f � k � h  k��

� A morphism f is epi if it is mono in Cop	 i�e� �h� k �h � f  k � f � h  k��

� A morphism f � a� b is a split mono if there is a morphism g � b� a �called
split epi� such that g � f  id�

� A morphism f � a� b is an iso if there is an inverse morphism g � b� a such
that g � f  id and f � g  id� We write a � b if there is an iso between a and b�

Exercise B���� Prove the following properties� ��� Each object has a unique identity
morphism� �	� The inverse of an iso is unique� �
� If g � f � id then g is an epi and f
is a mono� ��� f epi and split mono implies f iso� ��� f mono and epi does not imply
f iso� ��� The terminal object is uniquely determined up to isomorphism�
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B�� Limits

The notions of cone and limit of a diagram are presented� The main result
explains how to build limits of arbitrary diagrams by combining limits of special
diagrams	 namely products and equalizers�

De�nition B���� �diagram	 Let C be a category and I  �ObI �MorI � a graph�
A diagram in C over I is a graph morphism D � I � C�

We often represent a diagram D as a pair �fdigi�ObI � ffugu�MorI��

De�nition B���� �category of cones	 Let C be a category and D � I � C be
a diagram� We de�ne the category of cones ConesCD as follows�

ConesCD  f�c� fhigi�ObI� j �u � MorI �fu � di � dj � hj  fu � hi�g
ConesCD��c� fhigi�ObI�� �d� fkigi�ObI��  fg � c � d j �i � ObI �hi  ki � g�g �

De�nition B���� �limit	 Let C be a category and D � I � C be a diagram� D
has a limit if the category ConesCD has a terminal object�

By the properties of terminal objects it follows that limits are determined up
to isomorphism in ConesCD� Hence we may improperly speak of a limit as an
object of the category ConesCD� We denote this object by limCD� Also we say
that the category C has I�limits if all diagrams indexed over I have limits�

Example B���� �special limits	 We specialize the de�nition of limit to some
recurring diagrams�

� If I  
 then the limit is a terminal object�

� If I is a discrete graph �no morphisms� then a diagram over I in C is just a
family of objects faigi�ObI � In this case a limit is also called a product and it is
determined by a couple �c� f�i � c � aigi�ObI� such that for any cone �d� ffi � c �
aigi�ObI� there exists a unique z � d � c such that �i � ObI �fi  �i � z�� We
write c as %i�ObIai	 and z as hfii	 which is an abbreviation for hfiii�ObI �

� Equalizers are limits of diagrams over a graph I with two nodes	 say x� y	
and two edges from x to y� If the image of the diagram is a pair of morphisms
f� g � a� b then an equalizer �or limit� is a pair �c� e � c � a� with properties �i�
f�e  g�e	 and �ii� if �c�� e� � c� � a� and f�e�  g�e� then ��z � c� � c �e�z  e���

� Pullbacks are limits of diagrams over a graph I with three nodes x� y� z	 one
edge from x to z	 and one edge from y to z� If the image of the diagram is a
pair of morphisms f � a � d	 g � b � d then a pullback �or limit� is a pair
�c� fh � c � a� k � c � bg� with properties �i� f � h  g � k	 and �ii� if �c�� fh� �
c� � a� k� � c� � bg� and f �h�  g�k� then ��z � c� � c �h�z  h� and k�z  k���
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The notions of cocone	 initial object	 and colimit are dual to the notions of
cone	 terminal object	 and limit	 respectively� We spell out the de�nition of
coproduct which is often needed�

De�nition B���� �coproduct	 The colimit of a family of objects faigi�ObI is
called coproduct� It is determined by a couple �c� finji � ai � cgi�ObI� such that
for any cocone �d� ffi � ai � dgi�ObI � there exists a unique z � c � d such that
�i � ObI �fi  z � inji�� We write c as �i�ObIai	 and z as �fi�i�ObI 	 or simply �fi��

Exercise B��� Show that a category with terminal object and pullbacks has binary
products and equalizers�

Theorem B���
 �existence of I�limits	 Let C be a category and I be a graph	
then C has I�limits if ��� C has equalizers	 ��� C has all products indexed over
ObI and MorI � In particular a category with equalizers and �nite products has
all �nite limits�

Proof� Let D � I � C be a diagram� We de�ne�

P  %i�ObID�i� Q  %u�MorIcod�D�u�� �

Next we de�ne f� g � P � Q	 and e � L � P as follows�

� Let p and q denote the projections of P and Q	 respectively�

� f is the unique morphism such that D�u� � pdom�u�  qu � f 	 for any u � MorI �

� g is the unique morphism such that pcod�u�  qu � g	 for any u � MorI �

� e is the equalizer of f and g�

We claim that �L� fpi � egi�ObI� is a limit of the diagram D� The proof of this
fact takes several steps�

��� �L� fpi �egi�ObI� � ConesCD� We have to show D�u��pdom�u� �e  pcod�u� �e	
for any u � MorI � We observe�

D�u� � pdom�u� � e  qu � f � e
 qu � g � e
 pcod�u� � e �

��� Let �F� fligi�ObI� � ConesCD� Then there is a uniquely determined mor

phism hlii � F � P such that pi � hlii  li	 for any i � ObI � We claim
f � hlii  g � hlii� This follows from the observation that for any u � MorI �

qu � f � hlii  D�u� � pdom�u� � hlii
 D�u� � ldom�u�

 lcod�u�
 pcod�u� � hlii
 qu � g � hlii �
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��� Hence there is a unique z � F � L such that e � z  hlii� We verify that
z � �F� fligi�ObI� � �L� fpi � egi�ObI� is in ConesCD by checking pi � e � z  li	 for
any i � ObI � This follows by�

pi � e � z  pi � hlii  li �

��� Finally suppose z� � �F� fligi�ObI� � �L� fpi � egi�ObI� in ConesCD� Then
z� � �F� hlii� � �L� e� as pi � e � z�  li	 for any i � ObI implies e � z�  hlii� Hence
z  z�� �

Exercise B���� Study the existence of �co��limits in the categories introduced in ex�
ample B���	�

B�	 Functors and Natural Transformations

A functor is a morphism between categories and a natural transformation is a
morphism between functors� The main result presented here is that there is a full
and faithful functor from any category C to the category of set
valued functors
over Cop�

De�nition B���� �functor	 Let C	 D be categories	 a functor F � C � D is a
morphism between the underlying graphs that preserves identity and composition	
that is�

FOb � ObC � ObD FMor �MorC �MorD
FMor�ida�  idFOb�a� FMor�f � g�  FMor�f� � FMor�g�

where if f � a� b then FMor�f� � FOb�a� � FOb�b��

In the following we omit the indices Ob and Mor in a functor� By a contravariant
functor F � C � D we mean a functor F � Cop � D�

Exercise B���� Show that small categories and functors form a category�

De�nition B���� �hom�functor	 Let C be a locally small category� We de�ne
the hom�functor C� � � � Cop �C � Set as follows�

C� � ��a� b�  C�a� b� C� � ��f� g�  �h�g � h � f �

Given an object c in the category C we denote with C� � c� � Cop � Set and
C�c� � � C � Set the contravariant and covariant functors over C obtained by
restricting the hom
functor to the �rst and second component	 respectively�

Exercise B���� Suppose F � C � D is a functor� D � I � C is a diagram and
	a� fligi�ObI� 	 ConesCD� Show that 	Fa� fFligi�ObI� 	 ConesD	F �D��
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De�nition B���� �limit preservation	 Suppose F � C � D is a functor	 and
D � I � C is a diagram� We say that F preserves the limits of the diagram D if�

�a� fligi�ObI� � limCD � �Fa� fFligi�ObI� � limD�F �D� �

Proposition B���� Let C be a locally small category and c be an object in C�
Then the covariant hom�functor C�c� � � C � Set preserves limits�

Proof� Let D  �fdigi�ObI � ffugu�MorI� be a diagram and �a� fligi�ObI� �
limCD� Then �C�c� a�� f�h�li � hgi�ObI� � ConesSet�C�c� � � D�� We suppose
�X� fgigi�ObI� � ConesSet�C�c� � �D�	 that is�

�u � MorI �x � X �fu � di � dj � �fu � gi�x�  gj�x��� �

Then �x � X �c� fgi�x�gi�ObI� � ConesSetD� Hence there is a unique h�x� �
c � a such that gi�x�  li � h�x�	 for any i � ObI � We can then build a unique
z � X � C�c� a� such that li � z  gi	 for any i � ObI � This z is de�ned by
z�x�  h�x�� �

De�nition B���
 �natural transformation	 Let F�G � C � D be functors�
A natural transformation � � F � G is a family f�a � Fa� Gaga�Ob

C
such that

for any f � a � b	 �b � Ff  Gf � �a� A natural isomorphism � is a natural
transformation such that �a is an isomorphism	 for any a�

Exercise B���� Given C�D categories show that the functors from C to D� and their
natural transformations form a category� We denote this new category with DC� It can
be shown that DC is actually an exponent in the sense of cartesian closed categories
�see section B����

De�nition B���� �category of pre�sheaves	 Given a category C the category
of pre
sheaves over C is the category SetC

op

of contravariant set�valued functors
and natural transformations�

Another important operation involving natural transformations is the composi

tion with a functor�

Proposition B���� If G � B � C	 F�F � � C � C� and � � F � F �	 then
�G � F �G � F ��G is natural	 where �G is de�ned by set theoretical composition	
i�e� ��G�a  �Ga� Likewise	 if H � C� � B�	 F�F � � C � C� and � � F � F �	
then H� � H � F � H � F � is natural	 where �H��a  H��a��

The composition of natural transformations and functors extends to a notion
of horizontal composition of natural transformations �in contrast to the vertical
one given by the �����
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Proposition B����� If F�F � � C � C�	 G�G� � C� � C��	 � � F � F �	 � � G �
G�	 then

��F �� � �G��  �G��� � ��F � � G � F � G� � F � �

We write �� for the common value of both sides of this equation�

Exercise B����� Show the following so called interchange law �originally stated by
Godement�� for all �� ��� �� �� of appropriate types 	�� � ��	�� � �� � 	����� � 	����

De�nition B����� �full and faithful functor	 A functor F � C � D is full
if �a� b�h � Fa � Fb�f � a � b �Ff  h�	 and faithful if it is injective on each
hom�set C�a� b��

Theorem B����� �Yoneda	 For any category C there is a full and faithful
functor Y � C � SetC

op

from C into the related category of pre�sheaves	 called
Yoneda embedding	 and de�ned as follows�

Y �c�  C� � c� Y �f�  �h�f � h �

Proof hint� The key to the proof that Y is full resides in the following lemma
where we take F as hd  C� � d�� �

Lemma B����� �Yoneda�s lemma	 For any functor F � Cop � Set and any
object c � C	 the following isomorphism holds in Set	 where hc  C� � c� and
Nat�hc� F � are the natural transformations from hc to F �

Fc � Nat�hc� F � �

Proof� We de�ne i � Fc � Nat�hc� F � with inverse j � Nat�hc� F � � Fc as
follows�

i�x�  �d��l � d � c��Fl��x� j�� �  �c�idc� �

First we verify that i�x� is a natural transformation as�

�Ff���i�x�a��l��  �Ff���Fl��x��  F �l � f��x�  �i�x�b��l � f� �

Next we verify that j is the inverse of i�

j�i�x��  i�x�c�idc�  �Fidc��x�  �id��x�  x
i�j�� ��  �d��l � d � c��Fl���c�idc��  �d��l � d � c��d�l�  �

as by applying the naturality of � to l � d � c one gets �Fl���c�idc��  �d�l�� �
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B�� Universal Morphisms and Adjunctions

A universal morphism is a rather simple abstraction of a frequent mathematical
phenomenon�

Example B���� ��� Given a signature � consider the category of ��algebras
and morphisms� If A is a ��algebra denote with jAj its carrier �which is a set��
There is a well known construction which associates to any set X the free ��
algebra ��X� and which is characterized by the following property�

�u � X � j��X�j �A�f � X � jAj ��f � � ��X� � A �f � � u  f� �

��� Consider the category of metric spaces and continuous morphisms and the
full subcategory of complete metric spaces� The Cauchy completion associates to
any metric space �X� d� a complete metric space �Xc� dc� which is characterized
by�

�u � �X� d� � �Xc� dc���Y� d�� complete �f � �X� d� � �Y� d��
��f � � �Xc� dc� � �Y� d�� �f � � u  f� �

De�nition B���� �universal morphism	 Let F � C � D be a functor and d
an object in D� Then the couple �cd� u � d � Fcd� is universal from d to F �and
we also write �cd� u� � d � F � if�

�c�f � d � Fc��f � � cd � c �Ff � � u  f� �

Exercise B���� ��� Show that if 	cd� u� � d � F and 	c�d� u
�� � d � F then cd �� cd��

�	� Explicit the dual notion of co�universal� �
� Verify that the previous examples B����
�t the de�nition of universal morphism�

The notion of adjunction is a fundamental one	 and it has several equivalent char

acterizations� In particular	 an adjunction arises whenever there is a �uniform�
way of determining a universal morphism �cf� proposition B������� and theorem
B������

De�nition B���� �adjunction	 An adjunction between two categories C�D is
a triple �L�R� � �	 where L � D � C	 and R � C � D are functors and � �
C�L � � � D� � R � is a natural isomorphism� We say that L is the left adjoint	
R is the right adjoint	 and we denote this situation by L a R�

Exercise B���� With reference to example B����� de�ne the �free algebra� and �Cauchy
completion� functors� Verify that they are left adjoints to the respective forgetful func�
tors�
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In the following we develop some properties of adjunctions in the special case
in which C and D are poset categories and therefore the functors L and R are
monotonic functions� Let us �rst observe that the triple �L�R� � � is an adjunction
i�

�c� d �Ld � c i� d � Rc� �

A pair of monotonic functions satisfying this property is also known as Galois
connection�

Proposition B���� Let C	 D be poset categories� Then�

��� Every component of an adjunction determines the other�

��� The following conditions are equivalent for R � C � D	 and L � D � C� �a�
�c� d �Ld � c i� d � Rc�	 and �b� L �R � idC	 idD � R � L�

��� The pair �cd� d � Fcd� is universal from d to F � C � D if�

�c �d � Fc� cd � c� � �B���

If �d �cd� d � Fcd� � d � F then F has a left adjoint L where L�d�  cd�

��� Vice versa	 if L a R	 R � C � D	 and L � D � C then �d �Ld� d � �R�L�d�
is universal from d to R	 and symmetrically �c �Rc� �L �R�c � c� is co�universal
from L to c�

Proof� ��� We note that if L a R and L a R� then d � Rc i� Ld � c i� d �
R�c� For d  Rc we get Rc � Rc i� Rc � R�c� Hence Rc � R�c	 and symmetri

cally R�c � Rc�

��� Concerning the equivalence of the statements� �a� � �b� L�Rc� � c i� Rc �
Rc� �b� � �a� Ld � c implies d � R�Ld� � Rc	 and d � Rc implies Ld �
L�Rc� � c�

��� Condition B�� follows from de�nition B����� If d � Fcd then	 by condition
B��	 cd � c	 that is Ld � c� By hypothesis �d �d � F �Ld��� Hence	 Ld � c
implies d � F �Ld� � Fc�

��� Direct application of the characterizations ��
��� �

Exercise B���� Generalize point ��� of proposition B���� to arbitrary categories� if
L a R and L a R� then R and R� are naturally isomorphic�

The following theorem connects adjunctions with universal morphisms and gen

eralizes points ��
�� of proposition B�����

Theorem B���� An adjunction �L�R� � � determines�

��� A natural transformation � � idD � R � L	 called unit	 such that for each
object d � D	 �Ld� �d� is universal from d to R	 for each f � Ld � c	 � �f� 
R�f� � �d � d � Rc�
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��� A natural transformation � � L � R � idC 	 called counit	 such that for each
object c � C	 �Rc� �c� is co�universal from L to c	 and for each g � d � Rc	
����g�  �c � L�g� � Ld � c�

��� Moreover the following equations hold�

�R�� � ��R�  idR ��L� � �L��  idL �

Exercise B���� Show that an adjunction L a R is completely determined by �i� func�
tors L � D � C and R � C � D� �ii� natural transformations � � L � R � id�
� � id� R � L such that 	�L� � 	L�� � idL and 	R�� � 	�R� � idR�

Exercise B����� Let C be a category� Show�

	� C has a terminal object i� the unique functor � � C� � has a right adjoint�

	�� C has a binary products i� the diagonal functor � � C � C�C has a right
adjoint� where �	a� � 	a� a� and �	f� � 	f� f��

	
� Given a graph I consider the category �I� C� of graphs and natural transforma�
tions �observe that the de�nition of natural transformation does not require I to be a
category�� De�ne a generalized diagonal functor �I � C � �I� C� and show that C
has limits of I�indexed diagrams i� the functor �I has a right adjoint�

	�� Show that the left adjoint of the inclusion functor from complete metric spaces to
metric spaces builds the Cauchy completion� Analogously show that the left adjoint to
the forgetful functor from ��algebras to Set builds the free�algebra�

The de�nition of adjunction hides some redundancy	 the following characteriza

tions show di�erent ways of optimizing it� An adjunction L a R is determined
by �i� a functor L � D � C	 �ii� a function R � ObC � ObD	 and one of the
following conditions�

��� Bijections �d�c � D�Ld� c� � C�d�Rc� for all c� d	 such that for all f� g of
appropriate types� � �f� � g  � �f � L�g��� Hint� R is uniquely extended to a
functor by setting Rh  � �h � ����id���

��� Functions �d�c � D�Ld� c�� C�d�Rc� for all c� d	 and morphisms �c � L�Rc� � c
�� for short� for all c	 such that for all f� g of appropriate types � � L�� �f��  f 	
g  � �� � Lg�� Hint� � is proved bijective by setting ����g�  � � Lg� The
naturality is also a consequence�

��� Morphisms �c � L�Rc� � c	 for all c	 such that for all c� d� f � C�Ld� c�	
there exists a unique morphism	 written � �f�	 satisfying � � L�� �f��  f � Hint�
The naturality of the � follows� Another way of saying this is that �Rc� �c� are
co
universal from L to c�

B�� Adjoints and Limits

Given a functor F 	 the existence of a left �right� adjoint implies the preservation
of limits �colimits�� First consider the situation in Poset�
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Proposition B���� Let C�D be poset categories� If there is an adjunction L a
R	 R � C � D	 and L � D � C then R preserves glb�s �and L lub�s��

Proof� We suppose X � C	 and �
V
X� Also we assume �c � X �d � Rc��

Then �c � X �Ld � c�� Hence Ld �
V
X	 that implies d � R�

V
X�� �

The following theorem generalizes the previous proposition�

Theorem B���� If the functor R � C � D has a left adjoint then R preserves
limits �and L colimits��

Vice versa one may wonder if the existence of limits helps in the construction of
an adjunction� Consider again the situation in Poset�

Proposition B���� Let C�D be poset categories� Suppose there is R � C � D
and C has all glb�s� Then R has a left adjoint i� R preserves glb�s�

Proof� ��� This follows by B����� �"� De�ne L�d� 
V
Cfc

� j d � Rc�g� Then
d � Rc implies L�d� 

V
Cfc

� j d � Rc�g � c� On the other hand	 if L�d� � c
then d �

V
CfRc

� j d � Rc�g  R�
V
Cfc

� j d � Rc�g�  R�L�d�� � R�c�� �

There are several results which generalize the previous proposition� We present
just one of them� Given a functor R � C � D	 where C is small and has all limits
the following Solution Set Condition is enough to establish the existence of a left
adjoint�

�d � D�f�ci� wi � d � Rci�gi�I �I set��
�c� � C�f � d � Rc��i � I �f � � ci � c�

f  Rf � � wi �

This can be understood as a weakening of the universal condition in the de�nition
B���� of a universal morphism� Given an object d � D we can �nd a set of
objects and morphisms that commute �not in a unique way� with every morphism
f � d � Rc��

Exercise B���� Show that if R has a left adjoint then the solution set condition is
always satis�ed �cf� �BW�����

Theorem B���� �Freyd	 Let C be a category with all limits� Then a functor
R � C � D has a left adjoint i� R preserves all limits and satis�es the Solution
Set Condition�
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B�� Equivalences and Re�ections

The notion of functor isomorphism is often too strong to express the idea that two
categories enjoy the �same properties� �e�g� existence of limits�� The following
weaker notion of equivalence is more useful�

De�nition B���� �equivalence of categories	 A functor F � C � D is an
equivalence of categories if there is a functor G � D � C such that F �G � idD	
and G � F � idC	 via natural isomorphisms�

Theorem B���� The following properties of a functor F � C � D are equiva�
lent�

��� F is an equivalence of categories�

��� F is part of an adjoint �F�G� �� �� such that � and � are natural isomorphisms�

��� F is full and faithful and �d � D�c � C �d � Fc��

Exercise B��� Give examples of equivalent but not isomorphic pre�orders�

Exercise B��� Show that any adjunction cuts down to an equivalence between the full
subcategory whose objects are those at which the counity and the unity� respectively� are
iso�

Exercise B��� ��� Let L a R be an adjunction where L � D � C� R � C � D� If
C��D� are full subcategories of C�D� respectively� �a 	 D� La 	 C�� and �b 	 C�Rb 	
D�� then the adjunction L a R restricts to an adjunction between C� and D�� The same
holds of equivalences� �	� If L a R is an equivalence between two categories C�D� if
D� is a full subcategory of D closed under isomorphic objects� then the equivalence cuts
down to an equivalence between C� and D� where C� is the full subcategory of C whose
collection of objects is fa j Ra 	 D�g� which is equal to fa j �b 	 D� a �� Lbg�

Exercise B�� Suppose that L a R is an adjunction with counity � such that �d is a
mono for all d� Show the following equivalences� ��� � is iso at d i� d is isomorphic to
Lc for some c� �	� � is iso at c i� c is isomorphic to Rd for some d � Show the same
properties under the assumption that �c is epi� for all c�

Re�ection is a condition weaker than equivalence� The following proposition
illustrates the idea in the poset case�

Proposition B���
 �poset re�ection	 Let C�D be poset categories� Suppose
there is an adjunction L a R	 R � C � D	 L � D � C	 where R is an inclusion�
Then for any X � C	

�
�
D

X � �
�
C

X and
�
C

X 
�
D

X �
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Proof� We set c  L�
V
DX�	 and show c 

V
CX 

V
DX� For any x � X	V

DX � x implies	 by the adjunction hypothesis	 c  L�
V
DX� � x� Hence

c �
V
DX� On the other hand	 suppose c� � C is a lower bound for X	 then

c� �
V
DX	 and therefore Lc� � c� It is enough to observe that Lc�  c�� By the

adjuction condition	 c� � c� implies Lc� � c�	 and Lc� � Lc� implies c� � Lc�� �

De�nition B���� If C is a subcategory of D we denote with Incl � C � D the
inclusion functor� We say that C is a re ective subcategory of D if there is L
such that L a Incl � L is also called the re ector functor�

The point ��� of the following theorem generalizes the previous example�

Theorem B���� For an adjunction �L�R� �� �� the following holds�

��� R is faithful i� every component �c � L�Rc� � c is an epi�

��� R is full i� every component �c � L�Rc� � c is a split mono �i�e� it has a left
inverse��

��� Hence R is full and faithful i� �c � L�Rc� � c is an iso�

��� If R � C � D is the inclusion functor then for any diagram D � I � C�

�limDD � �limCD and limCD � limDD �

Exercise B���� Show that the full sub�category of Hausdor� topological spaces is
reective in the category of topological spaces and continuous morphisms� and that
the full subcategory of posets is reective in the category of preorders and monotonic
morphisms� On the other hand show that the ideal completion of a poset to a directed
complete poset does not provide a left adjoint to the inclusion of directed complete posets
into the category of posets and monotonic morphisms�

B�� Cartesian Closed Categories

Cartesian closure formalizes the idea of closure of a category under function space�
Chapter � provides some intuition for the genesis of the notion	 several equivalent
de�nitions	 e�g� �����	 and examples� We recall that a CCC is a category with
�nite products and such that the functor �A � C � C has a right adjoint	 for
any object A� In the following	 we present small categories and presheaves as
examples of CCC�s�

Example B�
�� The category of small categories and functors is cartesian closed�
The exponent object DC is given by the category of functors and natural trans�
formations� Then we de�ne�

ev�F�A�  FA ev��� f�  Gf � �A  �B � Ff �� � F � G� f � A � B�
&�F �AB  F �A�B� &�F �fg  F �f� g�
&�F �Af  F �idA� f� &�F �fB  F �f� idB� �
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Example B�
�� �presheaves	 Our next example of a CCC is SetC
op

	 for any
category C� The cartesian structure is built pointwise	 but this does not work
for exponents �try to take �F � G�A  Set�FA�GA�	 how does one de�ne
�F � G� on morphisms��� The solution is to use Yoneda lemma B�
��� For
F�G � Cop � Set we de�ne�

�F � G�  �c�Nat�C� � c�� F�G� �

Exercise B���� If C is a preorder� we can recover a pointwise de�nition of F � G�
De�ne CeA as the full subcategory of C with objects those B such that B � A� Given
F � Cop � Set� de�ne FeA � 	CeA�

op � Set by restriction� Then show 	F � G�A �
Set�FeA� GeA��

Exercise B���� Let C be a CCC which has an initial object �� Then show that for any
A� �i� ��A �� �� �ii� C�A� �� �� � implies A �� � �thus C�A� �� has at most one element��
If furthermore C has �nite limits� show that� for any A� the unique morphism from �
to A is mono� Hints� C��� A�B� �� C��� BA� and consider in particular B � �� A�
Consider also �op � ��� Suppose f � A� �� Then consider �� � hf� idi�

Exercise B���� Let C be a CCC� and � be an object such that the natural transfor�
mation  � �x�x � �x�	x � �� � � de�ned by  � �	ev � h��� ��i� is iso� Show
that � is initial and that C is a preorder �this is an important negative fact� there is
no nontrivial categorical semantics of classical logic� thinking of � as absurdity and of
	x� ��� � as double negation�� Hints� �i� �� � �� � indeed  �� 	� ��� �� and
	� A� �� A� for any A� �ii� for any A�

C��� A� �� C��� 	A� ��� �� �� C��� 	A� ��� ��
�� C�A� �� �� �� �� C�A� �� �

�iii� for any A�B� C�A�B� �� C�A� 	B � ��� �� �� C�A� 	B � ��� ���

B� Monads

The notion of monad �or triple� is an important category
theoretical notion	
we refer to �BW��	 ML��� for more information and to chapter � for several
applications of this notion in computer science�

De�nition B���� �monad	 A monad over a category C is a triple �T� �� ��
where T � C � C is a functor	 � � idC � T 	 � � T � � T are natural transforma�
tions and the following equations hold�

�A � �TA  idTA �A � T�A  idTA �A � �TA  �A � T�A �

Exercise B���� Show that if C is a poset then a monad can be characterized as a
closure� i�e� a monotonic function T � C� C� such that id � T � T � T �
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De�nition B���� �category of T �algebras	 Given a monad �T� �� �� a T �algebra
is a morphism � � Td � d satisfying the following conditions�

�T�� � � �d  idd �T�� � � T�  � � �d �

The category AlgT has T �algebras as objects and

AlgT �� � Td� d� 	 � Td� � d��  ff � d � d� j 	 � Tf  f � �g �

Exercise B���� With reference to example B���� and exercise B����� show that ��
algebras are exactly the algebras for the monad associated with the adjunction T� a
Forget� where T� is the �free algebra� functor and Forget is the forgetful functor �cf�
exercise B������

Exercise B���� Consider the powerset functor P � Set � Set with �	x� � fxg and
	X� �

S
X� ��� Show that these data de�ne a monad� �	� Show that the category of

complete lattices and functions preserving arbitrary glb�s is isomorphic to the category
of algebras for this monad� Hint� show that a complete lattice can be presented as a
set X equipped with an operation

V
� PX � X such that

V
fxg � x and

V
f
V
Xj j j 	

Jg �
V
	
S
j Xj� for any indexed family of subsets Xj��

De�nition B���� �Kleisli category	 Given a monad �T� �� �� over the cate�
gory D	 the Kleisli category KT is de�ned as�

KT  D KT �d� d��  D�d� Td��
idd  �d � d � Td f � g  �d�� � Tf � g for g � d � d�� f � d� � d�� in KT �

Theorem B���
 ��� Every adjunction �L�R� �� �� gives rise to a monad�

T �L a R�  �R � L� ��R�L� �

��� Given a monad �T� �� �� over the category D	 consider the category of T �
algebras AlgT � We can build an adjunction �LT � RT � �T � �T � as follows�

LT �d�  �d � T �d � Td LT �f � d � d��  T �f�
RT �� � Td� d�  d RT �g � � � 	�  g
�T  � �T �� � Td � d�  � �

Moreover the monad induced by this adjunction is again �T� �� ���

��� Given a monad �T� �� �� over the category D	 consider the Kleisli category
KT then we can build an adjunction �LKT � RKT � �KT � �KT � as follows�

LKT �d�  d LKT �f � d � d��  �d� � f
RKT �d�  Td RKT �f � d � Td��  �d� � Tf

�KT  � �KT

d  idTd �

Moreover the monad induced by this adjunction is again �T� �� ���

Given a monad T the Kleisli adjunction and the T 
algebra adjunction can be
shown to be initial and �nal	 respectively	 in a suitable category of adjunctions
generating the monad T �
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