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Preface

This book is an educational monograph addressed to graduate students and others
undertaking isotope effect research. The fundamental principles needed to under-
stand isotope effects are presented in appropriate detail. While it is true that these
principles in the beginning will be more familiar to students of physical chem-
istry, and some background in physical chemistry is strongly recommended, the
text provides enough detail to make the book an asset to students in organic and
biochemistry, and geochemistry. Isotope effects are widely employed in many fields
of science because of their utility. The underlying scientific principles needed to ap-
ply isotope effects to problems in physical chemistry, in organic and biochemistry,
and in geochemistry are all the same or similar. This accounts for widespread com-
munication between scientists in very different disciplines who share a fundamental
interest in isotope effects. Nowhere has this been better exemplified than at the Gor-
don Conference on Isotope Effects which has met regularly for more than 50 years
and has just as regularly stimulated cooperative efforts.

The title indicates the scope of the text. The term “isotope effects” is used
rather than “applications of isotopes” to indicate clearly that it deals with differ-
ences in the properties of isotopically substituted molecules, for example differences
in the chemical and physical properties of water and the heavy waters (H2O, HDO,
D2O, HTO, etc.). Thus H2O, HDO and D2O have different thermodynamic proper-
ties. Also reactions in solvent mixtures of light and heavy water proceed at different
rates than they do in pure H2O. On the other hand, the differences are not large
and consequently, to the extent the difference in properties can be ignored, HDO
or HTO can be used as tracers for H2O. An important point, however, is that this
book does not deal with isotopes as tracers in spite of the widespread importance of
tracer studies, particularly in the bio and medical sciences. Also the title specifically
does not mention physics which would necessarily have been included if the term
“Physical Sciences” had been used. Thus the text does not deal with differences in
the nuclear properties of isotopic atoms. Such differences are in the realm of nuclear
physics and will not be discussed.

A synopsis of the topics treated in this monograph follows. Chapter 1 is a
brief survey of historical developments in the field of isotope effects through the
early 1930s. Chapters 2 and 3 give developments of the fundamental quantum
mechanical, thermodynamic, and molecular vibration theory required to under-
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stand isotopicdifferences on molecular properties. Chapter 4 considers the theory of
isotope effects on thermodynamic and equilibrium properties, and follows that de-
velopment with a short discussion of rate isotope effects. Chapter 5 treats condensed
phase isotope effects in considerable detail, and Chapter 6 returns attention to kinetic
isotope effects by contrasting ordinary activated complex theory with variational
transition state theory. Chapter 7 deals with the instrumentation and experimental
techniques of isotope science. The final seven chapters discuss applications of fun-
damental isotope effect theory to isotope separation (Chapter 8), environmental and
geo-science (Chapter 9), physical organic chemistry (Chapter 10), enzymes and bio-
chemistry (Chapter 11), molecular properties dependent on vibrational amplitudes
(Chapter 12), corresponding states theory of fluids (Chapter 13), and isotope effects
on rates of unimolecular reactions and mass independent isotope effects (Chapter
14). We hope this work will prove to be a helpful introduction to those planning
studies using isotope effects, and a useful reference for those already in the field.

It is a pleasure for two of the authors (AVH and MW) to express their appreciation
to Jacob Bigeleisen, who during our postdoctoral years ignited our lifelong interest
in isotope effects.

Irvine, Max Wolfsberg
Knoxville, Alexander Van Hook
Lodz, Piotr Paneth
Lisbon, Luı́s Paulo N. Rebelo
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Chapter 1
A Short History of Early Work on Isotopes

Abstract A brief introduction deals with the time period from Dalton to the
discovery of isotopes by Soddy and Fajans in the early twentieth century which was
soon followed by the invention of the mass spectrograph (1922). The next section
covers the period from 1922 to the discovery of deuterium by Urey and his col-
leagues. It includes a discussion of isotope effects in spectroscopy, particularly band
spectra of diatomic molecules, and also discusses the discovery of the important sta-
ble isotopes in the second row of the periodic table. It ends with the discovery of
deuterium, probably the most “popular” isotope for isotope effect studies. The chap-
ter ends with a short description of the “apparatus” of theory and experimentation
available for isotope effect work at the time of the discovery of deuterium.

1.1 Introduction

The concept of the atom as the smallest “particle” of matter (from the Greek word
for indivisible) was promulgated by John Dalton about 1803. Within about a century
and a quarter of scientific investigation which will be briefly described in this chap-
ter, this concept yielded the idea of the periodic table and the understanding of the
periodic table including the nuclear atom, the concept of isotopes, and the discovery
of the majority of the isotopes which are used in the studies of the isotope effects.
It is appropriate to point out that this book deals with the study of the effect of iso-
topic substitution on the physical and chemical properties of molecular (or atomic)
systems. The book does not deal with the use of isotopes as tracers, a use which
usually depends on the assumption that isotope effects are small and can be ignored
in tracer studies.

Section 1.2 deals with the time period from Dalton to the discovery of isotopes
by Soddy and Fajans. Much of the discussion elaborates on the type of material
found in introductory chemistry texts. It ends with the discovery of radioactivity by
Becquerel and the developments which quickly followed. Section 1.3 starts with the
discovery of the concept of isotopes in the early years of the twentieth century and
ends with the invention of the mass spectrograph in 1922 by Aston. The literature
relating to the work leading up to the 1913 papers by Soddy and Fajans is well and

M. Wolfsberg et al., Isotope Effects: in the Chemical, Geological, and Bio Sciences,
DOI 10.1007/978-90-481-2265-3 1, c� Springer Science+Business Media B.V. 2009
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2 1 A Short History of Early Work on Isotopes

even-handedly reviewed in the Nobel Lecture of F. Soddy (NLC1921�)who him-
self was a main contributor to this development. This Lecture (Soddy 1922) is used
as almost the sole literature reference to this material. Subsequent material in this
chapter will contain appropriate references. The references should be regarded as
a survey of some of the relevant literature. It would be a mistake to conclude that
they are in any way complete or that they even contain all the “important” publica-
tions. The chief personalities related to isotope chemistry that appear in this section
include Soddy, Fajans, Paneth, de Hevesy, Rutherford, van den Broek, Moseley,
Lindemann, Aston, and Harkins.

Section 1.4 starts after the invention of the mass spectrograph; it covers the period
from 1922 to the discovery of deuterium by Urey and his colleagues. This section
includes discussion of isotope effects in spectroscopy, particularly band spectra of
diatomic molecules. It also discusses the discovery of the important stable isotopes
in the second row of the periodic table. It ends with the discovery of deuterium,
probably the most “popular” isotope for isotope effect studies.

The chapter ends with Section 1.5, a very short discussion of the “apparatus” of
theory and of experimentation available for isotope effect work at the time of the
discovery of deuterium.

1.2 From Dalton to the Discovery of Isotopes

As already noted, in 1803, Dalton referred to the smallest particle of matter as an
atom. Atoms of elements combine to form compounds/molecules. Dalton measured
the weight of an elemental material which combines with a given weight of an-
other elemental material. He observed that, on a relative basis, hydrogen gas is the
lightest material and, on the assumption that hydrogen has a weight of 1.00 and
that molecules made up from elements consist of one atom each from two elements
which reacted, he determined the relative weights of various elements. Thus, he as-
signed masses to the atoms of various elements as shown in Table 1.1. The above
naive discussion, of course, over-simplifies the situation. How do you decide that a
material is an elemental material? Obviously, elemental materials cannot be decom-
posed into other elemental materials whereas compounds can. How do you know
that water is not an elemental material? You can electrolyze water and obtain hydro-
gen and oxygen which you have already established to be elements. Such questions
must have come up and indeed it is almost certain that people misidentified com-
pounds as elements and vice versa. As we see from the table, Dalton came up with
combining weights for materials which we do recognize as elements.

�Nobel Prizes in Chemistry and Physics were awarded starting in 1901. In this chapter (the first
mention of the name of a Nobel Laureate in the running text will be followed by the notation
(NLP xxxx�) or (NLCxxxx�) where NLP and NLC stand for Nobel Laureate Physics and Nobel
Laureate Chemistry respectively while xxxx notes the year of the award.
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Table 1.1 Dalton’s system of relative atomic weights, 1810

Relative to
HD 1:000

1810

1810 values recalculated
relative to OD 16:000

assuming modern formulae Modern values

Hydrogen 1 1.14 1.008
Oxygen 7 16 16
Azote (nitrogen) 5 11:4a 14

15
Carbon 5.4 12.3 12
Sulfur 13 29.7 32
Phosphorus 9 25:7a 31

27
aFor nitrogen and phosphorus two numbers are given, the upper calculated from
Dalton’s formula for the hydride, the lower from that for the oxide.

The finding that two elements can give rise to more than one product molecule so
that there could be more than one combining ratio for two given elements leads to
the concept that molecules need not be diatomic. Avogadro’s hypothesis that equal
volumes of gas at a given pressure and temperature contain the same number of
molecules permitted further refinements leading to the concept of atomic weights.
By 1826, the Swedish chemist J. Berzelius, who was the discoverer of a number of
new elemental substances, published a table of atomic weights relative to oxygen
which was taken to have an atomic weight of 100 (Table 1.2). While some of his
relative atomic weights differ by factors of approximately 3/2 or 2 from present day
values, many are in quite close agreement. Berzelius introduced the modern usage of
one or two letter abbreviations for the names of the elements and wrote formulae for
chemical compounds indicating by superscripts (rather than by modern subscripts)
the relative number of atoms of each kind in a molecule. Berzelius also showed
that atomic weights are not just integer multiples of the atomic weight of hydrogen
(Prout’s hypothesis).

1.2.1 The Periodic Table

Although a number of chemists noted similarities in groups of elements, it is the
Russian chemist D. I. Mendeleev who is credited as the Father of the Periodic Table.
He observed periodicity of chemical properties when he grouped elements in order
of increasing atomic weight in rows and columns in the way familiar to chemists
(see Figs. 1.3 and 1.4). The periodicity in properties is associated with the columns
of the table. It is noted that the theoretical foundation underlying the construction
of the table did not become clear until after the introduction of quantum theory
in the early twentieth century. The importance of Mendeleev’s table to chemistry
in 1872 was that the table enabled him to predict (correctly) missing elements and
their properties, as well as properties of the compounds which could be formed from
them.
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Table 1.2 Berzelius’s atomic weightsa of 1826 (Cited from Part-
ington, J. R. A history of chemistry, Macmillan & Co., London 4,
166 (1964))

Relative to OD 16 Relative to HD 1 Modern value

O 16 16.026 16

S 32.19 32.24 32:07

P 31:38 � 2 31.436 30:97

Cl 35.41 35.47 35:45

C 12.23 12.25 12:01

N 14.16 14.186 14:007

H 0.998 1.000 1:008

As 75.21 75.329 74:92

Cr 56.29 56.38 52:00

Sb 129.03 129.24 121:75

Si 29.58 � 3/2 29.61 � 3/2 28:09

Hg 202.5 202.863 200:59

Ag 108:12 � 2 108:31 � 2 107:87

Cu 66.31 63.415 63:55

Bi 212.80 213.208 208:98

Pb 207.12 207.458 207:21

Sn 117:6 � 2 117.84 118:71

Fe 54.27 54.363 55:85

Zn 64.51 64.621 65:39

Mn 56.92 57.019 54:94

Al 27.38 27.431 26:98

Mg 25.33 25.378 24:31

Ca 40.96 41.03 40:08

Ba 137.1 137.325 137:33

Na 23:27 � 2 23:31 � 2 22:99

K 39:19 � 2 39:26 � 2 39:10

aBerzelius’s figures relative to O D 100 have been recalculated
in the table above to facilitate comparisons with modern values.

While the emphasis here is on the beginnings of modern chemistry in terms of
atomic weights and atomic theory, one should not forget that the nineteenth century
saw large strides in many other aspects of chemistry. We name here just a few of the
scientists involved. In physical chemistry, there were, for instance, S. Carnot (1796–
1832) and R. Clusius (1822–1888). In organic chemistry, there were F. Woehler
(1800–1882) and J. F. Von Liebig (1803–1878). By 1864, J. C. Maxwell had pub-
lished his famous equations of the electromagnetic field. Around 1886, H. Hertz
demonstrated the existence of radio waves. On January 1, 1896, W. C. Roentgen
(NPP 1901�) announced the discovery of x-rays. Subsequently, H. Becquerel [NLP
1903�] studied the fluorescence and phosphorescence of certain salts; fluorescence
refers to the phenomenon where a material emits light of a different frequency while,
or immediately after, being irradiated by light of another frequency (often sunlight),
while phosphorescence refers to the delayed emission of light by the material. Soon
after Roentgen’s discovery of x-rays, in March 1896, Becquerel found that uranyl
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salts emitted a new type of radiation which, like x-rays, could pass through pieces of
paper as well as sheets of metal; however, this new radiation required no initiating
energy source unlike phosphorescence and fluorescence. Becquerel also found that
the uranium emanations turned air into a conductor of electricity.

Marie (NLP 1903�, NLC 1911�) and Pierre (NLP 1903�) Curie took up fur-
ther study of Becquerel’s discovery. In their studies, they made use of instrumental
apparatus, designed by Pierre Curie and his brother, to measure the uranium emana-
tions based on the fact that these emanations turn air into a conductor of electricity.
In 1898, they tested an ore named pitchblende from which the element uranium
was extracted and found that the electric current produced by the pitchblende in
their measuring instrument was much stronger than that produced by pure ura-
nium. They then undertook the herculean task of isolating demonstrable amounts
of two new radioactive elements, polonium and radium, from the pitchblende. In
their publications, they first introduced the term “radio-activity” to describe the phe-
nomenon originally discovered by Becquerel. After P. Curie’s early death, M. Curie
did recognize that radioactive decay (radioactivity) is an atomic property. Further
understanding of radioactivity awaited the contributions of E. Rutherford.

Meanwhile, in 1897, J. J. Thomson (NLP 1906�) observed that the cathode rays
produced in a so-called cathode ray tube were a stream of negatively charged par-
ticles. He studied the motion of these particles in a magnetic field and was able to
deduce the charge to mass ratio (e/m). He also found a number of ways to estimate
the charge of these particles, which he referred to as corpuscles and we now term
electrons. One method towards this end devised by A. H. Wilson is remarkably sim-
ilar to the famous oil drop apparatus by which R. E. Millikan (NLP 1923�) made
his accurate determination of the charge (e) of an electron in 1909. From the value
obtained, Thomson found that the charge on the electron, while opposite in sign
to that of a hydrogen ion, is the same magnitude. On the other hand, he found that
the mass (m) is approximately 1/1,800 that of a hydrogen ion. He concluded that
the corpuscles had been produced from atomic material. Thus, he reluctantly con-
cluded at a meeting of the Royal Society (London) that Dalton’s hypothesis of the
indivisibility of the atom is erroneous.

The early years of the twentieth century saw giant advances in man’s understand-
ing of nature which must be mentioned in any synopsis of the scientific history of
this era. Thus, in 1901, M. Planck (NLP 1918�) published his first paper on the
black-body radiation law which ushered in the era of quantum mechanics. In 1905,
A. Einstein (NLP 1918�) published his Anna Mirabilis Papers on the photo effect,
on Brownian motion, and on the theory of special relativity and the equivalence of
matter and energy.

In the meantime, E. Rutherford (NLC 1908�) studied the radioactivity discovered
by Becquerel and the Curies. He determined that the emanations of radioactive ma-
terials include alpha particles (or rays) which are positively charged helium atoms,
beta particles (or rays) which are negatively charged electrons, and gamma rays
which are similar to x-rays. He also studied the radioactive decay process and
deduced the first order rate law for the disappearance of a radioactive atom, char-
acterized by the half-life, the time in which 50% of a given radioactive species
disappears, and which is independent of the concentration of that species.
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1.3 From the Discovery of Isotopes through the Invention
of the Mass Spectrograph by Aston

1.3.1 The Historic Papers of Soddy and Fajans in 1913
and the Work Leading up to These Papers

As already noted, while it is the intention for the rest of this chapter to give
references to original literature, this will not be done for the (extensive) litera-
ture on studies of radioactive decay series which preceded the publication of the
historic papers of Soddy and Fajans in 1913. This material was well reviewed by
F. Soddy (NLC 1921�) in his Nobel Lecture which is used as the sole reference
here (Soddy 1922).

Three radioactive series (or radioactive chains) were discovered, each starting
with a known naturally occurring element with a long half-life which decays by
emitting either an alpha(’/ or a beta(“/ particle to yield a daughter material which
in turn decays with a different half-life to another daughter material. This process
continues until a stable (non-radioactive) daughter material is obtained. It was de-
termined that the gamma (”) rays of Rutherford are electromagnetic radiation of
very high frequency, like x-rays, and these are always accompanied by either ’ or “
emission. Consequently, each decay process can be described as an ’ or “ decay.
It will be seen subsequently that the “rules” deduced by Soddy and Fajans for the
decay process state that the gamma rays have no effect on the determination of the
atomic weight of the daughter element. One knows now that gamma rays are emit-
ted if the daughter is initially produced in an excited nuclear state. Figure 1.1 shows
the displacement law as it was understood in 1913, and Fig. 1.2 shows the sequence
of parent to daughter transformations for the three natural radioactive series taken
from the work of Soddy (1917, 1922) and of Fajans (1913a, 1914).

A number of chemists worked on the radioactive decay series and on the char-
acterization of the various products (daughters) observed in the decays. The char-
acterizations involved determining whether the products were new elements and, if
so, where they would fit into the periodic table. The procedures used involved elec-
trochemistry and precipitation reactions in which the new materials were compared
with known elements, and with each other. The new “elements” were often available
in such small quantities that the radioactivity was used as a tracer to follow precip-
itation or other reactions. In a number of cases it was soon determined that the new
elements are inseparable from and identical to elements that were already known
(often as elements in a radioactive series). Soddy (1922) records that the first such
report was that of H. N. McCoy and W. H. Ross of the University of Chicago in a
paper published in 1907 (McCoy and Ross 1907) on the radioactivity of thorium.
The parent of the thorium radioactive series designated in Fig. 1.1 as Th was found
to be identical to RadTh (Radiothorium). It is not the intention here to discuss in
detail the findings of McCoy and Ross but merely to note that they pointed out that
the separation of radiothorium from the parent thorium of the series is “remarkably
difficult if not impossible.” Over the next several years, there were many reports of
members of radioactive decay series being chemically equivalent to other members
of the same series or to a member of another decay series.



1.3 From the Discovery of Isotopes through the Invention of the Mass Spectrograph 7

200
III B

THALLIUM

IV B
LEAD

V B
BISMUTH

VI B
POLONIUM

VII B
[IODINE]

I A
[CAESIUM]

II A
RADIUM

IV A
THORIUM

V A
[TANTALUM]

VI A
URANIUM

III A
LANTH-
ANUM

ZERO
[XENON]

TL
204

RA
C2

TH–
D

205

210

0

5

10

5 4 3 2
Relative Number of Negative Electrons

b - RAY (OR RAYLESS)
CHANGE

a - RAY
CHANGE

U
ni

ts
 o

f 
A

to
m

ic
 M

as
s

1 0

200

205

B1
208

65%

99.97%

END
TH

END

RA

RA–
B

RA–
F

RA–
E

TH–
C

RA
C

TH–
C’

RA–
C’

TH–
A

TH–
EM

TH–
X

MS–
Th I

MSTh II

RA

RA–
EM

RA–
TH

UR–
X1

UR–
X2

UR
II

IO

RA–
A

END

END35%  RA .D

0.03%

RA

TH

B
TH–

210

RADIO-ELEMENTS AND THE PERIODIC LAW.
ALL ELEMENTS IN THE SAME PLACE

IN THE PERIODIC TABLE
ARE CHEMICALLY NON–SEPARABLE

AND (PROBABLY)
SPECTROSCOPICALLY INDISTINGUISHABLE.

215

220

225

230

240

235

ACTINIUM

230

225

220

215

END
AC

AC
A

AC–
EM

AC–
X

RA–
AC

AC
C

AC
B

AC
D

URANIUM
238

THORIUM

232

235

PB
207

Fig. 1.1 The displacement law as it was understood in 1913 by F. Soddy

In this connection, A. B. Garrett (1963) reports the following as a direct quote
from G. de Hevesy (NLC 1943�) who worked with E. Rutherford in Manchester
between 1910 and 1913.

A few hundred kilograms of lead chloride containing appreciable amounts of radium D
obtained from pitchblende were presented to Rutherford by the Austrian government. The
lead chloride was stored in the cellar of the institute. One day when I met Rutherford in the
cellar, he suggested that if I were worth my salt, I would separate radium D from all that
nuisance of lead. Being a young man, I was an optimist and fully convinced that I would
succeed; but even though I worked very hard for a year, trying a large number of separations,
I failed entirely. To make the best of a depressing situation, I decided to make use of the
inseparability of radium D from lead.

The last part of de Hevesy’s statement does, of course, allude to his pioneering work
on the use of radioactive tracers.

Soddy was very interested in nuclear emissions which give rise to products which
are chemically equivalent to other elements which had previously been studied.
While they were chemically equivalent (vide infra), these new elements often dif-
fered in their radioactive properties. Both Soddy and K. Fajans (vide infra) state
that Soddy had generalized the available experimental results on what happens in
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Fig. 1.2 The three natural radioactive decay series as understood by F. Soddy and K. Fajans in the
period 1913–1920
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’ decay already in 1911 or 1912 in his book “Chemistry of the Radio-Elements”.
Fajans refers to this as Soddy’s Rule. This rule, which states the relationship in the
periodic table of a parent element in ’ decay to the daughter element, is the first of
the generalizations of the experimental observations on radioactive decay promul-
gated by Fajans and Soddy in their 1913 papers (vide infra). Both G. de Hevesy
and A. S. Russell proposed rules on what happens in “ decay but neither of these
“worked out”. In the meantime, Soddy had requested his assistant A. Fleck (1971)
to investigate the products of “ decay in the radioactive decay series, particularly to
investigate the chemical identities of these decay products. Two of Fleck’s important
papers were published in 1913. Soddy has stated that he knew all of Fleck’s results
when he wrote his historic paper published early in 1913 (Historical Vignette 1.1).

The stage was now set for the 1913 papers published independently by
Fajans (1913b) and by Soddy (1913a). The paper by Fajans was published a
couple of weeks prior to that by Soddy. Soddy has stated that he had not seen the
Fajans paper at the time when he wrote his paper. Both papers try to generalize
experimental observations on the chemical identities of decay products in the three
natural radioactive decay series.

[Historical Vignette 1.1] Frederick Soddy (1882–1956) graduated from Merton College, Oxford.
After 2 years of research at Oxford he joined Sir Earnest Rutherford in Canada to work on problems
of radioactivity. Returning to Britain in 1902 he worked with Sir William Ramsey at University
College, London, demonstrating that helium is evolved during the radioactive decay of radium.
Soddy served as lecturer on physical chemistry and radioactivity at the University of Glasgow from
1904 to 1914. It was here that he published the so-called “Displacement Law” of radioactive decay,
and formulated the concept of isotopes which stated that certain elements exist in two or more
forms which have different atomic weights but are indistinguishable chemically. Soddy served
as Professor of Chemistry at the University of Aberdeen from 1914 to 1919, when he moved to
Oxford as Dr. Lees Professor of Chemistry, retiring in 1937. He was awarded the Nobel Prize in
Chemistry in 1921. (Photo credit www.wikipedia.com, public domain)
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The Soddy/Fajans papers both identify the chemical nature of a given species
by reference to the column of the periodic table in which it is found. A copy of
a periodic table published in 1912 by Soddy (1914) is given in Fig. 1.3. Here the
columns are designated by Roman numerals. One recognizes, of course, that this
1912 periodic table, the organization of which is based on Mendeleev’s periodic
table, differs from the modern periodic table which is based on a knowledge of
atomic structure gained from quantum mechanics (Fig. 1.4). Thus, polonium (Po)
is in group VI along with oxygen, sulfur, selenium, and Soddy points out that the
properties of Po mirror those of Te as predicted by the “periodic law”. This result
also follows from the modern periodic table where these five elements are in one
column, sometimes called VI-A. On the other hand, uranium (U) is also in column
VI of the old periodic table. In the modern periodic table, U is, of course in the ac-
tinide series. The properties of the actinides are not expected to reflect the properties
of the column VI-A elements of the modern periodic table. In the same vein, Soddy
refers to the element in the last row of the 1912 table, one column to the left of
uranium, column V, as ekatantalum and likens its chemistry to tantalum (Ta) which
is also in group V. From the modern point of view this is a questionable procedure.
The procedure of identifying elements in the radioactive series belonging to partic-
ular groups in the periodic table, depended strongly on demonstrating that elements
given the same Latin numeral have identical properties and are inseparable. Whether
the element belonged to the last row of the periodic table or to the row above is al-
ways readily established from the Fajans/Soddy “rules”. Note finally that each of
the radioactive series yielded one gaseous element which was labeled by the suffix
Em (for emanation). The Em’s all acted like noble gases and had the same proper-
ties (non-reactive and with the same condensation temperature at a given pressure).
They were assigned to column 0 in the periodic table which is the column of noble
gases.

The conclusions of the two papers are identical. The generalizations are the
following:

1. Alpha decay leads to a product which is two columns to the left of the decaying
atom. This, as already noted, is Soddy’s rule. Since an alpha particle is an ionized
helium atom and the atomic weight of a helium atom was known to be four units,
it is assumed that the daughter element has an atomic weight four units less than
that of the parent. Since electrons have a weight of approximately 1/1,800 that of
a hydrogen atom, any consideration of electrons in determining atomic weight is
ignored.

2. The rule on beta decay is new. It is that, when an atom emits a beta particle, which
was known to be an electron, the resulting element is chemically equivalent to an
element one column to the right from the parent in the periodic table. Consistent
with rule 1, it is assumed that there is no change in atomic weight from this decay.

3. Gamma rays, which are like x-rays, are assumed not to change the chemical
identity of the emitting atom. It was recognized that the change in mass from the
Einstein’s relativistic expression (E D mc2) is so small that it could be ignored
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0 I II III IV V VI VII _______VIII_______ 

He Li Be B C N O F
3.99 6.94 9.1 11.0 12.00 14.01 16.00 19.0 

Ne Na Mg Al Si P S Cl
20.2 23.00 24.33 27.1 28.3 31.04 32.07 35.46 

A K Ca Sc Ti V Cr Mn Fe Co Ni
39.88 39.10 40.07 44.1 48.1 51.0 52.0 54.98 55.84 58.97 58.08 

Cu Zn Ga Ge As Se Br
63.57 65.37 69.9 72.5 74.96 79.2 79.92 

Kr Rb Sr Yt Zr Nb Mo Ru Rh Pd 
82.92 88.45 87.63 89.0 90.6 93.5 96.0 101.7 102.9  106.7 

Ag Cd In Sn Sb Te I
107.88  112.4 114.8 119.0 120.2 127.6 126.92 

Xe Cs Ba [ La Ce Pr Nd Sm
130.2 132.81 137.37 [  139.0 140.25   140.6 144.3 150.4

Eu Gd Tb Dy Er
152.0 157.3 159.2 162.5 167.7 

Tm Yb Lu   ] Ta
168.8 172.0 174.0] 181.5

Au Hg Tl Pb Bi W Os Ir Pt
197.2 200.6 204.0 207.10 208.0 184.0 190.9 193.1 196.3 

Ra’ Ra Th (Po)
222 226.4 232.4

U 
238.5 

Note Dy and Er have been aligned  with Eu, Gd, Tb. In the original table they were aligned with
Lu, Ta etc. This was probably a misprint. 

a

Element Soddy’s weight Modern Weight

Rb 88.45 85.47
Sb 120.2 121.75
Xe 130.3 131.3
Yb 172.0 173.04
Lu 174.0 174.97
Bi 208.0 208.98
Pt 196.3 195.1

b

Fig. 1.3 (a) Periodic Table of the Elements (Soddy 1912). (b) Elements for which Soddy’s atomic
weights (1912) differ by 1.0 unit or more from currently accepted values
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Fig. 1.4 (a, b) Modern versions of the periodic table, 2008

in considering atomic mass. (Similarly, the kinetic energies of the alpha particles
and beta particles in radioactive decay are ignored.) Thus, gamma emission is
also ignored.

These rules can now be applied to the three radioactive series in Figs. 1.1 and 1.2.
The names of the various elemental materials are given in the figures. The atomic
weights of each can be determined from the rules above, given the respective atomic
weights of the parent of each series, taken here as UrI D 238:5, Th D 232:4, and
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Act D 226:5; the naming of the parents follows the nomenclature employed by
Fajans in which the element uranium is referred to as UrI. A place in the periodic
table is then defined by a specific row and a specific column. From the data, one then
readily obtains the row and column of each of the elemental daughters. Since the
characterization of decay products emphasized the fact that many of these products
are chemically indistinguishable from one another, it is of course expected that many
of the places in the last two rows of the periodic table are occupied by more than one
elementary material. What is surprising is that these chemically equivalent materials
have different atomic weights, some differing by as much as eight units.

In subsequent papers, Fajans (1914) refers to a group of elements which have
the same chemical properties but different atomic masses as a “plejade” (in the
German article), a word derived from a stellar constellation of seven stars to which
the ancient Greeks gave the name “pleiade”. On the other hand, Soddy (1917) called
the individual elements which made up the plejade of Fajans, “isotopes”. The word
isotope was suggested to Soddy by one of his relatives and is derived from the Greek
(iso D same, top D place), referring to the place in the periodic table. Soddy’s
nomenclature gained general acceptance; the word “plejade” is not commonly used
in the chemical literature.

It is, of course, quite clear now that the element radiothorium which the U.S.
workers McCoy and Ross could not separate from the parent (232Th) of the thorium
decay series is indeed an isotope of thorium (228Th); it arises from thorium (232Th)
after the emissions of an ’ and two “ particles. (A common practice has been fol-
lowed by noting the mass number (the atomic weight of an isotope rounded off to
the closest integer) as pre-superscript.) Likewise, the radium D which Rutherford
asked de Hevesy to separate from lead chloride obtained from pitchblende was a
radioactive isotope of lead. Several of the workers who were involved in finding the
chemical identities observed in radioactive decay noted that their inability to sep-
arate such materials from each other implies that any possible separation of these
materials would be more difficult to carry out than the separation of the rare earth
elements. In some cases this demonstration of chemical equality of different ma-
terials even involved quantitative tests. Thus, chemical equilibrium constants were
well understood in the early twentieth century as involving concentrations of reac-
tants and products. Tests were carried out in many cases showing that, if different
isotopes are mixed, the proper concentrations to be used in equilibrium expressions
(e.g., for solubility products and/or for expressions giving the emf of electrochemi-
cal cells in terms of concentrations) is the sum of the concentration of the isotopes
of a given material. Especially noted in this regard should be the work of de Hevesy
and F. Paneth (1915).

From Figs. 1.1 and 1.2 it follows that the main end products of the uranium
and thorium series are isotopes of lead (at the time referred to as Pb206.5 and
ThO2208:4). The end products are thus isotopes of lead differing by two mass units.
This observation became the motivation for the measurement of atomic weights of
lead samples separated from thorium and uranium minerals. In his Nobel Lecture,
Soddy describes this work as follows:
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. . . determinations were undertaken of the atomic weight of lead separated from thorium
minerals as free as possible from uranium, and of that from uranium minerals as free as
possible from thorium. These resulted in the complete verification of the prediction. The
highest value yet found for “thorium-lead” is 207.9 (Fajans and Honigschmid) and the low-
est value for “uranium-lead” 206.05, the accepted value for common lead being 207.20.

Extensive references to this work are given by Soddy. It is noted that a major contrib-
utor to these studies was the Harvard University chemist T.W. Richards (NLC1914),
an expert on atomic weight determinations.

So, now (1913) one has a set of rules which characterize the daughter atom in
terms of a knowledge of the parent element and the type of radioactive decay. The
rules “work”; they give rise to the concept of isotopes: elements which correspond
to different atomic weights but which are chemically identical. However, the rules
are purely empirical; no explanation exists for the rules as the matter now stands.
Something is still missing in this story.

1.3.2 Further Elucidation of the Concepts of Elements and
Isotopes Including Works of van den Broek, Moseley,
Rutherford, Thomson, Aston and Lindemann

What is needed now (1913) is an answer to the question “what is an element?” Up
to this time elements had been characterized by their respective masses. But now
different masses (isotopes) all correspond to the same element. As already noted,
Mendeleev had assembled the elements into a table by writing down the elements
in order of increasing mass and had found, by making the table two dimensional
through the introduction of rows and columns, that he was able to construct the table
so that elements in given columns had similar properties. The similarities included
physical properties as well as chemical properties. The table was therefore called a
periodic table (there was periodicity). However, Mendeleev noted immediately that,
in order to make his table “work”, he needed to introduce blank spaces for missing
elements. This was fine because it led to the prediction of “new” elements which
were later actually found. However, there were also places in the table where he
had to reverse the ordering demanded by the masses in order to obtain periodicity
(e.g. Co and Ni).

1.3.2.1 Van den Broek

The next step was taken by A. van den Broek, a Dutch physicist (and a lawyer
by training), in a very short letter to the editor published in Nature (van den
Broek 1913a). His thoughts were based on the Rutherford model of the atom as
a positively charged nucleus concentrated in a small volume at its center surrounded
by electrons occupying a much larger volume. He used the term intra-atomic charge
to designate the positive charge on the nucleus which is equal in magnitude but op-
posite in sign to the total charge of the surrounding electrons. In this context charge
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is measured in units of the charge on one electron. Van den Broek hypothesized that
the charge on the nucleus, the positive intra-atomic charge of an element, is given
by the number of that element in a series in which all the elements are arranged in
order of increasing atomic weight, as is done in the periodic table. He thus was the
first to use the concept of what we now call the atomic number to characterize an
element.

Van den Broek’s hypothesis was based on Rutherford’s idea that the experimental
observation of large angle scattering of particles by atoms leads to the conclusion
that the atom consists “of a strong positive or negative central charge concentrated
in a sphere of radius about 3 � 10�12 cm surrounded by electricity of the opposite
sign distributed throughout the remainder of the atom of about 10�8 cm radius”
(Rutherford, 1911,1913; Geiger and Marsden 1913). The quote is from Geiger and
Marsden (1913). Moreover, Rutherford showed the magnitude of the scattering is
proportional to the square of the charge on the central core, which was taken to be
positive. According to Geiger and Marsden (1913), Rutherford encouraged them to
undertake studies to test his scattering formula, in particular the dependence on the
magnitude of the central charge. Moreover, it was Rutherford who submitted the
paper of Geiger and Marsden (GM 1913) to the journal. It is clear that Rutherford
and GM believed that the central charge of the atom is proportional to its atomic
weight A. GM examined six elements (Au, Pt, Sn, Ag, Cu, Al) for which they report
scattering per atom divided by A2. Except for Cu, for which they give a value of
3.83, their mean results are 3:37˙ 0:23. They concluded their experimental results
show the ratio to be constant “within the experimental error”. Van den Broek, in
order to test his hypothesis that the charge on the dense atomic nucleus is equal
to the number attached to the element in the sequence of the elements arranged
in increasing atomic weight (the present day atomic number which he refers to as
M), multiplied the GM scattering value per atom divided by A2 by A2=M2 (to find
scattering value divided by M2) and obtained 18:7˙0:3 for the elements listed above
except Al, for which he would have found 15.1. In his paper, van den Broek omits
the data on Al. He does not refer to the fact that results for Al exist in the GM paper.
If the Al data are omitted, van den Broek’s conclusion that the GM experimental
data indicates that the scattering per atom is proportional to 1=M2 rather than 1=A2

as Rutherford and GM had supposed. However, as it is, it does not seem to us that the
GM data can be used to distinguish whether the scattering per atom is proportional
to 1=M2 or 1=A2. Van den Broek’s conclusion must be described as a “stretch”.
This criticism should not be construed as a lack of admiration for van den Broek’s
physical insight in recognizing that it is the charge on the nucleus of the atom, which
characterizes the particular element. There is no question that he first proposed what
we now call the atomic number. Rutherford, Soddy and GM all acknowledge that the
value of the charge of the nucleus of an atom of an element was first correctly given
by Van den Broek. The paper by van den Broek (1913a) was published in Nature
in the issue of November 27, 1913. Soddy (1913) commented on Van den Broek’s
paper just a week later in the issue of December 4, 1913. Assuming that radioactive
changes only involve the intra-atomic charge on the nucleus, he points out that the
van den Broek hypothesis leads to the generalizations on radioactive decay that he
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and Fajans had proposed earlier in the year. Thus ’ decay involves the emission
of a particle (alpha particle) of mass 4 and charge C2 and results in a daughter
element the intra-atomic charge on the nucleus of which has been reduced by two
units and the atomic weight reduced by 4; thus the result is a daughter element
which corresponds to the element two columns to the left of the parent and with
the appropriate mass. Likewise “ decay leads to the loss of a unit of negative intra-
atomic charge in the nucleus of the daughter which means that the intra-atomic
nuclear charge increases by one unit and corresponds to the element one column
to the right of the parent in the periodic table with the mass of the parent. There
is an assumption here that the negative intra-atomic charge of the electrons outside
of the nucleus takes care of itself by interacting with its environment as necessary.
At this point, there must have been some private communication between Soddy
and van den Broek since Soddy states that van den Broek’s atomic nucleus has a
net positive inter-atomic charge but contains both positive charges and negatively
charged electrons while Rutherford’s nucleus contains only positive charges. Van
den Broek does not introduce the alpha particle/electron model of the nucleus until
3 weeks later in another letter in Nature (van den Broek 1913b). In this letter, van
den Broek assumes that the nucleus is made up of alpha particles and electrons in
such a way that the nuclear mass is all due to alpha particles each of mass 4 and
each contributing two units to the nuclear intra-atomic charge while the number of
electrons is chosen so that the intra-atomic charge of the nucleus is the correct one.
This second Nature paper of van den Broek will not be further discussed here.

Soddy (1913) further discusses a statement made by Fajans in his first paper on
the generalization of the decay rules (Fajans 1913b). There, Fajans did point out
that the processes involved in radioactive decay are very similar to electrochemical
processes. So both radioactive decay and electrochemical processes involve the gain
or loss of charge by atoms. Thus, Fajans reasoned that both processes involve the
same electrons. Soddy correctly states that this is a mistake on the part of Fajans. The
chemistry of the radioactive compounds amply demonstrates that chemical reactions
involve the extra-nuclear electrons which make up the intra-atomic negative charge
while nuclear decay involves the electrons and nuclear charges of the particles which
make up the positively charged nucleus; there is no exchange between the two types
of electrons.

1.3.2.2 Moseley

It was H. G. J. Moseley (Heilbronn 1974) who brought the atomic number story to
its conclusion. Moseley was a young British chemist who went to Manchester in
1910 to work with Rutherford. He became aware of van den Broek’s postulate on
the intra-atomic charges in 1913. While in Manchester he started the measurement
of the wavelengths of x-rays emitted by targets after bombardment by energetic
electrons and reported this work in his first paper (Moseley 1913) by November
1913. He continued his work in Oxford and reported further in a second classic paper
in 1914 (Moseley 1914). Moseley measured the x-ray wavelengths by scattering
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them from a potassium ferrocyanide crystal and using the Bragg diffraction formula.
He made measurements on more than 30 target elements. They spanned atomic
numbers (a term first used by Moseley and referred to as N) from 13 (Al) to 79
(Au). He measured two series of lines, the so-called K series for atomic numbers,
N � 47 and the L series for atomic numbers, 40 � N � 79. The K series lines
correspond to shorter wavelengths than the L series lines. Each of these series has
an intense line referred to as alpha and less intense longer wavelengths referred to
as beta, phi and gamma. From his nomenclature, he obviously recognized the K-
series as analogous to the Lyman series in the hydrogen atom spectrum, while the L
series is the analogue of the Balmer series in hydrogen. He plotted the square roots
of the frequencies of the various x-ray lines versus N, the atomic number, and found
straight lines if he chose the atomic numbers N with the proviso that N increases
with increasing atomic weights “except in the cases of Ag, Co, and Te where this
clashes with the order of the chemical properties” in the periodic table. He also had
to reserve N values for an unknown element each between Mo and Ru, between Nd
and Sm, and between W and Os. Mosely also calculated the parameters QK and QL

for the alpha lines of the K and L series respectively

QK D .�=.3=4/�0/
1=2 and QL D .�=.5=36/�0/

1=2 (1.1)

where � refers to the frequency of the observed x-ray and �0 to the frequency cor-
responding to the Rydberg constant for the hydrogen atom, respectively. Notice that
the denominators in Equation 1.1 correspond to the frequencies of the first (longest
wave lengths) members of the hydrogen atom spectrum. Thus, QK and QL for a hy-
drogenic atom would equal the nuclear changes of the atom. For the 15 QK values
that he evaluated, Moseley found QK almost exactly equaled N � 1 (except for the
very lowest wavelengths) and increased by almost exactly one unit from one ele-
ment to it’s neighbor, while QL similarly equaled (N� 7:4). Moseley concluded his
second paper as follows:

Now if either the elements were not characterized by these integers, or any mistake had been
made in the order chosen or in the number of places left for unknown elements, these regu-
larities would at once disappear;. We can therefore conclude from the evidence of the X-ray
spectra alone, without using any theory of atomic structure, that these integers are really
characteristic of the elements. Further, as it is improbable that two different stable elements
should have the same integer, three, and only three, more elements are likely to exist be-
tween Al and Au. As the X-ray spectra of these elements can be confidently predicted, they
should not be difficult to find. The examination of keltium would be of exceptional interest,
as no place has been assigned to this element. (For keltium see footnote1)

Now Rutherford has proved that the most important constituent of an atom is its central pos-
itively charge nucleus, and van den Broek has put forward the view that the charge carried
by this nucleus is in all cases an integral multiple of the charge on the hydrogen nucleus.
There is every reason to suppose that the integer which controls the X-ray spectrum is the
same as the number of electrical units in the nucleus, and these experiments therefore give

1 The reference to keltium is to a rare element which the French chemist G. Urbain claimed to have
discovered. Moseley was able convince Urbain that keltium did not exist (Heilbronn 1974).
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the strongest possible support to the hypothesis of van den Broek. Soddy has pointed out
that the chemical properties of the radio-elements are strong evidence that this hypothesis
is true for the elements from thallium to uranium, so that its general validity would now
seem to be established.

It is noted without further comment that Moseley was able to characterize his
observed x-ray spectra in such a way that the individual elements are identified
purely by their respective atomic numbers without any use of an atomic model.
Note again, however, that the denominators in the QK and QL expressions are ex-
actly the frequencies of the hydrogenic Lymann and Balmer alpha lines (Moseley’s
nomenclature) and that therefore QK and QL exactly equal the nuclear charge of a
“one-electron” hydrogenic atom which would be deduced from the frequency � of
its observed Lymann and Balmer alpha lines2.

In the summer of 1914, Moseley traveled to Australia to report his new results.
War broke out and he hurried back to England. He enlisted as a second lieutenant in
the Royal Engineers and was killed in action in Gallipoli in 1915, a victim of World
War I.

1.3.2.3 Thomson

The year 1913 produced yet another important discovery in isotope chemistry.
J. J. Thomson (1913), previously cited here for his discovery of electrons, reported
work on the positive ions produced by electrical discharge in a vacuum tube and
which Goldstein had earlier seen in 1886 and referred to as Kanalstrahlen. (They
had not been recognized as positively charged until Wein was able to determine
their polarity by the use of a strong magnetic field.) Using appropriate electric and
magnetic fields Thomson measured the charge to mass ratio e/m for these positive
ions and determined the number of charges per ion. As an example of the use of his
instrument, Thomson analyzed residues of liquid air samples enriched in the rare
gases present in the atmosphere, which he obtained from James Dewar. He did find
xenon, krypton, argon and neon in these samples with atomic masses corresponding
to the ones in the periodic table. However, whenever he found neon (mass 20), he
found it was always accompanied by a heavier gas of mass approximately 22 present
in an amount that he stated formed “only a small percentage of the mixture of 20
and 22”. He thus concluded that there are two isotopes of neon. All the previously
known isotopes had been formed in processes involving natural radioactivity. Neon
represents the first known example of isotopes in that part of the periodic table far
removed from natural radioactivity.

2 While we have not carefully studied all of the tabular material in Moseley’s papers, we note
that Moseley’s atomic numbers agree with the values accepted today, with one exception. Thus,
Moseley assigns N D 66 to Ho and N D 67 to Dy; the presently accepted assignment reverses
these two elements in the periodic table.
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1.3.2.4 Lindemann

The war inhibited the rate of scientific progress. The date of the next scientific
publication (Lindemann and Aston 1919), cited here is 1919. There F. W. Aston
(NLC 1922�), a student of Thomson, and F. A. Lindemann, a student of the German
chemist W.H. Nernst (NLC 1920�), discuss the possibility of separating a mixture
of isotopes or enriching such a mixture in one isotope or another by fractional distil-
lation, by diffusion, by gravitational effects, by centrifuge, or by producing positive
rays and subjecting them to electric and magnetic fields as in Thomson’s experiment
leading to evidence for the existence of two isotopes of neon. They conclude that
all of these methods should lead to isotope separation in principal “though possibly
not in practice”. They briefly discuss unsuccessful experimental attempts in 1914
by Aston to separate the neon isotopes by fractional distillation and by diffusion.

Shortly after the publication of this paper, Lindemann (1919) published another
paper in which he analyzed vapor pressure isotope effects of monatomic solids. He
used an integrated Clausius–Clapeyron equation, assumed the gas to be ideal and
used the Debye model to calculate the necessary heat capacity of the solid. In the
Debye model, there is a continuous distribution of frequencies � of the solid from
zero to a maximum frequency; further details are beyond the scope of this discus-
sion. Lindemann made application to the isotopes of lead and used the experimental
result that the melting point of the lead isotopes show no observable isotope effects.
While in 1919 he, of course, did not know anything about the Born–Oppenheimer
approximation (see Chapter 2) of quantum mechanics, he made several assumptions
that follow from this approximation, among them that the Debye frequency � is
given by .1=.2 //.f=m/1=2 where m is the mass of the atom and f is an isotope
independent force constant. Lindemann also did not know the solutions to the quan-
tum mechanical problem of the harmonic oscillator. He was, however, aware of
Planck’s solutions of the black-body radiation problem (Einstein and Stern (1913),
Millonni and Shih (1991); Dahl (1998)), the first of which involved a “resonator” of
frequency � with energy levels nh� (n a positive integer or zero) and a second and
more successful expression with energy levels (n C 1=2/h�. The second formula
contains a zero-point energy (i.e. (1=2/h�/. Lindemann, like others, regarded these
relations as formulae for quantum energy levels of an oscillator. In fact, he decided
to use the isotope effect on the vapor pressure of a monatomic solid as a device for
finding out which of the two is correct. He assumed that h�=kT is sufficiently small
so that exp.�h�=kT) is well represented by an expansion containing terms in powers
of 1/T up to 1=T2. The result of his theoretical calculation was that, in the absence
of a zero-point energy term in the harmonic oscillator energy, the isotope effect on
the vapor pressure would have the form (1C A=T) with the heavy isotope having
the higher vapor pressure while, in the presence of the zero-point energy, the isotope
effect would be of the form (1 C B=T2) with the lighter isotope having the higher
vapor pressure. This result was tested in 1931/1935 when the isotope effect on the
vapor pressures of isotopic neon crystals was experimentally measured by Keesom
and van Dijr 1935. The experimental result confirmed that the quantum formula for
the energy levels of a harmonic oscillator does contain a zero-point energy term. In



20 1 A Short History of Early Work on Isotopes

Chapter 5, vapor pressure isotope effects are discussed. There, a very simple model
for the condensed phase frequencies is used, the Einstein model, in which all the
frequencies of a condensed phase are assumed to be the same. From this model, one
can derive the same result for the relationship between vapor pressure isotope effect
and zero-point energy of the oscillator as that derived by Lindemann.

1.3.2.5 Another Component of the Nucleus

In 1919 continuing his studies of the nucleus, Rutherford (1919) experimented on
collisions of ’ particles with light atoms, in particular with nitrogen. Here he found a
new phenomenon, namely in the collision he disintegrated the stable atom, nitrogen,
producing hydrogen atoms. Thus, he concluded that the nucleus contains protons.
From radioactive decay, it had previously been agreed that atomic nuclei contain
only alpha particles and electrons. Now, there was still another component.

1.3.2.6 Aston, the Mass Spectrograph, the Whole Number Rule

Another piece of information was necessary before one arrives at a periodic table
which is close to the modern view. This is the whole number rule which states that
the masses of atoms on the 160 scale (i.e. mass of the major isotope of oxygen is
16.00) tend to have close to integer values. This information was provided by W. D.
Harkins (vide infra) and F. W. Aston (Historical Vignette 1.2).

F. W. Aston has already been mentioned in connection with the unsuccessful at-
tempt to separate neon isotopes. His motivation (Aston (1920a)) had been to clear
up an uncertainty in Thomson’s discovery of the two isotopes of neon; namely
Thomson’s positive ray instrument did not yield a sufficiently precise measure of
the mass of the ion of mass 20 to distinguish mass 20.0 from mass 20.2. Note that
the (average) atomic weight of neon is 20.2. At the time, it was conceivable that the
large peak observed by Thomson around mass 20 was really mass 20.2 and corre-
sponded to mono-isotopic neon, while the observed smaller peak at mass 22 was
just another element. Having failed to separate two neon isotopes, Aston then set
out to build a positive ray instrument capable of distinguishing between mass 20.0
and mass 20.2. In this instrument, which he later called a mass spectrograph, he
used collimators and electric and magnetic fields in such manner and such geome-
try that he lost less of the ion beam and was able to obtain more precise mass values
than did Thomson in the earlier experiment. Masses in the Aston instrument were
not measured absolutely but relative to other “known” masses. Reference here is
made to a few of Aston’s earlier papers (Aston 1920b, c) and also to his later Nobel
Lecture (Aston 1922). In the first of these papers, he did show that a sample of neon
gas gives rise to two peaks at masses 20.0 and 22.0 respectively, and to no peak at
mass 20.2, the (average) atomic weight of neon. In the next paper, which followed
shortly, he discovered the isotopes of chlorine, at mass 35 and mass 37, 35Cl and
37Cl. He also found molecular ions. Thus, he observed peaks at mass 36 and mass
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[Historical Vignette 1.2] Francis W. Aston (1877–1945) studied chemistry and physics at Birm-
ingham University and its predecessor, Mason College. At Birmingham he worked on discharge
tubes and discovered the phenomenon now known as the Aston Dark Space. In 1909 he joined
Sir J. J. Thomson at Cambridge to work on studies of positive rays. During this period he ob-
tained definite evidence for the existence of two isotopes of neon. During World War I Aston was
at the Royal Aircraft establishment. Returning to Cambridge Aston attacked the problem of sep-
arating the neon isotopes. He achieved success in this by his invention of the mass spectrograph.
Extending the technique to other elements he discovered no less than 212 of the naturally oc-
curring isotopes. From these results he was able to formulate the Whole Number Rule. Aston was
awarded the Nobel Prize in Chemistry in 1922. He was a fine amateur musician and an enthusiastic
sportsman, excelling at skiing, rock climbing, and tennis. (Photo credit www.wikipedia.com, public
domain)

38 which he attributed to HCl. Phosgene gave rise to peaks at mass 63 and mass
65 which he attributed to CO35Cl and CO37Cl. By the time he published this pa-
per (Aston 1920b), he had measured a large number of masses of various ions and
concluded: “A fact of greatest theoretical interest appears to underlie these results,
namely that of more than forty different values of atomic and molecular mass so
far measured, all, without a single exception, fall on whole numbers, carbon and
oxygen being taken as 12 and 16 exactly. . . ”.

1.3.3 The Work of Harkins on the Whole Number Rule

There is anecdotal material that W. D. Harkins, whose career at the University of
Chicago started around the time of World War I, felt that his scientific contributions
were not adequately recognized by the community. It is indeed correct that he is not
well known for his contributions to the “Whole Number Rule”.

In 1915, Harkins and his student E. D. Wilson (HW) published a series of three
papers (Harkins and Wilson 1915a, b, c) in the Journal of the American Chemical
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Society. In the first paper, they start with Prout’s Rule which dates to 1814/1815
and states that the then known atomic weights of the elements are integral multiples
of the atomic weight of hydrogen and that hydrogen is the primary element (this is
not the language used by Prout). HW then tabulate the atomic weights of the lighter
elements (27 elements, H through Co) on a scale with H D 1.00 (the “1H scale”).
They studied the deviations of the atomic weights from integer values and found,
omitting Be because its atomic weight was not well known, and Ne because Thom-
son believed there are two isotopes of that element, that the average deviation is
0.21. If the atomic weights were randomly distributed, one would expect an average
deviation from integer values to be 0.25. Moreover, for five of the elements, the per
cent deviation of the atomic weight from an integer value is �0:77% while for a
seventh element this deviation is �0:70%. With the exception of Mg, Si, and Cl,
all the deviations are negative. On the assumption that atoms are built from hydro-
gen, HW recognized that the negative values of these deviations mean that, when
the hydrogen atoms are “packed” to produce these elements, the energy must be
lowered and, in accordance with the Einstein mass/energy relationship, the element
being formed is more stable than the hydrogen atoms from which it is formed. They
then carried out a similar investigation of the atomic weights of these 27 elements
based on a scale with O D 16:00 (the “16O scale”). With the 16O scale, not only
are the atomic weights of seven of the 27 light elements exactly integer values but
also the average deviation of all these “light” elements from integer values is 0.05
if Mg, Si, and Cl are omitted. There is no way of omitting a few elements on the
1H scale which leads to a similarly small deviation of atomic weights from integer
values. Historically, atomic weight scales were usually based on either the 1H scale
or the 16O scale and it was noted already by previous workers (prior to HW) that the
16O scale tends to predict atomic weights closer to integer values than does the 1H
scale. However, it is doubtful that anyone had previously gone through the analysis
of this effect as carefully as HW. Thus, on looking at the packing effect of hydrogen
atoms used as building blocks for the heavier elements, they found that this factor
was close to 0.77% of the total atomic weight for the first 27 of the heavier elements.
Consequently when they multiplied the atomic weights on the 1H scale by 1.0078
they obtained the weight of H as 1.0078 and found integer values for all the other
elements (excluding Mg, Si, Cl) with a deviation 0.2 or less.

HW noted that past atomic number 27 the whole number rule did not “work” for
the atomic weights. They attributed this fact either to the presence of isotopes for
all of these elements or to some phenomenon which they did not understand. The
first explanation (isotopes) is correct. The mass spectrograph, already mentioned as
an invention of Aston, shows that all isotopic masses on the 16O scale (or the very
similar 12C scale used today) tend to differ from integer values by less than 0.1%.

Of more relevance, in the present context, HW reasoned that large deviations
from the whole number rule among the light elements indicates the existence of
isotopes. They, thus, predicted that Mg, Si, and Cl had isotopes (were not mono-
isotopic). Harkins decided to show that the element chlorine which had the atomic
weight deviating the most from integer value among the 27 low atomic number
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elements contains more than one isotope. He assumed that there are two isotopes
35Cl and 37Cl. To show that there is more than one isotope he followed the same
path originally used by Aston in the case of neon; he decided to try to separate the
isotopes or to initiate a separation process and show that he could change the atomic
weight of the material (i.e. isotopically enrich some fraction of the sample).

As detailed earlier, Aston had been faced with this problem for the case of neon
where he was not convinced by Thomsons’s conclusion that there are two neon
isotopes of masses 20 and 22. He attempted to show that indeed neon consists of
two isotopes by trying to separate the two isotopes using thermal diffusion. The
result proved unsatisfactory and he then proceeded to invent the mass spectrograph.

Harkins started work to separate the chlorine isotopes in 1915 by gaseous dif-
fusion through “porous pipe stems”. Originally, he used chlorine gas. He later
switched to hydrogen chloride. The work was resumed during 1919 (Harkins 1920)
and, in 1921 he reported (Harkins and Hayes 1921) the first partial separation of
an element into isotopes, having found that the atomic weight of the chlorine had
increased by 0.05 units from 35.46 to 35.51 in the heavy (i.e. residual) fraction. The
result was published in short notes, not only in Nature to which reference is made
above, but also in Physical Review and Science. The result has not been disputed,
and moreover was confirmed by later work of Harkins and his students. The next
separation of isotopes was reported by Bronsted and de Hevesy (1920) in September,
1920; they measured a change of 1 part in 20,000 in the atomic weight of mercury.
Mulliken and Harkins (1922), in a paper in 1921, dealing in part with the theory of
isotope separation, confirmed the results of Bronsted and de Hevesy.

It is clear from the tone of Harkins’ publications and by his sometime repetitive
publications that he feared that he would not receive credit for his accomplishments.
Aston was awarded the Nobel Prize in Physics in 1922; the citation for the Prize
refers to the whole number rule and to the mass spectrograph. It is of course true that
the invention of the mass spectrograph ranks among the most important scientific
inventions of the twentieth century, and not only for isotope science. It is also true
that the investigation of the whole number rule using the mass spectrograph is by
far the most elegant approach to such a study. What is surprising is that Aston made
no reference to Harkins in the Nobel Lecture. By comparison, Soddy in his Nobel
Lecture made copious reference to his contemporaries and especially to Fajans.

1.3.4 Understanding the “Modern” Periodic Table

In the second of their 1915 papers (Harkins and Wilson 1915b), Harkins and Wilson
note from their study of the light elements (up to atomic number 27) that the main
isotopic species had atomic masses which are integral multiples of 4. They con-
cluded from this that, for those light nuclei, an important constituent must be the
alpha particle just as it must be in the heavier radioactive nuclei which undergo al-
pha decay. In order to rationalize all the nuclei, including their nuclear charges, they
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then postulated that nuclei contain alpha particles, protons, and nuclear electrons.
Such a postulate taken together with the postulate of the constancy of the packing
fraction leads to the whole number rule for nuclear masses.

Similarly in his Bakerian Lecture (Royal Society of London) for 1920,
Rutherford (1920) states “In considering the possible constitution of the elements,
it is natural to suppose that they are built up ultimately of hydrogen nuclei and
electrons.” On this view the helium nucleus is composed of four hydrogen nuclei
and two negative electrons with a resultant charge of 2. In the Lecture, he empha-
sizes the difference between the extra-nuclear electrons and the electrons which are
closely bound to the charged particles which he supposes make up the nucleus. He
does talk about a neutral particle in the nucleus of mass approximately equal to
unity consisting of a proton and a closely bound electron. In discussing the possible
nuclear structure of the nucleus of nitrogen of mass 14, he considers that the nu-
cleus may be made up of four double charged helium 3 nuclei plus two protons with
closely bound electrons. Aside from the quote at the beginning of this paragraph,
Rutherford did not give an example of a nucleus made up only of protons and of
protons with closely bound electrons. However, as time went on, this (nucleus made
up of protons and neutral particles of unit mass) did become the accepted view. In
this history, this latter view of the atomic nuclei will be accepted. Over the next few
years, both Rutherford and Harkins tried to find evidence for a neutral particle with
mass close to that of a proton. They did not succeed. That discovery was not made
until 1932 by a former student of Rutherford, J. Chadwick (NLP 1932�) (1932). The
particle was called a neutron. From the point of view of isotope effects discussed in
this book, all we need to know about the nucleus is that it is made up of protons and
neutrons, that the number of protons is equal to the charge on the nucleus which is
called the atomic number, and that the sum of the number of protons plus the number
of neutrons is called the mass number which yields the atomic weight corresponding
to that nucleus. The mass number is, of course, an integer. The actual atomic weights
show small deviations from these integers and these are related to nuclear stabilities.

In should be noted that both Harkins and Rutherford were interested in the details
of nuclear structure from the point of view of understanding stability of nuclei and
understanding which mass numbers are stable. This is an important study but it is
really nuclear physics and is beyond the scope of this book.

This section started with the discovery of Soddy and Fajans on radioactive de-
cay around 1910 and the relationship of radioactive decay to the periodic table.
At this point in the history, we understand the periodic table and we understand
the role of isotopes in the periodic table. We have not yet understood the structure
of the modern Table, i.e. first row two elements, second row eight elements, etc.
That understanding can be based on Bohr theory of the hydrogen atom originally
developed in 1911 and is summarized in Bohr’s famous article in Zeitschrift fur
Physik (Bohr 1922).
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1.4 The 1920s and 1930s Through the Discovery of Deuterium

This part of the history will be much less detailed than the previous ones which
dealt with the development of the concept of isotopes. While, in the previous sec-
tion, much of the focus was on the fact that the isotopes of an element all have the
“same” properties, much of the focus now changes to the (small) “differences” in
the properties.

This period also focuses on the discovery of isotopes of light weight elements
some of which have such low natural abundance that they could not be detected
by the mass spectrographs available in the early part of the twentieth century, but
which may be very desirable for study because isotope effects involving lightweight
elements tend to be much larger than those for heavier elements. A prime example
is the discovery of deuterium in 1932, one of the major events in isotope chemistry
during this time period.

1.4.1 Early Work on Isotope Effects on Spectra

In 1920, Kratzer (1920) and Loomis (1920) independently noted that vibrational
frequencies of isotopic diatomic molecules should depend inversely on the square
root of the reduced masses of the molecules (see Chapter 3, Equation 3.4) on the
assumption that isotopic substitution does not affect the force constant f. One knows
from the Born–Oppenheimer approximation (vide infra and Chapter 2) that this is a
correct assumption. While 1920 precedes the publication of the Born–Oppenheimer
approximation (1927), it was commonly assumed at that time that isotopic substitu-
tion does not have significant effect on chemical bonding or on the force constants
associated with chemical bonds. Kratzer and Loomis were aware of the existence
of two isotopes of chlorine and were able to calculate the ratio of the stretching
vibrations of H35Cl and H37Cl. The far infrared spectrum had been measured by
Imes (1919). Identifying the lowest observed transition in HCl as corresponding to
the fundamental vibration of the more abundant H35Cl molecule, they were able to
calculate ��, the expected difference between the frequencies of the two isotopic
HCl molecules, H35Cl and H37Cl. While Kratzer and Loomis found no evidence
of an isotopic molecule in the fundamental vibrational band since their instrumen-
tal resolution was not sufficient, the splitting was apparent in the overtone band at
frequency 2� with isotopic splitting 2��. The calculated and observed values of
the isotopic splitting were in excellent agreement. Arguably, this represents the first
quantitative study of an isotope effect.

Kratzer and Loomis as well as Haas (1921) also discussed the isotope effect on
the rotational energy levels of a diatomic molecule resulting from the isotope ef-
fect on the moment of inertia, which for a diatomic molecule, again depends on
the reduced mass. They noted that isotope effects should be seen in pure rotational
spectra, as well as in vibrational spectra with rotational fine structure, and in elec-
tronic spectra with fine structure. They pointed out the lack of experimental data
then available for making comparison.
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R. S. Mulliken (1925a), whose name has previously appeared in these pages as a
student of Harkins carried out the first detailed study of isotope effects on the elec-
tronic spectrum of a diatomic molecules. His first paper on isotope effects in band
spectra of diatomic molecules dealt with theory of the energy levels of diatomic
molecules and with the spectrum that results from a transition between two elec-
tronic states. Corresponding to a given electronic state there is a vibrational force
constant f and a corresponding vibrational frequency � which depends, as already
noted, on the force constant and on the diatomic molecule reduced mass. The vi-
brational energy levels corresponded in the old (Somerfeld) quantum theory to nh�
with n integer or zero and � the vibrational frequency. The corresponding rotational
energy levels of the diatomic molecule as a rigid rotor were given in the old theory
by j2h2=8 2I. Here j, the rotational quantum number, is an integer, I is the moment
of inertia of the diatomic molecule which is isotope dependent and h is Planck’s
constant. Mullikan assumed that the electronic states of the diatomic molecule are
isotope independent as is the vibrational force constant f. Thus, he implicitly as-
sumed the relation which later became the Born–Oppenheimer approximation in
the new quantum mechanics (see Chapter 2). Mulliken’s formulation did include
rotational–vibrational interaction.

In a second paper, Mulliken (1925b) employed the result just discussed to in-
terpret the emission spectrum of BO which had previously been measured by
Jevons (1915) by introducing BCl3 vapor into the afterglow of “active nitrogen”.
“Active nitrogen” is produced by an electric discharge through nitrogen (contain-
ing some air). Jevons “reasonably” assigned the observed band spectrum to BN.
Two bands were observed, one starting at about 24;000 cm�1 and a shorter wave-
length one starting around 44;000 cm�1. (Note that wave number, cm�1, is a unit
of frequency which can be converted to frequency in per sec by multiplying by the
velocity of light c. High frequency corresponds to short wave length.) Each band
system is made up of two similar superimposed band systems, the weaker of which
is assigned to the compound of the less abundant 10B isotope of boron and the
stronger assigned to the 11B isotope. Mulliken re-measured the electronic transition
frequencies which were assigned to a vibrational integer quantum number n0 of the
initial state and a vibrational integer quantum number n00 of the final state. He was
able to fit the energies (in units of reciprocal centimeters, cm�1) of the observed
band heads for each of the four spectra with a power series of n0 and n00 containing
terms up to quadratic.

�.cm�1/ D constantC .a1n0 C a2n02 C � � � / � .b1n00 C b2n002 C � � � / (1.2)

From his first paper (Mulliken 1925a), Mulliken understood that the band heads did
not represent a transition from a non-rotating initial state to non-rotating final state.
Yet, he used the band heads to study the vibrational isotope effect since he could
measure the band heads more easily and since the rotational energy differences are
very small compared to the vibrational energy difference. From the theory, the terms
linear in n0 and n00 (a1n0 and b1n00) arise from the harmonic approximation with the
coefficients a1 and b1 corresponding to the harmonic vibrational frequencies in the



1.4 The 1920s and 1930s Through the Discovery of Deuterium 27

[Historical Vignette 1.3] Robert S. Mulliken (1896–1986) took his undergraduate degree at
Massachusetts Institute of Technology and later, after serving in the US Army’s Chemical Corps
during World War I, received his Ph.D. in 1922 from the University of Chicago working with W.
D. Harkins on the separation of mercury isotopes. During the 1920s he held several prestigious
fellowships which he spent abroad focusing his interests on molecular spectroscopy and quantum
theory. On his return to the US he joined the faculty at the University of Chicago. Mulliken is best
known for his development of molecular orbital theory for which he was awarded the Nobel Prize
in Chemistry in 1966. He continued active theoretical (large scale molecular orbital calculations)
and experimental (high resolution electronic molecular spectroscopy) programs until his retirement
in 1985. (Harris and Ewing photograph from National Academy of Sciences Archives)

initial and final electronic states respectively. Thus, Mulliken determined that the
final state in both the long wavelength band system and the short wavelength band
system corresponds to the same state, presumably the electronic ground state of the
system (Historical Vignette 1.3).

A major interest here is, of course, the isotope effect on the a1 and b1 coeffi-
cients for the 11B system and the 10B system. As already noted, this isotope effect
should reflect the isotope effect on the harmonic vibrational frequencies in the var-
ious electronic states. Within the implicit Born–Oppenheimer approximation the
ratio of these coefficients should be equal to the inverse ratio of the square roots of
the reduced masses of the isotopic diatomic molecules. For the ratio 10BN=11BN,
one calculates with the use of atomic masses measured by Aston with the mass
spectrometer a value of 1.0276. The values obtained from Mulliken’s measure-
ments for the ratios of the a and b terms were 1.0302 and 1.0286 for the long
wavelength bands and 1.0282 and 1.0294 for the short wavelength bands. The
weighted average (Mulliken assigned weights to the measured values) of these val-
ues is 1:0291˙ 0:0003. Mulliken concluded that the deviation from the theoretical
value is so large that the isotope effect shows that the spectrum does not correspond
to BN but rather to BO. For BO one calculates the appropriate theoretical ratio to
be 1.0292. Mulliken’s reasoning on the identification of the molecule as BO is quite
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convincing, all the more so since he also presents chemical evidence supporting this
assignment. Later studies of the BO spectrum (vide infra) have supported Mulliken’s
assignment.

It should be noted in passing that Mulliken also examined the isotope effect on
the quadratic terms in the equations for the band heads. These ratios should theo-
retically show an isotope effect proportional to the reduced masses of the diatomic
molecules (rather than the square root of the reduced masses). While Mulliken con-
cludes that these ratios also confirm that the molecule is BO rather than BN, the
four experimental ratios show a fairly large scatter so that the case for identifying
the molecule is not as strong as that from the experimental a and b ratios. He also
measured some of the rotational lines in the spectra of BO and considered the mea-
sured and theoretical isotope effects. Here one experimental isotope ratio checks
the theoretically calculated ratio quite well, but for the other two the result was
unsatisfactory. However, Mulliken judged the error to be within the experimental
uncertainty.

Mulliken’s analysis of the isotope effect on the band spectrum of BO is regarded
as arguably the first analysis of isotope effects on the band spectra of diatomic
molecules. It is, however, also recognized as the first experimental measurement
of a zero-point energy. It has been noted that Mulliken expressed the observed
transition energies as a power series in n0 and n00 (the integer vibrational quan-
tum numbers of the initial and final states respectively). There is obviously also
a constant term in this series which corresponds to the transition energy between
ground states .n0 D 0; n00 D 0/ with no vibrational energy. This constant term
is the difference in electronic energy between the initial and the final states. The
dilemma that Mulliken faced is that the isotope effect observed for this constant
term is too large; the difference between the 10B molecule and the 11B molecule is
�9:4 and�6:3 cm�1 for the long wavelength band systems and the short wavelength
band systems respectively. Such a difference would be called an electronic isotope
effect. Within the Born–Oppenheimer approximation or even the implied Born–
Oppenheimer approximation, this electronic isotope effect should be small, much
smaller than 5 or 10 cm�1. In Chapter 2, corrections to the Born–Oppenheimer ap-
proximation are discussed. Only one such correction is discussed in detail and that
is the so-called Rydberg correction for the hydrogenic atom (the one electron atom).
The Rydberg correction depends on the nuclear mass of the atom. Mulliken reasons
that a knowledge of the difference in the Rydberg correction between 10B and 11B
nuclei will give an estimate of the order of the electronic isotope effect to be ex-
pected for 10BO and 11BO. This is a bold assumption, but it is probably reasonable.
On this basis, he expects an isotope effect on the electronic energy of a few tenths of
a wave number. Thus, he reasons that the electronic isotope effect that he calculated
above is unreasonably large. While he makes no reference to the Einstein–Stern
paper (1913) or to the Lindemann paper (1919), he was probably aware that these
authors had considered that the energy levels of a harmonic oscillator are given by
a formula .nC 1=2/h� rather than nh� with the vibrational quantum number n be-
ing a positive integer or zero (as was assumed in the early quantum mechanics).
Mulliken does refer to some work which indicates half integer quantum numbers.
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Be that as it may, Mulliken decided to assume that the energy levels of the oscilla-
tors are given by .1=2/h�, .3=2/h�, etc. He then introduced new quantum numbers
�0 and �00

�0 D
�
n0 C 1

2

�
(1.3)

�00 D
�
n00 C 1

2

�
(1.4)

and, in a straightforward manner, he rewrote the equations for the transition ener-
gies of the two band systems in terms of �0 and �00 and in this way, included the
zero-point energy in the constant terms. Carrying this procedure through, he found
for the electronic isotope effect, values of �2:3 andC2:4 cm�1 where he had found
above �9:4 and �6:3 cm�1. Mulliken admits that �2:3 and C2:4 are still too large
for the electronic isotope effects but concludes that such values could result from
experimental error. He also tried a zero-point energy of 1h� (rather than 1=2hv) for
the harmonic oscillator but that did not “work” at all. He concludes since half integer
quantum numbers with a minimum value of C1=2 “are by far more probable than
large electronic isotope effects or other serious failure of the theory – unless one
wishes to entertain the possibility of fractional values of quantum numbers other
than 1=2”. This was written in September, 1924. The Schrödinger equation which
leads directly to the concept of the 1=2hv zero-point energy was not published until
1926. It will be seen that the vibrational zero-point energy is one of the princi-
pal concepts underlying all concepts of isotope effects on chemical and physical
properties.

Mulliken also studied other band spectra of diatomic molecules. Only one such
study will be mentioned here and that is his study of copper iodide (Mulliken 1925c),
where he examined the copper isotope effect. Mulliken’s pioneering work was fol-
lowed by more papers on isotope effects on electronic spectra (visible and UV)
which will not be detailed here. Many of these papers deal with diatomics since the
theory of such spectra is much better understood than that for general polyatomic
systems. Further discussion of isotope effects on spectra will be mainly restricted to
their use in the discovery of less abundant isotopes.

It should, however, be mentioned that Mulliken’s study of the BO system has
been followed over the years by many others, An extensive study by Jenkins and
McKellar (1932) should be mentioned explicitly. This study involved the long wave-
length band of BO. The same method as that used by both Jevons and Mulliken to
produce the BO was used in this work. The new (present day) quantum mechanics
was used in the theoretical interpretation. Both the vibrational and the rotational
isotope effects were observed and agree with theory. One motivation for this work
was to determine how well the isotopic ratio of the square roots of the two relevant
isotopic masses (10B and 11B) agrees with the ratio obtained from Aston’s mass
spectrometric measurements and hence how well isotopic mass ratios determined
from band spectra compare with those obtained using Aston’s mass spectrograph.
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The reduced mass ratios agree exactly with Aston’s to the five significant figures
reported by Aston. An interesting result obtained in this study, where there was no
longer any question abut zero-point energy, is the electronic isotope effect reported
as 0:33 ˙ 0:08 cm�1, a result which appears much more satisfactory than that ob-
tained earlier by Mulliken.

As already noted, the study of BO above was carried out about 7 years after Mul-
liken’s study. It is included here to indicate that Mulliken’s earlier study did reach
the correct conclusions even though it had available only much poorer theoretical
and experimental “apparatus.” The next section returns to an earlier time period,
closer to the time of Mulliken’s BO study.

1.4.2 The Discovery of Isotopes of Carbon, Nitrogen,
and Oxygen, and Hydrogen

Aston and his colleagues discovered a fairly large number of isotopic atoms during
the 1920s using the mass spectrograph. However, there was no evidence that hy-
drogen, carbon, nitrogen, and oxygen, the elements that account for about 96% of
the mass of the human body, had isotopes. This might mean that these elements did
indeed have no isotopes or, alternatively, that the existing mass spectrographs were
unable to detect these isotopes because of their low abundance in natural materials.
This section deals with the discovery of the isotopes of carbon, nitrogen, oxygen,
and hydrogen.

In connection with their interest in calculating Third Law entropies, W.F.
Giauque (NPC1949�) and H. L. Johnston (1929a) studied the atmospheric ab-
sorption spectral bands which had been observed by Dieke and Babcock (1927).
Around 13;000 cm�1, bands are observed which are designated as the A bands and
are ascribed to O2. There is also a much weaker A0 band in the observed spectrum.
Mulliken had apparently also noted this weak band but then expressed the opinion
that a “revised interpretation will probably be necessary to include such a weak
band.” The quote is from Giauque and Johnston (1929a). The band structures of the
A and A0 bands are quite similar, except the spacings are different. Giauque and
Johnston were able to rationalize the observed spacings by assigning the A bands to
16–16 oxygen molecules and the A0 bands to 16–18 molecules, thereby discovering
the 18O isotope of oxygen. Historically, it would be interesting to determine how
Mulliken, the expert on isotope effects on band spectra of diatomic molecules,
missed this solution. Maybe, he did not have all the experimental data available.

Shortly after their discovery of 18O Giauque and Johnston (1929b) (see also
Babcock (1929)) studied newer and more extensive data on the atmospheric ab-
sorption of sunlight. Here they found a band referred to as A00 with band structure
similar to the A and A0 bands but much weaker even than the A0 band. The spec-
tral results agreed with the assignment of this band to the 17–16 O2 molecule, and
thereby they discovered the third and least abundant isotope of oxygen.
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Following the discovery of the oxygen isotopes, the carbon 13 isotope was dis-
covered by King and Birge (1930). This discovery was made by observing a band
spectrum in the diatomic molecule C2. While in the case of O2, an absorption band
was studied, the observed C2 band here (the so-called Swan band) is in the emission
spectrum from an electric furnace (presumably from the material of the graphite
tube in the furnace). While the observation of the rare oxygen isotopes in the sun-
light was made possible by the long path length through the atmosphere (particularly
at low sun), the rare carbon isotope was detected by long exposure.

The last discovery of an isotope of an element in the second row of the periodic
table was that of 15N. This is credited to R. Naudé (1929). In the band spectrum of
NO, he observed band heads for not only 15N16O but also 14N18O and 14N17O on
the basis of the expected isotope effect on the reduced mass of the molecule.

1.4.3 Deuterium

We now arrive at the experiment which, for the purpose of this chapter, is regarded
as the last act of the early history of isotope effects and also the first act of the
modern history. The modern history of isotope effects is not a part of this chapter; it
is still being written.

Aston (1927) had accurately measured the atomic weight of the mass 1 positive
ion relative to the mass of the oxygen at mass 16, taken to have a mass exactly
equal to 16.0000. The atomic mass that he obtained in this way was in close agree-
ment with the atomic weight for hydrogen obtained by chemical means. This result
indicates that, if natural oxygen is mono-isotopic, then so is hydrogen. This sit-
uation changed when Giauque and Johnston showed that natural oxygen is not
mono-isotopic. To determine the meaning of Aston’s atomic weight measurement of
hydrogen corresponding to massD unity, one then needs to know the relative abun-
dance of 16O and 18O in oxygen. Birge and Menzel (1931) reviewed the available
data (and this was not a straightforward matter) and estimated that the abundance of
hydrogen of mass 2 relative to hydrogen of mass 1 is 1:4,500. It should be pointed
out that this result would mean that the hydrogen isotope of mass 2 is much less
abundant that any isotope then yet discovered and that finding it either mass spec-
troscopically or by study of band spectra would not be experimentally possible (at
that time).

One of the authors of this book heard a story while he was a graduate student, that
Harold Urey, W. C. Harkins, and G. N. Lewis met at an American Chemical Society
Meeting and privately discussed the possibility of finding hydrogen of mass 2. When
the meeting broke up, the other two turned to Urey and said “OK, Harold, you
discover it.” He has been unable to verify this story or find any evidence that such
a conversation took place between these three eminent chemists, but it is a fact that
“Harold and his colleagues did discover it.”

Urey, Brickwedde, and Murphy (UBM) set out to discover isotopes of hydrogen.
They knew the energy levels of the hydrogen atom and they knew the effect of the
mass of the nucleus on these energy levels. The Rydberg constant depends on the
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mass of the nucleus and this dependence is given by the Bohr theory. They also knew
that the new quantum mechanics yields exactly the same result, which for the hydro-
gen atom of mass 1 agrees with experiment. They also realized that if they wanted
to find new isotopes of hydrogen by their spectral “signature” after passing an elec-
trical discharge through a sample of hydrogen gas, they would need first to enrich
the gas with respect to the rarer isotopes to which they gave the names deuterium
(mass 2) and tritium (mass 3). They made calculations on the isotope effect on the
vapor pressure of solid hydrogen using the same type of theory that Lindemann
had used to calculate the isotope effect on the vapor pressure of the lead isotopes,
discussed earlier in this chapter (Lindemann 1919). Assuming that the vibrational
frequencies of hydrogen as well as the molecular inter-atomic distances are the same
in the crystal and the gas phases and further assuming the Born–Oppenheimer ap-
proximation, UBM estimated a considerable isotope effect with the lighter isotope
leading to the higher vapor pressure. Instead of using solid hydrogen, they decided
to use fractional distillation of liquid hydrogen. They obtained the atomic spectra
of hydrogen both from tank hydrogen and from the residue from evaporating 4L
of liquid hydrogen. They observed deuterium spectral lines in both samples but the
residue from the distillation was much enriched. No evidence of tritium was found
in either sample. The discovery of deuterium was first announced by the Ameri-
can Physical Society meeting in December 1931 and then published in Physical
Review (Urey et al. 1932).

The results for deuterium were confirmed by Bleakney (1932) using mass spec-
troscopy. Bleakney built a special instrument for the purpose of the experiment.
The mass spectrum of H2 was known to yield an ion at mass 3 correspond-
ing to H3

C which results from an ion molecule reaction in the source, probably
H2
CCH2 ! H3

CCH or possiblyHCCH2 ! H3
C. The intensity of the mass 3

H3
C peak should depend on the square of the pressure of hydrogen in the ion source.

On the other hand, the intensity of the mass 3 peak resulting from deuterium, HDC,
should depend linearly on the pressure of the hydrogen in the ion source. Bleakney
investigated the two samples which had been studied in Urey et al. (1932). He found
a large increase of the mass 3 peak in the concentrated H2 sample when compared
to the tank hydrogen and found that this increase varies linearly with the pressure of
the hydrogen gas, thus confirming the UBM discovery.

While our description of this experiment ends this chapter on the discussion of
isotope history, a few more notes are appropriate. The discovery of deuterium led to
a rush of new work on deuterium, so much so that Urey published a review article
on deuterium in 1935, including both work by himself and by his collaborators but
also work by other groups (Urey and Teal 1935). Reading or perusing of this article
is highly recommended.

It is of interest to point out that Washburn and Urey proposed a method for en-
riching deuterium based on the experience that, during electrolysis, the cathodic
reaction with the lower cathodic potential will occur almost to the exclusion of other
cathodic reactions. Reasoning that the reduction potentials of HC and DC may dif-
fer, they proposed electrolysis could be used to enrich deuterium. Pursuing that idea
they found the residual water in a commercial water electrolysis apparatus used for
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the production of oxygen was significantly enriched in deuterium. Washburn and
Urey (1932) describe several schemes for making practical use of electrolysis to
obtain enriched deuterium. This reference also makes it clear that Urey no longer
believed that the isotope effect in electrolysis reflects an isotope effect on a reduction
potential.

1.5 A Brief Look at the Position of Theoretical
and Experimental Developments at the Time
of the Discovery of Deuterium

1.5.1 Quantum Theory

It has already been noted that the new quantum theory and the Schrödinger equation
were introduced in 1926. This theory led to a solution for the hydrogen atom energy
levels which agrees with Bohr theory. It also led to harmonic oscillator energy levels
which differ from those of the older quantum mechanics by including a zero-point
energy term. The developments of M. Born and J. R. Oppenheimer followed soon
thereafter; referred to as the Born–Oppenheimer approximation, these developments
are the cornerstone of most modern considerations of isotope effects.

1.5.2 Thermodynamics and Statistical Mechanics

Equilibrium thermodynamics as we know it became complete with the Third Law
of Thermodynamics developed by W. Nernst and by G. N. Lewis. The ideas of
activities and activity coefficients for real systems were well developed by 1932.

Giauque, whose name has already been mentioned in connection with the dis-
covery of the oxygen isotopes, calculated Third Law entropies with the use of the
low temperature heat capacities that he measured; he also applied statistical me-
chanics to calculate entropies for comparison with Third Law entropies. Very soon
after the discovery of deuterium Urey made statistical mechanical calculations of
isotope effects on equilibrium constants, in principle quite similar to the calcula-
tions described in Chapter IV. J. Kirkwood’s development showing that quantum
mechanical statistical mechanics goes over into classical statistical mechanics in the
limit of high temperature dates to the 1930s. Kirkwood also developed the quantum
corrections to the classical mechanical approximation.

Transition state theory, a quasi-thermodynamic/statistical mechanical approach
to the theory of reaction rates was developed in the early 1930s by a number of
workers including H. Eyring, E. P. Wigner, and J. C. Polanyi and was very quickly
applied to the consideration of isotope effects on rates of simple molecular reactions.
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1.5.3 Instrumentation – The Mass Spectrometer

The mass spectrometer (called mass spectrograph by its “discoverer” Aston) is an
important tool of the isotope chemist. Improvements in the 1920s and the 1930s
leading to higher sensitivity and higher resolution were introduced by Aston himself
and a number of others including A. J. Dempster, K. T. Bainbridge and A. O. Nier.
Commercial isotope ratio machines did not become generally available until after
World War II.
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Chapter 2
The Born–Oppenheimer Approximation:
Potential Energy Surfaces

Abstract The Born–Oppenheimer approximation is introduced and discussed. This
approximation, which states the potential energy surface on which the molecule
vibrates/rotates is independent of isotopic substitution, is of central importance in
the theory of isotope effects.

2.1 Introduction

An understanding of isotope effects on the molecular level requires some acquain-
tance with mechanics, both classical and quantum, on the level of an undergraduate
physical chemistry course; such acquaintance will be assumed here. The central
unifying concept used for the theoretical rationalization of isotope effects is the
molecular potential energy function. The potential energy function expresses the
electronic energy of the ground state of the molecular system of interest as a function
of the geometrical configuration of the atomic nuclei. On the one hand, as will be
shown later, the theoretical calculation of an isotope effect usually requires knowl-
edge of this function; conversely, on the other, the observation of an isotope effect
usually leads to some knowledge of this function. The potential energy function is
independent of isotopic substitution within the Born–Oppenheimer approximation,
it depends on the charges of the nuclei but not their masses. The potential energy
function is defined in terms of quantities referred to as force constants which are
independent of isotopic substitution. Clarification of these ideas requires an under-
standing of molecular quantum mechanics; in the sections below we will attempt to
present some of the basic concepts of molecular quantum mechanics without getting
bogged down in mathematical detail.

2.2 The Quantum Mechanical Schrödinger Equation
of the Molecule

In classical mechanics, the Hamiltonian function is the expression of the energy
of a molecular system in terms of the momenta of the particles in the system and
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the coordinates corresponding to these particles. The total energy is the sum of the
kinetic energies of all the particles in the system (the atomic nuclei and the electrons
which make up the molecule) and the potential energy. The nuclei are positively
charged while the electrons are negatively charged; the electronic potential energy
is evaluated by summing terms which correspond to Coulomb attraction between
particles of opposite charge and Coulomb repulsion between particles of like charge.
The Coulomb potential energy between two particles i and j with charges ci and cj

at inter-particle distance Rij is given by

Vij D cicj

Rij
(2.1)

where c is positive or negative depending on whether the particles are positively
or negatively charged. Thus, the Coulomb potential terms between electrons and
nuclei will be negative (lowering the energy, corresponding to attraction) while the
electron–electron terms and the nucleus–nucleus Coulomb terms will raise the en-
ergy and lead to repulsion. The kinetic energy of each particle j is expressed in terms
of the squares of its Cartesian momenta (pxj, pyj, pzj) divided by 2mj, where mj is
the particle mass.

Tj D 1

2mj

�
p2

xj C p2
yj C p2

zj

�
(2.2)

The Cartesian momenta can be expressed in terms of Cartesian velocities vxj, vyj,
vzj by the familiar relationship

pxj D mjvxj D mj Pxj (2.3)

where we have indicated that the velocity in the x direction vx is given by the time
derivative of x .Px/. The total Hamiltonian function for the molecular system in clas-
sical mechanics is then given by

H D TE C TN C V (2.4)

TE and TN refer respectively to the kinetic energy terms from all the electrons and
all of the nuclei, and V contains all the Coulomb terms.

The interest here is in the energy levels of molecular systems. It is well known
that an understanding of these energy levels requires quantum mechanics. The use of
quantum mechanics requires knowledge of the Hamiltonian operator Hop which, in
Cartesian coordinates, is easily derived from the classical Hamiltonian. Throughout
this chapter quantum mechanical operators will be denoted by subscript “op”. If the
classical Hamiltonian function H is written in terms of Cartesian momenta and of
interparticle distances appropriate for the system, then the rule for transforming H
to Hop is quite straightforward. Just replace each Cartesian momentum component

of particle j, pj, by
�
.�„=i/ @

@qj

�
where @

@qj
is a derivative with respect to Cartesian

coordinate qj, i equals
p�1, and „ is Plank’s constant divided by 2 . Thus the

kinetic energy of particle j is replaced by the operator Top;j
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Top;j D � „
2

2mj

 
@2

@x2
j

C @2

@y2
j

C @2

@z2
j

!
D � „

2

2mj

r2
j (2.5)

Here @2

@x2
j

is the second derivative with respect to the coordinate xj. The discussion

here is abbreviated and is intended to just to give a preliminary insight into the
quantum mechanics of molecules. Thus, Cartesian coordinates are introduced but
there is no discussion of molecule fixed coordinates and space fixed coordinates:
particle spin is not mentioned; there is no mention of interaction between rotation
and vibration; etc.

The classical potential energy term is just a sum of the Coulomb interaction terms
(Equation 2.1) that depend on the various inter-particle distances. The potential en-
ergy term in the quantum mechanical operator is exactly the same as in classical
mechanics. The operator Hop has now been obtained in terms of second derivatives
with respect to Cartesian coordinates and inter-particle distances. If one desires to
use other coordinates (e.g., spherical polar coordinates, elliptical coordinates, etc.),
a transformation presents no difficulties in principle. The solution of a differential
equation, known as the Schrödinger equation, gives the energy levels Emol of the
molecular system

Hop;mol ‰mol D Emol ‰mol (2.6)

and also the corresponding wave functions ‰mol. The eigenfunctions (wave func-
tions) can be employed to calculate electronic probability densities but further
discussion of this point lies outside our present interest. The rules of quantum me-
chanics instruct that one must solve Equation 2.6 subject to conditions that “‰mol is
well behaved” – the detailed collection of these conditions is referred to as the set of
boundary conditions. It is these boundary conditions that lead to the fact that many
of the energy levels of the molecular system are quantized, although there also exist
continua.

While details of the solution of the quantum mechanical eigenvalue problem for
specific molecules will not be explicitly considered in this book, we will introduce
various conventions that are used in making quantum calculations of molecular en-
ergy levels. It is important to note that knowledge of energy levels will make it
possible to calculate thermal properties of molecules using the methods of statisti-
cal mechanics (for examples, see Chapter 4). Within approximation procedures to
be discussed in later chapters, a similar statement applies to the rates of chemical
reactions.

2.3 The Separation of the Nuclear and Electronic Parts
of the Schrödinger Equation

Molecules which differ from each other only because one or more nuclei in one
molecule have been replaced by a different isotope of that nucleus are referred to
as isotopic isomers or isotopomers. Born and Oppenheimer (1927) were the first to
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formally demonstrate that to good approximation the quantum mechanical problem
of a stable molecule can be separated into two independent problems, one dealing
with the electronic motion within the molecule corresponding to fixed positions of
the nuclei, and the other dealing with the motion of the nuclei. The approximations
result from the need to introduce appropriate transformations to new coordinate sys-
tems and the omission of certain small terms which result from the transformations.
In the end that omission is justified because the electrons are much lighter in mass
than the nuclei. The electronic Schrödinger equation contains the kinetic energy op-
erators for the electrons as well as the various electrostatic potential energy terms
previously mentioned. These include the nuclear Coulomb repulsion terms which
are now constant at the fixed configuration of the nuclei. The electronic Schrödinger
equation can be written as

Hop;elec .S; ri/ D
�
Top;elec C V .S; ri/

�
§elec .S; ri/ D Eelec.S/§elec .S; ri/ (2.7)

In Equation 2.7 the collective coordinates defining nuclear geometry are designated
by S; ri stands for the coordinates of the electrons. Again, it must be confessed that
matters are being simplified here but this need not concern us; thus, the terms in
Top;elec above have the form of the terms for individual electrons in the molecular
Hamiltonian as given by Equation 2.5. In Equation 2.5, however, the electronic coor-
dinates are space fixed while in Equation 2.6 the electronic coordinates are molecule
fixed. Equation 2.7 is solved for fixed internuclear configuration S to obtain Eelec.S/.
One finds Eelec.S/ for a number of different configurations S, and it is this process
which is used to define the total electronic energy surface and thence the poten-
tial energy surface. Note that Equation 2.7 contains the nuclear charges through the
Coulomb potentials, but it does not include any reference to nuclear mass. Thus,
Eelec, the eigenvalue (energy) of the electronic Schrödinger equation is the same
for all isotopomers of a molecular system. This is an important result (Historical
Vignettes 2.1 and 2.2).

2.3.1 Solutions of the Electronic Schrödinger Equation
for Molecules

The electronic Schrödinger equation has solutions corresponding to the ground elec-
tronic state and numerous electronic excited states. The interest here will be only in
the ground electronic state. If one were discussing isotope effects in photochemical
reactions, then there might be an interest in excited electronic states. However, in
this book, unless a statement is made to the contrary, it is assumed that Eelec refers to
the electronic ground state. One seeks to find the minimum value of Eelec.S/ for the
electronic ground state as well as the second derivatives of Eelec.S/ with respect to
nuclear distortion from this minimum. The nuclear configuration corresponding to
this minimum energy will be referred to as the equilibrium internuclear configura-
tion of the stable molecule, S0. The second derivatives at S0 will be referred to as
force constants. The following section contains a brief discussion of methods used
to solve the electronic Schrödinger equation.
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[Historical Vignette 2.1] Max Born (1882–1970) served as a professor of theoretical physics in
several German universities prior to the 1930s where he became well known for his contribution to
the theory of the properties of crystals, quantum theory, and the statistical interpretation of quantum
mechanics. He was awarded the Nobel Prize in Physics for 1954. As were so many other Jewish–
German scientists, Born was forced to emigrate in 1933 and was invited to Cambridge, where he
taught for 3 years. In 1936 he was appointed Tait Professor of Natural Philosophy in Edinburgh,
where he worked until his retirement in 1953. (Photo credit www.wikipedia.org, public domain)

[Historical Vignette 2.2] J. Robert Oppenheimer(1904–1967) was an American theoretical
physicist best known for his role as director of the Manhattan project at Los Alamos, the World
War II effort to develop the first nuclear weapons. After study abroad in England and Germany
(with Born) he was appointed to the University of California, Berkeley where he is noted as be-
ing the chief founder of the American school of theoretical physics. Following WW II he was
director of The Institute for Advanced Study, Princeton, and served as an advisor to the United
States Atomic Energy Commission. He used that position to lobby for control of atomic en-
ergy and against the development of the H-bomb (“super”). This aroused the ire of many politicians
and scientists and his security clearance was revoked in 1954 at the end of a highly publicized
and politicized hearing. Oppenheimer’s controversial career has resulted in several thoughtful bi-
ographies. His role in the Manhattan project was musically dramatized in the opera “Dr. Atomic”
which premiered in 2005. (Photo credit www.wikipedia.org, public domain)



42 2 The Born–Oppenheimer Approximation

2.3.2 Nuclear Motion

The Schrödinger equation for nuclear motion contains a Hamiltonian operator
Hop;nuc consisting of the nuclear kinetic energy and a potential energy term which is
Eelec.S/ of Equation 2.7. Thus

Hop;nuc §nuc D
�
Top;nuc C Eelec.S/

�
§nuc D Emol§nuc (2.8)

Here, in the Born–Oppenheimer approximation, Emol is the molecular energy. Note
that Equation 2.8 is the nuclear Schrödinger equation with the energy eigenvalue
Emol being the molecular energy of Equation 2.6. Thus the energy Eelec.S/ is the
potential function for nuclear motion. As has already been emphasized, Eelec.S/ is
independent of isotopic substitution. This is the essence of the Born–Oppenheimer
approximation. The details of the mathematics of proceeding from Equation 2.1
through 2.8 require ignoring various terms which are small because the electronic
mass is much less than the nuclear masses in Equation 2.6, but also involves other
consequences of this mass difference; for instance the electronic wave function of
Equation 2.7 varies very slowly with respect to change in nuclear coordinates.

2.3.3 Corrections

Corrections to the Born–Oppenheimer approximation, which will not be explored
here in any detail, can be studied by perturbation theory. In first order perturba-
tion theory the neglected terms in the Hamiltonian are averaged over the particular
molecular state being considered and the concept of a given electronic state of the
molecule remains a valid concept. One is said to be “working” in the adiabatic ap-
proximation. If one proceeds to higher orders in the perturbation, the concept of a
given electronic state no longer remains valid (states are mixed); one is said to be
working in a non-adiabatic regime. For most isotope effect considerations, correc-
tions to the Born–Oppenheimer approximation are ignored and such procedure is
adequate. Where corrections to the Born–Oppenheimer approximation have been
considered, the process is usually carried out by first order perturbation theory in
the adiabatic approximation.

2.3.4 Substituent Effects, Isotope Effects, and the First Law
of Isotopics

Substituent effects occur when one substituent in a molecule is substituted by an-
other (e.g. replacing a Cl atom in CH3Cl by a Br atom). Studies of the changes in
the physical properties (both equilibrium and dynamical) of that molecule resulting
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from this substituent effect have been very useful tools for chemists for many years.
Such work was pioneered by L.P. Hammet and subsequently expanded by R. W.
Taft and others (see reading list). While Hammett and his successors did not actu-
ally study isotope effects (e.g. replacing H by D in a molecule), an isotope effect is
a special type of substituent effect. The fact that the two isotopomers have the same
potential energy curve for nuclear motion to good approximation means, on the one
hand, that isotope effects are theoretically accessible if one knows the potential en-
ergy curve, while, on the other hand, if one does not know the potential curve, the
isotope effect can be used to “probe” the potential curve. The Born–Oppenheimer
isotope independent potential energy curve is central to most discussions of isotope
effects and has sometimes been referred to as the First Law of Isotopics.

2.3.5 Separation of Internal and External Degrees of Freedom

Equation 2.8 can be further simplified. The motion of the molecular center of mass
could have been rigorously separated from Equation 2.6, to get a Schrödinger equa-
tion for the center of mass and a separate equation for the other degrees of freedom
of the molecule. In the approach here, the center of the mass is separated from Equa-
tion 2.8 rigorously. Subsequently one typically uses the rigid rotor approximation to
separate the rotational motion of a rigid rotor (a non-vibrating rotor) from the motion
of the vibrating molecule. The latter separation requires omitting terms correspond-
ing to rotation–vibration interaction. By this process Equation 2.8 is replaced by
three equations:

Hop;trans §trans D Top;trans §trans D Etrans§trans (2.9)

Hop;rot §trans D Top;rot §rot D Erot§rot (2.10)

Hop;vib §vib D
�
Top;vib C Eelec.S/

�
§vib D Evib§vib (2.11)

Equation 2.11 explicitly indicates that the zero of (vibrational) energy corresponds
to the electronic energy of the equilibrium configuration of the relevant electronic
state. In the above, it has been assumed that there is no potential function acting on
the translational motion; in practice one often assumes that the molecule is in a box.
Then, the energy levels and wave functions of Equation 2.9 correspond to the parti-
cle in the box problem treated in most courses on elementary quantum mechanics. In
the absence of rotational vibrational interaction, the rotational motion Hamiltonian
operator and consequently the rotational energy correspond to the kinetic energy of
rotation. The potential function for vibration is the isotope independent electronic
energy of Equation 2.8, Eelec.S/. The solution of Equation 2.11 provides theoretical
values of vibrational energy levels which may be studied in the laboratory using
infrared and Raman spectroscopies. The solution of this equation and the isotope
effects on the vibrational energy levels, which can be observed experimentally, will
be the subject of Chapter 3.
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The molecular wave function ‰mol can then be written as a product of the four
wave functions of Equations 2.8 through 2.11 while the total energy Emol can be
expressed as a sum of four energy terms.

 mol D  elec trans rot vib (2.12a)

Emol D Etrans C Erot C Evib C E .S0/ (2.12b)

Here it has been recognized that the vibrational Schrödinger equation includes a
potential with its minimum corresponding to the minimum in the electronic energy
of the state being considered. Evib corresponds to the vibrational energy referenced
to this minimum.

2.4 The Adiabatic Correction

A detailed discussion of the theoretical evaluation of the adiabatic correction for a
molecular system is beyond the scope of this book. The full development involves,
among other matters, the investigation of the action of the kinetic energy operators
for the nuclei (which involve inverse nuclear masses) on the electronic wave func-
tion. Such terms are completely ignored in the Born–Oppenheimer approximation.
In order to go beyond the Born–Oppenheimer approximation as a first step one can
expand the molecular wave function in terms of a set of Born–Oppenheimer states
(designated as  �

elec .S; ri//

‰mol D
X

�

F� .S/ �
elec .S; ri/ (2.13)

Thus, when one considers the corrected Born–Oppenheimer (BO) approximation,
one can no longer speak about being in a single BO electronic state. This kind of
BO state mixing clearly occurs when the system jumps from one electronic state
to another (usually as a result of “curve crossing”). Also such state mixing often
occurs when an excited electronic state of a molecule decays by a non-radiative
process. Ordinarily, one need not consider such mixing of electronic states unless
the states are close lying in energy. In such a situation, one can make a first order
correction to the Born–Oppenheimer approximation by averaging the terms in the
BO electronic Hamiltonian operator over the electronic wave function and replacing
Equation 2.8 by

�
Top;vib C Eelec.S/C C.S/

�
§vib D Evib§vib.S/ (2.14)

where C(S) is the averaged perturbation. C(S) may depend on nuclear mass and
is often referred to as the adiabatic correction. Generally C(S) does depend on nu-
clear configuration and will therefore affect the vibrational energy levels. In practice
(see further reading at the end of the chapter) this effect is neglected here and C is
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evaluated only at the equilibrium nuclear configuration of the stable molecule. In
that case it reduces to an isotopic mass dependent constant to be added to the zero
of vibrational energy.

The important fact that must be remembered is that in the Born–Oppenheimer
approximation, Equation 2.8, the potential energy for vibrational motion is Eelec(S)
which is independent of isotopic mass of the atoms. In the adiabatic approximation,
the potential energy function is Eelec.S/CC and this potential will depend on nuclear
mass if C depends on nuclear mass.

2.4.1 An Example

In the context of Section 2.4, consider a chemical equilibrium in the gas phase

A.g/C B.g/ D C.g/C D.g/ (2.15)

With the temperature sufficiently low so that all the molecules can be considered
to be in their respective ground electronic states, the usual situation, the methods
of statistical mechanics which will be explored in Chapter 4 then enable one to cal-
culate the numerical value of the equilibrium constant K for this reaction from a
knowledge of the molecular energy levels which are thermally accessible. With the
assumption that all the molecules are in their respective ground electronic states, the
relevant energy levels are then the respective rotational–vibrational energy levels.
Within the BO approximation, it is customary to measure these energy levels with
respect to the electronic energy Eelec in the equilibrium internuclear configuration.
For the usual chemical equilibrium, the main contribution to the chemical equilib-
rium arises from �Eelec; the electronic energy difference between the sums of the
electronic energies of the products and the reactants, and is given by

Kelec D exp.��Eelec=kT/ (2.16)

where k is Boltzmann’s constant and T is the absolute temperature. Given that ro-
tational and vibrational energy spacings tend to be quite small compared to the
electronic energy differences between different molecules, it is quite usual that Kelec

by itself determines whether an equilibrium constant is large or small. The exception
to this rule is an isotopic exchange equilibrium. For example,

H2OC HD D HDOC H2 (2.17)

since �Eelec is identically equal to zero; Eelec in the BO approximation is the same
for each isotopomer in each pair .H2O;HDO/ and .H2;HD/ If one now includes
the contribution of the adiabatic correction to the BO approximation, then
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In each case the uncorrected potential lies to the left, the corrected to the right

H2 HDLowest vibrational level

Born Oppenheimer
 Energy Zero

Adiabatic correction for H2, C(H2) ; For HD, C(HD)

The adiabatic correction to the Born Oppenheimer approximation 
for H2 and HD: Schematic, Not to Scale: ΔC = C(H2) - C(HD)

Fig. 2.1 The adiabatic correction to the Born–Oppenheimer approximation for H2 and HD:
schematic, not to scale: �C D C.H2/–C.HD/. In each case the uncorrected potential lies to the
left, the corrected to the right

Kelec D exp.�.C.HDO/C C.H2/� C.H2O/� C.HD//=kT/ (2.18)

D exp.C�C.HDO/ ��C.HD//=kT (2.19)

D exp.���C=kT/ (2.20)

The Kelec value for an isotopic exchange reaction resulting from a failure of the
Born–Oppenheimer approximation is sometimes referred to as KBOELE: With the
notation employed above��C is the value of �Eelec for the reaction (see Fig. 2.1).

In Chapter 4 we will learn to calculate the equilibrium constant for an exchange
reaction like Equation 2.15 using the Born–Oppenheimer approximation. If, in ad-
dition, the adiabatic correction is included, the equilibrium constant calculated in
the Born–Oppenheimer approximation must be multiplied by a correction factor
containing the energy difference��C.

The nuclear mass dependence of C values has the form

C D
X

i

bi

mi
(2.21)

where the sum is over the atoms in the relevant molecule, mi is the nuclear mass
of the isotope i, and bi is a mass independent constant for each particular nucleus
(element) in the molecule or separated atom of interest. Thus bH .H2/, bH.LiH/
and bH .H�/ are all different (see Table 2.1), but bH .H2/ D bH.HD/ D bH .D2/,
bH.LiH/ D bH.LiD/, etc. Table 2.1 lists C values and corresponding b values taken
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Fig. 2.2 ln
�
KEQ

�
for the isotope exchange reaction, equation 2.15 plotted vs. 1,000/T: (lighter

solid line, uppermost line)KEQ calculated within the BO approximation; ( , heavier solid middle
line) KEQ calculated including adiabatic correction using equation 2.17; points are taken from a
least squares fit to experimental values for the temperature range .280 < T=K < 475/ (Modified
with permission from Bardo, R. D. and Wolfsberg, M., J. Phys. Chem. 80, 1068, (1976)).

from the literature. A few diatomic and atomic values are given as well as a single
polyatomic value (H2O) which may be the only such value available. Using the data
in Table 2.1 one obtains ��C D 3:8 cm�1 for reaction 2.17. This corresponds to
KBOELE D exp.�3:8hc=.kT// D exp.�5:5=T/ and amounts to a 2% correction to
the Born–Oppenheimer isotopic equilibrium constant at room temperature. This is
not a large effect but it so happens that there are very accurate experimental mea-
surements of this particular isotopic gas phase equilibrium constant while at the
same time the energy levels of all the molecules involved in this exchange reaction
are quite well known. The comparison of the experimental measurement of this iso-
topic exchange equilibrium constant and the theoretically calculated value with and
without the KBOELE correction is shown in Fig. 2.2; the result is gratifying.

2.4.2 Adiabatic BO Corrections for Hydrogenic Atoms

To give the reader some further appreciation of the adiabatic correction, we next
discuss the so-called Rydberg correction of the hydrogenic atom. The kinetic energy
of the electron in the hydrogen atom is expressed by Equation 2.5, where mj is set
equal to the electron mass, me: It is well known that the Schrödinger equation for
the hydrogen atom separates into two equations, one of which deals with the motion
of the center of mass of the system and the other with the motion of the electron
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with respect to the proton. The latter is the well-known equation:

�
� „

2

2	
r2 � e

2

r

�
 D E (2.22)

where r is the distance from the proton to the electron. Here � is the electron/proton
reduced mass

	 D meM

me CM
(2.23)

with M the mass of the proton and me the electronic mass. The eigenfunctions of
Equation 2.22 are well known. The energy level formulae contain the Rydberg con-
stant which leads to the appearance of a factor � in the numerator. There are two
Rydberg constants R1 and RM, the first of which corresponds to replacing � by
me(equivalent to setting me/M equal to 1=1 or 0) and the second to using the actual
value of M. Substituting Equation 2.23 into Equation 2.22, one obtains

�
� „

2

2me

r2
i �

e2

r
� „

2

2M
r2

i

�
§ D E§ (2.24)

Both Equations 2.22 and 2.24 are exact Schrödinger equations for the coordinate r
in the hydrogen atom. The attraction of Equation 2.24 is that it contains a kinetic
energy term that involves only the mass of the electron and not the mass of the nu-
cleus. In molecular calculations on electronic motion, one conventionally (usually)
expresses the kinetic energy of electrons in the form given by the first term on the
left hand side in Equation 2.24. Terms involving nuclear mass (i.e. the third term) are
treated by perturbation theory. The first term on the left hand side of Equation 2.24
is just the kinetic energy of an electron of mass me. The third term on the left is a
kinetic energy term which contains the nuclear mass M, and which would vanish
for infinite nuclear mass. With M set infinite, Equation 2.24 is the hydrogen atom
equation equivalent to Equation 2.14 for the molecular electronic Schrödinger equa-
tion. In Equation 2.14 the standard assumption of infinite nuclear mass (compared
to electronic mass) was introduced at the outset,

�
� „

2

2m e
r2

i �
e2

r

�
§ D E§ (2.25)

The electronic energy of the ground (ls) state of the hydrogen atom corresponding
to infinite nuclear mass is given by

E1s D �R1 (2.26)

Equation 2.24 can be thought of as having been derived from Equation 2.25 by
adding the third term on the left hand side of Equation 2.24 as a perturbation. In first
order quantum mechanical perturbation theory (see any introductory quantum text),
the perturbation on the ground state of Equation 2.25 is obtained by averaging the
perturbation over the ground state wave function of Equation 2.25. The effect of this
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perturbation on the energy levels of Equation 2.25 is found by evaluating the value
of the perturbation term averaged over the wave functions of the unperturbed prob-
lem. It is well known that the average kinetic energy of the electron in the ground
state of the hydrogen atom (see any introductory quantum text) corresponding to
Equation 2.25 is given by

��
� „

2

2me

r2
i

�
 

	
D R1 (2.27)

so that ˝r2
i  
˛ D �2me

„2
R1 (2.28)

Note the usual quantum mechanical notation of using brackets .<X>/ to indicate
an average of X. Therefore, the average value (averaged over the ground state of the
hydrogen atom, Equation 2.25) of the third term on the left of Equation 2.24, which
is the “adiabatic correction” C for the hydrogen atom is given by

C .H/ D
��
� „

2

2M
r2

i

�
 

	
D me

M
R1 (2.29)

The meaning of adiabatic correction is that the addition of C to the ground state
energy calculated with R1 should yield a value equal to (close to) the exact ground
state energy of the hydrogen atom

E1s D �R1 C C D �R1 C .me=M/R1 (2.30)

It is well known that the exact value of the energy of the ground state of the H atom is

E1s D �RM (2.31)

where M refers to the mass of the proton. From the definition of RM and R1

RM=� D R1=me

And therefore

RM D .m=me/R1 D ŒM=.MCme/
R1 D Œ1 � .me=M/C K
R1 (2.32)

where the higher order terms in me=M are collected in the correction term K. Com-
parison of Equations 2.30 and 2.32 shows that the adiabatic correction “works”
through terms first order in me=M.

With M the mass of the hydrogenic nucleus (proton), the atomic C value in
Table 2.1 does have exactly the mass dependence given by Equation 2.18. There
is no approximation in the quantum mechanical solution for the hydrogenic atom.
The C and �C values (Table 2.1) for H and D are accurate (except for higher or-
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Table 2.1 Adiabatic corrections
�
cm�1

�
for H–D and Mu–H isotope ef-

fects (Bardo,R. D., Kleinman, L. I., Raczkowski, A. W. and Wolfsberg, M.,
J. Chem. Phys. 69, 1106, 1978)

Molecule C(HX) C(DX) �C.H–D/1 bH.cm�1 amu/ �C.Mu–H/2

H2 114.6 86.0 28.6 57.7 452
LiH 198.3 163.8 34.5 69.6 544
H� 67.0 33.5 33.5 67.5 528
H 59.8 29.9 29.9 60.2 471
HC 0 0 0 0 0
H2O – – 24:83 50.0 –
1�C.H–D/D C.HX/� C.DX/; mH D 1:00728 amu, mD D 2:01345 amu.
2�C.Mu–H/ D C.MuX/ � C.HX/; mMu D 0:11343 amu. Mu represents
muonium (Section 2.4.3).
3Bardo, R. D. and Wolfsberg, M., J. Phys. Chem. 80, 1068 (1976). The value
is that for C .H2O/� C.HDO/.

der perturbations). Accurate C and b values from the work of Bardo et al. for H2,
LiH, H, H�, HC and H2O are given in Table 2.1. From this table, one can calcu-
late ��C values for corresponding H/D isotopic exchange reactions and KBOELE

values, correction factors for the equilibrium calculated from statistical mechanics
in the Born–Oppenheimer approximation. Omitting the HC system from consider-
ation, the largest magnitude ��C value from Table 2.1 is 5:9 cm�1, which gives
rise to a KBOELE value in the room temperature region that differs from unity by
less than 3%. For heavy atom isotope effects (atoms heavier than hydrogen) KBOELE

differs negligibly from unity at room temperature. Thus, for equilibria involving
14N=15N and 6Li=7Li, the difference is less than 0.001 (0.1%). In the one case
(Equation 2.15) for hydrogen isotope exchange where accurate experimental data
are available at room temperature, and where very accurate statistical mechanical
values of the equilibrium constant have been calculated, the deviation of KBOELE

from unity at 300 K is less than 2%. Even so its application visibly improved the
agreement between theory and experiment. See Chapter 4.

2.4.3 Muonium (Mu)

Mu is a very light and unstable
�
t1=2 .half live/ D 2�s

�
isotope of hydrogen con-

sisting of a nucleus which is a positive muon
�
�C
�

and an electron. The nuclear
mass of Mu is 0.113 amu. For this isotope one would expect much larger KBOELE

values than those discussed above.

�C .Mu;H/=�C.H;D/ D �
m�1

Mu �m�1
H

�ı �
m�1

H �m�1
D

� D 15:77 (2.33)

The �C values for muonium hydrogen isotope effects are listed in Table 2.1. The
��C value obtained for LiH, H2 isotopic exchange involving Mu–H is 92 cm�1,



2.5 Numerical Calculations of Eelec.S/ 51

leading to KBOELE differing from unity by 0.4 at room temperature. Clearly one
cannot ignore KBOELE effects in considering the thermodynamics of reactions in-
volving Mu.

2.5 Numerical Calculations of Eelec.S/

2.5.1 Historical Development

The ground state electronic energy of the system on the right hand side of Equation
2.7 is the isotope independent potential energy for nuclear motion (in particular the
molecular vibrations) in Equation 2.11. Within the Born–Oppenheimer approxima-
tion all isotope effects result from the motion of different isotopic masses on this
potential energy surface. In the following we show how one can calculate isotope
effects on thermodynamic properties of a molecular system from a knowledge of
this surface, in particular from a knowledge of the position of the minimum of the
ground state electronic energy surface, together with the second derivatives which
describe the distortions of the atoms (really the nuclei) from their respective posi-
tions at the so-called equilibrium geometry.

The first electronic Schrödinger equation to be solved was that for the hydrogen
atom, a proton and a single electron. This problem was solved exactly and led to the
well known ground state wave function which is now described as a 1s atomic or-
bital, and excited states 2p, 3s, 3p, etc. Already, at the next level of difficulty, the two
electron problem could not be solved exactly but highly accurate approximate solu-
tions usually based on the variational principal of quantum mechanics soon became
available. Most of these were “take-offs” on the solutions for the ground state and
excited state quantum mechanical solutions to the hydrogen atom problem. Thus the
helium atom was described as .1s/2, lithium as .1s/2 .2s/1, etc. A number of refine-
ments were introduced including electron spin and the exclusion principle. The idea
that each electron moves in the electric field of the nucleus and in the field created
by all the other electrons led to Hartree–Fock calculations which yield the atomic
orbitals of the polyelectron atom and the energy of the atomic system.

The first calculations on a two-electron bond was undertaken by Heitler and
London for the H2 molecule and led to what is known as the valence bond approach.
While the valence bond approach gained general acceptance in the chemical com-
munity, Robert S. Mulliken and others developed the molecular orbital approach
for solving the electronic structure problem for molecules. The molecular orbital
approach for molecules is the analogue of the atomic orbital approach for atoms.
Each electron is subject to the electric field created by the nuclei plus that of the
other electrons. Thus, one was led to a Hartree–Fock approach for molecules just as
one had been for atoms. The molecular orbitals were written as linear combinations
of atomic orbitals (i.e. hydrogen atom type atomic orbitals). The integrals that
needed to be calculated presented great difficulty and the computations needed were
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very labor intensive. In the early 1950s, S.F. Boys in Cambridge, UK proposed the
replacement of hydrogenic atomic orbitals (which behave like exp(�Zr)) by Gaus-
sian type orbitals (which behave like exp

��’r2
�
, where r is the distance of the

electron from a nucleus and Z and ’ are constants. This suggestion removed the
difficulties in evaluating the integrals but at the same time it made the computation
even more laborious. Then came large digital computers that were able to perform
the computational labor! By the mid 1960s, John Pople and his colleagues were cre-
ating the Gaussian computer programs that enabled electronic structure calculations
on chemically interesting molecules. Various versions of this program have become
commercially available (Frisch et al. (2004)). The present version is labeled g09.

The original computer programs were used for carrying out Hartree–Fock cal-
culations. Hartree–Fock calculations are still standard today. However, just as for
atoms, Hartree–Fock calculations were not sufficient for very accurate calculations.
Thus for the helium atom, .1s/2 is a fair representation for the ground state; for bet-
ter descriptions of ground states one has to mix in other configurations, .1s/2.2s/1,
.2s/2, .2p/2, etc. This is known as configuration interaction. Configuration interac-
tion is a method for taking proper account of the “correlation” between the electrons.
Among the methods that take correlation into account are ones with acronyms like
MP and CI.

2.5.2 Present Day Approaches

The methods described above are still in use today. However, in the 1970s Walter
Kohn proposed an entirely different approach for solving both the atomic and the
molecular problems. This new approach is known as density functional theory
(DFT). The electronic wavefunction‰elec that appears in the electronic Schrödinger
equation is a function of the positions of all of the electrons. The electronic density is
a function that indicates where the electronic charge in the molecule is located with
respect to the various atomic nuclei. The Born–Oppenheimer approximation applies
to the electronic density function just as it does to wavefunctions based quantum
mechanics. Again, note that the electronic Schrödinger equation yields Eelec.S/, the
electronic energy at given geometrical configurations S of the nuclei, which is the
isotope independent potential function for vibrational motion. The Kohn Hohenberg
Theorem states that the solution of this problem depends only on the electron den-
sity. However, the theorem does not tell one how to calculate the energy from the
electron density. Thus, the “fly in the ointment”, as far as DFT is concerned, is that
we don’t know the functional, that is at least we don’t know the exact functional.
However, approximate functionals have been developed which work quite well. The
fact that the exact functional is not known means that DFT is not fully an “a priori
theory”. A discussion of functionals is beyond the scope of this book. In our ex-
perience and that of a large chemistry community, the functional known as B3LYP
“works quite well” and is adequate for our purpose; we use it. Thus, while we refer
to ordinary electronic structure calculations as HF (Hartree–Fock) or as MP2 and
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CI (types of calculations with correlation), we refer to DFT calculations as B3LYP.
For a more complete discussion of functions, functionals, and DFT see any recent
text on quantum chemistry (e.g., Levine, reading list).

The molecular orbitals in ordinary Gaussian calculations are expanded in terms
of Gaussian types of atomic orbitals, which are referred to as basis functions. These
Gaussian orbitals are available for most atoms in the periodic table and are de-
scribed in the manuals that are available for the various types of electronic structure
programs now in wide use, among them g03. Larger sets of basis functions tend to
yield better results for Eelec.S/. DFT calculations do not employ molecular orbitals;
they do use Kohn–Sham orbitals, which in many ways are similar to molecular
orbitals. The mathematics of determining the Kohn–Sham orbitals turns out to be
similar to the mathematics of constructing molecular orbitals from Hartree–Fock
calculations. In fact, once a computer program has been constructed to carry out
Hartree–Fock calculations, that program can also be used to find the Kohn–Sham
orbitals and the electron density which can be evaluated from these orbitals. Thus,
both ordinary molecular orbital calculations and DFT calculations require the com-
pletion of a Hartree–Fock calculation. If one wants to go beyond Hartree–Fock to
include correlation (say MP2 or CI), then one has to do a great deal of additional
computation. If one is doing DFT, the calculation is almost complete at the Hartree–
Fock level. Thus, the advantage of DFT is that it includes electron-correlation in a
calculation which costs (in computer time) only about as much as a Hartree–Fock
calculation. MP2 and CI (and other types of calculation including electron correla-
tion) are much more expensive. As noted, the basis sets are discussed in the relevant
computer program manuals. The basis sets are the same in both types of calcula-
tions. Larger basis sets tend to have longer names and should give better results.
The basis sets used in this book include ST0-3G (very minimal), 6–31G, 6–311G,
6–311��G. These are the so called Pople type basis sets. Other computer programs
often refer to available basis sets in terms of g03 calculations.
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Chapter 3
Molecular Vibrations

Abstract The theory of molecular vibrations of molecular systems, particularly in
the harmonic approximation, is outlined. Application to the calculation of isotope
effects on equilibrium and kinetics is discussed.

3.1 Introduction

The most isotope sensitive motions in molecules are the vibrations, and many
thermodynamic and kinetic isotope effects are determined by isotope effects on
vibrational frequencies. For that reason it is essential that we have a thorough un-
derstanding of the vibrational properties of molecules and their isotope dependence.
To that purpose Sections 3.1.1, 3.1.2 and 3.2 present the essentials required for cal-
culations of vibrational frequencies, isotope effects on vibrational frequencies (and
by implication calculation of isotope effects on thermodynamic and kinetic prop-
erties). Sections 3.3 and 3.4, and Appendices 3.A1 and 3.A2 treat the polyatomic
vibrational problem in more detail. Students interested primarily in the results of
vibrational calculations, and not in the details by which those results have been ob-
tained, are advised to give these sections “the once-over lightly”.

3.1.1 Vibrations in Diatomic Molecules

Consider a stable diatomic molecule with nuclei denoted as A and B. The Born–
Oppenheimer potential V for such a molecule will depend on the internuclear
distance rAB and will typically have the form shown in Fig. 3.1. The potential en-
ergy has a minimum at r0, which is often referred to as the equilibrium internuclear
distance. As the distance rAB increases, the potential V increases and finally reaches
a limiting value where the molecule is now better described as two separated atoms
(or depending on the electronic state of the system, two separated atomic species
one or both of which may be ions). The difference in energy between the two
separated atoms and the minimum of the potential is the dissociation energy De

of the molecule. As the internuclear distance of the diatomic molecule is decreased

M. Wolfsberg et al., Isotope Effects: in the Chemical, Geological, and Bio Sciences,
DOI 10.1007/978-90-481-2265-3 3, c� Springer Science+Business Media B.V. 2009
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Fig. 3.1 Born–Oppenheimer vibrational potentials for a diatomic molecule corresponding to the
CH fragment. The experimentally realistic anharmonic potential (solid line) is accurately described

by the Morse function VMORSE D DeŒ1 � exp.a.r � r0/
2 with De D 397 kJ/mol, a D 2Å
�1

and r0 D 1:086 Å (Å D Angstrom D 10�10m). Near the origin the BO potential is adequately
approximated by the harmonic oscillator (Hooke’s Law) function (dashed line), VHARM OSC D
f.r� r0/2=2. The harmonic oscillator force constant f D 2a2De

from the equilibrium internuclear distance, the potential rises at an ever increasing
rate and tends to infinity as the internuclear distance tends toward zero.

At r0, the first derivative of the potential energy with respect to rAB vanishes (the
potential is at a minimum) The second derivative of the potential with respect to
distance is the first non-vanishing derivative and is referred to as a force constant,
designated here as f. If one replaces the potential of Fig. 3.1 by a curve with a min-
imum at r0, a second derivative equal to f, and no higher derivatives, i.e. if one
replaces the Born–Oppenheimer potential by the parabola

V D 1

2
f.r � r0/2 (3.1)

one is then working in the harmonic approximation. Equation 3.1 is also known as
Hooke’s Law. For stable molecules at room temperature and below the harmonic
approximation is usually appropriate. The harmonic potential, Equation 3.1, is de-
picted in Fig. 3.1 as a dashed curve, labeled Vharmonic. Much of the discussion in
this chapter will be carried out in the harmonic approximation. It was noted in the
previous chapter that the Born–Oppenheimer potential is independent of isotopic
substitution. Consequently in the harmonic approximation the force constant of var-
ious isotopic isomers of a given molecule are all the same, for example in the case
of HCl, f.H35Cl/ D f.H37Cl/ D f.D35Cl/ D f.D37Cl/.

As pointed out in Chapter 2, nuclear motion takes place on the Born–
Oppenheimer potential surface. The motion of the center of mass (corresponding to
translation) rigorously separates from the other motions of the atoms. Translational
motion may be subject to a potential corresponding to the fact that the molecule
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may move within an enclosure (a “bottle”).To good approximation, one can usu-
ally consider rotation to be independent of vibration although evidence of some
rotational–vibrational interaction is found in rotational spectroscopy.

Consider now the vibration of the AB diatomic molecule. The potential energy
of vibration depends on the displacement of the diatomic molecule internuclear dis-
tance from its equilibrium value, S D r–re. The kinetic energy involves the velocity
(time derivative), PS D d.r–re/=dt, and is given by

T D1
2
	 PS2 (3.2)

where � is the reduced mass of the diatomic molecule

	 D mAmB

mA CmB
(3.3)

It is mentioned in passing that the proper masses mA and mB to be used in
Equation 3.3 are the atomic masses (nucleusC electrons) rather than the respective
nuclear masses as might be expected from a strict Born–Oppenheimer approxima-
tion. For further discussion of this point, reference should be made to the reading
lists at the end of this chapter and of Chapter 2. The combination of Equations 3.1
and 3.2 corresponds to a classical harmonic oscillator with force constant f and
mass �. The harmonic oscillator frequency � is given by the well-known formula

� D 1

2�

s
f

	
(3.4)

The motion in the classical domain corresponds to a harmonic oscillator of fre-
quency �, with the displacement from equilibrium varying sinusoidally with time.
The transcription of this problem into quantum mechanics is simple and straightfor-
ward; it is a standard problem in introductory quantum mechanics texts. The energy
levels of the quantum system are given by

En D
�

nC 1

2

�
h� n D 0; 1; 2; : : : (3.5)

where � is the classical frequency, and n is a quantum number with the ground
or bottom-most state corresponding to n D 0. The ground state energy, 1

2
h�, re-

ferred to as the zero-point energy, corresponds to an energy greater than that of
the non-oscillating classical system .E..r�re/D0/ D 0/. The solution of the classical
mechanical problem yields harmonic motion with frequency � and transcription to
quantum mechanics gives rise to quantized energy levels which depend on the clas-
sical vibrational frequency. Thus, the solution of the classical problem includes the
vibrational frequency, which is needed in the formula for the quantum energy levels.
This conclusion carries over to the vibrational problem of polyatomic molecules in
the harmonic approximation. As will be seen shortly, the solution of the general
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non-linear N-atomic harmonic molecule gives rise to 3N � 6 normal mode har-
monic frequencies. For this general molecule, the determination of these classical
frequencies requires more mathematical manipulation than it does for the diatomic
harmonic oscillator. However, once the classical system is solved, the transcription
to quantum mechanics requires only the understanding that there are quantum en-
ergy levels for each of the normal modes of vibration with corresponding normal
mode frequencies �i and quantum numbers ni corresponding to each of the normal
modes. Thus, the problem that requires some mathematical sophistication (namely
finding the normal mode frequencies �i/ is a purely classical problem. The quanti-
zation of the energy levels requires little or no further effort.

Obviously, there is an isotope effect on the vibrational frequency �i. For het-
eroatomic molecules (e.g. HCl and DCl), infrared spectroscopy permits the exper-
imental observation of the molecular frequencies for two isotopomers. What does
one learn from the experimental observation of the diatomic molecule frequencies
of HCl and DCl? To the extent that the theoretical consequences of the Born–
Oppenheimer Approximation have been correctly developed here, one can deduce
the diatomic molecule force constant f from either observation and the force con-
stant will be independent of whether HCl or DCl was employed and, for that matter,
which isotope of chlorine corresponded to the measurement as long as the masses
of the relevant isotopes are known. Thus, from the point of view of isotope effects,
the study of vibrational frequencies of isotopic isomers of diatomic molecules is a
study involving the confirmation of the Born–Oppenheimer Approximation.

3.1.2 Extension to Polyatomics

3.1.2.1 Degrees of Freedom

The situation described above for diatomics is different for polyatomic molecules.
Proper description of the motion of each atom in a molecule requires the use of
three degrees of freedom (for example the x, y, and z Cartesian coordinates), so for
the N-atomic molecule a total of 3N degrees of freedom corresponding to nuclear
(atomic) motion are required. Three of these degrees of freedom correspond to the
x, y, and z translations of the center of mass. For a non-linear molecule, there are
three degrees of freedom that correspond to the rotation of the molecule; for a linear
molecule there are only two. The remaining degrees of freedom, 3N � 6 (f3N � 5g
for a linear molecule), correspond to molecular vibrations. Thus, the triatomic water
molecule has three translational, three rotational, and three vibrational degrees of
freedom.

3.1.2.2 Coordinate Systems

While it is possible to solve the vibrational problem using any one of a number
of coordinate systems (Cartesian coordinates, spherical polar coordinates, valence
coordinates, etc.), it is often most convenient to employ some type of valence
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coordinate system. In this approach one chooses a set of 3N � 6 (3N � 5 for lin-
ear molecules) independent (orthogonal) displacement coordinates to describe the
motions of the various atoms in the molecule. These, for example, might be bond
extensions, angle distortions, torsional motions, etc. In any case the physical prob-
lem must be independent of the (always arbitrary) choice of coordinates used to
describe that problem. It is possible, although not always convenient to transform
the problem from one coordinate system to another, the mathematical details are
described in introductory texts on molecular spectroscopy (see the reading list at the
end of this chapter).

For a simple molecule like water the choice of valence coordinates is straight-
forward. For water three valence displacement coordinates are required: �r1 the
displacement of one of the O–H bond distances from its equilibrium value, �r2 the
corresponding displacement of the other bond length, and �’ the displacement of
the bond angle bend from its equilibrium value. These three coordinates are inde-
pendent and one can discuss the three vibrational degrees of freedom of the water
molecule in terms of these three coordinates (vide infra). The harmonic potential
function is a quadratic expression in terms of these displacements (as in the case of
the diatomic molecule) but, unlike the case of a diatomic molecule, there are inter-
action force constants, frr0 and fr’, which couple the two stretching motions and the
stretches and the bends, in addition to the pure stretching and bending force con-
stants, frr and f’’,. Thus, the Born–Oppenheimer potential function for the water
molecule in the harmonic approximation has the form

VD 1
2

frr..� r1/
2C.� r2/

2/C1
2

f˛˛.�˛/
2Cfrr0.� r1� r2/Cfr˛.� r1�˛C� r2�˛/

(3.6)

It will be noted that the force constants reflect the symmetry of the water molecule
in its equilibrium configuration with two equal equilibrium O–H distances.

3.1.2.3 Vibrations of Water Isotopomers

How one obtains the three normal mode vibrational frequencies of the water
molecule corresponding to the three vibrational degrees of freedom of the wa-
ter molecule will be the subject of the following section. The H2O molecule has
three normal vibrational frequencies which can be determined by vibrational spec-
troscopy. There are four force constants in the harmonic force field that are not
known (see Equation 3.6). The values of four force constants cannot be determined
from three observed frequencies. One needs additional information about the poten-
tial function in order to determine all four force constants. Here comes one of the
first applications of isotope effects. If one has frequencies for both H2O and D2O,
one knows that these frequencies result from different atomic masses vibrating on
the same potential function within the Born–Oppenheimer approximation. Thus, we
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now have six frequencies and still only four force constants. Here the isotope effect
is a tool for obtaining information about the isotope independent force fields on
which isotopomers vibrate.

3.1.3 Remarks

The vibrational frequencies of isotopic isotopomers obey certain combining rules
(such as the Teller–Redlich product rule which states that the ratio of the products
of the frequencies of two isotopic isotopomers depends only on molecular geome-
try and atomic masses). As a consequence not all of the 2.3N � 6/ normal mode
frequencies in a given isotopomer pair provide independent information. Even for
a simple case like water with only three frequencies and four force constants, it is
better to know the frequencies for three or more isotopic isotopomers in order to
deduce values of the harmonic force constants. One of the difficulties is that the ex-
act normal mode (harmonic) frequencies need to be determined from spectroscopic
information and this process involves some uncertainty. Thus, in the end, there is no
isotope independent force field that leads to perfect agreement with experimental re-
sults. One looks for a best fit of all the data. At the end of this chapter reference will
be made to the extensive literature on the use of vibrational isotope effects to deduce
isotope independent harmonic force constants from spectroscopic measurements.

It is important to point out here, in an early chapter, that the Born–Oppenheimer
approximation leads to several of the major applications of isotope effect theory.
For example the measurement of isotope effects on vapor pressures of isotopomers
leads to an understanding of the differences in the isotope independent force fields
of liquids (or solids) and the corresponding vapor molecules with which they are in
equilibrium through use of statistical mechanical theories which involve vibrational
motions on isotope independent potential functions. Similarly, when one goes on
to the consideration of isotope effects on rate constants, one can obtain information
about the isotope independent force constants which characterize the transition state,
and how they compare with those of the reactants.

As will be shown further on, the most interesting isotope effects are quantum
effects. Since the most important quantized motions in molecules are vibrations it
makes sense that isotope effects yield information about the isotope independent
surface (the vibrational force field) on which these quantized motions take place.

3.2 Discussion of Two Types of Coordinate Systems

The discussion of the previous section amounts to a qualitative treatment of har-
monic vibrational motion. The harmonic potential function on which the molecule
vibrates has been described in terms of displacement of bond stretches from
the equilibrium configuration for the diatomic molecule; for water, displacement of
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the bond angle from its equilibrium value has also been drawn into consideration.
These types of coordinates, first proposed by N. Bjerrum, are known as valence
coordinates. They are attractive to chemists because chemists have developed qual-
itative feelings about various types of bonds which are conveniently expressed in
terms of valence coordinates. For instance, chemists know that CH bonds in alkanes
are very similar and they expect that the corresponding stretching force constants
in alkanes are similar. They also expect the stretching force constant for the CDC
double bond in ethylene to be larger than the corresponding C–C stretching force
constant in singly-bonded ethane. Also, when valence force coordinates were first
introduced, it was expected that interaction force constants (e.g. frr0 , fr’ in the water
force field) would be much smaller than the diagonal force constants (e.g. fr and f’ in
the water force field). This expectation was pretty much fulfilled when calculations
were carried out in order to deduce numerical force constants from spectroscopic
data. Additionally, chemists intuitively expect that it is much more difficult to distort
bond lengths than bond angles. This expectation is reflected in the relative magni-
tudes of bond stretching force constants and of bond angle bending force constants.

To solve the classical vibration problem for a molecule, one needs an expression
for the vibrational kinetic energy in terms of time derivatives of the same coordinates
that are used to express the potential energy. In Equation 3.1, the kinetic energy
for the diatomic molecule is given in terms of the time derivative of the stretch-
ing coordinate. Although simple for the diatomic case, the analogous equations for
polyatomic molecules using valence coordinates are much more complicated and
may be tedious to solve. While a method for determining the appropriate kinetic
energy expression in valence coordinates will be outlined in a following section, we
want to emphasize here that the kinetic energy expression in Cartesian coordinates
is very simple, and relatively easy to solve. The drawback with use of Cartesian
coordinates is that the force constants which describe atom-atom distortions in this
coordinate system have little appeal to chemists because they do not correspond to
simple bond length extensions or angle distortions, and hence are difficult to trans-
late into arguments based on chemical intuition. It is, of course, true that one can
transform from one coordinate system to another. Yet, it is also true that vibrational
calculations on molecular systems were almost exclusively done in valence coordi-
nates until digital computers became widely available. Computers made it possible
to calculate Born–Oppenheimer potentials for quite large molecules by carrying
out electronic structure calculations. Two examples of widely available computer
programs for carrying out such calculations are Gaussian and Turbomole. These
programs have already been briefly discussed in Chapter 2. For the present discus-
sion of electronic ground states, it suffices to point out that in these programs one
can “optimize” the configuration of a molecule to find the equilibrium geometry.
This optimization may be carried out either by varying valence coordinates or by
varying the Cartesian coordinates of the nuclei to obtain the minimum of the en-
ergy of the system. This equilibrium geometry is, of course, the minimum of the
isotope independent potential energy surface, which is the potential energy surface
for vibrational motion. Quantum mechanical methods are used to calculate the sec-
ond derivative of this potential at the minimum with respect to displacements in
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Cartesian coordinates of the individual nuclei in the molecule from their respective
positions at the minimum. These are the so-called Cartesian displacement coordi-
nates. These second derivatives are the force constants of the Born–Oppenheimer
approximation in this coordinate system and are the theoretical basis for harmonic
calculations of the 3N � 6.3N � 5/ harmonic vibrational frequencies of the iso-
topomers being considered. While the computer programs can (and do) translate
the Cartesian force constants into valence displacement coordinates, it turns out that
it is most convenient to carry out the calculation of the vibrational frequencies in
Cartesian coordinates because of the simplicity of the kinetic energy expression for
vibrational energy in these coordinates. The output of the Gaussian program (g03)
produces a file with the Cartesian force constants. This output can be used directly
to compute harmonic vibrational frequencies for isotopomers with desired isotopic
substitution. One such program, THERMISTP, has been described by Wolfsberg
(reading list). This program calculates isotope effects from molecular force con-
stants calculated from Born–Oppenheimer surfaces using Gaussian03 or similar
quantum mechanical packages (see Chapter 2). The calculation of the harmonic
vibrational frequencies of a molecule from the isotope independent Cartesian force
constants is briefly outlined in Section 3.3. In Section 3.4, the use of valence co-
ordinate force constants is discussed. While it may seem that the discussion here
indicates that Cartesian force constants should be preferred, one should bear in
mind that, for certain types of calculations, valence coordinate force constants may
be more convenient. For example, if one is trying to deduce numerical values of
force constants through procedures to find best fits for observed infrared and Raman
frequencies of isotopomers, convergence is much more rapid if one has ways of
estimating “good” starting values for the force constants. Thus, the idea of trans-
ferability of force constants between similar molecules might lead to a preference
for valence coordinates in this situation. In the end, however, keep in mind that it
is always possible to transform from a potential expressed in one set of coordinates
into an equivalent potential expressed in any other.

3.3 Calculations in Cartesian Coordinates

Take an N-atomic molecule with the nuclei each at their equilibrium internuclear
position. Establish a Cartesian x, y, z coordinate system for each of the nuclei such
that, for xi with i D 1; : : :3N; x1 is the Cartesian x displacement of nucleus 1, x2 is
the Cartesian y displacement coordinate for nucleus 1, x3 is the Cartesian z displace-
ment coordinate for nucleus 1, : : :; x3N is the Cartesian z displacement for nucleus
N. Use of one or another quantum chemistry program yields a set of force constants
fij in Cartesian displacement coordinates

Eelec D 1

2

3NX
ij

fijxixj (3.7)
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where

fij D
�
@2Eelec

@xi@xj

�
xK; k¤i;j

(3.8)

One remembers that Eelec is the isotope independent potential energy surface for
vibration in the Born–Oppenheimer approximation, Eelec D V. Note

�
@2V

@xa@xb

�
D
�
@2V

@xb@xa

�
(3.9)

so that the force constant matrix F is symmetric (see Appendix 3.A1 for definitions
of some matrix properties),

fab D fba (3.10)

The classical kinetic energy T is given by the usual formula involving the time
derivatives (velocities) of the Cartesian coordinates Pxi,

T D 1

2

3NX
i

mi Px2
i (3.11)

In the numbering scheme used here m1 D m2 D m3 D mass of atom 1, etc.,
m3N�2 D m3N�1, m3N D mass of atom N.

For convenience we introduce mass weighted coordinates (designated by a
prime)

x0i D
p

mixi and xi D x0ip
mi

(3.12)

Then

Eelec D 1

2

3NX
i;j

fijp
mimj

x0ix0j (3.13)

T D 1

2

3NX
i

Px02i (3.14)

Again, for convenience, introduce a set of mass weighted force constants

f m
ij D

fijp
mimj

(3.15)

Also note that Eelec is the potential energy for nuclear motion in the Born–
Oppenheimer approximation. Thus the classical Hamiltonian H for nuclear
(vibrational) motion is given by
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H D TCV D 1

2

3NX
i

Px02i C
1

2

X
i;j

f m
ij x0ix0j (3.16)

The second term on the right hand side of Equation 3.16 introduces complications
because it couples x0i and x0j. The first term, on the other hand is easily solved because
it involves no coupling. The resolution of the difficulty introduced by the second
term is to take advantage of the symmetry of the fij matrix. Note that each fm

ij is
an element of a symmetric matrix and the second derivatives fij are independent of
the order of differentiation. There is a well known mathematical theorem on the
diagonalization of symmetric matrices which states (as applied to Equation 3.16)
that when we introduce a new coordinate Qi

Qi D
3NX
k

bikxk (3.17)

it is possible to find coefficients bik such that

3NX
i;j

f m
ij x0ix0j becomes

3NX
i

�iQ2
i (3.18a)

while X
i

Px02i becomes
X

i

PQ2
i (3.18b)

This is explicitly demonstrated in Appendix 3.A2. The mathematical process in-
volved is appropriately called a diagonalization because both the kinetic and the
potential energy terms in Qi only involve diagonal (squared) terms. Thus, in terms
of the new coordinates which are usually called the normal coordinates

H D TC V D 1

2

3NX
i

PQ2
i C

1

2

3NX
i

�iQ
2
i (3.19a)

D
3NX
iD1

�
1

2
PQ2

i C
1

2
�iQ2

i

�
(3.19b)

So Equation 3.19 shows the Hamiltonian, the total energy function of classical me-
chanics, is the sum of 3N terms each of the form

�
1

2
PQ2

i C
1

2
�iQ2

i

�
(3.20)

Note that �i is a numerical factor that arises from the diagonalization of the Fm

matrix. The �i’s are known as the eigenvalues of the Fm matrix. The first term in
Equation 3.20 is the kinetic energy and the second term is the potential energy for
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the coordinate Qi. We can immediately write down the classical equation of motion
for Qi from Newton’s Second Law,

F D ma (3.21)

with F, the force, and a the acceleration equal to

d

dt
PQi D RQi (3.22)

The force can be derived from the potential energy by the classical equation

F D � @V

@Qi
D � @

@Qi

�
1

2
�iQ2

i

�
D ��iQi (3.23)

Then Equation 3.21 becomes

� �iQi D RQi (3.24)

Here we have recognized that the effective mass corresponding to coordinate Qi

is unity since the kinetic energy is given by 1
2
PQ2

i D 1
2

mv2. The solution of
Equation 3.24, the equation of motion for a harmonic oscillator with a frequency
�i, is

Qi D Ki cos

�
�

1
2

i tC •i

�
(3.25)

with

�
1
2

i D 2��i (3.26)

In Equation 3.25, •i is a phase which can be determined from the boundary con-
ditions at time t D 0, and Ki is the amplitude which can be determined from the
energy of coordinate i. From Equation 3.25

H.coordinatei/ D Energy.coordinatei/

D 1

2

�
�i sin2

�
�

1=2
i tC •i

�
C �i cos2

�
�

1=2
i tC •i

��
K2

i

D 1

2
�iK2

i D 2 2�2
i K2

i (3.27)

Thus, the solution to the classical problem with the Hamiltonian (energy) function
given by Equation 3.19 is a set of 3N harmonic oscillators with 3N frequencies �i D
4 2�2

i . The �i’s result from the diagonalization of the F0 matrix of Equation 3.15.
The quantum mechanical approach to the problem is based on the Hamiltonian

of Equation 3.19b with velocities PQi replaced by momenta Pi conjugate to the coor-
dinate Qi. Pi is classically defined

Pi D @T

@ PQi
D PQi (3.28)
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(Remember that the effective mass of coordinate Qi is unity). In terms of momenta,
the classical Hamiltonian is, from Equation 3.19,

H D
3NX
iD1

1

2

�
P2

i C �iQ2
i

�
(3.29)

The Hamiltonian operator of quantum mechanics is then

Hop D
3NX
iD1

1

2

�
�„2 @2

@Q2
i

C �iQ2
i

�
(3.30)

where we have replaced the operator Pop;i appropriately by

�i„
�
@

@Qi

�
(3.31)

„ D h

2�
(3.32)

where h is Plank’s constant.
The quantum mechanical problem is expressed by the Schrödinger equation

Hop;j §j D Ej §j (3.33)

where Ej are the quantized energy levels of the molecular system. Equation 3.30
corresponds to a sum of Hamiltonian operators for coordinates Qi. The Schrödinger
equation for any one coordinate Qi is

1

2

�
�„2 @2

@Q2
i

C �iQ2
i

�
 i D Ei i (3.34)

This is the Schrödinger for a harmonic oscillator with frequency �i corresponding
to �i D 4�2�2

i . The energy levels for this system are given by

Ei D
�

ni C 1

2

�
h�i (3.35)

with the quantum number ni having the possible values of 0, 1, 2, 3, . . . . The ground
state has the zero-point energy .ni D 0/;E0,

E0i D 1

2
h�i (3.36)

It is easy to show, analogously to the classical system, the quantum problem also
has solutions corresponding to 3N uncoupled harmonic oscillators. The total wave
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function is just a product of individual harmonic oscillator wave functions and the
total energy is expressed in terms of 3N quantum numbers ni each of which can take
values 0, 1, 2, 3, . . . . Thus the energy levels of the molecular system are

En;i D
3NX
iD1

�
ni C 1

2

�
h�i ni D 0; 1; 2; 3; : : : (3.37)

Remember again the �i’s are obtained from the �š’s, which arise from the diagonal-
ization of the F0 matrix, which is a classical problem.

3.3.1 Separation of Translation and Rotation from Vibration

We can now explore further the properties of the frequencies. The force constants
fij are second derivatives of the electronic energy with respect to displacements of
the Cartesian coordinates of the nuclei from their minimum energy positions (the
so-called equilibrium configuration). Suppose that we displace all the nuclei by the
same amount along the x-axis of an appropriate coordinate system. This motion
would correspond to a translation of the molecule in the X direction. In this dis-
placement, the nuclei do not move with respect to each other and there would be no
energy change. The same will happen if we move the molecule in the Y direction or
in the Z direction. There are three independent translations which are possible.

Also, each non-linear molecule has three principal axes around which it can ro-
tate and any rotation of the molecule can be analyzed in terms of these rotations just
as any translation of the molecule can be analyzed in terms of the three translations
along X, Y and Z axes. For a linear molecule, there are only two independent rota-
tions. Again, just as for a translation, a displacement of nuclei which corresponds to
rotation does not lead to a change of Eelec of that molecule. As a consequence of
this analysis there are SIX zeroes among the �i’s in Equation 3.19 for a non-linear
molecule. For a linear molecule, there are only FIVE zero �i’s because there are
only two rotations. Thus, again for emphasis, a non-linear N-atomic molecule has
six zero frequencies and 3N � 6 non-zero frequencies, while for a linear molecule
the corresponding numbers are five and 3N � 5. The mass associated with trans-
lational motion is the molecular mass. For rotation the appropriate masses are the
principal moments of inertia corresponding to the principal axes of rotation. These
are referred to as IA, IB; IC. For a linear molecule, there are only two rotations and,
moreover, the two principal axes are both perpendicular to the molecular axis and the
corresponding moments of inertia are equal to each other. For a diatomic molecule
A–B the moment of inertia is

I D 	r2
e D

mAmB

mA CmB
r2
e (3.38)

where re is the equilibrium bond distance.
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3.4 Calculations Employing Valence (Internal) Coordinates

The well-known GF matrix technique of E. B. Wilson and his colleagues for cal-
culating the harmonic frequencies of polyatomic molecules is based on the use of
valence coordinates, also referred to as internal coordinates. What is presented here
is merely a sketch of the method; a fuller discussion would require extensive use of
matrix algebra, which is beyond the scope of this book. The appendix on matrices
in this chapter serves only as a very short introduction to such methods. For details
reference should be made to the classical work of E. B. Wilson, J. C. Decius and
P. C. Cross (WDC) in the reading list.

From the prior discussion, it follows that valence coordinates St are displacement
coordinates and include bond stretches and valence angle bends. Additionally, there
are torsional coordinates defined by displacement from the equilibrium configura-
tion of the angle between two planes containing three atoms each, one of which
contains atoms 1, 2, and 3 and the other atoms 4, 5 and 6. For example in ethylene,
which is planar, the two methylene groups (atoms 1, 2 and 3, and 4, 5 and 6) at
equilibrium lie in the same plane but twist about the carbon-carbon bond joining
atoms 2 and 5 thus periodically displacing the torsional angle from its equilibrium
value of 0ı with a frequency of 1027 cm�1. There may also be other kinds of coor-
dinate such as the vertical distance of a given atom from the plane defined by three
other atoms. The coordinates for a given molecule may also be chosen as redundant
(for convenience) or non-redundant. If the choice is non-redundant, there will be as
many coordinates for the molecule as there are vibrational frequencies (3N � 6 or
3N � 5 for an N-atomic molecule as appropriate). If the number of internal coordi-
nates is larger than this, there will be a redundancy. This means that the coordinates
are not independent. The use of redundant coordinates is often convenient for sym-
metry purposes. A thorough discussion of redundant coordinates is found in WDC
(reading list). The coordinates are considered to be linearized, i.e. they are taken to
be linearly related to Cartesian displacement coordinates. Thus,

St D
3NX
iD1

Bti xi (3.39)

where the xi are Cartesian displacement coordinates. Here the matrix B (see
Appendix 3.A1 for discussion of matrices) has a number of rows equal to the
number of internal coordinates and a number of columns equal to 3N, with 1,2,3
referring to x, y, z coordinates of atom 1; 4, 5, 6 referring to atom 2; etc: Since the
kinetic energy can be expressed exactly by a quadratic form of the time derivatives
of xi (i.e. the velocity), it follows that it can also be expressed in terms of valence
coordinate velocities by a quadratic form. WDC introduced the G matrix with
elements given by

Gss0 D
3NX

j

m�1
j

BsjBs0j (3.40)
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where mj refers to the atomic mass associated with the Cartesian displacement
coordinate, xj. The kinetic energy expression in terms of valence coordinates is not
as simple as the corresponding expression using Cartesian coordinates. In terms of
momenta Pi conjugate to the internal coordinates Si (Equation 3.28).

T D 1

2

X
i;j

Gi;jPiPj (3.41)

The contribution of the potential energy to the Hamiltonian is given in the harmonic
approximation by

V D 1

2

X
fijSiSj (3.42)

where the fij are the harmonic force constants in valence coordinates. As when
Cartesian force constants and Cartesian displacement coordinates were employed,
one again finds 3N � 6 (3N � 5 for a linear molecule) non-zero normal modes
of vibration. Again the frequencies are related to the eigenvalues resulting from
the diagonalization of a matrix, namely the eigenvalues of the matrix product (see
Appendix 3.A1)

GF D �E (3.43)

In Equation 3.43 F now is the matrix of the force constants in valence coordinates.
Again one finds normal mode coordinates, Qi, corresponding to the normal mode
frequencies �i.

In fact, the result of Equation 3.43 not only applies to internal displacement coor-
dinates but also to Cartesian displacements. The kinetic energy in terms of Cartesian
coordinates (Equation 3.11) can easily be transformed into an expression in terms
of Cartesian momenta (Equation 3.28)

Pxi D mixi i D 1; : : :; 3N (3.44)

Then, in terms of Cartesian momenta

2T D
X P2

i

mi
(3.45)

so that the G matrix in Cartesian momenta is a diagonal matrix with

gij D 1

mi
•ij (3.46)

where

•ij D 1 for i D j (3.47a)

D 0 for i ¤ j (3.47b)
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The matrix to be diagonalized for finding the vibrational frequencies is the matrix
product of the above G matrix for Cartesian coordinates and the corresponding F
matrix for Cartesian displacement coordinates. It is noted in passing that the GF
matrix is generally not symmetric, i.e.

.GF/ij ¤ .GF/ji (3.48)

The theorem on matrix diagonalization (Appendix 3.A2) applies only to symmet-
ric matrices. This difficulty can be avoided by use of a method suggested by T.
Mayezawa, attention to which has been drawn by Schachtschneider and Snyder (see
References).

3.5 Two Important Rules for Harmonic Vibrational Frequencies

3.5.1 The Teller–Redlich Product Rule

There are two important rules involving harmonic vibrational frequencies that are
well known to spectroscopists. They are important in the present context because
they permit the simplification of some of the statistical mechanics results for iso-
topomers in Chapter 4. The first rule, the Teller–Redlich (TR) product rule, follows
straightforwardly from Equation 3.A1.13 (Appendix 3.A1) if one remembers that
ƒi D 4�2�2

i and that there are six frequencies for the non-linear molecule which
are zero, three corresponding to translations in the X, Y, and Z directions, each with a

mass dependence .M/�
1
2 , and three rotations with mass dependence I

� 1
2

A ; I
� 1

2

B ; I
� 1

2

C
(I D principal moment of inertia) respectively. It then follows for the ratio of the
products of the i’s of two isotopomers

3NY
i

ƒ1i =ƒ2i D
3N�6Y

i

�
�1i

�2i

�2 �M2

M1

�3 � I2AI2BI2C

I1AI1BI1C

�
D

NY
j

�
m2j

m1j

�3

(3.49)

The subscripts 1 and 2 refer to the two isotopomers being compared. On the right
hand side of the equation the product is over the N atoms of the molecule rather than
the 3N Cartesian coordinates. From Equation 3.49, one obtains the Teller–Redlich
product rule after some rearrangement

3N�6Y
i

�
�1i

�2i

�
D
�

M1

M2

�3=2
�

I1AI1BI1C

I2AI2BI2C

�1=2 NY
jD1

�
m2j

m1j

�3=2

(3.50)

For a non-linear molecule, there are only 3N � 5 frequencies and two moments of
inertia which are equal.
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3.5.2 The Sum Rule

The second rule for isotopomer harmonic frequencies is the so-called Sum Rule
which follows from Equation 3.A1.8. Equation 3.A1.8 relates the sum of the squares
of all the frequencies to the sum of the diagonal matrix elements of the (FG) matrix
diagonalized to obtain the frequencies. When mass weighted Cartesian displacement
coordinates are used to calculate the vibration frequencies, this means that the sum
of the ƒi’s

�
ƒi D 4 2�2

i

�
can be found as follows (Equation 3.51)

4 2

3NX
i

�2
i D

3NX
i

f0ii D
3NX
i

fii

mi
D

NX
i

fxxi C fyyi
C fzzi

mi
(3.51)

where the f0 force constants refer to mass weighted Cartesian coordinates and the f
force constants to mass independent (ordinary) Cartesian displacement coordinates.
Note that the diagonal force constants in mass weighted Cartesian coordinates refer
only to the atomic mass of one atom .mi/ while off-diagonal constants involve two

masses .mimj/
1
2 . The last equality in Equation 3.51 emphasizes that for each ele-

ment referring to a given atomic mass, there are three diagonal force constants fxx,
fyy and fzz. We apply the formula to the case where the two isotopomers differ by the
replacement of one particular atom with mass m�1 by another isotope in Cartesian
coordinates with mass m�2 . We designate the sum of the three diagonal Cartesian
force constants at the position of isotopic substitution

f� D f�xx C f�yy C f�zz (3.52)

and obtain for the difference between the sums of the squares of the frequencies

X
.�2

1i � �2
2i/ D

1

4�2
.f�/

�
1

m�1
� 1

m�2

�
(3.53)

The frequency sum here needs, of course, only to be taken over the 3N�6 (or 3N�5
for a linear molecule) non-zero frequencies of the molecule.

3.A1 Appendix: Matrix Operations

3.A1.1 Some Definitions

A matrix B contains matrix elements bij where i refers to the column of the matrix
and j the row of the matrix. Thus, the three-dimensional square matrix is defined as
follows,
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B D
0
@b11 b12 b13

b21 b22 b23

b31 b32 b33

1
A (3.A1.1)

While matrices in this chapter are all square, there are also matrices with the number
of columns not equal to the number of rows. Thus, there are column matrices (and
row matrices). A column matrix has one column and a given number of rows. Thus,
Y below is a column matrix

Y D
0
@y11

y21

y31

1
A (3.A1.2)

Matrix multiplication is a defined operation. Given two matrices A and B, the
product is C means

A B D C (3.A1.3)

cij D
X

k

aikbkj (3.A1.4)

To find the ij element of the product, one multiplies the ith row of A, term by term,
with the jth column of B. To form the product of the two matrices, the number of
columns of the first matrix must equal the number of rows of the second matrix.

The inverse of B is called B�1. B�1 has the property that

B B�1 D B�1 B D 1 (3.A1.5)

1 here is the unit matrix. It has unity in the diagonal elements .i D j/ and zero
everywhere else. The transpose of a matrix A is called A0 and is obtained from A by
exchanging rows and columns. Thus

B D A0 (3.A1.6a)

bij D aji (3.A1.6b)

3.A1.2 Matrix Diagonalization

Matrix diagonalization of Fm requires finding a matrix B such that

B�1 Fm B D

0
BBBBB@

�1 0 0 0 0

0 �2 0 0 0

0 0 �3 0 0

0 0 0 �� 0

0 0 0 0 �N

1
CCCCCA

(3.A1.7)
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where B, B�1; Fm are all N-dimensional square matrices. The triple product has
œ1; 2; : : : ; œN along the diagonals and zeros everywhere else. The œi’s are known
as the eigenvalues of the matrix Fm. It can be shown that the sum of the eigenvalues
of Fm is the sum of the diagonal elements of Fm. This means

X
i

�i D
X

j

f m
jj (3.A1.8)

It can also be shown that the product of the eigenvalues is given by the determinant
of Fm,

Y
i

œi D det Fm (3.A1.9)

The theorem on matrix diagonalization states that symmetric matrices can be
diagonalized and, moreover, B can be taken such that

B�1 D B0 (3.A1.10)

A matrix B that has this property is called an orthogonal matrix.
In the following it will be shown how matrix diagonalization enters the prob-

lem of harmonic vibrational motion of molecules, specifically when mass weighted
Cartesian coordinates are employed (see Section 3.3). This analysis employs more
matrix algebra than is generally used in this chapter. Some readers may prefer to
skip this material on a first reading; those who do read it will be rewarded with a
better understanding of the use of matrix diagonalization in the study of molecular
vibrations.

Equation (3.16) presents expressions for the kinetic T and potential V energies
in Cartesian mass weighted displacement coordinates x0i and corresponding veloci-
ties Px0i

2T D
X

i

Px02i (3.A1.11)

2V D
X

i;j

fm
ij x0ix0j (3.A1.12)

Given that a matrix diagonalization (Equation 3.A1.7) of the matrix Fm has been
carried out with the matrix B to yield eigenvalues œI, investigate now what happens
to the expressions for T and V when new coordinates and corresponding velocities,
Qi and PQi, are introduced

x0i D
X

k

bikQk Px0i D
X

k

bik PQk (3.A1.13)
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where the bik’s are the elements of the B matrix. First look at Equation 3.A1.12

2V D
X

fm
X

bikQk

X
bjsQs (3.A1.14a)

D
X
i;j;k;s

fm
ij bikbjsQkQs (3.A1.14b)

D
X
i;j;k;s

b0kif
m
ij bjsQkQs (3.A1.14c)

D
X
k;s

�
B0FmB

�
ks QkQs (3.A1.14d)

D
X

k

œkQk (3.A1.14e)

In Equation 3.A1.14b it has been indicated that the sum is independent of the order
of summation. In Equation 3.A1.14c, the order of the terms has been interchanged
for convenience and the transpose of the B matrix has been introduced, bik D b0ki.
In Equation 3.A1.14d, it has been recognized that the sum over i and j carried out in
Equation 3.A1.14c produces the ks’th element of the triple matrix product B0FmB.
In Equation 3.A1.14e, we see that B0 in Equation 3.A1.14d is identical to B�1 and
therefore the triple matrix product is just the diagonal matrix from the right hand
side of Equation 3.A1.7. Thus, the matrix diagonalization has led to a coordinate
transformation, which makes the potential a sum of square terms.

Next look at what happens to Equation 3.11 when the transformation 3.A1.13 is
introduced

2T D
X

i

X
k

bik PQk

X
s

bis PQs (3.A1.15a)

D
X
i;k;s

bikbis PQk PQs (3.A1.15b)

D
X
i;k;s

�
bt

kibis
� PQk PQs (3.A1.15c)

D
X
k;s

�
BtB

�
ks
PQk PQs (3.A1.15d)

D
X

k

PQ2
k (3.A1.15e)

Again, in Equation 3.A1.15b, it is indicated that the sum is independent of the order
of the summation. In Equation 3.A1.15c the order of the terms has been changed
to produce a convenient expression and the transpose of the B matrix has been in-
troduced, b0ki D bik. In Equation 3.A1.15d, we see that the sum over i produces
the ks’th element of the matrix product B0B. Lastly, in Equation 3.A1.15e, it is
recognized that B0 is the inverse of B and that the matrix product has only diago-
nal elements, all of which are equal to unity. Thus, the kinetic energy is a sum of
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squares in both coordinate systems. The consequences of this transformation from
mass weighted Cartesian coordinates x0 to normal coordinates Q in the analysis of
molecular vibrations and the treatment of redundant coordinates are discussed in
WDC (reading list).

3.A2 An Equality for Use in the Derivation
of the Teller–Redlich Product Rule

The relationship between the force constant matrix in Cartesian displacement coor-
dinates Fij, and the force constant matrix for mass weighted Cartesian coordinates
F0 can be written as follows (only the first three rows and columns of the matrices
are explicitly shown):

0
@ f m

11 f m
12 f m

13

f m
21 f m

22 f m
23

f m
31 f m

32 f m
33

1
A D

0
BBBBBB@

f11p
m1m1

f12p
m1m2

f13p
m1m3

f21p
m2m1

f22p
m2m2

f23p
m2m3

f31p
m3m1

f32p
m3m2

f33p
m3m3

1
CCCCCCA

D

0
BBBBBB@

1p
m1

0 0

0
1p
m2

0

0 0
1p
m3

1
CCCCCCA

0
@ f11 f12 f13

f21 f22 f23

f31 f32 f33

1
A

0
BBBBBB@

1p
m1

0 0

0
1p
m2

0

0 0
1p
m3

1
CCCCCCA

(3.A2.1)

Assume now that weak forces have been applied to the molecular rotations and
translations so that the eigenvalues œi of the Fm matrix correspond to the 3N � 6
(3N� 5 for a linear molecule) real frequencies œi D 4 2�2

i of the molecule plus six
(or five) very low frequencies (ordinarily calculated as zero frequencies) that corre-
spond to translations and rotations, uncoupled from the larger molecular vibrations.
Then, if one recognizes that: (1) the determinant of a diagonal matrix is just the
product of its diagonal elements, and (2) if a matrix A can be written as a matrix
product of B and C, then

det A D .det B/.det C/ (3.A2.2)

It follows that the determinant of a matrix is equal to the product of its eigenval-
ues and, furthermore,

3NY
i

�i D
3NY
i

.mi/
�1 det jFj (3.A2.3)
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In the use of Equation 3.A2.3, it should be remembered that the fij force constants,
which are the elements of F, are isotope independent, as is the determinant.
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Chapter 4
Isotope Effects on Equilibrium Constants
of Chemical Reactions; Transition State
Theory of Isotope Effects

Abstract The statistical thermodynamic theory of isotope effects on chemical
equilibrium constants is developed in detail. The extension of the method to treat
kinetic isotope effects using the transition state model is briefly described.

4.1 Introduction

The understanding of isotope effects on chemical equilibria, condensed phase equi-
libria, isotope separation, rates of reaction, and geochemical and meteorological
phenomena, share a common foundation, which is the statistical thermodynamic
treatment of isotopic differences on the properties of equilibrating species. For that
reason the theory of isotope effects on equilibrium constants will be explored in
considerable detail in this chapter. The results will carry over to later chapters which
treat kinetic isotope effects, condensed phase phenomena, isotope separation, geo-
chemical and biological fractionation, etc.

The chapter starts with a brief review of thermodynamic principles as they
apply to the concept of the chemical equilibrium. That section is followed by a
short review of the use of statistical thermodynamics for the numerical calcula-
tion of thermodynamic equilibrium constants in terms of the chemical potential
(often designated as �). Lastly, this statistical mechanical development is applied
to the calculation of isotope effects on equilibrium constants, and then extended
to treat kinetic isotope effects using the transition state model. These applications
will concentrate on equilibrium constants in the ideal gas phase with the molecules
considered in the rigid rotor, harmonic oscillator approximation.

4.2 Brief Review of the Laws of Thermodynamics

4.2.1 The First Law

The first law of thermodynamics is the law of conservation of energy for a thermo-
dynamic system. The “system” is that which is of interest. It is usually defined by
the mole numbers ni of the various molecular species in the system, the volume V,

M. Wolfsberg et al., Isotope Effects: in the Chemical, Geological, and Bio Sciences,
DOI 10.1007/978-90-481-2265-3 4, c� Springer Science+Business Media B.V. 2009
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the pressure P, and the temperature T (in Kelvin). Everything outside of the sys-
tem is considered as “surroundings”. The system plus the surroundings makes up
the universe. The state of the system is defined by the molecules it contains, their
respective mole numbers, as well as T, P and V. Two forms of energy change �U
are considered: q, the heat added to the system, and w, the work done on the sys-
tem. The work is usually restricted to PdV work, the work done by compressing
the volume by an amount dV against a pressure P. Should it become necessary to
consider other kinds of work additional terms may be required. The first law of
thermodynamics states that

�U D qC w (4.1)

and furthermore, that �U going from a given initial state of the system to a given
final state depends only on the initial and final state and is independent of the “path”
taken to go from the initial to the final state; q and w individually do depend on the
pathway. The energy U is consequently called a function of state. For a change of
state in which there is no volume change, there will be no work (w D 0) and con-
sequently �U is the heat added to the system for a process carried out at constant
volume. (Following the custom employed in most modern thermodynamics texts, in
this chapter we use the symbol U to denote the energy of (macroscopic) systems, re-
serving the symbols E and © to denote microscopic energies throughout the balance
of the text.)

It is appropriate at this point to define another function of state, the enthalpy H,

H D UC PV (4.2)

For a process carried out at constant pressure,

�H D �UC P�V (4.3)

For this process, the work done on the system is

w D �P�V (4.4)

Note the minus sign to indicate that work is done on the system when �V is neg-
ative. Combining Equations 4.1, 4.3, and 4.4, one obtains for a process at constant
pressure

�H D q (4.5)

so �H is the heat added to the system at constant pressure.

4.2.2 The Second Law

The second law of thermodynamics introduces a new function of state, the entropy,
S, in order to quantify the spontaneity and direction of change for natural systems
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(plus their surroundings), and the conditions of the equilibrium state toward which
change occurs. It is useful to contrast natural changes, always spontaneous and
irreversible to some extent, with idealized reversible processes (ones capable of
restoring system plus surroundings to their original condition). Thus, a gas at
pressure P expanding against an external pressure, which is kept throughout the
expansion at a pressure infinitesimally smaller than the pressure of the gas, is a typ-
ical example of a reversible process. A truly reversible process would be carried out
infinitely slowly. During a reversible expansion (or compression) for example, the
thermodynamic parameters (T, P, V, concentrations) of the system are completely
defined at each step. A spontaneous process is one that happens naturally and unidi-
rectionally. Thus, the expansion of gas into a vacuum is a spontaneous process; so is
the temperature equilibration between a hot material and a cold material when they
are brought together. The second law of thermodynamics may be stated as follows:

There exists a thermodynamic function S, called the entropy, such that the change in
entropy �S in going from an initial state i to a final state f has the following property

�S �
Z f

i

•q

T
(4.6)

where T is the temperature and •q is the incremental addition of the heat added to the
system at T.

The equal sign in Equation 4.6 only applies if the process is carried out reversibly.
Note that Equation 4.6 contains the recipe for obtaining�S exactly by carrying out
the change of state reversibly.

It follows from Equation 4.6 for a thermally isolated system (hence q D 0) that

�S � 0 (4.7)

The universe is a thermally isolated system. Hence one can write

�Suniverse � 0 (4.8)

It can be shown that Equation 4.6 can also be derived from Equation 4.8, so Equa-
tion 4.8 is an alternate statement of the second law.

4.2.3 The Third Law

There is a third law of thermodynamics. It can be stated in the following way: “The
entropy of a perfect crystal at 0 K is zero.” A perfect crystal is one with no lattice
defects. The third law gives rise to the concept of absolute entropy. There will be no
further mention of the third law in this book.
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4.3 The Free Energies and the Concept of Equilibrium

When a system cannot undergo a change of state in which the entropy of the universe
(Suniverse) increases, then that system is said to be at equilibrium. Implementation of
this criterion of equilibrium requires one to quantitatively examine both the system
and its surroundings, and this is often inconvenient or impossible. The introduc-
tion of the free energy functions, however, permits one to make statements about
�Suniverse for certain special systems without explicitly considering the surround-
ings, and this is a great convenience. The specialized systems considered here are
those at constant volume and constant temperature, or constant pressure and con-
stant temperature.

4.3.1 The Helmholtz Free Energy

For a system at constant volume, there can be no P�V work and, since the only
work we are presently considering is P�V work, w D 0. Therefore, from the first
law of thermodynamics

�U D q (4.9)

It follows from Equation 4.6, for a system at constant temperature, that

�S � q

T
(4.10)

or
q � T�S (4.11)

Hence, from Equation 4.9

�U � T�S D q � T�S � 0 (4.12)

Define, now, a new thermodynamic function, the Helmholtz free energy A,

A D U � TS (4.13)

For a system at constant temperature with no PdV work, the second law states

�A D �U � T�S � 0 (4.14)

where the equal sign applies to a reversible process, and the inequality applies to all
other (irreversible) processes. Thus, for a system at constant volume and constant
temperature, the Helmholtz free energy will decrease until it reaches a minimum, at
which point the system is said to be at equilibrium.
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4.3.2 The Gibbs Free Energy

Similarly we consider a system held at constant temperature and constant pressure,
where the process of interest involves adding an amount of heat q to the system and
also an amount of work

w D �P�V D ��.PV/ (4.15)

Then, from the first law and Equation 4.11

�U D qC w � T�S��.PV/ (4.16)

so that
�UC�.PV/� T�S � 0 (4.17)

Finally, remembering the definition of enthalpy H (Equation 4.2)

H D UC PV (4.18)

one obtains
�H � T�S � 0 (4.19)

Note that �H is the heat absorbed by the system in a process carried out at constant
T and P.

Now introduce the Gibbs free energy G

G D H � TS (4.20)

So that, for a system at constant T and P, the second law states

�G � 0 (4.21)

where the equal sign applies to a system in equilibrium, and the inequality applies
to irreversible processes.

4.3.3 Relations Involving A, �A, G and �G

Let us investigate free energies a bit further by writing relevant expressions for the
differentials �A and �G employing the definitions 4.13 and 4.20. With use of the
rules of differential calculus

dA D dU � TdS� SdT (4.22)

From Equation 4.1
dU D •qC •w (4.23)
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where a small change in U, a function of state, is indicated by dU while a small
quantity of heat energy q and work energy w (both of which depend on the pathway
taken from the energy state U to that with energy U + dU) are expressed by •q and •w,
respectively. (The symbol “•” specifies the derivatives as inexact.) If a reversible
pathway is taken between the two states, then from the definition of entropy S,
Equation 4.11, dqrev D TdS while the corresponding work is given by �PdV. Thus
Equation 4.13 becomes

dU D TdS� PdV (4.24)

Correspondingly Equation 4.22 becomes

dA D TdS� PdV � TdS� SdT (4.25)

dA D �PdV � SdT (4.26)

Thus the differential of A has been obtained in terms of the changes in volume and
temperature. The partial derivatives of A are given by

�
@A

@V

�
T
D �P (4.27)

and �
@A

@T

�
V

D �S (4.28)

For a system containing ni moles of molecular species i, one can then write for the
differential dA of A

dA D �PdV � SdTC
X

i

dni

�
@A

@ni

�
T;V;nj¤i

(4.29)

One can similarly derive for the differential of the Gibbs fine energy

dG D VdP� SdTC
X

i

dni

�
@G

@ni

�
T;P;nj¤ni

(4.30)

In both Equations 4.29 and 4.30, the subscript nj ¤ ni in the partial derivatives
signifies that all mole numbers are kept constant except that of molecule i.

From Equations 4.13, 4.18, and 4.20, it follows that

G D AC PV (4.31)

and

dG D dAC PdVC VdP (4.32)

D VdP� SdTC
X

i

dni

�
@A

@ni

�
T;V;nj¤ni

(4.33)
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Comparing Equations 4.30 and 4.33, one finds

�
@A

@ni

�
T;V;nj¤ni

D
�
@G

@ni

�
T;P;nj¤ni

(4.34)

The two partial derivatives in Equation 4.34, which are equal to each other, are very
important in the thermodynamics of chemical equilibrium, and are referred to as the
chemical potential, �i.

The combined first and second laws state that, at constant T and V, a system
seeks to minimize A until dA for any subsequent change is zero (Equation 4.14),
and likewise, at constant T and P, the Gibbs free energy decreases until dG for any
subsequent change equals zero (Equation 4.20). One then recognizes that the condi-
tion for equilibrium is exactly the same at constant T and V as it is at constant T, P.

X
i

	idni D 0 (4.35)

Notice most often that studies on chemical equilibrium in the gas phase are carried
out at constant T and V, while those involving only condensed phases will usually
be studied at constant T and P. Condition 4.35 applies to either situation.

Consider now a system in which a chemical reaction is taking place

� AAC � BA, � CCC � DD (4.36)

where the A, B, C, . . . refer to the various molecular species in the system, and �A,
�B, . . . . etc, refer to the relevant mole numbers in the reaction taking place. If one
considers a differential extent of reaction dŸ in Equation 4.36, proceeding from left
to right, one obtains

dnA D ��A dŸ

dnB D ��B dŸ

dnC D C�C dŸ

dnD D C�D dŸ (4.37)

and further obtains at constant T and V, at equilibrium

X
i

�i	idŸ D 0 (4.38)

since at equilibrium dnA D dnB D dnC D dnD D 0. The same equation is deduced
at constant T and P, where the �i refer to the mole numbers in Equation 4.36, the
�i’s being positive for products and negative for reactants. Since Equation 4.38 must
hold for any value dŸ, it follows that the condition for equilibrium requires

X
i

�i	i D 0 (4.39)
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4.4 Application to Ideal Gases at Equilibrium

All the applications in this chapter will be to the gas phase, in particular to ideal
gases. In later chapters the discussion will treat isotope effects on equilibria for
condensed phase systems.

At very low pressure all gases obey the ideal gas law, PV D nRT, where P is
the pressure, V is the volume and, T is the temperature. The gas constant, R, is a
universal constant, and T is the absolute temperature in kelvin. A mixture of gases
at sufficiently low pressure also behaves ideally

PV D nRT (4.40)

where n is the total number of moles,

n D
X

i

ni (4.41)

and V and P are the total volume and the total pressure respectively. For the individ-
ual gases, the perfect gas law V is also valid with

PiV D niRT (4.42)

with Pi referred to as the partial pressure of gas component i. The total pressure in
Equation 4.40 is then the sum of partial pressures.

P D
X

i

Pi (4.43)

Equations 4.42 and 4.43 are a statement of Dalton’s law.
From Equation 4.30, one can write for a gas consisting of one molecular species

dG D VdP� SdT (4.44)

For an ideal gas at constant temperature �SdT D 0, and

dG D VdP D n
RT

P
dP D nRTd ln P (4.45)

and consequently one obtains at given temperature T

G .T;P/ D G0.T/C nRT
Z P

P0

d ln P

D G0.T/C nRT ln
P

P0
(4.46)
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Here G0.T/ refers to an n mole ideal gas system at a standard pressure designated
as P0 (usually 1 bar). The chemical potential of a one component i ideal gas system
is then

	i D
�
@Gi

@ni

�
T;P
D
�
@G0

i

@ni

�
T;P
C RT ln

Pi

P0

D 	0
i .T/C RT ln

Pi

P0
(4.47)

Here 	0
i .T/ is the Gibbs free energy per mole of an ideal gas at temperature T and

standard pressure P0. Thus the condition of equilibrium for a gas phase system sub-
ject to a chemical reaction (Equation 4.36), whether at constant T and P or constant
T and V, is given by

X
�i	i D

X
i

�i	
0
i C �iRT ln

Pi

P0

D �G0
r C

X
i

RT ln

�
Pi

P0

��i

D �G0
r C RT ln KP D 0 (4.48)

Here �G0
r is the Gibbs free energy change in the ideal gas phase reaction system

when all the gases are in their respective standard states. The equilibrium constant
KP is given in terms of the partial pressures at equilibrium by

KP D
Y

i

�
Pi

P0

��i

(4.49)

Condition 4.48 can be written

�G0
r D �RT ln KP (4.50)

The equilibrium constant, KP, takes the well known form of a ratio of products
of pressures raised to various stoichiometric powers, remembering that the �i’s for
products in Equation 4.36 are positive while those for reactants are negative.

4.4.1 Remarks, Nonideality, Condensed Phases

The thermodynamic development above has been strictly limited to the case of
ideal gases and mixtures of ideal gases. As pressure increases, corrections for vapor
nonideality become increasingly important. They cannot be neglected at elevated
pressures (particularly in the critical region). Similar corrections are necessary in
the condensed phase for solutions which show marked departures from Raoult’s or
Henry’s laws which are the common ideal reference solutions of choice. For non-
ideal solutions, in both gas and condensed phases, there is no longer any direct
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proportionality between measured isotope effects on logarithmic concentration or
pressure ratios and isotopic differences in the corresponding standard state free
energy differences. Appreciable corrections may be required. Further details are
found in Appendix 4.A1 and in Chapter 5.

4.5 Statistical Mechanics of Ideal Gases and Isotope Effects

4.5.1 General Remarks

Statistical mechanics enables one to express the chemical potential �i for an ideal
gas phase system in terms of the spectroscopic properties of individual gas phase
molecules. The reader is referred to standard statistical mechanics texts (e.g. D. A.
McQuarrie “Statistical Mechanics”, reading list) for the development of the relation-
ship between the system Helmholtz free energy, Ai, and the corresponding canonical
partition function Qi

Ai D �kTlnQi (4.51)

Qi D
X

s

e�Eis=kT (4.52)

In Equations 4.51 and 4.52 k is Boltzmann’s constant, T is the absolute temperature
and the Eis’s are the energy states of the molecules i. The statistical mechanical
considerations in this book will refer to an ideal gas unless explicit mention is made
to the contrary. For an ideal gas, a gas of non-interacting molecules, one can express
the partition function Qi of a collection of eNi molecules of species i in terms of the
single molecule partition functions qi as follows1

Qi D qeNi
ieNiŠ

(4.53)

qi D
X

s

e�eis=kT (4.54)

Here the ©is’s are the energy levels of the individual molecules. Equation 4.53
follows from the use of Boltzman statistics for eNi distinguishable non-interacting
molecules when the number of energy states of theeNi molecule system is very large
compared to the number of molecules. The latter condition is satisfied for most sys-
tems of practical interest. For detailed consideration of this point, the reader should
consult the McQuarrie reference.

1 The authors recognize that the symbol q has previously been used for thermodynamic heat. In
using the letter q to symbolize the molecular partition function, usual practice is being followed.
This usage should not give rise to confusion.
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One now recognizes that in situations of chemical interesteNi is very large so thateNi! in Equation 4.53 can be well approximated by Stirling’s formula

lneNiŠ D eNi ln eNi–eNi (4.55)

Then
lnQi D eNi lnqi–eNi ln eNi CeNi (4.56)

Moreover, with the number of molecules eNi related to the number of moles of
species i by Avogadro’s number NA

ni D
eNi

NA
(4.57)

and with the gas constant R (of the ideal gas law) related to Boltzmann’s constant k

R D NAk (4.58)

one obtains for the chemical potential �i

	i D �kT

�
@lnQi

@ni

�
T;V
D �RT

�
@lnQi

@eNi

�
T;V

(4.59a)

D �RT.ln qi � lneNi � 1/ (4.59b)

D �RT ln
qieNi

(4.59c)

D �RT ln

�
qiV

VeNi

�
(4.59d)

D �RT ln

�
qikT

VPi

�
(4.59e)

with V the volume of the gas. Use has been made of the ideal gas law (Equation 4.40)
where Pi is the pressure (or partial pressure) of the ideal gas i.

We now introduce the standard pressure P0 (usually 1 bar) and obtain

�i D �RT ln
qi

V

kT

P0
C RT ln

Pi

P0
(4.60)

�i D 	0
i C RT ln

Pi

P0
(4.61)

Here 	0
i is the chemical potential of the ideal gas at the standard pressure. It will

be seen subsequently that qi for an ideal gas depends linearly on the volume V, so
	0

i is a function only of the temperature. It does of course depend on the distribu-
tion of energy levels of the ideal gas molecules. The form of Equation 4.59 for the
chemical potential of an ideal gas component is the same as that previously derived
from thermodynamics (Equation 4.47). The present approach shows how to calcu-
late 	0

i through the evaluation of the molecular partition function. Furthermore, the
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evaluation of molecular partition functions for the relevant ideal gases permits the
calculation of the standard state free energy change

�G0
i D

X
�i	

0
i (4.62)

for any gas phase reaction, Equation 4.36, and consequently permits the calcula-
tion of the equilibrium constant for the reaction. It should be noted in passing that
Equation 4.62 refers to �G for the reaction when all the molecules are in their re-
spective standard states. It has been pointed out that the standard state for a gas is 1
bar at the given temperature T. That is an incomplete definition. In thermodynamics
the definition also contains the provision that the gas in its standard state behaves
as an ideal gas (which is always a correct description of any gas at very low pres-
sure). Non-ideal gas behavior is handled by introducing activity coefficients (see
Appendix 4.A1 or any thermodynamics text).

4.5.2 Equilibrium Constants and Partition Functions

From Equations 4.60 and 4.61,

X
i

�i	
0
i D �RT ln

Y
i

�
qi

V

kT

P0

��i

(4.63)

and using Equations 4.49 and 4.50, one obtains

KP D
Y

i

�
Pi

P0

��i

D
Y

i

�
qi

V

kT

P0

��i

(4.64)

In the context of this book our interest is in the isotope effect on the equilibrium
constant Kp. This is illustrated below for an isotope effect involving the replacement
of a hydrogen atom by a deuterium atom

AHC B D CHC E K1 (4.65)

ADC B D CDC E K2 (4.66)

A, B, C, and E are identical in the two reactions. The two equilibrium constants
are K1 and K2. Thus in Equation 4.64, in the evaluation of K1=K2 all factors drop
out except the partition functions of the isotopically substituted molecules and one
obtains

K1

K2

D
 

qAD

qAH



qCD

qCH

!
(4.67)

We see here that one calculates an isotope effect on an equilibrium constant as
a ratio of isotopic partition ratios. Moreover, we also see that the subtraction of
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equilibrium (4.66) from equilibrium (4.65) in the usual chemical fashion yields a
third equilibrium

AHC CD D ADC CH K3 (4.68)

This latter equilibrium is called an isotopic exchange equilibrium. Its equilibrium
constant in terms of partition functions is from Equation 4.64

K3 D qAD

qAH

qCH

qCD
D
�

qAD

qAH

�
�
qCD

qCH

�
(4.69)

It is clear that the exchange equilibrium constant K3 is equal to the isotopic ratio of
equilibrium constants, K1=K2.

4.6 Evaluation of Partition Functions, q, and Isotope Effects
on Partition Functions, qheavy=qlight for Ideal Gases

The evaluation of partition functions for ideal gases forms a major portion of in-
troductory statistical mechanics textbooks and the reader is referred to these for the
details (e.g. McQuarrie, reading list, below the statistical mechanical conventions
of McQuarrie are followed). This discussion is carried out within the framework of
the Born–Oppenheimer approximation (see Chapter 2). The molecule (or atom) is
taken to be in its ground electronic state. The eigenvalues of the Schrödinger equa-
tion corresponding to the molecular energy states ©i needed for the evaluation of q
(Equation 4.54) are found by solving the equation corresponding to the N-nuclei of
the N-atomic system moving on the Born–Oppenheimer potential energy surface of
that molecule or atom. Recall that the BO surface expresses the electronic energy
of the molecular system as a function of the configuration of the nuclei. An exact
solution of this problem can be quite complex; however, for many applications, it
is sufficient to introduce simplifying approximations. Before proceeding, it should
be said that the majority of calculations in isotope chemistry (including all calcula-
tions in this book) are carried out with use of these simplifying assumptions. At the
end of this chapter (Appendix 4.A2), references are given to more sophisticated and
detailed calculations that test certain of these approximations (e.g. Wolfsberg and
coworkers, reading list). On the one hand, such higher level studies show that the
standard simplifying assumptions lead to theoretically calculated results with errors
usually smaller or comparable to normal experimental error and establish the valid-
ity of the simplified approach; on the other, such calculations enable the comparison
between theory and accurate high precision experiments.

4.6.1 The Rigid Rotor Harmonic Oscillator Approximation

This simplification was already introduced in Chapter 2. In the rigid rotor approx-
imation there is no rotational–vibrational interaction. The molecular Schrödinger
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equation factors into equations for describing motion of the center of mass, for
rotation about the center of mass, and for describing the molecular vibrations. As
in Chapter 2, we introduce the additional approximation that the vibrational fre-
quencies be harmonic. Using this approximation, the vibrational problem of the
N-atomic molecule factors into 3N – 6 [.3N�5/ for a linear molecule] independent
harmonic vibrational problems, one corresponding to each of the normal modes of
the molecule. Combining the rigid rotor and harmonic oscillator approximations,
we see that the individual energy levels of the molecular partition function q can be
written as a sum

Ei D ETrans C Erot C
X

i

Evib.i/ (4.70)

The last term refers to the 3N � 6 (or 3N � 5) vibrations. Corresponding to each of
the terms in Equation 4.70 are sets of quantum numbers (e.g. translational quantum
numbers, rotational quantum numbers, etc.) which are independent of each other.
From this point it is quite straightforward to show that the partition function can
be factored into a product of partition functions corresponding to translation, rota-
tion, etc.

q D qTransqrot

Y
i

qvib.�i / (4.71)

In Equation 4.71 the individual qvib’s have been specified qvib.�i/ to indicate that
these partition functions depend on the normal mode frequencies. It is interesting
to note that the partition function for translation, which is usually considered in
terms of the problem of the particle in a three dimensional rectangular box, is, itself
a product of three partition functions; one for motion in the x dimension, one for
y, etc.

4.6.1.1 Degrees of Freedom

A brief discussion of degrees of freedom is included here. The quantum mechanical
equation for nuclear motion contains a kinetic energy term for the nuclei which is
usually written in terms of three Cartesian coordinates fixed to each of the nuclei of
the N-atomic molecule. The potential energy term in this equation can also be writ-
ten in terms of these 3N coordinates. By transforming to a set of new coordinates,
which are linear combinations of these Cartesian coordinates, one can factor this
so-called Born–Oppenheimer equation into a set of separate and independent equa-
tions. The important fact to remember is that the number of degrees of freedom that
lead to these coordinates must be exactly equal to 3N. This fact enables the deter-
mination of the number of vibrational degrees of freedom. The motion of the center
of mass involves the three Cartesian coordinates of the center of mass. The rotations
of the general rigid body involve three angles (three degrees of freedom). However,
the rotations of a linear molecule (a molecule is linear if its minimum electronic en-
ergy corresponds to a nuclear geometry in which the nuclei lie along a straight line)
involve only two angles. Thus, for a linear molecule, there must be 3N�5 vibrational
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Table 4.1 Partition functions evaluated in the rigid rotor harmonic oscillator
approximation

q D qTrans qrot qvib

qTrans D
�
2�MkT

h2

�3=2
V a

qrot D 8�2IkT

sh2 � linear moleculeb

qrot D �
1
2

s

�
8�2IAkT

h2

� 1
2
�
8�2IBkT

h2

� 1
2
�
8�2ICkT

h2

� 1
2

� non-linear moleculeb

qvib D Q
i

e�ui =2

1� e�ui

aM is the molecular mass.
bI is the moment of inertia of a linear molecule (see Chapter 3). IA; IB; IC, are
the three principal moments of the nonlinear molecules. s is the symmetry num-
ber. It is equal to the number of rotations that take the molecule into itself. If
one knows the point group of the equilibrium configuration of the molecule, s
is the number of rotation operations in the point group including the identity
operator E. Thus s has a minimum value of unity. Actually, s is a concept of
classical statistical mechanics (remember that the rotational partition function is
calculated here in the classical limit) and division by s prevents over-counting
the number of states. For further discussion see Section 4.9 and/or a statistical
mechanics text.
cThe product, for the N-atomic molecule, is over the 3N-6 normal vibrational
modes �i (3N-5 for a linear molecule). For � in units of sec�1, u D h�=kT; for �
in cm�1, u D hc�=kT. See footnote 2, page 92

degrees of freedom while, for a non-linear molecule, there are 3N�6 vibrational de-
grees of freedom. The actual calculation of the molecular partition function in the
rigid-rotor-harmonic-oscillator approximation requires more detail. The results are
presented in Table 4.1. For the full details, a standard textbook in statistical mechan-
ics (e.g. McQuarrie) again needs to be consulted. As already noted, q is calculated
as a product, Equation 4.71. Thus, if possible, one wants to evaluate qTrans, qrot, and
qvib by means of simple formulae rather than explicitly calculating the sum over the
quantized energy levels implied by Equation 4.54.

4.6.2 Considerations of Level Spacing

If the spacing between quantized energy levels is sufficiently small compared to
kT (Equation 4.54) and if one knows the explicit formula for the quantized energy
levels, then one can integrate over the quantum numbers rather than carrying out
the direct summation. The result so obtained is identical to the partition function in
the classical mechanical-limit (vide infra). For practical purposes, once can always
replace the quantum expression for qTrans by the corresponding classical expression.
The same is almost always true for qrot. The rotational energy spacing tends to be
somewhat larger than the spacing for translational energy levels. Very occasionally,
one may need to correct the classical expression for qrot for quantum spacing and
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methods for making quantum corrections to qrot are available in standard sources
(e.g. McQuarrie, reading list). The formulae for both qTrans and qrot in Table 4.1 are
the classical formulae for these quantities.

The spacing between vibrational energy levels cannot be ignored for calculations
of qvib at room temperature. For a single harmonic vibration, the energy levels are
given by

"n D
�

nC 1

2

�
h� n D 0; 1; 2; : : : (4.72)

where n is the vibrational quantum number, � is the vibrational frequency2, and h is
Planck’s constant. One obtains

qvib D e� 1
2

h�= kT C e� 3
2

h�= kT C e� 5
2

h�= kT � � �

D e� 1
2

h�= kT

1 � e�h�= kT
(4.73)

Again, for detail, see a statistical mechanics text. For a general N-atomic molecule,
there are .3N � 6/ normal vibrations �i (3N � 5) for a linear molecule) and the
corresponding vibrational partition function is

qvib D
3N�6.5/Y

i

e� 1
2

h�i= kT

1 � e�h�i= kT
(4.74)

The formulae for the partition function of a molecule in the rigid-rotor-harmonic-
oscillator approximation are summarized in Table 4.1.

4.6.3 The Energy Zero

The formulae given in Table 4.1 for the molecular partition functions enable us
to write the partition function ratio qheavy=qlight or q2=q1 where, by the usual con-
vention, the subscript 2 refers to the heavy isotopomer and 1 refers to the light
isotopomer if “heavy” and “light” are appropriate designations. Then, a ratio of such
partition function ratios enables one to evaluate the isotope effect on a gas phase
equilibrium constant, as pointed out above. Before continuing, it is appropriate to

2 In the equations in this part of the text the frequency � (cycles per second) has units of sec�1.
The units of Planck’s constant h and the Boltzmann constant k are J s and J K�1, respectively.
Consequently the exponents,�h�=kT, as mathematically required are unitless, .J s s�1/=.J K�1K/.
Chemists, however, are fond of expressing frequency in units of reciprocal wave length or wave
numbers, cm�1. Recall �.s�1/ D c=�.cm/ D c�.cm�1/ where c is the velocity of light, 3 �
1010 cm s�1 and � is the wave length. Therefore should one choose to express frequency in units
of cm�1 the exponents in equations of type 4.73 become �hc�=kT. It is unfortunate that both
conventions, as here, often employ the same symbol, �.
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discuss the “zero of energies”. For translation and rotation, the zero of energy is the
non-translating, non-rotating molecule so the zeros of molecule 1 and 2 are identical.
For vibrations, the lowest vibration energy for each of the normal mode frequencies
�i is the well-known zero point energy 1

2
h�i, this energy being taken with respect

to the Born–Oppenheimer minimum which is the same for all the isotopomers of
a given molecule. Thus the zero of energies has been chosen the same for all the
isotopomers and automatically cancels out when one evaluates q2=q1. Then from
Table 4.1 for a non-linear molecule

q2

q1

D s1

s2

M
3
2

2

M
3
2

1

�
IA2

IB2
IC2

� 1
2

�
IA1

IB1
IC1

� 1
2

3N�6Y
i

 
1 � e

�h�1i = kT

1 � e�h�2i = kT

!
e

1
2 h

3N�6P
i

.�1i��2i/=kT
(4.75)

For a linear molecule

q2

q1

D s1

s2

M
3
2

2

M
3
2

1

I2

I1

3N�5Y
i

 
1 � e

�h�1i = kT

1 � e�h�2i = kT

!
e

1
2 h

3N�5P
i

.�1i��2i/=kT
(4.76)

Equation 4.76 is written for a non-linear molecule with 3N�6 vibrations. For linear
molecules (including diatomics), there are 3N � 5 vibrations, two of the moments
of inertia, say IA and IB, are equal, and there is no third moment of inertia. Using
u D h�=kT, we obtain a more compact formula.

.s2= s1/ q2=q1 D M
3
2

2

�
IA2
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� 1
2

M
3
2

1

�
IA1

IB1
IC1

� 1
2

Y
i

�
1 � e�u1i

1 � e�u2i

�
e

1
2

.u1i�u2i/ (4.77)

In Chapter 3, a formula was presented which connects the normal vibrational
frequencies of two rigid-rotor-harmonic-oscillator isotopomers with their respective
atomic masses mi, molecular masses Mi and moments of inertia (the Teller–Redlich
product rule). If this identity is substituted into Equation 4.77, one obtains
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D
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�
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2 Y

i
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�
1 � e�u1i

1 � e�u2i

�
e

1
2 .u1i�u2i/ (4.78)

where the first product is taken over all the atoms in the two isotopomers and the sec-
ond product is taken over the 3N� 6.3N� 5/ normal mode vibrational frequencies.

4.6.4 Bigeleisen and Mayer; The Reduced Isotopic Partition
Function Ratio

Bigeleisen and Mayer (Historical Vignettes 4.1 and 4.2), recognizing that the term in
Equation 4.78 involving isotopic masses would always cancel in the calculation of
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[Historical Vignette 4.1] Jacob Bigeleisen (1919–present) was educated at New York University
(AB 1939), Washington State University (MS 1941), and the University of California at Berkeley
(Ph.D. 1943). After receiving his degree he joined the Manhatten Project where, together with
Maria Mayer he worked out the Bigeleisen–Mayer formalism for the theory of isotope effects.
Later Bigeleisen held appointments at the University of Chicago, Brookhaven National Labora-
tory, Rochester University, and the State University of New York at Stony Brook. In addition to
his work on the Bigeleisen–Mayer theory he has made many important theoretical and experimen-
tal contributions to kinetic isotope effects, condensed phase isotope effects, isotope separation,
etc. He has been instrumental in promoting the development of isotope science by his numerous
writings and by organizing the first Gordon Conference on the Chemistry and Physics of Isotopes
in 1954 and encouraging its continuation for now more than a half-century. (Photo courtesy of
J. Bigeleisen)

an isotope effect on an equilibrium constant (since the heavy/light isotopic substitu-
tion in both pairs of isotopomers must be identical), introduced the reduced isotopic
partition function ratio .s2=s1/ f,
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.u1i�u2i/ (4.79)

D .PF/.EXC/.ZPE/ (4.79a)

Equation 4.79a points out the Reduced Isotopic Partition Function Ratio (RPFR)
may be considered as the product of three factors: the product factor (PF), the ex-
citation factor (EXC), and the zero-point energy factor (ZPE). Note that in terms of
RPFR’s, the isotope effects corresponding to Equations 4.65, 4.66, and 4.68 can be
written

K1

K2

D K3 D (symmetry number factor) �

�
s2

s1

f

�
ŒAD=AH


�
s2

s1

f

�
ŒCD=CH


(4.80)



4.6 Evaluation of Partition Functions, q, and Isotope Effects on Partition Functions 95

[Historical Vignette 4.2] Maria Goeppert Mayer (1906–1972, Nobel Prize in Physics 1963)
studied physics at the University of Göttingen (Ph.D., 1930). In 1930 she married the American
chemical physicist Joseph E. Mayer and accompanied him to the United States. During the 1930s
she was at Johns Hopkins University as a volunteer associate. In 1939 she received an appointment
in chemistry at Columbia University, and worked on the separation of uranium isotopes for the
Manhattan project (1939–1945). It was during this period that she collaborated with J. Bigeleisen
in developing the molecular theory of isotope effects. After the war Mayer’s interests centered
increasingly on nuclear physics. In 1945 she became a volunteer professor of physics in the Enrico
Fermi Institute for Nuclear Studies at the University of Chicago receiving a regular appointment as
full professor in 1959. She moved to the University of California at San Diego in 1960 where she
spent the balance of her career. She was instrumental in developing the shell model of the nucleus,
and it is for that work she shared the 1963 Nobel Prize in Physics. It is worth mentioning that
even as late as 1945 Maria G. Mayer remained a volunteer research associate by which time she was
a quite distinguished scientist. This historical detail calls attention to the shameful policies in US
academia which then severely limited opportunities for women. (Photo credit: www.wikipedia.org,
public domain)

where the symmetry number factor is given by

�
sAH

sAD

�
�

sCH

sCD

� (4.80a)

From Equation 4.79, it is then recognized that the isotope effect is given by a sym-
metry number factor and terms which depend only on the normal mode vibrational
frequencies. There are no terms in the equality that depend explicitly on atomic and
molecular masses or on moments of inertia.

The introduction of the concept of the reduced isotopic partition function ra-
tio had a profound effect on the development of the study of isotope effects.
Equation 4.79 in which no reference is made to moments of inertia appears much
less formidable than Equation 4.77 and focuses the reader’s attention on the isotope
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effect on the frequencies and on the molecular force constants which underlie these
frequencies. As has been pointed out repeatedly, isotope effects reflect force con-
stant differences at or near the position of isotopic substitution. It is well to keep
in mind that the reduced isotopic partition function ratio for an unbound atom is
exactly unity. Thus, for example, neglecting symmetry number effects, the reduced
isotopic partition function ratio for CH3D=CH4 is the equilibrium constant for the
reaction CH4CD D CH3 DCH. Nevertheless, when comparing calculations based
on reduced partition function ratios (s/s)f with experimental observation it is impor-
tant to keep in mind that one must multiply the theoretical value by the symmetry
number factor (Equation 4.80a).

4.6.5 Limiting Values for the Isotope Effects

4.6.5.1 The High Temperature Limit

As pointed out in Chapter 3, the vibrational frequencies �i of an isotopomer pair
obey the rule �1i � �2i. Since e�x D 1 � x for x sufficiently small, it is clear that at
high temperature PF and EXC cancel exactly. At sufficiently high temperature the
exponent in ZPE will become small. ZPE will also approach unity. Consequently
(PF)(EXC) also approaches unity.

lim

ui ! 0

Y
i

u2i

u1i

�
1 � e�u1i

1 � e�u21

�
D
Y

i

u2i

u1i

u1i

u2i
D 1 (4.80b)

and, overall, (s2=s1)f also approaches unity at high temperature. The isotope effect
(K1=K2, Equation 4.80) can be represented by a ratio of q2=q1 values and at limiting
high temperature will be given by a ratio of symmetry numbers. The symmetry num-
ber ratio is a purely statistical factor which insures correct counting of probabilities.
It will not lead to any enrichment of isotopes and therefore is recognized as a “non-
effect”. Thus, there are no isotope effects at sufficiently high temperature. As we
already know, quantum mechanics goes over into classical mechanics in the high
temperature limit (when the spacing between quantum energy states becomes small
compared to kT). Thus, in the formulation above isotope effects are quantum effects.
In the following section, it will be pointed out that this result is not a consequence of
the rigid-rotor, harmonic oscillator, ideal gas approximation but is a general truth.

4.6.5.2 The Low Temperature Limit: The ZPE Approximation

As temperature falls u D hc�=kT increases,3 .1 � e�u/! 1. The harmonic oscilla-
tor partition function for each frequency simplifies, qHO D e�u=2=.1�e�u/! e�u=2

3 See footnote 2.



4.7 The High Temperature Limit 97

The zero point energy approximation

u � (hcν/kT)
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Fig. 4.1 The zero point energy or low temperature approximation: As temperature drops and u
increases above u � 4 the harmonic oscillator partition function Q (Harm. Osc.) is better and better
approximated by the zero point energy term, exp.�u=2). For a typical CH stretching frequency,
� D 3000 cm�1, u � 4 at 1050 K and it is reasonable to use the ZPE approximation for that
frequency at temperatures below � 1000 k

with concomitant simplification in the reduced partition function ratio, .s2=s1/f D
.PF/.EXC/.ZPE/! ….u2i=u1i/.expŒ�.u2i � u1i/=2
/. No upper vibrational levels
are populated and we refer to this condition as the “zero point energy approxima-
tion”. The approach to conditions where the ZPE approximation is valid is shown in
Fig. 4.1. Note that at very low temperatures ZPE isotope effects can get very large.
In fact as T!0 they increase without limit.

4.7 The High Temperature Limit: Generalization,
(No Classical) Isotope Effects on Chemical Equilibrium

In 1933, J.G. Kirkwood explicitly showed that the canonical partition function Q
for a system of eN monatomic particles reduces to an integral over phase space in
the limit of high temperature (Equation 4.81). The result corresponds to classical
mechanics (i.e. the spacing between energy levels is small compared to kT)

QC D 1

eNŠh3eN
Z
: : : : : :

Z
e�H=kTdp1 : : : ::dpeNdq1 : : : :dqeN (4.81)

Note the subscript C to indicate classical (or high temperature). In Equation 4.81
the p’s are momenta and the q’s the associated coordinates (not to be confused with
q’s previously used to symbolize molecular partition functions). In Cartesian coor-
dinates dp1dq1 D dpx1

dpy1
dpz1

dx1dy1dz1 with x1; y1; z1, the coordinates of atom
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1 and px1
; py1

; pz1
, the corresponding momenta used to express the kinetic energy

KE of atom 1. H is the classical Hamiltonian function for the eN atom system with
kinetic energy K.E. (expressed in terms of Cartesian momenta) and V the inter-
atomic potential (expressed in Cartesian coordinates), While Kirkwood originally
wrote this equation for the case of a noble gas, this system will be considered here
to be a system of eN N-atomic molecules so that then the integration will be over
3eNN coordinates and momenta, and the divisor h appropriately needs an exponent
3eNN. The Hamiltonian function is expressed as

H D K:E:C V D
3NeNX

i

p2
xi
C p2

yi
C p2

zi

2mi
C V D TC V (4.82)

The space of the integration is referred to as phase space. The justification of the
integration over phase space in order to calculate “high temperature” partition func-
tions is beyond the scope of this book but discussion addressed to readers of various
backgrounds may be found in many works ranging from beginning physical chem-
istry texts to advanced monographs on statistical mechanics. Briefly, it is expected
that the integration over the p’s and q’s considering H to be a continuous function
of these variables (in a classical sense), and expressing the fundamental volume of
phase space in terms of Planck’s constant raised to an appropriate power, will yield
the correct value of the partition function at temperatures large enough that the spac-
ing between energy levels is small compared to kT; k is the Boltzmann constant and
T the absolute temperature.

The factor 1=eNŠ included in Equation 4.81 corrects the classical integrals for
over-counting. It is necessary because the purely classical derivation ignores the
quantum mechanical principle of indistinguishability. The classical integration is
over the space of every particle without any restriction. However, indistinguishabil-
ity means when integrating over phase space, which is the equivalent of summing
over quantum states, one is over-counting by a factor of eNŠ which is the number of
ways of arranging eN distinguishable objects. (e.g., for eN D 2 identical objects the
classical integration separately “counts” the arrangements “ab” and “ba”, which is
incorrect according to quantum mechanical indistinguishability). The factor 1=eNŠ
also appears in the canonical partition function (Equation 4.53) derived similarly.

As noted in the discussion leading to Table 4.1, when calculating molecular par-
tition functions, one needs the translational, rotational, and vibrational parts. For
translation the spacing between energy levels is very small compared to kT and one
can obtain the classical partition function by integrating over quantum numbers and
subsequently dividing by eN as noted above to obtain the canonical partition func-
tion. Also, the spacing between rotational states is small compared to kT around
room temperature and above (except for hydrogen gas and its isotopomers), but
symmetric molecules may have two or more equivalent orientations and it is nec-
essary to correct the classical partition function for rotation for over-counting by
inserting a factor 1/s, where s is the symmetry number of the molecule. Sym-
metry numbers and symmetry number isotope effects are considered in detail in
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Section 4.9. To sum up, Equation 4.81 can be generalized to molecules by divid-
ing by a symmetry number factor (see Section 4.9). Equation 4.81 is the classical
analogue of the quantum canonical partition function. An important finding is that
the elemental volume in phase space is h3 per particle. The division by h3eNN makes
the integral dimensionless. The exponent in Equation 4.80, for an ideal gas of eN
molecules (or eN monatomic particles) is a sum of eN classical Hamiltonian func-
tions (KE C V), one for each molecule with no interaction terms between different
molecules (ideal gas). The assumption of gas ideality immediately leads to the sep-
aration of the integral of Equation 4.81 into a product of eN integrals, one for each
molecule. Comparison with Equation 4.53 leads to the identification of the classi-
cal molecular partition function qi classical corresponding to the classical canonical
partition function of Equation 4.83,

qi;classical D .1=si/.1=h3N/

Z
e�Hi=kTdxi;1dyi;1

: : : :dyi;Ndzi;Ndpx;i;1dpy;i;1dpz;i;1 : : : :dpy;i;Ndpz;i;N (4.83)

Here Hi is the Hamiltonian function for one N atomic molecule (i) and si is its sym-
metry number. One might have expected this result immediately from the Kirkwood
formulation for the classical canonical partition function. Hi is a function of the 3N
Cartesian momenta and the 3N Cartesian coordinates of molecule i.

Equation 4.83 can be straightforwardly applied to the calculation of the isotopic
partition function ratio q2=q1, needed for the calculation of classical isotope effects
on equilibrium constants. The use of the Born–Oppenheimer approximation that the
potential V is independent of nuclear mass yields a very simple result. One recog-
nizes that the mass independent potential function V does not depend on momenta,
and the kinetic energy does not depend on coordinates. Consequently each of the
phase space integrals factors into a kinetic energy integral over momenta and a po-
tential energy integral over coordinates, and moreover, the potential energy integral
is the same in both the numerator and denominator so this integral cancels in the
ratio. Thus, after introducing the relevant symmetry numbers into Equation 4.83,
the ratio of the partition functions for molecular systems with N atoms per molecule
becomes

q2;C

q1;C
D s1

s2

R
: : : ::

R
e�KE.1/=kTdp1 : : : dp3NR

: : : ::
R

e�KE.2/=kTdp1 : : : dp3N

(4.84)

Here KE(1) and KE(2) are classical kinetic energy expressions for isotopomer 1 and
isotopomer 2 respectively, each containing terms for the kinetic energy of each atom
in each of the three coordinates. For N-atomic molecules there are three Cartesian
momenta for each atom, 3N Cartesian momenta for each molecule, and conse-
quently 3NeN Cartesian momenta for the eN molecule system. The integrals in the
numerator and denominator can thus be written as a product of 3 integrals of the type

Z 1
�1

e�p2

=2mkTdp D
�Z 1
�1

e�p02=2kTdp0
�

m1=2 (4.85)
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by setting p2=m D p02. All the integrals
�R1
�1 e�p02=2kTdp0

�
will cancel between

numerator and denominator and one finally obtains

q2;C = q1;C D .s2 = s1/

NY
iD1

.m2;i=m1;i/
3=2 (4.86)

where m1i and m2i refer to the atomic masses in isotopomers (1) and (2) respectively.
This result is completely independent of the form of the isotope independent Born–
Oppenheimer potential for nuclear motion. It does not require the assumption of
harmonic forces. For a simple illustration apply Equation 4.86 to two isotopomers
which differ only by substitution of one H by D so that (deferring consideration of
symmetry number effects to a later section where it will be shown that symmetry
effects do not lead to isotopic enrichment or depletion) q2=q1 D .mD=mH/

3=2 for
the eN atom molecule. It follows from Equation 4.86 that the isotope effect on the
Helmholtz free energy of eN molecules or monatomic particles is

.A1 � A2/C D �eNkT ln.q1;C=q2;C/ D eNkT ln

�
q2;C

q1;C

�
(4.87)

so

.A1 �A2/C D eNkT ln

�
mD

mH

�3=2

D 3

2
nNA kT ln

mD

mH
(4.88)

where NA is Avogadro’s number and n is the number of moles in eN molecules.

Since the chemical potential, �, equals
@A

@n
, it follows the difference between the

chemical potential of two isotopomers which differ by replacing one hydrogen by a
deuterium is independent of the molecular structures of the molecules involved. This
result means that �A will be zero (and Keq D 1) in the limit of classical mechanics
for any such chemical equilibrium, for example

AHC BD D ADC BH (4.89)

The statement applies not only to chemical equilibrium but also to phase equilib-
rium. It is obviously true that it also applies to multiple substitutions. Classically
isotopes cannot be separated (enriched or depleted) in one molecular species (or
phase) from another species (or phase) by chemical equilibrium processes. State-
ments of this truth appeared clearly in the early chemical literature. The previously
derived Equation 4.80 leads to exactly the same conclusion but that equation is lim-
ited to the case of an ideal gas in the rigid rotor harmonic oscillator approximation.
The present conclusion about isotope effects in classical mechanics is stronger. It
only requires the Born–Oppenheimer approximation.
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4.7.1 Further Remarks, RRHO Ideal Gas

It is useful to rewrite Equation 4.78 as
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The second product is over the 3N�6.3N�5/ normal mode frequencies of the ideal
gas harmonic molecule to which Equation 4.78 applies. Thus the product over vibra-
tions Equation 4.90 is indeed the quantum mechanical contribution to the molecular
partition function for the ideal gas.

The result (Equation 4.90) could have been derived more simply. It has been
emphasized that the quantum mechanical contribution to the partition function ra-
tio arises from the quantization of vibrational energy levels. For the molecular
translations and rotations quantization has been ignored because the spacing of
translational and rotational energy levels is so close as to be essentially continuous
(�©=kT� 1).

Now look at the partition function for each normal mode of vibration (Table 4.1)

qharmonic D 1

1 � e�u
e�u= 2 (4.91)

The classical vibrational partition function can be found by letting the temperature
go to infinity. This means that we take the limit of Equation 4.91 as u ! 0.u D
h�=kT/.

lim
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!
D 1

1 � .1 � u/
D 1

u
(4.92)

where the Taylor expansion of e�x has been used for x vanishingly small The quan-
tum effect on the molecular vibrational partition function is found by taking the ratio
q2=q1

�
q2

q1

�
quantum effect

D
.3N � 5/

3N � 6Y
i

�
u2i

u1i

�
1 � e�u1i

1 � e�u2i
e.u1i�u2i/= 2 (4.93)

This result indicates that (s2=s1)f (compare Equations 4.78 and 4.93) is just the
quantum effect on the molecular partition functions of the normal mode vibrations.
This result has now been derived without the explicit use of the Teller–Redlich
product rule.

Considerations like the above led the German statistical mechanician L. Waldman
independently to an equation similar to the (s1=s2)f equation of Bigeleisen and
Mayer. The foregoing can be regarded as an independent proof of the Teller–Redlich
product rule but this statement depends on the assumption of no rotational–
vibrational interaction.
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4.8 The First Quantum Correction

In the previous section, it was shown that (s1=s2)f goes to unity at high temperature
when u tends to zero as the temperature increases. Thus, at high temperature we
replace e�u by 1 and (1� e�u) by u. If an additional term is carried in the expansion
for e�u when u is very small, one obtains a deviation of (s1=s2)f from unity which
scales as h2 and this term gives the first order correction to the classical mechanical
value of (s1=s2)f, which is unity.

The first quantum correction is deduced by recognizing that for small u

e�u D 1 � uCu2

2
� u3

6
C (4.93a)
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Thus to order u2, for small u (high temperature) one obtains
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Thus the first correction to the classical statistical mechanics at high temperature
goes as h2. There are higher order corrections. The result obtained here is iden-
tical to that found by J. Kirkwood for a harmonic oscillator. The approach to the
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The temperature dependences of 
u'e–u'/2/(1-e–u'), ue–u/2/(1-e–u) and the 
reciprocal of their ratio (s/s')f for u = u'/21/2
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Fig. 4.2 The temperature dependences of u0e�u0=2=.1�e�u0

/, ue�u=2=.1�e�u/ and the reciprocal
of their ratio (s=s0/f for u D u0=21=2
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Fig. 4.3 The behavior of (s=s0/f D .s2=s1/f at high temperature

u2=24 high temperature approximation is illustrated in Figs. 4.2 and 4.3 for the case
�2

1=�
2
2 D �02=�2 D 2. Here, for future convenience, we have introduced (primed/

unprimed) = (light/heavy) to supplement the (subscript1/subscript2)D (light/heavy)
notation we have been using to this point.
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One can simplify Equation 4.95 and obtain a very interesting result. We previ-
ously obtained the normal mode vibrational frequencies �i by diagonalization of
the matrix of the harmonic force constants in mass weighted Cartesian coordinates
(Chapter 3). These force constants Fij were obtained from the force constants in
Cartesian coordinates fij by using

Fij D fijp
mimj

(4.96)

The fij’s, the force constants in ordinary Cartesian coordinates, are the ones obtained
from the Born-Oppenheimer potential, and are independent of isotopic substitu-
tion. Remember that the mi’s in Equation 4.96 are the masses of the atoms in the
molecule.

The (3N � 6) non-zero eigenvalues ƒi of the matrix F are related to the normal
mode vibrational frequencies by

ƒi D .2��i/
2 (4.97)

There is an important theorem in matrix algebra which states that the sum of the
eigenvalues of a matrix is equal to the sum of the diagonal matrix elements. Thus

3N�6X
i

ƒi D
3N�6X

i

4�2�2
i D

3NX
i

fii

mi
(4.98)

Remember now that the numbering of the subscripts in Fij corresponds to Cartesian
coordinates with 1, 2, 3 corresponding to x, y, z of atom 1; 4, 5, 6 corresponding to
x, y, z of atom 2; etc.; with 3N � 2, 3N � 1, 3N corresponding to x, y, z of the Nth
atom. We then obtain the important sum rule for frequencies (previously derived
similarly (Equation 3.51))

4�2

3N�6X
i

�2
i D

3N�6X
i

�
fxx C fyy C fzz

�
i

mi
(4.99)

where fxx, fyy, and fzz are the diagonal Cartesian force constants for the displacement
x2, y2, and z2 of the ith atom from the equilibrium nuclear configuration.

4.8.1 Application to an Equilibrium

We have seen that Equation 4.95 for (s2=s1)f involves the difference between the
sums of the squares of the frequencies for two isotopomers. Consider now two iso-
topic atoms X’ and X“ with masses m’ and m“ and two isotopomers AX’ and AX“

with m“ > m’. Then, from Equations 4.95 and 4.99, according to the first quantum
correction
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In Equation 4.100, .fxxC fyyC fzz/
� is the sum of the three diagonal Cartesian force

constants at the position of isotopic substitution, this sum being isotope independent.
In addition now consider a second set of isotopomers BX’ and BX“. Then we

obtain a second equation similar to Equation 4.100 for (s2=s1)f for this pair of iso-
topomers and can write the equilibrium constant for the isotopic exchange reaction

AX’ C BX“ , AX“ C BX’ (4.101)

as
K D .s2=s1/ f

�
AXˇ=AX˛

�
=.s2=s1/f

�
BXˇ=BX˛

�
(4.102)

In the first quantum correction, we find, since

1C x

1C y
� 1C x � y (4.103)

for small x and y, that K can be written as

KD1C 1

24

�
h

kT

�2
1

4 2
Œ.fxx C fyy C fzz/

�
AX � .fxx C fyy C fzz/

�
BX


�
1

m’

� 1

m“

�

(4.104)

Thus, in the first quantum correction approximation, the isotope effect reflects the
change in the force constants at the position of isotopic substitution between the
two molecules involved in the isotopic fractionation. Moreover, the fractionation
is such that the light atom enriches in the molecular species that has the smaller
force constant. While this statement has been derived here only at high temperature,
it can be generalized to state that “isotope effects are probes for force constant
changes at the position of isotopic substitution.” That is what isotope effects
are all about.

4.8.2 Polynomial Expansions of (s2=s1)f: Orthogonal
Polynomial Methods

Bigeleisen and Ishida (BI) (see reading list) have explored the use of expansion
methods to evaluate RPFR. The Bernoulli expansion is an infinite series in even
powers of frequencies and is expressed
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ln
s2

s1

f D
X
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1X
jD1

.�1/jC1 B2j�1•u
2j
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2j .2j/Š

D
X

i

�
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i

24
� •u2

i

2880
C •u2

i

181440
� � � �

�
.u1 < 2 / (4.105)

where •u2j
i D .u2j

1i�u2j
2i/ and the B’s are Bernoulli numbers (B1 D 1=6, B2 D 1=30,

B3 D 1=42, etc.) and the sum over i refers to frequencies. The first term is just that
found in Equations 4.94 and 4.95. Equation 4.105 is of special interest because it
provides means for calculating contributions to the thermodynamic functions and
their isotope effects from shifts in individual force constants without solving the
secular equations (by methods outlined in Chapter 3). The physical origin of the
isotope effects is thus directly expressed. The sum of u2j

i over all normal mode fre-
quencies is equal to the trace of a matrix Hj obtained by multiplying the Hamiltonian
H by itself (j � 1) times. Equation 4.105 is an example of a Taylor expansion but,
unfortunately, is limited to ui < 2 . BI point out that extension of this approach to
ui > 2  is made possible by using orthogonal Jacobi and Chebyshev polynomial ex-
pansions as weighting functions. Although this approach to evaluating (s2=s1)f was
thoroughly explored in the late sixties and early seventies it is rarely employed at
present because of the convenience and high accuracy of modern computer methods
for solving the secular equations and evaluating complete expressions for isotopic
partition function ratios.

4.9 Symmetry Numbers

4.9.1 Symmetry Numbers; Diatomic Molecules

We now explore the origins of the symmetry number, s, employed in the parti-
tion functions developed in Section 4.6 and listed in Table 4.1. Quantum mechanics
requires the wave function for any system containing identical particles to either
remain unchanged or to change sign if one interchanges any two of the identical
particles. There are two physically distinct cases. If the wave function is unchanged
then §.1; 2/ D §.2; 1/ and we say that §.1; 2/ is symmetric with respect to the two
particles which were exchanged. Particles with symmetric wave functions (Bosons)
include photons and all other particles with integral spin. If the wave function
changes sign then §.1; 2/ D �§.2; 1/ and we say that §.1; 2/ is antisymmetric.
Particles with antisymmetric wave functions (Fermions) include electrons, protons,
neutrons and all other particles with half-integer spin.

We begin by considering the diatomic molecule as an example. The overall sym-
metry of the molecular wave function must include the properties of the nuclear
wave function when the nuclei are permuted within the molecule. For an heteronu-
clear diatomic molecule with nuclei a and b the only permutation of nuclei allowed
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is the identity operation. There are a number closely spaced nuclear spin wave
functions ga D 2Ia C 1 and gb D 2Ib C 1 where Ia and Ib are the nuclear spins
of the two atoms. For the molecule, the combined wave nuclear spin wave func-
tion is symmetric (since the identity operation does not give a change in sign),
and yields a corresponding degeneracy in the nuclear spin partition function, ga gb.
For an homonuclear diatomic each individual nucleus has the same wave function
and degeneracy as before, but for the combined nuclear spin wave function both
antisymmetric and symmetric combinations are possible. The antisymmetric com-
binations are catalogued as [§a.a/§s.b/ � §s.a/§a.b/], there are [.g � 1/g=2 of
these antisymmetric combinations, while the possible symmetric combinations are
[.§a.a/§s.b/C§s.a/§a.b//, there are [.g�1/g=2 of these], and (§as.a/§s.b/ [(g of
these], for a total of [.gC1/g=2] symmetric combinations. The total number of pos-
sible wave functions of both types (the degeneracy) is then g.g�1/=2Cg.gC1/=2D
g2 .Dga gb/, which is the same as for the heteronuclear case.

We must now combine the nuclear wave functions with the rest of the molecular
wave function to generate a total wave function which is antisymmetric with respect
to exchange of Fermions. For Bosons the total wave function must be symmetric. To
do so we write § D §TRANS§VIB §ROT§NUC�SPIN and recognize that both the vi-
brational and translational wave functions are symmetric. Rotational wave functions
with even quantum numbers J D 0; 2; 4; 6 : : : : are symmetric and those with odd
J D 1; 3; 5 : : : : are antisymmetric with respect to the nuclear coordinates. It follows
that homonuclear diatomic molecules with anti-symmetric nuclear spin wave func-
tions (nuclei with half-integer I D 1=2; 3=2: : :) can combine only with symmetric
rotational functions (even J D 0; 2; 4 : : :), while those with symmetric nuclear spin
wave functions (even I) can combine only with antisymmetric rotational functions
(odd J D 1; 3; 5 : : : :). The partition function for rigid body rotation of a diatomic
molecule, including effects of nuclear spin for a homonuclear diatomic molecule
with nuclei of half integer spin is,

qNS;ROT D
�
1

2
g.g � 1/

� 1X
JD0;2;4::

.2JC 1/ expŒ�J.JC 1/‚ROT=T


C
�
1

2
g.gC 1/

� 1X
JD1;3;5::

.2JC 1/ expŒ�J.JC 1/‚ROT=T
 (4.106)

where ‚ROT D h2=.8 2Ik/. For homonuclear diatomic molecules of integer spin

qNS;ROT D
�
1

2
g.gC 1/

� 1X
JD0;2;4::

.2JC 1/ expŒ�J.JC 1/‚ROT=T


C
�
1

2
g.g � 1/

� 1X
JD1;3;5::

.2JC 1/ expŒ�J.JC 1/‚ROT=T
 (4.107)
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and, finally, for heteronuclear diatomics

qNS;ROT D gAgB

1X
JD0

.2JC 1/ expŒ�J.JC 1/‚ROT=T
 .heteronuclear/ (4.108)

where ‚ROT D h2=.8 2Ik/.
For the case where the temperature is large and ‚ROT << T, which is the high

temperature or classical limit, the sums over even and odd rotational quantum num-
bers become equal because the important terms in the sum involve large values of J.
Therefore

1X
JD0;2;4::

.2JC 1/ expŒ�J.JC 1/‚ROT=T
 D
1X

JD1;3;5::

.2JC 1/ expŒ�J.JC 1/‚ROT=T


D 1

2

1X
JD0;1;2::

.2JC 1/ expŒ�J.JC 1/‚ROT=T


D 1

2

T

‚
D 1

2h2
qROT;CLASSICAL (4.109)

Thus the factor 1/2 in Equation 4.109, above, arises naturally in the high temperature
(classical) limit and is just the reciprocal of the symmetry number of the homonu-
clear diatomic molecule.

Examples: We now consider examples for I = 0, 1/2, and 1.
(A) For I D 0, as it is for 16O, 18O and many other nuclei including 4He, 12C, 32S,
34S, etc, g D .2IC 1/ D 1. Using Equations 4.107 and 4.109 we obtain

qNS;ROT D
1X

JD0;2;4::

.2JC 1/ expŒ�J.JC 1/‚ROT=T


D 1

2

1X
JD0;1;2���

.2JC 1/ expŒ�J.JC 1/‚ROT=T
 D 1

sh2
qROT;CLASSICAL (4.110)

(B) For I D 1=2 as it is for H, 13C, 19F, etc., g D .2I C 1/ D 2. Using
Equation 4.110,

qNS;ROT D
1X

JD0;2;4::

.2JC 1/ expŒ�J.JC 1/‚ROT=T


C3
1X

JD1;3;5::

.2JC 1/ expŒ�J.JC 1/‚ROT=T
 (4.111)
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which using Equation 4.109 reduces at high temperature to

qNS;ROT D 4

2

T

‚
D 1

2h2
qROT;CLASSICAL D 1

sh2
qROT;CLASSICAL (4.112)

because from Equation 4.108 in the high temperature limit for distinguishable (clas-
sical) particles

qNS;ROT D gAgB
T

‚
D 4 T

‚
(4.112a)

For H2 with its small moment of inertia the rotational level spacing is signif-
icant compared to kT even at room temperature and above. The two terms in
Equation 4.110 thus refer to hydrogen molecules with significantly different phys-
ical properties. The first term on the right stemming from the combination of
anti-symmetric nuclear spin and symmetric rotational wave functions refers to para
hydrogen, while the second derived by combining symmetric nuclear spin and anti-
symmetric rotational wave functions refers to ortho hydrogen. Note the ratio of
statistical weights in the classical high temperature limit is (ortho/para)HYDROGEN D
3=1, while at very low temperature the para form predominates. The ortho/para no-
tation follows the rule ortho/para D (larger statistical weight)/(smaller statistical
weight).

(C) For I D 1, as it is for D, 6Li, 14N and other atoms, g D .2IC 1/ D 3. From
Equation 4.107

qNS;ROT D 6
1X

JD0;2;4::

.2JC 1/ expŒ�J.JC 1/‚ROT=T


C3
1X

JD1;3;5::

.2JC 1/ expŒ�J.JC 1/‚ROT=T
 (4.113)

which at high temperature reduces to

qNS;ROT D 9

2

T

‚
D 1

2h2
qROT;CLASSICAL D 1

sh2
qROT;CLASSICAL (4.113a)

since from Equation 4.108 in the high temperature limit

qNS;ROT D gAgB
T

‚
D 9 T

‚
(4.114)

Notice from Equation 4.113 for I D 1 (deuterium) it is the combination of the
symmetric nuclear spin with the symmetric rotational functions which has the higher
statistical weight. At high temperature (ortho/para)DEUTERIUM D 2=1, and at low
temperature the ortho form predominates.

For each of the diatomic examples above, examples which include all pos-
sible combinations of symmetric or anti-symmetric nuclear spin wave functions
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with symmetric or anti-symmetric rotational wave functions, for nuclei with both
half-integer and integer spins, the symmetry number used in the relation relating
the classical and quantum mechanical partition functions has been shown to arise
naturally by calculating the degeneracies of the wave functions comparing distin-
guishable and indistinguishable particles.

From the quantum mechanical standpoint the appearance of the factor 1/2 D 1/s
for the diatomic case means the configurations generated by a rotation of 180ı are
identical, so the number of distinguishable states is only one-half the classical total.
Thus the classical value of the partition function must be divided by the symmetry
number which is 1 for a heteronuclear diatomic and 2 for a homonuclear diatomic
molecule.

The case of polyatomics, which is considered in more detail below, follows anal-
ogously. The point to keep in mind is that the symmetry restricts the number of
distinguishable states. The symmetry number is the number of equivalent (indistin-
guishable) positions into which a molecule can be carried by rigid body rotation.
For example s D 12 for CH4 since the molecule can be held by a CH bond and
rotated into three equivalent positions, and there are four CH bonds. Similarly for
benzene s D 12 since there are six indistinguishable positions for rotation about
an axis perpendicular to the plane of the molecule (and through its center), and six
more when the molecule is flipped over.

The development above, which is similar to that found in many physical chem-
istry and statistical thermodynamic texts, is modeled closely after Berry et al. (Berry,
R. S., Rice, S. A. and Ross, J. Physical Chemistry, Wiley, New York (1980)).

4.9.2 Symmetry Numbers Continued, Comments, Polyatomics

Proceeding in the spirit above it seems reasonable to inquire why s is equal to
the number of equivalent rotations, rather than to the total number of symmetry
operations for the molecule of interest. Rotational partition functions of the diatomic
molecule were discussed immediately above. It was pointed out that symmetry re-
quirements mandate that homonuclear diatomics occupy rotational states with either
even or odd values of the rotational quantum number J depending on the nuclear
spin quantum number I. Heteronuclear diatomics populate both even and odd J
states. Similar behaviors are expected for polyatomic molecules but the analysis of
polyatomic rotational wave functions is far more complex than it is for diatomics.
Moreover the spacing between polyatomic rotational energy levels is small com-
pared to kT and classical analysis is appropriate. These factors appreciated there is
little motivation to study the quantum “rules” applying to individual rotational states
of polyatomic molecules.

For practical purposes the rules for diatomic molecules concerning even and odd
J reduce to the statement that for homonuclear diatomic molecules the molecular
partition function must be divided by two (s D 2), while for heteronuclear diatomic
molecules no division is necessary (s D 1). The idea of the symmetry number, s,
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goes back to Ehrenfest and Trekel in 1920. If one rotates a symmetric vibration-
less molecule around some axis in such a way that the only difference between
the original position of the molecule with respect to this axis system is identical
to the original except that the (artificial) numbering of equivalent atoms will have
changed, then the point where the rotated molecule is located cannot be regarded
as a new point in phase space, since the molecule is indistinguishable from that
same molecule before it was rotated. Thus, as in the discussion on phase space
in Section 4.7, integration over all arrangements in phase space without restriction
results in overcounting. Consequently the integral has to be multiplied by 1/2 or
divided by 2 to compensate.

If (for a polyatomic) there are additional rotations that take the molecule into
itself, then each rotation creates another point in phase space which in the quantum
world is equivalent to the original point. Thus if there are s rotations that take the
molecule into itself (including the identity “leave it alone” operation E of group
theory) then one must divide the phase space integral by s. Spectroscopists and
others usually designate the symmetry number as sigma (¢). In isotope chemistry,
however, the symmetry number is referred to as “s” following the convention set
by Bigeleisen and Mayer. Division by s is required even if the summation over
individual quantum levels is replaced by integration (a procedure that is often used
to obtain the high temperature limit for rotational partition functions). There is a
large amount of evidence based on agreement between theoretical and experimental
thermodynamic quantities which shows this procedure is valid.

How does one determine the symmetry number? As illustrated in the section
above it is equal to the number of rotations that take the molecule into itself. Another
and very attractive method is based on the use of group theory. Students who have
taken a course in inorganic chemistry have been introduced to group theory. If the
reader is uncomfortable with this topic the next few paragraphs can be skipped,
especially since this method of finding molecular symmetry numbers need not to
be used for finding the ratios of symmetry numbers, s1=s2, required to understand
isotopomer fractionation.

Use will be made of the character table for the point group of symmetry opera-
tions which take the defining points of the group into each other. All that we require
from the character table is the number of rotations in the point group. For example,
for methane the point group Td consists of 24 elements including E the identity or
“leave it alone” operation, 8 threefold rotation axes (8C3), 3 twofold rotation axes
(3C2), 6 planes of reflection (6 ¢), and 6 fourfold rotation axes followed by a reflec-
tions in planes perpendicular to these axes (6S4). Including the E operation there are
twelve elements in the rotation subgroup. Thus the symmetry number for methane
CH4 is 12. The point group for CH3D is C3V. Including the E operation there are
three rotational operations in this group and the symmetry number of CH3D is 3.
Herzberg’s well known text “Infrared and Raman Spectroscopy” has a list of sym-
metry numbers for various molecules; this table can easily be reproduced from the
character tables included in the book. The same information is available in many
other places.
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4.9.3 The Determination of Relative Symmetry Numbers
for Isotopomers

As already noted in considering the chemistry of isotopes one has no need for abso-
lute symmetry numbers but only ratios of symmetry numbers. In the following the
principles of a method to calculate such ratios will be presented and then applied to
show that symmetry number factors do not lead to either depletion or enrichment
of isotopes in the classical regime. The method is based on a simple formula due
to Mayer and Mayer (reading list, 1st Ed). To appreciate their approach one must
recognize that some molecules have several, ƒ, minima of identical energy in their
Born–Oppenheimer electronic energy surface. Identical molecules in one minimum
or the other cannot be distinguished from one another. However, continuing with our
example, methane has two minima, and substitutions of three of the protons in each
minima by entities X,Y, Z forms CHXYZ molecules which are alike in most ways,
but do have different optical properties. Polarized light passing through a solution
of one or the other type rotates its plane of polarization in equal but opposite direc-
tions. The two types are mirror images of each other. All this is part of elementary
organic chemistry and will not be pursued here. If a molecule contains n1 atoms of
kind 1, and n2 atoms of kind 2 then

Q
i

niŠ permutations of these atoms are possible

and would lead to different configurations of the molecule if the atoms were distin-
guishable. However, if the symmetry number is s, only

Q
i

niŠ
s of these configurations

are different since each configuration can be transformed into s new configurations
by rotation. This leads to a simple formula which relates ƒ the number of identical
electronic minima and s the symmetry number

ƒ D
Y

i

niŠ

s
(4.115)

The numerator in this expression is the number of ways of forming RXn from n X
atoms: if the X atoms are distinguishable, and s is the number of rotations which take
the molecule into itself. For methane, symmetry point group Td, n D 4, nŠ D 24 and
s D 12. The ratio in Equation 4.115 is 24/12. Thus there are 24 methanes (assuming
distinguishable hydrogens) but there are two types, “a” and “b” of 12 molecules
each, with type “a” not being able to rotate into type “b” and vice versa. They are
mirror images. Theƒ D 2minima lead to the phenomenon of optical isomerization
for the substituted methanes.

One can rewrite Equation 4.115 to yield a formula for the symmetry number

s D
Y

i

niŠ

ƒ
(4.116)
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and using Equation 4.83

qclassical D .1=s/.1=h3N/

Z
e�H=kT

Y
N

dqjdpj D
ƒ.1=h3N/

R
e�H=kT Q

Nj

dqjdpj

Q
niŠ

(4.117)

keeping in mind that N is the total number of atoms in the molecule (here indexed j)
and ni is the number of equivalent atoms (5 and 4 in the case of CH4).

Equation 4.117 makes complete sense. One of the first things one learns in
dealing with phase space integrals is to be careful and not over-count the phase
space volume as has already been repeatedly pointed out. In quantum mechanics
equivalent particles are indistinguishable. The factor

Q
niŠ is exactly the number of

indistinguishable permutations, while ƒ accounts for multiple minima in the BO
surface. It is proper that this factor be included in the symmetry number. Since the
BO potential energy surface is independent of isotopic substitution it follows that
ƒ is also independent of isotope substitution and cannot affect the isotopic partition
function ratio. From Equation 4.116 it follows

s1

s2

D .
Q

niŠ/ISOTOPOMER1

.
Q

niŠ/ISOTOPOMER2

(4.118)

No detailed symmetry analysis is needed. Let us take a quick look at an example and
calculate the symmetry number ratio for CH3D=CH4. For CH3D n1 D 3, n2 D 1

and
Q

niŠ D .3Š/.1Š/ D 6 while for CH4 n1Š D 4Š D 24, there is no n2. Thus
sCH3D=sCH4 D 6=24 D 1=4

4.9.4 More Comments, Symmetry Numbers Do Not Lead
to Isotope Enrichment

Isotope effects on equilibria have been formulated earlier in this chapter in terms
of ratios of (s2=s1)f values, referred to as reduced isotopic partition function ratios.
From Equation 4.80, we recognize that the “true” value of the isotope effect is found
by multiplying the ratio of reduced isotopic partition function ratios by ratios of
s2=s1 values. Using Equation 4.116 one now knows how to calculate s2=s1 from
ratios of factorials. Note well that symmetry numbers only enter when a molecule
contains two or more identical atoms. Also note that at high temperature (s2=s1)f
approaches unity so that the high temperature equilibrium constant is the symmetry
number factor.

In the following an explicit mathematical proof is presented to show that symme-
try numbers factors do not lead to isotope enrichment. That result should come as no
surprise since the factor on the right hand side of Equation 4.118 can be identified as
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just the relative number of ways of forming the two isotopomers from a bath of the
isotopic atoms. It is just a statistical factor. It cannot lead to isotopic enrichment. The
proof proceeds as follows. Consider H and D substitution in a parent compound RHt

which has t identical H atoms. Consider the hypothetical equilibrium in which an
H/D isotopomer of RHt dissociates completely into atoms. It will be shown that the
high temperature ratio of isotopic atom mole fraction H/D for the isotopic atoms,
p/(1 – p), is exactly equal to this ratio in the isotopomer mix of RHt molecules,
RHt, RHt�1D, RHt�2D2, etc. Once this proof is given, the same proof applies to
another molecule MHu and its isotopomers. Consequently, if you have two sets of
isotopomers, RHt and MHu, and both are in equilibrium with a reservoir of H and
D atoms, then they must be in equilibrium with each other. The following proof is
for two isotopes, the extension to three or more isotopes is left as an exercise for
any reader who decides that such a proof is necessary. Consider the high tempera-
ture systems where all .s2=s1/ f values are unity. Consider all isotopomers of RHt

in equilibrium with each other and with all the atoms that make up the respective
molecular systems, in particular H and D atoms. Remember that, for D/H atomic
species, not only is the .s2=s1/ f value equal to unity but so is s2=s1. Consider then
the following family of isotopic exchange reactions at equilibrium

RHt�nDn C D, RHt�n�1DnC1 C H (4.119)

with n D 0; : : : ; t. The equilibrium constant for this isotopic exchange equilibrium
is given by

K D
s2

s1

f

�
RHt�n�1DnC1

RHt�nDn

�

s2

s1

f

�
D

H

� (4.120)

The symmetry number factors are derived from the reduced isotopic partition func-
tion ratio of the RHt species.

Symmetry number factor D s2

s1

D .t� n/ŠnŠ

.t � n � 1/Š .nC 1/Š D
t � n

nC 1 (4.121)

In terms of concentrations of species indicated by []’s (these may be pressures for

gas phase equilibria), the high temperature equilibrium constant is given by

K D t� n

nC 1 D
ŒRHt�n�1DnC1
 ŒH


ŒRHt�nDn
 ŒD

(4.122)

Thus,

.t� n/ ŒRHt�nDn
 D .nC 1/ ŒRHt�n�1DnC1
 ŒH
 = ŒD
 (4.123)
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Applying Equation 4.123, one finds

.t/ŒRHt
 D ŒRHt�1D
ŒH
 = ŒD
 ; .n D 0/I

.t� 1/ ŒRHt�1D
 D 2 ŒRHt�2D2
 ŒH
 = ŒD
 ; .n D 1/I (4.123a)

etc. for n D 2; 3 : : : : : : t � 1.
The H/D ratio in the RHt isotopomers is given by

.H=D/RHt D
t ŒRHt
C .t� 1/ŒRHt�1D
C .t � 2/ŒRHt�2D2
C � � �
1ŒRHt�1D
C 2ŒRHt�2D2
C 3ŒRHt�3D3
C � � � (4.124)

If one substitutes Equations 4.123a into 4.124, one immediately finds the interest-
ing result that the [H]/[D] ratio in the isotopomers of RHt�nDn is exactly equal to
the ratio [H]/[D] in the gas phase atomic species. We have thus demonstrated that
proper consideration of symmetry numbers leads to the result that the RHt species
have [H]/[D] ratios exactly the same as those for the atomic species in the high
temperature limit. QED.

4.10 Further Remarks on Temperature Dependence
of .s=s0/ f: Limiting Forms: An Example

In Section 4.8, Equations 4.78, 4.79 and Table 4.1 develop the connections between
the harmonic oscillator rigid rotor partition function and isotope chemistry as ex-
pressed by the reduced partition function ratio, RPFR D .s=s0/ f. RPFR is defined in
Equation 4.79 as the product over oscillators of ratios of the function [u exp(�u/2)/
(1 � exp(u))]

�
s=s0

�
f D …Œu exp.�u=2/=.1�exp.u//
=


u0 exp

��u0=2
�
=
�
1 � exp

�
u0
� ��

(4.79)

Here, for convenience, we have employed the (prime/unprimed) notation introduced
in Section 4.8 as substitute for Œ.subscript1 D light/ = .subscript2 D heavy/
. The
prime always refers to the more lightly substituted isotopomer. For purposes of sim-
plicity we now limit attention to the diatomic case where there is but one oscillator.

Figure 4.2 plots Œu exp.�u=2/=.1 � exp.u//
 for primed and unprimed oscil-
lators (and their ratio, .s=s0/ f for s D s0/ over a broad range of temperature
for the case u D u0=21=2. The example is thus a good approximation for di-
atomic H/D substitution, i.e. H2=D2 or HBr/DBr, etc. since for harmonic oscillators
u0=u D �0=� D .�=�0/1=2. [Recall �AB 	 .MAMB/ = .MA CMB/ so �HH 	 1=2,
�DD 	 1, �HBr 	 0:988, and �DBr 	 1:951, and to sufficient accuracy u0=u 	 21=2

in both cases.] The plots each decay exponentially from their value of unity at in-
finite temperature .u D h�=kT D 0/ approaching zero at very low temperature.
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At high temperature Equation 4.95 shows the limiting behavior of .s=s0/ f as it de-
cays to its value of unity at infinite temperature

�
s=s0

�
f D 1C�u2=24C � � � (4.95)

and Fig. 4.3 compares the complete equation (Equation 4.79) with the high temper-
ature limiting form, Equation 4.95, for our example, u D u0=21=2.

Finally in this section we turn our attention to the calculation of the isotope ex-
change equilibrium constant

H2 C 2DI D D2 C 2HI (4.125)

The vibrational frequencies and rotational constants are given in Table 4.2. To good
enough approximation u D u0=21=2 for both the H2=D2 and HI/DI pairs. Also

K D �s=s0
�

f .H2=D2/
�
=
�

s=s0
�

f.HI=DI/
�2

(4.126)

At all but very high temperatures it is necessary to employ the complete equation
because the vibrational frequencies for all these molecules are quite high. (Notice at
room temperature u .H2/ 	 21, and u(HI) 	 11). Harmonic oscillator rigid ro-
tor calculated equilibrium constants are shown in Fig. 4.4. As expected the low
temperature limiting value, while bounded, is significantly different from unity.
At extremely high temperature Equation 4.95 applies and the isotope exchange
constant is

K D 1C .1=24/.1–1=21=2/
�
�2 .H2/ –�2.HI/

�
.hc=k/2=T2 C � � �

D 1C 3:55 � 105=T2 C � � � (4.127)

That result is included in Fig. 4.4. For precise comparison with experiment harmonic
oscillator rigid rotor results should be corrected for the effects of nonclassical rota-
tion and anharmonicity. In the region of the maximum (Fig. 4.4) these corrections
(see Appendix 4.2), which are temperature dependent, lower the calculated results
by several percent. The spectroscopic data employed for the calculation reported in
Fig. 4.4 are shown in Table 4.2.

Table 4.2 Spectroscopic properties needed to calculate
Keq for Equation 4.125, H2C2DI D D2C2HI (Herzberg,
G. Spectra of Diatomic Molecules, 2nd Ed., Van Nostrand-
Rheinhold, New York 1950)

Molecule ¨e=cm�1 ¨exe=cm�1 B0=cm�1 ¢T

H2 4405.3 125.3 59.3 85.4
D2 3117.1 63.0 29.9 43.0
HI 2309.5 39.7 6.5 9.3
DI 1640.2 20.0 3.3 4.7

Herzberg uses � and ¨ to symbolize observed (anhar-
monic) and harmonic vibrational frequencies, respectively.
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Harmonic Oscillator Rigid Rotor Equilibrium Constant 
for H2 + 2 DI = D2 + 2 HI
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Fig. 4.4 Harmonic oscillator rigid rotor equilibrium constant for H2 C 2 DI D D2 C 2 HI

4.11 Transition State Theory of Isotope Effects

Isotope effects on rates (so-called kinetic isotope effects, KIE’s) of specific reac-
tions will be discussed in detail in a later chapter. The most frequently employed
formalism used to discuss KIE’s is based on the activated complex (transition state)
theory of chemical kinetics and is analogous to the theory of isotope effects on ther-
modynamic equilibria discussed in this chapter. It is thus appropriate to discuss this
theory here.

4.11.1 Fundamentals of Transition State Theory

The idea that an activated complex or transition state controls the progress of a
chemical reaction between the reactant state and the product state goes back to the
study of the inversion of sucrose by S. Arrhenius, who found that the temperature
dependence of the rate of reaction could be expressed as k D A exp .��E�=RT/, a
form now referred to as the Arrhenius equation. In the Arrhenius equation k is the
forward rate constant,�E� is an energy parameter, and A is a constant specific to the
particular reaction under study. Arrhenius postulated thermal equilibrium between
inert and active molecules and reasoned that only active molecules (i.e. those of
energy E0C�E�) could react. For the full development of the theory which is only
sketched here, the reader is referred to the classic work by Glasstone, Laidler and
Eyring cited at the end of this chapter. It was Eyring who carried out many of the
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[Historical Vignette 4.3] Henry Eyring (1901–1981) was born on a ranch in the Mormon com-
munity of Colonia Juarez, Mexico, then educated at the Universities of Arizona and California,
Berkeley. After a short stay at the University of Wisconsin, Eyring was awarded a National Re-
search Council fellowship at the Kaiser Wilhelm Institute in Berlin. His chief collaboration there
was with Michael Polanyi. Together with Polanyi he carried out the first quantum mechanical cal-
culation of the potential energy surface for the reaction H C H2 D H2 C H. This, at the time,
turned out to be a formidable problem, but by introducing clever and intuitive approximations
a surface was produced. In due course it led to Eyring’s most important scientific contribution:
the development of the notion of the activated complex and transition state theory. Eyring spent the
years 1932–1946 at Princeton University, moving in 1946 to the University of Utah as Dean of the
Graduate School. His efforts over the next 35 years established that institution as a major research
university. Eyring was a prolific and highly energetic scientist, and a writer with wide interests.
He reported on early calculations of vapor pressure isotope effects, developed the significant struc-
tures (statistical thermodynamic) theory of condensed phases, produced a theory of optical rotary
dispersion, etc. In addition to his scientific activities, Eyring was an influential member of the hi-
erarchy of the Mormon Church. In that role he wrote extensively on the interface between science
and religion. Eyring had a compelling personality. He was a master of communicating ideas and
traveled widely, giving many talks. (Pencil sketch courtesy of N. Van Hook 2009)

early studies of this approach to kinetics and his name is often associated with the
theory (Historical Vignette 4.3). The term “transition state theory” as an alternate to
“activated complex theory” was coined by M. Polanyi and M. G. Evans.

In Chapter 2, we discussed the Schrödinger equation for the ground state of a
stable molecule. We made use of the Born–Oppenheimer approximation to separate
the electronic motion from the nuclear motion and then considered the solutions
which express the electronic energy of the system as a function of the nuclear con-
figuration. The electronic Schrödinger equation contains a Hamiltonian operator
that is made up of terms corresponding to the kinetic energy of the electrons and
a potential energy term which describes all the electrostatic interactions among the
electrons and the atomic nuclei. The electronic energy is calculated as a function of
nuclear configuration and for a stable molecule one finds a minimum energy which
corresponds to the equilibrium nuclear configuration of the molecule. Since the
equilibrium configuration corresponds to an energy minimum, the first derivatives
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of the electronic energy with respect to distortion from that configuration are zero.
However, the second derivatives are positive (the energy increases away from the
minimum). The electronic energy for nuclear configurations sufficiently far from the
minimum corresponds to the electronic dissociation energy into products. Within
the Born–Oppenheimer approximation, the electronic energy as a function of nu-
clear configuration is the isotope independent potential energy surface for nuclear
motion.

Consider now a chemical reaction

AC B! EC F (4.128)

The Born–Oppenheimer approximation applies here just as it does for a single
molecule. Calculate the electronic energy as a function of nuclear configuration. The
problem is shown schematically in Fig. 4.5. Corresponding to certain configurations
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Reactant
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Transition State

ΔΔΔΔE

ΔΔΔΔE*

Product
Well

A Vibrational Coordinate

Reaction Coordinate

En
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Fig. 4.5 Schematic projection of the energetics of a reaction. The diagram shows the Born–
Oppenheimer energy surface mapped onto the reaction coordinate. The barrier height �E� has
its zero at the bottom of the reactant well. One of the 3n � 6 vibrational modes orthogonal to the
reaction coordinate is shown in the transition state. H and D zero point vibrational levels are shown
schematically in the reactant, product, and transition states. The reaction as diagrammed is slightly
endothermic, �E > 0. The semiclassical reaction path follows the dash-dot arrows. Alternatively
part of the reaction may proceed by tunneling through the barrier from reactants to products with
a certain probability as shown with the gray arrow
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of the nuclei, there will be non-interacting molecules A and B; for other configura-
tions there will be non-interacting molecules E and F. Presumably as one brings A
and B together, the electronic energy will rise.

Depending on whether the reaction considered is endo- or exo-ergic, the elec-
tronic energy of E and F is higher or lower than the energy of A and B. Independent
of whether the reaction is endo- or exo-ergic, there will be an energy barrier be-
tween reactants and products and this barrier gives rise to the activation energy for
the reaction. The electronic energy as a function of nuclear configuration for the
molecules A and B (and E and F) as in the case of a single molecule is the isotope
independent potential energy for nuclear motion in the Born–Oppenheimer approx-
imation. If one plots paths in coordinate space leading from reactants to products,
one has to surmount the energy barrier, but there is will be one path that leads to
the minimum barrier (like a “minimum effort” path, or “pass” across a mountain
range) and the top of this minimum path corresponds to the nuclear configuration
of the transition state. The transition state is the maximum on the minimum energy
path from reactants to products. At the transition state, the electronic energy of the
system does have zero first derivatives with respect to nuclear distortion. The sec-
ond derivatives, however, have to be such that the electronic energy increases for all
nuclear distortions except the one which corresponds to the direction of moving the
transition state either back to reactants or forward to products.

As already noted, in the Born–Oppenheimer approximation, the nuclear motion
of the system is subject to a potential which expresses the isotope independent elec-
tronic energy as a function of the distortion of the coordinates from the position
of the transition state. An analysis of the motions of the N-atom transition state
leads to three translations, three rotations (two for a linear molecule), and 3N – 6
(3N – 5 for a linear transition state) vibrations, one which is an imaginary frequency
(e.g. � D 400i cm�1 where i D p�1), and the others are real vibrational frequen-
cies. The imaginary frequency corresponds to motion along the so-called reaction

coordinate and is referred to as �L
>+ where the .>+/ symbol refers to the transition

state. The curvature in this coordinate is negative (concave), while curvatures in the
other 3N � 5 (3N � 4) dimensions are positive (convex). Reaction 4.128 thus pro-
ceeds as follows. The reactants are assumed to be in thermal equilibrium with the
transition state

AC B, AB>
+

K>
+

(4.129)

with AB>
+

referring to transition state. The equilibrium constant is designated K>
+
.

Then
K>

+ D ŒAB>
+

 = ŒA
ŒB
 (4.130)

where the brackets [ ] refer to concentration. The N>
+

atomic transition state is taken
to have the following degrees of freedom: three translations, three (2) rotations,

3N>
+ � 7.3N>

+ � 6/ vibrational frequencies corresponding to the 3N>
+ � 6.3N>

+ � 5/
real frequencies obtained for the transition state from the analysis of the second
derivatives, and the last corresponding to the motion of the transition state across
the energy barrier. This last degree of freedom is often assumed to be a translational
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motion of an effective mass m� moving in a one-dimensional box of length •. The
equilibrium constant for the gas phase reaction is formulated in terms of partition
functions for the reactants and for the transition states (with the transition state de-
grees of freedom noted above). The transition state is assumed to decompose with
equal probability to either reactants or products. The motion which corresponds to
decomposition is the one-dimensional translation with effective mass m* referred to
above. Its velocity is calculated from a one-dimensional Maxwell–Boltzmann dis-
tribution, and the rate of decomposition obtained by combining the velocity with the
length • of the transition state. Finally a transmission coefficient › is introduced to
account for quantum mechanical effects in the translational motion (tunneling or
reflection through or at the barrier); in practice › is either replaced by unity or by
the Wigner or Bell tunneling corrections (see reading list). Tunnel corrections are
discussed in more detail in Section 6.3.

4.11.2 Introduction of the Partition Functions

Let us now put all of this together to obtain a numerical value of the rate constant
k for the chemical reaction. Note that chemists always use the symbol k for the
rate constant. Elsewhere in this chapter and in other chapters, we also use k for
Boltzmann’s constant. Whenever there is a possibility of confusion, we will use kB

for Boltzmann’s constant. The rate constant is defined by the relation

� d ŒA


dt
D k ŒA
 ŒB
 (4.131)

where the left-hand side is the time rate of disappearance of concentration of A.
In terms of the transition state theory of the previous section, �d[A]/dt is given

by the equilibrium concentration of transition state ŒAB>
+

 multiplied by the rate

of decomposition of the transition state, r, and by › the probability in the forward
direction (to products) rather than the reverse (to reactants).
Then

� d ŒA


dt
D r

h
AB>

+i
� (4.132)

With use of Equation 4.130, we obtain

D �d ŒA


dt
D rK>

+
� ŒA
 ŒB
 (4.133)

and obtain an expression for the rate constant k in terms of the equilibrium

constant K>
+

k D rK>
+
� (4.134)
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This equation contains the factor r, the rate of decomposition of the transition
state which depends on the effective mass m�, and ›, neither of which is simple

to estimate. However, the statistical mechanical expression for K>
+

also contains
m� and • in the one-dimensional translational partition function corresponding to
translation along the reaction coordinate. Combining the factor r above with the
one-dimensional translational partition function for motion across the barrier, one
obtains (see references at the end of the chapter) the simple result

r D kBT

h
(4.135)

where kB is Boltzmann’s constant, T is temperature and h is Planck’s constant. All
reference to m� and • has disappeared. One then obtains for the rate constant

k D kBT

h
K0>

+
� (4.136)

K>
+

has been replaced by K0>
+

to indicate that the statistical mechanical expression

for the partition function contains only 3N>
+
– 7 (3N>

+
– 6, if linear) real vibrational

frequencies, and that there is no contribution in the partition function corresponding
to the imaginary frequency. The parameter › is dominated by the tunneling correc-
tion. The Wigner tunneling correction, which is only correct for small tunneling and
therefore only appropriate in the case of heavy atom isotope effects, is given by

› D 1C
h2

24

ˇ̌
ˇ�>+L

ˇ̌
ˇ2

.kBT/2
D 1C

ˇ̌
ˇu>+L

ˇ̌
ˇ2

24
(4.137)

Equation 4.137 is only valid for
�

u>
+

2
L =24

�
<< 1. Remember that �>

+

L is the imag-

inary transition state frequency and u>
+

L D h�>
+

L = kBT. A more complete discussion
of tunnel corrections, including tunnel corrections for light atom isotope effects
(e.g. H/D) is given in Chapter 6.

Returning to Equation 4.136 we see the isotope effect on the rate constant is then
given by

k1

k2

D K0>
+

1

K0>
+

2

›1

›2

(4.138)

where 1 and 2 refer, as usual, to reactions involving different isotopomers (say
A1 and A2 as reactants in Equation 4.128 and their corresponding isotopomer tran-

sition states A1B>
+

and A2B>
+
). To sum up, the calculation of the kinetic isotope

effect requires a calculation of an isotope effect on an equilibrium constant K0>
+

for
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the equilibrium between reactants and transition state. The prime indicates that the
contribution of one degree of freedom in the transition state, the one corresponding
to translation along the reaction coordinate has been considered separately, and the

corresponding imaginary frequency �>
+

L in the transition eliminated as a vibrational
degree of freedom (although, caveat, it will be seen that this frequency reappears in
the final expression for the isotope effect when the Teller–Redlich Product Rule is
applied).

The partition function ratios needed for the calculation of the isotope effect on the

equilibrium constant K0>
+

will be calculated, as before, in the harmonic-oscillator-
rigid-rotor approximation for both reactants and transition states. One obtains in
terms of molecular partition functions q

K0>
+

1

K0>
+

2

D
�
qA2

qB=qA1
qB
�

�
q0

A2B>

+



q0

A1B>

+

� D
�
qA2

=qA1

�
�

q0
A2B>

+



q0

A1B>

+

� (4.139)

Equation 4.139 has been written for the case where the isotopic substitution is on
reactant molecule A only. Therefore the qB ratio in the numerator cancels. The par-
tition function ratio qA2=qA1 in the numerator can be replaced by isotopic ratios
of translational, rotational, and vibrational partition functions as in Equation 4.76.
However, in the denominator one has to be careful to remember that the isotopic

partition ratio involves the q0 functions which contain only 3N>
+
– 7 (for a linear

transition state 3N>
+
– 6) vibrational frequencies, one vibration, �>

+

L , having been re-
placed by a translation along the reaction coordinate which was included in the
factor kBT=h (then eliminated when the isotopic ratio of rate constants was intro-
duced). Thus

q0
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+
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(4.140)

Equation 4.140 is the exact analogue of Equation 4.76 for a stable molecule except
there is one less vibrational degree of freedom. It must now be noted that the deriva-
tion of the Teller–Redlich Product Rule, applies equally well to a transition state
as to a stable molecule. Thus, when the Teller–Redlich Product rule is introduced
into the expression for q2=q1 of a transition state, the ratio of vibrational frequencies
includes the isotopic ratio of the imaginary frequencies in the transition state. One
can then write for transition state isotopic ratios, analogously to Equation 4.78
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Finally, one defines a reduced partition function ratio for the transition state as

�
s2

s1

�
f>

+ D f>
+ D
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� 6
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+
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�
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(4.142)

This equation for the reduced isotopic partition function ratio of a transition state
differs from that for a normal stable molecule only in that one frequency, the imag-

inary frequency of the transition state �>
+

L , is missing from the expression.
Having now considered the isotopic ratio in the denominator on the right hand

side of Equation 4.139, one has no difficulty with the numerator (which refers to the
isotopomer reactant molecules), to obtain

k1

k2

D .symmetry number factor/
�>

+

1L

�>
+

2L

�
s2

s1

f

�
.A2=A1/�

s2

s1

f>
+
��

A2B>
+.

A1B>
+�
�1

�2

(4.143)

It should be emphasized that the symmetry number ratio (s2=s1/ is entered as a
multiplier of (s2=s1/f so that the symmetry number factors which lead to no isotopic
enrichment in themselves are left out. To obtain the complete isotope effect one has
to multiply the above expression by symmetry number ratios so that the symmetry
number ratios in front of the f expressions are removed. So the symmetry number
factor in Equations 4.143 and 4.144 is given by

�
s1

s2

�
.A1=A2/�

s1

s2

��
A1B>

+.
A2B>

+� (4.144)

4.11.2.1 Further Details: The MMI � EXC � ZPE Formalism

Combining Equations 4.77, 4.140 and 4.145 we obtain a useful expression for the
isotopic rate ratio



4.11 Transition State Theory of Isotope Effects 125

�
k1

k2

�
.SymmetryNumberFactor/�1 D

0
@M>

+

1 M2

M>
+

2 M1

1
A

3=20
@ I>

+

A1
I>

+

B1
I>

+

C1

I>
+

A2
I>

+

B2
I>

+

C2

� IA2
IB2

IC2

IA1
IB1

IC1

1
A

1=2

�
3N>

+�7Y
i

1 � e�u>

+
i2

1 � e�u>

+
i1

3N�6Y
i

1 � e�ui1

1 � e�ui2

�
3N>

+�7Y
i

eu>

+
i2=2

eu>

+
i1=2

3N�6Y
i

eui1
=2

eui2
=2

(4.145)

which can be mnemonically represented as

KIE D MMI � EXC � ZPE (4.146)

The MMI (mass moment of inertia), EXC (excitation factor), and ZPE (zero point
energy) terms are defined on successive lines of Equation 4.145. For reactions in-
volving heavier isotopes the effects are no longer concentrated in the ZPE term and it
is convenient to apply the Teller–Redlich product rule (Section 3.5.1) and eliminate
the moments of inertia by using Equations 4.79, 4.79a, and 4.141, thus obtaining an
equivalent relation
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Equation 4.147 is mnemonically written as KIE D �>

+

L.1/

�>

+
L.2/

�PDT�EXC�ZPE where

PDT (product factor), EXC and ZPE are defined on successive lines. The leading
term is of course the ratio of imaginary frequencies along the reaction coordinate.
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4.11.3 Comments

4.11.3.1 The Wigner Correction

The Wigner correction for tunneling has been given by Equation 4.137. This is valid

only if u>
+

L

.
24 is small compared to unity (see Figs. 4.2 and 4.3). It is only rarely

useful for studying primary kinetic isotope effects involving isotopes of hydrogen.
Other methods of dealing with large tunneling corrections will be discussed in
Chapter 6.

4.11.3.2 The High Temperature Limit

The importance of understanding isotope effects in the high temperature (classi-
cal) limit has been stressed before. In the limit of infinite temperature, the reduced
isotopic partition function ratios all go to unity and ›1=›2 also goes to unity. The
kinetic isotope effect becomes

lim

T!1
�

k1

k2

�
D �>

+

1L

�>
+

2L

.symmetry number factor/ (4.148)

It has been previously noted that the first quantum correction to the classical high
temperature limit for an isotope effect on an equilibrium constant is interesting. Each
vibrational frequency makes a contribution ¥(u) to RPFR and this contribution can
be expanded in powers of u with the first non-vanishing term proportional to u2=24,
the so called first quantum correction. Similarly, for rates one introduces the first
quantum correction for the reduced partition function ratios, includes the Wigner
correction for ›1=›2 and makes use of relations like Equation 4.103 for small x
and small y, to find a value for the rate constant isotope effect (omitting the non-
interesting symmetry number term)
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The vibrational sum rule (Equation 4.99) applies to transition states even when one
of the frequencies is imaginary (and �2

i is negative for that frequency). In that case
one finds for k1=k2, with omission of the symmetry number factor, the analogue of
Equation 4.105 for the exchange equilibrium constant
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(4.150)
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As written Equation 4.150 applies to the case of a single isotopic substitution
in reactant A with light and heavy isotopic masses m1 and m2, respectively.
Equation 4.150 shows that the first quantum correction (see Section 4.8.2) to the
classical rate isotope effect depends on the difference of the diagonal Cartesian
force constants at the position of isotopic substitution between the reagent A and
the transition state. While Equations 4.149 and 4.150 are valid quantitatively only at
high temperature, we believe, as in the case of equilibrium isotope effects, that the
claim that isotope effects reflect force constant changes at the position of isotopic
substitution is a qualitatively correct statement even at lower temperatures.

4.11.3.3 Remarks

The use of reduced isotopic partition function ratios to study kinetic isotope ef-
fects was first undertaken by Bigeleisen; this work was corrected and elaborated by
Bigeleisen and Wolfsberg. References are cited at the end of this chapter. Applica-
tion of the equations developed above to specific chemical reactions will be found
in Chapter 10, where other theoretical approaches will also be presented.

It is appropriate to make a few general comments about Equation 4.143 without

considering specific chemical reactions. The factor �>
+

1L

.
�>

+

2L on the left, is the high

temperature isotope effect and can be shown to be equal to or larger than unity sup-
posing 1 and 2 refer to light and heavy isotopes, respectively. The more interesting
term is the one expressing the ratio of isotopic partition function ratios of reactant
divided by the corresponding isotopic partition function ratio of the transition state.
With the heavy/light notation specified above, each of the reduced isotopic parti-
tion function ratios will be equal to or larger than unity so (s1=s2/f values tend to
be larger for larger force constants (i.e. stronger bonding). With 1/2 D light/heavy
one expects k1 > k2 when the transition state is less tightly bonded (lower force
constants at the position of isotopic substitution in the transition state than in the
reactant). On the other hand, if the transition state is more tightly bonded than the re-
actant, as would be the case if the isotopic reactant is an atom, one expects k1=k2

to be less than unity. This situation is referred to as an inverse rate isotope effect.
Experimentally observed kinetic isotope effects tend to follow these expectations.

4.12 The Development of Modern Methods to Calculate
Reduced Isotopic Partition Function Ratios

In earlier sections of this chapter we learned that the calculation of isotope effects
on equilibrium constants of isotope exchange reactions as well as isotope effects on
rate constants using transition state theory, TST, requires the evaluation of reduced
isotopic partition function ratios, RPFR’s, for ordinary molecular species, and for
transition states. Since the procedure for transition states is basically the same as
that for normal molecular species, it is the former which will be discussed first.
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4.12.1 The Calculation of (s=s0/f for Normal Molecular Species

From the formulae discussed above, especially in Sections 4.5 and 4.6 and Table 4.1,
we know that calculation of RPFR’s requires knowledge of the equilibrium geome-
try of the molecule, the principal moments of inertia, and the 3N � 6 (3N � 5/ for
linear molecules) normal mode vibrational frequencies of the isotopic molecules
involved. Vibrational frequency data from infrared and Raman spectroscopic mea-
surements are available for a great many compounds. Similarly data from rotational
spectroscopy (mainly in the microwave region) has enabled the calculation of equi-
librium geometries and moments of inertia. So, off hand, the obvious procedure for
calculating (s=s0/f would seem to be the substitution of experimentally observed
values into the formulae derived for the reduced isotopic partition function ratios
(see Table 4.1). This has proved to be an entirely unsatisfactory procedure. Except
for diatomic and other small molecular systems, it has usually been impossible to
observe all the normal mode vibrational frequencies of all the isotopic molecules
required. Furthermore the precision of vibrational frequency measurements is often
insufficient to represent isotopic frequency shift data at the precision required to
calculate useful RPFR values. Moreover the observed frequencies are obviously an-
harmonic, and uncertainties in the corrections needed to produce sets of harmonic
frequencies are troubling. For these reasons, beginning in thirties, and continuing
almost to the present day, a minor cottage industry developed which made use of
isotopes and experimental spectroscopy to find the set of isotope independent force
constants which a given number of isotopomers share within the framework of the
Born–Oppenheimer approximation. Such work became the subject of many Ph.D.
theses in physical chemistry. The calculations were usually carried in terms of va-
lence coordinates with use of the GF matrix technique (see Chapter 3). That set
of force constants can then be employed to calculate a self consistent set of har-
monic frequencies for all isotopomers and thence high precision frequency shifts
and RPFR’s. Also, early on, such calculations allowed the development of useful
generalizations concerning the nature of chemical bonding. For example, on the
one hand, they showed that force constants for CH bond stretching while approx-
imately the same from molecule to molecule, were not strictly transferable from a
CH bond in one molecule to a CH bond in another, or for that matter even in the
same molecule. On the other hand, the approximate sameness gave chemists an idea
of the magnitudes of various constants so that one was able to guess at frequencies
for a given set of molecules and the isotope effects on these frequencies without re-
course to experimental spectral data. It goes without saying that the majority of such
work was carried out in the harmonic approximation. The main computational labor
in the vibrational calculations involves the diagonalization of matrices, a procedure
which has already been discussed (Chapter 3). The size of these matrices can be as
large as the number of normal coordinates (3N � 6 by 3N � 6 for a non-linear N
atomic molecule) unless advantage can be taken of molecular symmetry. For histor-
ical interest it should be mentioned that the diagonalization of a 4 � 4 matrix using
of a mechanical calculator of the type available during the 1930s, 1940s and 1950s,
took 30 min to 1 h of labor, and the effort increased exponentially with size to the
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point where it was impractical for matrices larger than, say, 8 � 8. This situation
started to change in the mid 1950s with the advent of digital computers, although
even then diagonalizations of large matrices were still a long way off. Thus, one of
the authors (MW) approached Wallace Givens, a mathematician from Oak Ridge
who was visiting the Courant Institute at New York University, to ask whether it
was possible to diagonalize a matrix as large as 40 � 40. Givens replied that he had
an algorithm for carrying out such a calculation and would ask a student to write the
necessary program. So, we were able to carry out calculations for non-symmetric
molecules containing as many as 13 atoms. The matrix diagonalization program
“worked” and is still being used; it is known as the Givens routine.

The fast digital computer revolutionized methods for deducing force constants
from observed vibrational spectra. In particular, J. H. Schachtscheider and R. S.
Snyder (reading list, Chapter 3), wrote a program based on the GF matrix method
and used their programming suite to study the spectra of all the lower alkanes. They
generously made their program available to one of the authors (MW) around 1960.
Prior to about 1960 many theoretical studies on isotope effects had dealt with the
equations of isotope effects calculating RPFR’s by employing a limited number of
terms from the Bernoulli expansion (Section 4.8.2). Unfortunately that series does
not converge except at higher temperatures. Consequently many interpretations of
isotope effect data devolved into simple qualitative rationalizations. Very few actual
calculations of molecular frequencies were carried out for the numerical evaluation
of RPFR’s, and then only for quite small molecules. However, these early studies
did lead to the conclusion that isotope effects are very sensitive to the change in
force constants at or near the position of isotopic substitution; that is force constant
changes between reactants and products for isotope effects on an equilibrium con-
stant, or between reactant and transition state for isotope effects on a rate constant.

With the availability of the new computer programs and access to digital comput-
ers of appropriate power, it became possible to carry out calculations of frequencies
of larger molecules, to calculate isotope effects on these frequencies, and thence
RPFR’s and isotope effects on equilibrium constants and on rate constants. The
molecular force fields chosen for such calculations were deemed reasonable based
on the force fields that had been obtained by vibrational spectrocopists from fitting
experimental spectral data to obtain force constants. The idea then was to study
the relationship between force constant changes (reactant to product, or reactant to
transition state) and the calculated isotope effects. In the mid-1960s Marvin J. Stern
joined MW in this endeavor (see reading list, Chapter 10). They wrote a subroutine
THERMO which was added to the Schachtschneider/Snyder programs and enabled
the calculation of isotope effects using the known molecular geometry and valence
coordinate force constants as input. THERMO was made available to many people
in the isotope community. In short order a number of such programs were devel-
oped and became widely available. Thus, computers were beginning to change our
understanding of isotope effects by the late 1960s. However, much bigger changes
in computational ability were taking place at this time. The computer program
packages for the calculation of the electronic structures of molecules which were
briefly discussed in Chapter 2, in particular the Gaussian program of John Pople,
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were beginning to become available to the chemical community. By the late 1970s
these programs enabled the calculation of normal mode vibrational frequencies of
molecules using Cartesian coordinate force constants derived from the electronic
calculations (see Chapter 3).

In the mid 1980s M. Saunders at Yale University and his students had undertaken
the experimental study of an H/D isotope effect and had also carried out Gaussian
calculations on that equilibrium. The Gaussian output included Cartesian force con-
stants and normal mode frequencies of the molecules. His question then was how to
best use THERMO to calculate a theoretical value of the isotope effect. The answer
was to take the subroutine THERMO out of the modified Schachtschneider/Snyder
program and create a new free standing program which was called QUIVER. As
input QUIVER requires the equilibrium geometries of the relevant molecules, the
atomic masses, and the Cartesian force constants calculated by the Gaussian part of
the program. Quiver then calculates frequencies and RPFR’s at the desired temper-
atures. An improved program THERMISTP developed in 2008 in connection with
a study of a steric deuterium isotope effect in 1,1,3,3-tetramethylcyclohexane is
available from M. Saunders (see reading list). Any detailed discussion of either the
underlying experiments or of the theory is beyond the scope of this chapter; the pa-
per is recommended reading for those who are interested. An even newer version of
this program, THERMIE, which includes anharmonic corrections to the zero-point
energies is available from M. Wolfsberg.

4.13 Corrections to the Bigeleisen–Mayer Equation:
The Nuclear Field Shift Effect

Several corrections to the Bigeleisen–Mayer equation have been mentioned in
sections above or are treated in the appendices. The most important of these
is the correction for anharmonicity (Appendix 4.A2). The zero point energy of
an anharmonic vibration is ZPE=hc D G0 C ¨e=2 � ¨exe=4 C � � � (¨e is the
harmonic vibrational frequency). Both G0 and ¨exe are mass dependent. In the
harmonic approximation ZPE=hc D ¨e=2. Anharmonic zero point corrections to
BM (G0 � ¨exe=4/, are only important for vibrations involving light atoms. They
account for changes of at most 1% or so in logarithmic fractionation factors cal-
culated for exchange between molecular species containing H, D or T. Two other
corrections arise from the use of the Born–Oppenheimer approximation. The first of
these, the adiabatic correction (see especially Fig. 2.1 and surrounding text), arises
from the coupling between electronic and nuclear motion. This correction, also,
is only important for reactions involving hydrogen isotopomers. It amounts to a
small percentage of observed H, D, T fractionation factors, and for heavier atoms is
completely negligible because it scales proportionally to •M=M2. The second BO
correction arises from a shift in electron energy states in an atom or molecule due to
the perturbation of those electrons by high charge density at the nucleus (e.g. elec-
trons in s atomic orbitals) with the nuclear charge. This, the field shift correction,
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thus depends on nuclear size and shape. Since the electron is bound more strongly
to the smaller (lighter) nucleus with its higher charge density, the ground state of
the heavier isotopomer will lie higher than the one for the lighter isotopomer. This
is opposite to the ordering of the zero point energies associated with molecular vi-
brations.

Although nuclear field shifts in electronic spectra of isotopomers have been
known since the 1920s it was not suspected that the effects were large enough
to affect thermodynamic isotope effects until the late 1980s. At that time Fuji
and coworkers reported anomalies in separation factors (see Chapter 5) for the
(uranium-IV/uranium-VI) red-ox exchange reaction between 238U and other lighter
uranium isotopes (232U, 233U, 234U, 235U and 236U). They employed a chromato-
graphic technique using an ion exchange resin (see Chapter 8). For example for the
235U=238U pair

235U.IV/aq C 238U.VI/resin D 238U.IV/aq C 235U.VI/resin (4.151)

Figure 4.6 plots separation coefficients for various pairs, iU=238U, against mass
number, and compares these separation factors with the calculated vibrational
(Bigeleisen–Mayer) and field shift contributions. Interestingly the coefficients
for the odd/even (233U=238U and 235U=238U) separations lie significantly above
the correlation lines for the even/even (234U=238U and 236U=238U) separations.
According to the Bigeleisen–Mayer formalism all the separation factors should
scale proportionally to the mass difference (238U � iU). The anomaly lies well
outside the experimental error. It was Bigeleisen (1996) who demonstrated the
(iU=238U) separation factors can be written as the sum of vibrational (BM) and
field shift contributions.

ln.’i/ D a.hc=kT/ fsi C bŒ.1=24/.hc=kT/2•mi=.238mi/
 D ln.’/fs C ln.’/BM

(4.152)

The first term on the right hand side of Equation 4.152 is due to the field shift. Here
fsi is the field shift of the ith isotopomer for a particular reference line (the 5028 Å
line in the atomic spectrum of 238U). Also “a” is a theoretically calculated isotope
independent scaling factor. The second term is the Bigeleisen–Mayer vibrational
contribution. Here .•mi D mi � 238/ is negative, and b is the isotope indepen-
dent difference in the vibrational force constants for the redox reaction U(IV) =
U(VI). The comparison between calculation and experiment is shown in Fig. 4.6.
The agreement is quantitative. It is interesting and important that the field shift and
BM contributions are of opposite sign. For this heavy metal system the field shift
makes the largest contribution to the separation factor. The vibrational contribution
leads to a preference for the heavier isotope in the U(VI) species, while the larger
field shift effect prefers the heavy isotope in the U(IV) species. The net effect is a
preference of the heavy isotope in U(IV). The anomalous odd/even behavior is due
to the fact that the 233U and 235U isotopomers have nuclear quadrupole moments,
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Fig. 4.6 Chromatographic separation factors for various uranium isotopes vs. 238U as a function
of mass at 433 K. © D lnŒ.238U=iU/IV;aq=.

238U=iU/VI;resin
. The field shift (FS) and vibrational
(BM) contributions are of opposite sign. Triangles D calculated vibrational (Bigeleisen–Mayer)
contribution, diamonds D calculated FS contribution, circles D measured effects, open squares
D calculated effects. Note that agreement between calculation and experiment is quantitative. The
correlation lines are drawn through even/even data points only (Data from Bigeleisen, J., J. Am.
Chem. Soc., 118, 3676 (1996))

the even mass isotopomers do not. Consequently the field shift does not scale pro-
portionally to mass difference. Field shift contributions to redox separation factors
have been observed for other metal systems.

4.A1 Appendix: The Connection Between the Equilibrium
Constant, Its Isotope Effects, and Pressure
or Concentration Ratios: Corrections for Nonideality

It is useful to keep in mind that the equilibrium constant is defined in terms of
the difference in standard state free energies between products and reactants. Thus,
for the reaction written in Equation 4.36 we obtained Equation 4.50, essentially by
thermodynamic definition,

�G0 D �RT ln KP (4.50)

As a convenience we restricted attention to a mixture of ideal gases, used
Equation 4.47, �i D �i

0 C RT ln.Pi=Pi
0/, recognizing †�i �i

0 D ��i
0 D �G0

and †�i �i D ��i D �G D 0, to conclude �G0 D �RT ln KP where
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KP DQ .Pi=Po
i /

�i . Ordinarily the standard state pressures, Pi
0, refer to the ideal gas

at unit pressure, in which case one can write KP DQ .Pi/
�i . The �i are stoichiomet-

ric coefficients with .C/ being understood for products and .�/ for reactants.
For real gases, which fortunately or unfortunately are the only ones which can

be studied in the laboratory, it may be necessary to deal with the effects of nonide-
ality. This is most conveniently done by introducing the fugacity function fi as a
thermodynamic analogous pressure. By this strategy all thermodynamic equations
calling for partial pressures, Pi, of an ideal gas remain exact for nonideal gases if fi

is substituted for Pi. The fugacity is so defined that fi ! Pi as Pi ! 0 and the gas
approaches ideality. Fugacities are readily calculated from real gas properties given
the equation of state for the gas. In any case, proceeding, for the real gas we write
�i D �i

0CRT ln.fi=Pi
0/ to replace �i D �i

0CRT ln.Pi=Pi
0/ (Equation 4.47). For

most purposes it is convenient to introduce a further quantity, the activity coefficient
”, defined as fi D ”i Pi. The activity coefficient is the factor by which the fugac-
ity differs from the actual pressure of the gas. These substitutions lead directly to
Equation 4.A1.1 replacing Equation 4.50.

�G0 D �RT ln Kf (4.A1.1)

with

Kf D ….fi=Pi
0/�i D ….”iPi=Pi

0/�i D Œ….Pi/
�i 
 Œ….”i/

�i 
 D KPK” (4.A1.2)

Obviously these considerations carry over to the isotope effects on the equilibrium
constant. Thus, using subscripts 1 and 2 to refer to the lighter and heavier isotopi-
cally substituted equilibrium reaction, one obtains

•�G0=RT D .�G1
0 ��G2

0/=RT D � ln.Kf1=Kf2/

D �Œln.KP1=KP2/C ln.K”1=K”2/
 (4.A1.3)

Equation A1.3 shows that isotope effects calculated from standard state free en-
ergy differences, and this includes theoretical calculations of isotope effects from
the partition functions, are not directly proportional to the measured (or predicted)
isotope effects on the logarithm of the isotopic pressure ratios. Rather they must
be corrected by the isotopic ratio of activity coefficients. At elevated pressures the
correction term can be significant, and in the critical region it may even predomi-
nate. Similar considerations apply in the condensed phase except the fugacity ratios
which define Kf are replaced by activity ratios, ai D ”i Xi and ai D ”i Ci, for the
mole fraction or molar concentration scales respectively. In either case corrections
for nonideality,… .”i/

�i , arising from isotope effects on the activity coefficients can
be considerable. Further details are found in standard thermodynamic texts and in
Chapter 5.

For isotope effects on equilibrium constants in both gas and condensed phase
the take-home lesson is there is no direct proportionality between measured isotope
effects on logarithmic concentration or pressure ratios and isotopic differences in



134 4 Isotope Effects on Equilibrium Constants of Chemical Reactions

the standard state free energy differences. The corrections can be appreciable at
high pressure in the gas phase, and in the condensed phase for solutions which show
significant departures from Raoult’s or Henry’s Laws (depending on the choice of
standard state), see section 5.10 for examples.

4.A2 Corrections to the Rigid Rotor Harmonic Oscillator
Approximation in the Calculation
of Equilibrium Constants

Calculations of isotope effects and isotopic exchange equilibrium constants based
on the Born–Oppenheimer (BO) and rigid-rotor-harmonic-oscillator (RRHO) ap-
proximations are generally considered adequate for most purposes. Even so, it may
be necessary to consider corrections to these approximations when comparing the
detailed theory with high precision high accuracy experimental data.

The BO approximation, which assumes the potential surface on which molecular
systems rotate and vibrate is independent of isotopic substitution, was discussed in
Chapter 2. In the adiabatic regime, this approximation is the cornerstone of most of
isotope chemistry. While there are BO corrections to the values of isotopic exchange
equilibria to be expected from the adiabatic correction (Section 2.4), these effects
are expected to be quite small except for hydrogen isotope effects.

The RRHO approximation is a widely used stratagem for the convenient and
straightforward calculation of vibrational and rotational contributions to the parti-
tion function (Section 4.6.1, Table 4.1). The main corrections to RRHO arise from
vibrational anharmonicity and from the explicit consideration of rotational vibra-
tional interaction. In the room temperature region by far the largest contributor to
the corrections is the effect of anharmonicity on the zero point energy (the ground
state) of vibration. So far as experiment is concerned there are only a few poly-
atomic molecules for which spectroscopic analysis has been detailed enough to
permit the definition of complete sets of harmonic and anharmonic vibrational force
constants, and until recently (see Section 4.12) this prohibited anharmonic correc-
tions to .s=s0/f and isotopic exchange equilibrium constants for all but the simplest
cases (i.e. usually diatomic molecules). As earlier noted, however, there now exist
computer programs which enable one to calculate reduced isotopic partition func-
tion ratios (s/s)f with the anharmonic corrections to the zero-point energies included
using force constants directly calculated from a quantum chemistry program pack-
age(see Section 2.5.2).

To illustrate application of corrections to RRHO the following section briefly dis-
cusses the work of one of the coauthors on equilibria involving diatomic molecules.

4.A2.1 Corrections to RRHO: Diatomic Molecules

Wolfsberg has shown the vibrational contribution to the energy of a diatomic
molecule is properly written
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En=hc D G0 C ¨e.nC 1=2/� ¨exe.nC 1=2/2 C higher order terms (4.A2.1)

where ¨e is the harmonic frequency .cm�1/ and n is the vibrational quantum num-
ber, n D 0, 1, 2, etc. The constant term, G0 can be expressed in terms of the
parameters of the anharmonic potential V

V D .1=2/k.r� re/
2 C a.r � re/

3 C b.r � re/
4 C : : : : : (4.A2.2)

G0 D .21=2/”C .1=2/• (4.A2.3)

Here re is the equilibrium internuclear distance of the diatomic oscillator and
k is the harmonic force constant. Also ” D �ha2=Œ48.2 /6c5¨e

4�3
; • D
3hb=Œ4.2 /4c3¨e

2�2
; ¨exe D �90” � 2•, and � is the oscillator reduced mass
1=� D .1=m1 C 1=m2/. Notice, because ¨e is proportional to ��1=2, that both ”
and • are proportional to 1=� and are therefore isotope dependent.

At ordinary temperatures for most diatomic molecules in the gas phase only the
n D 0 term needs to be considered. Excitation into upper levels is small or negligi-
ble. The zero point energy through second order is

E0=hc D G0 C ¨e=2� ¨exe=4 (4.A2.4)

and the correction for anharmonicity is .G0�¨exe=4/. Values of G0 and¨exe=4 for
isotopic hydrogens and a few diatomic hydrides are presented in Table 4.A2.1.

It is instructive to calculate the anharmonic correction to the zero point energy
contribution to fractionation factors for isotope exchange equilibria involving hy-
drogen and deuterium. For example consider the exchange

H2 COD D HDC OH (4.A2.5)

The ZPE contribution is Œ.¨e=2/HDC.¨e=2/OH�.¨e=2/H2�.¨e=2/OD
D106 cm�1

and the anharmonicity correction is substantial, ŒG0 � ¨exe=4
.HDCOH�H2�OD/ D
6:3 cm�1. The ZPE contribution to the isotope exchange equilibrium constant is

Table 4.A2.1 G0; ¨e=2 and ¨exe=4 (all in cm�1) for
isotopically substituted hydrogens and some hydrides
(Wolfsberg, M., Adv. Chem. 89, 185, (1969))

Species ¨e=2 G0 ¨exe=4 .G0 � ¨exe=4/

H2 2198 9.2 30.2 �21.0
HD 1795 6.9 22.7 �15.8
D2 1554 4.6 15.1 �10.5
HCl 1495 1.5 13.0 �11.5
DCl 1071 0.8 6.7 �5.9
HBr 1325 0.8 11.3 �10.5
DBr 943 0.4 5.7 �5.3
OH 1868 10.7 8.5 2.2
OD 1359 5.3 4.2 1.1
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e�hc106=kT D e�152=T D 0:602 at 300 K and the anharmonicity correction factor
is e�9:1=T D 0:970 at 300 K, an approximate 3% correction. As a second example
consider

H2 C DBr D HDC HBr (4.A2.6)

From Table 4.A2.1 we obtain ZPE D �21 cm�1 which contributes e30:2=T D
1:11 at 300 K, while the anharmonicity correction through second order is ŒG0 �
¨exe=4
.HDCHBr�H2�DBr/ D Œ�1:9� .�1:9/
 D 0 cm�1, i.e. offsetting corrections of
e2:7=T and e�2:7=T, and is fortuitously negligible.

Isotope effects on anharmonic corrections to ZPE drop off rapidly with mass and
are usually neglected. The ideas presented above obviously carry over to exchange
equilibria involving polyatomic molecules. Unfortunately, however, there are very
few polyatomics on which spectroscopic vibrational analysis has been carried in
enough detail to furnish spectroscopic values for G0 and ¨exe. For that reason an-
harmonic corrections to ZPE’s of polyatomics have been generally ignored, but see
Section 5.6.3.2 for a discussion of an exception; also theoretical (quantum package)
calculations of anharmonic constants are now practical (see above), and in the future
one can expect more attention to anharmonic corrections of ZPE’s.
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Chapter 5
Condensed Phase Isotope Effects; Isotope
Effects in Non-ideal Gases

Abstract Isotope effects on the PVT properties of non-ideal gases and isotope
effects on condensed phase physical properties such as vapor pressure, molar
volume, heats of vaporization or solution, solubility, etc., are treated in some ther-
modynamic detail. Both pure component and mixture properties are considered.
Numerous examples of condensed phase isotope effects are employed to illustrate
theoretical and practical points of interest.

5.1 Introduction

In this chapter we will discuss IE’s on the PVT properties of non-ideal gases, then
in more detail treat IE’s on condensed phase physical properties like vapor pressure,
molar volume, heats of vaporization or solution, solubility, etc. Some of these prop-
erties (e.g. the vapor pressure isotope effect, VPIE) are of great practical interest
because they form the basis for isotope separation processes (e.g. distillation, sol-
vent extraction, etc.). Of equal interest, however, is the fact that IE’s of non-ideal
gases (virial coefficient isotope effects, VCIE’s), and condensed matter isotope ef-
fects (CMIE’s), are closely related to the intermolecular forces governing both gas
phase clustering and condensation. To understand this more clearly we will compare
standard state free energy differences between average condensed phase molecules
(for the VPIE) or average gas phase dimers, trimers, etc. (for VCIE), on the one
hand, and the dilute ideal-gas phase reference on the other. The comparison will
show that the two effects share a common origin.

5.2 Thermodynamic Formalism

We begin with a discussion of the vapor pressure isotope effect (VPIE). To do so
we compare the equilibria between condensed and vapor phase for samples of two
isotopomers. At equilibrium, condensed(c)D vapor(v), the partial molar free ener-
gies, �.v/, and �.c/, of the two phases are equal; this, in fact, is the thermodynamic

M. Wolfsberg et al., Isotope Effects: in the Chemical, Geological, and Bio Sciences,
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definition of equilibrium. Hence �0.c/ D �0.v/ and Œ�0.v/ � �0.c/
 D 0. Simi-
larly for the other isotopomer, �.c/ D �(v) and Œ�.v/ � �.c/
 D 0. Combining

Œ�0.v/� �0.c/
 � Œ�.v/� �.c/
 D Œ�0.v/� �.v/
� Œ�0.c/ � �.c/
 D 0 (5.1a)

and rewriting
•�� D 0 (5.1b)

Here the prime symbolizes the lighter isotope. Also upper case Greek � is used
for the isotopic difference (primed � unprimed), and lower case Greek • for the
phase difference (vapor � condensed). The sections which follow further develop
Equation 5.1 in order to arrive at more practical expressions involving measurable
quantities.

5.2.1 The Vapor Phase Reference

As is customary we select the ideal vapor at unit pressure, Po, as the standard state.
The partial molar free energy (chemical potential) of the vapor, �.v/, is

�i.v/ D �i
o.v/C RT ln.P=Po/C RT ln.f=P/ (5.2)

P is the total pressure and f is the fugacity. The ratio f/P expresses the deviation of the
gas from ideality (see Appendix 4.1). For the ideal gas reference state f o D P o D 1.
The correction for vapor non-ideality may be further expressed as:

RT ln.f=P/ D s .V.v/� RT=P/ dP (5.3)

The integral in Equation 5.3 extends from 0 to P, V(v) is the vapor volume of the real
gas, and RT/P is the vapor volume for the ideal gas. At low enough pressures V(v)
can be obtained from the virial equation of state, which in the pressure expansion
is PV.v/=.RT/ D 1 C BP C CP2 C � � � . Therefore from Equation 5.3, V.v/ D
.RT=P/Œ1C BPC CP2 C � � �
, and

ln.f=P/ D BPC CP2=2C � � � � � � � � � : (5.4)

B and C are second and third virial coefficients. The partial molar free energy of the
vapor phase neglecting higher order terms is thus

�i.v/ D �i
o.v/C RT Œln .P/C BP
 (5.5)

In Equation 5.5 �i
o.v/ is the standard state partial molar free energy of the va-

por, P is the observed vapor pressure, and BP is a first order correction for vapor
nonideality.
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5.2.2 The Condensed Phase

The chemical potential for the condensed phase is defined

�i.c/ D �o.c/ (5.6)

Here �o.c/ is the standard state chemical potential of condensed fluid in equilibrium
with the vapor at the vapor pressure P, and the temperature of the measurement.

5.2.3 The Vapor Pressure Isotope Effect, Separated Isotopes

Thermodynamic analysis of VPIE data for separated isotopes (see, e.g., Figs. 7.18a
and b) proceeds by equating partial molar free energies in condensed and vapor
phases for each isotope. Using Equations 5.1, 5.5 and 5.6 one obtains

RT ln.Pi
0=Pi/ D �Œ.�o.v/� �o.c//0 � .�o.v/� �o.c//
� RT.B0P0 � B P/ (5.7)

or
ln.P 0=P/ D VPIE D �•�.�o/=RT � .B 0P 0 � BP/ (5.8)

This is a simple and important result. It equates VPIE to the isotopic difference
of standard state free energies on phase change, plus a small correction for va-
por phase nonideality, here approximated through the second virial coefficient.
Therefore Equation 5.8 is limited to relatively low pressure. As T and P increase
third and higher virial corrections may be needed, and at even higher pressures the
virial expansion must be abandoned for a more accurate equation of state.

In making comparisons with theoretical model calculations it is convenient
to express ln.P0=P/ using Helmholtz free energy differences, •�Ao, because
Ao (and hence •�Ao/ is straightforwardly connected to the partition function,
Q, A D �RT ln Q; .•�A D �RT •� ln Q and •�Ao D �RT •� ln Qo/. From
the thermodynamic identity A D � � PV we obtain •�.�o/ D •�Ao � Œ.P0V0 �
PV/v � .P0V0 � PV/c
 D •�Ao C .P0V0 � PV/c where V0 and V are condensed
phase molar volumes (in the ideal vapor reference state (P0Vv

0/o D .PVv/
o D RT

and �.PV/vo D 0/. Thus

ln.P 0=P/ D VPIE D �•�Ao=RT � .B 0P 0 � BP/C .P 0V 0 � PV/c=RT (5.9)

and

ln.P0=P/ D VPIE D ln.Qv
0Qc=QvQc

0/� .B0P0 � BP/C .P0V0 � PV/c=RT (5.10)

In Equation 5.10 and subsequently we have dropped the superscript “o s” from the
Q’s in order to simplify the notation.
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5.2.3.1 The Corrective Terms: Simplification of Equation 5.10

It is useful to comment on the relative contributions of the last two terms on
the right hand side of Equations 5.9 and 5.10. These correction terms both
scale proportionally with pressure .B0P0 � BP/DB0P0.1 � BP=.B0P0// and
.P0V0 � PV/c=RTD .P0V0=.RT//c.1 � PV=.P0V0//c. As we will see in later
sections ln.P0=P/ typically varies between �0:005 and �0:015 per H/D substi-
tution for hydrocarbons but is positive and much larger for hydrogen bonded
materials. At temperatures not too close to critical, the condensed phase molar
volume isotope effect, MVIE D ln.V0=V/ is typically 0.001 or so per D and
ln.B0=B/ about the same or a little larger, say 0.002. Thus for typical values of
Vc	50 cm3=mol and BRT 	50 cm3=mol one estimates at a vapor pressure of 1 bar,
say around 300 K, (V0=.RT//c.1 � PV=.P0V0//c	 .2x10�3/.0:01/	2 � 10�5=bar,
and B0.1�BP=.B0P0//	 .2�10�3/.0:01/	2�10�5=bar. Each correction amounts
to more than 1% of ln.P0=P/ and cannot be neglected in high precision work. Of
course as temperature falls, and the vapor pressure drops, the corrections become
less and less important, and at low enough pressure they can be neglected. Also
for H/D effects in hydrogen bonded systems and for heavy atom isotopomer pairs
(12C=13C or 16O=18O for example) the relative corrections are appreciably smaller.
In any case, at low enough pressures Equations 5.9 and 5.10 simplify

ln.P0=P/ D VPIE D �•�Ao=RT D ln.Qv
0Qc=QvQc

0/ (5.11)

Equation 5.11 is important. It relates the experimentally observed vapor pressure
ratio to the theoretically important isotope effects on the free energy differences
and/or partition function ratios. This equation encapsulates the essential physics of
the vapor pressure isotope effect and, as we shall see, provides a path for its theo-
retical interpretation in terms of molecular structure and dynamics via the partition
function ratios.

5.2.4 Fractionation Factors

Now consider the phase equilibrium of a mixture of isotopes (see Fig. 7.18c for
example) with isotopic analyses for each phase carried out under equilibrium condi-
tions. Labeling the isotopomers in the two component case as primed and unprimed,
as before, the fractionation factor, ’ and ’00 D 1=’, are defined

’ D .y=y0/=.x=x0/ and ’00 D 1=’ D .y0=y/=.x0=x/ (5.12)

x and y denote mole fractions (for liquid/vapor fractionation y refers to vapor, and
x to liquid). We first consider the case where the condensed phase solution is ideal
in the Raoult’s law sense.
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This should certainly be a good approximation as the isotopomers are quite
similar, one to the other. Even so we will improve on it later when we consider
(the quite small) nonideality of isotopomer solutions and their excess thermody-
namic properties. For Raoult’s law solutions

y0 D P0=Ptot D x0Po0=Ptot and y D P=Ptot D xPo=Ptot (5.13)

where Po0 and Po are the vapor pressure of the pure separated components, and Ptot

is the vapor pressure over the solution, Ptot D .P0 C P/ D .x0Po0 C xPo/. From
Equation 5.13

y0=y D x0Po0=.xPo/ or ’00 D .y0=y/=.x0=x/ D Po0=Po (5.14)

and
ln.’00/ D ln .Po0=Po/ 	 VPIE (5.15)

A more careful analysis taking into account vapor nonideality through the second
virial coefficient and the isotope effect on condensed phase molar volume yields
Equation 5.16

ln’00 D �•�Ao=RTC .B � B0/ Ptot C Ptot.�Vc/=RT (5.16)

An important attribute of Equation 5.16 is that the pressure exerted on both
phases, Ptot, is common to both isotopomers. The important difference between
Equations 5.16 and 5.9 is that the isotopic vapor pressure difference (P0 � P) does
not enter the last two terms of Equation 5.16 as it does in Equation 5.9. Also
isotope effects on the second virial coefficient �B=B D .B0 � B/=B and the
condensed phase molar volume �V=V are significantly smaller than those on
�P=P	 ln.P0=P/. Consequently the corrections in Equation 5.16 are considerably
smaller than those in Equations 5.9 and 5.10, and can sooner be neglected. Thus to
good approximation ln.’00/ is a direct measure of the logarithmic partition function
ratio ln.Qv

0Qc=QvQc
0/, provided the pressure is not too high, and assuming ideality

for the condensed phase isotopomer solution. For nonideal solutions a modification
to Equation 5.16 is necessary.

ln ’00 D �•�Ao=RTC ln .� 0=�/ D ln.Qv
0Qc=QvQc

0/C ln .� 0=�/ (5.17)

where � 0 and � are activity coefficients in the condensed phase. Commonly frac-
tionation experiments are carried out with the rare isotopomer at high dilution.
Under those conditions the isotope present at high concentration (taken here as the
unprimed one) can be assumed to be ideal in the Raoult’s law sense even though
the rare isotopomer (primed) is not. Equation 5.17 reduces to a particularly simple
result,

ln’00 D �•�Ao=RTC ln .� 0/ D ln.Qv
0Qc=QvQc

0/C ln .� 0/ (5.18)

The last term may be significantly different from zero and should not be neglected
(see Section 5.8 for further discussion of this point)
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5.3 Reprise: Remarks Concerning the Partition Functions:
The Relation of VPIE to Condensed Phase Molecular
Properties and Vibrational Dynamics

The standard state Helmholtz free energy difference, •�Ao, was introduced in
Equations 5.9 and 5.11 to show the connection between VPIE and molecular struc-
ture and dynamics. Molecular properties are conveniently expressed using standard
state canonical partition functions for the condensed and vapor phases, Qc

o and
Qv

o; remember Ao D �RT ln Qo. The Q’s are 3nN dimensional, n is the number
of atoms per molecule and N is Avogadro’s number. For convenience we have now
dropped the superscript “o’s on the Q’s. The “o’s” specify standard state conditions,
now to be implicitly understood. For VPIE and ’” respectively, not too close to the
critical region,

ln.P0=P/ D VPIE D ln.Qv
0Qc=QvQc

0/� .B0P0 � BP/C .P0V0 � PV/c=RT (5.10)

ln’00 D ln.Qv
0Qc=QvQc

0/C ln.”0/ (5.18)

These equations are important. They connect VPIE and ln.’00/, both measurable
properties, with basic theoretical ideas. The last two terms in Equation 5.10 and
the last term in Equation 5.18 are generally small compared to the leading term.
They are often neglected. The ratio of Q’s in the leading term expresses VPIE or
fractionation factor as the isotope effect on the equilibrium constant for the process
<Q>CONDENSED D <Q>IDEAL VAPOR. It remains true, of course, that condensed
phase Q’s are complicated and difficult to evaluate. Except for especially sim-
ple systems (e.g. monatomic isotopomers) approximations are required for further
progress.

5.3.1 Application to Polyatomics

When treating polyatomics it is convenient to define an average molecular partition
function, ln<Q> D .ln Q/=N, for an assembly of N molecules. In the dilute vapor
(ideal gas) this introduces no difficulty. There is no intermolecular interaction and
ln<Q> D .ln Q/=N D ln.q/ exactly (q is the microcanonical partition function). In
the condensed phase, however, the Q’s are no longer strictly factorable. Be that as it
may, continuing, and assuming ln<Q> D .ln Q/=N, we are led to an approximate
result which is superficially the same as Equation 5.10,

ln.P0=P/ D VPIE D ln.<Qv
0><Qc>=<Qv><Qc

0>/ � .B0P0 � BP/

C.P0V0�PV/c=RT (5.19)
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Equation 5.19 relates the molecular energy states of the primed and unprimed
isotopomers in condensed and vapor phase to VPIE. The correction terms account
for the difference between the Gibbs and Helmholtz free energies of the condensed
phase, and vapor nonideality. The comparison is between separated isotopomers at a
common temperature, each existing at a different equilibrium volume, V0 or V, and
at a different pressure, P 0 or P, although �V D .V0 � V/ and �P D .P 0 � P/ are
small. Still, because condensed phase Q’s are functions of volume, Q D Q(T,V,N),
rigorous analysis requires knowledge of the volume dependence of the partition
function, and thus MVIE, since the comparisons are made at V0 and V. That point is
developed later.

As we saw in Chapters 3 and 4 the Q ratio in Equation 5.19 is equivalent to the
ratio of reduced partition functions (RPFR’s), (s=s0/fi D .<Q>=<Q0>/qm=.<Q>
/<Q0>/cl (s and s0 are symmetry numbers, qm = quantum mechanical, cl D
classical)

ln.P0=P/ D VPIE D ln.fc=fg/ � .B0P0 � BP/C .P0V0 � PV/c=RT (5.20)

At low enough temperatures, say at or below the normal boiling temperature,
	0:7TCRITICAL, the last two terms in Equation 5.20 are small, and to good ap-
proximation low temperature VPIE data can be used to define the reference state
condensed phase isotopic partition function ratio, i.e. ln.fc=fg/	 ln.P0=P/ D VPIE.

5.3.2 What Happens When Molecules Interact or Condense?
A Simplified Physical Picture

Our interest is in the connection between the intermolecular forces that cause con-
densation and/or gas phase molecular clustering and thermodynamics. To set the
stage consider the following simple model:

Of the 3n coordinates needed to describe an n-atom molecule, three are used
for center of mass motion, three describe angular displacement (rotation, hindered
rotation, or libration) (two if the molecule is linear, 0 if monatomic), the remaining
3n�6 (3n�5, if linear, 3n�3 D 0, if monatomic) describe atom-atom displacements
(vibrations). In some cases it may not be possible to separate translation cleanly
from rotation and vibration, but when the separation can be made it is a convenience.
Elementary treatments assume

<Q> D .<QTRANS><QROT><QVIB>/ (5.21)

Now consider the energy of interaction of an isolated pair as the center to cen-
ter distance, R, changes. In the transfer from dilute to non-ideal gas (dimer), or to
the condensed phase, important changes occur in all degrees of freedom. This is
diagramed in Fig. 5.1 which shows the shifts in intermolecular potential energy
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Fig. 5.1 A schematic projection of the 3n dimensional (per molecule) potential energy surface for
intermolecular interaction. Lennard–Jones potential energy is plotted against molecule–molecule
separation in one plane, the shifts in the position of the minimum and the curvature of an internal
molecular vibration in the other. The heavy upper curve, ’, represents the “gas–gas” pair inter-
action, the lower heavy curve, “, measures condensation. The lighter parabolic curves show the
internal vibration in the dilute gas, the gas dimer, and the condensed phase. For the CH symmetric
stretch of methane (3143:7 cm�1) at 300 K, RT corresponds to 8% of the oscillator zpe, and 210%
of the LJ well depth for the gas-gas dimer (Van Hook, W. A., Rebelo, L. P. N. and Wolfsberg, M.
J. Phys. Chem. A 105, 9284 (2001))

and internal vibrational potential energy for a single vibration, as the molecules
approach each other along RINTERMOL D R12. A similar diagram applies for each
of the (3n � 6) vibrations. In Fig. 5.1 the upper path shows transfer from dilute
gas to complexed (dimerized) vapor. This path is used to describe the virial coef-
ficient isotope effect (VCIE). The lower path refers to condensation and accounts
for VPIE. Thus, the upper path u.R12/ represents the pair intermolecular potential
energy, the lower one shows the average potential that a single molecule feels when
embedded in the field of (N � 1) neighboring molecules. The interaction is with c
nearest neighbors (and (N� c� 1) more distant neighbors). The increase in number
accounts for the significantly deeper and sharper well for condensation. In the pro-
cess the intermolecular potential energy shifts to lower energy, and, of at least equal
importance, the curvature in the vibrational dimension, r, is perturbed. Increased
curvature on condensation corresponds to a blue shift (shift to higher frequency),
decreased curvature to a red shift (shift to lower frequency). Many examples of such
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shifts, albeit small, have been spectroscopically identified. External motions are also
quantized. These correspond to blue shifts because (@EPOT=@R12/ D 0 in the ideal
gas, and is positive in the condensed phase. To sum up, within the precision of the
Born–Oppenheimer approximation, properly calculated potential energy surfaces
(PES’s) are isotope independent, but quantization of the kinetic energies of the var-
ious motions on the surface, vibrational energy for example, is isotope dependent
because of isotopic differences in mass and mass distribution.

In Fig. 5.1 we see that the intermolecular interactions accounting for VCIE (upper
curve) and VPIE (lower curve) differ not in kind, only in degree. The well depth for
gas–gas interaction is available from analysis of the virial coefficient of the parent
isotopomer, that for the condensed phase can be obtained by combining the energy
of vaporization and the zero point energies of the condensed and ideal vapor phases.

5.4 VPIE’s in Monatomic and Polyatomic Systems:
Approximate Vibrational Analysis

An estimate of the VPIE of monatomics can be obtained from the first quantum cor-
rection using the Wigner high temperature approximation (appropriate because the
level spacing in the quantized intermolecular well is small compared to the thermal
energy, h�=kT� 1, see Chapters 3 and 4)

ln.fc=fg/	 .1=24/.h=kT/2 < r2U > .�0 � �/ (5.22)

<r2U> is the mean square force and �0 and � are reduced masses. In the harmonic
approximation,

ln.fc=fg/	 3.1=24/.hc=kT/2�TR
02.1 � �0=�/ (5.23a)

�TR
0 is the harmonically approximated value of the three equivalent lattice trans-

lational frequencies. An Einstein frequency distribution has been assumed in
Equation 5.23. It is interesting that the earliest treatment of the VPIE by F. A.
Lindemann (see Chapter 1) used the more realistic Debye frequency distribution,
N.�/ D a�2 for 0 < � < �max and N.�/ D 0 for � > �max. The constant of
proportionality, a, can be evaluated from the constraint that the total number of
lattice vibrations (per mole) is 3NAvagadro. (The Einstein approximation assumes a
set of 3N frequencies all equal to a single constant value.) Lindemann’s use of the
Debye distribution leads to an expression analogous to Equation 5.23a (Historical
Vignette 5.1)

ln.fc=fg/	 .9=5/.1=24/Œ.™0=T/2 � .™=T/2
 (5.23b)

where ™, the Debye characteristic temperature, is ™ D .hc=k/�max.
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[Historical Vignette 5.1] Frederick A. Lindemann (1st Viscount Cherwell) (1886–1957) was
an English physicist who became an influential scientific adviser to the British government during
World War II, and a close associate of Winston Churchill. Lindemann was educated in Germany at
Darmstadt and later took his Ph.D. in 1910 at Berlin studying under Walter Nernst. On his return to
England he took a position at Oxford University, then spent the war years 1914–1918 at the Royal
Aircraft Establishment. He developed a mathematical theory of aircraft spin recovery, and to prove
it, learned to fly, testing the theory on himself; the method is still used. Prior to his development
spinning an aircraft was almost invariably fatal. In 1919 Lindemann was appointed professor at
Oxford and director of the Clarendon Laboratory. Lindemann was one of the first people to suggest
that in the solar wind particles of both polarities, protons as well as electrons, come from the sun.
His major contribution to isotope science was his development of the first theory of the vapor
pressure isotope effect, see Chapter 1 (Photo credit: M. Bradbury, Oxford University)

Table 5.1 compares VPIE’s obtained from Equation 5.23a with experiment for
several monatomic liquids at their melting and boiling points. The sign and mag-
nitude of VPIE, and its temperature dependence, are predicted within a reasonable,
albeit crude, approximation. Later we will outline more sophisticated calculations
which yield quantitative agreement with experiment.

Now compare the VPIE’s observed for inert gases (Table 5.1), small (a few tenths
percent or less) and “normal” (P0>P), with some hydrocarbon/deuterocarbon effects
also in Table 5.1 (methane and benzene as typical examples). The H/D effects are
larger in magnitude (a few percent), but inverse (P0<P). For these isotopomer pairs
the small positive IE from quantization of the motion in the LJ translation–rotation
potential well is overridden by larger negative contributions from zero point energy
(ZPE) shifts in the internal modes (see Fig. 5.1). The shape of the vibrational poten-
tial surface has changed on condensation. Most often for hydrocarbons the curvature
of the vibrational well at its minimum is less in the condensed phase than in the gas;
the frequency is red-shifted. Also, for most internal modes excitation to upper vibra-
tional states is negligible because the potential wells for internal vibrations are very
deep. For example the potential well for the CH stretch in methane is more than 50
times deeper than the LJ well which describes condensation. The zeroth vibrational
level in the vibrational well lies about 20RTB above the minimum in the potential,
the first excited level about 60RTB, and thermal excitation is inconsequential (TB is
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Table 5.1 Prediction of VPIE’s for two rare gases and nitrogen using a crude oscillator model
(Equation 5.23). Comparison with experiment at the melting point, TM, and boiling point, TB,
and with experimental VPIE’s for two hydrocarbons (Van Hook, W. A. Condensed matter isotope
effects, in Kohen, A. and Limbach, H. H., Eds. Isotope Effects in Chemistry and Biology, CRC,
Boca Raton, FL (2006))

Calc. VPIE (Equation 5.23) Experimental VPIE

System �0=cm�1 at TM at TB at TM at TB

36Ar=40Ar 47 0.0068 0.0063 0.0062 0.0055
80Kr=84Kr 32 0:00093 0:00086 0.0010 0.0008
14N2=

15N2 48 0.010 0.007 0.006 0.003
CH4=CD4 � � � �0:014 �0:027
C6H6=C6D6 � � � �0:028 �0:025

the boiling temperature). The contribution of this mode to the energy is accurately
described using the ZPE approximation. The relative widths of the wells are impor-
tant because width determines amplitude. At the zeroth level the vibrational width
is about one percent of the LJ width at RTB. The CH bond vibrates many times
(35 or so), but with small amplitude, during the time the molecule is executing one
relatively slow motion of larger amplitude in the LJ potential well.

5.4.1 Dispersion Forces, Frequency Shifts on Condensation,
and the VPIE

It is apparent from the discussion above, and will become increasingly obvious in
later sections of this chapter, that the VPIE in polyatomic systems is a consequence
of the changes in the vibrational frequencies which occur on condensation. These in
turn can be expressed in terms of a set of isotope independent vibrational force con-
stants. For non-polar systems the frequency shifts are invariably to the red, and this
explains the tendency to inverse vapor pressure isotope effects. The isotope effect on
the van der Waals attractive force (inverse sixth power dispersion force) was first dis-
cussed by Baertschi and Kuhn (reading list) in terms of the Drude model. They came
to the conclusion that this explains the inverse VPIE’s commonly observed. The na-
ture of the dispersion force isotope effect was reinvestigated by Wolfsberg (reading
list) who presented a thorough quantitative treatment of the problem using second
order perturbation theory. He showed the effect of the intermolecular interaction
was to generally lower the diagonal force constants of the internal vibrations due to
dipole-induced dipole terms, thus leading to the observed effects. The analysis does
not apply to directionally specific dipole–dipole, ion–dipole, or hydrogen-bond type
interactions which can result in large blue shifts of specific frequencies and positive
(normal) vpie’s (like, e.g., those observed for H2O=D2O).
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5.4.2 Polyatomic Systems in Approximation: The Cell Model

Using harmonic oscillator partition functions to describe both internal and ex-
ternal modes, the logarithmic Q ratios introduced above, ln.Qg

0Qc=QgQc
0/ D

ln.Qc=Qc
0/C ln.Qg

0=Qg/, become

ln.Qc=Qc
0/D

hX
Œui exp.�ui=2/=.1� exp.�ui//
c=Œui

0 exp.�ui
0=2/=.1� exp.�ui

0//
c

i
3n

(5.24a)

and

ln.Qg
0=Qg/ D �

hX
Œui exp.�ui=2/=.1� exp.�ui//
g=Œui

0 exp.�u0

i=2/=.1� exp.�u0

i//
g

i
.3n�6/int

(5.24b)

In the condensed phase the sum is over all 3n frequencies, but in the ideal vapor
phase the six external (zero) frequencies do not contribute to the IE’s, the sum is over
the remaining 3n � 6 internals. For condensed rare gases the harmonic assumption
is highly approximate, and this is also true for the lattice modes of polyatomics.
However as molecular size increases the relative contribution of the external modes
becomes less and less important relative to internals.

Numerical evaluation of Equation 5.24 requires a self consistent set of 3n
condensed phase and 3n � 6 vapor phase frequencies for both members of the
isotopomer pair. These are best calculated from the known molecular geometry,
masses, and mass distributions using an isotope independent force field consistent
with spectroscopically observed gas phase frequencies and frequency shifts on con-
densation (see Chapter 3). It is dangerous to directly substitute observed frequencies
and frequency shifts for each of the isotopomers being compared into Equation 5.24
because spectroscopic experimental error accumulates and may result in large er-
rors on calculated VPIE’s. Moreover in most cases the entire set of frequencies and
frequency shifts on isotope substitution and/or phase change are not experimentally
known. The recommended procedure is based on the FG matrix treatment of vibra-
tional dynamics (Chapters 3 and 4). Computer programs to obtain RPFR and VPIE
from information on molecular geometry, atomic masses, and force constants are
available have been discussed in the literature (see reading list).

5.4.2.1 Remarks on Spectroscopic and Thermodynamic Precision

To illustrate Equations 5.24a and 5.24b we consider the contribution of a single vi-
brational mode to VPIE. Comparing CH and CD stretching modes for a typical
hydrocarbon at room temperature (300 K) (�CH 	 3;000 cm�1 in the gas, red shift-
ing 	10 cm�1 on condensation), we approximate RPFR as

ln.RPFRi/ D �.1=2/.hc=.kT//.�v � �c/.1 � .Gi=Gi
0/1=2/ D �0:0064 (5.25)
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In Equation 5.25 the ratio of G matrix elements has been obtained using a “diatomic
approximation” (Gi=Gi

0/ D Œ.1=12/ C .1=2/
=Œ.1=12/ C .1=1/
. Although in the
gas phase the frequency of each isotopomer can be measured to high precision,
say ˙0:05 cm�1 or better, such precision is impossible in the liquid because of
inherent broadening caused by intermolecular forces. Except in special cases band
centers cannot be located to better than 	˙ 0:5 cm�1, that limit is imposed by the
nature of the liquid state. There is an identical uncertainty for each isotopomer, so
spectroscopic precision is about

• ln.RPFRi/= ln.RPFRi/	 Œ2�0:052C2�0:52
1=2=Œ10.1�1=21=2/
	 0:25 (5.26)

and for this particular mode the uncertainty is • ln.RPFRi/	 .0:25/.0:0064/	
˙ 0:0016. To compare, VPIE measurements, on the other hand, are routinely car-
ried out with a precision of • ln.P0=P/	 ˙ 1 � 10�4, better in favorable cases.
This is equivalent in our example to • ln.RPFRi/= ln.RPFRi/	 1 � 10�4=6:4 �
10�3	 0:015. Thus, for this mode, the thermodynamic precision of measurement
of RPFR is more than an order of magnitude better than that calculated from
spectroscopic differences. On the other hand real molecules have many vibrational
frequencies and VPIE is a complicated sum with contributions from all of them.
The example above is oversimplified. It is clear that the best physical understanding
will be achieved from an interactive approach which employs both spectroscopic
and thermodynamic information. In that process isotope independent force fields
are employed to calculate gas frequencies and gas-to-liquid frequency shifts, which,
on the one hand, are consistent with the spectroscopic data, and on the other with
measured IE’s.

5.4.3 A Further Approximation: The AB Equation

It is often useful to have an approximate relation for VPIE’s, especially when com-
plete vibrational analysis is impossible. The AB approximation serves that purpose,
and sometimes gives more physical insight than do detailed, but very complicated
calculations using Equation 5.24. It is based on the observation that ordinarily con-
densed phase vibrations fall in two groups; the first containing the high frequencies,
ui 
 1 (most often the internal modes, ui D hc�i=kT/, where the zero point (low
temperature) approximation is appropriate, and

ln.fc=fg/B D B=T D .1=2/.hc=.kT//
X

Œ.�i;
0
c ��i;c /� .�i;

0
g��i;g /
high freqs

(5.27)

The second group contains the low frequencies, ui < 1, which are to be treated
in the high temperature approximation. This, we have seen, accounts for excitation
into upper levels by expanding ln.s=s0/f in even powers of u (see Chapter 4)

ln.s=s0/fi D
X

Œ.�1/ jC1b2j�1•ui
2j=..2j/2j/Š/
low freqs (5.28)
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Reorganizing and dropping higher order terms

ln.fc=fv/ D A=T2 C B=T (5.29)

with B defined in Equation 5.30 and

A D .1=24/.hc=k/2
X

Œ.�i;c
02 � �i;c

2/� .�i;g
02 � �i;g

2
low freqs (5.30)

The A defined in Equation 5.30 is not to be confused with the Helmholtz free energy.
Should the A frequencies be limited to the external hindered translations and rota-
tions, �i;g

0 D �i;g D 0, and this is an additional simplification. In some molecules,
however, there are isotope sensitive low lying internal modes (often internal rota-
tions or skeletal bends). In that cases both terms in Equation 5.30 contribute.

A is generally positive and predicts (P0>P). B results from the shifts in internal
force constants on condensation. An increased force constant on condensation leads
in the direction of a normal VPIE, a decrease towards an inverse effect (P 0<P).
Keep aware of the different temperature dependences. At low enough temperature
A=T2 must predominate. The IE is normal and proportional to 1=T2. At intermedi-
ate temperatures the B term, which can be positive, but more often is negative (see
Section 5.4.1), may dominate. This accounts for the commonly observed crossover
to inverse IE’s. At higher temperatures yet, both terms decay to zero. The tempera-
ture dependence of VPIE can thus be complicated.

Our development has assumed temperature independent force constants. In real
liquids, however, there is a small temperature dependence of frequencies and force
constants due to anharmonicities, lattice expansion, etc. The incorporation of these
effects into the theory is treated in later sections.

5.5 Non-ideal Gases: Virial Coefficient Isotope Effects

Rationalization of virial coefficient isotope effects follows similarly to that for the
VPIE. In classical statistical thermodynamics the virial coefficient is given by,

B D �2 N
Z
Œexp.�¥2.r/=kT� exp.�¥1.r/=kT
r2dr (5.31)

In this equation ¥2(r) is the potential of interaction between two molecules and ¥1(r)
is the one molecule potential function, exp(-¥1.r/=kT D 1. The coordinate, r, spec-
ifies interparticle distance and the integral extends from zero to infinity. Statistical
arguments (see, e.g., Rice 1967) show that Equation 5.31 can be replaced with

B D .2=3/ ¢3 � K.T/ (5.32)
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2 K(T) is the probability of finding two particles closer than they would be in a
random distribution (i.e. it is the probability of pair formation, the factor 2 occurs
because it takes two particles to form one pair). K is the equilibrium constant for
pair formation and has units of volume. The first term b0 D .2=3/ ¢3 is the volume
excluded by the short range repulsive part of the potential and is isotope indepen-
dent. The VCIE is therefore associated with the isotope effect on (B � b0/ and can
be written

ln.K=K0/ D � ln.K0=K/ D ln.fp=f2
g/ D � lnŒ.B�b0/

0=.B� b0/
 D .�VCIE/

D Ap=T2 C Bp=T (5.33)

Subscript “p” refers to pair formation, the minus sign is explained by the fact that
K refers to the equilibrium, two monomer (gas) D one pair, but the vapor pres-
sure equilibrium is written, condensed phaseD ideal gas monomer. In analogy with
Equations 5.25 and 5.28 Ap and Bp are given as Ap D .1=24/.hc=k/2

P
Œ.�i;p

02 �
�i;p

2/ � .�i;g
02 � �i;g

2
low freqs and Bp D .1=2/.hc=.kT//
P
Œ.�i;p

0 � �i;p/ � .�i;g
0 �

�i;g/
high freqs. In the ordinary case the sum in the expression for A is over the six
external modes of the dimer and �i;g

02 D �i;g
2 D 0. In the B term the sum extends

over the 2(3n � 6) internal modes of the dimer, n is the number of atoms in the
monomer. As for VPIE, Ap is positive. Bp, however, involves the sum of dimer–
monomer isotopic frequency differences, and as in Equation 5.27, can be either
positive or negative. If the net frequency shift for internal modes is to the blue, the
A and B terms are both positive and reinforce one another. The IE is positive and
large. More often the net shift in internal frequencies is to the red, B is negative, and
at some temperatures B/T may be, and often is, larger in magnitude than A=T2. In
that case the isotope effect is negative (although at low enough temperature A=T2

must predominate and the IE is positive).
It is interesting to compare the magnitude of VCIE and VPIE, and this is

done for several compounds of interest in Table 5.2. Unfortunately VCIE data
are extraordinarily difficult to obtain at high precision and only rarely are avail-
able at temperatures where direct comparison with VPIE is possible. The discus-
sion in Section 5.3.2, considered together with Fig. 5.1, leads to the conclusion

Table 5.2 A and B parameters for fits to [�VCIE] and VPIE for selected molecules (per deuterium
substitution) (Van Hook, W. A., Rebelo, L. P. N. and Wolfsberg, M. J. Phys. Chem. A 105, 9284
(2001) RPFR D A=T2 C B=T

Virial coefficient IE’s Vapor pressure IE’s

AVCIE=nD BVCIE=nD Range(K) AVPIE=nD BVPIE=nD Range(K)

CH4=CD4 233˙ 40 �2:34˙ 0:21 110/300 258 �2:89 90/120
C2H6=C2D6 53˙ 23 �0:74˙ 0:08 210/520 140 �2:86 115/200
NH3=ND3 2630˙ 124 �5:43˙ 0:34 298/473 5320 �12:2 218/273
H2O=D2O 4277 �6:14 473/723 16900 �35:2 273/423

nD D number of D atoms substituted.
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that j � VCIE=VPIEj D ln.fp=f2
g/= ln.fc=fg/, AVCIE=AVPIE, and BVCIE=BVPIE are

all significantly less than unity (at temperatures well removed from crossovers
between positive and negative IE’s) and this is verified by the available data,
ln.fp=f2

g/= ln.fc=fg/ D 0:4 ˙ 0:2, AVCIE=AVPIE D 0:4 ˙ 0:2, and BVCIE=BVPIE D
0:3˙ 0:2. The large uncertainties are primarily due to experimental uncertainty in
the VCIE data.

5.6 Further Discussion of VPIE’s

5.6.1 Representative Effects, Especially H/D Effects
and Solvent Dependence

Figure 5.2 shows VPIE’s per atom D for a few organic compounds and for wa-
ter and ammonia. H/D VPIE’s range from 10% per D normal for H2O=HOD at
273 K (the freezing point of H2O, the effect in ice is even larger), to 1.6% in-
verse for CH3CCH=CH2DCCH at 160 K. The temperature dependence of VPIE also
varies widely (from @ ln.P0=P/=@.1=T/ D �110K for HOD at 273 K, to 1.3 K for
CH2DCCH at 160 K). D for H substitution at hydrogen bonds results in large normal
VPIE’s with large negative temperature coefficients (e.g. HOD=H2O). Contributions
to VPIE from the large hindered lattice modes of hydrogen bonded molecules far
outweigh the red-shifts observed in their internal frequencies on condensation, even
though such strongly associated molecules usually show larger red-shifts in internal
modes than do nonassociated ones. For example, for water there is a net red-shift of
	280 cm�1 for internal OH stretching frequencies on condensation, but that is more
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Fig. 5.2 H/D vapor pressure isotope effects (per atom D) for some representative compounds
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than compensated by the appearance of three blue-shifted librational modes (each
in excess of 500 cm�1) and three hindered translations (	160 cm�1). Large phase
frequency shifts are also observed for other condensed phase associated molecules,
for example at amino or alcoholic hydrogens. On the contrary D for H substitution
at methyl, methylene, or phenyl, groups is different. It is characterized by much
smaller shifts, even when the D/H sites are found in molecules which contain NH2,
OH, etc. associated functional groups. This is because the isotopically substituted
site is not directly involved in the hydrogen bonding or other association.

Since VPIE is determined by intermolecular forces, significant changes should
occur when one varies the condensed phase environment. This is nicely shown in
Table 5.3 which compares RPFR’s for H2O=D2O and C6H6=C6D6 at 306 K (ob-
tained from VPIE’s of pure waters or benzenes, or from Henry’s law coefficients,
KH and KD respectively, for the dilute solutions of H2O or D2O in benzene, or
C6H6 or C6D6 in water or heavy water). In the hydrocarbons water is monomeric
and nonassociated, or nearly so. For H2O=D2O in benzene the IE is about 1.4%
inverse, very different indeed from the VPIE of pure water which is 13% normal at
this temperature. The IE on the free energy of transfer between water and the dilute
solution in benzene, �•GTRANS D RTŒln.KH=KD/ � ln.PH=PD/
, is dramatic; it is
consequent to large changes in both internal and lattice frequencies on transfer from
the hydrogen bonded to the nonpolar medium (KH and KD are Henry’s law constants
for H2O and D2O at high dilution in C6H6, respectively). Less strongly associated

Table 5.3 Solute and solvent solubility isotope effects for (benzene–water) solutions at 306.2 K
obtained from IE’s on Henry’s Law coefficients, KI and KII. [Isotope effects on free energies of
transfer, ideal gas to solution in the limit of infinite dilution] (Dutta-Choudhury, M., Miljevic, N.
and Van Hook,W. A. J. Phys. Chem. 86, 1711 (1982)

(A) – Water-rich
solutions Solute Solvent(s) Solute effects Solvent effects

RPFRD ı�	.�;o/
RTD ln.KI=KII/

VPIED ı�	0
RTD ln.P0I =P0II/

I C6H6 H2O
II C6H6 D2O �0.088
I C6D6 H2O
II C6D6 D2O �0.109
I C6H6 H2O
II C6D6 H2O 0.061
I C6H6 D2O
II C6D6 D2O 0.040
I H2O H2O
II D2O D2O 0.131

(B) – Benzene-rich
solutions

I H2O C6H6

II D2O C6H6 �0.014
I C6H6 C6H6

II C6D6 C6D6 �0.027
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molecules also show large isotope effects on free energies of transfer. Table 5.3 in-
cludes IE data on reduced transfer free energy, this time for C6H6 or C6D6 from
the pure hydrocarbon to H2O (or D2O). The table shows that RPFR.C6H6=C6D6/ in-
creases markedly (from 	 �2:7% to 6.1%) on transfer from the pure hydrocarbon
liquid to the Henry’s law reference state (infinite dilution) in H2O. Moreover there
is a solvent IE on this process. The isotope effect on the transfer free energy to D2O
lies about 2% below that for H2O.

Another interesting example of solvent effects on isotopic vapor pressure ra-
tios is shown by hydrocarbon/alkylamine solutions. Logarithmic activity ratios of
NH2=ND2-ethylamines in n-butane, lnŒP.CH3NH2/=P.CH3ND2/
 	 RPFR (for
(0<x(amine)<1) are reported in Fig. 5.3. The IE falls smoothly from the large nor-
mal effect with a large temperature dependence at x(amine) D 1 characteristic of
hydrogen bonded systems, to a much smaller inverse effect with a small tempera-
ture dependence at x(amine) D 0. The behavior is the one expected as the strong
directionally dependent hydrogen bonding between amino groups is progressively
diminished on dilution with butane.

The thermodynamic connection between IE’s on gas solubility, infinite dilution
Henry’s law constants, and transfer free energy IE’s, implies that gas–liquid chro-
matography should be a convenient way to study solvent effect IE’s. That in fact is
the case, and many authors have reported on chromatographic isotope separations
and on the interpretation of the separation factors in terms of the transfer free energy
IE’s (Section 8.5).
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Fig. 5.3 Concentration dependence of the vapor pressure ratios of C2H5NH2 and C2H5ND2 dis-
solved in liquid n-butane at two temperatures (Data of Wolff, H. and Hopfner, A. Ber. Buns. Ges.
Phys.Chem. 69, 710 (1965)
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5.6.2 Interpretation of VPIE Using Model Calculations:
Preliminary Remarks

In simplest outline the harmonic oscillator cell model (HOCM) for condensed phase
IE’s outlined in Section 5.4 begins with spectroscopic analysis of the gas phase par-
ent molecule to define a set of isotope independent harmonic force constants. These
are combined with experimentally observed frequency shifts on condensation for
each of the 3n normal modes to generate condensed phase force constants. The dou-
ble set of force constant and force constant shifts describing the phase change is used
to generate complete sets of harmonic frequencies for each isotopomer of interest
in each phase, and thence reduced partition function ratios. The criterion of success
is that the calculated RPFR’s agree with those obtained from observed VPIE’s for
each pair over a reasonably wide range of temperature. Thus the process generates
sets of harmonic force constants consistent on the one hand with observed fre-
quencies and frequency shifts, and on the other with thermodynamically measured
VPIE’s. Broadly speaking HOCM has proven successful, and examples discussed
in Section 5.7 illustrate that point. Even so, improvements to the procedure out-
lined above are sometimes possible. The most important are corrections for the
contributions of anharmonicity, especially for lattice modes, and dielectric correc-
tions to observed condensed phase frequencies and frequency shifts (Sections 5.6.3
and 5.6.4).

5.6.3 Anharmonic Corrections

5.6.3.1 Lattice Anharmonicity and the Pseudo-harmonic Approximation

A realistic look at the potential functions used to describe intermolecular vibra-
tional modes shows the commonly used harmonic approximation to be no better
than “rough-and-ready.” Best fit harmonic potentials for lattice modes approxi-
mately coincide with more realistic potentials (like LJ-6/12) only at or very near the
bottom of the potential curves, and thus it is no surprise that strictly harmonic os-
cillator IE calculations only agree with experiment over narrow temperature ranges
(see, e.g., Figs. 3.1 and 5.1). The harmonic model does not properly account for
thermal expansion of the lattice, nor for the shifts in frequency associated with
lattice expansion. These effects, however, can be treated empirically by introduc-
ing a set of volume dependent “best fit” lattice harmonic oscillator force con-
stants. The method follows an approach introduced many years ago by Gruneisen
and generally known as the pseudo-harmonic approximation. In Gruneisen no-
tation, �i D �.d ln �i=d ln V/T D �.1=2/ d ln.fi/=d ln V. �i is the Gruneisen
constant for the frequency of interest �i, and fi is the harmonic force constant.
Also, �i D �d ln �i=d ln V D �.d ln �i=dP/.dP=d ln V/ D .d ln �i=dP/=›. Here
› is the isothermal compressibility, › D �.d ln V=dP/T. This relation is useful
because there is much more experimental information available on the pressure
dependence of vibrational frequencies than on their volume dependence. [For lat-
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tice translational modes of monatomics an additional semiempirical relation was
proposed by Gruneisen, �tr D ’V=.›CV/. Here ’ is the coefficient of thermal
expansion, ’ D .@ ln V=@T/P and typically, �tr is about 2. For rotation/libration
modes and internal vibrations, however, �i may be significantly different from 2,
for internal modes very much different (much smaller), and so far as these mo-
tions are concerned the Gruneisen formalism is best described as a completely
empirical approach which accounts for vibrational anharmonicities caused by lattice
expansion.] In the pseudoharmonic formalism the temperature dependences of the
various normal mode frequencies arise only indirectly, i.e. through the temperature
dependence of the volume. Anharmonic corrections for lattice modes can be impor-
tant. For example in the ethylene/deutero-ethylene system it was found the lattice
translational and rotational force constants decreased 	15% and 40% respectively
between 104 and 180 K. One expects (and finds) that changes in the volume depen-
dent pseudo-harmonic internal force constants are relatively much smaller than are
the changes in lattice force constants (the internal modes are stiffer and much less
sensitive to intermolecular coupling). For ethylene/deuteroethylene the CH stretch-
ing constant decreases only 0.15% between 104 and 180 K, bending force constants
change about 2% over that temperature range.

5.6.3.2 Anharmonicity: Internal Modes, Effect of Zero Point Anharmonicity

It is interesting to compare lattice mode pseudoharmonic corrections to VPIE with
zero point anharmonic corrections to RPFR for high frequency internal modes (Ap-
pendix 4.2). In making the connection between thermodynamic and optical experi-
ments it is important to recall that infra-red or Raman spectroscopic measurements
of vibrational frequencies (in the region, say, 600<�.cm�1/< 4;000) do not mea-
sure ZPE itself, but rather the energy difference between the zeroth and first levels,
•E.0; 1/. With the curvature of PES thoroughly understood it is possible to calcu-
late ZPE from •E.0; 1/ but only for those relatively few diatomic and polyatomic
isotopomer pairs for which complete vibrational analysis has yielded harmonic fre-
quencies and first-order (and very rarely second-order) anharmonic contributions to
ZPE. Vibrational analysis for the vast majority of polyatomics has been limited to
the harmonic approximation, and RPFR for these molecules must be calculated us-
ing effective harmonic oscillator frequencies and frequency shifts on condensation.
(As noted in Appendix 4.2, however, it is now possible to use standard quantum
chemistry packages to estimate anharmonic corrections to ZPE’s and RPFR’s).

As an isotopomer pair of interest gets larger and/or heavier, either by accu-
mulating mass in the form of heavier atoms, or by adding more atoms, the rela-
tive contribution of the external degrees of freedom, the lattice modes, to RPFR
decreases. Massive molecules have small hindered translation and librational fre-
quencies, �2(tr) 	1=M and �2.lib/ 	1=I, and the contribution to RPFR drops off
rapidly with mass. If at constant mass one increases the number of bonds, the change
in M and I is modest, but the number of internal oscillators increases rapidly (dN(�)
	3dn, N the number of oscillators, n the number of atoms). Thus the relative con-
tribution of B in Equation 5.29 grows at the expense of A.
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To illustrate the anharmonic contribution to RPFR from a particular high
frequency mode treated in the ZPE approximation, for example a CH/CD stretch,
we recall the oscillator energy neglecting G0 is expressed

E D hc¨.vC 1=2/� hc¨xe.vC 1=2/2 C hc¨ye.vC 1=2/3 � � � � � � :
: (5.34)

In Equation 5.34 ¨ is the harmonic frequency, v the vibrational quantum num-
ber, and xe and ye the first and second anharmonicity constants (mass depen-
dent, ¨0x0e=.¨xe/ D X0=X D �=�0; �, and �0 are vibrational reduced masses).
The ZPE.v D 0/ contribution to RPFR through first order is thus

ln.fc=fv/CH=CDD.hc=kT/fŒ.¨c
0�¨c/=2�.¨v

0�¨vp=2
�Œ.Xc
0–Xc/=4�.Xv

0–Xv/=4
g
(5.35)

The “best fit” harmonic approximation, on the other hand, gives

ln.fc=fv/CH=CD D .hc=kT/fŒ.�c
0 � �c/=2� .�v

0 � �v/=2
g (5.36)

where �i is the “best fit” fundamental frequency, �i D ¨i � 2Xi. The anharmonicity
correction to RPFR is expressed by the difference.

• ln.fc=fv/ D .3=4/.hc=kT/Œ1 � �0=�
•X0 (5.37)

where •X0 is the shift in the anharmonic constant X0on condensation. Harmonic
oscillator frequencies, anharmonic constants, and phase frequency shifts are avail-
able for chloroform (among other molecules) which we consider as an example
(Table 5.4). For CHCl3=CDCl3 the H/D VPIE is dominated by the contribution
of the CH(CD) stretching mode to the ZPE (B) term (�0 D 3;033 cm�1, ��0 D
14 cm�1, X0vap D 62/. Vibrational analysis of the VPIE data near room temperature
shows that X0 decreases by about 4% on condensation. The 0:6 cm�1 uncertainty
in this thermodynamic estimate (•X0 D �2:6 ˙ 0:6 cm�1/VPIE is less than the un-
certainty in the spectroscopic value .�1:3˙ 2 cm�1/SPEC. The results indicate that

Table 5.4 Gas phase frequencies and frequency shifts on condensation, and anharmonicity con-
stants for CHCl3 and CDCl3 in cm�1 (Jancso, G., Jakli, Gy. and Fetzer, C. Z., Naturforsch. 38a,
184 (1983))

Gas phase frequencies �GAS��LIQ •��

�1 CH(CD) stretch 3033:2 .2265:0/ 14:0 .10:0/ 4

�2 Sym CCl3 stretch 675:0 .652:6/ 5:6 .5:9/ �0:3
�3 Sym CCl3 bend 363:4 .357:6/ �1:8 .�2:0/ 0:2

�4 HCCl (DCCl) bend 1219:1 .910:8/ 3:0 .4:8/ �1:8
�5 Antisym CCl3 stretch 773:5 .742:2/ 3:9 .1:8/ 2:1

�6 Antisym CCl3 bend 261:7 .261:3/ 0:1 (0) 0:1

X1 Anharmonicity cons. �61:5 .�33:6/ �2:6 .�1:3/ �1:3
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intermolecular forces in liquid chloroform make the CH stretch for this molecule
more nearly harmonic than in the vapor. In the absence of information on anhar-
monic constants (the ordinary situation for polyatomics) vibrational analysis of
VPIE follows Equation 5.36 and one expects some deterioration in the agreement
between spectroscopically observed and thermodynamically calculated phase fre-
quency shifts.

5.6.4 Corrections for the Dielectric Effect

There is an additional complication in comparing thermodynamically observed and
spectroscopically calculated RPFR’s. The intermolecular forces which we conven-
tionally describe in terms of changes in effective well depth and shape parameters,
and in this way account for condensed matter isotope effects, also affect spec-
tral band shapes, centers of gravity, spectral intensities, and related spectroscopic
properties. For high intensity IR bands, shape corrections for condensed phase
interactions are substantial; in the spectroscopic literature they are referred to as
“dielectric corrections”. Dielectric corrections take account of the difference be-
tween the effective electric field of a light wave acting on a molecule in a condensed
medium, and the average electric field in that medium. The two are different be-
cause of the absorption of part of the radiation. Neglect of the dielectric corrections
affecting condensed phase band shapes and frequency assignments can lead to large
errors in RPFR’s derived from spectroscopic measurements. For IR intense bands
dielectric corrections can amount to 10 cm�1 or more. Table 5.5 gives a few values.
Bearing in mind that typical spectroscopic precision in the condensed phase is

Table 5.5 Some dielectric shifts for intense IR frequencies of pure liquids
(Maessen, B. and Wolfsberg, M. Z. Naturforsch. 38a, 191 (1983)

Substance Frequency cm�1

Dielectric
shift
(��=cm�1/

103

Intensity/
(cm2 mol�1/

CO 2143 1:3 2:7

CO2 �2 667 2:6 6:2

�3 2349 11:6 27:4

CS2 �2 397 0:4 1:4

�3 1535 10:3 36:8

SO2 �2 518 4:0 5:2

�1 1151 1:6 2:1

�3 1362 10:9 14:1

CH4 �4 1306 1:3 2:7

�3 3019 1:2 2:3

C6H6 �4 673 2:5 13:1

�13 1486 0:2 0:9

�12 3080 0:4 2:0
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	˙0:5 to˙1:0 cm�1, the corrections are significant. They cannot be ignored when
making accurate comparisons between spectroscopically calculated and thermody-
namically observed RPFR’s for molecules with intense IR bands.

5.6.4.1 Example, VPIE of Carbon Disulfide

CS2 is a symmetric linear molecule with carbon at the center. There are five external
(three hindered translations and two librations) and four internal modes, the sym-
metric and antisymmetric stretches and the doubly degenerate bend. The spectrum
is available for both phases (Table 5.6). The inverse carbon VPIE is large (�0:0018
at 250 K, �0:0013 at 325 K), the sulfur IE is positive and much smaller (0.0003
at 250 K, 0.0002 at 325 K). Because carbon lies at both center of mass and cen-
ter of symmetry there is no carbon IE on the symmetric stretch nor on libration.
The 12C=13C effect is a sum of IE’s for hindered translation, degenerate bending,
and asymmetric stretching, but the isotope dependence of translation and bending
modes is small. These motions cannot explain the unusually large carbon VPIE,
nor the fact that it is inverse. The predominant contribution is from the antisym-
metric stretch, �3, but the 13 cm�1 phase shift in this frequency calculated from the
VPIE does not agree with the spectroscopically observed (uncorrected) frequency
shift of 27 cm�1. The difference is far outside the combined thermodynamic and
spectroscopic uncertainty, which is no more than 	˙2 cm�1. It seems clear that
the appropriate phase frequency shift to employ in thermodynamic calculations is
the one corrected for the dielectric effect. For chloroform the corrected frequency
shift has been variously estimated by spectroscopists to lie between 10 and 15 cm�1

in good agreement with the thermodynamic value (13 cm�1), and the theoretical
estimates (Table 5.6).

Most theoretical interpretations of condensed phase IE’s have depended heavily
on spectroscopic measurements of ZPE shifts to define limits on parameter as-
signments (force constant shifts). It is therefore a matter of some importance to
determine the magnitude of dielectric corrections to be applied to such shifts. For-
tunately dielectric corrections are larger than typical spectroscopic uncertainties in
phase frequency shifts only for very intense IR bands, and therefore dielectric cor-
rections are very often unnecessary.

Table 5.6 Calculated and observed frequency shifts on condensation for CS2
(Jancso, G. and Van Hook, W. A. Can. J. Chem. 55, 3371 (1977))

Frequency Degeneracy .�g � �l/OBS=cm�1 .�g��l/CALC=cm�1

�1 1 5.2 5.2
�2 2 5.5 5.5
�3 1 27:1a .10–15/b;c 13.1
�tr 3 �52 �52
�libr 2 �70 �70
aObserved.
bAfter spectroscopic correction for dielectric effect.
cTheoretical dielectric correction (Table 5.5)D 10:3 cm�1.
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5.7 Some Examples

To illustrate the principles developed in earlier sections we consider VPIE’s for
some thoroughly studied systems.

5.7.1 Example #1: Monatomic Systems Reconsidered;
Accurate Calculations

Precise intermolecular potentials are available for monatomic He, Ne, Ar and Xe.
This permits accurate calculations of the VPIE’s of these gases, their mixtures, and
rare gas isotopomer mixtures. To begin, we are reminded that the mean intermolec-
ular potential energy,<U>, and mean force constant<r2U> can be obtained from
the pair correlation function of the fluid, g(r),

<U> D 4 ¡
Z

g.r/ u.r/r2dr (5.38)

<r2U> D 4 ¡
Z
.g .r/@=@r/.r2@u.r/=@r/dr (5.39)

In Equations 5.38 and 5.39 u(r) is the intermolecular potential, r is the intermolecular
distance, ¡ the number density, and the integrals extend (0 < r <1). Integral equa-
tion theory can be used to calculate<r2U> across a broad range of density (using a
reduced Lennard–Jones potential). This approach is an alternative to computer simu-
lation which is more lengthy and expensive. Figure 5.4 compares calculated RPFR’s
with experiment. The input parameters (well depth, ©, and size parameter, ¢ ,) for
each species are completely defined in terms of the observed critical properties for
each of the fluids. The agreement with experiment is remarkably good, especially
considering that the VPIE’s span several orders of magnitude. At any specific re-
duced temperature (T�D kT=©), RPFR scales very nearly as Œ.�m=m2/=.¢2©/
. The
excess free energies, GE, and activity coefficients, ln �1, of isotopomer mixtures
scale as Œ.�m=m3/=.¢4©/
 and Œ.�m=m3/=.¢4©2/
, respectively. Since, in turn, the
product (¢2©) for the rare gases is linearly dependent on mass, m, then RPFR is
directly proportional to the isotopic mass difference and inversely proportional to
m3, while ln.�/ is inversely proportional to m5. Thus the excess free energy of iso-
topic mixtures of rare gases vanishes rapidly as one proceeds down Group VIII of
the periodic table from helium through argon to, say, radon. Although the LJ poten-
tial is only approximate, it turns out to be an excellent choice to represent IE’s in
rare gas systems. The thermodynamic properties are described with a single master
(reduced) equation. Theory and experiment are in satisfactory agreement.
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Fig. 5.4 Theory and
experiment compared for
VPIE’s of rare gases (points
D experiment, linesD
calculation, trianglesD
20Ne=22Ne, rhombs D
36Ar=40Ar, squares D
80Kr=84Kr, circleD
130Xe=136Xe) (Reused with
permission from Lopes, J. N.
C., Padua, A. A. H., Rebelo,
L. P. N. and Bigeleisen, J. J.
Chem. Phys. 118, 5028
(2003). Copyright 2003,
American Institute of
Physics)
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5.7.2 Example #2: VPIE’s of Ethylene Isotopomers

Vapor pressures of C2DH3, cis-, trans-, and gem-C2D2H2, C2D3H and C2D4, and
12C13CH4, have been measured at high precision

C
H

C
H

DD
C

H
C

H D
D

C
H

C
H D
D

CIS TRANS GEM

and theoretically interpreted (see Fig. 5.5). VPIE’s for the liquids are inverse, but
there is a large positive discontinuity on freezing, and VPIE for solid C2D4 is
positive (0.0376 at 104 K, the melting point) and increases even more as temper-
ature drops.

Ethylene was one of the first systems subjected to detailed vibrational analy-
sis using HOCM modified to account for lattice anharmonicity. Agreement with
experiment is excellent (Fig. 5.5). The differences in the VPIE’s of the equivalent
isotopomers cis- trans-, and gem-dideuteroethylene (Fig. 5.6) are of considerable
interest since they neatly demonstrate the close connection between molecular struc-
ture and isotope chemistry. The IE’s are mainly a consequence of hindered rotation
in the liquid (moments of inertia for cis-, trans-, and gem-C2D2H2 are slightly
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Fig. 5.5 Plot of T2 ln.fc=fg/ D T2 ln.fc=fv/ for some isotopically substituted ethylenes. The solid
lines are theoretically calculated from the isotope independent force field in Table 5.7 (Reused
with permission from Bigeleisen, J., Fuks, S., Ribnikar, S. V., and Yato, Y., J. Chem. Phys. 66,
1689 (1977). Copyright 1977, American Institute of Physics)

Fig. 5.6 Vapor pressure differences between equivalent isotopic isomers of dideuteroethylene.
The three mercury levels shown (left to right) measure the vapor pressures of ordinary ethylene
C2D4, trans-ethylene-1,2d2 , and cis-ethylene-1,2d2 . The vapor pressure of gem-ethylene-1,1d2 is
very similar to the cis-isotopomer and is not shown in this photograph (Bigeleisen, J., Science 147,
463 (1965))

different), but superposed on that effect is an additional ZPE contribution caused
by coupling between the hindered rotational modes in the liquid and certain internal
vibrations. An interesting feature of IE calculations using comprehensive vibrational
analysis is that contributions from individual frequencies can be sorted out and
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Table 5.7 The contribution of various motions to T2 ln .fc=fv/ in the ethylene/deuteroethylene sys-
tem at 104 K. Values in K2. (Reused with permission from Bigeleisen, J., Fuks, S., Ribnikar, S. V.
and Yato, Y. J. Chem. Phys. 66, 1689 (1977). Copyright 1977, American Institute of Physics)

d1 Trans�d2 Cis�d2 Gem�d2 d3 d4

Hindered-tr 62 84 92 111 134 153
Libration 433 801 830 833 1120 1408
C D C stretch 53 123 106 72 122 113
C–H stretch �411 �814 �803 �749 1255 �1102
CH2 bend 1268 1497 1065 293 �1103 578
CH2 wag(in pl) �1222 �1425 �981 �205 �1162 �743
(out of pl) 86 395 �186 20 161 50
Torsion �133 �423 131 �114 �206 �64
Non-classical-

rot(vap)
4 8 8 8 11 13

Total 142 247 262 269 333 406
Experiment 145 249 262 267 334 407

considered separately even though the net IE must be calculated from a complicated
linear combination of all 3N motions. For deuteroethylenes Table 5.7 shows the
most important contributions to VPIE are from the external hindered rotations and
the internal CH/CD stretching modes.

5.7.3 Example #3: VPIE’s of Benzene Isotopomers; Excess
Pressures of Isotopomer Solutions

High precision VPIE’s for C6H5D, ortho-, meta-, and para-C6H4D2 and C6D6 are
available between the normal melting and boiling points, as are data on the excess
free energy of mixing (small and positive) for C6H6=C6D6, the 13C=12C effect
at the boiling temperature, VPIE’s and MVIE’s for C6H6=C6D6 across the entire
LV coexistence range, triple to critical points, and isothermal compressibility IE’s
between 288 and 313 K. HOCM calculations show good agreement with spectro-
scopic information and reproduce the observed subtle deviations from the law of
the mean in the series D1, D2; : : :D6; and the VPIE’s between equivalent isomers
ortho-, meta-, and para-C6H4D2. For liquid benzenes the lattice mode

�
A=T2

�
contribution is relatively small. At the triple point hindered translation and rota-
tion contribute about 3% and 5% of total VPIE, respectively; at the boiling point
only 2–3%. That is not enough to rationalize the anharmonic contribution to VPIE
(by applying Gruneisen theory to these external frequencies). A better approach
invokes condensed phase volume dependent pseudo-harmonic CH/CD stretching
modes. With .dfCH=dV/ obtained from VPIE of one isotopomer pair, and using
the experimentally observed molar volume isotope effect, one calculates �E D
1:8 J=mol for the excess free energy of isotopomer mixing in the low temperature
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Fig. 5.7 Excess pressures of equimolar solutions of per-protio and per-deuterobenzene and of
per-protio and per-deuterocyclohexane. �P D .PSOLUTION–Œ0:5Pı.per�protio/C0:5Pı.per�
deutero
/. The upper line refers to cyclohexane (C6H12=C6D12) solutions, the lower to benzene
(C6H6=C6D6) (Redrawn with permission from Jakli, Gy., Tzias, P., and Van Hook, W. A. J. Chem.
Phys. 68, 3177 (1978). Copyright 1978, American Institute of Physics)

fluid Œ.0:5 C6H6 C 0:5 C6D6/, see Fig. 5.7] in good agreement with experiment,
2:1˙ 0:3 J=mol. The agreement furnishes strong support for the theoretical de-
velopment (Section 5.8) correlating molar volume isotope effects and excess free
energies of solutions of isotopomers.

5.7.4 Example #4: Water

It is instructive to illustrate the use of Equations 5.19 and 5.29 using a simplistic
3-atom model calculation for water. Even though it is well established that the
condensed phase structure of water is complicated and involves the coordinated
motions of many molecules coupled through a constantly fluctuating hydrogen bond
network, the fundamentals of the VPIE are represented reasonably well by the sim-
plified model.

The principal features of water VPIE’s are illustrated in Fig. 5.8 which com-
pares VPIE’s for water isotopomers from well down in the solid–vapor part of the
phase diagram to near 400 K. For H2O=D2O and H2

16O=H2
18O high precision

data from VPIE or LVFF, respectively, are available all the way to the critical point.
VPIE’s in the solid, and in the liquid not too far from the melting point, are nor-
mal and unusually large. At 273.15 K for H2O=D2O, ln .P0=P/SOLID D 0:242 and
ln .P0=P/LIQ D 0:204. Such large effects are consequent to the large vibrational fre-
quency shifts which occur on the condensation of a freely rotating and translating
vapor molecule to the librationally hindered and hydrogen-bonded condensed phase.
Although the OH/OD stretching modes red shift significantly on condensation, that
change is more than compensated by the very large and isotope sensitive blue shift
in external frequencies.
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Fig. 5.8 VPIE’s of Waters and Ices. The points are experimental from various sources. The lines
are calculated using an isotope independent harmonic force field consistent with spectroscopic
information (Van Hook, W. A. J. Phys. Chem 72,1234 (1968))

The temperature coefficient of VPIE is also unusually large. For H2O=D2O VPIE
(normal at low temperature) falls steeply from 0.204 at the triple point to 0.051 at
the boiling point, continues to drop as it crosses into the inverse VPIE region at
494 K, and still falls, albeit more slowly, all the way to the critical point of H2O,
647.2 K, where it is �0:024. Within experimental error ln.’/ is zero at that tem-
perature. The interpretation of these temperature dependences is straightforwardly
connected with the loss of hydrogen bonding as temperature increases. At high
enough temperature, H-bonding has essentially disappeared, and the librational fre-
quencies have all but vanished. Near TC the most important contribution to IE is
from the red-shifted OH/OD stretches. Thus, in this region the interpretation is
similar to that of a hydrocarbon or other van-der-Waals bonded fluid. Table 5.8a
shows observed and calculated frequencies and frequency shifts for room tempera-
ture water and VPIE’s calculated from a harmonic isotope independent force field
(Table 5.8b) chosen to be consistent with the spectroscopic phase frequency shifts
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Table 5.8a Gas phase frequencies and observed and calculated gas–ice (173 K) and gas–liquid
(213 K) frequency shifts for H2O and D2O. Values in cm�1 (Van Hook, W. A. J. Phys.Chem 72,
1234 (1968))

H2O D2O

Gas to solid at 173 K

�GAS .�GAS � �ICE/OBS .�GAS � �ICE/CALC .�GAS � �ICE/OBS .�GAS � �ICE/CALC

Internal modes
3755.8 375.8 375.9 363 368.3
3656.7 506.7 506.5 277 274.8
1594.6 �55.4 �55.4 �31.7 �43.1
Librationsa �840 �843.6 �596.8

�770 �772.9 �557.7
�660 �666.7 �501.2

Hindered �250 �275 �261
Translationsa to �275 �260

�300 �275 �258

Gas to liquid at 313 K

�GAS

�
�GAS � �LIQ

�
OBS

�
�GAS � �LIQ

�
CALC

�
�GAS � �LIQ

�
OBS

�
�GAS � �LIQ

�
CALC

Internal modes
3755.8 125.8 125.8 126.1 92
3656.7 206.7 206.6 156.5 150.4
1594.6 �50.4 �50.6 �46.7 �38.0
Librationsa �450 �500.0 �371.7

to �496.5 �358.0
�600 �495.4 �353.6

Hindereda �150 �162.2 �153.7
Translationsa to �162.2 �153.5

�175 �162.2 �154.0
aBroad spectral features. Approximate center reported.

of H2O and D2O. VPIE’s for various water isotopomers calculated from this force
field are those shown in Fig. 5.8 as the solid lines.

In treating mixtures of isotopes in aqueous systems one must consider dispropor-
tionation, H2OCD2O D 2HOD, at the same time recognizing that a pure sample of
HOD cannot be obtained in bulk. Careful consideration of data on vapor pressures
and freezing and boiling points of H2O=HOD=D2O mixtures leads to the conclusion
that ln ŒP .H2O/ =P .D2O/
 = ln ŒP .H2O/ =P.HOD/
 D 1:91˙ 0:02.273 < T=K <

473/ and is essentially independent of HOD concentration. In first approximation
one would expect a ratio of two, which is the value predicted by the law of the
geometric mean, but that law does not properly account for the interactions between
internal and external modes, large and important in water because of hydrogen
bonding.

IE’s on some of the other properties of water are shown in Table 5.9. Many
properties (like the enthalpies of phase change, triple points, etc.) are closely re-
lated to VP and can be interpreted similarly. Molar volume isotope effects are
interesting and are discussed in Chapters 12 and 13. In the low temperature liquids
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Table 5.8b Isotope independent gas, liquid and solid force fields for water.
Units are mdyn/A for stretches and mdyn� A=rad2 for bends (Van Hook, W.
A. J. Phys.Chem 72, 1234 (1968))

Gas Liquid (313 K) Solid

OH stretch 8:4543 7:7470a 6:6435

HOH bend 0:6994 0:7448a 0:7520

Stretch–stretch �0:1002 �0:2705 �0:3577
Stretch–bend 0:2272 0:2371 0:2371

Stretch–libration �0:0234 �0:0480
Bend–libration 0:0072 0:0086

Translations 0:2789a 0:8020

Libration 1 0:0896a 0:1625

Libration 2 0:1705a 0:4858

Libration 3 0:2575a 0:6249

aThese constants are temperature dependent. df.st/ D 2:8 � 10�3

mdyn/(A deg) equivalent to the observed d�.OH/=dT D 0:696 cm�1=deg:
df.bend/ D �0:052 � 10�3 mdyn A=

�
rad2 deg

�
equivalent to the observed

d�.HOH/=dT D �0:061 cm�1=deg. For the external librations and transla-
tions df.ext/=f.ext/ D �0:0041 TC 1:2839

Table 5.9 IE’s on some of the thermodynamic properties of isotopic waters (Jancso, G. and Van
Hook, W. A. Chem. Rev. 74, 689 (1974))

HOH DOD TOT H18
2 O H17

2 O

t.triple/=ıC 0.0 3.82 4.49 0.38 0.21
.t.boil/� 100/=ıC 0.0 1.42 1.51 0.15 0.08
VPIE crossover .c:o:/=ıC – 220.9 190 no c.o. no c.o.
Critical properties

TC
0=K 647.1

ln .TC
0=TC/ 0.0050

PC
0=MPa 22.06

ln .PC
0=PC/ 0.0180

¡C
0=
�
mol=m3

�
17.9

ln .¡C
0=¡C/ 0.0056

Relative enthalpy .Lx � LH2O/

0ıC
�
J mol�1

�
– 1750 1960 67 38

100ıC
�
J mol�1

�
– 810 1210 46 25

•HFUS

�
J mol�1

�
, 0ıC 6010 5960�

J mol�1
�
, 3:82ıC – 6280

Cp=
�
J mol�1 K�1

�
, 25ıC 75.3 84.3

Cv=
�
J mol�1 K�1

�
, 25ıC 74.5 83.7

106›T=atm�1, 25ıC 45.3 46.6

molar volumes are in the order TOT > DOD > HOH > HH18O. These inverse
isotope effects have been ascribed to librational motion in the hydrogen bonded
condensed phase. The center of mass and center of interaction (about which the
molecule librates) do not coincide and translation–rotation coupling must be taken
into account. The center of mass moves progressively away from the oxygen in the
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series 18OHH, 16OHH, 16ODD, 16OTT and this explains the ordering in the low
temperature liquids. At higher temperatures MVIE falls off to more negative values
due to ever increasing isothermal compressibility (unbounded at TC). Near TC this
fixes the order of isobaric molar volumes as TTO > DDO > HH18O > HH16O and
the ordering of critical temperatures as HH16O > DDO > TTO.

Numerous model calculations correlating aqueous VPIE’s using simple harmonic
or pseudo-harmonic cell models have been reported (see Fig. 5.8 and Table 5.8 for
an ultra-simple version). Such calculations show the importance of the librational
hydrogen bonded modes and the stretch–libration interaction in determining VPIE
for D or T substitution.

5.8 Excess Free Energies in Solutions of Isotopes: Connections
Between VPIE, the Liquid Vapor Fractionation Factor,
’, and RPFR

The pseudo-harmonic cell model leads straightforwardly to the idea that the excess
free energies of isotopomer mixtures correlate with the isotope effect on the molar
volumes of the pure isotopomers (MVIE’s). An excess thermodynamic property
YE is just the difference between the value of that property for the real (nonideal)
solution and the corresponding ideal solution, YE D Y–Yideal. MVIE’s are discussed
in Chapters 12 and 13. We begin by expanding the Helmholtz free energy about the
equilibrium volumes, Vı0 or Vı, to obtain an expression for the contribution of�V
to the excess Helmholtz free energy

AE.V/ D xx0
�
V0 � V

� 
.dA=dV/� �dA0=dV

��
C.1=2/ xx0

�
V0 � V

�2 
x
�
d2A0=dV2

�C x0
�
d2A=dV2

��C � � � � � �: (5.40)

Here x and x0 are isotopomer mole fractions in the binary mixture. Remember-
ing x0 D 1 � x, differentiating to obtain partial molar free energies (and using
the thermodynamic relations �E.V/ D AE.V/ � x0

�
dAE.V/=dx0

�
and �E0.V/ D

AE.V/ C x0
�
dAE.V/=dx0

�
one finds expressions for the excess partial molar free

energies, �E.V/ and �E0.V/. In the high dilution limit, an important case of practi-
cal interest, the excess chemical potential of the trace isotopomer, say the unprimed
one, is

�1;E D �Vı0 � Vı
� 
.dA=dV/� �dA0=dV

��C .1=2/ �Vı0 � Vı
�2 h�

d2A0=dV2
�i
I x0 ! 1

(5.41)

The development to this point has been rigorous but difficulties arise as
simplifications are introduced. Early authors continued by discarding the first
term in Equation 5.40 since Vı	Vı0 and


.dA=dV/T D P	 �dA0=dV

�
T D P0

�
,

and identified
�
d2A=dV2

�
T with 1=.›V/, › the isothermal compressibility.

Then �1;E D .Vı0 � Vı/2 = .2›Vı/. Since RPFR D �•�Aı=RT and RT
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ln.”/ D �E, at this level of approximation ln.”/ D V.�V=V/2=.2›RT/. At low
enough temperature compressibility IE’s can be neglected, and

ln.’/ D RPFR � �Vı0 �Vı
�2
=
�
2›RTVı

�
(5.42)

Although Equation 5.44 was long used to convert liquid vapor fractionation fac-
tors .LVFF0s D ’/ to RPFR’s it was more recently argued that identification of
ln.”/with V.�V=V/2=.2›RT/ seriously underestimates the contribution of internal
modes (i.e. the high frequency motions). These frequencies make negligible contri-
bution to ›, but do contribute to the free energy. An improved method calculates
the free energy of mixing in a two step process (Prigogine 1957) – (1) compress or
dilate each separated component to the molar volume of the solution, and (2) mix
at constant volume, assuming the free energy change in step (2) is zero. In terms of
HOCM the free energy change in first step (1) is

� RT ln.”/ D �
Z
.dA=dV/dV D �RT

Z
˙ Œ.dln .Qi/ =d�i/.d�i=dV/dV
3n freqs

(5.43)
The integral is from V to V0. With Equation 5.43 the disadvantage of the slowly
converging Taylor series (Equation 5.40) is avoided and the contributions of internal
modes properly evaluated. Also apparent differences between RPFR obtained via
VPIE or LVFF can be successfully rationalized, and the excess free energies in
concentrated solutions of isotopomers, one in the other, interpreted. Examples are
given in Table 5.10.

Table 5.10 Excess IE’s of some isotopomer solutions

System T/K x0 .104ln ”/a GE=.J=mol/ HE=.J=mol/ Ref.
36Ar=40Ar 84 0 �3 � c, d

90 0.5 � 0.015 0.12 d
CH4=CD4 100 0.5 � 0.57 1.3 c, d
HCl/DCl 170 0.5 � 0.66 2.1 c
H2S=D2S 190 0.5 � �0.92 c
C6H6=C6D6 298 0.5 � 0.58 1.1 c
c�C6H12=c�C6D12 298 0.5 � 1.08 3.1 c
H2O=D2O 305 1 �8 � c

278�363 0.5 � 0b 0b c, e
H18
2 O=H16

2 O 305 1 4 � � c
Polybutadiene-h/-d 296 � 9 � � c
Polystyrene-h/-d 300 � 4 � � c
aActivity coefficient of the more dilute species 36Ar, HDO, or H18

2 O.
bBut recall the complication introduced by the disproportionation equilibrium H2OC D2O D 2

HDO and its IE, ln .PHOH=PDOD/ = ln .PHOH=PHOD/ D 1:92˙ 0:02.
cJancso, G., Rebelo, L. P. N., and Van Hook, W. A. Chem. Rev. 93, 2645 (1993).
dCalado, G. et al. Phys. Chem. Chem. Phys. 2, 1095 (2000); J. Chem. Phys. 100, 4582 (1994).
eJancso, G. and Jakli, Gy. Aust. J. Chem, 33, 2357 (1980).
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5.8.1 Excess Free Energies and Demixing in Isotopomer
Solutions, Further Discussion

It is interesting to explore the possibility of phase separation in solutions of
isotopomers. Phase separation is a straightforward consequence of solution non-
ideality. In regular solution theory the total excess free energy is expressed,
GE D x0�0E C x�E D xx0¦. In first approximation the Flory–Huggins param-
eter ¦ is independent of temperature and concentration, and the thermodynamic
conditions for the initial liquid–liquid phase separation from symmetrical mixtures,
and certainly mixtures of isotopomers are the example par excellance of symmetri-
cal mixtures, are x D x0 D 0:5 and ¦=RT D 2. For ¦=RT > 2 there is incomplete
mixing, i.e. phase separation. Typically, IE’s on the excess free energy, now ex-
pressed in terms of the parameter ¦, are inversely proportional to the temperature
raised to some power, and directly proportional to the total isotope and phase fre-
quency shift, �ı�. It follows that liquid–liquid demixing of isotopomers will be
enhanced at very low temperature, or, should one be restricted to higher tempera-
ture because the solution freezes, to molecules with many (isotopically substituted)
oscillators. The first case is realized for 3He=4He and H2=D2 mixtures, the second
by polymer/polymer mixtures.

It has been long established that 3He=4He liquid mixtures phase separate at
temperature below 0.9 K. (see Fig. 5.9), and the theoretical explanation for this,
first advanced by Prigogine, has been outlined above. Similarly, mixtures of solid
3He=4He (formed at elevated pressure) and mixtures of solid H2=D2 both phase
separate, but liquid mixtures of H2 and D2 do not, although they do show apprecia-
ble nonideality. No other “small molecule” isotopomer mixtures phase separate, but
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Fig. 5.9 Phase separation in 3He=4He liquid mixtures
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in polymer mixtures, the excess free energy of mixing is sufficiently large (for long
enough chains) that binary mixtures of perprotio and perdeutero polymers can, and
do, phase separate. The reason, of course, is that the total excess free energy of the
isotopomer mixture is proportional to the number of oscillators with D for H substi-
tution, and that number in turn is proportional to chain length. H/D phase separation
has been observed in polystyrene(H/D), polybutadiene(H/D), and polyethylene–
polypropylene(H/D) mixtures. The explanation proceeds by writing the Helmholtz
excess free energy of the solution, Aex, as

Aex D ¥H¥D .N�iri=2/ .�V=V/ .uH � uD/ (5.44)

In Equation 5.44, ¥1 and ¥2 are volume fractions of isotopomers H and D, N is the
number of monomer units per molecule, ri the number of H/D substituted bonds per
monomer, �i the Gruneisen coefficient, �i D �@ ln .ui/ =@ ln.V/, for the effective
frequency (which, for these polymers is the CH(CD) stretch), �V=V is the molar
volume isotope effect, and the ui’s are reduced frequencies, ui D h�i=kT. The ther-
modynamic conditions for phase separation are ¥H D ¥D D 0:5, and

.N�iri=2/ .�V=V/uH

�
1 � .�H�D/

1=2
�
� 2 (5.45)

The �’s are reduced masses for the CH(CD) oscillators. For polybutadiene, ri D 6,
and the critical polymerization number for H/D demixing is 1:2 � 103 monomer
units.

5.9 The Isotope Effect on TCR for the Superconducting/Resistive
Transition in Metals

Figure 5.10 shows old and very important data on the isotope dependence of the
critical temperature for the superconducting/resistive transition in metallic mercury
at liquid helium temperatures. TCR is inversely proportional to the square root of
atomic mass. These data are especially interesting because if electrical conduction
in mercury were purely electronic, there would be no dependence upon nuclear
mass. It is remarkable that an electrical phenomenon like the transition to zero re-
sistivity involves a purely mechanical property of the lattice. It indicates that lattice
vibrations are part of the superconducting process. This was an important clue in
the Nobel Prize winning development of the BCS (Bardeen–Cooper–Schrieffer)
theory of superconductivity because it was the first direct evidence for interaction
between the electrons and the lattice. In ordinary superconductors lattice vibrations
(phonons) push electrons into pairs, which form a superconducting condensate.
Lighter isotopes lead to higher phonon frequencies (in first order � is proportional to
1=M1=2) and correspondingly higher transition temperatures. This lattice vibration
type of isotope effect is not found in Type-II superconductors (for example high
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Fig. 5.10 The mass dependence of the critical temperature of the superconducting/resistive tran-
sition in isotopically enriched samples of mercury (Triangles: Reynolds, C. A., et al. Phys. Rev. 78,
487 (1950). Circles: Maxwell, E., Phys. Rev. 78, 477 (1950))

TCR cuprates), whose superconductivity depends on subtle, phonon-free coupling
between electrons. It is interesting that the highest known temperature Type-I
superconductor, MgB2, shows a much larger isotope effect than does mercury�
TCR

�
Mg11B2

� D 39:2K;TCR
�
Mg10B2

� D 40:2K
�
.

5.10 Isotope Effects on Solubility

5.10.1 Liquid–Liquid Equilibria: Two Component Systems

Isotope effects on the mutual solubility of liquids have been widely studied (see
Section 7.5.4). Consider a binary mixture, components 1 and 2, which phase sep-
arates into two solutions in equilibrium, the first (A) richer in component 1, the
second (B) in component 2. Focusing on component 2, the one isotopically sub-
stituted, its standard state in A is most conveniently expressed using the Henry’s
Law standard state (infinite dilution), but in B, the standard state is more reason-
ably the pure liquid (Raoult’s Law). In gross approximation, then, the transfer free
energy is that from the Raoult to Henry standard state. Remember, however, that
in their standard states, solutions are by definition ideal, while in contrast the very
observation of liquid–liquid demixing is prima facie evidence of nonideality. Thus,
proper understanding of isotope effects on liquid–liquid equilibria (or liquid–liquid
demixing) requires a marriage of the theory of condensed phase isotope effects with
theories which treat the excess free energy of nonideal solutions, GE. For exam-
ple using the Guggenheim or modified Flory–Huggins theories to describe critical
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immiscibility, one relates the isotope shift in the UCST and/or LCST,�Tc, with GE

model parameters. (UCST and LCST, the upper and lower critical solution temper-
ature, respectively, are those temperatures above or below which, respectively, the
solution is homogeneous at all concentrations).

��TC=TC D •��2=¦RTC (5.46)

Here, ¦ is the isotope-independent value of excess free energy interaction parameter
that triggers phase separation (¦ varies between 2 for strictly symmetrical mix-
tures, and 0.5 for solutions of infinitely long polymers dissolved in small molecule
solvents). Also •��2 is the isotope effect on the partial molar free energy of trans-
fer from reference state to solution. In using � to symbolize both partial molar
free energy (or chemical potential) and reduced mass (as in Equation 5.45) we
are following widely employed standard notations. Ordinarily the distinction be-
tween one or the other use will be clear from the context. The development leading
to Equation 5.46 establishes the relation between the isotope shift on UCST and/or
LCST with the isotope dependent normal mode frequency shifts which occur on
transfer from the reference state to solution.

5.10.2 Small Molecule Solutions Including Aqueous Systems

For small molecules dissolved in water (or alcohols or amines) deuteration on the
solvent enlarges the two-phase region(s) (either lowering LCST, raising UCST, or
both (Section 7.5.4)). The effects are substantial; it is common to observe isotope de-
pendent temperature shifts as large as 10 or 20 K, or even more. If one assumes that
it is hydrogen bonding which is predominantly responsible for UCST IE’s, then, one
expects (and observes) a significant decrease in�Tc as Tc increases. For H2O=D2O
solutions the typical	25K isotope shift on UCST observed at 270 K becomes neg-
ligible at 470 K. The importance of hydrogen bonding can also be appreciated by
comparing�Tc for methanol/ cyclohexane mixtures for H/D substitution on the al-
coholic group (where there is an increase UCST of about 4 K) with the effect for
substitution at the methyl group, or in the cyclohexane (which leads to a decrease
in Tc of 	0:3 K/atom replaced). In another interesting example UCST demixing
envelopes describing the H/D IE’s for (nitromethane + pentanol), Fig. 5.11, and
(nitromethane + isobutanol) solutions were determined. For these solutions the Tc

shifts are small (1.4 K and less) but in all cases it was found that deuteration leads
to the enlargement of the limited miscibility region.

At temperatures well below UCST, solubilities of hydrocarbons in water or wa-
ter in hydrocarbons drop to very low values. The solutions are very nearly ideal
in the Henry’s law sense, and the isotope effects on solubility can be directly in-
terpreted as the isotope effect on the standard state partial molar free energy of
transfer from the Raoult’s law standard state to the Henry’s law standard state.
Good examples include the aqueous solutions of benzene, cyclohexane, toluene,
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Fig. 5.11 Phase diagrams for UCST demixing of variously deuterated nitromethane(1) C pen-
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n–C5H11OD) (Milewska, A. and Szydlowki, J. J. Chem. Eng. Data 44, 505 (1999))

and tetrachloromethane where both solute and solvent isotope effects around room
temperature have been studied. Results for benzene/water solutions are found in
Table 5.3 and have been discussed in Section 5.6.1. The data are complete enough
to deduce both the shift in the position of the benzene PES on phase change and the
change in shape of its isotope sensitive vibrations.

A dramatic isotope effect on the solubility diagram has been reported for
solutions of 3-methylpyridine + water (H/D). At atmospheric pressure a 70 K
.TUCST–TLCST/ closed-immiscibility-loop is observed for .3-methylpyridineCD2O/
and the immiscibility gap is modestly pressure dependent (Fig. 5.12). Viewed on the
(p,T) projection, the phase diagram shows a characteristic “hour-glass” shape. On
addition of H2O, however, the gap shrinks, becomes more and more pinched at the
waist, and at 21 wt % D2O it disappears completely as the phase diagram changes
from this “hour-glass” to a shape that resembles the UCST/LCST configuration
in the (T,x) plane – two immiscible domes, an upper and a lower. With continued
addition of H2O, holding (3-methylpyridineC water) at the critical concentration,
the upper and lower immiscible branches move further and further apart, until
finally at high enough H2O=D2O (17 wt % D2O) the low-pressure branch is no
longer present at atmospheric pressure, dropping below the PD 0 isobar. For (3-
methylpyridine CH2O) the miscibility gap between the upper and lower branches
amounts to 	160MPa. The phenomenon corresponds to an impressive pressure
shift of hundreds of atmospheres merely upon (H/D) solvent isotope substitution.
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Fig. 5.12 Two different 3-D representations of the phase diagram of 3-methylpyridine plus wa-
ter(H/D). (a) T-P-x(3-MP) for three different H2O=D2O concentration ratios. The inner ellipse
(light gray) and corresponding critical curves hold for (0 < W.D2O/=wt% < 17). Intermediate
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points. (b) Phase diagram at approximately constant critical concentration 3-MP (x� 0:08) show-
ing the evolution of the diagram as the deuterium content of the solvent varies. The white line is
the locus of temperature double critical points whose extrema (C) corresponds to the quadruple
critical point. Note both diagrams include portions at negative pressure (Visak, Z. P., Rebelo, L. P.
N. and Szydlowski, J. J. Phys. Chem. B. 107, 9837 (2003))

Very large isotope effects like those shown in Fig. 5.12 seem to be limited to the
hypercritical regions of phase diagrams, i.e. not too far from thermodynamic diver-
gences of the type .dP=dT/c D 1 or .dT=dP/c D 1 (i.e. pressure-double critical
points (p-DCP) or temperature-double critical points (T-DCP), respectively).

5.10.3 IE’s on Solubility of Gases in Liquids,
Chromatographic IE’s

There is a good deal of data which compares the solubilities of H2 and D2 in
various solvents, but by far the most extensive information on gas solubility IE’s
compares gas solubilities in H2O and D2O (Table 5.11). The solubility of D2 is
considerably higher than H2 in all solvents investigated (Table 5.12). The isotope
effect increases sharply as temperature falls (although not shown in Table 5.12).
The isotope effect increases sharply as temperature falls (although not shown in Ta-
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Table 5.11 H2O=D2O solvent isotope effects on gas solubility. Thermody-
namics of transfer at 298.15 K, �Y� D Y .H2O/ � Y� .D2O/ (Scharlin, P.
and Battino, R. J. Solut. Chem. 21, 67 (1992). Fluid Phase Equlib. 94, 137
(1994))

Solute �G�=.J:mol�1/ �H�=.kJ:mol�1/ T�S�=.kJ:mol�1/
4He 210 2:62 2:41

Ne 163 2:06 1:90

Ar 180 0:24 0:06

Kr 145 �0:18 �0:32
H2 546
D2 597 0:23 �0:37
N2 159 0:88 0:72

O2 231 0:24 0:01

CH4 144 1:84 1:70

C2H6 123 1:86 1:74

C3H8 147 1:72 1:57

CCl2F2 124 1:81 1:69

CClF3 505 �4:08 �4:58
c–C4F8 971 �9:74 8:77

CF4 111 5:81 5:69

SF6 221 2:05 1:83

Table 5.12 Ratio of
solubilities of H2 and D2 in
various solvents (Rabinovich,
I. B. Influence of isotopy on
the physicochemical
properties of liquids.
Consultants Bureau, New
York, 1970)

Solvent T/K x.D2/=x.H2/

H2O 292 1:027

NH3 240 1:029

SO2 293 1:033

Ar 87 1:165

N2 67 1:297

CH4 112 1:084

CS2 298 1:020

Octane 308 1:020

Benzene 308 1:027

ax D mole fraction of gas in the saturated
solution at the Henry’s Law limit.

ble 5.12), but the economics of using these differences to extract D2 or HD from
their mixtures with H2 are unfavorable compared with distillation. Solute solubility
isotope effects are small for substitution at non-hydrogenic positions. The aqueous
solvent isotope effects reported in Table 5.11 are the result of careful gas solubil-
ity measurements covering the range (288<T=K<318). Thermodynamic analysis
yielded standard state free energies, and Van’t Hoff enthalpies, entropies and heat
capacities of transfer.

The extension of the ideas presented in Sections 5.8 and 5.10 to the theoreti-
cal treatment of isotope separation by gas chromatography is straightforward. The
isotope effects observed in chromatography are governed by the isotopic ratio of
Henry’s Law constants (for gas–liquid separations), or adsorption constants (for
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Table 5.13 Solvent isotope
effects on solubility of
selected electrolytes in H2O
and D2O, �L,
%D 100 .LH � LD/ =LH. LH

and LD are moles anhydrous
salt per 55.508 mol H2O and
D2O, respectively
(Rabinovich, I. B. Influence
of isotopy on the
physicochemical properties of
liquids. Consultants Bureau,
New York, 1970)

Salt T/K LH �L, %

NaCl 293 6:13 6:7

NaBr(2 aq) 293 8:89 1:5

NaBr 323 11:38 3:3

NaI(2 aq) 293 11:26 1:9

NaI 373 20:1 1:7

KCl 293 4:61 9:8

KBr 298 5:75 1:1

KI 298 8:90 9:2

BaCl2(2 aq) 298 1:78 13

BaCl2 398 3:01 9:3

HgCl2 298 0:27 25

PbCl2 298 0:039 36

Na2SO4(10 aq) 298 1:96 1:6

Na2SO4 323 3:26 1:2

LiF 298 0:1 �13
LiCl 298 13 �2

gas–solid separations), and gas chromatography has been widely used for isotope
separation and for the rapid and convenient analysis of mixtures of isotopomers
(see Section 8.5 for discussion and examples).

5.10.4 Solubility of Ionic Solids in H2O=D2O

Concentrations of aqueous electrolyte solutions are conventionally expressed using
the aquamolality scale (L D moles salt per 55.508 mol solvent (1,000 g for H2O)).
Some typical solubilities (298.15 K) are listed in Table 5.13. Almost all salts are
less soluble in D2O than in H2O. For those salts whose solubility increases with
temperature, which is the ordinary behaviour, the isotope effects decrease with tem-
perature. Writing the standard state partial molar free energy of pure solid salt as
�ı

.SALT/
and its standard state in solution as �ı

.HorD/
we have on comparing the satu-

rated solutions in H2O and D2O,

�ı.SALT/ D �ı.H/ C RT ln.”HLH/ D �ı.D/ C RT ln.”DLD/ (5.47a)

and, keeping in mind that the activity coefficients are a function of concentration,
we obtain

� .�ı.H/ � �ı.D// D RT Œln.LH=LD/C ln.”H=”D/LD C
Z
.d ln ”H=dLH/dLH

(5.47b)
The integral extends from LH to LD. Equation 5.47b demonstrates that the solvent

solubility IE offers a convenient way to determine the IE on the standard state partial
molar free energy for the salt provided the concentration dependence of its activity
coefficient in one solvent, most likely H2O, is available at high concentration.
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The largest solubility isotope effects are found for sparingly soluble salts. For
example, lead chloride and potassium bichromate are 36% and 33.5% more solu-
ble in H2O than D2O at 298.15 and 278.15 K, respectively. For the more soluble
salts, NaCl and KCl, the values are 6.4% and 9.0%. Interestingly LiF and LiCl.aq
have inverse effects of 13% and 2%, respectively. Recall that lithium salts are com-
monly designated as “structure makers”. Almost all other electrolytes are “structure
breakers”.
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Chapter 6
Kinetic Isotope Effects Continued: Variational
Transition State Theory and Tunneling

Abstract Some of the successes and several of the inadequacies of transition state
theory (TST) as applied to kinetic isotope effects are briefly discussed. Corrections
for quantum mechanical tunneling are introduced. The bulk of the chapter, however,
deals with the more sophisticated approach known as variational transition state
theory (VTST).

6.1 Introduction: Transition State Theory, Variational
Transition State Theory, and Tunneling

To begin we are reminded that the basic theory of kinetic isotope effects (see
Chapter 4) is based on the transition state model of reaction kinetics developed
in the 1930s by Polanyi, Eyring and others. In spite of its many successes, how-
ever, modern theoretical approaches have shown that simple TST is inadequate for
the proper description of reaction kinetics and KIE’s. In this chapter we describe
a more sophisticated approach known as variational transition state theory (VTST).
Before continuing it should be pointed out that it is customary in publications in this
area to use an assortment of alphabetical symbols (e.g. TST and VTST) as a short
hand tool of notation for various theoretical methodologies.

6.1.1 Transition State Theory

In conventional transition state theory (TST) (see Chapter 4) the first approximation
for the thermal rate constant k is given:

k D kBT

h

q>
+
.T /

qR.T /
exp.�V >+=kBT / (6.1)

where kB is the Boltzmann constant, T is the temperature, q>
+

and qR are molecular

partition functions of the transition state(>+) and the reactant (R), and V >
+

is the

M. Wolfsberg et al., Isotope Effects: in the Chemical, Geological, and Bio Sciences,
DOI 10.1007/978-90-481-2265-3 6, c� Springer Science+Business Media B.V. 2009

181



182 6 Kinetic Isotope Effects Continued: Variational Transition State Theory and Tunneling

potential energy difference between reactants and the transition state measured at
the minima of their respective vibrational wells (i.e. the reaction barrier height).
This expression can be improved by introduction of the transmission coefficient,
kTRANS, which is usually further divided into three parts:

kTRANS D �.T /g.T /�.T /k>
+

(6.2)

In Equation 6.2 �.T/ is equal to unity in classical TST, g(T) is a measure of the
deviation from the assumption that reactant molecules are locally equilibrated, and
›.T/ describes the contribution from non-classical transmission through the barrier.
›.T/ is usually dominated by tunneling but also includes nonclassical reflections.

For reactions in which energy transfer is fast enough to maintain an equilibrium
population of the reactant states, g(T) is approximately equal to unity and only the
remaining two factors of the transmission coefficient need to be considered. Unfor-
tunately, ordinary TST is not capable of correctly describing quantum effects. In
particular the term, ›.T/, which accounts for non-classical transmission often plays
a critical role, especially in enzyme catalyzed reactions. The proper inclusion of
such quantum effects requires a more general theory. One such theory, variational
transition state theory (VTST) developed by Truhlar and coworkers (reading list),
optimizes the location of the surface which divides reactants from products, placing
it so that the forward flux is minimized. Inclusion of tunneling, however, requires
substantially more information about the energetic landscape of the reaction than
is necessary to describe this same reaction within the simpler TST formalism. As
a consequence VTST calculations are more tedious and time consuming. Further-
more, it is sometimes hard to separate the discussion of the theory from its practical
implementation.

6.2 The Basics of Variational Transition State Theory and How
It Differs from Conventional Transition State Theory

6.2.1 The Dividing Surface for the Reaction

Consider, as an example of a gas phase reaction, the reaction of a diatomic molecule
with an atom

ABC C! AC BC (6.3)

In principal one can calculate the electronic energy as a function of the Cartesian
coordinates of the three atomic nuclei of the ground state of this system using
the methods of quantum mechanics (see Chapter 2). (In subsequent discussion,
the terms “coordinates of nuclei” and “coordinates of atoms” will be used inter-
changeably.) By analogy with the discussion in Chapter 2, this function, within
the Born–Oppenheimer approximation, is not only the potential energy surface on
which the reactant and product molecules rotate and vibrate, but is also the potential
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surface on which the reaction takes place. It is being assumed here that the chemical
reaction occurs on the ground electronic surface; that is, the reaction is adiabatic
with respect to electronic energy. (Under appropriate conditions, one can extend the
ideas here to consider reactions of molecules in electronically excited states.) Po-
tential energy surfaces for reactions of type 6.3 are illustrated in Fig. 6.1. On these
surfaces, there exists a region which corresponds to a rotating-vibrating reactant
molecule AB far removed from its reaction partner C and therefore not interacting
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Fig. 6.1 Representations of potential energy surfaces for collinear reactions. (a) Upper left. 3D
diagram of the collinear reaction HC H2 D H2 C H. Binding energy is plotted along the vertical
(z) axis. The axes in the plane of the paper show the r1 and r2 axes (Diedrich, D. L. and Anderson,
J. B., J. Chem. Phys. 100, 8089 (1994)). (b) Upper right. 2D projection of a 3D potential surface,
this time for the collinear reaction OC H2 D OHC H. The shape is analogous to that shown in
Fig. 6.1a. The saddle point is marked by “C” and occurs at O–H D 1:118 Å and H–H D 0:953 Å.
The contours show lines of constant energy and the plateau at the upper right corresponds to the
separated atoms OCHCH. (c) Schematic diagram of the energy along the minimum energy path
MEP in Fig. 6.1b. The transition state for ordinary TST is located at the maximum. Also indicated
are energy levels of the zeroth and first vibrations of product and reactant (Figure 6.1b and c are
from Johnson, B. R. and Winter, N. W., J. Chem. Phys. 66, 4116 (1977))
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with it. This region corresponds to the reactant side of Equation 6.3. Likewise, there
exists another region of space which corresponds to non-interacting product species
A and BC (the product side). In order to move on this surface from the low energy
region corresponding to separated reactants to the low energy region corresponding
to separated products, one has to surmount a potential energy barrier. The position
in space corresponding to the minimum in that energy barrier is a saddle point on the
potential energy surface and is the transition state of the reaction in the conventional
transition state theory (TST) discussed in Chapter 4. An analysis of the potential
surface at the transition state shows that the first derivatives of the potential with
respect to displacements of the Cartesian coordinates of the atomic nuclei must all
vanish. The second derivatives (force constants) can, however, be obtained. With the
use of the methods discussed in Chapter 3, one finds the vibrational frequencies of

the transition state; for an N-atomic transition state there are 3N>
+ � 7 real vibra-

tional frequencies (3N>
+ � 6 for a linear system) and one imaginary frequency. The

word ‘imaginary” means that the frequency is a number multiplied by the square
root of �1, or “i” (see any algebra text). The imaginary frequency corresponds to
motion along the minimum energy pathway (MEP), see Fig. 6.1c. It corresponds to
motion leading to decomposition (either to reactants or products) of the transition
state and is referred to as an “unbound” motion as it displays negative (concave)
curvature. The real frequencies, on the other hand, correspond to actual bound vi-
brations in directions “perpendicular” to the MEP. In conventional transition state

theory, the imaginary frequency is referred to as �>
+

L . The superscript double dagger,
refers to the transition state. Also, in TST (Chapter 4), one assumes that in a normal
reaction the transition state is in chemical equilibrium with reactants and its concen-
tration can be calculated from the chemical equilibrium constant corresponding to

the reaction between the reactants and transition state. The equilibrium constant K>
+

r
is usually evaluated by the methods of statistical mechanics using the partition func-
tions of the transition state and reactants. As pointed out in Chapter 4, at this point
in the TST derivation, there has been no consideration yet of the partition function
corresponding to motion along the MEP, nor has there been consideration of the
rate of decomposition of the transition state to yield products. Such considerations
(Chapter 4) lead to a multiplicative factor kBT=h in the expression for the rate con-
stant, where kB refers to Boltzman’s constant. One then obtains for the rate constant
k of the reaction (Chapter 4, Equation 4.135, compare with Equation 6.1)

K D .kBT=h/K>
+

r (6.4)

Using the well known relation between an equilibrium constant and the standard
state free energy change for the reaction, �Go D �RT ln K, one can re-write this
equation as

K D kBT=h exp.��G>
+

r =kBT/ (6.5)

�G>
+

r is known as the free energy of activation.
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In TST, one recognizes that the saddle point is the locus of the equilibrium con-
figuration of the transition state. In calculating the partition function of the transition
state, one considers the real frequencies corresponding to the potential energy at the
saddle point to be the frequencies of the transition state. As already noted, these fre-
quencies are “perpendicular” to the MEP. Thus the vibrational motions of the TST
transition state take place on the surface perpendicular to the MEP. Note that in an N
dimensional space an (N – 1) dimensional object in that space can be referred to as
a surface. Thus, in conventional TST, the (N – 1) dimensional surface perpendicular
to the MEP at the saddle point is referred to as the transition state of the reaction.
Moreover, in TST, it is assumed that once the system gets to the transition state it
either proceeds to products or returns to reactants, and the probability of going for-
ward or backward is taken to be the same. In that case one arrives at the kBT=h factor
above. Thus, it is reasonable to describe the transition state in TST as the “dividing
surface” of the reaction (dividing reactants from products). This idea was tested as
described below.

6.2.2 The Minimum Energy Path

Given the definition of the geometry of the transition states in TST as the highest
energy point in the minimum energy pathway from reactants to products, the formal
definition of MEP is as follows. The MEP is, in one direction, the path of steepest
descents from the transition state to reactants while, in the other direction, it is the
path of steepest descents from transition state to products. For reasons which will
not be discussed here, the formal definition of MEP includes the statement that the
pathway is expressed in mass scaled Cartesian coordinates of the position of the
atoms (introduced in Chapter 3, e.g. xi is replaced by x0i D pmixi ). This simplifies
the dynamics of the system in classical mechanics. The computer programs men-
tioned in Chapter 2 which enable the calculation of Born–Oppenheimer potentials
for molecular vibrations can also be used to calculate the potential energy surface
for a chemical reaction and thence MEP. In the Gaussian computer program, the
MEP is referred to as the intrinsic reaction coordinate (IRC).

6.2.3 Classical Trajectory Calculations

With the advent of large digital computers in the late 1950s, workers started doing
calculations on collisions between molecules, using potential energy surfaces, which
were usually derived empirically. They studied chemical reactions by numerically
solving the Newtonian (classical) equations of motion of molecules moving on these
surfaces. Such calculations are known as (classical) trajectory calculations. One of
the first chemical reactions studied in this way was the reaction

HC H0H! HH0 C H (6.6)
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which can be studied in the laboratory making use of the two modifications of
H2 known as ortho and para hydrogen, and also by using deuterium substitution.
As expected, the calculations predicted that if the reacting partners had sufficient
energy then reaction could take place. For the calculations one interesting obser-
vation was that after reaching the transition state, the atom-molecule system often
passed back and forth repeatedly from the reactant to the product side of the dividing
surface. Thus, it was reasoned that a theory like TST which assumes that the transi-
tion state proceeds to either reactants or products with equal probability will lead to
a calculated rate constant which may grossly overestimate the rate of the reaction. In
fact, these considerations lead to the conclusion that TST will lead to a rate constant
which is an upper limit to the true rate constant calculated by classical mechanics.
Furthermore it can be demonstrated that there exists a dividing surface for which
there will be no “recrossings” and, with the use of this dividing surface as the transi-
tion state, the calculated classical mechanical rate constant would be the correct one.

6.2.4 The Differences Between TST and VTST

The considerations introduced in the sections above led to the idea of variational
transition state theory. The basic idea of VTST is to find a dividing surface which
leads to a higher free energy of activation and thus to a lower rate constant. Within
classical mechanics this dividing surface must lead to fewer recrossings to reactants
and consequently to a ‘better” transition state for calculating the rate constant. While
these ideas arose from classical mechanics, it has since been assumed that the idea
of finding a transition state with a higher free energy of activation leads to a better
prediction of a rate constant in the real “quantum mechanical world” than does the
use of the transition state of conventional transition state theory. Here “quantum
mechanical world” means that the equilibrium constant or the corresponding free
energy of activation, is calculated with the use of partition functions based on quan-
tum mechanical energy levels. It should be noted that, prior to the studies leading
to VTST, it had been thought that the assumption of equilibrium which exists be-
tween reactants and transition state was a very bold assumption which should be
seriously questioned; this assumption is no longer regarded as a weak point of the
theory. Indeed, after finding the dividing surface yielding the highest free energy of
activation, the main problem which remains in transition state theory is the effect of
quantum mechanics on motion along the reaction path. This will be referred to as
the “tunneling” problem in this book.

Note that the formula for the rate constant in VTST is exactly the same as in
TST (compare Equations 6.1, 6.4 and 6.5). In TST the dividing surface is defined
by the saddle point in the Born–Oppenheimer electronic energy surface (the maxi-
mum along the MEP from reactants to products), while in VTST it is defined as that
surface which leads to the minimum value of the rate constant. In both approaches
the dividing surface separates product space from reactant space. The assumption in
VTST is that a given transition state in equilibrium with reactants will pass through
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the dividing surface only once, going either towards products or reactants with equal
probability. A dividing surface which gives rise to a lower rate constant should
correspond more closely to a transition state with fewer recrossing and therefore
be closer to the transition state required by the theory.

6.2.5 Locating Dividing Surfaces

Dividing surfaces are usually assumed to be perpendicular to the MEP (i.e., that
is motion on the dividing surface involves no motion along the MEP) because this
assumption saves much computational time. For the dividing surface of TST this re-
sult is automatically obtained because the normal mode coordinate of the frequency

�>
+

L is along the MEP, and therefore is perpendicular to the normal mode coordinates
corresponding to the real frequencies of the TST transition state. The situation is not
so simple in VTST where it is necessary to locate the dividing surface by some kind
of search algorithm. The dividing surfaces to be tested are first characterized by the
distance s from the highest point on the MEP, which, remember, locates the TST
surface. (It is convenient to use a plus or minus sign to indicate whether the VTST
test surface lies farther towards products or reactants than does the TST surface).
The potential function at that value of s is analyzed to produce the unique projection
which contains no motion along MEP and thus defines a proper dividing surface.

Early in the development of VTST calculations on simple three atom systems
compared rates obtained by exact classical dynamics with conventional TST and
VTST, the same potential energy surface and classical partition functions being
used throughout. These calculations confirmed the importance of eliminating the
“recrossing phenomenon” in VTST. While TST yielded very much larger rate con-
stants than the exact classical calculations, the VTST calculations yielded smaller
rate constants, but never smaller than the exact classical values.

6.2.6 Quantum Mechanical VTST

Of course, one is not really interested in classical mechanical calculations. Thus in
normal practice the partition functions used in TST, as discussed in Chapter 4, are
evaluated using quantum partition functions for harmonic frequencies (extension
to anharmonicity is straightforward). On the other hand rotations and translations
are handled classically both in TST and in VTST, which is a standard approxi-
mation except at very low temperatures. Later, by introducing canonical partition
functions one can direct the discussion towards canonical variational transition
state theory (CVTST) where the statistical mechanics involves ensembles defined
in terms of temperature and volume. There is also a form of variational transition
state theory based on microcanonical ensembles referred to by the symbol �. Dis-
cussion of VTST based on microcanonical ensembles �VTST is beyond the scope
of the discussion here. It is only mentioned that in �VTST the dividing surface is
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variationally chosen to minimize the number of rotational-vibrational states. The
variational rate constant involves Boltzmann averaging over the ro-vibrational en-
ergy E. There is a different dividing surface for each energy E. Although this method
does tend to give lower (better) rate constants than the CVTST approach, it can be
very time consuming and consequently is seldom employed.

There is a third quantum mechanical VTST which is easier to use than CVTST
or �VTST. In this method, all reactant states with energy below the threshold for
reaction (i.e. the energy corresponding to the ground state of conventional transition
state theory) are handled by the microcanonical approach, but these states give zero
rate of reaction. Those reactant states having energies above threshold are handled
by the canonical theory. At each temperature an optimized surface is determined
for these reactant states to minimize their contribution to the rate. This approach
is called improved canonical variational theory (ICVT). It yields rate constants in-
termediate between the microcanonical approach and the full canonical approach.
In tests of the variational transition state theory, this approach is often the method
which is used when comparing with exact quantum mechanical calculations.

One must recognize that TST is much simpler conceptually than VTST. Thus,
there is one transition state in TST and that is located at the maximum energy on
the MEP (the saddle point). In VTST the dividing surface is temperature depen-
dent since the partition functions and consequently the free energy of activation are
temperature dependent.

6.2.7 Isotope Effects, Comments

In considerations of isotopic molecules, the potential surface itself is isotope in-
dependent in both TST and VTST. This follows from the Born–Oppenheimer
approximation of quantum mechanics (Chapter 2). However, in all variational ap-
proaches, the position of the variational transition state on the Born–Oppenheimer
surface will be isotope dependent, as will, then, the force constants of the transition
state. Thus the Teller–Redlich product rule which led to many simplifications in the
discussion of isotope effects on molecular partition functions in Chapter 4, is no
longer operative in any of the various VTST’s. As a consequence when one looks at
the isotope effect on a rate constant k1=k2 in VTST, the expression will, unlike the
final TST expression of Chapter 4, explicitly contain ratios of moments of inertia of
isotopic transition states as well as an energy factor involving the energy differences
of the isotopic dividing surfaces along the MEP. Additionally, the force constants
from which the vibrational frequencies of the isotopic transition states are calcu-
lated, and the geometries of the non-vibrating non-rotating transition states differ.
However, the contribution to the isotope effect from the reactants can still be ex-
pressed in terms of the isotopic partition function ratio (s2=s1)f as in Chapter 4. It
is probably well to emphasize again that the electronic energy surface, the Born–
Oppenheimer surface, on which the reaction takes place is isotope independent. The
MEP, the path of steepest ascent from reactants to the isotope independent transition
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state of TST and the path of steepest descent from this transition state to products, is
isotope independent. Transition state surfaces are defined in terms of s, the distance
from the maximum of the MEP to where the MEP is cut by the dividing surface. For
TST, there is one dividing surface, independent of which isotopomer reactant(s) is
considered and also the temperature, s D 0:0. In VTST the s value for the transition
state depends on both the temperature and the isotopic constitution of the reactant(s).
The value of s is determined by finding that path which leads to the highest value of
the free energy of activation which depends not only on the contribution from the
electronic energy which is isotope independent, but also on contributions from the
vibrations, rotations and translations which are isotope dependent.

6.3 Tunneling

In classical mechanics, the total energy minus the potential energy is the kinetic
energy and kinetic energy cannot be negative. It is well recognized, on the other
hand, that quantum mechanics permits a system to have negative kinetic energy.
Thus, while a potential “hill” or “barrier” will stop a classical system whose energy
is less than the barrier height, a quantum system can “penetrate” the barrier. The
phenomenon is referred to as tunneling and is extensively discussed in most intro-
ductory quantum mechanics texts. Thus, a quantum system undergoing a chemical
reaction as in Equation 6.3 can react even if the total energy of the molecular system
is lower than the saddle point energy.

It is well understood that the probability of tunneling decreases as the deficit of
energy for classical passage increases; also tunneling probability decreases as the
length of the tunneling path increases; important from the point of view of isotope
effects is the fact that a light particle has a higher tunneling ability than a heavy
particle. Thus, R. P. Bell proposed the study of H/D kinetic isotope effects for this
purpose because he realized that the heavy isotope of hydrogen would have a lower
tunneling probability than would the lighter isotope (see Historical Vignette 6.1).

In both TST and VTST, quantum mechanical tunneling is introduced into the rate
constant expression as a correction factor usually referred to as ›. A short discussion
of › which is used largely with TST is presented in Section 6.3.1. Tunneling has
been explored much more thoroughly in connection with VTST and this work will
be discussed later.

6.3.1 Tunneling in TST

In the discussion of TST in Chapter 4 tunneling was introduced as a multiplicative
correction factor to the TST rate constant. TST tunneling is usually discussed in
one of three approximations. In first order (for small tunneling), Wigner has shown
the correction is given by the u2=24 law

› D 1 � u>
+2

=24C � � � � � � � � � � � � � � � (6.7)
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[Historical Vignette 6.1] R. P. Bell (1907–1996) read for a chemistry degree at Balliol Col-
lege, Oxford during 1924–1928. Between 1928 and 1932 he worked in Copenhagen with the great
Danish physical chemist J.N. Bronsted. When he was ready to leave Bronsted remarked that al-
though he had spent less time than usually required to earn a Ph.D. his work was of high quality
and he should write a dissertation. Bell declined, saying that he had no need for a Ph.D. degree;
throughout his working life he gloried in being simply Mr. Bell. Bell learned to speak Danish while
in Copenhagen. During World War II, he monitored Danish radio broadcasts for messages from
the resistance. He was also involved with smuggling Niels Bohr out of Denmark during the war.
Mr. Bell’s great contribution to science was the study of proton transfer reactions and the eluci-
dation of the nature of acids and bases in solution. His work combined high-powered theory with
ingenious and innovative experimentation. On the theoretical side he was one of the first (1933) to
use quantum theory to predict that when a proton reacts it might tunnel through the energy barrier
rather than go over the top. He also pioneered studies in which a hydrogen atom is replaced with
the heavier isotope deuterium. He made early measurements of polarizability and dipole moment
isotope effects. After a long association with Balliol College at Oxford, he left for Sterling Uni-
versity where he became the first professor of chemistry in 1967. He retired in 1975 (Photo credit:
Ramsey & Muspratt, Oxford)

u>
+

is the reduced (imaginary) frequency describing the curvature at the top of the

barrier, u>
+ D h�>

+
=kT. In the Bell approximation the barrier is assumed to be given

by a truncated (and inverted) parabola (Fig. 6.2a), V.s/ D V>
+ � k>+s2=2, where s is

the displacement from the transition state along the MEP, and k>
+

is the force con-
stant corresponding to the imaginary frequency which describes the decomposition
of the transition state. The harmonic assumption is defended purely on the grounds
of convenience; it leads to an exactly soluble quantum mechanical expression with
the following results for the reflection and transmission probabilities, R and T
respectively

R D 1=.1C exp.2 ©//I T D 1=.1C exp.�2 ©// (6.8)
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Fig. 6.2 (a) Bell (parabolic) and Eckart barriers, both widely used in approximate TST calcula-
tions of quantum mechanical tunneling. (b) Transmission probability (Bell tunneling) as a function
of energy for two values of the reduced barrier width, ’

In Equation 6.8, © D .E � V>
+
/=.2 h�>

+
/, �>

+ D .k>
+
=�>

+
/1=2=.2 /, and �>

+
is

the reduced mass of the system motion along MEP. Details are available in most
introductory quantum mechanics texts. T is plotted as a function of reduced energy

in Fig. 6.2b for several values of the reduced barrier width ’ D V>
+
=.2 h�>

+
/. The

figure shows that tunneling becomes less important as ’ increases; that is as barrier
height and thickness, or particle mass increases. In fact only very light particles are
capable of significant tunneling so we expect these corrections to be important only
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for proton, hydride ion, or hydrogen atom transfer reactions. Also since H tunnels
more readily than D or T we expect its rate constant to be larger than it would
be without tunneling and the ratios kH=kD and kH=kT to be substantially larger.
Multiplication of the values plotted in Fig. 6.2b by the Boltzman factor gives the
distribution of transmitted systems as a function of energy.

A second widely used approximation uses the more smoothly shaped Eckart
barrier (Fig. 6.1), which for a symmetric barrier may be expressed as V D
V>

+
sech2.x/ D V>

+
Œ2=.ex C e�x/
2 where x D  s=a with s a variable dimension

proportional to the displacement along MEP, and “a” a characteristic length. Like
the Bell barrier the Eckart potential is amenable to exact solution. The solutions
are similar and tunnel corrections can be substantial. In both the Bell and Eckart
cases one is implicitly assuming separability of the reaction coordinate (MEP) from
all other modes over the total extent of the barrier, and this assumption will carry
through to more sophisticated approaches.

6.3.1.1 Tunneling on Potentials of Arbitrary Shape

The simplest way to extend the approach above is to recognize that the tunneling
exponent,  © in Equation 6.8 above, can be identified with the magnitude of the
semi-classical action integral between the classical turning points

¥ D � " D .1=.2 h/
Z
jp.s/jds D .1=.2 h/

Z
.2�ŒV.s/ � E
/1=2ds (6.9)

The integrals extend from �s0 and Cs0 lying at the edges of the barrier. For the
truncated parabola the solution reduces to Equation 6.8. Note that the tunneling
corrections introduced in Sections 6.3.1 and 6.3.1.1 can be used either with TST or
with VTST.

6.3.2 Tunneling in VTST

6.3.2.1 Jacobi Coordinates: The Skew Angle in Three Center
Collinear Reactions

Before discussing tunneling in VTST where the discussion will focus on multidi-
mensional tunneling, it is appropriate to consider the potential energy surface for a
simple three center reaction with a linear transition state in more detail. The reaction
considered is that of Equation 6.3. The collinear geometry considered here is shown
in Fig. 6.1a; it is in fact true that for many three center reactions the transition
state can be shown to be linear. The considerations which follow apply to a one-
dimensional world where the three atoms (or rather the three nuclei) are fixed to
a line. We now consider this one-dimensional world in more detail. The Born–
Oppenheimer approximation applies as in Chapter 2 so that the electronic energy of
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the ABC system is the potential energy surface for the nuclear motion of the atoms.
From considerations introduced in Chapter 3, there will be three degrees of freedom
for motion of the nuclei in the collinear direction. The first of these is the transla-
tional motion of the center of mass with no change in the internuclear distances;
the other two lead to changes in the internuclear distance(s). As in Chapter 3, these
two degrees of freedom can be chosen as linear combinations of valence coordi-
nates, most conveniently rAB and rBC or their displacement from some set values.
The kinetic energies and corresponding momenta are expressed in terms of time
derivatives of these coordinates. The interest is in the relative motions of nuclei with
respect to each other during a reaction. The most useful coordinate system is one
that has no cross terms in the kinetic energy for the internuclear motions and recipes
exist for constructing such coordinate systems. Moreover, such generalized coor-
dinates (known as Jacobi coordinates) can always be “mass scaled” which means
that only one mass value appears in the final kinetic energy expression rather than
two diatomic molecule reduced masses. Among the advantages of the use of Jacobi
coordinates for internuclear motions is the fact that the classical kinetic energy can
be easily transformed into the corresponding kinetic energy in quantum mechanics
(eventually the quantum kinetic energy is needed for the tunneling problem) and,
additionally, even for purely classical studies there is considerable simplification in
the equations of motion. For the three atom system, a well known set of two mass-
scaled Jacobi coordinates X and Y is pictured in Fig. 6.3, with Y the BC distance
rBC and X the distance from A to the center of mass of BC,

X D rAB C ”rBC; ” D mC=.mB CmC/ (6.10)

Y D rBC (6.11)

The coefficients of the two velocity terms corresponding to these coordinates can
be derived fairly easily from the rules for constructing the G matrix elements
(Chapter 3) but the details will not be given here. The kinetic energy is

2T D .mBmC=.mB CmC// PY2 C ..mA.mB CmC/=.mA CmB CmC// PX2 (6.12)

where the dots denote time derivatives (velocities). While Equation 6.12 has not
been derived here, it is comforting to realize that the coefficient of the first velocity
is just the reduced mass of a diatomic BC molecule while the coefficient of the
second term is the reduced mass of A vibrating against B–C. This form of the kinetic
energy still does not satisfy. What is desired is a coordinate system in which both
coordinates correspond to the same mass. Such a coordinate system is also known as
an iso-inertial coordinate system. This is accomplished by appropriate mass scaling.
Thus, introduce x and y,

x D Xy D ©Y with © D .mBmCM=mAfmB CmCg2/1=2 and M D mA CmB CmC

(6.13)
The kinetic energy then becomes
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Fig. 6.3 Skewed coordinate potential surfaces for some hydrogen transfer reactions. (a) Top HHC
H D HC HH. (b, upper) CHC C D CC HC. (b, lower) HFC H D HC FH. (c) ClHC Cl D
ClCHCl (schematic). The mass dependence of the skew angle is apparent. The MEP’s are indicated
as the line QQ0 in Fig. 6.3a and the heavier lines in Fig. 6.3b. The path in Fig. 6.3a marked PP’
is discussed later in the text, as is the corner cutting path in Fig. 6.3c shown as the dotted line
(Figure 6.3a is from Marcus, R. A. and Coltrin, M. E., J. Chem. Phys. 67, 2609 (1977); Figure 6.3b
and c are From Agmon, N., Chem. Phys. 76, 203 (1983))

2T D .mA.mB CmC/=M/..dx=dt/2 C .dy=dt/2/ D �..dx=dt/2 C .dy=dt/2/
(6.14)

By the introduction of the (x, y) coordinate system, one has reduced the problem
to the motion of a particle of mass � in a two-dimensional rectilinear space (x; y).
Thus, the problem of the collision between an atom and a diatomic molecule in
a collinear geometry has been converted into a problem of a single particle on the
potential energy surface expressed in terms of the coordinatesx and y rather than the
coordinates rAB and rBC The coordinates x and y which transform the kinetic energy
to diagonal form in such way that the kinetic energy contains only one (effective)
mass are referred to as mass scaled Jacobi coordinates.
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6.3.2.2 The Skew Angle: Transformation Between the (rAB, rBC)
and (x, y) Coordinates

It is interesting to compare potential energy diagrams in the “natural” (rAB, rBC)
coordinates with the equivalent diagrams in mass scaled Jacobi coordinates.
Figure 6.1 diagrams potential energy as a function of internuclear distance for
collinear ABC systems. The MEP path AC BC to ABC C is shown by extrema in
the contour lines in the valleys parallel to the two axes (Figs. 6.1a and b), and the
top of the energy barrier (saddle point) which corresponds to the activated complex
in ordinary transition state theory is marked by (C) in Fig. 6.1b. The solid lines
in Fig. 6.1b represent contours of constant energy and are projections onto a plane
from a three-dimensional figure (Fig. 6.1a) in which energy is plotted perpendicular
to the plane of the page. Although the TST transition state (C) is at a maximum
along MEP, it is at a minimum in the direction perpendicular to the reaction coordi-
nate and a group of atoms at that point can vibrate in the direction perpendicular to
MEP without dissociation, although vibration parallel to MEP leads to immediate
dissociation. On the other hand the ordinary diatomic molecules BC and AB in the
AC BC and ABC C trenches to the upper left and lower right of the diagram can
vibrate in all directions without flying apart because they are surrounded on all sides
by a potential energy barrier.

Although diagrams like Fig. 6.1 are especially convenient to illustrate the qualita-
tive features of TST and VTST, the solution of the equations of motion in (rAB,rBC)
coordinates is complicated due to cross terms coupling the motions of the different
species. It is for that reason we introduced mass scaled Jacobi coordinates in order to
simplify the equations of motion. So, one now asks what does the potential function
for reaction between A and BC look like in these new mass scaled Jacobi coordi-
nates. To illustrate we construct a graph with axes designated rAB and rBC within
the (x,y) coordinate system. In the x,y space lines of constant y are parallel to the
x axis while lines of constant x are parallel to the y axis. The rAB and rBC axes
are constructed in similar fashion. Lines of constant rBC are parallel to the rAB axis
while lines of constant rAB are parallel are parallel to the rBC axis. From the above
transformation, Equations 6.10 to 6.13

rBC D y=© (6.15)

rAB D x � ”y=© (6.16)

From Equation 6.15, constant rBC corresponds to constant y (because © depends only
on mass and is constant for any particular reaction) so constant rBC corresponds to a
line parallel to the rAB axis (which is also parallel to the x axis). From Equation 6.16,

y D .©=”/x – .©=”/rAB (6.17)

This shows that constant rAB transforms to straight lines in x,y space of slope ©=”
parallel to the rBC axis. Lines parallel to rAB axis intersect lines parallel to the rBC

axis at an angle which will be called “, generally not equal to 90ı.
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Table 6.1 Skew angles for collinear reactions of interest: ABCC D ABCD ACBC

Reaction mA mA mA M ” © Skew angle “

HHC HD HCHH 1 1 1 3 0.500 0.866 60.0
DHC HD DCHH 2 1 1 4 0.500 0.707 54.7
HDC HD HCDH 1 2 1 4 0.333 0.942 70.5
HHC DD HCHD 1 1 2 4 0.667 0.942 54.7
HDC DD HCDD 1 2 2 5 0.500 1.118 65.9
DHC DD DCHD 2 1 2 5 0.667 0.913 53.9
DDC HD DCDH 2 2 1 5 0.333 0.745 65.9
DDC DD DCDD 2 2 2 6 0.500 0.866 60.0
HClC Cl D HC ClCl 1 35 35 71 0.500 4.213 83.2
ClHC Cl D ClC HCl 35 1 35 71 0.972 0.234 13.5
ClClC H D ClC HCl 35 35 1 71 0.028 0.234 83.2

tan “ D .©=”/ D .mBM=mAmC/
1=2 (6.18)

To summarize, there exists a rectangular x; y coordinate system corresponding to
the motion of a particle of mass � D mA.mB C mC/=M on a plane. This particle
is subject to the potential function V.rAB,rBC) of the collinear three particle ABC
system. When plotted in (x,y) space the rAB and rBC coordinate axes define an angle
“ (the skew angle) with respect to each other. The motion of the single particle
describes exactly the motion of the collinear ABC system in classical mechanics.
This was recognized by Eyring and his coworkers in the early 1930s. They further
recognized (and this is important although quite straightforward) that the analogy of
the motion of a particle of mass � in the (x,y) plane applies not only to the classical
mechanical problem but also to the problem in quantum mechanics.

Table 6.1 illustrates the calculation of skew angles for some reactions of interest.
Figure 6.3a through c shows V(x,y) plots for several examples of collinear AC BC
reactions.

Keep in mind that both classically and quantum mechanically the mechanics of a
system is governed by the potential shown in the skewed diagram for a given mass
scaling. One realizes that the skewing of the axes might have a significant effect on
the dynamics, in particular the tunneling. This conjecture will be validated in the
following section.

6.3.3 Tunneling in Three Center Collinear Reactions

Tunneling in VTST is handled just like tunneling in TST by multiplying the rate
constant by �. The initial tunneling problem in the kinetics was the gas phase re-
action H C H2 D H2 C H, as well as its isotopic variants with H replaced by D
and/or T. For the collinear reaction, the quantum mechanical problem involves the
two coordinates x and y introduced in the preceding section. The quantum kinetic
energy operator (for a particle with mass 	) is just
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2T D � h2
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�
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@x2
C @2

@y2

�
(6.19)

The potential energy is illustrated in Fig. 6.3a. While one can in principal calculate
the “exact” quantum mechanical Born–Oppenheimer surface, the figure presents a
semi-empirical surface constructed to yield the exact spectral properties of reactants
and products and the correct “activation energy” (taken as the difference in energy
between the energy (potential) in the reactant valley (x D 1) and the maximum of
the MEP (minimum energy pathway).)

The tunneling factor is defined from a knowledge of the quantum mechanical
transmission coefficient �(E) which gives the probability that the system with given
relative kinetic energy of reactants E in a given initial quantum state in the reactant
valley ends up in the product valley. This quantum mechanical value must then be
averaged over states using the appropriate Boltzmann factor to yield the quantum
mechanical transmission coefficient for the reaction at a given temperature T. The
corresponding classical transmission coefficient is calculated by Boltzmann aver-
aging the classical �(E). The classical �(E) is zero if the kinetic energy is lower
than the activation energy for the surface and is unity if the kinetic energy is larger
than this activation energy (Fig. 6.2b). The tunneling factor � is set equal to the ratio
of the temperature averaged quantum transmission coefficient and the correspond-
ing classical transmission coefficient.

While the quantum mechanical tunneling problem can readily be solved exactly
for the three atom collinear problem and even for the corresponding three-
dimensional case, the general problem is still very difficult mathematically. Hence,
one looks for a simpler solution. The problem is solved by using a semi-classical
approach known as the WKB method. (For details, see the references at the end
of the chapter.) This method involves the evaluation of the quantity referred to in
classical mechanics as the action integral along the tunneling path designated here
as s, as shown in Equation 6.9. The integral needs only to be evaluated along the
quantum mechanical tunneling path where E is less than V, with s1 the starting
point of the tunnel motion and s2 the exit, so that the integral is an imaginary
quantity. R.A. Marcus and M.E. Coltrin in their study of the H C H2 reaction
looked for the path which maximizes tunneling. This is the path that minimizes
the imaginary action integral, and they found that this path does not follow the
MEP but is displaced in a direction perpendicular to MEP by an amount equal to
the maximum classical displacement during the zero-point quantum vibration. This
path is shown as the line PP0 in Fig. 6.3a. The transmission coefficient calculated by
Marcus and Coltrin for path PP0 was found to closely match the presumably correct
value obtained by the full quantum mechanical treatment for two different empirical
potential energy surfaces. The use of the MEP as the tunneling pathway gives rise to
considerably lower transmission coefficients. These points are illustrated in Fig. 6.4.
The Marcus–Coltrin path is shorter than the MEP path. The shorter path comes at
the expense that the instantaneous values of V–E are higher than they are for MEP,
an effect which lowers the tunneling probability but the shorter path raises the tun-
neling probability. The Marcus–Coltrin pathway balances these two factors in such
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Fig. 6.4 Plot of reaction probability vs. initial translational energy for the H C HH D HH C
H reaction for a certain empirical potential energy surface (the Porter–Karplus surface). Curves
(reading down) are shown for the path shown as PP0 in Fig. 6.3a. (marked Marcus–Coltrin), the
exact quantum mechanical result for the Porter–Karplus surface (marked Exact QM), the usual
TST result calculated for the MEP, QQ0 (Fig. 6.3a) (The data are from Marcus, R. A. and Coltrin,
M. E., J. Chem. Phys. 67, 2609 (1977))

fashion to maximize tunneling. In classical mechanics, the principal of least action
may be employed to study mechanics without using Newton’s laws explicitly. In
using the semi-classical formulation of tunneling the principal of least action has
been extended to a quantum situation where the action is imaginary. As seen in
Fig. 6.3a, the Marcus–Coltrin tunneling path is located on the concave side of the
MEP path; the phenomenon is sometimes referred to as “corner cutting”. It is noted
that for the HCHH reaction considered here, the tunneling factor � has been found
at 300 K to vary between 3 and 6 depending on the empirical surface used for the
calculation.

Because of the success of the Marcus–Coltrin tunneling path for H C H2, the
same procedure was applied to other collinear three center reactions including

ClC HCl0 ! Cl HC Cl0 (6.20)

Here it was found that the tunneling factor � is very close to unity. However this
result is uncertain because the magnitude of � is sensitive to the choice of the poten-
tial energy surface which is not as well established for reaction 6.20 as it is for 6.6.
For that matter, learning whether a given reaction rate is significantly influenced by
tunneling either on the basis of theory or experiment is not a trivial problem as will
be pointed out in further discussion.
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At this point, it is important to compare Fig. 6.3a and c for the hydrogen atom
transfers HHCH D HCHH and ClHCCl D ClCHCl. The skew angles are 60:0ı
and 13:6ı, respectively. Keep in mind that, with the introduction of the mass scaled
coordinate systems x, y these problems each correspond to the motion of a mass
point in two dimensions, albeit the potential functions acting on the mass point are
indeed different. For the first case, HHCH D HCHH, the Marcus–Coltrin least ac-
tion pathway for tunneling gives results in good agreement with the complete QM
calculations, as illustrated in Fig. 6.4. The question is whether that is necessarily
correct in the second case, ClH C Cl D Cl C HCl, given the different geometries
of the potential functions for the two cases. For example the straight line pathway
leading directly between reactant and product indicated in Fig. 6.3c is an attractive
alternative. This path is much shorter than the Marcus–Coltrin path, but the poten-
tial “hill” through which the particle must pass is much higher – the new path is
much further from MEP. The calculation of ¥(E), Equation 6.9, leads to the con-
clusion that the new tunneling path is indeed the proper one to use for the reaction
ClH C Cl D Cl C HCl. Thus, was born the idea of two possible tunneling path-
ways: small curvature tunneling (SCT) which refers to the Marcus–Coltrin path and
large curvature tunneling (LCT) which refers to the straight line path of Fig. 6.3c.
While these ideas come from considering low and high skew angle situations, the
recommendation is not to base the usage of these two tunneling paths on the skew
angle, but rather to carry out the calculation of the transmission coefficient for each
molecular energy E by both methods and to chose that method which gives rise
to the smaller value of ¥(E) (Equation 6.9). This method is known as the �OMT
method where MT stands for multidimensional tunneling, O stands for optimized,
and � stands for microcanonical ensemble (as a reference to individual molecular
energies). The other recommended method which gives rise to the “best” pathway
but which is also the most time consuming method is to find the path yielding the
smallest value of ¥(E) for each E, referred to as the LAT (least action tunneling)
method.

It should be emphasized that the tunneling calculations are usually carried out
as a function of initial kinetic energy E so the total energy of the reacting system
is then fixed. It is assumed that during the tunneling-process the quantized internal
motions (rotations and vibrations) adjust adiabatically to the motion along the re-
action coordinate with no sudden jumps in quantum states. In the alphabet soup of
naming various aspects of variational transition state theory, a capital letter A often
refers to the fact that adiabaticity is assumed.

6.4 Tests of Variational Transition State Theory
(Including Tunneling)

6.4.1 Collinear Three Center Reactions

There exist a fairly large number of numerical tests of VTST (including tunneling)
for three center reactions, the tests being the comparison with exact quantum me-
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chanical calculations on the same reactions using identical potential energy surfaces.
Most of these comparisons have been made for collinear reactions; a smaller num-
ber have been made for full three-dimensional space. Table 6.2 shows a few of these
tests. The entries in Table 6.2 present the ratio of the VTST result to the exact quan-
tum mechanical calculations for the same reaction. What is indeed remarkableis
how close the ICVT/�OMT result (best expected result from a variational transition
state theory among those listed) is to the exact result. In fact, in the comparisons
of the exact versus transition state theory from which Table 6.2 was abstracted, the
average percentage error for 48 different cases (including both collinear and 3D cal-
culations) at 300 K was 24%, which is extremely good agreement for theoretical
kinetic calculations. The TST and ICVT results without accounting for tunneling
tend to be quite unsatisfactory but, in this context, it must be remembered that the

Table 6.2 Tests of Variational Transition State Theory by Comparing with Exact Quantum
Calculations (Extracted from Allison, T. C. and Truhlar, D. G. Testing the accuracy of practi-
cal semiclassical methods: variational transition state theory with optimized multidimensional
tunneling, in Thompson, D. L., Ed. Modern methods for multidimensional dynamics computa-
tions in chemistry, World Scientific, Singapore 1998. pp 618–712. This reference quotes results
on many more reactions and BO surfaces over broad temperature ranges.)The numbers in the
table are ratios of the results of the approximate calculation to the quantum calculation, all at
300 K

Ratios (approximate/quantum)

Reaction Surface TST ICVT ICVT
SCT

ICVT
�OMT kQUANTUM

HC HH0! HHC H0 PK2-collinear 0.12 0.12 0.77 0.93 3.15(1)
DC HH! DHC H TK-collinear 0.39 0.32 1.00 1.05 7.24(0)
HC DD! HDC D TK-collinear 0.47 0.42 1.25 1.28 3.17(�1)
DC DD! DDC D TK-collinear 0.43 0.43 1.19 1.22 5.54(�1)
HC FF! HFC F JOT-II-collinear 0.70 0.70 0.96 0.97 2.28(3)
DC FF! DFC F JOT-II-collinear 0.85 0.83 0.99 1.00 1.42(3)
ClC HCl! ClHC Cl BCMR-collinear 0.50 0.33 0.35 0.83 1.16(1)
ClC DCl! ClDC Cl BCMR-collinear 0.37 0.30 0.36 0.71 2.16(0)
HC HH0! HHC H0 PK2–3dim 0.05 0.05 1.06 1.23 7.99(�16)
HC HD! HHC D PK2–3dim 0.06 0.05 0.69 0.83 2.00(�16)
HC DH! HDC H PK2–3dim 0.08 0.08 1.38 1.45 1.10(�16)
DC HH! DHC H PK2–3dim 0.06 0.06 0.69 0.80 1.40(�15)
ClC HCl! ClHC Cl BCMR-3dim 0.26 0.26 0.30 1.06 5.20(�16)
ClC DCl! ClDC Cl BCMR-3dim 0.30 0.30 0.41 1.02 7.93(�17)

TST D conventional Transition State Theory, ICVT D Improved Canonical Variational
Transition state theory, ICVT/SCT D ICVT/Small Curvature Tunneling, ICVT/�OMT D
ICVT/Microcanonical Optimized Multidimensional Tunneling.
The various Born–Oppenheimer surfaces are: PK2 D Porter, R. N. and Karplus, M. J. Chem.
Phys. 40, 1105 (1964); TK D Truhlar, D. G. and Kupperman, A. J. Chem. Phys. 52, 3841
(1970); JOT-IID Jonathon, N., Okuda, S., and Timlin, D. Mol. Phys. 25, 466(E) (1973); BCMR
D Bondi, D. K., Connor, J. N. L., Manz, J. and Romelt, J. Mol. Phys. 50, 467 (1983).
The units of k are cm molecule�1 s�1 for the collinear calculations and cm3 molecule�1 s�1

for the three dimensional calculations, the figures in parentheses denote multiplicative powers
of ten.
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Table 6.3 Tests of variational transition state theory by comparing with exact quantum
calculations; isotope effects at 300 K. The numbers in the table are ratios of rate constants
for the two selected reactions

Ratios: (kUPPER=kLOWER D kH=kD/

Reaction Surface TST ICVT ICVT
SCT

ICVT
�OMT

EXACT
QUANTUM

HC HH0! HHC H0 PK2-collinear
DC HH! DHC H TK-collinear 1.33 1.63 3.34 3.85 4.35
HC DD! HDC D TK-collinear
DC DD! DDC D TK-collinear 0.62 0.56 0.60 0.60 0.57
HC FF! HFC F JOT-II-collinear
DC FF! DFC F JOT-II-collinear 1.33 1.36 1.56 1.56 1.61
ClCHCl! ClHC Cl BCMR-collinear
ClCDCl! ClDC Cl BCMR-collinear 7.25 5.90 5.22 6.27 5.37
HC HH0! HHC H0 PK2–3dim
HC HD! HHC D PK2–3dim 3.33 4.00 6.14 5.92 4.00
HC DH! HDC H PK2–3dim
DC HH! DHC H PK2–3dim 0.10 0.10 0.16 0.14 0.08
ClCHCl! ClHC Cl BCMR-3dim
ClCDCl! ClDC Cl BCMR-3dim 5.68 5.68 4.80 6.81 6.56

See footnotes to Table 6.2.

reactions all involve motions of H or D atoms where one would expect tunneling to
be more important than it is in reactions involving motions of heavier atoms. For the
reaction Cl C HCl, LCT leads to much better agreement with the exact result than
SCT. On the other hand, for the reaction of ClCHBr (not listed in Table 6.1) which
has an even smaller skew angle (“ D 11:6ı) than Cl C HCl (“ D 13:6ı), SCT and
LCT lead to very similar results. In fact, for many cases, LCT and SCT tunneling
results are very similar. Without tunneling, TST results tend to be larger than ICVT
results.

Table 6.3 lists a few H/D isotope effects (kH=kD) for some of the examples listed
in Table 6.2. It is noted with some regret that the errors in the isotope effects (kH=kD)
calculated by ICVT=�OMT are about the same as the errors reported for kH in
Table 6.1. One might have hoped to see some cancellation of error when calculating
isotope effects.
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Chapter 7
Instrumentation and Experimental Techniques

Abstract In this chapter we discuss practical techniques and instrumentation used
in experimental measurements of kinetic and equilibrium isotope effects. After
describing methods to determine IE’s on rate constants, brief treatments of mass
spectrometry and isotope ratio mass spectrometry, NMR measurements of isotope
effects, the use of radio-isotopes, techniques to determine vapor pressure and other
equilibrium IE’s, and IE’s in small angle neutron scattering are presented.

7.1 Experimental Determination of Kinetic Isotope Effects

Choosing a method to determine isotope effects on rate constants, and selecting a
particular set of techniques and instrumentation, will very much depend on the rate
and kind of reaction to be studied, (i.e. does the reaction occur in the gas, liquid, or
solid phase?, is it 1st or 2nd order?, fast or slow?, very fast or very slow?, etc.), as
well as on the kind and position of the isotopic label, the level of enrichment (which
may vary from trace amounts, through natural abundance, to full isotopic substitu-
tion). Also, does the isotopic substitution employ stable isotopes or radioactive ones,
etc.? With such a variety of possibilities it is useless to attempt to generate methods
that apply to all reactions. Instead we will resort to discussing a few examples of
commonly encountered strategies used to study kinetic isotope effects.

The illustrations used in this chapter usually employ first order reactions and
unit stoichiometry. Generalization to more complicated cases is straightforward but
sometimes tedious.

7.1.1 The Non-competitive or “Direct” Method

Conceptually, the simplest way to measure a kinetic isotope effect (KIE) is to use a
non-competitive method, in which two separate kinetic runs are carried out, each
starting with a different isotopomer of the reactant. The rate constants for both
species are determined and the kinetic isotope effect (KIE) is the ratio of the two
rate constants. This procedure is frequently referred to as “the direct method”.

M. Wolfsberg et al., Isotope Effects: in the Chemical, Geological, and Bio Sciences,
DOI 10.1007/978-90-481-2265-3 7, c� Springer Science+Business Media B.V. 2009
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Consider a simple first order reaction S! P:

� dŒS
=dt D dŒP
=dt D kŒS
 (7.1)

The time dependence of accumulation of product P ([P]) depends on the initial con-
centration of substrate (reactant), S ([S0]):

ŒP
 D ŒS0
.1 � e�kt/ (7.2)

The subscript indicates the beginning concentration (t D 0), k is the rate constant,
and t is time. Introducing the fraction of reaction f,

f D ŒP
=ŒS0
 D 1 � e�kt (7.3)

and using subscripts L, for the light, and H, for the heavy isotopomer, equations can
be written for each isotopomer:

ŒPL
 D ŒS0L
.1 � exp.�kLt// (7.4)

ŒPH
 D ŒS0H
.1 � exp.�kHt// (7.5)

where kL and kH are the corresponding first-order rate constants. After rearrange-
ment:

e�kLt D 1 � ŒPL
=ŒS0L
 D 1 � fL (7.6)

e�kHt D 1 � ŒPH
=ŒS0H
 D 1 � fH (7.7)

Taking logarithms and dividing, we obtain an expression for KIE in terms of the
ratios of concentrations of product to substrate:

KIE D kL=kH D ln.1–ŒPL
=ŒS0L
/= ln.1–ŒPH
=ŒS0H
/ (7.8)

This non-competitive method has several practical limitations. Since the ordinary
precision of determination of rate constants, (•kL=kL) or (•kH=kH), is on the order
of a few percent, the method is limited as a practical matter to large, primary ki-
netic isotope effects, generally of hydrogen. This, because deuterium, the common
heavy isotopomer for hydrogen, is available at 	100% abundance at reasonable
cost, and for hydrogen KIE’s are usually large enough to constrain the relative error,
•.kL=kH/=.kL=kH/, to acceptable values.

One disadvantage of the non-competitive method is the necessity to synthesize
samples of isotopically pure (or at least highly enriched) reactants, and this can be
tedious and expensive. Since light and heavy isotopomers are very often obtained us-
ing different synthetic pathways (in order to optimize isotopic yield), they may carry
different impurities or different concentrations of the same impurity. Therefore it is
necessary to meticulously purify both samples before running experiments. In this
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context, remember that highly enriched radioactive compounds (e.g. compounds
fully titrated in a specific position) not only require special handling and safety
measures, but often undergo spontaneous auto-radiolysis to yield chemically pol-
luted samples which may show anomalous isotopic fractionation. Even when the
rates of reaction of stable isotopes are being compared, results obtained from non-
competitive experiments should be treated with caution because the two reactions
are inevitably carried out under slightly different conditions. Non-competitive mea-
surements are especially risky when the reaction is prone to catalysis. The separate
syntheses of isotopomers may result in different trace amounts of catalytic impu-
rities, in which case the measured ratio of rate constants will reflect differences
caused by the impurities. The measured isotope effect can then be seriously in error.
Similarly, the pollutant may turn out to be an inhibitor – this situation is commonly
encountered for enzyme-catalyzed reactions. To some extent such problems may be
investigated and minimized by mixing the isotopomers in different proportions and
studying the isotope effect as a function of composition.

7.1.1.1 Mixing Studies and Non-competitive KIE’s

If we denote the rate constant for the light isotopomer as kL, that for the heavy
one as kH, and the rate constant for a mixture of isotopomers of mole fraction x
of the heavier isotope as kx, then (kL=kH) is related to the observed isotope effect,
(kx=kH), by:

kL=kH D Œ.kx=kH/–x
=.1� x/; for x ¤ 1 (7.9)

Equation 7.9 assumes a linear dependence of kx on mole fraction, x, which is rea-
sonable provided that neither isotopomer sample contains trace amounts of catalytic
impurities or inhibitors. That assumption met, the deviation from Equation 7.9 af-
fords a reasonably sensitive test for the experimental validity of non-competitive
KIE data.

As a practical matter it is sometimes impossible to make studies across the entire
range of composition (0 < x < 1) because the criterion of 100% enrichment is
either too difficult or too expensive to meet. Sometimes, particularly for solvent
isotope effects, the linear dependence employed in the derivation of Equation 7.9
is not obeyed, and the deviation from linearity can be employed to elucidate some
details of the reaction mechanism given sufficient information on the x dependence
of kx, and the absence of trace catalytic impurities. For studies of H2O=D2O solvent
isotope effects the approach, called “proton inventory”, has been widely employed.
It is discussed in more detail in Section 11.4.3.

7.1.1.2 Comment

In spite of the limitations of direct non-competitive measurements of KIE, their use
is sometimes unavoidable. For example, when information on the KIE of the Vmax

parameter for an enzymatic reaction is required, non-competitive kinetic runs using



206 7 Instrumentation and Experimental Techniques

isotopically different molecules must be employed. This is because the different
isotopomers which would be present simultaneously in a common reaction mixture
can act as competitive inhibitors to each other.

7.1.2 Simultaneous Non-competitive Measurements

A partial resolution to some of the problems with the non-competitive technique is
to carry out the reactions of the separated isotopomers at the same time, and under
the same conditions, but in different containers (say in a common thermostat). In this
fashion one can directly compare isotopic differences as the reactions progress. For
example, if the concentration of product or substrate can be followed spectropho-
tometrically, one might use a two-beam instrument with the two samples placed
next to each other. The photometric signal, then, is proportional to the difference
in the absorption, A, of light and heavy species, and therefore to the difference in
their concentrations, (provided the experiment is carried out in a region where the
Lambert–Beer law is valid, and the molar extension coefficients are equal for both
isotopomers), see Fig. 7.1.

Introduction of Equations 7.6 to 7.8 defines KIE in terms of the fractions fL

and fH:
KIE D kL=kH D ln.1 � fL/= ln.1 � fH/ (7.10)

Rearranging:
fH D 1 � .1� fL/

1=.kL=kH/ (7.11)
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Fig. 7.1 Spectrophotometric simultaneous non-competitive measurement of KIE. In this tech-
nique the reaction mixture containing the reference isotopomer is placed in the reference cell and
the mixture with the other isotopomer in the sample cell (at identical concentrations). The two cells
are placed in a common thermostat (www.chemguide.co.uk)
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Table 7.1 Isotopic differences in reaction progress as a
function of fL, (simultaneous non-competitive measurement
of isotope effects)

kL=kH 1.01 1.05 1.1 2
fL �f

0 0 0 0 0
0.1 0.000939 0.004527 0.008662 0.048683
0.2 0.001769 0.008546 0.016394 0.094427
0.3 0.002476 0.011991 0.023069 0.136660
0.4 0.003042 0.014774 0.028520 0.174597
0.5 0.003443 0.016779 0.032521 0.207107
0.6 0.003645 0.017840 0.034747 0.232456
0.7 0.003598 0.017702 0.034700 0.247723
0.8 0.003213 0.015931 0.031512 0.247214
0.9 0.002306 0.011588 0.023285 0.216228
1 0 0 0 0
fLmax 0.634 0.641 0.650 0.750

and, using �f D .fL � fH),

�f D .fL � fH/ D .1 � fL/
1=.kL=kH/ � .1� fL/ (7.12)

provided the initial concentrations are equal. At both beginning and end of the re-
action �f D 0. The deviation from zero during the course of the reaction depends
only on KIE. It reaches its maximum at

fL;max D 1 � .kL=kH/
.kL=kH/=.1�kL=kH/ (7.13)

whence �fmax is easily obtained using Equation 7.12. Examples for KIE’s varying
between 1.01 and 2 are given in Table 7.1 and illustrated in Fig. 7.2.

7.1.3 KIE’s of Enzyme Catalyzed Reactions
by Isotope Perturbation

The protocol described in Section 7.1.2 involves isotopic competition, but with
the different isotopomers held in separate containers. Equations 7.10 to 7.13 apply
equally well to a type of competition experiment known in biochemistry as the per-
turbation method for determining KIE’s of reversible enzyme catalyzed reactions.
The perturbation method differs from simultaneous non-competitive measurements
in several important ways. One begins by mixing equilibrium concentrations of
substrate and product but with one component (substrate or product) at a differ-
ent isotopic composition than the other. Thus, the mixture is in chemical, but not
isotopic equilibrium. At this stage no enzyme is present and the interconversion is
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fL = fraction of reaction, light isotopomer
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Fig. 7.2 Differences in reaction progress of light and heavy isotope as a function of the fraction
of reaction (simultaneous non-competitive measurement of isotope effects)

proceeding at a negligible rate. Later, when the enzyme which catalyzes intercon-
version is added, the system acts to redistribute the isotopes and as a consequence
moves away from chemical equilibrium. After sufficient time, however, the system
returns to chemical equilibrium and at the same time comes to isotopic equilibrium.
If the initial move from chemical equilibrium can be observed, for example by fol-
lowing the concentration change of one of the reactants spectrophotometrically, then
curves identical to those shown in Fig. 7.2 are obtained. The KIE can be obtained
from the time-to-maximum using Equation 7.13.

For heavy atom isotope effects (which are usually smaller than 1%) the max-
imum difference predicted by Equation 7.13 is small (Table 7.1) and special care
must be taken. For example, in the equilibrium perturbation method, the maximum
deviation corresponding to a heavy-atom KIE of a percent or so is comparable to the
change that would be observed by warming the UV cell by holding it briefly in one’s
fingers when adding enzyme, then returning it to the thermostat (at, say, 25ıC). To
avoid such errors devices are available which automatically deliver and mix enzyme
without otherwise perturbing the conditions of the experiment.

7.1.4 Competitive Measurements of KIE’s

7.1.4.1 Double Labeling

In the discussions above we assumed the isotopomers being compared were in
different containers. However, separate determinations of rate constants are also
possible in a common container in the same solution. This obviously eliminates
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Fig. 7.3 Kinetic plots for 11C and 14C in the reaction of labeled methyl iodide with N,N-dimethyl-
p-toluidine in methanol at 30ıC. (CR is the count rate (cpm) for the reactant fraction and CP the
count rate for product fraction) (After Axelsson, B. S. et. al. J. Am. Chem. Soc. 109, 7233 (1987))

errors introduced by differences in impurities, concentrations, temperature control,
etc. An interesting implementation of this method uses reactant labeled with two
different radioisotopes, the first being the one for which the isotope effect is to be
measured, while the second is placed at a remote location in the molecule which
does not show an isotope effect (see Sections 7.2.2.2 and 11.5.3). Double isotope
labeling experiments are best performed using beta-emitters that differ in maximum
energy, e.g., 32P and T, T and 14C or 35S, and 32P and 14C or 35S. The remotely
labeled site serves only as a tracer, for example for double labeling with 14C and
remotely labeled T, the observed KIE D kT=k14 is equivalent to the isotopic ratio
of interest, KIE D k12=k14. The virtue of this method is that it takes full advantage
of the convenience of radiochemical analysis. More details are found later in the
chapter.

A slightly different example is the separate determination of rates of reaction
of 11C and 14C labeled methyl iodide with N,N-dimethyl-p-toluidine as illustrated
in Fig. 7.3. Again the method takes advantage of the convenience of radiochem-
ical analysis. If, as likely, the KIE of interest is k12=k14, it can be obtained
to sufficiently good approximation by applying a modified Swain–Schaad rule,
lnŒk12=k14
= lnŒk11=k14
 D Œ.12=14/=.11=14/
1=2 obtained from the law of the ge-
ometric mean (see Section 10.5).

7.1.4.2 Competitive Studies with Single Labeling

The most frequently used type of competitive study measures relative rates with
both isotopomers present in the same solution. Instead of measuring individual
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concentrations the concentration ratios are determined. Defining the isotopic ratio
of products, RP, as:

RP D ŒPH
=ŒPL
 (7.14)

the initial isotopic ratio of substrate, R0S; as

R0S D ŒS0H
=ŒS0L
 (7.15)

and rewriting fH in terms of fL and the R’s:

fH D ŒPH
=ŒS0H
 D .ŒPH
=ŒS0H
/=.ŒPL
=ŒS0L
/ � .ŒPL
=ŒS0L
/

D .ŒPH
=ŒPL
/=.ŒS0H
=ŒS0L
/ � .ŒPL
=ŒS0L
/ D .RP=R0S/fL (7.16)

using Equation 7.10, we obtain:

kL=kH D ln.1 � fL/= ln.1 � fLRP=R0S/ (7.17)

Similarly:
kL=kH D ln.1 � fL/= lnŒ.1 � fL/RS=R0S
 (7.18)

Equations 7.17 and 7.18 show that KIEs can be obtained by comparing isotopic
ratios of reactant or product with the initial isotope ratio of reactant as the reaction
progresses.

7.1.4.3 Approximations to Equations 7.17 and 7.18

Frequently, one of the isotopes is present only in trace quantities (usually the heavier
isotope) and the overall fraction of reaction, f, reduces to fL to good approxima-
tion. If this is not the case Equations 7.17 and 7.18 can be easily rewritten in terms
of f or fH instead of fL. By the same token, with one isotopomer present in trace
amounts (the commonly occurring case) the probability of reaction between two
labeled molecules is very low, and formal second and higher order kinetics can be
approximated using the first-order kinetic expressions developed above.

Two further approximations are of interest. When the fraction of reaction is small
(as a practical matter, say f < 0:1, more conservatively f < 0:05) the right-hand-side
of Equation 7.17 can be simplified using:

ln.1C x/ � x (7.19)

and at the early stages of reaction:

kL=kH � �fL=.�fLRP=R0S/ D R0S=RP (7.20)
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Fig. 7.4 Time dependence of isotopic ratios in product during single label competitive KIE studies

R0S=RP is shown as a function of f in Fig. 7.4

R0S=RP D Œf =1� f /
1=.kL=kH / (7.21)

for KIE’s equal to 1.05 and 1.1. The isotope effect is fully expressed by R0S=RP

at the beginning of the reaction and then becomes gradually obscured as reaction
progresses and R0S=RP falls off toward unity. Thus it is best to measure isotopic
product ratios in the very early stages of reaction.

Alternatively, one may elect to rewrite Equation 7.18:

ln RS D Œ1=.kL=kH/� 1
 ln.1 � fL/C ln R0S (7.22)

because it may be convenient to measure the isotopic ratio of the remaining reac-
tant, RS, as the reaction progresses, and then obtain KIE from the slope of linear
dependence of ln RS on ln.1 � fL/. The intercept can be used to test the quality of
the measurements. It should be equal to the logarithm of the initial isotopic ratio of
reactants, ln R0S.

Figure 7.4 shows the initial ratio of isotopic ratios R0S=RP corresponds to KIE.
In contrast, RS=R0S varies between unity at the beginning of the reaction to infinity
at completion.

RS=R0S D .1 � f /Œ1=.kL=kH /�1� D .1 � f /Œ.kH =kL/�1� (7.23)

Equation 7.23 is plotted in Fig. 7.5 for KIE’s of 1.05 and 1.1 (compare with Fig. 7.4).
Note that RS=R0S D KIE at a particular value of fL (conveniently labeled as fKIE),
after which it continues to increase.

fKIE D 1 � .kL=kH/
.kL=kH/=.1�kL=kH/ D 1 � .kL=kH/

Œ1=..kH=kL/�1/� (7.24)
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Fig. 7.5 Time dependence of isotopic ratios in measurements of substrate compositions

Table 7.2 Solutions to Equation 7.24

.kL=kH/ 1.001 1.01 1.1 1.2 1.5 2 4

.1� fKIE/ 0.37 0.37 0.35 0.33 0.30 0.25 0.16

For KIE’s in the range .1 < KIE < 4/ fKIE varies between 0.63 and 0.85 (see
Table 7.2). Note the similarities between Equations 7.24 and 7.13. As a reaction
progresses beyond fKIE the ratio RS=R0S is said to “overexpress” KIE. Measure-
ments in this region may be convenient from an experimental point of view since
the difference between RS and R0S is large, and this allows better precision for the
determination of KIE, all else remaining the same. It should be noted, however, that
large overexpressions are only achieved at very high conversions where error in the
determination of fL becomes the dominating factor.

7.1.5 Error Analysis

When measuring KIE using isotope analysis for the product (Equation 7.17) three
quantities are determined experimentally; fL, R0S and RP. For measurements of KIE
using substrate (reactant) analysis (Equation 7.18) the corresponding quantities are
fL, R0S and RS. All these measurements, of course, are subject to experimental error.
Equation 7.25 expresses the relative error of KIE in terms of the errors in these three
experimental quantities:

�kL=kH

kL=kH

D
vuutA2

�
�f

f

�2

CB2

"�
�Rf

Rf

�2 �
�R0

R0

�2
#

(7.25)
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Table 7.3 Expressions for A and B, Equation 7.25

A B

Substrate
.kL=kH � 1/ :f
1� f ln .1� f /

.kL=kH /
2

ln .1� f /
Product

f

ln .1� f /
�
kL=kH �RP =R0S
1� f �RP =R0S �

1

1� f
�

f

ln .1� f /
�
kL=kH � RP=R0S
1� f � RP=R0S

�

In Equation 7.25, � is the standard deviation, Rf the isotope ratio corresponding to
the fraction of reaction, f , of either substrate (RS) or product .RP/. Expressions
for A and B are given in Table 7.3. R0 is the isotope ratio in the starting material.
Obviously, for simple reactions the isotope composition of the product after full
conversion .R1P/ is equal to the isotope composition of the initial substrate .R0S/.
The dependence of A and B on the progress of the reaction is illustrated in Fig. 7.6:

Figure 7.6 confirms that the error of measurement of KIE’s determined by fol-
lowing the progress of reaction by product analysis increases to unacceptable values
for f larger than 	0:8. This is not surprising, since RP approaches R0S as f ap-
proaches 1. Experiments based on Equation 7.17 should be carried out at low
fractions of reaction. On the other hand, for experiments based on substrate anal-
ysis, the largest error is introduced at low fractions of reaction. This is because at
early stages the isotopic composition RS is close to R0S. Thus when experiments
are based on Equation 7.18 measurements at both very early and very late stages of
reaction should be avoided.

Equations 7.17 and 7.18 have been developed assuming that the fraction of re-
action for the light isotopomer .fL/ is the one monitored. Frequently, however, the
chemical (overall) fraction of reaction:

f D ŒP
=ŒS0
 D .ŒPL
C ŒPH
/=.ŒS0L
C ŒS0H
/ (7.26)

is measured, i.e., total chemical concentrations are monitored rather than those of
individual isotopic species. The difference between f and fL is negligible when one
isotope is present in trace amounts, or when its natural abundance is low. Otherwise
an appropriate correction should be included. Introduction of isotopic ratios R0S and
RP and rearrangement of Equation 7.26 yields the correction which is needed when
both isotopomers are present in similar abundance:

fL D f.1C R0S/=.1C RP/ (7.27)

In some cases the progress of reaction may be followed by monitoring the heavier
isotope. For example, one might study a carbon-13 kinetic isotope effect competi-
tively by monitoring the progress of reaction using radioactive carbon-14, or follow
a deuterium kinetic isotope effect using tritium. Table 7.4 illustrates the error that is
introduced when Equation 7.17 is used without correction (i.e. assuming f14 D f12

or fT D fH/. In constructing Table 7.4 we have assumed 13C and 14C kinetic isotope
effects of 1.05 and 1.10, and a deuterium KIE of 3 with the tritium effect calculated
from Swain–Schaad rule (Chapter 10). As seen in Table 7.4, deviation from the true
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Fig. 7.6 Dependence of factors A2 and B2, Equation 7.25, on the progress of reaction for kL=kH D
1:1. TopD substrate analysis. BottomD product analysis

Table 7.4 Corrections to
KIE’s necessitated by
substituting heavy atom
monitors of progress of
reaction

�
14C for 12C, or T

for H
�

Progress k12=k13 kH=kD

0.1 1.0498 2.92
0.2 1.0495 2.83
0.3 1.0492 2.74
0.4 1.0488 2.64
0.5 1.0483 2.53
0.6 1.0477 2.41
0.7 1.0469 2.26
0.8 1.0457 2.09
0.9 1.0437 1.86

True effect 1.0500 3.00
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value of the carbon isotope effect using the heavy-atom monitor is negligible as far
as f 	0:4. If, however, measurements are carried out at higher conversion a correc-
tion is recommended. For hydrogen isotope effects the differences are larger and
corrections may be needed even at low conversions.

While competitive methods to determine KIE’s are free from errors due to dif-
ferences in reaction conditions (impurities, temperature, pH, etc.) they do require
access to equipment that allows high precision measurements of isotope ratios. The
selection of an appropriate analytical technique depends on the type of the isotope
and its location in the molecule. For studies with stable isotopes the most commonly
used technique (and usually the most appropriate) is isotope ratio mass spectrometry
(IRMS).

7.2 Mass Spectrometry and Isotope Ratio Mass Spectrometry

7.2.1 Whole Molecule Mass Spectrometry

In its ordinary configuration mass spectrometry separates ions according to their
mass-to-charge (m/z) ratio, the ions having previously been formed by electron
bombardment or other methods. Since methods of ionization are usually power-
ful enough to break chemical bonds, or to excite molecules to high-energy unstable
states, the result at the detector is a mixture of ions of the parent molecular mass
together with the (perhaps many) ion fragments formed in high energy decompo-
sition processes. The dominant ions are singly charged. They form a spectrum that
relates ion intensity (population) to mass. That spectrum is characteristic for chemi-
cal compounds subjected to a particular ionization technique, and is widely used for
qualitative and quantitative analysis.

The most widely used method for ionization is electron impact (EI). In an EI
source the sample is placed in the path of an electron beam. Although many newer
kinds of ion sources have been developed, EI is the method commonly used in clas-
sical isotope-ratio mass spectrometers (IRMS), i.e. mass spectrometers designed for
precise isotopic analysis. In this type of spectrometer the ions, once formed, are elec-
trostatically accelerated, and then ejected through a slit into a magnetic field held
perpendicular to the ion trajectory. In the magnetic sector part of the instrument the
particles are deflected in an arc described by:

m=z D B2r2=2V (7.28)

B is the magnetic field intensity, r is the radius of the ion path, and V is the accelerat-
ing potential. In analytical mass spectrometers either B or V is varied systematically
so that ions of different m/z are sequentially focused on the collector and the spec-
trum recorded. Such “whole molecule mass spectrometers” have been employed
occasionally for isotope ratio measurements but their use is restricted to samples
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where the relative abundances are not too different, say .0:1 < .I=I’/ < 0:9/. I’
and I are ion beam intensities at the collector. Isotopomer pairs (at natural abun-
dance) well suited for measurements using whole molecule mass spectrometers are
those of chlorine and bromine. Most isotopomer pairs of common interest, how-
ever, contain much smaller quantities of the less common isotopomer (at natural
abundance) and need to be enriched for analysis with whole molecule mass spec-
trometers (Tables 7.5 and 9.1).

Apart from the need for isotopic enrichment and synthesis there are other prob-
lems in applying “whole molecule mass spectrometry” to measure isotope ratios.
Assume, for example, that we want to determine isotopic composition of chlorine
from the spectrum of chlorobenzene presented in Fig. 7.7. The peaks at 114 and

Table 7.5 Isotopomer pairs of lighter elements commonly used in isotope effect studies

Element Isotope

Natural
abundance (%)
or half-life

Standard isotope
ratio or energy

Hydrogen H .1H/ 99.985
D .2H/ 0.015 SMOW .H2O/: 0.015576
T .3H/ 12.43 years “�0:018MeV

Carbon 11C 20.42 min “C0:95MeV
12C 98.9
13C 1.10 PDB .CaMg.CO3/2/: 0.0112372
14C 5730 years

Nitrogen 14N 99.634
15N 0.366 air .N2/ 0.003676

Oxygen 15O 1.97 min “C 1:64MeV
16O 99.762
17O 0.038 SMOW .H2O/: 0.000372
18O 0.200 SMOW .H2O/: 0.0019934

Fluorine 18F 1.87 h “C0:65MeV
19F 100

Phosphorus 31P 100
32P 14.30 days “�1:71MeV

Sulfur 32S 95.02
33S 0.75 IAEA (AgS): 0.00794442
34S 4.21 IAEA (AgS): 0.0449832
35S 87.1 days “�0:17MeV
36S 0.02 IAEA (AgS): 0.0000000554

Chlorine 35Cl 75.77
36Cl 301,000 years “�0:72MeV
37Cl 24.23 SMOC (NaCl): 0.32453

SMOW D Standard Mean Ocean Water; IAEA(AgS) D International Atomic Energy Agency
(silver sulfide); SMOCD Standard Mean Ocean Chloride
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Fig. 7.7 Mass spectra of chlorobenzene. Top: electron impact: (Data from http://webbook.
nist.gov/chemistry). Bottom: photoionization at 10.2 eV. (Data from Tonakura, K., Nakamura, T.
and Koshi, M. Anal. Sci. 19, 1109 (2003)) (See Table 7.6 for assignments)

112 m/z correspond to 12C6
1H5

37Cl and 12C6
1H5

35Cl, respectively. Relative abun-
dances are approximated by relative intensities. In order to gain maximum resolution
and spectral clarity in ordinary mass spectrometry each peak is focused as sharply
as possible (high intensity narrowly distributed around a given m/z). An unfortunate
consequence is that slight imprecisions in focusing can result in substantially dif-
ferent intensities as one moves from the peak maximum slightly to one or the other
side. This is not a big problem in routine mass spectrometry but can be crucial when
precise measurements of intensity ratios are required.

A second problem in whole molecule mass spectrometry is that fluctuations in
ion current may introduce substantial errors. Recall that ions of different m/z are not
measured simultaneously in whole molecule mass spectrometry. If the ion current
is not stable (and it commonly fluctuates in EI sources), then after first peak (say
m/zD 112 in our example) is measured, and instrumental parameters are changed
in order to focus the next peak (m/zD 114) on the collector, the ion current of this
second peak may no longer correspond to that existing at the time the first peak was
measured. One can try to switch the detector from peak to peak more rapidly but that
shortens the collection time for each peak, fewer ions will be counted, and errors in
counting statistics will increase. Normally this problem is dealt with by statistical
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averaging over repetitive determination of isotopic ratios (as many as several thou-
sand times) optimizing the ratio of the counting time devoted to each peak and the
time required to switch from peak to peak.

A third source of error is associated with the fragmentation pattern caused by
dissociation of the molecular ions formed in the source region of the spectrome-
ter. Under severe conditions these processes may proceed with substantial isotopic
fractionation, and this obscures the measurements of isotopic composition at the col-
lector. To some extent careful standardization of the instrumental conditions may
ensure that errors from fragmentation are systematic, and thus cancel (at least to
some extent). Alternatively, softer ionization methods can be used to prevent most
or all of the fragmentation. The bottom spectrum in Fig. 7.7 illustrates this approach;
it shows the mass spectrum of chlorobenzene obtained by photoionization. Only the
parent molecular ions are observed. It should be kept in mind, however, that softer
ionization usually yields smaller ion currents; and consequently statistical counting
errors increase.

Finally there are problems caused by background contamination in the spec-
trometer. Background peaks, while always present, need to be minimized by
appropriate cleaning, degassing, and pumping to ensure their intensity is small
or negligible compared to the sample ion current. More importantly, however,
in whole-molecule mass spectrometry, part of the background is introduced
by the fragmentation of the molecular-ion under investigation, and cannot be
avoided. In our example, chlorobenzene, four main peaks with the relative in-
tensities listed in Table 7.6 are detected. The peak at m=z D 112 corresponds
to the molecule containing all light isotopes. The major component of the peak
at m=z D 113 is due to 12C5

13C1H5
35Cl but there is a contribution from

heavy hydrogen, 12C6
1H4

2H35Cl, which can be neglected because the nat-
ural abundance of deuterium relative to protium is two orders of magnitude
smaller than that of 13C relative to 12C (Table 7.4). Since chlorobenzene con-
tains six carbon atoms the relative intensity of m=z D 113 is about 6.6% (since
13C=12C 	 0:011). Contributions to m=z D 114 from double labeling of 13C and D,
i.e. 12C4

13C2
1H5

35Cl .0:0112 	 1:2 � 10�4/, 12C6
1H3

2H2
35Cl ..1:5 � 10�4/2 	

2:2 � 10�8/, and 12C5
13C1H4

2H35Cl ..0:011/.1:5 � 10�4/ 	 1:3 � 10�6/, can
be neglected. Thus if the isotopic analysis of chlorine is to be determined for

Table 7.6 Relative intensities of parent-ion peaks of
chlorobenzene

Peak Major isotopic composition Relative intensity

112 12C16H
35
5 Cl 100

113 12C135 C1H35
5 Cl 6.6

114 12C16H
37
5 Cl 33

115 12C135 C1H37
5 Cl 2.2
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chlorobenzene the ratio of peak intensities at 114 and 112 m/z can be safely used.
If, however, the isotope effect for hydrogen is required, say by comparing reactions
of singly deuterated and per-protio-chlorobenzene, it would be necessary to employ
highly enriched C6

1H5
2HCl to marginalize the 6.6% background at m=z D 113

coming from heavy isotopes of carbon.
To avoid the kind of problems which trouble whole-molecule mass spectrometry

it is better to use instrumentation especially designed for high precision measure-
ments of isotope ratios; isotope-ratio mass spectrometry (IRMS).

7.2.2 Isotope-Ratio Mass Spectrometry

To secure the highest possible precision in isotope ratio measurements mass spec-
trometers of special design are employed. An important feature of these instruments
is that only gaseous samples are used. This permits a slow constant flow of sample
from the inlet system into the ionization chamber and minimizes variations in ion
current. The sample remains in the inlet system for a long time, thus careful instru-
ment tuning can be performed methodically during the measurements. Hydrogen
gas is used for measurements of hydrogen IE’s, carbon dioxide for carbon and oxy-
gen IE’s, nitrogen gas for nitrogen IE’s, methyl chloride for chlorine IE’s, and sulfur
dioxide or sulfur hexafluoride for sulfur IE’s.

Unlike ordinary mass spectrometers, the goal of peak focusing in IRMS is broad
peaks with wide flat tops. This allows peaks to be centered on the detectors during
measurements and ensures that small inaccuracies in focusing do not affect the ion
current. A typical peak shape for CO2 measurements is shown in Fig. 7.8.

Another important feature of IRMS is the provision of a dual inlet system which
permits the operator to alternate the gas flowing into the ionization chamber between

Fig. 7.8 Peak shape in IRMS of carbon dioxide (www.monitorinstruments.com)
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the sample and an appropriately chosen standard. Thus two isotopic ratios are
measured in rapid sequence, RST the standard, and RSA the sample. The isotopic
composition of the sample is then reported as a •-value, i.e., the relative differ-
ence between the isotopic compositions of the sample and the standard. The •-value
(Chapter 9), usually expressed in units of “per-mil” .�/, is defined:

• D Œ.RSA � RST/=RST
 � 1000 D .RSA=RST � 1/ � 1000 (7.29)

Also, since ratios of isotopic ratios are commonly used to report isotope effect data
(see Equations 7.17 and 7.18 for example), the actual numerical value of the abun-
dance ratio of the standard is not important since it drops out from the final equation
expressing the isotope effect:

RP=S=R0S D .1000C •P=S/=.1000C •0S/ (7.30)

Commonly used interlaboratory standards are discussed in Section 9.1.2 and listed
in Tables 7.5 and 9.1.

Small variations in apparent isotope ratio are observed when inlet pressure
changes. Therefore IRMS dual inlet systems are equipped with bellows mechanisms
(Fig. 7.9) so that inlet pressures of both sample and standard can be adjusted to be
the same. Furthermore, small systematic changes, if any, in the measured isotope
ratio as the measurement progresses are compensated by appropriate interpolation.
Both these corrections are handled automatically by the software which controls the
modern IRMS.

Because the molecular masses of the sample gases used in IRMS are small it is
possible to use small magnetic sectors. Unlike routine mass spectrometers, many
IRMS’s are equipped with an array of detectors permanently located in the paths of
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Fig. 7.9 Dual inlet system for IRMS (Ghosh, P. and Brand, W. A. Int. J. Mass Spectrom. 228, 1
(2003))
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Fig. 7.10 Detector geometry
in IRMS (Ghosh, P. and
Brand, W. A. Int. J. Mass
Spectrom. 228, 1 (2003))
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desired ions (Fig. 7.10). Alternatively, a universal collector located at fixed geome-
try, usually comprising three Faraday cups, allows measurement of all isotopomer
pairs of principal interest (however, a separate additional detector is necessary for
studies on hydrogen since the curvature for hydrogenic ions is substantially differ-
ent than those of the heavier gases. In either case it is unnecessary to sweep the
magnetic, B, or electric, V, accelerating potentials.

Ordinarily electrical amplification is used to compensate for differences in iso-
tope abundances in the gas being measured. Thus, for carbon dioxide all three
Faraday collectors are used with relative signal amplification at m=z D 44, 45,
and 46 of 1: 91: 500 (since the normal abundance ratios 12C=13C 	 91, and
16O=18O 	 500). The amplified signals from all three detectors are thus comparable
in intensity. Because of this feature, however, IRMS should only be used on gases
with isotope composition close to natural abundance. Enriched material should not
be used without careful recalibration since there is no guarantee of a linear response
of electric signal to ion current for widely different isotope ratios.

As in whole molecule mass spectrometry, peak intensities in IRMS must be cor-
rected for contributions from other isotopomer pairs. For example, using CO2 as
the analyte, three intensities are measured for carbon isotopic analysis because the
contribution at m=z D 45 is the sum of 13C16O2 and 12C16O17O. The contribution
from 17O can be calculated from the one at m=z D 46 (12C16O18O) taking the in-
tensity ratio 17O=18O D 0:038=0:200 	 0:2; the contributions at m=z D 46 from
13C16O17O and 12C17O17O are negligibly small. Similarly, for the measurement
of sulfur isotope ratios using SO2 as analyte the oxygen isotopic composition must
be known in order to be able to deconvolute the m=z D 66 peak into its principal
components, 34S16O2 and 32S18O16O. In order to avoid this complication SF6 has
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replaced SO2 in many laboratories. The electron impact spectrum of SF6 has its
most intense peak at m=z D 127 corresponding to SF5

C. Isotope signals at 128,
129, and 131 m/z, can be used without correction to obtain 33S, 34S, and 36S abun-
dances, respectively, since natural fluorine is monoisotopic. An additional advantage
of using SF6 is that it is not strongly adsorbed on the walls of the spectrometer, and
does not react with moisture or mercury. Thus sample-to-sample background and
memory effects are negligible.

7.2.2.1 Sample Preparation

IRMS is a powerful technique because of its high precision which is typically
	0:01� but may be as good as 	0:001�. The relative errors of IRMS isotopic
ratios (¢R=R) are usually much smaller than errors introduced by inaccuracies or
imprecision in sampling, sample preparation, kinetic measurements, etc. and can
frequently be ignored. Typically these latter errors sum to 	0:05� to 	0:2�.
A drawback, however, is that IRMS can be straightforwardly applied only to gaseous
samples, most often carbon dioxide or nitrogen. For example, in studies on carboxy-
lation and decarboxylation carbon dioxide can be isolated from the reaction mixture,
purified, and used directly for IRMS analysis. This happy situation is, however,
rather the exception than the rule, and usually conversion of a specific atom or atoms
within the reactant or product molecule into an IRMS appropriate gas is required.
That is usually not an easy task, and numerous methods have been elaborated that
are usually specific to particular reaction systems. A more general approach, suitable
for use on a wide variety of compounds, employs oxidation/ reduction trains yield-
ing nitrogen and carbon dioxide as gaseous products. Such systems usually contain
several catalytic oxidation and/or reduction tubes which operate at high tempera-
ture. They are now available from many vendors and can be connected in-line with
the IRMS instrument. Combustion trains can be coupled with chromatography to
perform both molecular separation and isotope analysis directly. A typical set up is
diagrammed in Fig. 7.11.

An important criticism of the use of combustion trains is that combustion is not
site specific, that is all atoms in the analyte end up in the gas transferred to the
IRMS. For studies of carbon isotope effects this is invariably CO2. The question is
especially important for carbon isotope analysis because analyte molecules of inter-
est usually contain several different kinds of carbon atoms and therefore combustion
methods average or dilute the IE’s of interest. Should site specific isotope ratios be
required another method of sample preparation (usually much more tedious) is nec-
essary. Combustion methods, however, are frequently used to study nitrogen and
sulfur IE’s because many organic molecules are singly substituted with these atoms.
Obviously, oxygen isotope effects cannot be determined using combustion trains
because external oxygen is employed. Rather some type of pyrolytic sample prepa-
ration is required.
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Fig. 7.11 On-line GC-combustion unit for isotope ratio determinations (Ghosh, P. and Brand,
W. A. Int. J. Mass Spectrom. 228, 1 (2003))

7.2.2.2 Remote Labeling for IRMS of Oxygen and Nitrogen IE’s

An alternative way to obtain oxygen IE’s is to take advantage of multiple isotope
effects (see Sections 7.1.5 and 7.4). The method relates the isotopic composition of
the atom of interest located at a specific position to an IE of another atom in the same
molecule. The approach is called remote labeling. Remote labeling experiments are
best explained using an example. Consider the p-nitrophenol anion:

Measuring the oxygen isotope ratio at the phenolic position is not an easy task.
However, measurement of the nitrogen isotope ratio is straightforward, and one can
use the on-line combustion – isotope ratio mass spectrometer setup (Fig. 7.11) to
obtain •15N at high precision. The two compounds illustrated in Fig. 7.12 need to
be synthesized. The structure on the left is 100% isotopically substituted with both
15N and 18O. That on the right is substituted with 14N and 16O. These molecules are
then mixed. When using IRMS it is best to mix in a ratio close to natural abundance
for nitrogen (Table 7.5), this is the so-called “pseudo-natural abundance”, which
minimizes background errors. If the isotope composition were very different from
natural abundance a small contamination of the sample from an external source,
atmospheric air for example, would result in a large change in the •15N value. In
the mixture every molecule that contains 14N also contains 16O, and similarly those
containing 15N also contain 18O. Thus •15N for the gaseous sample of nitrogen ob-
tained from the combustion line simultaneously reports the isotopic composition of
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Fig. 7.12 Isotopically substituted p-nitrophenol anions

both nitrogen and phenolic oxygen. The nitrogen site is therefore called the “report-
ing” position although some years ago it was denoted the “remote” position, thus
the name of this technique – “remote labeling.”

Two experiments are carried out. First KIE is determined for the reporting posi-
tion (i.e., k14=k15), and then the same experiment is repeated using pseudo-natural
abundance mixture. These measurements yield k14;16=k15;18 which is nicely ap-
proximated by Equation 7.31:

k14;16=k15;18 D k14=k15 � k16=k18 (7.31)

Comparison of the results allows calculation of k16=k18. Obviously there are draw-
backs to this procedure. The major one is the necessity of a costly and tedious
isotopic synthesis of labeled materials. Optimally those compounds should be as
close as possible to 100% enriched. This can seldom be achieved and using partially
enriched samples requires substantial corrections to the raw data and increases ex-
perimental uncertainty. A rule of thumb used in remote labeling experiments is that
the remote (reporting) position should be reasonably far from the reaction center
(the phenolic oxygen in the present example). For the case where there is no isotope
effect at the reporting site (e.g. no 15N-KIE), the “double-label experiment” leads
directly to the isotope effect of interest. This is more probable when the reporting
site is remote, (i.e. well isolated from the reaction coordinate).

Although the multiple isotope method is most frequently used with stable iso-
topes (for example studies of oxygen KIE’s in biophosphates used 15N at a remote
nitro group, or 13C on a remote carboxy group, as reporting isotopes), the tech-
nique is not restricted to stable isotopes; radioisotopes have been used as reporting
sites for stable isotopes. In a practical sense this is the only method that allows the
measurement of isotope effects for elements that have only one stable isotope (e.g.
fluorine and phosphorus). In these cases doubly radiolabeled material is used (see
Section 7.4).

7.2.2.3 Cavity Ring-Down Spectroscopy

Zare and coworkers (2009) have recently discussed a continuous flow ring down
spectroscopy system integrating chromatographic separation, a catalytic combuster,
and an isotopic 13C=12C optical analyzer which conveniently yields •13C values at
a precision nearing that for IRMS. A modification yields •D and •15N values.
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7.3 NMR Measurements of Isotope Effects; Isotope Effects
on NMR Spectra

NMR (Nuclear Magnetic Resonance) is arguably the most widely used instrumen-
tal method in chemistry. Isotope substitution affects NMR spectra in several ways,
each of which extends the usefulness of the NMR technique. In discussing IE’s on
NMR spectra it is important to distinguish between three areas. The first has its
origin in the differences of the nuclear magnetic properties of isotopes. For exam-
ple, the nuclear magnetic spins of 16O, 17O, and 18O are 0, 5/2, and 0, and for 12C
and 13C are 0 and 1=2 spin units, respectively. Thus neither 12C, 16O, nor 18O show
an NMR spectra, but 13C and 17O do. Similarly the nuclear spins of 1H, 2H.D/,
and 3H.T/ are 1=2, 1 and 1=2, in that order. Isolated atom NMR frequencies relative
to 1H D 100 are D D 15:4, T D 106:7, 13C D 25:1 and 17O D 13:6. Changes
in NMR spectra due to such magnetic differences are extremely useful. For ex-
ample judicious substitution of H by D removes signals of the replaced proton(s)
from the 1H spectrum and collapses (simplifies) the multiplet pattern due to much
smaller coupling with the D nuclei. The 2H.D/ spectrum is shifted far down field
and does not interfere with that part of the spectrum due to unsubstituted 1H. Sim-
ilarly 13C enrichment splits resonances of the 13C=1H coupled protons in the 1H
spectrum. However these magnetic isotope effects in NMR, although important and
interesting, are peripheral to our interests. The second kind of NMR isotope effect is
consequent to the effect of isotopic mass differences on NMR spectra, for example
differences in chemical shielding or coupling constants caused by isotopic differ-
ences in vibrational frequencies and rms amplitudes. Such rovibrational NMR IE’s
are analogous to other types of kinetic and equilibrium IE’s described in other chap-
ters. They are discussed in Chapter 12. The third area of interest is the exploitation
of NMR as a widely available analytical tool to employ for measurements of IE’s.

7.3.1 Isotope Labeling in NMR Investigations
of Molecular Structure

An excellent example of the use of isotope labeling in NMR spectroscopy is in
its application to studies of protein structure and protein–ligand interaction. Such
studies are of prime importance for drug screening and drug design. Consequently
this field of research has been supported by drug companies.

An important difficulty in NMR studies of protein–ligand interaction is the spec-
tral complexity including (but not limited to) overlap of the ligand and protein
resonances. If the protein–ligand binding is relatively weak, and the rate of exchange
is fast compared to the various NMR timescales, the observed spectrum will be the
weighted average of the spectra of the free and bound states, and will reflect changes
induced by the binding. However for tight binding (slow exchange) separate spectral
peaks will be observed for free and bound ligands. Information concerning the bind-
ing can only be obtained from the spectrum of the bound state which will probably
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Fig. 7.13 The use of NMR
isotope labeling to select
signals from either ligand
(small box) or protein (large
box) for studies on drug
interaction (After Roberts, G.
C. K., DDT (Drug Discovery
Today) 5, 230 (2000))
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overlap the protein spectrum. This problem can be overcome straightforwardly by
judicious labeling with stable isotopes such as 13C, 15N, and/or 2H(D), together
with “isotope editing” experiments. Even when exchange is fast, isotope labeling
can be helpful. The idea is a simple one and consists of nothing more than isotope
substitution on either protein or ligand in order to either shift, enhance, or eliminate
that part of the spectrum, and in that way to deduce structural information. Isotope
effects on the structure, if any, are ignored. The scheme is outlined in Fig. 7.13. The
use of isotopically enriched growth media to prepare labeled recombinant proteins
in bacteria or yeast is now commonplace, and is even possible for proteins produced
in mammalian cells. It is very often more convenient to label the protein instead of
the smaller ligand (drug) molecule.

A simple extension of the technique outlined in Fig. 7.13 is chemical shift
mapping. In its simplest form it is based on two-dimensional heteronuclear cor-
relation measurements. For (1H-15N) correlations, for example, one obtains a two-
dimensional NOE (Nuclear Overhauser Effect) spectrum containing one cross peak
for each amide in the protein at a position characterized by its 1H and 15N chemi-
cal shifts. The spectrum therefore contains one signal for each amino acid residue
plus additional signals from the side chains of asparagine and glutamine. Once the
ligand is introduced, the signals characterizing the binding site will change position
according to the change in structure. Addition of a second or third isotope label
allows extension of the correlation patterns to three or more dimensions. Again, iso-
tope effects on the structural parameters are ignored. A few of the many possible
labeling patterns are illustrated in Fig. 7.14.

7.3.2 Rovibrational NMR Isotope Effects

The second kind of NMR isotope effect has its origin in the mass differences be-
tween isotopes. In NMR mass effects show up as isotopic differences in NMR
shielding constants and coupling constants. Their theoretical rationalization is
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Fig. 7.14 Some different NMR isotope labeling strategies: (a) global protein labeling
(15N,13C,2D); (b) domain specific labeling (most useful for large targets); (c) amino acid spe-
cific labeling; (d) position specific labeling (non-exchangeable protons substituted by deuterons)
(Reprinted with permission from Heller, M. and Kessler, H, Pure Appl. Chem. 73, 1429 (2001))

fundamentally rotational–vibrational (rovibrational) in origin, and most theoretical
treatments begin by introducing the effective change in molecular geometry and
molecular wave functions due to IE’s on vibrational averaging.

The rovibrational origin of NMR isotope differences in chemical shifts is a conse-
quence of the fact that more lightly substituted atoms show larger amplitude motions
than the heavier (see Section 12.4 for a more thorough discussion). Consequently
isotopic substitution alters the magnetic shielding about the substituted nucleus (a
primary isotope effect), and changes shielding at other (nearby) nuclei (a secondary
isotope effect). For example one might measure an H/D primary isotope effect on
the 1H and 2H.D/ chemical shifts for methane, �.1H/ and �.2H/, and compare
that result with the isotope effect on the chemical shift at hydrogen due to 13C=12C
substitution at the carbon atom (a secondary isotope effect). It makes no sense to
speak of a primary isotope effect on the carbon chemical shift because 12C has zero
nuclear magnetic moment. Similarly the nuclear spin coupling due to the spin-spin
magnetic interaction between the 13C and 1H, or 13C and 2H nuclei can be formally
expressed as either primary or secondary isotope effects, but isotope effects on cou-
pling constants are extremely small. Table 7.7 reports some NMR chemical shifts
and coupling constants for isotopically substituted methane, and these results are
compared with rovibrational theory in Section 12.4.2.1.
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Table 7.7 Isotope effects on NMR spectra of isotopically substituted
methane

Screening constants (chemical shift) Coupling constants

Proton NMRa 1H¢.ppb/c
12CH4 0 (Reference)
12CH3D 14.9
12CH3D2 29.7 JHD D �1:93Hz
12CHD3 44.2 JDD D �0:29Hz
12CD4 –
13C NMRa;b 13C¢.ppb/
13CH4 0 (Reference)
13CH3D 187
13CH3D2 385 J13CH D 125Hz
13CHD3 579 J13CD D 19:2Hz
13CD4 774
aAnet, F. A. L. and O’Leary, D. J. Tetrahedron Lett. 30, 2755 (1989).
Measurements at �500MHz
bAlei, M. and Wageman, W. E. J. Chem. Phys. 68, 783 (1978) Measurements
at�25:2MHz
cppbD parts per billion

The NMR theory of rovibrational averaging successfully explains the general
empirical trends observed for NMR chemical shift isotope effects. (1) Substitution
with a heavier isotope shifts the NMR signal of a neighboring nucleus to lower
frequency (greater shielding). (2) The isotope shift decreases with distance. (3) The
isotope shift is largest where the fractional mass change is greatest. Thus shifts on
substitution of 13C for 12C, or 18O for 16O, are proportionally smaller than 2H(D)
for 1H.

Chemical shift isotope effects of non-exchanging or slowly exchanging atoms
or groups provide an excellent method for assigning NMR signals. An example is
shown in Fig. 7.15a which reports 13C NMR of dry partially deuterated glycerol
dissolved in DMSO-d6. The compound was prepared by placing DMSO-h6 in a 1:1
H2O=D2O mixture then drying so that half the hydroxyl is now OH and half OD. In
the proton decoupled 13C spectrum the carbons within three bonds of a D are shifted
upfield by an isotope effect and their signals are split. The central carbon (C(2), left
side Fig. 7.15a), at 74 ppm experiences one “ shift (next nearest neighbor interac-
tion) and two ” shifts (next-next nearest neighbor interactions), while the terminal
carbons (right side) only experience one “ shift. The extreme left hand line of each
carbon signal arises from molecules containing only OH, and the extreme right from
those containing only OD. The triplet signals for the terminal carbons result from
the 1:2:1 mixture of terminal hydroxyls, .OH/2, (OH,OD), .OD/2. Isotope shifts
like these provide a useful diagnostic tool, but, unfortunately, they are quite small
and the method is only useful with high field instruments.

A second example of a study exploiting chemical shift isotope effects is shown
in Fig. 7.15b which reports 1H, 2H and 19F low temperature NMR spectra of the
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Fig. 7.15 (a) 13C NMR resonances of a dry DMSO-d6 solution of glycerol containing equal num-
ber of OH and OD groups (see text). Reuben, J. J. Am. Chem. Soc. 107, 1756 (1985). (b) 1H, 2H
and 19F NMR spectra of a solution containing partially deuterated .C4H9/4NC .FL/nF� dissolved
in CDF3=CDF2Cl at 130 K. The deuterium fraction was about 0.5. Note the H/D primary isotope
effect on the chemical shift (left hand side) and the isotope effect on the splitting of the 19F NMR
signal (right hand side) (Reprinted with permission from Shendarovich, G., Limbach, H. H., et al.
Phys. Chem. Chem. Phys. 4, 5488 (2002), copyright 2002, Royal Society of Chemistry)

.FLF/� .L D H or D) anion in low temperature solutions of .C4H9/4NC .FL/nF�.
The authors were able to determine zero-, one-, and two-bond, H/D isotope effects
on hydrogen and fluorine NMR chemical shifts for the series n D 1 to n D 3, and to
relate the observed spectra to H/D isotope effects on the hydrogen bond geometries.
Isotope effects on spin-spin L-F and F-F coupling 13C constants were reported.
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Fig. 7.15 (continued) (c) Superposed experimental and calculated 30.41 MHz (7 T) 15N NMR
spectra of 15N enriched DPP at different temperatures and deuterium fractions xD in the mo-
bile sites. The four sharp lines with temperature dependent positions stem from a small quantity
of 15N labeled tetramethyltertraaza-[14]annulene reference in a separate capsule (Klein, O.,
Limbach, H. H., et al. J. Am. Chem. Soc. 126, 11718 (2004))



7.3 NMR Measurements of Isotope Effects; Isotope Effects on NMR Spectra 231

7.3.2.1 NMR Studies of Fast Exchange IE’s

For NMR studies of hydrogen bonding, complex formation, and fluxional or confor-
mational equilibrium the situation is more complicated. When the exchange occurs
at a fast rate on the NMR timescale, only an average spectrum is observed with
averaged values of nuclear shielding. Often, however, the populations of the equi-
librating states show marked temperature or medium dependences and when the
exchange rate is slowed to rates comparable to the NMR time constants the peaks
broaden, then split. Line shape analysis can be used to deduce the kinetics and
KIE’s of the exchange process. The example shown in Fig. 7.15c reports H/D iso-
tope effects on the cyclic hydrogen-bond exchange in the tetramer of 15N labeled
polycrystalline 3,5-diphenylpyrazole (DPP). For this study solid state 15N NMR
methods were employed. The H/D labeling was restricted to the hydrogen bonding
(N–H . . . .N) positions. Rate constants for the cyclic H or D exchange (Fig. 7.15c)
were measured on the millisecond timescale by line shape analysis of the doubly
labeled 15N compounds. The Arrhenius curves are nonlinear and indicate tunneling
at low temperatures.

7.3.3 NMR as an Analytical Tool; NMR Measurements
of Carbon IE’s

The third area in our brief review of NMR focuses on the fact that modern NMR
technology can provide both quantitative and position-specific information on iso-
tope fractionation, and this without an elaborate work up of the reaction mixture.
Compare such results with those of IRMS where laborious selective degradation
(carefully avoiding isotope fractionation) into small molecule analytes (like CO2)
is required before isotope analysis can even begin. As an example we consider the
application of NMR analysis to certain carbon KIE’s. Until recently NMR measure-
ments of 12C=13C fractionations near natural abundance (1.1%) were unreliable.
Uncertainties caused by low natural abundance of 13C coupled with the inherently
low precision of NMR integrations of peak intensity nearly equal or even exceed
the KIE being measured. The resolution of this difficulty takes advantage of the
fractional enrichment of slower (isotopically heavier) molecules remaining in the
reactant mixture at high conversion (i.e. the overexpression of isotopic fractiona-
tion at high conversion, see Equations 7.23 and 7.24 and Fig. 7.4). For example at a
fraction of reaction, f D 0:99, for KIE D 1:05, beginning with natural abundance
material, the 13C=12C ratio in the remaining substrate is 1.25, which is sufficiently
large to permit precise measurement using 13C NMR. In addition to careful NMR
measurements the method also requires high precision analysis of the fraction of
reaction, because at high conversion the dependence of RS=R0S on f is very steep
(Fig. 7.5). Studies using both 2H and 13C NMR have been reported but the former
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are handicapped because the low natural abundance of 2H(D), 0.02%, makes an
initial isotope enrichment of starting material advisable.

As an example of this technique we consider 12C=13C isotope effects in the
Diels–Alder condensation of isoprene and maleic anhydride (Equation 7.32).
The terminal carbons of isoprene carbons are numbered 1 and 4, the methyl
substituted carbon is number 2. The reaction proceeds via a concerted and slightly
asynchronous mechanism.

Me
O

O

O

O

O

O

Me

xylenes

25 °C

(7.32)

After reaction to f D 0:989 the reaction was stopped and unreacted isoprene ana-
lyzed for isotope enrichment. The methyl group was selected as an internal standard
under the assumption it remains unchanged during reaction because it is not in-
volved in either bond breaking or bond making. Results are shown in Table 7.8 and
clearly demonstrate that only the terminal CH2 groups of isoprene are involved in
the rate limiting step. In agreement with theoretical calculations based on Gaussian
94 the experiments suggest the methyl group introduces a small asynchronicity into
the transition state.

Although natural abundance NMR analysis of KIE’s offers great potential for
studying reaction mechanisms there are limitations. Relatively large amounts of ma-
terial are required because sufficient unreacted starting material must be recovered
for NMR analysis at fractions of reaction approaching unity. The reactions to be
studied must be irreversible, and the mechanism must not change as the reaction
proceeds. On the other hand, the advantage of using natural abundance material
and avoiding labeling steps and/or isotope synthesis is appealing. Also NMR mea-
surements are insensitive to impurities as long as their signals do not overlap with
those of the measured compound. Finally and most powerfully, NMR analysis al-
lows the determination of isotope effects on several (or many) positions in a single
sample without necessitating laborious site-specific degradation. Since, however, a

Table 7.8 NMR measurements of 12C=13C fractionation of unreacted iso-
prene undergoing reaction 7.32 (Singleton, D. A. and Thomas, A. A.;
J. Am. Chem. Soc. 117, 9357 (1995))

Carbon atom Isotope fractionation k.12C/=k.13C/ from Equation 7.23

CH3 [1.000] [1.000] assumed
1 1.103(11) 1.022(3)
2 1.005(9) 1.001(2)
3 0.999(15) 1.000(3)
4 1.077(14) 1.017(2)

Standard deviations in parentheses.
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point of reference is necessary for each position, the NMR signal from a reference
atom expected to undergo little or no isotope fractionation has to be selected as an
“internal standard”. Thus all kinetic isotope effects measured by NMR carry a small
systematic error corresponding to the KIE, if any, at the reference site. This problem
may be minimized by referencing the measurement to an external standard or to a
far-distant site introduced by chemical derivatization.

7.4 Radioisotopes

Isotope effect studies using radioisotopes are sometimes convenient. Some ele-
ments, fluorine and phosphorus for example, have only one stable isotope, and the
determination of isotope effects for them is only possible with radioisotopes.

An interesting way to determine IE’s using radioactivity is by comparing rates
of reaction for a particular compound labeled (on separate samples) with two dif-
ferent radioisotopes. A good example might be the determination of an 11C=14C
kinetic isotope effect, taking advantage of the very large difference in the half lives
of these two species (20.4 min and 5,730 years, respectively, Table 7.5). The reac-
tion is started by mixing the 11C substrate, immediately after its preparation, with
previously synthesized 14C substrate and other reactants as required. Samples are
withdrawn at convenient intervals, separated into reactant and product fractions by
chromatography, and the total radioactivity (11C plus 14C) obtained by liquid scin-
tillation counting. After decay of the 11C activity (typically overnight), the sample
is counted again to obtain the 14C activity. 11C radioactivity is calculated from
the difference after correction for radio-decay. The advantages of this simple and
straightforward analytical technique, however, scarcely overbalance the enormous
synthetic and handling problems connected with the preparation of materials labeled
with short-lived isotopes like 11C.

An alternative approach takes advantage of the different decay energies of ra-
dioisotopes. Figure 7.16 shows an example where 3H.T/, 14C, and 32P, activities
are simultaneously counted by taking advantage of the difference in their decay en-
ergies. The separate kinetics for each isotope are followed in appropriate (energy
specific) channels of the liquid scintillation counter (LSC). Obviously for measure-
ments of isotope effects in the absence of double radio-labeling for each element the
reaction rates of the stable isotopes (1H, 12C, or 31P in the present example) must
be determined by another technique.

7.4.1 Errors

In LSC measurements precautions are required to avoid impurities which may cause
scintillation quenching. Since radioactive decay is random and is described with the
Poisson distribution, the standard deviation for a given count, C, is equal to C1=2.
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Fig. 7.16 Separate radioisotope counting using LSC spectrometry from LKB Instruments (Manual
1214/1219, LKB Australasia)

Thus the counting rate should be sufficiently high to ensure a precision sufficient for
isotope effect measurements; a target precision of 0.1% is obtained for total counts
of 	106. Radiolabeled material used for isotope effect measurements usually has
counting rates of	15;000 counts per minute (cpm). To achieve 0.1% precision such
samples must be counted for 8 h or more. More often counting time is limited to
several cycles of about 10 min each with a commensurate increase in the statistical
error.

The most frequently used combination of radioisotopes in double labeling ex-
periments is tritium and 14C. Ideally the ratio of the activities in the corresponding
channels (Fig. 7.16) should to be high enough to insure the carbon counts in the tri-
tium channel are negligible compared to tritium counts. Usually this is not achieved
and a correction must be applied.

7.5 Equilibrium Isotope Effects

7.5.1 Fractionation Measurements

The experimental determination of isotope fractionation factors on chemical equi-
libria is completely analogous to the methods used for measuring kinetic isotope
effects. In brief this amounts to quenching an equilibrated mixture, separating
reactant from product, and analyzing either or both by IRMS, spectroscopy, chro-
matography, NMR or some other technique of convenience. Equilibrium isotope
effects, broadly speaking, are usually smaller than kinetic isotope effects. Thus, the
demands on experimental precision are somewhat greater, but the essentials of the
analytical procedures and instrumentation remain the same.
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7.5.2 Studies Using Separated Isotopes

7.5.2.1 Vapor Pressure Isotope Effects

The vapour pressure isotope effects (VPIE) is a particularly important equilibrium
measurement because it directly compares isotope effects on free energies in the
condensed phase to those in the dilute gas reference state. VPIE’s are generally
small, typically no larger than a percent or so per H/D atom substituted, for heav-
ier isotopomer pairs as small as a few parts in 104, and it is advisable to employ
difference methods. Exacting attention to temperature control, transducer stability
and sensitivity, and to chemical and isotopic purity is necessary. Figure 7.17a is a
schematic diagram of a typical apparatus used to measure VPIE’s at high precision.
This particular configuration was employed in studies of VPIE’s of deuteromethanes
and solutions of protio- and deutero- methanes, including measurements of the ex-
cess free energies of solution (straightforwardly obtained from measurements of
excess vapor pressures). Figure 7.17a specifically refers to an experiment to measure
pressure differences between CH4 and CD4 (and/or CH4=CD4 mixtures) using the
right-hand and left-hand pressure transducers, respectively. It is possible to monitor,
simultaneously, the two differences (double differential method) and, thus, to obtain
excess vapor pressures with unprecedented precision. The transducers are differ-
ential capacitance manometers. The three sample cells are contained in a common
massive and well thermostatted copper block (	˙ 0:001K) which is surrounded
by an adiabatic shield, and temperature differences between the samples are held
to 0.1 mK or less. The total pressure of CH4 is measured with the quartz spiral
manometer shown at the lower center. Other kinds of pressure measuring devices
can and have been used, replacing the differential capacitance and/or quartz spi-
ral manometers. The transducers are thermostatted at a higher temperature than the
sample block in order to prevent condensation outside the sample cells. The temper-
ature of the copper block is read with a resistance thermometer. Gas handling lines
and other necessary auxillaries are not included in the diagram.

The precision obtained in measurements of this kind is impressive. It is illustrated
for our example (CH4=CD4) in Table 7.9 and amounts to a few parts in 105 on
the total pressure, equivalent to a few parts per thousand on VPIE (which scales
approximately as ln.P0=P/ 	 .�P=P//. Of course for excess free energy IE’s in
mixtures of isotopomers, or for VPIE’s of heavier isotopomer pairs, both markedly
smaller, the relative error is commensurately larger. Thus for the excess free energy
of CH4=CD4 mixtures at 100 K, which is at most 0:6 J=mol (equivalent to �P=P D
7 � 10�4/, the relative error increases to •.�P=P/=.�P=P/ 	 6 � 10�2. Similarly
the VPIE for 36Ar=40Ar at 100 K amounts to �P=P D 0:0041, and the precision of
measurement, •.�P=P/=.�P=P/ 	 1�10�2, compares favorably with that obtained
from single stage fractionation measurements employing high precision IRMS for
analysis (see below).
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Fig. 7.17 (a) Double differential apparatus used for VPIE measurements (see text) (Jancso, G.,
Rebelo, L. P. N. and Van Hook, W. A. Chem. Rev. 93, 2645 (1993)). (b) Differential PV apparatus
for isotope effect studies (see text) (Kooner, Z. and Van Hook, W. A.. J. Phys. Chem. 90, 4860
(1986))
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Fig. 7.17 (continued) (c) A one plate liquid–vapor isotope fractionation experiment (Jancso, G.,
Rebelo, L. P. N. and Van Hook, W. A. Chem. Rev. 93, 2645 (1993))

Table 7.9 Precision of measurement for CH4=CD4 VPIE’s at
three temperatures (Calado, J. C. G. et al. J. Phys. Chem. 93, 3355
(1989))

T/K P.CH4/=kPa �P=P •.�P=P/ •.�P=P/=�P=P/

95.06 20.006 0.01602 4� 10�5 2:5� 10�3

105.25 57.739 0.02456 4� 10�5 1:6 � 10�3

121.53 213.42 0.03172 2� 10�5 0:6 � 10�3

�P=P D ŒP.CH4/� P.CD4/
=P.CH4/

7.5.2.2 PVT Isotope Effects for Liquids, Vapors, and VPIE
at LV Equilibrium

A somewhat different PV apparatus is shown schematically in Fig. 7.17b. Two
closely matched stainless steel vessels of nominal volume 25 cm3 are mounted in a
massive copper block contained in a high precision thermostat (	˙1mK) over the
range (25 < t=ıC < 300). Samples are loaded into the cells from a pair of carefully
matched high pressure screw injectors, and pressure and differential pressure trans-
mitted to the transducers through those same lines. During a VPIE measurement
the cells are kept nearly full of liquid to minimize the amount of material in the
vapor phase, which is important for experiments on solutions. The screw injectors
are precision machined from stainless steel and permit the amount of material in the
cells and pressure measuring network to be obtained to 	˙ 10�3 cm3. The absolute
pressure of one cell and the differential pressure between cells are measured by
zero-displacement quartz oscillator transducers. For solution measurements the ma-
terial in the cell is mixed using a low-volume, high-pressure pump of the kind used
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in liquid chromatography. An injection valve is included in the loop so that aliquots
of solute can be added to the solution. For molar volume and compressibility stud-
ies the degassed samples are fed from the screw injectors to the measuring cells. As
the cells fill the pressure jumps abruptly from the equilibrium vapor pressure to a
higher value. Continued injection of liquid allows the liquid phase compressibility
to be determined, and the intersection between the steep and flat parts of the curve
defines the amount of liquid required to just fill the cell and permits calculation of
the orthobaric liquid molar volume. This general design permits measurement of
isotope effects on vapor pressure, and liquid and vapor phase molar volumes, com-
pressibilities, and thermal expansivities, and vapor phase virial coefficients.

7.5.3 Liquid–Vapor Isotope Fractionation Measurements

Figure 7.17c schematizes a one plate liquid–vapor isotope fractionation (LVIF) ex-
periment designed to measure the concentration ratio of two isotopomers in each of
two coexisting phases, for example liquid (x=x0/ and vapor (y=y0). The LVIF factor
is ’ D .y=y0/=.x=x0/, x and x0, and y and y0, are liquid and vapor mole fractions
respectively. The temperature is measured with a resistance thermometer, T, and
liquid and vapor samples are removed through capillary tubing for IRMS (or some
other kind of) analysis. The demands on sample purity, vacuum integrity, and tem-
perature stability are less stringent for LVIF measurements than they are for VPIE.
It is important to ensure good equilibrium between phases (i.e. adequate boil-up)
while at the same time scrupulously guarding each phase from contamination with
the other (i.e. from splash). This becomes increasingly difficult as pressure drops,
and as a general rule LVIF measurements at pressures less than, say, 10–50 kPa are
impractical. At higher pressures experimental precision for LVIF is principally de-
termined by statistical uncertainty in the IRMS analysis. At low enough pressure ln
’ 	 VPIE plus a small correction. Thermodynamic expressions for the correction
are developed in Chapter 5.

7.5.4 Isotope Effects on Liquid–Liquid Equilibria

Liquid–liquid (LL) miscibility is an important topic with impact on separation and
extraction processes. In particular, it is one of the central topics in polymer science
because the physical properties of polymer solutions and blends depend sensitively
on phase equilibria in the mixture. Figure 7.18a diagrams the effects of molecu-
lar weight, pressure, and/or isotope (H/D) substitution on LL phase diagrams of
polymer/solvent systems showing both upper and lower branches (see Chapter 5).
By lowering pressure, increasing solvent D/H ratio, or increasing solute MW one
decreases miscibility in the sequence “dotted – solid – dashed – dash-dot”. The kind
of instrument employed to map such phase diagrams is schematized in Fig. 7.18b.
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a

Fig. 7.18 (a) Schematic showing effects of molecular weight and/or pressure and/or H/D substitu-
tion on LL demixing phase diagrams with both upper and lower branches. Temperature is plotted
vs. concentration Wps, (weight fraction). By lowering pressure, increasing solvent D/H ratio or
raising solute MW the miscibility decreases in the succession shown by the dotted – solid – dashed
– dash-dot lines. The areas below the lower, and above the upper, dotted, solid, and dashed lines
represent two phase regions, the areas between those same lines are one phase regions. The area
between the dashed-dotted lines is a two phase region (Luszczyk, M., Rebelo, L. P. N. and Van
Hook, W. A. Macromolecules 28, 745 (1995))

Demixing transitions (cloud points) are detected optically. Light from a 5 mW He–
Ne laser is transmitted through a optical cable and enters the thermostatted pressure
cell through a sapphire window. The transmitted light at 180ı nominal geometry
exits via a second sapphire window into the central portion of a bifurcated optical
cable to a light dump. Scattered light falls on the outer portion of the optical cable
(180ı) or onto a separate cable (90ı) and is fed to silicon photodiode detectors. The
experiment begins in the homogeneous region (toward the center of Fig. 7.18a). By
raising or lowering pressure, or raising or lowering the thermostat temperature, one
moves from the central one phase region into one or the other of the two phase re-
gions, all the while monitoring transmitted and scattered light intensity, temperature
and pressure. It is rather more convenient and certainly more efficient to vary pres-
sure (isothermally) than it is to vary temperature (isobarically). The macroscopic
manifestation of the formation of a daughter phase in a phase transition is solution
turbidity (the so-called cloud-point). Thus, at the phase transition, scattered light
intensity increases dramatically and transmitted intensity falls. Plots of scattering
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Fig. 7.18 (continued) (b) High pressure cell for detection of LL demixing by light scattering
(Reused with permission from Szydlowski, J., Rebelo, L. P. N. and Van Hook, W. A. Rev Sci. Ins.
63, 1717 (1991))

intensity define the cloud point and operational spinodal using the Debye theory of
light scattering.

7.5.4.1 Demixing of Polymer Blends

The kinetics of polymer/polymer demixing are many orders of magnitude slower
than those for polymer/solvent demixing. In a typical instrument used to study blend
demixing a polymer film supported on a thin glass cover slip is placed in a ther-
mostatted pressure cell (Fig. 7.18c). The sample is annealed for some hours well
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Fig. 7.18 (continued) (c) Light scattering apparatus used to detect polymer–polymer demixing
1 – HeNe laser, 2 – sapphire window, 3 – polymer film, 4 – photodiode array, 5 – copper block,
6 – resistance thermometer, 7 – temperature controlled jacket, (Reproduced with permission from
Zywocinski, A., et al. J. Polymer Sci. Polym. Phys. 33, 595 (1995))

above the glass temperature and in the homogeneous part of the phase diagram.
Once the pressure has been set to a predetermined value using compressed nitrogen,
the oven is reset to the desired quench temperature. This requires several minutes,
a negligible time compared to the 10–70 h usually required to complete the phase
transition. Scattered light from an He–Ne laser enters the cell, then exits through
the lower sapphire window and falls on a photodiode array. Scattering intensity is
thus recorded as a function of time and angle at the chosen pressure and temperature,
and the effects of isotope substitution and pressure analyzed using the Cahn–Hilliard
theory for spinodal decomposition.
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7.6 H/D Isotope Effects and Small Angle Neutron Scattering

Isotope substitution is an important technique which is widely used in neutron scat-
tering studies of the thermodynamic and structural properties of polymer solutions.
The reason lies in the large difference in the coherent scattering length for slow
(thermal) neutrons of the proton (bH D �0:374 � 10�12 cm) and the deuteron
(bD D 0:667 � 10�12 cm). As a consequence to this large IE, judicious isotope
substitution on solute or solvent permits the various contributions to the net scatter-
ing to be sorted out. In this fashion the intermolecular particle–particle correlation
length, Ÿ and the intramolecular radius of gyration Rg can be deconvoluted. A good
example is the use of the high concentration isotope label method to study polystrene
solutions at the concentration for liquid–liquid critical demixing. The coherent scat-
tering intensity, I(Q,x), for an incompressible mixture is

I.Q; x/ D KnN2Ss.Q/C LnN2St.Q/ (7.33)

The functions S(Q) are known as structure factors and contain information on the
correlation lengths. Subscripts “s” and “t” correspond to scattering from a sin-
gle chain and to total scattering, respectively, n is the number density of polymer
molecules and N the degree of polymerization. Also Q, the scattering vector, is
given by Q D 4  sin ™=�. Here 2™ is the scattering angle and � the neutron wave
length, which for these studies was 0.48 nm and is commensurate with the size of
the monomer unit. The value of isotope effect studies lies in the fact that K and L
can be “tuned” by adjusting the H/D ratio, x=.1� x/, in polymer or solvent.

K D .bH � bD/
2x.1 � x/I L D .bHxC bD.1 � x/–bSolv/

2 (7.34)

In Equation 7.34 bH, bD and bSolv are the coherent scattering lengths of the protiated
and deuterated monomers and the solvent, respectively. The point of interest is that
L can be adjusted to zero or nearly zero by varying the H/D ratio. For example L D 0
at x D 0:214 for polystyrene-h (PSh) and PSd mixtures dissolved in deuteroacetone.
Under those conditions I.Q; x/ D KnN2Ss.Q/ and the measurement can be used to
deduce the single particle correlation length (radius of gyration), Rg. Later measure-
ments at x D 1 or some other value yield the total scattering intensity at non-zero L,
and permit calculation of St.Q/ and Ÿ using Equation 7.33. In deuterated cyclohex-
ane or other solvents, somewhat different isotope ratios obtain, but the procedure
is analogous. An example of the results is shown in Fig. 7.19a which compares the
radius of gyration (single particle correlation length) and the particle–particle cor-
relation, Ÿ, for a solution of polystyrene (Mw D 5:3 � 105) in cyclohexane-d12 at
several pressures in the vicinity of liquid–liquid critical demixing. As temperature
falls, Ÿ rises steadily from 	109 Å at the Flory ™ point, and eventually diverges at
the critical demixing temperature, TCR. Notice the pressure dependence of TCR. The
single particle correlation, Rg, on the other hand, holds steady at the value character-
istic of unperturbed Gaussian chains. It is invariant with both P and T, and remains
unchanged through the critical transition.
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Fig. 7.19 (a) Results of neutron scattering measurements using the high concentration isotope
label technique. Particle–particle correlation, Ÿ.T/, for polystyrene-h .Mw D 5:3 � 105/ in
cyclohexane-d at different pressures. The single particle correlation, Rg(P,T), of PS-h chains in
a solution of (h C d)PS is also shown (open squares). Rg measured over the pressure range
0:1 < P=MPa < 50 (Melnichenko, Y., Wignall, G., Van Hook, W. A., Szydlowski, J., Wilczura, H.
and Rebelo, L. P. N. Macromolecules 31, 8436 (1998)). (b) Results of neutron scattering mea-
surements using low concentration isotope labeling. Intensity vs. Q for various concentrations of
polymethylmethacrylate-h (PMA-h) dissolved in PMA-d (Reprinted from Kirste, R. et al. Polymer
16, 120 (1975))
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A second example illustrates the use of low concentration isotope labeling to
enhance contrast and scattering intensity in neutron scattering. The scattering inten-
sity per unit sample volume of an isotopic solution of polymers (no third component
solvent) at low concentration of h or d, can be shown to be proportional to the
product (chcd/. The only effect of varying the concentration of deuterated, cd, or
protiated, ch, species is to vary the scattering intensity from that of the background.
An example is shown in Fig. 7.19b. At low enough concentrations Zimm analysis
can be employed to deduce Rg. It is good practice to confine labeling levels us-
ing the low concentration technique to less than 10% or so to avoid complications
from the effects of nonideality and demixing in H/D solutions of polymers at high
concentration.
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Chapter 8
Isotope Separation

Abstract Isotope effects are small and separation of mixtures of isotopes is
correspondingly difficult. The theory of isotope separation is reviewed and neces-
sary terminology introduced. Practical methods of isotope separation are discussed
focusing on the fundamentals of multistage processes and cascade design. We dis-
cuss the use of distillation, chemical exchange, gaseous diffusion, thermal diffusion,
centrifugation, electromagnetic fields, and laser processes for the separation of iso-
topes from natural abundance feeds. Numerous examples are treated.

8.1 Introduction

We have seen that isotope effects on the properties of atoms and molecules are
usually small, and this is true for all except the lightest elements. Consequently
separation of single isotopes from mixtures of isotopes or isotopomers is tedious and
difficult. The difficulty is compounded by the fact that the desired isotope is often
present at low or very low concentration in the starting material (normally a naturally
occurring fluid, ore, or mineral). Even so, the nuclear properties of certain separated
isotopes are enough different from their sisters to justify the (usually enormous)
expense of preparing isotopically pure or nearly pure materials. Three important
examples follow:

(1) The fission cross section of 235U on bombardment with slow neutrons is many
orders of magnitude larger than for the other naturally occurring isotopes of
uranium. Large amounts of energy are released in controlled (reactor) or un-
controlled (bomb) fissions. These facts account for the enormous worldwide
investment in the enrichment of 235U from natural abundance (0.72%) to re-
actor (	3–6% or so) or bomb grade (	90%) material. Commonly employed
methods have included gaseous diffusion, centrifugation, and laser isotope sep-
aration (LIS).

(2) Separation of 6Li from natural abundance (7.4%) feed to synthesize 6LiD (an
important component of the fuel used in hydrogen fusion weapons (hydrogen
bombs)). This, because the (n,T) cross section for 6Li is much larger than that
of 7Li, so production of tritium is much enhanced in the triggering explosion.

M. Wolfsberg et al., Isotope Effects: in the Chemical, Geological, and Bio Sciences,
DOI 10.1007/978-90-481-2265-3 8, c� Springer Science+Business Media B.V. 2009
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The tritium so produced goes on to fuse with deuterium:

3TC 2D D 0nC 4HeC 17:6MeV

The classical method for lithium isotope separation employed chemical
exchange between lithium amalgam and an aqueous solution of lithium
hydroxide.

(3) Less ominously, consider the enrichment of 18O (natural abundanceD 0:20%)
and 17O (0.04%) by distillation of water (16O D 99:76%). A major and
rapidly growing use of highly enriched 18O water is for synthesis of 18F
radio-pharmaceuticals by cyclotron bombardment, 18O.p; n/18F. 18F substi-
tuted compounds are used in positron emission tomography (PET scanning)
techniques in medical diagnostics (the radiopharmaceutical being preferentially
adsorbed on the tumor surface or other organ of interest).

In each of the examples above isotope separation involves the processing of large
amounts of feedstock, at high reflux, through many, many separative stages. This ac-
counts for the high cost of these and most other separated isotopes. For example,
during peak production in the US, on the order of $109 worth of 235U was enriched
per year from the natural abundance level (0.7%) to between 1.5% and 4% for use
in power reactors, or to higher enrichment for military purposes. Again, at its peak,
worldwide production of deuterium (>99%) from water or other natural abundance
feedstocks (0.015%) was on the order of many tons per year. Such production rates
demanded large scale and expensive industrial installations.

The first attempt at isotope separation was made just after World War I by
Aston and Lindemann who employed a multistage laboratory scale gas–solid ad-
sorption process to partially separate neon isotopes (Chapter 1). Since that time
many different processes have been used to separate isotopes on laboratory, pi-
lot plant, or industrial scale. Some of these are listed in Table 8.1. They include
(for U) gaseous diffusion, gas centrifugation, thermal diffusion, electromagnetic
separation, laser based methods, and various vapor expansion processes. Because
the physico-chemical properties of 235U and 238U are very nearly the same, the en-
richment per separative unit (stage) is small (except for certain electromagnetic or
laser based methods), and it is necessary to multiply the single stage effect in a cas-
cade. For lighter isotopes (D from H, 6Li from 7Li, 13C from 12C, etc.) separation

Table 8.1 Some methods of isotope separation

Gas centrifuge Electromagnetic
Chemical exchange Electromigration
Chromatography Ion exchange
Gaseous diffusion Mass or sweep diffusion
Thermal diffusion Membrane pervaporation
Distillation Supersonic nozzle expansion
Photochemical and laser methods Electrolysis
Exchange distillation
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factors are larger, and the list of practical processes broadens to include chemical
exchange, distillation, electrolysis, and similar methods. Even then, however, pro-
duction of highly enriched material requires many partial separations carried out
over and over in multistage processes termed cascades. So far as the basic theory
of cascade design is concerned, the particular process or type of separating unit is
irrelevant. Once a given separation process has been selected, the design of the in-
dividual unit completed, and the separation per stage established, the problem of
isotope separation reduces to an understanding of cascade design.

8.2 Theory of Cascades: Terminology

The relationships between separative units, stages, and the cascade are outlined in
Fig. 8.1. An individual separative unit in an isotope separation plant might be a sin-
gle plate in a distillation or chemical exchange column, a single gas centrifuge, a
laser or electromagnetic separator, a membrane diffusion unit, etc. The choice of a
particular type of unit depends on the nature of the feed and its isotopic composi-
tion, the enrichment factor, energy demand per unit of separative work, the amount
of material to be refluxed, and, of course, economic considerations.

A number of separative units operating in parallel, all taking feed of identical
composition, and discharging partially enriched product and partially depleted waste
streams comprise a stage. A single unit may suffice for a stage, but more often sev-
eral units or many units are required. Because the separation per stage is almost

Stage

Cascade

Feed Product
Unit, 1b

Unit, 1c

Unit, 1a

Unit, 2a

Unit, 2b

Unit, 3a

X1

Z1

X1

X1

Y1

Y1

Y1

Y3

Y2

X2

X2

X3

Fig. 8.1 Distinctions between separative units, stages, and cascades. The cascade in this diagram
is tapered (See text for further clarification)
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always smaller than the total desired enrichment, stages are connected in series;
the resulting assembly is called a cascade. A cascade with the same number of
units in each stage is “squared-off”; one in which the number of units per stage
decreases as the product (or waste) end is approached is “tapered”. Stages may also
be characterized as “ideal” or “non-ideal”. An ideal stage processes the feed stream
to yield product and waste in equilibrium with each other. Since from thermody-
namics we know it is the equilibrium condition which minimizes free energy, the
ideal stage operates at the highest possible efficiency. To illustrate these points we
begin with a discussion of the historically important separation of uranium isotopes
by gaseous diffusion.

8.2.1 Gaseous Diffusion of UF6

The obvious first step in the design of an isotope separation process is to select a
carrier molecule which is well suited for handling in the cascade. For uranium the
compound of choice is UF6. Although corrosive, UF6 is reasonably volatile (at 56ıC
its vapor pressure is 1 atm). Also important is that fluorine has only one stable iso-
tope so the isotopic mass difference (238U � 235U) is cleanly preserved in the UF6

carrier. In the following paragraphs we illustrate the general features of isotope sep-
aration cascades using the specific example of UF6 gaseous diffusion because of its
historical importance. Later, other methods which have been or are being used to
separate uranium isotopes will be briefly described (principally centrifuge and laser
based processes).

The separation factor, r, in an isotope separation process is the ratio of the relative
concentration of desired isotope in the product, p, to its relative concentration in the
feed, f. Denoting the feed to the i’th stage, the i’th section of an overall plant, or the
ith overall plant, as Zi mol=s of isotope with an isotope fraction zi, yielding product
at a rate of Yi mol=s of analysis yi, and waste at a rate of Xi mol=s and isotope
analysis xi, we have for a two isotope feed

r D .y0=y/p=.z
0=z/f D .y0=.1 � y0//p=.z0=.1 � z0//f (8.1)

The primed or unprimed symbols refer to isotope fractions. The single stage sep-
aration factor for infinitesimal product removal .yi=zi 	 0/, .ri/0, is given the
symbol “’”. The i’s index the stage number. Most often ’ is close to unity and
it is convenient to define the isotope enrichment factor (the single stage enrichment
factor), ©, between the i’th and (iC 1)’th stage

© D ’ � 1 D .riC1
i /0 � 1 (8.2)

To reasonable approximation ©, ’ and .riC1
i /0 are independent of stage number.

In naturally occurring uranium the mass of the primed isotope, 235U, is 235, the
unprimed, 238, and x0=.1 � x0/ D 0:0072. For enrichment to 90% 235U
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Fig. 8.2 Gaseous diffusion cell for uranium enrichment, schematic (http://www.globalsecurity.
org)

r D .y0=.1 � y0//p=.z0=.1 � z0//f D .0:9=.1–0:9//=.0:0072=.1–0:0072// D 1241

For ideal gaseous diffusion of UF6 through a porous yet restrictive barrier
(see Fig. 8.2), Graham’s law yields

’ D .M=M0/1=2 D ..238C 6 � 19/=.235C 6 � 19//1=2 D 1:00429

which holds when the fraction of gas which has diffused is small. If the frac-
tion which passes the barrier is appreciable a diminution due to back diffusion and
other effects is expected. For half the gas diffusing (r � 1/ 	 ln.2/.’� 1).

8.2.2 Types of Separations: Cascades

8.2.2.1 Simple and Countercurrent Cascades

In a simple cascade the feed to any given stage, say the i’th, is the product (heads)
taken from the previous, (i� 1)’th, stage. The (i� 1)’th waste (tails) is discarded as
it has insufficient value to be worth reprocessing. Thus, successive stages process
progressively smaller amounts in the ratio of product to waste flows, Yi and Xi, now
defined as the cut, ™i, ™i D Yi=Xi In a simple cascade it is impossible to obtain a
high recovery of the desired component because of losses in the tails (waste) stream.
A simple cascade can only be used when the feed is abundant and cheap, for example
natural water fed to a deuterium separation plant, and even then is only practical for
plants with a limited number of stages. (The overall product, P, to waste, W, ratio
for a simple cascade of “i” stages is ™i. Thus, for example, a 20 stage plant shows
P/W 	 10�6 for ™ D 0:5 and 	 10�20 for ™ D 0:1.)

The countercurrent (recycle) cascade (Fig. 8.3) is much more useful because by
reprocessing the waste stream a larger fraction of the desired isotope is recovered.
In a recycle cascade the i’th stage is fed by a mixture of the product, Y.i�1/ from
the (i� 1)’th, and the waste, X.iC 1/ from the (iC 1)’th, stage. A distillation column
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Fig. 8.3 Isotope separation stages arranged in a countercurrent cascade. The cascade in this
diagram is squared off

is a good example. The feed is introduced somewhere near the middle of the cas-
cade. The portion between feed and final product is the “enriching” section, and
that between feed and final waste the “stripping” section. The enriching section is
essential to give the desired product, the stripping section serves only to reduce the
amount of feed required per unit amount of product. The countercurrent streams
moving from final product or waste back towards feed point are known as “reflux”.
Obviously the sum of the product and waste withdrawal rates must equal the feed
rate. The total processing rate, however, is much larger because the countercurrent
reflux streams are being continually processed and reprocessed. Thus,

.yi � xiC 1/ D .yp � yi/=.XiC 1=P/ (8.3)

In Equation 8.3 yp is the product analysis at the last stage and P is the product with-
drawal rate, and XiC1 is the waste withdrawal at stage (iC1). The ratio (XiC1=P) is
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the reflux, which for a simple countercurrent cascade is independent of stage num-
ber (i.e. the cascade is squared off). Notice that yi and xiC1 approach each other
as XiC1=P approaches infinity, which happens at total reflux. At total reflux the
number of stages, n, required for any specified overall separation is a minimum and
is given by the Fenske equation (1932)

nMIN D lnŒ.yp=.1 � yp/=.xw=.1 � xw/
= ln’ (8.4)

Equation 8.4 shows nMIN increases as the specified separation is increased or as ’
decreases, and in fact nMIN approaches infinity as ’ falls to unity. Because in many
cases ’ is near unity the minimum number of stages for isotope separation can be
very large. Continuing with the example of 235U gaseous diffusion, producing 90%
enriched product, rejecting 0.3% tails, from 0.7% feed with ’ D 1:0043, one finds
nMIN	 1870. Of course, at total reflux no product is withdrawn, it is all held in
the cascade as inventory, and the cascade is serving no useful purpose. At practical
levels of production many more stages are required.

At total reflux the concentration differences on successive stages are at their
maximum but as production begins and reflux deceases these concentration ratios
decrease. They reach unity (no enrichment) at minimum reflux. Materials balance
considerations lead to Equation 8.5.


n.iC1/=P

�
MIN D ypŒ.’x.iC1/C1�x.iC1//�’x.iC1/
=Œ’�1/x.iC1/.1�x.iC1//
 (8.5)

When ’ lies close to 1 the minimum reflux ratio is large, but since xi varies with
stage number so does Œn.iC1/=P
MIN. At the feed point in a 235U plant enriching
to 90% 235U, (nf=P/MIN is 29,100, but at the product end of the cascade it ap-
proaches zero.

A practical isotope separation plant can operate at neither minimum reflux (where
the separation is zero, but the rate of production is high), nor at minimum number
of stages (where the rate of production is zero, but the separation is high). A com-
promise is required. Since optimum reflux varies with stage number it is customary
to employ tapered cascades for isotope separation. This results in marked savings in
material hold-up, and in plant size and investment.

8.2.2.2 The Ideal Cascade

An ideal cascade is tapered to give minimum interstage flow and thus minimum op-
erating cost. In the ideal cascade the product stream from the (iC1)’th stage is mixed
with the waste stream from the (i � 1)’th stage to feed the i’th stage. Obviously the
two streams being mixed should have the same isotopic analyses, otherwise separa-
tive work has been used to no good purpose. Materials and isotope balances show the
number of stages in an ideal cascade is twice the minimum number of stages at total
reflux, less one. Tapering in the stripping and enriching sections has been described
by Benedict et al. (1981) (Historical Vignette 8.1). Optimal tapering is sensitive to ’
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[Historical Vignette 8.1] Manson Benedict (1907–1998). BS Cornell 1928, Ph.D. 1935 MIT.
During World War II while working for the M. W. Kellog Co. Benedict helped plan and set up
the gaseous diffusion plant for uranium separation at Oak Ridge, TN. For this important effort,
and for many other imaginative contributions to the development of the nuclear reactor, and to
reactor safety, he was awarded the 1972 Fermi Medal of the US Department of Energy. In 1951
Benedict became a professor of nuclear engineering at MIT and developed a program which led
to the establishment of the Department of Nuclear Engineering in 1958. He was lead author of the
influential text, “Nuclear Chemical Engineering” (see the bibliography at the end of this chapter
for a complete citation). (Photo credit: Nuclear Engineering Department, MIT)

and r. For our illustration (235U separation with yP D 0:9, xW D 0:003, zF D 0:007,
and ’ D 1:0043) 1 mol of product requires 213.6 mol of feed and yields 212.6 mol
of depleted tails (waste). The number of stages is twice the minimum less one, or
3738, with 410 stages in the stripping section, and 3328 enriching. The interstage
flow at the feed point, i D 410, is enormous, Y410=P D 58229, but decreases rapidly
as one moves away from the feed in either direction. Figure 8.4 is a schematic rep-
resentation of the cascade. Height and width are proportional to stage number and
interstage flow respectively. Capital cost and operating energy demand are approxi-
mately proportional to total interstage flow. With feed, product, and waste analyses
specified, the plant size (and cost) diverges to infinity proportionally to 1=.1 � ’/2
and it is therefore of utmost importance to select a separation process with the largest
possible ’. Still, ’ remains small for many isotope separations and this accounts for
the enormous capital and operating costs of isotope separation plants. An important
point to keep in mind is that the cost of enrichment by any combination of processes
is essentially determined by the base of the cascade. For example in a heavy wa-
ter plant using the GS scheme (vide infra) concentrating D from 0.015% to 15%
followed by distillation to obtain the final enrichment (99.8 atom%) almost all the
separative work occurs in the GS exchange process, less than 1% is needed in the
distillation. For gaseous diffusion about 42� 106 mol of UF6 must be processed for
every mole of 90% 235UF6 product, even though only 213.6 mol of feed are sup-
plied. Thus on average each mole of feed is refluxed 	2 � 105 times. It is difficult



8.2 Theory of Cascades: Terminology 253

3739

2000
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0

Stage number
Tails (waste)
x =0.003

Feed
z =0.007

Product
y =0.90

Interstage flow M(410)/P(3739) = 58,229

Fig. 8.4 Ideal cascade for uranium enrichment. The height of each section is roughly proportional
to the number of stages in that section and the width at any stage to the amount of material being
processed in that stage (Modified from Spindel in Rock, P. A., ACS Symposium Series 11. Isotopes
and Chemical Principles 1975)

to appreciate the enormous scale of the operation required to produce the quantities
of 235U thought needed at the height of the cold war. The gaseous diffusion plant
at Oak Ridge (now closed, see Fig. 8.5) required construction of one of the largest
industrial facilities in history, while the Portsmouth, Ohio plant (also now closed)
covered 93 acres, but had a floor area nearly three times larger.

8.2.2.3 Equilibrium Time

Due to high reflux demand separation plants can have inventories corresponding
to many days of normal production. Equation (8.6) is an approximate relation for
time to first production, tp. The behavior is similar to that for plant size, i.e. tp in-
creases linearly with residence time per stage, h, but diverges toward infinite time
proportionally to 1=.1� ’/2.

tp D Œ8h=.1�’/2
fŒ.yp�2 ypzFCzF/=.yp�zF/
 lnŒ.yp�zF/=.zF.1�yp//
�2g (8.6)

For the 90% 235U example, taking h D 1 s, tp 	 30 days. For squared-off cascades
tp is longer because more enriched material is required in the upper stages.
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Fig. 8.5 The K-25 Gaseous Diffusion Plant at Oak Ridge, TN is no longer operational. This
photograph conveys some sense of the extremely large scale of this operation (Photo credit. US
Department of Energy and Knoxville News Sentinel, Oct. 17, 2004)

Long time to production implies the necessity for safe-guards against
stage-to-stage remixing in the event of power failure or other problems. For ex-
ample in distillation a power failure may cause the column to drain and isotopes to
remix in the boiler. One must begin again at considerable cost.

8.2.3 Further Discussion of Gaseous Diffusion: Separative Work

Although many details of uranium diffusion plants remain classified even at this late
date, certain features are obvious. (a) The high and low pressure sides of the cells
are divided by a membrane which must have small pores (	10–100 nm) to obtain
isotope separation, but the total membrane must be porous enough to permit the
processing of large volumes of gas. Moreover, the membranes must have good ther-
mal, mechanical (to withstand the pressure difference across the cell), and chemical
stability (since UF6 is highly corrosive). The cells and tubing in the plant are there-
fore principally nickel and teflon to avoid corrosion. (b) To transport large volumes
of gas and maintain proper pressure differences across membranes a gaseous diffu-
sion plant requires a large number of pumps. A large cooling capacity is required
to remove the heat of compression. Thus isotope separation by gaseous diffusion
involves a large energy input to accomplish the work of compression and cooling
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required at each stage. It was likely the ever increasing cost of energy which resulted
in DOE’s decision to replace the gaseous diffusion process for uranium enrichment
using alternative methods with lower energy demand (see below).

In any uranium separation process the work of enrichment increases rapidly
with 235U content in the product. Because the price of natural uranium varies widely
with time and location (and fluctuating government subsidies) it is useful to distin-
guish between the price of the feed and the value added by the separative process.
For example, the purchaser himself might provide the feed and then pay only for the
separative work required to make the desired product. Separative work is defined in
Equation 8.7.

Separative work DWV.xW/C PV.xP/� FV.xF/ (8.7)

Here W, P and F are the amounts of waste, product, and feed, respectively, and the
V.xi/’s are the separation potentials of waste, product and feed, respectively.

V.xi/ D .2 xi � 1/ ln .xi=.1� xi// (8.8)

Most often W, P and F are chosen to have units of mass (xi, as always, is isotope frac-
tion), in which case separative work has the dimension of mass and can be thought
of as the mass flow rate multiplied by the time required to yield a given quantity of
product. The cost of isotope separation is then obtained by assigning a cost to one
separative work mass unit (kgSW or SWU).

8.3 Practical Isotope Separation: Some Examples

The selection of an isotope separation process including the design of the separative
units and the cascade depends principally on engineering and economic considera-
tions. One must consider the amount of product which is desired, choose the starting
material, consider energy demand, etc. It comes as no surprise, then, that many dif-
ferent methods have been used for isotope separation. Some of these have been listed
in Table 8.1 and a few are discussed in more detail in the material which follows.

While the single-stage factor ’ is the best single measure of separative ease, a
process cannot be chosen or optimized on that basis alone. Engineering concerns,
convenience, and safety are also important. Even for a given isotope there is no sin-
gle best method, but experience has shown electromagnetic separations to be the
most versatile way to produce small or moderate quantities of isotopes of moder-
ate to heavy mass. For light isotopes the simplest and most inexpensive method
is the thermal diffusion column (Clusius and Dickel 1938) for small to moderate
amounts of product. For large scale separation of light elements, distillation, chem-
ical exchange, or exchange distillation are best, and for large scale separations of
heavy isotopes (notably uranium) gaseous diffusion and (more recently) centrifu-
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gation have been used, as have processes based on laser technology. Examples are
given in the balance of this chapter.

8.3.1 Electromagnetic Separation

Electromagnetic separators (large scale mass spectrometers, also known as
“Calutrons” because they were first developed at the California University
Cyclotron Laboratory) were used during the Manhattan project in the early 1940s to
separate 235U in kilogram quantities. Positive ion species were generated in an ion
source and electrically accelerated through a potential difference, V. In the process
positive ions of charge q acquire kinetic energy qV D Mv2=2, so ions of masses,
M and M0, but identical charge, show a velocity ratio v0=v D .M=M0/1=2. Next the
ions are further accelerated, this time magnetically by a field perpendicular to the
plane in which they move, and are deflected in a circular path of radius R.

R D Mv2=qBv D .2VM=q/
1=2=B so �R=R D 1=2.�M=M/ (8.9)

B is the magnetic field strength and, as always, � denotes an isotopic difference.
Equation 8.9 shows that isotopes of different masses will move in paths with radii
R0=R D .M0=M/

1=2. For a 180ı sector like that in Fig. 8.6 the two isotopes are
separated linearly by

�R D .V=.2MqB2/
1=2�M (8.10)

Collectors are placed at the focal points. At sufficiently high vacuum genuinely large
separation factors are obtained in electromagnetic separators (high resolution in the
language of the mass spectroscopist), but this important advantage is offset by sev-

Δr 2Δr

U235

U238

δ

Fig. 8.6 The principle underlying electromagnetic separation of isotopes. Electrostatically accel-
erated ions enter at the left. A magnetic field perpendicular to the plane of the paper causes the
circular orbits shown in the sketch (See text for further detail)
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[Historical Vignette 8.2] Earnest O. Lawrence (1901–1958) was born in 1901 in Canton, SD.
He was educated at the Universities of South Dakota and Minnesota, and at Yale (Ph.D. Physics
1925), and was appointed to the faculty of The University of California, Berkeley in 1928. Two
years later he became a Full Professor. In 1926 he was appointed Director of the University’s Ra-
diation Lab (now the Lawrence Berkeley National Laboratory), a position he held until his death.

In 1929 Lawrence invented the cyclotron, which instrument played (and still plays) an impor-
tant role in nuclear physics. That work led directly to the award of the Nobel Prize in Physics
for 1939, just one of his many honors. During World War II E. O. Lawrence made vital contri-
butions to the development of the atomic bomb holding several high-level appointments in the
Manhattan Project. He played an influential role in the decision to develop and later employ elec-
tromagnetic methods for uranium isotope separation (Calutrons) during the early 1940s. (Photo
credit http://wikipedia.org, public domain)

eral difficulties. First, the feed must be chemically treated to provide compounds of
appropriate volatility and chemical purity. More importantly, electromagnetic pro-
cesses have inherent high loss. Typically only a small fraction of feed is ionized
and extracted through the electrical accelerating slits. There are scattering losses in
the beam, and space charge effects result in high loss and degradation of separation
factors as ion current increases. Additionally, and most tellingly, the cost of the
electrical energy needed to generate the large magnetic fields involved was unac-
ceptably high under mid twentieth century conditions because Calutron technology
predated the development of superconducting magnets. These factors have worked
against the use of electromagnetic separation for large scale isotope production, al-
though the method is well suited for producing small quantities (milligram to gram)
of separated isotopes for research and specialized medical purposes (Historical
Vignette 8.2).
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Fig. 8.7 The PSP Superconducting Ion Cyclotron Resonance Isotope Separator. The large tank
holding the superconducting magnetic is�15m long�2m diameter (Reprinted from Bigelow, T. S.
et. al. Nucl. Instr. Methods Phys. Res. B 241, 652 (2005), copyright 2005 with permission from
Elsevier)

8.3.1.1 The Plasma Separation Process

A good example of a modern method for electromagnetic isotope separation is
the plasma separation process (PSP) (Fig. 8.7). The separator uses a large and
uniform cylindrically shaped magnetic field (	1m diameter �	15m long) gen-
erated by a solenoidal superconducting magnet (	2T). The magnet is contained in
a super-insulated vacuum Dewar held at 	4:5K using liquid helium. Source and
collector assemblies lie at opposite ends of the high vacuum chamber. Microwave
energy is injected into the source region at a frequency resonant with free elec-
trons contained there. The electrons gain energy by cyclotron heating and maintain
the plasma concentration by impacting and ionizing argon gas atoms continuously
injected into the chamber at a suitable pressure. Positive argon ions in the source
plasma collide with the negatively biased source plate with sufficient force to sputter
neutral metal atoms from the plate. The vaporized metal atoms are rapidly ion-
ized by the cyclotron energized electrons in the source zone. The sputtered ions are
trapped in the magnetic field and drift toward the collector along helical paths. In the
central region of the drift field a microwave antenna is excited with an Ion Cyclotron
Resonant Frequency (ICRF) chosen to be resonant with a particular isotope from the
source material. ICRF excited ions exit the antenna region with a wider orbit than
the unexcited off-resonant ions. The collector plate is designed to take advantage
of the orbital differences. Source and collector plates are periodically removed for
product removal and refurbishing.
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The principal advantage of PSP lies in its large enrichment factor (for example
Pd102 can be enriched from 0.5% natural abundance to 	80% in just one pass) at
useful efficiencies (typically 	15% of sputtered atoms end at the collectors) and
relatively modest energy cost. These advantages are principally due to advances in
superconducting magnet technology which permit the generation of uniform high-
strength magnetic fields over large volumes at low energy cost. The result is the
production of grams per day of highly enriched isotopes at reasonable cost. The PSP
facility at Oak Ridge, TN was operated by the Theragenics TM Corporation for about
10 years ending in 2005. Materials enriched by PSP include Pd102, and selected iso-
topes of nickel, molybdenum, gadolinium, dysprosium and erbium. The palladium
isotope was used to generate radioactive Pd103 by bombardment. Pd103, in turn, is
encapsulated in “rice sized” implantation seeds used for radio-treatment of prostate
cancer. Certain of the other isotopes mentioned above are employed in the nuclear
power industry in specialty applications (for example Gd enriched in Gd157, which
has a huge neutron cross section, can be used as a burnable poison to extend fuel
rod life in nuclear reactors, Gd160is employed in high sensitivity scintillation neu-
tron detectors, and Er170 can be neutron activated to yield the radioactive Eu171

which is a useful energy source for remote application, e.g. “nuclear battery”). An-
other versatile facility used in the electromagnetic preparation of small amounts of
high mass isotopes is the ISOLDE online isotope separator located at the European
accelerator facility, CERN.

8.3.2 Thermal Diffusion of Gases

When a gas mixture is subjected to a temperature gradient, diffusion occurs estab-
lishing a separation, ™.

ln ™ D g ln.T2=T1/ (8.11)

The thermal diffusion factor, g, can be calculated from the kinetic theory of gases if
the intermolecular potential is known. To good approximation, g is proportional to
(m�m0/=.mCm0). It vanishes for gases with an inverse sixth power intermolecular
attractive potential. If the power is greater than six the lighter isotope moves pref-
erentially to higher temperature, and if less than six it moves to lower temperature.
Although g is small for mixtures of isotopes .	10�2/ Clusius and Dickel (1938) de-
veloped an elegant countercurrent apparatus which multiplies the elementary effect.
A Clusius–Dickel thermal diffusion column is shown schematically in Fig. 8.8, and
Fig. 8.9b is a photograph of a Clusius–Dickel cascade. In these columns an elec-
trically heated wire or tube held along axis of a cylinder with a refrigerated wall
establishes thermal diffusion in the radial direction. The consequent mass gradi-
ent induces convection. Hotter molecules near the center rise and those at the wall
fall. The countercurrent flow enhances the elementary separation factor many times
(Historical Vignette 8.3).

For practical separations a number of individual columns, each about 3 m long,
are connected in a cascade, Fig. 8.9b. Figure 8.9a diagrams a four stage cascade of
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Fig. 8.8 A hot wire thermal
diffusion column, schematic

Hot wire
or tube

C
ol

d 
W

al
l

C
ol

d 
W

al
l

Hot wire
or tube

11 columns used to separate argon isotopes (Mound Laboratories USDOE, or one
of its commercial heirs, Isotec Corp. or Cambridge Isotopes Inc.). The fractiona-
tions at different points in the cascade, and the feed, waste, and production rates are
indicated (notice that 38Ar concentrates in the middle of the cascade, which in this
example is operated without a stripping section). Thermal diffusion dissipates large
amounts of power and is primarily used for laboratory scale separations. Results
illustrating the versatility of the method are given in Table 8.2.
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[Historical Vignette 8.3] Klaus Clusius (1903–1963) received the Dr. Ing. degree from the
Breslau Technische Hochschule in 1928. After study abroad he took faculty positions at Gottin-
gen, Wurzburg and Munich (where he was department head), finally joining the University of
Zurich as Director of the Physikalisch-Chemisches Institut (1947–1963). Clusius made important
contributions to low temperature physical chemistry including early specific heat measurements
on para-hydrogen, the first measurements of the œ-transitions in liquid 4He and solid deutero-
methanes, and measurements of the thermodynamic properties of a great number of atoms and
molecules and their isotopomers. However he is best known for his development (with G. Dickel)
of the thermal diffusion cascade, Fig. 8.9, which resulted in production of useful quantities of rare
isotopes. (Photo credit: Archives of the Institute of Physical Chemistry, University of Zurich)

8.3.3 Large Scale Separations and Energy Demands

Earlier sections have pointed out that almost any pair of isotopes can be separated
on a small scale by thermal diffusion or electromagnetic methods. For large scale
separations, however, enormous amounts of material must be processed and en-
ergy consumption and cascade design become controlling. Table 8.3a lists the
approximate upper limits of single stage separation factors for H=D;12 C=13C,
and 235U=238U. Earlier we saw that © values of a few tenths percent or so, lead
to reflux ratios at the feed point of 104 or greater. The cost of processing and
reprocessing such an enormous amount of material and the associated energy de-
mand controls the choice of separative method. To illustrate, we return to the
gaseous diffusion of UF6. In the separative unit gas diffuses from high to low
pressure through a porous membrane. The upper limit of the separation factor is
.’� 1/ D © D lnŒ.M0=M/

1=2
 D 4:3� 10�3, and the optimized cut for the ideal cas-
cade is ™ D 0:5.© << 1/. The minimum reflux energy is therefore the work of ideal
recompression, RT ln 2 D 1:9 � 103 j mol�1 at 333 K. The actual compression is
not isothermal and warms the gas by about 5% which increases the compressor bill
from 	1:9 to 	2:0 kJ mol�1 of gas processed. If, roughly, the equipment operates
at 50% of ideal efficiency, the energy cost increases to 	4 kJ mol�1. For uranium
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Product; 2 ml/hr

Feed; 2500 ml/hr

Stage 1

Stage 2

Stage 3

Stage 4

Concentration, %
Ar36     Ar38  Ar40

99.8      0.2 0.0

92.8      7.0  0.2

8.5       30.3  61.2

2.0        1.3  97.7

0.3        0.1     99.6

Waste; 2498 ml/hr

a

Fig. 8.9 (a) A four stage thermal diffusion cascade for argon isotope separation (Modified from
Spindel, W. ACS Symp. Ser. 11, 82 (1975)). (b) The thermal diffusion cascade operated by
K. Clusius and collaborators at the University of Zurich during the 1950s (Photo credit: Archives
of the Institute of Physical Chemistry, University of Zurich)
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Table 8.2 Isotopes separated by K. Clusius and coworkers by thermal diffu-
sion (Clusius, K. and Dickel, G., Naturwissenschaften 26, 546 (1938); Clusius,
K. and Starke, K., Z. Naturforsch. 4A, 549 (1949))

Year Isotope %Abundance Sepn. factor Final purity

1939 35Cl 75:7 53 99.4
1939 37Cl 24:3 775 99.6
1942 84Kr 57:1 45 98.3
1942 86Kr 17:5 940 99.5
1950 20Ne 90:5 210 99.95
1950 15N 0:37 135,000 99.8
1953 13C 1:09 45,000 99.8
1955 136Xe 8:9 810 99.0
1956 21Ne 0:275 96,500 99.6
1959 18O 0:204 200,000 99.75
1959 38Ar 0:064 9,750,000 99.98
1960 22Ne 9:21 12,500 99.92
1962 36Ar 0:37 3,300,000 99.99

enrichment about 4:2� 107 mol of UF6 are processed per mole of 0.9 fraction 235U
product. Thus reflux energy demand is 	17 � 1010 J mol�1 of product. A calcu-
lation based on a 1972 estimate for the most efficient plant then operating more
than doubles that, yielding 	45� 1010 J mol�1. In 1975, at or near the peak of pro-
duction, installed gaseous diffusion capacity for 235U was 	3:2 � 105 mol year�1

(Spindel 1975), requiring	4; 500MW of processing energy. Of course at any given
time a large fraction of the separative capacity was not being used, or was only being
used for partial enrichment (from 0.7% to 3.5% or 4% as required for fueling nu-
clear power plants). However even the scaled down energy demand was enormous.
It certainly contributed to the decision to phase out gaseous diffusion.

It is interesting to compare the reflux energy required for gaseous diffusion
with that for distillation. In an ideal distillation column heat is required only at
the boiler, and extracted only at the condenser. In between there are many sep-
arating units (plates or stages) where vapor is continually condensing and liquid
continually evaporating. The heat of vaporization is identically the negative of the
heat of condensation and in a perfectly adiabatic column the intermediate stages
do not contribute to energy demand. For example, a well designed laboratory dis-
tillation column has 	100 plates (stages) and is 1 or 2 m in length. The energy
cost per stage is 	1% of the heat of vaporization, and the reflux cost is several
tens, rather than several thousands of joules per mole processed. When chemical
exchange is compared with distillation, the reflux energy increases by about a factor
of ten, i.e. it is now proportional to a heat of chemical reaction rather than a heat of
vaporization. The height equivalent per theoretical plate (HETP) also increases, and
energy demand per stage rises from several tens to several hundreds of joules per
mole processed.

We now appreciate the reasons for the high cost of enriched uranium. The single
stage separation factors are low, as is the natural abundance. This leads inexorably
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Table 8.3a Approximate upper limits of separation factors us-
ing different methods ((Van Hook, W. A. in Vertes, A., Nagy, S.
and Klencsar, Z., Eds., Nuclear Chemistry, Kluwer, Dordrecht
5, 177 (2003))

Method H/D 12C=13C 235U=238U

Chemical exchange 3 1.02 1.001
Distillation 1 .05–1.7 1.01 1.0000
Gaseous diffusion 1.2 1.03 1.004
Centrifuge, 250m s�1 1.01 1.01 1.026

750m s�1 1.11 1.11 1.34

Table 8.3b Some H/D separation factors for distillation
(Van Hook, W. A. in Vertes, A., Nagy, S. and Klencsar, Z.,
Eds., Nuclear Chemistry, Kluwer, Dordrecht 5, 177 (2003))

Compound T/K P/kPa Sepn. factor

Hydrogen 24 250 1.5
Methane 112 100 1.0036
Ammonia 239 100 1.036
Water 378 120 1.024

to a high reflux demand and a large number of stages. Additionally the histori-
cally practical processes have a large reflux cost, and the result is an extremely
expensive product. The economic decision to replace gaseous or thermal diffusion
with centrifuge or laser based separations, technically more difficult, and with a
much higher cost per stage, can now be appreciated. These methods have larger or
much larger single stage separation factors and consequently require exponentially
smaller reflux.

8.3.4 Centrifuge Based Separations

The use of centrifuges for isotope enrichment was suggested by Lindemann and
Aston as early as 1919, but success required the development of vacuum centrifuges
in the late 1930s. The rotors in such devices are suspended in vacuum chambers and
gas is introduced and withdrawn through metal capillaries. Introductory discussions
have been given by London (1961) and Benedict et al. (1981).

In a centrifugal field the energy per mole at a distance r from the axis is
M.¨r2/=2. M is molecular weight and ¨ angular velocity. The ratio of partial pres-
sures for two isotopomers (primed and unprimed) at the wall, rw, and on the axis,
r0, yields the elementary separation factor.

’Œ.p0.rw/=p.rw/
=Œ.p0.r0/=p.r0/
 D expŒ.M0 �M/.¨rw/
2=.2RT/
 (8.12)
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Fig. 8.10 Schematic of a
single centrifuge unit
showing the flow of the
depleted and the enriched
streams (www.urenco.com)

Equation 8.12 shows that ’ is function of the mass difference, (M0 �M), in contrast
to most other methods where the separation factor depends on the ratio of masses, or
the ratio raised to some power. In a modern centrifuge UF6 gas is subject to centrifu-
gal accelerations which are thousands of times greater than gravity. Consequently
pressures at the outer radius are millions of times those at the axis, and at the high-
est possible speeds the 235U concentration at the center can be 20% or more larger
than at the periphery. Also a longitudinal countercurrent flow of UF6 is induced by
the density gradient and a series of rotating baffles and scoops multiplies the en-
richment. In the centrifuge unit diagramed in Fig. 8.10 gas enriched in 235UF6 at
the center flows upward and that enriched in 238UF6 at the outside flows down. By
making the unit sufficiently long the difference between isotope concentration ra-
tios, top to bottom can be many times greater than that between axis and outer wall.
This results in large single stage separation factors and implies, for example, that on
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Fig. 8.11 Separation hall with centrifuges at the Gronau Enrichment Plant, Germany (Photo
credit. www.urenco.com)

the order of tens of stages should be required to enrich uranium from 0.72% natural
abundance to 3% (reactor grade) rejecting 0.2% tails. In comparison a gaseous dif-
fusion plant under these specifications requires 	1300 stages. Though many fewer
stages are required a very large number of centrifuges are needed to produce the
quantity of enriched uranium required by the electrical power industry (Fig. 8.11).

The single stage separation factors of present day centrifuges are limited by the
material strength of the rotor and its length. The practical limits are set by the need
to avoid combinations of length, radius, and speed at which the rotor experiences
resonant vibrations. Dynamic computer control with resonant damping may be used
to advantage. Estimated values for present day centrifuges are: length 1.5–3 m., ra-
dius 0.25–0.5 m., rotational speed 75–100 � 103 rpm. Centrifuge separation plants
require 	2–3% of the power of like-sized gaseous diffusion plants. In spite of the
mechanical complexity of individual units and their limited lifetime, mass produc-
tion constrains capital cost and present day centrifuge operation has a significantly
lower enrichment cost than large scale gaseous diffusion. Performance has increased
by a factor of more than 25 since 1980. At present large scale plants are operating
in Russia, in Western Europe, and in the United Kingdom, and ground was recently
broken in New Mexico for a 1.5 billion dollar separation plant to serve future US
needs. An unfortunate consequence of the lowered cost of centrifuge separations has
been unwanted nuclear proliferation in Iran, North Korea, and perhaps elsewhere.
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Fig. 8.12 Schematic cross
section of a supersonic nozzle
isotope separator of radial
design (Modified from
Becker, E. W. Uranium
Enrichment, Villani, S.,
Ed. Springer-Verlag, Berlin,
1979 with permission)

Feed, UF6 in H2

Light fraction

Heavy
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8.3.5 Aerodynamic Isotope Separation

The basic idea of aerodynamic isotope separation is illustrated in Fig. 8.12. Feed gas
consisting of a mixture of the material of interest (e.g. UF6/ diluted with lighter
gas (say H2 or He) at a total pressure of 	2:5 kPa is fed through a slit into a re-
gion of much lower pressure. The light carrier gas enhances the centrifugal force
thus generated. The flow in the forward direction is supersonic. Because of kinetic-
molecular effects a certain fraction of gas, ™, diverges from the feed jet (	0:05mm)
enriched in the lighter isotope, while the rest of the jet passes through a second
and somewhat wider “skimming” slit (	0:2mm). The radial design sketched in
Fig. 8.12 yields significantly larger separations than do simple “straight-through”
aerodynamic separators. Still, the high proportion of carrier gas required in propor-
tion to UF6 process gas results in high specific-energy consumption (compressor
cost) and substantial requirements for removal of waste heat.

8.4 Distillation and Exchange Distillation: The Large Scale
Production of Deuterium

The extraction of deuterium from natural water feed forms an excellent case study
of the application of large scale distillation and exchange distillation to isotope sep-
aration. The principal historical demand for deuterium has been as heavy water,
D2O, for use in certain nuclear reactors. Deuterium is an excellent neutron moder-
ator, and more importantly, it has a low absorption cross section for slow neutrons.
Therefore a reactor moderated and cooled with D2O can be fueled with natural
uranium thus avoiding the problems of uranium isotope enrichment. This was the
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route chosen by Atomic Energy of Canada for its nuclear electric power program.
Their CANDU (CANadian-Deuterium-Uranium) reactors require approximately
0.8 t D2O per megawatt, and cumulative Canadian production exceeds 11,000 t.
American production ended in 1981 after production of	7; 000 t. That heavy water
had been mostly used as a moderator in reactors breeding plutonium from uranium
fuel. The U.S., and most nuclear power programs worldwide, presently use pressur-
ized normal water reactors. There are no large scale commercial uses of deuterium
except as a moderator in power production or breeder reactors. Deuterium and tri-
tium are used in nuclear weapons, but weapons production continues to decline, and
hopefully will someday end. In spite of large stockpiles, 1945 to present, the total
amount of deuterium contained in nuclear weapons should not amount to any signif-
icant fraction of world production. Finally, although deuterium is widely employed
in scientific research, that use does not consume any large fraction of the avail-
able stock.

The very low D/H natural abundance ratio (0.015% = 150 ppm) is responsi-
ble for the high cost of heavy water. Materials balance requires a minimum of
	7 � 103 mol feed per mol of product, and that increases even more for reasonable
values of tails analysis (in some plants the feed/product ratio has reached nearly
4 � 104). At peak Canadian production, 	800 t year�1, this amounted to feeds of
	3 � 107 t year�1. Clearly that figure demands a cheap and easily accessible feed
(i.e. water), or alternatively, requires deuterium production to be parasitic on some
large industrial process, for example the production of NH3 for fertilizer, or petro-
chemical processing.

Table 8.4 contains a list of some processes adaptable to heavy water production
(and brief comments). Distillation, while the simplest method, is prohibitively ex-
pensive (except for low temperature distillation of H2=HD) because the ’ values
(separation factors) are too small. Small ’ implies inordinately high reflux, and
large capital investment. Although ’ for water electrolysis is high (and reflux cost
correspondingly smaller), and this method was used in an historically important
Norwegian plant beginning in the 1930s and operated by Germany during part of

Table 8.4 Possible processes for heavy water production
(Rae, H. K., Ed., Separation of hydrogen isotopes, ACS Symp.
Ser. 68, 134 (1978))

Process Remarks

Distillation Size excessive, except for H2=HD
Chemical exchange Most promising
Diffusion Barrier or membrane cost excessive.

High energy demand
Electrolysis Energy cost too high
Gravitational Energy cost too high
Adsorption High adsorbent volume
Biological Excessive volume
Crystallization Impractical on large scale
Photochemical Promising if selectivity approaches 104
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World War II (until incapacitated by the Allies in a series of famous commando
and bombing raids), high energy demand ordinarily makes electrolysis too expen-
sive. Even so, water electrolysis followed by upper stage distillation of HD=H2

was used in a modestly sized Indian plant (	14 t year�1 D2O). Also several larger
plants (	65 t year�1), parasitic to ammonia synthesis and fertilizer production, and
based on ammonia distillation or catalytic ammonia/hydrogen exchange have been
employed, especially in the French nuclear program. In view of the enormous quan-
tities of methane which are processed in the petroleum and natural gas industries it
is unfortunate that the separation factor for distillation of CH3D=CH4 (the VPIE) is
unattractively small (see Chapter 5).

Of the other processes in Table 8.4, most have high energy or large capital
cost per separative work unit (SWU). Laser and photochemical methods con-
tinue to be investigated but have not proven economical for H/D separation, even
on small scale. The most promising methods are the ones based on chemical
exchange; H2S C HDO D HDS C H2O, or H2 C HDO D HD C H2O, or
H2 C NH2D D HD C NH3. These equilibria have large separation factors which
are pronounced functions of temperature. This allows the design of dual tempera-
ture processes which provide efficient thermal reflux and decided cost advantage.
Other exchange processes employ chemical reflux, which is normally much more
expensive (since the cost of large amounts of low-grade thermal energy is typically
less than that of recycling large amounts of bulk chemicals).

Because of the very large enrichments required in heavy water production,
cascades taper markedly. In the upper stages the relative advantage of chemical ex-
change over water distillation vanishes. Most heavy water plants carry out the last
portion of the enrichment by distillation (from 20% or 30% D to 99.85%). Accord-
ingly both exchange and distillation will be briefly treated below. First, however, to
clarify the important distinction between chemical and thermal reflux we treat an
example of isotope separation using chemical reflux.

8.4.1 An Aside: Monothermal Isotope Exchange with Chemical
Reflux; 15N Enrichment

In 1958 Taylor and Spindel described the enrichment of 15N (99.8%) from natural
abundance feed (0.365%) using chemical exchange,

15NO.g/CH14NO3.aq; 10M/ D 14NO.g/C H15NO3.aq; 10M/ (8.13)

This uncatalyzed reaction occurs at an acceptable rate at room temperature (298 K),
’ D .15=14/aq=.15=14/gas D 1:055. The value calculated from spectroscopic data
is 1.096 (Chapter 4), so parasitic bleed to species other than NO(g) and HNO3.aq/ is
indicated (the chemistry shown in Equation 8.13 is oversimplified). In the exchange
aqueous acid trickles down through a packed column countercurrent to a rising
NO stream. A two column cascade was employed in which 4% of the acid flow is



270 8 Isotope Separation

shunted to the upper stage, and the remaining 96% reduced to NO by reaction with
SO2 and recycled. Depleted NO from the lower section is mixed with air and water
to generate a waste HNO3.aq/ flow. To sum up, a refluxed nitric acid feed is sepa-
rated into enriched nitric acid product and slightly depleted nitric acid waste, while
converting SO2.g/ and air to H2SO4.aq). The minimum ratio of H2SO4 to 15N is
one and one-half times minimum reflux. For 99.8% 15N product generated from
0.365% feed, and ’ D 1:055, n.SO2/ D .3=2/Œ.yP � zF/=zF
Œ’=.’ � 1/
 D 7930.
This is a high reflux requirement. The cost of the 	8 � 103 mol SO2 per mole of
product is partly offset by the fact that H2SO4 is more valuable than SO2. (But re-
member that H2SO4 is an inexpensively priced commodity chemical, and the value
added may not be a significant fraction of process cost.) Also, even though the cas-
cade is tapered, the amount of SO2 required is unchanged from the “squared-off”
cascade because reflux demand is proportional to inter-stage flow at the feed point.
The principal advantage of tapering is that it results in a lower holdup of 15N, and
less time to production.

8.4.2 Dual Temperature Exchange: The GS Process
for Deuterium Enrichment

To avoid the high cost of chemical reflux the dual temperature H2S=H2O exchange
was independently suggested by Geib (1946) and Spevack (1957) (GS). The method
exploits the fact that the equilibrium constant for isotope exchange is temperature
dependent. The scheme is illustrated in Fig. 8.13. To carry out the exchange

HDS.gas/CH2O.liq/ D H2S.gas/CHDO.liq/ (8.14)

feed (H2O) is introduced at the top of a cold tower and equilibrated against an
H2S gas stream in a countercurrent multiplate column. D concentrates in the liquid
phase and builds toward its maximum at the bottom of the cold tower. The essential
distinction between the GS process and standard chemical reflux, is that in the GS
process the reflux is carried out thermally. The hot tower serves as refluxer for the
cold tower. At the top of the cold tower, an intermediate point in the plant, the D
analysis of the gas stream, ug, is set by equilibration against cold feed, the separation
factor is ’C, ’C D ŒzF=.1 � zF/
=Œug=.1 � ug/
. Next, that cold-equilibrated gas is
introduced to the bottom of the hot tower where it re-equilibrates with the waste
flow, ’H D ŒxW=.1� xW/
=Œug=.1 � ug/
. The symbols have been defined in earlier
sections. The overall separation is S D ’C=’H. Both the hot and cold towers contain
many plates (stages), so S is larger than it would be for single equilibrations at each
temperature. If the isotope abundance in the feed is small, the fraction extracted
can be approximated as .1 � ’H=’C/. For the GS process (hot tower D 138ıC,
’H D 1:80; cold towerD 32ıC, ’C2:32) the recovery of deuterium is 0.22 fraction.

The large industrial scale GS plant (100 kg h�1, 	700 t year�1, 99.8% D2O
product) operated by Ontario Hydro at Bruce Ontario for more than 20 years was
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Fig. 8.13 Schematic diagram of one stage of a GS dual temperature chemical exchange system
(Modified from Bigeleisen, J., Adv. Chem. Ser. 89, 1 (1969))

decommissioned in 1998 after cumulative production was judged to meet Canada’s
future heavy water needs. The Bruce plant (Fig. 8.14) was the largest on record.
The GS section consisted of three stages of hot/cold towers with a total enrichment
from natural abundance to 20% D2O. Distillation was used for the final enrichment
to 0.998 fraction heavy water. Each GS tower contained a hot and cold section.
Deuterium was carried forward to the second and third stages in the gas phase.
Deuterium not extracted was returned to waste (Lake Huron) after removal of H2S
(i.e. there is an H2S stripper to satisfy environmental regulations, but there is no
deuterium stripping). The plant tapered markedly between towers 1 and 2, and 2
and 3. Since deuterium recovery increases with ’C=’H one supposes the hot tower
should run at as high a temperature as possible, and the cold tower as low as possi-
ble, and this would be so in the absence of complications. The rather surprising
choice, (30 < tC=ıC < 32), was dictated by the necessity to avoid precipita-
tion of the solid hydrate H2S–H2O which occurs below 30ıC. The optimum upper
temperature (130 < tH=ıC < 140) was determined by balancing the improvement
with increasing tH against higher heating costs.
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Fig. 8.14 Aerial view of the Bruce D2O plant (now decommissioned) (www.sno.phy.queensu.
ca/sno)

We close discussion of the GS process with the comment that it is dangerous.
A GS plant requires a very large inventory of highly toxic H2S employed at ele-
vated temperature and pressure in a corrosive environment. The safety of operating
personnel and of the population in the area surrounding the plant is a major concern.

8.4.3 Other Exchange Reactions for Deuterium Enrichment

H/D separation factors for some exchange reactions involving hydrogen are shown
in Fig. 8.15. Those with the highest separation factors also have the largest tem-
perature dependences. Although the GS process has one of the smaller separation
factors of those shown, it has proven to be the most practical large scale industrial
method for D enrichment. That is because the kinetics of the exchange are favorable,
even without catalyst. That fact, combined with the further advantage that the feed
(water) is abundant and cheap, accounts for its importance. Even so, careful atten-
tion has been paid to the other equilibria which have the advantage of much larger
separation factors. To that end the French have developed a low temperature process
based on an amide catalyzed NH3=HD exchange at low temperature (’ 	 8 at the
boiling point of ammonia). Enrichment plants parasitic to Haber–Bosch ammonia
synthesis have been operated in France and India.

8.4.4 Distillation

Distillation is a countercurrent process which maintains liquid–vapor equilibrium,
usually in a vertical column containing packing, thin wetted walls, or bubble-cap
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Fig. 8.15 Semilog plot of H/D liquid–gas separation factors for some chemical equilibria (After
Bigeleisen, J., Adv. Chem Ser. 89, 1, 1969)

plates. In this fashion the ascending vapor condenses, mixes and equilibrates with
descending liquid, and re-evaporates many times as it works its way up the column.
Each equilibration defines an ideal plate or stage. The single stage separation factor
for distillation is given by the vapor pressure isotope effect. Because solutions of
isotopomers are nearly ideal in both liquid and vapor, separation factors in isother-
mal distillation columns are virtually independent of enrichment (plate number),
and the analysis of the distillation process is simplified. (In large scale plants, on
the other hand, there may be an appreciable pressure drop along the column which
causes a change in boiling temperature. In such cases ’ can no longer be assumed to
be independent of plate number.) For many separations the desired enrichment may
not be possible with a single column and it is necessary to use several columns in
series. This can be a convenience since it permits the plant to be tapered at column
interconnections.

The properties of a fractionating column which are important for isotope separa-
tion are (1) the throughput or boil-up rate which determines production; (2) HETP
(height equivalent per theoretical plate) which determines column length; (3) the
hold-up per plate which determines plant inventory and time to production; (4) the
pressure drop per plate which should be as small as possible. The choice of a partic-
ular column is invariably a compromise between these factors. The separation in a
production column is of course less than it would be at total reflux (no product with-
drawal). The concentration at any point in the enriching section can be calculated
from the transport equation (see, e.g., London 1961)

wCP D BC.1 � C/.’ � 1/� Bh.dC=dM/C wC (8.15)
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where B is the boil-up rate at a point a distance M along the column, C the isotope
concentration at this point, w the withdrawal rate, ’ the separation factor, and h the
HETP. A voluminous literature concerning the design of columns, packings, and
staging is available.

Power consumption in distillation is an important consideration. In the ideal
limit, as for any separative process, it is only necessary to introduce an amount
of energy equivalent to the entropy of mixing,

qREV D T�SMIX D RTŒzF ln.zF/C .1 � zF/ ln.1 � zF/
: (8.16)

In practice, however, many inefficiencies exist. To approach ideality the column
would have to be lengthened to infinity (for complete separation), the boil-up rate
varied according to plate number, the pressure drop made infinitesimally low, and
isotope re-mixing completely eliminated. This is impossible. If, instead, we as-
sume the column itself is perfectly adiabatic so that boil-up energy is supplied
only in the pot (stage 1) and removed only at the top (head), then 1=ŒzF.’ � 1/

moles are boiled and re-condensed. Taking the heat of vaporization of a liquid
as typically 	10RTB (Trouton’s rule) the quantity of heat put into the boiler and
extracted from the condenser is q 	 10RTB=ŒzF.’ � 1/
 per mole. For example
consider 14N2=

14N15N distillation with ’ D 1:0038, TB D 78K, and zF D 0:0074,
in which case q 	 2:3 � 108 J mol�1 14N15N. This contrasts with the value of
	28 J mol�1 for the perfectly reversible process (Equation 8.16). The difference is
striking.

Even though the energy demand in distillation is many times the minimum re-
versible separation energy, it is still small compared to the energy demand of most
irreversible processes (such as gaseous diffusion). On the laboratory scale power
costs are usually low compared to equipment and operating costs. As the size of
operations increases, however, power costs become proportionally more important
(because they rise approximately in proportion to production, but other costs in-
crease more slowly). Eventually it becomes economic to consider staged columns
with vapor recompression and heat exchange. In favorable cases energy demand can
be reduced significantly, perhaps by a factor of as much as 	10.

8.4.5 Specific Examples, Isotope Separation by Distillation

Commercial scale distillation plants have been or are being operated for the sepa-
ration of the following isotopes: (1) D by exchange distillation of hydrogen, water,
or ammonia; D and T by cryogenic distillation of hydrogen, (2) 10B by distillation
of BF3 or exchange distillation of BF3:ether complexes; (3) 13C by distillation of
carbon monoxide; (4) 15N by distillation of NO; (5) 17O and 18O by distillation of
water, CO or NO; (6) 22Ne by distillation of neon; (7) 36Ar by distillation of argon.
There may be others not listed.
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Single stage factors, ’ D P0=P, are given to good approximation by the
VPIE’s although there may be minor corrections for excess free energies of
mixing (Chapter 5). Also to good approximation, ln’DA=T2CB=T (Chapter 5).
While A is always positive, B can be either positive or negative. Most often it is
advantageous to distill at as low a temperature as possible (except when B is nega-
tive and large, as it is for H/D VPIE’s of hydrocarbons). Of course as temperature
drops, so does vapor pressure, and at low enough temperature throughput falls to
unacceptable values. It is impractical to design isotope production plants, even on a
laboratory scale, for vapor pressures less than 0.01 MPa (0.1 bar).

8.4.5.1 Hydrogen

Distillation of hydrogen for deuterium production is attractive because of the large
vapor pressure isotope effect (P.H2/=P.HD/ D 1:7 at 21K). The production of
D by distillation of hydrogen (parasitic to Haber–Bosch ammonia production) has
been employed on a moderate scale, but high concentrations of nitrogen and other
impurities in ammonia synthesis gas introduce complications. A special problem
which occurs in the distillation of hydrogen is the need to minimize the conversion
of ortho to para hydrogen. At room temperature the ortho/para ratio is close to 3,
but that ratio drops rapidly with temperature, and at the boiling point (20 K) it is
essentially zero. The heat of reaction, ortho, para, releases about 1.5 times the heat
of vaporization. This would significantly increase power consumption if allowed
to occur. The ortho/para reaction is catalyzed by paramagnetic and ferromagnetic
materials, including oxygen and most steels, and these materials must be excluded
from the low temperature portions of the equipment.

8.4.5.2 Carbon Monoxide

One method which can be used to produce 13C is by the cryogenic distillation of
CO. CO is easy to distill. Its vapor pressure curve closely follows that for N2 and
liquid nitrogen can be used as a convenient refrigerant. At the boiling point of ni-
trogen, 77:4K, (’ � 1) for 12C16O=13C16O is 0.0078 and for 12C16O=12C18O is
0.0057. At 72 K the vapor pressure is 	0:25 bar and the ’ values are 0.0096 and
0.0070. The increased separation factor makes it worthwhile to operate at reduced
pressure. The triple point of CO (68 K, 0.15 bar) establishes the lower limit of the
operating temperature. Natural abundances of 13C and 18O are 1.1% and 0.2%,
respectively.

An early CO distillation pilot plant described by Johns (in London (1961), read-
ing list), used a two section vacuum insulated column packed with wire gauze
rings. The upper section was 5.2 m long with a diameter of 3.2 cm, the lower
4:6m � 1:9 cm. The column contained about 600 plates. An intermediate boiler
re-evaporated part of the downward flowing liquid at the junction. This plant accu-
mulates product in the liquid and enriches toward the bottom. Enriched CO (0.4 g
day�1 of	65% 13C and 0.05 g day�1 of	5% 18O) was withdrawn from the bottom
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of the column and converted to CH4 and H2O. Arrangements were made to isolate
the different sections of the column in the event of power failure; the isotope inven-
tory (holdup) corresponded to about 2 months of production. This technology has
been successfully scaled up to commercial size and Spectra Gases Inc. has operated
large CO distillation columns at Los Alamos National Laboratory.

8.4.5.3 Isotope Enrichment by Distillation of Nitrous Oxide or Water

Beginning in the early 1960s MacInteer and coworkers at Los Alamos described
production of 18O, 17O, and 15N by low temperature distillation of NO. Separation
factors for NO are some three to five times larger than for other diatomic molecules
with similar boiling points. The abnormally large ’ values are due to the formation
of dimers, almost completely associated in the boiling liquid, but completely dis-
sociated in the vapor. We have seen that large ’ leads to marked increases in
efficiency of isotope separation. It reduces the number of plates required for a spec-
ified enrichment, the time to production, and capital and operating costs. In the
case of NO, however, these advantages are partly offset by the relatively high cost
of the feed material, and its chemical instability and toxicity. Nonetheless the Los
Alamos facility operated successfully for many years before it was shutdown in
the mid-1980s. However Spectra Gases Inc. has announced plans to refurbish and
restart the unit for production of heavy oxygen isotopes. World demand for 18O
has increased markedly in recent years because of its use in the synthesis of 18F
radio-pharmaceuticals by cyclotron bombardment, 18O.p; n/18F. 18F substituted
compounds, in turn, are used for positron emission tomography (PET scanning) in
medical diagnostics (the radio-pharmaceutical being preferentially adsorbed at the
tumor site of interest).

An alternative and more widely used technique for 18O production is via water
distillation. The separation factors are much smaller than they are for NO, and the
number of plates required, the time to production, and the energy demand and capital
costs commensurately larger, but cost of feed, ease of handling, and safety concerns
favor water distillation. Production columns are located in the United States, Israel,
Russia and other countries. The Israeli plant has the advantage of using already
partially enriched Dead Sea water as feed.

8.4.6 Exchange Distillation: 10B Enrichment

10B is a powerful neutron absorber and has been employed in reactor control
rods, neutron detectors, and other applications. Cascades based on exchange dis-
tillation of boron–ether complexes have usefully large ’’s and were used for
10B=11B isotope separation by the US DOE. Exchange distillation takes ad-
vantage of the fact that condensed phase/vapor phase separation factors can be
enhanced (as compared to liquid/vapor ’’s) by association/dissociation equilib-
ria in one or the other phase. At the normal boiling point (173 K) the VPIE for
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BF3, ln’	 lnŒP.10BF3/=P.11BF3/
D� 0:0075, is sufficiently large to permit
useful separation by distillation. Compare this effect, however, with association-
dissociation constants for reactions of the type

.Donor ether/W11BF3 .liq/C 10BF3.g/ D .donor ether/W10BF3 .liq/C 11BF3.g/

(8.17)

which lie between 0.01 and 0.02 at 298 K. A distillation plant based on the larger
separation factor, and operating at a more convenient temperature, obviously
promises (and delivers) superior performance.

8.4.7 Liquid–Liquid Exchange: Lithium Enrichment

Enriched 6Li is combined with deuterium to make ceramic-like 6LiD parts for the
secondary stages of thermonuclear weapons. During the 1950s and 1960s the US,
Russia and other nations separated sufficient quantities of 6Li for their then massive
weapons programs. The US COLEX (Column Exchange) process was based on the
IE on transfer of Li between an aqueous solution of LiOH and a lithium-mercury
amalgam. 6Li has a greater affinity for Hg than does 7Li. In the COLEX process
the amalgam was prepared using natural abundance lithium, and then agitated in
contact with a natural abundance LiOH solution. The rare 6Li isotope concentrates
in the amalgam. A countercurrent flow of amalgam and hydroxide solution was
passed through a cascade to obtain the desired enrichment. Enriched 6Li was sep-
arated from the heads amalgam and the mercury recovered and mixed with natural
abundance feed for recycling.

The COLEX units operated between 1955 and 1963. Approximately 24 million
pounds of mercury were employed and, unfortunately, a good deal was lost through
waste, accidental spills, and evaporation. In fact, about 2 million pounds have not
been accounted for. The process discharged approximately a quarter million pounds
into the surface waters in the vicinity of the plant, and much of this remains in the
bottom sediments of the watershed.

8.5 Chromatography

Chromatography is a separation process which exploits exchange between a
stationary phase and a mobile fluid phase. It differs from distillation or liquid–
liquid extraction which employ two mobile phases. If the moving phase is a vapor
or a vapor carried in a stream of permanent gas, and the stationary phase is a
supported liquid film, one has gas–liquid chromatography; alternatively if the sta-
tionary phase is an absorptive solid, one has gas–solid chromatography. Similarly
if the moving phase is a solution at low concentration in a liquid solvent or a high
density super-critical fluid, we have liquid or super-critical fluid chromatography,
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as appropriate. In still another modification, the stationary phase might be an
ion-exchange resin and the moving phase an aqueous (or non-aqueous) solution.
Clearly, any or all of these chromatographic techniques can be adapted to isotope
separation.

An essential feature of chromatography is that it offers multiple equilibrations
between the mobile and stationary phases. By straightforward analogy with dis-
tillation where the single stage separation factor is given by VPIE, one defines
the single stage chromatographic factor in terms of the equilibrium distribution
coefficient between mobile and stationary phases. This accounts for one great ad-
vantage of chromatography, i.e. the possibility of tailoring the separation factor to fit
the problem (within limits) by varying the chemical nature of the stationary phase,
the solvent for the mobile phase, the temperature, etc. Another advantage is that
chromatographic columns contain large numbers of theoretical plates (in excess
of 106 in gas chromatography, 105 or more for liquid elution chromatography).
Therefore complete or substantially complete enrichments are possible even when
separation factors are small. Still, this advantage is offset by serious difficulties.
In chromatography a small amount of adsorbate (the mixture of isotopes in our
case) is placed on the first plate, or the first few plates, then washed through the
column using an eluent mobile phase. The more strongly adsorbed isotope lags the
less strongly adsorbed one(s). As elution proceeds, separation increases, but so do
band widths. The technical problem is to adjust conditions to optimize separation
for given band broadening.

Throughout any chromatographic process it is easy to see that not all plates are
carrying out separative work. In fact separation is only happening at the front and
rear of the moving band. At any given instant, most of the column is empty. A direct
comparison between the number of plates in chromatography, where there are a very
large number of plates, but only a few of them are working at any given time, and
the number of plates in reflux distillation, where there are far fewer plates, but all are
working, is inappropriate. It can even be misleading. Another important difficulty in
chromatography is that band broadening and other diffusive inefficiencies increase
dramatically (and nonlinearly) with column loading. The result, except in special
cases, is that it is difficult to scale-up chromatographic separations to produce useful
amounts of separated isotopes. Most often chromatography is better suited to the
analysis of mixtures of isotopes, than it is to production enrichment.

8.5.1 Gas Chromatography

To illustrate consider gas chromatography. Figure 8.16 shows an idealized plot of
detector response vs. time. Here t0 is the time lapse between injection and elution
of inert material, and t1 and t2 are retention times for the isotopomers of interest.
For difficult separations t1 	 t2 >> t0. The resolution, R, is related to the band
widths, R D .t2 � t1/=.2w/, and the number of plates (assumed to be the same
for both isotopomers) is, n D 4.t=w/2. The separation factor is ’ D t2=t1, and the
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Henry’s Law constant for the equilibrium is KH D .Vc=Vg/..t=t0/ � 1/. Vc and Vg

are the volumes of condensed and vapor phases in the column (i.e. for gas-liquid
chromatography, Vc is the volume of the liquid film on the supported packing or
open tubular wall, and Vg the volume of void space, respectively). If the column is
in the linear range (small loading) the resolution is,

R2=t D .1=16/.Vg=Vc/.C=KH/..’� 1/=’/2 (8.18)

C is an apparatus constant. Usually C, ’, and KH are temperature dependent, but
’ and KH more so than C. Also ln.’/ behaves analogously to VPIE and normally
increases as temperature falls according to 1/T or 1=T2 (Chapter 5), while KH typi-
cally increases exponentially as temperature falls. These two criteria conflict so far
as the best choice of temperature is concerned, and for good separations it is nec-
essary to determine the optimum compromise. With ’ and KH set by the selection
of operating system and temperature, resolution is proportional to Vg=Vc. For max-
imum resolution the vapor volume is increased by electing open tubular columns,
i.e. wetted wall columns with minimal liquid loading, and therefore minimal
capacity.

t0
t1

t2

w

t

Fig. 8.16 An idealized gas chromatogram. The ordinate shows detector response, the abscissa
is time

Fig. 8.17 Gas
chromatographic separation
of deutero-acetylenes at 195
K. Elution, left to right in
minutes, is in the order C2H2,
C2HD, C2D2 (Reprinted from
Phillips, J. and Van Hook, W.
A. J. Chromatography 30,
211 (1967), copyright 1967,
with permission from
Elsevier)
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Examples of gas chromatographic isotope separation are shown in Figs. 8.17
and 8.18. Figure 8.17 shows the gas chromatographic separation of the three
protio/deutero-acetylenes. The separation is interesting, especially because ordi-
nary syntheses lead to a disproportionated mixture of C2H2, C2HD, and C2D2.
Pure C2HD can only be obtained by separation of the ternary mixture. Distillation
is not possible because the triple point lies above 1 atm, and the compressed gas
is not only dangerous (it tends to detonate), but polymerizes except when dilute.
The authors attempted to scale-up the separation, but resolution deteriorated with
column loading and the method is impractical except for isolation of very small
amounts of C2HD.

Significant differences in gas–liquid chromatographic separation factors are ob-
tained by varying the polarity of the liquid loading or column substrate (and
hence the strength of the gas-condensed phase interaction), as well as the temper-
ature. Careful attention must be paid to both factors when optimizing chromato-
graphic separations. Figure 8.18a shows separation of some H/D-n-alkanes at high
resolution using an open tubular liquid film capillary column. It nicely demonstrates
the power of gas chromatography for small scale (analytical) separations. Figure
8.18b shows RPLC (reversed phase liquid chromatography) plots for separations of
a selection of H/D hydrocarbons. For these separations the mobile phase is a dilute
solution of the hydrocarbons in a methanol/water mixture. The stationary phases
are surface bound and coated –Si–O–R groups. Again, complete quantitative sepa-
rations are possible on an analytical scale.

8.5.2 Redox Ion Exchange Chromatography

The use of anion-exchange resins for isotope separation of uranium (pilot plant
scale) is an interesting example of applied liquid elution chromatography. Japanese
workers studied anion redox reactions of the U(IV)–U(VI) couple and developed a
process to separate uranium isotopes. They used Ti(III) and Fe(III) as the reducing
and oxidizing reagents respectively and fine tuned the process to enable recovery
and recycling of those reagents. Recycle is an obvious requirement for practical im-
plementation. In a typical set of experiments a 0.1 M U(VI) solution in 3.6 M HCl
was fed to a column packed with a porous strongly basic anion exchanger supported
on 50�m porous silica beads to form a uranium adsorption band. The band was
then eluted with a solution containing 3.5 M HCl, 0.6 M U(IV), a reducing reagent,
and 1 M Fe(II) which is a catalyst for the U(VI)–U(IV) exchange. A cyclic pro-
cess using two 1 m columns was employed with intermittent addition of the red-ox
reagents after each band pass. After a total migration of	192m, the uranium band,
now 1.4 m long was extracted from the column and fractions collected for elemental
and isotope ratio analysis. It is interesting to note that the data (amply confirmed
with many additional experiments on uranium and other heavy metals) show the
temperature dependence and the odd/even mass ratios of isotope exchange fraction-
ation factors for these heavy metals differ significantly from the predictions of the
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Fig. 8.18 (a) High resolution gas chromatographic separation of some perprotio/perdeutero hy-
drocarbons at high resolution using an open tubular fused silica column at 413 K, �1:5 � 105
theoretical plates (Reprinted from Matuchka, M. Chromatographia 27, 552 (1989), copyright
1989 with permission from Springer Science and Business media). (b) Liquid chromatographic
H/D separations in a 70% methanol/water mobile phase for seven isotopomer pairs with surface
bound –Si–O–C18H37 and –Si–O–PYE (PYE D pyrene) stationary phases. 1 �Benzene-h6=d6; 2
�toluene-h8=d8; 3 �napthalene-h8=d8; 4 �anthracene-h10=d10; 5 �cyclohexane-h12=d12; 6 �n-
octane�h18=d18; 7 �dodecan-1-ol-h25=d25 (Thornton, E. R. et. al. J. Am. Chem. Soc. 125, 13836
(2003))
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vibrational Bigeleisen–Mayer theory of isotope effects (Chapter 4). That observa-
tion is of considerable theoretical importance, and was later shown to be due to the
contribution of heavy element nuclear isotope field shifts to the reduced partition
function ratios. As explained in Section 4.12 the field shifts are consequent to the
interaction of electrical nuclear anisotropy (i.e. isotope dependent nuclear dipole
and quadrupole moments) with the electronic part of the wave function evaluated
at the nucleus. The field shifts, which only contribute significantly at high atomic
number, introduce a new mechanism for understanding the unusual temperature de-
pendences and mass dependence of isotope effects on exchange equilibria of heavy
elements.

8.6 Photochemical and Laser Isotope Separation

The idea of using selectively absorbed radiation to cause isotope separation is an
old one. In 1922 Hartley and his coworkers proposed the synthesis of HCl from
a mixture of H2 and Cl2 where only one Cl2 isotopomer would be photoexcited,
the idea being that isotopomer would go on to react preferentially. The experiment,
using white light filtered through natural chlorine, failed, but only because the reac-
tion involves a scrambling chain mechanism, a fact not appreciated in 1922. A later
photochemical experiment succeeded in separating mercury isotopes by exciting
gas phase Hg atoms with light from an isotopically enriched mercury arc. That ex-
periment succeeded because mercury has a relatively simple spectrum with widely
separated lines.

The essential conditions for photochemical isotope separation are: (1) a signif-
icant isotope shift in the absorption spectrum of the element or compound being
irradiated (i.e. an isotope shift which is larger than the band width of the inci-
dent radiation); (2) rapid reaction of the excited species leading to some atom or
molecule readily separable from the mixture; (3) a light source with spectral band
narrow enough to excite only one isotopic species, and intensity large enough to
carry out the excitation efficiently. It was the invention of the laser which provided a
convenient source of intense radiation of narrow band width and made photochem-
ical isotope separation practical. The first laser isotope separation (on bromine)
was reported in 1967 (Tiffany, Moos and Schawlow, 1967). Since then vigorous
development work has been carried out, and small scale separations have been
reported for many elements. An enormous literature dealing with the theoretical
and experimental aspects of laser based separations is available. We will make no
effort to treat this material in detail, contenting ourselves with simply outlining the
conceptual basis of laser isotope separation.

8.6.1 Outline of a Laser Isotope Separation Scheme

It is convenient to divide ordinary LIS schemes into five parts. (1) Preliminary ex-
change of the “working” molecule with bulk feed. Usually it will not be possible to
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apply LIS directly to cheap bulk feed (e.g., water or methane for H/D separation),
and the desired isotope must be chemically exchanged into a “working” molecule.
If the desired isotope is rare it is important the working material be recyclable.
Although this step involves conventional chemistry, its cost may dominate the over-
all process. (2) Selective excitation: the working molecule is laser irradiated with a
frequency which excites only the desired species. (3) Excited state molecules are
converted to a new isotopically enriched species (molecules, free radicals, ions,
etc.). (4) Capture before the excited species converts and loses enrichment by decay
or exchange. (5) Final conversion of the secondary species to useful chemical or
physical form.

Note, it is only in step (2), above, that laser physics is involved. Nonetheless
in the overall LIS process each and every step is important, and may be critical
in determining whether the overall separation scheme is economical. In step (2) it
may be advantageous to employ long wave length lasers which have relatively good
efficiency and low energy cost per photon. An important parameter is the photon ef-
ficiency, ©, which gives the fraction of absorbed photons which yield excited species
containing the desired isotope. This is approximately

© D 1=Œ1C 1=.•S/
 (8.19)

S is the selectivity of photon absorption under the particular experimental condi-
tions, and • is the relative abundance of the desired isotope. Equation 8.19 shows, for
example, that S values on the order of 103 are required before more than about 10%
of photons are used to excite D in natural abundance H/D mixtures (• 	 1:5�10�4).
The selectivity required for uranium separation is less because •.235U/ > •.D/.
In fact according to Equation 8.19 it is only about 15, but that number is misleading
because the density of spectroscopic states for molecules containing heavy atoms
(or for the isolated atoms themselves) is orders of magnitude larger than for lighter
molecules. Hence the spectroscopic requirements are much more difficult. Practical
LIS schemes usually involve the absorption of more than one photon. It is conve-
nient to refer to energy level diagrams like those in Fig. 8.19.

Provided laser fluence is sufficiently high, a species will absorb enough photons
to decompose if the pulse is sufficiently short so that collisions (which lead to deac-
tivation) do not occur during the pulse. As the molecule absorbs photons it is said
to be “pumped” up the excitation ladder. In the low energy region the density of
states is small and radiationless processes leading to de-excitation are slower than
pumping. In this region the states are isotopically well separated, and with proper
frequency tuning the desired isotope is preferentially excited. As pumping continues
the level spacing decreases (in vibrational spectroscopy because of anharmonic ef-
fects, for example), and the laser becomes increasingly “off-resonance”. This results
in a drop or “bottle-necking” in pumping efficiency, but once this intermediate re-
gion is passed the level density increases dramatically as dissociation is approached,
and pumping efficiency again increases. However, near dissociation the level den-
sity for undesired species is also high, and in this region pumping does not lead to
isotope discrimination, only to dissociation. Also, the high density of states near dis-
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Fig. 8.19 Schematic energy level diagrams showing possible LIS schemes. In each case the level
scheme for just one isotope is shown. (Van Hook, W. A. in Vertes, A. Handbook of Nuclear Chem-
istry 5, 177 (2003)). (a) One photon molecular photopredissociation using a single laser. (b) Two
photon photoionization using lasers of the same (right) or different (left) frequencies



8.6 Photochemical and Laser Isotope Separation 285

sociation leads to an increase in the efficiency of radiationless decay and exchange
which may cause isotopic scrambling or recycling to the ground state. Short pulse
lasers of high fluence are necessary for efficient separations.

8.6.2 LIS of Deuterium

The ideas above can be illustrated with the multiphoton dissociation of fluoroform,
CHF3, one of the many LIS schemes which have been proposed for H/D enrichment.
Certain of the vibration/rotation bands of CHF3, CDF3, and CTF3 are spectroscop-
ically well separated and selective excitation of the heavier isotopomer is practical.
For CDF3=CHF3 the selectivity is greater than 2 � 103 when a CO2 laser is tuned
to the �5 R branch near 980 cm�1. Dissociation occurs primarily via the reaction,
CDF3 , CF2 C DF. Enrichments as high as 2 � 104 have been reported and there
is little or no anharmonicity bottle-necking. Because of the high cost of CHF3, re-
cycling would have to be incorporated into any practical process. A possibility is
the exchange, CHF3 C HDO , CDF3 C H2O, but without a catalyst the reaction
is too slow to be practical. The overall economics of LIS H/D enrichment will be
determined by the details of the feedstock and exchange reaction selected.

An alternative LIS scheme is one in which a vibrationally excited molecule re-
acts preferentially with another species. An example is the hydrogen halide/olefin
addition reaction, DX�CR1R2C D CH2 , R1R2CXCH2D. The scheme involves
sequential absorption of several quanta from a CO2 laser near 5�m to selectively
excite DX to a vibrational quantum number of 3 or more. Successful implementa-
tion would be expensive because of the highly corrosive nature of halogen acids.

8.6.3 LIS for Uranium

Uranium enrichment using LIS has been exhaustively studied and the conceptual
outlines of two different methods can be found in the open literature. These meth-
ods are multi-photon dissociation of UF6 (SILEX, or Separation of Isotopes by
Laser Excitation) and laser excitation of monatomic uranium vapor (Atomic Vapor
Laser Isotope Separation, or AVLIS). Following an enormous investment, AVLIS
was used by the United States DOE in the 1980s and early 1990s, but due to the
present oversupply of separated uranium, the plant has been shut down.

8.6.3.1 AVLIS

The spectrum of uranium vapor is complex with more than 3 � 105 lines in the vis-
ible region. Still, many of these are sharp and show sufficient isotope separation to
permit selective excitation. The basic idea of AVLIS is to irradiate uranium vapor
at a concentration around 1013 atoms cm�3 (higher concentrations are ineffective
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due to collision broadening). The isotope shift 235U=238U is only	1=.5�104/ and
it is necessary to select a very narrow 235U line, and carry the ionization process
out in two steps (because line widths in the ionization region are broad and hence
not selective). In the first step 235U is excited from its ground state to a state well be-
low the 6.18 eV ionization potential. That is followed by a less selective absorption
into the ionization continuum using a second laser. The ionized uranium atoms are
swept to a charged collector. Even though selectivity is high, Benedict, Pigford and
Levi writing in 1981 claimed that the charge exchange which occurs during atomic
collisions deflects enough 238U to the collector to lower the heads enrichment fac-
tor to 	10. At that time the single stage product of 	6% 235U was the highest
yet obtained from natural abundance uranium. Presumably enrichments have now
improved. Even for the earlier figure, however, nearly complete stripping of 235U
was claimed. This is a valuable feature because the feed is expensive. In summary,
AVLIS has a sufficient single stage enrichment factor to produce uranium of high
enough 235U content to power light water reactors. Furthermore, because AVLIS is
an excellent stripper, it can be used to produce 2–3% 235U from the large stockpile
of tails now available from earlier gaseous diffusion or gas centrifuge separations.
This confers an additional economic advantage.

8.6.3.2 LIS for UF6 (SILEX)

Although UF6 has a conveniently high vapor pressure at room temperature, its ab-
sorption spectrum is much more complex than the metallic vapor because of the
large number of vibration and rotation states superposed on each electronic state.
At room temperature these bands are broadened sufficiently to preclude selective
absorption. However, if the molecules are cooled the population of thermally ex-
cited vib–rot states drops and the spectrum simplifies. At 77 K 69% of UF6 is in its
lowest vibration state, and this increases to 85% at 55 K. However, the vapor pres-
sure is untenably low at such temperatures (7 � 10�3 Pa at 77 K), and equilibrium
cooling is out of the question. Still, by cooling in a non-equilibrium expansion noz-
zle, uranium vapor concentration can be kept at a useful level and LIS is possible. In
the first photo-excitation step an infrared long wave length laser selectively excites
the 235UF6 molecule in the expansion nozzle to an upper vib–rot state. The excited
molecule loses one of its fluorine atoms as it absorbs an ultraviolet photon from a
second short wave length laser. The subsequent reaction product precipitates as a
fine powder easily separated from the gas.

8.7 Other Isotope Separation Processes

Many other methods for separating isotopes have been described. A partial list
includes membrane and membrane pervaporation, thermal diffusion of liquids,
mass diffusion, electrolysis and electro-migration, differential precipitation, solvent
extraction, biological microbial enrichment, and more. Although not discussed in
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this chapter, some are suitable for small scale laboratory separations, and others
have been applied on larger scale.
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Chapter 9
Isotope Effects in Nature: Geochemical
and Environmental Studies

Abstract The application of isotope effect studies to problems in geochemistry
and geology, meteorology, environmental studies, archeology and paleobotany, food
authentication, medical diagnostics and various other practical areas is described
using numerous examples.

9.1 Introduction

Ever since the discovery of deuterium nearly 80 years ago measurements of the iso-
tope ratios of naturally occurring materials have provided important information in
geochemistry and geophysics, meteorology, evolutionary biology, archeology, and
in the applied sciences. For example, comparisons of isotope distributions in co-
existing minerals, with those measured on samples equilibrated in the laboratory,
or with theoretically calculated ratios, have been used to specify the conditions
of formation of the mineral. Similarly, fractionation of the hydrogen and oxygen
isotopes of water during natural phase changes (i.e. evaporation, rain, snow, or
ice formation), or chemical changes (precipitation of hydrated minerals, biologi-
cal/ metabolic equilibration, etc.), furnishes considerable information on the nature
of those processes. Such information, however, can be hard won. We recall that
the natural abundance of many isotopes of interest is very low (Table 7.5), and
variations in abundance ratios, while measurable, are even smaller. For example
the oxygen isotope ratio in natural waters, R D 18O=16O, normally lies in the
range (0:0019 < R < 0:0021), while R for standard mean ocean water (SMOW),
the most widely used reference, is 0.00200. Thus a 1% 18O=16O IE characteriz-
ing some physical or chemical change of interest amounts to a change of about
�R D 0:00200 � 1:01 � 0:00200 D 0:00002, i.e. 20 ppm (parts per million). For
D=H;RSMOW D 1:58�10�4 and a 1% effect only amounts to�R D 1:6 ppm. These
are small changes indeed and careful attention to experimental detail and sophisti-
cated instrumentation are required to measure them with sufficient precision and
accuracy to distinguish between alternate explanations for observed fractionations.

M. Wolfsberg et al., Isotope Effects: in the Chemical, Geological, and Bio Sciences,
DOI 10.1007/978-90-481-2265-3 9, c� Springer Science+Business Media B.V. 2009
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9.2 Notation and Standards

9.2.1 The Delta, •, Notation

Because the natural variations in stable isotope abundances are usually very small
(see above), and since routine measurements are usually made in an isotope ra-
tio mass spectrometer which compares the relative intensities of the mass resolved
beams of the sample with those of some standard material (Section 7.2.2), it is stan-
dard practice to report abundance ratios using the dimensionless •-value notation.

•X D 1;000.RX � RSTD/=RSTD (9.1)

The R’s refer to isotope ratios, D=H, 13C=12C, 18O=16O, etc. By convention R is
the ratio of heavy to light isotope. The factor of 1000 converts to per mil .�/ units.
In the case of hydrogen isotope effects (RD � RSTD/=RSTD is sometimes multiplied
by 100 instead of 1000 and reported in per cent (%) rather than per mil, but in this
text we use per mil notation almost exclusively.

Example 9.1. A meteoric water sample taken at high latitude and analyzed with
ordinary isotope ratio precision might show •D D .�200 ˙ 2) and •18O D
.�30˙ 0:3/�. Using Equation 9.1 we see these are equivalent to (RD � RSTD/ D
.31:6 ˙ 0:3/�, RD D .126:4˙ 0:3/�; and (R18O � RSTD/ D .�59:7 ˙ 0:6/�,
R18O D .1929:8 ˙ 0:3/�, since RSTD;D D 158 and RSTD;O18 D 1989:5�
(Table 9.1). To obtain results of comparable precision by measuring the absolute
intensities of the D and H, or 18O and 16O peaks (127.6 and 999,872, or 1930 and
998,070 intensity units, respectively), would have required intensity measurements
with a precision of better than a few parts per thousand for each peak, and this for
peaks where intensities vary by as much as a factor of 8000. That level of experimen-
tal precision is next-to-impossible. The enormous variation in scale between major
and minor peaks almost certainly implies significant differences in instrumental sen-
sitivity, calibration settings, etc., when tuning to one or the other. The superiority of
the isotope ratio mass spectrometer thus becomes apparent (Section 7.2). In these
instruments one compares sample and standard peaks of nearly the same intensity.
Thus, when switching from sample to standard, the instrument sensitivity, calibra-
tion, scale setting, etc. all remain the same and over-all precision is much improved.
It is much more difficult to determine the absolute concentration of a trace isotope
than it is to compare the concentrations of that isotope in sample and reference.

9.2.2 Standards

Standards for isotope ratio measurements are chosen for convenience and assigned
• D 0�. Ideally, every standard would be homogeneous, easily obtained in the
necessary quantity, have an isotope ratio similar to that in the samples being
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Table 9.1 A selection from the Table of Light Stable Isotope Standard Reference Materials avail-
able from NIST in limited quantity.a• values in per mil (�)

Standard •DVSMOW •13CVPDB •18OVSMOW •15NAIR Approx. natural
abundance

Vienna standard mean
ocean water,
VSMOW

0b 0b D=H D 158 ppm
18/16D 1990 ppm

Greenland ice sheet
precipitation, GISP

�190 �24.8

Standard light Antarctic
Precipitation, SLAP

�428b �55.5

Vienna PeeDee
Belemnite VPDB

0b;c 13/12D 0.0111

National Bureau of
Standards Oil,
NBS22-oil

�29.7

United States
Geological Survey
24- Graphite

�16

National Bureau of
Standards limestone,
NBS19-limestone

C1.95

National Bureau of
Standards silica,
NBS28-silica sand

C9.6

NGS2 natural gas,
petroleum (CH4/

�170 �44.8

NGS2 natural gas,
biogenic (CH4/

�176 �73.3

Air 0b 15/14D 0.00371
International Atomic

Energy Agency
N1-ammonium
sulfate

C0:4

aReference samples for Li, B and S are also available.
bExactly defined reference value.
cThis material no longer available.

investigated, and be easily processed. The standard of choice for •D and •18O mea-
surements is a homogeneous sample of ocean water (standard mean ocean water,
SMOW) now entrusted to the International Atomic Energy Agency in Vienna (hence
VSMOW). The standard for •13C was a sample of limestone (belemnite) from the
PeeDee geological formation in South Carolina, (PDB, now VPDB), but that sam-
ple is now almost completely used, so other standard limestones are now available
from the National Institute of Standards and Technology (NIST) (see Table 9.1).
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9.2.3 Conversion from One Standard to Another

To convert a • value referenced to a given standard (1), to its value when referenced
to another (2) multiply by the factor � ,

” D .1000C •XSTD;2/=.1000C •XSTD;1/ (9.2)

The • values are, of course, expressed in per mil (�). The result is approximately
the same as that given by,

•2X D •1XC .•XSTD;2 � •XSTD;1/C .•1X/.•XSTD;2 � •XSTD;1/=1000 (9.3)

Similarly the fractionation between two samples, say A and B, both referenced to
the same standard is,

’ADB D .1000C •B/=.1000C •A/ (9.4)

To good approximation, for •B and •A� 1000,

’ADB 	 1C .•B � •A/=1000 (9.5)

because ’ADB D .1000C•B/=.1000C•A/D .1C•B=1000/=.1C•A=1000/D .1C
•B=1000/.1�•A=1000C� � � � � � / D .1C•B=1000�•A=1000Chigher order terms/.
Defining�ADB D •B � •A we arrive at the simple and very useful result

�ADB D 1000.’ADB � 1/ (9.6)

or
�ADB D 1000 ln ’ADB (9.7)

since ln.1C x/ D x for x� 1.

9.2.4 Remarks, Experimental Technique

Differences in isotope abundance between samples are often very small, and
sometimes minuscule. Isotope ratio mass spectrometers are generally designed
to use gas samples and due care is required in the chemical work up of the raw
samples in order to avoid any isotope fractionation. One should select procedures
which give 100% chemical yield and also ensure the product gas is thoroughly
mixed, because the isotopic abundance of the first aliquot of gas can be signifi-
cantly different from the last, due to Rayleigh enrichment (Section 9.4). One must
avoid contamination by exchange with reagents or extraneous materials and ensure
quantitative yields of pure gas. Contamination with impurities having the same
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molecular mass as the sample are especially to be avoided (i.e. CO2 with N2O,
CO with N2). Typical errors introduced in careful chemical workup sum to 0.05
to 0:2�.

9.3 Geochemical Temperature Scales

In 1947 Harold Urey, the 1934 Nobel Laureate, recognized that the temperature
dependence of the isotope exchange equilibrium between water and calcite (the
principal mineral in marine limestones) could be employed as a paleo-thermometer.
At 298.15 K the fractionation factor for calcite–water is 1.0286,

CaC16O3 C H2
18O, CaC16O2

18OC H2
16O I ’ D 1:0286 (9.8)

which is to say •18O D C28:6, provided the calcite was laid down from SMOW.
Since the temperature dependence of ˛ was known (d’=dT	 � 0:23� K�1), Urey
concluded that accurate •18O measurements on ancient marine sediments could be
used to determine water temperature at the time the sediment was precipitated. In ad-
dition to presupposing development of instrumentation of the necessary precision,
this conclusion depended on two important assumptions: (1) the isotope concen-
tration of the ocean has remained constant over time and position, (2) the mineral
was deposited in thermodynamic equilibrium with ocean water, and has remained
unchanged over long periods of time. The original measurement of the temper-
ature dependence of the reference system was made using samples prepared by
slowly precipitating inorganic calcite from aqueous solution at several temperatures
(Historical Vignette 9.1).

An interesting study using the calcite thermometer scale examined annual growth
patterns in mollusks from the Gulf of California. Figure 9.1 compares incremental
shell growth for a single mollusk, and •18O in those growth increments, with water
temperature. The data were collected over a 1 year period with growth increments
measured on an almost daily basis, and •18O samples taken approximately each
week. The data show negative correlation of •18O and positive correlation of growth
rate with water temperature. Typically mollusks live for 3–4 years and individual
shells show the expected cyclic pattern for •18O and growth rings for the entire
3 or 4 year period. In a related study the authors compared isotope and growth
data for modern (living) mollusks with those of older shells taken from middens in
the Colorado River delta. The data comprise an important contribution to studies
on the environmental effects of closing Hoover Dam (mid 1930s), thereby raising
average water temperature and salinity in the study region.

One of the more important applications of the carbonate paleo-temperature scale
was to aid our understanding of the climate changes Earth has experienced dur-
ing the last 	3 million years, a period of intermittent glaciation. •18O data from
a Caribbean sedimentary core corresponding to the most recent 700,000 years
are shown in Fig. 9.2. The repeated variations in •18O of amplitude 	1.6� and
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[Historical Vignette 9.1] Harold C. Urey (1893–1981) was born in rural Indiana and educated at
the Universities of Montana and California, Berkeley. Following a study leave in 1924 at the Niels
Bohr Institute in Copenhagen, he held professorships at Johns Hopkins and Columbia Universities,
and at the Universities of Chicago and California where he ended his career as Professor-at-Large.
From 1940 to 1945 he was Director of War Research, Manhattan Project, at Columbia. In 1931
Urey devised a method to concentrate possible heavy hydrogen isotopes by the fractional distilla-
tion of liquid hydrogen: this led to the discovery of deuterium and the award of the 1934 Nobel
prize. Urey formulated an early statistical mechanical theory of isotope effects. Following World
War II he concerned himself with the measurement of paleo-temperatures, investigations into the
origin of the planets, and the chemical problems of the origin of Earth. (Photo credit: Urey at the
Mass Spectrometer, New York 1940s, courtesy of J. Bigeleisen)

frequency 	10�5 year�1 have been interpreted in terms of the cyclic growth and
retreat of Pleistocene ice sheets. The pattern can be modeled by assuming an ap-
proximate 5 K temperature change peak-to-trough, or a commensurate shift in the
•18O of ocean water consequent to extensive ice cap growth and melting. In either
case the observed isotope effects clearly relate to glacial cycles.

A prime criticism of the •18O carbonate paleo-temperature scale is the ab-
sence of any independent measure of the isotopic composition in ancient seawater.
Therefore isotopic fluctuations in the sediments do not necessarily correlate with
changes in temperature alone. Even so, the basic idea remains valid. Many ore
deposits contain coexisting mineral pairs which have been formed in equilibrium
as judged by independent (non-isotopic) criteria. In such cases the mineral-mineral
fractionation values for a given M–N mineral pair,� D •N–•M, correlate straightfor-
wardly with the geochemical temperature of mineral formation (it being supposed
that the equilibrium is “locked-in” as temperature rapidly falls after the initial ore
formation). At the high temperatures of formation of metamorphic or igneous rock
deposits the isotope fractionation for many mineral systems closely follows the 1=T2

dependence predicted by the high temperature approximation to equilibrium isotope
fractionation (see Chapters 4 and 5),

ln ’ 	 �=1000 	 A=T2 (9.9)

or
T.formation/ D Œ.1000 A/1=2=�1=2
 (9.10)
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Fig. 9.1 Relation between temperature (a), •18O (b), and daily incremental growth profiles of the
mollusk C. Cortezi (c). The shaded area in (a) marks the optimum temperature range. In (b) •18O is
referenced to (SMOW C 28.6). In (c) WB marks the winter position, and SB the summer growth
break. The numbers at the top of (c) locate the samples and rectangular blocks show resolution
(Goodwin D. H. et al., Palios 16, 387 (2001))

Selected values of .1000 A/1=2 for quartzD mineral 18O, and pyriteD mineral 34S
equilibria are found in Table 9.2. In other cases, especially at lower temperature, the
temperature dependence of IE’s on mineral formation may be more complicated and
require empirical fits of the form, ln ’ D C1=TC C2=T2 or ln ’ D C0 C C1=TC
C2=T2, the C’s are empirical least squares fitting parameters.
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Fig. 9.2 •18O vs. depth for mollusk shells from a 17.4 m-long drilling core from the Caribbean
Sea showing systematic variation with time. Each of the saw-tooth patterns lasts �100; 000 years
and correlates with similar patterns at other ocean locations (Reprinted from Emiliani, C. et al.
Earth Planet. Sci. Lett. 37, 349 (1978), copyright 1978 with permission from Elsevier)

Table 9.2 Selected 18O and 34S thermometers. (T/K,� D •N�
•M D 1000 ln’NM, see Equation 9.10) (Valley et al. Reviews in
Mineralogy 16, 1, (1986); Ohmoto and Rye, Geochemistry of
Hydrothermal Ore Deposits 2nd Ed, p 509. Chacko, T., Cole,
D. R., and Horita, J., Rev. Mineral Geochem. 43, 1, (2001))

N M .1000 A/
1=2 Type

Rutile Quartz 2.3 �103 •18O
Anorthite Quartz 1.3 �103 •18O
Albite Quartz 0.5 �103 •18O
Quartz Calcite �0:7 � 103 •18O
Rutile Calcite 2.1 �103 •18O
Galena Pyrite 1.0 � 103 •34S
Chalcopyrite Pyrite 0.7 �103 •34S

9.4 Isotope Hydrology; Rayleigh Fractionation

The use of isotope abundance ratios to refine ideas in earth science is nicely
illustrated with studies on natural waters. Water is found almost everywhere on
earth. It undergoes phase changes (evaporation, precipitation, freezing, melting),
reacts with minerals, and participates in almost all biological processes. Both its hy-
drogen and oxygen isotopes show large fractionations as these processes occur and
provide multiple isotopic records.

The oceans make up 	97% of the hydrosphere and cover 	70% of the earth’s
surface to an average depth of nearly 4 km. This large reservoir has a surprisingly
uniform isotope signature (Table 9.3), showing •D D 0 ˙ 5 and •18O D 0 ˙ 1�
relative to VSMOW. Larger variations, when they occur, are almost always at the
surface and can be assigned to the formation of sea ice, unusually high evapora-
tion from shallow tropical basins, or fresh water riverine influx. The deep waters of
the ocean basins show much smaller variations, but have distinctly different values.
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Table 9.3 Isotope signatures and reservoir sizes in the hydrosphere (Adapted from Criss 1999)

Reservoir Volume (%) •D.�) •18O.�)

Ocean 97.2 0˙ 5 0˙ 1
Glacier, ice caps 2.2 �230˙ 120 �30˙ 15
Groundwater 0.6 �50˙ 60 �8˙ 7
Freshwater streams and lakes 0.02 �50˙ 60 �8˙ 7
Atmospheric water 0.001 �150˙ 80 �20˙ 10

For example deep water samples from the North Atlantic, Pacific, and Antarctic
Oceans show •18O 	 0:05, �0:15 and �0:40�, respectively.

Large changes in the isotope signature of water are associated with condensation,
evaporation, or melting. At equilibrium the fractionation between two coexisting
phases is a function of the temperature. When water evaporates from the ocean
it typically shows •D	 –80� and •18O	 –9�, less (i.e. more negative) at high
latitudes, more (less negative) at lower latitude. No matter the location, however,
atmospheric water vapor always has negative •D and •18O relative to SMOW. On
condensation from the atmosphere the sign of the fractionation changes. The first
rain to fall from a new cloud over the ocean has values of •D and •18O close to
0, and the water which remains in the cloud is systematically depleted in D and
18O. Provided the condensate is continuously stripped from the equilibrating sys-
tem (i.e. provided the rain falls), the subsequent precipitation has • values which
become more and more negative as the cloud “rains-out”. To sum up, the isotope ra-
tio in the residual cloud changes exponentially according to the fraction of vapor, f,
remaining.

R D R0 f .’�1/ (9.11)

In Equation 9.11 R0 is the initial isotope ratio of the water comprising the cloud
and ’ is the fractionation factor. This equation was derived by Lord Rayleigh
around 1900 to treat single stage enrichment by continuous stripping of vapor
from an unreplenished pot. Figure 9.3 shows •18O values for residual vapor and
precipitating rain at 300 K calculated from Equation 9.11. Both •18O(residual va-
por) and •18O(precipitating rain) fall off dramatically to larger and larger negative
values as the fraction of rain-out approaches unity, the difference,� D •18O.rain/�
•18O(residual vapor), remains nearly constant. More realistically, however, as rain-
out proceeds the dew-point of the cloud falls and the fractionation factor increases
(i.e. becomes more negative, in which case ’ is a function of the fraction of water
vapor which remains), and the changes become even more dramatic than the ones
shown by the curved lines in Fig. 9.3.

The straight lines in Fig. 9.3 show •18O for vapor and liquid in a closed system
(i.e. where the precipitated liquid remains in contact with residual vapor). As ex-
pected from conservation laws •18O(vapor, f D 1/ D •18O(liq, f D 0) for the closed
system. (Conservation laws also predict that •18O for the integrated and thoroughly
remixed sample of total rain-out from the open system equals •18O(vapor, f D 1).)
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Fig. 9.3 •18O(water) for
liquid and vapor vs. residual
fraction of water vapor in
open (curved lines) and
closed (straight lines)
systems during rain-out. The
thin line parallel to the
abcissa shows •18O for the
initial sample of vapor
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9.4.1 Fractionation in Hydrology; the Meteoric Water Line

Because the vapor pressure of H2
16O is greater than those of HD16O or H2

18O
(Chapter 5) at all temperatures of meteorological interest, •18O and •D for fresh
water are always negative with respect to SMOW, and the difference between rain
or snow and sea increases as clouds move further inland, or are lifted to higher
elevation, or to higher latitude. This pattern is shown for the continental United
States in Fig. 9.4. The lightest natural waters globally are observed in snow and ice
near the South Pole where •18O values below �50� and •D below �450� have
been reported.

Fractionation data are usually displayed using a three isotope plot (Fig. 9.5).
Meteoric waters lie on or close to the correlation line given by Equation 9.12.

•D D 8:2 •18OC 10:4 (9.12)

Shallow ground-waters follow the same pattern, but waters from deep aquifers,
geothermal waters, ice cores, etc. can and do lie well off the line.

9.4.2 Ice Cores

The ice sheets of Greenland and Antarctica are several kilometers thick and preserve
a sequential record of high latitude precipitation over tens of thousands of years.
This record has been studied by the deep core Arctic and Antarctic drilling programs
during the past 30 or more years. An interesting illustration is given by a core
drilled at the Russian Station “Vostok” located in the deep Antarctic at high ele-
vation (78ı280S, 106ı480E, 3488 m). The ice sheet at Vostok is about 3.7 km thick
and the drill cores sample fossil ice as old as 	350; 000 years. (The present day
mean annual temperature is 217 K (�56ıC) and the station receives only 	2 cm of
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Fig. 9.4 Spatial variations in •18O and •D for river waters in the USA (Reproduced with per-
mission from Kendall, C. and Coplen, J. Hydrol. Process. 15, 1363 (2001). Copyright 2001 from
Wiley)

precipitation per year.) The isotopic record of a Vostok core is shown in the upper
plot in Fig. 9.6, where it is compared with the •18O data from a carbonate-rich low
latitude deep sea core (lower plot). The Vostock data show several sharp saw-toothed
climatic cycles. The ice samples corresponding to the glacial maxima are lower than
modern precipitation at this location by •D D 	50� and •18O D 6�. This sug-
gests that average temperatures during periods of glaciation were about 10 K lower
than present day ones. It is interesting that the pattern of the ice core data reflects
that of the tropical sedimentary carbonate cores. The •18O saw-tooth pattern occurs
at the same intervals, but has smaller amplitude and is of opposite sign. The cy-
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Fig. 9.5 •18O and •D values
in meteoric waters change
with temperature but always
lie along the meteoric water
correlation line shown in this
three isotope plot (Modified
from Craig, H. Science 133,
1702 (1961))
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Fig. 9.6 Climate records from the Vostok Antarctic ice core and the tropical carbonate seafloor
sediment core V19–30 (Shakleton, N. J. and Pisais, N. Am. Geophys. Union, Geophys. Mon. 3, 303
(1985))

cles represent a combination of the effects of climate change and changes in •18O
in seawater caused by the growth or retreat of the polar ice caps.

A second interesting ice core is shown in Fig. 9.7. Here the •18O record preserved
in a Greenland core as old as 12,000 years before present (BP) is compared with the
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Fig. 9.7 Isotope records of abrupt climate change at the Younger-Dryas Preboreal transition
�11; 600 years BP taken from Greenland ice core data. The •18O, •15N2, and •40Ar isotopic
records are plotted from top to bottom (Reprinted from Grachev, A. M. and Severinghaus, J. P.
Quat. Sci. Rev. 24, 513 (2005), copyright 2005, with permission from Elsevier)

•15N2 and •40Ar records of gas trapped in the ice. The gas fractionations, referenced
to present day air, are consequent to diffusion in (or from) air bubbles trapped in
the ice. Gas phase diffusion coefficients are temperature and isotope dependent and
provide independent isotope paleo-thermometers. Figure 9.7 clearly shows a “con-
sistent three-isotope, two-pair” demonstration of an abrupt 	10K global warming
occurring about 11,600 years BP (the Younger–Dryas transition). The result pro-
vides a target for models which attempt to predict the near-future climate of Earth
(i.e. global warming models).

9.4.3 Clay Cores: 13C Enrichment in Paleo-Organics

Another example of the use of the isotope fractionation record as an indicator of
major geologic change is illustrated in Fig. 9.8. This figure plots •13C values for
the organic material extracted from a Maryland clay deposit laid down during the
Aptian period of the early Cretaceous geological epoch. This was an eventful time,
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geologically speaking. A spike appeared in the already rapid rate of Atlantic Ocean
spreading. This for the first time permitted significant mixing of waters above and
below the equator and a dramatic increase in sea temperatures. (The increase in
sea temperature was presumably caused not so much by equatorial/temperate ocean
mixing, as by the volcanic processes associated with mid-ocean continental spread-
ing). The spike in •13C occurring around 117 million years ago and lasting less than
1 million years (marked with the gray arrow, Fig. 9.8) is attributed to the decompo-
sition of deep ocean methane hydrate deposits due to the rise in sea temperature.
The data in Fig. 9.8 is similar to trends in early Aptian •13C signals from terrestrial
materials sampled in Europe and South America and confirms the •13C excursion as
a global signal. The amplitude of the spike can be rationalized by the liberation and
oxidation of	129Gt (gigatons) of C from methane hydrates, which is less than 2%
of the methane stored as methane hydrate along the present day continental margins.

9.5 Three Isotope Plots of Terrestrial
and Extraterrestrial Samples

Stable isotope analysis of Earth, Moon, and meteorite samples provides important
information concerning the origin of the solar system. •18O values of terrestrial
and lunar materials support the old idea that earth and moon are closely related.
On the other hand three isotope plots for oxygen fractionation in certain meteoric
inclusions are anomalous. They show unexpected isotope fractionations which are
approximately mass independent. This observation, difficult to understand and ini-
tially thought to have important cosmological implications, has been resolved in a
series of careful experimental and theoretical studies of isotope fractionation in
unimolecular kinetic processes. This important geochemical problem is treated in
some detail in Chapter 14.

9.6 Isotope Fractionation by Living or Once Living Organisms

The biological fractionation of isotopes has provided an important tool by which
chemists, biochemists and molecular biologists have determined metabolic and
genetic pathways (see Chapters 6 and 10–12). Stable isotope pairs of greatest bi-
ological interest include D/H, 13C=12C, 18O=16O and 14N=15N. The range of •13C
varies from about �30� to C25� relative to VPDB, although methane in some
natural gases shows values as low as �70� and some carbonates in meteorites
have been reported in excess of C60�. In general, however, the reduced carbon
found in living and fossilized organisms is isotopically light, but marine carbonates
are heavy. Carbonate caps on salt domes, on the other hand, are light (	–36�) and
that is evidence they have been formed by oxidation of methane from the petroleum
deposits almost always located in the immediate vicinity of the domes. Freshwater
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Fig. 9.8 Stratigraphic presentation of •13C values for organic material extracted from the Arundal
clay formation, Maryland. Error bars reflect the standard deviation for three replicate analyses.
The dashed line represents the boundary between the early and middle Aptian eras (�125 to 112
megayears BP) established from the geological record. The gray arrow highlights the isotope shift
of interest (Reprinted from Jahren, A. H. et al., Earth Planet. Sci. Lett. 236, 691, (2005), Copyright
2005, with permission from Elsevier)

carbonates are usually light because they are formed from waters charged with CO2

from the soil, and soil CO2 is mostly produced from plant respiration and decay.
Plant 13C is depleted with respect to the atmosphere.

9.6.1 “We Are What We Eat, ˙ a Few per Mil”

The complex biochemical paths in organisms offer many ways to fractionate iso-
topes by both kinetic and equilibrium processes. It is therefore expected, and
is observed, that the different carbon, hydrogen, oxygen and nitrogen atoms in
organic residues show compound and atom-site specific isotope fractionations
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(Galimov 1985). An outstanding and thoroughly studied example is found in the
several distinctly different pathways of photosynthetic carbon fixation by plants.
Terrestrial plants using C3 (e.g. rice, wheat, beets, potatoes, legumes) and C4 (e.g.
maize, corn, sorghum, sugar cane) photosynthetic pathways show different 13C
fractionations. In broad terms the photosynthetic process breaks down into at least
three different steps, each favoring 12C over 13C: (1) the transfer of CO2 across cell
walls, (2) conversion to intermediate compounds by enzymes, and (3) final synthesis
of large organic molecules. The fractionation at each step is kinetically controlled.
The distinction between C3 and C4 is in the number of carbon atoms found in
the products of the initial conversion step. C4 plants such as maize contain rela-
tively large amounts of carbohydrate and protein and typically show •13C	�15�.
This compares to the 	–25� found in C3 plants which contain larger amounts of
lignin, cellulose and lipids. Marine plants (including plankton) show 13C=12C about
8� lower than C3 plants, most likely because they fix marine HCO�3 (0�) rather
than atmospheric CO2 (�7�). Since, roughly, the degree of isotope fractionation in
the plants lying at the base of the food chain is expected to carry over to the animals
which consume them, it follows that such isotope ratios can be used to study animal
(and human) ecology and archeology (“they are what they eat, ˙1 or 2�”). That
turns out to be the case.

In one interesting study the arrival of maize agriculture from Central America
into the lower Illinois valley around AD 1000 was demonstrated by measuring
•13C of human bone collagen as a function of time (Fig. 9.9). Because of a lack
of direct archeological evidence concerning ancient Native American agricul-
tural practice the isotope data helped solve an otherwise intractable problem. This
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Fig. 9.9 Changes in •13C of human bone collagen in the lower Illinois valley prior to AD 800.
The data indicate a shift from a C3 to a C4 based diet between AD 1000 and 1200 (Van der Merve,
A. Proc. Br. Acad 77, 247 (1992))
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methodology, extended to include •15N measurements, has been widely applied.
Experiments show that with each step up the food chain organisms concentrate 15N.
Therefore carnivores have •15N aboutC3� compared to herbivores. In the oceans
food chains are longer, and oceanic carnivores may have •15N as much as C10�
with respect to terrestrial herbivores (see Fig. 9.10).

9.6.2 Isotope Fractionation and Dendrochronology
of Bristlecone Pines

Important early measurements of isotope fractionation in ancient organic material
were made by Epstein and his students (Historical Vignette 9.2). They reported
•D values in bristlecone pines. These plants, found in White Mountains of the
southern California desert, are the longest living tree species on earth (	6;000
years). Thus presently living trees are old enough to have sampled the early and
mid-Holocene climate which is believed to have been relatively warm. Bristlecone
samples can be accurately dated by counting annual growth rings. By measuring •D
for the non-exchangeable hydrogen from cellulose extracted from sections of the
trunk (thereby avoiding contamination with more recent water) the authors demon-
strated that a likely gradual cooling of between 5 and 7 K has occurred in southern
California over the past 6,000 or 7,000 years. The observation is consistent with ice
core data from Devon Island in the Canadian Arctic. The agreement in the general
trend of these two isotopic records suggests that both have recorded global climatic
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[Historical Vignette 9.2] Samuel Epstein (1919–2001) was born in Kobryn, Poland (now Be-
larus) and in 1927 moved with his family to Winnipeg, Manitoba. He earned a B.Sc. in Geology
and Chemistry from the University of Manitoba, and a Ph.D. in Chemistry from McGill Univer-
sity in 1944. In the late 1940s he worked with Nobel Laureate Harold Urey at the University of
Chicago establishing the oxygen isotope paleo-temperature scale. In 1952 Epstein moved to Cal-
ifornia Institute of Technology to start the geochemistry program. In succeeding years he applied
stable isotope chemistry to many aspects of natural science including studies on Pleistocene clima-
tology, glaciology, archeological diets, Greenland and Antarctic ice sheets, the origin of meteorites,
tektites and lunar rocks and minerals. His many graduate students and postdoctoral fellows have
established their own laboratories all over the world. He exuded a gracious and cordial manner and
was particularly adept in showing his interest in and encouragement of the work of younger col-
leagues, not just in geochemistry, but in all areas of stable isotope science. (Photo credit: Geology
Department, California Institute of Technology)

changes. (Neither data set has sufficient temporal resolution to speak to very recent
climate changes associated with global warming, i.e. warming effects in the past
century, but especially during the past 50 years.)

9.6.3 •18O as a Probe for Storm Patterns

Figure 9.11 shows the oxygen atom isotopic composition in tree rings from long-leaf
pines growing in southern Georgia and correlates that data with the historical record
of hurricanes in the area. The data extends from around 1855 to 1990 and defini-
tively establishes that wood laid down in hurricane years is isotopically light as
compared to the historical average. Clearly the method can be used to extend the
record of storms back into earlier history where the documentation of weather events
is relatively poor or is missing. Such data is instrumental in establishing patterns of
climate change and global warming.
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Fig. 9.11 Historical record of •18O in tree rings of long-leaf pine in southern Georgia correlated
with the historical record of hurricanes in the area. Open circlesD no documented tropical storms,
solid squares D documented storms in area, shaded triangles D major tropical storm >400 km
from site (Reprinted with permission from Miller, D. L. et al. Proc. Natl. Acad. Sci. 103, 14294
(2006), copyright 2006, National Academy of Sciences, USA)

9.7 Coal, Petroleum and Natural Gas

Petroleum is a naturally occurring complex mixture of mainly hydrocarbons but
also containing hetero-compounds with S, N and O, and metal substituted por-
phyrins. Although most petroleum contains numerous compounds that have been
formed directly from biological molecules, its major portion is usually of secondary
origin (i.e. decomposition products or products of condensation and polymeriza-
tion reactions). Stable isotope analysis (•13C, •18O, •15N, •34S, •D) is a powerful
tool in oil field exploration. Variation in •13C is the most widely studied parame-
ter. Oils are usually depleted 1–3� with respect to carbon in their coexisting source
rocks. The compounds in a petroleum mixture show characteristic small differences,
with 13C increasing from saturated hydrocarbons, through aromatics, to hetero-
compounds and asphaltenes. Such information is useful for correlation and mapping
purposes.

Coals are formed by high pressure “cooking” of buried ancient plant materials
and show variable •13C and •D values. During the coal forming process methane
and other light hydrocarbons are liberated, but this has but little effect on the total
carbon balance, and little change in •13C is observed with increasing coalification.
D/H ratios in coal are usually measured on total hydrogen, even though significant
information could be gained by comparing •D of the exchangeable and nonex-
changeable fractions. •D usually increases with maturity suggesting some exchange
between organic hydrogen and surrounding water during thermal maturation.

About 20% of the World’s natural gas is of biogenic origin. Biogenic methane
commonly occurs in recent freshwater or marine sediments and results from various
bacterial fermentation processes. Typical •13C for methanes from marine sediments
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lie between�110� and�60�, while those from freshwater sediments are between
–65� and �50�. Thermogenic methane results from deeply buried organic mat-
ter subjected to various thermolytic and cracking reactions. Thermogenic methane
typically shows •13C in the range �50� to �20�. Finally abiogenic methane
emanating from mid-ocean hydrothermal sources shows very low •13C.	–10�).
This kind of data obviously affords a powerful means of discrimination between
the different origins of natural gases. Since natural gas as a fuel comprises an ever
increasing part of the World’s energy consumption such correlations and mappings
are economically important.

9.8 Further Examples, Food Authentication

9.8.1 Food Authentication

Natural products such as wine, fruit juices, flavors, oils, and honey are prime tar-
gets for fraudulent adulteration because of their high prices. Sophisticated analytical
methods (perhaps including isotope abundance measurements) are required to de-
tect whether natural ingredients have been mixed with ones from cheaper synthetic
sources. Isotope abundance is markedly different for natural vs. synthetic molecules
and these differences can be exploited to detect adulteration. Several examples
follow.

9.8.1.1 Fruit and Vegetable Juice

The major adulteration problem in fruit products is addition of sugar. The sim-
plest method of extending a fruit juice is to add inexpensive sugar and dilute
with water to rebalance sweetness. Since most juices are extracted from C4 plants
(•13C 	 �15�), and adulterating sugars from corn syrup or cane sugar are from C3
plants (•13C 	 �25�), the adulterant is easily detected using IRMS. The reference
analytical method for authenticating natural strength juices is by determination of D
and 18O. European regulations state that values lower than •18O D 0 and •D D �15
indicate the juice has been watered down.

9.8.1.2 Wines

High quality wines are labeled according to alcoholic content, geographical ori-
gin, and year of production. Isotopic fingerprinting makes it possible to determine
if there has been dilution with water, the region from which the wine has come
(as contrasted to the one from which it is claimed to have come), and the year of
production, by using IRMS analysis of the ethanol, sugar and water in the wine.
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The EU has installed a data-bank system for all wine producing countries in order
to provide reliable proof of the wine’s authenticity and origin. One interesting test
measures site specific hydrogen isotope ratios at the methyl and methylene groups
of the ethanol contained in the wine. It turns out that •D(methyl) is representative
of the fermentation source (grape, beet, cane or corn sugar), while •D(methylene) is
mainly representative of the endogenous water (climatic conditions).

9.8.1.3 Alcohols, Acetic Acid (Vinegar)

Alcohol can be produced by anaerobic fermentation of various substrates such as
corn, cane, wheat, potatoes, etc. or by chemical synthesis (usually by hydration of
petrochemical ethylene). The adulteration of brandy, whiskey, vodka and liquors
with synthetically produced ethanol is easily detected with IRMS data for •D and
•13C (Table 9.4). The matter is important because synthetic alcohol is produced
much more cheaply than fermented brandies, whiskeys, etc., but the commercial
grade is likely to carry trace amounts of impurities, including carcinogens. Acetic
acid is produced by the aerobic fermentation of ethanol to vinegar or by the partial
oxidation of synthetic ethanol. Again, marked differences in •D and •13C between
fermented and synthetic vinegars carry over and permit easy detection of adulter-
ation (Table 9.4).

9.8.1.4 Honey, Maple Syrup

Honey and maple syrup are complex products of high market price (•13C 	 �23�).
The main source of adulteration is cheap high fructose corn syrup (•13C 	 �13�)
or cane sugar (•13C 	 �11�) and the adulterated product is easily detected at
levels as low as 10% or so of added sugar.

Table 9.4 • values for ethanols and acetic acids from various
sources

Origin •D •13C

Alcohol
Sugar beet 115˙ 2 �27˙ 1
Sugar cane 123˙ 3 �12˙ 1
Corn 122˙ 2 �10˙ 1
Grape 124˙ 2 �27˙ 1
Barley 99˙ 1
Synthetic 134˙ 1 �31˙ 3
Acetic acid (vinegar)
Wine �350˙ 9 �26˙ 1
Cider �380˙ 7 �27˙ 1
Synthetic �163˙ 1 �36˙ 5
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9.8.2 Athletic ‘Doping’

An interesting illustration of natural product authentification by isotope fractionation
is its use in detecting athletic ‘doping’. In the late summer of 2006 the
bicyclist Floyd Landis, winner of the Tour de France, was accused of testos-
terone/epitestosterone (TST/epiTST) doping during the race thus enhancing his
performance. The French antidoping lab originally found the athlete’s TST/epiTST
ratio to be more than double the ‘normal’ maximum of 4:1. Landis’ claim that this
was not due to doping but was a natural fluctuation in his testosterone levels was
called into question by the isotope ratio data. His epiTST showed •13C D �30�,
while natural epiTST typically lies at •13C 	 �24˙ 1�, and in vitro synthesized
epiTST is •13C 	 �33˙ 1�). Injection of epiTST is prohibited by sports author-
ities because its administration will lower the urinary TST/epiTST ratio which is
used as a marker of TST administration. This compelling IRMS evidence to the
contrary, Landis continued to protest his innocence.

9.9 Stable Isotopes as Tracers in Biological, Agricultural,
Nutritional and Medical Research

The use of stable isotopes to trace metabolic processes in plants and animals, in-
cluding humans, is an important area in isotope science. However the focus of this
text is on the understanding of isotopic differences in equilibrium and rate constants
(isotope effects), as opposed to the use of isotopes (both stable and radioactive) to
follow reaction pathways, metabolic processes, etc. Tracer studies using stable iso-
topes have a long history. In the 1930s Rittenburg and coworkers fed D-enriched
linseed oil to mice and discovered that approximately one-third of the labeled fatty
acids were incorporated into the fat tissues of the mice. Later more elaborate studies
laid the groundwork for D/H tracer investigations of fat and cholesterol metabolism.
Similarly, beginning in the 1940s and 1950s extensive agricultural field investiga-
tion using 15N enriched (or depleted) fertilizers or organic residues have allowed
agricultural scientists to elucidate the mechanisms of the transformations of N in
soils. As a rule of thumb tracer studies ignore isotope effects on equilibrium and
rate constants and assume that reaction paths are independent of isotope substitu-
tion. Within their frame of reference that approximation seems reasonable, except
for studies using heavy hydrogen, where, as we have seen, isotopic differences are
often large or very large.
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Chapter 10
Kinetic Isotope Effects on Chemical Reactions

Abstract This chapter describes a number of examples of kinetic isotope effects
on chemical reactions of different types (simple gas phase reactions, SN2 and E re-
actions in solution and in the gas phase, ˛ and “ secondary isotope effects, etc.).
These examples are used to illustrate many aspects of the measurement, interpreta-
tion, and theoretical calculation of KIE’s. The chapter concludes with an example
of an harmonic semiclassical calculation of a kinetic isotope effect.

10.1 Introduction

This chapter describes a number of examples of kinetic isotope effects on chemical
reactions of different types. These examples will be used to illustrate many aspects
of the measurement, interpretation, and theoretical calculation of KIE’s. Many of
the examples are chosen from the field of organic chemistry. Chapter 11 deals with
biochemistry, more specifically with enzyme chemistry.

10.2 KIE’s on the “Simplest” Chemical Reaction
(Hydrogen Atom C Diatomic Hydrogen)

The hydrogen atom plus hydrogen molecule reaction has been thoroughly studied
both theoretically and experimentally (see especially Sections 6.2.3, 6.3 and 6.4).
Schematic potential energy surfaces are shown in Fig. 10.1. The diagrams are de-
signed to illustrate the discussion which follows based on transition state theory
(TST). More potential surfaces for this reaction are shown in Chapter 6. We begin
by considering the two simple identity reactions which proceed on identical poten-
tial energy surfaces within the Born–Oppenheimer approximation:

HCH2 ! .H�H�H/>
+ ! H2 C H kH;HH (10.1)

M. Wolfsberg et al., Isotope Effects: in the Chemical, Geological, and Bio Sciences,
DOI 10.1007/978-90-481-2265-3 10, c� Springer Science+Business Media B.V. 2009
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and
HC DH! .H�D�H/>

+ ! HDC H kH;DH (10.2)

These reactions proceed through symmetrical transition states ŒH � � �H � � �H
>+ and

ŒH � � �D � � �H
>+ with rate constants kH;HH and kH;DH, respectively. The ratio of
rate constants, kH;HH=kH;DH, defines a primary hydrogen kinetic isotope effect. More
precisely it should be regarded as a primary deuterium kinetic isotope effect because
for hydrogen there is also the possibility of a tritium isotope effect. The term primary
indicates that bonds at the site of isotopic substitution the isotopic atom are being
made or broken in the course of reaction. Within the limits of TST such isotope
effects are typically in the range of 4 to 8 (i.e. 4 < kH;HH=kH;DH < 8).

Complications that arise with this simple reaction are twofold. First, because
of the low mass of the hydrogen atom its movement frequently exhibits non-
classical behavior, in particular quantum-mechanical tunneling, which contributes
significantly to the observed kinetic isotope effect, and in fact dominates at low
temperature (Section 6.3). Secondly, in reaction 10.2 protium rather than deuterium
transfer may occur:

HC HD! .H �H �D/>
+ ! H2 C D kH;HD (10.3)

Note in comparing reactions 10.1 and 10.3 the isotope effect should also be called
primary, since the bond to the isotopically substituted atom is being broken, just as it
was in Equation 10.2. However in Equation 10.3 the magnitude of the isotope effect

will be different than it was in Equation 10.2 since the TS structures .H�H�D/>
+

and .H � D � H/>
+

and the newly formed bonds are different (HH in the case of
Equation 10.3, HD for Equation 10.2, see Fig. 10.1a). One thus expects kH;HD to be
different from kH;DH even though both describe primary deuterium isotope effects
with a common reference reaction, kH;HH. Furthermore, depending on the experi-
mental conditions one might need to consider other reactions such as:

DC H2 ! .D�H�H/>
+ ! DHCH kD;HH (10.4)

DC HD! .D�H�D/>
+ ! DHC D kD;HD (10.5)

DC DH! .D�D�H/>
+ ! D2 CH kD;DH (10.6)

HC D2 ! .H�D�D/>
+ ! HDCD kH;DD (10.7)

DC D2 ! .D�D�D/>
+ ! D2 C D kD;DD (10.8)

For these reactions of hydrogen, it is the isotope effect on the high frequency vibra-
tional modes in the diatomic reactant and tri-atomic transition states which dominate
in the calculation of the isotope effects using the TS model. Excitation into upper
vibrational levels for these high frequency modes is negligible and the zero point
energy approximation is appropriate (see Section 4.6.5.2 and Fig. 4.1).

Rate constants comparing reactions 10.1 and 10.4, 10.7 and 10.8 or 10.3 and10.5
illustrate an interesting point. When the hydrogen (or deuterium) atom attacks the
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H2 molecule, for example (Equations 10.1 and 10.4) (see Fig. 10.1a) the ZPE con-

tribution to the rate ratio is RTŒln.kH;H2=kD;H2/
 D �Œ.ZPEHHH � ZPEDHH/>
+ �

Œ.ZPEHH �ZPEHH/� .ZPEH �ZPED/
REACTANTS
 D �Œ.ZPEHHH �ZPEDHH/>
+

 be-

cause the atom attack is on a common diatomic (H2 in this case) and the zero point

energies of both attacking atoms, ZPEH and ZPED, are zero. E0
>+ is the energy dif-

ference between the bottom of the transition and ground state potential wells and is
isotope independent. Consequently the zero point energy contribution to the isotope
effect is expected to be inverse, since there is no zero point energy contribution in
the ground state but there is one in the transition state (see Fig. 10.1a). The contri-
bution from tunneling, however, will be in the opposite direction, because H atoms
tunnel much more effectively than do D. Consequently, at low temperature where
tunneling dominates the isotope effect for this H or D atom transfer is expected to be
positive, but at higher temperatures tunneling is damped out and the isotope effect
drops off markedly, see Table 10.1.

It is interesting to contrast the rate ratio for reactions 10.1 and 10.4 where ei-
ther H or D atoms react with H2 with that for reactions 10.1 and 10.7 where
common H atoms react with either H2 or D2 (compare Figs. 10.1a and b). In the
first case, .kH;HH=kD;HH/, there is a ZPE difference in the transition state but not
the ground state; consequently the high temperature KIE is inverse. In the second
.kH;HH=kH;DD/, however, there are zero point energy differences in both the transi-
tion and ground states. We expect the vibrational force constants to be smaller in the
more loosely bound transition as compared to the ground state. The isotope effects
scale with the force constant differences. Consequently RTŒln.kH;HH=kH;DD/
 D
�Œ.ZPEHHH � ZPEHDD/>

+ � Œ.ZPEHH � ZPEDD/ � .ZPEH � ZPED/
REACTANTS
 D
�Œ.ZPEHHH�ZPEHDD/>

+ � .ZPEHH�ZPEDD/
 > 0 since .ZPEHHH�ZPEHDD/>
+
<

.ZPEHH � ZPEDD/. The isotope effect calculated by TST is positive and reinforces
the positive tunneling contribution (Table 10.1). The term “semi-classical” is often
employed when referring to TST calculations because the motion over the barrier is
“classical”. However the vibrational motion in the other 3N–7 (3N–6) coordinates
is treated quantum mechanically, hence the term “semi-classical”. Still the term, al-
though in wide use, is a bit misleading since these KIE’s, like all vibrational isotope
effects are quantum mechanical. Because the term “semi-classical” can be mislead-
ing we have chosen not to employ it in this text.

A third example demonstrating the balance between large tunneling effects in
VTST, which dominate at low temperature, and TST isotope effects due to vibra-
tional force constant changes between the reactant and corresponding transition
state is that for reactions 10.7 and 10.6. For this pair of reactions there is a com-
mon transition state (see Fig. 10.1c) and the vibrational contribution to KIE is

RTŒln.kH;DD=kD;DH/
 D �Œ.ZPEHDD �ZPEHDD/>
+ � Œ.ZPEDD�ZPEDH/� .ZPEH �

ZPED/
REACTANTS
 D �Œ�.ZPEDD � ZPEHD/
 < 0 since ZPEDD < ZPEHD.
Again, at low temperature where tunneling dominates, the isotope effect for this
H or D atom transfer is expected to be positive, but at higher temperatures the
relative contribution of the tunneling is damped out and the isotope effect is inverse,
RTŒln.kH;DD=kD;DH/
 < 0.
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ZPE(HHH  )
ZPE(DHH  )

S [ZPE(H+HH)]
S [ZPE(DH+H)]OR S [ZPE(D+HH)]

E0
  (H)=E0

  (D)

a

ZPE(HHH  )
ZPE(HDD  )

S [ZPE(H+HH)] S [ZPE(DH+D)]

S [ZPE(H+DD)]

E0
  (H)=E0

  (D)

b

Fig. 10.1 Zero point energy diagrams. (a) An H or D atom attacking an H2 molecule. The TST
isotope effect is negative (inverse, kD > kH) because there is no zero point isotope effect in the
ground state, and tunneling is ignored in the TST approximation. (b) An H atom attacking either
an H2 or D2 molecule. The isotope effect calculated in the TST approximation is positive (normal,
kH > kD) because the zero point isotope effect in the ground state is larger than that in the transition
state.
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ZPE(DDH  )

S [ZPE(D+DH)] S [ZPE(H+DD) ]

E0
  (H)=E0  (D)

c

Fig. 10.1 (continued) (c) An H atom attacking D2 or a D atom attacking HD. The TST isotope
effect is negative (inverse) because the zero point isotope effect in the ground state is negative)

Table 10.1 Temperature dependence of some hydrogen isotope effects (After
D. G. Truhlar and coworkers)

T/K

.k10:1=k10:7/a .k10:8=k10:7/a .k10:4=k10:7/b .k10:4=k10:7/c

kH;HH=kH;DD kD;DD=kH;DD kD;HH=kH;DD kD;HH=kH;DD

Calculated Calculated Calculated Experimentc

200 81 2:4 74 -
300 18 1:7 16 15

400 8:7 1:4 7:9 7:6

800 2:8 1:1 2:7 2:8

aJ. Chem. Phys. 59, 395 (1973).
bPhys. Rev. Lett. 91, 063201/1–4 (2003).
cRidley, B. A., Schulz, W. R., and Le Roy, D. J., J. Chem. Phys. 44, 3344
(1966).

Table 10.1 shows isotopic rate ratios calculated using variational transition state
theory for examples selected from reactions 10.1 through 10.8. The trends shown
in the table are those expected from the qualitative discussion above and from
examination of Fig. 10.1. The results in the table are in excellent agreement with
experiment, and in fact for the last example, .k10:4=k10:7/ D kD;HH=kH;DD, the
agreement is quantitative. Both accurate high precision experimental data and re-
sults from exhaustive theoretical analysis have recently become available for these
two reactions, D C HH D DH C H and H C DD D HD C D. The excellent
agreement between theory and experiment is gratifying. In fact, Truhlar and cowork-
ers conclude by remarking, “The list of solved problems in molecular quantum
mechanics is very short, e.g. the electronic spectra of the hydrogen and helium atoms



318 10 Kinetic Isotope Effects on Chemical Reactions

and the vibrational–rotational spectrum of H2; H2
C, and H3

C. Now the thermally
averaged HC H2 rate constant can be added to the list.” In addition, and as already
noted in Chapter 4, values of equilibrium constants for isotopic exchange reactions
(including, e.g., H2CD2 D 2HD and H2OCHD D HDOCH2/ can be calculated
theoretically in very good agreement with experimental observation.

10.3 The Reaction Between Methane and Hydroxyl Radical

A slightly more complicated example, yet one which is useful to illustrate a problem
which can occur when analyzing isotope effects is the reaction between hydroxyl
radical and methane:

HOC CH4 ! HOHC CH3 (10.9)

Ideally, comparison of the rate constant for Equation 10.9 with that for the reaction
involving mono-deuteromethane:

HOC CDH3 ! HODC CH3 (10.10)

yields the primary deuterium isotope effect. It should be kept in mind, however,
that for mono-deuteromethane the statistical probability of hydrogen atom transfer
is three times that for deuterium atom transfer:

HOC CDH3 ! HOHC CDH2 (10.11)

In reaction (10.11) the deuterium isotope effect is a secondary isotope effect, that
is one in which the bonding to the isotopically substituted atom is not broken or
formed during the course of the reaction. Secondary deuterium isotope effects are
generally much smaller than primary ones.

An interesting point to keep in mind when designing experiments to measure
isotope effects like those expressed in Equations 10.9 through 10.11 is the de-
pendence of the observed rate ratios on the isotopic composition of the reactants.
In principle the true isotope effect should be independent of the isotopic compo-
sition; thus the natural abundance experiment should yield the same value of an
isotope effect as that measured by experiments using enriched material. On the
other hand the observed rate ratios may be significantly different. That point can be
illustrated using an example based on the above reactions. First, we assume (arbitrar-
ily) that the true primary deuterium isotope effect .k.10:9/=k.10:10//, where subscripts
indicate reactions, is equal to 5 and the true secondary deuterium isotope effect
.k.10:9/=k.10:11// is 1.3. The values we have selected are typical for reactions of
this type. In comparing the rates of reactions 10.9 and 10.10 one must take into
account the fact that the OH radical can react with any one of the four H (or D)
atoms on the methane or substituted methane. For reaction 10.10 the average rate is
simply k.10:10/ D .3 k.10:11/C k.10:10//=4 while for 10.9 the average rate is simply
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4 k.10:9/=4. Therefore the observed rate ratio .k.10:9/=k.10:10//obs is:

.k.10:9/=k.10:10//obs D 4k.10:9/=.3k.10:11/Ck.10:10//

D 4=Œ3.k.10:11/=k.10:9//C .k.10:10/=k.10:9//


D 4=.3.1:3�1/C 5�1/ D 1:6 (10.12)

Compare that figure with the result expected when enriched perdeuterated methane
is mixed with unlabeled hydroxyl. The observed isotope effect corresponds to
k.10:9/=k.10:13/ where:

HOC CD4 ! HODC CD3 (10.13)

Using the rule of geometric mean, which states that isotope effects are independent
and cumulative we write analogous to Equation 10.12:

.k10:9=k.10:13//obs D .k.10:9/=k.10:13//.k.10:9/=k.10:11//
3 D 5 � .1:3/3 D 11

(10.14)
The observed isotopic rate ratio effect in this case is nearly an order of magni-
tude larger than the one described by Equation 10.12. This is because the design
of the experiment using the fully deuterated species reports simultaneously on
both the primary and three secondary deuterium isotope effects, while the ear-
lier experiment yields roughly one-fourth of the primary deuterium isotope effect.
(The rule of the geometric mean, which is approximate except in the high tempera-
ture limit (Sections 3.5.2 and 4.11.3.2), when applied to the present case is written
Œk.CH4/=k.CD4/
 D Œk.CH4/=k.CDH3/


4 D Œk.CH4/=k.CD2H3/

2, etc. Thus writ-

ing ln.KIED4/ D lnŒk.CH4/=k.CD4/
 and ln.KIED1/ D lnŒk.CH4/=k.CDH3/
,
etc., we have ln.KIED4/ D 4 ln.KIED1/ D 2 ln.KIED2/ D .2 ln.KIED1/ C
ln.KIED2//, etc.)

10.4 Further Discussion, Heavy Atom Isotope Effects,
Secondary Isotope Effects

For historic and practical reasons hydrogen isotope effects are usually consid-
ered separately from heavy-atom isotope effects (i.e. 16O=18O; 16O=17O, etc.).
The historic reason stems from the fact that prior to the mid-sixties analysis us-
ing the complete equation to describe isotope effects via computer calculations
was impossible in most laboratories and it was necessary to employ various ap-
proximations. For H/D isotope effects the basic equation KIE D MMI � EXC �
ZPE (see Equations 4.146 and 4.147) was often drastically simplified (with varying
success) to KIE 	 ZPE because of the dominant role of the zero point energy term.
However that simplification is not possible when the relative contributions from
MMI (mass moment of inertia) and EXC (excitation) become important, as they are
for heavy atom isotope effects. This is because the isotope sensitive vibrational fre-
quency differences are smaller for heavy atom than for H/D substitution. Presently
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almost every laboratory enjoys access to computer programs which permit detailed
calculation of all three terms, MMI, EXC and ZPE. The earliest such programs for
machine calculation of KIEs were introduced by Wolfsberg and Stern in the early
1960s (see reading list). The operative distinction between modern day theoretical
treatments of hydrogen and heavy-atom isotope effects comes mostly from the ap-
preciation of the fact that H/D and H/T isotope effects frequently include significant
contributions from quantum mechanical tunneling that cannot be captured by con-
ventional TST, while heavy atom tunneling is negligibly small and can be ignored.

10.4.1 ˛-2ı Isotope Effects

Secondary hydrogen kinetic isotope effects are further classified as alpha, beta, etc.
depending on the distance of the isotopically substituted atom from the bond(s) that
is (are) being made or broken (˛ D 1 bond, “ D 2 bonds, etc.). Consider the simple
SN2 reaction between hypochlorite anion and ethyl chloride:

ClO� C CH3CH2Cl! ClOCH2CH3 C Cl� (10.15)

This reaction proceeds via the transition state illustrated in Fig. 10.2. An SN2 re-
action (second order nucleophilic substitution) in the rate limiting step involves the
attack of the nucleophilic reagent on the rear of the (usually carbon) atom to which
the leaving group is attached. The rate is thus proportional to both the concentration
of nucleophile and substrate and is therefore second order. On the other hand, in an
SN1 reaction the rate limiting step ordinarily involves the first order formation of
an active intermediate (a carbonium ion or partial carbonium ion, for example,) fol-
lowed by a much more rapid conversion to product. A sampling of ˛ and “ 2ı
deuterium isotope effects on some SN1 and SN2 solvolysis reactions (i.e. a reac-
tion between the substrate and the solvent medium) is shown in Table 10.2. The

Fig. 10.2 Structure of the
transition state of the SN2
reaction 10.15
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Table 10.2 Some 2ı deuterium isotope effects mostly on SN1 reactions

(a) Acetolyses of deuterated cyclopentyl tosylates at 50 ıCa

Alkyl tosylate .kH=kD/ ln.kH=kD/ per D

Cyclopentyl-1-d 1.15 0.14
Trans-cyclopentyl-2-d 1.16 0.15
Cis-cyclopentyl-2-d 1.22 0.20
Cyclopentyl-2,2,5,5-d4 2.05 0.18

(b) ˛-D isotope effects .kH=kD/ on solvolysis of ˛-phenylethyl chlorides and bromides in
acetone/water or ethanol/water solventsb

Substituent

Leaving
group

p-Phenoxy None p-Nitro
.kH=kD/ .kH=kD/ .kH=kD/

Cl 1.15 1.15 1.11
Br 1.13 1.12 1.09

(c) Secondary D and primary 14N=15N isotope effects on thermolysis of an azo
compoundc at 105 ıC

Compound
kH=kD kH=kD k14=k15 k14=k15

Expt Calc Expt Calc
.C6H5.CH3/CH.orD/ND/2 1.27 1.27 1.023 1.023
ln.kH=kD/ per D 0.12 0.12

(d) ˛-D isotope effects on the SN2 solvolysis of methyl and ethyl tosylate in water at 25 ıCd

Compound kH=kD

CH3 �OTs 0.985
CH3CH2 � OTs 1.020
aStreitwieser, A. et al. J. Am. Chem. Soc. 80, 2326 (1958).
bShiner, V. J. et al. J. Am. Chem. Soc. 90, 418 (1968).
cSeltzer, S. and Mylonakis, S. G. J. Am. Chem. Soc. 89, 6584 (1967); 83, 2625
(1961); 85, 14 (1963).
dRobertson, R. E. et al. Can. J. Chem. 38, 222,1505 (1960).

values in the table are typical. Secondary isotope effects for SN1 solvolysis reac-
tions generally range between 10% and 25% per D. The rationalization originally
offered by Streitwieser is generally accepted. In this model the change from sp3 to
sp2 hybridization at the ˛-carbon on formation of the carbonium ion transition state
is accompanied by changes in force constants and consequently in the vibrational
frequencies involving that carbon, particularly in the out-of-plane bending mode,
which is significantly red-shifted on the transfer from reactant to transition state
thus accounting for the bulk of the isotope effect. These qualitative ideas have been
amply confirmed by the machine calculations of Wolfsberg and coworkers (read-
ing list, Stern and Wolfsberg (1968), Shiner et al. (1968)) which show that force
constant differences, reactant to transition state, are essential to an understanding of
the KIE.

In the SN2 reaction 10.15 hydrogen atoms on the�CH2Cl (methylene) group are
bonded to the carbon atom that is the center of the nucleophilic attack. This is the
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position ˛ to the Cl� leaving group, and the corresponding isotope effect is the sec-
ondary ˛-hydrogen kinetic isotope effect. The three hydrogen atoms of the methyl
group, on the other hand, are separated from the reaction center by a carbon–carbon
bond; these positions are “ to the leaving group. Similarly, the chlorine isotope effect
for ethyl chloride is a primary kinetic isotope effect (the bond to chlorine is broken
in the reaction) while that for the chlorine atom in the nucleophile hypochlorite is
an alpha secondary .˛ � 2ı/ kinetic isotope effect.

Interestingly, SN2 reactions do not show significant ˛-2ı-KIEs. An explanation
of the magnitude of typical ˛-hydrogen KIE’s was proposed by Westaway as the so-
called “bond strength hypothesis”. The hypothesis states that in the formation of an
SN2 transition state the significant changes (and hence larger KIE’s) are observed in
the weaker of the forming or breaking bonds (O � � �C and C � � �Cl, respectively, for
reaction 10.15), while the stronger bond will show no or little change (smaller KIE).
The relative strengths of the forming and breaking bonds in the transition state are
of course not measurable, but can be estimated by assuming they are proportional to
the equivalent bond strengths in the reactant and product (which are available from
spectroscopic analysis or other methods). Based on this approach, except for identity
reactions, it is found that one of the reacting bonds is almost always not signifi-
cantly altered. This in turn implies that the hybridization of hydrogen atoms alpha
to that bond do not significantly differ between reactant and transition state, the
corresponding force constant changes are small, and the KIE is expected to be min-
imal. Similar arguments correlate the magnitude of ˛-2ı-KIEs with the distance in
the transition state between the advancing nucleophile and the leaving group. Loose
transition states result in larger isotope effects while tight transition states, in which
hydrogen bending is constrained tend to exhibit smaller isotope effects.

10.4.2 ˇ-2ı Isotope Effects

A few examples of “-2ı-KIEs are shown in Fig. 10.3. These effects are markedly
dependent on geometry. This is clear from the first example. Deuterium substitution
at different “-hydrogen atoms does not lead to the same rate changes for the chloro-
solvolysis. That in mind, it is a bit surprising to see that the diphenylethyl derivative
shown in the third example does not show much effect upon D-isotope substitution
at the “-carbon.

The existence of ß-2ı isotope effects is usually rationalized using arguments
based on hyperconjugation. A thorough discussion of hyperconjugation is beyond
the scope of this book. Briefly, however, if a vacant p-orbital is formed in the sub-
strate during the course of a reaction (as in the formation of a carbocation), and if
a hydrogen atom is present at the ß-position in a geometry where the C�H bond
overlaps with the p (or the developing p) orbital, a stabilizing interaction (denoted
as hyperconjugative) is possible. In the limit hyperconjugation can be thought to
be a partial cleavage of the ß�C�H bond. Because the C�D bond has a lower
zero-point energy than does CH, ß�C�D bonds will be less effective in stabilizing
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Fig. 10.3 Examples of
“-2ı-KIE’s for solvolysis
reactions at 318 K (Shiner, V.
J. and Humphrey, J. S., J. Am.
Chem. Soc. 85, 2416 (1963))

a carbonium ion like species. As a result, the solvolysis rate will be lower in the
deuterated derivative. This interpretation assumes that the C�H group is ideally
oriented for hyperconjugation with the developing empty p orbital. For this to be
valid, the ß�C�H bond should be lined up parallel with the developing p-orbital to
maximize overlap. Should the two orbitals be orthogonal, there will be no overlap,
and isotope substitution will not affect the rate. This is exactly the reason why the
“#” positions in the bicyclo[2,2,2] system shown in the first example of Fig. 10.3
displays a normal isotope effect, while substitution at the “�” position shows practi-
cally no effect at all. It can be easily seen from a model that the C�H� bond and the
empty p-orbital (on loss of Cl�) are orthogonal. The unusually small ß-KIE in the
diphenylethyl derivative (Example 3, Fig. 10.3) is a result of an interesting variation
in its solvolysis reaction mechanism. Because the carbenium ion formed on loss of
tosylate is a primary cation, and since phenyl groups are present at the ß-position,
the departure of the tosylate group is assisted by phenyl participation (one of the
phenyls migrates to form a bridged transition species). Consequently the C�H bond
remains almost orthogonal to the developing (empty) p orbital at the adjacent carbon
and it is not surprising that there is practically no isotope effect.

10.4.3 Steric Arguments and “; � : : : 2ı Isotope Effects

Some distant (i.e. “; ”; : : :) isotope effects have been rationalized using steric
arguments. For H/D IE’s one recognizes that the C�H vibrational levels lie higher
in the potential well and display larger vibrational amplitudes than do the lower
lying C�D modes. Also, due to anharmonicity, the equilibrium and mean square
bond lengths are slightly shifted from the minimum energy distance. Such effects
account for isotope effects on dipole moments, polarizability, NMR shielding co-
efficients and molar volume (Chapter 12). In any case, the effective bond length
is slightly larger for C�H with its larger amplitude of vibration than it is for CD.
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Fig. 10.4 More examples of “-2ı-KIE’s. (Top, solvolysis of a t -butyl substituted adamantine.
Bottom, racemization (loss of optical activity) of a dihydrophenanthrene derivative (Mislow, K.,
and coworkers, J. Am. Chem. Soc. 86, 1733 (1964))

Consequently it is reasonable to think of CH as slightly larger than CD, and in
a crowded environment as more sterically hindered. This can lead to measurable
KIE’s depending on whether the transition state is less or more sterically encum-
bered than the ground state. The two examples in Fig. 10.4 demonstrate this idea.
If the ground state is more crowded than the transition state (in other words, if strain
is relieved upon going to the transition state), the observed KIE will be normal
(i.e., >1). This is the case in the solvolysis of the t-butyl substituted adamantane
shown in the upper example. On the other hand, if the transition state is more
crowded, the deuterated isotopomer is more easily accommodated than the protio
and the KIE will be inverse (i.e., <1). The racemization of the dihydrophenan-
threne derivative (Example 2, Fig. 10.4) is such an example. The molecule is a bit
twisted in the ground state due to steric repulsions between the methyl groups. It
is therefore chiral. In the transition state of the racemization, however, the molecule
is flat, which brings the methyl groups even closer to each other. Since the methyl
deuterated derivative has less steric repulsion, the observed KIE is less than unity.

10.4.4 Comment

It is important to point out once again that explanations (rationalizations) of iso-
tope effects which employ arguments invoking hyperconjugation and/or steric ef-
fects are completely equivalent to the standard interpretation of KIE’s in terms of
isotope independent force constant differences, reactant to transition state. In turn,
these force constant differences describe isotope dependent vibrational frequen-
cies and frequency differences which are not the same in reactant and transition
states. The vibrational frequencies determine the partition functions and partition
function ratios in the two states and thus define KIE. The entire process occurs
on an isotope independent potential energy surface. This is not to claim that the
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hyperconjugation/steric effects do not exist, but rather to argue that it is these ef-
fects which cause the force constant and vibrational differences which we in turn
employ in the quantitative evaluation of KIE.

10.5 Relative Values for Deuterium and Tritium Isotope
Effects: The Swain–Schaad Relation

We will use reaction 10.15 to illustrate two important concepts of kinetic isotope
effect studies. The first concerns the relation between isotope effects of different
isotopes of the same element, say D and T. We denote the rate constant of reaction
10.15 by kH and consider isotope effects when one hydrogen in the ˛-position is
substituted by deuterium or tritium:

ClO� C CH3CHDCl! ClOCHDCH3 C Cl� (10.16)

ClO� C CH3CHTCl ! ClOCHTCH3 C Cl� (10.17)

In reactions 10.16 and 10.17 we label the corresponding rate constants kD and kT,
respectively. The relationship between kH=kD and kH=kT is approximately described
by the Swain–Schaad equation

.kH=kT/ D .kH=kD/
1:44 (10.18)

In deriving Equation 10.18 one assumes that the motions of the H, D, and T can be
treated in the ZPE approximation and the only important isotope sensitive motions
are the RH, RD, or RT stretching modes which shift significantly on the transfer
from reactant to transition state. In the ZPE approximation

ln.kH=kD/ 	 .ZPE>
+ � ZPER/H � .ZPE>

+ � ZPER/D D �ZPEH
>+ � �ZPED

>+

(10.19)
For harmonic oscillators recall that the ZPE’s, .ZPE D .1=2/hc.f=�/1=2/, and
ZPE differences scale proportionally to .1=�H/ and .1=�D/, respectively. The �’s
are oscillator reduced masses and f is the isotope independent force constant. Thus,
writing equations analogous to Equation 10.19 for tritium substitution, and taking
the ratio, we obtain kH=kT D .kH=kD/

¦ where ¦, the Swain–Schaad exponent in
the harmonic approximation is expressed

� D ln.kH =kT /= ln.kH=kD/ D .1=
p
�H � 1=p�T /

ı
.1=
p
�H � 1=p�D /

(10.20)
Assuming that the hydrogen, deuterium or tritium vibrates against a carbon atom of
mass 12 we have �X D 12mX=.12 C mX/ D 0:923, 1.714 and 2.400 for x equal
H, D, and T respectively, so ¦ D 1:43. Were the hydrogen vibration against infinite
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mass the corresponding figures would be 1, 2, and 3, and ¦ D 1:44. The difference
is negligible considering the approximations which have been introduced (Historical
Vignette 10.1).

The drastic assumptions involved in reducing the harmonic analysis to the
consideration of a single isotopically substituted oscillator in order to obtain
Equation 10.20 imply that the result will be most useful for qualitative purposes.
In fact, complete (3n – 6) dimensional harmonic TST calculations on numerous
different examples of equilibrium and kinetic isotope effects yield a wide range of
Swain–Schaad exponents and large deviations of Swain–Schaad exponents from
the expected value are often considered as qualitative indicators of either reaction
complexity (exponent smaller than 1.44) or intervention of tunneling (exponent
larger than 1.44). Even simple reactions, however, exhibit significant deviations
from the Swain–Schaad value (see Fig. 10.5). Nowadays, following a suggestion
by W. H. Saunders, variants of Equation 10.20 are frequently used in which the
common (reference) isotope is one of the heavier isotopes (D or T for the present
example), e.g.:

.kH=kT/ D .kD=kT/
3:34 (10.21)

Fig. 10.5 Distribution of exponents, Equation 10.21, for exact harmonic calculated equilib-
rium and TST kinetic isotope effects (Hirschi, J. and Singleton, D. A., J. Am. Chem. Soc. 127,
3294 (2005))



10.6 Alternative Reaction Paths, SN2 and E2: Condensed and Vapor Phase Studies 327

[Historical Vignette 10.1] C. Gardner Swain (1917–1988) Professor of Chemistry, Mas-
sachusetts Institute of Technology made notable contributions to the field of physical–organic
chemistry and the investigation of the mechanisms of chemical reactions. His interests focused
on nucleophilic reactivities, solvent effects, substituent effects, and the effect of structural changes
in reactants on the structure of transition states. He provided one of the first polyfunctional enzyme
models. Swain and his students made many contributions to the early development and use of iso-
tope effects to elucidate the mechanisms of important types of organic reactions and transition state
structure. (Photo credit: MIT Museum)

Equations analogous to Equation 10.18 have been derived for heavy atom KIEs and
validated against experimental data for carbon and sulfur KIEs:

� D ln.kL=kH1/= ln.kL=kH2/ (10.22)

where indexes L, H1 and H2 represent light, first heavy, and second heavy iso-
topes, respectively. The value of ¦ is about 1.9 when the mass increments are equal
(i.e., H1 � L D H2 � H1). Equation 10.22 has been used mostly for carbon KIE’s,
k11=k14; k12=k13, and k12=k14. Note, however, that some heavy atom isotope ef-
fects, e.g., oxygen KIE’s (k16=k17 vs. k16=k18) deviate substantially (see, e.g., the
discussion of mass-independent KIE’s in Chapter 14).

10.6 Alternative Reaction Paths, SN2 and E2: Condensed
and Vapor Phase Studies

In the remaining sections of this chapter we will discuss further examples of kinetic
isotope effects. The first considers a system in which there is a competition between
two mechanisms, SN2 and E2 and returns to reaction 10.15. (By E2 we refer to a
second order elimination reaction, see Fig. 10.6). In Equation 10.15 the hypochlorite
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CH3CH2Cl + CIO–

CH3CH2OCl + CI–

CH2=CH2 + CIOH + Cl–

SN2
ClO

E2

CβH3

Cl

Cl

H

H
H

O

Cl

H
H

CαCβ H

–

–

H

Cα

Fig. 10.6 Alternative pathways of reaction between hypochlorite anion and ethyl chloride
(Villano, S. M., Kato, S. and Bierbaum, V. M., J. Am. Chem. Soc. 128, 736 (2006))

anion may act as a nucleophile attacking ethyl chloride to form chloride anion and
ethyl hypochlorite via the transition state illustrated in Fig. 10.2 and at the top of
Fig. 10.6. Alternatively, the hypochlorite anion can abstract a proton from the methyl
group eliminating chloride anion to yield ethane and hypochlorous acid. The alter-
native pathways are illustrated in Fig. 10.6. This particular competition between
nucleophilic substitution and base induced elimination has been thoroughly stud-
ied in the condensed phase, and more recently in the gas phase. It is interesting to
strip away complications introduced by the effects of solvent on the structure and
energetics of the reactant ground and the transition states. Studying SN2 and E2 re-
actions in the gas-phase allows one to gain insight into the intrinsic features of the
reaction path without interference from solvent effects. However, the experiments
are inherently difficult and equipment intensive. In broadest outline the technique to
study ion-molecule reactions in the gas phase involves the generation of a negative
ion by electron bombardment followed by an appropriate series of charge exchange
reactions (to yield ClO� for the example under discussion). The ion of choice passes
along a flow tube where once thermalized it reacts with the substrate (ethyl chloride)
injected downstream. Ion intensity is measured using a quadrupole mass filter. By
this FA-SIFT (flowing afterglow-selected ion flow tube) technique Bierbaum and
coworkers have measured reaction rate constants and KIEs for reactions of ClO�
with a series of four alkyl chlorides RCl (R D methyl, ethyl, i -propyl and t-butyl).
The SN2=E2 competition, shown in Fig. 10.6 for ethyl chloride, results in substantial
changes in the observed KIE’s as chain length increases (Table 10.3).

The reaction of ClO� with methyl chloride can only proceed via the SN2 process.
An inverse KIE of 0.85 is measured (Table 10.3). The reaction with t-butyl chloride
presumably proceeds via an E2 mechanism (since SN2 attack on the Cl substituted
carbon is blocked) and the observed KIE of 2.31 (Table 10.3) is consistent with that
conclusion. The isotope effects for both species are nearly the same as the effects
measured in the condensed phase (compare Tables 10.3 and 10.4) and measure the
relative contributions of the two paths. The results indicate that the E2 pathway
becomes the dominant channel as the substrate becomes more sterically hindered.
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Table 10.3 Reaction rate
constants .10�10 cm3

molecule�1 s�1/ and
deuterium KIEs for the gas
phase reaction between RCl
and ClO� around room
temperature (Villano, S. M.,
Kato, S. and Bierbaum, V.
M., J. Am. Chem. Soc. 128,
736 (2006))

RCl k KIE

CH3Cl 2.01
CD3Cl 2.36 0.85
C2H5Cl 2.25
C2D5Cl 2.27 0.99
i -C3H7Cl 1.74
i -C3D7Cl 1.01 1.7
t -C4H9Cl 2.33
t -C4D9Cl 1.01 2.31

Table 10.4 Deuterium and heavy atom KIEs for methyl
and t -butyl chloride solvolysis in water at�350K

RCl k(light)/k(heavy)

CH3Cl=CD3Cl 0:92a

12CH3Cl=14CH3Cl 1:03b

CH3
35Cl=CH3

37Cl 1:01c

t -C4D9Cl=t -C4D9Cl 2:45a

aRobertson, R. E. and coworkers; J. Am. Chem. Soc. 87,
161 (1965); Can. J. Chem. 38, 222 (1960).
bBender, M. L. and Buist, G. G. J. Am. Chem. Soc. 80,
4304 (1958).
cFrisone, G. J. and Thornton, E. R. J. Am. Chem. Soc. 86,
1900 (1964).

It is remarkable that the isotope effects measured for these reactions in the vapor
phase are about the same as the solvolysis KIEs measured in aqueous solution.

10.7 KIE’s as Probes of Transition State Structure

Based on the early machine calculations of the Brookhaven group (Wolfsberg and
Stern, reading list) and somewhat later semiquantitative studies using the BEBOVIB
program (Bond-Energy-Bond-Order-VIBration) it has been argued that KIEs pro-
vide insight into the structure of the transition state, an entity not amenable to direct
experimental scrutiny. At this point we introduce a few concepts from this quali-
tative description of transition state structure derived from early studies of KIEs.
Description of the position of the transition state on the reaction coordinate has been
classified into “early”, “symmetric” and “late” transition state. Early and late TSs
correspond are those that are closer to reactant or product structures, respectively.
Since these concepts were first developed to interpret KIE’s for SN2 reactions, the
symmetric transition state is defined as one in which the amount of bond forma-
tion and bond breakage are equally advanced. Initially it was assumed that the sum
of the bond orders of the forming and breaking bond sums to unity. Thus, in an
early transition state, a slight weakening of the breaking bond is accompanied by a
slightly developed new bond to the incoming nucleophile. The opposite is true for
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the late transition state. In either case the sum of the weakened and developing bond
orders is unity. Later it was recognized that in many cases the sum of the bond orders
of the two reactive bonds does not necessarily add to unity. This brought forward
new descriptions of transition states as “loose” or “tight” depending on whether
the sum of bond orders is less or greater than unity, respectively. Although modern
quantum-chemical calculations show that some of the generalizations made in early
interpretations were incorrect (see below), there is no doubt that KIEs are sensitive
to a TS structure. While an “absolute” prediction of TS structure from KIE’s alone
is unlikely (i.e. without supplementing the discussion with computational analysis),
it is generally agreed that the “relative” positions of TS’s on the reaction coordinate
for a series of reactions that differ in a substituent or solvent can be elucidated from
isotope effect studies. We illustrate this point in the following two examples.

10.7.1 SN 2 Reactions for CN � Attack on Substituted
Benzyl Chlorides

The reaction between benzyl chlorides and tetrabutylammonium cyanide in tetrahy-
drofuran at 20 ıC is illustrated in Fig. 10.7.

Alpha deuterium .d2/, leaving group chlorine 35Cl=37Cl, and incoming carbon
KIE’s for this reaction have been measured for different substituents (R) and com-
pared with high level theoretical calculations (at the B3LYP/aug-cc-pVDZ level, see
any modern book on quantum and/or computational chemistry for the description of
DFT functionals and basis set symbolism). The results are collected in Tables 10.5
and 10.6. The theoretical calculations indicate that transition states become system-
atically tighter in the sequence CH3 to H to Cl (i.e. in the order of increasing values
of Hammett constants, ¢P, see any organic text for a complete discussion of Ham-
mett constants, a large positive ¢P implies large electron withdrawing power relative
to H, and conversely a large negative value implies high electron releasing power
relative to H.). Note that shorter bond length in the transition state has different
qualitative meanings for these two bonds; the shorter the C � Cl bond the “earlier”
the transition state (closer to reactant structure), while a shorter C�CN bond means
a “later” transition state (closer to product structure).

CH2Cl

R

CH2CN

R

NC– + + Cl–

Fig. 10.7 SN2 reaction between cyanide anion and p-substituted benzyl chlorides
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Table 10.5 Experimental KIEs for the reaction between cyanide anion
and p-substituted benzyl chlorides (Westaway, K. C., et al. J. Phys.
Chem. A 111, 8110 (2007))

R ’-d2 35Cl=37Cl 11C=14C

CH3 Not determined 1:00609˙ 0:00014 0:9951˙ 0:0013
H 1:006˙ 0:001 1:00591˙ 0:00004 1:0047˙ 0:0003
Cl 1:012˙ 0:001 1:00537˙ 0:00024 1:0016˙ 0:0025

Table 10.6 Theoretically calculated KIEs and bond lengths in the transition state for the reaction
between cyanide anion and p-substituted benzyl chlorides (Westaway, K. C., et al. J. Phys. Chem.
A 111, 8110 (2007))

R ’-d2 35Cl=37Cl 11C=14C rC�Cl [Å] rC�CN ŒÅ
0

CH3 .¢P D �0:17/ 0:9851 1:00717 0:9838 2:271 2:384

H.¢P D 0:00/ 0:9812 1:00717 0:9833 2:262 2:378

Cl.¢P D 0:23/ 0:9788 1:00699 0:9825 2:250 2:370

It is generally observed from quantum-chemical calculations that changes of
individual bonds and valence angles by themselves do not necessarily correlate with
the “earliness” or “lateness” of the transition state structure. In terms of isotope ef-
fects, however, the shorter the C � Cl bond the smaller the chlorine KIE, as might
have been expected since it means smaller bond changes along the path from reac-
tant to transition state. Both the calculated and experimental changes are very small
for the chlorine effects but the precision of the measurements is sufficient to allow
meaningful comparison; the agreement is reasonable. Agreement of the other two
measured isotope effects with the calculations is much worse. In the case of the
incoming group carbon KIE, this may result from the compensation between the
effect on the imaginary vibrations (so-called temperature independent factor given
by Equation 4.145) which always favors the light isotope, and the temperature de-
pendent factor which becomes inverse (less than unity) when a new bond is formed
to the isotopic atom. Apparently this level of theory overestimates the latter fac-
tor. The experimental data are scattered and do not provide clear indication of a
particular trend. Theoretical results point to increasingly inverse IE’s with short-
ening of the C � C.N/ bond distance. The discrepancy between the measured and
observed 2o-’-D KIE’s may originate in tunneling that has not been included in
calculations. Again, more inverse values of this particular IE correlate with tighter
transition states.

10.7.2 Reaction of Substituted Anilines with Methyl Iodide

A second example of the correlation of isotope effects with substituent properties
is given by the reaction between p-substituted N,N-dimethylanilines and methyl io-
dide illustrated in Fig. 10.8. 2o-’-D and incoming group nitrogen KIE’s are collected
in Table 10.7.
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N(CH3)2

R R

+N(CH3)3

CH3I + + I–

Fig. 10.8 SN2 reaction between p-substituted N,N-dimethylanilines and methyl iodide

Table 10.7 KIEs on the reaction between p-substituted N,N-
dimethylanilines and methyl iodide in ethanol at 25 ıC (Paneth,
P., et al. J. Phys. Org. Chem. 9, 35 (1996))

R 14N=15N CH3I=CD3I

CH3 1:0036˙ 0:0003 0:927˙ 0:004
H 1:0032˙ 0:0002 0:968˙ 0:004
C.O/CH3 0:9989˙ 0:0003 1:143˙ 0:003

In this case the nitrogen KIE changes in the expected way from the normal value
for looser transition state to the inverse value for the tighter one, reflecting increased
C � N bond formation for the acetyl substituent. This direction of change upon in-
crease in electron-withdrawing strength of the substituent, CH3 to C.O/CH3, is not
corroborated by the results obtained for the ’-D KIE, which changes in the opposite
direction, suggesting loosening of the transition state. These apparently conflict-
ing observations can be explained within the bond strength hypothesis discussed
in Section 10.4.1. Qualitatively, the results indicate that overall loosening of the
transition state structure does not necessary mean that all crucial bonds become
looser. In the present case the effect of tightening of the C�N forming bond seems
to be overbalanced by the loosening of the breaking C � I bond along the series
CH3 � C.O/CH3. (Historical Vignette 10.2)

10.7.3 More on KIE’s in Menshutkin Reactions

The reaction shown in Fig. 10.8 belongs to the group of Menshutkin reactions. Many
aspects of KIE’s on these reactions have been extensively studied. We thus continue
using them as examples, choosing first a system to illustrate the effect of steric
hindrance on KIE. The effect of the steric hindrance has been explored for quater-
nizations of lutidines as described by the scheme 10.23:

NR'

R"

R'"
NR'

R"

R'"

CH3

++ CH3X + X–

(10.23)
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[Historical Vignette 10.2] Sir Christopher K. Ingold (1893–1970) was influential in shaping
modern ideas about physical organic chemistry. His text “Structure and Mechanism in Organic
Chemistry” is a cornerstone of modern organic chemistry. Ingold studied at Imperial College, Lon-
don, and obtained his D.Sc. in 1921. After 6 years as Professor of Organic Chemistry at Leeds
University he joined University College, London, where he served as professor, then as head
(1937–1961), until his retirement. Professor Ingold was far ahead of his time in applying iso-
topes to the solution of many problems. His comparisons of rates of racimization and halide-ion
isotopic exchange were among the first investigations employing kinetic isotope effects and iso-
tope labeling. Deuterium labeling of benzene was a critical part of Ingold’s spectroscopic work in
establishing the structure of benzene. A serious problem which he faced was that neither the iso-
topes nor the measuring equipment were readily available at the time (1930s), and a major effort
was required to enrich stable isotopes and construct the necessary apparatus. Ingold introduced
many new scientific terms and concepts (nucleophilic, electrophilic, SN1; SN2, etc.), terms which
are now so widely used their origin has been forgotten. (Photo credit: Chemistry Department, Uni-
versity College London)

where R0 D R000 D CH3 and R00 D H for 2,6-lutidine (2,6 dimethyl pyridine), and
R0 D H; R00 D R000 D CH3 for 2,4-lutidine, and X D Cl, I or CF3SO3. For the
reaction involving methyl iodide .X D I/ in acetonitrile at 30 ıC, the carbon KIE
for the methyl group transferred to the nitrogen, k11=k14, is 1.220 and 1.189 for 2,6-
lutidine and 2,4-lutidine, respectively. Since the substituent effects are essentially
the same in both cases the increased value of the carbon KIE has been ascribed to
the larger steric hindrance exerted by two methyl groups in close proximity to the
nucleophilic center in 2,6-lutidine. An interesting aspect of these results is use of
the short-lived 11C isotope (see Sections 7.1.5.1 and 7.4). Although some contri-
bution of tunneling to the increased carbon KIE in the presence of steric hindrance
has been postulated (due to coupling of the reaction coordinate with the bending vi-
brations of the ’–hydrogens), the results of theoretical calculations that ascribe this
increase to an earlier transition state seems more convincing. The effect of steric hin-
drance on heavy atom KIE’s is not strong. This conclusion is also supported by other
heavy atom KIE’s on these reactions. Thus, the chlorine leaving group KIE remains
practically unperturbed for pyridine .R0 D R00 D R000 D H/ and 2,6-lutidine react-
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Table 10.8 Nitrogen KIEs for reactions of pyridines with methyl trifluo-
romethanesulphonate .X D CF3SO3/ (Kurz, J. L. et al. J. Phys. Chem. 90,
5357 (1986))

Pyridine substituents Solvent 15N-KIE

R0 D R00 D R000 D H Water 0:9965˙ 0:0006
1,2-dichloroethane 0:9942˙ 0:0008
Acetonitrile 0:9946˙ 0:0004

R0 D R000 D H; R00 D Me 0:9937˙ 0:0002
R0 D R000 D Me; R00 D H 0:9941˙ 0:0004

ing with methyl chloride .X D Cl/ in bromobenzene at 100 ıC. The corresponding
37Cl-KIEs are 1:0036˙0:0001 and 1:0038˙0:0003, respectively. The same is true
for the nitrogen KIE on the incoming group as shown in Table 10.8.

The amine quaternizations (i.e. change in the nitrogen from three to fourfold
bonding) discussed above proceed via an SN2 mechanism. They differ from those
discussed earlier by showing a much stronger dependence of reaction rate on solvent
polarity. This occurs because instead of charge dissipation on the path from reactant
to transition state a strongly polar transition state is formed from neutral reactants.
A similar strong dependence on solvent polarity is also observed for decarboxyla-
tion processes. Decarboxylation processes are important in biochemistry and in the
following sections we will discuss KIEs for one such reaction.

10.7.4 Decarboxylation Reactions

Interpretation of KIEs on enzymatic processes (see Chapter 11) has been frequently
based on the assumption that the intrinsic value of the kinetic isotope effect is
known. Chemical reactions have long been used as models for catalytic events oc-
curring in enzyme active sites and in some cases this analogy has worked quite well.
One example is the decarboxylation of 4-pyridylacetic acid presented in Fig. 10.9.
Depending on the solvent, either the zwitterionic or the neutral form dominates in
the solution. Since the reaction rates in D2O=H2O solvent mixtures are the same (see
Section 11.4 for a discussion of aqueous D/H solvent isotope effects), as are the car-
bon KIEs for the carboxylic carbon, it is safe to assume that this is a single step
reaction. The isotope effects on pKa are expected to be close to the value of 1.0014
determined for benzoic acid. This in mind, changes in the isotope effects have been
attributed to changes in solvation.

The solvent dependence of the C, O and N KIEs on the decarboxylation is
reported in Table 10.9. The difference between 13C-KIE observed in pure wa-
ter and dioxane .1:0636=1:0573 D 1:0060/ exceeds the expected carbon IE on
pKa (1.0014, see above) indicating that in an apolar environment the intrinsic
value increases.Thus one may expect that the intrinsic KIE for an enzymatic
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Fig. 10.9 Decarboxylation of 4-pyridylacetic acid

Table 10.9 Heavy atom KIEs on decarboxylation of 4-pyridy-
lacetic acid at 25 ıC in water-dioxane solvents (Sicinska, D.,
Truhlar, D. G. and Paneth, P., J. Am. Chem. Soc. 123, 7683 (2001)
and J. Phys. Chem. B 106, 2708 (2002))

% Dioxane (v/v) 13C 18O 15N

0 1:0573 (0.989)a (1.0077)
25 1:0555 0.995 1.0019
50 1:0598 1.000 0.997
75 1:0605 1.003 0.994
100 1:0636 (1.004) (0.983)

aValues in parenthesis are theoretical estimations.

decarboxylation occurring at an hydrophobic active site should be slightly larger
than that for the corresponding reaction in water. Alternatively, the difference has
been attributed to an earlier transition state in the active site as compared to water.
The change in reactant form upon change of polarity of the environment (solvent in
the present case or an active site in case of an enzymatic process) is reflected in both
oxygen and nitrogen KIEs. The shift of the oxygen KIE to inverse value in water
corroborates the conclusion that the transition state is later with longer C � C bond
to carboxylic moiety than it is in dioxane (or the gas phase). The increasing value
of the nitrogen KIE with increasing water content originates in the large inverse
equilibrium isotope effect between the acidic and zwitterionic forms.

10.7.5 Bond Order Dependence of the KIE

It used to be postulated that the magnitude of the alpha-carbon KIE in an SN2 re-
action is an indication of the transition state symmetry. The expectation was that
this KIE reaches maximal value for a symmetric transition state and drops back to
unity for extremely early or late transition states. That expected behavior is marked
by the solid line in Fig. 10.10. However, recent calculations of the nucleophilic
substitution of chloride from methyl chloride by a broad variety of nucleophiles
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Fig. 10.10 Postulated (solid line) and calculated (points) ’-carbon KIEs for the reaction between
methyl chloride and various nucleophiles (Mattsen, O., et al. J. Org. Chem. 70, 4022 (2005))

show that the corresponding KIE values are closely grouped about the average value,
1:065˙ 0:005 (individual points in the figure). While these results actually do not
contradict the earlier expectations, they do indicate that the dependence across a
wide range of bond orders is flatter than expected and that most of typical nucle-
ophiles are not leading to sufficiently unsymmetrical transition states to observe
postulated fall-off in the KIE.

10.7.6 Mechanism of the Diels–Alder Reaction

The Diels–Alder reaction is the best known and most widely used pericyclic re-
action. Two limiting mechanisms are possible (see Fig. 10.11) and have been
vigorously debated. In the first, the addition takes place in concerted fashion with
two equivalent new bonds forming in the transition state (bottom center, Fig. 10.11),
while for the second reaction path the addition occurs stepwise (top row, Fig. 10.11).
The stepwise path involves the formation of a single bond between the diene (bu-
tadiene in our example) and the dienophile (ethylene) and (most likely) a diradical
intermediate, although zwitterion structures have also been proposed. In the last
step, ring closure results with the formation of a second new carbon carbon bond.
Either step may be rate determining.



10.7 KIE’s as Probes of Transition State Structure 337

Fig. 10.11 The stepwise and concerted mechanisms for the Diels–Alder reaction between butadi-
ene and ethylene. The reactants (lower left) proceed to the product, cyclohexene (lower right) either
through a two step, two transition state mechanism involving the formation of a diradical interme-
diate (top center), or more directly through the symmetric synchronous transition state (bottom
center) (Storer, J. W., Raimondi, L., and Houk, K. N., J. Am. Chem. Soc. 116, 9675 (1994))

When deuterium or tritium is substituted for hydrogen on either diene or
dienophile secondary isotope effects can be measured. These are expected to be
inverse, kH < kD, in the concerted process because the sp2 to sp3 change of hy-
bridization results in a frequency increase in the CH out-of-plane bending modes
and consequently an inverse effect (Section 10.4.1). Just the opposite effect is antic-
ipated for certain of the hydrogens on formation of the diradical intermediate. These
qualitative predictions have been verified by Houk and coworkers using quantum
mechanical ab initio calculations with Gaussian 6–31G� basis sets to determine
optimal geometry and force constants. These results were then employed to obtain
frequencies and thence isotope effects using methods described in Chapter 4 (see
also Section 10.8). The calculated transition state geometries and isotope effects at
two computational levels are shown in Fig. 10.12.

The experimentally observed secondary KIE’s are all inverse (or unity) as ex-
pected for a sp2 to sp3 hybridization change. The effects vary from 0.93 to 0.99
and are in good agreement with experiment. The KIE’s for the stepwise transition
state are either inverse or normal depending on the position of the isotope label.
As in the case of the concerted mechanism the centers involving sigma bond for-
mation show inverse effects, but normal KIE’s (	1:10 per D) are predicted at the
developing radical center because the out of plane bending constant of the radical
is less than that of an alkene. This last observation is in good agreement with mea-
surements on known radical producing reactions which vary between 1.06 and 1.13
per D. For the Diels Alder reaction between butadiene and ethylene, however, all
the observed 2o-D isotope effects are inverse, and lie between 0.9 and 1.0 per D.
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Fig. 10.12 (a) Transition state structures (C�C bond lengths) calculated at two levels for the
concerted and step-wise Diels–Alder reaction shown in Fig. 10.11 (Houk, K. N., Gonzalez, J., and
Li, Y., Accts. Chem. Res. 28, 81 (1995). The parenthesized values show results for calculations at a
much higher (and much more expensive) level. (b) Calculated secondary deuterium isotope effects,
kH=kD (per D) for the concerted and stepwise Diels–Alder reactions shown in Fig. 10.11 (Houk,
K. N., Gonzalez, J., and Li, Y., Accts. Chem. Res. 28, 81 (1995). The parenthesized values show
results for calculations at a much higher (and much more expensive) level)

The behavior described above has been verified by experiment and calculation on
numerous substituted dienes and dienophiles. For example Fig. 10.13 shows results
for 2o-D isotope effects on Diels–Alder reactions of 2-methyl-butadiene with cyano-
ethylene and 1,1-dicyano-ethylene. The calculated and experimental isotope effects
are in quantitative agreement with each other and with the results on (butadiene C
ethylene). In each case the excellent agreement between calculated and observed
isotope effects validates the concerted mechanism and establishes the structure of
the transition state as that shown at the bottom center of Fig. 10.11 and the left side
of Fig. 10.12a.
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Fig. 10.13 Experimental (top rows) and calculated secondary deuterium isotope effects, kH=kD

(per D) for concerted and stepwise Diels–Alder reactions (Houk, K. N., Gonzalez, J. and Li, Y., Ac-
cts. Chem. Res.28, 81 (1995). The experimental data are due to Gajewski, J. J., et al. J. Am. Chem.
Soc. 109, 5545 (1987), 111, 9078 (1989))

10.8 Remarks

10.8.1 Protocol of Harmonic TST Calculations of Kinetic
Isotope Effects

Numerous studies of primary and secondary isotope effects on group transfer
reactions (including hydride transfers), acidities, NMR shifts, equilibrium constants,
etc. have been reported but are not discussed in this chapter. Reports on extensive
theoretical calculations of ’- and “-2o KIE’s are available in the literature. As one
would expect from the theoretical development presented in Chapters 1 through 4,
and the examples already cited in this chapter, the isotope effects are described in
terms of vibrational differences consequent to isotope independent force constant
changes at the isotopically substituted positions during the transfer from reactant
to transition state. That quantitative description replaces more qualitative rational-
izations of the IE’s in terms of inductive or hyperconjugative electronic effects, or
steric effects. These different, better alternate, approaches are equivalent so long
as one clearly keeps in mind that the potential energy surface which describes the
reaction is isotope independent. It is in that sense that isotope effects are clearly
different from substituent effects, because for substituent effects the potential sur-
face differs from one group to another. We conclude with a brief discussion of
practical methods for calculation of kinetic isotope effects within transition state
theory (TST), employing the Born-Oppenheimer and harmonic oscillator approx-
imations, and following the methods most frequently employed in the literature.
One begins by generating an input file of atomic masses and approximate (first
guess) coordinates which forms the input for quantum mechanical optimization of
the Born–Oppenheimer surface describing the reaction. That process (and the fol-
lowing) must be carried out for both reactants and transition state. The optimization
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criterion is that the BO energy be at a minimum with respect to displacement
along any of the coordinates chosen to describe the system. The energy surface
is probed in the vicinity of the minimum to establish the gradients (which vanish
at the minimum) and the force constants. This involves the calculation of the en-
ergy at numerous points along each coordinate. A common program of choice for
the quantum mechanical optimization is Gaussian03. Still, it is to be noted that the
choice of software and quantum mechanical basis set functions is arbitrary and a
plethora of other programs and quantum packages, both commercial and distributed
free of charge, are available and are capable of performing these tasks. Once the BO
surface is optimized the force constant matrix, which is the matrix of second deriva-
tives of the energy with respect to coordinate displacement .fij D @2EBO=@xi@xj/ is
calculated. Many current programs (including Gaussian) employ (a set of 3 � 3N)
Cartesian coordinates centered on each atom. The Cartesian force constants and
the known masses of each atom in each isotopomer are used to calculate the set
of 3N normal mode frequencies for each of the isotopomers of interest using the
methods described in Section 3.3. If, alternatively, one chooses to carry out the cal-
culations employing, say, valence coordinates it becomes necessary to calculate the
set of G matrix elements as described in Section 3.4. The normal mode frequencies
are then obtained from the diagonalization of the GF matrix (see the discussion in
the neighborhood of Equation 3.43, Section 3.4, and Appendix 3A1.2). In either
approach one ends up with a set of normal mode frequencies for each of the iso-
topomers of interest. These frequencies are then used in Equation 4.79 (sometimes
called the complete equation) or its equivalent, Equation 4.77, to calculate equi-
librium isotope effects, or in Equation 4.146 to obtain TST kinetic isotope effects.
Recall that Equation 4.79 was obtained from Equation 4.77 by replacing isotopic
masses and moments of inertia by isotopic frequency ratios using the Teller–Redlich
rule (Equation 3.49). Calculations carried out using Equations 4.77 and 4.79 are
completely equivalent so long as the quantum mechanically calculated structures
are well optimized and the numerical analysis is carried out to sufficient preci-
sion. The many examples of theoretically calculated isotope effects described in
this chapter (and others), especially in Section 10.7, have employed these general
procedures. [For information regarding the programs Gaussian and GaussView see
http://www.gaussian.com. The program, Isoeff06 (see reading list), which can be
used to calculate isotope effects from input frequencies according to the Bigeleisen
equation (4.79), may be obtained from the Paneth group. In its present form it ac-
cepts output files of frequencies generated using Mopac, Gaussian, GAMESS, or
Jaguar computer packages.]

10.8.2 The TST/VTST Interface

Most of the calculations discussed in this chapter, and in Chapter 11, have
been carried out using the TST model. However the calculations on the hydro-
genic molecule-hydrogenic atom reactions reported in Table 10.1, which include
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accurate analysis of tunnel corrections (including multidimensional tunneling), have
employed the variational transition state theory VTST. Other TST and VTST calcu-
lations analyzing KIE’s of enzyme catalyzed reactions are presented in Chapter 11
(Sections 11.7 and 11.8). TST was introduced in Chapter 4 and VTST in Chapter 6.
The two theories were compared in the later chapter. VTST theory is broader than
TST theory, which in fact is a special case of VTST. In VTST the position of
the transition state is optimized on the Gibbs free energy surface rather than on the
potential energy surface. This difference has important implications for isotope
effect calculations. First, the saddle point on the isotope independent (Born–
Oppenheimer) potential energy surface that is usually obtained with majority of
quantum calculation packages, and which corresponds to the transition state in TST,
is not necessarily the transition state in VTST. Second, and even more important
for calculations of isotope effects, is the fact that the Gibbs free energy surface is
isotope-dependent and thus the position of the transition state may be different for
the light and heavy isotopomers. Those differences may be significant for very light
atoms (H/D) but for heavier particles are generally small or negligible. Apart from
this fundamental difference there is also the practical matter that VTST calculations
are far more tedious and expensive, and VTST methods (i.e. packages for computer
implementation) are not so widely available as are those for TST.

In the majority of cases, especially for isotope effects on heavy atoms, differ-
ences in location of the transition state for two isotopomers are expected to be
minimal (proton, hydride or H atom transfer excepted), and one expects that the
isotope effects calculated by VTST and TST should be very similar. However, the
most pronounced differences between VTST and TST calculations are obtained
for so-called “non-classical” effects, tunneling in particular. In principle, advanced
multidimensional treatment of tunneling can be incorporated into TST. However,
in practice, tunneling is usually approximated in TST calculations using a simple
one-dimensional correction based on the imaginary vibration which describes the
reaction coordinate (see Section 6.3). Such an approach usually significantly under-
estimates the tunneling contribution to the isotope effect. In this and the next chapter
we do not (have not) elaborate(d) on the type of theory used in calculations, the ma-
jority of the results which are discussed are from TST. Those examples where VTST
has been employed are carefully specified. To sum up, it seems generally recognized
that VTST is a more general and more elegant theory than TST but its application
is still not fully tested except for very simple systems, and the implementation of
VTST is much more cumbersome. Both approaches are useful (helpful) aids to the
interpretation of KIE’s and transition state structure.
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Chapter 11
Enzymes; Aqueous Solvent IE’S

Abstract This chapter introduces the basic principles used in applying isotope
effects to studies of the kinetics and mechanisms of enzyme catalyzed reactions.
Following the introduction of algebraic equations typically used for kinetic analy-
sis of enzyme reactions and a brief discussion of aqueous solvent isotope effects
(because enzyme reactions universally occur in aqueous solutions), practical exam-
ples illustrating methods and techniques for studying enzyme isotope effects are
presented. Finally, computer modeling of enzyme catalysis is briefly discussed.

11.1 Introduction

Enzymes are proteins that have evolved to catalyze specific chemical or biochemical
reactions that usually do not proceed at a reasonable rate in their absence. Enzymes
are extremely specific. The protein alone, called an apoenzyme, may posses biolog-
ical activity. More frequently, however, enzymes require the presence of additional
compounds called coenzymes, prosthetic groups, or cofactors during the reaction.
Such compounds may include metal cations, vitamins, NAD.P/C, etc. Together
with the apoenzyme they form biologically active holoenzymes. Amazingly, rate
enhancements of as much as 19 orders of magnitude have been observed for enzyme
catalyzed reactions, and thus it is not surprising that mechanisms of enzyme cataly-
sis are being vigorously explored. At the molecular level the mechanism by which
enzymatic catalysis is achieved is still debated, although in broad terms there is
general agreement that the catalysis is due to destabilization of reactants and/or sta-
bilization of the corresponding transition state in an enzyme/substrate complex.

All enzymatic processes are complex reactions that involve more than one step.
The substrate first binds to the enzyme, in the second step reaction occurs, and
finally products are released from the enzyme. This all happens at a catalytic cen-
ter in the enzyme which is termed the active site. Enzymes are usually very large
molecular systems, and may contain anywhere between several and several hun-
dred aminoacids. The active site is usually buried inside a bulky three dimensional
structure that shields the reactant-active site complex from the surrounding bulk
phase aqueous solution. It typically contains several aminoacids that are vital for

M. Wolfsberg et al., Isotope Effects: in the Chemical, Geological, and Bio Sciences,
DOI 10.1007/978-90-481-2265-3 11, c� Springer Science+Business Media B.V. 2009
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the reactivity. The remaining parts of the enzyme are believed to serve as nothing
more than a frame for the active site. In multiunit and/or multienzyme systems these
outer parts also play the role of an anchor which holds the different sections together.

11.2 Some Simple Enzyme Kinetics

11.2.1 Introduction: The Michaelis–Menten Mechanism

The simplest possible enzymatic reaction scheme was proposed in 1913 by
Michealis and Menten. They assumed the molecule undergoing reaction (the sub-
strate, S) is adsorbed reversibly on a specific site of the enzyme E to form a complex
ES whose decomposition into product P is rate controlling. The scheme resembles
that for unimolecular decomposition (see Chapter 14).

S C E
k1�������! ��������
k2

ES
k3���! E C P (11.1)

The rate constants k1 and k2 correspond to forward and reverse binding steps to
the enzyme, and k3 describes the rate of decomposition to product. The essential
assumption is that the complex concentration (ES) reaches steady state

dŒES


dt
D 0 D k1ŒE
ŒS
 � k2ŒES
 � k3ŒES
 (11.2)

so

ŒES
 D k1ŒE
ŒS


k2 C k3

(11.3)

The concentration of uncomplexed enzyme is ŒE
 D ŒE
0 � ŒES
 so

ŒE
0 D ŒE

�
1C k1ŒS


k2 C k3

�
and ŒE
 D ŒE
0

�
k2 C k3

k2 C k3 C k1ŒS


�
(11.4)

Substitution into Equation 11.3 yields

ŒES
 D k1ŒE
0ŒS


k2 C k3 C k1ŒS

D ŒE
0ŒS


k2 C k3

k1

C ŒS

D ŒE
0ŒS


KM C ŒS
 (11.5)

where the Michaelis constant KM D .k2 C k3/=k1. The rate of production of
product is

RATE D �.veloci ty/ D dŒP 


dt
D k3ŒES
 D k3ŒE
0ŒS


KM C ŒS
 (11.6)
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(In the equations describing enzyme kinetics in this chapter, the notation varies a bit
from other chapters. Thus v is accepted in the biochemical literature as the symbol
for reaction rate while Vmax is used for the maximum rate. Furthermore, for simpli-
fication frequently Vmax is truncated to V in complex formulas (see Equations 11.28
and 11.29). Although at first glance inconsistent, these symbols are familiar to stu-
dents of biochemistry and related areas. The square brackets indicate concentrations.
Vmax expresses the upper limit of the rate of the enzyme reaction. It is the product of
the rate constant k3, also called the turnover number, and the total enzyme concen-
tration, ŒE
0. The case �i D Vmax corresponds to complete saturation of all active
sites. The other kinetic limit, �i D .Vmax=KM/ŒS
, corresponds to KM >> ŒS
, in
other words Vmax=KM is the first order rate constant found when the substrate con-
centration approaches zero:

lim�i
ŒS�!0

D lim

�
�dŒS

dt

�

ŒS�!0

D Vmax

KM

ŒS
 (11.7)

Equation 11.6 shows that KM corresponds to the substrate concentration at which
the rate has fallen to half the maximum. The kinetic parameters Vmax and Vmax=KM

can be obtained by least squares regression of � vs. [S] plots or graphically by
linearizing Equation 11.6.

Figure 11.1 illustrates the behavior of Equation 11.6. By the assumption of rapid
equilibrium the rate determining step is the unimolecular decomposition. At high
substrate composition ŒS
 >> KM and the rate becomes zero-order in substrate,
� D Vmax D k3ŒE0
, the rate depends only on the initial enzyme concentration, and
is at its maximum. We are dealing with saturation kinetics. The most convenient
way to test mechanism is to invert Equation 11.6

1

�
D KM

k3ŒE
0ŒS

C 1

k3ŒE
0
(11.8)

and carry out rate measurements as a function of [S] at constant ŒE
0. From a plot
of 1=� vs. 1/[S] one recovers k3 from the intercept and KM by combining slope
and intercept. At the intercept the rate is at its maximum. An artificially constructed
example, including isotope effects, is shown in Fig. 11.2 which is an alternative
plot of the data in Fig. 11.1. In this case the experiment yields the rate constant
for the step of primary interest, which is the rate of catalysis at the enzyme ac-
tive site. By comparing measurements for, say, H and D labels on the substrate,
the enzyme, or both substrate and enzyme, the intrinsic isotope effect, k3H=k3D, is
straightforwardly obtained. Unfortunately, for more realistic (more complex) mech-
anistic paths a clean separation and singling out of the intrinsic isotope effect is
often not possible. This point is developed in the material which follows. The plots
shown in Fig. 11.2 provide the isotopic ratio of Michaelis constants .KM.H/=KM.D//,
but there is insufficient information to resolve the individual rate constants k1 and
k2 or their isotope effects. That requires further and more difficult experiments.
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Michaelis-Menten Isotope Effects
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Fig. 11.1 Michaelis–Menten kinetic behavior (Equation 11.6). The rate of product formation for
mechanism 11.1 is plotted vs substrate concentration (arbitrary units) for three cases: ŒE
0 D 2.
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Fig. 11.2 Reciprocal plots of Michaelis–Menten kinetic behavior (Equation 11.8). The recipro-
cal rate of product formation for mechanism 11.1 is plotted vs reciprocal substrate concentration
(arbitrary units) for the three cases specified in the caption of Fig. 11.1
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11.2.2 The Incorporation of Product Binding

A more realistic but still relatively simple model of enzyme catalysis includes
binding of both substrate and product as described by Equation 11.9. This reaction
is characterized by five individual rate constants; k1 and k2, and k4 and k5, corre-
spond to the forward and reverse binding steps of the substrate S and product P to
the enzyme E, respectively, while k3 expresses the irreversible chemical conversion
at the enzyme active site:

E C S
k1�������! ��������
k2

ES
k3�! EP

k5�������! ��������
k6

E C P (11.9)

The overall rate is

� D dŒP 


dt
D k5ŒEP 
 � k6ŒE
ŒP 
: (11.10)

(In Equation 11.9 we reserve the missing rate constant k4 for an elaboration of
the mechanism). Following Briggs and Haldane we make the assumption that the
steady-state approximation applies to ES and EP complexes:

dŒEP 


dt
D k3ŒES
 � k5ŒEP
C k6ŒE
ŒP 
 D 0 (11.11)

dŒES


dt
D k1ŒE
ŒS
 � .k2 C k3/ŒES
 D 0 (11.12)

Substitution into Equation 11.10 leads to:

� D dŒP 


dt
D �dŒS


dt
D k3ŒES
 D k1k3

k2 C k3

ŒE
ŒS
 (11.13)

With both intermediates in steady-state, the rate of loss of substrate is equal to the
rate of product formation. Also

ŒE
0 D ŒE
C ŒES
C ŒEP 
 D ŒE


0
BB@1C k1ŒS


k2 C k3

C
k1k3ŒS


k2 C k3

C k6ŒP 


k5

1
CCA (11.14)

Rearrangement of Equation 11.14 and substitution into Equation 11.13 gives:

� D
k3k5

k3 C k5

ŒE
0ŒS


k2 C k3

k1

� k5 C k6ŒP 


k3 C k5

C ŒS

(11.15)
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When initial rates .¤i/ are measured the concentration of product is negligible and

�i D
k3k5

k3 C k5

ŒE
0ŒS


k2 C k3

k1

� k5

k3 C k5

C ŒS

(11.16)

If, as sometimes reasonable, k5 is much faster than k3;

�i D k3ŒE
0ŒS


k2 C k3

k1

C ŒS

(11.17)

Finally, introduction of the commonly used symbols Vmax and KM yields the Briggs–
Haldane rate equation for enzymatic reactions (compare with Equation 11.6)

�i D VmaxŒS


KM C ŒS
 (11.18)

where for initial rates we have from Equation 11.15

Vmax D k3k5

k3 C k5

ŒE
0 D kcat ŒE
0 (11.19)

Vmax

KM

D k1k3

k2 C k3

(11.20)

The subscript on kcat in Equation 11.19 abbreviates “catalyzed”. Vmax is connected
with the rate determining step. For desorption much faster than catalysis, k5 >> k3,
Vmax D k3ŒE
0 which is the result found for the simpler Michaelis–Menten mecha-
nism, Section 11.2.1. If, however, k5 is commensurate with k3 the intrinsic catalysis
is damped by the weighting function k5=.k3Ck5/. Note that Vmax=KM “sees” events
through the first irreversible step as illustrated in Fig. 11.3. The same is true for the
isotope effects. These points are discussed in considerable detail by Northrop (see
reading list).

When Equations 11.19 and 11.20 are rewritten for isotopic light (L) and
heavy (H) species, the isotope effects are obtained by taking ratios, recognizing
ŒE0L
D ŒE0H
:

Vmax L



Vmax H D k3Lk5L

k3L C k5L



k3Hk5H

k3H C k5H

(11.21)

Vmax L

KML



Vmax H

KMH

D k1Lk3L

k2L C k3L



k1Hk3H

k2H C k3H

(11.22)
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Fig. 11.3 Energy diagram
for the reaction given in
equation 11.1. As usual in
diagrams of this sort energy
(ordinate) is plotted against
progress along the reaction
coordinate (See, for example,
Northrop, D. B. in Cleland,
W. W., O’Leary, M. and
Northrop, D. B. (reading list))

Vmax/KM

Vmax

or rewriting

Vmax L = Vmax H D .k3L = k3H /C .k5L = k5H / � .k3L = k5L/

1C k3L = k5L

(11.23)

Vmax L

KML

=
Vmax H

KMH

D .k1L = k1H /
.k3L = k3H / = .k2L = k2H /C .k3L = k2L/

1C k3L = k2L

(11.24)

11.2.3 A Simpler Notation

Before proceeding to more realistic reaction mechanisms which are usually more
complicated than either example above, some simplification in notation is advisable.
In chemical kinetics the right hand subscript on the rate constant is traditionally
reserved to identify a given step in the reaction scheme, e.g. k1. However, that same
location is often used, as in the example above, to identify isotopes in kinetic isotope
effects, e.g. k1L or k1H. This causes problems when treating more complex reactions.
Northrop has suggested a notation now widely used for enzymatic reactions. In this
notation the isotope effect is identified using the atomic mass of the heavy isotope
only (or its symbol, for hydrogen isotope effects) placed as the left-hand superscript.
Thus a nitrogen kinetic isotope effect on the rate constant corresponding to the nth
step in the kinetic scheme is represented by 15kn rather than kn14=kn15. Analogously,
a tritium equilibrium isotope effect is represented as TK.� KH=KT/. The system can
be a bit misleading since a single letter, k, is used to represent both isotopic ratios of
rate constants and the rate constants themselves. Even so, it is much easier to follow
than the traditional notation in complicated cases. Thus Equations 11.23 and 11.24
in the Northrop notation are given as:
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HVmax D
Hk3 C Hk5 � .k3L=k5L/

1C k3L=k5L

(11.25)

H�
Vmax

KM

�
D Hk1

Hk3=
Hk2 C .k3L=k2L/

1C k3L=k2L

(11.26)

or in the even shorter version that will be used throughout this chapter (omitting
subscripts on Vmax and KM and remembering that rate constants refer to the lighter
species)

HV D
Hk3 C Hk5 � .k3=k5/

1C k3=k5

(11.27)

H.V=K/ D Hk1

Hk3=
Hk2 C .k3=k2/

1C k3=k2

(11.28)

In studies of isotope effects on enzymatic processes it is frequently assumed that
substrate–enzyme binding processes do not introduce isotope fractionation. That
assumption is not generally true and some examples of binding isotope effects are
shown later in this chapter. However, since ordinarily no changes in covalent bond-
ing are associated with binding, these isotope effects are usually smaller than those
on chemical changes and can be neglected in first approximation. For the reaction
scheme of Equation 11.9 the following expressions result:

HV D
Hk3 C k3=k5

1C k3=k5

(11.29)

H.V=K/ D
Hk3 C k3=k2

1C k3=k2

(11.30)

11.2.4 The Intrinsic IE, Commitments, and Partitioning Factor

Using the various simplifications above, we have arrived at a model for reaction
11.9 in which only one step, the chemical conversion occurring at the active site of
the enzyme characterized by the rate constant k3, exhibits the kinetic isotope effect
Hk3. From Equations 11.29 and 11.30, however, it is apparent that the observed iso-
tope effects, HV and H.V=K/, are not directly equal to this kinetic isotope effect,
Hk3, which is called the intrinsic kinetic isotope effect. The complexity of the reac-
tion may cause part or all of Hk3 to be masked by an amount depending on the ratios
k3=k5 and k3=k2. The first ratio, k3=k5, compares the intrinsic rate to the rate of prod-
uct dissociation, and is called the ratio of catalysis, r.Dk3=k5/. The second, k3=k2,
compares the intrinsic rate to the rate of the substrate dissociation and is called
forward commitment to catalysis, cf.Dk3=k2/, or in short, commitment. The term
partitioning factor is sometimes used in the literature for this ratio of rate constants.
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If the overall reaction rate is controlled by step three .k3/ (i.e. if that is the rate
limiting step), then the observed isotope effect is close to the intrinsic value. On the
other hand, if the rate of chemical conversion (step three) is about the same or faster
than processes described by k5 and k2, partitioning factors will be large, and the
observed isotope effects will be smaller or much smaller than the intrinsic isotope
effect. The usual goal of isotope studies on enzymatic reactions is to unravel the ki-
netic scheme and deduce the intrinsic kinetic isotope effect in order to elucidate the
nature of the transition state corresponding to the chemical conversion at the active
site of an enzyme. Methods of achieving this goal will be discussed later in this
chapter.

11.3 More Complicated Enzyme Reactions

In the remaining part of our presentation of the formal kinetics of enzyme isotope
effects a few more complicated examples will be discussed. The methods developed
here should be also useful for unraveling other complicated enzyme reactions, and
in reading and understanding the modern literature on isotope effects on enzymatic
processes.

11.3.1 Reversible Reaction at the Active Site

We start with the case when chemical conversion at the active site is reversible.
By assuming the initial product concentration to be negligible we may neglect the
reversibility of product binding:

E C S
k1�������! ��������
k2

ES
k3�������! ��������
k4

EP
k5�! E C P (11.31)

Using the steady-state approximation for the concentrations of complexes ES
and EP:

dŒEP 


dt
D k3ŒES
 � .k4 C k5/ŒEP 
 D 0 (11.32)

and
dŒES


dt
D k1ŒE
ŒS
C k4ŒEP 
 � .k2 C k3/ŒES
 D 0 (11.33)

one obtains an expression for the apparent rate constant kapp (corresponding to V/K
in the development above)

�i D dŒP 


dt
D k5ŒEP 
 D k1k3k5

k2k4

�
1C k5

k4

�
1C k3

k2

�� ŒE
ŒS
 D kapp ŒE
ŒS


(11.34)
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Taking ratios of the apparent rate constants for light and heavy species we obtain:

Hkapp D H .V=K/ D
Hk1

Hk3
Hk5

Hk2
Hk4

�
1C k5H

k4H

�
1C k3H

k2H

�

1C k5

k4

�
1C k3

k2

�

D Hk1 �

Hk3
Hk5

Hk2
Hk4

C k5

k4

�
Hk3

Hk2

C k3

k2

�

1C k5

k4

�
1C k3

k2

� (11.35)

As before, the assumption that binding processes do not introduce apprecia-
ble isotope fractionation, i.e., Hk1 D Hk2 D Hk5, allows the simplification of
Equation 11.35:

Hkapp D

Hk3

Hk4
C k5

k4

�
Hk3 C k3

k2

�

1C k5

k4

�
1C k3

k2

� D
Hk3 C k3

k2
C

Hk3

Hk4

k4

k5

1C k3

k2
C k4

k5

D
Hk3 C cf CHK3=4cr

1C cf C cr

(11.36)

Equation 11.36 recognizes that Hk3=
Hk4 corresponds to the equilibrium isotope

effect, HK3=4 for the step containing rate constants k3 and k4. The rate ratio k4=k5

is the commitment for catalysis for the reaction that proceeds from products to
substrates, and therefore is called the reverse commitment to catalysis, cr. Also
cf D k3=k2 is the forward commitment to catalysis. Since we have assumed that
these steps are the only isotope sensitive ones, HK3=4 corresponds to the overall
equilibrium isotope effect, HK.

11.3.2 Ordered Sequential Reactions

Thus far only reactions involving a single substrate have been considered. Most
enzymatic reactions have two substrates. Unlike chemical processes, the sequence
in which the substrates bind to the enzyme may be important. If two substrates,
A and B, bind in a specific order (e.g., A binds first) as illustrated in Equation 11.37
the mechanism is called ordered sequential.

E
k1�������! ��������
k2

EA
k3B�������! ��������
k4

EAB
k5�������! ��������
k6

EI
k7�! E C P (11.37)
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Following a protocol analogous to the one used in developing Equations 11.32
through 11.36, the apparent rate constant and its isotope effects can be calculated:

kapp D k1k3k5k7

k2k4k6

n
1C k7

k6

h
1C k5

k4

�
1C k3ŒB�

k2

�io (11.38)

Hkapp D Hk1 �

Hk3

Hk2
Hk4

Hk5

�Hk7

Hk6

C k7

k6

�

.1C k7=k6/
C k5k7

k4.k6 C k7/

�
Hk3

Hk2

C k3ŒB


k2

�

1C k5k7

k4.k6 C k7/

�
1C k3ŒB


k2

�

(11.39)
One important difference between Equations 11.35 and 11.39 is that in the lat-

ter case the commitment is a function of the concentration of the second substrate
(i.e. the one which binds second and is labeled B in Equation 11.37, while in Equa-
tion 11.35 it is not.

Equation 11.39 reduces to 11.35 when steps labeled with rate constants k5–k7

are lumped together and treated as a unit, e.g.:

k05 D
k5k7

k6 C k7

and Hk05 D Hk5 �

�
Hk7

Hk6

C k7

k6

�
�
1C k7

k6

� (11.40)

Equation 11.40 is a special case of a more general mechanism discussed below in
which substrates bind to the enzyme randomly. However, to finish discussion of the
sequential ordered mechanism, Equation 11.37, we simplify as before, by assuming
that binding processes are isotopically insensitive. Equation 11.39 becomes:

Hkapp D

Hk5

�
Hk7
Hk6
C k7

k6

�

.1C k7=k6/ C k5k7

k4.k6 C k7/
�
1C k3ŒB


k2

�

1C k5k7

k4.k6 C k7/
�
1C k3ŒB


k2

� D
Hk0

5 C
k0

5

k4

�
1C k3ŒB


k2

�

1C k0

5

k4

�
1C k3ŒB


k2

�

(11.41)

If k3ŒB
=k2 is much larger than unity, then the forward commitment is given by
Equation 11.42:

cf D k05k3ŒB


k4k2

(11.42)

and depends linearly on the concentration of the substrate which binds second. In
this case it becomes possible to vary the commitment by changing initial concen-
tration of B and learn more details, e.g., in a series of experiments with different B
concentrations, extrapolation to ŒB
 D 0 leads to the value of the intrinsic isotope
effect.
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11.3.3 Random Binding

We now turn attention to a mechanism where the sequence of substrate binding is
not rigorously preserved, random binding. The formal kinetic scheme corresponding
to Equation 11.37 is:

E + P
k7E

EA

EA

k3Bk1A

k2

k9B
k8

k11A

k10

k4 EAB EI 
k5

k6
(11.43)

The apparent rate constant for mechanism 11.43 is complicated:

kapp D k5k7

k6 C k7

�
k1k3.k8 C k11A/C k9k11.k2 C k3B/

k2k4.k8 C k11A/C k8k10.k2 C k3B/

1C k5k7

k6 C k7

� .k8 C k11A/.k2 C k3B/

k2k4.k8 C k11A/C k8k10.k2 C k3B/

(11.44)

and we will not consider the general case where all steps can show kinetic isotope
effects, but rather begin by neglecting binding isotope effects. The result:

Hkapp D

Hk5

�
Hk7

Hk6

C k7

k6

�

.1C k7=k6/
C k5k7

.k6 C k7/

�
k4

1C k3ŒB
=k2

C k10

1C k11ŒA
=k8

�

1C k5k7

.k6 C k7/

�
k4

1C k3ŒB
=k2

C k10

1C k11ŒA
=k8

�

(11.45)
shows that the forward commitment is sensitive to the concentrations of both
substrates.

11.3.4 Comments

The principal goal of most studies of kinetic isotope effects on enzymatic reac-
tions is to deduce intrinsic rate constants, which, in turn, can be correlated with
the geometric features, that is the structure, of the corresponding transition states.
Formal kinetics provides several options for reaching this goal. For example, as
we have seen above, changes in concentration can diminish the commitment to the
point where the KIE experimental value corresponds directly to the intrinsic kinetic



11.3 More Complicated Enzyme Reactions 355

isotope effect. A second approach can be illustrated using Equation 11.30. If the ex-
perimental value H.V=K/ is known, then, formally speaking, this becomes a single
equation involving two unknowns, Hk3 and k3=k2.Dcf/, still assuming that only one
step is isotope sensitive. If two kinetic isotope effects of the same element in the
same position (e.g. Dk3 and Tk3) can be measured, then taking advantage of Sec-
tion 10.5, the set of three equations can be solved explicitly for all three unknowns:

H1.V=K/ D H1k3Ccf
1Ccf

H2.V=K/ D H2k3Ccf
1Ccf

H2k D .H1k/�

9>>=
>>;

(11.46)

where the Swain–Schaad exponent ¦ (Section 10.5) depends on the particular kind
of kinetic isotope effect. Thus ¦ 	 1:44 for H/D/T isotope effects and ¦ 	 1:9 for
primary heavy atom kinetic isotope effects, thus T k D .Dk/1:44. In Section 10.5
it was emphasized that this last result is only a first approximation to be applied to
large primary kinetic isotope effects. The value ¦ D 1:37 has been suggested for
secondary effects with tritium kinetic isotope effect of at least 10%.

11.3.5 Multiple Isotope Effects

In the approach above two different isotope effects of the same element substituted
at the same position in the substrate have been compared. In similar fashion mea-
surements of isotope effects of different elements on the same reaction can be used:

H1.V=K/ D H1k3Ccf
1Ccf

H2.V=K/ D H2k3Ccf
1Ccf

H1.V=K/H2 D
H2k3Ccf =H2k3

1Ccf =H2k3

9>>>=
>>>;

(11.47)

The third equation in Equation 11.47 represents a kinetic isotope effect of the first
isotopomer pair measured in the presence of the second (which IE has perturbed
the commitment). In order to make the changes in apparent commitment .cf=

H2k3/

sufficiently pronounced, deuterium is usually selected as the second isotope (H2).
The first, (H1), on the other hand, is usually a heavy-atom (e.g. 13C; 18O, etc.). Most
frequently this approach has been used for carbon kinetic isotope effects in which
case Equation 11.47 becomes:

13.V=K/ D 13kCcf
1Ccf

D.V=K/ D DkCcf
1Ccf

13.V=K/D D
13kCcf =Dk

1Ccf =Dk

9>>>=
>>>;

(11.48)
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If the isotope sensitive step is reversible the equations get more complicated and
cannot be solved explicitly for the intrinsic isotope effects (unless cfD 0, or the
equilibrium isotope effect is unity). The last two equations in Equation 11.48
demonstrate that a normal deuterium kinetic isotope effect diminishes the apparent
commitment if both isotopes are present. Thus 13.V=K/ is smaller than 13.V=K/D
when both isotope effects are related to the same step.

11.3.6 Multiple Isotope Effects, Different Steps

It is not always possible to determine intrinsic isotope effects. However, other use-
ful information about the reaction can still be obtained. Above we assumed a single
rate determining step sensitive to each isotope substitution. More frequently, how-
ever, the isotope sensitivity is found in different steps. Studies with multiple isotope
effects can be used to determine the sequence of steps. To illustrate, a more compli-
cated reaction scheme is needed:

E
k1ŒS��������! ��������

k2

ES
k3�������! ��������
k4

EI
k5�������! ��������
k6

EP
k7�������! ��������

k8ŒP�

E (11.49)

As a first example we discuss a mechanism in which the formation of the enzyme–
intermediate complex, EI, is sensitive to hydrogen isotopic substitution, while the
next step characterized by rate constants k5 and k6 exhibits a carbon kinetic iso-
tope effect. Expressions for the three kinetic isotope effects that can be determined
experimentally are:

D.V=K/ D
Dk3 C k3=k2 C DK � k4=k5 .1C k6=k7/

1C k3=k2 C k4=k5 .1C k6=k7/

13.V=K/ D
13k5 C k5=k4.1C k3=k2/C 13K � k6=k7

1C k5=k4.1C k3=k2/C k6=k7

13.V=K/D D
13k5 C k5=k4.

Dk3 C k3=k2/=
DK C 13K � k6=k7

1C k5=k4.Dk3 C k3=k2/=DK C k6=k7

9>>>>>>>>=
>>>>>>>>;

(11.50)

Equation 11.51 follows:

13.V=K/� 1
13.V=K/D � 1 D

D.V=K/
DK

(11.51)

A second example (where the step sensitive to carbon isotope substitution precedes
the one sensitive to hydrogen substitution) can be treated similarly. If we assume
that the conversion of ES to EI in scheme 11.49 (the step involving k3 and k4)
is characterized by a carbon KIE, while the following step (EI to EP) exhibits an
hydrogen KIE, the equations corresponding to Equations 11.50 and 11.51 are:
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D.V=K/ D
Dk5 C k5=k4.1C k3=k2/C DK � k6=k7

1C k5=k4.1C k3=k2/C k6=k7

13.V=K/ D
13k3 C k3=k2 C 13K � k4=k5 .1C k6=k7/

1C k3=k2 C k4=k5 .1C k6=k7/

13.V=K/D D
13k3 C k3=k2 C 13K � k4=k5.

Dk5 C DK � k6=k7/

1C k3=k2 C k4=k5.Dk5 C DK � k6=k7/

9>>>>>>>>=
>>>>>>>>;

(11.52)

13.V=K/� 13K
13.V=K/D � 13K

D D.V=K/ (11.53)

Equations 11.51 and 11.53 hold for even more complicated mechanisms even
though more rate constants enter Equations 11.50 and 11.52. The isotope sensitive
steps are not necessarily consecutive. Application of Equations 11.50 through 11.53
is illustrated later in this chapter.

11.3.7 Reversible Competitive Inhibitors

We conclude the discussion of formal kinetics with a practical consideration. When
two isotopomers simultaneously present in an enzyme substrate mixture compete
for the same active site on the free enzyme E, one can write:

E + PL

k3L

E + PH

k3H

E

ESL

ESH

k1LSL

k2L
k1HSH

k2H (11.54)

since in the formal sense isotopomers can be regarded as reversible competitive
inhibitors. In terms of the steady-state approximation, Equation 11.13 becomes:

�L D dŒPL


dt
D �dŒSL


dt
D k3LŒESL
 D k1Lk3L

k2L C k3L

ŒE
ŒSL
 (11.55)

�H D dŒPH 


dt
D �dŒSH 


dt
D k3H ŒESH 
 D k1Hk3H

k2H C k3H

ŒE
ŒSH 
 (11.56)

The same concentration of free enzyme enters both Equations 11.55 and 11.56.
Dividing and introducing Equation 11.20 yields:

�L

�H

D �dŒSL
=dt

�dŒSH 
=dt
D dŒSL


d ŒSH 

D dŒPL


d ŒPH 

D

VL

KL

ŒSL


VH

KH

ŒSH 


D H .V=K/
ŒSL


ŒSH 

(11.57)
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Equation 11.57 signifies that when the competitive method is used (i.e., both iso-
topomers are present simultaneously in the reaction mixture) the experimentally
determined kinetic isotope effect corresponds to the isotope effect on V/K regard-
less of the actual concentration of the substrate. In other words, one cannot measure
the isotope effect on Vmax using this method even when concentration is much larger
than the Michaelis constant KM.

11.4 Aqueous Solvent Equilibrium and Kinetic Isotope Effects

It is reasonable to expect that isotopic substitution on solvent molecules will affect
both equilibrium and rate constants. This is especially true for reactions in aqueous
media, many of which are acid or base catalyzed and therefore sensitive to pH or pD.
Furthermore H/D aqueous solvent isotope effects often display significant nonlin-
earity when plotted against isotope fraction of the solvent. The analysis of this effect
can yield mechanistic information. The study of aqueous solvent isotope effects is
particularly important in enzyme chemistry because enzyme reactions universally
occur in aqueous media and are generally pH sensitive.

11.4.1 H2O=D2O Solvent Effects on pH (pD) and pKa

The isotope effect on the acid dissociation constants for H2O and D2O has been
carefully measured by many workers, most notably Paabo and Bates working at the
US Bureau of Standards. Comparing the reactions 2 H2O D H3OC C OH� and
2 D2O D D3OC C OD� they found

�pKa D � logŒ.D3OC/.OD�/
 � .� logŒ.H3OC/.OH�/
/ D 0:958 (11.58)

In other words the acid dissociation constant of ordinary water, Ka.H2O/D 1 �
10�14, is about ten times larger than that of heavy water, Ka.D2O/D 1:10 � 10�15.
Thus the pH of ordinary water is pH D � log..H3OC// D � logŒ.1 � 10�14/1=2
 D
7:00 while pD for D2O is 7.48. This is a significantly large isotope effect and has
important consequences.

It is interesting that a plot of�pKa’s vs. pKa.H2O/ for a series of weak inorganic
acids D3PO4=H3PO4; D2PO4

�=D3PO4
�; DCO3

�=HCO3
�; D2O=H2O shows an

excellent straight line correlation. This lends credence to the numerical value quoted
in Equation 11.58. That correlation is shown in Fig. 11.4. On the other hand,�pKa’s
measured on a wide variety of organic acids scatter widely (Fig. 11.4). The correla-
tion for these organic acids is not well established (see the caption to the figure) and
many authors choose to approximate the effect by taking the average. For the 	100
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Fig. 11.4 Isotope effect on acid ionization constants. The heavy line through the large circles
correlates data on inorganic weak acids .D3PO4; D2PO4

�; DCO3
�; D2O/ due to Paabo, M. and

Bates, R. C. (J. Phys. Chem. 74, 706 (1970)),�pKa D 0:1537C0:0577pKa ; r2 D 0:9994. It yields
�pKa.D2O/ D 0:961 and pD.D2O/ D 7:481. The smaller data points refer to ionization of numer-
ous weak organic acids and have been measured or collected by Li, N. C., Tang, P. and Mathur, R.
(mid-size circles, J. Phys. Chem. 65, 1074 (1961)), Hogfeldt, E. and Bigeleisen, J. (squares, J. Am.
Chem. Soc. 82, 15 (1960)), Lowe, B. M. and coworkers (triangles, J. Chem. Soc:Trans. Far. Soc.
69, 1934 (1973); 70, 362 (1974); 71, 389 (1975)), or Laughton, P. M. and Robertson, R. E. (dots,
Solute-Solvent Interactions, Coetzee, J. F. and Ritchie, C.D. Eds., Marcel Dekker, NY, 1969). The
correlation through these data (not shown), �pKa D 0:40C 0:02 pKa; r2 D 0:239, is not reliable.
Most authors prefer a simple average <�pKa> D .0:56˙ 0:14/

organic acids plotted in Fig. 11.4 with pKa’s between 4 and 9,<�pKa>D0:5˙0:1,
i.e. on average the deuterated organic acids dissolved in D2O are only about 30% as
dissociated as their protiated sister compounds dissolved in H2O.

11.4.1.1 An Important Consequence

Many rate constants in aqueous solutions are pH or pD sensitive. In particular,
enzyme catalyzed reactions often show maxima in plots of pH(pD) vs. rate. The ex-
ample in Fig. 11.5 is constructed for a reaction with a true isotope effect, kH=kD D 2,
and with maxima in the pH(pD)/rate dependences as shown by the bell shaped
curves. These behaviors are typical for enzyme catalyzed reactions. When the iso-
tope effect is obtained (incorrectly) by comparing rates at equal pH and pD, the
values plotted along the steep dashed curve result. If, however, the rate constants at
corresponding pH and pD .pD D pHC 0:5/ are employed, a constant and correct
value is obtained, kH=kD D 2. Thus for accurate measurements of the isotope effects
one must control pH and pD at appropriate values (pD D pHC 0:5 in our example)
using a series of buffers. In proton inventory experiments (see below) buffers should
be employed to insure equivalent acidities across the entire range of solvent isotope
concentration .0 < xD < 1/; xD is the atom fraction of deuterium ŒD
=.ŒH
C ŒD
/.
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Fig. 11.5 Rate constants in HOH and DOD as a function of pL (two bottom bell shaped curves)
for an enzyme catalyzed reaction with three protomeric forms and an isotope effect of 2. L is the
HC or DC concentration as appropriate. The steep curve shows the erroneously calculated isotope
effect from the rate constants at pH D pD. The correct flat line is calculated taking the IE’s at
corresponding pL .pD D pH C 0:5/ (Schowen, R. L. J. Label Compd Radiopharm. 50, 1052
(2007), with permission Wiley Interscience)

11.4.2 Monoprotic Acid/Base Equilibria in Mixed Solvents

In the discussion which follows it is convenient to have a symbol to represent
any one of the three hydrogen isotopes, H, D or T, and L (lyonium or lyate) is
widely used for that purpose. Thus in a mixture of H2O and D2O the solvent
L2O consists of a mixture of H2O; D2O and HDO, and the ion L3OC, could be
either H3OC; H2DOC; HD2OC,or D3OC, while OL� represents the two species
OH� and OD�.

H2OCD2O D 2 HOD (11.59a)

2=3 H3OC C 1=3 D3OC D H2DOC (11.59b)

1=3 H3OC C 2=3 D3OC D HD2OC (11.59c)

The isotopic abundance of deuterium in the L3OC ion will differ from that in the
water with which it is equilibrated. This is expressed in terms of the fractionation
factor l which is the ratio of D/H ratios in the lyonium ion and the mixed solvent
(water)

l D .D=H/L3OC=.D=H/L2O D FL3OC.1 � x/=Œ.1 � F/L3OCx
 (11.60)
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In this equation FL3OC is the fraction D in L3OC and x the fraction D in the solvent.

x D �ŒD2O
C ŒHDO
=2
�
=
�
ŒD2O
C ŒHDO
C ŒH2O


�
(11.61)

FL3OC D
�
ŒD3OC
C 2ŒHD2OC
=3C ŒH2DOC
=3

�
=
�
ŒD3OC


CŒHD2OC
C ŒH2DOC
C ŒH3OC

�

(11.62)

The square brackets denote number of moles. With the use of the law of the geomet-
ric mean, which in this context implies that the equilibrium constants for reactions
11.59a through c are 4, 9/2 and 9/2 respectively, the mixed isotopomer species can
be eliminated and Equation 11.60 reduces to

l D �ŒD3OC
=ŒH3OC

�1=3

�
ŒH2O
=ŒD2O


�1=2

(11.63)

While not exact, KEQ for reaction 11.59a is actually 3.8 at 298 K, the approximation
is sufficiently accurate for our purposes. With this use of the law of the geometric
mean a good deal of algebraic complexity is avoided. Notice that l6 is the equilib-
rium constant for the reaction 2H3OC C 3D2O D 3H2OC 2D3OC.

Similar fractionation factors can be defined for other species. These are ordinarily
given the symbol “¥” in order to reserve “l” for solvent fractionation. Thus for an
acid dissociation in mixed media, ALj C L2O D L3OC C ALj�1

�

¥ALj D FALj.1 � x/=..1� FALj/x/ (11.64)

For the case of an acid AL with a single exchangeable hydrogen Equation 11.64
reduces to

¥AL D ŒAD
.1 � x/=.ŒAH
x/ (11.65)

Since the ratio of the acid dissociation constants of a monoprotic acid in pure H2O
to that in the mixed solvent is

KH=Kx D ŒH3OC
ŒAL
ŒŒL2O
=.ŒL3OC
ŒAH
ŒH2O
/ (11.66)

we can use Equations 11.59 through 11.64 to deduce

KH=Kx D .1 � xC x¥AL/=.1� xC xl/3 (11.67)

For pure D2O.x D 1/; KH=KD D ¥AL=l
3. This allows Equation 11.67 to be more

usefully written as

KH=Kx D .1 � xC x l3KH=KD/=.1� xC xl/3 (11.68)

The value of l has been determined by NMR measurements on the mixed solvent as
0:69˙0:02 and is not to be interpreted as an independent fitting parameter. With l es-
tablished, ¥ can be calculated from the acid dissociation constants in pure H2O and
D2O, and Equation 11.68 interpreted as a zero parameter theoretical prediction of
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IE on acid dissociation of Benzoic Acid

x = atom fraction D
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Fig. 11.6 The ratio of acid dissociation constant for benzoic acid C6H5COOL as a function of D
atom fraction in the solvent. The data are those of Lowe, B. M. and Smith, D. G., J. Chem. Soc.;
Faraday Trans. 71, 389 (1975) as determined by EMF (circles) and conductance (squares). The
heavy line is the prediction of Equation 11.61 with l D 0:69; ¥ D 1:02 and pKH D 4:201. The
lighter line shows the linear approximation

IE’s in mixed solvents. The success of the theory is illustrated in Fig. 11.6 using the
case of benzoic acid. The agreement between theory and experiment is quantitative.

11.4.2.1 Extension to Dissociation of Polyprotic Acids

For polyprotic acids, ALjCL2O D L3OCCALj�1
�, an analogous treatment to the

leading to Equation 11.67 gives

KH=Kx D .1 � xC x¥ALi/
j=..1� xC xl/3.1 � xC x¥AL.i�1//

j�1/ (11.69)

In pure D2O.x D 1/ this becomes KH=KD D ¥ALi
i=.l3¥AL.j�1/

j�1/. Consequently
the observed value of KH=KD can only be used to eliminate one, not both, of the
fractionation factors. The other must be considered as an adjustable parameter. That
accepted, the available experimental results are consistent with Equation 11.69.

11.4.3 Kinetic Isotope Effects in Mixed Solvents

To calculate the mixed solvent isotope effect on rate constants one applies
simple ideas from transition state theory to evaluate the isotope effect on the
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[Historical Vignette 11.1] Victor Gold (1922–1985) was born in Vienna but shortly after Hitler’s
Anschluss emigrated to Britain. He was educated at University and Kings Colleges, London, re-
ceiving his graduate degree in 1943. He joined the faculty at Kings in 1944 where he spent his entire
career, eventually rising to Head of Department and Dean of Faculty. Gold’s most important con-
tribution to isotope science was his development of the field of kinetic solvent isotope effects. He
presented generalized expressions for reactions in mixed .H2O=HOD=D2O/ solvents and brought
forward important ideas on isotope effects in acid/base reactions. (Pencil sketch courtesy of N. Van
Hook, 2009)

equilibrium constant between reactant (substrate) and transition state. Several dif-
ferent mechanisms are possible:

A-1 SC L3OC D .SLC/>
+ C L2O! Products

A-2 SC L3OC D .L2O � SLC/>
+ ! Products

For the A-1 mechanism the transition state involves only one hydrogen and the ratio
of rate constants follows analogously from Equation (11.67)

kH=kx D .1 � xC xl/3=
�
1� xC x¥>

+�
(11.70)

where kH is the rate in pure H2O and kx that in the mixed solvent. Notice
Equation 11.70 is similar to the reciprocal of Equation 11.67. That is because
the hydronium ion is now being considered as a reactant rather than a product. The

single proton fractionation factor for the transition state ¥>
+

can be obtained from

the observed rate in pure D2O; kH=kD D l3=¥>
+
. On the other hand if there are

multiple hydrogens involved in the transition state the rate ratios are deduced from
Equation 11.69. For two protons participating in the transition state

kH=kx D .1 � xC xl/3=
��
1 � xC x¥1

>+
� �
1 � xC x¥2

>+
��

(11.71)
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where the subscript “1” and “2” refer to the fractionation factors for the two transi-
tion state protons. Again, one, but only one, of these may be eliminated by using the
observed value of kH=kD. Extension to multiple protons participating in the transi-
tion state is straightforward.

It is obvious from the discussion that one can take advantage of equations of the
type (11.69), and its generalization to multiple sites, to deduce information about
the number of protons actively participating in the transition state, see Fig. 11.7.
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Fig. 11.7 Proton inventory curves (plots of k(n)/k(H) vs. n (or x) D atom fraction D) for overall
isotope effects of 2 (upper plot) and 10 (lower plot). In each, the three curves (reading from top
to bottom) are for single site, two site, and multi-site isotope effects. Error bars of ˙3% (middle
curves) are shown in each case. For k0=k1 D 2 the technique is unable to distinguish between the
curves at this level of precision (3%), but is more than adequate for k0=k1 D 10 (Schowen, R. L.,
J. Label Compd Radiopharm. 50, 1052 (2007), with permission Wiley Interscience)
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This technique is called the proton inventory method and has been employed with
success in studies of enzyme reactions. Numerous examples are cited by Quinn
(reading list).

11.5 Examples, Enzyme Catalysis

11.5.1 Decarboxylation KIE’s

Carbon kinetic isotope effects on enzyme-catalyzed decarboxylations are among the
most intensively studied enzyme reactions. This is because of the central role that
carbon dioxide plays in plant metabolism and also because precise kinetic measure-
ments are relatively easy to obtain since the carbon dioxide liberated in the reaction
can be immediately analyzed using isotope ratio mass spectrometry.

11.5.1.1 Enzyme Catalysed Conversion of L-Malate to Pyruvate

The practical usefulness of Equations 11.46 through 11.53 has been demon-
strated for the malic enzyme catalyzed conversion of L-malate to pyruvate
(Equation 11.72). Table 11.1 lists experimentally determined isotope effects for
this reaction. Comparison of carbon kinetic isotope effects for protio and deutero-
malate substituted at position 2 (the carbon that undergoes sp3 to sp2 transition)
rules out the possibility that the hydride transfer and the decarboxylation events
are concerted. This conclusion follows from Equation 11.48 which, for a concerted
reaction, predicts that 13.V=K/ should be smaller than 13.V=K/D, which is opposite
to the order observed experimentally.

There are two mechanistic possibilities left, either hydride transfer precedes
decarboxylation, or vice versa. These two possibilities can be distinguished using
Equations 11.51 and 11.53. Within experimental error only Equation 11.51 is con-
sistent with the isotope effect data collected in Table 11.1, thus confirming that the
reaction proceeds via a stepwise mechanism with hydride transfer to triphosphate
nucleotide .NADPC/ and intermediate formation of oxalacetate preceding decar-
boxylation:

Table 11.1 Isotope effects
on malic enzyme catalyzed
conversion of L-malate to
pyruvate (Hermes, J. D. et al.
Biochemistry 21,
5106 (1982))

Isotope effect Experimental value
13.V=K/ 1.0302
13.V=K/D 1.0250
D.V=K/ 1.47
13K 0.999
DK 1.18
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[Historical Vignette 11.2] Frank Westheimer (1912–2007) earned a Ph.D. from Harvard in
1935. On leaving for Columbia University as a National Research Fellow, James Bryant Conant,
who had been his research advisor, and was then president of Harvard, asked him what he planned
to do next. “I described my research project to him,” Westheimer recalled. “He thought about my
answer for a minute, then he said, ‘If you are successful, you’ll be a footnote to a footnote in
the history of chemistry.”’ Westheimer did the project and it was successful. “Conant was right,”
he said. “It was an utterly trivial piece of research. As a result, I decided I would never again
undertake research that wasn’t at least potentially important,” and he did not. Westheimer was
at the University of Chicago from 1936 to 1953. He returned to Harvard in 1953 as a visiting
professor and never left. Until his retirement in 1983, he kept getting good ideas and making
seminal discoveries about once every decade. Westheimer was at the forefront of the development
of physical-organic chemistry and was one of the early users of isotope effects in the detailed
study of reaction mechanisms. In the 1950s he broadened his field of interest to include the study
of enzyme reactions and biochemistry. Here too, his pioneering studies had a profound and lasting
impact – this time on biological and biochemical processes. (Photo credit: Harvard News Office)
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CO2NADP+

NADPH

CO–
2

(11.72)

It is historically noteworthy that it was experiments with [2-D]-L-malate that led
to the discovery of the equilibrium perturbation method (Section 7.1.4). As can be
seen in Fig. 11.8 the perturbation is only a few �molar although the isotope effect
is quite sizable.

11.5.2 Glucose-6-Phosphate Dehydrogenase

As mentioned in Section 11.3.5 for the case where the rate determining step is
sensitive to both isotopic species, elucidation of the intrinsic isotope effects is not
possible using the equations given thus far (if neither the reverse nor the forward
commitment is zero). Even then, however, it is possible to solve for the intrinsic iso-
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Fig. 11.8 Equilibrium perturbation trace for deuterated L-malate reaction catalyzed by malic
enzyme. The equilibrium perturbation technique is discussed in Section 7.1.4. The label on the or-
dinate, �M has been recalculated from the change in absorbance of TPNH at 340 nm (Schimerlik,
M. I., Rife, J. E. and Cleland, W. W. Biochemistry 14, 5347 (1975))

tope effects given additional isotope effect data. One such example is the reaction
catalyzed by glucose-6-phosphate dehydrogenase:

C

NH NH+

CH2

O
Asp177

G6P

His178

NAD(P)
+

His240

O–

–O–O

O

O
O

O

CH2

CONH2

N:HN

+ N
H

H

P

(11.73)

Isotope effects on both the carbon and hydrogen of the breaking C-H bond have
been measured. However, for this reaction both forward and reverse commitments
are sizable so the three equations corresponding to Equation 11.48 have four
unknowns; the forward and reverse commitments and two intrinsic isotope effects.
Measurements of the secondary deuterium kinetic isotope effect (at position 4 of
nicotinamide ring of NADPC) and the carbon kinetic isotope effect with the sec-
ondary position deuterated introduce two additional equations, but only one more
unknown:

13.V=K/ D
13k C cf C cr

13K

1C cf C cr

D.V=K/ D
Dk C cf C cr

DK

1C cf C cr

˛D.V=K/ D
˛Dk C cf C cr

˛DK

1C cf C cr

13.V=K/D D
13k C cf =Dk C cr

13KDK=Dk

1C cf =Dk C cr
DK=Dk

13.V=K/D D
13k C cf =˛Dk C cr

13K˛DK=˛Dk

1C cf =˛Dk C cr
13K˛DK=˛Dk

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

(11.74)
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Table 11.2 Observed and intrinsic isotope effects on the glucose-6-phosphate
dehydrogenase reaction (Hermes, J. D. and Cleland, W. W. J. Am. Chem.
Soc. 106, 7263 (1984))

Observed

Isotope effects Kinetic Equilibrium Evaluated intrinsic
13.V=K/D 1:0316
13.V=K/’D 1:0176
13.V=K/; 13K; 13k 1:0165 0:992 1:041˙ 0:002
D.V=K/; DK; Dk 2:97 1:28 5:3˙ 0:3
’D.V=K/; ’DK; ’Dk 1:000 0:887 1:05˙ 0:04

Equation 11.74 allows for an explicit solution for all five unknowns. The intrinsic
values obtained are listed in Table 11.2 together with the experimental ones. In addi-
tion to these intrinsic values of kinetic isotope effects to be used in further analysis
of the transition state structure, the commitments were calculated as cf D 0:8˙ 0:3
and cr D 0:5˙ 0:3.

11.5.3 Concentration Dependence of KIE;
Phosphoenolpyruvate Carboxylase

Another technique for unmasking the intrinsic isotope effect is to study the con-
centration dependence of the observed kinetic isotope effect (see Section 11.3.2).
This is straightforward for reactions with ordered reactant binding. In that case
lowering the concentration of the substrate binding in the second step lowers the
commitment (see Equations 11.37 through 11.42). Table 11.3 illustrates the depen-
dence on bicarbonate concentration for the bridging oxygen kinetic isotope effect
on the phosphoenolpyruvate carboxylase (PEP-C) catalyzed reaction between bi-
carbonate and phosphoenolpyruvate leading to oxalacetate and inorganic phosphate
(O’Leary and Paneth, reading list):

O

CO–
2

CH2CO–
2

CO–
2

CH2
2–O3PO +   HCO–

3 HPO4
2– +

(11.75)
There are several interesting aspects to this study. The dependence on bicarbonate
concentration can be described formally by introducing Equation 11.42 into
Equation 11.41 and assuming that only the reaction specified by rate constant
k5 is isotope sensitive:



11.5 Examples, Enzyme Catalysis 369

Table 11.3 Kinetic isotope effects on Zea mays PEP-C
catalyzed reaction at pH 7.5 (O’Leary, M. H. and Paneth,
P., Bioact. Mol. 3, 303 (1987). Gawlita, E., Caldwell, W.
S., O’Leary, M., Paneth, P., and.Anderson, V. E., Biochem-
istry, 34, 2577 (1995))

ŒHCO3
�
 (mM) 18O-KIE [1-13C]-KIE

200 0.9943 0.9951
8 1.0043 0.9975
2 1.0056 0.9950

18kapp D 18.V=K/ D
18k5 C k3k5ŒHCO

�
3 


k2k4

1C k3k5ŒHCO
�
3 


k2k4

(11.76)

However, although Equation 11.76 gives a qualitative explanation of the change
in the observed isotope effect and can be used to calculate the intrinsic oxygen
kinetic isotope effect, it suffers from one important criticism. Since 18k5 is normal
(larger than unity) at high bicarbonate concentration (i.e. when k3k5ŒHCO3

�
=k2k4

is much larger than the intrinsic isotope effect), the observed isotope effect should
be “washed out” to unity. Instead, the limiting observed isotope effect is inverse
(less than unity). This was explained by invoking an inverse isotope effect on PEP
binding to the enzyme, which leads to a modified expression:

18kapp D 18.V=K/ D 18k1

18k5 C k3k5ŒHCO
�
3 


k2k4

1C k3k5ŒHCO
�
3 


k2k4

(11.77)

The solution of Equation 11.77 for all unknowns yields 1.013, 0.994, and 0.06 for
the intrinsic IE’s of 18k5 and 18k1, and k3k5=k2k4 [mM], respectively.

Oxygen isotope effects in Table 11.3 were determined with the remote labeling
technique (Section 7.2.2.2) using doubly labeled substrate. This permitted straight-
forward use of high precision isotope ratio mass spectrometry employing CO2

analysis. Direct measurement of the isotope effect of oxygen in the C-O-P bridge
position in phosphoenolpyruvate is not easy. Instead remote label carbon kinetic
isotope effects were employed. Two labeled isotopomers 1 and 2 were mixed in
pseudo-natural isotopic composition of carbon (1:90). Isotopomer 1 was simultane-
ously labeled with carbon-13 in the carboxylic carbon and with oxygen-18 in the
bridging C-O-P position. Isotopomer 2 was C-13 depleted in carboxylic carbon.
Isotope ratios of the phosphoenolpyruvate carboxylic carbon liberated enzymat-
ically thus reported on both the oxygen and carbon isotope effects. In separate
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measurements the carbon kinetic isotope effects in the carboxyl position were
measured using natural abundance C-13. The two sets of carbon isotope effect data
were combined and used to evaluate the oxygen isotope effects.

O18O3P2–

13CO2
–

O3PO
2–

12CO2
–

1 2

A sizable isotope effect on 18k5 has been interpreted as an evidence of substantial
charge development on the oxygen atom in the transition state. The inverse iso-
tope effect on binding PEP to the enzyme corroborates similar findings for pyruvate
kinase and the equilibrium oxygen binding isotope effect determined for oxam-
ate binding to lactate dehydrogenase (also slightly inverse). It is worth noting that
binding isotope effects documented in the literature frequently come from studies
involving remote labeling. This is not surprising; one usually chooses a site for the
reporting atom that is easy for isotopic analysis and which is expected to show little
or no isotope effect. The same is true for remote labeling studies using radioactive
isotopes. For example, in a recent report on catalysis by methylthioadenosine/S -
adenosylhomocysteine nucleosidase (MTAN) (Schramm, V. L. et al. Biochemistry
44, 11647 (2005)):

(11.78)

the nitrogen kinetic isotope effect was measured using doubly labeled Œ9-15N,
50-14C
- and Œ5-3H
 substrates and correcting the observed multiple isotope effect
with that determined for the Œ50-3H
-; Œ50-14C
-labeled pair. Assuming the rule of the
geometric mean, product analysis yields the desired isotope effect for nitrogen-15.
Other isotope effects in Equation 11.78 have been determined using double counting
liquid scintillation techniques (see Figure 11.9):
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1.015 ± 0.002

3H

3H

3H 3H5´
3H5´

O4´
14C

C5´

3H4´

3H3´ 3H2´

3H1´

N9

N7

N

N

NH2

HO

CMe

S

OH

1.051 ± 0.002

1.010 ± 0.002
1.018 ± 0.006

1.004 ± 0.003

1.16 ± 0.004

1.044 ± 0.004 (11.79)

The results in Equation 11.79 show that the reaction 11.78 proceeds via a
dissociative (DN

�AN or as commonly called SN1) mechanism with no involve-
ment of either the leaving group or the attacking nucleophile at the transition
state. Based on these results a series of transition state analog inhibitors have been
designed. This successful practical application of the information regarding the
transition state structure gathered from kinetic isotope effect studies resulted in a
thousand-fold improvement of the inhibitor binding constant! This type of study is
of particular importance in drug design, where the objective is to find a substance
of the largest possible bioactivity. Because all pharmaceuticals have some kind of
side effects, minimization of the necessary dose is one of the prime objectives, the
other being specificity of their action. More details are given later in this chapter.

11.5.4 Other Factors Influencing Commitment

Perturbation of the commitments can be achieved experimentally in several ways.
If the rate constants involved in commitment have different activation energies the
commitment will change with temperature. Many enzymatic reactions involve pro-
ton shuffling and changes in pH can lead to changes of commitment. Of course,
formally speaking, this is only one more example of a change in concentration
(this time of protons). Other changes may include varying the solvent, e.g., use of
D2O instead of H2O, the cofactor (metal), the enzyme (e.g., mutations), or the sub-
strates. A few of these approaches are nicely illustrated by the carbon kinetic isotope
effects on the orotidine 50-monophosphate decarboxylase (ODCase) reaction that
catalyses conversion of OMP (orotidine 50-monophosphate) to UMP (uridine 50-
monophosphate), see Equation 11.80. As can be seen from the data in Table 11.4
which refers to Saccharomyces cerevisiue enzyme, lowering the pH from its phys-
iological value of 6.8 to 4.0 increases the carbon isotope effect substantially. The
change was interpreted as evidence that the chemical step is rate-limiting at low
pH and the observed kinetic isotope effect of about 1.05 is thought to be the in-
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Table 11.4 13C kinetic
isotope effects on the
ODCase reaction (Smiley,
J. A., Paneth, P., O’Leary, M.,
Bell, J. B. and Jonesn, M. E.,
Biochemistry 30,
6216 (1991))

pH 0 ıC=H2O 25 ıC=H2O 25 ıC=D2O

7:4 – 1:022

6:8 1.037 1:025

6:0 – 1:027

5:4 1.044 1:038

4:0 1.049 1:051

7:5a – 1:043 1.034
aEhrlich, J. J., Hwang, C. C., Cook, P. F. and Blanchard, J.
S., J. Am. Chem. Soc. 121, 6966–6967 (1999).

trinsic value of this isotope effect. Note that similar dependence is observed at
0 ıC although the KIE values are different due to temperature dependence of the
commitments.

Another way of perturbing the commitments is solvent deuteration. Change of
the carbon kinetic isotope effect in the case of E. coli enzyme indicates that the
proton transfer precedes the decarboxylation step:
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(11.80)

The detailed mechanism of this reaction has become the subject of vigorous debate
since these isotope effects were first published. It has been chosen for detailed the-
oretical analysis in several QM/MM studies of enzyme catalyzed reactions.

11.6 Solvent Kinetic Isotope Effects in Enzyme Reactions
(See Also Section 11.4)

As a practical matter of cost, studies on solvent isotope effects are usually lim-
ited to D/H substituted solvents, although recently a few 18O solvent effects have
been measured. Interpretation of enzymatic solvent isotope effects is even more
complicated than it is when the isotopic probe is incorporated in the substrate(s).
This is because enzyme proteins have many exchangeable protons and, also, this is
frequently true for reactants (substrates). Thus the observed isotope effect is the col-
lective result of many different isotopic substitutions, each of which may influence
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the reaction in different ways. Another important issue in solvent effects is the fact
that hydrogen bonds play an important role in maintaining conformational stability
of proteins. Thus one might question if the conformation of the protein is the same
in H2O and D2O. Furthermore, pKa values of aminoacids are affected by the iso-
tope composition of the aqueous solvent (see Section 11.4.1 and Fig. 11.4). Each of
these factors can be reflected in different reactivity of the corresponding functional
groups. The physical properties of water, properties such as viscosity, dielectric con-
stant, specific heat, etc., are isotope sensitive and these differences must be taken
into account in the interpretation of solvent KIE data. In spite of these difficulties,
however, solvent kinetic isotope effects yield valuable information about reaction
mechanisms. This is especially true for the enzyme reactions because of the dif-
ferent mechanistic information embedded in isotope effects on Vmax and Vmax=KM.
The basic theory underlying solvent kinetic isotope effects has been provided in
Section 11.4; a few additional examples for enzyme reactions follow.

11.6.1 Examples

Table 11.5 lists three examples of solvent isotope effects showing a wide range of
values. SrtA transpeptidase catalyzes attachment of surface proteins to the pepti-
doglycan layer of gram-positive bacteria. The large inverse solvent isotope effect
on V/K has been attributed to an equilibrium isotope effect on the interconversion
of thiol and thiolate forms of cysteine C184. This conclusion comes from large in-
verse fractionation factors, 0.55, observed for the sulfhydryl groups in cysteine. The
solvent isotope effect on Vmax is closer to unity (thus “smaller” when the effect is
thought of as a deviation from unity) which indicates that a different step, with little
or no fractionation is mostly rate-determining. Proton inventories have been mea-
sured for this enzyme and the results are presented in Fig. 11.9. The plot of Vmax

in mixed H2O=D2O solvents of different deuterium content is linear. This indicates
that a single proton is involved in the rate-determining step.

A similar analysis applies to C13S mutated tetrachlorohydroquinone dehalo-
genase but normal rather than inverse solvent isotope effects are involved. This

Table 11.5 Selected solvent isotope effects on some enzyme catalyzed reactions

Enzyme DOD.V=K/ DODV

Staphylococcus aureus transpeptidase SrtAa 0.57 0.89
Enterobacter cloacae P99 “-lactamaseb 0.79 1.44
C13S tetrachlorohydroquinone dehalogenasec 4.42 2.87
aFrankel, B. A., Kruger, R. G., Robinson, D. E., Kelleher, N. L. and McCafferty,
D. G.. Biochemistry 44, 11188 (2005).
bAdediran, S. A., Deraniyagala, S. A., Yang, W. and Pratt, R.. Biochemistry 35,
3604 (1996).
cKiefer, P. M., Jr., McCarthy, D. L. and Copley, S. D.. Biochemistry 41,
1308 (2002).
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Fig. 11.9 Proton inventory on SrtA catalyzed reaction. The ratio of kCAT D KM (Section 11.2,
Equations 11.9 through 11.13) measured in a D2O=H2O solvent mixture of mole fraction n D2O to
that measured in H2O.n D 0/, is plotted vs. n (Frankel, B. A., et al. Biochemistry 44, 11188 (2005))

dehalogenase enzyme catalyzes the second and third steps in the biodegra-
dation of a pesticide, pentachlorophenol, by Sphingobium chlorophenolicum.
It uses tetrachlorohydroquinone and trichlorohydroquinone as substrates (see
Equation 11.81):

OH
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(11.81)

An SNAr (nucleophilic substitution at aromatic carbon atom) mechanism has been
proposed for these reactions. Both nonenzymatic and enzymatic reactions that pro-
ceed via this mechanism typically exhibit inverse solvent kinetic isotope effects.
This observation is in agreement with the example above since the thiolate form
of glutathione plays the role of the nucleophile role in dehalogenation reactions.
Thus values of solvent kinetic isotope effects obtained for the C13S mutant, which
catalyzes only the initial steps of these reactions, do not agree with this mechanism.
Rather, the observed normal solvent isotope effect supports a mechanism in which
step(s) that have either no solvent kinetic isotope effect at all, or an inverse effect,
and which occur after the elimination step, are kinetically significant and diminish
the observed solvent kinetic isotope effect.
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[Historical Vignette 11.3] W. Wallace Cleland (1930–present) received his A.B. from Oberlin
College in 1950 and his M.S. and Ph.D. from the University of Wisconsin-Madison in 1953 and
1955, respectively. After a postdoctoral fellowship spent at the University of Chicago he returned
to Madison to join the faculty where he remains and is still actively involved in research. Cleland
has devoted a great deal of time to developing and using isotope effect techniques to study en-
zyme mechanisms, see for example J. Biol. Chem. 278, 51975 (2003). (Photo credit: Biochemistry
Department, University of Wisconsin, Madison)

11.6.2 Coupled Motion

Solvent isotope effects can sometimes reveal the effects of coupled motion and tun-
neling in enzymatic reactions. For example, consider the H/D solvent IE on the set
of carbon isotope effects in the reaction catalyzed by glucose-6-phosphate dehydro-
genase presented in Table 11.2. The experiments in D2O yielded an intrinsic value
of the primary deuterium kinetic isotope effect Dk.D2O/ D 3:7 (Table 11.6) which
differs substantially from the value obtained in H2O; Dk.H2O/ D 5:3 (Table 11.2).
If deuteration of the solvent affected only the commitments, the intrinsic values of
the isotope effects in D2O and H2O would be identical within experimental error.
Thus the large solvent isotope effect on the intrinsic primary hydrogen kinetic iso-
tope effect can be explained in terms of coupled motion of the hydrogen atoms in the
transition state and tunneling. This is because the probability of simultaneous tun-
neling of two or more hydrogens is lower than is the probability of each tunneling
separately.

Table 11.6 Observed and intrinsic kinetic isotope effects on the glucose-
6-phosphate dehydrogenase reaction in D2O (Cleland, W. W. in Cook,
P. F., Ed., Enzyme Mechanism from Isotope Effects CRC Press, Boca Raton
FL, 1991. Hermes, J. D. and Cleland, W. W. J. Am. Chem. Soc. 106,
7263 (1999))

Isotope effects Observed Evaluated intrinsic
13.V=K/D 1.0242
13.V=K/’D 1.0114
13.V=K/; 13k 1.0110 1:044˙ 0:004
D.V=K/; Dk 1.81 3:7˙ 0:3
’D.V=K/; ’Dk 0.98 1:00˙ 0:04
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For this reaction the transition state drawn in Equation 11.82 involving simul-
taneous proton and hydride transfers has been proposed to explain the observed
isotope effects.
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(11.82)

11.7 Tunneling (See Also Section 11.8)

Not only primary but also secondary hydrogen isotope effects can be indicative of
tunneling. The most frequently employed criteria of tunneling are the temperature
dependence of kinetic isotope effects and the isotopic ratio of the pre-exponential
factors in Arrhenius plots, but the pre-exponential criterion has been shown to be
invalid for small secondary isotope effects.

11.7.1 Tunneling in Alcohol Dehydrogenases

Probably the most extensively studied enzymes are those from alcohol dehydro-
genase family. One enzyme from this series which has been thoroughly examined
both experimentally and theoretically is liver alcohol dehydrogenase (LADH). It
catalyzes the reversible conversion of an alcohol to an aldehyde by transferring hy-
dride from substrate to the cofactor .NADC/:
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(11.83)
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Table 11.7 Primary and secondary KIEs and exponents for the
oxidation catalyzed by LADH at 298 K

Calculateda Experimentb

Primary kH=kD 3:8˙ 0:7
kH=kT 7.5 7.1
kD=kT 1.7 1:9˙ 0:01

Secondary kH=kT 1.36 1.33
kD=kT 1.08 1.07

Exponent ’prim 3.6 3.1
’sec 4.2 4.1

aCalculated using canonical variational transition state theory
VTST (Garrett, B. C. and Truhlar, D. G., J. Chem. Phys.,
70, 1593 (1979); J. Phys. Chem., 83, 1052 (1979)) with mi-
crocanonically optimised multidimensional tunnelling (�OMT)
approximation. (Fernandez-Ramos, A., Ellingson, B. A., Gar-
rett, B. C. and Truhlar, D. G. in Reviews in Computational
Chemistry, Lipkowitz, K. B. and Cundari, T. R. Eds. Wiley-
VCH, Hoboken, NJ, 2007, pp. 125–232.
bCleland, W. W. in Cook, P.F., Ed., Enzyme Mechanism from
Isotope Effects CRC Press, Boca Raton, FL, 1991.

LADH is a metalloenzyme containing two Zn atoms. One Zn atom plays a structural
role, while the other is catalytically important because it interacts with the oxygen
atom of both the reactant (alcohol) and the product (aldehyde). The rate of ethanol
dehydrogenation using wild-type LADH is limited by the rate of release of prod-
uct. In contrast the chemical step becomes rate-determining when benzyl alcohol
or para-substituted benzyl alcohols are used as the substrate, or when hydropho-
bic residues surrounding the active-site binding pocket are mutated. Primary KIEs
observed for the hydride transfer step in various alcohol dehydrogenase transfor-
mations of benzyl alcohol and para-substituted benzyl alcohols lie in the range
kH=kD D 3:2 ˙ 0:5, and kH=kT D 7:4 ˙ 0:4. For secondary KIEs the rate ratios
are 1:25˙ 0:05 and 1:35˙ 0:05, respectively. Rucker and Klinman inferred signifi-
cant tunneling contributions to the process primarily from two observations. Firstly,
the exponent,¦ defined as ¦ D ln.kH=kT/= ln.kD=kT/ from the Swain–Schaad rela-
tionship was found to lie at or well above values around 3.3 which W. H. Saunders
has suggested is the upper limit in the absence of tunneling. Secondly, the ratio of
Arrhenius pre-exponential factors AH=AT for the primary KIE was observed to have
a value as low as 0.5, whereas a value smaller than 0.6 is considered the lower clas-
sical limit. Both observations suggest an appreciable part of the reaction proceeds
via tunneling. Calculations summarized in Table 11.7 support that conclusion.

11.7.2 Hydrogen Atom Transfer in Methylmalonyl-CoA Mutase

Historically, the intervention of tunneling has usually been invoked when the ob-
served KIE exceeded limits set by semi-classical theory. A recent example is
the hydrogen atom transfer step in methylmalonyl-CoA mutase (MCM) catalyzed



378 11 Enzymes; Aqueous Solvent IE’S

isomerization of methylmalonyl-CoA to succinyl-CoA:
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methylmalonyl-CoA mutase

(11.84)

This enzyme belongs to the coenzyme B12-dependent family of enzymes. In the
initial, pre-steady-state phase of the reaction two steps occur. The first is homolysis
of the Co-C bond present in the AdoCbl, resulting in the reduction of Co(III) to
Co(II) and the formation of two radicals, one located on the cobalt atom and the
other in the deoxyadenosyl group (Ado). In the following step, the Ado radical ab-
stracts a hydrogen atom from the substrate to generate the substrate radical. These
two steps are illustrated in Scheme 11.85. The substrate radical formed in step 2 un-
dergoes rearrangement to product radical. The reabstraction of the hydrogen atom
from AdoH group gives the products, and the recombination of the Ado and Cbl
radicals completes the catalytic cycle.
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Table 11.8 Primary
hydrogen kinetic isotope
effects for the pre-steady-step
phase of the MCM catalysis
(Chowdhury, S. and Banerjee,
B. J. Am. Chem. Soc., 122,
5417 (2000))

T (K) KIEs

293 35.6
291 37.2
288 39.9
285 42.7
283 43.1
278 49.9

The observed hydrogen kinetic isotope effects on the pre-steady-state phase
(Table 11.8) are far above the limit expected in the absence of tunneling (i.e. the
semi-classical limit). The two steps are kinetically coupled but theoretical calcula-
tions show that homolysis is kinetically silent and the transition state of the hydrogen
transfer step is rate controlling so far as the pre-steady-state events are concerned.
Furthermore, Arrhenius analysis also shows large deviations from semi-classical
behavior: AH=AD D 0:078˙ 0:005 and Ea.D/ � Ea.H/ D 3:41 ˙ 0:07 kcal=mol.
Together, these observation suggest that tunneling is the likely catalytic strategy for
the H atom transfer. Again, theoretical calculations support this conclusion.

11.8 Modeling Isotope Effects on Enzyme-Catalyzed Reactions

In the absence of definitive information about the structure of the active site theoret-
ical modeling of enzyme catalyzed reactions is difficult but not impossible. These
difficulties are caused by the extremely large size of the enzyme-substrate-solvent
system which typically comprises thousands or tens of thousands of atoms so that
direct theoretical treatment at the microscopic quantum mechanical level is not yet
practical. The computational demand is simply too enormous. As a compromise, a
scheme generally referred to as QM/MM (quantum mechanics/molecular mechan-
ics) has been devised. In QM/MM calculations, the bulk of the enzyme-solvent
system (i.e. most of the atoms) is treated at a low cost, usually at the molecular
mechanics (MM) level, while the more nearly correct and much more expensive
quantum level (QM) computation is applied only to the reaction center (active site).

In the molecular mechanics (MM) part of the calculation classical mechanics is
employed. The atoms are treated as point charges with an associated mass. Their
interactions are typically described by spring-like vibrational motions (represent-
ing chemical bonds, and including the associated stretching, bending and internal
rotational modes) plus non-bonded interactions using the Lennard–Jones potential.
(Electrostatic non-bonded interactions are treated with Coulomb’s law.) The force
constants and other parameters required for the calculations are introduced empir-
ically. The most widely used MM packages for modeling enzymes are CHARMM
(Chemistry at HARvard Macromolecular Mechanics), AMBER (Associated Model
Building with Energy Refinement), and OPLS (Optimized Potentials for Liquid
Simulation). Starting from a plausible initially guessed structure, usually based on
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the crystal structure deposited in the Protein Data Base (PDB), and a set of particle
momenta the program either varies coordinates in searching for minima in the po-
tential energy surface, or allows the system to evolve to the equilibrium structure
by following a molecular dynamics trajectory. Time or ensemble averaging follows.
The objective of this part of the calculation is to generate a structure which accu-
rately describes the surroundings or “bath” for the active site and thereby defines
the boundary conditions for the QM part of the problem.

The MM approach contrasts with the quantum mechanical (QM) part of the mod-
eling which is restricted to the immediate area of the active site and considers either
all electrons (or sometimes just outer shell electrons) explicitly in arriving at a first
principle evaluation by solving the Schrödinger equation to deduce the local poten-
tial energy surface for the active site.

Although a plethora of protocols for QM/MM calculations are now available,
only a few have been applied to studies of isotope effects on enzyme-catalyzed
reactions. One major limiting factor is the need to diagonalize the Hessian matrix
(equivalently the GF matrix, see Section 3.4; note the Hessian matrix is a 3N dimen-
sional second derivative matrix in mass weighted Cartesian coordinates) in order to
obtain a complete set of vibrational frequencies for each isotopic species. When
solving the full .3N � 3N/ Hessian matrix is not practical due to the very large
number of atoms in the enzyme system, approximate techniques and computational
shortcuts can be used. The most promising seems to be partial Hessian vibrational
analysis. In this approach selected atoms only, beginning with those treated in the
QM part, are used for the numerical determination of a Hessian sub-matrix. This
method is applied iteratively to an ever increasing set of atoms included in the
Hessian determination. This procedure allows one to test for convergence of the
vibrational frequencies in the region of interest. An alternative approach is to eval-
uate the Hessian matrix for the QM part only.

11.8.1 Examples of VTST QM/MM Calculations
for Enzyme Reactions

11.8.1.1 Quantum Mechanical Dynamical Effects for an Enzyme
Catalyzed Proton Transfer Reaction

The Truhlar group has reported an interesting theoretical study of H/D kinetic
isotope effects for conversion of 2 phospho-D-glycerate to phosophoenolpyruvate
catalyzed by the yeast enolase enzyme. The proton transfer step (first reaction step
in Fig. 11.10) is the rate limiting step and was chosen for theoretical study. The KIE
for proton/deuteron transfer is kH=kD D 3:3 at 300 K.

The isotope independent potential energy surface was evaluated using a mixed
quantum mechanics/molecular mechanics (QM/MM) method. The system (N
atoms) was partitioned into NQM quantum mechanical atoms and NMM classical
mechanical atoms. NQM consisted of the 15 atom substrate (phospho-D-glycerate)
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Fig. 11.10 Conversion of phospho-D-glycerate to phosophoenolpyruvate by enzyme (E) cataly-
sis (Alhambra, C., Gao, J., Corchado, J. C., Vill, J. and Truhlar, D. G., J. Am. Chem. Soc. 121,
2253 (1999))

and the �H2N � CH2 � CH2 � C portion of the Lys345 (lysine) side chain in the
enzyme active site. Thus NQM D 25. The remainder of the system consists of 6934
additional protein atoms plus 1286 crystallographic (enzyme complexed) and 643
bulk water molecules, for a total of 8863 classical atoms. The QM subsystem was
described by the semi-empirical AM1 model which was shown equivalent for the
present type of reaction to Hartree–Fock (HF) molecular orbital calculations using
6–31CG basis sets.

The HF method (in the older literature known as the self consistent field (SCF)
method) is an approximate method for the determination of ground-state wave-
functions and energies of quantum many-body systems. The solutions behave as
if each particle (electron, nucleus, etc.) is subjected to the mean field created by all
other particles. For molecules, Hartree–Fock is the central starting point for most
ab initio quantum chemistry methods. AM1 (Austin Model 1 developed at the Uni-
versity of Texas) is a semi-empirical elaboration based on the neglect of differential
overlap integrals, thus reducing the number of integrals to be evaluated. Related
methods are PM3 (Parametrized Model #3) and the older MINDO (Modified In-
termediate Neglect of Differential Overlap). For large scale calculations inner shell
electrons are commonly left out, further reducing the number of integrals to be eval-
uated and enormously simplifying the calculation. The far fewer integrals which
remain are empirically evaluated. Keep in mind, however, that even with these sim-
plifications enormous numbers of integrals remain and the computations described
in this chapter require substantial investments in computer power and machine time.

The calculation representing the enzyme reaction given in Fig. 11.10 proceeded
in two stages. The system was initialized using the known enzyme crystal structure,
followed by a molecular mechanics (MM) simulation of the enzyme/solvent “bath”
structure surrounding the active site. The purpose of this step is simply to generate
a typical configuration for starting the quantum mechanical (QM) calculation of the
active site. The criterion used was that the bath structure chosen should lead to a
barrier height and energy of reaction that provides a qualitatively reasonable repre-
sentation of the experimental situation. For the chosen configuration the secondary
atoms were frozen in place and the quantum mechanical calculation optimized the
geometry of the primary zone (QM) atoms for three stationary points (reactants,
saddle point, products). The results showed a barrier height of 17 kcal/mol and an
energy of reaction equal to 2.6 kcal/mol endoergic. The calculated values for the
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Table 11.9 Rate constants and KIEs for the conversion
of 2-PGA to PEP by enolase at 300 K (see Figs. 11.10
and 11.11)

Theory kH.s
�1/ kH=kD

TSTa 169 4:7

CVTSTb 129 3:7

CVTST/SCTc 214 3:5

“Ordinary”d TST 3.9 1:4

CVTST 3.8 1:3

Experiment 78 3:3

aTST D transition state theory. The transition state is at
the saddle point.
bCVTST D canonical ensemble variational transition
state theory. The location of the transition state is chosen
to maximize the free energy of activation in the absence
of tunneling.
cCVTST/SCT denotes CVTST plus a small curvature
tunnel transmission (SCT) coefficient.
dAll vibrations treated by classical mechanics, tunneling
and nonclassical reflection are neglected. Alhambra, C.
et al. (see Figs. 11.10 and 11.11) employ the term “clas-
sical”.

free energies of activation and reaction on this surface are in good agreement with
experiment. They correspond to conventional transition state theory.

The Born–Oppenheimer isotope independent potential energy surface calculated
with the “bath” atoms frozen in place as outlined in the paragraph above was em-
ployed by the authors to compare TST and VTST rate constants and kinetic isotope
effects. The results are shown in Table 11.9.

The second column of the table shows that quantum effects (tunneling, etc.) are
large, increasing the rate constant by more than an order of magnitude. The authors
claim that the fact that the CVTST/SCT rate differs from experiment more than
CVTST is probably an indication that the effective barrier used in the calculation
is a little low. The last column shows an improvement in the KIE calculated using
CVTST. The agreement with experiment is excellent when multidimensional tun-
neling effects are properly included (CVTST/SCT). The calculated rate constants
show that agreement is only possible by going beyond conventional transition state
theory. The reason is shown in Fig. 11.11 which compares CVTST geometries for
proton and deuteron transfer. Thus, for HC transfer the CVT transition state has
r1 D 1:75 Å and r2 D 1:12 Å, but for DC transfer r1 is 1.57 Å and r2 D 1:26

Å. These deuteron distances differ by less than 0.01 Å from the values at the saddle
point. As a consequence kCVTST=kTST D 0:76 for HC transfer and 0.99 for DC trans-
fer. One could say that TST is working reasonably well for DC transfer but not at all
well for the lighter HC species. The CVTST results in Table 11.9 are based on 75
degrees of freedom for the QM atoms moving in the electrostatic and van der Waals
fields (MM) of the rest of the enzyme. The treatment is truly multidimensional.
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Fig. 11.11 The optimal structure for the quantum mechanical part of the CVT structure for proton
transfer. The values of r1 and r2 for the proton (bold) and deuteron (italics) are specified (Alhambra,
C., Gao, J., Corchado, J. C., Vill, J. and Truhlar, D. G., J. Am. Chem. Soc. 121, 2253 (1999))

11.8.1.2 Hydrogen Radical Transfer Catalyzed by a Coenzyme
B12-Dependent Mutase

These reactions have very large kinetic isotope effects, indicating that they proceed
by a highly quantal tunneling mechanism. The kinetic isotope is explained as in
Section 11.8.1.1 by using a combined quantum mechanical/molecular mechanical
potential. Multidimensional tunneling increases the magnitude of the calculated hy-
drogen kinetic isotope effect by a factor of 3.6 from 14 to 51. These calculations
confirm that tunneling contributions can be large enough to explain even a kinetic
isotope effect >50, not because the barrier is unusually thin but because multidi-
mensional corner-cutting tunneling decreases the distance over which the system
tunnels without a comparable increase in either the effective potential barrier or the
effective mass for tunneling. Whether or not this is a phenomenon specific to en-
zyme systems is vigorously debated. An alternative point of view, for example, is
put forward by Warshel and collaborators who argue that tunneling in enzymes and
in solution is of the same nature. Interested readers should consult appropriate liter-
ature as a detailed discussion of the controversy exceeds the objectives of this book.

In a recent paper Truhlar and coworkers applied QM/MM to the title reaction
above using methods outlined in Section 11.8.1.1. The isotope effects are in excess
of an order of magnitude larger for this H/D radical transfer than they were for the
proton/deuteron transfer in Section 11.8.1.1. The calculations employed a QM/MM
potential-energy surface with a 45-atom QM part and a 14,833 atom MM part.
Rate constants measured under ordinary conditions correspond to an average over
fluctuating conformational states of the protein. The present calculations include
this average by ensemble-averaging variational transition-state theory (EA-VTST).
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Including tunneling increases the rate constant for the unsubstituted (perprotio) case
by a multiplicative transmission coefficient ›H and for the perdeuterated methyl case
by ›D. The KIE increases by ›H=›D. Zero-curvature tunneling (ZCT) is a model in
which tunneling occurs along the minimum energy path (MEP). Each MEP actu-
ally curves its way through the 135-dimensional primary zone. Tunneling paths on
the concave sides of the MEPs increase the tunneling probability because corner-
cutting shortens the path (Fig. 6.3c) from reactants to products. Small-curvature
tunneling (SCT) allows corner-cutting but only out to approximately the concave
turning points of the vibrations transverse to the MEPs (Section 6.4). The large-
curvature tunneling (LCT) approximation allows tunneling on paths both near and
far from the MEP, even extreme corner-cutting. Finally, microcanonically optimized
multidimensional tunneling .�OMT/ variationally selects from among both SCT
and LCT paths and further increases the calculated transmission coefficients. The
EA-VTST calculations, with quantized vibrations but classical motion along the re-
action coordinate, give a KIE at 278 K of 14.3, much smaller than the experimental
value of 49.9. These values are compared with the calculations which include tun-
neling in Table 11.10. That table shows that ZCT gives only a modest increase in
the KIE, to 22.0, but that even modest corner-cutting, as in the SCT approxima-
tion, approximately doubles the KIE as compared with tunneling along the MEPs.
Including extreme corner-cutting, as in either the LCT or �OMT approximations,
yields a KIE that agrees with observation within experimental error.

Table 11.10 shows that ZCT underestimates the effect of tunneling. Thus, the
model of tunneling along the MEP is inadequate, and the participation of the other
degrees of freedom (other than the progress of the hydrogen atom along the reaction
coordinate) is essential to explaining the large KIE. Next we consider the fact that we
have different paths for H and D transfer, partly because of corner-cutting. Note that
the system will cut the corner only to the extent that this increases the probability of
tunneling in isoinertial coordinates, this involves the competition between barrier-
raising and path-shortening (refer to Fig. 6.3). Proper multidimensional tunneling
methods include these competitions as part of the calculation. In both enzymes and
small-molecule reactions corner-cutting tends to increase the KIE. A key factor that

Table 11.10 Transmission coefficients and their effect
on KIE for H/D radical transfer at 278 K catalyzed by a
coenzyme B12-dependent mutase (Dybala-Defratyka, A.,
Paneth, P., Banerjee, R. and Truhlar, D. G., Proc. Natl.
Acad. Sci.104, 10774 (2007); Chowdhury, S. and Baner-
jee, R., J. Am. Chem. Soc. 122, 5417 (2000))

Method ›H ›D ›H=›D KIE

No tunneling 1 1 1.0 14.3
ZCT 13 8.3 1.6 22.0
SCT 79 25 3.2 44.3
LCT 70 19 3.7 52.7
�-OMT 93 26 3.6 50.5
Experiment 49.9
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may appear counterintuitive from some points of view is that although H sees a
higher energy along its tunneling path, the tunneling probability is greater because
in isoinertial coordinates the path is almost always shorter for H than for D when
the reaction is the transfer of a hydrogen, proton, or hydride ion.

11.8.2 QM/MM for Haloalkane Dehalogenase: TST Calculations

For heavy atom isotope effects tunneling is relatively unimportant and the TST
model suffices. As an example the dehalogenation of 1,2-dichloroethane (DCE) to
2-chloroethanol catalyzed by haloalkane dehalogenase DhlA is discussed below.
This example has been chosen because the chlorine kinetic isotope effect for this re-
action has been computed using three different schemes, and this system is among
the most thoroughly studied examples of heavy atom isotope effects in enzymatic
reactions.

The haloalkane dehalogenase DhlA mechanism takes place in two consecutive
SN2 steps. In the first, the carboxylate moiety of the aspartate Asp124, acting
as a nucleophile on the carbon atom of DCE, displaces chloride anion which
leads to formation of the enzyme–substrate intermediate (Equation 11.86). That
intermediate is hydrolyzed by water in the subsequent step. The experimentally
determined chlorine kinetic isotope effect for 1-chlorobutane, the slow substrate,
is k.35Cl/=k.37Cl/ D 1:0066˙ 0:0004 and should correspond to the intrinsic iso-
tope effect for the dehalogenation step. While the reported experimental value for
DCE hydrolysis is smaller, it becomes practically the same when corrected for the
intramolecular chlorine kinetic isotope effect (a consequence of the two identical
chlorine labels in DCE).
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The isotope effect was first modeled using the ONIOM multi layer approach
developed by Morokuma and coworkers (reading list). In this method a part of the
whole system is selected for detailed quantum mechanical modeling and designated
“model” while the whole system is called “real”. The total energy of .EONIOM/ is
given by Equation 11.87

EONIOM D Ereal
MM C

�
Emodel

QM � Emodel
MM

�
(11.87)

A few points should be clarified. First, the ONIOM approach can be viewed as
perturbational, i.e., the whole system is first treated at lower level (molecular me-
chanics, MM) of theory but since we expect this level to be inadequate for the
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Fig. 11.12 ONIOM model used in calculations of the chlorine KIE on DhlA catalyzed reaction
(Lewandowicz, A., Matsson, O., Paneth, P., et al. J. Am. Chem. Soc. 123, 4550 (2001))

description of the reacting center, the energy calculated at the MM lower level of
theory is replaced with the energy obtained from the higher order quantum mechan-
ical (QM) level. Second, since in the studies reported here the lower level part of the
calculation used a semiempirical Hamiltonian PM3 and the higher level a modified
density functional theory (DFT) optimized for frequency calculation, this approach
more formally should be classified as QM/QM rather than QM/MM. Thirdly, since
the energy of the model part at the higher level is calculated in the absence of the
remaining part of the system, the interaction between the two subsets is included
only in the lower level calculations – this scheme is called molecular embedding.
Following widely accepted nomenclature, the different levels of theory employed
in ONIOM calculations are separated with a colon. Thus the results under discus-
sion were obtained at the B1LYP/6–31G(d):PM3 level. In Fig. 11.12, that part of
the enzyme/substrate system included in the calculation is presented. The quantum
mechanically modeled part is rendered as balls. Atoms substituted by hydrogens in
evaluation of the Emodel

QM energy component are shown as the darker large balls. The
model includes the nucleophile Asp124, DCE and water molecules, and two tryp-
tophans Trp125 and Trp125, which form hydrogen bonds to the departing chloride
anion. The influence of the size of the part treated at the highest theoretical level, the
choice of basis set, etc. on the calculated chlorine kinetic isotope effect have been
studied. The average value from these calculations k.35Cl/=k.37Cl/ D 1:0065 is in
excellent agreement with the experimentally determined isotope effect.

Another approach to modeling the chlorine kinetic isotope effect of this reaction
has been carried out using a true QM/MM scheme.

EQM=MM D EQM C EMM C EQM-MM (11.88)
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where EQM is the energy of the part calculated at the QM level, EMM is the energy
of the part calculated at the MM level, and EQM=MM is the energy of interaction be-
tween parts. Since the energy term EQM usually includes polarization caused by the
MM part the method is referred to as electrical embedding. The energy of the QM
part (see Fig. 11.12) was described using a semiempirical PM3-SRP Hamiltonian
(SRPD Specific Reaction Parametrization), i.e., a PM3 Hamiltonian modified to re-
produce MP2/6–31CG(d) in the gas phase. The CHARMM force field was used for
the MM part. The QM/MM energy can be thus formally written as PM3/CHARMM.
The chlorine isotope effect calculated using variational transition state theory was
1.0031. This small value (the experimental value is 1.0065) is typical of the system-
atic underestimation of chlorine isotope effects using PM3.

The third approach to calculations of the intrinsic chlorine kinetic isotope effect
on the DhlA catalyzed reaction is a combination of the above two methods. In this
so called dual level scheme, the QM part is described at two different levels, HL
(high level, ab initio or DFT) and LL (low level, usually semiempirical). HL level is
used for calculations of the gas phase energy of the QM system while the coupling
with the MM part is calculated at the LL level. Due to the close resemblance of this
part of the approach to ONIOM it is marked as B3LYP/6–31 C G(d):PM3/OPLS-
AA indicating that the unperturbed energy component was calculated at the hybrid
DFT level while its PM3 counterpart was polarized by the MM force field. The
chlorine kinetic isotope effect was calculated on the QM part that contained Glu56
in addition to the moieties illustrated in Fig. 11.13. The isotope effect was found
equal to 1.0071, in very good agreement with the experiment.

The three protocols discussed in this section show that QM/MM techniques
available presently are capable of reproducing, and thus hopefully predicting,
intrinsic isotope effects, provided that a sufficient part of the enzyme is included

Fig. 11.13 QM/MM model used in calculations of the chlorine KIE on DhlA catalyzed reaction
(Devi-Kesavan, L.S. and Gao, J., J. Am. Chem. Soc. 125, 4550 (2003))
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in calculations and that adequate levels of theory are employed. Ever increasing
computer power and improvements in computational algorithms allow us to hope
that QM/MM calculations will soon become a reliable kinetic tool. Even so calcu-
lations on such large systems as enzyme reactions, and especially calculations of
subtle quantities like isotope effects, should be performed with the greatest care.

11.8.3 Comment

All of the isotope effect studies on enzymatic systems carry simplifying assump-
tions, some of which are explicitly mentioned, and some of which are silent and
implied. For example, the use of simplified kinetic schemes implies the absence
of other isotope sensitive steps than those indicated in the equations used. Careful
analysis is always necessary to make sure the assumed kinetic scheme adequately
describes the case under consideration. Another assumption often made but not al-
ways justified, is the widely invoked hypothesis that changing the system under
study by using slow substrates or mutated enzymes does not significantly change
the value of the corresponding intrinsic isotope effects. As has been shown in sev-
eral cases this assumption is not generally true. Thus we conclude this chapter with
a general call to use the maximum care possible when studying isotope effects on
enzyme catalyzed reactions.
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Chapter 12
Isotope Effects on Dipole Moments,
Polarizability, NMR Shielding,
and Molar Volume

Abstract Although the electronic structure and the electrical properties of
molecules in first approximation are independent of isotope substitution, small
differences do exist. These are usually due to the isotopic differences which occur
on vibrational averaging. Vibrational amplitude effects are important when con-
sidering isotope effects on dipole moments, polarizability, NMR chemical shifts,
molar volumes, and fine structure in electron spin resonance, all properties which
must be averaged over vibrational motion.

12.1 Introduction

Although the electronic structure and the electrical properties of molecules in first
approximation are independent of isotope substitution, small differences do exist.
These are usually due to the isotopic differences which occur on vibrational av-
eraging. Refer to Fig. 12.1 and its caption for more detail. Vibrational amplitude
effects are important when considering isotope effects on dipole moments, polar-
izability, NMR chemical shifts, molar volumes, and fine structure in electron spin
resonance, all properties which must be averaged over vibrational motion. Any such
property, P, can be expressed in terms of a Taylor series expansion over the displace-
ments of the coordinates from their equilibrium positions,

<P> D P0C
X

.@P=@ri/.r�r0/iC.1=2/
XX

.@2P=@ri@rj/.r�r0/i.r�r0/jC� � � � � � � � �
(12.1)

In this way one obtains the mean value of P averaged over vibrational motion in
terms of mean displacements, mean square displacements, and so on. This approach
has been long used to discuss isotope effects on electrical properties of molecules.

12.1.1 Dipole Moments, Polarizabilites and Hyperpolarizabilities

Neutral molecules can be represented as systems of electric charges distributed
in space. Positive charge is concentrated in the atomic nuclei, and negative

M. Wolfsberg et al., Isotope Effects: in the Chemical, Geological, and Bio Sciences,
DOI 10.1007/978-90-481-2265-3 12, c� Springer Science+Business Media B.V. 2009
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Fig. 12.1 (a) The first two vibrational energy levels for the CH and CD stretching modes com-
pared. The curve shows a Morse potential, VMORSE D DeŒ1 � exp.a.r � r0/
2 with De D
397 kJ=mol; a D 2 Å

�1
, and r0 D 1:086 Å. The vertical bars represent ground state vibrationally

averaged bond distances, Œ<rCH>><rCD> > r0
ANH. Because CH lies higher in the well than CD,
its average bond extension is somewhat greater than CD. Since the potential is skewed, bond exten-
sion is greater than bond compression. Remember for the harmonic oscillator (HO) the potential
curve is parabolic and symmetrical Œ<rCH> D <rCD> D r0
HO. Very often vibrational amplitude
effects are discussed in terms of root mean square amplitudes, <r2>1=2, or mean square ampli-
tudes, <r2> D <.r� r0/2>. To good approximation <r2> D Œh=.8 2c�r�/
Œcoth.hc�=.2kT//

(the relation is exact for the HO). Here c is the speed of light, k the Boltzman constant, � the
oscillator frequency .cm�1/ and �r its reduced mass
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Fig. 12.1 (continued) (b) Mean square amplitudes of hypothetical nondissociating HCl (squares)
and DCl (circles) as a function of temperature
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Isotope effects on vibrational amplitudes of HCl and DCl
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Fig. 12.1 (continued) (c) Isotope effects on mean square amplitudes (upper curve) and root mean
square amplitudes (lower curve) as a function of temperature for hypothetical nondissociating
molecules. At low temperatures the molecules are in the ground state and the amplitude is nearly
independent of temperature. At higher temperature the vibrational amplitudes increase due to ex-
citation into upper levels (Fig. 12.1) but the ratios drop smoothly to the classical value of unity at
very high temperature (Fig. 12.1)

charge is distributed over the entire molecule such that the fractional charge in
any incremental volume, d£, is given in terms of the electronic wave function,
‰‰�d£=

R
‰‰�d£. The integral extends over all space. Ordinarily the centers of

positive and negative charge do not coincide, and the vectorial distance between
them Er multiplied by the total positive charge, q, defines the electric dipole moment
	 D E	 D qEr . The dipole moment is a vector quantity; its direction is usually
given from positive to negative. A dipole moment corresponding to charge of
one electron .4:8 � 10�10 esu/ operating over a distance of 1 Å .10�8 cm/ has a
dipole moment of 4:8 � 10�18 esu cm D 4:8 Debye (D). In the SI system 1 D D
3:334 � 10�30 Coulomb meter. Dipole moments and isotope effects on dipole mo-
ments for some diatomic and simple polyatomic molecules are shown in Table 12.1.

The discussion to this point has not considered the effect of an externally im-
pressed electric field. When a molecule is placed in an electric field the energetics
of the interaction are expressed,

�.E/ D �0 C .@�=@E/0EC .1=2/.@2�=@E2/0E2 C .1=3Š/.@3�=@E3/0E3 C � � � � � � �
(12.2)

In Equation 12.2 Ÿ symbolizes the total energy and E the electric field strength. The
subscripts indicate the derivatives are evaluated at E D 0. The dipole moment, �, is
given as

�D � .d=dE/�.E/D � .@�=@E/0 � .@2�=@E2/0E� .1=2/.@3�=@E3/0E2C � � � �
(12.3)
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Table 12.1 Dipole moments, polarizabilities, and isotope effects for some diatomic and simple
polyatomic molecules (ground vibrational state values)

’.parallel/

�0=D ��0=D (’=Å
3
/a �’.perpen/ �’=Å

3

H2 0 0.819 0.314
HDb 0:8� 10�3 �0:8 � 10�3

Db;c
2 0 0.809 0.299 0.010

12C16Od �0:1227 1.95
12C18Od �0:1218 �0:9 � 10�3

HCle 1.1085 2.60 0.311
DClc;d;e 1.1033 5:2 � 10�3 0.006
C6H6 0 10.4 �5:6
C6D6

c 0.055
C6H12 0 10.9
C6D12

f 0.121
NH3 1.468 2.22 0.288
ND3

c;g �13:5 � 10�3 0.026
CH4 0 2.59
CH3Dh �6:6� 10�3 �6:6 � 10�3

CHD3
h 6:8� 10�3 6:8 � 10�3

CD4
c 0 0.042

H2Oi 1.848 1.45
HDOi 1.845 3� 10�3

D2Oc;i 1.851 �3� 10�3 0.011
CH3CCH j 0.7806
CH3CCD j 0.7674 13:2 � 10�3

CD3CCH j 0.7841 �3:5 � 10�3

CD3CCD j 0.7722 3:4 � 10�3

CH3F j 1.646
CD3F j 1.647 �1:0 � 10�3

aBridge, N. J. and Buckingham, A. D., Proc Roy Soc (London) A295, 334 (1966).
bDrakopoulos, P. G. and Tabisz, G. C. Phys Rev. A36, 5556 (1987).
cVan Hook, W. A. and Wolfsberg, M., Z. Naturforsch. 49A, 563 (1994).
dSee Table 12.2.
eKaiser, E. W. J. Chem. Phys. 53, 1686 (1970).
f Wieczorek, S. A. Urbanczyk, A. and Van Hook, W. A., J. Chem. Thermodynamics 1996,
28 (1009).
gScher, C., Ravid, B. and Halevi, E. A., J. Phys. Chem. 86, 654 (1982).
hQuack, M. et al, J. Chem. Phys. 101, 3588 (1994).
i Clough, S. A., Beers, Y., Klein, G. P. and Rothman, L. S., J. Chem. Phys. 59, 2254 (1973).
j Muenter, J. S. and Laurie, V. W., J. Chem. Phys. 45, 855 (1966).

and is also written as a sum of the permanent (zero field) and induced dipole
moments.

� D �0 C �INDUCED D �0 C ’EC .1=2/“E2 C � � � � � � : (12.4)
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In Equation 12.4 �0 is the permanent dipole moment, �0 D �.@Ÿ=@E/0; ’ is the
polarizability, ’ D �.@2Ÿ=@E2/0; “ the first hyperpolarizability, etc. At moderate
field strengths second order and higher terms are often neglected, so �INDUCED 	
’E. Equations 12.2 through 12.4 are simplified. Both the electric field, and the per-
manent dipole moment are vectors, the polarizability is a second rank tensor, the
hyperpolarizability a third rank tensor, etc. A complete description of the interac-
tion is therefore algebraically complex. For diatomic or linear molecules the dipole
moment, if it exists at all, has only one component and that is along the bond axis,
the polarizability for a linear or diatomic molecule, however, has components both
parallel and perpendicular to the bond axis; the rotationally averaged polarizability
is ’ D .1=3/.’parallel C 2 ’perpendicular/. For polyatomic molecules of threefold or
higher symmetry there are parallel and perpendicular components for both the per-
manent dipole moment and the polarizability. For molecules of lower symmetry the
situation is more complex, there may be as many as nine nonzero components of
the polarizability, and the reader is referred to specialized treatments. Polarizabil-
ities and isotope effects for some diatomic and simple polyatomic molecules are
included in Table 12.1.

12.2 Dipole Moments and Their Isotope Effects

12.2.1 Experimental Methods

Methods for determining permanent dipole moments and polarizabilities can be
arbitrarily divided into two groups. The first is based on measuring bulk phase
electrical properties of vapors, liquids, or solutions as functions of field strength,
temperature, concentration, etc. following methods proposed by Debye and elabo-
rated by Onsager. In the older Debye approach the isotope effects on the dielectric
constant and thence the bulk polarization,�P, are plotted vs. reciprocal temperature
and the isotope effect on the polarizability and permanent dipole moment recovered
from the intercept and slope, respectively, using Equation 12.5.

�P D �Œ.© � 1/=.©C 2/
ŒM=¡
 D ŒN=.3©0/
Œ�’C�.�0
2/=.3kT//
 (12.5)

In the equation © is the measured dielectric constant and ©0 the permittivity of the
vacuum, M is the molar mass and ¡ the molecular density, while �’ and �

�
�0

2
�

are the isotope effects on the polarizability and the square of the permanent dipole
moment respectively. Unfortunately, because the isotope effects under discussion
are small, and high precision in measurements of bulk phase polarization is difficult
to achieve, this approach has fallen into disfavor and now is only rarely used. Po-
larizability isotope effects, �’, are better determined by measuring the frequency
dependence of the refractive index (see below), and isotope effects on permanent
dipole moments with spectroscopic experiments.



394 12 Isotope Effects on Dipole Moments, Polarizability, NMR Shielding, and Molar Volume

The second group of techniques includes methods based on microwave
spectroscopy and molecular beams. The Stark effect describes the changes in
molecular energy levels due to interaction with an external electric field. It can be
detected by measuring energy shifts and splittings in the pure rotational spectrum.
For example in symmetric top molecules a first order Stark splitting,�—, is observed

�� D 2�KME=Œ. j. jC 1/. jC 2/
 (12.6a)

while in linear molecules the splitting is second order (i.e. proportional to E2)

�� D
n
�2=Œ2.h=2 /I


on�
j. jC 1/� 3M2

�
=. j. jC1/.2j�1/.2jC3//

o
E2 (12.6b)

In Equation 12.6 � is the permanent dipole moment, h is Planck’s constant, I the
moment of inertia, j the angular momentum quantum number, and M and K the
projection of the angular momentum on the electric field vector or axis of symme-
try of the molecule, respectively. Obviously if the electric field strength is known,
and the j state is reliably identified (this can be done using the Stark shift itself)
it is possible to determine the dipole moment precisely. The high sensitivity of the
method enables one to measure differences in dipole moments between isotopes
and/or between ground and excited vibrational states (and in favorable cases dipole
differences between rotational states). Dipole measurements precise to ˙0:001D,
or better, for moments in the range 0.5–2 D are typical (Table 12.1).

In the molecular beam method one measures the deflection of the beam as it
passes through a nonuniform electric field impressed perpendicular to the beam
direction. The deflection is a function of the dipole moment but the method suf-
fers from imprecisions introduced by the distribution of molecular velocities in the
beam, and from difficulties in controlling and measuring the electric field gradient.
A better approach, but one limited to the study of diatomics and linear molecules,
uses the molecular beam resonance technique. In this technique the molecular beam
passes through two regions of strictly opposed electric field gradients, @E=@z and
�@E=@z, separated from each other by a third region of uniform field, @E=@z D 0.
The apparatus design is such that in the end molecules in a specific rotational state
converge to a focal point (located as a function of E, @E=@z, and j). The particle de-
tector is located at the focal point. A small high frequency field acting in the middle
region induces transitions into states with different orientations of the dipole mo-
ment, causing changes in the trajectory. As a result the beam flickers back and forth
across the detector. By adjusting the field frequency while measuring particle flux at
the detector, the resonance frequency, and thence the dipole moment, is determined
at high precision.

12.2.2 The IE on �0, Discussion

Some examples of small molecule dipole moment H/D isotope effects are given in
Table 12.1. These typically vary from 1 to 10 or more milli-Debyes. A qualitative



12.2 Dipole Moments and Their Isotope Effects 395

rationalization of these IE’s advanced many years ago by R. P. Bell is based on the
idea that the isotope effect in first approximation is due to the change in mean con-
figuration of the molecule on isotopic substitution. For a diatomic this is given by
the IE on vibrational amplitude, for a polyatomic it is a complicated linear combina-
tion of the IE on the amplitudes of all the normal modes of vibration. In the diatomic
case one obtains

�� D �H � �D D .@�=@r/e.<rH> �<rD>/ (12.7)

It is well established that the average lengths of CH bonds are consistently 0.003
to 0.004 Å longer than the corresponding CD bonds in the ground vibrational state
(see Fig. 12.1, its caption, and Section 12.2.3). It remains only to establish the dipole
moment derivative, .@�=@r/, at the equilibrium bond length. That is available from
theoretical calculation or spectroscopic measurement (via precise measurements of
IR intensities of vibration–rotation bands). Calculations based on Equation 12.7
yield predicted dipole moment IE’s in reasonable agreement with experiment.

A schematic curve showing how the dipole moment changes as internuclear dis-
tance increases is shown in Fig. 12.2. The figure nicely explains the observation
that dipole moment IE’s for diatomic molecules can be either normal or inverse de-
pending whether the equilibrium bond length of the diatomic lies to the left (where
.@�=@r/e > 0 and consequently �� > 0) or the right (where .@�=@r/e < 0 and
�� < 0) of the maximum in the plot. The existence of the maximum is readily
understandable in qualitative terms. Even though classically the dipole moment
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Fig. 12.2 Dipole moment as a function of internuclear distance for a diatomic oscillator. For the
case shown re is greater than the r value at the maximum of the curve. Consequently .@�=@r/e < 0.
The value of r(max) may also be larger than re, whence .@�=@r/e > 0 (and this is the case for both
CO and HCl). Since the isotope effect Œ<rH>�<rD>
 is small one can assume .@�=@r/e is isotope
independent to good approximation
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scales linearly with r such is not the case for properly (i.e. quantum mechanically)
calculated dipole moments (see Equation 12.10) because the wave function which
in the end defines the electronic charge distribution varies markedly and nonlinearly
as the diatomic bond length increases.

12.2.3 Dipole Moments for Diatomic Isotopomers

Vibrational amplitude effects for diatomic molecules can be straightforwardly cal-
culated from spectroscopic data. Mean amplitudes and mean square amplitudes for
diatomics are expressed in Equations 12.8a and 12.8b (see, e.g. Levine 1975)

<.r � re/> D .1=2/.’ere=.2Be/C 3Bere=¨e/ (12.8a)

<.r � re/
2> D re

2Be=¨e (12.8b)

In Equation 12.8 Be is the rotational constant, Be D h=.8 2I/, (I is the moment of
inertia), ¨e is the vibrational frequency, 2 ¨e D .›=�/

1=2, (› the vibrational force
constant and � the reduced mass), re the equilibrium bond length (isotope inde-
pendent to reasonable approximation), and ’e is the vibration-rotation interaction
constant

’e D .2Be
2=¨e/Œ.2Bere

3A=¨e
2/C 3
 (12.8c)

The isotope independent constant, A, is proportional to the third derivative of the
vibrational potential. [In this section we are following the widely used notation em-
ployed by Herzberg and other spectroscopists where ¨ is the vibrational frequency
expressed in cm�1. The actual number of vibrations per second is c times as great,
c is the speed of light. In other parts of this text we employ a second convention
almost universally used by chemists which represents the vibrational frequency in
cm�1 by � rather than ¨.] Using Equations 12.8a through 12.8c, and given values
of ’e; re, and Be for the reference isotopomer, the constant A is straightforwardly
obtained, the isotope effects on ’e; Be and ¨e evaluated, and zero point mean am-
plitudes and mean square amplitudes calculated. Results for the isotopomers of
hydrogen chloride and carbon monoxide are shown in Table 12.2. The H/D iso-
tope effect on the mean amplitude is about 0.004 A, the 35Cl=37Cl effects are much,
much smaller, 	10�4A, and, as expected, carbon and oxygen isotope effects are
intermediate. Calculation of the temperature dependence of the anharmonic mean
amplitudes and mean square amplitudes is straight forward but tedious. In the har-
monic approximation the vibrational contribution to the mean square amplitude
is h.r � re/

2i D Œh=.8 2c�r¨/
Œcoth.hc¨=.2kT//
 (�r is the oscillator reduced
mass, c the velocity of light, and from Equation 12.8b to excellent approximation
h=
�
8 2c�r¨/ D re

2Be=¨e
�
. The mean amplitudes and mean square amplitudes in

hand, the isotope effect on the dipole moments is calculated from Equation 12.9.

�� D .@�=@r/e.<.r � re/
0> �<.r � re/>/C .@2�=@r2/.<.r � re/

02>
�<.r � re/

2>/C � � � � � � (12.9)
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Table 12.2 Isotope effects on permanent dipole moments for isotopomers of CO and HCl (see
Section 12.2.3)

Molecule <.r�re/> =Å <.r�re/2>=Å
2

@�=@r @2�=@r2 j�.12C16O/��.xCyO/ja
12C16O 0.0041 0.00113 3.10 �0:14 –
13C16O 0.0039 0.00108 0.0007
13C17O 0.0037 0.00103 0.0014
12C17O 0.0042 0.00115 �0:0003
13C18O 0.0040 0.00110 0.0003
12C18O 0.0038 0.00106 0.0009
14C16O 0.0027 0.00079 0.0044

j�.1H35Cl/��.xHyCl/jb
H35Cl 0.0159 0.00576 0.925 0.16 –
D35Cl 0.0114 0.00413 0:00441
H37Cl 0.0158 0.00576 0:00001
D37Cl 0.0113 0.00412 0:00443
aToth, R. A., Hunt, R. H. and Plyler, E. K., J. Mol. Spec. 32, 85 (1969): Muenter, J. S., J. Mol.
Spectrom. 55, 490 (1975); Goorvitch, D., Astrophys. J. Supp. Ser. 95, 535 (1994).
bKaiser, E. W. J. Chem. Phys. 53, 1686 (1970); Scher, C., Ravid, B. and Halevi, E. A., J. Phys.
Chem. 86, 654 (1982).
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Fig. 12.3 Isotope effects on dipole moment for CO. Œ�0.12C16O/��0.xC yO/
 are plotted vs. the
amplitude of the xC yO isotopomer. Reading from left to right (x,y) values are (14,16), (13,18),
(12,18), (13,16), (13,18), (12,16) and (12,17) (see Table 12.2)

assuming, reasonably, that .@�=@r/e and .@2�=@r2/ are isotope independent. As
usual the prime denotes the more lightly substituted molecule. The derivatives in
Equation 12.9 are available from measurements of the absolute intensities of the in-
frared vibration–rotation bands or from theory. Results are shown in Table 12.2 and
(for CO isotopomers) in Fig. 12.3. In CO the dipole moment is oriented Œ�COC

and by convention is given a negative sign. This accounts for the absolute value
notation in Table 12.2 and Fig. 12.3.
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12.2.4 Theoretical Approaches

Methods for quantum mechanical calculation of dipole moments and their IE’s are
well established. The dipole moment for any specified confirmation is defined by
the nuclear coordinates of the various atoms ri and their charges zi, plus the electron
density at each point in space expressed as a function of the vector Ere using the wave
function

� D
�
�
Z
§Ere§�d£

�
ELECTRONS

C
h
e
X

zi ri

i
NUCLEII

(12.10)

Proper attention must be paid to the size and nature of the basis sets employed to
evaluate the integral. Isotope effects on � are small and large basis sets and long
running times are needed to insure the necessary precision. Also, many separate
calculations are required to establish the dependence of � on molecular configura-
tion and vibrational amplitude, and the results need to be properly averaged to yield
effective dipole moments at thermodynamic equilibrium. A multitude of theoretical
calculations of dipole moments are to be found in the literature. As expected, the
more thorough and carefully done of these are in reasonable agreement with careful
and well done experiments.

12.3 Induced Moments, Polarizability Isotope Effects

12.3.1 The Polarizability

The effect of H/D substitution on refractive index and polarizability was first stud-
ied in the 1930s, but even so, 75 years later, IE data are available only for some
25 or 30 compounds. The scarcity of the available data is surprising because an
understanding of polarizabilities and polarizability isotope effects (PIE’s) is essen-
tial when considering the forces between molecules leading to gas imperfection,
condensation, and liquid state structure. That is because the attractive term in the
intermolecular potential which describes the interaction between nonpolar, non-
charged molecules scales with polarizability according to London dispersion theory
( [Historical Vignette 12.1]).

12.3.2 Frequency Dependence

For liquid or gaseous molecules placed in a sinusoidally varying electromagnetic
field, i.e. a light beam, the field changes direction many times during a single molec-
ular rotation and molecule fixed permanent dipoles experience only the average
field, which is zero. The response of induced dipoles to fluctuating electric fields,
however, is essentially instantaneous. Time dependent perturbation theory leads to
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[Historical Vignette 12.1] Izrail’ Beniaminovich Rabinovich (1914–2001) was born in a small
village near Gomel (Belarus). During the Second World War he was head of a laboratory in a
military factory, which was engaged in solving problems in the field of metal corrosion and elec-
troplating. In 1950, he started his research on isotope effects on various physicochemical properties
of liquids in the Chemistry Department of the State University of Gorky. On the basis of his experi-
mental results – covering more than 150 deuterated compounds – he worked out a semi-quantitative
theory of isotope effects. The results were submitted to earn the Doctor of Science degree. They
also served to publish the well-known book “Influence of Isotopy on the Physicochemical Prop-
erties of Liquids” in Russian (1968), then in English (1970). In addition to his work on isotope
effects, he made numerous important contributions to disparate areas of chemistry; many of his
results found application in industry and agriculture. He is the author of more than 350 scientific
publications. In 2002, he was awarded the State Prize of the Russian Federation. (Adapted from
bibliographic notes investigated and translated by Gábor Jancsó, KFKI, Budapest, Hungary, and
Jerszy Szydlowski, Warsaw University, Poland. Photo credit: N.N. Smirnova, State University of
Nizhny, Novgorod)

Equation 12.11

’.�/ D .2=.3hc//
X

.�n0 d0n dn0=.�n0
2 � �2// (12.11)

In Equation 12.11, � is the frequency of incident radiation .cm�1/; �n0 is the
frequency corresponding to the energy difference between ground and excited elec-
tronic state, the sum is over all excited states, and d0n and dn0 are the dipole
transition moments between the ground and excited state .dn0 D hnjdj0i DR
‰nd‰0 d£, the ‰’s are wave functions and d is the dipole moment operator).

At low frequency .�! 0/ Equation 12.11 reduces to the static field expression

’0 D .2=3/
X

.d0n dn0=.En0// (12.12)

while at very high frequency �2 >> �n0
2 the polarizability tends to zero. The po-

larizability and the refractive index, n, are related by the Lorenz–Lorentz formula
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.n2 � 1/=.n2 C 2/ D N’.�/=.3©0/ D 2N=.9hc©0/
X

.�n0 d0n dn0=.�n0
2 � �2//

(12.13)

In Equation 12.13, N is the number density of molecules in the beam of radiation
(and is thus inversely proportional to the molar volume, VM), and ©0 is the permit-
tivity of the vacuum. A useful and widely employed method to evaluate the sum
in Equation 12.13 leads via the closure approximation to a one-term equation com-
monly known as the dispersion relation,

R D Œ.n2 � 1/=.n2 C 2/
 D A=ŒVMf�#2.1 � �2=�#2/g
 (12.14)

Here, A and �#2 are fitting parameters amenable to physical interpretation using
Equation 12.11. The point of present concern is that the isotope effect on polariz-
ability can now be expressed in terms of isotopic differences in refractive index. It
follows from Equation 12.14 that a plot of�R=R D Œ6n2=..n2�1/.n2C2//
Œ�n=n

vs. �2 gives an approximately straight line,

�R=R D .�A=A ���#2=�#2 ��VM=VM/ � Œ.��#2=�#2/.1=�#2/
�2 (12.15)

Using Equation 12.12 one obtains .�A=A � ��#2=�#2/ D .�’0=’0/. We see
that precise refractive index differences measured over a reasonable range of wave-
lengths allow the recovery of the polarizability isotope effect (i.e. the isotope effect
on the electric field induced dipole moment), provided the molar volume and its
isotope effect are available.

12.3.3 Experimental Methods, Results, Discussion

The method of choice for measurements of refractive index IE’s and thence PIE’s
is differential refractometry. While typical refractive index measurements show
precisions between 1 part in 104 and 1 in 105, interferometric differential instru-
ments improve that precision by one or two orders of magnitude (i.e. to, say, 1 in
105:5 or 106:5). For solutions of isotopomers, the refractive index differences be-
tween solution (for example a mixture of isotopomers) and reference (usually one
or the other pure component) are large enough to give interferograms amounting
to many fringes. In the technique of continuous dilution differential refractometry
(CDDR) the sample in the solution side of the differential instrument (initially
isotopomer-1) is smoothly and continuously diluted, in the end completely replaced,
with isotopomer-2, while the reference side remains unchanged (isotopomer-1). The
interferogram which results can be straightforwardly deconvoluted and the data plot-
ted using Equation 12.15 to yield the isotope effect on the static polarizability and its
dispersion (frequency dependence). Examples of CDDR interferograms are shown
in Fig. 12.4.
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Fig. 12.4 Continuous dilution differential refractometric data for the C6H12=C6D12 isotopomer
pair at 298.15 K. (a) through (d) are interferograms observed at 650, 559, 520 and 470 nm, respec-
tively. (e) shows refractive index differences derived from the interferograms (left to right 650,
559, 520 and 470 nm) and (f) is a dispersion plot of the data. In (f) the interferometric data are
compared with the result at 589.3 nm obtained by Abbe refractometry, which nicely illustrates the
better precision of CDDR (Reprinted from Wieczorek, S. A., Urbanczyk, A. and Van Hook. W. A.,
J Chem. Thermodyn. 28, 1009 (1996) copyright 1996 with permission from Elsevier)

PIE’s for some representative liquids and gases, mostly at room temperature,
are given in Tables 12.1 and 12.3. Both the PIE and MVIE are expected to be ap-
proximately additive (e.g.�’=’.CD3OD=CH3OH// 	 �’=’.CH3OD=CH3OH/C
�’=’.CD3OH=CH3OH/. Typically, these isotope effects each amount to at most a
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Table 12.3 CDDR (continuous dilution differential refractometry) least squares parameters, mo-
lar volume isotope effects, and derived PIEs for some isotopomer solutions at 298.15K; see
Equation 12.15, �R=R D A C m�2 (Wieczorek, S. A., Urbanczyk, A. and Van Hook, W. A.,
J. Chem. Thermodyn. 28, 1009 (1996))

Isotopomers 103A 107 m=.nm2/ 103�V=V 103�’=’

C6H6=C6D6 3.273 139.55 2.1 5.4
C6H12=C6D12 8.894 122.08 2.2 11.1
.CH3/2CO=.CD3/2CO 6.322 71.25 2.9 9.2
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Fig. 12.5 Correlation of molar volume and polarizability isotope effects for some H/D isotopomer
pairs. SquaresD non H-bonded liquids, small dark circlesD H-bonded liquids (except water), in-
verted triangleD H2O=D2O, large light circles (left to right; CH3OH=CH3OD; CH3OH=CD3OD;
CH3OH=CD3OD), diamonds D �RI=RI from gases at 298 K, �V=V from liquids at or below
boiling (left to right HCl/DCl, H2S=D2S; NH3=ND3; CH4=CD4) (Data from J. Chem. Thermo-
dyn. 18, 1077 (1986); 19, 703 (1987), 19, 1163 (1987), 28, 1009 (1996): Z. Naturforsch 49a, 563
(1994); Russ. Chem. Bull., Int. Ed. 54, 1987 (2005); J. Chem. Phys. 48, 1032 (1968)) The equation
of the correlating line is �’=’ D 3:41 � 10�3 C 1:05 �V=V

few parts per thousand per XH/XD bond substituted. Heavy atom PIE’s are expected
to be significantly smaller but no data are available to confirm that prediction.
Figure 12.5 plots the available data for �’0=’0 of H/D isotopomers (excepting
H2=D2/ vs. the molar volume isotope effects (MVIE’s) of the liquids at or below
the normal boiling temperatures. The PIE is a molecular property and, except for
strongly structured and associated liquids like water (which plots as an outlier in
Fig. 12.5), has little or no temperature or phase dependence. Figure 12.5 establishes
a crude proportionality between PIE and MVIE. It is significant that the slope of the
correlation is 	 unity. Later in this chapter we will see that for liquids well below
their critical points one expects a similar crude proportionality between the IE on
intrinsic molecular size (thus ultimately on vibrational amplitude IE’s) and MVIE.
Since PIE also correlates with vibrational amplitude, the correlation is expected. A
more detailed analysis would necessitate a complete normal coordinate calculation
of the vibrational amplitudes and their isotope effects.



12.4 Isotope Effects on NMR Shielding 403

12.4 Isotope Effects on NMR Shielding

12.4.1 Introduction

An enormous literature dealing with isotope effects on NMR parameters has accu-
mulated over the years. As we saw in Chapter 7 this includes studies on chemical
shift and coupling constant IE’s, the use of isotope labeling for molecular structure
determinations, the study of fast exchange processes, and the use of NMR as an ana-
lytical tool to measure isotope fractionation. In this section we limit our attention to
IE’s on chemical shifts (nuclear shielding) due to isotopic differences in averaging
of rotation–vibration contributions to molecular properties (rovibrational effects).
NMR coupling constant IE’s have also been rationalized using rovibrational argu-
ments but such effects are almost vanishingly small and will not be discussed here
(but see Section 7.3.2).

An example of an NMR shielding IE is shown in Fig. 12.6. This is a “1-bond”
secondary isotope effect because the position of isotope label is immediately ad-
jacent (1-bond removed) to the magnetic probe atom (in this case 15N). The 15N
is shifted upfield in excess of 100 parts per billion (0.1 ppm) per neighboring 18O
substitution. (Compare these 18O NMR isotope shifts on Œ15N
 spectra of NaNO2

solutions (a hundred or so ppb) with the primary and secondary deuterium IE’s
(on [H] vs. [D] resonances, and Œ19F
 resonances, respectively) of the FHF� and
FDF� moieties shown in Fig. 7.16b, and with the secondary deuterium IE’s on
the Œ13C
 NMR spectrum of dry glycerol (Fig. 7.16a). 1-Bond deuterium shifts are
consistently a few hundred ppb, but heavier atom IE’s are smaller. As expected
the magnitude of secondary NMR chemical shift IE’s falls off dramatically as one
moves from 1-bond to 2-bond, 3-bond, etc. substitution. In special cases, however,
long range effects likely transmitted through resonance or hyperconjugated struc-
tures have been observed. An example of an unusually large 10-bond secondary D
shift on a Œ19F
 resonance is shown in Fig. 12.7, but keep in mind that the range of
Œ19F
 NMR shifts is unusually large, and these shifts are very sensitive to structural
changes and electric field effects.

12.4.2 Application of the Rovibrational Theory

An application of the basic ideas briefly reviewed in Sections 12.2 and 12.3 to
NMR shielding has been formulated by Jameson. The isotope effect on the shield-
ing .¢/ depends on vibrationally averaged bond lengths and angles according to
Equation 12.16

<¢ 0> �<¢> D
X

.@¢=@ri/Œ<�ri
0> �<�ri>
C

X
.@2¢=.@ri@rj//Œ<�ri

0�rj
0>

�<�ri�rj>
C†.@¢=@’ij/Œ<�’ij
0> � <�’ij>
C � � � � � � � � � (12.16)
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Fig. 12.6 An upfield shift in the NMR signal of the nitrite ion of 0.138 ppm (per 18O) occurs upon
substitution of 18O for 16O. (a) Sodium .15N/ nitrite (95 atom % 15N) starting material. (b) Silver
.15N;18 O2/ nitrite (95 atom% 15N, 77 atom % 18O). The percentages of the 18O labeled species are
6% 15N16O2, 33% 15N16O18O, and 61% 15N18O2 (Van Etten, R. L. and Risley, J. M., J. Am. Chem.
Soc. 103, 5633 (1981))

As is customary the prime refers to the lighter isotope,�ri is the averaged change in
the ith bond length due to anharmonicity in the stretching vibration, .�ri D ri�ri;e/,
and �’ij is the distortion of the angle between bonds i and j. These parameters are
available from vibrational analysis given the complete anharmonic potential, while
the isotope independent shielding parameters .@¢=@ri/; .@

2¢=.@ri@rj//; .@¢=@’ij/,
etc. are most reliably obtained from ab initio quantum mechanical calculation. When
values for these derivatives are not available a common strategy is to approximate
Equation 12.16 using only the leading term, obtaining .@¢=@ri/ by various empirical
or semi-theoretical methods.

<¢ 0> � <¢ >	
X

.@¢=@ri/Œ<�ri
0> � <�ri>
 (12.17)
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Fig. 12.7 An unusually long range (10-bond) secondary D isotope shift IE on an Œ19F
 NMR. The
H/D chemical shift isotope effect due to substitution at an OH�N hydrogen bond sited ten bonds
away from a para-F is 11 ppb (Hansen, P. E. et al. Acta Chim. Scandanavia 51, 881 (1997))

12.4.2.1 H/D Isotope Effects on Œ13C� NMR of Methane

An excellent illustration of the application of rovibrational theory to NMR shift data,
including comparison with experiment is given in Table 12.4. The table compares
calculated and experimental isotope effects. The agreement is reasonable although
the calculated values are consistently about 20% larger than experiment, probably
because the bond length dependence of nuclear shielding, .@¢=@ri/, is overestimated
by the choice of Hartree–Fock wave functions used in the calculation. Table 12.4b
details first and second order contributions to the isotope effects. Although at first
glance the first order contribution of the CH stretch is the most important, and is
in apparent agreement with experiment (0.763 viz 0.774 ppm), two of the second
order coefficients, ¢rr and ¢’’, also make large but nearly offsetting contributions.
The widely used approximation quoted as Equation 12.17 is thus not well justified.
Rather it works reasonably well in the case of methane because of rough cancellation
of the second order terms. That fortunate circumstance cannot generally be expected
to carry over to other molecules. Another way to express the zero point IE is to
examine the contributions of different normal modes. This is done in Table 12.4c.
Notice that the two stretching modes make a positive contribution to the IE but the
bending contribution is negative. The largest term is that of the triply degenerate
stretching mode. Finally Table 12.4d shows that the effect of thermal excitation into
excited vibration-rotation states is modest for the methanes.

12.4.2.2 Larger and More Complicated Molecules

For large molecules it is no longer feasible to carry out the complete anharmonic
vibrational analysis implied by Equation 12.16. One is forced to the approximate
relation, Equation 12.17, which seems to work pretty well in spite of the criticisms
discussed above. Numerous examples abound in the literature. The interested stu-
dent is referred to the review of Hansen.
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Table 12.4a Calculated (Raynes, W. T., et al. Molecular Physics 64,
143 (1988) and experimental (Alei, M. and Wagman, W. E. J. Chem.
Phys. 68, 783 (1978) IE’s on carbon-13 shielding constants of methane
isotopomers at 300K, – Œh¢ 0i � h¢i
 (in ppm)

h¢i 13CH3D 13CH2D2
13CHD3

13CD4

Calculated 0.250 0.500 0.746 0.992
Experiment 0.187 0.385 0.579 0.774

Table 12.4b Contributions of the different terms in Equation 12.16 to the zero point IE on 13C
shielding constants of 13CH4 and 13CD4, – Œ<¢ 0>�<¢>
 (in ppm)

¢r (First order) ¢r (Second order) ¢rr ¢rs ¢’’ ¢’¨ ¢r’ Total

0.763 0.406 0.453 �0:018 �0:686 0.059 0.001 0.978

Table 12.4c Contributions of different vibrational modes to the zero point IE
on 13C shielding constants of 13CH4 and 13CD4, – Œ<¢ 0>�<¢>
 (in ppm)

Mode Description Degeneracy Isotope shift, – Œh¢ 0i � h¢i

�1 Sym. stretch 1 0.047
�2 HCH bend 2 �0:014
�3 Assym. stretch 3 1.341
�4 HCH bend 3 �0:396
Total 0.978

Table 12.4d Temperature
dependence of calculated 13C
shielding constants of 13CH4

and 13CD4,(in ppm)

T/K �Œ<¢ 0>�<¢>
 (in ppm)

0 0.978
300 0.992
500 1.039

12.5 Molar Volume Isotope Effects

Molar volume isotope effects (MVIE’s) for some common liquids are given in
Table 12.5. The data mostly refer to temperatures between the triple point and the
normal boiling point .TTRP < T < TBP/, equivalently .	0:42 < TR <	 0:6/. At
these temperatures, well below the critical point, TR D 1, liquid state molar volumes
generally lie within 10% or so of the values in the corresponding solids at the triple
point. Also in this temperature range the expansivity, ’ D .@lnV=@T/P, is small
and it seems reasonable to assume a model where liquid state molecules, on aver-
age, are in contact with one another. For convenience we will label this approach
“the mechanical model”. At higher temperatures the expansivity and compressibil-
ity increase rapidly, the liquid expands dramatically (typically critical volumes are
some three or four times molar volumes at TTRP/, and the mechanical model be-
comes inappropriate. Except for 3He=4He MVIE data are only available for H/D
substituted molecules, because the effects for heavier isotopomer pairs are too small
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Table 12.5 Molar volume isotope effects for some liquids, mostly at or below their normal boiling
points (Boiling point is� 0:58 Tc)

Isotopomer Pair T T=TC
0 103 ln.V0=V/ Reference

3He=4He 2.00 0.381 326 a

3.20 0.610 603
H2=HD 20.0 0.601 99 a

H2=D2 20.0 0.601 182
24.0 0.721 204

HCl/DCl 160 0.493 0.34 b

240 0.739 �0.89
H2O=D2O 283 0.437 �4.9 a

323 0.499 �2.6
373 0.577 �1.9

H2S=D2S 190 0.509 1.8 b

NH3=ND3 200 0.493 9.1 b

CH4=CD4 90.4 0.473 11.8 c

110.6 0.579 11.6
120.6 0.631 10.7

C2H4=C2D4 120 0.424 4.2 d

170 0.580 2.7
CH3OH=CD3OH 298 0.581 5.3 e

CH3OH=CD3OD 298 0.581 2.9
CH3OH=CH3OD 298 0.581 �1.6
C6H6=C6D6 298 0.530 2.3 f

c-C6H12=c-C6D12 298 0.539 2.2 f

.CH3/2CO=.CH3/2CO 298 0.537 2.9 f

aRabinovitch, I. B., Influence of Isotopy on the Physicochemical Properties of Liquids, Consultants
Bureau, New York, 1970.
bStaveley, L. A. K., et al. J. Chem. Thermodyn. 19, 703 (1987), 19, 703 (1987), 19, 1163 (1987),
18, 1067 (1986).
cGrigor, A. F. and Steele, W. A., J. Chem. Phys. 48, 1032 (1968).
dBigeleisen, J. et al. J. Chem. Phys. 53, 2869 (1970).
eIvanov, E. V. and Abrosimov, V. K. Russ. Chem. Bull., Int. Ed. 54, 1987 (2005).
f Kooner, Z. and Van Hook, W. A., J. Phys.Chem. 92, 6414 (1988).

to be conveniently measured using ordinary laboratory techniques. Also, except for
H2=HD; H2=D2 and 3He=4He, MVIE’s only amount to a few parts part per thou-
sand, or less, per H/D substitution. Both positive and negative effects are observed
for low temperature liquids, but negative values (ln.VH=VD/ < 0, i.e. VD > VH)
in this temperature region only occur for strongly associated (hydrogen bonded)
liquids.

Figure 12.8 shows the temperature dependence of MVIE for three isotopomer
pairs (CH4=CD4; C6H6=C6D6, and H2O=D2O). In each case MVIE is relatively
flat at low temperature (i.e. @.ln.V0=V/=@T 	 0 for .	0:45 < TR < 	0:6/)
but at higher temperature it drops off rapidly and reaches large negative values
as the critical point is approached. MVIE’s for 3He=4He and H2=D2, on the other
hand, are large and positive (hundreds of parts per thousand) and increase rapidly
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Fig. 12.8 MVIE’s as a function of reduced temperature for three isotopomer pairs. Reading down
at left, trianglesD CH4=CD4, diamondsD C6H6=C6D6, squares D H2O=D2O

with temperature. MVIE’s for these ultralight isotopomer pairs and for heavier iso-
topomer pairs in the expanded liquids (i.e. at elevated temperature) are discussed
in Chapter 13. The discussion in this chapter is primarily concerned with the ap-
plication of the mechanical model to H/D effects for heavier molecules at lower
temperatures .	0:45 < TR < 	0:6/.

12.5.1 The Bartell Mechanical Model for MVIE

The mechanical model assumes that the major part of MVIE for polyatomic
molecules at low temperature is due to the isotope effect on the XH/XD vi-
brational amplitudes. Making use of the well known Van der Waals radii of
hydrogen (1.2 Å (angstrom, Å D 1:2 � 10�8 cm), and taking the isotope effect
on CH/CD vibrational amplitude as 0.005 Å, one finds for benzene (consid-
ered to be a disk like molecule), �V=V D 2�r=r D 2.0:005/=3:7 D 0:0027

in reasonable agreement with the observed value, 0.0021. Here r is the Van
der Waals radius of benzene, and RCC; RCH, and rH are the C � C and C � H
bond lengths, and the Van der Waals radius of the hydrogen atom, respectively,
r D Œ2 sin.30/RCCCRCHCrH D 1:4C1:1C1:2 D 3:7 Å
. Similarly for CH4=CD4,
a sphere like molecule, �V=V D 3�r=r D 3.0:005/=.1:1 C 1:2/ D 0:007 (ob-
served D 0:011).1 In both cases the predicted MVIE’s are in rough agreement

1 Note: It is interesting to compare the calculation above based on measured interatomic distances
and Van der Waals radii with an estimate using thermodynamic data. Using tabulated densities
for C6H6 and CH4 of 0.8765 and 0:4256 g=cm3, respectively, we find volumes per condensed
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with observation, but just as clearly the model is crude and needs refinement. One
obvious step in that direction replaces the isotope effect on the CH/CD stretching
amplitudes, 0.005 Å, with a linear combination of properly averaged vibrational
amplitudes over all normal modes.

The Bartell mechanical model has also been used to estimate the isotope ef-
fect on molar volume due to the over all motion (i.e. hindered translation) of
molecules interacting in a Lennard–Jones potential. For C6H6=C6D6 one finds
�V=V 	 4 � 10�5, about two orders of magnitude smaller than the contribu-
tion of the internal modes (and experiment). We conclude that for all but very light
molecules this contribution can be neglected.

12.5.2 Hydrogen Bonded Liquids

The MVIE for H2O=D2O in both solid and liquid well below TC is shown in
Fig. 12.9. The isotope effects are inverse. In the solid MVIE falls gradually from
around �1:2 � 10�3 at �100 ıC to about �1:6 � 10�3 at the melting point, where
it undergoes an abrupt discontinuity. In the liquid at the melting point MVIE is a
striking �6:2 � 10�3 but it rises rapidly with temperature, finally going through
a maximum of �1:9 � 10�3 near 100 ıC after which it continues to fall to nearly
�30 � 10�3 at the critical point.

The MVIE in both water and ice is complicated by the hydrogen bond network.
The inverse isotope effect cannot be understood exclusively in terms of the isotope
effect on the OH/OD bond amplitudes (which is necessarily positive, vide supra).
To begin, consider the ice lattice which is conveniently described in terms of the
oxygen positions. Within the Born–Oppenheimer approximation the H/D MVIE is
then determined by calculating the H/D isotope effect on the oxygen amplitudes.
According to the usual hypothesis the oxygen motions for translation and libration
occur about the center of mass, CM, which is isotope dependent for these water
isotopomers. The distance from CM to the equilibrium oxygen position for D2O is

phase benzene or methane molecule of 148 and 62 Å
3
. Setting the thickness of the benzene disk

to d D 1:2 Å, (the Van der Waals radius of the hydrogen atom), we find a disk radius of r D
.Vf= d/1=2 D 5:0 Å. Here f is the packing fraction which we take to be that for randomly close
packed spheres, 0.64. Other estimates might be 10 or 15% lower. For methane, approximated as
spherical, .4=3/ r3 D Vf, so r D 2:1 Å. As for benzene, the disk approximation was used for
ethylene. Summarizing

C6H6=C6D6 CH4=CD4 C2H4=C2D4

r/Å, (estimated from bond lengths) 3.7 2.3 2.7
103�V=V, (calculated) 2.7 6.5 3.7
r/Å, (estimated from liquid density) 5.0 2.1 2.7
103�V=V, (calculated) 2.0 7.5 3.7
103�V=V (observed) 2.3 11 4.7
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Fig. 12.9 Molar volume
isotope effect for
.H2O=D2O/ICE (left side)
and .H2O=D2O/LIQUID

(right side)
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almost double that for H2O. As a consequence the oxygen amplitude due to libration
is greater in D2O than it is in H2O even though the angular amplitude is greater for
H2O. For centrosymmetric molecules this effect could not lead to the prediction of
an inverse contribution to MVIE.

Now consider MVIE in the liquids. Were the isotopic liquids isostructural (like
the ices), the MVIE could be estimated as outlined above, but that is not the case.
The melting of water is usually described in terms of a partial destruction of the
tetrahedral ice lattice to give a partially relaxed liquid structure containing some
fraction of molecules in what were interstitial void spaces in the ice lattice. The av-
erage coordination increases from 4 in the solid to about 4.4 in the liquid, and there
is an	10% increase in density due to partial destruction of the open ice framework.
To interpret the MVIE on melting we assume the HOH lattice is broken apart to a
slightly greater extent than the DOD lattice. Hence MVIE falls markedly on melting.
As temperature increases, more and more of the residual ice structure is broken, the
structures approach each other, and the isotope effect rises to its isostructural value
somewhere around 100 ıC. At higher temperatures yet the effects of thermal expan-
sion dominate and MVIE decays to about �30 � 10�3 at the critical point.

As for water we can expect the MVIEs for other hydrogen bonded systems
in low temperature liquids to have an appreciable inverse librational contribution,
and this is the case for those alcohols which have been investigated. The data
on the isotopic methanols (Table 12.5) confirm this. As expected from the dis-
cussion above, the MVIE for OH/OD substitution is negative. Also the isotope
effects seem to be approximately additive, MVIE.CH3=CD3/CMVIE.OH=OD/ 	
MVIE.CH3OH=CH3OD/ W 5:3 � 10�3 � 1:6 � 10�3 	 3:7 � 10�3 .observed D
2:9 � 10�3/.
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12.5.3 Limitations of the Mechanical Model, the Temperature
Dependence

We now return to our discussion of typical (non hydrogen-bonded) liquids. Even at
low temperature the thermal expansivity of liquids is not negligible, and MVIE is
small (Fig. 12.8). Both �V=V and �V itself fall off with temperature, and even-
tually become negative. Inasmuch as 99% or more of liquid ethylene, benzene,
etc. molecules are in the ground vibrational state for internal isotope sensitive fre-
quencies of interest over the range .	0:45 < TR < 	0:6/, one expects �V=V
to be temperature independent according to the mechanical model. Higher order
contributions must be invoked to explain the observed temperature coefficient. To
complete the analysis it remains to establish the reasons for the significant inverse
isotope effect on the expansivity of the high temperature expanded liquids, and
therefore in the end on �V and �V=V. We expect the pseudo-harmonic oscillator
cell model (HOCM) to account for the bulk of the effects, at least for tempera-
tures which are not too high. In HOCM the thermal pressure, .@P=@T/V, which is
the ratio of thermal expansivity, ’ D .@lnV=@T/P, and isothermal compressibility,
› D �.@lnV=@P/T, is given by Equation 12.18 (from the properties of the total
differential .@P=@T/V D �.@V=@T/P=.@V=@P/T D ’=›/

’=› D .k=V/
X

�iui
2 exp.ui/=.exp.ui/ � 1/2 (12.18)

In Equation 12.18, k is the Boltzman constant, the sum is over all 3n frequen-
cies, ui D hc�i=kT, and the �i are Gruneisen constants, �i D �.@ ln �i=@lnV/T.
The behavior of the thermal pressure can now be deduced. Only the argument in
Equation 12.18 is isotope dependent. �.ui

2 exp.ui/=.exp.ui/ � 1/2/ is negative for
all ui, and decays to 0 for ui both small and large (Fig. 12.10). The �i are small (of
order 10�3) for the large internal frequencies lying to the right of the minimum in
Fig. 12.10, but large for the smaller external translational and librational modes (of
order unity) lying well to the left of the minimum. As a consequence it is the exter-
nal modes which make the most significant contribution to the isotope effect on the
thermal pressure, and for each given external frequency that contribution becomes
smaller and smaller (i.e. less and less negative) as temperature increases (i.e. as u
decreases). Thus, in spite of the divergences in the compressibility and expansivity
as TC is approached, the thermal pressure and its isotope effect remain bounded.
The details of the behavior of isotope effects on the volumetric properties of fluids
at high temperature are thus quite complicated. Application of HOCM in this region
is at best highly suspect. The arguments given above have only been developed to
further the qualitative understanding of MVIE in high temperature liquids. An alter-
native and much more convenient approach is via the application of corresponding
states theory and reduced equations of state (see Chapter 13).
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Chapter 13
Reduced Equations of State: Critical Property
Isotope Effects

Abstract In corresponding states (CS) theory the PVT properties of fluids are ex-
pressed in terms of the critical constants and one or more additional parameters. In
this chapter the use of CS theory to correlate isotope effects on the physical proper-
ties of fluids is explored.

13.1 Introduction, Corresponding States

In spite of the success of corresponding states (CS) theory in describing the PVT
properties of fluids, CS has only been rarely applied so far as isotope effects are
concerned. In CS the temperature dependence of the molar volume and the condi-
tions for liquid–vapor coexistence are expressed using the critical properties of the
fluid and one or more additional parameters. Therefore in applying CS to isotope
effects, quantization, essential to the understanding of thermodynamic IE’s, is in-
troduced in terms of the critical property IE’s even though reliable critical property
IE data are available for only a few isotopomer pairs. CS ignores the subtleties of
molecular structure and vibrational properties and therefore cannot be expected to
be as useful for rationalization of vapor pressure IE’s as it is for molar density IE’s.
That is because the detailed theory of the VPIE (Chapter 5) shows it to depend on
subtle isotopic differences in the vibrational properties of the coexisting vapor and
liquid phases. The molar density IE, on the other hand, is a much simpler function
of the molecular structure and overall motion in the condensed phase (Chapter 12).
To anticipate, one finds this expectation to hold true. Corresponding states fits to
vapor pressure IE’s are not as good as those to molar density IE’s, even after the
empirical introduction of an additional isotope dependent parameter.

13.1.1 Equations of State, Corresponding States

In corresponding states, one selects an equation of state (EOS) (e.g., the Van der
Waals equation, P D RT=.V� b/� a=V2/ containing three or fewer constants (a, b

M. Wolfsberg et al., Isotope Effects: in the Chemical, Geological, and Bio Sciences,
DOI 10.1007/978-90-481-2265-3 13, c� Springer Science+Business Media B.V. 2009
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and R), and uses the mathematical properties of the critical point, [V(P,T) D f(P, T,
R, a, b), .dV.P;T/=dP/C D 0 and (d2V.P;T/=dP2/C D 0], to express the constants
in terms of critical properties PC, VC D 1=¡C and TC. The resulting master equation,
V=Vc D f.T=Tc, P=Pc), (VR D f.PR, TR//, is a reduced equation of state and is uni-
versal to the extent that the PVT properties of all substances adequately described
by an EOS of the chosen form lie on master curves. One hopes that CS fits to exper-
imental data are accurate and reasonably precise over a wide range of temperature,
but no current three parameter EOS satisfies this criterion to anything near experi-
mental accuracy. Rather than abandoning the method, however, many workers have
chosen to extend it by adding a fourth empirically chosen system dependent parame-
ter (e.g. the Pitzer acentric factor,¨, selected to force agreement between calculated
and observed vapor pressures at TR D 0:7). The extended EOS improves agreement
with experiment. The approach has proven enormously useful. To summarize, the
three parameters in simple cubic equations of state (e.g. the Van der Waals equation)
can be expressed in reduced form in terms of the critical properties alone, but the
resulting equations are inadequate so far as fits to experimentally observed molar
volumes and vapor pressure are concerned (e.g., see Fig. 13.1). Addition of a sys-
tem specific fourth parameter improves matters significantly and yields “reasonable”
molar volumes and vapor pressures from triple point to critical point.

Commonly encountered cubic equations of state are classical, and, of themselves,
cannot rationalize IE’s on PVT properties. Even so, the physical properties of iso-
topomers are nearly the same, and it is likely in some sense they are in corresponding
state when their reduced thermodynamic variables are the same; that is the point ex-
plored in this chapter. By assuming that isotopomers are described by EOS’s of
identical form, the calculation of PVT isotope effects (i.e. the contribution of quan-
tization) is reduced to a knowledge of critical property IE’s (or for an extended
EOS, to critical property IE’s plus the acentric factor IE). One finds molar density
IE’s to be well described in terms of the critical property IE’s alone (even though
proper description of the parent molar densities themselves is impossible without
the use of the acentric factor or equivalent), but rationalization of VPIE’s requires
the introduction of an IE on the acentric factor.

13.2 Reference Systems; Critical Property Data
for Some Isotopomer Pairs

13.2.1 The PVT Surface for Isotopomer Pairs

Extensive PVT data as well as precise values for critical property IE’s are available
for 3He=4He, CH4=CD4, H2=D2 and H2O=D2O and these isotopomer pairs com-
prise an excellent reference in formulating EOS analysis of PVT IE’s. Critical
properties and critical property IE’s for these and a few other selected isotopomer
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Fig. 13.1 Reduced vapor pressure and molar density vs. reciprocal reduced temperature for H2O,
CH4, H2, and 4He. In each case, were simple corresponding states theory adequate, all data would
lie on a single master curve. Using extended CS the curves are fit to acceptable precision. (a) (top)
D reduced vapor pressures. (b) (bottom)D reduced liquid molar densities

pairs are collected in Table 13.1. Critical property IE’s, particularly critical pressure
and critical volume IE’s are difficult to measure and complete data sets are available
for very few pairs.

Figure 13.1a shows reduced vapor pressures and Fig. 13.1b reduced liquid molar
densities for the parent isotopomers of the reference compounds. Such data can be
fit to acceptable precision with an extended four parameter CS model, for example
using a modified Van der Waals equation. In each case the parameters are defined in
terms of the three critical properties plus one system specific parameter (e.g. Pitzer
acentric factor). Were simple corresponding states theory adequate, the data for all



416 13 Reduced Equations of State: Critical Property Isotope Effects

Table 13.1 Critical properties and critical property isotope effects for some isotopomer pairs

Reference Pairs 3He=4He H2=D2 H2O=D2O CH4=CD4

TC
0=K 3.34 33.19 647.096 190.6

PC
0=MPa 0.121 1.315 22.06 4.62

10�3¡C
0=.mol=m3/ 13.70 14.94 17.87 10.13

ŒP=.¡RT/
C0 0.318 0.319 0.230 0.288
103 ln.TC

0=TC/ �442 �144 5.0 7.4
103 ln.PC

0=PC/ �658 �236 18 �8.6
103 ln.¡C

0=¡C/ �236 �148 5.6 �8.1
¨ �0.39 �0.22 0.344 0.008
103�’=’ 7 23 8 4.7
Ref. c c c d
Some other pairsb C6H6=C6D6 .CH3/2CO=.CD3/2CO CH3OH=CH3OD HCl/DCl
TC

0=K 562.1 508.1 512.6 324.7
PC

0=MPa 4.89 4.70 8.1 8.47
10�3¡C

0=.mol=m3/ 3.86 4.78 8.47 12.3
ln.TC

0=TC/ 2.5 4:2a 4:2a 3.9
ln.PC

0=PC/ 9:2a 12:5a 16a �3.1
ln.¡C

0=¡C/ 5:8a 7:3a 9a 8:2a

¨ 0.212 0.309 0.559 0.120
�’=’ 1.1 1.9 6.7 23
Ref. e e e f

aCalculated from correlations in Fig. 13.3 and Equations 13.3 and 13.4.
bOther isotopomer pairs with information on some critical property IE’s include H2=HD, H2=T2,
H16
2 O=H18

2 O, H2S=D2S, H2Se=D2Se, NH3=ND3, PH3=PD3, AsH3=AsD3, 14N2=
15N2, HBr/DBr,

HI/DI, CHCl3=CDCl3, CH3COOH=CH3COOD, C2H4=C2D4, and ethyl, n-propyl, i -propyl, n-
butyl, i -butyl and s-butyl alcohols(–OH/–OD)g.
cLandolt-Bornstein.Zahlenwerte und Funktionen. Springer Verlag, Heidelberg IV (1967) 316 and
ff, IV (1971)632 ff.
dGrigor, A. and Steele, W. A., J. Chem. Phys. 48, 1032 (1968); 48, 1038 (1968).
eKooner, Z. and Van Hook, W. A. J. Phys. Chem. 92, 6414 (1988).
fHenderson, C., et al., J. Chem. Thermodyn. 18, 1077 (1986).
gRabinovitch, I. B., Influence of isotopy on the physicochemical properties of liquids. Consultants
Bureau, New York, 1970.

four substances would lie on a single master curve. Figure 13.1b diagrams the con-
ditions for liquid–vapor coexistence on the (TR, ¡R/ plane. A (TR, ¡R/ plot is much
preferred to a (TR, VR/ plot because vapor densities nicely approach zero in the
low temperature, low pressure limit. The average density, (¡V C ¡L/=2, is called
the rectilinear diameter and is approximately linearly dependent on temperature.
The vapor pressure curves (Fig. 13.1a), nearly linear in ln PR vs 1/TR space, are fit
to good precision with quadratic expressions, ln P D A C B=TR C C=TR

2. As for
the liquid molar densities there is marked system dependence.
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13.2.2 IE’s of Reference Pairs

The effect of isotopic substitution on the vapor pressure and molar volume of the
reference pairs is shown schematically in Fig. 13.2. P.D2O/ < P.H2O) at low tem-
perature, but as T increases the curves eventually cross, and P.H2O/ < P.D2O)
when the VP curve ends for D2O at its critical point (21.7 MPa, 643.9 K). The
critical point for H2O is at higher pressure and temperature (22.1 MPa, 647.1 K,
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Fig. 13.2 Vapor pressures (PV;T) and liquid molar volumes (Vm;T) along the orthobaric LV
equilibrium line for reference isotopomer pairs, showing their distinctly different behaviors
(schematic). The thicker lines label the heavier isotopomers. The curves begin at the triple points
and end at the critical points (except for He which has no triple point under orthobaric conditions).
Not to scale, isotopic differences are exaggerated (Reprinted from Van Hook, W. A., Rebelo, L. P.
N. and Wolfsberg, M., Fluid Phase Equilib. 257, 35 (2007), copyright 2007, with permission from
Elsevier)
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Table 13.1). In the solid P.CH4/ > P.CD4) but the curves cross below the melting
point and the vapor pressure IE for the liquids is inverse (PD > PH/. For water and
methane TC

0 > TC, but for water PC
0 > PC and for methane PC

0 < PC. As al-
ways, the primes designate the lighter isotopomer. At LV coexistence ¡LIQ.D2O/ <
¡LIQ.H2O) at all temperatures (remember the ¡’s are molar, not mass, densities). For
methane ¡LIQ.CD4/ < ¡LIQ.CH4/ only at high temperature. At lower temperatures
¡LIQ.CH4/ < ¡LIQ.CD4/. The critical density of H2O is greater than D2O, but for
methane ¡C.CH4/ < ¡C.CD4/. Isotope effects are large in the hydrogen and helium
systems and ¡LIQ0 < ¡LIQ and P0 > P across the liquid range. PC

0 < PC and ¡C
0 < ¡C

for both pairs. Vapor pressure and molar volume IE’s are discussed in the context
of the statistical theory of isotope effects in condensed phases in Chapters 5 and 12,
respectively. The CS treatment in this chapter offers an alternative description.

13.2.3 PVT Isotope Effects and the Modified
Van der Waals Equation

In CS one selects an appropriate equation of state (EOS), expresses the parameters
in terms of critical properties so far as possible, and fits the result to experimental
data to define a minimum set of system specific parameters. A recent example used
a modified form of the reduced Van der Waals equation

PRD Œ4’=.’2�1/
ŒTR=.VR�.’�1/=.’C1//
� Œ.’C1/=.’�1/
=ŒVR
’TR

”
 (13.1)

In Equation 13.1 the Van der Waals “a” and “b” parameters are a D RTC b.’�1/Œ4’=

.’2�1/
Œ.’�1/=.’C1//
’ and b D Œ.’�1/=.’C2/
VC, respectively, and ’ and ” are
system dependent parameters selected by numerically fitting Equation 13.1 to PVT
data of the parent compounds. That process yields ’ D 1:913� 0:791¨C 0:969¨2

and ” D 2:44� 1:06’. Here ¨ is the Pitzer acentric factor which has been tabulated
for a large number of parent isotopomers, or which can be obtained from their vapor
pressures near the normal boiling point. The equation thus reduces to a four parame-
ter representation of the PVT properties of the fluid being fitted (i.e. the three critical
properties plus the Pitzer acentric factor). The quality of agreement is satisfactory
for the present purpose, calculation and experiment agree to within a few percent.
Fits to the unmodified VdW EOS are system independent and display molar density
differences, calculated-to-experiment, of 20–50% or even more. The addition of the
system dependent acentric parameter improves that by about an order of magnitude.

13.2.4 Reference Systems, Isotope Effects

Molar volume and vapor pressure IE’s may be calculated as f.TR/ using critical
parameters and their isotope effects (Table 13.1) assuming no IE on the system de-
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pendent parameter ’, �’=’ D 0. The results can be compared with ones which
force agreement for the VPIE at TR

0 D 0:5 by ad hoc adjustment of �’=’. In
either case the agreement between calculated and observed molar density IE’s is ac-
ceptable. Molar density IE’s are not sensitive to �’=’, but for vapor pressure IE’s
setting �’=’ D 0 is wildly inadequate.

Solutions in hand for the reference pairs, it is useful to write out empirical
smoothing expressions for the rectilinear densities, reduced density differences, and
reduced vapor pressures as functions of TR and ’, following which prediction of
reduced liquid densities and vapor pressures is straightforward for systems where
TC0 and ’ (equivalently ¨) are known. If, in addition, the critical property IE’s,
ln.TC0=TC/, ln.PC

0=PC/, and ln.¡C
0=¡C/, are available from experiment, theory, or

empirical correlation, one can calculate the molar density and vapor pressure IE’s
for 0:5 < TR

0 < 1, provided, for VPIE, that �’=’ is known or can be estimated.
Thus to calculate liquid density IE’s one uses the observed IE on TC, ln.TC

0=TC/,
to find ln.TR

0=TR/ at any temperature of interest, and employs the smoothing re-
lations (or numerically solves Equation 13.1) to obtain .¡R

0=¡R/. Since (M¡IE/R D
ln.¡R

0=¡R/ D lnŒ.¡0=¡C
0/=.¡=¡C/
 it follows that ln.¡0=¡/.M¡IE/RCln.¡C0=¡C/. For

VPIE’s one proceeds similarly, substituting reduced temperatures, critical pressures
and �’=’ into the smoothing equations to find ln.P0=P/RED and thence ln.P0=P/,
since ln.P0=P/ D ln.PR

0=PR/ C ln.PC
0=PC/. The approach outlined for molar den-

sity IE cannot be used to rationalize the vapor pressure IE without the introduction
of isotope dependent system parameters�’=’.

13.3 Critical Property Isotope Effects

13.3.1 Experimental Data

Careful literature review reveals only limited data on critical property IE’s. A sam-
pling of the few data which are available is found in Table 13.1. Thus, for many
systems, calculation of IE’s using CS may first require theoretical estimation of
critical property IEs and/or empirical correlation of critical property IEs with other
properties. Examples are discussed in Section 13.3.2. First, however, two qualitative
observations are useful. (1) If in the neighborhood of TC VPIE is normal, ln.P0=P/ >
0, the lighter isotopomer will have a lower critical temperature than the heavier,
TC
0 < Tc (the inequality is opposite for ln.P0=P/ < 0/. All known systems meet this

constraint. For monatomic systems ln.P0=P/ > 0 necessarily, so TC
0 < Tc. In con-

trast, polyatomics generally (but not always), show inverse vapor pressure IE’s near
Tc, and this is increasingly true for larger molecules. Hence, one expects Tc0 > Tc.
(2) The critical pressure IE,�Pc, and the critical density isotope effect,��c, should
have the same signs, because near Tc the molar density is mainly pressure controlled
due to the very large compressibility of the fluid in that region.
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13.3.2 Correlations Between Critical Property and Vapor Pressure
IE’s: ln.Tc

0=Tc/ and ln.P 0=P)

Figure 13.3 reports a good quality correlation between the critical temperature IE,
ln.TC

0=TC/, and the vapor pressure IE near the critical temperature, say TR
0 D

0:975. The choice TR
0 D 0:975 is arbitrary. Other reduced temperatures near

TR
0 D 1 would have served, but at lower TR

0 the quality of fit deteriorates. Data for
those isotopomer pairs with TC

0 > 	50K or so (i.e. all pairs except hydrogen and
helium), lie close to (0,0). They are plotted using an expanded scale in the insert.
The correlation line through the (presumably) more reliable high temperature data
Œ.�0:01 < ln.TC

0=TC/ < 0:01// D �0:0034 � 0:3443 ln.P0=P/0:975
, is in ex-
cellent agreement with the overall correlation in the main figure, ln.TC

0=TC/ D
�0:0032� 0:3805 ln.P0=P/0::975.

All other
pairs

2

VPIE = ln (P'/P)Tr = 0.975
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Fig. 13.3 The correlation of ln(TC
0=TC/ with ln.P0=P/ at TR

0 D 0:975. The correlation line in the
main figure is: ln.TC

0=TC/ D �0:0032 � 0:3805 ln.P0=P/0:975 , r2 D 0:998. The insert enlarges
the data near (0,0). In the insert the heavy line replots the correlation in the main figure, the lighter
line shows the correlation through the data in the insert (Reprinted from Van Hook, W. A., Rebelo,
L. P. N. and Wolfsberg, M., Fluid Phase Equilib. 257, 35 (2007), copyright 2007, with permission
from Elsevier)
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Correlating ln.Pc
0=Pc/, with vapor pressure data: For isotopomer pairs with

the vapor pressure and VPIE established near Tc, a thermodynamic consistency test
between ln.TC

0=Tc/ and ln.Pc
0=Pc/, and calculation of ln.Pc

0=Pc/ from ln.TC
0=Tc/

is possible. The critical pressure of the heavier isotopomer at its critical temperature,
PC.TC/, can be calculated from the lighter, PC

0.TC
0/, provided the vapor pressure of

the lighter between TC
0 and TC, the VPIE, and TC

0 and TC are known. For TC < TC
0

ln.P.TC// D ln.P0.TC
0//C s .d ln.P0/=dT/dT� ln.P0=P/Tc: (13.2)

Rearranging,

ln.Pc
0=Pc/ D ln.P0.TC

0/=P.TC// D �s .d ln.P0/=dT/dTC ln.P0=P/Tc (13.3)

The integrals extend over the narrow range, TC
0 to TC. Also d ln.P0/=dT is available

to sufficient accuracy from vapor pressure data but is not required at high precision
because the range of the integration is short.

Estimating the critical density IE, ln.¡c
0=¡c/: No consistency test is available

for ln.¡c
0=¡c/, but for the original Van der Waals equation and the modified VdW

equations discussed in this chapter the critical compressibility factors, ZC.VdW/ D
PC=.¡CRTC/, are equal to 3/8 and (’2 � 1/=.4’/, respectively. In the latter case,

��¡C=¡C D ��PC=PC C�TC=TC C Œ.’2 C 1/=.’2 � 1/
.�’=’/ (13.4)

For the unmodified VdW equation ��¡C=¡C D ��PC=PC C�TC=TC.

13.3.3 Uncertainties in Critical Property IE’s

The experimental precision establishing ln.TC
0=Tc/ is almost always better than

that for ln.Pc
0=Pc/, and very much better than ln.¡c

0=¡c/ (which, in any case, is
known for very few isotopomer pairs). Usually ln.P0=P/Tc is negative and small (a
few percent or less), and the first term on the right in Equation 13.4 usually pos-
itive and small, (ln.TC

0=Tc) is most often positive). Consequently the calculated
value of ln.Pc

0=Pc/ is smaller in magnitude than either of these, and often cannot be
reliably established. For isotopomer pairs (excluding hydrogen and helium) the un-
certainty is reasonably estimated as •�TC=TC	 0:001, except for H2O=D2O which
is better known, 	0:0005. Equation 13.3 thus claims •.�PC=PC/=.�PC=PC/ �
•.�TC=TC/=�TC=TC. Finally •�¡C=¡C is much, much more difficult to measure
and experimental uncertainty here is much higher, say between •�¡C=¡C D 0:005

and 0.01.
Using the correlations in Fig. 13.3 and Equations 13.3 and 13.4, one can esti-

mate ln.Pc
0=Pc/ and ln.¡c

0=¡c/ from ln.TC
0=Tc/ and near critical values of VPIE.

That information in hand, the modified Van der Waals EOS yields ln.¡0=¡/ across
the coexistence range (	0:5 < TR < 1/. This is a very useful result: few data are
available for ln(¡0=¡), except near room temperature, and experimental programs to
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expand the data base are difficult, expensive, and tedious to implement. Correspond-
ing states analysis offers an attractive alternative.

13.4 CS Calculations for Some Isotopomer Pairs

The method described above can be applied to isotopomer pairs for which critical
property IE data exists or can be estimated. Calculated values of ln.¡0=¡/ are insen-
sitive to IE’s on the acentric factor, �¨=¨ (equivalently �’=’/. The VPIE, on the
other hand, is strongly dependent on�¨=¨. For 3He=4He and H2=D2 critical prop-
erty IE data are complete and M¡IE and VPIE are available across the entire liquid
range, are one to two orders of magnitude larger, and known to better precision than
for other pairs (save perhaps H2O=D2O/. For heavier pairs critical property IE data
are usually incomplete or uncertain, and often data on M¡IE and VPIE exist only
over a limited temperature range.

13.4.1 The Lighter Pairs

13.4.1.1 3He=4He

Critical property IE’s are large. Figure 13.4a compares experimental VPIE’s
with calculations. On this scale calculation and experiment cannot be distin-
guished. To find VPIE from the calculated reduced IE’s one adds the observed
or correlated values for ln.Pc

0=Pc/, i.e. ln.P0=P/ D ln.P0=P/RED C ln.Pc
0=Pc/. The

cross-hatched line shows calculated results choosing �’=’ D 0. For helium the
�’=’ dependence is small. This observation partly carries over to the hydrogens. It
is a consequence of large critical property IE’s for these very light molecules. For
heavier pairs, however (see below), critical property IE’s are smaller, and EOS vapor
pressure IE’s (but not liquid molar density IE’s) are sensitive to �’=’. Calculated
and experimental liquid molar density IE’s for 3He=4He are shown in Figure 13.4(b)
The agreement is excellent.

13.4.1.2 Hydrogen

Figure 13.4a shows calculated VPIE’s for H2=D2 using observed and correlated
critical property IE’s. The fits are in excellent agreement, superposing on the scale of
the figure, and with observation. The cross-hatched line refers to H2=D2 choosing
�’=’ D 0. It is in progressively worse agreement with experiment as tempera-
ture falls and establishes the need to postulate an isotope dependent ’. Figure 13.4b
compares calculated and experimental liquid molar density IE data. The agreement
is excellent.
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Fig. 13.4 CS calculations for 3He=4He and H2=D2. Points are experimental, lines calculated.
Heavy lines use observed critical property IE’s and non-zero �’=’ (see text). Lighter lines em-
ploy correlated critical property IE’s and non-zero �’=’. The cross-hatched lines set �’=’ D 0.
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with the heavy solid lines and are not plotted (Reprinted from Van Hook, W. A., Rebelo, L. P. N.
and Wolfsberg, M., Fluid Phase Equilib. 257, 35 (2007), copyright 2007, with permission from
Elsevier)



424 13 Reduced Equations of State: Critical Property Isotope Effects

13.4.2 VdW1 Parameters for Heavier Pairs

Most data on VPIE’s for heavier pairs are at or below the normal boiling point,
TR	 0:7. Of the critical property IE’s, ln.Tc

0=Tc/ is the easiest to measure and the
most reliably known. Often ln.Pc

0=Pc/, and very often ln.¡c
0=¡c/, are unknown or

imprecisely known, and ln.¡0=¡/ has been measured only at or near room tempera-
ture or must be estimated.

13.4.2.1 Water

VPIE’s of H2O=D2O and LV fractionation factors for H2O=HOD and H2O=H2
18O

have been carefully measured and thoroughly interpreted over the complete coex-
istence range. Data for H2O=T2O and intermediate isotopomer pairs are limited to
lower temperatures. Liquid molar density IE data are complete for H2O=D2O. De-
partures from the law of geometric mean are small and the liquid molar density
IE for H2O=HOD is available to good precision. At low temperature, ln.¡0=¡/ for
H2O=D2O (and presumably for the other water isotopomer pairs) shows a minimum
which has been ascribed to H-bonding (“water-structure effects”).

Figure 13.5a compares calculated and experimental VPIE’s for H2O=D2O. Ex-
periment and calculation overlap within the combined uncertainties. The thin line
through the small circles in Fig. 13.5a represents VdW1 choosing �’=’ D 0. It
departs radically from experiment, but the corresponding calculated liquid molar
density IE’s are insensitive to the choice of �’=’. Therefore the corresponding
states treatment is most useful for analysis of molar density IEs because it avoids
the necessity of introducing a fourth isotope sensitive parameter, �¨=¨ (equiva-
lently �’=’/.

13.4.2.2 Methane

Figures 13.5a and b include comparisons of CS calculations for CH4=CD4 with ex-
periment. The calculated values for ln.P0=P/ lie within 0.01 unit of experiment and
within the uncertainty corresponding to the experimental error on TCIE (˙0:001/.
Figure 13.5b shows good agreement between CS modified VdW calculations and
experiment for liquid molar density IE’s.

13.5 Remarks

A CS treatment of liquid phase molar densities, liquid M¡IE’s, and vapor pressures
and VPIE’s has been described. Quantization, necessary for the proper treatment of
thermodynamic isotope effects, was introduced by using measured or correlated IE’s
on critical temperature,�Tc D Tc

0�Tc, critical pressure,�Pc D Pc
0�Pc, and criti-
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cal density,�¡c D ¡c
0�¡c. For that purpose methods to predict critical property IE’s

were developed. For most isotopomer pairs some critical property IE’s are unknown,
so this step is critically important. Calculated liquid M¡IE’s based on critical prop-
erty IE’s alone agree reasonably well with experiment, but rationalization of VPIE’s
requires a parametric introduction of an IE on the acentric factor. The CS approach is
less useful for the description of vapor pressure than liquid molar density IE’s. That
result is expected because the detailed molecular theory of condensed phase isotope
effects (Chapter 5) shows that VPIE is related to subtle isotopic differences on the
vibrational frequencies of the coexisting vapor and liquid phases. Liquid molar den-
sities, on the other hand, are a much simpler function of the molecular structure and
hindered motion in the condensed phase (Chapter 12). The application of CS theory
to PVT isotope effects is particularly useful. This is because complete good quality
critical property IE and PVT data are available for only a very few isotopomer pairs,
and experimental measurements to generate complete data sets for more pairs are
tedious and expensive.
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Chapter 14
Isotope Effects in Unimolecular Processes:
“Mass Independent” Isotope Fractionation
and the Ozone Problem

Abstract The theoretical framework needed for interpretation of kinetic isotope
effects on unimolecular reactions is reviewed. Application to the satisfactory ratio-
nalization of the theoretically puzzling ”mass independent isotope effect” observed
for oxygen isotope fractionation in extraterrestrial samples is described.

14.1 Introduction: Isotope Effects in Unimolecular Reactions

As is implied by the name, a unimolecular reaction is one in which a single molecule
of reactant decomposes or rearranges to give rise to product molecules. Ordinary
thermal reactions can be modeled by a process which considers the reactant to be
in thermal equilibrium with a transition state which then decomposes (rearranges)
to give products. One can theoretically describe the process and its isotope effects
using transition state theory. For unimolecular reactions, on the other hand, while
there is still a transition state, it is not in thermal equilibrium with the reactant except
for systems at high pressure. Consequently, a more elaborate theoretical framework
is required to understand unimolecular reactions and their isotope effects.

In the following section, the RRKM mechanism for gas phase unimolecular
reactions will be introduced and the corresponding theoretical framework, includ-
ing isotope effects, will be outlined. Subsequent sections will deal with some
applications of this theoretical framework to systems which have been studied ex-
perimentally.

The last parts of this chapter will deal with the so-called mass independent
isotope effects which have been rationalized in recent years to be a consequence
of unimolecular processes and which have become one of the most fascinating of
present day isotope effect studies.

M. Wolfsberg et al., Isotope Effects: in the Chemical, Geological, and Bio Sciences,
DOI 10.1007/978-90-481-2265-3 14, c� Springer Science+Business Media B.V. 2009
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14.2 The RRKM Mechanism for Unimolecular
Gas Phase Reactions

The RRKM mechanism of unimolecular reactions is based on the recognition al-
most simultaneously by Lindemann (already mentioned in Chapters 1 and 5) and
the Danish chemist Christiansen that a unimolecular process in a thermal reaction
first requires excitation of the reacting molecule through collision processes. The de-
velopment of the mechanism is a fascinating story and benefited from the input of a
number of distinguished physical chemists, among them Rice, Ramsberger, Kassel,
and Marcus whose initials (RRKM) have been used as the name of the theory. For
details reference should be made to the book by Holbrook, Pilling, and Robertson
which is listed in the suggested additional reading at the end of this chapter. The
scheme follows

ACM! A�.E; •E/CM .activation/ •k1.E/ (14.1)

A�.E; •E/CM! ACM .deactivation/ k2 (14.2)

A� ! A>
+

ka (14.3)

A>
+ ! products k3 (14.4)

Here A is the molecule undergoing the unimolecular reaction, A�.E; •E/ is a vi-
brationally/rotationally exited A molecule with excitation energy between E and

E C •E and A>
+

is the transition state which decomposes or rearranges to yield
product(s). M is a molecule (or atom) which collides with A and serves to trans-
fer energy to/from A. Under some circumstances, M may be another A molecule.
Equation 14.3 is constant energy process between a properly energized A molecule,
having sufficient energy E0 (measured from the ground vibrational state of A to

the ground state of A>
+
) to form the transition state molecule A>

+
. E0 is sometimes

referred to as the activation energy.
The formation of the transition state from the excited molecule is referred to as a

microcanonical process, while the formation of the transition state in conventional
TST in Chapter 4 and in VTST in Chapter 6 is referred to as canonical process. The
terms “microcanonical” and “canonical” in statistical mechanics refer respectively
to processes at constant energy and processes at constant temperature.

The rate constants •›1; k2; ka; k3 in the equations above have meaning; for ex-
ample, Equation 14.1 means

� dŒA

dt
D •›1.E/ŒA
 ŒM
 D dŒA�.E; ıE/


dt
(14.5)

Here [A] is the concentration of A. and t refers to time. •›1.E/ is a differential rate
coefficient for the reaction in which a molecule is excited to an energy between E
and E C •E. Thus, Equation 14.5 is the equation for the rate of appearance of A�
molecules with energy between E and EC •E.



14.2 The RRKM Mechanism for Unimolecular Gas Phase Reactions 429

In dealing with a complex reaction scheme as the one indicated above, one
frequently introduces a so-called “steady state approximation” for reactive inter-
mediates in order to find simplified rate laws (see, for example, Section 11.2).
This approximation is usually sufficiently valid to give rise to useful results; most
physical chemistry texts discuss and use this application. In the steady state approx-
imation for A�, one writes

dŒA� .E; ıE/

dt

D •k1.E/ŒA
ŒM
 � k2ŒA�
ŒM
 � ka.E/ŒA�
 D 0 (14.6)

After some rearranging, this equation yields the following result for ŒA�
,


A�.E; •E/

� D
�

•k1.E/
k2

�
ŒA


1C ka.E/

k2 ŒM


(14.7)

As for the transition state in the conventional TST of Chapter 4, the transition state

A>
+

here is in chemical equilibrium with A�, albeit at constant energy (microcanon-

ical). Also A>
+

has one degree of freedom which replaces the imaginary vibration
along the reaction path by a translation as is assumed in conventional TST in Chap-

ter 4. This translational motion of the transition state leads to two A>
+

species, one

corresponding to motion towards products, which will be designated
�!
A>

+
and the

other corresponding to motion back to A� designated
 �
A>

+
. Each of the two species

is equally probable and the total concentration of A>
+

is equal to their sum. The

steady state assumption for A>
+

then yields

0 D
d
h
A>

+i
dt

D ka.E/ŒA�
� k3Œ
 �
A>

+

 (14.8)

D kaŒA�
 � 1
2

k3ŒA>
+

 (14.9)

Consequently,

ka.E/ŒA�
 D 1

2
k3ŒA>

+

 (14.10)

and

ka D 1

2
k3

0
@
h
A>

+i
ŒA�


1
A

STEADY

STATE

D 1

2
k3

0
@
h
A>

+i
ŒA�


1
A

EQ

(14.11)

Equation 14.11 explicitly contains the equilibrium assumption of transition state
theory, i.e. that the transition state and the excited molecules are in chemical
equilibrium.
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The unimolecular rate constant kuni is defined

�1
ŒA


dŒA


dt
D kuni (14.12)

Appropriate use of Equation 14.12 leads to

kuni D 1

ŒA


d Œproducts


dt
D 1

2
k3

h
A>

+i
ŒA


D ka.E/
ŒA�

ŒA


D
ka.E/

�
ık1.E/

k2

�
ŒA


1C ka.E/

k2 ŒM 


(14.13)

It should be noted, and will be further discussed later, that the definition of kuni

in Equation 14.13 does not mean that the reaction is a first order reaction. A first
order reaction would imply that kuni is independent of concentration. As indicated by
Equation 14.13, kuni depends on the concentration of the “third body” M with which
A collides for activation and deactivation. For k2 ŒM
 much larger than ka, which
means high pressure, kuni does indeed become independent of concentration. At low
pressure, however, kuni depends on [M] and the overall rate of making products
becomes second order, depending linearly on both [M] and [A].

The rate coefficient kuni reflects the unimolecular reaction initiated by exciting
reactant molecules to an energy between E and E C •E. As already noted, there is
a minimum excitation energy E0 required to proceed with reaction, usually called
the activation energy, E0 and all energies from E0 to1 will be assumed to lead to
reaction. Thus, the over-all kuni is found by integrating Equation 14.13 to yield

kuni D
Z ED1

EDE0

ka.E/

�
dk1.E/

k2

�

1C ka.E/

k2 ŒM


(14.14)

In the last equation, •k1 has been replaced by dk1.E/ for excitation to energies
between E and ECdE to indicate that the range of energy can be chosen sufficiently
small so that it may be used as a differential.

In the following sections, the rate coefficients dk1.E/=k2, ka, and k3 will be fur-
ther explored to enable the calculation of kuni and isotope effects thereon from first
principles, and the high pressure and low pressure limits of kuni will be explored in
more detail.
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14.2.1 The Expression for ı k1.E; dE/=k2

Equations 14.1 and 14.2 represent the forward and the reverse of the same reaction
and it is well known in physical chemistry that the ratio of rate coefficients is the
equilibrium constant for the reaction. Thus, for

ACM � A�.E; dE/CM (14.15)

the equilibrium constant is

Keq D dk1.E/

k2

(14.16)

The reaction described by Equations 14.15 and 14.16 is a thermal system so that the
equilibrium constant is given in terms of a ratio of canonical partition functions Q
of Chapter 4 with the partition functions for M canceling

Keq D

Q.A�.E; dE//Q.M/

�.
ŒQ.A/Q.M/
 D Q.A�.E; dE//

�.
ŒQ.A/


(14.17)

Q(A) is the sum of exp .�Ei=kT/ over all energy states Ei of the A molecule. It will
be referred to as Q2. For A� the sum is restricted to those states between E and
EC dE. Thus

Q
�
A�.E; dE/

� D
 

ECdEX
E

gi

!
e�E=kT (14.18)

where use has been made of the fact that dE is so small that all the states in the
sum in the partition function have the same energy. Thus the exponential term,
e.�E=kT/, is multiplied by the sum of the degeneracies gi of all states in the inter-
val. For a molecule of moderate size the number of states will usually be sufficiently
large so that one can talk a density of states ¡(E), i.e. number of states per unit
range of energy, and replace

P
gi, the number of quantum states between E and

E C dE by ¡.E/ dE. Thus, the required rate coefficient ratio dk1.E; dE/=k2 can be
written as

dk1.E; dE/

k2

D
h
¡ .E/ e�E=kTdE

i.
Q2 (14.19)

14.2.2 Discussion of ka(E)

The rate constant ka(E) of Equation 14.3 is the rate constant which is calculated
by transition state theory. Analogously to the discussion in Chapter 4 of conventional
transition state theory, where chemical equilibrium is between reactants and transi-
tion state, it will be assumed here that an equilibrium exists between A� (excited
A molecules with vibrational energy E, equal to or larger than E0, the minimum
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excitation energy required for forming the transition state) and A>
+
. There is one

very significant difference between the problem addressed here and in Chapter 4.
In ordinary TST (Chapter 4) both the reactant species and the transition state were
characterized by a common temperature T, but in the present case both the reactant

A� and the transition state A>
+

are characterized by the same value of total energy
E, measured with respect to the ground state energy of the unexcited A molecule.
Since all states of a molecular system corresponding to the same energy should
have equal a priori probability at chemical equilibrium, it is quite clear the relative

concentrations of A� and A>
+

should be the relative number of energy states of A�

and A>
+

accessible at the common energy. It is noted without formal detailed proof
that the concept of equilibrium at constant energy means equal a priori probability
of all energy states and leads after appropriate Boltzmann (exp (�E/kT)) averag-
ing to the formulation of equilibrium constants at given temperature T in terms of
canonical partition functions.

14.2.2.1 Classification of Molecular Energy Levels

In the previous sections there has been discussion of the energy level density and
number of energy levels. As in the discussion of Chapters 2 to 4, there is a Born–
Oppenheimer potential energy surface for the molecule A and the transition state

A>
+

which is independent of isotopic substitution within the BO approximation, and
which corresponds to the electronic ground state. When the discussion deals with
excited states and with counting numbers of states, these states refer to the various
rotational, translational, and vibrational states corresponding to the relevant BO
potential energy surfaces. The vibrational, rotational and translational energies are
isotope dependent as noted in previous discussion. A short discussion of molecular
degrees of freedom is appropriate here prior to the presentation of explicit formulae
for k3.E/. For more detailed discussion of degrees of freedom in unimolecular
reactions, reference should be made to the literature (see Holbrook et al., at the end
of the chapter).

As noted in Chapter 3, an N atomic non-linear molecule has three molecular
translations, three molecular rotations, and (3N � 6) vibrations. Some of the vi-
brational motions may actually be hindered internal rotations. An example of an
internal rotation is the rotation of the two methyl .CH3/ groups in ethane, C2H6,
with respect to each other. In Chapter 4, some justification was given for dealing
with these “internal rotations” as though they are vibrations. In counting states for
the purpose of unimolecular reactions, for the present it will be assumed that the in-
ternal rotations are again handled as though they are vibrations. It is usual to assume
that molecular rotations stay in the same quantum states in the transition from A�

to A>
+
. Thus, the molecular rotations are taken as “adiabatic” and are not counted in

determining relative number of states. The same statement applies to the molecular
translations. It is usually assumed that all 3N� 6 vibrational degrees of freedom are
active and therefore included in the number of states which are counted.
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One also has to keep in mind that the non-linear transition state A>
+

has 3N � 7
vibrations and one degree of freedom corresponding to the motion along the reaction

coordinate which describes the rearrangement in going from A� to A>
+
. As in the

transition state theory of Chapter 4, this degree of freedom is taken to have a particle
in the box (translational) potential. The corresponding energy levels are very closely
spaced. For details reference should be made to the literature. It is well to remember
the following formulae for the so-called non-fixed energy (the energy that can be
distributed among the active degrees of freedom) in the excited molecule A� and

the corresponding transition state A>
+
, referred to as E� and E>

+
respectively,

E>
+ D E� � E0 (14.20)

E� D Ev
� (14.21)

E>
+ D Ev

>+ C x (14.22)

In Equations 14.20 through 14.22, Ev
� refers to the 3N � 6 vibrational degrees of

the excited molecule, Ev
>+ refers to the 3N� 7 vibrational degrees of freedom of the

transition state, E0 is the minimum energy (in excess of the ground state) required
for reaction, and x refers to the energy of the particle in the box motion which
replaces the imaginary frequency of the transition state.

14.2.3 The Expression for ka.E/

Using the equilibrium assumption of transition state theory the ratio of concentra-

tions of A>
+

and A� can now be expressed as
h
A>

+
=A�

i
D (number density of states

A>
+

with energy E>
+
)/(number density of states A� with energy E�)

h
A>

+i
=

A�
� D ¡.A>+/=¡.A�/ (14.23)

where the assumption has been made that the numbers of states are a near continuum
of energies so that the relative number of states can be represented by the continuous

functions ¡.A>
+
/ and ¡.A�/ expressing the number density of states, �, per unit

energy.
The only degrees of freedom that contribute to the number of states or to the

density of states are the active ones discussed in the previous section. These are the
(3N � 6) so-called vibrational states for the N-atomic molecule A� ((3N � 5) for a

linear molecule), and for the transition state A>
+

the (3N � 7) active vibrations plus
the translational degree of freedom along the reaction coordinate. It is this motion
which is substituted for the imaginary frequency of the transition state (again the
number of active frequencies is increased by one if the transition state is linear).
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Since E0, the minimum energy required for E� in order to react, is usually quite
large compared to the vibrational spacing in the reactant, the spacing between the
active levels in A� is small and it makes sense to employ the density of states func-
tion �.Ev

�/ for A�(i.e. instead of attempting to sum discrete individual states). For

the transition state, the relevant energy E>
+ � E0 will usually be much smaller than

E�. The degrees of freedom for A>
+

include the particle in the box translational mo-
tion along the reaction coordinate which replaces the so-called imaginary frequency.
The spacing between particles in the box states is small and depends on the length `
of the box and reduced mass	 of the transition state. The density of the translational
states corresponding to an energy x in the reaction coordinate is

�rc.x/ D 2	 `2=
�
h2x

�1=2
(14.24)

For a derivation of Equation 14.24 reference should be made to the literature (e.g.

Holbrook et al. in the suggested reading list). The energy E>
+

of the transition state

can be thought of being the sum of a vibrational quantum state energy Ev
>+ and a

reaction coordinate energy x such that the sum of x and Ev
>+ is equal to E>

+
(Equation

14.22). Here x is regarded as a continuous variable because of the close spacing of
the reaction coordinate energy levels, and hence one can write for the density of
transition state energy levels

�.E>
+
/ D

Evi DEX
Evi D0

P.Evi
>+/ �rc .x/ (14.25)

The sum here is over all vibrational states of the transition state with energy less

than E>
+
. P.Evi

>+/ here is the number of vibrational states of the transition state with

energy Evi
>+ and each term of the sum is subject to Equation 14.22.

It is now proposed to obtain an expression for ka using Equation 14.11. This
equation requires knowledge of the rate constant k3 in the RRKM scheme. The
rate constant k3 is the inverse of the time required for the particle of mass � to
pass through the transition state, a one-dimensional box of length `. This time is
calculated by classical mechanics. For a translational motion with kinetic energy
x D .1=2/ � v2, where v is the velocity, the passage time is `=v and k3 is

k3 D .2x=�/1=2=` D .2x=� `2/1=2 (14.26)

By substituting Equations 14.23 through 14.26 into Equation 14.11 one obtains

ka.E�/ D 1

h

EP
EvD0

P
�
Ev

�

P .E�/
(14.27)
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As in the conventional transition state theory Equation 14.27 does not contain any
reference to the mass of the reaction coordinate motion or to the length ` of the
transition state. While some aspects of the derivation have been skipped, it is hoped
that the reader understands that the expression in the numerator for the sum of the
vibrational energy levels in the transition state arises from Equation 14.25 which

applies to the transition state A>
+

but not to the excited molecule A�.

14.2.4 The Pressure Dependence of the Rate Constant kuni

Various rate constants which enter into the expression for kuni, Equation 14.14, have
now been discussed. kuni as defined in Equation 14.13 has the appearance of a first
order rate constant for the disappearance of A molecules but it is actually only a
pseudo first order rate constant since it explicitly depends on the concentration of M,
the species involved in the activation and deactivation of A molecules. In the limit
of high concentration, ŒM
 ! 1, kuni reduces to an apparent first order process,
lim

�
kuni;ŒM�!1

� D ka.E/.•k1.E/=k2/ŒA
 D k1.Apparent/ŒA
, while at low concen-
tration the reduction is to an apparent second order process, lim.kuni;ŒM�!0/ D
•k1.E/ŒA
ŒM
 D k2.Apparent/ŒA
ŒM
.

14.2.4.1 The High Pressure Rate Constant .ŒM� ! 1/

In the high pressure limit, the denominator of Equation 14.13 approaches unity
.k2ŒM
 >> ka.E// and kuni becomes a truly first order rate constant. After substi-
tuting the appropriate expressions for ka and dk1=k2 into the expression for kuni,
one obtains (for details see Holbrook et al., reading list)

kuni D kT

h

Q

Q
(14.28)

where Q>
+

and Q are the vibrational canonical partition function of the transition

state A>
+

and reactant A, respectively, with the zero of energy of both A>
+

and A the
ground vibrational state of the reactant A molecule.

The result looks familiar and well it should. Equation 14.28 is just the expres-
sion for the rate constant in conventional canonical transition state theory with the

assumption that the transition state A>
+

is in equilibrium with reactant A. However,
Equation 14.28 differs from conventional transition state theory in that the parti-
tion function ratio here involves only vibrational partition functions, the rotational
partition functions have been omitted. The translational partition functions, which
depend only on molecular mass, cancel exactly in the ratio “transition state over
reactant”. The absence of the rotational partition functions from Equation 14.28
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is puzzling. Its origin lies in the earlier decision to treat the rotational degrees of
freedom as adiabatic and has been extensively discussed (argued) in the literature
(e.g. Holbrook, reading list).

14.2.4.2 The Low Pressure Rate Constant .ŒM� ! 0/

From Equations 14.14 and 14.19 the low pressure limit of kuni is

lim.kuni=M/ D
Z ED1

EDE0

dk1.E/ (14.29)

D k2

Z ED1

EDE0

¡.E/�E=kTdE=Q2 (14.30)

D k2

�
Q�2=Q2

�
(14.31)

Q2
� is the partition function for molecules with energy larger than E0, the minimum

energy required for reaction.
As pointed out before kuni is a pseudo first order rate constant. Since kuni=ŒM


is independent of [M], kuni=ŒM
 is a second order rate constant at low pressure.
It is significant and important for consideration of isotope effects that this second
order rate constant for unimolecular reactions depends only on the energy levels of
reactant molecules A and excited molecules A�, and on the minimum energy E0

required for reaction. It does not depend on the energy levels of the transition state.
There will be further discussion of this point in the following section.

14.2.5 Experimental Measurements of Isotope Effects
in Unimolecular Reactions and the RRKM theory

The basic idea encapsulated in the mechanism given by Equations 14.1 through 14.4
is that energetically activated molecules A� are lost either by proceeding on to prod-

ucts via the transition state A>
+
, or decay back to unexcited reactant molecules A

most likely by a collision induced process. In the simplest analysis conversion of an
excited molecule A� to a non-excited molecule A is taken to be equal to the colli-
sion number. In actuality experiments and also theoretical approaches have shown
that, for many systems, collisions are “weak”, that is energy is transferred in small
steps and multiple collisions are required for complete de-excitation. A crude way
of taking into account “weak collisions” is to replace the term k2ŒM
 in the equation
for kuni, Equation 14.13 by Z“cŒM
 where Z is the collision number and “c is the
“collision efficiency” with “c D 1 for strong collisions and “c < 1 for weak colli-
sions. However a thorough discussion of “weak collisions” is beyond the scope of
this chapter and reference should be made to the literature for more detail, but see
Section 14.4.
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The term RRKM applies to two type of experimental studies involving isotope
effects. In the first molecules are activated by thermal interactions as in
Equations 14.1 through 14.4 and the molecules so excited then decompose in
a unimolecular reaction. In the second type of study, molecules are excited by
chemical interaction to a given energy or a range of energies by a chemical or
photochemical process and the molecule so activated decomposes in a unimolecular
manner by Equations 14.3 and 14.4 of the RRKM process. It should be noted that
the general study of unimolecular reactions is certainly not restricted to the study of
isotope effects. Yet, in the present context, our interest is only in isotope effects.

14.2.6 Thermal Activation: Inverse 2ı-D-KIE’s at Low Pressure

14.2.6.1 Gas Phase Isomerization of Methyl Isocyanide

Our interest in thermally activated unimolecular reactions is in the change of
kuni with pressure from the high to the zero pressure limit, and in the pressure
dependence of the isotope effect over that range. One particularly interesting study
carried out by Rabinovitch and Schneider (reading list) focused on the isomerization
of methyl isocyanide, CH3NC, to methyl cyanide, CH3CN

CH3NC! CH3CN kH (14.32)

CD3NC! CD3CN kD (14.33)

In reactions 14.32 and 14.33 the hydrogen atoms are not involved in any bonds
that are being made or being broken in the reaction. The isotope effect is therefore
referred to as a secondary ’-deuterium isotope effect since the position of isotopic
substitution is ’ to the bond being broken in the rate limiting step (see Chapter 10
for discussion of secondary isotope effects).

The pressure dependence of the isotope effect, kH=kD, is shown in Fig. 14.1. The
isotopic rate ratio decays smoothly from a limiting value just above unity (1.06) at
high pressure (104 Torr) to	0:3 at 5�10�3 Torr. The range of the data thus extends
over an impressive range of nearly seven orders of magnitude. As can be seen from
the discussion which follows, the behavior is just that expected from application of
Equations 14.29 through 14.31, and 14.32, and 14.33. At high pressure the pseudo
first order unimolecular rate constant is given by Equation 14.31 and the isotope
effect expressed

kH=kD D .Q>
+
=Q/H=.Q>

+
=Q/D D

�
Q>

+

H=Q>
+

D

�
= .QH=Q/D (14.34)

The ratios in Equation 14.34 can be calculated using either conventional (Chapter 4)
or variational (Chapter 6) transition state theory. In either case one expects a small
normal secondary isotope effect (refer to the discussion in Chapter 10) and this is
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Fig. 14.1 The pressure
dependence of the 2ı-’-D
isotope effect, kH=kD, on the
bimolecular isomerization of
methyl isocyanide:
CH3NC! CH3CN and
CD3NC! CD3CN at 504 K
(After Schneider, F. W. and
Rabinovitch, B. S., J. Am.
Chem. Soc. 85, 2365 (1963))
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in good agreement with experimental value kH=kD D 1:06 observed at 104 Torr.
With decreasing pressure, kH=kD falls off reaching a value of about 0.3 at 0.005
Torr. This fall-off had been expected on the basis of earlier theoretical reason-
ing by Rabinovitch and coworker based on the zero pressure limiting expression,
Equation 14.31,

kH=kD D Œk2H=k2D
 ŒQ2D=Q2H
 =

Q�2D=Q�2H

� D ŒQ2D=Q2H
 =

Q�2D=Q�2H

�
(14.35)

where, as a reminder, Q2 refers to the partition function of the active degrees of
freedom (the vibrational ones in the present case) of the reactant, and Q2

� refers to
the partition function of these degrees of freedom with energy equal to or greater
than E0 above the ground vibrational state of the reactant, the energy necessary
to reach the transition state. Also k2H and k2D are rate constants for the deactiva-
tion reactions, AH

�.E; •E/ C M ! AH C M and AD
�.E; •E/ C M ! AD C M

(Equation 14.2), which in the strong collision approximation are isotope indepen-
dent or very nearly so (every collision leads to deactivation). An essential feature of
the present example is that we are dealing with a secondary isotope effect (Chap-
ter 10) and it can be assumed that E0 is the same (or almost the same) for both the
CH3 and CD3 species. The following theoretical discussion depends on the isotope
independence of E0.

Numerical evaluation of Equation 14.35 first requires the calculation of the iso-
topic vibrational partition function ratio in the numerator for the reactant. This can
be obtained by applying the methods of Chapter 4 to the relevant H and D vibra-
tional frequencies. The vibrational D/H partition function ratio is larger than unity.
The vibrational partition function ratio in the denominator of the right hand side
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of Equation 14.35 can be obtained by enumerating the energy levels with values in
excess of E0. It is, however, well to remember that E0 is usually sufficiently large
and the energy levels sufficiently close to one another to permit one to replace a
discrete sum over levels with an integral involving the density of vibrational energy
levels ¡.Ev/. Then

Q� D
Z E1

E0

¡ .Ev/ exp .�Ev=kT/ dEv (14.36)

Largely in connection with theoretical work on unimolecular reactions, numerical
methods have been developed which permit the evaluation of ¡ .Ev/. The lower
vibrational frequencies of the heavy isotopomer lead to the result that the energy
level density of the heavier isotopomer is substantially larger than that of the lighter
isotopomer and consequently the rate ratio of Equation 14.35 is less than unity.
It was the conclusion of Rabinovitch and colleagues that the secondary isotope
effect on unimolecular reactions would drop from a small normal isotope effect
.kH=kD > 1:0/ at high pressure to an inverse isotope effect .kH=kD < 1:0/ at lower
pressure that led Rabinovitch and Schneider to undertake the study on CH3NC.
For details reference should be made to their publication (reading list) where they
were able to rationalize the observed low pressure isotope effect, kH=kD	 0:3. This
phenomenon was later observed in other systems. The result was a great triumph
indicating the validity of the RRKM mechanism. For normal reactions (reactions
which are not unimolecular), inverse kinetic isotope effects

�
klight=kheavy < 1:0

�
had

always been correlated with the isotope being more strongly “bound” in the transi-
tion state than in the reactant (within the framework of conventional transition state
theory). For further discussion, see Chapters 4 and 10.

14.2.6.2 Gas Phase Isomerization of Cyclopropane

A second example of an inverse statistical weight isotope effect is that of the
secondary H/D KIE on C–C bond rupture during the gas phase unimolecular iso-
merization of cyclopropane to propene. Theory and experiment are compared in
Fig. 14.2 for reactions 14.37 and 14.38.

c–C3H6 ! CH3CHCH2 (14.37)

c–C3D6 ! CD3CDCD2 (14.38)

The isotope effect results from substitution at four ’ and two “ hydrogens. The
high pressure limiting KIE obtained from the model calculations, kH=kD	 2, is in
good agreement with experiment. The data show a marked fall off with pressure
to a limiting inverse effect, kH=kD	 0:7, which while significantly higher than the
theoretical value 	0:3, supports the interpretation of an inverse statistical weight
isotope effect operative at low pressures. The authors suggest the true low pressure
results have been obscured by wall effects.
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Fig. 14.2 Pressure
dependence of the 2ı-D
isotope effect, kH=kD, on the
unimolecular isomerization of
cyclopropane at 755 K:
c–C3H6! C3H6 and
c–C3D6! C3D6 (The data
are from Blades, A. T., Can.
J. Chem. 39, 1401 (1961) and
Rabinovitch, B. S. et al., J.
Am. Chem. Soc. 86, 2994
(1964). The calculated line is
due to Rabinovitch et al.)

Pressure MM (log scale)

1e-4 1e-2 1e+0 1e+2 1e+4

k H
/k

D

0.0

0.5

1.0

1.5

2.0

2.5

14.2.6.3 Model Calculation of a 2ı-“-Deuterium KIE on C–C Bond Rupture

To further illustrate the application of Equation 14.35 (the limiting behavior of the
low pressure IE), consider the case when only the external rotations are adiabatic
(translations do not contribute to the isotope effect). In this case the ratio of Q’s
reduces to a ratio of ratios of moments of inertia, which, provided the structure does
not change on passing from active molecules to activated complex, is unity. In this
simplified example, the isotope effect reduces to a simple ratio of the number of
states and state densities in the activated complex and energized (active) molecules
for the light (l) and heavy (h) molecules.

kl
a.E/=ka

h.E/ D
hX

P
�

E>
+�

l
=
X

P
�

E>
+�

h
/
i

x

.¡�.E/h=¡�.E/l

�
(14.39)

Equation 14.39 is relatively simple for a secondary isotope effect because neither

E>
+

nor E is expected to be isotope dependent for “-H/D isotope effects. To illus-
trate, Rabinovitch and Setzer (reading list) considered 2,3 C–C bond rupture of
n-perprotiobutane and 1,4 ditrideutero-n-butane

.CH3CH2–CH2CH3/ D 2CH3CH2 kH (14.40)

.CD3CH2–CH2CD3/ D 2CD3CH2 kD (14.41)

As in the previous examples both †P.E>
+
/ and ¡�.E/ are larger for the deuterated

than the protiated molecule because of the lower vibrational frequencies of the
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Table 14.1 Energy dependence of the secondary isotope effect kH=kD at zero pressure.
Energies in kJ/mol (After Rabinovitch, B. S., Setser, D. W., Adv. Photochem. 3, 1 (1964))

.CH3CH2/2 D 2 CH3CH2 kH

.CD3CH2/2 D 2 CD3CH2 kD

E–E0 D E>

+
E>

+ D 0 E>

+ D 0 E>

+ D 125 E>

+ D 125

E0 D 146 E0 D 356 E0 D 146 E0 D 356

†P
�

E>

+�
H
=†P.E>

+
/D 1 1 0.08 0.08

¡� .©D/ =¡
� .©H/ 14 35 26 48

kH=kD 14 35 2 4

deuterated species. Thus Œ†P.E>
+
/H=†P.E>

+
/D/
 < 1 and Œ.¡�.E/D=¡�.E/H
 > 1,

but the latter dominates because ¡�.E/ is a continuously increasing function of en-

ergy at all energies of interest. †P.E>
+
/ is unity at the threshold energy, and relative

to ¡�.E/ only increases slowly with energy. These qualitative comments are fleshed
out by the model calculations shown in Table 14.1. A large statistical weight isotope

effect with strong dependence on both E>
+

and E0 is predicted. The isotope effect is

largest when E0 is high and E>
+

low (the difference then being mainly in the ¡�.E/
terms). It is smaller when E>

+
is large (since the compensating isotope effect from

the †P.E>
+
/ term is then at its maximum). The mass dependence of the isotope ef-

fect is of secondary concern; it enters only to the extent that the mass effects are
correlated with the statistical weight isotope effects.

14.2.7 Primary Isotope Effects

The formalism for treating primary isotope effects on unimolecular processes fol-
lows analogously to the development above, once due account is taken of the
difference in zero point energies on isotope substitution at the reaction site (which
is reflected in an isotopic difference in the threshold energy E0/. For thermal ac-
tivation the rate ratio in the high pressure limit is straightforwardly obtained from
Equation 14.25. For H/D effects

.kH=kD/HIGH P D
h�

Q>
+
=Q
�

H

. �
Q>

+
=Q
�

D

i
exp .��E0=kT/ (14.42)

The energy level density is not important in determining the magnitude of the iso-
tope effect at high pressure. At the low pressure limit, again for thermal activation,

.kH=kD/0 D .¨H=¨D/ŒQ
�
D=Q�H


�
��Z

¡�.EH/ exp.��E0=kT/dE

�
�Z
¡�.ED/ exp.��E0=kT/dE

��

(14.43)
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where .¨H=¨D/ is the collision frequency ratio which is close to unity in the
strong collision approximation. The partition function ratio refers to the active
modes. To exemplify, reconsider the secondary isotope effects of Equation 14.40
and 14.41. In this reaction E0H	E0D	 146 kJ=mol. At 573 K the ratio of inte-
grals in Equation 14.43 is 0.069, the partition function ratio is 4.2 and .kH=kD/0 D
.¨H=¨D/� 0:29 D 0:31. The limiting high pressure ratio is 0.93. Thus at low pres-
sure a large inverse secondary non-equilibrium isotope effect is predicted. Also, as
temperature changes both the integral and the partition function ratios change, but
in a partially compensating fashion. For example at 473 K the integral ratio is 0.071,
ŒQ�D=Q�H
 D 3:4 and .kH=kD/0 D 0:25.

14.3 17O and 18O Enrichment in Terrestrial and Extraterrestrial
Samples: “Mass Independent” Isotope Fractionation
and the Ozone Problem

14.3.1 Introduction

The equilibrium theory of isotope fractionation developed in earlier chapters has
successfully explained the mass dependent fractionations which occur during many
processes including chemical exchange, evaporation, condensation, etc. Further-
more we have seen this general approach carries over to those kinetically controlled
processes which can be described in the context of absolute rate theory (i.e. where
the assumption of a pseudo-equilibrium between activated complex and reactant
species is useful). A straightforward consequence of the standard theory is that the
ratio of ratios of isotope fractionations can be calculated from the differences in
mass and mass distribution of the reacting particles, and this is independent of the
particulars of any fractionation process. Thus for a three isotope mixture, say H,
D, T or 16O, 17O, 18O the equilibrium theory predicts the ratio of ratio of con-
centrations ([D]/[H])/([T]/[H]) or .Œ17O
=Œ16O
/=Œ18O
=Œ16O
/ to be approximately
0.5. Roughly speaking this is because the mass differences (D–H) or .17O–16O/ are
just half those of (T–H) or .18O–16O/. The approximation, 	0:5, results from the
fact that a proper understanding entails a complete vibrational analysis of the react-
ing molecules and this leads to minor corrections to the value 0.5. It was therefore
highly surprising to discover that oxygen isotope fractionation for certain inclusions
found in meteorites did not follow the expected pattern, but unexpectedly showed
.Œ17O
=Œ16O
/=Œ18O
=Œ16O
/	 1, i.e. mass independent fractionation. This surpris-
ing and important result is the subject of this rest of this chapter.

Stable isotope analysis of earth, moon and meteorite samples has provided impor-
tant information concerning the origin of the solar system. Lunar samples returned
to earth during the Apollo missions show •17O and •18O enrichment patterns which
are virtually identical to those of earth-bound rocks and minerals. On 3-isotope plots
like those in Figs. 9.5 and 14.3, a uniform isotope reservoir is represented by a single
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point. If that reservoir be subsequently divided, then fractionated by mass dependent
processes like those described earlier in this text, the divided parts will lie along
a common line. The slope can be calculated from the equilibrium theory of iso-
tope fractionation, or, for kinetically controlled processes from the theory of kinetic
isotope effects and transition state theory (Chapter 4) or variational transition state
theory (Chapter 6). For oxygen isotope effects that line, generally known as the ter-
restrial fractionation line (TFL), but occasionally as the earth–moon line, has been
experimentally established by measurements on many thousands of samples of oxy-
gen bearing materials and is completely consistent with isotope effect theory. For
the three isotope set 16O:17O:18O along TFL

•17O D m •18O (14.44)

with the slope, m	 .1–16=17/=.1–16=18/ D 0:529. The approximation sign re-
minds us for high precision work proper account must be taken of the details of the
isotope sensitive vibrations involved in the fractionation process producing each and
every analyte sample. The masses used immediately above are atomic masses of the
exchanging isotopes and not those of the molecular fragments at the site of isotope
substitution. A more detailed treatment (Chapters 3 and 4) includes complete vibra-
tional analysis of the molecules involved in the fractionation process and restricts
oxygen mass dependent isotope effects to the range .0:51 < m < 0:55/. Larger or
smaller values are labeled “anomalous” or, more commonly, “mass-independent”
isotope effects. The latter term derives from the fact that the anomalous effects
of greatest interest are those with m	 1, i.e. are mass independent (or approxi-
mately so).

14.3.2 Oxygen Isotope Fractionation in Earth, Moon,
and Meteorite Samples

Equation 14.44 with m 	0:53 is nicely obeyed by •17O=•18O data for many, many
(i.e. the great preponderance of) terrestrial and lunar samples. No other extraterres-
trial samples lie on that line, and this observation supports the idea that earth and
moon formed in the same region of the solar nebula, and almost certainly represent
parts of a single precursor nebular reservoir. Thus, it was surprising in the early
1970s when Clayton discovered that calcium–aluminum oxide inclusions in car-
bonaceous meteorites showed three isotope plots with m	 1, i.e. mass independent
isotope effects. (Fig. 14.3). Then current thinking assumed that all possible geophys-
ical and geochemical processes produced mass dependent isotope fractionations
(m	 0:53 for oxygen), and large differences from m	 0:5 most likely reflected
the intervention of some nuclear event. The assignment of the earth–moon system
to one nuclear reservoir, the precursor of the solar system (or at least of earth and
moon), and extraterrestrial meteorites to a second and significantly different nu-
clear reservoir, would require serious modification of astronomical ideas concerning
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the early history of the earth/moon/meteorite system. In particular it forced the
conclusion that the meteorites had sampled a region or time where or when the
“primordial soup” was significantly different than it was when the earth/moon sys-
tem condensed. It was obviously very important to test the logical necessity of this
remarkable conclusion.

14.3.3 Mass Independent Isotope Fractionation in the Laboratory,
the Stratosphere, and the Troposphere

The assignment of the earth/moon system to one precursor nebular reservoir, and
meteorites to a second, while still logically possible, was shown experimentally to
be unnecessary by Thiemens and coworkers (reading list). In the early 1980s these
workers studied isotope fractionation during the synthesis of ozone from molecular
oxygen in an electric discharge operated at low pressure. The product ozone was
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found to be equally enriched in 17O and 18O, so m	 1 in Equation 14.44, rather
than the expected mass dependent value, m	 1=2 (see Fig. 14.4). The slopes of the
mass-independent lines in Figs. 14.3 and 14.4 are the same for terrestrial ozone syn-
thesis as they are for the meteorite data. The result leads to the conclusion that the
mass independent slope for the meteorite fractionation might have a chemical rather
than a nuclear origin (assuming some plausible mechanism which transfers ozone
fractionation from the low pressure gas to Ca/Al oxide inclusions in meteorites).
The argument was strengthened by the observation that mass independent fraction-
ation (MIF) of ozone was observed not only in electric discharge experiments but
also in photochemical ozone production. In each case the fractionation is kineti-
cally controlled (vide infra) during the unimolecular processes which are involved
in ozone synthesis. Also, measurements on natural ozone samples collected at high
altitude, far into the stratosphere, show mass independent fractionation, not only for
ozone but for other oxygen containing molecules (sulfates, nitrogen oxides, and car-
bon dioxide) (Fig. 14.4). It is important to appreciate that these upper atmosphere
fractionations can be transferred from the low pressure gas to aerosol particle sur-
faces and eventually to precipitated bulk phase solids. For example nitrate MIF’s
have been observed in samples collected from aerosols, fog, precipitation, soils and
stream water, etc. (Fig. 14.5). The magnitude of observed nitrate MIF’s suggests a
connection to ozone. One possible pathway leading from upper atmosphere ozone
to nitric acid is:
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l

Fig. 14.5 Three isotope plots of oxygen fractionation in nitrate samples from different loca-
tions (After Thiemens, M., Ann. Rev. Earth Planet. Sci. 34, 217 (2006)). For these data, m,
Equation 14.31, is �0:9. The expected mass dependent terrestrial fractionation is shown as the
solid line

NO2 C O3 D NO3 CO2 .homogeneous/ (14.45)

NO2 C NO3 D N2O5 .homogeneous/ (14.46)

N2O5 C H2O .aerosol surface/ D 2 HNO3.aq, aerosol surface/ (14.47)

In this way aerosol clustering, eventual precipitation, and chemical reaction can
account for nitrate MIF’s observed in terrestrial or meteoric solids.

14.3.4 MIF’s for Ozone from Natural Abundance
and Enriched Starting Materials

Figure 14.6 compares measured and calculated isotope fractionations for all 16
possible ozone isotopomers prepared from an enriched oxygen precursor. In this
figure (16O16O16O, 16O16O17O, 16O17O16O, 16O16O18O, etc. are represented as;
666, 667, 676, 677, 767, 668, 686, 678, 777, 688, 868, 778, 787, 788, 878, and
888). The calculations are those of Gao and Marcus described in sections below.
They are in quantitative agreement with experiment. It is interesting that isotope
fractionations observed in product ozone for the totally symmetric isotopomers,
•17O D 1000 ln.777=666/ and •18O D 1000 ln.888=666/, are negative; they
show the heavy isotope to be depleted. Moreover, these totally symmetric effects lie
on the mass dependent fractionation line Œln.777=666/
=Œln.888=666/
	0:5. That
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behavior contrasts with •17O and •18O for the scrambled isotopomers, whether
symmetric (XYX) or asymmetric(XXY). Note that equal mass symmetric and
asymmetric isotopomers are not experimentally distinguished in these measure-
ments. (Thus, for example, the enrichment labeled 668 in Fig. 14.6 is actually the
sum of the enrichments for 668 and 686). The scrambled heavy isotopomers are
all enriched with respect to the totally symmetric 666, and the magnitudes of the
enrichments are larger than are the depletions of the totally symmetric molecules,
777 and 888. They lie nowhere near the mass dependent fractionation line. The
pattern shown in Fig. 14.6 does not vary a great deal with the temperature or pres-
sure at which the synthesis is carried out. Moreover it is entirely consistent with
experiments on natural abundance starting material, and with samples collected
from the upper atmosphere during high altitude balloon flights or rocket sound-
ing experiments. For natural abundance samples, 16O D 0:9976, 17O D 0:0004,
18O D 0:0020, and as a practical matter one need only take into account the
isotopomers 666, 676 C 667, and 686 C 668. The next most likely isotopomer,
688 C 868, is only present at trace quantity (i.e. 	0:9976 � 0:0022	 4 � 10�6,
about a factor of 100 less than .667C 676/	4 � 10�4.
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14.4 Theory of Mass Independent Isotope
Fractionation of Ozone

In a series of important papers Marcus and coworkers applied the RRKM (Rice–
Ramsberger–Kassel–Marcus) theory of unimolecular reactions to the ozone prob-
lem in a successful effort to rationalize the MIF’s described above (see Historical
Vignette 14.1). The 2002 paper of Gao and Marcus (reading list) considered a ki-
netic scheme which mildly elaborates that of Equation 14.1

XC YZ! XYZ�.EJ/ .activation/ kr
a.EJ/ (14.48)

The short-lived activated particle specified by vibration–rotation energy (EJ) most
likely undergoes a series of steps which redistribute its internal and rotational energy

XYZ�.EJ/CM! XYZ�.E0J0/CM ¨.EJ! E0J0/ (14.49)

but at some point during this process it may dissociate using one of two available
paths, a or b,

XYZ�.E0J0/! XC YZ .deactivation/ kd
a.E0J0/ (14.50)

XYZ.E0J0/! XYC Z XYZ�.E0J0/! XYC Z .deactivation/ kd
b.E0J0/ (14.51)

Alternatively, continuing its series of collisions with bath molecules it may deacti-
vate to form a stable ozone molecule

XYZ�.EJ/CM! XYZ.El; J0/CM ¨.EJ! ElJ0/ (14.52)

The kr
a.E J/, kd

a.E0 J0/, and kd
b.E0 J0/ are E and J dependent rate constants of the

recombination and dissociation reactions, and ¨.EJ ! E0J0/ is the rate per unit E
of forming XYZ at .E0J0/ from (EJ) by a third body collision. In Equation 14.52 El

is any energy sufficiently below the dissociation threshold of ozone to make further
reaction highly improbable. In this reaction scheme X, Y, and Z may be any of 16O,
17O, or 18O, and the ozone initially formed is in a high energy state characterized by
energy E and total angular momentum J. Obviously the recombination rate constant,
kr, is E and J dependent, and in the end the overall rate of formation of XYZ will
involve integrations over the E and J states of product and reactants. For the dissoci-
ation of XYZ*, Equations 14.50 and 14.51 the exit channels a and b are distinguish-
able for the case X ¤ Z and kd

a .E0J0/ does not necessarily equal kd
b .E0J0/. Obvi-

ously, however, for the symmetric case, X D Z, the two rate constants are equal.
In the step-ladder scheme described above it is assumed that only a well defined

discrete amount of energy,�E, is transferred from the activated ozone molecule to
the bath per collision, and there is a ladder of M steps which need to be considered.
The energy of the lowest step El is later varied to ensure the calculated rate constant
converges to a finite value. Given the potential energy surface for the reaction Gao
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[Historical Vignette 14.1] Rudolph A. Marcus (1923-present) was born in Montreal and edu-
cated at McGill University. In 1948 he joined O. K. Rice at the University of North Carolina where
he worked on the theory of unimolecular reactions, developing what is now known as RRKM
theory (Rice, Ramsperger, Kassel, Marcus). From 1951 to 1964 Marcus was on the faculty at
Brooklyn, Polytechnic Institute. During this period he developed important theoretical ideas on
electron transfer in chemical reactions. From 1964 to 1978 he was at the University of Illinois, and
since 1978 he has been at the California Institute of Technology. His recent scientific work has
focused on electron transfer, unimolecular reaction theory, and mass independent isotope effects.
Marcus was awarded the Nobel Prize in Chemistry in 1992. (Photo credit: Marcus with students,
Chemistry Department, California Institute of Technology)

and Marcus first obtained the solution for a single ladder beginning with some par-
ticular energy and then integrated over El in the interval �E to obtain the total rate
constant. The step size, �E, enters as a parameter. The frequency ¨a for activating
collisions was related to that for deactivating ones using microscopic reversibility,
¨a D ¨d exp.��E=kT/. The total collision frequency is ¨ D ¨a C ¨d. The in-
dividual low pressure rate constants for formation of XYZ are then calculated for
each channel (Equations 14.50 and 14.51) using the equations developed above and
choosing the parameters, ˜ D 1:18 and�E D 210 cm�1 to fit the experimental low
pressure recombination rate constant ratios, .6C88/=.6C66/ and .8C66/=.8C88/
and agreement (or not) with the other seven ratios Fig. 14.6) tests the theory. The ˜
parameter reduces the recombination rate for symmetric isotopomers, XYX, pre-
sumably due to a lower density of states which makes collisional energy transfer
less efficient for these molecules, and ¨ smaller. Calculated isotope enrichments
for ozone isotopomers are compared with experiment in Fig. 14.6. The agreement
is excellent. The nearly mass independent fractionation observed for the asymmet-
ric isotopomers is thus principally due to two “symmetry driven” isotope effects:
(1) for the asymmetric isotopomers the difference in zero point energy of the two
exit channels causes the partitioning between these channels to differ from 1=2 and
this results in a large unconventional mass dependent effect on the rate constant
ratios. (2) The ˜ effect discussed immediately above which is also a consequence
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of symmetry. As a net result the formation of the asymmetric species (668 or 667,
for example) is favored over the symmetric ones (676 or 686) because it can pro-
ceed through a greater number of reactive quantum states. The asymmetric ozone
isotopomers contain a greater density of reactive (or coupled) states as compared
to the symmetric. The asymmetric species can distribute energy better and is more
likely to couple to the exit channel which leads to a stable molecule. For practical
application of the theory it is a requirement that these state densities be known (or
calculated) for all isotopomer species of interest, and at high precision.

An important aspect of the Gao-Marcus model is that it provides a theoretical
structure for the understanding of quantum state density isotope effects in general,
and is not specifically confined to the formation of ozone itself. This feature is im-
portant because as discussed above we are now aware that MIF’s occur widely in
nature. The theory aids in prediction of where MIF’s will be likely found, and once
found, in rationalizing how they were chemically produced.

14.4.1 Comment

The work of Thiemens, Mauersberger, and their collaborators has now definitively
established a pervasive mass independent isotope fractionation for oxygen contain-
ing molecules found in the atmosphere, upper atmosphere, and in space. These
results, initially surprising because they are inconsistent with ordinary equilibrium
isotope effect theory, have since been rationalized by Gao and Marcus using a chem-
ical mechanism which invokes unimolecular rate theory and density of quantum
state arguments. A merit of the chemical mechanism for the oxygen isotope anomaly
is that only one oxygen reservoir is required in the solar nebula.
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