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Preface

Why a new book about the science of an apparently old material? This question can
be easily posed, when reading the title of this book. Indeed, filled rubbers are well
known and well used in daily life. However, it is less known that recipes and the
corresponding processing cycles of carbon black or silica filled rubber are extremely
complex, which leads to a complex structure of the material in a wide range of
length scales. Rubbers are classes of relatively soft materials without which modern
technology would be unthinkable, similar to the case of metals, fibres, plastics, glass,
etc. No matter where these rubber materials find their application, especially in tires
and in a great variety of industrial and consumer products, e.g. motor mounts, fuel
hoses, heavy conveyor belts, profiles, etc., the applications make high demands on
rubber materials. The requirements are manifold, e.g. high elastic behavior even at
large deformation, tailored damping properties during periodic deformations, great
toughness under static or dynamic stresses, high abrasion resistance, impermeability
to air and water, in many cases a high resistance to swelling in solvents, little
damage, and long life.

Their importance for applied sciences and engineering is unquestionable, so
why not collect the ideas and facts about these materials in a book? Aren’t there
many theories and facts around which many could form the basis for a review
book? This would be, however, too simple, at least for us and for the completely
different backgrounds of the three authors. Providing such a book is probably
useless and not very exciting. Moreover, most of the theories that are around seem
to suffer from too much phenomenology, too much diversity, and too much empiric
reasoning.

Rubbers are far more than boring materials, at least from a theorist’s point of
view, at least from an experimentalist’s point of view, at least from an engineer’s
point of view. Last but not least, from the materials point of view, simply because the
function and the wide-ranging properties of the material depend on large variety of
lengths and time scales. Filled elastomers are a typical example, where multiscale
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x Preface

science plays a major role in the structure–property relationship. Imagine a car
driver who needs to brake suddenly to stop at a very short distance. Can he, at the
same time, imagine that this macroscopic, highly nonlinear process can be drawn
back to certain and well-desired physical properties of the nanoscale polymer layer
formed around the filler particles that are embedded within the rubber matrix? Can
the car driver imagine the role of the filler network formed by the aggregated filler
particles that form a random (cluster–cluster) percolating network? Or, how is the
wet grip of the tire related to certain time and length scales within the tread rubber
material that is excited periodically during sliding over a rough, even fractal, road
surface?

The present book cannot give all the answers to all the questions, but we try here
to develop a picture for filled elastomers, which joins basic theoretical ideas with
practical applications. The basic ansatz here is therefore different. Starting from
theories, we try to understand many, so far, empirical laws to provide more physical
insight. We try to join different ideas together by using solid models. These, very
often fundamental starting points will nevertheless lead to new ideas, new pictures,
and new models. This is, what we, the three authors have done over the past 10 years
in our common research starting from our three individual backgrounds. Thus the
book has a very personal point of view. It is based on our own reach and based on the
different attitudes of all three of us. It joins basic polymer physics, sometimes hard
core theory, with experiments and at various places questions located in applications
and engineering. This book is an attempt to provide more physical insight into the
properties of materials, and therefore we try to relate most of the macroscopic
features, which define the properties, to elementary physical pictures and models.
To do so, we need a large variety of theoretical and experimental approaches, since
a broad spectrum of lengths and time scales need to be taken into account. For
us it was sometimes exciting to realize how purely theoretical results from simple
models, e.g. universal exponents for frequency dependence of relaxing localized
chains, transport themselves into measurable quantities, e.g. the relaxation time
spectrum ruling the frequency dependence of the modulus, in certain time scales.
Perhaps the reader can share our excitement here and there in this book.

Therefore, this book is indeed a kind of review book, but of our own work and
from our own points of views. This remark needs to be understood as an apology to
many other authors who will not find themselves quoted here, but also as an invi-
tation to follow different ideas and different viewpoints about a classical material.
If the reader is following this invitation, he can then perhaps agree with us. Filled
elastomers are indeed classical materials, but they offer still many open questions
and many possibilities for fundamental studies. On the other hand, cognition of
our studies has been used by the authors to develop and to design certain kinds of
future rubber materials based on concepts of rubber nanocomposite technologies.
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In particular, this can serve as a tool for developing a new tire generation with
improved rolling resistance, wet traction and wear properties, and in this way,
break through the magic triangle of tire technology. However, this will not form
part of this book.

T. A. Vilgis,
G. Heinrich,
M. Klüppel,

Mainz, Dresden, Hannover,
November 2008
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1

Introduction

The reinforcement of composite materials is far from being a simple problem [1].
Reinforced elastomers, which find application in the car tire industry, are typical and
well-known examples of that. Indeed, these materials allow a physical formulation
of most of the problems and offer a suggestion for a solution. Complications arise
due to the many length and time scales involved and this is one of the issues which
will be examined in this book.

The basic aim of filling relatively soft networks, i. e. cross-linked polymer chains,
is to achieve a significant reinforcement of the mechanical properties. For this
purpose, active fillers like carbon black or silica are of special practical interest as
they lead to a stronger modification of the elastic properties of the rubber than adding
just hard randomly dispersed particles. The additional reinforcement is essentially
caused by the complex structure of the active fillers (see, e.g., [2] and references
therein).

The main aim of the present work is to gain further insight into this relation-
ship between disordered filler structure and the reinforcement of elastomers. As
a filler type we have chiefly in mind carbon black, which shows “universal” (i. e.
carbon-black-type-independent) structural features on different length scales, see
Fig. 1.1: carbon black consists of spherical particles with a rough and energetically
disordered surface [3, 4]. They form rigid aggregates of about 100 nm across with
a fractal structure. Agglomeration of the aggregates on a larger scale leads to the
formation of filler clusters and even a filler network at high enough carbon black
concentrations. Reinforcement is thus a multiscale problem.

These universal features are reflected in corresponding universal properties of
the filled system. For example, the geometry and activity of the filler surface play
major roles in the polymer–filler interaction: the physical and chemical binding of
polymers to the filler surfaces depends on the amount of surface disorder.Aggregate
structure is expected to be dominant at intermediate length scales and agglomerate
structure at large length scales. Interesting phenomena like enhanced hydrodynamic
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2 Introduction

Fig. 1.1. Structural properties and scales in carbon-black-filled elastomers on
different length scales.

reinforcement and the Payne effect can be attributed to the fractal nature of the filler
structure. From these considerations it is clear that classical approaches to rubber
elasticity are not sufficient to describe the physics of such systems. Instead, different
theoretical methods have to be employed to deal with the various interactions and,
consequently, reinforcing mechanisms on different length scales. Moreover, we
have to indicate physical length scales as well. Considerable reinforcement can
only be achieved if the length scales of the filler and the polymer matrix (Fig. 1.2)
coincide.

Figure 1.2 shows the possible interplay between the length scales. The small
scales defined by the structure and the interactions need to be of the same order
of magnitude in order to get a significant rate of adsorption and sticking, which
will contribute to the reinforcement. The larger structures, such as agglomerates
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Fig. 1.2. Comparison of the different length scales for the elements. The filler par-
ticles, here carbon black, have basically carbon surfaces. These interact directly
with the monomers on their length scales. However, the aggregates and agglom-
erates have dimensions similar to those of the polymer coils, so they can directly
interact with them.

and aggregates have similar scales with typical polymer radii. Thus we can expect
scale-dependent contributions to the modulus based on the interactions between
rubber matrix chains and filler particles.

On yet larger scales hydrodynamic reinforcement comes into play. The basic idea
goes back to Einstein and his work on the viscosity [5]. He derived an equation for
the enhancement of the viscosity of solutions when spherical particles are added.
This is the well-known formula

η = η0(1 + 2.5φ) , (1.1)
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where η0 is the viscosity for the pure solution and φ is the volume fraction of
the added spheres. The number 2.5 is purely geometrical and has its origin in the
spherical nature of the added particles.

So far we have not mentioned the main contribution from the elastic matrix which
comes in most cases from polymer networks, i. e. crosslinked polymer chains. The
elasticity of such networks can be described on different levels (see the classical
book of Treloar [6] for a basic reference). For the purpose of this book we restrict
ourselves to the statistical physics description, i. e. simplified models are used which
allow at least some of the molecular aspects to be taken into account. In physical
terms the elastic modulus can be simply estimated: if a large number of chains
become crosslinked by Nc crosslinks, each crosslink contributes with a thermal
energy kBT to the elastic (free) energy. Thus the modulus in its simplest version
should be of the form [7]

Gmatrix ∝ NckBT . (1.2)

As yet, the formation and structure of filler networks in elastomers and the
mechanical response, e.g., the pronounced dynamic amplitude dependence or
stress softening, of reinforced rubbers is not fully understood, though this ques-
tion is of great technical interest. A deeper understanding of filler networking
and reinforcement could provide a useful tool for the design, preparation and
testing of high-performance elastomers, as applied in tires, seals, bearings, and
other dynamically loaded elastomer components. In the past, attention has been
primarily focussed on understanding the reinforcing mechanism of carbon black,
the most widely used filler in the rubber industry [3, 8]. The strongly non-linear
dynamic-mechanical response of carbon-black-filled rubbers, reflected primarily
by the amplitude dependence of the viscoelastic complex modulus, was brought
into clear focus by the extensive work of Payne [9–16]. Therefore, this effect is
often referred to as the Payne effect.

As shown in Fig. 1.3 for a specific frequency and temperature, the storage mod-
ulus G′ decreases from a small strain plateau value G′

0 to an apparently high
amplitude plateau value G′∞ with increasing strain amplitude. The loss modu-
lusG′′ shows a fairly pronounced peak. It can be evaluated from the tangent of the
measured loss angle, tan δ = G′′/G′, as depicted in Fig. 1.4. Obviously, the loss
tangent shows a low plateau value at small strain amplitude, almost independent of
filler concentration, and passes through a broad maximum with increasing strain.

Therefore we can expect that many different factors contribute to the modulus
of a composite material. The contributions to the modulus from the different length
and time scales are summarized schematically in Fig. 1.5.

The Payne effect of carbon black reinforced rubbers has also been investigated
intensively by a number of different researchers [17–20]. In most cases, standard
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Fig. 1.3. Amplitude dependence of the storage modulus of butyl/N330 samples at
various carbon black concentrations [9].

Fig. 1.4. Amplitude dependence of the loss tangent of the butyl/N330 samples
shown in Fig. 1.3 at various carbon black concentrations [9].

diene rubbers that are widely used in the tire industry, such as styrene butadiene rub-
ber (SBR), natural rubber (NR), and butadiene rubber (BR), have been employed,
but carbon-black-filled bromobutyl rubbers [21–23] or functional rubbers con-
taining tin end-modified polymers [24] have also been used. The Payne effect
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Fig. 1.5. Different contributions on different length scales build up the modulus
of the material.

was described in the framework of various experimental procedures, including
preconditioning-, recovery- and dynamic stress-softening studies [25]. The typi-
cally almost reversible non-linear response found for carbon black composites has
also been observed for silica-filled rubbers [25–27].

The temperature dependence of the Payne effect has been studied by Payne
and other researchers [9, 13, 28]. With increasing temperature an Arrhenius-like
drop of the moduli is found if the deformation amplitude is kept constant. As
well as this effect, the impact of filler surface characteristics on the non-linear
dynamic properties of filler reinforced rubbers has been discussed in a review of
Wang [28], where basic theoretical interpretations and modeling are presented. The
Payne effect has also been investigated in composites containing polymeric model
fillers, like microgels of different particle size and surface chemistry, which could
provide more insight into the fundamental mechanisms of rubber reinforcement by
colloidal fillers [29, 30].

The pronounced amplitude dependence of the complex modulus, referred to as
the Payne effect, has also been observed in low-viscosity media, e.g., composites
of carbon black with decane and liquid paraffin [31], carbon black suspensions in
ethylene vinylacetate copolymers [32], and for clay–water suspensions [33, 34]. It
was found that the storage modulus decreases with dynamic strain amplitude in a
qualitative manner similar to that for carbon-black-filled rubbers. This emphasizes
the role in the Payne effect of a physically bonded filler network structure, which
governs the small strain dynamic properties even in absence of rubber. Further,
these results indicate that the Payne effect is primarily determined by structure
effects of the filler. The elastomer seems to act merely as a dispersing medium
that influences the kinetics of filler aggregation, but does not have a pronounced
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influence on the overall mechanical behavior of three-dimensional filler networks.
However, the critical strain amplitude at which the Payne effect appears is found
to be shifted to significantly smaller values if low-viscosity composites are used in
place of rubber composites: This indicates a strong impact of the polymer matrix
on the stability and strength of filler networks.

The strong non-linearity of the viscoelastic modulus with increasing dynamic
strain amplitude has been related to a cyclic breakdown and reaggregation of filler–
filler bonds [29, 35–37]. Thereby, different geometrical arrangements of particles
in a particular filler network structure, resulting, e.g., from percolation as in the
model of Lin and Lee [37] or kinetic cluster–cluster aggregation [29], have been
considered. Nevertheless, a full micromechanical description of energy storage and
dissipation in dynamically excited reinforced rubbers is still lacking.

As well as the Payne effect, which is relevant for dynamical loading of filler
reinforced rubbers, the pronounced stress softening, which is characteristic of quasi-
static deformations up to large strain, is of major interest for technical applications.
This stress softening is often referred to as Mullins effect due to the extensive studies
of Mullins and coworkers [38–40] on the phenomenon. Depending on the history
of straining, e.g., the extent of previous stretching, the rubber material undergoes an
almost permanent change that alters its elastic properties and increases hysteresis
drastically. Most of the softening occurs in the first deformation and after a few
deformation cycles the rubber approaches a steady state with a constant stress–strain
behavior. The softening is usually only present at deformations that are smaller than
the previous maximum. An example of (discontinuous) stress softening is shown
in Fig. 1.6, where the maximum strain is increased, successively, from one uniaxial
stretching cycle to the next.

The micromechanical origin of the Mullins effect is not yet fully understood
[3, 17, 41]. In addition to the action of the entropy elastic polymer network, which
is quite well understood on a molecular-statistical basis [42,43], the impact of filler
particles on stress–strain properties is of great importance. On the one hand the
addition of hard filler particles leads to a stiffening of the rubber matrix that can
be described by a hydrodynamic strain amplification factor [44–46]. On the other
hand the constraints introduced into the system by filler–polymer bonds result
in a decreased network entropy. Accordingly, the free energy, which equals the
negative entropy times the temperature, increases linearly with the effective number
of network junctions [44,45,47,48]. A further effect is obtained from the formation
of filler clusters or a filler network due to strong attractive filler–filler bonds [3,17,
41, 44, 45, 47, 48].

Stress softening is supposed to be affected by different influences and mecha-
nisms that have been discussed by a variety of authors. In particular, it has been
attributed to a breakdown or slippage [49–52] and disentanglements [53] of bonds
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Fig. 1.6. Example of stress softening with successively increasing maximum
strain after every fifth cycle for a solution SBR (S-SBR) sample filled with 50 phr
carbon black.

between filler and rubber, a strain-induced crystallization–decrystallization [54,55]
or a rearrangement of network chain junctions in filled systems [40]. A model of
stress-induced rupture or separation of network chains from the filler surface has
been derived by Govindjee and Simo [50], who developed a complete macroscopic
constitutive theory on the basis of statistical mechanics.A remarkable approach has
been proposed by Witten et al. [56], who found a scaling law for the stress–strain
behavior in the first stretching cycle by modeling the breakdown of a cluster–cluster
aggregation (CCA) network of filler particles. They used purely geometrical argu-
ments by referring to the available space for the filler clusters in strained samples,
leading to universal scaling exponents that involve the characteristic fractal expo-
nents of CCA clusters. However, they did not consider, though these are evident
from experimental data, effects coming from the rubber matrix or the polymer–
filler interaction strength e.g., the impact of matrix crosslinking or filler surface
treatment (graphitization) on stress–strain curves. The stress softening indicates
that stress-induced breakdown of filler clusters takes place, where the stress on the
filler clusters is transmitted by the rubber matrix.

The above interpretations of the Mullins effect of stress softening ignore the
important results of Haarwood et al. [54, 55], who showed that a plot of stress in
the second extension versus the ratio between strain and prestrain of natural rubber
filled with a variety of carbon blacks yields a single master curve [40, 54]. This
demonstrates that stress softening is related to hydrodynamic strain amplification
due to the presence of the filler. Based on this observation a micromechanical model
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of stress softening has been developed invoking hydrodynamic reinforcement of
the rubber matrix by rigid filler clusters that are irreversibly broken during the
first deformation cycle [57, 58]. Thereby, the extended tube model of rubber elas-
ticity, introduced in Section 5.4, has been applied [42, 43, 59, 60]. This “dynamic
flocculation model” is considered in Section 10.3.

The different contributions to the elastic modulus arise from completely different
physical sources. However, it is not always clear how to separate the different
contributions. Roughly, we can speak of the basic contributions to the modulus of
a nano-composite system. The basis for the material is the elastic matrix, which in
most cases is a highly elastic polymer network. Nevertheless, the symbolic diagram
shown in Fig. 1.5 will serve as a model and a guideline throughout this book.



2

Basics about polymers

2.1 Gaussian chains – heuristic introduction

This chapter introduces a convenient view of the basic physics used in the
description of polymer chains that will form a network which is the elastomer
matrix.

In statistical polymer theory polymer chains are very simple objects. Of course,
their local chemical structure can be very rich and many properties depend on the
types of monomers which are used. Nevertheless, as the chain becomes longer, the
specific monomers play a smaller and smaller role. The shape of the chain depends
only on the environment rather than on any of the chemical details of the monomers.
Therefore the simplest model to use for the present problem is that of a random
walk. Although this model is very oversimplified, most polymers can be modeled
in such a way [61]. The random walk model is very instructive here. First, it serves
as a simple but instructive model for general problems in the statistical physics of
polymers; second, it provides the basis for the simplest model of the elasticity of
networks. We will turn to the latter point shortly.

Let us study the case of random walks in more detail and on a more formal
basis [62]. To be more precise we start from the set of bond vectors {bi}Ni=1,
which are statistically independent vectors. The probability of finding a whole set is
given by

P
(
{bi}Ni=1

)
=

N∏
i=1

p(bi ), (2.1)

where the probability p(bi) is given by

p(bi) = 1

4πb2
δ(|bi | − b). (2.2)

The prefactor in (2.2) comes from the assumption of isotropy and corresponds to the
normalization. We are now interested in finding the distribution of the end-to-end
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2.1 Gaussian chains – heuristic introduction 11

distance in order to make some statements about the size of the random walk. To
do so, we remember the definition of the end-to-end distance R = ∑N

i=1 bi and
compute its distribution:

P(R) =
∫ N∏
i=1

dbiδ

(
R −

N∑
i=1

bi

)
P
(
{bi}Ni=1

)
. (2.3)

The calculation becomes simple if the delta function is parameterized by

δ

(
R −

N∑
i=1

bi

)
= 1

(2π)3

∫
d3k exp

(
−ik

(
R −

N∑
i=1

bi

))
. (2.4)

Inserting this into (2.3) yields the classical Gaussian distribution function for a large
number of monomers N :

P(R) =
(

3

2πb2N

)3/2

exp

(
− 3R2

2b2N

)
. (2.5)

Another important point to note is that the restriction of fixed length for the bond
vectors can be relaxed without problems. Indeed, when the probability (2.2) is
replaced by an effective Gaussian of the form

p̃(bi) =
(

1

4πb2

)3/2

exp

(
− b2

i

2b2

)
, (2.6)

there is no change in the result. In contrast to (2.2), where the bond length is
constrained to take fixed values, (2.6) fixes only the mean squared distance between
the two neighboring bonds.

Again we must note that (2.5) has a certain scaling function [63]. It contains two
important pieces of information. To see this, let us rewrite it in the more convenient
form

P(R) = a

ξ3
F
(
R

ξ

)
. (2.7)

Here we have introduced the only relevant scale in the problem ξ = b√N ≡ bNν
(a is just a numerical constant). This scale, which corresponds of course to the
size of the ideal polymer, spans a volume of ξ3 in three space dimensions. There
are two important observations. The first is that the distribution function depends
only on the ratio R/ξ . The second is that the prefactor have the dimension of the
volume, because of the normalization requirement, i. e.

∫
d3RP(R) = 1. Thus we

might expect that we can make use of these facts for other polymeric objects, even
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though we cannot compute the analog of P(R) completely. This is true if we take
into account interactions and the chains become self-avoiding.

Before we proceed in these directions, we have to analyze (2.5) in more detail. A
trivial observation is, as mentioned already, that the distribution function is purely
Gaussian. This reflects once more that we had not taken any interactions into
account.Asecond important point is that the distribution functionP(R) is invariant
under any rescaling of the chain length, i. e. if N is replaced by Ñ = N/λ, when λ
is a real number. Of course, the numerical value of λmust be smaller thanN itself,
so that the rescaled chain can still be modeled as a random walk. Thus we must
require 1 ≤ λ << N . A third point concerns the mean size of the polymer. The
mean end-to-end distance is calculated as

〈R2〉 =
∫

d3R R2P(R) = b2N . (2.8)

Of course, this model suffers from severe simplifications. For example, the chain
does not interact with the environment. Even for a single chain model this is a
dramatic simplification, since the chain can interact with itself. Therefore we have
to find a way to include interactions in the model.

2.2 Gaussian chains – path integrals

The Gaussian chain is a very pedagogical example for the introduction of the path
integral description of polymers. A Gaussian chain corresponds to a Feynman–
Wiener path integral. Let us therefore present a heuristic argument [62]. Readers
that are more interested in the mathematics should refer to the classical reference
of Feynman and Hibbs [64], one of the best introductions to path integrals.

We have already noted that Gaussian chains are self-similar [62, 65, 66]. This
point corresponds to the central limit theorem. To understand this we return to the
Gaussian distribution for the mean size of the bond lengths.

p(bi) ∼=
(

3

2πb2

)3/2

exp

{
− 3

2b2
b2
i

}
. (2.9)

Of course, the distribution of the set is given by

P ({bi}) =
N∏
i=1

(
3

2πb2

)3/2

exp

{
− 3

2b2
b2
i

}
(2.10)

=
(

3

2πb2

)N3/2

exp

{
− 3

2b2

N∑
i=1

b2
i

}
. (2.11)
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Now we recall that each bond vector is given by the difference of the spatial vectors
of each bond, i. e. bi = Ri − Ri−1, and write the total probability as

P({bi}) =
(

3

2πb2

)3N/2

exp

{
− 3

2b2

N∑
i=1

(Ri − Ri−1)
2

}
. (2.12)

Formally we can associate a “Hamiltonian” with this expression. Indeed, if for a
moment we write the distribution as

P ({bi}) = N exp {−βH0 ({Ri})} , (2.13)

we can define

βH0 = 3

2b2

N∑
i=1

(Ri − Ri−1)
2 . (2.14)

Throughout this section we will use N to denote any normalization factor that we
do not want to determine precisely. From the above, we may recognize a well-
known Hamiltonian; this Hamiltonian is used in solid state physics, to describe
lattice vibrations of a one-dimensional solid as a chain of harmonic springs [67].
Crudely we may use the continuum limit

Ri − Ri+1

1
→
(
∂R
∂s

)
(2.15)

to arrive at a symbolic notation for the distribution

P ({bi}) = N exp

{
− 3

2b2

∫ N

0

(
∂R
∂s

)2

ds

}
. (2.16)

Equation (2.16) is called the Wiener distribution (or in polymer theory the Wiener–
Edwards distribution) for random walk chains. So far (2.16) does not contain
anything new, except that a more fancy and more useful notation has been intro-
duced. To go from discrete to continuous notation we can use the following minimal
dictionary:

0 ≤ s ≤ N ⇐⇒ 1 ≤ i ≤ N (2.17)∫ N

0
ds ⇐⇒

N∑
i=1

i = 1. (2.18)

Now we have to ask ourselves: what have we gained by reformulating the problem
into this language?The advantage will become obvious. Equation (2.16) is written in
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a “language” that allows modern theoretical treatment by using functional integrals,
which are well known in theoretical physics, especially in quantum mechanics.

Formally we can write for the partition function the symbolic expression

Z = N
∑

all paths R(s)

exp

{
− 3

2b2

∫ N

0
ds

(
∂R(s)
∂s

)2
}

. (2.19)

The partition function is now represented as the sum over all possible paths. The
physical idea behind this is as follows: All possible conformations of the random
walk, which is composed of N statistical independent segments contribute to the
value of Z. There are, of course, more probable paths and also less probable paths.
An example of a less probable path is a stretched path. The appearance of an almost
straight line with R ∝ N is very unlikely from entropic reasons, but nevertheless
it contributes to the partition function Z. This mathematical formulation resembles
the idea of path integrals in quantum mechanics. Indeed, we are going to build up
a simple analogy to the Feynman representation of quantum mechanics [64].

To construct the analogy of “the sum over paths” we must realize first that the
random walk polymer satisfies a diffusion equation. This becomes most obvious
if we recall the distribution of the end-to-end distance P (R) satisfies the diffusion
equation [62, 64]

P (R,N) =
(

3

2πNb2

)3/2

exp

{
− 3

2Nb2
R2
}

, (2.20)

which we have derived already. We interpret the equation in the following way.
We want to construct all random walks between the space points r′ = 0, where the
walk starts and the end point r = R. Additionally we require that the walker hasN
steps. It is easy to show that P(R) satisfies a diffusion equation of the form(

∂

∂N
− b2

6
∇2
)
P (R,N) = 0 ∀R �= 0,N > 0. (2.21)

We can reformulate this in terms of a Green function for any two points r, r′ and
corresponding contour variables s, s′, i. e.(

∂

∂s
− b2

6
∇2
)
G
(
R, R′, s, s′

) = δ (R − R′) δ (s − s′) . (2.22)

The delta functions on the right-hand side of (2.22) are the initial conditions and
ensure that the diffusion equation has only physical solutions for s−s′ ≥ 0, and that
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for s−s′ = 0 we haveG(r, r′, 0, 0) = δ(r − r′). The initial conditions therefore are

G
(
R, R′, s, s′

) = 0 ∀ (s − s′) < 0 , (2.23)

G
(
R, R′, 0, 0

) = δ (R − R′) . (2.24)

The solution of the differential equation is represented by the Green function of the
random walk polymer

G
(
R, R′, s, s′

) =
(

3

2πb2 (s − s′)
)3/2

exp

{
− 3

2b2

(
R − R′)2
(s − s′)

}
. (2.25)

2.3 Self-interacting chains

Gaussian chains are unrealistic in the sense that the segments may cross each other.
Real polymer chains cannot do this and when two segments meet at the same place
they have to repel each other. Thus, the most serious drawback of the models is
that two chain segments are allowed to have the same coordinates R(s). In more
realistic chain models this cannot happen. We must, however, introduce a repulsive
potential V

(
R (s)− R

(
s′
))

[62, 66] which prevents the two monomers (or chain
segments) being in the same place. To set up a better model we use a most plausible
Hamiltonian for the self-avoiding walk chain. It is given by

βH ({R(s)}) = d

2b2

∫ N

0
ds

(
∂R
∂s

)2

+ 1

2

∫ N

0
ds
∫ N

0
ds′V

(
R (s)− R

(
s′
))

,

(2.26)

where we have now introduced the space dimension d as another parameter. We
will see below, that this appears to be useful in some cases when we discuss the
interactions in more general terms. The potential V (r) is determined by the usual
intramolecular potentials, such as the Lennard–Jones potentials, hard core interac-
tions, etc., which are well known from the theory of liquids [68], but we will later use
more simplified pseudopotentials. It has been shown that a useful pseudopotential
approximation is [62, 63, 66]

V (R) = vδ (R) ∝ b3δ (R) . (2.27)

This potential is always repulsive as long as the chain segments are at the same place.
The strength of the potential is roughly given by the excluded volume between two
segments. This is of the order of b3. We will see later that the precise value of v is
not of significance with respect to the universal properties.
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The first difficulty comes from the potential itself. In contrast to the considerations
above, the excluded volume potential appears as a pair interaction. Therefore we
cannot formulate it in terms of a simple diffusion equation. The first serious problem
is therefore buried in the nature of the excluded volume: βH of a self-avoiding walk
(SAW) does not correspond to a one-particle potential δ

(
R (s)− R

(
s′
))

.
The next serious problem appears if we try a perturbation theory that requires an

expansion in terms of the excluded volume parameter v immediately rings alarm
bells, i. e. if we work with an expansion of the form

G
(
R, R′,N

) = G0
(
R, R′,N

)+ v (· · ·)± v2 (· · ·) , (2.28)

where (· · ·) stands for expressions to be computed. We immediately see for this
that the perturbation series diverges, which Fixman [69] was the first to realize that
the perturbation parameter is not a small quantity. The perturbation parameter of
relevance is not v itself, but the combination v

√
N , (v

√
N)2, (v

√
N)3, · · · [62,66].

More generally in d dimensions the perturbation parameter is vN(4−d)/2. The result
on the chain size is (see e.g. [62])

〈
R2
〉
= Nb2

[
1 + 4

3

(
vb2N

)(4−d)/2 + const.
(
vb2N

)4−d + · · ·
]

. (2.29)

Thus any perturbation theory in d < 4 must break down [66]. This means mainly
that “new physics” beyond the random walk ideas takes over, and we cannot stay
within the methods used so far. What will happen can be seen in a simple dimen-
sional estimate of the Hamiltonian [70]. To resolve the problem of the diverging
expansion terms for N to ∞ a dimensional argument can be proposed:

βH = d

2b2

∫ N

0
ds

(
∂R
∂s

)2

+ v

2

∫ N

0
ds
∫ N

0
ds′δ

(
R (s)− R

(
s′
))

. (2.30)

The steps in the analysis are the following:

• suppose that the size of the polymer has scaling of the form R ∼ Nν ;
• estimate the connectivity term as ∼ N2ν−2+1;
• estimate the excluded volume ∼ N2−dν ;
• match both terms in the exponents: 2ν − 1 = 2 − dν and read off the result

ν = 3

2 + d . (2.31)

Here we see that the space dimension enters. Unlike for the random walk we can
expect a dependence on the space dimension for the size if the chain is regarded
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Table 2.1. Flory type estimates for the critical exponents ν

d νF comment

1 1 exact
2 3/4 exact
3 3/5 wrong
4 1/2 exact

as an SAW. Now we have to consider the quality of the results. The dimensional
counting is crude, so we would not expect the results to be of use, but, when the
estimates and the real values are compared, the result is a surprise. Let us first
summarize the results in Table 2.1. The only dimension where the model goes
wrong is d = 3. Let us discuss the results in the different dimensions in more
detail. First, for d = 1 the result is exact, since the SAW in one dimension must be
a fully stretched chain. d = 1 is the lowest critical dimension since ν cannot become
larger than 1. Otherwise the chain would be overstretched. We just mention without
proof that the value for d = 2 is also exact [66]. This has been proven by conformal
invariance [71]. For d = 3 the result is close to the real value of ν = 0.589 . . . ,
which has been computed by renormalization group theory.

We realize also that ν = 1/2 for d = 4. Why is this special? We should not be too
surprised, when we see that the perturbation parameter was estimated as vN(4−d)/2.
In dimensions larger than four, this parameter becomes really small. To be more
precise look at a special Ginzburg argument and let us estimate the energy using

U = 1

2
v

∫ N

0
ds
∫ N

0
ds′δ

(
R (s)− R

(
s′
)) ∝ N2

Rd
. (2.32)

If we put the ideal walk chain size in this equation, we get

U ∼ vN
2

Rd
≈︸︷︷︸

R∝√
N

vN(4−d)/2. (2.33)

Thus the SAW interaction is no longer important for d ≥ 4 and we recover random
walk behavior. The case d = 4 requires some attention. The exponent ν = 1/2 is
exact, but there are, however, logarithmic corrections to the prefactors and scaling
functions. This can be seen intuitively, since the scaling estimate of the interaction
potential is U ∝ N0, which in most cases indicates the existence of logarithmic
corrections. These have been worked out in detail [66].

At the present level we are not able to compute the exponents more accurately.
This requires more work, which we will outline in the next section.We can, however,
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use the scaling forms to find the asymptotic form of, for example, the distribution
function. In the case of the random walk we found that the probability distribution
was of a scaling form, see (2.7). We might assume that the SAW is also a self-
similar object and that we can use the same argumentation. In doing so we might
immediately guess the form [63]

PSAW(R,N) ∝
(

1

N

)νd (
R

bNν

)(γ−1)/ν

exp

{
−
(
R

bNν

)1/(1−ν)}
, (2.34)

where γ is another exponent, which is γ = 1 for the random walk. For many
more lucid discussions on these issues see the brilliant book by des Cloizeaux and
Jannink [66].



3

Many-chain systems: melts and screening

3.1 Some general remarks

So far we have studied an isolated single chain in a good solvent, which corre-
sponds to the case of the SAW. The most important result was the case of the
swollen chain with the scaling lawR ∼N3/5. This introduces by inverting, in prin-
ciple, a new fractal dimension df = 5/3 for the chain Rdf ∼ N . In the following
we are going to study the problem of polymer melts or, correspondingly, concen-
trated polymer solutions. In other words we want to study the physical behavior
of many-chain systems. What can we expect? To see this pictorially let us imag-
ine a snapshot of a three-dimensional concentrated polymer solution (Fig. 3.1).
Excluded volume correlations are now not only taking place within each single
chain, but the increasing number of contact points with other chains at increasing
polymer concentration result in additional excluded volume. At the same time the
correlations within each chain are destroyed more and more. To some extent fewer
correlations rule the statistical behavior of individual chains in the concentrated
solution or the polymer melt.We will show below that these additional contacts have
severe effects on the statistical behavior of the individual chains. The cartoon in
Fig. 3.1 suggests the following behavior for highly concentrated systems. We must
distinguish between (at least) two different length scales. One regime is given by
r ≤ ξ . At these scales a chain piece experiences correlations only from itself, i. e.
we may expect the classical self-avoiding behavior. For the other regime, r ≥ ξ , the
self-avoidingcorrelationsdonotplayasignificant roleandwecanexpectchainstatis-
tics close to a Gaussian chain. From this naive picture we must conclude that ξ must
be a function of the concentration. At this intuitive level we can already deduce one
significant concentration, C∗, which characterizes the overlap between the chains.
If the polymers just overlap, a chain occupies its own volume. Thus we have [63]

C∗ = N

Rd
= N

Ndν
= N1−νd . (3.1)

This is an important result and we have to note that for large chain lengths N the
overlap concentration C∗ is very small.

19
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Fig. 3.1. The single chain versus a labeled chain in a melt. The single chain
experiences contacts only with itself, whereas the melt chain has contacts with
all neighboring chains. Thus the self-contacts, depicted by the circles, become
irrelevant as the concentration increases. From [188], reprinted with permission
of Elsevier.

3.2 Collective variables

We would like to formulate the problem more in terms of the chain model and
the Edwards Hamiltonian. To begin, let us generalize the Edwards formulation
to many chains. This is very simple and all that has to be done is to take into
account the interactions between all the chain segments. This is reflected in the
Hamiltonian [62, 72, 73]

βH = 3

2b2

np∑
α=1

∫ Nα

0

(
∂Rα
∂s

)2

ds + 1

2
v

np∑
α,β=1

∫ Nα

0
ds
∫ Nβ

0
ds′δ

(
Rα(s)− Rβ(s′)

)
,

(3.2)

np the number of polymer chains present and all the other symbols have the same
meaning as before. The principal task is to compute the partition function

Z =
∫ np∏
α=1

DRα(s) exp(−βH([Rα(s)])). (3.3)

Of course, this is generally not simple and the partition function cannot be com-
puted exactly. Therefore a number of simplifications are necessary. The first one is
to assume monodispersity which means that all chains have the same length. Mathe-
matically this corresponds toNα = Nβ , ∀α,β. The next problem is that the partition
function contains too many degrees of freedom. The number of chains np involved
can be very large, and every chain itself has internal degrees of freedom, since they
are assumed to be totally flexible. For these reasons it is convenient to introduce
collective variables, which in this case are the polymer segment densities defined as

ρ (x) = 1

V

np∑
α=1

∫ N

0
dsδ (x − Rα(s)) . (3.4)
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In fact, ρ(x) can be viewed as a microscopic density operator whose value defines
the density at an arbitrary point x. It is therefore desirable to transform the Edwards
Hamiltonian, which is a function of the real chain variables, to an effective
one that depends only on the collective density variables. Let us therefore try a
transformation, which is written formally as

H ({Rα(s)}) −→ H ({ρ (x)})︸ ︷︷ ︸
effective Hamiltonian

, (3.5)

The resulting Hamiltonian is called “effective” here since it does not contain all the
initial information. It can be imagined that the transformation cannot carried out
exactly.

In the following we will show more of the transformation, since it has become
an important tool in polymer physics. The technical strategy is quite simple. The
strategy corresponds to the simple mathematical change of variables. The only
difference is that it has to be carried out functionally. The result that we will aim
for corresponds to the so-called random phase approximation (RPA), which has
been frequently used in solid state physics. In the following we will not present the
computation in detail but we outline the important steps. Some of the details can
be found in [62, 73].

1. Transformation to k-space The first step is to use a formulation in reciprocal space. The
advantage of this is that it simplifies the notation. To start, let us transform the density
variable into k-space. This is very simple, and the result can be immediately written
down:

ρ(x) =
np∑
α=1

∫ N

0
ds

1

V

∑
k

exp [−ik (x − Rα(s))] =
∑

k

exp [−ikx]ρk. (3.6)

For the latter step we have simply used the Fourier transform of the density, i. e.

ρk≡ 1

V

np∑
α=1

∫ N

0
ds exp [ik · Rα(s)]. (3.7)

One technical problem is how to treat the sum over all wave vectors k. The exact
enumeration can be carried out on a lattice, but it is useful to handle the sum over the
wave vectors in its continuum version:∑

k

= V

(2π)d

∫
ddk. (3.8)

The sum over the k-vectors appears very complicated, but is much simpler, if we note
that the density must be a real number. Thus we make use of

ρ (x) ∈ R ⇒ (ρk)
∗ = ρ−k (3.9)
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in the following and realize that only a certain number of values will contribute to the
sum, i. e. only k > 0 are independent. In (3.9) the “∗” denotes the complex conjugate.

2. Transformation of variables The second step is the most technical one. Here we have
to transform the Hamiltonian from the chain variables Rα(s) to the collective variables
ρk. The computation is very involved and we are not going to write all details here, but
instead concentrate on the main issues. Formally we may write the transformation as

H ({R (s)}) −→ H ({ρk}) , (3.10)

and it becomes clear that this cannot be carried out exactly. Moreover, we will see later
that we can only go in the direction of the arrow in (3.10). Thus the transformation cannot
be inverted. The first formal step is to use the identity for the partition function:

Z =
∫ ∏

α

DRα (s)
∫ ∏

k

dρkδ
(
ρk − ρ̂k

)
︸ ︷︷ ︸

≡1

exp [−βH(Rα(s))]. (3.11)

Here we have just inserted 1 which is expressed as a complicated functional integral over
density variables. The density operators ρ̂ correspond to ρk in (3.7). This expression
contains all monomer positions Rα(s), which we want to remove. The common way to
proceed is to use a functional Fourier representation of the delta function δ

(
ρ − ρ̂) in

the form∫ ∏
k

dρkδ

(
ρk − 1

V

∑
α

∫ N

0
ds exp [ik · Rα(s)]

)
≡

≡
∫ ∏

k

dρk

∫ ∏
k

dφk exp

{
−i
∑

k

φ−kρ̂k

(
ρk

np∑
α=1

∫ N

0
ds exp [ik · Rα(s)]

)}
,

(3.12)

where we have introduced an auxiliary field φk for each value of the (formally) discrete
wave vector. This auxiliary field parameterizes each of the terms in the product of delta
functions in (3.12).

3. Putting together and exchanging integration We are now in the position to compute the
partition function. To do so, we put the parameterized delta functions into the partition
function and interchange the order of the integration. Thus we write the partition function
in the following order:

Z =
∫ ∏

k

dρk

∫ ∏
k

dφk exp

{
−i
∑

k

φ−kρk

}

×
∫ np∏
α=1

DRα(s) exp

{
−βH ({Rα (s)})+ i

∑
k

φkρ̂k

}
. (3.13)
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The main advantage of (3.13) is that the term on the second line depends only on the
auxiliary field variables φk after the integrations over the chain variables are carried out.
These integrations cannot be carried out exactly as mentioned earlier. Mathematically
the second term contains the Jacobian of the variable transformation and physically it
corresponds to a Legendre transformation of the original partition function.

Another essential point is that the exponential in the first line can be written as

∑
k

φ−kρ̂k = 1

V

∑
k

φ−k

∑
α

∫ N

0
ds exp [ik · Rα(s)]

≡
∑
α

∫ N

0
dsφ (Rα (s)) . (3.14)

Thus each chain can be formally seen in a (random) field φ(Rα(s)). The excluded
volume pair interaction has been transformed to a one-particle interaction, i. e. an exter-
nal field.

Now we have to go in a different direction. Instead of setting up a proper field the-
ory and using a Schrödinger-type equation we stay in the real-space formulation and
perform the Rα integration. This procedure yields an effective Hamiltonian of the sym-
bolic form H(ρk,φk), i. e. it depends only on two variables: ρk and the auxiliary field
φk. The next step is to integrate out the remaining φk auxiliary variables. Indeed the
φ-integration produces in a symbolic notation a Hamiltonian that depends only on the ρk

variables:

Zeff =
∫ ∏

k

dρk exp (−βHeff (ρk)) . (3.15)

This defines the desired Hamiltonian via the partition function. Nevertheless the strategy
has now made it clear that we wish to go one step further and study the structure of both
“Hamiltonians” H (ρk,φk) and Heff (ρk) in more detail. Below we will show that the
auxiliary variable φk has a physical meaning, although it has been introduced just to
parameterize the delta function during the change of the variables from Rα(s)→ ρk.

To begin with let us apply the procedure to the problem we would like to study.
The transformation of the many-chain Hamiltonian is the first step. The part of the
interactions, i. e. the mutual self-avoidance between all chains, is very simple. We write
down again the starting point for the many-chain problem:

βH ({Rα(s)}) = 3

2b2

np∑
α=1

∫ N

0
ds

(
∂Rα(s)
∂s

)2

+ v

2

∑
αβ

∫ N

0
ds
∫ N

0
ds′δ

(
Rα(s)− Rβ(s′)

)
︸ ︷︷ ︸∑

k ρkρ−k

. (3.16)
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We then see that the Hamiltonian always has the general structure

βHeff (ρk) = βH0(ρk)+ v

2

∑
k

ρkρ−k , (3.17)

as long as only two-body interactions are of importance.The next task is the determination
of H0.

4. Determination of H0 To do this we have to consider the following integral for A0:

A0 =
∫ np∏
α=1

DRα(s) exp

{
− 3

2b2

∑
α

∫ N

0

(
∂Rα
∂s

)2

+ i
∑

k

φ−k

∑
α

∫ N

0
ds exp [ik · Rα(s)]

}
. (3.18)

FormallyA0 corresponds to the partition function of a set ofnp polymers in a random field
φ(Rα(s)). This is a well-posed problem with which we had already dealt. We now see the
real advantage of this procedure: The problem is now diagonal in all monomer indices,
i. e. there are no couplings between different monomers s, s′ and α,β. Next we carry
out the Rα(s)-integration. We will then be left with an expression which depends only on
the auxiliary variable. Of course, this is, in general, only possible using approximations,
the most important of which is the assumption of small fluctuations in variables ρk and
φk. This turns out to be consistent with the assumption of dense systems. In fact, the
larger the polymer density is, the smaller the fluctuations are, and hence, the better the
assumptions of small fluctuations. Intuitively this can easily be imagined. In dense melts
the density fluctuations are much less pronounced, compared with a dilute solution, just
because of the space-filling fraction of the polymers. In low-concentration solutions the
spatial fluctuations are given by the single-chain conformations, whereas in melts the
scales of the individual chain sizes do not play a major role, and fluctuations in the density
are less pronounced.

The above assumption allows cumulant expansion of the integral.To simplify notation,
we use the operator form of the collective density, i. e. (3.18) takes the more convenient
form

A0 =
∫ np∏
α=1

DRα(s) exp

{
− 3

2b2

∫ N

0

(
∂R
∂s

)2

+ i
∑

k

φ−kρ̂k

}
. (3.19)

To proceed we try to approximate (3.19) in the following form:

A0 � exp

⎧⎨⎩−1

2

∑
kk′
φ−k�

(2)
kk′φk′

−
∑

k1,k2,k2

φk1φk2�
(4)(k1, k2, k3)φk3φ−k1−k2−k3 ± etc

⎫⎬⎭ . (3.20)
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This can be done and it turns out that the lowest-order function � is given by

�
(2)
kk′ = 〈ρ̂kρ̂k′

〉
0 (3.21)

The average here is defined as

〈· · ·〉0 = N
∫ np∏
α=1

DRα (· · ·) exp

{
− 3

2b2

N∑
α=1

∫ N

0

(
∂Rα
∂s

)2
}

, (3.22)

where N is an appropriate normalization. At this point the advantage of the expansion
can be seen. All the contributions to βH0 can be expressed as averages of the ideal chain
conformation, i. e. the non-interacting random walk. Thus the terms can be evaluated
very simply. Obviously, the lowest-order contribution corresponds to the structure factor
of the ideal chain

�
(2)
kk′ ≡ S0(k)︸ ︷︷ ︸

bare structure factor

δ
(
k − k′) , (3.23)

where S0 is the base structure factor. Let us stick to the Gaussian order, which becomes
reasonable for concentrated polymer solutions and polymer melts, where the fluctuations
are very small. In this limit everything can be calculated on a simple level. The effective
Hamiltonian H [ρk,φk] becomes to Gaussian order

H [ρk, φk] = v
∑

k

{
v

2
|ρk|2 + 1

2
S0 (k) |φk|2

}
+
∑

k

iφkρ−k

+ higher order in φk. (3.24)

Equation (3.24) appears not to be a real Hamiltonian, because at first sight it contains
complex contributions. This is a somewhat confusing notation, but the problem can be
resolved immediately, if the conjugate part is added. As before, the term containing the
imaginary unit i must be replaced by

φ−kρk → 1

2
(φ−kρk + φkρ−k) ,

and then will be well defined and the exponent will be real. Only then are all the averages
well defined.

5. Gaussian model Now we do the final φ-integration at the Gaussian level, i.e. all higher
orders of the expansion in terms of the auxiliary field are neglected. Thus we start from
the expression for the effective Hamiltonian

βHeff [ρk] = υ

2

∑
k

(
1

S0(k)
+ υ

)
ρkρ−k + O

(
ρ3, ρ4, . . .

)
(3.25)
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and compute the corresponding averages. The most important of these is the structure
factor of the interacting system. The computation is trivial and starts from the definition
of the structure factor as the density correlation function,

S (k) = 〈ρkρ−k〉 . (3.26)

Again we recall the definition of the averages in terms of the collective variables, i. e.

〈· · ·〉 = 1

Zeff

∫
dρkρkρ−k exp(−Heff ), (3.27)

where Zeff is given by (3.15). Equation (3.27) yields the celebrated equation for the
structure factor of a concentrated polymer solution

1

S(k)
= 1

S0 (k)
+ v. (3.28)

Equation (3.28) is often called the standard RPA result for a polymer melt [62, 63]. It is
remarkable, that the RPA result works very well, despite the crude approximations, and
(3.28) has been confirmed by experiments with dense polymer solutions. In fact, we will
come back later to this equation in the context of polymer blends and copolymers.

We could stop here because we have achieved what we wanted. The transfor-
mation of the Hamiltonian to collective variables is complete, and the structure
factor is computed, at least in lowest order. However, we have still some unsolved
questions, even at this level of the approximation. The next questions we want
to look at are: does the auxiliary field have a physical meaning? And what does
this theory so far mean for the conformation of chains in melts and concentrated
solutions? We have already found that the single-chain correlations are destroyed
as the polymer concentration increases. Can we then expect effects on the size of a
labeled or tagged chain?

3.3 The statistics of tagged chains

So far we discussed the behavior of a dense polymer solution in terms of collective
properties, such as the structure factor and the scattering properties of the system.
One factor which we have not addressed yet is the behavior of the chains in the melt.
In the introductory remarks we thought about the statistics of chains in the solution
and the melt. We guessed that the size of the chain cannot be ruled by excluded
volume forces alone, as in the case of isolated chains, since additional correlations
from other chains also play an important role. This question is fortunately connected
to another formal one.

We introduced an auxiliary field to represent the delta function when we changed
the variables. This was a very formal point but a legitimate question is: does the
auxiliary field φk have a physical meaning? The answer is, of course, yes. To see
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this let us compute the correlator 〈φkφ−k〉 in the lowest Gaussian order. Again the
calculation is trivial, but very instructive, and the result is

〈φk φ−k〉 = v

1 + vS0(k)
≡ U . (3.29)

This result was first found by Edwards [73] in a different form and by a different
calculation. A simple dimensional analysis shows that U must be a renormal-
ized interaction. This can be seen from its units: it must be the same as the
“bare” excluded volume parameter v. It is instructive to bring (3.29) into the more
appropriate form

1

U
= 1

v
+ S0(k). (3.30)

This result yields that the original excluded volume interaction becomes renormal-
ized in the presence of the other chains and the renormalized interaction in the melt
is smaller than the bare interaction. However, the interaction becomes screened out.
Edwards [73] used a different route. He derived the same result for the potential
by using collective variables and integrating over all chains (in terms of collective
variables), except one. Then he was left with an effective chain in the melt. The
form he derived was

U(k) = v − v2

1

S0(k)
+ v

, (3.31)

which agrees with (3.29) and (3.30). This form of the effective interaction is very
instructive: The bare excluded volume v is reduced by a term stemming from the
collective properties. We now need a physical picture and an interpretation of this
point.

Therefore, we are going to have look at the effective ρk-Hamiltonian, i. e.
what is left when we have integrated out the φk-fields in (3.24). By some simple
manipulation we see

Heff [ρk] = v

2

∑
k

(
1

S0(k)
+ v
)
ρkρ−k

= v

2

∑
k

⎛⎜⎜⎝ 1

Nc︸︷︷︸
ignore

+k
2b2

12c
+ v

⎞⎟⎟⎠ ρkρ−k (3.32)

∼= v

2

∑
k

b2

12c

(
k2 + ξ−2

)
ρkρ−k,
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which are appropriate forms for the physical interpretation. The steps of the small
computation involve, first, a Padé approximation for the structure factor and,
second, neglect of the small (1/N)-term. In the last line we introduced a screening
length

ξ =
(
b2

12cv

)1/2

. (3.33)

Why did we call the length scale a screening length? To see this let us again compute
the structure factor in terms of the length ξ . In this notation this is given by

S(k) � 12c

b2

1

k2 + ξ−2
(3.34)

and can be immediately transformed back in three-dimensional real space. The
structure factor in real space is then

S(r) = 3c

πb2

1

r
exp (−r/ξ), (3.35)

which is of the Yukawa type. We see that the ξ plays the role of a characteristic
screening length. At scales below ξ , the structure factor shows strong 1/r cor-
relation. At larger scales, r > ξ , the correlation falls off exponentially, i. e. it is
screened out. The screening length depends strongly on the concentration c, which
becomes smaller with increasing concentration. This means that the strong corre-
lations are destroyed faster at smaller length scales. In other words, we can say that
the interactions become screened by increasing concentration.

To confirm this idea of screening interactions it is useful to calculate Hamiltonian
H (RT(s)) for a test chain in the concentrated solution. To do so, we represent the
np chain Hamiltonian by the collective variables described above. Into this medium
we can insert an additional chain of the same chain length N which we call RT(s).
Of course, this test chain interacts with itself and the medium. The interaction term
with the medium represents a coupling between the test chain and the medium. Thus
we may represent the Hamiltonian for the test chain and the medium simply by

βH (RT(s)) = 3

2b2

∫ N

0
ds

(
∂RT(s)

∂s

)2

+ v

2

∫ N

0

∫ N

0
dsds′δ

(
RT(s)− RT(s

′)
)

+ v
∫ N

0
dsρ(RT(s))

+ v

2

∑
k

{
1

S(0)(k)
+ v
}
ρkρ−k + O(ρ4

k). (3.36)

Here the first line of the equation represents the bare Hamiltonian of the tagged
chain, the second line is the coupling to the medium, i. e. the melt composed of the
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same chains, and the third term represents the polymer melt (medium) itself.Again,
if higher orders in ρk are neglected the collective variables can be integrated out
and we are left with an effective Hamiltonian for the test chain:

βH [RT(s)] = 3

2b2

∫ N

0
ds

(
∂RT
∂s

)2

+ 1

2

∫ N

0
ds
∫ N

0
ds′U

(
RT (s)− RT

(
s′
))

,

(3.37)

where the potential U(r) is called the “screened potential.” It has the following
explicit form in k-space:

U(k) = v k2

k2 + 1
ξ2

= v

1 + S0(k)v
≡ 〈φkφ−k〉 . (3.38)

The agreement with the correlation function of the φk fields is obvious and shows
that the previous guess is correct. It is instructive to calculate its Fourier transform
to real space, which is

U (R) = v

⎡⎢⎢⎢⎣ δ (R)︸ ︷︷ ︸
original ev

− 1

4πξ2

e−R/ξ

R︸ ︷︷ ︸
screening

⎤⎥⎥⎥⎦ . (3.39)

Equation (3.39) shows explicitly why the melt potential is called the “screened
potential.” The bare excluded volume interaction v becomes screened out by the
presence of the other chains. The range of interaction is mainly given by the screen-
ing length ξ . Moreover, at large values of r , or equivalently at k = 0, the interaction
is zero. This leads to the conclusion that chains in dense polymer solution or in poly-
mer melts will somehow have Gaussian statistics, i. e. their mean size R will obey
Gaussian scaling, R ∝ √

N . This can be seen by considering a simple perturbation
analysis for the size of the chain, where the perturbation is the effective potential
U(r). This calculation is straightforward and we only quote the result. The size of
the chain is 〈

R2
〉 ∼= Nb2

[
1 + 12

π

v

b4
ξ

]
. (3.40)

Equation (3.40) shows that the chain behaves like a Gaussian with respect to scaling
with the chain length, but with a renormalized prefactor. The prefactor contains the
screening length ξ and is thus concentration-dependent. It is also easy to show that
all higher-order terms in the perturbation analysis are of less importance.

The next step is to develop a physical picture of this formal result. Obviously
the screening can be understood by introducing a blob size which comes from the
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Fig. 3.2. The blob picture of chains in concentrated polymer solutions. The chain
can be divided into blobs of size ξ . Inside the blobs, the chain exhibits SAW
behavior. Outside the blobs, the SAW correlations are destroyed and the chain
becomes Gaussian. From [65], reprinted with permission.

screening length ξ . From (3.40) we see explicitly that the exponent in melts is ν = 1
2

and the chain is no longer self-avoiding. Higher-order perturbations are of course
smaller and not N -dependent as in the SAW case. This allows the “blob picture”
to be confirmed. Indeed the chain can be replaced by an effective chain of blobs.
These blobs have a diameter of the order of ξ . Inside the blobs SAW correlations
dominate the physical behavior, i. e. the chain is expected to be SAW-like. Outside
the blobs, the many-chain correlations destroy the SAW character, and as we have
just shown in (3.40) the chain becomes Gaussian (see Fig. 3.2). We have, however,
made a mistake somewhere. This becomes obvious if we look at (3.35). We have
just required that inside the blob there should be no volume correlations, therefore
we should expect a structure factor S(r) ∝ r−4/3 in three dimensions, since in
reciprocal space this factor scales as S(k) ∝ k−5/3 in d = 3. Equation (3.35),
however, shows only a scaling with the inverse of the distance for scales r < ξ .
Our mistake becomes immediately clear, when we remember that we had worked
these results out only in the Gaussian approximation and we neglected all higher-
order terms in φk or ρk. However, it is possible to recover the correct scaling by
higher-order expansions together with renormalization theory [66]. The technical
details of these computations are beyond the scope of the present chapter, but we
will come back to this problem when we consider scaling theory. Shortly, we will
put forward physical arguments that yield the desired results without doing too
much technical work. This is the great advantage of scaling theory: simple physical
pictures together with physical intuition quickly yield the first-order results.

However, dry rubber consists of many chains. Their interactions are of the same
nature as those in polymer melts; their excluded volume interactions in the rubber
matrix are screened.
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Rubber formation

4.1 Classical theory of gelation

In this chapter we are going to summarize briefly the formation of the rubber matrix.
The processes are strongly non-ergodic and often non-equilibrium. We will also see
that some of the structural elements are even determined by the process of gelation
and vulcanization; for the classical theories, see [74,75] and for later developments
see the book by Stauffer [76]. Any change from a melt to a rubber structure no
matter by which process is a liquid-to-solid transition, which is monitored by a
strong increase of the viscosity, as more material is connected together. If (formally)
the viscosity tends to infinity at a certain conversion, a finite shear modulus can be
measured. Indeed, this corresponds to a real phase change from a liquid phase to a
solid phase under the change of the transport and mechanical properties. Of course,
the critical point, at which the viscosity is infinite and the modulus is non-zero
for the first time, depends on the number of crosslinks introduced into the melt.
Therefore it is proposed that the viscosity increases by a power law:

η ∝ ( pc − p)−k , (4.1)

and correspondingly the modulus increases by

G ∝ ( p − pc)
t , (4.2)

where pc is the “critical point” or in other words the critical conversion where the
transition from the liquid- to solid-like behavior occurs [76].

The simplest model for such a so-called sol–gel transition was first proposed
by Flory and Stockmayer. In this it was simply assumed that a large number of
ϕ-functional molecules can be connected to a large (even macroscopically large)
three-dimensional molecule by chemical reactions [74, 75]. At reaction time zero,
the molecules form nothing but a melt. Then certain bonds in the side-chains of
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the molecules react and clusters of a certain size, i. e. nmolecules, say, are formed.
These clusters can be characterized by a “generating function,” which is a measure
of the probability of the molecule being part of a cluster or not. This then leads to
there being a mean number of monomers in the cluster, which is also a measure for
the size. Therefore we may introduce

F0(θ) =
∑
n

Wn( p)θ
p, (4.3)

whereWn(p) defines the probability that any monomer has reacted with the cluster
which already consists of n monomers. The variable θ is an auxiliary variable and
p defines the simple reaction probability between monomers, so this equation is
relatively general. Further progress can be made by introducing a more specific
description of the molecules, i. e. the functionality (number of reaction arms) ϕ
must be introduced. To do so we introduce the associated probability F1(p, θ) that
a monomer has not reacted with the cluster and is naturally associated with (1−p).
Therefore we have

F0(θ) = (1 − p + pθF1( p, θ))ϕ . (4.4)

This equation is, in general, difficult to solve, except when a network which has
only a tree-like structure and no loops is formed, (compare Fig. 4.1). This appears
at the moment to be a strong restriction, but the inclusion of loops is associated
with a more general theory which we will treat shortly. With this assumption we
are in the position to write out an iterative process, which naturally accompanies
the reaction. Thus we have

F1(p, θ) = (1 − p + pθF1( p, θ))ϕ−1. (4.5)

Such equations can be solved by iteration (under the tree structure assumption) and
we quote the results:

F0 = (1 − ϕ)ϕp
∞∑
n=1

[(ϕ − 1)n]!
[(ϕ − 2)n]!(n− 1)!X

n−1,

F1 = (1 − ϕ)ϕ
∞∑
n=1

[(ϕ − 1)n]!
[(ϕ − 2)n]!(n− 1)!X

n−1, (4.6)

where the variableX = pθ(1−p)ϕ−2 has been introduced. One interesting quantity
to look at is the molecular weight of the cluster. Therefore it is reasonable to make
a power-law ansatz for the quantity F1 in (4.5), i. e. F1(p, θ) = wϕ−1. Then we
may rewrite (4.5) in the following more instructive form:

w − 1

pθ
= wϕ−1 − 1

θ
, (4.7)
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Fig. 4.1. Full loopy structure (lattice-like connectivity) in comparison with a
tree-like structure. It is clear that their elastic properties will be different.

which indicates the critical point pc. This can be seen from the following two cases:

• p < 1/(ϕ−1): the molecular weight, associated with the value ofw, is not diverging,
the clusters stay finite, and no network results in the process.

• p > 1/(ϕ− 1): in this case the molecular weight diverges and one large cluster will
emerge, i. e. a macroscopic network will form.

Therefore we can identify a “critical point” pc = 1/(ϕ− 1) for network formation
in this simple model. A critical reactive probability pc is needed for the network
(or better cluster) formation which depends on the functionality of the molecules.
So far we have determined a critical point from just a simple model. This model,
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however, suffers from a serious drawback: The resulting structure is only tree-like;
no further structural elements are allowed. Classical networks include loops and
closed circles in their structure. Indeed, they define much of the elastic properties
of the networks via the cycle rank [77,78]. We will introduce a more general model
for the network formation in the next section.

4.2 Percolation

The percolation process describes a more general process for cluster and network
formation. In the simple Flory–Stockmayer model introduced above we saw that
the main issue is a “connectivity transition” in which a liquid of zero elasticity of
functional molecules undergoes a chemical reaction and connects molecules with
each other. The resulting cluster is a solid with different properties, e.g. a finite
elasticity. We have so far not learned anything about the exponents of the diverging
viscosity of the growing elastic modulus.

Probably the simplest visualization of the percolation process is given by con-
necting bonds on a lattice [76,183]. Imagine therefore a lattice in which the lattice
points are connected by polymer chains (or simply by bonds) completely at ran-
dom (see Fig. 4.2). Obviously at first only small clusters are formed. However, there
might finally come a point, at which the connected cluster reaches from one end of
the lattice to the other. The cluster can then be viewed as “infinite.” The properties of
this process can be summarized in a number of quantities starting with the size dis-
tribution of the clusters, which can be described by the following scaling approach:

ns ∝ s−τ f (s/s0), (4.8)

where the variable s corresponds to the size of the cluster and f (s/s0) is an as
yet unknown scaling function that has to be determined later. Next we define an
“order parameter” (in analogy to phase transitions), which is here associated with

Fig. 4.2. Simple visualization of the percolation. Bonds are connected at random,
then clusters of connected bonds appear. Eventually all the clusters have joined
together to make a single entity.
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Fig. 4.3. The polymer version of the critical cluster. The bonds have been replaced
by chains.

the probability that a connected lattice bond belongs to the infinite cluster:

P∞ ∝
∑
s

sns ∝ ( p − pc)
β , (4.9)

wherep andpc are as yet undefined. The exponentβ is a so-called critical exponent,
which should not depend on any details of the process, i. e. the form of the lattice
and the length of the bonds, etc. It is supposed to be “universal.” Note also, that
the quantity P∞ is obviously zero below pc when no infinite cluster exists. Anal-
ogously the number of finite clusters, which is denoted by G(p), can be described
by a scaling law. It is given by the singular part of the sum over the cluster number:

G(p) ∝
∑
s

ns | ∝ |p − pc|2−α . (4.10)

Of course, the percolation process is not limited to the case of connecting bonds.
The bonds can be replaced by polymer chains, and then a critical network appears
(see Fig. 4.3).

For the present purpose it is useful to define a reasonable measure of the molecular
weight of the cluster, which corresponds to the degree of polymerization of the
network. This is given by

S(p) ∼= M̄w ∝
∑
s s

2ns∑
s sns

∝ |p − pc|−γ . (4.11)

Finally, for completeness we mention the correlation length ξ that defines the
correlation between different bonds, which behaves as

ξ ∝ |p − pc|−ν . (4.12)
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So far we have defined a number of “critical exponents” which describe the
behavior of the above quantities as we approach the percolation threshold. However,
it turns out that these exponents are not independent but are connected by some
scaling laws, which have their origin in the general theory of phase transitions.
There are two essential scaling laws which we mention here without proof. The
first is

α + 2β + γ = 2, (4.13)

and the second is
νd = 2 − α = 2β + γ . (4.14)

The latter scaling relation, which is called “the hyperscaling law,” is essential since it
connects universal scaling exponents to the space dimension d . The deep meaning
of this formula becomes entirely clear when all the exponents from the Flory–
Stockmyer model (here only quoted),

−α = β = γ = 1,

ν = 1

2
, (4.15)

τ = 5

2
,

are inserted. The first scaling relation is easily satisfied, while the second is greatly
violated, except in d = 6. Thus we should expect the Flory–Stockmayer theory to
be valid only in six space dimensions.

How can we explain this? The explanation is, in fact, very simple since we have
assumed in the solution of the corresponding equations that no loops are present
and that the only structural element is a tree. The assumption of no loops can
only be valid for large dimensions. In order to avoid having loops in a network-
forming structure, a large dimensionality of the embedding space is necessary.
Then there are always enough ways to avoid joining two ends without creating
loops. Indeed, the tree formally corresponds to an infinite dimension. For the
corresponding percolation problem six-dimensional lattices are sufficient to avoid
loops.

The exponents of the percolation problem can in general only be determined
numerically and are found to be α ≈ 1.8, ν ≈ 0.88, β ≈ 0.43, and t ≈ 1.9. Note
that the value of the modulus exponent t in the Flory–Stockmayer theory is t = 3.
So far we have only treated gel formation from small molecules. Rubbers are often
formed from polymer chains, and we have to work out the main differences between
the gelation and vulcanization processes. Note that t depends on the nature of the
model, i.e. t ≈ 1.9 results for scalar force constants, t ≈ 3.6 for vectorial force
constants (torsion).
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4.3 Vulcanization

We have seen the remarkable difference between the exponents for the Flory–
Stockmayer model and those for the percolation model. The main reason for this
large difference lies in the fact that the Flory–Stockmayer model has no (structural)
fluctuations, so that loops, dead ends, and blobs are forbidden as structural elements.

These elements appear naturally in any percolation model. However, tree-like
structures become more probable as the number of dimensions increases. We have
already indicated this when we considered the critical exponents together with
the hyperscaling law which we could only satisfy at d = 6, the upper critical
dimension. Of course, life in six dimensions is unimaginable, and vulcanizates
exist in three dimensions. On the other hand, they can to a large extent be described
by the classical theory of gelation. How can this be understood? It is due to the long
preformed polymer chains [79].

To see this we again work in arbitrary space dimensions (although only d = 3
and d = 2 are accessible experimentally). In Section 4.2 we introduced a corre-
lation length ξ that diverges with the reaction probability p in a critical way. Let
us therefore consider a volume V = ξd , which contains the average number of
monomers

nt = c0ξd , (4.16)

where c0 is the average concentration. Now we assume that we have performed
the reaction to slightly beyond the critical value pc, so that a gel fraction already
exists. This can be calculated as

ngel = c0ξdP∞ ∝ c0ξd
(
p − pc

pc

)β
. (4.17)

Now consider the total (gel and finite) number of clusters and their fluctuations so
that we have a balance equation of the form �ngel + �nf = �nt ≡ 0. Then the
volume contains different types of monomers, which belong to finite and large clus-
ters. The number of clusters is of the order of nf /S(p), and the relative fluctuation
is of the order [

�nf

nf

]2

∝ S( p)

nf
. (4.18)

Further simplification is possible since we have assumed that we are working just
above to the threshold, i. e. p+ ≈ pc, which allows us to write nf ≈ nt . The
fluctuation then becomes

(�ngel)
2 ∼ nt . (4.19)

This yields with (4.16)
(�ngel)

2 ∝ S(p)c0ξd (4.20)
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The fluctuation of the gel fraction is then determined as[
�ngel

ngel

]2

∝ S(p)

c0
ξ−dP−2∞ ( p) . (4.21)

Now we can insert the (p−pc)-dependence for all quantities and find immediately[
�ngel

ngel

]2

∝ (p − pc)
νd−2β−γ , (4.22)

which corresponds to the hyperscaling relation. However, there is even more in this
formula. Using (4.21) we can distinguish the cases of percolation and vulcanization.
In the vulcanization process, we have for the correlation length

ξ = bN1/2
(
p − pc

pc

)−ν
, (4.23)

while the gelation process corresponds to the chain length N = 1. Although there
is only a difference in the prefactor, this makes a big difference between the two
cases.

Let us ask therefore when the process corresponds formally to Flory–Stockmayer
gelation.This is certainly the case if we have the mean field exponents (4.15).
Therefore we use these exponents in (4.22) and see whether they make sense or
not. Substituting, we find[

�ngel

ngel

]2

∼ N1−d/2
(

pc

p − pc

)3−d/2
. (4.24)

p = pc p = 1 

Fig. 4.4. Complete conversion of a percolation process. The chains indicated in
grey are now connected in comparison to the critical case p = pc. When all lattice
sites/bonds are occupied (grey chains) we have the case p = 1.
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The gel point for vulcanization processes is now in general

pc = 1

N
, (4.25)

since the vulcanization reaction can occur at any place along the chain, which
corresponds to large functionality, i. e. ϕ = N . Thus we have finally the criterion
for the fluctuations: [

�ngel

ngel

]2

∼ N−2
(

1

p − pc

)3−d/2
. (4.26)

The fluctuation effect is very small when the molecular weightN is large. Therefore
in three dimensions, d = 3, we can expect mean field behavior, except at a small
distance close to the critical threshold pc = 1/N . In low dimensions (i. e. d = 2)
the critical and non-classical behavior is more pronounced. This is well known
from vulcanization of thin films, which corresponds to the case of d = 2. In the
next chapter we will turn to the elastic behavior of a fully converted network. This
happens when the reaction is complete, as depicted in Fig. 4.4, at which point
p = 1, i. e. far above the percolation threshold.
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The elastomer matrix

5.1 General remarks

The main goal of this chapter is to introduce a convenient view of the basic physics
and elasticity of the rubber matrix. The easiest way to consider an elastic polymeric
solid is as a crosslinked polymer melt. Polymer melts, however, already exhibit
some properties of networks, at least on some time scales. This can be seen most
beautifully by considering the storage modulus of a polymer melt.

The melt can be made a true solid by adding a reagent which joins each chain
to a neighbor. For lightly crosslinked material there will be a few links per chain,
but material can also be highly crosslinked [6]. Alternatively irradiation by gamma
rays, X-rays, or by electrons will create crosslinks. There is ample evidence that
polymers in melts are in random walk configurations, i. e. the molecule has a
large choice of configurations and these differ by energies much less than the
thermal energy kBT . The kind of picture one has then is as in a computer simula-
tion. The real difficulty is that rubbers are fundamentally three-dimensional and,
unlike for crystals, two-dimensional pictures are not comprehensive. However, the
reader can imagine a very kinky spaghetti-like mixture with permanent crosslinking
bonds along the length. There is ample experimental evidence that perhaps 90%
of the free energy of the material is entropic; see [6] for a general discussion and
references.

In a network, however, the problem is that all the structural elements that make
precise theories for melts difficult become frozen in. To see this we consider a
polymer melt which consists of chains of a certain molecular weight. In this melt
many structural elements are present, a few of which are shown in Fig. 5.1. In
the ideal case, the chains are crosslinked to each other, but some chains have only
one crosslink; these singly crosslinked chains have dangling ends and contribute
to the density but not the elasticity. The main problem remains unsolved, which is
to calculate the elasticity of the simplest representation of an elastic matrix.

40
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Fig. 5.1. Structural elements in a network: (a) dangling chain ends; (b) entangled
chain ends; (c) trapped entanglements; (d) entangled loops; (e) wasted loops.

It is important to realize, that all the conformations of the chain described in this
theory are purely entropic. The shape of the chain is driven purely by entropy. This
means that the mean square chain radius fluctuates around its value given by (2.8).
Indeed, this can be visualized by the following simplified formulation. The entropy
of the chain is given mainly by the very beautiful Boltzmann formula S = kB ln�
(which is written on his gravestone in the Zentralfriedhof in Vienna). To employ
this fundamental equation for the present problem we write it in the form

S(R) = kB ln P(R), (5.1)

which immediately yields the expression for the entropy of a chain with an end-to-
end separation R:

S(R) = −kB
3R2

2b2N
− 3

2
ln

(
3

2πN

)
. (5.2)

It is convenient to transform this into the free energy F = U − T S, but since the
change in the internal energy U with respect to the chain end-to-end distance is
zero no additional contributions are to be expected. Note also that the last term
in (5.2) does not depend on the end-to-end distance R and is thus irrelevant for
conformational changes.



42 The elastomer matrix

5.2 The Gaussian network

It turns out that this knowledge of the Gaussian chain is sufficient to formulate the
simplest theory for an elastomeric network. To see this we consider the entropy (or
free energy) for the Gaussian chain. If we pull on a Gaussian polymer chain the
force needed to extend it is given by

f = ∂F

∂R
= kBT

3

b2N
R. (5.3)

Although this is a very simple formula it contains some interesting features. First,
it can be seen that it resembles Hooke’s law, where the force is proportional to the
extension. Second, the force increases with increasing temperature. This is unusual
in the sense that for ordinary elasticity it is well known that the force decreases
with temperature, since the elasticity reduces. The physical reason for this typical
entropic elastic effect is that at higher temperatures normally more conformations
are adopted. If, on the other hand, the chain ends are held at a fixed distance R
apart, this restricts the number of conformations. The larger the distance, the larger
is the restriction, and according to (5.2) it falls off exponentially. Thus the force
has to increase.

So far we have seen that chain extension costs entropy, but so does chain com-
pression. This is straightforward to see from the above equations. It can be seen
that the free energy has a scaling of the form

Fstretch = kBT g (x) , (5.4)

where g(x) is a scaling function and x = R2/b2N . Of course, the form of g(x)(�
x2) has to be quadratic, since only classical elasticity is considered and the natural
form of the entropy does not leave room for anything else at this level. For the
compression of the chain, we can then guess the contribution of the free energy.
The cost of confining a chain whose natural size isR � bN1/2 to any other (smaller)
size R can be estimated from the entropy penalty

Fconf = 3

2
kBT

b2N

R2
, (5.5)

which is just the inverse of the stretching formula. Of course, the chain fluctuates
around any mean position. Thus we can estimate the size of the chain from the total
free energy

F = 3

2
kBT

(
R2

b2N
+ b2N

R2

)
. (5.6)
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The minimum of this free energy occurs at R � bN1/2. Note that we have omitted
all the numerical factors in the last few formulae.This is often done in the framework
of scaling.

We can already use this small amount of information to construct a theory for a
Gaussian network. This requires first some assumptions:

• The chains that form the network are Gaussian.This assumption seems to be sufficient
inasmuch as the interactions in the melt are screened, as seen before. Therefore we
may use Gaussian chains to form the network.

• All crosslinks are formed instantaneously and all chains are crosslinked.
• The density of the network is well behaved.
• The deformations on nanoscopic scales are the same as those on macroscopic scales.

Under these assumptions we can use the single-chain deformation behavior to
calculate a free energy to the lowest order for a network. To do so, we introduce a
diagonal deformation matrix

λ =
⎛⎝λx 0 0

0 λy 0
0 0 λz

⎞⎠ (5.7)

of deformation ratios λx,y,z for the three principal axes. Each of the deformation
ratios describes the ratio of the final to the initial length of the rubber as well as the
individual deformations of the chains on the nanoscopic length scales, i. e.

R(λ)i = λ · Ri , (5.8)

where Ri is the undeformed end-to-end distance of the ith chain in the network.
Then the free energy of a deformed rubber which consists ofNc crosslinked chains
can be described as

F({λ · Ri}) = kBT
3

2b2N

nc∑
i=1

(λ · Ri)2 . (5.9)

Although this formula looks very trivial it contains some very interesting physics.
Note that the free energy as it stands so far still contains “microscopic” variables,
i. e. the individual chain end-to-end distances Ri . Of course, any macroscopic free
energy, which defines, e.g., the force–extension relationship must not depend on
microscopic variables at all, since most of them are not known exactly.Therefore the
free energy in (5.9) must be averaged over a suitable distribution of the microscopic
variables. Actually, since the free energy in (5.9) is defined thermodynamically as
a logarithm of a partition function, we have to average a logarithm. This is the first
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sign of a new formulation of (non-Gibbsian) statistical mechanics. We will come
back to this point later.

For the present we proceed simply by averaging the free energy by the distribution
already known for Gaussian chains. Therefore we average (5.9) with the previously
calculated Gaussian distribution to receive the experimentally relevant free energy

F(λ) = 1
2kBT ncλ · λT. (5.10)

As we have chosen a simple diagonal form for the deformation matrix, we rewrite
the last equation in its standard form:

F(λ) = 1
2kBT nc

(
λ2
x + λ2

y + λ2
z

)
. (5.11)

This free energy enables us to compute a simple equation of state which here is
a force–extension relationship. To do so we remark first that crosslinked polymer
materials (in the absence of any solvents) are typical examples of bodies with a
Poisson ratio close to 1/2, i. e. there is no volume change during the deformation
process. Therefore we can, e.g., for a uniaxial deformation experiment, use the
relation

λz = λ,

λx = λy = λ−1/2, (5.12)

which yields immediately the force–extension relation

f = nckBT

(
λ− 1

λ2

)
. (5.13)

Note that we have so far only used the deformation of the chain. If we had taken
into account the compression term in (5.5) and (5.6) and also the macroscopic free
energy, the equation would look more complicated. We leave the precise calculation
for the reader, but mention that there will appear additional terms in the free energy
of the form

1

λ2
x

+ 1

λ2
y

+ 1

λ2
z

and

λ2
x

λ2
yλ

2
z

+ perm(x, y, z).
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These additional terms have two features. The additional terms appear in more
general theories. In particular, the sum of the inverse squares of the deformation
ratios has a central meaning in the mathematical theory of the deformation of elastic
solids: it is called the second invariant (whereas the sum of squares represents the
first invariant). In this mathematical theory it is postulated that the deformation free
energy depends only on the three invariants

I1 = λ2
x + λ2

y + λ2
z , (5.14)

I2 = 1

λ2
x

+ 1

λ2
y

+ 1

λ2
z

, (5.15)

I3 = λxλyλz. (5.16)

On the other hand, a simple molecular model of chain compression yields more
complicated forms for the deformation dependence.

Although this free energy of deformation is far too simple to account for real
experimental results, it shows many features which are needed for a more refined
theory. Of course, the free energy derived so far is based on enormous simplifica-
tions. The main problem is that all sorts of network defects have been neglected.
Therefore we are going to include topological constraints and chain entanglements.
Moreover, finite chain extensibility has not been taken into account. Here the first
guess is that the chain is finite and can only be stretched out completely from

√
N

to N . This would give a maximum extension of λmax = √
N , which is often very

much larger than that measured in reality. Nevertheless the problem of finite exten-
sibility (but merely Gaussian chains) can be solved exactly. The theory predicts
a force–extension relationship which corresponds to the theory derived above for
small extensions, with strong deviations for large extensions. The force becomes
infinitely large for λ→ λmax, which is logical, since the elasticity is purely entropic
and at the maximum deformation there are no conformations left to choose [6].

In the next section we extend the Gaussian theory with respect to some of these
aspects.

5.3 Entanglements and the tube model: a material law

The tube model (see Fig. 5.2) is due to Edwards and de Gennes and is a relatively
simple representation of the topological state of a crosslinked melt [62, 63]. The
picture now suggests a quite naive view of the physics, since most of the behavior
seems to be determined by the tube itself. The chains inside the tubes play a sub-
ordinate role. Therefore a new length scale, which is supposed to rule the physics,
is introduced: the tube diameter, or in other words, the mean distance between
entanglements.



46 The elastomer matrix

Fig. 5.2. Chains trapped in tubes as a simple mean field model for entangled states
in networks: (a) a tagged chain in a polymer network; (b) the surrounding chains
are replaced by a “tube”; (c) the pure tube model is restricted to the behavior of
the chain trapped inside – in networks the chain cannot escape from the tube.

Fig. 5.3. Locally constrained chains. There is no way to transform the two chain
conformations into one another.

However, a more detailed but even more symbolic view of entanglements can
be given. Locally (at the edges of the tube) entanglements can be considered as
local topological constraints as pictured in Fig. 5.3. The two conformations are
not equivalent, since they cannot be transformed into each other. This is mainly
due to excluded volume: the chains have a finite thickness. Therefore severe
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topological constraints exist. This means, that the number of configurations is some-
how restricted, which has a strong influence on the mechanical behavior. On the
other hand, the entanglements do not act as full crosslinks, since the constraint is
not as severe as in fully fixed monomers. Therefore we may have more degrees of
freedom from entanglements than from crosslinks. Thus we can expect that these
topological constraints act at two extreme levels. At small deformations we may
have restrictions of the sliding of the entanglements, whereas at larger deformations
we have restrictions due to the additional tube geometry. These two points are the
subject of the next two subsections, in which we mainly follow [7, 42].

5.3.1 Entanglement sliding

The effects of the entanglements at low deformation can be mainly described by
sliding. As mentioned before, we have already intuitively seen that an entangle-
ment can be seen as a kind of “soft crosslink.” Symbolically this can be drawn as
in Fig. 5.4. There, the crosslinks at the end act as full constraints, while the entan-
glement has been replaced by a ring, which can slide along the chains a certain
distance a. This distance a is of the order of the mean distance between entan-
glements (or in the most dilute case, i. e. fewer entanglements, the mean contour
available between two consecutive crosslinks). There is an effect on the entropy
when the ring can slide a distance a along the arclength of the polymers. Of course,
this sliding can happen anywhere in the networks and for the moment we assume
that we have Ns such sliplinks in the rubber. The number Ns of such sliplinks and
the number of crosslinks are assumed to be known, so that we will end up with a
two-parameter theory. The authors are aware of the crudeness of this picture, but
feel that one should always start with the simplest model and this is the simplest

–a

+a +a

–a

Fig. 5.4. The entanglement from Fig. 5.3 is replaced by a ring, which slides a
certain distance ±a along the crosslinked chains.
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model for studying configurational change in the presence of entanglement con-
straints. Later in this chapter (see Fig. 5.6) we will see how this can be discussed
in a more general context when considering the physical behavior of the rubber.
However, we will see later, that many experiments can indeed be described by this
simple model.

The mathematical description of the statistical mechanics of this model is very
complicated and is beyond the scope of this book. Instead, we provide a simplified
version, along the lines given above in the theory of single Gaussian chain elasticity.
To do so we start from the Gaussian probability equation (2.5) but allow for the
slippage.Therefore we present a much simpler but nevertheless adequate derivation,
afterWall–Flory [80]. It will turn out that this kind of approach is easier to generalize
when one also needs to discuss inextensibility.We assume that the chain is Gaussian,
with an end-to-end separation written in the form

P(R,N) =
∏
i=x,y,z

∫
dτχ(τ)

(
3

2πb2(N + τ)
)3/2

exp

(
− 3R2

i

2b2(N + τ)

)
.

(5.17)
The additional variable τ describes the number of segments along which the slip-
page takes place. The distribution χ(τ) describes the probability of the slippage.
For simplicity, we replace the distribution by a simple rectangular probability, i. e.

χ(τ) = 1 ∀ − a < τ < +a. (5.18)

Then we may write

P(R,N) =
∏
i=x,y,z

1

2a

∫ +a

−a
dτ

(
3

2πb2(N + τ)
)3/2

exp

(
− 3R2

i

2b2(N + τ)

)
(5.19)

and follow the recipe to compute the free energy:

F = −kBT

∫
d3RP(R,N) ln P(λ · R). (5.20)

After some calculations we find the free energy is given by

F

kBT
= 1

2
Nc

∑
i=x,y,z

λ2
i + 1

2
Ns

∑
i=x,y,z

{
(1 + η)λ2

i

1 + ηλ2
i

+ ln(1 + ηλ2
i )

}
, (5.21)

where we have added the contribution of Nc crosslinks and Ns sliplinks and η
measures the effect of amacroscopically and is used as a parameter for the moment.
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This result is consistent with the more complicated theory based on non-Gibbsian
statistical physics by Ball et al. [81].

The free energy equation (5.21) is quite a simple result. Its main feature is a
reduced macroscopic slip variable η, which is directly related to the mesoscopic
variable a. Assuming the slip takes place between two neighboring crosslinks an
estimation of η suggests values between 0 and 1. Two limiting cases should be
discussed. First, if the slippage becomes zero (η = 0) the sliplink degenerates to a
crosslink and contributes as a crosslink to the modulus. The free energy is then

F

kBT
= 1

2
(Nc +Ns)

∑
i=x,y,z

λ2
i . (5.22)

The other significant limit is given by infinite slippage, η → ∞, although this
appears unrealistic. Nevertheless, for large values of η the constraints are less
severe. Such cases, i. e. large values of the slipping parameter η, can be crudely
applied to swollen networks, in which the chain segments are pushed as far away
from each other as possible. Then the free energy is given by

F

kBT
= 1

2
Nc

∑
i=x,y,z

λ2
i + 1

2
Ns ln

∏
i=x,y,z

λi (5.23)

and the modulus depends only on the number of crosslinks. Note that
∏
i=x,y,z

λi = 1, if the matrix volume remains constant.
Discussion of the physical behavior should now clarify major counterintuitive

points. The intuitive picture of the behavior of a sliplink under stress is that it will
respond by moving until it locks to another entanglement or crosslink and then
behaves as a crosslink, perhaps of higher functionality. This means that a sliplink
hardens, but a finite value of η in (5.21) suggests softening. This result is reasonable
if one accounts for the increase in phase space during deformation for the slippage a.
The slipping distance will be increased and more conformations will be accessible,
so the link weakens. This can only be true, of course, if the deformation is not
too large, i. e. it is not long before the polymers are drawn taut. We are going to
investigate larger deformations in the following section.

5.3.2 Finite extensibility

So far all the theories are only applicable for small deformations where Gaussian
statistics is valid. At larger values of deformation new effects occur. Consider a
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single chain first. Kuhn and Grün [82] noted that finite extensibility of a single
chain is expressed as

f = 3kBT

b2
R L

( |R|
bN

)
, (5.24)

where L(x) is the inverse Langevin function, which is well known in magnetism.
This function becomes singular when its argument reaches a value of 1, x = 1,
i. e. when the chain is fully stretched |R| = bN . This result is obtained by adding
the constraint that the number of monomers is finite and fixed. For small single-
chain deformations |R| << bN , this goes back to the Gaussian result, whilst in
the limit |R| → bN the inverse Langevin function has a singularity, and f tends to
infinity. This is easily understood from the fact that at large extensions the entropy
decreases and when the polymer is stretched out there is no conformation left that
the polymer can occupy (compare with the book of Treloar [6] for an extended
discussion for consequences of (5.24)). The Kuhn theory suggests a maximum
value of the deformation of

λmax = √
N , (5.25)

which is a large number if this is applied to rubbers because it is the square root of
the number of segments between two crosslinks, and is never obtained in reality.
Therefore we look at what the tube model predicts.

The tube model’s prediction of finite extensibility can be seen from geometrical
arguments. The answer to the problem lies in the definition of the primitive path.
The primitive path and the polymer are both random walks with the same end-
to-end distance. From Fig. 5.5 we see that the step length of the primitive path is
mainly determined by the end-to-end distance of the chain and the mean number
Npp of entanglements per chain. Therefore, we recall the relations(a

b

)2 = N

Npp
,

a

b
= L

Lpp
,

where Lpp,Npp and a are the length, the number of segments and the step length
of the primitive path, respectively. The chains can now only be stretched until the
slack around the primitive path is used up. The amount of polymer slack is given by
the differenceL−Lpp. According to Edwards and coworkers [83,84] the primitive
path deforms as

Lpp(λ) =
(

1
3λ · λT

)1/2
Lpp =

(
1
3

∑
i=x,y,z

λ2
i

)1/2

Lpp. (5.26)
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R

Fig. 5.5. Simple geometry of the primitive path. The primitive path and the chain
have the same end-to-end distance. Therefore simple geometrical relations govern
the length scales between them.

This is nothing but the Jacobian of a tangent vector along the contour under defor-
mation. The polymer can only be deformed until all the slack is used up and the
primitive path is taut. This occurs at L−Lpp(λ) = 0. For a uniaxial extension this
gives a maximum value, λmax, at

λmax = a

b
, (5.27)

which is less than the
√
N result predicted from Kuhn–Grün theory [82]. Typical

values are 7–10, in reasonable agreement with experiment.
The consequences for the deformation dependence are slightly more complicated.

We must show that with the tube model a singularity will occur at λmax. It is well
known [85,86] that the joint probability distribution of the slack is given by

w(�i) =
(

1

�0

)Npp

exp

⎛⎝− 1

�0

Npp∑
i=1

�i

⎞⎠ , (5.28)

where the chain is modeled by Npp primitive path steps and �i describes the ith
deviation from the primitive path of the real chain. The mean value�0 is given by
�0 = a2/b, which indicates that the polymer slack itself behaves like a random
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walk between the primitive path steps. Therefore the total chain length can be
written as

L = Lpp +
Npp∑
i=1

�i . (5.29)

The probability distribution of the primitive path is given by

P(L,Lpp) =
〈
δ

(
L− Lpp −

∑
i

�i

)〉
, (5.30)

where the average has to be taken over the slack probabilityw(�i), see (5.28). The
averaging can be carried out straightforwardly and produces a Gaussian distribution
of the form

P(L,Lpp) = 1

�0(L− 〈Lpp〉)1/2 exp

(
− (L− 〈Lpp〉)2

2�0(L− 〈Lpp〉)

)
, (5.31)

where 〈Lpp〉 is the mean length of the primitive path. Using the standard formula,
we can calculate the deformation dependent free energy from the tube model:

F

kBT
= 1

2
Nc

⎡⎣ (1 − α)∑i=x,y,z λ
2
i

1 − (α/3)∑i=x,y,z λ
2
i

+ ln

⎛⎝1 − (α/3)
∑
i=x,y,z

λ2
i

⎞⎠⎤⎦ , (5.32)

where the parameter α corresponds to the finite extensibility, α = (b/a)2. A similar
result has been derived by Edwards [87], who showed that experimental data are
in good agreement with this formula only at large deformations.

5.3.3 Tube and sliplinks

Finally we must seek a model that is valid for small and large deformations. In order
to avoid calculations we need a simple mathematical tractable model of the tube or
the primitive path into which the deformation can easily be brought. This has been
carried out in detail in several papers so that for this very specialized calculation
we refer the reader to [42]. Here we just quote the result:

Fs

kBT
= 1

2
Ns

⎡⎣ ∑
i=x,y,z

(
(1 − α)(1 + η)λ2

i

(1 − (α/3)∑i=x,y,z λ
2
i )(1 + ηλ2

i )
+ ln(1 + ηλ2

i )

)

+ ln

⎛⎝1 − (α/3)
∑
i=x,y,z

λ2
i

⎞⎠⎤⎦ (5.33)
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for the sliplink contribution, and

Fc

kBT
= 1

2
Nc

⎡⎣ (1 − α)∑i=x,y,z λ
2
i

1 − (α/3)∑i=x,y,z λ
2
i

+ ln

⎛⎝1 − (α/3)
∑
i=x,y,z

λ2
i

⎞⎠⎤⎦ (5.34)

as before for the pure crosslink contribution. The total free energy is then
additive, i. e.

F = Fs + Fc. (5.35)

Therefore we have produced a constitutive materials law which contains the main
information on the crosslinks and the entanglements based on a molecular model.
We have to discuss next whether this model provides a basis for satisfactory
agreement with experimental data.

5.4 Experiments

We now consider the experimental results. There is an enormous quantity of data
in the literature and here we will only give a few examples that we consider to
be in the main stream of the discussion, mainly in the context of the tube model.
Experiments should involve the following:

(1) Quasistatic stress–strain measurements to give the modulus and the shape of the
stress–strain curve. These measurements indirectly give the derivative of the free
energy with respect to deformation.

(2) Neutron scattering of networks to give the radius of gyration and the wave vector
dependence. This corresponds to the probability distribution.

(3) Dynamic mechanical measurements of crosslinked melts to compare with the
theoretical stress–strain curve.

Here we will restrict ourselves to only mechanical measurements in more detail
and leave the neutron scattering for further reading.

5.4.1 The stress–strain relationship

The simplest and most convenient way to measure the modulus of a rubber is a
stress–strain measurement in uniaxial extension. This gives most of the information
desired for the modulus and the quantities connected with the free energy. For
uniaxial extension, data are conveniently represented by the Mooney plot. This is
a longstanding type of representation and follows directly from the mathematical
theory of rubbers:

f = (λ− 1/λ2)(2C1 + 2C2/λ). (5.36)
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Thus on plotting f ∗ = f /(λ − 1/λ2) against 1/λ one should find a straight line
with a slope of 2C2 and an intercept of 2C1. The modulus is given by the sum of
both constants. An exhaustive discussion can be found in Treloar’s book [6], where
the Mooney representation (5.36), in which f ∗ is plotted against 1/λ, is considered
in detail. In the small deformation regime, λ < 2.5, the curves follow the Mooney
plot surprisingly well, whereas for larger deformations large deviations occur.

The pure Gaussian model predicts a horizontal line, which is never the case for
real systems, but it must be appreciated that these are gigantic strains in comparison
to those in normal solids. Often combined extension and compression plots are used
but at around λ = 1 awkward experimental problems are present and the data are
less precise there. At high strains the data show a strong upturn. This is where
inextensibility and crystallinity come in and the rubber hardens. At low strains the
rubber softens (compared with an imaginary Gaussian model).

Some of the models quoted in the text above have been tested by Gottlieb and
Gaylord [88–90] in a series of papers to which the reader is referred for the details.
These authors tested the models by Edwards, Gaylord, Graessley and Marrucci
[87, 91–93] and the constrained fluctuation model of Flory and Erman (see the
book by Mark and Erman [94] for a broad discussion). Their conclusion was that
the Gaylord model and the Flory model provided the best fit to their experiments.
We now compare tube-type models and restricted fluctuation models, because these
are the two types that are widely used. In particular, a central prediction is that of
the modulus.

In Flory-type models the modulus is always given between the two limits of the
phantom network

G = Nc

(
1 − 2

ϕ

)
kBT , (5.37)

where ϕ is the crosslink functionality. In the affine Kuhn model the modulus
becomes

G = NckBT . (5.38)

Note that there is no additional term from entanglements. This is very different from
tube-type models, where entanglements are treated as physical constraints and there
a strong dependence of the modulus is expected. In a simple phenomenological
model, Langley [95] suggested a general behavior expressed as

G = Gc +GeTe, (5.39)

where the first term corresponds to the crosslink contribution and the second to the
contribution by entanglements. Te is the trapping factor and measures the strength
of the constraint, i. e. the local coupling to the chains. Note that Te = 1 corresponds
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to full coupling and the entanglements act as crosslinks. In our model, however,
we can give a simplified expression for the modulus. This can be rewritten as

G

kBT
= Nc

1 − 2α2 + O(α4)

(1 − 3α2)2
+Ns

1 − 2α2 + 3α2η + 4α2η2 + O(α4)

(1 + η2)2(1 − 3α2)2

≈ Nc +Ns
1

(1 + η)2 , (for α → 0) (5.40)

which is exactly of the Langley form. The trapping factor is given by the slippage
and has the correct limits. If η = 0 the sliplink is a crosslink and the two contribu-
tions are summed, and if η → ∞ the sliplink is a weak constraint and G is given
by the network contributions only. It is worthwhile mentioning, that the tube model
has been investigated using biaxial stretching experiments and excellent agreement
with the present theory was found [96].

5.4.2 The extended tube model of rubber elasticity

Basic assumptions

The extended, non-affine tube model of rubber elasticity is based on the assumption
that the network chains in a highly entangled polymer network are heavily restricted
in their fluctuations due to packing effects. This restriction is described by virtual
tubes around the network chains that hinder the fluctuation. When the network
elongates, these tubes deform non-affinely with a deformation exponent ν = 1/2.
The tube radius dμ in spatial direction μ of the main axis system depends on the
deformation ratio λμ as follows:

dμ = d0λ
ν
μ, (5.41)

where d0 is the tube radius in the non-deformed state. The assumption of non-affine
tube deformation (ν = 1/2) is essential. It was initially derived based upon funda-
mental molecular statistical calculations [43,97,98] and later confirmed by applying
scaling arguments [59,60,99]. Experimental evidence of non-affine tube deforma-
tions according to (5.41) is provided by neutron scattering of strained rubbers [100]
and stress–strain measurements of swollen networks [105].

An extension of the non-affine tube model for applications up to large strains
is obtained by considering that the network chains have a finite length and the
stress in the network becomes infinitely large when the chain sections between
two consecutive trapped entanglements are fully stretched. The trapping of chain
entanglements by two crosslink points prevents the sliding of the chains across
each other under extension, implying that the entanglement becomes an elastically
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effective network junction. The free energy density of the extended non-Gaussian
tube model with non-affine tube deformation is then as follows [57–60,102]:

WR
(
εμ
) = Gc

2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
3∑
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λ2
μ − 3

)(
1 − Te

ne

)

1 − Te

ne

⎛⎝ 3∑
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λ2
μ − 3

⎞⎠ + ln
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ne

⎛⎝ 3∑
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λ2
μ − 3

⎞⎠⎤⎦
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+ 2Ge

⎛⎝ 3∑
i=x,y,z

λ−1
μ − 3

⎞⎠ . (5.42)

Note that this free energy density is related to the undeformed state in contrast
to the situation in (5.21), (5.23), and (5.34). Here, ne is the number of statisti-
cal chain segments between two successive entanglements and Te is the trapping
factor (0 < Te < 1), which characterizes the portion of elastically active entan-
glements. The term in braces in (5.42) considers the constraints due to interchain
junctions, with an elastic modulusGc proportional to the density of network junc-
tions.The second addend is the result of tube constraints, wherebyGe is proportional
to the entanglement densityμe of the rubber. The first addend also takes into account
the finite chain extensibility by referring to (5.34) with α = Te/ne [58]. For the
limiting case ne/Te = ∑

λμ
2 − 3, a singularity is obtained for WR. This happens

when the chains between consecutive trapped entanglements are fully stretched. It
makes clear that the approach in (5.42) characterizes trapped entanglements as some
kind of physical crosslinks (sliplinks) that dominate the extensibility of the network
due to the larger number of entanglements as compared to chemical crosslinks. In
the limit ne → ∞ the original Gaussian formulation of the non-affine tube model,
derived by Heinrich and coworkers [43,97,98] for infinite long chains, is recovered.

The trapping factorTe increases as the crosslink density increases, whereasne and
Ge – as terms that are specific to the polymer – are to a great extent independent
of crosslink density. For the crosslink and tube constraint moduli, the following
relations to molecular network parameters hold:

Gc = AcνmechkBT (5.43)

Ge = ρNAb
2kBT

4
√

6MSd
2
0

= 1√
6
νekBT . (5.44)

Here, νmech is the mechanically effective chain density, νe is the density of chains
between consecutive entanglements, Ac is a microstructure factor, NA is Avo-
gadro’s number, ρ is mass density, Ms and b are molar mass and length of
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statistical segments, respectively, kB is the Boltzmann constant, andT is the absolute
temperature.

The microstructure factor Ac takes into account the fluctuation of crosslinks:
Ac = 1 for total suppression of crosslink fluctuations and Ac = 1/2 for freely
fluctuating tetra-functional crosslinks (phantom networks). For a given fluctuation
radius dc of the crosslinks, it can be expressed by the error function erf (x) as
follows [103,104]:

Ac = 1

2
+ 1√

π

(
Kc exp

(−K2
c

)
erf (Kc)

)
(5.45)

with

Kc = √
6

dc

〈R2
c 〉1/2

. (5.46)

〈R2
c 〉 = Lb is the average end-to-end distance of intercrosslink chains in the

undeformed state. For a derivation of (5.45) see also [101].

Applications for non-ideal networks

The tube model considered so far applies to a network structure with monodisperse
chains that all contribute an equal amount to the elasticity properties. For such
an ideal network with tetra-functional crosslinks the mechanically effective chain
density νmech equals twice the density of crosslinks μc (νmech = 2μc = νc). In
the case of non-ideal networks, as depicted in Fig. 5.1, the presence of defects
like dangling chain ends, trapped entanglements, closed loop structures, and a
polydisperse chain length distribution leads to significant deviations of νmech from
its ideal value νc, i. e. the intercrosslink value. In the literature different estimates
have been proposed to account for the defects of real networks [6, 57–60, 95, 101,
102, 105–111]. The effect of dangling chain ends is often considered according to
an approach due to Mullins [106]:

νmech = νc − ρNA

Mn
(5.47)

This involves the molecular weightMn of the polymer chains before crosslinking.
The correction term in (5.47) corresponds to the consideration of a gel point ν∗

c =
2μ∗

c = ρNA/Mn of the network, i. e. the number of crosslinks necessary to connect
all the chains of the initial uncrosslinked system to form a gel.

The additional influence of trapped entanglements on the density of mechani-
cally effective chains was considered in a semi-empirical manner by Mullins as
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well [106]. By referring to the different fluctuation behavior of crosslinks and
entanglements it can be expressed as follows [108–110]:

νmech = (νc − ν∗
c

)+ Ae

Ac
νeTe. (5.48)

Here, Te is the trapping factor of entanglements (0 < Te < 1), which is also
termed the Langley trapping factor [95]. The quantity νe denotes the density of
chains between consecutive entanglements which varies with the inverse of the
squared tube radius d0.

Equation (5.48) considers the combined effect of chain ends and trapped entan-
glements on the mechanically effective chain density.Ae is the microstructure factor
of trapped entanglements which takes into account the fluctuations of the trapped
entanglements. It can be determined from the fluctuation radius d0 of entangle-
ments in a similar procedure to that used for the crosslink estimation in (5.45)
and (5.46) [101]. Due to the high mobility of trapped entanglements one can con-
clude that d0 is significantly larger than dc. Accordingly, the microstructure factor
of trapped entanglements can be assumed to be well approximated by the value
Ae = 1/2, which is the limiting value of (5.45) for large fluctuation radii. The
microstructure factor Ac is now related to the mean end-to-end distance of all
junctions, i. e. crosslinks and trapped entanglements. Hence, the average < · · · >
in (5.46) has to be taken over both types of chains, which yields Ac ≈ 0.67
independently of the crosslinking density [101].

From (5.42) the nominal stress σR,μ that relates the force Fμ in spatial direction
μ to the initial cross-section A0,μ is found by differentiation, σR,μ = ∂WR/∂λμ.
For uniaxial extensions of unfilled rubbers with λ1 = λ, λ2 = λ3 = λ−1/2 the
following relation can be derived:

σR,1 = Gc
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. (5.49)

For equi-biaxial extensions with λ1 = λ2 = λ, λ3 = λ−2 one finds for the nominal
stress:

σR,1 = Gc

(
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(
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+ 2Ge
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)
. (5.50)
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In the case of a pure-shear deformation with λ1 = λ, λ2 = 1, and λ3 = λ−1 one
obtains:

σR,1 = Gc

(
λ− λ−3

)⎧⎪⎪⎨⎪⎪⎩
1 − Te

ne

1 − Te

ne

(
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−
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ne

(
λ2 + λ−2 − 2

)
⎫⎪⎪⎬⎪⎪⎭

+ 2Ge

(
1 − λ−2

)
. (5.51)

In the limit of small strains, λ = (1 + ε) → 1 or ε → 0, and by assuming the
Gaussian limit ne → ∞ one obtains Young’s modulusE0 from a Taylor expansion
of (5.49):

E0 = lim
ε→0

σR,1

ε
= 3 (Gc +Ge) . (5.52)

This shows that the Young modulus is strongly influenced by the deformation of the
tubes, since the crosslink and topological constraint terms, Gc and Ge, contribute
equal amounts.

5.4.3 Testing of the model

By fitting experimental data to (5.49)–(5.51) for the three indicated deformation
modes, the model parameters Gc, Ge, and ne/Te, of unfilled polymer networks,
can be determined. The validity of the concept can be tested if the estimated fit-
ting parameters for the different deformation modes are compared. A “plausibility
criterion” for the proposed model is formulated by demanding that all deformation
modes can be described by a single set of network parameters. The result of this
plausibility test is depicted in Fig. 5.6, where stress–strain data of unfilled natural
rubber (NR) samples obtained at room temperature are shown for the three dif-
ferent deformation modes considered above. Obviously, the material parameters
found from the fit to the uniaxial data provide a rather good prediction for the
two other modes. The observed deviations are within the range of experimental
error.

We point out that the material parameterGe can, in principle, be determined more
precisely by means of equi-biaxial measurements than by uniaxial measurements.
This is due to the fact that the first addend of theGe-term in (5.50) increases linearly
with λ. This behavior results from the high lateral contraction on the equi-biaxial
extension (λ3 = λ−2). It assumes a close dependency of the equi-biaxial stress on
the tube constraint modulus, since Gc and Ge contribute nearly equally to stress
at small and large extensions. For the uniaxial extensions described in (5.49) this
is not the case. Here, the tube constraints lead to significant effects only for small
extensions, since the Ge-term in (5.46) approaches zero as the λ value increases.
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Fig. 5.6. Quasistatic stress–strain data (symbols) and simulation curves ((5.49)–
(5.51)) of an unfilled NR for three deformation modes. The model parameters
are found from a fit to the uniaxial data (Gc = 0.43 MPa, Ge = 0.20 MPa,
ne/Te = 68). From [138].

Nevertheless, the experiments can be carried out more easily in the uniaxial case,
and as a result, more reliable experimental data can be obtained.

For practical applications, the parameter Ge can also be determined from the
value of the plateau modulus GN, since the relationship Ge ≈ 1

2GN applies in
accordance with the tube model. This implies that the parameter Ge is not neces-
sarily a fit parameter but rather that it is specified by the microstructure of the rubber.
We point out that the valueGe = 0.2 MPa obtained in Fig. 5.6 is in fair agreement
with the above relation, since GN ≈ 0.58 MPa is found for uncrosslinked NR
melts [112].

Afurther experimental test of the extended tube model of rubber elasticity focuses
on the variation of the network parameters with the preparation conditions of the
samples. Figures 5.7(a) and 5.8(a) show uniaxial stress–strain data measured at
100 ◦C for various crosslinked samples prepared from a high molar mass NR
melt (Mn = 248 000) and a (mechanically treated) low molar mass NR melt
(Mn = 65 000), respectively. The data were obtained for different amounts of
crosslinker (CBS/sulfur), as indicated. The ratio between the vulcanization accele-
rator N-cyclohexylbenzothiazol-2-sulfenamide (CBS) and sulfur was kept constant
(CBS/sulfur = 0.18). The solid lines are fitted according to (5.49). The correlation
coefficient of the fittings is large in all cases (R2 > 0.999). The development of the
three fitting parametersGc,Ge, and ne/Te with increasing amounts of crosslinker is
shown in Figs. 5.7(b) and 5.8(b), respectively. Obviously, starting from a gel point
at a crosslinker concentration of about 0.25 phr and 0.6 phr sulfur, respectively, both
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Fig. 5.7. Uniaxial stress–strain analysis of variously crosslinked, untreated NR-
networks with high initial molar mass (Mn = 249 000 g/mol): (a) Stress–strain
data (symbols) and fittings (solid lines) according to (5.49). (b) Evaluation of fitting
parameters with crosslinker concentration. The solid lines serve as guides to the
eye. The dashed line corresponds to (5.43) and (5.48) with Te = 1. From [102].

Fig. 5.8. Uniaxial stress–strain analysis of variously crosslinked, mechanically
treated NR-networks with low initial molar mass (Mn = 65 000 g/mol): (a) Stress–
strain data (symbols) and fittings (solid lines) according to (5.49). (b) Evaluation
of fitting parameters with sulfur concentration. The solid lines serve as guides to
the eye. The dashed line corresponds to (5.43) and (5.48) with Te = 1. From [102].

moduliGc andGe increase while the finite extensibility parameter ne/Te decreases.
The topological constraint modulusGe first increases and then approaches a plateau
value located between 0.2 and 0.3 MPa in both cases. From (5.44) we expect
this plateau value to equal almost half of the viscoelastic plateau modulus GN =
4
5 νekBT ≈ 0.58 MPa of the NR melt [112]. The obtained plateau value of Ge is
again in fair agreement with this expectation.

The behavior of the crosslink modulus Gc given by (5.43) can be understood if
the form of (5.48) for νmech is considered. Therewith, the maximum entanglement
contribution νeAe/Ac corresponding to Te = 1 can be evaluated if the limiting
slope ofGc is extrapolated to the gel point (dashed lines in Figs. 5.7(b) and 5.8(b)).
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Table 5.1. Network parameters from uniaxial stress–strain, swelling, and nmr analysis of
sulfur-cured NR networks at various crosslinker concentration and initial molar masses.
(H1–H8:Mn = 249000 g/mol; L1–L6:Mn = 65000 g/mol)

νmech νc(mech) νc(chem) νc(nmr)
Sulfur (10−5 (10−5 (10−5 (10−5 Te Te E0 3(Gc +Ge)

Sample (phr) mol/cm3) mol/cm3) mol/cm3) mol/cm3) (mech) (nmr) (MPa) (MPa)

H1 0.4 6.0 1.9 3.7 2.6 0.36 0.24 0.86 0.53
H2 0.6 10.8 3.8 6.6 5.3 0.61 0.43 0.97 1.12
H3 0.8 14.1 6.2 8.8 6.3 0.69 0.52 1.13 1.17
H4 1.0 19.3 9.2 10.5 10.1 0.89 0.63 1.30 1.42
H5 1.4 25.0 13.9 13.8 11.5 0.97 0.70 1.69 1.92
H6 1.7 28.0 17.1 16.2 19.0 0.96 0.84 1.76 1.86
H7 2.0 34.0 21.0 18.3 17.5 1.14 0.84 2.12 2.31
H8 2.4 35.5 25.4 21.0 21.2 0.88 0.87 2.29 2.47

L1 0.8 8.0 1.8 4.5 2.3 0.52 0.41 0.67 0.50
L2 1.0 13.5 3.6 6.8 4.9 0.83 0.51 0.86 0.84
L3 1.4 18.4 7.0 10.3 7.8 0.95 0.64 1.25 1.41
L4 1.7 20.9 9.4 12.8 12.5 0.96 0.75 1.43 1.83
L5 2.1 25.1 12.8 16.0 14.1 1.03 1.15 1.78 2.13
L6 2.5 27.9 16.5 19.1 16.7 0.98 0.80 2.01 2.28

The deviations of the experimentalGc data from the limiting dashed lines allow an
estimation of the trapping factors that increase from Te = 0 at the gel points to its
limiting values Te = 1 at high crosslink concentrations.

The results of this evaluation procedure are summarized in Table 5.1, where,
beside the values for νmech and νc (there denoted νc(mech)), the trapping factors
Te (there denoted Te(mech)) are also listed. They are compared to equilibrium
swelling results νc(chem) and nuclear magnetic resonance (nmr) results νc(nmr)
and Te(nmr), respectively, obtained with the same samples. More details of these
evaluation procedures can be found in [102]. Analyzing the data of Table 5.1 one
observes that, irrespective of sample series, the trapping factors Te(mech) and
Te(nmr) both increase with increasing sulfur concentration. The two evaluation
procedures give roughly the same results, but systematically smaller values are
found from the nmr data. A comparison of the obtained intercrosslink chain den-
sities shows fair agreement between νc(mech), νc(chem) and νc(nmr), though
significant deviations occur in some cases. In particular, this indicates that the
swelling equilibrium is mainly governed by the crosslinks and entanglement con-
tributions are small (phantom chains). In the last two columns of Table 5.1, Young’s
modulus E0, obtained at very small strains (below 5%), is compared to the sum
3(Gc + Ge), evaluated in the whole strain regime (Figs. 5.7(a) and 5.8(a)). It is
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obvious that the prediction of (5.52) is quite well fulfilled, confirming the applied
non-Gaussian tube model of rubber elasticity.

In conclusion it has been shown that the initial chain length before crosslinking
and the amount of crosslinker have a pronounced effect on the quasistatic mechan-
ical properties of NR samples. The network parameters evaluated from uniaxial
stress–strain data show fair agreement with the swelling and nmr analyses for the
investigated NR sample series. In particular:

(1) The density of intercrosslink chains νc is found to increase almost linearly with the
amount of sulfur if a critical concentration, referred to as the gel point, is exceeded
(Table 5.1).

(2) For the mechanically degraded samples with low initial chain length the gel point
is shifted to higher sulfur concentrations (≈ 0.6 phr) as compared to the untreated
samples (≈ 0.25 phr) (Figs. 5.7 and 5.8).

(3) The crosslink efficiency (number of crosslinks formed per unit of sulfur) is somewhat
reduced for the mechanically degraded systems (slope of the dashed lines in Figs. 5.7
and 5.8).

(4) The trapping factor Te of entanglements increases with increasing amount of sulfur.
It shows a weak dependency on initial chain length, only. For moderate amounts
of sulfur just above the gel point it increases somewhat faster for the mechanically
degraded systems (Table 5.1).

(5) The proposed tube model with non-affine tube deformations allows a reason-
able description of quasistatic stress–strain data up to large strains. The predicted
dependency, (5.52), of Young’s modulus on crosslink and entanglement density is
confirmed by the experimental data (Table 5.1).

In the literature more tests of the extended, non-affine tube model concern-
ing stress–strain data of unfilled rubbers can be found that offer good agree-
ment for various polymers and crosslinking systems [57–60, 102, 105, 108–
110]. Further confirmation of the non-affine tube approach has been obtained
in investigations considering mechanical stress–strain data and a transversal
nmr relaxation analysis of differently prepared filler reinforced SBR networks
[111]. The mechanical model used for these studies is treated in more detail
in Chapter 10.
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Polymers of larger connectivity: branched
polymers and polymeric fractals

6.1 Preliminary remarks

So far we have discussed the behavior of linear polymer chains. Linear chains arise
naturally from linear polymerization, a chemical reaction in which bifunctional
(linear) monomers combine end to end to form a linear chain. We can associate
an (internal) dimension to the linear chain by stretching it completely out and by
coarse graining. Then we will have a one-dimensional object, i.e. the chain is of one-
dimensional connectivityD = 1. This new dimension is related to the connectivity
and is called the spectral dimension. If higher functional monomers are used for
the polymerization process, branched polymers are generated, see Fig. 6.1. The
challenge is how to describe branched polymers using methods similar to those we
have used so far. Let us therefore try a simple generalization for the connectivity,
in which we make use of the idea of higher-dimensional connectivity. Thus we try
the more general Edwards Hamiltonian

βH = 1

2b2

∫
dD �x (∇�xR (�x))2 . (6.1)

This is at first sight a strange object because it contains the internal and the spatial
dimension. Here �x are internal variables of dimensionality dim �x = D.The boldface
vector R describes the external variables with the dimension dim R = d , i. e. the
dimension of embedding space. Naturally we must requireD ≤ d . Let us try in the
following to see if this analytical continuation makes sense. For simple visualization
we show some examples for the analytic continuation of the spectral dimension in
Fig. 6.2.

6.2 D-dimensionally connected polymers in a good solvent

The arguments above can be made more familiar if a common generalization of
the Edwards Hamiltonian for linear polymers [62] is introduced for polymeric
fractals [113] and D-dimensional manifolds in the following standard way:

64
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Fig. 6.1. Linear versus branched polymerization.

Fig. 6.2. Different examples of the spectral dimension.

βH = 1

2b2

∫
dD �x(∇�xR)2 − v

∫
dD �x

∫
dD �x′δd(R(�x)− R(�x′)) . (6.2)

D is the spectral dimension as noted earlier. Well-known special examples are
D = 1 (linear polymers) and D = 2 (random tethered surfaces). The analytic
continuation of D to non-integer values, i. e. 1 < D < 2 corresponds to any
polymeric fractal of arbitrary connectivity, �x is a D-dimensional vector of the
manifold embedded in d space dimensions described by the vector R. The first
term is the Gaussian connectivity and the second term the usual excluded volume
interaction. In this book only objects with D < 2 are considered for convenience.
The Hamiltonian (6.2) does not make sense for fractional values of D, without
defining fractional differentials and integrals properly. In the scaling limit it can be
used without problem. We restrict ourselves to this latter case.

Although we do not use the full Hamiltonian in this chapter, its introduction is
helpful to derive its scaling properties [70,114], especially for readers who are not
familiar with the notation used below. The standard estimation uses the replace-
ments R(�x) → R and |�x| → N . All integrations trivially yield a factor of ND .
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It must be remembered that N is not the total number of monomers but only the
number of monomers in one given direction in spectral vector space.

Then Hamiltonians such as that given in (6.2) can be transformed easily into a
Flory free energy by dimensional analysis [114]:

F = R2

b2N2−D + b3N2D

Rd
, (6.3)

where we approximated the excluded volume by ν ∼= b3. By substitutingM = ND
it is easy to show that (6.3) transforms into the well-known Flory form of polymeric
fractals [113, 115, 116] with the Gaussian fractal dimension df = 2D/(2 − D),
which recovers cases of linear polymers (D = 1), randomly branched polymers
(D = 4/3), and tethered membranes (D = 2). The case D = 2 corresponds to
an infinite fractal dimension, which comes from the logorithmic size growth, i.e.,
R ∼ logN . The standard result is obtained by minimizing (6.3). This yields the
usual Flory exponent for the size of the polymer in the swollen (crumbled) state,
which is found to be [117]

ν = D + 2

d + 2
. (6.4)

To avoid misunderstanding at this early stage, it has to be mentioned that this
exponent accounts for the linear (chemical) size N and not for the total mass M .
By simple arguments it is easily found that the corresponding fractal dimension is
given by df = D/ν. In the following we restrict ourselves to three-dimensional
(d = 3) embedding space.

6.3 D-dimensionally connected polymers between two parallel
plates in a good solvent

As a first example the case of a D-dimensional polymeric manifold between two
plates in a good solvent is studied. The situation is depicted in Fig. 6.3. The first
attempt to solve the problem is to use Flory’s theory. This is very simple and the
Flory free energy (see (6.3)) for this problem is given by

F = R2‖/b2N2−D + b3N2D/(HR2‖) .

H is the distance between the two parallel plates and R‖ is the size of the polymer
parallel to the plates. Minimizing the free energy with respect to the size R‖ yields
the desired result:

R‖ = b
(
b

H

)1/4

N(2+D)/4 . (6.5)
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H

H

Fig. 6.3. A linear polymer chain between two parallel plates. The polymer chain
can be immediately replaced by a chain of any connectivity. For simplicity, only
the case D = 1 is shown. Reprinted from [65] with permission from Elsevier.

Note that the N dependence in (6.5) corresponds to a two-dimensional polymer
with spectral dimensionD. ForD = 1 (andN = M) the correct exponent ν = 3/4
is recovered [63,66]. For polymer sheets, such as flexibly polymerized membranes
(D = 2), the reasonable exponent ν = 1 is obtained. This corresponds to the case
in which the tethered membrane is flat between two very narrow parallel plates with
undulation fluctuations of the order of the distance between the two parallel plates.
Although reasonable limits are predicted using this Flory model, it is difficult to be
sure about the validity of this result if it is not derived by a different method, such
as scaling theory. This will be done in the next paragraph.

The scaling analysis can be done in close analogy to the case of linear chains.
The radius for the chain between two plates can be written as

R‖ = RFf

(
RF

H

)
, (6.6)

whereR‖ is again the extension of the chain parallel to the plate andH the distance
between the two plates.RF is the geometrically unconstrained Flory radius in a good
solvent and is defined by the Flory exponent given above. The scaling function f (x)
has two limits. The first is when x = Rf /H tends to zero, i. e. when the plates are
very far apart, then f (x) → 1. In the opposite limit, when the parallel plates
are placed very close together, the two-dimensional configuration appears, which
determines the exponent corresponding of the scaling function in the usual manner.
This corresponds to the two-dimensional configuration of the D-polymer and is
calculated by the Flory model above. The usual argumentation provides the same
answer as derived in (6.5). A more appropriate form is

R‖ = H
(
b

H

)5/4

N(2+D)/4 . (6.7)

It is tempting to generalize de Gennes’s blob picture to such D-dimensional poly-
mers. To do this, assume the D-polymer between two plates behaves as a fractal
made out of blobs of size H . Thus it is reasonable to assume that the size of the
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object is given byR‖ = Hn(2+D)/4D , wheren is the total number of blobs. Note that
the fractal dimension of the effectively two-dimensional object df = (2 +D)/4D
has been used to account for the mass in the fractal. The number of blobs n can
be calculated by determining the mass m (number of monomers) of the blob.
In the blob the branched structure shows good solvent behavior, which yields:
m = (H/b)5D/(2+D). Therefore the number of such blobs is given by n = M/m,
whereM is the total massM = ND as before. Following de Gennes’argumentation,
the result

R‖ = H
(
b

H

)5/4

M(2−D)/4D (6.8)

is obtained, which is identical to the results obtained using Flory theory and the scal-
ing approach. This almost trivial example shows that the blob picture can be used
to construct the same physically reasonable results for branched chains as for linear
chains. The point is to also use the information from the scaling in terms of the num-
berN of monomers in the chemical path in addition to the mass scaling in the blobs.

The cross-check for all the results is to consider the filling fraction f =
b3ND/(HR2) [63]. Later, see (6.11), it turns out that this quantity is useful in other
respects. For the polymeric manifold (or polymeric fractal) in polymer between
two parallel plates f is given by

f =
(
b

H

)7/4

n(D−2)/2 .

This result makes physical sense, and for D = 1 the classical polymer behavior is
recovered [63,118]. ForD > 2 the filling fraction becomes unphysically large.Triv-
ially, a polymeric membrane can be compressed completely between very narrow
plates, i. e. H = O(b). In this special case the filling fraction becomes indepen-
dent of the molecular weight, as is intuitively clear (lower critical dimension). The
example of the arbitrarily self-similarly branched polymer between two plates has
been discussed in more detail to demonstrate how the blob picture and the scaling
arguments can be generalized to branched polymers or arbitrary higher-connected
polymeric objects.

6.4 D-dimensionally connected polymers in a cylindrical
pore (good solvent)

Severe problems occur when such self similarly branched, non-linear objects
are forced into cylindrical pores, in other words when the space available for
the polymer is further restricted, see Fig. 6.4. The simple dimensional analy-
sis above has to be modified in the usual sense that the d-dimensional Dirac
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H

R||

Fig. 6.4. A linear chain in a cylindrical pore. The chain is stretched lengthwise.
Inside the blob the chain remains unperturbed by the pore size.

function becomes anisotropic and the lateral dimensions are given by the pore
size. Thus we estimate the relevant excluded volume from (6.2) and (6.3) to be
δ(R(�x)−R(�x′)) ∝ 1/(H 2R‖), whereH is now the pore diameter andR‖ describes
the chain extension along the cylindrical pore. Now we begin with a consideration
of the Flory free energy for the manifold in the pore:

F = R2‖/N2−D + vN2D/(H 2R‖) . (6.9)

Minimization immediately yields the result for the parallel exponent,

ν‖ = D + 2

3
, (6.10)

which agrees forD = 1 with the standard exponent [63], i. e. ν|| = 1, corresponding
to the stretching of the linear chain along the pore. Obviously this exponent is ill
defined whenever D > 1, i. e. whenever the polymers are of higher connectivity
than linear ones. The linear dimension through the fractal or the membrane must
not be larger than N itself, which corresponds to the completely stretched limit. It
is now easy to understand that scaling and the blob model as presented for the slap
cannot work for the case of a cylindrical pore. For example, if a scaling argument
is considered which assumes good solvent behavior for large cylindrical pores and
a linear (completely stretched) branched polymer for narrow pores, contradictions
will show up, such as the filling fraction being unphysically large for all values
for the spectral dimension D > 1. One way out of this difficulty is to postulate
a minimum pore size through which the branched polymer is able to pass. Thus
the minimum pore size can be defined by using the fact that the internal space of
the branched polymer cannot be overstretched, i.e. ν cannot be larger than 1. In this
case, the polymer fills the pore at maximum density, as depicted in Fig. 6.5. The
minimum pore size is given by

Hmin ∝ N(D−1)/2 ≡ M(D−1)/2D . (6.11)
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H

R||

Fig. 6.5. A branched structure in a cylindrical pore. The connectivity is another
limitation for the chain configuration in restricted geometries.This fact will become
important in Chapters 8–10.

This result makes physical sense. The minimum pore size for linear polymers is
independent of the molecular weight. Thus linear polymers (D = 1) find their way
through even a very small pore if Hmin is of the order of the Kuhn length, but with
an extremely low probability and in a very long time. In branched polymers, with
D > 1, another limitation is important: the connectivity.The larger the connectivity,
the larger is the minimum pore size. It should therefore be possible to construct a
porous medium that is able to separate a mixture of branched and linear molecules
on the basis of their connectivity.This can be done by using an appropriate minimum
pore size through which linear polymers can pass, while branched polymers cannot.
For the construction of such a chromatograph dynamical aspects have to be taken
into account, since the other selection constraint is the finite time taken to pass
through a pore. Such aspects have been studied in detail by Gay [119].

The essential point to be made is that the minimum pore size is entirely defined by
the spectral dimension and the molecular weight. Therefore the pore is able to select
objects with respect to their connectivity, i. e. their spectral dimension. This possi-
bility is called spectral chromatography in [119] – to distinguish it from classical
chromatography, which selects only with respect to molecular weight. When, for
example, a membrane is put into a pore that is so small that it cannot flatten out in the
remaining space, it has either to crumple in a specific direction, if the pore is large
enough, or to saturate (collapse) in the lateral direction in smaller pores. Whether the
crumpled or collapsed case occurs is determined by the minimum pore size Hmin.

It is obvious that in so-called Theta solutions, where the second virial coefficient
(or the excluded volume defined by the pair interaction term) becomes zero, the
effects of the geometrical restriction are less pronounced [120]. For a linear polymer
the �-exponent is ν = 1/2 which is less than the swollen exponent [63]. Thus the
total size of a chain in a�-solvent is smaller than in a good solvent. For polymeric
manifolds of larger connectivity this is also the case and it could be concluded that
the limitation due to the pore size is less severe. This is not the case. The effect of
such Theta solutions can be simply estimated by replacing the pair interaction term
by the three-body virial coefficient, which is given by M3/R6. Then repeating a
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similar dimensional analysis, we find a new expression for Hmin. It can be shown
that the minimum pore size is given by the same valueHmin ∝ N(D−1)/2 as above.
We will not elaborate on this since it is well known that the Flory argumentation
yields very bad values for the exponents ν in two dimensions, but exact values at
the lower critical dimension for three-body interactions d = 1 and the upper critical
dimension d = 3 [66]. Little is known about the validity of Flory values of branched
structures and manifolds under�-conditions, and we will not discuss it further. The
value forHmin under�-conditions is, however, an indication that the minimum pore
size is determined by the connectivity only and not by thermodynamic conditions.

It was mentioned earlier that an interesting check on the consistency of the
results is to calculate the internal concentration, or filling factor, f = ND/H 2R‖.
The filling fraction becomes independent of the molecular weightM = ND of the
manifold at the point at which the pore size is minimum. This indicates that the
pore size is a natural scale for D-dimensional polymers.

6.5 Melts of fractals in restricted geometries

The case of melts of fractals and branched polymers is also of interest. Melts
of linear chains in small cylindrical pores have been studied by Brochard and
de Gennes [121]. Again the case of D = 1 linear polymer melts in restricted
geometries is simple. The generalization to branched polymers and polymers with
higher connectivity is not as trivial and simple as it might look at first sight. From
our previous discussion for polymer melts consisting of linear chains it is easy to
see [116] that melts of branched polymers with a spectral dimension D > 1 must
be divided into two classes. Whenever the connectivity is larger than a threshold
value Ds : D > Ds = 2d/(d + 2), the fractals do not interpenetrate in melts as
linear chains do. In such systems the connectivity and space filling are too high.
Instead of interpenetration the polymers saturate and form separate balls of their
natural density, i. e. R ∝ ND/d . Using the same argumentation as before: take a
melt of branched polymers and integrate the collective variables out to be left with
one test fractal in the melt. The corresponding Hamiltonian is then given by

βH [R1 (�x)] = 1

2b2

∫
dD �x (∇�xR (�x))2

+ 1

2

∫
dD �x

∫
dD �x′∑

k

v

1 + vS0(k)
exp

{
ik
(
R (�x)− R1

(�x ′))} ,

(6.12)

where the second term is the well-known effective potential. The Flory esti-
mate again just uses the zero wave vector term and uses the structure factor
S0 ∼ CND(1 + 0(k2)), where C is again the concentration. This suggests that
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the melt value of the excluded volume parameter is of the order v ∝ N−D [12].
The Flory free energy for melts is then

f = R2‖/N2−D + b3ND/Rd , (6.13)

which leads formally to the D-independent melt exponent ν = 2/(d + 2). This
result makes no physical sense since it yields a fractal dimension larger than the
space dimension: i. e. df = D(d + 2)/2, which is larger than the space dimension
d whenever the spectral dimensionD is larger thanDs = 2d/(2 + d). For smaller
connectivities the situation is very different and the result is that the polymers take
their unperturbed size, which is given by R ∝ N(2−d)/2. This happens since for all
cases the system is above the upper critical dimension. The upper critical dimension
in the melt is given by

duc = 2D/(2 −D) , (6.14)

which is of factor of 2 smaller than in the good-solvent case. This is due to excluded
volume screening. The two different cases are now discussed in detail. For sim-
plicity only the example of a cylindrical pore is considered. The discussion can be
extended to slap very easily and straightforwardly. Below we consider two different
cases: when the spectral dimension is larger than the critical valueDs, and when it
is smaller.

(1) D > Ds In this regime the melt of fractals is saturated. This means that, unlike
linear polymers, polymers of higher connectivity do not interpenetrate each other
since their connectivity is so large that this cannot happen. In one limit for such
polymers in the pore, they form a row of balls each of size Rs = bND/3. The filling
fraction for this situation is easily calculated and is given by

f = b3ND/H 2Rs = (b/H)2ND−D/3 . (6.15)

The filling fraction cannot be larger than 1 and, therefore, the pore diameter is limited
to values H ∗ = bND/3, which is the saturation radius of the polymer itself. This
situation is sketched in Fig. 6.6. When the pore is smaller, each of the individual
saturated fractals can be compressed further as their saturated radius of gyration can
be elongated to form ellipses. Again the maximum parallel radius of the polymer is
given by Rsm = bN , and for this case the filling fraction is

f = b3ND/H 2Rsm = (b/H)2ND−1 (6.16)

and the limiting pore size is Hmin ∝ N(D−1)/2, which is identical to that for good
solutions and �-solutions. Again we find that the pore size does not depend on the
thermodynamic state of the manifold. Hmin is only determined by the molecular
weight and the connectivity. To pass through this minimum pore size each of the
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Fig. 6.6. A melt of highly connected polymers or manifolds in a small cylindrical
pore. The connectivity is larger than D = 6/5. The manifolds cannot penetrate
each other and they form separate balls. The pore diameter is identical to the
radius of gyration in the saturated case. Reprinted from [65] with permission from
Elsevier.

Fig. 6.7. Same in Fig. 6.6 but with a smaller pore diameter. The individual fractals
can be compressed until they are stretched to their maximum radius of gyration
RD ∝ N . Reprinted from [65] with permission from Elsevier.

saturated fractals has to be compressed by a factor of λ = N−(D−3)/6, which for
membranes is λ = N1/6 and for randomly branched polymers is λ = N1/9, as
both cases belong to the class D > Ds. A visualization of this situation is shown
schematically in Fig. 6.7.

(2) D < Ds In this case the physical picture is very similar to that for linear polymers.
As long as the connectivity is less than the criticalDs = 6/5 in three dimensions, the
fractal takes its ideal Gaussian dimensions, i. e.R0 = bN(2−D)/2. This is because the
upper critical dimension for the melt is always less than the dimension itself, i. e. in
the present case d = 3. Therefore excluded volume forces are screened completely
and the manifold behaves ideally. In addition this means that the manifolds can
interpenetrate each other as the connectivity is very small. There are again two
basic length scales for the pore size. The first one is given by the limit at which the
manifolds just pass through without changing their shape. This can be read off from
the filling fraction

f = b3ND/H 2R0 = (b/H)2N(D−2)/2 . (6.17)

The limiting value for the pore size is given by D0 = bN(2−D)/2. For a larger
pore size the polymers in the melt are able to pass through without changing their
shape. Smaller pore sizes are possible, if the manifolds stretch out. The maximum
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stretching is given byRm = bN , and the limiting filling fraction predictsDmin,melt =
aN(D−1)/2, which is again identical to the same limiting pore size as that in all other
cases.

6.6 Once more the differences

In this chapter a scaling theory for arbitrarily connected polymeric manifolds under
simple restriction has been presented. The main point is that larger connectivi-
ties give rise to severe limitations on the conformation and the behavior of such
molecules in restricted geometries such as parallel plates or pores. The radius of
gyration can be calculated for the case of two parallel plates using Flory theory,
the blob model, and scaling theory. The blob model requires arbitrary spectral and
fractal dimensions and to our knowledge has only been used for regularly branched
molecules, such as star branched polymers [122].

These treatments can break down when theD-dimensional manifold is studied in
a small cylindrical pore. Indeed, studying the behavior of the manifold in a cylinder
has revealed the most serious restrictions, in contrast to linear polymers. Manifolds
with larger spectral dimension thanD = 1 do not pass through small pores without
problems. A minimum pore size has to be assumed to obtain consistent results.
Another important result is that this minimum pore size does not depend on the
thermodynamic conditions of the manifold, such as good solvent, � solvent, or
melt conditions. The minimum pore size is determined by the connectivity, i. e. the
spectral dimension, only.
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Reinforcing fillers

7.1 Fillers for the rubber industry

Reinforcement of elastomers by colloidal fillers, like carbon black or silica, plays
an important role in the improvement of the mechanical properties of high-
performance rubber materials. The reinforcing potential is mainly attributed to
two effects: (i) the formation of a physically bonded flexible filler network and
(ii) strong polymer–filler couplings. Both of these effects arise from a high surface
activity and the specific surface of the filler particles [3, 8, 28, 123]. For a deeper
understanding of structure–property relationships of filled rubbers it is necessary
to consider the aggregate morphology and surface structure of fillers more closely.
The present chapter is devoted to several technological applications of fillers in
rubbers. In particular, we demonstrate how the physics of rubber nano-composites
facilitates the understanding of how new generations of fillers, like silica (instead of
carbon black), boost tire technologies giving simultaneously improved performance
in rolling resistance and wet grip behavior.

Since the introduction of the Energy ® tire by Michelin, precipitated silica has
proved (through partial or total substitution of carbon black) to be the filler of choice
for the manufacture of high-performance pneumatic passenger car tires. The main
reason is an improvement in the final compromise between the main interrelated
tire performance parameters: it gives a significant improvement in tire performance
in regard to rolling resistance, wet grip, and stopping distance for cars equipped
with anti-lock braking system (ABS) steering [124]. These improved characteristics
mean that silica-filled tread compounds are also the best available materials for win-
ter performance [125]. It is noteworthy to observe that although a large number of
studies have been reported in the literature, most of them were implemented around
the original Michelin formulation disclosed by Rauline [126]; i. e. compounds made
with silica as the main filler, a medium- or high-vinyl solution styrene–butadiene
copolymer (S-SBR) as the main elastomer, and silicon-containing coupling
agents.

75
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Fig. 7.1. Various steps in rubber filling.

Good mixing of silica compounds is a basic prerequisite to reach the required
compound properties. Figure 7.1 illustrates – in a very general way – the various
steps in rubber mixing [127]. The first elementary step of mixing is called “the
subdivision,” which is the breaking down of larger lumps of fillers to smaller ones,
suitable for incorporation into a rubber matrix. This is followed by incorporation of
powdered or liquid materials into the rubber to form a coherent mass. During this
step the rubber penetrates into the void space of the agglomerates thereby replacing
the trapped air. Dispersive mixing involves reduction of the size of agglomerates
to their ultimate size, the aggregates; i. e. changing their physical state while at
the same time distributing the particles formed. The dispersive mixing principle
ensures that the particles are not only spread through the compound, but are also
broken down into smaller entities. This leads to a greater reaction surface or contact
area between the filler and the rubber. The breakdown of agglomerates in rubber
requires a large amount of energy due to the high viscosity of the matrix. Equipment
design and operating conditions must meet this criterion without reducing particle
size. Although the detailed physical mechanisms associated with the breakdown
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Fig. 7.2. Chaotic stacking.

process are not fully understood, it is generally agreed that to rupture the dispersed
phase via interfacial hydrodynamic forces, the stress level in the continuous phase
must exceed a critical value.

Distributive mixing, i. e. moving particles from one point to another, without
changing their physical shape in order to increase randomness or entropy, is also
called “extensive mixing.” Distributive mixing can be compared to the mixing of a
baker’s dough with a roll, in which a portion of flour is incorporated in the dough.
This type of mixing has several similarities to a square iteration process [128]. The
mixing process is a chaotic process consisting of two different folding processes
(Fig. 7.2). The folding can be done by stacking the layers in two different ways, and
it is not predictable which way is used. As these processes are equivalent, it does
not matter whether it is unknown which process actually occurs. It is interesting
to note that both these processes are chaotic in nature. The flow system is defined
as chaotic [129], if it satisfies any of the following criteria: (i) positive Lyapunov
exponents in some region of the flow [130]; (ii) homoclinic or heteroclinic points
(crossing streams) are present; (iii) Smale horseshoe functions [131] (folding and
stretching) are present.

In the final step, viscosity reduction occurs by mechano-chemical breakdown of
the polymer and its transformation into a more easily deformable and less elastic
state.

7.2 Carbon black

7.2.1 Morphology of carbon black aggregates

Active fillers are commonly specified by different characteristic sizes. In the case
of carbon black, the primary particle typically has cross-sectional dimensions of
5–100 nm. The size of the primary particles is commonly expressed in specific
surface area/weight (m2/g). Aggregates of multiple primary particles are formed
by chemical and physical-chemical interactions: typically they have dimensions of
100–500 nm.The aggregate can be quantified by the number of primary particles and
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their geometrical arrangement. The term “structure” is commonly used to describe
two arrangements: (i) low structure – linear arrangement; (ii) high structure – grape-
like bundle. The aggregates are further condensed into agglomerates by van der
Waals forces. Typical dimensions of agglomerates are in the order of magnitude of
1–40 μm. Agglomerates disintegrate during rubber mixing – to about the size of
aggregates.

Carbon blacks for the rubber industry are produced in a variety of classes and
types, depending on the performance required for the final product. In general, they
consist of a randomly ramified composition of primary particles that are bonded
together by strong sinter bridges. Significant effects of the different grades of carbon
blacks in elastomer composites result from variations in the specific surface and/or
“structure” of the primary aggregates [3,8].The specific surface depends strongly on
the size of the primary particles and differs from about 10 m2/g for the very coarse
blacks up to almost 200 m2/g for the fine blacks. The “structure” of the primary
aggregates describes the amount of void volume and is measured by, for example,
oil (dibutylphthalate, DBP) absorption. It typically varies between 0.3 cm3/g and
1.7 cm3/g for furnace blacks.

The characteristic shape of carbon black aggregates is illustrated in Fig. 7.3,
where transmission electron micrographs (TEMs) of five different grades of furnace
blacks (N220, N326, N330, N347, N550) are shown. The variation in size of the

Fig. 7.3. TEMs of five different grades of furnace blacks as indicated. The specific
surface increases from top to bottom, the “structure” increases from left to right
(bar length: 100 nm).
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primary particles, increasing from top to bottom, is apparent. It implies a decline
of the specific surface from 116 m2/g for N220, 78 m2/g for N326, 81 m2/g for
N330, 95 m2/g for N347 to 41 m2/g for N550. The “structure” or amount of specific
void of the five grades increases from left to right and varies between 0.72 cm3/g
and 1.2 cm3/g. Since the specific weight of carbon black is almost twice that of
DBP, this corresponds to a factor 2 for the void volume as compared to the solid
volume of the aggregates. This means that about 2/3 of the aggregate volume is
empty space, i. e. the solid fraction φp of the primary aggregates is relatively small
(φp ≈ 0.33). It is shown below that φp fulfills a scaling relation which involves
the size and mass fractal dimension of the primary aggregates. Due to significant
deviations of the solid fraction φp from 1, the filler volume fraction φ of carbon
black in rubber composites has to be treated as an effective one in most applications,
i. e. φeff = φ/φp.

For a quantitative analysis of the structure of carbon blacks, such as those shown
in Fig. 7.3, it is useful to consider the dependence of the solid volume Vp or the
number of primary particles Np per aggregate on aggregate size d. In the case of
fractal objects one expects scaling behavior [132, 133]:

Vp ∼ Np ∼ ddf . (7.1)

The exponent df is called the mass fractal dimension or simply the fractal dimen-
sion. It characterizes the mass distribution in three-dimensional space and can vary
between 1 and 3. This kind of fractal analysis of furnace blacks was performed, e.g.,
by Herd et al. [134] and Gerspacher and coworkers [135, 136]. The solid volume
Vp of primary aggregates is normally determined (ASTM: 3849) from the cross-
sectional areaA and the perimeter P of the single carbon black aggregates by using
a simple Euclidean relation [134]:

Vp = 8A2

3P
. (7.2)

However, it is not quite clear whether this relation can be applied for non-Euclidean
ramified structures. Simulation results of carbon black formation under ballistic
conditions by Meakin et al. [137] indicate that a scaling equation is fulfilled, approx-
imately, between the number of particlesNp in a primary aggregate and the relative
cross-sectional area A/Ap:

Np ≈ 1.51
(
A/Ap

)1.08 . (7.3)

Here, Ap is the cross-sectional area of a single primary particle. The “structure”
of carbon black aggregates can be quantified by considering the solid fraction φp.
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Fig. 7.4. TEM of carbon black aggregates (N339) prepared from ready mixed
S-SBR composites with 40 phr filler (in-rubber state). From [138].

It is given by the ratio between the solid volume and the overall aggregate volume.
Then, with (7.1) one finds the following scaling relation with respect to the average
diameter d of the aggregates:

φp = Vp

(π/6)d3
∼ ddf −3 . (7.4)

Depending on whether (7.2) or (7.3) is applied, significantly different values
for the mass fractal dimension are obtained. This discrepancy is demonstrated in
Figs. 7.4 and 7.5, by considering an example of a fractal analysis of primary carbon
black aggregates. Figure 7.4 shows a TEM of the furnace black N339 prepared
from a ready mixed composite of S-SBR after removing the unbound polymer.
This preparation procedure is indicated by the terminology “in-rubber state.” It
was done by immersing the uncured composites for a week in a good solvent,
with the solvent being changed several times in order to remove the unbound
polymer. Afterwards the specimens were dispersed in a vibrator. The highly diluted
suspensions were then placed on a grid and carefully condensed. For the evaluation
of aggregate morphology (analogous toASTM: 3849) roughly 500 particles of each
carbon black type were measured with respect to cross-sectional area A, perimeter
P , and diameter d . Double logarithmic plots of the solid volume Vp and the particle
number Np, estimated from (7.2) and (7.3), vs aggregate diameter d are shown in
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Fig. 7.5. (a) Fractal analysis according to (7.1) of primary carbon black aggregates
(N339) prepared from S-SBR composites with 60 phr filler (in-rubber state). Vp
is evaluated from (7.2). (b) Fractal analysis according to (7.1) of the same set of
primary carbon black aggregates (N339) as shown in (a). The particle number Np
is evaluated using (7.3). From [138].

Figs. 7.5(a) and 7.5(b), respectively. The aggregate average diameter d is estimated
as the mean value from 16 measurements on a single aggregate with a 15% variation
in the angle of rotation. The fractal dimensions obtained differ significantly for the
two evaluation procedures. From the slope of the two regression lines one finds
df = 2.45 and df = 1.94, respectively.

In view of this discrepancy, we consider the conditions of primary aggregate
growth during carbon black processing in some detail. Figure 7.6 shows a schematic
representation of carbon black formation in a furnace reactor, where a jet of gas and
oil is combusted and then quenched. As well as aggregate growth, resulting from
the collision of neighboring aggregates, surface growth due to the deposition of
carbon nuclei on the aggregates takes place during the formation of primary carbon
black aggregates. The surface growth leads to the universal surface roughness,
which is analyzed by the gas adsorption technique (see below). Obviously, the
surface growth is also responsible for the strength of the primary aggregates, since
it occurs in the contact range of the collided aggregates implying a strong bonding
by sinter bridges (Fig. 7.6).

Due to the high temperature in the reactor, aggregate growth and surface growth
both take place under ballistic conditions, i. e. the mean free path length of both
growth mechanisms is large compared to the characteristic size of the resulting
structures [137, 139, 140]. Therefore the trajectories of colliding aggregates (or
nuclei) can considered to be linear. Numerical simulations of ballistic cluster–
cluster aggregation yield a mass fractal dimension df ≈ 1.9 − 1.95 [141–143].
This is comparable to the above TEM result df ≈ 1.94 evaluated with (7.3). It
means that the assumption of ballistic cluster–cluster aggregation during carbon
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Fig. 7.6. Schematic view of carbon black processing in a furnace reactor. Primary
aggregates are built by two simultaneous growth processes: (i) surface growth (SG)
and (ii) aggregate growth (AG). From [138].

black processing, used in the derivation of (7.3), is confirmed by the TEM data
for the relatively fine black N339. For more coarse blacks, with a typically small
primary particle number, finite size effects can lead to a more compact morphology
that differs from the scaling prediction of ballistic cluster aggregation. A further
deviation can result from electrostatic repulsion effects due to the application of
the processing agents (alkali metal ions) used to design the coarse blacks. Note that
a relation similar to (7.3) was derived in the 1960s by Medalia and Heckman [144,
145]. The value df = 1.94 also agrees fairly well with other estimates obtained by
e.g., electric force microscopy [147], TEM [146], and small-angle X-ray scattering
(SAXS) [148–150].

Therefore, it appears likely that using the solid volume of primary aggregates
evaluated from the two-dimensional cross-sectional area by (7.2) leads to an over-
estimation of the mass fractal dimension. A more realistic estimate is obtained with
(7.3). When (7.2) was used for the evaluation of the aggregate volume, the data
obtained by Herd et al. [134] showed a successively increasing value of the mass
fractal dimension from df ≈ 2.3 to df ≈ 2.8 with increasing grade number (or
particle size) of the furnace blacks. As expected, they fit quite well to the above
estimate df ≈ 2.45 for the black N339. A summary of these data and a discussion
including other fractal parameters can be found in [151].

In addition to TEM, a second technique that can be used to obtain information
about the morphological arrangement of filler particles in elastomers is SAXS.



7.2 Carbon black 83

Fig. 7.7. SAXS data for the carbon black grades N115, N121 and N339 dispersed
in NR.

Figure 7.7 shows the results of scattering investigations obtained for NR samples
filled with different carbon black grades of varying specific surface. The concen-
tration of carbon black is kept constant (46 phr). The double logarithmic plot in
Fig. 7.7 demonstrates that in all cases two scaling regimes are obtained. For small
values of the scattering vector q the slope is smaller than 3, indicating that the
scattering is initiated by mass fractals. The mass fractal dimension df equals the
negative value of the slope β (df = −β), and is found to vary between df ≈ 2.1–
2.4. This lies between the two values obtained above from the TEM data for the
primary aggregates of N339. The lower cut-off length lc is obtained from the cross-
over points of Fig. 7.7 and increases somewhat with decreasing specific surface
(50 nm < lc < 80 nm). Its value is of the order of the diameter of the primary
particles, which seems reasonable since the primary particles represent the smallest
units of the primary aggregates.

For large values of q the slope β in Fig. 7.7 is almost constant and larger than
3. This is due to a surface scattering by the filler particles. Accordingly, the surface
fractal dimension ds = 6 − β is found to be almost independent of the specific
surface (ds ≈ 2.5). This is evaluated in the length scale regime between roughly
60 nm and 20 nm. It is comparable to scattering results investigated in [150]. Note,
however, that for smaller length scales of about 6 nm one again observes a cross-
over of the scattering intensity [148]. Hence, the surface fractal dimension ds ≈ 2.5
is related to the surface roughness on a mesoscopic length scale regime and does
not reflect the surface roughness on atomic length scales, as obtained by the gas
adsorption technique [152–154]. This will be considered more closely in the next
section.
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7.2.2 Surface roughness of carbon blacks

Different experimental techniques have been applied for the characterization of
surface roughness of carbon blacks. As well as microscopic investigations, e.g.,
atomic force microscopy (AFM), that give an impressive but more qualitative pic-
ture, scattering techniques such as small-angle neutron scattering (SANS) [155] and
SAXS [148–150], and gas adsorption techniques [152–154, 156–163] have been
used for a fractal analysis of surface roughness.The results discussed in the literature
appear somewhat contradictory, since almost flat surfaces with ds ≈ 2 [160, 161]
and also rough surfaces with 2.2 < ds < 2.6 [148–150, 152–159] have both been
found.

The reason for these discrepancies lies on the one hand in the restricted resolution
of SANS and SAXS, since the scattering data can only be evaluated for wave vector
q < 1 nm−1 in most cases. This corresponds to length scales larger than about 6 nm,
while the gas adsorption data typically were obtained at length scales smaller than
6 nm. More recent investigations by SAXS have gone down to smaller length
scales with q > 1 nm−1, where scattering from the graphitic layers at the carbon
surface was observed. This means that the surface scattering was shielded by that
of sheet-like structures [148]. On the other hand the discrepancies between the gas
adsorption results arise primarily from the evaluation procedure of the effective
cross-sections σ of the different gases if the yardstick method in the monolayer
regime is used.The estimation of surface fractal dimensions in the multilayer regime
is complicated by the fact that contributions of two different surface potentials
have to be considered, those resulting from van der Waals and surface tension
interactions. Depending on which of the two potentials dominates, remarkably
different estimates of surface roughness are obtained. For that reason a proper
analysis of these factors is necessary to obtain reliable results.

Here we will present results from two different evaluation procedures for the
surface roughness of carbon blacks. In the monolayer regime we refer to the scal-
ing behavior of the estimated Brunauer–Emmet–Teller (BET) [269] surface area
with the size of adsorbed probe molecules (the yardstick method). On smooth flat
surfaces the BET area is independent of the adsorbed probe or applied yardstick,
while on rough surfaces it decreases with increasing probe (yardstick) size due to
the inability of the large molecules to explore smaller cavities. This behavior is
shown schematically in Fig. 7.8.

In the case of carbon black a power law behavior of the BET surface area with
varying yardstick size is observed, indicating a self-similar structure of the carbon
black surface. Double logarithmic “yardstick-plots” of the BET monolayer cover-
age Nm vs cross-section σ� of the probe molecules are shown in Fig. 7.9 for an
original furnace black N220 and a graphitized (deactivated in an N2 atmosphere at
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Fig. 7.8. Schematic presentation of a monolayer coverage of a fractal surface: (a)
with small gas molecules; (b) with large gas molecules. From [138].

Fig. 7.9. Yardstick plot (equation (7.5)) of N220 (�) and a graphitized N220g
(•) with adsorption cross-section σρ determined from the bulk liquid density �
(equation (7.6)); 1 argon, 2 nitrogen, 3 methane, 4 ethene, 5 ethane, 6 propene, 7
propane, 8 isobutene, 9 n-butene, 10 iso-butane and 11 n-butane. The slopes yield
ds ≈ 2.6 for N220 and ds ≈ 2.3 for N220g. Adsorption temperatures and densi-
ties � are chosen according to the evaporation points of the gases at 1000 mbar.
From [163].

T = 2500 ◦C) sample N220g. The figure demonstrates that the roughness exponent
or surface fractal dimension ds differs for the two carbon black samples. By using
the relation introduced by Mandelbrot [132, 133]:

Nm ∼ σ−ds/2
� (7.5)

and neglecting the measurement points of nitrogen (N220 and N220g) as well as
the measurement points of the alkenes (ethene, propene, isobutene and n-butene)
one obtains from the slopes of the two regression lines of Fig. 7.9 a surface fractal
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dimension ds ≈ 2.6 for the N220 sample and ds ≈ 2.3 for the graphitized N220g
sample.An extrapolation of the regression lines yields an intersection at an ultimate
cross-section that corresponds to a yardstick length of about 1 nm, indicating that
graphitization reduces the roughness of carbon black on small length scales, below
1 nm, only. Figure 7.9 clearly demonstrates that the reduction of BET surface area
during graphitization is length scale (yardstick) dependent, proving that it is related
to a change of surface morphology and is not, e.g., a result of reduced energetic
surface activity.

An important point in the above evaluation of carbon black surface morphology
is the correct estimation of the cross-section σ of the applied probe molecules. This
is done by referring to the mass density � of the probe molecules in the bulk liquid
state, which are considered as spheres in a hexagonal close packing:

σ� = 1.091

(
M

NA�

)2/3

. (7.6)

Here,M is the molar mass of the probe molecules andNA isAvogadro’s number.The
crucial point now is the temperature dependence of � which differs for the different
probe molecules, mainly due to variations in the characteristic temperatures, e.g.
the evaporation points.

We found that (7.6) can be applied without further corrections and high cor-
relation coefficients of the “yardstick plots” in Figs. 7.9 and 7.10 are obtained
only if the temperature during the adsorption experiments of a chemically simi-
lar, homological series of gases is chosen according to the same reference state,
as defined in the framework of the theory of corresponding states. This is demon-
strated in the “yardstick plots” of Fig. 7.10, showing that for the same carbon black
(N220g) a different scaling factor is obtained within one series of gases if the adsorp-
tion temperatures are chosen with respect to different reference pressures, i. e. the
evaporation temperatures at p0 = 103 mbar and p0 = 104 mbar, respectively.

A different scaling factor is also observed for each of the two different homolog-
ical series of gases, i. e. the alkanes and alkenes. Nevertheless, the scaling exponent
and hence the surface fractal dimension ds ≈ 2.3 is unaffected by the choice of the
reference pressure or the adsorption gases applied. The alkanes methane, ethane,
propane and isobutane are inert gases and roughly spherical in shape, but, due to
their double bonds, the alkenes are not as inert as the alkanes and argon. Thus the
interaction potential should be slightly different. The same holds for nitrogen which
has a triple bond between its two atoms. As depicted in Fig. 7.9, the measurement
points for the N220 sample, except for the measurement point of nitrogen, are on the
straight line for a surface fractal dimension of ds ≈ 2.6. For the graphitized N220g
the situation is different (Figs. 7.9 and 7.10). Here the points for the alkenes are
all below the straight line for the alkanes and argon. But the points for the alkenes
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Fig. 7.10. Yardstick plots (equation (7.5)) of the graphitized carbon black N220g
obtained with a series of alkenes (ethene, propene, isobutene) and alkanes (ethane,
propane, isobutane). Adsorption temperatures are chosen as evaporation points
at vapor pressures p0 ≈ 103 mbar and p0 ≈ 104 mbar of the condensed gases,
respectively. From [138].

are also on a straight line which is parallel to the one for the alkanes and argon,
indicating an identical value for the surface fractal dimension of ds ≈ 2.3 for the
graphitized sample N220g. A discussion of the role of the interaction potential in
the evaluation of yardstick plots from gas adsorption measurements can be found
in [152,163].

An alternative approach to the characterization of the surface morphology of
carbon blacks by gas adsorption techniques is to consider the formation of a film of
adsorbed molecules in the multilayer regime. In this case, the surface roughness is
evaluated with respect to a fractal extension of the classical Frenkel–Halsey–Hill
(FHH) theory, where, as well as the van der Waals surface potential, the vapor–
liquid surface tension has to be taken into account [162,164]. Then the Helmholtz
free energy of the adsorbed film is given as the sum of the van der Waals attraction
potential of all molecules in the film with all atoms in the adsorbent, the vapor–
liquid surface free energy and the free energy of all molecules in the bulk liquid.
This leads to the following relation between the number N of molecules absorbed
and the relative pressure p/p0 [162, 164]:

N ∼
(

ln
p0

p

)−ϑ
(7.7)
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Fig. 7.11. Schematic view of the coverage of: (a) a smooth and (b), (c) a fractal
surface according to the fractal FHH theory; ◦ monolayer regime, FHH regime,
• CC regime; z: average film thickness, a: monolayer thickness. From [138].

with

ϑ = 3 − ds

3
, FHH regime; (7.8)

ϑ = 3 − ds, capillary condensation (CC) regime. (7.9)

The different exponents for the FHH and CC regimes consider the cases where
adsorption is dominated by the van der Waals potential and the vapor–liquid surface
tension, respectively. The two cases are shown schematically in Figs. 7.11(b) and
7.11(c), respectively. Note that in the CC regime a flat vapor–liquid surface is
obtained due to a minimization of curvature by the surface tension. In contrast,
in the FHH regime the vapor–liquid surface is curved, since it is located on equi-
potential lines of the van der Waals potential with constant distance to the adsorbent
surface.

At low relative pressures p/p0 or thin adsorbate films, adsorption is expected to
be dominated by the van der Waals attraction of the adsorbed molecules to the solid
which falls off with the third power of the distance to the surface (FHH regime,
(7.8)). At higher relative pressures p/p0 or for thick adsorbate films, the numberN
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of adsorbed particles is expected to be determined by the surface tension γ of the
adsorbate–vapor interface (CC regime, (7.9)), because the corresponding surface
potential falls off less rapidly, with the first power of the distance to the surface
only. The cross-over length zcrit between the two regimes depends on the number
density np of probe molecules in the liquid, the surface tension γ , the van der Waals
interaction parameter α, and the surface fractal dimension ds [162, 164]:

zcrit =
√

αnp

(ds − 2) γ
. (7.10)

Note, that the cross-over length zcrit decreases with increasing surface fractal dimen-
sion ds , implying that the FHH regime may not be observed on very rough surfaces.
Then the film formation is governed by the surface tension γ on all length scales
z > a (compare Fig. 7.13).

The film thickness z is related to the surface relative coverage N/Nm and the
mean thickness a ≈ 0.35 nm of one layer of nitrogen molecules [165] according
to the scaling law [132,133]:

N

Nm
=
( z
a

)3−ds
. (7.11)

Fig. 7.12. FHH plot of nitrogen adsorption isotherms at 77 K on various graphi-
tized furnace blacks, as indicated. The dashed line characterizes the transition
between the FHH and CC regimes. The ds-values, listed in the key, refer to the
FHH regime at low pressures. From [138].
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Fig. 7.13. FHH plots of nitrogen adsorption isotherms at 77 K of various fur-
nace blacks, as indicated. The surface fractal dimension appears to be universal,
i. e. it varies between ds = 2.55 and ds = 2.59 for the depicted furnace blacks.
From [138].

Nm can be estimated from a classical BET plot and hence the film thickness z can
be obtained directly from N if the surface fractal dimension ds is known.

So-called FHH plots of the nitrogen adsorption isotherms at 77 K of various
graphitized furnace blacks are shown in Fig. 7.12. The graphitized furnace blacks
have two linear ranges. Starting from low pressures (right-hand side), the first
linear range is fitted by (7.8), because the film is not very thick and the van der
Waals attraction of the molecules by the solid governs the adsorption process (FHH
regime). With rising pressure, at a critical film thickness of about zcrit ≈ 0.5 nm
(equation (7.11)), the vapor–liquid surface tension γ becomes dominant and a step-
like increase of the number of particles adsorbed is observed.The fractal FHH theory
covers fractal dimensions of ds ≈ 2.3 up to a length scale of z ≈ 1 nm, independent
of grade number. At this length scale a geometrical cut-off appears and the surface
becomes rougher. In the final linear regime, corresponding to z > 1 nm, the surface
fractal dimension takes the value ds ≈ 2.6 (CC regime). This linear range has an
upper cut-off length of z ≈ 6 nm.

Figure 7.13 shows that, unlike the graphitized blacks, untreated furnace blacks
have only one linear range with a fractal dimension of ds ≈ 2.6 (CC regime, (7.9)).
Obviously the van der Waals attraction can be neglected and the surface tension γ
controls the adsorption process on all length scales. This is due to the larger surface
fractal dimension ds compared with that of graphitized furnace blacks which shifts
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Fig. 7.14. Surface fractal dimensions ds on atomic length scales of furnace blacks
and graphitized blacks vs. the specific surface. The data are obtained from nitrogen
adsorption isotherms in the multilayer regime. From [138].

the cross-over length zcrit to smaller values (equation (7.10)). Assuming that the
number density np, the surface tension γ of the adsorbate, and the van der Waals
interaction parameter α are approximately the same for liquid nitrogen adsorbed
on graphitized and untreated furnace blacks, a cross-over length of zcrit ≈ 0.35 nm
can be estimated from (7.10) with the experimental values of the fractal dimensions
and the cross-over length zcrit ≈ 0.5 nm on a graphitized carbon black. The value
zcrit ≈ 0.35 nm is in the range of the detection limit given by the layer thickness
a ≈ 0.35 nm. Hence, the nitrogen adsorption on furnace carbon blacks is dominated
by the vapor–liquid surface tension on all length scales and a cross-over between
the FHH and the CC regime does not appear.

The results for the surface fractal dimension of a series of furnace blacks and
graphitized blacks, obtained by nitrogen adsorption in the multilayer regime, are
summarized in Fig. 7.14. The cut-off lengths are quite similar in both series of
blacks and agree with those found in Figs. 7.12 and 7.13. In Fig. 7.14 a weak trend
of increasing surface fractal dimension with increasing specific surface (decreasing
primary particle size) is observed. This results from increasing curvature of the par-
ticle surface with decreasing size, since crystallite structures with edges are present
on the surface that lead to a more pronounced roughness if arranged on a strongly
curved surface. We will see in the next section that the number of crystallite edges
and slit-shaped cavities increases slightly with increasing specific surface, leading
to a higher energetic surface activity for the fine carbon blacks. This relatively small
effect correlates well with the weak trend of the surface fractal dimension observed
in Fig. 7.14.
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The almost universal value of the surface fractal dimension ds ≈ 2.6 of furnace
blacks can be traced back to the conditions of disordered surface growth during
carbon black processing. It compares very well to the results evaluated within the
anisotropic Kardar–Parisi–Zhang (KPZ) model [270] as well as numerical simula-
tions of surface growth found for random deposition with surface relaxation. This
is demonstrated in some detail in [166].

7.2.3 Energy distribution of carbon black surfaces

The energy distribution f (Q) of carbon black surfaces is calculated by assuming
that the measured overall isotherm consists of a sum of generalized Langmuir
isotherms of various interaction energies Q, implying that the energy distribution
can be identified with the numerically obtained weighting function [167,168]. For
a continuous distribution function f (Q) the overall isotherm �(p, T ) is given by

�(p, T ) =
∫ ∞

0
θ (p, T ,Q)f (Q) dQ (7.12)

The integral in (7.12) is normalized to unity. This has to be taken into consideration
if solid samples with different specific surface areas are compared.

For an evaluation of the local model isotherm θ(p, T ,Q) with constant interac-
tion energyQ, the effects of multilayer adsorption and lateral interactions between
neighboring adsorbed molecules are considered by applying two modifications to
the Langmuir isotherm: (i) a multilayer correction according to the well-known
BET concept and (ii) a correction due to lateral interactions with neighboring gas
molecules introduced by Fowler and Guggenheim (FG) [169]:

θ (p, T ,Q) = b2
BETbFGbLp

1 + bBETbFGbLp
(7.13)

with

bBET = 1

1 − p/p0
, (7.14)

bFG = exp

(
zωθ

RT

)
, (7.15)

bL = NAστ0√
2πMRT

exp

(
Q

RT

)
. (7.16)

Here, z is the number of neighboring adsorption sites, ω is the contribution of the
lateral interaction toQ, θ is the probability that the neighboring sites are occupied
by a gas molecule, R is the gas constant, T is temperature, τ0 is the Frenkel’s char-
acteristic adsorption time, σ is the adsorption cross-section of the gas molecules,
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NA is Avogado’s constant andM is the molar mass. Note that the probability that
the neighboring sites are occupied by other gas molecules is taken to be the local
surface coverage θ and not the overall surface coverage �. This means that sites
with the same interaction energiesQ are assumed to be arranged in patches, which
is in accordance with the picture of graphite-like microcrystallites on the surface
of the carbon black particles [3]. A probability � stands for a random distribution
of sites withQ.

By referring to adsorption isotherms of ethene down to very low surface cov-
erings (10−3–1 monolayers), the energy distribution function of adsorption sites
on different furnace blacks has been estimated with (7.12)–(7.16) by applying
a numerical iteration procedure introduced by Adamson and Ling [167]. This is
described in detail in [163]. For a test of the evaluation procedure, the resulting
energy distribution functions obtained from four different isotherms (three different
temperatures) of ethene on N220 are compared in Fig. 7.15. It is obvious that the
isotherms measured at different temperatures lead to approximately the same result
for the energy distribution function, confirming the applied procedure. An analysis
of the energy distribution function of ethene on N220 is shown in Fig. 7.16, where
the distribution function is fitted to four different Gauss functions.

Obviously, the good fit indicates that four different types of adsorption sites
can be distinguished on the N220 surface. We relate the low-energetic peak I with
Q ≈ 16 kJ/mol to the basaltic layers and peak III with Q ≈ 25 kJ/mol to the
edges of carbon crystallites. Peak II with Q ≈ 20 kJ/mol is related to amorphous
carbon and peak IV with Q ≈ 30 kJ/mol results from a few highly energetic slit-
like cavities between carbon crystallites. This is shown schematically in Fig. 7.17.

Fig. 7.15. Adsorption isotherms (� = N/Nm) and corresponding energy dis-
tribution functions of ethene on N220 at various temperatures; ((1) T = 177 K;
(2)(3) T = 223 K; (4) T = 233 K). From [138].
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Fig. 7.16. Fitting of the energy distribution function of ethene on N220, already
shown in Fig. 7.15 (T = 223 K), to four Gaussian peaks (I–IV). From [138].

Fig. 7.17. Schematic view of the association between morphological arrange-
ments of carbon crystallites and energetic characteristics of carbon black surfaces.
Four different types of adsorption sites are distinguished that refer to the
deconvolution shown in Fig. 7.16. From [138].

The attachment of peak II to the amorphous carbon is concluded from the obser-
vation that this peak does not appear with graphitized black N220g and graphitic
powder.The corresponding isotherms and energy distribution functions are depicted
in Fig. 7.18.Acomparison with the above analyzed N220 and a strongly reinforcing
channel gas black demonstrates the relatively large amount of highly energetic sites
of these blacks (Fig. 7.18).
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Fig. 7.18. Adsorption isotherms and evaluated energy distribution functions of
ethene on four different colloidal fillers at T = 223 K; (1) channel gas black; (2)
graphitic powder; (3) N220; (4) graphitized N220g. From [138].

Fig. 7.19. Energy distribution functions evaluated from gas adsorption measure-
ments of ethene at T = 223 K on different carbon black grades varying in particle
size. From [163].

The energy distribution functions of different carbon blacks of varying particle
size are shown in Fig. 7.19. Corresponding to the difference in level and shape of
the isotherms the number of highly energetic sites varies significantly. The very
fine Degussa gas black (DGB) and N115 have a large fraction of highly energetic
sites, while N550 and N990, like the graphitized black N220g, show almost no
highly energetic sites. The results of the peak analysis for the examined blacks and
the graphitic powder are quantified in Table 7.1. More details about the energetic
surface heterogeneity of carbon blacks can be found in [152,156,163,170].

The analysis of the surface energy distribution has demonstrated that four dif-
ferent energetic sites can be distinguished on carbon black surfaces. The fraction
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Table 7.1. Estimated fraction (%) of the four different types of energetic sites (I–IV)
for adsorption of ethene on various carbon blacks and graphite

I II III IV

DGB 71 5 8 16
Channel gas black 61 2 31 6
N115 69 13 15 3
N220 84 7 7 2
N550 93 6 1 < 1
N990 96 0 3 1
Graphitic powder 94 0 4 2
Graphitized N220g 99 0 < 1 < 1

of highly energetic sites decreases significantly with grade number and disappears
almost completely during graphitization. This indicates that the reinforcing poten-
tial of carbon black is closely related to the number of highly energetic sites, which
can be well quantified by the applied gas adsorption technique. Theoretical inves-
tigations on the effect of morphological as well as energetic surface roughness
on the polymer–filler interaction strength confirm this finding [44, 45, 171, 172].
Accordingly, the combination of two types of disorder, given by the pronounced
morphological roughness (ds ≈ 2.6) and the inhomogeneous energetic surface
structure of carbon blacks, enhances the polymer–filler coupling significantly. It
represents an important reinforcing mechanism on atomic length scales associated
with the required strong phase binding in high performance elastomer composites.

7.3 Silica

The basic characteristics of silica fillers, which can be altered during the precip-
itation process, are particle size distribution, porosity, specific surface area, and
purity. Because of its high specific component of surface energy, silica has a
stronger tendency to agglomerate than carbon black. The interactions between the
polar groups (siloxane, silanol) on the surface of silica aggregates with non-polar
groups of hydrocarbon elastomers are weak compared with the hydrogen-bonding
interactions between surface silanol groups in silica itself. The dispersive forces
between a non-polar rubber molecule and silica are low. For this reason, in princi-
ple, a hydrophobic modification of the silica surface would be expected to improve
the compatibility of hydrocarbon elastomers and precipitated silica. Remarkable
improvements in mechanical properties of silica-filled rubbers are obtained with
the use of a coupling agent. The most widely used coupling agent today is bis-
(triethoxysilylpropyl) tetrasulfide (TESPT). Extensive research has been done into
several aspects of this agent, especially, into the steps involved in the reaction
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between silica and TESPT, as reported in [173–176]. TESPT is the most commonly
used silane enabling silica to be used in tire compounds – tread compounds in
particular. The use of TESPT is also the key factor in silica being a successful
replacement for carbon black as the main reinforcing filler in the tread compound
of the “green tire” [126].

If silica outperforms carbon black due to surface modification, the question arises
of whether surface modification of carbon black can be used to enhance its per-
formance. However, it appears that the improvement in the dynamic mechanical
properties of carbon-black filled rubber by coupling agents is not as great as in
the case of silica-filled vulcanizates [28]. Several factors are responsible for this
difference. Unlike the silica surface, which is characterized by a uniform layer of
siloxane and various types of silanol groups (isolated, geminal, and vicinal), carbon
black surfaces contain not only hydrogen but also a number of different oxygen-
containing groups (phenol, carboxyl, quinone, lactone, ketone, lactol, and pyrone).
It is reasonable to expect that for a given coupling agent the different chemical func-
tionalities would have different reactivities and, in effect, this has been found to be
the case. Furthermore, the differences in the effectiveness of the coupling modifica-
tion with carbon black and silica may also be associated with their microstructure.
In the case of amorphous silica, the functional groups are randomly located on the
surface, while the aggregates of carbon black consist of quasigraphitic crystallites,
and the functional groups are located only at the edges of the graphitic basal planes
of the crystallites. This suggests that as well as the difference in reactivity and
concentration of the functional groups, the functional group distribution on the two
filler surfaces is also different [28].

To understand better what happens during the early stage of mixing with sil-
ica, the role of silane in silica dispersion has to be studied, independently of the
vulcanization chemistry and rubber–filler interactions. In [177] model systems of
monodisperse silica aggregates, silanes, and squalene were studied. Small-angle
neutron scattering (SANS) techniques were used to investigate the short-range
arrangement of silica aggregates and the structure factor of the concentrated silica–
squalene system. Using this technique it is possible to differentiate between the
degrees of aggregation of particles through the interparticle distance.

At very low values of the wave vector q, which is related to large-scale interac-
tion, a difference is noticed between the silica treated with TESPT, and silica treated
with either octylsilane C18Et (C18H33−Si(OEt)3) or TESPD (S2−[C3H6−Si(OEt)3]
triethoxysilylpropyldisulfane). The difference suggests that the association of high
agglomerates is stronger with TESPT than with TESPD. To confirm this observa-
tion, slurries of silane-treated silica were analyzed by light scattering. A significant
difference in particle size could be observed between disulfide silane TESPD and
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Fig. 7.20. (a) Primary reaction between silica and the coupling agent TESPT. (b)
The two-step process of the secondary reaction between silica with coupling agent
TESPT. (c) Possible reaction between TESPT and rubber.

tetrasulfide silane TESPT. The disulfide shows a lower diffraction at low angles,
characteristic of smaller aggregates [177].

Coupling agents such as TESPT have triethoxysilyl functions which can react
with the silanol groups on the silica surface. This so-called “silanization reaction”
can be divided into primary and secondary reactions (Fig. 7.20). During the pri-
mary reaction, one ethoxy group of each Si-unit reacts with an accessible silanol
group on the silica surface and, therefore, links chemically to the filler. Because of
agglomeration of the silicas by vicinal hydrogen bonding, only a relatively small
number of free OH groups is available. These agglomerates are partly dispersible
under the high shear stress applied by the rotor of the mixer. This primary reaction
may be followed, after a hydrolysis reaction, by a condensation reaction between
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Fig. 7.21. Influence of the silane length on the Payne effect.

Fig. 7.22. Amplitude of the Payne effect as a function of silane length.

pairs of neighboring silane molecules already bound to the silica surface, which
constitutes the secondary reaction. For mechanical reasons, the secondary reaction
is always a two-step process: first the hydrolysis of one or two ethoxy groups (this
reaction generates ethanol as a reaction product as well as one or two silanol groups,
-SiOH), followed by a condensation reaction, which, in turn, generates either water
or ethanol, depending on the state of hydrolysis of the silane atom reacting with
the original silanol group. The water required for the intermediate hydrolysis step
is adsorbed onto the silica surface.

We note that the properties of the final compound depend strongly on the length of
the silane used and on the amount of coupling agent. Figure 7.21 shows the influence
of the silane’s length on the Payne effect, which describes the shear modulus G′
as a function of strain amplitude for an S-SBR filled with 40 phr silica [178]. With
increasing spacer length (the number of CH2 units in the aliphatic chain bearing
the siloxy groups), the large strain modulusG′∞ remains roughly constant whereas
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Fig. 7.23. The influence of the surface coverage by silane (Si69) on the shear
modulus as a function of the strain amplitude.

the small strain modulusG′
0 gradually decreases. Figure 7.22 shows the amplitude

of the Payne effect as a function of silane length [178]. The amplitude of variation
of G′ was determined by subtracting G′(γ0 = 1) from G′(γ0 = 10−4). The three
shortest alkyl silanes (n = 0, 1, 3) exhibited very high �G′. Further increase in
spacer length (n = 8, . . . , 16) induced a gradual decrease in the Payne effect. The
occurrence of a minimum silane length necessary to alter the dynamic properties
of the composites defined an apparent “length threshold” separating, as far as�G′
is concerned, effective and ineffective molecules. Extrapolation of the data points
revealed that the Payne effect may eventually vanish when n is increased to about
30. Figure 7.23 shows the influence of the amount of coupling agent on the shear
modules as a function of strain amplitude [178].

As already discussed, the first step involved in the reaction between silica and
TESPThas the effect of modifying the silica surface in such a manner that it becomes
more hydrophobic, disrupting the silica–silica interactions, which, in turn, results
in a partial disruption of the filler network. This is observed experimentally, for
example, as a reduction in compound viscosity, which is a great benefit when
producing these compounds in industrial conditions. The second major effect when
using TESPT is the creation of permanent chemical bonds between modified silica
particles and the polymer matrix (Fig. 7.20).
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Hydrodynamic reinforcement of elastomers

8.1 Reminder: Einstein–Smallwood

In the following sections we are going to study the reinforcement obtained by
adding particles to the elastic matrix. The mechanisms of the effective enhancement
of the elastic modulus cannot be explained by one simple theory, since several
interactions and many different length scales are involved [179]. This is because
there are different physical levels of reinforcement. The rubber matrix contributes
through its rubber elasticity [7], whereas the filler particles contribute in different
ways. The most well known of these are volume effects, also called hydrodynamics
interactions (due to the analogy with the enhancement of the viscosity of liquids
by the addition of particles).

In the context of carbon-black-filled elastomers, the contribution to reinforcement
on small scales can be attributed to the complex structure of the branched filler
aggregates as well as to a strong surface–polymer interaction, leading to the so-
called bound rubber. Thus the filler particles are coated with polymer chains and
the binding (physical or chemical) of elastomer chains to the surface of the filler
particles changes the elastic properties of the macroscopic material significantly
[2]. On larger scales the hydrodynamic aspect of the reinforcement dominates the
physical picture. Hydrodynamic reinforcement of elastic systems plays a major
role not only in carbon-black-filled elastomers, but also in composite systems with
hard and soft inclusions. Finally, at macroscopic length scales filler networking at
medium and high filler volume fractions plays a dominant role [179].

In this chapter we are going to concentrate – on a general basis – on the different
mechanisms of elastomer reinforcement in the hydrodynamic regime. To do so, we
present two different regimes of reinforcement mechanisms. In order to introduce
the subject, we briefly review the classical ideas. The simplest approach was pre-
sented as early as 1944 by Smallwood [180], who showed that adding randomly
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dispersed spherical filler particles to a rubbery matrix yields an elastic reinforcement
of the form

G = Gm(1 + 2.5φ). (8.1)

This is known as the Einstein–Smallwood formula, whereφ is the volume fraction of
the filler components andGm denotes the elastic modulus of the rubber matrix: these
were calculated and discussed in Chapter 5. The physical conditions required for
this result are: (i) freely dispersed particles, i. e. low volume fraction, (ii) a spherical
shape (leading to the constant 2.5), and (iii) entirely non-elastic filler particles, i. e.
their elastic modulus has to be infinitely large. Although the assumptions are very
strict and idealized the Einstein–Smallwood equation contains essential physics.
The reinforcement term contains two factors: one is a simple number which is
related only to the geometry of the particles, the other is linear in the volume fraction
of the filler particles. This latter point corresponds to a more general physical
principle, as we will see later: as long as the filler particles do not overlap, this term
will stay linear in this expansion.

In real systems none of these assumptions is rigorously valid, and many authors
have provided generalizations of (8.1) by relaxing one or more of conditions (i)–
(iii). For example particle–particle interaction at a less low filler volume fraction
can be taken into account by an additional term quadratic in φ, which was first done
by Guth and Gold [46]. However, most of these extensions have been carried out on
a highly empirical basis. Here we want to show that interesting generalizations can
also be obtained by rigorous theoretical calculations, thereby illuminating the main
mechanisms of hydrodynamic reinforcement in complex composite systems. We
are going to present two other extremes cases and shed light on the principal issues
of the Einstein–Smallwood theory. First we are going to generalize the dispersion
of the filler particles. As mentioned above, the linear dependence in (8.1) stems
basically from the assumption of free dispersion of the filler particles. Only in this
case are the conditions for an expansion in terms of the volume fraction given.
If the filler particles form clusters, two different regimes must be distinguished.
First, small clusters may be dispersed freely without contact between them. Then
we can expect a reinforcement law as given by Einstein–Smallwood to hold. The
only changes to be expected are in the geometry factor, which may become size-
dependent. The second regime comes into play when the clusters begin to overlap.
Then a different behavior as a function of the volume fraction φ is to be expected.
If it is assumed that the clusters may have some “fractal” geometry, then some
scaling relations can be derived; see Section 8.2. In the overlap regime a stronger
reinforcement is expected.

The other extreme generalization of the Einstein–Smallwood law again assumes
free dispersion, but with the filler particles having more complex elastic properties.
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In Section 8.3 we will present a detailed theory on so-called core–shell systems.
To do so, we again assume the shape of the filler particles to be spherical, but now
they may have, e.g., a hard core of a different elastic modulus and a softer shell.
The second assumption in Section 8.3 is that these core–shell filler particles are
distributed randomly in the elastic matrix, i. e. we assume they do not cluster.
Alternatively the theory can be kept general, so that filler particles with holes
(“swiss-cheese”-like solids) can also be discussed.

8.2 Rigid filler aggregates with fractal structure

Deviations from the Einstein–Smallwood formula for non-spherical filler particles,
e.g., carbon black aggregates, so far have mostly been discussed in terms of an
effective volume fraction φeff > φ [181, 182] while retaining the form of (8.1).
Carbon black aggregates are built up from approximately spherical primary particles
which are connected in a branched but nevertheless solid way, see Fig. 8.1. These
structures are known to have universal features and thus can be characterized by
the fractal exponents df (the mass fractal dimension) andD (the spectral dimension
as a measure of aggregate connectivity) [181, 183].

The branched aggregate structure leads to the possibility of aggregate overlap in
the case of medium and high filler volume fractions. We expect this to affect not only
the factor φeff, but also the scaling behavior of the φ dependence. Therefore we use
an elastic theory to calculate – independently of the Einstein–Smallwood formula –
the dependence of the modulus on the universal fractal structure of carbon black

Rubber matrix

Filler cluster

Fig. 8.1. Schematic view of the carbon black aggregate structure, which can be
characterized by fractal exponents.
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aggregates [179]. The calculations are, however, non-trivial and require methods
from effective medium theories [184, 185]. The mathematical formalism requires
some ideas from the general theory of Green’s functions. Indeed, the formalism
presented in [184, 185] can be extended to more general shapes of fractal filler
agglomerates (or filler clusters of a certain shape which satisfy on reasonable scales
certain scaling relations regarding their size and their connectivity). The filler par-
ticles which have a certain shape interact with the elastic matrix and eventually
at concentrations larger than the overlap concentration with themselves. For the
small deformations considered here, we can assume a perfect binding of the matrix
to the filler surfaces. Furthermore, the interaction between filler aggregates is not
taken into account explicitly, the matrix is considered as incompressible and ideally
elastic. The many-particle effects which occur at higher concentrations are dealt
with in the framework of an effective medium theory, the so-called “self-consistent
screening approximation” [185,186].

To pursue this idea we have first to generalize the mathematical formulation of the
statistics of linear polymers from Chapter 2 (see (2.16)) to general fractal objects.
We may assume that the clusters formed by the filler particles can be described by
a fractal shape. We do so only to describe the structure, rather than suggesting that
the structure is fractal. It will be obvious shortly that this assumption allows us to
predict certain specific forms of the reinforcement. First, it allows us to introduce
an effective probability distribution for the filler clusters [187, 188]:

P [R(s)] ∝ exp

⎧⎨⎩− 3

2b2

L∫
0

dDs

(
∂R(s)
∂s

)2
⎫⎬⎭ (8.2)

∝ exp

⎧⎨⎩− 3

4πb2

∑
p

|p|2|Rp|2
⎫⎬⎭ , (8.3)

where b is the size of the individual filler particles (primary particle). The spectral
dimension D describes the connectivity of the filler particles, e.g., linearly con-
nected objects such as polymer chains or random walks correspond to D = 1,
percolation clusters correspond roughly toD = 4/3. Here R(s) describes any spa-
tial vector which points to the object. For our purpose it is useful to work in Fourier
space. Therefore we introduce the transform R(s) =∑p Rp exp(is · p) by analytic
continuation for arbitrary spectral dimensions. Thus p is the Fourier conjugate of
the internal space variable s.

However, we need modeling of the filler structure, which requires a further
generalization to self-avoidance. In this case we may generalize the distribution
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R

b

b

R (x )
®

Fig. 8.2. Coarse graining of the filler aggregate structure leads to a mathemati-
cal description similar to the case of branched polymers with excluded volume:
b denotes the mean primary particle diameter, R the mean aggregate size.

due to [188]:

P [R(s)] ∼ exp

⎧⎨⎩− 3

4πb2

∑
p

|p|2α|Rp|2
⎫⎬⎭ , (8.4)

where α = D (2 + df )/2df and b is the effective diameter of primary particles.
This Gaussian distribution results from a coarse graining which produces a structure
similar to the case of branched polymers with excluded volume, see Fig. 8.2. Note
that for the choice ofD = 1 anddf = 2 the above equation reduces to the probability
distribution of random-walk-shaped curves.

The effective exponent α �= 1 can be expressed in terms of the corresponding

fractal dimensions, i. e.
〈
R2〉 ∼ L2α−D !∼ L2ν or df = 2D/(2α −D) which yields

α = ν + D/2 or alternatively with the excluded volume-exponent ν = D/df =
2/dw, where dw is the dimension that defines the distance that a random walker
travels on the fractal Rdw ∝ t .

Furthermore, we note the more general relations (see [188] for a review) ν =
(2−D)/2 for ideal phantom clusters (where the branches can penetrate) and, more
realistically, ν = (D + 2)/(d + 2) for clusters with excluded volume. The next
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step is to calculate the self-energy function (see Section 8.2.1), which corresponds
directly to the reinforcement factor.

8.2.1 Effective medium theory and linear elasticity

In this subsection we derive the equations for a linear isotropic elastic material
with an elastic modulus μ, compression modulus B, Poisson number σ = (3B −
2μ)/(6B + 2μ), and Young’s modulus Gm = 2μ(1 + σ). Since the material is
assumed to be almost incompressible, i. e. B is very large [6], we may assume
that the rubber matrix is effectively incompressible for the purpose of the present
chapter, i. e. we assume a very large compression modulus,B → ∞, which defines
the Poisson ratio σ = 1

2 for such incompressible materials. Furthermore, we assume
there are only small deformations and we can therefore compute only the initial
modulus, i. e. we ignore finite extensibility effects, as in earlier studies, e.g. [7],
the results of which have been confirmed many times [96, 189–191]. The other
advantage of a theory for small deformations is that we do not have to worry
about the rupture of filler particles from the elastic matrix. These assumptions
allow us now to extend the theory used by Cates and Edwards [185] and Freed and
Edwards [186].

We begin with a simple illustration of the theory. The local deformation field of
a filled system can be described as

u(r) =
∫

d3r ′ G0(r − r′) · F(r′)+
∫

ds
∫

d3r ′ δ(R(s)− r′)G0(r − r′) · σ (s),

(8.5)

where the Green elastic tensor (the Green function of the unfilled matrix) is given
by [192]

G0(r) = 1

16πμ|r|
{(

3 − 4σ

1 − σ
)

I + r̂r̂
1 − σ

}
(8.6)

and σ(s) describes a local stress field. The general shape of the filler particles is
defined by the parameterization R(s) (for simplicity assumed to be one-dimensional
connectivity here,D= 1), and F(r) is the (small) elastic force.The symbol I denotes
the unit matrix and r̂r̂ is the matrix defined by the unit vectors r̂ which acts as
projection on the direction of r, see [184,192] for details. The essential problem is
now to calculate a new form of the Green function G which contains the effects of
the filler particles. Therefore all effects have to be taken into account: the shape of
the filler particles, the spatial distribution of the particles, etc. Detailed formalisms
for these calculations have been developed in effective medium theories and we
can just summarize here.
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It turns out that it is useful to work in Fourier space. The desired quantity is then
given by the average local deformation:

〈u(k)〉 = G(k) · F(k) , (8.7)

where the Green function of the filled system is given by

G(k) = G0(k)− G0(k)

〈∑
q

φ2(k, q)�(q)G0(q)

〉
G0(k) , (8.8)

in which the argument q corresponds to Fourier components describing the shape
of the particles, i. e. the transformation of R(s) to the corresponding representation
in Fourier components R(q). The symbol �(q) = �G2

q n̂n̂ is the Fourier transform
of the deformation operator and G0(q) is the general Green function of the shape
of the filler particle. �G is the difference between the moduli of the filler particle
and the matrix. Thus we have∑

q ′
(δqq ′I + [q|G0|q ′]�(q ′))G0(q) = I . (8.9)

The reinforcement effects can then be written on a general basis as

G(k) = G0(k)− G0(k) 〈T〉 G0(k), (8.10)

where 〈T〉 contains the information on the filler particles and can be written as

T = φ�G0φ =
∑
q

φ2(k, q)�(q)G0(q). (8.11)

The quantity φ contains all the information on the shape (and elasticity) of the filler
particles.

These approaches can be generalized to many filler particles. The natural
generalization of (8.10) is

G = G0 − G0

N∑
α=1

〈
Tα
〉
G0 + G0

∑
α �=β

〈
TαG0Tβ

〉
G0

− G0

∑
α �=β

∑
γ �=β

〈
TαG0TβG0Tγ

〉
G0 + · · · , (8.12)

where α,β, γ are the numbers of filler particles in the matrix. Note that (8.12) is of
the Dyson type, which is well known in quantum field theory. Indeed, the methods
developed there are useful to resolve the present problem at least in some reasonable
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approximations. It is most convenient to recast it in a more comfortable form in
terms of the geometric series:

G−1 ≈ (G0 − G0T̄G0 + G0T̄G0T̄G0 − · · · )−1 = G−1
0 + T̄. (8.13)

As long as the filler particles do not overlap and do not interact with each other
the solution of (8.12) yields a simple generalization of the Einstein–Smallwood law.
If the particles overlap, interactions may screen themselves, as is well known from
the theory of concentrated polymer solutions [62]. Indeed, it turns out here that
similar methods such as a “self-consistent screening approximation” can be used to
solve the problem of many filler particles above their overlap concentration. This
is obvious if the filler particles can interpenetrate each other, such as in fractal-like
aggregates. Then the reinforcement is not only given by the volume effect, but also
by the overlap-induced additional reinforcement. The theory of Green functions
allows us to compute the corresponding self-energy � in terms of the irreducible
diagrams in the matrix T̄. The self-consistent screening model leads to a set of
equations which have to be solved self-consistently and simultaneously:

G−1(k) = G−1
0 (k)+ σ (k) , (8.14)

�(k) = N
〈∑
q

φ2(k, q)�(q)G(q)
〉

, (8.15)

I =
∑
q ′

(
δqq ′I + [q|G|q ′]�(q ′)

)G(q) , (8.16)

where 1 is the unit matrix. The most interesting effect is the mode dependence of
the effective screening, which shows that the screening of the elastic interaction is
only relevant for small length scales, while on large scales the elasticity becomes
reinforced. We may then approximate the screened elastic Green function by

G(k) ∝ 1

μ(k2 + ξ−2)
, (8.17)

where we have denoted the screening length by ξ . In the following we need to
compute the screening lengths as a function of filler shape and concentration. The
next step is then to evaluate the corresponding properties for filler agglomerates,
i. e. to compute these functions with respect to the properties of the filler particle.

First, we note that the shape function has the general form

〈
φ2(k, q)

〉
∝ (kb)(2−D)/ν

(k2b2 C1)1/ν + q2
, (8.18)
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which is easily calculated using the distribution equation (8.4) and the
decomposition into “Rouse modes.” Then the self-energy can be written as

�(k) ∝ c (kb)(2−D)/ν∑
q

{K(q)}−1

(k2b2 C1)1/ν + q2
, (8.19)

where c is the filler concentration andK(q)−1 = �(q) · G(q). Equation (8.19) can
be evaluated further and yields different results for the overlap and non-overlap
regimes. To see this, the evaluation of the self-energy has to be analyzed for the
overlap criterion above the overlap concentration c ∼ N/R3, where N is the
number of primary particles of size b in the cluster and R its average extension.
The clusters overlap only if their connectivity is not too large. Criteria for these
conditions are worked out in [116,193]. It was shown that the spectral dimensions
should not exceed 6/5 for ideal clusters and 4/3 for non-ideal clusters. Clusters
with larger connectivities do no longer overlap significantly. Then the self-energy
can be written as

�(k)
k→0∝

{
c μ b−2 (kb)(2−D)/νL2+ν−2D without overlap ξ ≥ bLν
c μ b−2 (kb)(2−D)/νL2−D(ξ/b)1−D/ν with overlap ξ � bLν

,

(8.20)
where L is the mean (linear) cluster diameter.

8.2.2 Screening lengths

The last step in our approach is the computation of the screening length, which will
introduce the cluster concentration (or volume fraction). The screening length can
be estimated by simple scaling arguments or alternatively by the use of the general
theory that we outline in the following subsection. Both methods yield the same
results and we restrict ourselves to presenting the scaling estimates.

To do so, we note that the overlap concentration for the clusters is given by

c∗ = b3LD

R3
= b3LD

b3Ldν
= LD−3ν (8.21)

and assume that the screening length has (as in the theory of polymer solutions) the
simple scaling form

ξ = R f
( c
c∗
)

= R
( c
c∗
)x = bLν

( c
c∗
)x

. (8.22)
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Simple geometrical arguments and dimensional counting yield the result

ξ =

⎧⎪⎪⎨⎪⎪⎩
b c1/(df−3) = b cν/(D−3ν) general

b c−(2−D)/(6−5D) for ideal clusters D < 6/5

b c−(D+2)/[2(3−D)] for swollen clusters

. (8.23)

The scaling results can be confirmed by calculating the self-energy and we simply
note the result

�(k) ∼ c μ b−2 (ξ/b)1−D/ν , (8.24)

where ξ must be of the same form as predicted by the scaling arguments since we
must have � ∼ μξ−2.

8.2.3 Reinforcement by fractal aggregates

The results for the screening length yield the reinforcement factor as a function
of the volume fraction φ = b3c. To bring the results into a more useful form we
replace the linear cluster size L by its spatial dimension R = bLν in (8.20). Then
using this and G0(k) ∼ μ−1k−2 we obtain the general result:

G−Gm

Gm

k→0∼ (kb)(2−2ν−D)/ν

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
R

b

)(2+ν−2D)/ν

c below overlap concentration(
R

b

)(2−D)/ν
c

2ν
3ν−D above overlap concentration

. (8.25)

or alternatively using ν = D/df

G−Gm

Gm

k→0∼ (kb)2(df /D)−df −2

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
R

b

)2(df /D)−2df +1

φ no overlap φ ≤
(
R

b

)df −3

(
R

b

)2(df /D)−df

φ2/(3−df ) with overlap φ �
(
R

b

)df −3 . (8.26)

For a realistic modeling of primary carbon black aggregates by ballistic cluster–
cluster aggregation with df = 1.9 and D = 1.3 [141–143] (see Section 7.2), we
find

G−Gm

Gm
∼
⎧⎨⎩ R0.1 φ for φ < φcrit (a)

R1.0 φ1.8 for φ > φcrit (b)
. (8.27)
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φcrit = (R/b)1.1 denotes the critical overlap volume fraction for the branched
filler aggregates. Thus the two different regimes correspond to (a) non-overlapping
clusters and (b) overlapping clusters, depending on filler volume fraction. In the
non-overlapping regime, the behavior is similar to (8.1) as we guessed earlier, i. e.
the reinforcement is proportional to the volume fraction, whereas in regime (b)
the hydrodynamic reinforcement sensitively depends on the universal aggregate
structure.

In the non-overlapping regime (a), the filler contribution to the modulus is always
proportional to the filler concentration itself and a geometrical factor. Due to the
fractal nature of the filler aggregates, this factor depends on the mean aggregate
size. This stems from the general concept of fractal elasticity [183]. From (8.27) we
determine the aggregate size dependence of the reinforcement to be weak without
overlap, but almost linear with overlap. This again is a result of the branched struc-
ture of the filler aggregates. The disadvantages of this model are the small range of
application and the idealizations which we introduced in order to make the calcula-
tions tractable. The advantages are the successful derivation of a structure–property
relationship, the possibility of explicitly including the fractal filler structure, and
the universality (transfer to all types of branched aggregates). Refinements of the
present model require the inclusion of local properties, such as particle–particle
binding between the primary filler particles.

The dependence of the hydrodynamic reinforcement contribution on the uni-
versal aggregate structure is found to be weak at small filler concentrations, but
strong for high filler content. Similar results have been found and confirmed by
experimental data [123].

8.3 Core–shell systems

Now we return to spherical filler particles, but relax the condition of filler particle
stiffness. Thus we assume that the particles are still freely dispersed, but themselves
have elasticity. Examples of such filler particles are elastic microgels or lattices.
The general theory for such systems has been derived by Felderhof and Iske and
the theoretical details can be found in [194]. Their general result for the effective
shear modulus is

G

Gm
= 1 + [μ]φ

1 − 2
5 [μ]φ . (8.28)

This results from a mean field approximation, which corresponds to the Lorentz
local field method in the theory of dielectrics, leading to the famous Clausius–
Mosotti equation for the effective dielectric constant. For rigid and spherical filler
particles at low volume fraction, the Einstein–Smallwood formula is recovered
because [μ] = 5/2 (the intrinsic modulus [μ] follows from the solution of a
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single-particle problem). But the result clearly goes beyond the limits of Einstein–
Smallwood, since two-body interaction (excluded volume) is included, leading to
the strong increase of the modulus at high volume fraction.

Thus (8.28) provides a useful framework for the investigation of specific compos-
ite systems with spherically symmetric filler geometry: only the intrinsic modulus
[μ] remains to be calculated. Along the lines of Jones and Schmitz [195], this can
be done from the hydrostatic equilibrium equation for one particle included in a
continuous elastic medium. In general the equilibrium equation can only be solved
numerically. Exact analytical results are obtained in the following cases.

8.3.1 Uniform soft sphere

The simplest model consists of randomly dispersed uniform soft spheres. There
are two limiting cases: if the modulus of the soft filler particles is zero, the matrix
contains holes (resembling a Swiss cheese) and thus becomes softer. Such a material
may seem to be only of theoretical interest, but it nevertheless will show how the
theory works. On the other hand, in the case of a very large modulus of the filler
particles, the Einstein–Smallwood formula will be reproduced. For uniform soft
filler particles with elastic modulusGf > Gm there are several methods to calculate
the intrinsic modulus, for a review see the book of Christensen [196]. The result as
given by Jones and Schmitz [195] is

[μ] = 5
1 −Gm/Gf

2 + 3Gm/Gf
. (8.29)

Inserting this into (8.28) leads to

G

Gm
= 1 + 5

2
φ

Gf /Gm − 1

Gf /Gm + 3/2 − φ (Gf /Gm − 1)
, (8.30)

plots of which are shown in Fig. 8.3.
This is identical with previous results (as reviewed by Christensen) in first order

of φ and is valid also for intermediate volume fractions. As these results are already
well known, further discussion will be omitted here.

8.3.2 Soft core/hard shell

We now investigate the case of a particle with a soft core (whose modulus is taken
as zero for simplicity) and a shell with a modulus Gshell that is always larger than
the modulus of the matrix, Gshell ≥ Gm, see Fig. 8.4.
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Fig. 8.3. Uniform soft filler particles with elastic modulus Gf : relative increase
of the elastic modulus as a function of the ratioGf /Gm for different values of the
filler volume fraction. Reprinted from [45] with permission from the ACS.
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Fig. 8.4. Geometry and nomenclature for core–shell systems. Gm denotes the
matrix modulus, Gshell the shell modulus and rshell and rcore denote the sizes of
the particles.

The algebraic expressions for the intrinsic modulus is

[μ] = −5

3
+ 25

3
μ̃
{
16μ̃+ 19 + 5(8μ̃− 15)r̃3

+ (μ̃− 1)(−112r̃5 + 75r̃7 − 19r̃10)
}
/
{
(3μ̃+ 2)(16μ̃+ 19)

+ (μ̃− 1)×
[
50(4μ̃+ 3)r̃3 − 112(3μ̃+ 2)r̃5

+ 75(3μ̃+ 2)r̃7 + 38(μ̃− 1)r̃10
]}

, (8.31)

where μ̃ = Gm/Gshell and r̃r = rcore/rshell = rshell/rcore. The resulting effective
modulus of the system is depicted in Figs. 8.5 and 8.6.

As expected, the result depends on the relation between the shell modulus and
the matrix modulus Gshell/Gm and on the ratio of the outer and inner shell radii
(as a measure of shell thickness) only. For finite Gshell/Gm, the whole system
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Fig. 8.5. Filler particles with a soft core: the relative increase of the elastic modulus
as a function of filler volume fraction for different values of the ratio Gshell/Gm.
The ratio of the outer to the inner shell radius is taken as 4/3, the black circle
denotes the limiting case of a totally rigid shell, i. e. Gshell/Gm → ∞. Reprinted
from [45] with permission from the ACS.
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Fig. 8.6. Filler particles with a soft core: the relative increase of the elastic modulus
as a function of filler volume fraction for different values of the ratio of the outer
to the inner shell radius, from bottom to top 6/5, 4/3, 3/2, 2, and ∞ . The ratio
Gshell/Gm is taken as 10, the black filled circle denotes the limiting case of a totally
rigid shell, i. e. Gshell/Gm → ∞. Reprinted from [45] with permission from the
ACS.

remains elastic, i. e. there is no divergence of the effective elastic modulus for φ
approaching 1. As can be seen from Fig. 8.5, reinforcement takes place only if the
stiffness of the shell compensates for the softness of the core. This reinforcement
condition is presented in a more general way in Fig. 8.7.
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Fig. 8.7. Reinforcement condition for a soft-core–hard-shell system: reinforce-
ment takes place only for parameters in the shaded region.

8.3.3 Hard core/soft shell

In the same way, the intrinsic modulus can be calculated for filler particles with
a totally rigid core (with an infinitely large modulus) and a soft shell. If the shell
modulus Gshell is assumed to be larger than the matrix modulus Gm, this sys-
tem resembles a carbon-black-filled rubber, where the carbon black particles are
surrounded by a bound rubber layer. Here the algebraic expression for the intrinsic
modulus reads

[μ] = 5

2
− 25μ̃×

{
(1 − r̃3)(8μ̃+ 19/2)+ (μ̃− 1)(−42r̃3

+ 84r̃5 − 50r̃7 + 8r̃10)
} {
(3μ̃+ 2)(16μ̃+ 19)

+ (μ̃− 1)×
[
−300(μ̃+ 3/4)r̃3 + 168(3μ̃+ 2)r̃5

− 100(3μ̃+ 2)r̃7 + 48(μ̃− 1)r̃10
]}

, (8.32)

where μ̃ = Gm/Gshell and r̃−1 = rshell/rcore. Figures 8.8 and 8.9 show the resulting
effective modulus.

Most interesting is the large increase in reinforcement even for small bound
rubber thicknesses (Fig. 8.9). In spite of the fractal filler structure as well as
many-particle interactions being neglected, the curves have quite realistic features.
Unfortunately, for comparison with experimental data values for the effective bound
rubber thickness and strength are still lacking. To obtain and insert these seems
worthwhile as the theoretical curves do not contain any fit parameters, i. e. all the
parameters that result from structural filler and matrix properties.
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Fig. 8.8. Filler particles with a hard core: the relative increase of the elastic
modulus as a function of filler volume fraction for different values of the ratio
Gshell/Gm. The ratio of the shell radius to the core radius is taken as 4/3. Reprinted
from [45] with permission from the ACS.
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Fig. 8.9. Filler particles with hard core: relative increase of the elastic modulus
as a function of filler volume fraction for different values of the ratio of the shell
radius to the core radius. The ratio Gshell/Gm is taken as 2. Reprinted from [45]
with permission from the ACS.

So far two cases have been studied in detail. The first is the reinforcement by
rigid (fractal) aggregates and agglomerates of filler particles. The second is the rein-
forcement by randomly dispersed core–shell particles containing at least one soft
component. The theoretical methods used are extensions of previously developed
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formalisms on continuum elasticity of composite materials. They differ in detail
but are based on the same principles of elastic theory.

Let us briefly discuss the advantages of the model. The results obtained are realis-
tic for small as well as intermediate filler concentrations, i. e. they are in accordance
with experiments at least qualitatively. For the core–shell systems we have provided
exact calculations of intrinsic moduli for various special forms of core–shell elas-
ticity, i. e. soft spheres, hard spheres with soft surfaces etc. These results contain
no fit parameters and in principle both compressible and incompressible media are
accessible (only the incompressible case was shown here).



9

Polymer–filler interactions

9.1 General remarks and scaling

Although understanding the behavior of polymers on heterogeneous surfaces is
a general problem in theoretical physics it provides deep insight into the prob-
lem of reinforcement and contributions. It is well accepted that the filler particles
form large clusters which diffuse throughout the mixture to provide the most sig-
nificant reinforcement effect on large macroscopic scales [179, 181, 197, 198].
Consequently these clusters form large surfaces inside the elastomer and allow
significant polymer–filler contacts. Figure 9.1 shows a typical particle aggregate,
with its hierarchy of length scales. The aggregate consists of individual particles,
each with an irregular rough surface. As the particles form larger aggregates the
irregular surfaces become very large. Moreover, the aggregates themselves form
large clusters when the filler concentrations are high enough. Therefore we can
expect major contributions to the reinforcement from the interaction between the
polymer matrix and the irregular, rough surfaces.

However, the filler particles do not have homogeneous surfaces, but are strongly
disordered. The disorder can be categorized in two extreme cases. In the first,
the filler particles are spatially disordered. The second extreme case arises from the
irregularity of the interactions. Imagine the surface to be spatially flat, but with the
interaction energy varying randomly at each point on the surface. Such surfaces
show non-trivial effects on the surrounding polymers as well. Both cases are driven
by typical “disorder effects,” which we will study in Section 9.2. Indeed several
studies [135, 156, 199] suggest a strongly heterogeneous surface. Gerspacher and
coworkers provided some data which even suggest fractal surface properties for
several carbon blacks [135, 199]. The surfaces of filler particles are not homoge-
neous. They may be spatially rough, but also energetically heterogeneous. Both
effects will enhance the binding of the polymers close to such surfaces. We propose

118
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Fig. 9.1. A cluster of filler particles embedded in the rubber matrix. The cluster
itself contributes to the so-called hydrodynamic reinforcement, which is mainly
given by the volume effects and the cluster structure. Aggregates with a rough
(spatially or energetically) surface contribute significantly to the reinforcement.

Fig. 9.2. Sketch of the main mechanism of adsorption enhancement due to surface
roughness: the number of possible binding sites increases without being balanced
by a loss in configurational entropy.

that it is always easier to adsorb a polymer on rough surfaces. This can be seen by
a simple scaling argument, which is depicted in Fig. 9.2.

9.1.1 Flat surface

First we briefly review a simple scaling treatment of an ideal chain adsorbed on a flat
surface, which was introduced by de Gennes [63]. Let R⊥ and R|| � R0 � bN1/2

be the mean sizes of an ideal polymer (with N monomers and effective monomer
length b) perpendicular and parallel to the surface, respectively. The monomer
density is assumed to be constant in a region of size R⊥R2||. Then the number N of
monomers bound to the surface is estimated as

N = bR2||
N

R⊥R2||
= bN

R⊥
. (9.1)

Consequently the free energy can be written as

βF ≈ R2
0

R2⊥
− βwN = b2N

R2⊥
− βw bN

R⊥
, (9.2)

the first term is the confinement energy, and the second one is due to contact
interactions with the surface (−w is the attractive monomer attraction, β the
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inverse temperature so that the product βw is dimensionless). Minimization of
the free energy, ∂F/∂R⊥ = 0, gives an expression for the polymer thickness R⊥
perpendicular to the surface:

R⊥ � b

βw
. (9.3)

Thus the thickness of the polymer reduces with growing attractive interaction
strength, as expected. The independence of the chain length N indicates that the
polymer is in the so-called “localized” regime [200].

9.1.2 Generalization for fractal surfaces

A fractal surface may be characterized by its fractal dimension dS (2 ≤ dS ≤ 3),
where dS = 2 corresponds to a flat surface. Two examples are shown in Fig. 9.3.
The limit dS → 3 produces an extremely rough, space-filling surface. Brownian
surfaces [201] are characterized by dS = 2.5.

Now the number of bounded monomers is written as

N = b3−dS R
dS⊥
N

R3⊥
. (9.4)

Fig. 9.3. The surface roughness can in some cases be measured by the surface
fractal dimension dS.
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Running through the same procedure as above yields

R⊥ � b

(βw)1/(dS−1)
, (9.5)

so that the result (9.3) is recovered for the case of a flat surface, dS = 2.
From (9.3) we have βw < 1 because b � R⊥ for weak adsorption, where no

complete collapse on the surface takes place. In fact, for most materials values of
βw of ∼ 0.01–0.1 are found [202]. Therefore the polymer adsorption on rough
surfaces (dS > 2) generally is enhanced compared to the case of a flat surface, i. e.
R

rough
⊥ < Rflat⊥ .
Although this is a crude argument, it gives an insight into the main aspects of

adsorption enhancement: the crucial point is the competition between the gain in
potential energy obtained by binding to the surface and the loss in chain entropy
associated with confined chains in comparison to free chains. Therefore, the domi-
nating feature in our consideration is to have an increasing number of binding sites
at a rough surface without paying an increased entropy penalty, which means that
a chain has to lose less configurational entropy when adsorbing on a rough surface.
This is in agreement with results of much more extensive previous calculations by
Douglas [171] and Hone et al. [203].

A similar argument holds for the case of energetic heterogeneity [204]: with a
distribution of the interaction strength on the surface, the chain can select the strong
binding points without changing its configuration too much, thus there is a larger
effective interaction strength.

9.2 Variational calculation statics

9.2.1 Variational calculation

For a systematic study of R⊥ in the case of spatial and energetic heterogeneity,
the free energy is calculated via a variational procedure, in which the disorder is
treated as a quenched (i. e. frozen) randomness. The replica method is avoided by
introducing an additional variational parameter, see next section. We consider an
ideal chain at an infinite, penetrable, well-defined surface with a low profile. Fur-
thermore, we assume an attractive contact (i. e. extremely short range) interaction
between the chain and the surface that can be mimicked by a delta potential.

This system can be represented by its Edwards–Hamiltonian, which reads

βH = 3

2b2

∫ N

0
ds

(
∂R(s)
∂s

)2

+ β
∫ N

0
ds V (R(s)), (9.6)
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where R(s) is the chain segment position vector. The potential contains the
polymer–surface coupling:

V (R(s)) = −
∫

d2x K[h(x)] b w(x) δ(R(s)− h(x)) , (9.7)

with h(x) = (x,h(x)), where x = (x1, x2) is an internal surface vector and h(x) the
varying z-component perpendicular to the surface. The surface disorder is described
byw(x) for energetical disorder, i. e. an interaction strength varying on the surface,
and by h(x) for spatial disorder, i. e. a rough surface profile. The factorK[h(x)] =
(1 + |∇h(x)|2)1/2 takes account of the local deflection of the surface in Cartesian
coordinates.

In order to approximate the free energy we make use of a Feynman variational
procedure:

〈exp[−β(H −H0)]〉H0 ≥ exp[−β〈H −H0〉H0], (9.8)

where 〈...〉H0
denotes the average with respect to a trial HamiltonianH0. This gives

an upper bound βF ∗ to the free energy

βF ≤ βF ∗ = βF0 + β 〈H −H0〉H0
, (9.9)

where

βF0 = log

(∫
DR exp{−βH0}

)
. (9.10)

βF ∗ has to be minimized to give the best estimate for the true free energy βF .

9.3 Trial Hamiltonian

An appropriate choice of the trial Hamiltonian is very important when utilizing the
variational procedure. Here we take an extension of a form suggested by Garel and
Orland [205]:

βH0 = 1

2

3∑
j=1

∫ N

0
ds
∫ N

0
ds′ (Rj (s)− Bj)g−1

j (|s − s′|)(Rj (s′)− Bj) . (9.11)

Its features are: (a) it is quadratic in R(s), so that an exact calculation of βF0 is pos-
sible; (b) the coupling of chain segments is mediated by the variational parameters
gj (|s − s′|), one for each direction in space: the indices 1 and 2 are identified with
the coordinates x1 and x2 of the surface parameterization, index 3 corresponds to
the z coordinate parallel to the average surface normal; (c) there is an additional
variational parameter B, equivalent to a translation of the center of mass of the
chain. It should be mentioned that this type of variational principle was originally
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designed to avoid replica theory in random systems [205]. This is another reason
why the Garel–Orland method is chosen here. If the polymer is assumed to stick
permanently at some place along the disordered surface, the problem falls into the
classes dealing with “quenched disorder” and difficulties arise with replica sym-
metry breaking. In the following we will show that the Garel–Orland method is
indeed useful to treat the problem of polymer adsorption on disordered surfaces as
it yields physically sensible results.

Assuming cyclic boundary conditions R(N) ≡ R(0), the variational free energy
equation (9.9) can now be calculated to give

βF ∗ = −
∞∑
n=1

3∑
j=1

log
g̃j (n)

b2
+

∞∑
n=1

3∑
j=1

Nω2
n

g̃j (n)

b2
+ βW(B, G) , (9.12)

where ωn = 2nπ/N . Here the interaction energy W(B, G) is the only term that
depends on the interaction potential

W(B, G) = −Nb
(2π)3/2(G1G2G3)1/2

∫
d2x K[h(x)]w(x)

exp

{
−

3∑
i=1

(Bi − hi(x))2
2Gi

}
, (9.13)

the hi(x) being the components of h(x), i. e. h3(x) ≡ h(x). The parametersGj are
defined by

Gj = 2
∞∑
n=1

g̃j (n) = 2

N

∞∑
n=1

∫ N

0
ds cos(ωns)gj (s), j = 1, 2, 3 . (9.14)

Gj can be identified with the mean square radius of the polymer parallel (G3) or
perpendicular (G1 and G2) to the surface normal.

9.3.1 Minimization of the free energy

Following the lines of Garel and Orland, the minimization of βF ∗ with respect to
g̃j (n) and B leads to

∇BW(B, G) != 0 (9.15)

and

g̃j (n)
!= b2

Nω2
n + βb2 ∂

2W(B, G)

∂B2
j

, (9.16)
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because
∂W(B, G)/(∂g̃j (n)) = ∂2W(B, G)/(∂B2

j ) .

As discussed by Garel and Orland [205], in general one expects the variational
equations to have several solutions. This applies especially to (9.15), since we are
considering an infinite surface, e.g. leading to an infinite number of solutions in the
case of a periodic surface heterogeneity. All these solutions have equal free energy.

Introducing the notation

αj =
⎛⎝ N2 b3

4(2π)1/2
β|weff

j |
G

3/2
j

⎞⎠1/2

, (9.17)

the optimized parameter Gj is calculated from (9.16) as

Gj =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Nb2

4

coth(αj )− α−1
j

αj
for weff

j ≥ 0

−Nb
2

4

cot(αj )− α−1
j

αj
for weff

j < 0

. (9.18)

The effective interaction strength weff
j contains all relevant surface and polymer

properties and is given by

weff
j = (2π)1/2G3/2

j

N b

∂2W(B, G)

∂B2
j

∣∣∣∣∣∇BW(B,G)=0

. (9.19)

In two special cases results can be obtained very easily:

(i) If there is no interacting surface present, i. e. w(x) ≡ 0, then we immediately have
αj = 0 and therefore Gj = Nb2/12 ≡ R2

g/2, and the chain conformation is purely
Gaussian in all directions, as expected whereRg is the radius of gyration of the polymer
chain, Rg = Nb2/6.

(ii) For an ideal surface, which meansw(x) ≡ w0 and h(x) ≡ h0, the effective interactions
strengths are calculated as weff

1/2 = 0 and weff
3 = w0. So the definition (9.19) of weff

j

guarantees correct results for this case.

The explicit forms of weff
j for various special sorts of surface heterogeneity are

calculated in the next section.
The discussion of (9.18) is complicated by the fact that the effective interaction

strength is itself a function of the polymer extensions in different directions. But in
general (9.18) can, forweff

j ≥ 0, be expanded in the limits of small and largeαj . This

yields the mean polymer extension into the different directions of space, R̄3 being
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parallel to the surface normal and R̄1 and R̄2 perpendicular to it, if 〈h(x)〉 = 0 is
assumed:

R̄j � √Gj �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R0

{
1 − cN1/2βweff

j

}
for βweff

j � N−1/2

b

βweff
j

{
1 − π

N(βweff
j )

2

}
for βweff

j � N−1/2
, (9.20)

where, as above, Rg denotes the radius of gyration of the corresponding Gaussian
chain.

Thus, in the limit of small effective interaction strength the chain has a Gaussian
conformation (see Fig. 9.4), whereas for high βweff

3 the chain is localized at the
surface, leading to a mean polymer size that in lowest order shows the same char-
acteristics as the result of the scaling argument, (9.3). From the conditions for the
limiting cases, a localization criterion,

β weff
j crit ≈ N−1/2, (9.21)

can be found, which means β weff
j crit ≈ 0 for long chains. Therefore very long

chains are always adsorbed, i. e. localized, at an attractive surface. This, of course,
is a consequence of our assumption of a penetrable surface, since in the opposite
case of impenetrable surface adsorption takes place only from a finite interaction
strength [206], i. e. β weff

j crit > 0.
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Fig. 9.4. Numerical result for the optimized variational parameter G3 � R̄2⊥ as
a function of interaction strength (βweff

3 )
1/2 and chain length N . The localization

transition can be identified: for small values of weff
3 , G3 grows linearly with N ,

whereas G3 is independent of N for large values of weff
3 .
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For a negative effective interaction strength weff
j < 0, only the case β|weff

j | �
N−1/2 is important for us, as we are mainly interested in the adsorption behavior.
Expansion of (9.18) in this case yields

R̄j � √Gj � R0

{
1 + cN1/2βweff

j

}
. (9.22)

9.3.2 Effective interaction strength

The full general form of the effective interaction strength is

weff
j = G

1/2
j

2π(G1G2G3)1/2

∫
d2x K[h(x)] w(x)

(
1 − (Bj − hj (x))2

Gj

)

exp

{
−

3∑
i=1

(Bi − hi(x))2
2Gi

}
, (9.23)

where the translational parameter B has to be chosen such that ∇BW(B, G) = 0.
In the following, the surface is assumed to be symmetrical with respect to the

coordinates x1 and x2. Then we immediately have B1
!= 0 and B2

!= 0 as a
solution of the minimization equation (9.15). For simplicity, we additionally assume
the surface heterogeneity to depend only on one space direction x1, which means
w(x) ≡ w(x1) and h(x) ≡ h(x1). Hence weff

2 = 0 and the polymer extension into
the direction of x2 equals that of a Gaussian chain. In this case the expressions for
weff

1 and weff
3 reduce to

weff
1 = 1

(2πG3)1/2

∫
dx K[h(x)] w(x)

(
1 − x2

G1

)
exp

{
− x2

2G1
− (B3 − h(x))2

2G3

}
, (9.24)

weff
3 = 1

(2πG1)1/2

∫
dx K[h(x)] w(x)

exp

{
− x2

2G1
− (B3 − h(x))2

2G3

}
. (9.25)

Now a straightforward calculation for various types of surface heterogeneity is
possible.

(1) For a flat surface with energetic heterogeneity, h(x) = h0, the minimization condition

(9.15) results inB3
!= 0, so that the center of mass of the chain is located on the surface.

Inserting

w(x) =
∫ ∞

−∞
dq exp{iqx} w̃(q)
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leads to

weff
1 = G

3/2
1

G
1/2
3

∞∫
−∞

dq q2 w̃(q) exp

{
−G1q

2

2

}
, (9.26)

weff
3 =

∞∫
−∞

dq w̃(q) exp

{
−G1q

2

2

}
. (9.27)

As can be seen from the notation w̃(q) = w0 δ(q) + w̃∗(q), the effective interaction
strength parallel to the surface is independent of the mean interaction strength w0.

• For a periodic interaction strength

w̃(q) = w0 δ(q)+ (Aw/2){δ(q − f )+ δ(q + f )}

with amplitude Aw and wave number f , we have

weff
1 = G

3/2
1

G
1/2
3

Awf
2e−G1f

2/2 , (9.28)

weff
3 = w0 + Awe−G1f

2/2 . (9.29)

Thus weff
3 takes on its maximum w0 + Aw if the wavelength of the heterogeneity

exceeds the polymer size parallel to the surface, λ � f−1 � R̄1, because in this
case the polymer chain, which is located at a maximum ofw(x), does not notice the
existence of the minima of the interaction strength. In the opposite case, f−1 � R̄1,
the fluctuations ofw(x) can no longer be resolved,weff

3 is minimal and equal to the
mean interaction strength.weff

1 is small (leading to a polymer size R̄1 � R0 parallel
to the surface), except when f−1 ≈ R̄1, and when Aw is large.

• Arandomly distributed interaction strength is best handled by identifying the ampli-
tude in Fourier space w̃∗(q) with the square root of the spectral density S(q),
so that

w̃(q) = w0 δ(q)+ c−1�w exp{−q2ξ2}
for a Gaussian distribution with variance �2

w, correlation width ξ , and constant
c = (2π)1/4. Then the effective interaction strengths are

weff
1 = G

3/2
1

G
1/2
3

c�w

(G1 + ξ2)3/2
, (9.30)

weff
3 = w0 + c�w

(G1 + ξ2)1/2
. (9.31)

The magnitude of the heterogeneity is determined by both ξ and �w: the smaller
the correlation width and larger the variance, the stronger are the fluctuations,
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which leads to an increase of the effective interaction strength. The limiting cases
perpendicular to the surface are

weff
3 ≈

⎧⎨⎩ w0 + c�w ξ−1 for ξ � R̄1 ,

w0 + c�w R̄−1
1 for ξ � R̄1 .

(9.32)

(2) In the case of a heterogeneous surface profile (where the interaction strength
w(x) = w0 is assumed constant) the disorder has to be weak in order to make
the x integration feasible. Therefore we only investigate the case |h(x)| � 1 and
|∇h(x)| � 1, where 〈h(x)〉 = 0, and restrict the calculation to first order in the
fluctuation of h(x). With h(x) = ∫∞

0 dq cos(qx) h̃(q), the minimization (9.15)
yields B3 ≈ ∫∞

0 dq h̃(q) exp{−G1q
2/2}. This means that the center of mass of the

chain to some extent follows the surface profile.
Now the deflection factor can be approximated by

K[h(x)] = (1 + |∇h(x)|2)1/2 ≈ 1 + 1

2

∞∫
0

dq

∞∫
0

dq ′ h̃(q) h̃(q ′) qq ′ sin(qx) sin(q ′x) .

(9.33)

If additionally the part of the exponent in (9.24) and (9.25) that depends on h(x) is
expanded, we obtain in lowest order of h̃(q)

weff
1 ≈ w0

(
G1

G3

)3/2 ∞∫
0

dq

∞∫
0

dq ′ h̃(q) h̃(q ′) exp

{
−G1(q

2 + q ′2)
2

}

×
[
q2 + (q + q ′)2

2

(
G3qq

′ sinh(G1qq
′)− cosh(G1qq

′)
)]

, (9.34)

weff
3 ≈ w0

⎧⎨⎩1 + 1

2G3

∞∫
0

dq

∞∫
0

dq ′ h̃(q) h̃(q ′) exp

{
−G1(q

2 + q ′2)
2

}

×
[
3 +G3qq

′ sinh(G1qq
′)− cosh(G1qq

′)
]⎫⎬⎭ . (9.35)

• A periodic surface geometry h̃(q) = Ahδ(q − f ) leads to

weff
1 ≈ w0

(
G1

G3

)3/2 A2
hf

2

2

{
G3f

2
(
1 − exp(−2G1f

2)
)

−
(
1 − exp(−G1f

2)
)2
}

, (9.36)

weff
3 ≈ w0

{
1 + A2

hf
2

4

(
1 − exp(−2G1f

2)
)

− 3A2
h

4G3

(
1 − exp(−G1f

2)
)2
}

. (9.37)
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For a flat surface, the polymer extension R̄3 parallel to the mean surface normal
(i. e. in the z-direction) is identical to the size perpendicular to the surface. This is
different for a rough surface profile, which now turns out to be important for the
interpretation of (9.36) and (9.37). If, for example, G3 is small compared with the
squared wavelength λ2 � f 2, then the polymer sticks to the surface, following
the deflections. Therefore the result for R̄3 � √

G3 exceeds the polymer size
perpendicular to the surface by the size of the deflection, the effective interaction
strengthweff

3 is accordingly smaller thanw0.Adsorption enhancement therefore can
only be obtained in the opposite case R̄3 � f−1, where the effective interaction
strength parallel to the surface normal takes on the maximum value

weff
3 max = w0{1 + A2

hf
2/4}.

Here we have used G1 ≤ G3, which results from the fact that weff
1 is always small

according to the condition Ahf � 1. As can be seen from (9.36), in the case
G3 � f−1 discussed above, weff

1 is negative, so the mean polymer extension in
the x-direction exceeds the size of a corresponding Gaussian chain, see (9.22).

• Similarly to the case of a randomly distributed interaction strength, the amplitude in
Fourier space w̃∗(q) of a randomly distributed surface profile is identified with the
square root of the spectral density S(q). This means h̃(q) = c−1�h exp{−q2ξ2/2}
for a Gaussian distribution with mean 0, variance �2

h, and correlation width ξ . In
order to satisfy the requirement of weak disorder, we have to assume �2

h � 1 and
ξ � 0. Then the result for the effective interaction strength in the z-direction is

weff
3 = w0

{
1 +

√
π

2

�2
h

4

[
G1

ξ3
(2G1 + ξ2)−3/2

+ 3

G3

(
(G1 + ξ2)−1 − 1

ξ
(2G1 + ξ2)−1/2

)]}
. (9.38)

For a very large correlation width, which in the limit ξ → ∞ corresponds to a
flat surface, we again have the effect of a reduction of the effective interaction
strength compared with the flat surface, weff

3 < w0. Therefore the result relevant
for adsorption enhancement is here obtained in the case �h ≤ ξ2 � G3 ≤ G1,
where the effective interaction strength has its maximum value,

weff
3 max ≈ w0

{
1 + c�2

h

ξ3√G1

}
. (9.39)

A closed expression for weff
1 is not available, but the main features of the result

can be estimated to strongly resemble those of weff
1 for a periodic surface profile

discussed above.



130 Polymer–filler interactions

9.4 Some further remarks on the interpretation

The variational calculation presented here is valid for weak spatial disorder only
(therefore it does not reproduce the scaling behavior for fractal surfaces). Never-
theless, the mechanism of adsorption enhancement is well reproduced, and we
find agreement with the results of all the special cases which have already been
investigated in the literature.

A special feature of the variational method employed here is the possibility of
quantifying the localization transition, i. e. the transition from a slightly deformed
Gaussian coil to a localized conformation, where the polymer size perpendicular
to the surface no longer depends on the chain length. According to (9.21) the local-
ization can be obtained by increasing either the effective interaction strength or
the chain length. This helps to compare the strength of adsorption enhancement
for the two sorts of disorder considered here: as can be seen from the maximum
values of (9.28) and (9.37) or from a comparison of (9.30) and (9.39), the localiza-
tion transition is only slightly affected by a rough surface profile, whereas energetic
heterogeneity can induce the transition even at vanishing mean interaction strength.
Therefore we conclude that the disorder-induced enhancement of polymer adsorp-
tion is much more significant for a heterogeneous interaction strength than for
spatial roughness.

Our findings concerning the localization behavior are affected qualitatively by
the assumption of surface penetrability: for infinitely long chains at a flat and
homogeneous impenetrable surface, the localization transition, in contrast to (9.21),
only occurs for some non-zero value of the attractive potential [206]. Nevertheless,
we expect our main statement on the significance of adsorption enhancement also
to hold for impenetrable surfaces, since the comparison of transparent and opaque
surfaces in simple solvable cases by Hone et al. [203] shows that they should not
be affected differently by weak surface heterogeneities.

The length of the polymer parallel to the surface does not directly depend on
the mean interaction strength, but only through the extension perpendicular to
the surface. Thus, because it is less affected by heterogeneity, the former always
exceeds the latter, except for one special case: for a flat neutral surface with a
periodic interaction strength, the length of the polymer parallel to the surface is
smaller than perpendicular to it if the period fits the polymer size such that it
is concentrated to a maximum of w(x) and even restricted by the neighboring
repulsive regions.

Of course, the dynamics is missing and we do not know whether the chains are
really localized, i. e. if they are dynamically bound on the surface. We are going to
investigate this in the next section.
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9.4.1 Modeling by random potentials

For the static problem we used a model to approximate the filler surface in the
most appropriate way that allows a theoretical treatment. Further simplifications
are needed to study the problem dynamically. A dynamical study is necessary to
predict essential contributions to the modulus from localized chains. It turns out
that one possibility is the introduction of a random field of certain properties.

The main idea is to reduce and to model the polymer–filler surface interaction
in an appropriate way. It turns out that it is most useful to model the filler surface
by a random potential. Indeed, this covers the two aspects already mentioned, i. e.
spatially rough surfaces and energetically heterogeneous surface. The surface is
depicted in Fig. 9.5. The theoretical description starts with a Hamiltonian for the
polymer which interacts with the random surface:

βH = 3

2b2

∫ N

0
dn

(
∂R(s)
∂s

)2

+ β
∫ N

0
dnV (R(s)). (9.40)

Here the first term is nothing but the Gaussian connectivity of the chain, which
leads to the Gaussian distribution if the potential is set to be zero. The parameter
n counts the monomers along the contour and N is the chain length. The totally
random potential V (R(s)) has the properties

〈V (R(s)〉 = 0,

〈V (R(s))V (R(s′))〉 = �δ(R(s)− R(s′)), (9.41)

where the inverse temperature β is now absorbed into the disorder strength �.

Fig. 9.5. Theoretical model for the filler surface, based on a random potential.
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Fig. 9.6. Brownian surfaces of different surface dimensions ds (see also Fig. 9.3).
The closer the surface fractal dimension ds is to 2, the flatter the shape of the
surface.

At first sight such uncorrelated random potentials might not appear appropriate to
model the surface of filler particles, but it turns out that they satisfy many conditions
which yield the main physical properties in both statics and dynamics. Most of the
surface properties are described by the parameter �, which denotes the typical
volume (of a “hole” in surface).

However, it is not a major problem to generalize all that follows to potentials
with different (fractal properties) as shown in Fig. 9.6. Then the additional fractal
correlations show up in a surface fractal dimension dS and the correlation of the
potential becomes

〈V (R(s))V (R(s′))〉 = �b−dS

|R(s)− R(s′)|3−dS
, (9.42)

with its well-known limits: dS → 0 corresponds to the totally random case since the
correlation is very short-range dS = 2 for a completely flat surface, and finally the
most interesting case 2 < dS < 3 for Brownian surfaces. For the present discussion
we will stay, however, with the simplest case, i. e. uncorrelated surfaces.

To see that this random field is sufficient to rederive the previous results we
estimate the main effect of the random potential, whose typical barrier can be
estimated to be

√〈V (R)V (0)〉 � √
�N/Rd/2. The main theoretical results can

then be put together and summarized in terms of the free energy:

βF � R2

Nb2
+ Nb2

R2
−�1/2 N

R3/2
. (9.43)

The first two terms represent the nature of the Gaussian chain in extension and
confinement. The negative sign of the effective disorder potential has its origin in
the effective attraction from the disorder. In earlier publications it has already been
shown that any disorder induces an effective attraction [179,207]. The special form
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of the potential corresponds to a typical energy barrier produced by the disorder.
This attractive nature is of special significance, since it confirms earlier statements
and confines the chain. In order to find a significant chain confinement the disorder
� must be larger than the entropy term. This yields the condition that the critical
surface roughness is �crit � b3N−1/4. Only when � is larger than this critical
value is the filler particle active enough to attract the chains. If this is the case the
chains become “localized.” Indeed, upon minimization of the free energy we find
for the chain size

R � b b3

�−�crit
≈ bb

3

�
, (9.44)

which means that the size of the chain is entirely determined by the disorder (the
size of the “holes” or valleys in Fig. 9.7). Note that the result agrees basically
with those derived previously, since here we have found a result for chain size
independent of the chain length. Physically this shows that the chain is attracted by
the surface and localized in an appropriate hole of typical size as shown in Fig. 9.7.
It is important to realize that the chain conformations are totally determined by
the disorder, thus upon localization the chain adopts the disorder size. So far the
arguments have applied to a single chain. In filled rubbers the chains are not free but
are bound into a network. However, it can be shown that similar arguments apply.
The only change which has to be made concerns the disorder strength. It can be
shown by a simple calculation that in the case of networks the localization criterion
modifies to

�

b3
> Nmesh =⇒︸︷︷︸

dense networks

� > ξ3, (9.45)

whereNmesh is the mesh size of the network and ξ is the corresponding correlation
length, i. e. the mean distance between crosslinks (see Fig. 9.8). More detailed

D1/3

Fig. 9.7. Localization of a chain in a typical spatial or energetic hole of size �.
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Δ1/3

Nmesh

x

Fig. 9.8. Localization of network chains in a typical spatial or energetic hole of
size �.

calculations show that for a given (sufficiently large) filler activity �, parts of the
network localize in a way similar to that for the free chain.

9.4.2 Annealed and quenched disorder

Let us consider first the case in which the characteristic times of the chain’s con-
figurations and the chain’s center-of-mass positions in a disordered medium are
of the same order of magnitude. Then in the course of an experiment the chain
experiences all possible quenched field realizations. This corresponds to annealed
disorder with the corresponding free energy Fanneal = − ln 〈�〉V , where � is the
partition function at a given realization of V (r) and 〈· · · 〉V is the averaging over
the field V (r) distribution. It can be shown that in this case

〈�〉V = �0{v −�}, (9.46)

where �0{v} is the partition function of the pure (i. e. without disorder) system
with the second virial coefficient v. As a result the only effect of the disorder is the
reduction of the second virial coefficient, i. e. a reduction of the excluded volume.
However, the disorder may change the sign of the effective second virial coefficient,
and therefore can cause collapsed chain states.

Nevertheless, in a medium with a strong disorder the chain is preferentially
trapped in some regions where the depth of the quenched random potential exceeds
kBT . In this case the chain is pinned down in some particular place in a disordered
medium and experiences only a local quenched field. This corresponds to quenched
disorder and the relevant free energy is Fquench = − 〈ln�〉V . For the site-diluted
lattice medium model it was argued by Machta [208] and Machta and Kirkpatrik
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[209] that, while the size of the chain is unaffected by the disorder (i. e. R ∼ bNν),
the whole spatial distribution of the chain is correlated with the disorder for d < 4.
The effect of the disorder shows up as an essential singularity in theN dependence
of the so-called typical value of the partition function, �typ = exp

(−Fquench
)
, as

well as the chain’s center-of-mass diffusion coefficient D.

9.4.3 Dynamics of localized chains – freezing, glass transition
at filler surfaces

So far we have discussed only the static picture. It is very challenging to study the
dynamics of localized chains and to discuss their contribution to the viscoelastic
properties of reinforced elastomers. These factors are of special importance since
they enable us to examine the nature of polymer dynamics in the localized phase.
Moreover, they describe the dynamic behavior of the bound “rubber phase” and
the change in the local dynamics of the chains, which will contribute to the shear
modulus G(ω) in a natural way.

We have studied the dynamics of polymers confined in a random potential by
using Langevin dynamics. This is the natural way to find modifications of the
motion of the center of mass and the change of the Rouse modes. In the following
we will only summarize the results and leave the details of the calculations to
elsewhere.

The first observation is that the center-of-mass (CM) diffusion “freezes,” and we
have

DCM = D0(1 −�/�crit), (9.47)

whereD0 denotes the bare diffusion constant without disorder. This result has been
confirmed by numerical simulations [271]. Therefore, we may conclude that the
chains are dynamically localized as well. Once the filler activity exceeds a certain
value�crit, the chains become frozen in the disorder, i. e. they no longer diffuse and
are bound by the surface.This result suggests a naive estimate of the shift of the glass

transition temperature of the chains localized at the active surface�Tg ∝ (�/b3
)2

.
Amore important problem concerns the internal modes of the chain. If the chains

freeze in the disordered surfaces, several internal modes have to freeze also. It is
not sufficient that the center-of-mass motion ceases, several Rouse modes must
also freeze out such that the chain can localize. To do so we use the simplest
approximation and study Rouse chains in the random potential. Usually the chain
dynamics is described by Rouse modes, which decompose the chain motion into
different modes which are characterized by a typical relaxation time

τq ∝ ζN2b2

kBT

1

q2
. (9.48)
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Here ζ is the friction coefficient and q represents the Rouse modes. Large values
of q correspond to small distances in the chain, i. e. local motions inside the chain.
Small values of q correspond to large-scale motions. The center-of-mass motion can
be viewed as the limit q → 0. Now let us see what may happen with chain modes.
To do so, we can formally use the idea of decomposing the motion of the chain
into Rouse modes. Therefore, we use the mode version of the chain Hamiltonian,
which will provide a (too) simple view of the problem. Using Rouse modes, the
chain Hamiltonian reads

βH = d

2b2

∑
q

q2|Rq |2 − √
�
N

Rd/2
, (9.49)

which defines a proper Langevin equation of the form

ζ
∂Rq
∂t

= − δH
δRq

+ fq(t). (9.50)

Then we may try a simple approximation which corresponds to the case of mode
decoupling and use Harris’s estimate for the disorder term:

√
�
N

Rd/2
∼ √

�N(1−νd/2). (9.51)

We know, however, that for larger values of the disorder � the chain becomes
localized, which means, that the chain size does not depend on the chain length,
i. e. R ∼ N0, which yields immediately〈

|Rq |2
〉
∼ 1

q
. (9.52)

If we put (9.52) back into the Hamiltonian (9.49) we find a rough criterion for a
critical localization mode qcrit, which depends on the disorder and chain length
according to:

q2
crit < �N

(2−νd), (9.53)

so that all large-scale motions are frozen.Although these preliminary answers seem
to be plausible, the situation is far more complicated. The main reasons for this arise
from the coupling of the chain modes due to the interactions that are induced by
the irregular nature of the filler surfaces.

What can we expect? Usually in free polymer chains all motions relax to zero,
i. e. their correlation function can be described by

correlations ∝ exp(−t/τq). (9.54)
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In localized Rouse chains this no longer holds. It can be shown that disorder-
induced freezing of the chains implies a non-exponential decay. Moreover, certain
correlations no longer relax to zero and instead follow a law like

correlations ∝ exp
(−(t/τq)β)+ f (q). (9.55)

The appearance of the non-ergodicity parameter f (q), which is mode-dependent,
reflects the localization process. Indeed, if the non-ergodicity parameter is zero,
all relaxations should be exponential, i. e. β = 1. We expect therefore a non-zero
value for f (q) from a certain value of the filler activity or disorder parameter �.
The resulting general theory of mode coupling can be summarized by the following
simple equation:

q4 < ρ�N = qcrit, (9.56)

which is interpreted as follows. First, all modes which require the inequality are
frozen. In general, this means that large-scale motions freeze out at a certain dis-
order. The criterion for the freezing is also determined by the radius of gyration,
Rg = bNν , and the chain density, ρ = N/R3. This means that only the appropriate
chain density with itsN Rouse modes fits into the “hole” of volume� and the chain
localizes its modes which satisfy the inequality (9.56). Then q < qcrit localized
modes are fitted inside, and only local motion is possible. A more general analysis
will follow. Here we just summarize the results in an intuitive figure, Fig. 9.9.

9.5 Equation of motion for the time correlation function

9.5.1 Langevin dynamics

In this section we consider the Langevin dynamics of a polymer chain in the
quenched random field. The dynamics of the chain is described by the following
Langevin equation:

Unfavorable region Chain volume R 3 and
disorder Δ do not fit

Disorder defines size-
only modes inside Δ move

Fig. 9.9. Three different situations for a chain close to a disordered surface. The
chain localizes inside a “disorder hole,” when size and modes fit. A more detailed
analysis using a mode-coupling theory follows in the next section.
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ζ0
∂

∂t
Rj (s, t)− ε�sRj (s, t)+ δ

δRj (s, t)
Hint {R(s, t)}

+ δ

δRj (s, t)
V {R(s, t)} = fj (s, t), (9.57)

where j labels the Cartesian components. To be more specific we use the variable
s as a discrete variable, ζ0 is a bare friction coefficient and the second-order finite
difference is given by

�sRj (s, t) = Rj(s + 1, t)+ Rj(s − 1, t)− 2Rj(s, t).

The Langevin problem in question becomes much more convenient for theo-
retical investigation if we change to the Martin–Siggia–Rose (MSR) generating
functional representation [210]. The generating functional (GF) of our problem
can be written as

Z {· · · } =
∫

DRj(s, t)DR̂j (s, t) exp
{
Aintra

[
R(s, t), R̂(s, t)

]
+ Aext

[
R(s, t), R̂(s, t)

]}
, (9.58)

where the intrachain action is given by

Aintra

[
R(s, t), R̂(s, t)

]
=
N−1∑
s=0

∫
dt

{
iR̂j (s, t)

[
ζ0
∂

∂t
Rj (s, t)− ε�sRj (s, t)

]

+ δ

δRj (s, t)
Hint

{
Rj(s, t)

}+ kBT ζ0
[
iR̂j (s, t)

]2
}

(9.59)

and the action related with the quenched random field reads

Aext

[
R(s, t), R̂(s, t)

]
=
N−1∑
s=0

∫
dt iR̂j (s, t)

δ

δRj (s, t)
V {R(s, t)}, (9.60)

where i is the imaginary unit, i = √−1. Equations (9.58)–(9.60) correspond to a
given realization of the random field V {R(s, t)}. Now we perform the averaging
over all configurations of V {R(s, t)} taking into account its Gaussian statistics.
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The resulting GF takes the following form:

〈Z {· · · }〉V =
∫

DRj(s, t)DR̂j (s, t) exp

{
Aintra

[
R(s, t), R̂(s, t)

]
+�

N−1∑
s=0

N−1∑
s′=0

∫
dtdt ′

∫
ddk

(2π)d
kj kl exp

{
ik[R(s, t)− R(s′, t ′)]}

× iR̂j (s, t)iR̂l(s
′, t ′)

}
. (9.61)

It can be seen from (9.61) that averaging over the disorder leads to the non-
Markovian (i. e. non-local in time) renormalization of the friction coefficient (which
is coupled with iR̂j (s, t)iR̂l(s′, t ′)). This causes dynamical slowing down and
ergodicity breaking which we will discuss below.

9.5.2 Self-consistent Hartree approximation

In order to handle the functional integral (9.61), we use the Hartree approximation.
In this approximation the full MSR action is replaced by the Gaussian one in such
a way that all terms which include more than two fields R(s, t) and/or R̂(s, t) are
written in all possible ways as products of pairs of R(s, t) and/or R̂(s, t) coupled
to the self-consistent averages of the remaining fields. On the other hand in [211]
it was shown that the Hartree approximation is equivalent to taking into account
Gaussian fluctuations around the saddle-point solution. The resulting Hartree action
is a Gaussian functional with coefficients which could be represented in terms of
correlation and response functions. The calculation of these coefficients is straight-
forward and details can be found in the Appendix B of [212]. The second and third
virial terms inAintra[R(s, t), R̂(s, t)], as well as the term which is responsible for the
non-Markovian renormalization of the friction coefficient, are treated in the same
manner as in [213]. After collection of all these terms the final Hartree GF reads.

〈Z{· · · }〉V =
∫

DRDR̂ exp
{
A
(0)
intra[R, R̂]

+
N−1∑
s=0

N−1∑
s′=0

∫ ∞

−∞
dt
∫ t

−∞
dt ′ iR̂j (s, t)Rj (s

′, t ′)λ(s, s′; t , t ′)

−
N−1∑
s=0

N−1∑
s′=0

∫ ∞

−∞
dt
∫ t

−∞
dt ′ iR̂j (s, t)Rj (s, t)λ(s, s

′; t , t ′)

+ 1

2

N−1∑
s=0

N−1∑
s′=0

∫ ∞

−∞
dt
∫ ∞

−∞
dt ′ iR̂j (s, t)iR̂j (s

′, t ′)χ(s, s′; t , t ′)
}
, (9.62)
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where

λ(s, s′; t , t ′) = �

d
G(s, s′; t , t ′)

∫
ddk

(2π)d
k4F(k; s, s′; t , t ′)

+
∫

ddk

(2π)d
k2v(k)Fst(k; s, s′)

+
N∑
s′′=1

∫
ddkddq

(2π)2d
k2w(k, q)Fst(q; s′, s′′)Fst(k; s, s′) (9.63)

and

χ(s, s′; t , t ′) = �
∫

ddk

(2π)d
k2Fst(k; s, s′). (9.64)

In (9.63)–(9.64) the response function is

G(s, s′; t , t ′) =
〈
iR̂(s′, t ′)R(s, t)

〉
(9.65)

and the chain density correlator is

F(k; s, s′; t , t ′) = exp

{
−k

2

d
Q(s, s′; t , t ′)

}
, (9.66)

with

Q(s, s′; t , t ′) ≡ 〈R(s, t)R(s, t)〉 − 〈R(s, t)R(s′, t ′)〉 , (9.67)

while Fst(k; s, s′) denotes the static limit of (9.66). The angle brackets denote the
self-consistent averaging with the Hartree GF which is given by (9.62).

In general, one should consider fluctuation dissipation theorem (FDT) violation
which is well known in the context of the glass transition phenomenon [214]. Here
we are mainly interested in freezing conditions as well as anomalous diffusion
at relatively short times. This enables us to assume that the FDT and the time
translational invariance (TTI) are valid, then

G(s, s′; t − t ′) = (kBT )
−1 ∂

∂t ′
Q(s, s′; t − t ′) at t > t ′. (9.68)
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By employing (9.68) in (9.62)–(9.64) and after integrating by parts with respect to
the time argument t ′, we obtain the following Hartree GF:

〈Z{· · · }〉V =
∫

DRDR̂ exp

⎧⎨⎩
N−1∑
s,s′=0

∫ ∞

−∞
dt
∫ t

−∞
dt ′ iR̂j (s, t)

× [ζ0δ(t − t ′)+ θ(t − t ′)�(s, s′; t , t ′)] ∂
∂t
Rj (s

′, t ′)

−
N−1∑
s,s′=0

∫ ∞

−∞
dt
∫ t

−∞
dt ′ iR̂j (s, t) �(s, s

′) Rj (s′, t)

+
N−1∑
s,s′=0

∫ ∞

−∞
dt
∫ ∞

−∞
dt ′ iR̂j (s, t)

[
ζ0δ(t − t ′)+ θ(t − t ′)�(s, s′; t , t ′)

]
iR̂j (s

′, t ′)
}

, (9.69)

where the memory function is

�(s, s′; t , t ′) = �
∫

ddk

(2π)d
k2F(k; s, s′; t , t ′) (9.70)

and the effective elastic susceptibility is

�(s, s′) = εδss′�s −
∫

ddk

(2π)d
k2 (v(k)−�)

[
Fst(k; s, s′)− δss′

N−1∑
s′′=0

Fst(k; s, s′′)
]

− 1

2

N−1∑
s′′=0

∫
ddkddq

(2π)2d
k2w(k, q)×

[
Fst(k; s, s′)Fst(q; s′′, s′)

− δss′
N−1∑
s′′′=0

Fst(k; s, s′′′)Fst(q; s′′′, s′′)
]

. (9.71)

In (9.69)–(9.71) we use for simplicity the units of kBT = 1, so that the disorder
parameter � has the dimensionality of volume. The memory function (9.70) is
responsible for the non-Markovian renormalization of the Stokes friction coeffi-
cient ζ0, which arises from interaction with the quenched field V (k). The effective
elastic susceptibility (9.71) takes into account all non-dissipative (reactive) forces
in the system: the local spring interaction, the renormalization of the second virial
coefficient due to the random field V (k), as well as the third virial term.
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9.5.3 Equation of motion

The equation of motion for the correlation function

C(s, s′; t , t ′) = 〈R(s, t)R(s′, t ′)〉 (9.72)

can readily be obtained from GF (9.69). The result at t > t ′ reads

ζ0
∂

∂t
C(s, s′; t , t ′)−

N∑
m=1

�(s,m; t)C(m, s′; t , t ′)

+
N−1∑
m=0

∫ t

t ′
�(s,m; t , τ)

∂

∂τ
C(m, s′; τ , t ′)dτ = 0. (9.73)

It is convenient to make the Rouse transformation [62]

C(p, t) = 1

N

N−1∑
s=0

C(s, t) exp(isp) (9.74)

and

C(s, t) =
2π∑
p=0

C(p, t) exp(−isp), (9.75)

where p = 2πj/N (j = 0, 1, . . . ,N − 1), i. e. for simplicity we have used the
cyclic boundary conditions. After this transformation (9.73) is simplified and takes
the form

ζ0
∂

∂t
C(p; t)+N

∫ t

0
�(p, t − t ′) ∂

∂t ′
C(p; t ′)dt ′ +�(p, t) C(p; t) = 0,

(9.76)

where

N�(p, t) = � d
d
2 +2

2d+1πd/2

N−1∑
n=0

cos(ps)

[Q(n, t)]
d
2 +1

(9.77)

and

�(p) = 2d

b2
(1 − cosp)− (v −�) d

d
2 +2

2d+1(π)
d
2

N−1∑
n=0

1 − cos(pn)

[Qst(n)]
d+2

2

− w dd+2

4d+1(π)d

N−1∑
n=0

N−n−1∑
m=0

1 − cos(pn)

[Qst(n)]
d+2

2 [Qst(n)]
d
2

. (9.78)
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In (9.77) and (9.78) the time-dependent mean-square distance,

Q(s, t) = 1
2

〈
[R(s, t)− R(0, 0)]2

〉
,

=
2π∑
p=0

[Cst(p)− cos(ps)C(p, t)] , (9.79)

and its static limit,

Qst(s) =
2π∑
p=0

[1 − cos(ps)]Cst(p), (9.80)

make the whole equation of motion for C(p, t) self-consistently closed. In the
course of deriving (9.76)–(9.78) we took into account that the segment–segment
interaction is short range, i. e. v(k) ≈ v and w(k, q) ≈ w. We have also used the
Rouse transformation of the chain density correlator, i. e.

F(k;p; t) = 1

N

N−1∑
n=0

cos(pn) exp

{
−k

2

d
Q(n, t)

}
. (9.81)

The static limit (i. e. t → 0) is evident from (9.76) provided that the initial condition
[210]

ζ0

(
∂

∂t
C(p; t)

)
t→0+

= ζ0G(p, t → 0+) = − d
N

(9.82)

is taken into account. Then the static equation becomes

[NCst(p)]
−1 = 2

b2
(1 − cosp)− (v −�) d

1
2d+1

2d+1(π)d/2

N−1∑
n=0

1 − cos(pn)

[Qst(n)](d+2)/2

− w dd+1

4d+1(π)d

N−1∑
n=0

N−n−1∑
m=0

1 − cos(pn)

[Qst(n)](d+2)/2 [Qst(n)]d/2
.

(9.83)

It is worth mentioning that this equation is very similar to that for other cases and
has a quite general physical meaning in the mode coupling theory of interacting
polymer chains [215]. Here the excluded volume interaction is just shifted by the
disorder strength �, i.e., v → v − �. In the static limit this shift is the only
consequence of the random field V (r) effect.



144 Polymer–filler interactions

9.6 Dynamic behavior of the chain

We are now in position to launch a more elaborate investigation into the chain
dynamic behavior which is based on (9.76)–(9.79). There are at least two topics
which can be studied: (i) the anomalous diffusion on the interval between a micro-
scopic characteristic time τd (see below) and the longest internal relaxation time
τR [216, 217]; (ii) Rouse modes dynamical freezing at t → ∞.

9.6.1 Anomalous diffusion

The presence of the quenched random field restricts the motion of the chain at the
time interval

τd < t < τ0N
1+2ν , (9.84)

where τd is a crossover time at which the disorder starts to manifest (the value
of τd will be discussed below) and τ0N1+2ν is the maximal Rouse time [62] with
the Flory exponent ν. This restriction manifests itself through the subdiffusional
regimes (anomalous diffusion).

Let us start from the general solution of (9.76). For the Laplace correlator

C(p, z) =
∫ ∞

0
dtC(p, t) exp(−zt), (9.85)

this solution reads [210]

C(p, z) = Cst

z+ �(p)
ζ0+N�(p,z)

. (9.86)

The calculation of �(p, z) is based on (9.77), where the time-dependent mean-
square distanceQ(s, t) at the time interval (9.84) is approximated by

Q(s, t) = b2
(
t

τ0

)2θ

+Qst(s), (9.87)

with θ = ν/(1 + 2ν) and Qst(s) = b2s2ν . This form can be justified by imple-
menting simple scaling arguments for a pure (i. e. without disorder) model. The
substitution of (9.87) into (9.77) leads to the following result:

N�(p → 0, t) = A
(
�

bd+2

)(τ0
t

)β
, (9.88)
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with

A =
d
d
2 +2�̃

(
1
2ν

)
�̃
(
d
2 − 1

2ν + 1
)

2d+2π
d
2 ν�̃

(
d
2 + 1

) , (9.89)

where �̃ (x) is the gamma function and

β = θ
(
d + 2 − 1

ν

)
= 1 − α

2ν + 1
< 1, (9.90)

in which α = 2 − νd is the “specific-heat” exponent.
The Laplace transformation of (9.88) at τ0z � 1 reads

N�(p → 0, t) = A
(
�

bd+2

)
τ
β

0

(
1

z

)1−β
. (9.91)

When the memory term exceeds the bare friction coefficient, i. e. at t > τd, we can
use (9.91) in (9.86), which after inverse Laplace transformation can be put in the
form

C(p, t) = Cst(p)

∞∑
k=0

[
−
(
bd+2�(p)
�A

) (
t
τ0

)β]k
�̃(kβ + 1)

. (9.92)

The center-of-mass mean-square displacement is given by

QCM(t) = 1

2

〈
[RCM(t)− RCM(0)]

2
〉

= lim
p→0

{Cst(p)− C(p, t)} . (9.93)

Substituting (9.92) into (9.93) results in the leading term of the anomalous
diffusion, i. e.

QCM(t) = D0

N

(
t

τ0

)β
, (9.94)

where

D0 = bd+2

�A
. (9.95)

In the course of deriving (9.94) we used the static equation (9.83), i. e.
Cst(p)�(p) = 1/N .



146 Polymer–filler interactions

It is easy now to estimate the crossover time τd after which the disorder starts to
affect the diffusion (see (9.84)). The condition for that, ζ0 = ∫ τd

0 dt �(p → 0, t),
can be recast in a form

τd =
(
bd+2 ζ0

�A τ
β

0

)1/(1−β)
. (9.96)

One can see that the anomalous diffusion exponent β does not depend on the
strength of disorder, whereas the prefactor D0 decreases with increasing �. For a
chain in a good solvent, ν = 3/(d+2) and at d = 3 the exponent βSAW ≈ 0.9. For
a Gaussian chain ν = 1/2 and βGauss = 0.75, i. e. the subdiffusional exponent has
the same value as in a polymer melt [210]. Finally in the case of the globule state,
ν = 1/3 and βGlobule = 0.4, i. e. globule anomalous diffusion is suppressed by the
disorder at most.

9.6.2 Center-of-mass freezing

Let us consider now large-time center-of-mass diffusion. In this case the character-
istic time interval

t � τ0N
1+2ν (9.97)

and internal Rouse modes are already relaxed. For this time regime, a reasonable
approximation forQ(n, t) has the following form (compare with (9.87)):

Q(s, t) = dDt +Qst(s), (9.98)

where D is the full (not bare) diffusion coefficient, which is renormalized by the
effect of disorder and should be found self-consistently. The equation for the zero-
mode diffusion coefficient has the form [210,212,218,219]:

D = 1

N
[
ζ0 +N ∫∞

0 dt�(p = 0, t)
] (9.99)

(we recall that in our units of measurement kBT = 1). Equation (9.99) enables us
to findD self-consistently. By making use of (9.77) and (9.98) in (9.99) we obtain
the following result for the center-of-mass diffusion coefficient

D = DR (1 −� FN) , (9.100)

where DR = (ζ0N)−1 is the Rouse diffusion coefficient and

FN = dd/2

2dπd/2
N

N−1∑
s=0

1

[Qst(s)]d/2
. (9.101)

It can be seen that at �FN ≥ 1 the center-of-mass diffusion is frozen and the
system becomes non-ergodic. The relevance of this result is two-fold. First, this is
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a particular case of the so-calledA-type dynamical phase transition, which has been
extensively discussed in the context of the mode coupling theory [220]. Second, if
we substituteQst(s) in (9.101) by its most representative termQst ≈ b2N2ν , we will
findD ≈ DR

[
1 − const(�/bd)N2−νd]. As a result we return to Machta’s formula

or, more exactly, to its expansion up to first order with respect to (�/b2)N2−νd
[208, 209]. This means that (9.100) overestimates the freezing and one should rather
treat (9.100) as a cross-over criterion for the weak ergodicity breaking transition in
the sense of the results of [214].

9.6.3 Rouse modes freezing and a two mode toy model

Now we are going to study the freezing or the ergodicity breaking of Rouse modes
withp �= 0. This phenomenon mathematically manifests itself as a bifurcation with
respect to the non-ergodicity function, which, in turn, is a long-time limit of the
corresponding correlator [220]. Let us define the persistent part of the normalized
correlator (i. e. the non-ergodicity function) as the long-time limit

f (p) = lim
t→∞

C(p, t)

Cst(p)
. (9.102)

The equation for f (p) can easily be obtained by taking the limit t → ∞ in (9.76).
The result reads

f (p)

1 − f (p) = � d
1
2d+1

2d+1πd/2
NCst(p)

N−1∑
s=0

cos(ps)

[L(s)]
1
2d+1

, (9.103)

where

L(s) =
2π∑

q=2π/N

Cst(q) [1 − cos(qs)f (q)] . (9.104)

Equation (9.103) is a self-consistent equation for the non-ergodicity function f (p).
In the vicinity of the bifurcation point the non-ergodicity function f (p) is small
and we can expand the right-hand side of (9.103) with respect to f (p). It is shown
in the appendix of [215] that because of orthogonality the zero-order term in this
expansion vanishes and we arrive at the so-called F12-model, according to the
nomenclature of Götze and Sjörgen [220]. In the present book we omit this demon-
stration for convenience. The extensive numerical analysis of the full (9.103), which
is given in the next section, reveals that the bifurcation of f (p) is continuous or of
A-type.

To gain a better insight into the Rouse modes freezing mechanism let us consider
first a simplified version. This is a toy model which is based on truncation at the
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level of the two longest modes, j = 1 and j = 2. In this case the asymptotic form
NCst ≈ p−1−2ν , wherep ≈ 2πj/N � 1, can be used to calculate the coefficients.
As a result the toy model equations for f (1) ≡ f and f (2) ≡ g can be recast in
the following forms:

f

1 − f = �1f + ε1fg,

g

1 − g = �2g + ε2f 2, (9.105)

where the coefficients are

�1 = �N2−νd , ε1 = �N2−νd

22ν
,

�2 = �N2−νd

22+4ν
, ε2 = 21+2ν�N2−νd . (9.106)

It is readily seen that in the vicinity of the critical point,�crit
1 = 1, the coefficient

�1 = 1 + σ , where σ � 1, and mode amplitudes have the following forms:
f ≈ σf+ and g ≈ σ 2g+, where f+ and g+ are constants. The substitution of these
forms into (9.105) leads to the solution

f (σ) = σ ,

g(σ ) = σ 2 εcrit
2

1 −�crit
2

, (9.107)

where it is important that �crit
2 < 1.

As a result, the trivial solutionf = g = 0 bifurcates at the critical point�crit
1 = 1,

so that the f mode is linear and the g mode is quadratic with respect to σ . It is
obvious that close to the critical point (i. e. σ � 1) the gmode has no effect on the f
mode. However, the gmode bifurcates only as a result of f mode bifurcation. In this
respect one can say that the Rouse mode freezing follows the “host–slave” scenario.
In Section 9.7 we show that this scenario holds true for the whole numerical solution.

9.7 Numerical analysis

In this section we present the numerical solution of (9.103)–(9.104) in the full
range of the Rouse mode index j values and for increasing values of the disorder
strength �, which here acts as a control parameter. As usual in mode coupling
theory, complete information about the static correlator, Cst(p), is a necessary
prerequisite for studying the non-ergodicity equation. In this respect, for a chain of
given length, we have numerically solved the static equation (9.83) for Cst(p), in
which the virial coefficients and the disorder strength � are given. By making use
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of the fast Fourier algorithm we implement the bisection procedure between two
trial profiles of Cst(p) until convergence to the final solution is achieved. After that
we use Cst(p) as a static input for the non-ergodicity equation (9.103) and (9.104).
Equations (9.103) and (9.104) are solved simultaneously for chain lengthN = 128
as an example.

9.7.1 Bifurcation diagram

We found that for small values of the disorder strength� the only solution of (9.103)
turns out to be the trivial one, i. e.f (p) = 0.As the disorder strength increases above
a critical value �crit, we observe that the first and all other modes simultaneously
become frozen, i. e. they are characterized by a non-vanishing value of the non-
ergodicity function f (p) at the same�c. The resulting bifurcation phase diagram is
shown in Fig. 9.10.As may be seen from Fig. 9.10 all modes bifurcate continuously
(A-type), but bifurcations of higher modes (j = 2, 3, . . . ) are smoother than the
first mode bifurcation. This is qualitatively consistent with the result of the toy
model analysis from the previous section. Moreover, one can see that the higher is
the Rouse mode index the smoother is the bifurcation. This creates some numerical
difficulties concerning the precise location of the critical point �crit of the higher
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i. e. j = 1, . . . , 5. The freezing of the modes appears above a critical value of
�crit ≈ 0.13.
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modes. When the accuracy of a non-vanishing value of f (p) close to zero is not
sufficiently high, the results in Fig. 9.10 can be interpreted that the different chain
modes freeze at different values of the disorder strength (see Fig. 9.11).

The critical value �crit ≈ 0.13 should be correlated with the radius-of-gyration
diagram in Fig. 9.12. It can be clearly seen that at a disorder strength comparable
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Fig. 9.13. Comparison of the freezing diagram for coiled and globule states. The
two curves correspond to conditions with different bare virial coefficients, namely
v = 0 (solid line) and v = 0.5 (dashed line).

with this value the system is approaching the radius of gyration that corresponds
to the globular phase [215]. We recall that the static input information which is
embraced by (9.103) is determined by the effective virial coefficient veff = v−�,
where v is a bare second virial coefficient. That is why the bifurcation diagram
in Fig. 9.10 corresponds to the Rouse mode freezing in the globule phase. It is
interesting to explain how the Rouse modes freeze in the coiled state. To do so we
have driven the system to the coiled state by increasing the value of the bare virial
coefficient to v = 0.5 while solving (9.103). The result of the mode freezing is
shown in Fig. 9.13 and is compared with the previous case (where v = 0). It can
be seen that the freezing of the modes in the coiled state at least for small mode
indices (0 < j < 10) occurs at higher values of �.

9.8 Contribution to the modulus

Obviously the dynamics of the localized chains contribute to the elastic and vis-
coelastic properties of the elastomer. The present theory allows some preliminary
predictions. We calculate therefore the contribution of the localized chains to the
modulus in the limiting time scales τ1 < t < τ1N2. As we stated above, the theory
suggests a non-trivial stretched exponential of the form
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Fig. 9.14. The prediction for the scaling of the frequency dependence of the mod-
ulus can be seen for high filler concentrations. There a huge amount of the matrix
is localized around and filler clusters and gives G(ω) ∝ ω3/8.

G(t) ∝
∑
q

exp

{
−
(
b3

�

)
�(q)

(
t

τ1

)β}
, (9.108)

where the value of β = 3/4 is independent of the disorder. The quantity � is
given by

� ∝ τ1q2. (9.109)

Here we present only a scaling estimate of the modulus. The results for the storage
modulus can be summarized as follows:

G′(t) ∝
(
�

b3

)1/2 (
t

τ1

)−3/8

, (9.110)

which transforms into the frequency dependence

G′(ω) ∝ τ1
(
�

b3

)1/2

(ωτ1)
3/8 . (9.111)

This is the contribution to the modulus from the localized chain dynamics. Note that
the disorder contribution to the dynamic modulus shows a very different scaling with
respect to the frequency than in the standard Rouse or reptation model (see [62]).
In the Rouse model the modulus scales with the frequency as GRouse ∝ ω1/2. The
simple scaling prediction of eq. (9.110, 9.111) agree very well with experimental
results, as shown in Fig. 9.14.



10

Filler–filler interaction

10.1 Filler networking in elastomers

10.1.1 Flocculation of fillers during heat treatment

For a deeper understanding of filler networking in elastomers it is useful to mon-
itor structural relaxation phenomena during heat treatment (annealing) of the
uncrosslinked composites. This can be achieved by investigations of the time devel-
opment of the small-strain storage modulusG′

0 that provides information about the
flocculation dynamics [138,221–224]. Figure 10.1(a) shows the time development
of the small-strain storage modulusG′

0 at 0.28% strain and 1 Hz of three elastomer
composites containing 50 phr carbon black of different grades. The sample with the
smallest primary aggregate size (N115) exhibits the most pronounced increase of
the storage modulus with annealing time, which levels out after about 10 minutes in
this example. The extent of modulus gain reduces with increasing primary aggre-
gate size and the N550 sample shows almost no effect. With increasing dynamic
strain amplitude, as depicted in Fig. 10.1(b), the storage modulus decreases by
about one order of magnitude (the Payne effect). Thus, it appears that during heat
treatment a weakly bonded superstructure develops in the systems which stiffens
the polymer matrix, indicating that the increase of the modulus results from floc-
culation of primary aggregates to form secondary aggregates (clusters) and finally
a filler network. The dependence of the effect on the primary aggregate size is in
accordance with the picture of a kinetic aggregation process.

Figure 10.2(a) shows the time development of G′
0 of S-SBR melts of variable

molar mass filled with 50 phr carbon black (N234), when a step-like increase of
the temperature from room temperature to 160 ◦C is applied. Figure 10.2(b) shows
a strain sweep of the same systems after 60 minutes annealing time. Depending on
the molar mass Mw, as indicated, a pronounced increase of G′

0 is observed in the
first minutes that levels out almost to a plateau value at longer annealing times. In
agreement with the studies of Wang et al. [224], the largest plateau value is observed

153
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Fig. 10.1. Time development of (a) the small-strain storage modulus (0.28% strain,
1 Hz) of S-SBR (VSL2525) composites without curatives with 50 phr carbon black
during heat treatment at 160 ◦C for various grades, as indicated, and (b) the strain
dependence of the storage modulus of the same samples after heat treatment for
20 minutes.

Fig. 10.2. Time development of (a) the small-strain storage modulus (0.28% strain,
1 Hz) of uncrosslinked S-SBR composites with 50 phr N234 during heat treatment
at 160 ◦C for various molar masses, as indicated, and (b) the strain dependence
of the storage modulus of the same samples after heat treatment for 60 minutes.
From [138].

for the lowest molar mass, confirming that the increase of the modulus results from
flocculation of primary aggregates to form secondary aggregates (clusters). With
increasing dynamic strain amplitude, as depicted in Fig. 10.2(b), a stress-induced
breakdown of the filler clusters takes place and the storage modulus decreases by
about one order of magnitude (the Payne effect). With respect to the variable molar
mass of the systems, Fig. 10.2 shows a cross-over of the moduli with increasing
strain, indicating that a larger molar mass stabilizes the filler–filler bonds more
effectively. This can be related to the overlapping action of tightly bound polymer
chains in the contact area between adjacent filler particles.
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Fig. 10.3. Schematic presentation of a flocculated carbon black cluster in a poly-
mer matrix with characteristic gaps between adjacent particles. The impact of gap
size on the stiffness of filler–filler bonds is apparent. The black disks symbolize
primary carbon black aggregates.

Based on this kind of flocculation studies and additional dielectric investiga-
tions a model of the structure–property relationships of filler–filler bonds in a bulk
rubber matrix has been developed [138, 225]. The basic features are illustrated in
Fig. 10.3. According to this model, the stiffness of filler–filler bonds is governed
by the remaining gap size between contacting particles. This, in turn, depends on
the ability to squeeze out the bound polymer chains from the contact area under
the attractive action of the depletion force between the filler particles. This process
leads to a stiffening of filler–filler bonds. This is favored by several factors, e.g. a
high ambient temperature, low molar mass, small particle size, weak polymer–filler
and strong filler–filler interaction.

The mechanical connectivity between the filler particles is provided by a flexible
nanoscopic bridge of glassy polymer, resulting from the immobilization of the
rubber chains in the confining geometry close to the gap. Since the stiffness of the
bonds transfers to the stiffness of the whole filler network, the small strain elastic
modulus of highly filled composites is expected to reflect the specific properties
of the filler–filler bonds. In particular, the small-strain modulus increases with
decreasing gap size during heat treatment as observed in Figs. 10.1(a) and 10.2(a).
Furthermore, it exhibits the same temperature dependence as that of the bonds, i. e.
the characteristic Arrhenius behavior typical of glassy polymers.

In the case of carbon-black-filled diene–rubber composites the polymer–filler
interaction is generally quite strong due to the high affinity between the π -electrons
at the carbon surface and those in the double bonds of the chains. According to the
site energy distribution function estimated in Section 7.2, the typical interaction
energy between carbon black and ethene, representing a single double bond, lies
between 10 and 35 kJ/mol and depends on the grade number. A more practical
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procedure for characterizing the polymer–filler interaction in elastomer composites
is the estimation of bound rubber i. e. the amount of polymer tightly bound to the
filler surface after mixing [226]. It is well known that this amount increases with the
molar mass of the polymer and the specific surface area of the filler particles, but
is also affected significantly by the surface activity, given, e.g., by the site energy
distribution function of the filler obtained with polymer analogous gases [226–229].
A further effect comes from the preparation conditions of the composites, e.g.
mixing time [230], since the formation of bound rubber is a slow dynamical process
that requires time [138].

10.1.2 Kinetics of filler structures under dynamic excitation

Despite the technological significance of the Payne effect in rubber applications, this
strain-induced softening phenomenon is often regarded as a special area of physics
specific to filled elastomers. However, dynamic strain-induced non-linearity in the
modulus of filled rubbers shows a striking similarity to what is known about the glass
transition of solid materials and the jamming transition of granular materials. This
analogy stems from the fact that shear strain in dynamic mechanical measurements
introduces fluctuations in a filler network by forcing the system to explore different
configurations. Such fluctuations can be described by an “effective temperature”
that has many of the attributes of a true temperature; in particular it is proportional to
the strain amplitude [231,232].Thus, with respect to strain filled rubbers will display
many unusual phenomena that are usually observed in glass-forming materials,
including asymmetric kinetics, cross-over effects, and glass-like kinetic transitions.

The asymmetric kinetics in filled rubbers is displayed in Fig. 10.4. The fig-
ure shows that the modulus of the filled rubber after abruptly increasing to a
certain strain amplitude approaches the steady state faster than that of a rubber
released from the higher strain to the lower strain amplitude. Figures 10.5 and 10.6

Fig. 10.4. Stiffness response of a filled rubber (50 phr carbon black) on repeated
amplitude steps. From [233].
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Fig. 10.5. Dynamic-mechanical test program with systematic changes of the strain
amplitude during sinusoidal excitations of rubbers in the unidirectional compres-
sion mode. Measurements were performed at room temperatures. The periods of
basic loading between changes of the amplitude are 30 s; the corresponding load-
ing conditions are 30 Hz, 20% preload and ±0.2% dynamical deformation. The
maximal loading increases up to 10%. The frequency during the corresponding
maximal loading states was 10 Hz.

Fig. 10.6. Response of the dynamic elastic modulus according the test program
in Fig. 10.5. For unfilled SBR and 50 phr filled samples containing fillers of dif-
ferent reinforcing activity (carbon blacks N990, N660, N339 according to ASTM
nomenclature and precipitated silica with and without coupling agent).

show how different kinds of fillers in the same rubber matrix (a styrene-butadiene
copolymer (SBR) emulsion) display different “fingerprints” as a reaction against
a dynamic–mechanical test program with abrupt changes of the strain amplitude.
Such “fingerprints” have importance in the laboratory-based evaluation of filled
rubber materials in the rubber and tire industry.
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Figure 10.4 shows the stiffness response on repeated amplitude steps (frequency
10 Hz, room temperature). In a very simple and naive approach we may assume
that the rate of contacts (say N ) contributing to filler–filler interactions after the
sudden breakdown due to a step-like increase (�ε) of deformation amplitude is
proportional to the square of the concentration of the units.These units correspond to
filler aggregates forming successively new agglomerates, respectively the (infinite)
filler network [233]. Then,

dN

dt
= kN2 , (10.1)

where k is a rate constant. This type of growth is described as a second-order
reaction of type I. We note that it describes not the complete asymmetric behavior
of the modulus but the recovery process. The final state would be reached as N =
N∞ at t → ∞. We assume that the corresponding excess elastic modulus E ≡
|E∗| (≈ E′) (or similarly the shear modulus G ≡ |G∗| (≈ G′)) is proportional
to the increase of new contacts, where for t = t0 : N = N0 and for t → ∞ :
N = N∞. Here, N0 is the residual number of filler–filler contacts just after the
breakdown where the amplitude increases stepwise from ε0 to ε0 +�ε. Therefore,
this number N0 can be regarded as the starting point of the recovery process. The
number of contacts after total recovery is N∞, corresponding to a small (nearly
zero) deformation amplitude.

We note that describing the recovery effects by a second-order kinetics in rub-
ber systems is not unusual. The filler–filler interactions have been attributed to the
formation of “rubber-like junctions” as depicted in Fig. 10.3 with a glassy layer
between two neighboring aggregates forming larger clusters [234]. This layer for-
mation is closely connected with the formation of bound rubber on filler particles.
The formation of bound (polydimethyl siloxane, PDMS) rubber on silica has been
investigated and a second-order kinetic process was found [235].

Experimentally, after a certain time �t∗ = t1 − t0 the deformation amplitude
again increases step-wise from ε0 to ε0 + �ε. As a consequence, the value N∞
will not be reached. According to the assumptions of a second-order reaction type
(equation (10.1)) and the direct relation between the number of contacts and the
modulus contribution, the following equation for E ≡ |E∗| immediately follows:

dE (ξ)

dξ
= k

(
E∞ − E (ξ)

E∞

)2

. (10.2)

Equation (10.2) yields the solution for modulus recovery:

E (�t) = E∞
(

1 − E∞
k�t + C

)
, (10.3)
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whereC (Pa) is a constant of integration. The rate constant k (Pa/s) depends on the
filler type, temperature and filler loading. Equation (10.1) is the “power saturation”
case of the hyperlogistic differential equation which is of relevance for aggregate
growth in soft systems [236]. Within this very general background, the exponent 2
in (10.1) characterizes the autonomous (but forced by restrictions) saturation in the
aggregated growth process and plays the role of complexity measures. The more
this exponent deviates from 1, the higher is the cooperativity within the considered
system.

In the literature, there are two other systems that are known to show the same
asymmetric behavior as their thermodynamic properties approach equilibrium. One
is the structural relaxation process in glassy materials, most notably the relaxation
and recovery of enthalpy and volume [237, 238]. In that case, the specific volume
of a glass after abrupt cooling to a temperature T is known to approach equilibrium
faster than that of a glass heated to the same temperature [237]. The reason is that
the cooled sample arrives at temperature T with a larger free volume than the heated
glass. Another situation with asymmetric relaxation behavior is density fluctuation
in a vibrated granular material [239–244]. In this case, the granular material is in
its jamming state. Once a void large enough to contain a grain is created, it will
quickly be filled by a new particle. The rate of density settling from above or below
equilibrium [239] depends on the rate of void creation and the initial density of
the material. Nevertheless, in both cases, the free volume plays a crucial rule in
determining the rate at which equilibrium is approached. Obviously, these two cases
share a common physics ground [242–244].

As already noted, more complicated features are observed in dynamical loading
programs like that shown in Figs. 10.5 and 10.6. Such experiments also prove the
so-called cross-over effect. Wang and Robertson [231] demonstrated this effect
with the following rubber testing program: a highly filled rubber was loaded with a
dynamic strain amplitude, say γ0 = 1%, for a period of time t1 insufficient to reach
equilibrium, and then the load was changed to another amplitude, say γ1 = 7%,
and the system was allowed to equilibrate. They showed that the storage modulus
initially decreases with time and crosses over the actual equilibrium, leading to a
surprising minimum that depends upon the prior history of loading applied to the
sample.After that, the storage shear modulusG′ slowly approaches the equilibrium
value. This phenomenon again has only been observed in glass-forming materials
in the glassy state [237, 238], and the behavior is usually referred to as a cross-
over effect. Loading experiments with rubbers show that granular materials (e.g.
fillers) may also display such a cross-over effect if they are impregnated in a soft
elastomeric matrix.

The existence of remarkable similarity between dynamic strain-induced non-
linearity in the modulus of filled rubbers, the physics of the glass transition of
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Fig. 10.7. A schematic drawing of the jamming phase diagram. From [232].

glass-forming materials, and the jamming transition of vibrated granular materials
has important implications with regard to our understanding of the strain-induced
non-linearity of filled rubbers. The similarity stems from the fact that filler particles
in the rubber matrix agglomerate and tend to form filler networks. The agglomer-
ation and network formation of the filler in an elastomeric matrix are typically
jamming processes that are analogous to glass formation. It is reasonable that dif-
ferent routes, via strain, volume fraction, and temperature changes, can effectively
lead filled rubbers to the same jammed state.Alarge unified physical picture describ-
ing the dynamics in the frustrated systems would be a jamming phase diagram that
is able to address the glass and jamming transitions [231,232]. Based on the experi-
mental observations, a unified diagram was proposed and is shown schematically in
Fig. 10.7 [231,232].The phase diagram for isoviscosity lies in the vertical (1/ )−T
plane. The line that separates the jammed solids and unjammed liquids generally
represents the glass transition. The classical empirical equation proposed by Doolit-
tle and Doolittle [245] describes approximately the location of this transition. The
transition line marks a critical viscosity of the system that in practice is impossible
to track in the time scales accessible to experiment. The phase diagram for the iso-
energetic state lies in the horizontal (1/ )−σγ plane. The isoenergetic behavior
comes from experimental observation of various particle-filled systems [232]. The
effects of the temperature on the jamming transition are illustrated in the T − σγ
plane. The magnitude of the energy is a function of the elasticity of the jammed
fractal structure and the interaction strength between filler particles. The experi-
mental data in [232] show that σcritγcrit increases as temperature decreases. The
transition line marks a critical mechanical energy needed to dejam the system.

Some years ago several authors [242–244] also proposed a phase diagram for
jamming. In their phase diagram, however, other axes were selected, i. e. the tem-
perature T , density  , and the shear stress σ ; T and  are traditional axes for
phase diagrams, but σ is not. The physical origin of selecting σ for the phase dia-
gram is not clear, though mode-coupling theories have attempted to include the
shear stress [246]. In the studies of Wang and Robertson [231, 232] it was found
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experimentally that using σγ instead of σ as the critical parameter can significantly
simplify the phase diagram. It is also noteworthy that this mechanical energy σγ ,
like the thermal energy kT , is theoretically derivable from Hamiltonians, which
makes it a natural choice for an axis when constructing phase diagrams.

To summarize, we have discussed how the non-linearity in the modulus of filled
rubbers simply reflects a jamming–unjamming process for fillers in rubber matrices.
The agglomeration of filler in an elastomeric matrix shares a common basis in
physics with the jamming process and glass formation. Several implications for the
behavior of filled rubbers under complex dynamical service conditions (e.g. for tire
tread compounds, motor mounts, etc.) can now be better understood. For example, it
was found experimentally that aging at a fixed oscillatory strain produces a “hole”
in the unjamming loss modulus (G′′) spectrum which is localized near an aging
strain [247].

10.2 Dynamic small- and medium-strain modeling – the Payne effect

10.2.1 The Kraus model

The Kraus model [35] provides a fairly good quantification of the Payne effect
though it contains some rather arbitrary assumptions. The starting point is the idea
that the dynamical breakup of the carbon black network can be described by a
deagglomeration and an (re) agglomeration rate. Then it is assumed that

(a) the deagglomeration (breakdown) rate Rb is proportional to the number of remaining
contacts N between carbon black aggregates and to some power m of the deformation
amplitude,

Rb = kba
mN , (10.4)

(b) the reagglomeration rate Ra in a similar way is proportional to the number of broken
contacts N0 − N (where N0 is the total number of contacts within the carbon black
network at zero deformation)

Ra = kaa
−m (N0 −N) . (10.5)

Here kb and ka are rate constants. At equilibrium Ra = Rb, the equations can be
solved to give

N = N0

1 +
(
a
ac

)2m
, (10.6)

where ac = (ka/kb)
(1/2m) is for the characteristic ratio of the rate constants.

Both assumptions (a) and (b) can be criticized:

(a) Kraus himself pointed out that the deagglomeration rate seems more likely to depend
on the deformation rate than on the amplitude. However, this would lead to a strong
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frequency dependence of the Payne effect which is not observed experimentally
[182, 248]. Therefore the assumption (10.4) for the breaking rate is justified only by
the success of the results.

(b) It is not immediately obvious that the rate of reagglomeration should (as a function of
the amplitude) decay with the same powerm that characterizes the increase of the deag-
glomeration rate. Instead, one would expect a more general formRa = kaa

−n(N0 −N)
with an exponent n possibly different from m. This would lead to

N = N0

1 +
(
a
a′

c

)m+n , (10.7)

with a′
c = (ka/kb)

1/(m+n). However, this does not affect the Kraus model because the
exponent m is only a fit parameter without specification or relation to experimentally
measured quantities.

Continuing, the Kraus model assumes that the excess storage modulus is
determined by the momentarily existing contacts,

G′(a)−G′∞
G′

0 −G′∞
= N

N0
= 1

1 +
(
a
ac

)2m
, (10.8)

while the excess loss modulus is proportional to the deagglomeration rate Rb

G′′(a)−G′′∞ ∼ kbamN ∼ am(G′
0 −G′∞)

1 +
(
a
ac

)2m
. (10.9)

This results in a somewhat unclear way from the idea that the dissipation of
energy is coupled with the breakup of the filler aggregates. Since the maximum of
the loss modulus G′′

max is reached at a = ac, the excess loss modulus can also be
written as

G′′(a)−G′′∞
G′′

max −G′′∞
=
(
a

ac

)m 2

1 +
(
a
ac

)2m
. (10.10)

Now all information about the deformation process is contained in the parameters
m, ac, G′

0, G′∞ and G′′∞. The exponent m characterizes the functional form of the
dynamic moduli G′ and G′′.

The Kraus model has been successfully applied several times to the empirical
description of the dynamic-mechanical behavior of carbon-black-filled vulcanizates
[249, 250]. The exponent m has been found to be universal: it is to a large extent
independent of temperature, frequency, carbon black content, and filler type, see
Fig. 10.8. A fit to experimental data yields the value m ≈ 0.6.
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Fig. 10.8. Results for the Kraus model parameterm, from [249]. Unless indicated
otherwise, the data refer to butyl rubber filled with 45 phr carbon black N339 at a
frequency of 1 Hz and temperature of 25 ◦C.

The “universality” of filler aggregation, as indicated by the independence of
exponent m of concentration, frequency, and a wide range of temperature, is sup-
ported further by measurements [251] on elastomeric systems filled with a strongly
crosslinked organic material instead of carbon black. Here the Payne effect is found,
see Fig. 10.9, and the exponent again has the value m ≈ 0.6.

Investigations by Ulmer [252] have furnished discrepancies in the loss modulus
between experimental results and the expression due to Kraus. The deviations can
be eliminated by introducing an additional empirical term, but this will not be
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Fig. 10.9. Amplitude dependence of the storage modulus of SBR 1500 with an
organic filler (weak coupling of rubber matrix to the filler) at 20 oC and 1 Hz.

discussed further here, as the present work is mainly concerned with the basic
problems of theoretical modeling.

Indeed, the most important shortcoming of the Kraus model is fundamental in
nature: the parameters m and ac are purely empirical, not based on the structure of
the filler network. Therefore the Kraus model is not able to provide an explanation
of the universal features of the parameters, especially the exponent m.

10.2.2 The viscoelastic model

In the following it is shown that the phenomenological result from the Kraus
model [8,35,228] can be derived from a physical model that uses realistic assump-
tions about the filler network structure. This new model is based essentially on
the assumption that the clusters forming the filler network have a self-similar, i. e.
fractal, structure, which can be described by correlations similar to those in the
percolation model. This is not totally correct inasmuch as the cluster growth for
carbon black concentrations above the gel point of the filler network is governed
by a kinetic cluster-by-cluster aggregation process [181]. Therefore the model pre-
sented here is restricted to filler concentrations near the gel point, which is the case
for most applications. At lower concentrations a cross-over to pure rubber behavior
is expected.

The model introduced in the following enables structure–property relations that
reproduce the results of the phenomenological Kraus model to be derived from
simple assumptions about the cluster structure. The main idea is that the non-linear
behavior of the filled system at dynamical deformation can be described by a vis-
coelastic model with elements which are non-linear in the deformation amplitude.
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Fig. 10.10. Visualization of how the non-linear behavior of the filled system under
dynamical deformation can be described by a viscoelastic model with elements
which are non-linear in the deformation amplitude.

To this end we choose as a simple approach an extension of the so-called Zener
model [253] which consists of a spring-dashpot (Maxwell) element in parallel with
several other springs. Figure 10.10 shows how this model corresponds to the inter-
pretation of the Payne effect mentioned above: the contributions of the rubber
matrix, the filler–rubber interaction and the hydrodynamic reinforcement are rep-
resented by linear springs, as they can be assumed to be linear elastic at the small
deformations that are of interest here; the contribution of the filler agglomerates
consists of an elastic part and a viscous part, both of which are non-linear with
respect to the amplitude and are taken as a model of the energy storage and dissi-
pation, respectively, during the dynamical breakup of the filler clusters. Frequency
ω and temperature T are considered to be constant.

The viscoelastic moduli of the whole system read [253]

G′(a) =
4∑
i=2

Gi + G1(a)

1 +
(
G1(a)
ω η(a)

)2
, (10.11)

G′′(a) = G1(a)
2

ω η(a)

1

1 +
(
G1(a)
ω η(a)

)2
. (10.12)
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Thus the frame of the viscoelastic model is phenomenological in nature, but the
non-linear elements G1(a) and η(a) are determined from the mesoscopic filler
structure. They can be expected to have the general formG1(a) = G1+G0(a)with
G0(a) = G0a

xe and η(a) = η0a
xv , whereG0,G1, and η0 are constants depending

on the material properties and the experimental setup (e.g., the disappearance of
the Payne effect at low filler concentrations, i. e. the transition to the linear elastic
behavior of the rubber matrix, should mainly be governed by the decrease of the
constantG1 = G′

0 −G′∞ at diminishing volume fraction). However, the universal,
i. e. material-independent, structure of the filler clusters is reflected in the exponents
xe and xv. In the following we restrict our considerations to these exponents, i. e.
the scaling behavior of G1(a) and η(a).

The basis for the determination of the scaling behavior is the possibility of char-
acterizing the self-similar structure of the filler clusters by means of universal fractal
exponents. In principle, we expect the filler agglomerates to show multifractal fea-
tures because of their statistical nature. But for our purpose characterization by
two exponents should be sufficient: apart from the mass fractal dimension df , a
measure of filler cluster connectivity or degree of branching is necessary. Here we
choose the minimum path dimension C which relates the geometrical distance R
between points on the cluster with their shortest path length L along the cluster
structure [183]:

L

b
�
(
R

b

)C
, (10.13)

where the filler agglomerates are assumed to consist of smallest units of size b,
given by the aggregate size.

As mentioned in Section 10.1, the best description of the carbon black agglom-
erate structure is obtained with the model of kinetic cluster–cluster aggregation. In
this case the fractal exponents are df ≈ 1.8 and C ≈ 1.3 [254,261].

Our method is modeled on that of Witten et al. [255], who derived a similar
scaling relation for the elastic properties of a filled system in the limit of large
extensions. These authors started from the idea that the structure of deformed filler
clusters can be described by a blob, as known from polymer physics (see e.g. [63]):
on length scales above the blob size ξ , the system is homogeneous (the stress is
distributed uniformly), on length scales smaller than ξ the stress means only a small
perturbation.

This concept can be employed here with only one modification: we assume that
the filler clusters are not stretched when subjected to increasing strain but rather
are broken up almost immediately into smaller and smaller units, the stress being
supported by the rubber matrix. Thus the blob extension can be identified with the
(deformation-dependent) cluster size.
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In a first attempt to model the Payne effect [179], the cluster size ξ was assumed
to be inversely proportional to the external force. This is similar to the well-known
assumption used in the original blob model of Pincus in polymer physics (see,
e.g., [63]), where the deformation behavior of excluded volume chains is computed.
Furthermore, the cluster deformation was neglected totally. In spite of such strong
simplifying assumptions this model gives a hint of how the universal exponent m
of the Kraus model can be obtained from the filler agglomerate structure. However,
the main disadvantage of the model is the lack of an explicit mechanism for the
dissipation of energy (η(a) is assumed to be constant). Therefore the form of the
loss modulus cannot be described correctly.

Here we go beyond this model by taking into account the energetic balance
between cluster deformation in the direction of elongation (uniaxial elongation)
and perpendicular to it (lateral compression). According to Witten et al. [255] the
length h of a cluster ensemble created by the breakup of an agglomerate with
extension ξ0 is given by the number n = N0/N of clusters along the minimum path
(where N0 � (ξ0/b)

C is the total number of filler aggregates and N � (ξ/b)C is
the number within a cluster) times the cluster size ξ . With (10.13) this means

h

ξ0
� ξ

ξ0

N0

N
�
(
ξ0

ξ

)C−1

.

Because the amplitude a is proportional to the deformation, the width w of the
cluster ensemble is obtained as w � ξ0a

−1/2 for uniaxial deformation in d = 3.
The volume occupied by the clusters is hw2 � ξ3(ξ0/ξ)

df . These two expressions
together lead to a relation between cluster size and deformation amplitude:

ξ

ξ0
∼ a−1/(C−df +2) . (10.14)

Now the scaling relations for the non-linear elements of the viscoelastic model can
easily be determined: the viscosity as a measure of energy dissipation in analogy to
the friction coefficient [62, 63] is taken to be proportional to the cluster extension,
η ∼ ξ/ξ0, leading to

η(a) � η0 a
−1/(C−df +2) . (10.15)

The energyU stored in a volume ξ3
0 results from the energy stored in a cluster of size

ξ (which is proportional to (ξ0/ξ)C) times the total number of clusters (ξ0/ξ)df ,
yielding U ∼ a(C+df )/(C−df +2) with (10.14). For G0(a) ∼ (1/a)(∂U/∂a) this
finally leads to a scaling relation for the non-linear part of the elastic modulus of
the filler:

G0(a) ∼ a

3df−C−4
C−df+2 . (10.16)
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Now, if the numerical values of the fractal dimensions df ≈ 1.8 and C ≈ 1.3 for
the case of CCA clusters are inserted, the exponent assumes the value 0.066. This
means that the elasticity of the filler clusters is practically linear in the amplitude
regime between 0.001% and 10% relevant for the Payne effect. Therefore in the
following we set G1(a) ≈ G1 +G0 for comparison with the Kraus model.

These results for the elastic and viscous parts of the filler network, (10.11), lead
toG′∞ =∑4

i=2Gi andG′
0 −G′∞ = G1 +G0. This together with (10.12) produces

the excess moduli

G′(a)−G′∞
G′

0 −G′∞
= 1

1 +K2a2/(C−df+2)
, (10.17)

G′′(a)
G′

0 −G′∞
= K a1/(C−df+2)

1 +K2a2/(C−df+2)
, (10.18)

where K = (G1 + G0)/(ω η0) is a constant containing the system parameters
(frequency, temperature, material properties).

Obviously the excess moduli (10.17) and (10.18) derived from the viscoelastic
model have the same functional form as the results (10.8) and (10.9) of the Kraus
model, if the form exponent m is written as

m = 1

C − df + 2
. (10.19)

Thus, after insertion of the numerical values for CCA clusters, df ≈ 1.8 and
C ≈ 1.3, the form exponent is calculated asm ≈ 0.66, compared to the experimen-
tal valuemexp ≈ 0.6.The slight discrepancy can be explained by the approximations
made within the viscoelastic model: first, the clusters are assumed as monodis-
perse; second, the CCA model is only a first approach to the true structure of filler
agglomerates.

The Zener model applied here should be taken as an idealized approach, cho-
sen with regard to our main point of interest, i. e. the modeling of the amplitude
dependence. Therefore we do not expect the model to reproduce other features of
filled systems in a similarly realistic way. In the first instance the model parameter
η0 cannot clearly be mapped on experimentally found quantities, since it is itself
expected to depend on the frequency ω of periodic deformation – otherwise the
frequency dependence of the elastic moduli, which is known to be weak experi-
mentally [182, 248], would be overestimated by (10.17) and (10.18). In order to
gain a full picture, realistic forms for the rubber behavior and the filler–rubber
interaction have to be included in the viscoelastic model instead of the Hookean
springs.
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Nevertheless, with the viscoelastic model in its present simple form we have
been able to derive the characteristic – hitherto empiric – form of the amplitude
dependence of the dynamic elastic moduli from the structure of the filler network.
Thus the model confirms the universality of filler aggregation to be responsible
for the universality of the exponent m (also in the case of fillers other than carbon
black, see Fig. 10.9), and in this way fills a gap in our understanding of the Payne
effect.

The main advantage of this model is that it allows the characterization of strain
sweep experiments, in the sense that the exponent used in the Kraus model does
not depend on the nature of the filler particles. Hence we expect the same behavior
for all types of filler particles, independent of their special surface interactions, as
long as they form clusters.

10.2.3 The van der Walle–Tricot–Gerspacher (WTG) model

Van der Walle, Tricot and Gerspacher [36] developed a weighted aggregate contact
model to describe the low-strain dynamic properties of filled rubbers. In this first the
strain dependence of the storage and loss moduli of an elementary two-aggregate
system are calculated. Then the complex moduli of the macroscopic system are
derived by introducing a weighting function W(a), which determines the relation
between G′(a) and G′′(a) (a being the strain amplitude).

The WTG model is restricted to the investigation of the non-linear behavior of
the interaggregate contacts. The force between interaggregate contacts is assumed
to be of the London–van der Waals type. It is not the precise form of the force which
is important for the model, but the existence of two stable equilibrated states for
a pair of neighboring aggregates, i. e. a bound and an unbound state, respectively.
Then the decrease of the storage modulus at cyclic deformation can be explained
by the breaking of aggregate contacts, which is equivalent to the transition from
the bound to the unbound state, whereas the maximum of the loss modulus results
from friction effects/dissipation/slippage in the polymer matrix during the transition
between the stable states.

The complex modulus g∗ of an idealized model, which contains only two point-
like aggregates, is calculated from the hysteresis cycle of the force F(a) between
aggregates as a function of amplitude. Let ab be the deformation amplitude above
which the contact between the two aggregates breaks. For a < ab, there is no energy
loss since the hysteresis has not yet taken place. At the onset of the hysteresis cycle
(at a = ab) the energy loss, i. e. the area enclosed by the hysteresis cycle, can be
approximated by El ∼ g0ab�a, where g0 is the slope of the increasing part of
force F(a) and �a is the width of the hysteresis cycle.
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In a linear elastic system the energy loss, averaged over a deformation cycle, is
connected with the loss modulus through the relation G′′ ∼ a−2El [253]. Using
this analogy, van der Walle et al. obtained the loss modulus of the elementary pair
of aggregates,

g′′(a, ab) =
⎧⎨⎩

0 for a ≤ ab

g0
�a

ab

a2
b

a2
for a > ab

.

Estimation of the storage modulus by linear regression ofF(a) on the interval [0, a]
gives

g′(a, ab) =
{
g0 for a ≤ ab

g0 a
3
b/a

3 for a > ab
.

Thus the microscopic viscoelastic function g∗(a, ab) = g′(a, ab) + ig′′(a, ab) for
the idealized model is determined as a function of the amplitude, but nothing is
known about g0 and �a.

Now in the composite there is a distribution of the orientation and separation
distances of the aggregate contacts with respect to the direction of the applied strain.
As a result, the composite can be considered as a collection of many elementary
models, each having different ab. This distribution of breaking amplitudes is taken
account of by introducing a functionN(ab)dab, which gives the number of links that
break when the amplitude is increased from ab to ab + dab. The two parameters
g0 and �a also depend on ab since they differ for various aggregate contacts.
As the effect of a large number of weak links is indistinguishable from that of a
small number of strong links, it is convenient to combine g0(ab) and N(ab) into a
weighting factorW(ab) = g0(ab)N(ab). The dynamic moduli are then given by

G′(a) = G′∞ +
∞∫
a

dabW(ab)+
a∫

0

dab
a3

b

a3
W(ab), (10.20)

G′′(a) = G′′∞ + h

a2

a∫
0

dab a
2
b W(ab) , (10.21)

where the ratio h = �a/ab of the width of hysteresis and the breaking amplitude
is taken to be constant. G∗∞ = G′∞ + iG′′∞ designates the constant contribution of
the elastomer matrix.

The fit to experimental data takes place as follows: from experimental curves of
G′′(a) the weighting function W(ab) and the constant h are determined. Then a
theoretical form G′

th(a) of the storage modulus can be calculated, which is to be
compared with the measured values G′

exp(a). The agreement between calculated
and measured values of the storage modulus turns out to be fairly good for all types
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of carbon black. Thus the WTG model very clearly confirms the interdependence
of storage and loss modulus at small deformations. However, the WTG model
provides no insight into the relation between filler structure and dynamic mechanical
properties, as only the elementary pair of aggregates shows universal and material-
independent features.All information concerning the filler agglomeration and other
material properties is contained in the fit parametersW(ab) and h, which are purely
empirical. The weighting function can be qualitatively explained as a measure of the
number of remaining contacts during cyclic deformation (it decreases with growing
amplitude as the number of broken contacts increases), but a more precise form of
this relation is not available so far.

10.2.4 The links–nodes–blobs (LNB) model

The model developed by Lin and Lee [37,268] leads to expressions for the moduli
that are quite similar to those from the WTG model, surpasses it by establishing
the connection between the involved weighting function and the elasticity of the
percolating filler network. The starting point is the assumption that the filler network
can be described in terms of the links–nodes–blobs (LNB) model, which is well
known from percolation theory [256]:

• The blobs correspond to dense filler clusters which are rigid enough not to be deformed
throughout the strain cycle.Ablob therefore can be a primary aggregate (this is the smallest
possible size) or a cluster formed by coagulation of primary aggregates, occluded rubber,
and bound rubber.

• The links correspond to tenuous filler bonds between dense filler aggregates (blobs),
consisting of singly connected bonds in terms of percolation theory. They are deformed
under tension, bending and/or torsion, and even tend to break off when some failure strain
is applied. The smallest link corresponds to a direct contact bonding between two dense
filler aggregates.

• Blobs and links together build up so-called LNB chains, in which the connecting points
are called nodes. The average length ξp of an LNB chain between two nearest nodes
corresponds to the critical length of percolation. Therefore, the system is uniform on
macroscopic length scales > ξp.

The basic assumption of the model is that a blob does not deform and an LNB chain
can only break at singly connected bonds on a link.

The derivation of the elastic moduli is based on the two-dimensional model by
Kantor and Webman [257] for the elasticity of an LNB chain containing L1 singly
connected bonds (see Section 10.3.2). In realistic systems this number is distributed
according to a (density) distribution function f1(L1). After extending the Kantor–
Webman model to three dimensions, Lin and Lee obtained an expression for the
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(static) modulus of the LNB chain that depends on f1(L1), and another expression
for the failure strain amplitude (for breaking direct contacts) that depends on L1.

In the next step different assumptions were made concerning the sequence
of breaking and recombination during a deformation cycle. The best result was
obtained with the (not very realistic) assumption that half of the recombinations
occur when the deformation reaches its maximum and the other half when it reaches
its minimum. In this case the dynamic moduli read

G′(a) =G′∞ +K
∞∫

2a

da1
f1(a1)

a1
, (10.22)

G′′(a) =G′′∞ + K

2πa2

2a∫
2aapp

da1 a1 f1(a1)+ (G′′
0 −G′′∞)

∞∫
2a

da1 f1(a1) , (10.23)

where K and aapp are parameters that depend on the local elastic constants, the
bond length, the average number of singly connected bonds between two blobs,
and ξp. Furthermore, f1(a1) is related to f1(L1) through the variable transform
L1 = a1/aapp.

The similarity with the results (10.20) and (10.21) of the WTG model comes into
clear focus if we set W(ab) = Kf1(2ab)/ab; the differences can be explained as
an effect of the different assumptions concerning the breaking and recombination
sequence.

The advantage of the model is that, in principle, f1(L1) contains all the infor-
mation on the structure of the percolation clusters. Nevertheless the precise form
of f1(L1) is again not available. In particular, the dependence on the universal
properties of percolation is not clear. This turns out to be a major disadvantage. Lin
and Lee assumed an exponentially decaying distribution of f1(L1) which contains
only one free parameter. But this arbitrary choice yields a fit which is significantly
less successful than the results of the Kraus model or the WTG model. Though the
local parameters of the model can be determined from the fit, the interpretation of
the results is difficult: on the one hand, the mapping of the concept of links and
singly connected bonds on structures in real filler systems is problematic; on the
other hand, the LNB model for the description of percolation clusters is valid only
for space dimensions d ≥ 6 [256].

10.2.5 The model of the variable network density

In contrast to all other models, in the model of the variable network density of Maier
and Göritz [258] the Payne effect is not related to the breaking and recombination
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of the filler network. Instead, the behavior of the moduli is attributed exclusively
to the assumption of different binding strengths for the polymer chains at the filler
surfaces. Thus the main effect of the filler particles should be an increase of the
network density. For dynamical deformation, the network density decreases with
growing deformation amplitude, as more and more of the weakly bound (i. e. unsta-
ble) chains are torn off the filler surfaces. This mechanism is based on the idea that
chain adsorption takes place at a specific number of interaction sites per surface
unit, with the sites gradually being occupied by the polymer chains. Hence the
chains that “arrive first” should have a larger number of possible adsorption sites,
thus be bound more strongly than “later” chains which find the surface area widely
covered.

Accordingly the storage modulus as a function of deformation amplitude a reads

G′(a) = (Nc +Nst +Ni(a))kBT , (10.24)

where Nc denotes the chemical network density, Nst the network density caused
by stable bonds between chains and filler and Ni(a) = Ni0 f (a) the amplitude-
dependent contribution of weakly bound chains.

For the calculation of the unstable contribution, the mechanism of adsorption and
desorption of the chains is assumed to be analogous to Langmuir adsorption. Then
the procedure is formally quite similar to the Kraus model: instead of breaking
and recombination rates, now adsorption and desorption rates are brought into
balance. Additionally, the desorption rate is assumed to be linearly proportional
to the amplitude, whereas the adsorption rate is assumed to be constant, so that a
constant value 0.5 appears instead of the exponent m of the Kraus model,

G′(a)−G′∞
G′

0 −G′∞
= 1

1 + ca . (10.25)

Here, similarly to the Kraus model, the parameter c, is a purely empirical rate
constant (more precisely it is the ratio of the constant part of the desorption rate to the
adsorption rate). G′∞ = (Nc +Nst)kBT is interpreted as the constant contribution
from stable bonds and crosslinks andG′

0 −G′∞ = Ni0kBT as the contribution from
unstable bonds.

Maier and Göritz assumed the loss modulus to be proportional to the product of
the number of occupied and free interaction sites, leading to

G′′(a) = G′′∞ +G′′
i

ca

(1 + ca)2 , (10.26)

where G′′∞ and G′′
i are the contributions of stable and unstable bonds, respec-

tively. In this case the deviation from the Kraus model is somewhat more evident
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(compare (10.10)), but the quality of fits to the experimental data shows no
noticeable difference.

As energy dissipation at deformation is always accompanied by spatial reorga-
nization and slippage of the chains, the idea of there being varying bond strengths
might be an interesting approach. This holds even if the dynamical picture of chains
that adsorb at different times is abandoned (as yet little is known about the adsorp-
tion process on mixing the filler into the polymer melt). But a model that adopts this
mechanism for the only origin of the Payne effect, totally neglecting the existence of
a filler network, has to be rejected. First, it is difficult to understand why the defor-
mation amplitudes up to ca. 10% which are relevant for the Payne effect should be
sufficient to tear off all the weakly bound chains from the filler surfaces – this con-
cept is not compatible with the existence of a bound rubber layer. Second, the model
cannot explain the more than linear increase of the modulusG′

0 with growing filler
content, which is an effect of the percolating filler network, but which here is only
interpreted as the contribution of the unstable bonds. Third, the model cannot give a
convincing explanation for the existence of the Payne effect in silica-filled rubbers
activated with silane (see Section 7.3) and in carbon-black-filled non-polymeric
systems such as fluid paraffin and n-decan [248].

10.2.6 The cluster–cluster aggregation (CCA) model

CCA of filler particles in elastomers takes into account that the particles in a rubber
matrix are allowed to fluctuate around their mean position. The fluctuation length
compares with the rubber-specific fluctuation length of the chain segments, i. e. the
mean spacing of successive chain entanglements. Upon contact with neighboring
particles or clusters they stick together, irreversibly, since the thermal energy of
colloidal particles is small compared with the interaction energy. Depending on
the concentration of filler particles, this aggregation leads to spatially separated
clusters or a filler network that can considered to be a space-filling configuration
of fractal CCA clusters. The two cases are shown schematically in Fig. 10.11(b)
and (c).

At low filler concentrations φ, below the gel point (φ < φ∗), the cluster growth
with increasing filler concentration is assumed to follow a power law with respect
to a net concentration φ − φ+. In terms of the solid fraction φA of the clusters, the
power-law dependence reads [151]:

φA (φ) = φP

(
1 + β ′ (φ − φ+)B)−1

for φ+ < φ < φ∗ . (10.27)

Here, φ+ is the critical concentration at which aggregation starts, β ′ is a scaling
factor, and B is a rubber-specific growth exponent. The aggregation limit φ+ is
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Fig. 10.11. Schematic view of kinetically aggregated filler clusters in rubber
below and above the (mechanical) gel point φ∗ . (a) The local structure of carbon
black clusters, built by primary particles and strongly bonded primary aggregates.
Accordingly, every disk in (b) and (c) represents a primary aggregate (from [138]).

expected to depend on the fluctuation length of the particles as well as on the
compatibility of the rubber and the particles. In addition, it is strongly influenced
by the particle size (diameter d) via a critical mean particle distance d+ as follows:

φ+ = α
(

d

d+ + d
)3

. (10.28)

The value of the factor α depends on the arrangement of particles, e.g. α = π/6 in
a simple cubic lattice. Obviously, the cluster growth for φ < φ∗ is governed by the
restricted mobility of filler particles in the rubber matrix.

At high filler concentrations, above the gel point (φ > φ∗), the filler particles
come sufficiently close together that there is no effect of restricted particle mobility
on the cluster growth. Under this condition a kinetic cluster-by-cluster aggregation
leads to a space-filling configuration of CCAclusters, similar to colloid aggregation
in low-viscosity media [133, 142, 255, 259]. Due to the characteristic self-similar
structure of the CCAclusters with fractal dimension df ≈ 1.78, the cluster growth as
described by the solid fractionφA of the clusters is given by a space-filling condition,
stating that the local solid fraction equals the overall solid filler concentration:

φA (ξ) ∼= φ for φ > φ∗ . (10.29)

The solid fraction of the fractal CCA clusters obeys the scaling law:

φA (ξ) = N (ξ) d3

ξ3
∼=
(
d

ξ

)3−df

. (10.30)
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Here, N is the number of particles of size d in the clusters of size ξ . Equations
(10.29) and (10.30) imply that the cluster size ξ decreases with increasing filler
concentration φ according to a power law. This reflects the fact that smaller clusters
occupy less empty space than larger ones (the space-filling condition). It means that
the size of the fractal heterogeneities of the filler network, shown as dashed circles
in Fig. 10.11(c), decreases with increasing filler concentration.

For low filler concentrations, below the gel point φ∗, where isolated particles
(φ < φ+) or clusters (φ > φ+) are considered (Fig. 10.11(b)), reinforcement of rub-
ber is due to hydrodynamic amplification by the filler. Accordingly, stress between
the particles or clusters is transmitted by the relatively soft rubber matrix leading to
an overstraining of the rubber. If the particles or clusters are sufficiently rigid, i. e.
their elastic modulus GA is much larger than that of the rubber GR (GA � GR),
then the large majority of the elastic energy is stored in the rubber and the elastic
modulusG of the composite can be approximated by a linear function ofGR [151]:

G ≈ GRX . (10.31)

The hydrodynamic amplification factorX relates the intrinsic strain γR of the rubber
to the external strain γ of the sample (X = γR/γ ). It can be expressed by a power
law series as follows [46, 151]:

X = 1 + 2.5φeff + 14.1φ2
eff + · · · , (10.32)

with

φeff = φ

φA (φ)
. (10.33)

The solid fraction φA of the clusters is given by (10.27), if φ+ < φ < φ∗, while
φA = 1 for φ < φ+. The occluded rubber concept of Medalia [260] can be applied
to consideration of the effective volume fraction in (10.32). This concept assumes
that part of the rubber in the voids of the clusters is shielded from deformation and
acts like additional filler material. This effect is taken into account in (10.33). It
must be noted that the rigidity condition GA � GR is a necessary condition for
rubber reinforcement by filler clusters, because a structure that is softer than the
rubber cannot contribute to the stiffening of the polymer matrix. We will see in
the next section that the rigidity condition is not fulfilled in all cases, because the
modulus GA of the clusters decreases rapidly with increasing size of the clusters.
This means that relatively small filler clusters of less than 100 particles can lead to
reinforcement of the polymer matrix withGR ∼= 0.1 MPa. Throughout this section
we will consider only the case that is necessary for reinforcement, i. e. we assume
that the rigidity condition GA � GR is fulfilled.
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Fig. 10.12. Related Young’s modulus of NR and SBR composites with PS-
microgel particles (PS(m)) of different sizes at constant volume fraction
φ = 0.2 [29].

Much insight into the aggregation of colloidal fillers in elastomers is provided
by comparing model fillers with a fairly good filler–rubber interaction with those
incorporated in a matrix with a poor filler–rubber interaction, which corresponds
to an increased interfacial tension. As shown in Fig. 10.12, the samples obtained
by dispersing polystyrene microgels (PS(m)) of different particle size (from 60 to
400 nm) at φ = 0.2 in SBR and NR show an increase in Young’s equilibrium
modulus at small strain with decreasing particle size above the predicted value of
the hydrodynamic theory of Einstein–Smallwood–Guth–Gold (dashed line) [46].
This indicates the formation of rigid microgel clusters below a rubber-specific
critical particle size. From Fig. 10.12 it can be concluded that the critical particle
diameter below which PS(m) tends to form clusters is 350 nm in NR, and 150 nm
in SBR. Thus, with α = π/6, (10.28) implies a critical mean particle distance of
d+ ≈ 132 nm for the NR–PS(m) system and d+ ≈ 57 nm for the SBR–PS(m)
system. The ranking of these values correlates with the δ parameter difference
of the corresponding blend constituents, which is proportional to the interfacial
tension. In addition, a correlation with the in-rubber particle mobility, as given by
the mean distance between successive chain entanglements, d0, in the two rubbers is
obtained if the relation for the plateau modulusG0

N ∼ d−2
0 together with the values

G0
N ≈ 0.45 MPa for bulk NR and G0

N ≈ 0.9 MPa for bulk SBR is considered.
Due to the extensive mixing cycle of 30 minutes it can be assumed that in both

systems, PS(m)–SBR and PS(m)–NR, the polymeric filler is quite well dispersed.
Once the shear forces have been set during mixing, the filler particles aggregate
if the interparticle distance is smaller than a critical size d+. The joining together
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Fig. 10.13. Scaling behavior of the small strain modulus vs. filler volume fraction
of (a) carbon black composites and (b) microgel or silica composites. In all cases
an exponent close to 3.5 was found, indicating the universal character of the CCA
model. From [138].

of a number of microgel particles leads to some extent to the shielding of a part
of the rubber matrix from elastic deformation. For that reason, Young’s modulus
increases due to hydrodynamic amplification as given by (10.31)–(10.33) with an
effective volume fraction φeff that varies with particle size d according to (10.27)
and (10.28). By inserting φ = 0.2, d+ = 132 nm and referring to the data presented
in Fig. 10.12, the cluster growth function 1 + β ′ (φ − φ+)B for the NR–PS(m)
system has been estimated. A least-squares fit yields β ′ = 362 and B = 3.7 with a
correlation coefficient close to 1 (r2 = 0.982). This demonstrates the significance
of particle aggregation according to the power law (10.27) if a critical concentration
φ+ or particle distance d+ is exceeded.

For filler concentrations above the gel point, φ > φ∗, where a through-going
filler network is formed (Fig. 10.11(c)), stress between the closely packed CCA
clusters is transmitted directly between the spanning arms of the clusters that bend
substantially. For that reason the strain of the rubber is almost equal to the strain of
the spanning arms of the clusters (γR ≈ γA). This means that, due to the rigidity
condition GA � GR, the great majority of the elastic energy is now stored in the
bent arms of the clusters and the contribution of the rubber to the elastic modulusG
of the sample can be neglected, i. e.G ≈ GA. This indicates that the stored energy
density (per unit strain) of highly filled elastomers can be approximated by that of
the filler network, which in turn equals the stored energy density of a single CCA
cluster. The last conclusion follows from the homogeneity of the filler network on
length scales above the cluster size ξ .

For an estimation of the concentration dependence of the elastic modulus G it
is necessary to consider the elastic modulus GA of the CCA clusters more closely.



10.2 Dynamic small- and medium-strain modeling 179

By referring to the Kantor–Webman model [257] (see Section 10.3.2), we obtain
the elastic modulus of the elastically effective CCA cluster backbone from the
bending–twisting modulus of tender curved rods [138,151,255,261]:

GA ∼= GP

(
d

ξ

)3

NB (ξ)
−1 ∼= GP

(
d

ξ

)3+df ,B ∼= GP (φA)
(3+df ,B)/(3−df ) . (10.34)

Here,GP ∼= G/d3 is the elastic modulus of the cluster units, which is related to the
bending–twisting force constant G of the bonds between filler particles, NB is the
particle number in the cluster backbone and df ,B ≈ 1.3 is the fractal dimension of
the CCA cluster backbone [142,259]. The local elastic constantG is assumed to be
controlled by the stiffness of the polymer bridges between adjacent filler particles,
i. e. the properties of filler–filler bonds (see Section 10.1.1).

Equation (10.34) describes the modulus GA of the clusters as that of its units
GP times a factor that involves the size and geometrical structure of the clusters.
The first equality uses the definition of the fractal dimension df ,B

(
NB ∼= (ξ/d)df ,B

)
while the last equality follows from (10.30). If (10.34) is combined with (10.29)
we find the following dependence of the elastic modulus G of the composite on
filler volume fraction:

G ∼= GP (φ)
(3+df ,B)/(3−df ) . (10.35)

Equation (10.35) predicts the power-law behavior G ∼ φ3.5 for the elastic mod-
ulus. Thereby, the exponent

(
3 + df ,B

)
/ (3 − df ) ≈ 3.5 reflects the characteristic

structure of the fractal heterogeneities of the filler network, i. e. the CCA clusters
with df ≈ 1.78 and df ,B ≈ 1.3 [142].

The predicted scaling behavior, (10.35), of the small-strain modulus with expo-
nent 3.5 is found to be fulfilled for many elastomer composites [123,138,151,261],
including the classical butyl–N330 data of Payne [11]. This is demonstrated in
Fig. 10.13, in which the small-strain moduli of various filled rubbers at different
concentrations are shown as a log–log plot. Obviously, the power-law dependency
with exponent 3.5, predicted by the CCA model above the gel point φ∗, is found to
be fairly well satisfied.

Equation (10.35) represents a scaling relation for the concentration dependence
of the elastic modulus of highly filled rubbers that is independent of particle size.
This invariance results from the special invariant form of the space-filling condition,
(10.29), together with the scaling invariance of (10.30) and (10.34), where the
particle size d enters as a normalization factor for the cluster size ξ , only.The scaling
invariance disappears if the effect of the immobilized rubber layer that increases
linearly with the specific surface of the filler is considered. The immobilized rubber
layer can have a pronounced influence on the elastic modulus GA of the CCA
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clusters even if the thickness� of the layer is small, because the particle size d with
the large exponent 3 + df ,B enters into (10.34). The effect of a hard “glassy” layer
of immobilized polymer on the elastic modulus of CCA clusters can be modeled,
semi-empirically, by introducing a mechanically effective solid fraction φ̃A of the
clusters like in (10.30):

φ̃A (ξ) ≈ N (ξ) {π6 (d + 2�)3 − 2π
3 �

2
(
3
(
d
2 +�)−�)}

π
6 ξ

3

≈ (d + 2�)3 − 6d�2

d3
φA(ξ) for �� d . (10.36)

This equation considers the mechanically effective solid volume of the clusters,
approximately, by enlarging the particle diameter from d to d+2� and subtracting
the volume V = (2π/3)�2 (3 (d/2 +�)−�) that results from the intersections
of the layers of thickness� at the contact points with two neighboring particles. The
second approximate equality in (10.36) follows with (10.30) and neglects the high-
order� terms in the second summand. It is obvious that (10.36) neglects three-fold
intersections of particles that are very close or form small loops. Furthermore, the
intersections that result from intercluster contacts in a space-filling configuration
of CCA clusters are not included.

The mechanical action of the immobilized rubber layer on spherical filler par-
ticles, which are assumed to form a filler network in a rubber matrix for φ > φ∗,
is obtained if the mechanically effective solid fraction φ̃A, given by (10.36), is
applied in (10.34) instead of φA and the space-filling condition φA ∼= φ is used.
This yields the following power-law dependence of the elastic modulusG on filler
concentration φ, particle size d, and layer thickness �:

G ∼= GP

(
(d + 2�)3 − 6d�2

d3
φ

)(3+df ,B)/(3−df )

. (10.37)

This equation predicts a strong impact of layer thickness � on the elastic modulus
Gwhile the influence of particle size increases if d becomes smaller and approaches
the value of �. Due to the neglect of intercluster contacts in (10.36) and (10.37),
the factor in front of φ that describes the impact of the immobilized rubber layer
is independent of filler concentration. Including intercluster contacts would result
in a concentration dependence for this factor, because the number of intercluster
contacts increases with increasing filler concentration. This would modify the con-
centration dependence of the elastic modulus as predicted by (10.37), leading to a
somewhat lower value of the elasticity exponent.

At higher filler concentrations, above the gel point φ∗, the cluster growth is
given by the space-filling condition (10.29) and the main contribution to the elastic
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Fig. 10.14. Double logarithmic plot of the small-strain storage modulus versus
filler volume fraction for E-SBR–BR(m) microgel composites with varying size
of the BR microgels as indicated (open symbols). The solid line represents a master
curve of slope 3.5 estimated from (10.37) with adapted layer thickness� = 2 nm
(solid symbols). Experimental data are taken from [262].

modulus comes from the deformation of filler clusters, which are then no longer
rigid, but flexible. Under this condition the concentration dependence of the elastic
modulus is described by (10.35) or alternatively by (10.37) if the effect of immo-
bilized rubber cannot be neglected. Figure 10.14 shows a double logarithmic plot
of the small-strain storage modulus versus filler volume fraction (open symbols) of
heavily crosslinked (4% dicumylperoxide), hard BR microgels of varying size in
E-SBR. Obviously, G′

0 increases with decreasing particle size. This behavior can
be related to the increased amount of immobilized rubber with increasing specific
surface of the filler particles. A common master curve for all data points can be
constructed by estimating an effective volume fraction given by the term in square
brackets in (10.37). This master curve with slope 3.5 is found from the closed
symbols that are obtained by considering an effective volume fraction according
to (10.37) for a common layer thickness � = 2 nm, independent of particle size d
and concentration φ.

The estimated layer thickness, � = 2 nm, that results from the condition of
minimum deviation from the master curve shown in Fig. 10.14 appears reasonable.
It corresponds to a few layers of polymer segments that are fixed at the surface of
the microgel clusters like a hard glassy skin. It is this immobilized rubber layer that
gives the filler network a high stability compared to colloid networks aggregated in
low-viscosity liquids. In particular, as shown by Payne [10], this leads to a shift of
the critical strain amplitude at which filler network breakdown occurs by more than
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one order of magnitude if the strain amplitude dependence of the storage modulus of
carbon-black-filled BR and liquid paraffin are compared. Furthermore, this critical
strain amplitude is strongly affected by the surface chemistry of the filler particles,
which influences the interaction strength between the particle as well as the amount
of immobilized rubber.

Summing up, the CCA model assumes that: (i) filler flocculation in a rubber
matrix starts above an aggregation limit φ+ which depends on the interparticle dis-
tance and the affinity of the filler to the polymer as well as the mean distance between
successive chain entanglements in the polymer melt; (ii) a transition in the cluster
growth takes place in the networking regime φ > φ∗, where a space-filling config-
uration of clusters is reached and a macroscopically connected structure is formed;
(iii) above the networking threshold φ∗ a transition of the storage mechanism of
elastic energy from the entropy-elastic rubber matrix to the energy-elastic filler
network occurs; and (iv) the concentration dependence of the small-strain modulus
is governed by a power law with exponent 3.5, which reflects the structure of the
fractal heterogeneities of the filler network.

10.3 Stress-softening and quasistatic stress–strain
modeling – the Mullins effect

10.3.1 The dynamic flocculation model

In this section, a constitutive model of hyperelasticity and stress softening of filler
reinforced polymer networks is presented that is based on the extended tube model
of rubber elasticity [42, 43, 57, 60, 101, 102, 105] (see Section 5.4.2) and a micro-
mechanical theory of filler cluster breakdown in strained elastomer composites
[58, 111, 123, 138, 151, 261, 263–266]. We focus on the mechanical response of
reinforcing fractal filler clusters in elastomer composites up to large strain, leading
to a microstructure-based model of stress softening and filler-induced hysteresis.
Finally, the developed dynamic flocculation model is adapted to stress–strain cycles
of filler-reinforced elastomers.

Reinforcement of polymer networks by nano-structure fillers like carbon blacks
or silica is assumed to be related to the presence of physically bonded, fractal filler
clusters in the rubber matrix that exhibit a particular size distribution φ(ξμ). With
increasing strain on a virgin sample, a successive breakdown of the filler clusters
takes place under the exposed stress of the bulk polymer matrix. This begins with
the largest clusters and continues to a minimum cluster size ξmin = ξ(εmax)which is
specified below (equation (10.47)). During the back-cycle, i.e., the relaxation of the
sample, reaggregation of the filler particles takes place, but the damaged filler–filler
bonds that reform after having being broken differ from the original ones. Since, in
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general, the original bonds are annealed by the heat treatment during vulcanization
(see Section 10.1.1), the damaged bonds are significantly softer and more fragile
than the original ones. This mechanism implies a pronounced stress softening of
the prestrained samples, since hard rigid cluster units are replaced by soft ones.
Furthermore, in subsequent stress–strain cycles the reaggregated filler clusters with
soft bonds bend substantially in the stress field of the rubber, implying that a certain
amount of energy is stored in the clusters, which is dissipated when the clusters
break. This mechanism leads to a filler-induced viscoelastic contribution to the total
stress that impacts the internal friction or hysteresis of filled polymer networks,
significantly. It is important to note that this kind of viscoelastic response is also
present in the limit of quasistatic deformations, where no explicit time dependence
of the stress–strain cycles is considered.

According to this model, two micromechanical mechanisms of cyclically strained
reinforced polymer networks are distinguished. In the first, stress softening is con-
sidered to be related to hydrodynamic reinforcement of the rubber matrix by a
fraction of hard filler clusters with strong filler–filler bonds in the virgin annealed
state. In the second, filler-induced hysteresis results from a cyclic breakdown and
reaggregation of the residual fraction of the more fragile filler clusters with softer
already damaged filler–filler bonds. The fraction of rigid filler clusters decreases
with increasing prestrain, while the fraction of fragile filler clusters increases.
This leads to a shift of the boundary size ξmin with increasing prestrain. The
decomposition into hard and soft filler cluster units is depicted in Fig. 10.15.

Accordingly, we assume that for quasistatic, cyclic deformations of filler-
reinforced rubbers up to large strain the total free energy density consists of two
contributions:

W
(
εμ
) = (1 − eff )WR

(
εμ
)+ effWA

(
εμ
)

, (10.38)

Fig. 10.15. (a) Schematic view of the decomposition of filler clusters in hard and
soft units for preconditioned samples with virgin (annealed) and damaged filler–
filler bonds. (b) The cluster size distribution with the prestrain-dependent boundary
cluster size ξmin. From [138].
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where eff is the effective filler volume fraction. For well-dispersed spherical filler
particles eff equals the filler volume fraction . However, for structured particles
like carbon blacks  eff >  , depending on the grade number of the carbon black
[138, 151]. The first addend of (10.38) takes into account the equilibrium energy
density of the strained rubber matrix, including hydrodynamic reinforcement by
the fraction of rigid filler clusters, as specified below. The second addend describes
the energy stored in the substantially strained soft filler clusters:

WA
(
εμ
) =

ε̇μ<0∑
μ

1

2d

∫ ξμ(εμ)

ξμ,min

GA
(
ξ ′
μ

)
ε2

A,μ

(
ξ ′
μ, εμ

)
φ
(
ξ ′
μ

)
dξ ′
μ . (10.39)

Here, d is the particle size and ξμ is the cluster size in spatial direction μ of the
main axis system. φ

(
ξμ
)

is the normalized size distribution of the clusters that is
considered to be isotropic, i. e. φ (ξ1) = φ (ξ2) = φ (ξ3).GA is the elastic modulus
and εA,μ is the strain of the soft filler clusters.

The dot in the upper limit of the sum in (10.39) denotes the time derivative,
which means that the sum is taken over stretching directions with ∂εμ/∂t > 0
only. Consequently, clusters are strained and successively broken in stretching
directions alone. Healing of the clusters takes place in the compression directions,
implying that a cyclic breakdown and reaggregation of clusters can be described.
The integration in (10.39) is performed over the fraction of soft filler clusters with
a cluster size lying in the interval ξμ,min < ξμ < ξμ

(
εμ
)

that are not broken at
exposed strain εμ of the actual cycle.

The clusters smaller than ξμ,min = ξμ
(
εμ,max

)
, representing the fraction that

survived the maximum exposed prestrain εμ,max in a previous deformation cycle,
are assumed to dominate the hydrodynamic reinforcement of the rubber matrix.
Due to the stiff nature of their filler–filler bonds, corresponding to the bonds in
the virgin state of the sample, these clusters can considered to behave quite rigidly.
Accordingly, the contribution of the stiff clusters to the stored energy of the clusters
WA is neglected. Their mechanical action refers to an overstraining of the rubber
matrix, which is quantified by a strain amplification factor X. This relates the
external strain εμ of the sample to the internal strain ratio λμ of the rubber matrix:

λμ = 1 +Xεμ . (10.40)

For the first deformation of virgin samples the strain amplification factor depends
on the external strain (X = X(εμ)). In the case of a prestrained sample and for
strains smaller than the previous straining (εμ < εμ,max), the strain amplification
factor is constant and determined by εμ,max

(
X = X (εμ,max

))
.

In the following we apply an equation for the strain amplification factor of the
overlapping fractal clusters (sufficiently high filler concentrations), as derived by
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Huber and Vilgis [44,45] (see (8.26)). In the present case, the amplification factors
X
(
εμ
)

andX
(
εμ,max

)
are evaluated by averaging over the size distribution of rigid

clusters in all space directions. For prestrained samples this yields:

X
(
εμ,max

) = 1 + c eff
2

3−df

3∑
μ=1

1

d

⎧⎨⎩
∫ ξμ,min

0

(
ξ

′
μ

d

)dw−df

φ
(
ξ

′
μ

)
dξ

′
μ +

∫ ∞

ξμ,min

φ
(
ξ

′
μ

)
dξ

′
μ

⎫⎬⎭ .

(10.41)

Here, c is a constant of order one, df is the fractal dimension and dw = 2df /D is
the anomalous diffusion exponent on fractal clusters. For virgin samples, X

(
εμ
)

is obtained similarly by performing the integration in (10.41) from zero up to the
strain-dependent cluster size ξμ

(
εμ
)

(see (10.47)).
The elastic modulus GA of the clusters entering (10.39) can be evaluated by

referring to the Kantor–Webman model of flexible curved chain aggregates [257]
(cf. Section 10.3.2). In a simplified approach introduced by Lin and Lee [37], the
contributions from the two different kinds of angular deformation, bending and
twisting, can be considered by an averaged bending–twisting deformation. This is
obtained by replacing the elastic bending constant G through an averaged elastic
constant G. It yields in the case of CCA clusters (compare Sections 10.3.2)

GA ≡ ξ−1kS = κG

d3

(
d

ξ

)3+df ,B

, (10.42)

where κ is a geometrical factor of order one and df ,B is the backbone fractal dimen-
sion of the filler clusters. For large clusters, the force constant of the cluster backbone
k ≈ kS is

kS = κG

d2

(
d

ξ

)2+df ,B

. (10.43)

Equation (10.42) describes the modulus GA of the clusters as a local elastic
bending–twisting energy termG times a scaling function that involves the size and
geometrical structure of the clusters.

To estimate the limiting cluster size ξμ,min as a function of external strain εμ,
the properties of fractal filler clusters have to be described on a microscopic level.
The failure or yield strain εF of the filler clusters results from the fact that a single
cluster corresponds to a series of two molecular springs: a soft spring, representing
the bending–twisting mode, and a stiff spring, representing the tension mode. The
soft spring with force constant kS ∼ G impacts the elasticity of the whole system,
since, in general, the deformation of the stiff spring can be neglected ((10.42) and
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Fig. 10.16. Schematic view demonstrating the mechanical equivalence of a filler
cluster and a series of soft and stiff molecular springs, representing the bending–
twisting and tension deformation of filler–filler bonds, respectively. From [138].

(10.43)). The stiff spring governs the fracture behavior of the system, because
it takes account of the longitudinal deformation and hence spatial separation of
filler–filler bonds. Fracture of the cluster takes place, when a critical separation of
bound filler particles is exceeded and the failure strain εb of filler–filler bonds is
reached. The mechanical equivalence of a filler cluster and a series of two springs
is illustrated in Fig. 10.16.

The failure strain εF of the filler cluster can be evaluated from the stress equilib-
rium between the two springs. With (10.43) one finds in the case of large clusters
with kb � kS:

εF =
(

1 + kb

kS

)
εb ≈ Qεb

κG

(
ξ

d

)2+df ,B

. (10.44)

Here, Q is the elastic tension constant of the Kantor–Webman model and kb =
Q/d2 is the force constant of longitudinal deformations of filler–filler bonds [257].
Equation (10.44) implies that the yield strain of a filler cluster increases with the
cluster size ξ according to a power law. Furthermore, it is governed by the ratio of
the elastic constantsQ/G. Consequently, larger clusters show a higher extensibility
than smaller ones, due to the ability to bend and twist around the bonds and the
clusters can survive up to large strain due to their high flexibility in strained rubbers.
This kind of elastic behavior and the dependence of strength on cluster size plays
a crucial role in stress softening and filler-induced hysteresis up to large strain.

Finally, to analyze the fracture behavior of filler clusters in strained polymer
networks, we have to evaluate the strain εA,μ of the filler clusters relative to the
external strain εμ of the sample. At medium and large strains, when there has
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been a stress-induced gel–sol transition of the through-going filler network (for
ε > 10%), the stress on the filler clusters is transmitted by the rubber matrix. Then,
εA,μ follows from the stress equilibrium between the clusters and the rubber matrix
(εA,μGA

(
ξμ
) = σ̂R,μ

(
εμ
)
). This yields with (10.42):

εA,μ
(
εμ
) = d3

κG

(
ξμ

d

)3+df ,B

σ̂R,μ
(
εμ
)

. (10.45)

Here, σ̂R,μ(εμ) is the norm of the relative stress of the rubber matrix related to the
stress at the beginning of each strain cycle, where ∂εμ/∂t = 0:

σ̂R,μ
(
εμ
) ≡ |σR,μ

(
εμ
)− σR,μ

(
∂εμ/∂t = 0

) | . (10.46)

The application of this normalized, relative stress in the stress equilibrium equa-
tion (10.45) is essential for a constitutive formulation of cyclic cluster breakdown
and reaggregation during every stress–strain cycle. It ensures that the clusters are
not compressed but only stretched in spatial directions with ∂εμ/∂t > 0, since
εA,μ ≥ 0 holds due to (10.46). In the compression directions with ∂εμ/∂t < 0
reaggregation of the filler particles takes place. By comparing (10.44) and (10.45)
one finds that the strain εA,μ of the clusters increases faster with their size ξμ than
the failure strain εF,μ. Accordingly, with increasing strain the large clusters in the
system break up first, followed by the smaller ones. The maximum size ξμ of clus-
ters surviving at external strain εμ is found from the stress equilibrium between the
rubber matrix and the failure stress σF,μ of the clusters (σF,μ = εF,μGA

(
ξμ
)
):

ξμ
(
εμ
) = Qεb

d2σ̂R,μ
(
εμ
) . (10.47)

This allows an evaluation of the boundaries of the integrals in (10.39) and (10.41).
Hence, the nominal stress contribution of the stretched filler clusters can be cal-
culated. This is determined from σA,μ = ∂WA/∂εA,μ, where the sum over all
stretching directions, which differ for the up and down cycles, has to be considered.

For uniaxial deformations ε1 = ε, ε2 = ε3 = (1 + ε)−1/2 − 1, one obtains a
positive contribution to the total nominal stress in the stretching direction for the
up cycle:

σ
up
0,1 (ε) = (1 − eff ) σR,1 (ε)+ eff σ̂R,1 (ε)

∫ Qεb
d3σ̂R,1(ε)

Qεb
d3σ̂R,1(εmax)

φ (x1) dx1 , (10.48)

where
σ̂R,1 (ε) = |σR,1 (ε)− σR,1 (εmin) | (10.49)
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and x1 = ξ1/d. The stress of the rubber matrix σR,1 = ∂WR/∂λ1 can be evaluated
with (5.42) by taking into account the strain amplification according to (10.40)
and (10.41). For the down cycle in the stretching direction one finds a negative
contribution to the total stress due to the norm in (10.46):

σ down
0,1 (ε) = (1 − eff ) σR,1 (ε)− 2 eff σ̃R,1 (ε)

∫ Qεb(1+ε)−3/2

2d3σ̃R,1(ε)

Qεb(1+εmin)
−3/2

2d3σ̃R,1(εmin)

φ (x1) dx1 .

(10.50)

The negative stress contribution results from the stretching of clusters in the lateral
direction which hinders the relaxation of the polymer network during the back-
cycle. In (10.50), the notation

σ̃R,1 (ε) =
∣∣∣σR,1 (ε)−

(
1 + εmax

1 + ε
)3/2

σR,1 (εmax)

∣∣∣ (10.51)

has been used. The different choice of the extrema with ∂εμ/∂t = 0 in (10.49) and
(10.51) is due to the fact that an up cycle begins at ε = εmin, but a down cycle
begins at ε = εmax. As a rule, the relative stresses in the lower boundaries of the
integrals in (10.48) and (10.50) have to be chosen in such a way that they attain
their maximum values, implying that all soft clusters are broken and the condition
ξμ = ξμ,min holds. Note that stress–strain cycles start or end at a strain between
εmax and εmin cannot be described by the present model, since the reaggregation
mechanism has not so far been considered.

Figure 10.17 shows an adaptation of the developed model for the up and down
cycles ((10.48) and (10.50)) to experimental stress–strain data (equilibrium cycles)
of a silica-filled ethlene-propene-diene rubber (EPDM) sample at different pre-
strains. The extended tube model has been applied to model the rubber matrix (see
Section 5.4.2). For the cluster size distribution the Smoluchowski approach for the
kinetics of CCA of filler particles has been assumed with a fixed width parameter
� = −0.5 [138]:

φ
(
ξμ
) = 4d

ξ0,μ

(
ξμ

ξ0,μ

)−2�

exp

(
−(1 − 2�) ξμ

ξ0,μ

)
. (10.52)

Here ξ0,μ is the mean cluster size, which is the same for all spatial directions
μ = 1, 2, 3 (isotropy assumption). Note that with this distribution function the
integrals in (10.41), (10.49), and (10.50) can be solved analytically [266].

Figure 10.17 demonstrates that a good adaptation of the preconditioned sam-
ples can be obtained with a single set of polymer parameters Gc = 1.09 MPa,
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Ge = 0.6 MPa and ne/Te = 45 (see Section 5.4.2), simply by varying the
strain amplification factor X. The fitted parameters are Xi = 7.520, 5.915, 4.733,
4.225, and 3.694 for increasing prestrains from εmax = 10%, 20%, 30%, 40%, 50%,
respectively. As discussed in Section 5.4.2, the tube constraint modulus Ge need
not be treated as a fitting parameter but can be estimated from the plateau modulus
GN ≈ 1.2 MPa (Ge ≈ GN/2). Further fitting parameters are the yield stress of
damaged filler–filler bondsQεb/d3 = 31 MPa, the effective filler volume fraction
 eff = 0.26, and the relative mean cluster size x0 ≡ ξ0/d = 10.1. Note that the
value of  eff is close to the filler volume fraction  ≈ 0.23, indicating that the
reinforcing silica particles are almost spherical.

The simulation data shown in Fig. 10.17 have been obtained without applying
(10.41), since the strain amplification factorX is treated as an independent variable.
However, it can be shown that the dependence of the fitting parametersXi on εmax is
in good agreement with the predicted behavior of (10.41). This has been shown, e.g.,
for carbon-black- and silica-filled EPDM and SBR rubbers [266]. The dependence
of the strain amplification factor Xmax ≡ X (εmax) on prestrain (equation (10.41),
is depicted in Fig. 10.18 for various filled elastomer materials, as indicated. It
corresponds to the well-known Payne effect of the storage modulus in the quasistatic
limit, since Xmax determines the initial slope of the hysteresis cycles, which can
be compared with the storage modulusG′ of non-linear viscoelastic materials. The

Fig. 10.17. Quasistatic stress–strain cycles in uniaxial extension (fifth cycles) of an
EPDM sample with 60 phr silica coupled with silane (5 phr Si69) for prestrains εmax
between 10% and 50% (symbols) and adaptations using (10.48)–(10.52) (lines).
Experimental data were obtained by using dumbbells as shown in the inset.
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Fig. 10.18. Variation of the strain amplification factor Xmax ≡ X (εmax) with
prestrain obtained from adaptations with (10.41) of uniaxial stress–strain cycles at
prestrains between 1% and 100% of various filled rubber materials, as indicated.

data were obtained from adaptations of the fifth stress–strain cycle in the range
1–100 %, similarly to the ones shown in Fig. 10.17.

From the data in Fig. 10.18 it is obvious that in the large-strain regime Xmax

approaches a constant value scaling with the effective filler volume fraction  eff ,
since the sum in (10.41) approaches 3 in the limit of large stress values σR,1.
For small prestrains, the strain amplification factor levels out as well, since all
clusters contribute to Xmax in the limit of small stress values σR,1. Hence, the
mean slope of the stress–strain cycles remains almost constant in the small-strain
plateau regime, which is typically observed for the Payne effect in reinforced rub-
bers. Depending on the microstructure of the rubber and the type and amount
of filler one observes characteristic differences that are also well known from
dynamic-mechanical measurements of the Payne effect under harmonic excitations.
Accordingly, the presented dynamic flocculation model provides a microstructure-
based explanation of stress softening phenomena, also called the Mullins effect, as
well as filler-induced hysteresis, which is found to be closely related to the Payne
effect observed under dynamic loadings.

For a test of the developed model, we will next consider the prediction for the
equi-biaxial deformation mode obtained with material parameters from uniaxial
fits (plausibility test). Figure 10.19 compares simulations and experimental data of
equi-biaxial stretching cycles between 20% and 80% prestrain for an S-SBR sample
with 65 phr silica. For the smallest prestrains, agreement between experiment and
simulation is fairly good, but with increasing prestrain one finds significantly more
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Fig. 10.19. Comparison of experimental data (symbols) and simulations (lines) of
equi-biaxial hysteresis cycles between 20% and 80% prestrain for an S-SBR–silica
sample with material parameters from fits to uniaxial stress–strain data. The inset
shows the stretching frame used for equi-biaxial testing.

hysteresis for the experimental stress–strain curves than for the simulations. Never-
theless, the strain amplification factors, evaluated using (10.41), appear reasonable,
since the simulated stress maxima fit quite well to the experimental data. To
understand the large amount of hysteresis it is necessary to consider the equip-
ment used for the equi-biaxial investigations more closely. The data were obtained
with a stretching frame with 20 clamps holding the rubber sheet and rollers running
on a steel frame, as depicted in the insert of Fig. 10.19. Due to this construction
it is clear that the friction of the rollers, which increases with loading, contributes
to the overall hysteresis measured between the up and down cycles. Accordingly,
the successive deviations in hysteresis with increasing loading could be explained
by the additional hysteresis resulting from the rollers of the stretching frame. A
final answer to this question cannot be given at this stage, but further biaxial
investigations, e.g. with the bubble inflation test, will have to be performed in
the future.

A further question of interest is the temperature dependence of the hysteresis
cycles. From the basic concepts of the dynamic flocculation model, it is clear that the
main temperature effects on stress softening and filler-induced hysteresis result from
the thermal activation of the virgin and damaged filler–filler bonds, respectively.
Since these bonds are formed by flexible nanoscopic bridges of glassy polymer in the
confined area between adjacent particles of the filler clusters, the thermal activation
can be described by a simple Arrhenius dependence for the elastic constants Qv

and Qd. This characteristic temperature dependence directly transfers to the two
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fitting parameters sv and sd, because the yield strains εv,b and εd,b of the virgin and
damaged filler bonds can be considered to be temperature-independent parameters:

sv ≡ Qvεv,b

d3
= sv,ref exp

[
Ev

R

(
1

T
− 1

Tref

)]
, (10.53)

sd ≡ Qdεd,b

d3
= sd,ref exp

[
Ed

R

(
1

T
− 1

Tref

)]
. (10.54)

Here, Ev and Ed are the activation energies of the virgin and damaged filler–filler
bonds, respectively, R is the gas constant, and T temperature.

Figure 10.20 shows experimental data for uniaxial hysteresis cycles for EPDM–
N339 samples at three different temperatures and compares them to the predictions
of the model. The fifth up and down cycles are shown (symbols) together with sim-
ulations (lines) with material parameters obtained from fits at room temperature.
For the activation energies the values Ev = 3.62 kJ/mol and Ed = 4.91 kJ/mol
were used; these were not adapted to the stress–strain data but were derived from a
master procedure for the frequency-dependent dynamic moduliG′ andG′′, respec-
tively, at 3.5% strain amplitude [267]. The agreement between experimental data
and simulations in Fig. 10.20 is fairly good.

Fig. 10.20. Comparison of experimental data (symbols) and simulations (lines) of
uniaxial hysteresis cycles for an EPDM sample with 60 phr N339 at 40% prestrain
and three different temperatures, as indicated. Material parameters are taken from
fits at room temperature (Tref = 25 ◦C).
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We finally note that the observed small permanent set of the experimental data in
Fig. 10.17 has been taken into account by introducing suitable set-stresses, which
are subtracted from the apparent stressσ0,1 in (10.48) and (10.50).These set-stresses
are found to be relatively small and can easily be extracted from the experimental
data. Obviously, they have a negative sign and increase with rising prestrain. The
equi-biaxial data in Fig. 10.19 cannot be precisely calibrated in the small-strain
regime. Therefore, the simulation curves have been shifted slightly horizontally
on the strain axis to compensate for experimental errors around the stress–strain
origin. In Fig. 10.20 the experimental data have been shifted vertically on the stress
axis to give better resolution of the results.

From the fair agreement between simulation curves and experimental stress–
strain data for the different deformation modes it can be concluded that the extended
tube model together with the dynamic flocculation model of cluster breakdown
and reaggregation represents a good micromechanical basis for the description of
stress softening and non-linear viscoelasticity of filler-reinforced elastomer mate-
rials. Thereby, the mechanisms of energy storage and dissipation are traced back
to the elastic response of the polymer network as well as the elasticity and fracture
properties of flexible filler clusters.

10.3.2 The Kantor–Webman model of flexible chain aggregates

The Kantor–Webman model represents a physical basis for various models of rubber
reinforcement, which all are based on a fractal description of the filler clusters or
networks (see Sections 10.2.4, 10.2.6, and 10.3.1). It describes the elasticity of
curved elastic particle chains in a two-dimensional plane (d = 2) by referring to
a vectorial Born-lattice model with a tension and bending energy term between
neighboring bonds or particles. A chain is composed of a set ofN singly connected
bonds {bi} of length a under an applied force F at the two ends of the chain, as
outlined in Fig. 10.21. The strain energy H is given by [257]:

H = F 2NS2⊥
2G

+ aF 2L‖
2Q

, (10.55)

where

S2⊥ = 1

F 2N

N∑
i=1

[(F × z) (Ri−1 − RN)]2 (10.56)

is the squared radius of gyration of the projection of the chain on the two-
dimensional plane and

L‖ = 1

aF 2

N∑
i=1

(F • bi)
2 . (10.57)
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Fig. 10.21. Illustration of the Kantor–Webman model of flexible chain aggregates
with tension, bending and twisting energy terms. From [138].

Here G and Q are local elastic constants corresponding to the changes of angles
between singly connected bonds and longitudinal deformation of the bonds,
respectively. The vector z is a unit vector perpendicular to the plane.

For long chains the second term in (10.55) can be neglected and most of the
strain energy H results from the first bending term of the chain. Then, the force
constant of the chain relating the elastic energy to the displacement squared of the
end of the chain is given by:

kS = G

NS2⊥
. (10.58)

In the three-dimensional case (d = 3), the angular deformation is not limited to
in-plane bending, but also includes off-plane twisting. This makes the theory much
more complex. To simplify the model, the contributions from these two angular
deformations can be accumulated in the first term of (10.55) by replacing G with
an averaged bending–twisting force constantG [37,268]. Then (10.58) is also valid
for three-dimensional chain aggregates.

In applying (10.58) to fractal CCA clusters of bonded filler particles, one can
use an approximation of the CCA cluster backbone as a single spanning arm, i. e.
we describe it as a tender curved rod [151, 255] (compare Sections 10.2.6 and
10.3.1). This is possible because the CCA cluster backbone has almost no branches
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[142,259], implying that the energy of a strained cluster is primarily stored in filler–
filler bonds along the connecting path between the backbone particles.Accordingly,
the clusters act as molecular springs with end-to-end distance ξ , consisting of NB

backbone units of length d. The connectivity of the backbone units is characterized
by the backbone fractal dimension df ,B. Due to the fractal nature of CCA clusters,

NB ∼=
(
ξ

d

)df ,B

. (10.59)

In the present approximation, df ,B is identified with the minimum (or chemical)
fractal dimension, i. e. df ,B = dmin ≈ 1.3 for CCA clusters [142, 259]. Then, with
N = NB and S⊥ ∼= ξ , from (10.58) one obtains for the force constant kS of the
cluster backbone

kS ∼= G

d2

(
d

ξ

)2+df ,B

. (10.60)

Finally, the elastic modulus of the cluster backbone is found as

GA ≡ ξ−1kS ∼= G

d3

(
d

ξ

)3+df ,B

. (10.61)

Equation (10.61) describes the modulus GA of the clusters via a local bending–
twisting force constant G times a scaling function that involves the size and
geometrical structure of the clusters. We point out that in the case of a linear cluster
backbone with df ,B = 1, (10.60) and (10.61) correspond to the well-known elas-
tic behavior of linear flexible rods, where the bending modulus falls off with the
fourth power of the length ξ . The above approach represents a generalization of
this behavior to the case of flexible, curved rods.

The Kantor–Webman model, (10.55)–(10.58), can also be applied to percolation
networks, or more precisely to LNB chains with characteristic rigid blobs [37,268]
(see Section 10.2.4). This is done simply by restricting the summation in (10.56) and
(10.57) over the number L1 of flexible, singly connected bonds. Then from simple
scaling arguments one obtains a power-law dependence for the elastic modulus:

GA ≡ ξ−1
p kS ∼ ( − crit)

τ , (10.62)

where  crit is the critical filler volume fraction at the percolation threshold. The
predicted exponent depends on the scaling exponents of percolation theory, and is
τ ≈ 3.6−3.7 for the three-dimensional case (d = 3) [37, 257].
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annealed and quenched disorder, 134–5
anomalous diffusion, 144–6
auxiliary fields, 26–7

Edwards approach, 27

bifurcation diagrams, Rouse mode freezing, 149–51
blobs/blob pictures, 30

de Genne’s blob picture, 67–8
in LNB model, 171–2

Boltzmann formula, 41
bond vectors, 10, 13
branched aggregate structures, 103–4
branched polymers, 64
Brownian surfaces, 132
Brunauer–Emmet–Teller (BET) surface area scaling

behaviour evaluation, 84–6

capillary condensation (CC) regime, 88–92
car tires, 75
carbon-black aggregates, 77–83

aggregate morphology, 80
characteristic shapes, 78–9
characteristic sizes, 77
classes and types, 78
growth during processing, 81–2
(mass) fractal dimension, 79, 82–3
quantitative analysis, 79
scaling equation, 79–80
scattering investigations, 83
structures, low/high, 78
TEM technique, 80–3

carbon blacks
surface energy distribution, 92–6: adsorption

isotherms, 93, 95; highly energetic sites, 94–9;
iteration procedures, 93; Langmuir isotherm, 92;
particle size effects, 95

surface roughness, 84–92: alkanes and alkenes,
effects of, 85–7; Brunauer–Emmet–Teller (BET)
surface area scaling behaviour, 84–6; capillary
concentration (CC) regime, 88–92;
characterization problems, 84;
Frenkel–Halsey–Hill (FHH) theory/evaluation

procedure, 87–92; graphitization effects, 86;
scaling factors, 86–7; surface fractal dimensions,
91–2; van der Waals interaction parameter, 89–91

carbon-black-filled diene-rubber composites, 155–6
carbon-black-filled elastomers, 1

reinforcing mechanism, 4
structural disorder, 2

carbon-black-filled rubber, 4
see also Payne effect

center-of-mass freezing, 146–7
central limit theorem, 12
chains see dynamic behaviour of chains; Gaussian

chains; many chain systems; self-interacting
chains; tagged chains, statistics of

Clausius–Mosotti equation, 111
cluster–cluster aggregation (CCA) model/networks, 8,

174–82
assumptions summary, 182
basic principles, 174–5
critical particle diameter issues, 177
filler concentration issues, 174–6
high filler concentrations, 178, 180–9
hydrodynamic amplification factor, 176
power-law behavior, 179–80
predicted scaling behavior, 179
scaling laws, 175–6

collective variables and the Edwards Hamiltonian,
20–6

about collective variables, 20–1
effective Hamiltonian, 21
steps for random phase approximation (RPA), 21–6

connectivity
connectivity transition, 34
see also polymers of large connectivity

core–shell system fillers, hydrodynamic
reinforcement, 111–17

about core-shell systems, 111–12
Clausius–Mosotti equation, 111
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hard core/soft shell, 115–17
soft core/hard shell, 112–15
uniform soft sphere, 112

cross-over effect, rubber testing, 159
crosslinked polymer chains/materials, 4, 44
crystallization-decrystallisation,

strain-induced, 8

D-dimensionally connected polymers in a good
solvent, 64–71

between two parallel plates, 66–8: scaling analysis,
67; with de Genne’s blob picture, 67–8

Flory exponent, 66
Flory free energy, 66
Hamiltonians with, 65–6
in a cylindrical pore, 68–71: Flory values, 71;

minimum pore size, 69–70; Theta solutions,
70–1; with Flory free energy, 69

de Genne’s blob picture, 67–8
delta functions, 11, 14–15
density correlation function, 26
diagonal deformation matrix, 43
diffusion-limited aggregation (DLA) clusters, 110–11
distribution function, 11
dynamic behavior of chains

anomalous diffusion, 144–6: crossover time, 146
center-of-mass freezing, 146–7: Machta’s formula,

147; Rouse diffusion coefficient, 146–7
localized chains, 135–7, 152
Rouse modes freezing, 147–8: two mode toy

model, 148
dynamic flocculation model, 182–93

adaptation for up and down cycles, 188
breaking and healing clusters, 184
deformation of virgin samples, 184
developed model testing, 190–1
experimental/simulation agreement

discussion, 193
failure strain, 186
filler-induced hysteresis, 183
fracture behaviour, 186–7
limiting cluster size as a function of external strain,

185–6
quasistatic stress–strain cycles in uniaxial

extension, 189–90
simulation data, 189–90
stress softening, 183
successive breakdown of cluster fillers under

exposed stress, 182–3
temperature dependence of the hysteresis cycles,

191–2
uniaxial hysteresis cycles for EDPM-N339

samples, 192
dynamic small- and medium-strain modeling - Payne

effect, 161–82
dynamic strain-induced non-linearity, 156

Edwards transformation, 23
Edwards Hamiltonian, 21, 121–2
effective interaction strength, and trial Hamiltonian,

124–9
Einsein–Smallwood formula, 102–3, 112

Einstein’s equation for the enhancement of viscosity
of solutions, 3–4

elastomer matrix, 40–63
about the elastomer matrix, 40–1
entanglements and the tube model, 45–53
entropy issues, 41
experimental results: extended tube model, 55–9;

stress–strain relationship, 53–5; testing the
model, 59–63

experiments, 53–63
Gaussian network, 42–5
polymer melts, 40
structural elements in a network, 40–1
see also entanglements; rubber, modulus

measurement; tube model
energetic heterogeneity, 121
energy distribution see carbon blacks, surface energy

distribution
entanglements

entanglement sliding, 47–9
free-energy issues, 48–9
Gaussian chain elasticity, 48
locally constrained chains, 46
sliplink effects, 49
slippage, 49
see also tube model

entropy
and the elastomer matrix, 41
entropy penalty, 42
with networks, 42–3

equation of motion for the time correlation function,
138–43

Langevin dynamics, 138–9
Rouse transformation, 142–3
self-consistent Hartree approximation, 139–41
static equation, 143

Feynman variational procedure, 122
filler networking

flocculation of fillers during heat treatment, 153–6
need for understanding, 4

filler–filler interaction
flocculation of fillers during heat treatment, 153–6
kinetics of filler structures under dynamic

excitation, 156–61
see also models/modeling

fillers see core–shell system fillers; flocculation of
fillers during heat treatment; kinetics of filler
structures under dynamic excitation; rigid filler
aggregates with fractal structures; rubbers, filler
reinforced; silica fillers

fingerprints of filled rubber, 157
finite extensibility, for the tube model, 49–52

deformation dependence, 51
polymer slack, 50–1
primitive path mean length, 52
primitive path slack, 50–2
single chain, 50

flocculation of fillers during heat treatment, 153–6
for carbon-black-filled diene-rubber composites,

155–6
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flocculation of fillers during heat treatment (cont.)
development of weakly bonded superstructures, 153
mechanical connectivity between particles, 155
stiffness of filler–filler bonds, 155
structural relaxation effects, 153
time developments, 153–4

Flory exponent, 66, 144
Flory free energy, 66, 72
Flory–Stockmayer model, 36, 37
Flory–Stockmayer gelation, 37
Flory-type models, and rubber modulus

measurement, 54
fluctuation dissipation theorem (FDT), 140–1
force–extension relation, 44
free energy of deformation, 42–5
freezing of chains, 135–7
Frenkel–Halsey–Hill (FHH) theory/evaluation

procedure, 87–92

Garel–Orland method, 122–3
Gaussian chains

about Gaussian chains, 10–12
bond vectors, 13
central limit theorem, 12
chain elasticity, 48
delta functions, 14–15
for Gaussian networks, 42
Green function, 14–15
Hamiltonian, 13
partition functions, 14
path integrals, 12–15
random walk model, 10–12
random walk polymers, 14
Wiener–Edwards distribution, 13

Gaussian distribution function, 11
Gaussian model, for RPA, 25–6
Gaussian networks, 42–5

crosslinked polymer materials, 44
diagonal deformation matrix, 43
entropy with networks, 42–3
entropy penalty, 42
force-extension relation, 44
free energy, 42–5
Gaussian chains for, 42
second variant, 45
single-chain deformation behaviour, 43
see also entanglements

gelation, classical theory, 31–4
critical point, 31–4
generating function, 32
iteration/iterative process, 32
sol–gel transition, 31–2
viscosity, power law for, 31

generating function (GF), with Langevin dynamics,
138–41

Ginzburg argument, 17
Green function, 14–15, 106–8

Hamiltonian
and collective variables, 20–1
effective, 21, 25, 29
with Gaussian chains, 13

many-chain Hamiltonian, 23–4
and the partition function, 23
with self-interacting chains, 15, 16
see also trial Hamiltonian with the variational

procedure
Hartree approximation, 139–41

disorder parameter, 141
fluctuation dissipation theorem (FDT), 140–1
Hartree GF, 139–41
time translation invariance (TTI), 140–1

hydrodynamic amplification factor, 176
hydrodynamic reinforcement of elastomers, 3, 101–17

about hydrodynamic reinforcement, 101–3
core–shell systems, 111–17
Einsein–Smallwood formula, 102
enhanced, 1–2
rigid filler aggregates with fractal structures,

103–11
hyperscaling law/relation, 36, 37, 38

interaction term, 27–9
iterative process for gelation, 32

k-space, transformation to, 21–2
Kantor–Webman model of flexible chain aggregates,

193–5
applied to: fractal CCA clusters of bonded filler

particles, 194–5; percolation networks, 195
elastic modulus of the cluster backbone, 195

kinetics of filler structures under dynamic excitation,
156–61

cross-over effect, 159
density fluctuation in a vibrated material, 159
dynamic strain-induced non-linearity, 156
effective temperature fluctuations, 156
fingerprints, 157
glass-forming materials comparisons, 159–60
isoenergetic behaviour/states, 160
phase diagrams for jamming, 160–1
power saturation, 159
recovery effects, 158–9
stiffness response on repeated steps, 156–8

Kraus model, 161–4
applications, 162–3
deagglomeration, 161–2
excess loss modulus, 162
excess storage modulus assumption, 162
limitations, 163–4
reagglomeration, 161–2

Langevin dynamics, 138–9
generating function (GF), 138–9

Langmuir isotherm, 92
length scales for structural elements, interplay

between, 2–3
links–nodes–blobs (LNB) model, 171–2

advantages, 172
percolation theory, 171
WTG model comparisons, 172

localization behavior, 130
localized chains, dynamics of, 135–7, 152
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loss modulus of composite material, 4
low-viscosity media, Payne effect in, 6

Machta’s formula, 147
many-chain systems, 19–30

about many-chain systems, 19–20
collective variables and the Edwards Hamiltonian,

20–6
tagged chains, statistics of, 26–30
three-dimensional concentrated polymer solution,

19, 20
Martin–Siggia–Rose (MSR), GF

representation, 138
melts of fractals in restricted geometries, 71–4

Flory free energy, 72
Michelin Energy® tire, 75
mixing of fillers

dispersive mixing, 76–7
distributive mixing, 77

models
cluster–cluster aggregation (CCA) model, 174–82
dynamic flocculation model, 182–93
extended tube model, 55–9
Flory–Stockmayer model, 36, 37, 38
Kantor–Webman model of flexible chain

aggregates, 193–5
Kraus model, 161–4
links–nodes–blobs (LNB) model, 171–2
random potentials modeling, 131–4
random walk model, 10–12
tube model, 45–63
van der Walle–Tricot–Gerspacher (WTG) model,

169–71
variable network density model, 172–4
viscoelastic model, 164–9
Zener model, 165–8

Mooney representation/plot, 53–4
Mullins effect, 7–9, 182–95

non-ergodicity, 137

Padé approximation, 28
partition functions, 14, 23
Payne effect

about the Payne effect, 2, 4–6
and silica fillers, 99–100
dynamic small- and medium-strain modeling,

161–82
for physically bonded filler network structures, 6–7
in low-viscosity media, 6
temperature dependence, 6

percolation process, 34–6
connectivity transition, 34
critical exponent, 35–6
Flory–Stockmayer model, 36
hyperscaling law, 36
scaling approach, 34
scaling laws, 36
visualization of, 34

perturbation theory/series/parameters, 16
physically bonded filler network structures, Payne

effect, role of, 6–7

polymer–filler interactions, 118–52
about the clustering of filler particles, 118–19
about the ordering of filler particles, 118–19
annealed and quenched disorder, 134–5
flat surfaces, 119–20: free energy, 119–20;

thickness effects, 120
fractal surfaces, 120–1: binding sites, 121; energetic

heterogeneity, 121; polymer adsorption, 121
freezing of chains, 135–7
modeling by random potentials, 131–4: Brownian

surfaces, 132; chain size, 133; correlation of the
potential, 132; localization criterion, 133–4;

trial Hamiltonian, 122–9
variational calculation statics, 121–2: Feynman

variational procedure, 122; free energy
calculations, 121

see also dynamic behavior of chains;
equation of motion for the time
correlation function

polymers, 10–18
Gaussian chains: introduction, 10–12; path

integrals, 12–15
polymer melts, 40
self-interacting chains, 15–18

polymers of large connectivity, 64–74
spectral dimension, 64
see also D-dimensionally connected polymers in a

good solvent
pseudopotential approximation, 15–16

quenched and annealed disorder, 134–5

random phase approximation (RPA), steps for, 21–6
determination of H0, 24–5
Gaussian model, 25–6
putting together and exchanging integration, 22–4
standard RPA result for a polymer melt, 26
transformation to k-space, 21–2
transformation of variables, 22

random potentials, modeling by, 131–4
random walk model, 10–12

bond vectors, 10
delta function, 11
distribution function, 11
Gaussian distribution function, 11
limitations, 12
scaling function, 11

random walk polymers, 14
reinforcing fillers see fillers
rigid filler aggregates with fractal structures, 103–11

branched aggregate structures, 103–4
effective medium theory and linear elasticity,

106–9: mode dependence of the effective
screening, 108; natural generalization, 107–8;
reinforcement effects, 107; Rouse modes, 109

effective probability distribution for the filler
clusters, 104

filler structure modeling, 104–6
Green function, 106–8
reinforcement by fractal aggregates, 110–11:

diffusion-limited aggregation (DLA) clusters,
110–11
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rigid filler aggregates with fractal structures
(cont.)

screening lengths, 109–10: overlap concentration,
109

self-consistent screening approximation, 104
Rouse chains, 137
Rouse diffusion coefficient, 146–7
Rouse modes, 109, 135–7
Rouse modes freezing, 147–8

bifurcation diagrams, 149–51
numerical analysis, 148–51

Rouse time, 144
Rouse transformation, 142–3
rubber elasticity, extended tube model for, 55–9

applications for non-ideal networks, 57–9
assumptions, 55–7
free energy density, 56

rubber formation, 31–9
gelation, classical theory, 31–4
percolation, 34–6
vulcanization, 37–9

rubber matrix see elastomer matrix
rubber
modulus measurement, 53–5: Flory-type models,

54; Mooney representation/plot, 53–4; trapping
factor, 55–6

filler reinforced, 75–100: about fillers for rubber,
75–7; car tire applications, 75; dispersive mixing,
76–7; distributive mixing, 77; mixing issues, 76;
Payne effect, 7; stress softening (Mullins effect),
7; see also carbon black; silica fillers

scaling
and percolation, 34, 36
hyperscaling law, 36
length scales for structural elements, 2–3
scaling function, 11
scaling law for stress–strain behavior, 8

screened potential, 29
screening length, 28
self-avoiding walk (SAW), 16, 17–18
self-interacting chains, 15–18

Ginzburg argument, 17
perturbation theory/series/parameters, 16
pseudopotential approximation, 15–16
self-avoiding walk (SAW), 16, 17–18
with Hamiltonian, 15, 16

silica fillers, 96–100
basic characteristics, 96
carbon-black comparisons, 97
coupling agents (TESPT), 96–8, 100
hydrogen-bonding interactions, 96
Payne effect, 99–100
silane, roll of, 97–9
silanization reaction, 98–9

single-chain deformation behaviour, 43
sliplink effects, 49, 52–3
sol–gel transition, 31–2
spectral dimension, 64
spectral vectors, 13
stress softening, 7–9

stress-softening and quasistatic stress-strain
modeling – the Mullins effect, 182–95

structural disorder, carbon-black-filled elastomers, 2
structure factor of a strong polymer solution, 26
surface roughness see carbon blacks, surface

roughness

tagged chains, statistics of, 26–30
auxiliary fields, 26–7
blobs, 30
effective Hamiltonians, 29
interactions, 27–9
screened potential, 29
screening length, 28

time correlation function see equation of motion for
the time correlation function

time translation invariance (TTI), 140–1
transformation
of variables, for RPA, 22
to k-space, for RPA, 21–2

trapping factor, 55–6, 58, 62–3
trial Hamiltonian with the variational procedure,

122–9
effective interaction strength issues, 124–9:

deflection factor, 128; periodic, 127, 128–9;
randomly distributed, 127–8, 129

Garel–Orland method, 122–3
minimization of the free energy, 123–6
surface hetergeneity, 126–7: for a flat surface,

126–8; for a heterogeneous surface, 128–9
tube model, 45–63

and entanglements, 45–7
and finite extensibility, 49–52
and sliplinks, 52–3
crosslinking, 63
locally constrained chains, 46
plausibility criterion, 59
testing, 59–63
trapped chains, 46
trapping factors, 62–3
see also entanglements

van der Waals interaction parameter, 89–91
van der Walle–Tricot–Gerspacher (WTG) model,

169–71
fit to experimental data, 170–1
limitations, 169

variable network density model, 172–4
Kraus model comparison, 173–4
limitations, 174

variational method
and the trial Hamiltonian, 122–9
limitations, 130
quantifying localization transitions, 130
variational calculation statics, 121–2

viscoelastic model, 164–9
advantages, 169
and the Payne effect, 167
phenomenological nature of, 166
scaling behavior/relations, 167
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universal fractal moments, use of, 166
viscoelastic moduli, 165
Zener model usage, 165, 168

vulcanization, 37–9
Flory–Stockmayer gelation, 38
fluctuation of the gel fraction, 37–9
gel point, 38

hyperscaling relation, 38
of thin films, 39

Wiener–Edwards distribution, 13

Zener model, 165, 168
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