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Preface

Mehr Licht!

(J. W. v. Goethe)

The application of X-ray scattering for the study of soft matter has a long tradition.
By shining X-rays on a piece of material, representative structure information is col-
lected in a scattering pattern. Moreover, during the last three decades X-ray scattering
has gained new attractivity, for it developed from a static to a dynamic method.

The progress achieved is closely linked to the development of both power-
ful detectors and brilliant X-ray sources (synchrotron radiation, rotating anode).
Such point-focus equipment has replaced older slit-focus equipment (Kratky cam-
era, Rigaku-Denki camera) in many laboratories, and the next step of instrumental
progress is already discernible. With the “X-ray free electron laser” (XFEL) it will
become possible to study very fast processes like the structure relaxation of elas-
tomers after the removal of mechanical load.

Today, structure evolution can be tracked in-situ with a cycle time of less than a
second. Moreover, if a polymer part is scanned by the X-ray beam of a microbeam
setup, the variation of structure and orientation can be documented with a spatial
resolution of 1 µm. For the application of X-rays no special sample preparation is
required, and as the beam may travel through air for at least several centimeters,
manufacturing or ageing machinery can be integrated in the beamline with ease.

On the other hand, the result of the scattering method is not a common image of
the structure. There is not even a way to reconstruct it from scattering data, except for
the cases in which either anomalous scattering is employed, or a diffraction diagram
of an almost perfect lattice structure is recorded. Because most of the man-made
polymer materials suffer from polydispersity and heterogeneity, the crystallographic
algorithms of structure inversion are in general restricted to the field of biopolymers
(e.g., protein crystallography). Thus the ordinary polymer scientist will deal with
scattering data rather than with diffraction data. These data must be interpreted or
analyzed. This book is intended both to guide the beginner in this field, and to present
a collection of strategies for the analysis of scattering data gathered with modern
equipment. Common misunderstandings are discussed. Instead, advanced strategies
are advertised.

An advantage of a laboratory-oriented textbook is the fact that many technical
aspects of our trade can be communicated1. Their consideration may help to im-
prove the quality and to assure the completeness of the recorded data. On the other

1An example is the chapter entitled “It’s Beamtime, Phil”. It is written in the hope that in particular the
practical work of students will benefit from it.
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hand, the concept is restricting the presentation of the mathematical background to
a terse treatment. For a field like the scattering that is virtually interpenetrated by
mathematical concepts this is not unproblematic. As a consequence, it was impos-
sible to present mathematical deductions, which could have been an assistance to
methodical development by the reader. In this respect even the references given to
original papers are not really helpful, because in such publications the fundamental
mathematical tools are expected to be known. Nevertheless, this restriction may be
advantageous from a different perspective. The terse scheme is enhancing the pre-
sentation of the fundamental ideas and their repetitive use in different subareas of the
scattering technique.

This book with its special focus on application was stimulated by a sugges-
tion of Prof. Dr.-Ing. W.-M. Kulicke. I greatly appreciate his support. Moreover,
the manuscript has its roots in thirty years of practical work in the field of scatter-
ing from soft materials conducted in several labs and at several synchrotron sources.
During this time the author has assisted many external groups with their practical
work at the soft-matter beamlines of the Hamburg Synchrotron Radiation Labora-
tory (HASYLAB at DESY), supported evaluation of scattering data, and worked as a
referee in the soft-condensed matter review-committee of the European Synchrotron
Radiation Facility (ESRF) in Grenoble. The accumulated handouts prepared during
twenty years of lecturing scattering methods at the University of Hamburg have been
a valuable source for the book manuscript.

There are many other people who have – in different respect – contributed to this
work. The first to mention is my teacher, Prof. Dr. W. Ruland. I am grateful for his art
of teaching the scattering. Wherever in this book I should have been able to explain
something clearly and concisely, it is his merit. The second to mention is Prof. Dr.
H. G. Zachmann. In his group I enjoyed to become involved in many practical is-
sues of soft matter physics. In particular I appreciate many helpful comments on the
manuscript that have been supplied by Prof. Dr. W. Ruland, Dr. C. Burger, Prof. Dr.
A. Thünemann and Prof. Dr. S. Murthy. In addition, there are many other colleagues
who have stimulated my work by fruitful cooperation, discussion and support. To
mention them all would fill pages.

The complex task of writing a scientific manuscript has been significantly eased
by authoring tools that keep track of the formal aspects of the growing manuscript.
For this reason I thank the developers of LYX, Koma-Script and LATEX (in particular
Matthias Ettrich and Markus Kohm) for their free and superb software. Moreover, I
highly appreciate the excellent guidance and the distinguished manuscript editing by
the team at Springer Publishers.

Last but not least I express cordial thanks to my wife Marie-Luise and to my
children for their continuous support.

Hamburg, January 2007 N. Stribeck



List of Symbols and Abbreviations

The handling of polar coordinates is a general problem in a book on scattering, where the sym-
bol θ that is normally used to indicate the polar angle is already used to indicate the Bragg
angle. Too late I became aware of the problem and tried to introduce a consistent notation.
Unfortunately the problem was more involved than I thought, as colleagues pointed out after
proofreading the manuscript. Based on suggestions I finally tried to harmonize the nomencla-
ture. Nevertheless, the reader should be aware of possible remnant inconsistencies concerning
the use of the symbols ψ , ϕ and symbols of related angles.

〈 〉 Averaging operator

〈 〉V Irradiated volume average

〈 〉ω Solid-angle average

�� Slice mapping

{} Projection mapping

� Convolution operator

∗ϕ Angular convolution

⊗ Correlation operator

�2 Autocorrelation operator

∗ Complex conjugate. z = a + ib; z∗ = a− ib

∇ Gradient operator

1D One-dimensional

2D Two-dimensional

3D Three-dimensional

A(s) Scattering amplitude

a Scaling vector (anisotropic dilation)

a Scaling factor (isotropic or 1D dilation)



X List of Symbols and Abbreviations

a In a lattice: edge length of unit cell, i.e., the distance between the
δ ( )-elements that make the abstract lattice c( )

αi Angle of incidence on the sample surface

αe Angle of exit from the sample surface

B(h) Integral breadth of the distribution h

c() Comb function (abstract lattice)

CLD Chord length distribution g(r) = −�p γ ′′ (r)

CCD Charge-coupled device

CDF Chord distribution function z(r) ∝ −∆γ (r)

δ ( ) DIRAC’s delta function

∆ Laplacian operator

DESY Deutsches Elektronen-SYnchrotron (Hamburg, Germany)

DI Digital image processing

D Fractal dimension

dhkl Lattice repeat in WAXS (distance between net planes of a crystal
indexed by hkl)

DDF Distance distribution function

ESRF European Synchrotron Radiation Facility (Grenoble, France)

ε Mechanical elongation (ε = l/l0 −1)

exp(−µ�) Linear absorption factor

F (s) Fourier transform

Fn ( ) n-dimensional Fourier transform

F−n () n-dimensional Fourier back-transform

fP Polarization factor

for Uniaxial orientation parameter (HERMANS’ orientation function)

FIT2D Scattering data evaluation program by A. Hammersley (ESRF)

FLASH Free Electron Laser Hamburg

FWHM Full width at half-maximum



List of Symbols and Abbreviations XI

g(r) (Radial) chord length distribution (CLD)

g1 (x) (One-dimensional) interface distribution function (IDF)

GEL Image data format returned by image plate scanners

γ (r) = ρ∗2 (r)/k Normalized correlation function

HASYLAB Hamburg Synchrotron Radiation Laboratory

h() Some kind of distribution function

hkl MILLER’s index of a crystal reflection in reciprocal space

(h) Order of a reflection, line or peak. Short for hkl

H ( ) Fourier transform of the distribution h()

hH (a) Size distribution (of particles, clusters)

ℑ( ) Imaginary part of a complex number

I (s) = F3
(
ρ∗2 (r)

)
Scattering intensity

I0 Incident intensity (i.e. primary beam intensity)

It Transmitted intensity behind the sample

IDL Commercial programming system for image data processing

ImageJ Open-source programming system for image data processing

J (s3) = �{I}2 (s2,s3)�1 (s3) Slit-smeared scattering intensity

Ji Bessel function of the first kind and order i

k =
∫

I (s)d3s = ρ∗2 (0) Scattering power

L Lattice repeat (in SAXS: long period, in WAXS identical to dhkl

according to Bragg’s law)

� Path of the photon through the sample

�p Chord length related to size of crystals or domains

l In straining experiments: actual length of the sample

l0 In straining experiments: initial length of the sample

λ X-ray wavelength

λd Draw ratio λd = l/l0 = ε + 1

Linac Linear accelerator



XII List of Symbols and Abbreviations

M Molecular mass

MAXS Middle-angle X-ray scattering

M () Mellin transform

µ Linear absorption coefficient

µi i-th central moment of a distribution function

µ ′
i i-th moment about origin of a distribution function

OTOKO Scattering curve evaluation program by M. Koch (EMBL, Ham-
burg)

pv-wave Commercial programming system for image data processing

P(r) = ρ∗2 (r) Patterson function

p(r) (Radial) distance distribution function p(r) = r2γ (r)

Φ(s) Fourier transform of a shape function Φ(s) = F (Y (r))

q = 2π s Alternate scattering vector

Q = k/V Invariant (SAXS)

QP Polarization quality (of a synchrotron source)

IR The set of real numbers

IRn The n-dimensional vector space

ℜ() Real part of a complex number

R Sample-to-detector distance

Rg Guinier radius (i.e. radius of gyration)

r = (r1,r2,r3) Real space vector

re COMPTON’s classical electron radius (2.818×10−15m)

ROI Region of interest (from Digital Image Processing)

ρm Mass density

ρ (r) Electron density (in the field of SAXS: deviation of the electron
density from the average electron density)

ρ∗2 (r) = kγ (r) (SAXS) correlation function

〈ρ〉V Average electron density



Lists of Symbols and Abbreviations XIII

s Magnitude of the scattering vector

s = (s1,s2,s3) Scattering vector in Cartesian coordinates

s = (s,φ ,ψ) Scattering vector in polar coordinates (φ polar angle, ψ azimuthal
angle). – See the preamble to this “List of Abbreviations”

SAXS Small-angle X-ray scattering

S/N Signal-to-noise ratio

SSRL Stanford Synchrotron Radiation Laboratory

σ Standard deviation

σ2 Variance

t Sample thickness

topt Optimum sample thickness

TIFF Tagged Image File Format

TOPAS Scattering curve evaluation program by N. Stribeck

θ Bragg angle (half of the scattering angle)

2θ Scattering angle

θc Critical angle of total reflection

USAXS Ultra small-angle X-ray scattering

USB Universal Serial Bus (an interface to couple external devices to
computers)

V The sample volume irradiated by the X-ray beam

VFC Voltage-to-frequency converter

VUV Vacuum ultra-violet light

W Beam cross-section of the incident X-ray beam

x Principal axis of uniaxial structure,
depth in which a photon is scattered

XFEL X-ray free electron laser

Y (r) Shape function (Y (r) = 0 outside the body, Y (r) = 1 inside)

YH (x) Heaviside function. YH (x > 0)= 1, YH (x < 0)= 0. ∂YH (x)/∂x =
δ (x)

WAXS Wide-angle X-ray scattering

z(r) = −∆P(r) Chord distribution function
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1 Polydispersity and Heterogeneity

The heterogeneity immanent to materials that show scattering but not diffraction
patterns should not be ignored. An assessment concerning the significance of results
can only be expected if the collected data are complete (cf. Sect. 8.4.2) and show
low noise (exposure time long enough). Whenever a measured parameter value is
discussed, heterogeneity results in fundamental questions to be answered: What kind
of average does my method return? Is it possible to determine the width and skewness
of the parameter value distribution? A brief review of such “probability distributions”
and their moments is given for later reference.

1.1 Scattering, Polydispersity and Materials Properties

Except for biopolymers, most polymer materials are polydisperse and heteroge-
neous. This is already the case for the length distribution of the chain molecules
(molecular mass distribution). It is continued in the polydispersity of crystalline do-
mains (crystal size distribution), and in the heterogeneity of structural entities made
from such domains (lamellar stacks, microfibrils). Although this fact is known for
long time, its implications on the interpretation and analysis of scattering data are, in
general, not adequately considered.

DEBYE & MENKE (1931) [1]: “It is futile

Figure 1.1. P. Debye (1884-1966) and
his small-angle light-scattering device
on a Dutch stamp

to draw distinct conclusions if genuine scatter-
ing curves are not at hand. It is insufficient un-
der any circumstances if authors state that an
interference maximum or several of them ex-
ist at certain angular positions. Only a contin-
uous scattering pattern can be the fundament
of proper reasoning. Concerning the abundant
reports on disordered materials it must unfor-
tunately be stated that they are unsatisfactory
in this respect. Although even in this way, by
mere accumulation of data and comparison of
data from materials with similar chemical composition, some valuable conclusion
was drawn with a higher or a lower level of significance. This situation is the result
of the fact that we are insufficiently informed on the theory of the arrangement of
molecules in a fluid. Only if it were possible to theoretically describe this arrange-
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ment in a similar manner as can be done for the arrangement of atoms in a crystal, it
would be sufficient to report interference maxima.”

Heterogeneity. In reality, structure is frequently heterogeneous. For example, if
colloidal crystals have been produced by means of nanotechnology, it must be as-
sumed that the material is not perfect. Thus it is of some importance to describe the
deviation of the individual sample from the ideal material. For such purposes scat-
tering methods are frequently employed and the scattering patterns are qualitatively
interpreted. Nevertheless, the mechanisms of structure formation remain obscured as
long as the amount of heterogeneity cannot be determined quantitatively during the
structure formation process.

Different kinds of heterogeneity can be imagined. In the most simple case only
a few differing structural entities are found to coexist without correlation inside the
volume irradiated by the primary beam. In this case it is the task of the scientist to
identify, to separate and to quantify the components of such a multimodal structure.
In an extreme case heterogeneity may even result in a fractal structure that can no
longer be analyzed by the classical methods of materials science.

Polydispersity. Quite frequently many different but similar structural entities can
be found in a material. This is the common notion of polydispersity. Thus polydis-
persity means that every structural unit in the sample can be generated by compres-
sion or expansion (dilation) from a template. This building principle is mathemati-
cally governed by the Mellin convolution [2], which generates the observed structure
from the template structure and its size distribution. The determination of the latter
is a major goal in the field of materials science. Considering the simple case of pure
particle scattering, the searched size distribution is the particle dimension distribu-
tion [3]. If, for example, the studied particles are spheres, the number distribution
of sphere diameters would be of interest, and the material would advantageously be
characterized by the mean diameter and the variance of the sphere diameters. More-
over, even a value describing the skewness of the sphere diameter distribution may
become important in order to understand property variations of different materials.

1.2 Distribution Functions and Physical Parameters

A general principle is governing the relation between physical parameters and under-
lying distribution functions. Its paramount importance in the field of soft condensed
matter originates from the importance of polydispersity in this field. Let us recall
the principle by resorting to a very basic example: molecular mass distributions of
polymers and the related characteristic parameters.

1.2.1 The Number Molecular Mass Distribution

In the basic molecular mass distribution, N (M), the number N of molecules in a
sample is plotted vs. their molecular mass, M. Figure 1.2 presents a sketch of a
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Figure 1.2. A number molecular mass distribution N (M) of an ideal chain polymer. N (M) is
defined for integer multiples of Mm, the monomer mass. The integer factor, P, is called the
degree of polymerization

molecular mass distribution. For ideal chains the distribution is a discrete function
which is only defined for integer multiples of the monomer mass, Mm. The function
is called the number molecular mass distribution, because it exhibits the number of
molecules with a certain molecular weight M.

The function N (M) can be considered a continuous function, if the average
molecular weight of the chains is high enough. In this case we draw a continuous
line through the points in Fig. 1.2.

It is reasonable to normalize N (M) with respect to the total number of molecules
in the sample

n(M) = N (M)/

∫ ∞

0
N (M) dM. (1.1)

Now the function displays the number fraction of molecules with a certain molecular
mass. Its integral is 1 by definition. Nevertheless, we still call it the number molecular
weight distribution because the factor

∫
N (M) dM is nothing but a constant.

1.2.2 The Number Average Molecular Mass

The obvious definition of the number average, Mn, of the distribution is the position
on the M-axis that divides the area under the n(M)– curve in equal parts (cf. Fig. 1.3).
Because of the fact that n(M) is normalized to 1, each of the subareas is equal to 0.5.
As 50% of all the molecules are shorter than Mn, the other 50% are longer than Mn.
Bearing in mind the normalization, the number average molecular mass is

Mn =
∫ ∞

0
M n(M) dM. (1.2)

This equation is, as well, the definition of the mean (cf. ABRAMOWITZ [4] chap. 26)
– the first moment of the distribution n(M) about origin. In fact, with respect to a
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Figure 1.3. The number average molecular mass, Mn, is the position that divides the area
under the corresponding distribution in equal parts

normalized distribution (
∫

n(M) dM = 1) the mean is the center of gravity of the
distribution.

In order to describe the discussed distribution function, three characteristic pa-
rameters are used in polymer science. They are named number average1, weight
average (Mw), and centrifuge average (Mz)

Mn =
∫

M1 n(M) dM∫
M0 n(M) dM

(1.3)

Mw =
∫

M2 n(M) dM∫
M1 n(M) dM

(1.4)

Mz =
∫

M3 n(M) dM∫
M2 n(M) dM

(1.5)

This series of equations demonstrates a general principle in physics, namely how
measurable materials parameters are generated from moments of the related distri-
bution function.

1.3 Moments

The i-th moment (about origin) of a distribution h(x) is defined by

µ ′
i (h) =

∫
xi h(x) dx (1.6)

(ABRAMOWITZ [4] chap. 26). We have demonstrated that the structure parameters
of a polydisperse structure are closely related to these moments. µ ′

0 (h) is the norm

1This is the center of gravity of the distribution n(M).
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and m(h) := µ ′
1 (h) the mean of the distribution on which the definition of central

moments

µi (h) :=
∫

(x−m(h))i dx (1.7)

is based. As a measure of distribution width it is common to report the variance

σ2 (h) := µ2 (h) (1.8)

or the standard deviation, σ (h). µ3 (h)/σ3 (h) is known as skewness of the distribu-
tion (ABRAMOWITZ [4] chap. 26).

Application in the Field of Scattering. Let us consider two important distri-
bution functions, hc (x) and hL (x). These functions shall describe the thicknesses of
crystalline layers and the distances (long periods) between them, respectively. In this
case we take into account polydispersity of the crystalline layers, if (at least) the two
parameters d̄c and σc/d̄c are determined which are defined as the average thickness
of the crystalline layers,

d̄c =
µ ′

1 (hc)
µ ′

0 (hc)
,

and the relative standard deviation of the crystalline layer distribution,

σc

d̄c
=

σ (hc)
d̄c

.

In the classical treatment of the paracrystal, HOSEMANN [5] refers to the quantity
σc/d̄c as “g-factor”.

If we knew that the long periods are varying from stack to stack, but not within
one and the same stack, the quantities

L̄ =
µ ′

1 (hL)
µ ′

0 (hL)

(average long period) and
σL

L̄
=

σ (hL)
L̄

(relative standard deviation of the long periods, which is another HOSEMANN

g-factor) describe the polydispersity of this material.



2 General Background

Interpretation of scattering data requires understanding of the general dimensions
of the field and a general background of scattering theory which is reviewed in this
chapter. Reference is given to textbooks and original work, where detailed discussion
would extend beyond the scope of this book.

2.1 The Subareas of X-Ray Scattering

Scattering experiments are carried out in four different angular regions which will be
frequently addressed in this book. In Table 2.1

the subareas are identified by the typical distance R between the sample and
the detector. The wavelength selected for the example is close to the historical
wavelength of an X-ray tube equipped with a copper anode (CuKα radiation with
λ = 0.15418nm).

Classical X-ray diffraction and scattering is carried out in the subarea of wide-
angle X-ray scattering (WAXS). The corresponding scattering patterns yield infor-
mation on the arrangement of polymer-chain segments (e.g., orientation of the amor-
phous phase, crystalline structure, size of crystals, crystal distortions, WAXS crys-
tallinity).

The subarea of middle-angle X-ray scattering (MAXS) covers the characteristic
scattering of liquid-crystalline structure and rigid-rod polymers.

In the small-angle X-ray scattering (SAXS) regime the typical nanostructures
(in semicrystalline materials, thermoplastic elastomers) are observed. Because of the
long distance between sample and detector time-resolved measurements can only be
carried out at synchrotron radiation sources (Sect. 4.2.1.2).

Table 2.1. Subareas of scattering as a function of the sample–detector
distance R assuming an X-ray wavelength of λ ≈ 0.15nm

Subarea R [m] Focus
WAXS 0.05 – 0.2 arrangement of chain segments
MAXS 0.2 – 1 liquid-crystalline structure
SAXS 1 – 3 nanostructure 3 nm – 50 nm

USAXS 6 – 15 nanostructure 15 nm – 2 µm
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The ultra small-angle X-ray scattering (USAXS) extends the accessible structure
towards the micrometer range. Time-resolved measurements require a synchrotron
beam that is intensified by an insertion device (Sect. 4.2.2).

2.2 X-Rays and Matter

2.2.1 General

X-rays are electromagnetic radiation with short wavelengths of about 0.01 to 10 nm.
λ ≈ 0.15 nm is the typical wavelength for the study of soft condensed matter. When-
ever X-rays are interacting with matter, their main partners are the electrons in the
studied sample. Thus X-ray scattering is probing the distribution of electron density,
ρ (r), inside the material.

As scattering intensity is computed from ρ (r) in this book, the symbol ρ (r) has
two different meanings. Only in the field of WAXS it is identical to the plain electron
density. However, in the area of SAXS it indicates the electron density difference1,
i.e., the deviation of the local electron density from the average electron density
〈ρ (r)〉V in the irradiated volume V .

Electron Density Computation. The average2 electron density of a material or
of a specific phase within a material,

ρ = Zm ρm = NA
ZM

MM
ρm, (2.1)

is computed from the respective average mass density, ρm, by multiplication with
the “number of electrons per gram”, Zm, given by Avogadro’s number, NA = 6.022×
1023mol−1, the number of electrons per molecule or monomer unit, ZM , and the
molecular weight of molecule or monomer unit, MM .

For polybutadiene with the chemical composition C4H6 we have a molecular
weight of MM = 54.092g/mol and ZM = 30e.u. (electrons in “electron units”). If the
mass density is ρm = 0.90g/cm3, the electron density becomes ρ = 300.6 e.u./nm3.

2.2.2 Polarization

Polarization is a relevant issue, because we are dealing with transversal waves
(GUINIER [6], p. 10-11). Polarization correction should be carried out for MAXS
and WAXS data. It is less important for SAXS and USAXS patterns. In particular, if
synchrotron radiation is used, the polarization correction is quite involved and based
on the degree of polarization. For the purpose of reliable correction it is thus recom-
mended to let a polarization monitor measure the actual degree of synchrotron beam
polarization.

1In many publications the electron density difference is addressed as ∆ρ (r) = ρ (r)−〈ρ (r)〉V .
2Exercise: Compute the average electron density 〈ρ〉V of a sample from pure poly(ethylene terephtha-
late) (PET) with a mass density of 1.38 g/cm3. The chemical formula of PET is C10H8O4. Because
PET is most probably in the semicrystalline state, it makes sense to stress that the computed electron
density is a volume average 〈〉V .
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2.2.2.1 Polarization Factor of a Laboratory Source

The polarization factor of a common X-ray source emitting unpolarized monochro-
matic light is

fP0 (2θ ) =
1
2

(
1 + cos2 (2θ )

)
(2.2)

a well-known function of the scattering angle 2θ (ALEXANDER [7], p. 40; GUINIER

[6], p. 99). Special care must be taken, if the monochromator is installed not in the
primary beam (primary monochromatization), but in the diffracted beam (secondary
monochromator) [8, 9]. See also Sect. 2.2.3.

2.2.2.2 Synchrotron Beam Polarization Factor

Synchrotron light is, in general, polarized in horizontal direction ([10], p. 9-13). Nev-
ertheless, the polarization of the beam is never perfect. In order to be able to carry
out a quantitative polarization correction, the quality of polarization should be moni-
tored by means of a polarization monitor [11] that is positioned in the primary beam.
The polarization monitor is registering the horizontally polarized component, Ih, and
the vertically polarized component, Iv. From these two intensities the quality

QP =
Ih − Iv

Ih + Iv
(2.3)

of horizontal polarization is computed. In the ideal case QP = 1 is valid. Polarization
monitors are rarely available in the field of elastic scattering. Thus, if polarization
correction is carried out, it is frequently assumed that polarization is ideal horizontal.
For some synchrotron beamlines the quality of polarization is part of the technical
specification and can be queried. Values found in the worldwide web range between
QP = 0.95 . . .1.00 with typical uncertainties of 0.02.

From simple geometrical consideration (cf. Fig. 2.1) it follows that at a syn-
chrotron the ideal polarization factor is only a function of the horizontal component
of the scattering angle. Thus we conveniently express the polarization factor in terms
of the horizontal scattering-angle

θ1 = arctan(x1/R)

and of the vertical scattering-angle

θ3 = arctan(x3/R)

in the nomenclature from Fig. 2.1. For the practically relevant polarization factor of
synchrotron radiation

fP (θ1,θ3) =
(1−QP)cos2 θ3 +(1 + QP)cos2 θ1

2
(2.4)

is obtained. Here (1−QP)/2 and (1 + QP)/2, respectively, are the vertically and
horizontally polarized fractions of the radiation. The reader easily verifies that the
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Figure 2.1. Polarization of synchrotron radiation in a hypothetic non-relativistic case. In real-
ity the toroidal radiation pattern is degenerated to a narrow forward lobe

equation returns the correct solution for the ideal case (QP = 1). If both the rows of
the two-dimensional (2D) detector and the primary beam are not tilted with respect to
the plane of the storage ring and, moreover, the polarization is ideal the polarization
correction becomes simple: all the intensities from the same column of detector pix-
els are divided by the same factor fP (θ1). A more involved treatment of polarization
correction has been published by KAHN et al. [12].

2.2.3 Compton Scattering

An elimination of Compton scattering (also called incoherent scattering) should be
carried out for WAXS data before quantitative evaluation. It is unnecessary for SAXS
and USAXS patterns. Compton scattering is a result of an energy transfer from the
photon to the electron. The intensity of the Compton scattering as a function of the
scattering angle is computed from the chemical composition of the sample ([7] p. 29-
32) ([13] p. 247-253). For application in the field of soft condensed matter it has been
demonstrated by RULAND [14] that both the BREIT-DIRAC recoil-term and proper
absorption correction of the Compton scattering should be considered for WAXS
data. This specific absorption correction should not be confused with the general
correction of the scattering pattern for absorption, which is discussed in Sect. 7.6 on
page 76. If a secondary monochromator is installed3, part of the Compton scattering
will be eliminated by it [8].

2.2.4 Fluorescence

Fluorescence effects are, in general, considered to be negligible. In gas-filled detec-
tors the corresponding photons are discarded in the energy discrimination stage of

3meaning that the device is installed in the diffracted beam
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Figure 2.2. The classical setup for the static measurement of X-ray scattering in symmetrical-
reflection geometry. 2θ is the scattering angle. If the sample is turned upright and thus trans-
mitted instead, the corresponding geometry becomes the symmetrical-transmission geometry

the electronics. Modern CCD-detectors, on the other hand, are sensitive to fluores-
cence photons.

2.3 Classical X-Ray Setup

In principle every scattering pattern can be recorded using the classical X-ray diffrac-
tion setup sketched in Fig. 2.2. In the detector the scattering intensity is measured in
units of counts-per-second.

Using the ideal instrument we would vary the scattering angle 2θ to record a
scattering curve, then rotate and tilt4 the sample in order to obtain the complete scat-
tering pattern. In fact, these three angles are advantageously mapped to a reciprocal
space that is inversely related to the real space in which the sought-after structure of
the sample is defined.

2.4 s-Space and q-Space

In Fig. 2.3 the relation between the setting of the instrument and the actual position
that is sensed in reciprocal space is sketched in the plane of incidence, i.e., in the
plane that is spanned by two vectors S0 and S which are unit vectors5 which indicate
the directions of the incident and the scattered beam, respectively. Upon variation of
the scattering angle 2θ , the tip of the scattering vector s is moving along a circular
arc. Its magnitude

|s| = s =
2
λ

sinθ (2.5)

equaling the base of the isosceles triangle spanned by the congruent sides S0 and S.
If, in addition, the plane of incidence is rotated about the direction of the incident

4For a sketch cf. p. 193, Fig. 9.3
5The magnitude of a unit vector is 1.
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Figure 2.3. The scattering vector s probing the surface of the Ewald sphere upon variation of
the scattering angle 2θ . λ is the wavelength of the X-rays, and s2 is the out-of-plane compo-
nent of the scattering vector s

beam, s is probing the surface of the so-called Ewald sphere. Thus the scattering in-
tensity I (s) is considered a function of the scattering vector. s has three components
which define the reciprocal space. Modern setups are frequently equipped with a
plane 2D detector6. It should be clear that – because of the geometrical construction
scheme – the image on the detector is not the representation of a plane in s-space. In-
stead, it represents the scattering intensity on a spherical7 calotte of reciprocal space.
The curvature of the detection surface is no problem at small angles (SAXS, US-
AXS), because here it is negligible – and the so-called tangent-plane approximation
is valid with

sinθ ≈ tanθ ≈ θ . (2.6)

In practice, for SAXS and USAXS experiments carried out in normal-transmission
geometry the set of equations

sx =
x

λ R
, sy =

y
λ R

. (2.7)

relates the position of each pixel (x,y) on the detector as measured from the center
of the scattering pattern to two components sx and sy of the scattering vector (cf.
Sect. 10.1.2).

Because the orientation of the reciprocal space coordinate system is rigidly cou-
pled to the orientation of the real-space coordinate system of the sample, the recipro-
cal space can be explored8 by tilting and rotating the sample in the X-ray beam (cf.
Chap. 9).

6Such detectors are frequently charge-coupled devices (CCD) known from digital cameras
7Ewald sphere!
8up to the distance defined by the diameter of the Ewald sphere
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Two different definitions of the scattering vector, with

q = 2π s (2.8)

are presently used in the field of scattering. In the past other letters (m, b) have been
used as well, but there were never more than two different mathematical definitions.
In the s-system the relation between physical and reciprocal space is perfectly anti-
symmetrical. In the q-system this intrinsic mathematical symmetry has unnecessarily
been broken [15]. For instance, a preferential distance L between two particles results
in a maximum at sL = 1/L but at qL = 2π/L according to Bragg’s law.

According to the Fraunhofer approximation of kinematic scattering theory the
real space and the reciprocal space are related to each other by an integral transform
known by the name Fourier transform, which shall be indicated by the operator F ( ).
The n-dimensional (nD) Fourier transform of h(r) is defined by

Fn (h)(s) :=
∫

h(r) exp(2π irs) dnr, (2.9)

with i the imaginary unit – and back-transformation simply yields

F−n (H) (r) :=
∫

H (s) exp(−2π irs) dns, (2.10)

with H (s) := Fn (h)(s). In the field of scattering 1D-, 2D- and 3D-transforms are
required. The kernel of the Fourier transform is called the harmonic function

exp(2π irs) = cos(2πrs)+ i sin(2πrs) , (2.11)

and the Fourier transform is said to perform an harmonic analysis. ℜ( ) and ℑ()
define the real and the imaginary part of a complex number, respectively.

In the q-system one has asymmetrical transformation pairs made from

Fn (h)(q) :=
∫

h(r) exp(irq) dnr (2.12)

and

F−n (H)(r) :=
(

1
2π

)n ∫
H (q) exp(−irq) dnq. (2.13)

Thus calculus is kept simple in the s-system.

2.5 Scattering Intensity and Sample Structure

This section is devoted to the explanation of Eq. (2.14).
The fundamental relations between the electron density distribution inside the

sample, ρ (r), and the observed scattering intensity, I (s) are conveniently combined
in a sketch
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ρ (r) F3

⇔ A(s)

�2 ⇓ ⇓ | |2

P(r)
⇔
F3

I (s)

(2.14)

which is known by the name magic square of scattering (Eq. (2.14)). In particular in
the field of SAXS the correlation function,

γ (r) = ρ�2 (r)/ρ�2 (0) = P(r)/ρ�2 (0) , (2.15)

is a synonym for the Patterson function P(r).

2.5.1 Lay-Out of the Magic Square

In the corners of the square we find functions. These functions describe the structure
of our material.

Along the edges of the square there are mathematical operations. The Fourier
transform describes the relation between the left and the right side of the square.
Thus, on the left side we find the functions of physical space, and the reciprocal
space is found on the right side. Double-headed arrows show that the path from the
left to the right side is reversible. Unfortunately, reversion is impossible after we
have moved from the top to the bottom of the square – and the scattering intensity
I (s) is located in the lower right corner of the square.

2.5.2 Analysis Options – Example for SAXS Data

Options of data analysis can be deduced from the magic square and our notions con-
cerning the structure. As an example let us consider the case of small-angle X-ray
scattering. Here it is, in general, assumed that the structure is described by a continu-
ous density function. Although there is no9 way back from intensity to density, there
are several options for data analysis:

1. Utilize theory and find out, how some structure parameters can be determined
from the intensity directly,

2. walk from the intensity along the lower edge half-way back to real space,
where the transformed data are closer to human perception,

3. model a structure and fit it to the intensity or

4. in addition to item 2 carry out “edge enhancement” in order to visualize struc-
ture by means of the chord distribution function (CDF), z(r), and interpret or
fit it.

9Except for the case of anomalous SAXS, Sect. 8.9
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The operation related to item 4 is displayed in an extended square

ρ (r) F3

⇔ A(s)

�2 ⇓ ⇓ | |2 .

z(r)
⇔
∆ P(r)

⇔
F3

I (s)

(2.16)

One major goal of this book is to demonstrate the application of these options for
data analysis.

Effort of Data Analysis. The mentioned options are listed in the order of in-
creasing complexity for the scientist. When scattering curves (isotropic data) shall
be analyzed, all the four listed options have proven to be manageable by many sci-
entific groups.

In contrast, a real challenge is the analysis of scattering images from anisotropic
materials, and in this subarea many scientists surrender and resort to the interpre-
tation of peak positions and peak widths in raw data (cf. citation of P. Debye on
p. 1). So after having advanced by learning how to analyze curves, in the field of
anisotropic materials we are now in a similar situation as science has been in 1931
in respect to isotropic data.

A shortcut solution for the analysis of anisotropic data is found by mapping scat-
tering images to scattering curves as has been devised by BONART in 1966 [16].
Founded on Fourier transformation theory he has clarified that information on the
structure “in a chosen direction” is not related to an intensity curve sliced from the
pattern, but to a projection (cf. p. 23) of the pattern on the direction of interest.

The barrier to the application of the shortcut is probably resulting from the need
to preprocess the scattering data and to project the 3D scattering intensity on a line.
This task requires 3D geometrical imagination10 and knowledge of methods of dig-
ital image processing, a field that is quite new to the community of scatterers. Pro-
grammers, on the other hand, are rarely educated in the fields of scattering and multi-
dimensional projections.

2.5.3 Parameters, Functions and Operations in the Magic Square

V is the irradiated volume. It is defined by the sample thickness multiplied
by the footprint of the incident primary beam on the sample.

ρ (r) the electron density (WAXS) or the electron density difference (SAXS)
(cf. Sect. 2.2.1).

A(s) scattering amplitude

k = ρ�2 (0) scattering power

10Lack of 3D geometrical imagination and unawareness of the related mathematics is a frequent reason
for widespread malpractice.
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Q = k/V invariant

P(r) Patterson function

γ (r) = P(r)/k SAXS correlation function

z(r) chord distribution function (CDF)

The X-ray detector measures the intensity of electromagnetic waves, i.e., the absolute
square | |2 of their amplitude. Thus, in combination, the upper path between density
and intensity through the square is written as

I (s) = |F3 (ρ (r))|2 .

In the lower path through the square we have an equivalent formulation

I (s) = F3
(
ρ�2 (r)

)
with the Patterson or correlation function ρ�2 (r) involved (DEBYE (1949) [17],
POROD (1951) [18]). ρ�2 (r) is generated from the “inhomogeneities” ρ (r) by means
of the autocorrelation operator that will immediately be introduced.

2.5.4 Convolution, Correlation and Autocorrelation

Convolution. The convolution of two 1D functions f (r) and g(r) is defined by

h(r) =
∫ ∞

−∞
f (y) g(r− y) dy (2.17)

:= f (r)� g(r) . (2.18)

The definition of convolution is readily extended to the n-dimensional case. A con-
volution is frequently used in many fields of science and in digital image processing
(blurring, unsharp masking).

Correlation. Similar to convolution the correlation operator is

h(x) =
∫ ∞

−∞
f (y) g(x + y) dy (2.19)

:= f (x)⊗g(x) = f (x)� g(−x) . (2.20)

If f (x) and g(x) are different, the integral is named cross-correlation. If both func-
tions are identical, the integral is named autocorrelation. In the latter case we write

h�2 (r) = h(r)� h(−r) =
∫ ∞

−∞
h(y) h(r + y) dy. (2.21)

In the field of scattering the autocorrelation is also known by the name “convolution
square”.
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Shape functions. A shape function

Y (r) =
{

1 /r inside the region
0 /r outside the region

(2.22)

describes a region. A region is, for example, a particle, a microfibril, a spherulite, the
silhouette of a person on a picture. In digital image processing shape functions are
named masks or regions of interest (ROI). Shape functions are the basic elements
of topological structure both in the fields of scattering and diffraction. The Fourier
transform of a shape function is denoted by

Φ(s) = F (Y (r)) . (2.23)

Convolution: Illustration. By convolution with the δ -function δ (r− r′) (cf.
p. 25) we displace (translate) the particle by r′. If, for the purpose of particle trans-
lation by convolution, we employ an abstract one-dimensional lattice, i.e.,

ca (r)=
∞

∑
k=-∞

δ (r− k a) , (2.24)

the result will be a real lattice generated by cloning the particle infinitely and placing
the clones at equal distances of a. This is the fundament of diffraction and crystal-
lography. The principle is readily extended to more than one dimension. In the field
of digital image processing and in the general theory of measurement11 the func-
tion ca (r) is known by the name comb function. The Fourier transform of a comb
function C (s) = F (ca (r))(s) is, again a comb function

C (s) =
1
a

c1/a (s) . (2.25)

Autocorrelation: Illustration. We choose a shape function Y (r) which de-
scribes a particle in 2D space (cf. Fig. 2.4a). Because of the definition of Y (r), Y �2 (r)
takes the value of the volume which is shared by the particle and its imagined “ghost”
which is displaced by r. In any case the overlap integral becomes maximal for r = 0.
Here the correlation is perfect.

The autocorrelation operation does neither affect

δ �2 (r) = δ (r) (2.26)

the δ -function nor the principal shape12 of the comb function

lim
N→∞

(
1
N

c�2
Na (r)/N

)
= ca (r) , (2.27)

11The abstract principle of measurement is multiplication of a continuous function by a comb function
returning a series of discrete values.

12N is the number of δ -peaks in the comb function.
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Figure 2.4. Illustration of the autocorrelation of some particle described by a function Y (r).
(a) Y �2 (0): The particle and its imagined ghost are on top of each other. The overlap inte-
gral (hatched) is maximal. (b) Y �2 (r): The ghost has been displaced by r with respect to the
particle. The hatched area has decreased

with

cNa (r) =
(N−1)/2

∑
k=(1−N)/2

δ (r− ka)

and

c�2
Na (r) =

(N−1)

∑
k=(1−N)

(N −|k|)δ (r− ka) .

These are two important special cases. The power and simplicity of diffraction pat-
tern analysis (crystallography) for the analysis of regular structure is a result of
Eq. (2.27) and Eq. (2.25). No information is lost if infinite abstract lattices are sub-
jected to Fourier transformation.

The general case of scattering is less favorable. The decrease of the correlation
function with increasing r depends both on the shape of the particle itself and on
the arrangement of neighboring particles. In principle the maximum information of
a scattering pattern is such correlation information.

2.6 Polydispersity and Scattering Intensity

Polydispersity is one of the most frequent reasons that soft condensed matter does
not show diffraction but scattering. Thus its consideration is of utmost importance.
The general effect of polydispersity on scattering patterns is demonstrated in this
section.

Let us consider a template, i.e., the average representative particle or the average
representative structural entity in a material with polydisperse structure. The tem-
plate is described by its structure ρT (r). The sample is full of dilated images

ρi (r) = ρT

( r
a

)
(2.28)

of the template, but there is no arrangement (correlation) among these images. Here
a is a scaling vector. In Cartesian coordinates it is written a = (a1,a2,a3), and all
its components (the scaling factors) ai ∈ (0,∞) are positive. In Eq. (2.28) the scaling
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division is defined according to BRYCHKOV [19] r/a := (r1/a1, r2/a2, r3/a3) in an
unusual but in this context natural way13.

The scattering intensity of the template

IT (s) =
∫ ∞

−∞
ρ�2

T (r) exp(2π irs)d3r

:= F
(
ρ�2

T (r)
)
(s)

is the Fourier transform of ρ�2
T (r). For any of the images its scattering intensity is

readily established utilizing two basic theorems of Fourier transformation theory14

concerning dilation (in one dimension: F (aH (as)) = h(r/a), cf. p. 24) and convo-
lution (cf. p. 25). Thus, in Cartesian coordinates and with the definition of scaling
multiplication a • s := (a1s1,a2ss,a3s3),

Ii (s) = a2
1 a2

2 a2
3 IT (a • s) (2.29)

is the scattering intensity of the image (dilated template). In particular for the
isotropic case with isotropic dilation ai = a ∀ i ∈ [1,2,3] we obtain the well-known
result [21]

Ii (s) = a6 IT (as) , (2.30)

which is frequently cited when the meaning of the Guinier radius (Sect. 8.1) of a
polydisperse material is discussed by referring to the distorting multiplication by a
high power of the scaling factor. The less distorting effects of uniaxial dilation (a1 =
a2 = 1, a3 = a) and lateral dilation (a1 = a2 = a, a3 = 1) on the scattering intensity of
the dilated particle are readily established. The cases of isotropic, lateral and uniaxial
dilation are the most important ones in the field of polydisperse structure.

There shall be no correlation among different structural entities. Thus the ob-
served correlation function of the material

ρ�2 (r) =
∫∫∫

hH (a) ρ�2
T

( r
a

)
d3a (2.31)

is a superposition of dilated correlation functions with hH (a) the size distribution of
the structural entities. Determination of this size distribution is the aim of research
in the field of polydisperse materials.

From the observed correlation function the scattering pattern is obtained by
Fourier transformation. As Eq. (2.31) is subjected to the Fourier transform, it will
only act on the correlation function of the template because hH (a) is no function of
r. With Eq. (2.29) we obtain the expected result

I (s) =
∫∫∫ ∞

0
a2

1 a2
2 a2

3 hH (a) IT (a • s) d3a (2.32)

13A more elegant way to introduce polydispersity is founded on Tensor calculus. For an application in
scattering theory cf. e.g. BURGER and RULAND [20].

14We follow a common notation and denominate functions in real space with lower case letters and their
Fourier transforms by the corresponding upper case letters: F (g(r)) = G(s)
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Figure 2.5. Polydispersity in the structure (solid line; Gaussian with σ = 0.3) and the resulting
effective size distribution in the scattering intensity (broken line)

in Cartesian coordinates assuming the conservation of contrast15. Contrast is the
electron density difference between the highest electron density in the template and
the electron density of the surrounding matrix. Reduced to isotropic material and
isotropic dilation we have

I (s) =
∫∫∫ ∞

0
a6hH (a) IT (as) d3a. (2.33)

Resorting to Sect. 1.3 we thus find that in the scattering intensity there is no “nat-
ural” weighting of different monodisperse fractions of images inside a polydisperse
material. The most frequent isotropic case is most severely affected. For the case of
isotropic dilation Fig. 2.5 shows the distortion of a Gaussian16 scaling factor distribu-
tion, hH (a), with a standard deviation σ = 0.3, which is a typical value for materials
from synthetic polymers. In the scattering intensity the distorted distribution (broken
line) is effective instead of the undistorted broad Gaussian (solid line).

Averages of Structural Parameters. The problem becomes less severe if we
are no longer interested in the determination of the scaling factor distribution hH

itself, but turn to the determination of averages of structural parameters by integra-
tion, instead. Let us consider the scattering of an ensemble of spheres. In the limit
of a monodisperse system, we could directly determine the sphere diameter from the
scattering curve. In the case of a polydisperse system, basic mathematics shows that
the number average diameter, 2〈R〉n, is not accessible. Instead, the number average
sphere volume

4π
∫ ∞

0
s2 I (s)ds =

4π
3

〈
R3〉

n

15All images of the template are “compact” in the same manner. They do not become less dense upon
expansion, as it would be the case if the mass were conserved.

16Normalized d-dimensional Gaussian h(r) =
(
1/
(
2πσ2

))d/2
exp
(
−
(
(r− r0)

2 /2σ2
))

at r0 with stan-

dard deviation σ .
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can be computed. Here we have assumed an electron density difference ρ = 1. More-
over, the intensity I (s) is defined by the scattering per sphere in an infinitely diluted
system. Thus not considering polydispersity would lead to a considerably overesti-
mated sphere diameter.

The pedestrian approach to polydispersity that has been demonstrated up to here
is an extension to three dimensions of the well-known rigorous treatment of polydis-
persity in one dimension by means of the Mellin convolution (Eq. (8.85), p. 168).

The Tensor Approach to Polydispersity is treating the problem on a much
more universal level. Here it shall at least be sketched. Instead of Eq. (2.28) we write

ρi (r) = ρT (Tir) (2.34)

with Ti a tensor which maps the average reference structure, ρT (r), to the structure
ρi (r) of the i-th particle (of the polydisperse ensemble). According to the general
theory of n-dimensional Fourier transformation, the corresponding scattering ampli-
tude is

Ai (s) =
1
|Ti|AT

((
T−1

i

)T
s
)

,

with
AT (s) = F (ρT (r))

the Fourier transform of the template.
(
T−1

i

)T
denominates the transposition of the

inverse of Ti, and |Ti| is its determinant. The scattering intensity

Ii (s) =
1

|Ti|2
|AT |2

((
T−1

i

)T
s
)

is the square of the amplitude. For the special case of dilation as treated above we
have

Ti =

⎛
⎝1/ai,1 0 0

0 1/ai,2 0
0 0 1/ai,3

⎞
⎠ ,

and many of the equations given above are readily established. In general, the tensor
calculus is valid for all mappings which are described by a tensor with |Ti| > 0.
In particular orientation distributions (cf. Chap. 9) are thus as well covered by this
tensor formalism.

2.7 A Glance at the Mathematical Laboratory of Scattering

Favorable properties of the Fourier transform itself provide general means either to
split the general problem of data analysis into sub-problems or even to obtain struc-
ture parameters without much modeling work. In this respect the Fourier slice theo-
rem must be pointed out because of its superior impact on scattering (BONART [16];
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BALTÁ and VONK [22], p. 15) and on several modern technologies17. The theorem
deals with projections and slices. It explains the weird information on structure that
we retrieve if we study the scattering intensity cut from a pattern along a line that
is extending outward from the center of the pattern. In fact, the respective intensity
curve is called a slice (or a section). Last but not least, the theorem reveals an elegant
way to overcome the recognized problem.

In combination with other theorems of Fourier transformation theory many of the
fundamental structural parameters in the field of scattering are readily established.
Because the corresponding relations are not easily accessible in textbooks, a synopsis
of the most important tools is presented in the sequel.

2.7.1 The Slice

Generalizing the reasoning in the introduction above, we consider a deliberate func-
tion f . It has to be defined in space, but there is good reason not to specify if it is
the real or the reciprocal one. So let us denote the space by a vector un. The index
n shall indicate that this vector has n components, i.e., un ∈ IRn is a member of the
n-dimensional vector space of real numbers over which the function f shall take its
values. For application we will identify un either by s (and then the function f may
be the scattering intensity I (s)), or by r. Now let us consider a vector um ∈ IRm that
has less components (m < n) than un. We say IRm is a subspace of IRn. This may be
a plane or a line through s-space or r-space, respectively. There are many possible
subspaces, but for the slice theorem to work we have to choose special subspaces
which include the origin of the coordinate system. If we restrict the considered n-
dimensional function f (un) to an m-dimensional subspace um, we indicate this by
writing � f �m (um) and call this restricted function the m-dimensional slice (or sec-
tion) of f in the coordinates um. Obviously, we can always rotate the coordinate
system of un in such a way, that the redundant coordinates un−m = 0 become zero.
So the general mapping rule of a slice is

� f �m (um) = f (un)|un−m=0 (2.35)

with the vertical bar meaning “restricted to” or “at the position“. So let us consider
examples now. For a fiber scattering pattern I (s) with the fiber axis rotated into s3-
direction,

�I (s)�1 (s3) = I (0,0,s3) (2.36)

is an example for a 1D slice. It is a curve taken from the pattern along the meridian18.
A different slice is

�I (s)�2 (s1,s2) = I (s1,s2,0) = �I (s)�2 (s12) .

17Computer tomography, magnetic resonance imaging, digital image processing, synchrotron micro-
tomography [23, 24], 3D electron microscopy of block copolymers [25].

18Meridian is the name for the principal axis found in the scattering patterns of uniaxial materials.
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It is a 2D slice of the fiber pattern. Only fiber symmetry makes that it is completely
represented by a curve as a function of a transversal (cf. BONART [16]) coordinate

s12 =
√

s2
1 + s2

2 on the equator19 of the pattern.
Resorting to the definition of the Fourier transform, Eq. (2.9), we notice that for

the redundant coordinates the harmonic kernel degenerates and becomes exp(0) = 1.
Thus for the redundant coordinates the Fourier transform turns into a simple integra-
tion with respect to the respective reciprocal coordinate20 – a “projection”.

2.7.2 The Projection

As with the slice, the projection, as well, is a mapping of a function f (un), un ∈ IRn,
to a subspace. Its mapping rule is

{ f}m (um) =
∫

f (un) dun−m. (2.37)

Thus we integrate f over all those Cartesian coordinates from which the projected
curve shall no longer be a function. Unexperienced scientists tend to make mistakes
by simply “summing pixels” from the 2D scattering image collected on the detector,
although the problem is from 3D s-space. So the question to answer first is: is the in-
formation that I have gathered in my experiment complete? If the affirmative answer
has been justified, the means of how the integration has to be performed are right at
hand.

2.7.3 Fourier Slice Theorem

Under Fourier transform, slice and projection are exchanged and it follows

�h�m = Fm ({H}m) , (2.38)

with h(r) some function and H (s) being its Fourier transform. The slice theorem is
also known by the name central projection theorem.

2.7.4 Fourier Derivative Theorem

From the definition of Fourier transform the derivative theorem

F

(
dnh(r)

drn

)
= (2π is)n H(s) (2.39)

is established by partial derivation. Extension to the multidimensional case is simple
for even orders of the derivative (STRIBECK (2001) [26])

F
(
∇2nh(r)

)
=
(−4π2s2)n

H(s) (2.40)

F (∆h(r)) = −4π2s2 H (s) , (2.41)

19Equator is the name of the direction perpendicular to the principal axis found in the scattering patterns
of uniaxial materials.

20The respective reciprocal coordinate is called “dual coordinate” by the mathematician.
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with ∇ the gradient (“nabla”) operator and

∆ = ∑
i

∂ 2

∂u2 (2.42)

the Laplacian – with the given definition valid in Cartesian coordinates.

2.7.5 Breadth Theorem

The integral breadth of a 1D, even and Fourier-transformable function h(r) is defined
by

B(h) =
∫

h(r)dr
h(0)

. (2.43)

Then it follows from the slice theorem Eq. (2.38) for the integral breadth of the
Fourier transformed function H (s)

B(H) =
∫

H (s)ds
H (0)

=
h(0)∫
h(x)dx

=
1

B(h)
. (2.44)

In the field of scattering a simplified version of the Fourier breadth corollary
Eq. (2.44) is known as the SCHERRER equation21. As a result, the inverse of the
integral breadth of a peak or reflection is the size of the crystal in the direction per-
pendicular to the netplanes that are related to the reflection.

In order to deduce SCHERRER’s equation first an infinite crystal is considered
that is, second, restricted (i.e multiplied) by a shape function (cf. p. 17). Thus from
the Fourier convolution theorem (Sect. 2.7.8) it follows that in reciprocal space each
reflection is convolved by the Fourier transform of the square of the shape function
– and SCHERRER’s equation is readily established.

2.7.6 Dilation and Reciprocity

From the definition of the Fourier transform it follows that

F

(
1
a

h
( r

a

))
= H (as) . (2.45)

It is worth to be noted that (1/a) h(r/a) is the result of the dilation of h(r) by the
factor a in which the area under the curve is conserved. The result in reciprocal space
is a compressed function H. This property of the Fourier transform is the generaliza-
tion of Bragg’s law.

21In the literature the SCHERRER equation is frequently related to the full widths at half-maximum. This
approximation is unnecessary.
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2.7.7 DIRAC’s δ -Function

A definition of DIRAC’s δ -distribution is readily established from dilation. Let
∫ ∞

−∞
h(r) dr = 1 (2.46)

be normalized. Then the dilated function∫ ∞

−∞
h
( r

a

) dr
a

= 1 (2.47)

is still normalized and δ (r) is defined taking limits

δ (r) = lim
a→0

1
a

h
( r

a

)
(2.48)

whereupon the integral remains normalized.

2.7.8 Convolution Theorem

Under Fourier transform the convolution (Eq. (2.17)) is turned into a multiplication.

F ( f � g) = F G (2.49)

F ( f g) = F � G. (2.50)

This property is readily established from the definition of Fourier transform and con-
volution. In scattering theory this theorem is the basis of methods for the separation
of (particle) size from distortions (STOKES [27], WARREN-AVERBACH [28,29]: lat-
tice distortion, RULAND [30–34]: misorientation of anisotropic structural entities) of
the scattering pattern.

2.7.9 Bandlimited Functions

If, in practice, a Fourier transformation shall be carried out, it is meaningful to search
for functions that are not only bounded, but, which even vanish when taking limits
|s| → ∞ or |r| → ∞. Such functions are called bandlimited. Let us consider the func-
tion h(r) = F (H (s)). Then the reciprocal space image H (s) is bandlimited if its
Fourier transform, h(r), does not contain spatial frequencies above a value of fu,
i.e.,

h(r) = 0 for |r| > fu , (2.51)

and fu is the upper frequency of the frequency band. In mathematics, band limitation
is expressed in terms of functions with “finite support”. The support

supp(h) (2.52)

of the function h is the region, in which the function h(r) does not vanish.
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2.8 How to Collect Complete Scattering Patterns

Resorting to Debye (cf. p. 1), “only a continuous scattering pattern can be the funda-
ment of proper reasoning” the general question must be addressed, how a complete
scattering pattern can be collected. The considerations of this section are based on the
assumption that the scattering pattern is recorded by means of a 2D- or 1D-detector.

2.8.1 Isotropic Scattering

The Limits. There are a lot of materials whose scattering pattern does not change
if the sample is deliberately rotated in the X-ray beam. Such materials are called
isotropic. For isotropic materials completeness is only a question of the angular range
in which significant scattering information is gathered. The technical limits are de-
fined by the setup, and the fundamental parameter is the distance R between sample
and detector. The smallest accessible scattering angle is given by the size of the beam
stop (cf. p. 37, Fig. 4.1b) which prevents the detector from being damaged by the di-
rect beam. The highest angle with reasonable data is restricted by the extension of
the detector or, worse, by the signal-to-noise (S/N) ratio of the data. If thin samples
are exposed for short time in a weak beam, there is most probably no significant in-
formation in the outer part of the scattering pattern and quantitative data evaluation
is futile. The problem is less severe if a 2D-detector is used. In this case azimuthal
averaging will increase the S/N-ratio in particular at high scattering angles.

How to Arrange the Setup. In practice, the distance R is long enough, if the
scattering intensity can safely be extrapolated towards zero from the data recorded.
The distance R is short enough, if in the outer part of the scattering pattern, a suf-
ficiently long region with a monotonous background is recorded. One should not
underestimate the need for sufficient recording of background in SAXS and US-
AXS. In order to increase the highest accessible angle, 2D detectors may be placed
in a lateral off-set position with respect to the primary beam.

If there is no possibility to cover the complete range with one detector, there may
be the possibility to use two detectors which are placed in different distances from
the sample. In the worst case the experiment has to be performed several times with
different setups.

2.8.2 Anisotropic Scattering

Anisotropy is frequently observed in soft materials, but the symmetry of anisotropy
is varying. Fibers and films show, in general, less complex anisotropy than ordinary
or photonic crystals.

2.8.2.1 Single Crystal Anisotropy

Complete scattering patterns of samples with a complex “single-crystal” anisotropy
can only be recorded in a texture setup (Chap. 9, Fig. 9.3). The samples must be
rotated in order to scan the required fraction of reciprocal space.
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2.8.2.2 Fiber Symmetry

Definition. Fiber symmetry is uniaxial or cylindrical symmetry. Revolving the
sample about the fiber axis does not change the scattering pattern, but tilting the
sample with respect to the fiber axis does.

USAXS and SAXS. Concerning USAXS and SAXS, the scattering pattern that
is recorded on a 2D detector is complete if the principal axis of the sample is set
normal to the direction of the incident X-ray beam (primary beam). Completeness is
a result of two facts.

1. Fiber symmetry: with the s3 axis in fiber direction the pattern shows rotational

symmetry in the plane (s1,s2), thus I (s) = I
(√

s2
1 + s2

2,s3

)
= I (s12,s3) is a

function of s3 and of the distance from this axis only.

2. The tangent plane approximation is valid: the curvature of the Ewald sphere is
negligible at small scattering angles.

Thus in this favorable case the complete information on nanostructure is recorded in
one 2D image. Mathematically the recorded image is a slice

�I (s)�2 (s1,s3) ≡ I (s12,s3) . (2.53)

It is complete because of fiber symmetry. The 2D Fourier transform of this image
is not related to the searched slice, but to a projection of the correlation function. In
contrast, the sought-after slice in real space

ρ�2 (r12,r3) =
⌈
ρ�2 (r)

⌉
2 (r1,r3)

= F2 ({I (s)}2 (s1,s3)) ,

is the 2D Fourier transform of the projection

{I (s)}2 (s1,s3) =
∫

I

(√
s2

1 + s2
2,s3

)
ds2

of the complete intensity from the 3D scattering pattern on the slice formed by the
detector plane. Because of completeness it can be computed from the data collected
in one 2D scattering pattern.

WAXS and MAXS. Fiber symmetry means that, even in WAXS and MAXS, the
scattering pattern is completely described by a slice in reciprocal space that contains
the fiber axis. Nevertheless, for 2θ > 9◦ the tangent plane approximation is no longer
valid and the detector plane is mapped on a spherical surface in reciprocal space.

If we keep the sample’s principal axis normal to the primary beam and record a
scattering pattern, we can readily map the measured intensities to the plane that we
need to know (BUERGER (1942) in ALEXANDER [7], p. 58-62). For this purpose
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Figure 2.6. WAXS, 2D-detector and fiber symmetry: unwarping of the detector surface to
map it on the (s1,s3)-slice. Fiber direction is normal to the primary beam. R = 10 cm, λ =
0.154 nm. The warped grid in the sketch is a square grid on the detector (edge length: 3 cm)

we refer to Fig. 2.3 and deduce the out-of-plane component s2, which is readily es-
tablished by application of Pythagoras’ cathetus theorem22. Thereafter we compute
the components s1 and s3 and receive the mapping equations. The result shows a
peculiar deformation (Fig. 2.6). With respect to the slice that contains the complete
information, only the area enclosed by solid lines is recorded on the plane detec-
tor. There are two blind gusset-shaped areas extending from the center upward and
downward along the meridian. Within these areas Bragg peaks may be hidden. Thus
the scattering pattern of fibers collected on the 2D detector is not complete if WAXS
data are recorded.

It is worth to be noted that not only the position of the pixels, but also their
area is modified by the unwarping. Correction of WAXS images thus requires both
a translation and a magnification of the intensity proportional to the inverse of the
area enclosed by the respective vertices. After the advent of digital computers it
became possible to carry out the cumbersome calculus automatically23, as proposed
by FRASER24 et al. [35].

The solution to access the invisible areas is readily copied from texture analysis:
tilt the sample by ψ and receive 1 data point on the meridian that corresponds to
s3 = (2/λ )sinψ . The result of the mapping is shown in Fig. 2.7. Thus by recording a
series of images taken at different tilt angles of the fiber the blind area can be covered
to a sufficient extent. Finally, the remnant blind spots may be covered by means of

22(−2s2/λ = s2 in the right triangle under THALES’ circle whose leg is indicated by a dashed line). The
use of the cathetus theorem was suggested by my daughter Agnes.

23A corresponding program was presented by RICHARD HILMER (DuPont Inc., Wilmington, USA) at a
CCP13 workshop in 1997. The program is property of DuPont.

24B. HSIAO and scientists of his group have started to call the algorithm “Fraser correction”
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Figure 2.7. WAXS, 2D-detector and fiber symmetry: unwarping of the detector surface to map
it on the (s1,s3)-slice. Fiber direction is tilted by ψ = −30◦ with respect to the primary beam.
R = 10 cm, λ = 0.154 nm. On the detector the apparent warped grid is a square grid (edge
length: 3 cm)

2D extrapolation procedures, e.g., the algorithm based on radial basis functions [36]
which is implemented in pv-wave R© [37].

2.9 Application of Digital Image Processing (DI)

2.9.1 DI and the Analysis of Scattering Patterns

In 1994, when the bottleneck of scattering data analysis was still the poor perfor-
mance of detectors, RUDOLPH & LANDES were already spotting the bottleneck of
our days:

“Having 2D detection that operates in the cycle time of key experiments
means we are then potentially limited by image processing. In other
words, as soon as we begin using 2D-detectors to measure patterns, we
are forced to use image analysis methods to extract information from
the images. With the rapid development of fast detectors, image analysis
becomes key to our effective use of this technology.”( [38], p. 26)

The source code of a set of DI procedures for the processing of scattering pat-
terns written for pv-wave is available on the worldwide web (www.chemie.uni-
hamburg.de/tmc/stribeck/dl/).
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2.9.2 A Scattering Pattern Is a Matrix of Numbers, Not a Photo

Digital image processing starts after we have managed to read the raw scattering
image. Each scattering pattern recorded by the detector is a matrix filled with positive
integer numbers – the counts in each cell (pixel) of the detector.

For publication such matrices are frequently converted into photos and stored in
photo formats (JPEG, GIF, PNG). Such photo files are good for visualization, but no
longer good for data evaluation. TIFF is a special case: 8- and 24-bit TIFF files are
photos, 16-bit TIFF format is a common storage format for raw scattering patterns25,
but it is not convenient for data evaluation.

Keep your precious raw data. Do not send JPEG- of GIF-encoded color images
around for the purpose of “data” evaluation.

2.9.3 How to Utilize DI

The novice at a synchrotron facility should use the pre-evaluation options offered
locally at the facility or should resort to the program FIT2D [39]. At least pre-
evaluation operations like masking of blind areas, background correction, align-
ment. . . can be performed this way.

The real business of scattering image processing is more difficult. Because there
does not exist a “point-and-click” program, the scientist must write the respective
algorithms himself. In order to simplify the work, a dedicated programming system
for DI should be chosen. The commercial systems IDL [40] and pv-wave [37] offer
the key features of DI. Before choosing IDL check if it is now possible to easily write
algorithms that work on matrices of varying size. Moreover, a library function for
multidimensional extrapolation of data like the radial basis function [36] algorithm of
pv-wave (RADBE) is essential. If the license fees are a problem, the free ImageJ [41]
may be a solution that avoids to start from level-zero programming.

2.9.4 Concepts of DI that Ease the Analysis of Scattering Images

2.9.4.1 The Paradigm: Arithmetics with Matrices

In IDL and pv-wave a number, a vector, or a matrix can be handled in the same way.
If s is a scattering image, b the parasitic background, and a the actual absorption
factor of the sample, then a background correction26 is carried out writing

wave> sc=s-a*b

This is not only simple27, but computes much faster than the common concept of
usual programming languages using two encapsulated loops.

2516-bit-TIFF can be viewed and “processed” by image processing programs (photoshop, gimp,. . . ) the
program discards the lower 8 bits in order to make the file an ordinary photo. Ergo: (1) Never overwrite
your precious raw data by saving them from a program that was not made for scattering data analysis,
(2) What you see in a photo processor is only a fraction of the scattering data.

26The example is valid for the most simple case: SAXS or USAXS in normal-transmission geometry.
27The same line of code evaluates curves, images or data structures of higher dimensionality (imagine

time as an additional coordinate)
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If we know that behind the beam stop the intensity is always 50 counts or less,
we can discriminate the valid area of our image by defining a ROI mask (i.e., a shape
function) (cf. p. 17) by simply writing

wave> m=s gt 50

which means: generate a matrix m of the same size as s. If a certain pixel in s is
greater than (gt) 50, then set the respective pixel in m to 1 (in the logical meaning of
“true”; white color; good data). The other pixels are set to 0 (in the boolean meaning
of “false”; black color; invalid data).

The result will exhibit the next problem: even some of the valid pixels have not
received enough photons to surmount the “blind”-level. The solution for this problem
is application of the “closing” operator described at the end of this chapter.

2.9.4.2 Submatrix Ranking Operators

Submatrix ranking operators are belonging to the class of image-space operators
(HABERÄCKER [42]) in contrast to Fourier-space operators.

Practical Problems that are Solved by the Operations. Consider you have
defined a mask and it turns out that pixels close to the edges of the blind areas did
not receive the true intensity due to a penumbra effect. How do you peel off the
penumbra region easily?

Consider you have forgotten to switch on “multi-read”28 with your CCD detector
and the raw data are full of cosmic-ray spikes. How do you remove them without
spoiling the image?

Definition: Submatrix. We choose a deliberate pixel from our scattering image.
The pixel and its neighboring pixels are the submatrix. For the example we choose a
submatrix size of 3 × 3 elements. There is scattering intensity in each pixel, e.g.

53 68 47
57 67 52
57 64 43

.

Definition: Ranking. Now let us rank these values by sorting them in increasing
order

43 47 52 53 57 57 64 67 68 .

2.9.4.3 Primitive Operators: Erode, Median, and Dilate

Based on the ranked list DI defines three primitive submatrix ranking operators. They
determine, which value is put in the center of the submatrix:

28cf. Sect. 4.2.5.2
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erode: Take the leftmost (smallest) value from the list (i.e. 43),

median: Take the value from the center of the list (i.e. 57),

dilate: Take the rightmost (biggest) value from the list (i.e. 68).

Erode applied to a mask peels off a layer from every “white” island in the mask.
Dilate does (almost) the inverse: if erode has not managed to delete a white island
completely, it is almost restored. The median operator reduces noise in the image
without broadening the peaks. The operator is frequently addressed “median filter”.

In practice, the abovementioned penumbra problem is solved by eroding the
mask. Choose the size of the submatrix according to the width of the penumbra
or try out by peeling-off thin layers repetitively. Then multiply the scattering image
by the eroded mask and thus mark the penumbra region as “invalid”.

In similar manner, spikes in the image from cosmic rays are extinguished by
simple application of the median filter with a small submatrix size (3 or 5).

2.9.4.4 Combined Operators: Opening & Closing

Particularly useful are two operators that are combined from two primitive submatrix
ranking operators.

Opening (also: ouverture) is erosion followed by dilation. The ouverture re-
moves tiny “white” islands in the matrix if their area is smaller than half the
area of the chosen submatrix.

Closing (also: fermeture) is dilation followed by erosion. The operator closes
isolated “black holes”.

Thus in order to fill small black holes in a mask, the closing operator will do auto-
matically what otherwise would have to be done by hand29.

From their definition the DI operators are easily implemented. Nevertheless, this
implementation work is unnecessary if IDL or pv-wave are used, where the respec-
tive operators are simply picked from the rich library.

In fact, digital image processing systems have much more to offer – in image
space, where the alignment and centering of scattering images is carried out with
ease, but also in Fourier space where the predefined library functions are easily
adapted to the needs of scattering pattern analysis on the fundament of scattering
theory. Respective information is collected from textbooks on the field of DI and
from the manuals of IDL or pv-wave.

29Probably by painting with the “mouse”



3 Typical Problems for Analysis
by X-Ray Scattering

3.1 Everyday Industrial Problems

How much of a crystallizable material X can I blend uniformly into a
polymer until it starts to form crystals? A series of blends with increasing
amount of X is prepared. The samples are studied by WAXS (cf. Sect. 8.2) using lab-
oratory equipment. Crystalline reflections of X are observed, as X starts to crystal-
lize. Peak areas can be plotted vs. the known concentration in order to determine the
saturation limit. Think of X being Ibuprofen and Y a polystyrene-(b)-polyisoprene
copolymer, and you have an anti-rheumatism plaster.

We cannot process batch X – is it no longer amorphous? Get a sample
from a processable batch Y and one from batch X. Is the transparency of both sam-
ples different? You have just carried out a light-scattering experiment1. Study each
material by WAXS (cf. Sect. 8.2) using laboratory equipment and compare them. If
X shows crystalline peaks, the assumption is confirmed. You may identify the peaks
in order to confirm the crystallographic data. Imagine X and Y being natural rub-
ber samples that have arrived from overseas. White zones are emerging from zones
where lash belts have compressed the material: strain-induced crystallization.

Is the semicrystalline polymer barrier getting porous during service?
Carry out SAXS measurements2 from native and aged material. Check the initial
shape of the curve at very small angles (in front of the long period peak) [43]. Is it
systematically increasing as a function of ageing? This is most probably void scatter-
ing from pores. You may want to study void propagation through the barrier block:
cut the block into thin sheets and check the amount of voids as a function of depth in
the block. Imagine a barrier made from PVDF used in offshore business. Crystallinity
can be tracked by means of an IDF analysis (Sects. 8.5.4, 8.7.3.3). Plasticizer content
can be tracked by absolute intensity measurement (Sect. 7.10), measurement of the
invariant and, finally, computation of the contrast.

1If the sample Y is transparent and sample X is not, X is most probably scattering light – from crystalline
layers that are large enough to do so.

2Laboratory equipment is sufficient. Cf. Sect. 4.2.1.1
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Where is the cross-linking agent going in my thermoplastic elastomer?
Carry out SAXS measurements calibrated to absolute intensity (Sect. 7.10). Watch
the fluctuation background (Sect. 8.3.1) and the width of the transition zone between
hard and soft domains (p. 124, Fig. 8.11). Compute the electron density (Sect. 2.2.1)
of the cross-linking agent and the ideal electron densities of the two phases (hard
and soft). Consider that phase separation in the material may not be perfect under
industrial processing conditions. Compute the contrast (p. 133). Imagine that you are
studying printing plates made from polystyrene-(b)-polybutadiene-(b)-polystyrene
block copolymers (SBS) containing acrylates that shall become cross-linked by UV-
light.

3.2 At the Front of Innovation

3.2.1 Web Resources

The worldwide web is the best source of up-to-date information concerning advanced
studies in the field of scattering of soft condensed matter. All synchrotron radiation
facilities are advertising scientific highlights, although the representation of soft-
condensed matter in these reports is varying. As this book is written, soft-condensed
matter is excellently represented at the ESRF (Grenoble, France)

www.esrf.fr/UsersAndScience/Publications/Highlights

and good representations are available at the NSLS (Brookhaven, US)

www.nsls.bnl.gov – search for “activity reports”

and at the APS (Argonne, US)

www.aps.anl.gov/Science/Highlights

SPring-8 (Hyogo, Japan) has set up a “solution data base”

http://www.spring8.or.jp/en/users/new_user/database/

which returns a list of related studies after selecting from a list of keywords.

3.2.2 Fields of Innovation

3.2.2.1 Visualize and Model Structure Automatically

This book describes methods for the visualization and modeling of structure from
scattering data. Some steps towards an automated processing of large amounts of
data have already been done, but must be continued. These methods are the basis of
quantitative research in the fields that are mentioned in the following.
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3.2.2.2 Study Gradient Materials

Spatial variation of structure in a natural sample or in a technical part (e.g., gra-
dient materials for hip-joints) can be studied by means of microfocus [44] beams
(microbeams). The size of the probing X-ray beam limits the spatial resolution.

2D Structure Gradients in Thin Sheets of Material. A thin sheet sliced
from a sample is translated through a microbeam and SAXS or WAXS are measured
as a function of the position on the slice. If the structure from each “pixel” of the
sheet is anisotropic, the resulting data are incomplete in reciprocal space, but even
qualitative analysis yields interesting results [45–48]. To overcome the incomplete-
ness, the sample can be rotated in the beam and texture data can be recorded and
analyzed [49, 50], or one can shift the scientific focus away from structure to, for
example, the mapping of local strains of single carbon nanotubes as a function of
bending [51].

3D Nanostructure Gradients in Technical Parts. A solid piece of material
is rotated and translated with respect to a microbeam and the projections of WAXS or
SAXS are recorded. Virtual slicing of the material is carried out by means of tomo-
graphic reconstruction [24]. The results are scattering patterns originating from tiny
cubes (voxels) in the material. Because of the rotation of the material, the scattering
patterns exhibit fiber symmetry and are complete in reciprocal space. Quantitative
analysis [52] is possible, even if the structure in the part is anisotropic. Tomographic
reconstruction errors must be mastered in the future.

3.2.2.3 Study Thin Films

Very thin films exhibit special structure because of their confined geometry between
substrate and surface. Their structure cannot be studied in a normal setup. In order
to obtain enough photons on the detector, the X-ray beam must impinge on them
under grazing incidence (Cf. Sects. 7.6.3.1, 7.6.3.2, 8.8). This technique is suitably
combined with microbeams. Current effort is focusing both on progress of the in-
strumentation and on the development of adapted analysis methods.

3.2.2.4 Study Structure Evolution

The field of in situ studies of processes is one of the major applications of scattering
methods. So there is continuous effort to extend the scope of applicability. Neverthe-
less, the user should be aware of the limiting factors.

Limits of Time-Resolved and Simultaneous Measurements. Structure
evolution studies are based on the ability to carry out time-resolved scattering ex-
periments. The power of this scattering technique is a function of the minimum cy-
cle time during which a scattering pattern with sufficient signal-to-noise ratio can be
recorded. As cycle times for anisotropic 2D SAXS patterns have fallen below a value
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of 1 s at some3 high-brilliance beamlines, time resolution is sufficient for many of the
problems from the field of materials science, even if anisotropic materials are stud-
ied. Extra power is gained if several methods are coupled [53–55]. Urgently required
is coupling of 2D WAXS and 2D SAXS for simultaneous measurements.

The data transfer rate is still a problem at low cycle time (< 7 s). In this case the
scattering patterns are buffered during the experiment. Presentation and data trans-
fer starts after the end of the experiment. This buffering implicates three restrictions:
first, the buffer size limits the total duration of the recording. Second, there is no
feedback during the experiment: the user can neither interrupt nor tune the experi-
ment, e.g., reduce the exposure as the saturation limit of a detector is approached.
Third – and this is really bad: most probably the experiment control is completely
transferred to the detector, and the clocking of the counters for the environmental pa-
rameters is deferred until the detector returns control (cf. Sect. 4.3.1). For example,
we intended to monitor force change during a fast process, and finally we get the
correct time-resolved scattering patterns – but each pattern reporting the same force
value (averaged over the whole period of the experiment).

Examples. 2D SAXS/WAXS experiments on highly anisotropic polymer mate-
rials during melting and crystallization can be used to visualize and understand the
evolution of nanostructure [56,57]. Transformations of biopolymers in solution, e.g.,
virus crystallization can be studied in situ [58]. It is possible to study solidification
mechanisms of spider silk [59], or the self-assembly of micelles on a time-scale of
milliseconds [60].

3Many sources have been offering short cycle times for years – combined with a S/N-ratio that is suffi-
cient for visual inspection only, but not for data analysis.
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Goniometer Setup. The classical goniometer setup for the measurement of X-
ray scattering has already been sketched in Fig. 2.2 on p. 11. In such a setup both
the zero-dimensional detector (counter) and the sample are rotated. The points of the
scattering pattern are measured one after another. Time-resolved measurement is im-
possible, but if a constant and high number of counts is accumulated at every point,
the resulting pattern shows an excellent signal-to-noise ratio. Similar high-quality
data are required if a study is aiming at quantitative analysis of modern nanostruc-
tured material.

2D-Detector Setup. Modern equipment is most frequently collecting scattering
data from a whole region of the reciprocal space at the same time using a 1D- or
a 2D-detector. In principle it resembles the traditional photographic X-ray cameras
(pinhole camera, Kiessig camera). A sketch is presented in Fig. 4.1. Such a setup
comprises beam monitoring devices (ionization chamber, pin-diode) and a detector.
There is ample space to place an apparatus containing the sample in the X-ray beam.

Fiber Symmetry: Equator and Meridian. Figure 4.1 sketches a scattering ex-
periment of a polymer sample under uniaxial load. Let us assume that the material

Figure 4.1. Typical X-ray setup with 2D detector in normal-transmission geometry. The in-
tensity of the incident X-ray beam is measured in an ionization chamber (a). Thereafter it
penetrates the sample which is subjected to some process. At a distance R (cf. Table 2.1 on
p. 7) behind the sample the detector is recording the scattering pattern. In its center (b) the de-
tector is protected by a beam stop. It is equipped with a pin-diode which records the intensity
of the attenuated beam
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and the scattering pattern exhibit fiber symmetry. With respect to the principal axis
of the sample the principal axes in the scattering pattern are associated with special
names. The axis parallel to the fiber axis (i.e., in the sketch the vertical axis) is called
the meridian. The axis perpendicular to the fiber axis (i.e., the horizontal axis in the
pattern) is called the equator.

4.1 The Shape of the Primary Beam

The cross-section of the primary X-ray beam is extended and not an ideal point.
This fact results in a “blurring” of the recorded scattering pattern. By keeping the
cross-section tiny, modern equipment is close to the point-focus collimation approx-
imation – because, in general, the features of the scattering patterns are relatively
broad. Care must be taken, if narrow peaks like equatorial streaks (cf. p. 166) are
observed and discussed. The solution is either to desmear the scattering pattern or
to correct the determined structure parameters for the integral breadth of the beam
profile (Sect. 9.7).

4.1.1 Point Focus Collimation

Smearing. Because scattering is emanating from every point of the irradiated vol-
ume, the recorded scattering pattern is “smeared” by the shape of the effective cross-
section of the primary beam measured in the detector plane. In terms of mathematics
this smearing is accomplished by convolution (Eq. (2.17)) with the primary beam
profile.

Measure the Beam Profile. Deconvolution is possible if the primary beam pro-
file has been recorded. Recording of the beam profile is readily accomplished during
the adjustment of the beamline prior to the experiment as long as the beam stop has
not yet been mounted. Damage to the detector is avoided1 either by short exposure
or by attenuation of the primary beam itself.

Most modern equipment is operated with small beam cross-section in order to
minimize smearing effects and the need to desmear the scattering pattern.

Desmearing. In practice, there are two pathways to desmear the measured im-
age. The first is a simple result of the convolution theorem (cf. Sect. 2.7.8) which
permits to carry out desmearing by means of Fourier transform, division and back-
transformation (STOKES [27])

I (x) = F−2 (F2 (Iobs (x))/F2 (W (x))) . (4.1)

Here the observed scattering pattern Iobs (x) is considered a digital image in 2D coor-
dinates x = (x1,x3). W (x) is the measured primary beam profile. Similar application

1Consult the detector manual!
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of the convolution theorem is the fundament of the WARREN-AVERBACH method
(Sect. 8.2.5.5, p. 107) and of RULAND’s streak method (Sect. 9.7).

The second pathway is based on an iterative algorithm that was devised by VAN

CITTERT [61]. The algorithm assumes that the broadening or spreading effect of the
primary beam profile W is approximately the same as the required narrowing effect.
Its first step has become popular with the advent of digital photography where it is
named “unsharp masking”. After choosing the diameter of a Gaussian “point spread
function”, W (x), the unsharp mask is applied and returns an “improved” image. We
are satisfied if the image looks more crispy without showing nasty halos around the
silhouettes. Nasty halos correspond to negative values which occur if the breadth of
W (x) was chosen too large. With our scattering patterns we hopefully have measured
W (x). So, negative values due to overdesmearing should never be observed.

The principle of the VAN CITTERT method is simple: (1) I1 = Iobs (2) In+1 =
2 In− In �W (3) stop the iteration as soon as Iobs ≈ In �W . This convergence criterion
guarantees that the correct solution is closely approximated.

4.1.2 Slit Focus Collimation

4.1.2.1 Common Cameras and Properties

In addition to point-focus apparatus there are scattering devices with an extremely
elongated cross-section of the primary beam. Historically this geometry has been
developed as a compromise between ideal collimation and insufficient scattering
power. Their practical importance is decreasing as more powerful point-collimated
sources become available. Kratky camera (ALEXANDER [7], p. 107-110) and Rigaku-
Denki camera (BALTÁ & VONK [22], p. 83) are the most frequent representatives of
slit-focus devices.

Slit-focus cameras record scattering curves. The study of anisotropic material is
cumbersome. It requires large samples which can be rotated step-wise in the beam
which is typically between 1 to 3 cm long.

4.1.2.2 Infinite Slit Length

If, in the detector plane, the effective slit is wider than the region of the pattern in
which significant intensity is observed, the approximation of an infinite slit is valid.
Let the slit be infinitively long in s1-direction but very narrow in s3-direction then in
the tangent plane approximation the recorded scattering curve

J (s3) = �{I (s)}2 (s2,s3)�1 (s3) (4.2)

is the projection of the scattering intensity on the (s2,s3)-plane which is sliced in
s3-direction. From this relation a back-projection algorithm can be derived which
permits the reconstruction of the point-collimated data from a complete set of curves
recorded in a slit-focus camera.
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4.1.2.3 A Fiber in a Slit-Focus Camera

A particularly simple case is the study of a fiber in the slit-focus camera, if the fiber is
stretched out along the slit direction [31,62,63]. In this case the transversal structure
according to BONART [16] (cf. Sect. 8.4.3) is directly measured, as is established by
change of variables s1 → s3, (fiber parallel to the slit) s2,s3 → s12 (fiber symmetry
assumed)

J (s12) = �{I (s)}2 (s12)�1 (s1) ≡ {I (s)}2 (s12) . (4.3)

Thus, information concerning size and arrangement of domains in the cross-sectional
plane of the fiber are accessible with classical laboratory equipment. Moreover,
since the projection {I (s)}2 (s12) is complete and a normalization {I (s)}2 (s12) →
{I (s)}2 (s12)/V to absolute intensity units is readily established by employment of
the moving slit device2 without the need to resort to a secondary standard, the invari-
ant

Q = 2π
∫

s12 {I (s)}2 (s12)/V ds12 (4.4)

is computed after a single scan of the fiber in the slit-focus camera – provided that V
can be determined with sufficient accuracy.

4.1.3 Desmearing of Slit-Focus Data

For the case of isotropic scattering recorded with slit-focus cameras there are several
desmearing options. If the slit may be considered infinite, the observed scattering
intensity is

J (s) =
∫ ∞

−∞
I
(√

s2 + y2
)

dy. (4.5)

Juggling with projections and slices results in the GUINIER-DUMOND equation [64]
(HOSEMANN [5], p. 605-607; GUINIER & FOURNET [65], p. 116-117)

I (s) = − 1
π

∫ ∞

0

J′
(√

s2 + y2
)

√
s2 + y2

dy. (4.6)

for desmearing of isotropic slit-focus data. Because of the derivative in the integrand,
the desmearing algorithm is quite sensitive to statistical noise on the measured data.
In fact, there is no need to desmear scattering curves if the slit length is infinite
and a quantitative analysis of the structure is the goal. This results from the fact
that Eq. (4.5) describes an analytical projection, and if there is a method to analyze
I (s), it can be modified to directly act on J (s), as well. A simple example is the
determination of Q according to Eq. (4.4). A complex example is the determination
of RULAND’s interface distribution function (IDF) directly from J (s) [66, 67].

2The moving slit device is designed to directly measure the primary beam intensity without overloading
the detector. It works like a slit shutter of a photographic camera: a narrow slit is moved along the
primary beam. If a sample is in the beam, the absorption of the primary beam by the sample can be
directly measured.
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Table 4.1. Performance of available point-focus setup. DORIS is an older stor-
age ring at HASYLAB in Hamburg. The ESRF in Grenoble is an advanced
synchrotron radiation source

Setup Flux
[
photons× s−1

]
Rotating anode, conventional optics 1×106

Rotating anode, Göbel mirror optics 2×107

Synchrotron, bending magnet (DORIS, A2) 2×108

Synchrotron, insertion device (ESRF, ID2) 3×1013

If the slit length is finite and the scattering intensity shall be desmeared, the pro-
file W (s1,s3) of the primary beam must be known. In order to carry out the desmear-
ing numerically, different algorithms have been proposed, but few of these methods
are able to manage the derivative problem from Eq. (4.6) properly for noisy data.
One of them is the method developed by GLATTER [68].

4.1.4 Smearing of Point-Focus Data

In practice, sometimes it is advantageous to slit-smear point-focus data before anal-
ysis. The reason is that sometimes an expansion of point-focus data

I (s) = ∑
i

cis
i

does not show a linear range, whereas

J (s) = ∑
i

c̃is
i ≈ c̃0 + c̃1s

does. Then the constants are related to structural parameters and can easily be de-
termined from slit-smeared data, whereas an analysis of the point-focus data may be
difficult. Examples are related to the determination of density fluctuations [69] and
the polydispersity in a lamellar stack [70].

4.2 Setup of Point-Collimation Apparatus

Since powerful X-ray sources and sophisticated beam shaping have generally be-
come available, point-collimated setups for the study of X-ray scattering have lost
their former handicap of low intensity. Today they benefit from their simple and
versatile geometry. This section is devoted to an overview of modern apparatus –
beginning with the source of X-radiation and ending with the detector and the data
acquisition system.

The usability of the various available machines, in particular in regard to time-
resolved measurements, is proportional to the flux that they are able to shine on the
sample. Table 4.1 shows typical data. Modern laboratory instrumentation (rotating
anode) is approaching the performance of older synchrotron light sources.



42 4 Experimental Overview

Figure 4.2. Sketch of a laboratory setup comprising a rotating anode, conventional beam shap-
ing optics, and an X-ray camera with the sample in normal-transmission geometry

4.2.1 The Radiation Source

4.2.1.1 Rotating Anode

An advancement with respect to the classical setup is an X-ray tube in which the
anode is rotating. A point-focus device equipped with a rotating anode shows the
same performance as a conventional system with slit-focus [71]. Figure 4.2 shows a
typical laboratory setup. By rotating the anode of the X-ray tube, the power of the
incident electron beam is spread on a circular ring. Thus it is possible to increase3

the power of the tube without “burning” the anode material (Cu, Mo, . . . ). High-
power rotating anodes are less robust than the medium power ones. In the sketched
setup the arrangement of beam, sample, and detector is called “normal-transmission
geometry”, because a principal axis of the sample is considered to be normal to the
incident beam direction and every photon has been transmitted through the whole
thickness of the sample. A different geometry is the symmetrical-reflection geometry
from Fig. 2.2. Different geometries require different correction of the raw data before
quantitative analysis (Sect. 7.6).

A rotating anode setup resembles a typical synchrotron beamline on a labora-
tory scale, and some progress concerning the optimum design of rotating setups was
made by transferring sophisticated techniques for the optimization of beamline op-
tics (PEDERSEN [72]) to rotating anode equipment.

4.2.1.2 Synchrotron Radiation

Overview. Electrons orbiting in a magnetic field lose energy continually in the
form of electromagnetic radiation (photons) emitted tangentially from the orbit. This
light is called synchrotron radiation. The first dedicated synchrotron light source was
the Stanford Synchrotron Radiation Laboratory (SSRL) (1977). Nowadays, many

3The maximum power of a conventional X-ray tube is 2.4 kW for broad focus (approx.. 2×12 mm focal
spot size). Modern rotating anodes consume 18 kW and deliver fine focus (approx.. 0.1 × 1 mm focal
spot size). Most important for high intensity is not the power consumption, but the product of focal spot
power density and focal spot size or, more accurately, the flux on the sample measured in photons/s (cf.
Sect. 7.6).
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Figure 4.3. Three generations of X-ray light sources at DESY, Hamburg: DORIS, the small
traditional synchrotron (partially enhanced by wigglers). PETRA III, the synchrotron light
source of the near future. FLASH, a FEL test facility for the next generation of synchrotron
light

electron synchrotrons are built exclusively for producing synchrotron radiation. The
largest of these is the 8 GeV SPring-8 in Hyogo, Japan. Figure 4.3 indicates the
technical progress in the field of synchrotron light sources in a sketch of the DESY
site (Deutsches Elektronensynchrotron, Hamburg, Germany).

A comprehensive review on the principles of a synchrotron, its radiation and
some applications in the field of soft condensed matter has been published by EL-
SNER et al. [10].

Polarization. The central cone of the synchrotron beam from a bending magnet
and, in general, the beam from insertion devices is polarized in the plane of the orbit
(i.e., horizontally). Due to relativistic effects the cone of the radiation characteristics
is narrow even if the beam is emitted from a bending magnet (cf. [10], p. 9-13 and
Sect. 2.2.2). If necessary, polarization correction should be carried out directly at the
synchrotron radiation facility by means of the locally available computer programs.

Operating Mode of a Synchrotron Light Source. A linear accelerator
(Linac) in a synchrotron facility provides an accelerator ring with particles. In the
accelerator ring the particles are repetitively accelerated by high voltages across one
or several gaps while orbiting in the pipe. If the synchrotron is used for the purpose of
generating synchrotron radiation, the particles are either electrons or positrons. When
a desired energy is attained, the particles are transferred to a storage ring where they
are allowed to cycle while the beam current is decreasing. The current is measured in
units of mA and announced on monitor screens in the experimental hall. In order to
keep the particles on their circular path, bending magnets are utilized. At the bending
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magnets synchrotron radiation is produced and emitted in tangential direction. The
synchrotron radiation is polarized and has a continuous spectrum (“white light”) ex-
tending from hard X-rays to the visible light. A desired wavelength is selected by
diffraction in a suitable crystal, called a monochromator. The particle density in the
ring is discontinuous. Several bunches are circling in the ring. Thus the synchrotron
light is pulsed. The corresponding time structure is an alternating sequence of typ-
ically 100 ns light and 100 ns darkness. A different time structure (“reduced bunch
mode”) is required for some non-scattering experiments in which material is excited
by the light pulse and the response is registered during a prolonged period of dark-
ness.

The traditional operation mode of synchrotron light sources is a discontinuous
one: particles are injected in the storage ring, the beam current is decaying expo-
nentially, and after several hours the synchrotron radiation run is stopped for a new
injection.

More and more radiation sources are switching from discontinuous mode to top-
up mode. This means that the user is continuously supplied with synchrotron radia-
tion of almost constant intensity. The loss of the electron current is either compen-
sated continuously or in intervals of several hours (at the ESRF: 6 h).

4.2.1.3 XFEL: The X-Ray Free Electron Laser

According to ongoing development the most powerful and versatile X-ray light
source of the next generation will no longer be realized by means of an orbit for
electrons. Instead, it will be based on a long linear accelerator. The key features of
this novel setup are

1. coherent X-ray light

2. tunable monochromatic X-ray light

3. typically a two-level time structure with extremely short light pulses grouped
in “trains” with a train frequency of 10 Hz

Such a device should be able to accomplish the visualization of 3D nanostructure by
means of X-ray holography. Moreover, the study of extremely fast processes should
become possible. Since 2004, FLASH, a VUV-FEL4 at DESY (cf. Fig. 4.3) is the
first working FEL facility in the world for soft X-rays. Up to the end of the year
2005 the operating parameter values of FLASH had already been decreased to a
wavelength of 31.7 nm with pulse lengths down to 15 fs. During the short duration5

of such pulses light travels a distance equivalent to the diameter of a hair.
Figure 4.4 shows the planned European XFEL Facility for hard X-rays extend-

ing from the DESY site to the East. A XFEL consists of an electron beam passing
through periodic transversal magnetic fields with alternating directions. These fields
cause the electrons to bend and perform a wavy motion. At each bend, very short

4V UV-FEL: vacuum ultra-violet free-electron laser
5Remember that short pulse means broad wavelength distribution.
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Figure 4.4. Proposed design of the future European XFEL Facility in Hamburg extending
from DESY to laboratories in Schenefeld 4 km East. The linear tube is split into a bunch of
X-ray beamlines

pulses of synchrotron radiation are emitted by the electrons. The emitted synchrotron
radiation at each bend is added coherently and in this way, a pulse of short-wave
nearly monochromatic radiation builds up successively. Compared with a conven-
tional laser, a FEL can be tuned continuously to any wavelength, and radiation of
short wavelengths can be achieved. The goal is to be able to produce monochromatic
radiation down to wavelengths of 0.1nm, which is a little bit lower than the wave-
length required in the field of soft matter. The X-ray beam of an XFEL is pulsed.
For the sake of versatility the time structure of the pulses is, in general, more com-
plex than that of a synchrotron. Each of the pulses of 100 fs length contains 1012

photons6. 3000 of such pulses are grouped in a so-called train of 600 µs duration.
The European facility is designed to operate at a train frequency of 10 Hz. It should
be clear that a XFEL experiment must, in general, be synchronized with the time
structure of the beam.

In 2005, the contract for the European XFEL facility had already been signed
by 12 major European countries including Russia and by China. Estimated cost is
800 Me with added 50 Me for detector development. The facility shall be opera-
tional in 2013. There are several competitive projects around the world. The Linac
Coherent Light Source (LNLS) in Stanford, USA, is under construction and shall
be operational in 2009. Korea and Japan have announced respective projects. A
Japanese XFEL shall be operational in 2008.

6A focused XFEL beam is not only probing the samples structure – it is as well able to excite the material
– ultimately causing melting, ablation or even carbonization within picoseconds.
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Figure 4.5. Beam shaping by a Göbel mirror. (a) The effective part of the mirror is a graded
multilayer from materials with high contrast. (b) after parabolic bending the device converts
divergent radiation emitted from a source point into a parallel beam

4.2.2 Beam Amplification by Insertion Devices

Insertion devices are placed in the electron path of a synchrotron. They increase the
photon flux by several orders of magnitude. Similar to the FEL principle they operate
by forcing the electrons on a wavy path. At each bend of the path synchrotron light
is emitted. In contrast to the FEL device there is no coherence. Instead, the light
intensity sums up to form the effective beam. Two kind of insertion devices are used.
In wigglers the curvature of the electron path is high. In undulators it is relatively
low.

4.2.3 Beam Shaping by Optical Devices

Optical devices are placed in the light path in order to shape the primary beam.
Beam-position monitors, shutters, slits, monochromators, stabilizers, absorbers, and
mirrors are utilized for this purpose. The effective beam shape and its flux are defined
by these components. In particular, if mirrors are cooled, vibration must be avoided
and thermal expansion should be compensated.

4.2.3.1 The Göbel Mirror

Laboratory X-ray sources emit highly divergent radiation. With conventional optics
the major part of this radiation is discarded by a slit system and a monochroma-
tor. Both components can be replaced by a Göbel mirror [73, 74]. Figure 4.5 shows
its construction and application. As a result a parallel and highly monochromatic
primary beam is received. Replacement of conventional incident beam optics (cf.
Fig. 2.2) by a Göbel mirror increases the primary beam intensity by a factor of 10–
50.
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Figure 4.6. Optics of beamline BW4 (USAXS) at HASYLAB, Hamburg

A Göbel mirror is designed for a specific X-ray wavelength. The design concerns
the choice of the two materials7 for the multilayer, their thickness and the gradient
along the mirror. Before application the graded multilayer (Fig. 4.5a) is bent and
positioned (Fig. 4.5b) so that the source point of the radiation source is in the focus
of the parabola.

4.2.3.2 Conventional Synchrotron Beamline Optics

The ordinary user who carries out scattering experiments at a synchrotron beamline
will rarely adjust the optics without help. Nevertheless, during the beam time one
should be able to assess the quality of the adjustment. Thus the user will most prob-
ably have to readjust some slits or to adjust the flux according to the requirements of
the experiment.

Figure 4.6 presents a sketch of the BW4 beamline optics realized at the DORIS
storage ring of HASYLAB, Hamburg. The beamline receives X-rays from a wiggler.
Two mirrors are installed for the purpose of beam focusing. Slits define the size of
the beam, and the wavelength is selected by means of a double crystal monochro-
mator. A tilt-absorber and shutters are present, but not shown in the sketch. The
beamline optics is installed in an optics hutch that is inaccessible during beam time.
All components – not only the optical ones – are moved by step motors and remotely
controlled via a computer program (“the motor program”).

4.2.3.3 Microbeam Optics (Wave-Guides, X-Ray Lenses)

Application. Micro- and nanobeam optics are used to demagnify the cross-
section of the primary beam. By means of the respective setups structure variation
in inhomogeneous materials can be studied with micrometer or nanometer size res-
olution, respectively. For this purpose the sample is moved through the beam while

7The contrast between the materials should be big as, e.g., the one between W and Si.
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Figure 4.7. Microfocus beam shaping by means of a capillary used as a waveguide (ESRF,
ID13) (courtesy C. RIEKEL)

scattering patterns are continuously recorded. If the sample is only translated, struc-
ture variation is studied in the plane of sheet-shaped samples (as a function of the
coordinates x and y). Additional rotation of the sample and tomographic data eval-
uation of the scattering patterns yields information on structure variation in space
(as a function of coordinates x, y, and z). Tomographic measurements are time con-
suming. 12 hours are required for a SAXS-tomographic study of a sample with fiber
symmetry [24]. Microbeam optics is advantageously coupled with other methods
like grazing incidence studies [75] or microdiffraction and texture analysis [49].

Optical Parts. Microbeam setups of synchrotron beamlines require special kinds
of optical devices. Fresnel zone plates and glass capillaries (Fig. 4.7) used as wave-
guides have been known for a long time. A surprisingly effective device that can turn
a synchrotron beamline into a microfocus beamline is a stack of refracting beryllium
lenses [76, 77] (Fig. 4.8). The device is easily adjusted in the synchrotron beam and
demagnifies its diameter by two orders of magnitude. The resulting microbeam is
ready for microfocus applications.

4.2.3.4 Nanobeam Optics (Kirkpatrick-Baez Mirrors)

Nanobeam optics with beam diameters of several nanometers are presently devel-
oped at the ESRF. Using a Kirkpatrick-Baez optical system (cf. Fig. 4.9) beam di-
ameters of 80 nm have been achieved. The Kirkpatrick-Baez system is made from
two successively reflecting, orthogonal mirrors that are bent into elliptical shape by
mechanical benders. The focused flux is strongly increased by deposition of a graded
multilayer structure similar to that used with the parabolic Göbel mirror.
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Figure 4.8. A stack of refracting concave beryllium lenses with parabolic profile (ESRF,
France and RWTH Aachen, Germany)

Figure 4.9. Kirkpatrick-Baez mirrors for the generation of primary beams with nanometer
size cross-section. Source: ESRF Newsletter (2005), 42(12), 14-15
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4.2.3.5 Beam-Position Monitoring

Beam-position monitors are installed in the electron path of the synchrotron. They
guarantee that the optics of each beamline “sees” the source of the synchrotron light
at always the same position.

If beam position monitoring breaks down, “the beam jumps” from time to time.
Such malfunction is frequently announced on the monitor screens or by the local
beamline scientists. Breakdown of beam-position monitoring may be restricted to
certain sectors of the ring. The user can recognize it from sudden jumps of the beam
image on the detector if a semitransparent beam stop is used, from sudden changes
of the slit scattering, or from sudden appearance moire patterns if the detector im-
ages are continuously accumulated into a monitor image during the experiment. In
the worst case the problem will be recognized late after the experiment during data
evaluation.

Result of the malfunction is that single images from a series are destroyed. Back-
ground subtraction and normalization become difficult if beam jumps have occurred
during the recording of a complete set of experimental data.

4.2.3.6 Shutters

Shutters are integrated into the safety system of a synchrotron facility. Their opera-
tion requires training and special allowance. Each beamline has several beam shut-
ters. The user should avoid to operate the beam shutter of the optics hutch in order
not to cool down the optics. Instead, the shutter of the experimental hutch is to be
operated in accordance with the interlock safety system.

4.2.3.7 Slits

Before any slit operation: check, write down, or save the old motor positions! Op-
eration of slits can be useful to change the beam intensity (instead of operating
absorbers). Imperfect thermal stabilization of mirrors and monochromators can be
compensated by proper slit operation. Before such operation is undertaken, it should
be made sure that the instrument is close to thermal equilibrium. In particular af-
ter opening the main beam shutter for the first time, it may be indicated to wait for
several hours. Otherwise the operator will have to follow the thermal expansion con-
tinuously. This bears the risk to destroy the adjustment or even the detector.

Mispositioned slits result in discrete slit scattering. Slit scattering is recognized
by thin and intense streaks in horizontal and/or vertical direction that extend outward
from the beam stop. Take out the sample or rotate it in order to make sure that the
streaks are not resulting from an interaction of the beam with the sample. Horizontal
streaks can be affected by moving horizontal slit edges.
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Figure 4.10. Beamline BW4 at HASYLAB. View from a sample chamber along the vacuum
tube towards the detector at the opposite yellow wall

4.2.3.8 Stabilizers

Automatic adjustment of mirrors and monochromators by intensity monitors and
phase-locked loops is called stabilization. If the feedback breaks down, the beam
will slowly move as the temperature of the optical part is changing.

As a result slow variation of the adjustment is observed: the intensity of the pri-
mary beam will abnormally increase or decrease, the parasitic scattering background
will grow, slit scattering will change (cf. Sect. 4.2.3.7). It should be clear that changes
of the primary beam intensity which are paralleled by respective changes of the syn-
chrotron current are normal.

4.2.3.9 Absorbers

Absorbers are found at many synchrotron beamlines. Two different principles are
realized. Tilt-absorbers are operated continuously, whereas filters on a revolving disc
offer step-wise attenuation of flux. Absorbers change the spectral composition of
the primary beam. Thus the utilization of an absorber during scattering experiments
should be avoided.

4.2.4 The Sample Recipient

The sample chamber contains the material that is studied in the experiment and pro-
vides for its manipulation and processing during the experiment. Figure 4.10 shows
a typical sample chamber mounted at beamline BW4 of HASYLAB, Hamburg.
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4.2.4.1 Optical Bench vs. Dance Floor

Older beamline constructions are based on an optical bench with one or two bars (cf.
Fig. 4.10). This construction principle has some disadvantages

• Sample recipients have to be specially constructed or adapted for use at spe-
cific beamlines

• The construction of sample chambers is constrained by the height and the
width of the bars from the optical bench

• Swapping experimental setup takes considerable time and may unnecessarily
affect the optical adjustment of the beam.

These disadvantages are overcome by the

Figure 4.11. Dance floor during con-
struction at ANSTO near Sydney, Aus-
tralia

so-called dance-floor principle which is sup-
posed to become the major beamline con-
struction principle of the future. Figure 4.11
shows a dance floor during the construc-
tion of the beamline hall at the ANSTO
neutron-scattering facility at Lucas Heights
near Sydney, Australia. The dance floor is
featuring an extremely plane and hard floor
surface from granite. Optical components,
detectors and sample chambers are mounted
on supports with a flat lower surface. While
compressed air is blown into the gap be-

tween the dance floor and the area of support, components are easily moved and
adjusted in the optical beam path.

4.2.4.2 Chambers for Sample Positioning

Some experimental techniques require the sample to be studied in very well-defined
orientations and positions with respect to the X-ray beam. In the corresponding ex-
periments the structure of the samples is, in general, not changed. A synchrotron
beamline is required, because it would take too much time to record the respective
data with laboratory equipment or because a special beam shape (microbeam) is es-
sential for scanning the part with high spatial resolution.

Complex Anisotropy is studied in texture goniometers (p. 193) as a function
of sample orientation. If the study is aiming at quantitative analysis of scattering
data, the absorption correction may become an issue. Conversely, by choosing a
special kind of scanning modus (e.g., symmetrical reflection SAXS; SRSAXS), the
absorption correction problem can be simplified.
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Structure of Thin Films and Plane Surfaces is studied in a grazing-incidence
recipient by means of grazing incidence (GI) methods: GISAXS, GIWAXS, or by X-
ray reflectometry (XR).

Gradient Materials are studied at microfocus beamlines with a spatial resolution
down to 1 µm. Current development of nanobeam optics will soon allow for spatial
resolutions down to 50 nm.

4.2.4.3 Recipients for Sample Processing

Some experiments are aiming at the study of structure evolution. In general, the stud-
ied material is isotropic or exhibits simple anisotropy (e.g., fiber symmetry). Most
frequently the material is irradiated in normal-transmission geometry. A synchrotron
beamline is necessary, because in situ recording during the materials processing is
requested with a cycle time of seconds between successive snapshots (time-resolved
measurements).

If a processing apparatus is constructed in such a way that the X-ray beam can ir-
radiate the sample, it can most probably be mounted in the beamline. Suitable cham-
bers allow for a change of sample temperature, humidity, strain, pressure, etc. Melts
may be sheared during irradiation. Fibers can be spun in the beam. Several meth-
ods may be combined (SAXS, WAXS, calorimetry, light scattering) by utilization of
sophisticated sample chambers.

Advanced users bring their own remote-controlled equipment, install it in the
beamline and couple it to the data acquisition system of the beamline for automatic
recording of environmental parameters.

In order to reduce air absorption in SAXS and USAXS setups, a vacuum tube
(cf. Fig. 4.10) is mounted between sample chamber and detector.

4.2.5 Detectors

A variety of detectors is used in the field of X-ray scattering. In fact, the proper
choice of the detector (as well as the sample thickness) is essential for good quality
of the recorded data, whereas the intensity of the synchrotron radiation determines
the minimum cycle time between two snapshots – if a modern CCD detector is used.
Gas-filled detectors cannot be used to record high-intensity scattering patterns. Im-
age plates need a minimum time of 2 min for read-out and erasure.

The basic principles of position-sensitive detectors are published in an early re-
view of J. HENDRIX [78]. A review on 2D X-ray scattering of polymers including
a description of detectors has been published by RUDOLF & LANDES [38]. WIL-
SON [79] describes the detector development at EMBL, Hamburg which contributed
to the commercial success of mar research Inc.

4.2.5.1 Criteria for Detector Performance

The key features concerning detector performance are
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• a long linearity range (minimum 0. . . 14000)

• a high dynamical range (minimum 14 bit = 0. . . 16383)

• built-in correction for detector response

• automatic correction for cosmic-ray spikes

• fast read-out (not slower than 1 s)

Some of these issues are features of the detector software that must be switched on
by the user.

A challenging task is the recording of an-

Figure 4.12. WAXS and USAXS detec-
tors combined at beamline ID2, ESRF

isotropic data in different ranges of scatter-
ing with different detectors. In this case the
placement of the detectors becomes the crit-
ical point. An optimum solution would be to
echelon ring-shaped WAXS and SAXS de-
tectors with a disc-shaped USAXS detector
placed at a long distance. A versatile solu-
tion using available technology has been re-
alized at beamline ID02 of the ESRF. Fig-
ure 4.12 shows the black WAXS detector
mounted in an inclined orientation close to
the sample position. The USAXS detector is
not visible in the picture. It is mounted at the
far end of the silver vacuum tube running to
the left. In the presented setup the sample
is kept in a heating stage that can be moved
into the beam.

4.2.5.2 CCD Detectors

Not only in the field of digital photography, but also in the field of scattering CCD
detectors have become very popular. In particular the commercial8 mar CCD detec-
tors have boosted the research in the field of soft matter. They feature robust remote
operation, short read-out time, high spatial resolution, automatic internal compensa-
tion of non-uniform detector response and cosmic-ray spike removal in a so-called
“multi-read” modus. Very important is the fact that saturation is only a matter of
accumulated counts, not a matter of scattering intensity (counts / second). Thus satu-
ration can be avoided by reducing the exposure time. Moreover, if saturation occurs
it is limited to a distinct region of the scattering image but does not spoil the whole

8mar CCD is a trademark of mar research Inc. (www.marresearch.com). The president of mar research
is Jules Hendrix, a detector specialist formerly employed at the EMBL outstation of HASYLAB, Ham-
burg.
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Figure 4.13. mar R© 185 CCD–detector in operation at beamline BW4, HASYLAB at the rear
end of the vacuum tube

image, as it is the fact with gas-filled detectors. Figure 4.13 shows a mar CCD 165
detector in operation at beamline A2 of HASYLAB, Hamburg. The diameter of its
sensitive area is 165 mm. This area is subdivided into 4 CCD chips. The detector’s
target CCD chips are cooled9 in order to reduce the dark current. The digital image
size is 2048 × 2048 pixels with a depth (dynamical range) of 16 bits. The image
is stored in 16-bit TIFF format. There is a linear relation between scattering inten-
sity and pixel value. A constant readout background is found in each pixel (typically
10 counts). Readout: 2.7 s for the highest resolution, 0.7 s if the resolution is re-
duced to 1024 × 1024 pixels. Energy discrimination is impossible, i.e., the detector
is sensitive to fluorescence photons as well.

4.2.5.3 Image Plates

Image plates are the modern equivalent to photographic film. Readout after exposure
(here it is called “scanning”) is something like a photographic development process:
typically it takes about 3 min. Thereafter another 3 min are required to erase the
image plate. Image plates are sensitive both to mechanical damage and daylight.
After erasure they slowly accumulate a “fog”-background. The spatial sensitivity of
image plates to X-rays, i.e., their “detector response” is non-uniform. Image plates
are subjected to ageing: their detector response changes with time. Advantageous is
their high spatial resolution and their robustness in regard to overexposure. Holes
can be drilled into image plates in order to let the SAXS through to a second detector
while the WAXS is recorded on the plate (simultaneous measurement). The ordinary
image plate cannot be operated remotely. The image plate scanner returns 16-bit

9Keep an eye on the cooler. Switch it on upon restart of the detector.
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TIFF data, the so-called “GEL-format”. The GEL-format is nonlinear: instead of the
intensity a number that is proportional to the square root of the intensity is stored in
the file.

A user-friendly environment for an image plate has been invented by mar re-
search Inc. In the mar345 detector an image plate, a scanner and an eraser are inte-
grated in a single device. The image plate is a circular disc and the scanner-eraser
unit is operating after exposure similar to the arm of a classical turn-table gramo-
phone. In this environment the image-plate detector can be operated remotely and
the detector characteristics of the image plate can be compensated by the read-out
electronics.

Image plates use stimulated luminescence from storage phosphor materials. The
commercially available plates are composed of extremely fine crystals of BaFBrEu2+.
X-rays excite an electron of Eu2+ into the conduction band, where it is trapped in an
F-center of the barium halide with a subsequent oxidation of Eu2+ to Eu3+. By ex-
posing the BaFBrEu- complex to light from a HeNe laser the electrons are liberated
with the emission of a photon at 390 nm [38].

4.2.5.4 Gas-Filled Detectors

Gas-filled detectors are the classical X-ray detectors. The main advantages are

• the possibility to carry out energy discrimination and thus only to count elas-
tically scattered photons

• the close relation between a count in the electronics and an incident photon
(“single photon counters”)

The major disadvantages are

• constant dead time after each pulse that is counted in the gas volume. This fact
leads to an integral intensity limit for the whole detector – typically not higher
than 105 s−1.

• Non-uniform detector response – wire-structure visible in the raw data.

These features made gas-filled detectors the limiting factor for effective use of syn-
chrotron beamlines. Nevertheless, they are still well-suited for laboratory equip-
ment10. Gas-filled detectors are classified by their dimensionality.

0D Detectors are the classical proportional counters that are used in laboratory
goniometers for decades. Because every point of reciprocal space is measured with
the same cell, the detector response is uniform by definition.

10If the progress of laboratory X-ray sources continues, gas-filled detectors will probably be replaced by
image plates with automatic read-out.
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Figure 4.14. A one-dimensional bent detector (INEL CPS120) can record a complete WAXS
curve simultaneously (source: www.imp.cnrs.fr/ESCA/drx.htm)

1D Position Sensitive Detectors. Position sensitivity is accomplished by a so-
called delay line. For every pulse11 arriving at the wire the time is measured that it
needs to travel to each of the two ends of the wire. Thus the position of the incident
photon along the wire can be computed from the time difference, i.e., the delay. Bent
high-resolution 1D position sensitive detectors (cf. Fig. 4.14) are advantageously
used in laboratory equipment for the recording of WAXS curves.

2D Position Sensitive Detectors are multi-wire electrical-field detectors. The
principal limitation of the total counting rate reduces the applicability at a syn-
chrotron beamline in particular for 2D detectors. But even strong, narrow peaks pose
a problem, because the whole image is distorted as soon as local saturation occurs.
The detector response is changing, because the wires are worn out by use.

4.2.5.5 Other X-Ray Detectors

Several other principles have been used to build X-ray detectors. For instance, 1D
detectors have been realized by diode arrays. 2D detectors have been realized by
conversion of X-rays to visible light, photon amplification, and a television camera
(VIDICON). CCD detectors have outperformed both diode arrays and the VIDI-
CON.

11Every pulse is an electron avalanche generated by ionization of the counter gas as a result of the inter-
action with the incoming photon
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4.2.5.6 Detector Operation Mode: Binning

In practice, the user selects the spatial resolution combined with the readout time of
a modern 2D detector. The lower resolutions are realized by binning12 of pixels on
the detector. Typical ranges are 1024 × 1024 pixels with 0.7 s readout time and 2048
× 2048 pixels with 7 s readout time. A low resolution should only be selected if the
high-resolution readout time is too long for the experiment.

The reason is truncation of dynamics in low-resolution modes: in a 14-bit-
detector each pixel in low-resolution mode can contain 0 to 16382 counts. With
the next photon an arithmetic overflow will occur and the pixel is saturated. In high-
resolution mode the same area of the detector is represented by 4 pixels, and if the
intensity is evenly distributed it takes 4 times longer before the pixels will be satu-
rated. If the high resolution is not required and the cycle time is 30 s or longer, it is
good practice to store away the big files on a spacious USB hard-disk and afterwards
to bin the data.

4.2.6 Experiment Monitors

Data analysis is based on the proper tracking of the key environmental parameters of
the experiment. Apart from the obvious parameters (e.g., the elongation in a straining
experiment) there are some essential parameters that are related to the scattering
apparatus itself (e.g., the intensity of the incident beam).

4.2.6.1 Monitoring, Journaling, Control

Automatic Monitoring. The success of the experiment is strongly related to the
ability of the data acquisition system to automatically record the relevant parameters
during the experiment. Monitoring basic parameters by paper and pencil is only the
last resort.

Human Journaling. One of the team members should observe the running ex-
periment and the data acquisition system and write down the observations of the
team in a journal file on a laptop computer.

Remote Controlling. X-rays are harmful to humans. Nobody is allowed to enter
the experimental hutch during experiments with X-rays. If observation and control is
important, the experiment is observed by a system of TV-cameras and TV-monitors
and controlled remotely by a second scientist.

TV-cameras should be tiny. Otherwise they cannot be placed almost parallel to
the optical axis of the X-ray beam. The focus should be adjustable in a wide range.

12Binning means that the intensities from four physical cells in a square are added into a single virtual
pixel. By this operation the edge length of the scattering pattern is halved. Because the detector hard-
ware only permits to store data in a certain width (usually not more than 16 bits), overflow may occur
upon binning “on the detector”. As a result, the corresponding areas are marked as saturated – only for
the reason of limited arithmetical capabilities of the detector hardware.
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Suitable “camera modules” which can picture an area down to 7 mm × 10 mm on
full screen are available from electronics suppliers at a price of less than 20 e.

4.2.6.2 Beam Intensity Monitoring

The intensity of the X-ray beam is measured by ionization chambers or pin-diodes13.
Pin-diodes can only be operated in the beam stop. The variation of the beam intensity
during the experiment should be measured both before and after the sample. If the
beam intensity monitors are set up properly, the absorption of the primary beam by
the sample can be computed for each scattering pattern. The placement of the “first
ionization chamber” in or after the X-ray guide tube to the sample is uncritical.

The design and placement of the second beam intensity monitor demands more
attention. The definition of X-ray absorption does not discriminate between primary
beam, USAXS and SAXS. So the second beam intensity monitor should guide pri-
mary beam, USAXS and SAXS through its volume, whereas the WAXS should pass
outside the monitor. The optimum setup for SAXS and USAXS measurements is a
narrow ionization chamber directly behind the sample. For WAXS measurement a
pin-diode in the beam stop is a good solution for WAXS. For USAXS and SAXS it
may be acceptable, as long as the relevant part of the primary beam is caught, the
optical system is in thermal equilibrium and the synchrotron beam does not jump (cf.
Sect. 4.2.3.5).

4.3 Data Acquisition, Experiment Control and Its
Principles

In order to operate a complex X-ray device professionally, some understanding on
the underlying principle of data acquisition and experiment control is helpful. Fig-
ure 4.15 shows the monitor rack of a synchrotron beamline. This monitor rack has
8 monitor channels to report 8 different signals which describe environmental pa-
rameters of the experiment. In case of a malfunction, the displayed numbers may be
written down using paper and pencil. Additionally, the rack is used for the associa-
tion of the signals to the monitor channels of the data acquisition system by plugging
cables with LEMO R©14FFA-plugs into respective sockets.

4.3.1 Voltage-to-Frequency Conversion (VFC)

The basic measurement principle of an X-ray device is counting. We open a beam
shutter, count discrete pulses, and close the shutter again. The shutter is mimicked
by electronics which opens a gate to a counter for a certain period of time. After the

13A pin-diode has three layers: p-doted layer, i: intrinsic interaction layer, n-doted layer. The outer layers
provide the electrical field. In the inner layer photons generate electron-hole-pairs which result in a
current, although the diode is operated in reverse-biasing mode.

14http://www.lemo.com after the Swiss engineer LÉON MOUTTET – A company manufacturing precision
connectors. The user will find these connectors at many beamlines around the world and will have to
provide his signal cable with a respective plug.
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Figure 4.15. Digital display and wire connections related to the 8 monitor channels which
can be managed by the environmental data acquisition system of beamline BW4, HASYLAB,
Hamburg

gate is closed the value of the counter is read out. It is the paradigm of X-ray data ac-
quisition that every signal is converted to frequency in order to make it “countable”.
Thus all environmental parameters are “counted” during the exposure of a scattering
pattern. This has several consequences

• Monitored parameters are related to channels of a multi-channel counter. The
number of counts found in the counter channels after each exposure will be
reported in a monitor file 15 together with a time stamp.

• Each parameter value reported in the monitor file must be divided by the actual
exposure time in order to yield a reasonable value. For this purpose one of the
channels should be reserved and count the “heartbeats” of an oscillator quartz.

• If a signal is varying during exposure, the value obtained after division is ex-
actly what we need: the time-average over the exposure interval.

• It is good practice to calibrate the monitor channels with respect to the param-
eters16 before starting the experiments.

• Check the output in the monitor file and the functionality of the counters17

several times during the beam time.

15This file may be a part of the scattering pattern file or a file of its own. For the sake of easy viewing the
monitor data are, in general, human-readable text (“ASCII–header” or” ASCII –file”).

16Temperature in degrees; moved distance in length units; etc.
17Counters should run while the shutter is open and should be quiet during data read-out. Otherwise a

gate flip-flop has changed its state unintentionally and the data acquisition system must be rebooted.
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• There is a shortest reasonable exposure time that is related to the frequency of
the heartbeat quartz and the adjustment of the voltage-to-frequency converters.
Below the reasonable exposure interval quantization errors become a problem
and the “measured” value will be chosen from a small number of possible
steps.

• If the external gate is no longer clocking the counters because the shutter con-
trol has been transferred to the internal detector software, no variation of the
environmental parameters will be recorded any more (For example, if you ask
your detector to accumulate 200 scattering patterns with a very fast cycle time
“in its buffer”, there is only one gate-opening for the start of the series and
one gate-closing at its end. Thus, all your 200 images will report the same
environmental data averaged over the whole series of 200 images).

• At the beginning of a beam time the users should write down which monitor
channel is connected to which signal.

• Users provide their environmental parameters as an electrical voltage (typi-
cally in the range of 0. . . 10 V) and connect a cable to an input of a VFC of a
free monitor channel.

4.3.2 Unix and the Communication Among Acquisition Modules

The components of the data acquisition system are communicating with each other
via Internet protocol (TCP/IP). For instance, detectors are listening at Internet ports
for commands to change their mode of operation and broadcast acknowledgments
which are intercepted by the experiment control program. This is, in general, accom-
plished by a network of computers working under various Unix variants. It is thus
very helpful, if the user has some experience in Unix. This starts from the question
of how to check the raw data files for completeness and ends with complex scripts to
simplify the control of the experiment18.

18If, e.g., during a running experiment the danger of detector saturation is observed, the experienced user
may broadcast a command to the detector (by writing into a pipe): change the exposure but keep the
cycle time constant.
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Regular beamtime at a synchrotron radiation source is allocated by a review panel
on the basis of a written proposal. The main part of this short chapter is a guide to
the novice with hints to the writing of a regular proposal. Besides this regular access
there are, in general less laborious ways to put a sample in the synchrotron beam.

5.1 Test Measurements

The advantage of test measurements is easy access. The disadvantage is the fact that
there is no funding of travel expenses and accommodation.

At some synchrotrons the novice can officially ask for test-measurement beam-
time. Such beamtime will not be longer than one day and will be appended to beam-
time that uses the same setup as the one required for the test.

Another possibility is to ask an experienced colleague with a granted proposal
to join his beamtime with some samples that fit into his project. In this case there
may even be a chance to be funded within the frame of this collaboration.

The beamline scientist at a synchrotron beamline has some in-house beamtime of
his own. The test-user may convince the staff scientist to study a test sample during
this beamtime. It is possible that the user simply sends the sample, but it is better to
join in the measurement.

After having performed such tests the new user should be able to assess whether it
appears reasonable to study the scientific problem at a synchrotron beamline. Some-
times one will simply be able to use devices (furnace, extensometer, sample recipi-
ent) provided at the beamline. Sometimes the researcher will have to adapt some own
devices to fit in the beamline, to control it remotely and to record its output signals
together with the scattering patterns. Sometimes special equipment will have to be
constructed.

5.2 Support or Collaboration

Early decision should be made whether the user only requests support from the
beamline staff, or whether a scientific collaboration is offered.

Supported Beamtime. In a supported beamtime, the beamline scientists and
their engineers will adjust the beam and help with the setup of provided devices. They
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will instruct the user. Thereafter they will be on stand-by for the case of problems.
Finally the staff will provide means to transfer the scattering data. It is the user’s
duty to report the results of the study to the synchrotron radiation facility (forms
are available for that purpose). Publications based on such study must give proper
reference to the synchrotron radiation facility.

Acknowledgments. Regrettably it must be said that only a minority of the sci-
entific users pays tribute to the beamline staff. Even if the staff is not collaborating in
the project, an acknowledgment should be the minimum courtesy in any publication.
An example for such an acknowledgment is “We acknowledge <facility>, <place>,
for provision of the synchrotron radiation facilities at beamline <name> in the frame
of project <number>. In particular the support of <scientist> and the beamline en-
gineer <name> is greatly appreciated.”. Variants can be found on the web-pages of
synchrotron radiation facilities that deal with this problem.

Collaboration with Beamline Staff. If the beamline staff accepts scientific
collaboration with the user, the beamline scientists will actively participate in the
experiment and the engineers will help with the adaption of special devices. Such
active cooperation should be awarded co-authoring the resulting papers, in particular
if the colleagues have participated in the data evaluation and in the discussion of the
manuscripts.

Disrespect of etiquette has little impact on the review panel. For the panel it is
important that the results are properly reported and published. Users who do not
report will not receive a follow-up beamtime in a similar project. Users who do not
publish for years will only receive beamtime if no productive user is competing.

5.3 A Guide to Proposal Writing

This section describes the situation at the ESRF up to the year 2003.

How a Review Panel Works. Be aware of the fact that the members of the
review panel have to decide on 120 proposals every 6 months during one week. The
panel has 7 members. After the members have received the proposals they read every
proposal and rank it individually during three days. For every proposal two members
are elected speakers. When the panel meets for two days, the individual rankings
have been collected, and the secretary has prepared a list giving the average ranking
and the standard deviation. Promising but poorly written proposals are characterized
by a wide standard deviation. Every proposal is introduced by the speakers, who try
to give information that might be missing in the paperwork. In this way the panel tries
to find a fair ranking for those proposals with a wide standard deviation, whereas the
proposals with a narrow error bar are not discussed in detail. Finally, beamtime is
allocated in the order of the ranking.
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What the Panel Member Does not Need to Know. It is generally conceded
that your scientific project is very important. A lengthy introduction intended to con-
vince the panel by giving information that is not closely related to the experiment
is exhausting, in particular if it fills half of the proposal form. The panel member
gets annoyed, if by this procedure important information has been squeezed out. The
panel member who is the speaker will probably have to retrieve the missing informa-
tion from the Internet. The panel member becomes more annoyed if this happens for
several proposals in succession. The panel member is happy if he reads a clear and
concise proposal.

What the Panel Member Must Know. Do not write more than 10 lines on the
impact of the expected results. Only one of the speakers is an expert in your field.
Address the interested lay-person! Are the expected results of general public interest
so that they can advertise the research facility in the public press? This is a strong
argument to the panel.

Document or explain the feasibility of your experiment. Explain, why the exper-
iment must be carried out at a special beamline. For overbooked facilities explain,
why the experiment must be performed there and cannot performed at a low power
synchrotron1. If there are several alternative beamlines where the experiment can be
performed: show the alternatives. The resulting flexibility for the panel increases the
chance to become allocated.

Sketch the setup of your experiment (sample-to-detector distance2, requested de-
tector(s), special sample environment requested from the facility or brought with
you), and your experiment plan (how many samples? What parameters are varied?)
and deduce from it the number of requested shifts or days.3

Show your expertise or document that you are collaborating with an expert. In
particular, indicate how you intend to evaluate the collected data and reference rele-
vant literature.

1Present results from laboratory sources, low power sources or previous experiments (also from others).
Such data are strong arguments.

2The choice of the sample-to-detector distance, R, is a problem of SAXS. Let L be the expected long
period the material to be studied and D be the diameter of the 2D detector, then R ≈ LD/(9λ) is a good
first guess.

3On an overbooked beamline try to devise an experiment plan that requires 3 to 4 days. In this case the
beamtime is long enough for the staff: they do not have to change the setup more than twice in a week.
On the other hand, the request is flexible enough for allocation by the review panel.



6 It’s Beamtime, Phil1: A Guide to Collect
a Complete Set of Data

When the experiment has been set up at the beamline or the rotating anode, it is
important to collect a complete set of data for later evaluation or the experiment will
have to be repeated. Do not expect to be satisfied after the first time, because the
collection of complete data is a matter of experience. The intention of this chapter is
to reduce the number of repetitions.

6.1 Be Organized

In advance of the beamtime discuss the experiment with an expert. At a synchrotron
beamline cooperate with the local beamline staff.

It is reasonable to have a blotter and a pencil at hand. Label the blotter with the
experiment and date. Write down on paper all information concerning smooth
and complete conduct of the experiment. Paper and pencil are handy during the
briefing by the local staff when you are talking and walking around on the site.
After the beamtime copy respective information from your journal file to the blotter.
Continue to do so during data evaluation. Before the next beamtime consult the old
experiment blotter for preparation. Your own final guide will probably contain
several of the issues that are addressed in the following sections of this chapter.

6.2 Very Important: Data File Check

After you have collected the first scattering patterns check that the data files have
arrived in the expected directories. Check the size of the files. Open the ASCII files
or the ASCII headers in a text editor and check that the environmental data have
arrived in the files. Vary environmental parameters in test measurements and check
that the values in the ASCII files vary accordingly. If possible, calibrate environmen-
tal parameters (e.g., sample temperature, straining force, cross-bar position). Ask
the beamline staff to demonstrate what they tell you. Double check! Otherwise your
effort may be wasted.

1“Don’t drive angry!” – Bill Murray in the movie Groundhog Day
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6.3 Never Store Test Snapshots from Detector Memory

From time to time you will certainly perform test snapshots2 that are only accumu-
lated in the memory of the detector before you start the real business. If everything
looks fine – do not store the test image from the detector memory. Instead repeat the
snapshot using the command that directly stores the data in a file. Storage from
memory will most probably not dump the correct environmental data to the data files
– and if afterwards you want to use the data as, e.g., the machine background and
you find out that the exposure and the primary beam intensity have not been stored,
you may have a problem.

6.4 To Be Collected Before the First Experiment

In this section the static parameters of the experimental setup are collected. It is good
practice to do so after each re-adjustment of the setup. If some of the data addressed
here have been forgotten to be collected there is some chance that the beamline
scientist has done so during adjustment.

• X-ray wavelength

• sample-to-detector distance R

• technical description of the detector(s) used

• detector response of image plates and gas-filled detectors

• size of each pixel cell on the detector

• allocation of monitor channels to environmental parameters

• frequency of the heartbeat monitor channel

• calibration of monitor channels for which absolute data values are required
(e.g., sample temperature, sample elongation)

• a measured primary beam profile or the integral breadths of the primary beam
on the detector in horizontal and vertical directions

• in particular in studies of porous or fractal materials, assessment of multiple
scattering (cf. Sect. 7.2) should be carried out

The parameter values and patterns determined in this section are reasonably linked
into adapted versions of data pre-evaluation procedures in order to permit automated
pre-processing of complete series of scattering patterns. Novices at synchrotron
beamlines will resort to on-site procedures and take home pre-processed data.

2Frequent reasons are that you (1) want to test what exposure will be needed, (2) have to check the slit
scattering of the apparatus, (3) want to know if the beam comes through, (4) do not know if the sample
is in the beam
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6.4.1 Measurement of the Sample-Detector Distance

For SAXS and USAXS experiments it is sufficient to measure the distance R by
hand or by a laser distance-meter. For MAXS and WAXS, calibration by means
of samples with known sharp reflection are required. Such calibration samples are
available at synchrotron beamlines. Different materials are used for application in
different angular regions (isotropic crystalline materials for WAXS, Ag-behenate for
MAXS, diverse biological samples3 for SAXS and USAXS). Calibration sheets are
frequently published on the home pages of synchrotron beamlines.

6.4.2 Measurement of the Detector Response

Some commercial detectors come with built-in procedures and software that auto-
matically corrects for a flat detector response of every pixel4. For other detectors the
necessary correction has to be carried out by the user.

The detector response is measured by placing a radioactive iron-source (55Fe) in
front of the detector and accumulating for several hours. If the source is placed at a
short distance of the detector, the varying distance of each pixel from the source must
be considered. Actual pre-evaluated5 detector response images should be available
from the local staff. Detector response is corrected by multiplying the pre-evaluated
detector response image and the raw data accumulated during the experiment.

6.4.3 Measurement of the Primary Beam Profile

The primary beam profile is reasonably measured during adjustment of the optics just
before the beam stop is inserted. If overexposure of the detector can be avoided by
choosing a short exposure interval this method is to be favored. Instead, attenuation
of the primary beam by an absorber must be considered.

6.5 To Be Collected for Each New Run

If the synchrotron is operated in discontinuous mode, the storage ring will be refilled
two or three times every day. The interval between two consecutive refills is called
a synchrotron radiation run. The parasitic scattering (machine background) should
at least be recorded once within each synchrotron radiation run. You might consider

3Rattail tendon, ox-eye cornea . . .
4Such detectors reveal their built-in intelligence if the user interrupts a measurement. Thereafter the
detector response memory may contain nonsensical data, and the following measurement may be cor-
rupted.

5The intensity measured during response calibration must be corrected for intensity loss due to the
varying distance of each pixel from the iron source. Thereafter the invalid pixels must be masked.
For the valid pixels the reciprocal intensity is computed and finally normalized in such a way that the
average intensity of all the valid pixels is 1 in order not to introduce global intensity change by the
following response corrections.
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to measure a background before every experiment, because there is some probabil-
ity that the beam position jumps by a few pixels during refill of the storage ring.
Moreover, temperature variation may cause slow variation of the adjustment.

Background is measured without the sample – but including the sample holder
and all kind of “wrapping” that does not belong to the material of interest (e.g.,
aluminum foil, empty cuvette, or cuvette with solvent, respectively).

The exposure time of the background should be prolonged by a factor of about
5 compared to the exposure of the sample. Thus a better signal-to-noise ratio is ob-
tained, and this decreases the risk to obtain negative intensities upon background cor-
rection. If prolonged exposure is not possible the risk of negative intensities can later
be minimized during data evaluation by median-filtering (Sect. 2.9) the background
before using it. A submatrix width of 5 works fine and it may even be increased if
there is no significant slit scattering in the background pattern.

6.6 Adjustments with Each Experiment

Sample-to-Detector Distance Perform test exposures and check that no rele-
vant peak is “cut” on the detector image – outside the peaks there should be
a considerable amount of the diffuse tail of the scattering recorded. If the dis-
tance is too short only for some of the samples one may consider to first study
other samples and then to re-adjust the beamline. Assess the extra effort and
anticipate that the beamline scientist might not be pleased. It is better practice
to plan ahead and to test some materials for future beamtimes. Estimate now
the distance needed next time.

Exposure Time Perform some test exposures and choose an exposure time so
that the maximum scattering originating from the sample results in about
10,000 counts in some of the relevant pixels. Is the maximum lower than
2000 counts, a quantitative analysis will be very difficult.

Sample Thickness If possible choose a sample thickness close to the optimum
thickness (Sect. 7.6). Proper background correction will be difficult for ex-
tremely thin samples. It is better to shorten the exposure or even to attenuate
the primary beam than to decrease the sample thickness far below the optimum
thickness.

Sample Orientation If possible orient the sample in such a way that the beam-
stop holder does not cut through an important region (peak). If you expect that
the sample exhibits fiber symmetry, check it: rotating the sample about the
assumed fiber axis and take some patterns.

6.7 Collect Good Data

Spend time on data accumulation if you plan to evaluate the data. Exposure of one
WAXS curve from a modern thin-film sample that is good enough for line profile
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analysis takes several hours at a laboratory X-ray source – even if a rotating anode,
Göbel mirror, and a bent position sensitive detector is operated. Immediately after
the experiment cut curves from the data and check the S/N–ratio.

6.8 To Be Collected with Each Scattering Pattern

The parameters of this category should be recorded automatically using monitor
channels of the data acquisition system (cf. Sect. 4.3). The value of the experiment
is strongly resting on these data. In case of a malfunction or unavailability of the
monitor channel module of the data acquisition system at least the most important
parameter must be collected using paper and pencil. These parameters are the main
process parameter6, the exposure times, and the readings of the ionization chambers.

6For instance, the main process parameter in a heating/cooling experiment is the temperature.
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Unfortunately the standardization of evaluation procedures is still low in the field of
scattering as compared with, e.g., crystallography. Thus, whenever scattering data
shall be evaluated the user has to learn how to write computer programs. There is no
possibility to circumvent learning this lesson by using one of the standard data eval-
uation programs like OTOKO1, TOPAS2, or FIT2D3, because these programs do not
provide the user with much built-in intelligence. Instead, they represent a library of
algorithmic tools which have to be parameterized and chained up reasonably by the
user. In fact, this chaining is interactive programming, and the resulting chain of al-
gorithms is a computer script. It is adapted to the specific beamline setup and should
be capable to semi-automatically pre-evaluate4 a complete sequence of frames, i.e.,
a stream of X-ray scattering patterns.

If one of the invoked algorithms fails, it is most probably fed with nonsensical
data. For instance, if an algorithm needs to extrapolate intensity to zero scattering
angle it is nonsensical to provide it with a scattering curve that starts with a sequence
of invalid intensities from behind the beam stop. The algorithm will most probably
break down, if these points are not removed or marked as invalid. If a program break-
down has occurred, it often helps to imagine how the scientist himself would solve
the task step-by-step using paper and pencil.

The data evaluation process is divided into pre-evaluation and structure evalua-
tion. The pre-evaluation follows quite simple rules, which are a function of the setup
geometry and the data quality only. During this first stage the scientist observes the
features of the scattering patterns. From these features he learns how to tackle the
structure evaluation for his specific case.

Full automated data pre-evaluation can rarely be achieved. In particular,
centering and alignment of each raw pattern should at least be controlled
by the user. On the other hand, even semi-automated pre-evaluation can

1http://www.embl-hamburg.de/ExternalInfo/Research/Ncs/otoko.html
2http://www.chemie.uni-hamburg.de/tmc/stribeck/dl/
3http://www.esrf.fr/computing/scientific/FIT2D/
4Pre-evaluation can be made to work automatically under certain conditions: (1) each frame carries an
individual base name through all steps of data evaluation (e.g., “myexperiment_frame003”) which can
be addressed by the script (e.g., by referencing “image.name”) – (2) the parameters of the detector
image file (e.g., pixel size, width, height, exposure time stamp, exposure time) can be referenced by
the script, can be attached to the image and carried along with it through all steps of evaluation for
deliberate use – (3) the monitor channel parameter values (cf. Sect. 4.3) are accessible in a similar
manner and attachable to general purpose “experimental parameter variables” of the image.
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be obstructed by poor design of the X-ray beamline or by a poor exper-
imental setup [80]. The pre-evaluation procedure must be able to read
every parameter5 it needs from a file which was generated during the
experiment.

7.1 Reading the Scattering Data Files

There is no standard data format for scattering data. The vast list of supported file
formats in the reference manual of FIT2D clearly shows the problem.

Using a readily available computer program has the advantage that it offers pre-
defined algorithmic tools. The disadvantage is that the toolbox is rarely complete.
So the wish to read the data files into a spreadsheet program, into Origin or another
program of the user’s choice, is quite common. If the experience6 in programming is
low, the to-date best advice is to use OTOKO or FIT2D for reading the raw data, to
perform pre-evaluation, and, finally to output the data in a suitable format for storage,
presentation or further treatment by a different program.

If the user has a favorite evaluation program that he knows how to operate, he
may use FIT2D as a converter program only – or he may directly resort to a stand-
alone format converter program. Converters which output at least human-readable
ASCII format are frequently available at synchrotron radiation facilities – and ASCII
file import should be supported by any reasonable program.

7.2 Assessment of SAXS Multiple Scattering

Multiple scattering means that a photon is at least scattered twice inside the sample.
The phenomenon changes the measured small-angle scattering. In practice, multiple
scattering can effectively be reduced by decreasing the sample thickness.

Affected by multiple scattering are, in particular, porous materials with high elec-
tron density (e.g., graphite, carbon fibers). The multiple scattering of isotropic two-
phase materials is treated by LUZATTI [81] based on the Fourier transform theory.
PERRET and RULAND [31,82] generalize his theory and describe how to quantify the
effect. For the simple structural model of DEBYE and BUECHE [17], RULAND and
TOMPA [83] compute the effect of the inevitable multiple scattering on determined
structural parameters of the studied material.

In the experiment, multiple scattering is causing a characteristic change of the
primary beam profile (Fig. 7.1). As multiple scattering is slowly increasing, shoul-
ders are growing on both sides of the primary beam profile. Nevertheless, in the cen-
tral part still the original shape of the primary beam profile is conserved (Fig. 7.1b).
In the case of strong multiple scattering, the original beam profile is considerably
broadened and distorted as a whole (Fig. 7.1c).

5Such parameters are: primary beam intensity, attenuated primary beam intensity, time, exposure, and
the experimental parameters, e.g., sample temperature, force, cross-head position . . .

6If the experience in programming is high, it is profitable to have the freedom of a programming system
like pv-wave or IDL.
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Figure 7.1. Variation of a primary beam profile caused by multiple scattering. (a) Unaffected
primary beam. (b) Moderate multiple scattering. (c) Strong multiple scattering

In practice, a simple experiment can be performed to test the presence of
multiple scattering. First the power of the primary beam is attenuated7

sufficiently, so that the direct beam can be measured by the detector
without the risk of damage. Thereafter, the primary beam is measured
once with the sample and once without it. If both images are propor-
tional to each other over the whole range, the effect of multiple scatter-
ing is negligible.

7.3 Normalization

Divide every scattering pattern and every background by the actual incident flux
measured by the first ionization chamber, and divide it by the actual exposure time.

7.4 Valid Area Masking

For USAXS and SAXS studies in normal-transmission geometry it is more conve-
nient to carry out this step later – after the absorption and background correction.

Determine the area on the detector, in which valid data have been recorded. If
the raw data are a scattering curve, this is normally a single interval. Then remove all
invalid points. If the raw data are a scattering pattern, then the beam stop, its holder,
the edge of the vacuum tube, and the edge of the detector encircle the valid area.
Use the methods of Digital Image Processing (Sect. 2.9) to define the valid area. The
result is a mask image that can be used for the processing of all data recorded with
the same beamline alignment. In this respect processing means multiplication of raw
images by the mask. The results are images in which all invalid pixels are pulled
down to zero intensity.

7This is most easily done at a laboratory source where the current of the X-ray tube is decreased to the
lowest possible value. At a synchrotron beamline this is more complicated, because the measurement
of the primary beam requires special adjustment. So, technically this should be done before the final
optical adjustment of the device, as long as the slits can be narrowed for the purpose of intensity
attenuation and as long as the primary beam stop is not yet mounted. It is not advised to use absorbers
that are mounted behind the monochromator, because they change the spectral composition of the X-ray
beam.
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7.5 Alignment

For USAXS and SAXS studies in normal-transmission geometry it is more conve-
nient to carry out this step after the correction for absorption and background, be-
cause in these cases absorption and background correction are no function of the
scattering angle.

For other geometries the center of the scattering pattern, its orientation, the pixel
size of the detector and its distance from the sample must be operated first in order
to align the scattering pattern.

If scattering curves are processed, the center is simply “a channel number” of the
detector and centering is accomplished by subtracting this channel number from all
other channel numbers.

For scattering patterns the corresponding procedure is more involved and is ac-
complished by moving the center of gravity of the primary beam into the center of
the image matrix. Additionally, if the scattering pattern is anisotropic, its meridian
should be aligned in vertical direction. Thus the parameter set of this operation is
made from the position of the true center, (xc,yc), on the raw image measured in
raw pixel coordinates and from an angle of image rotation, φ . If these parameters
are known and the sample does not rotate during the experiment, all frames of the
experiment can be centered and aligned using the same set.

Interactive rotation and movement utilizing a cross-hair cursor and a system of
concentric rings appears to be an easy and reliable way to determine good align-
ment parameters. Anyway, the cross–hair-and-ring visualization together with the
underlying scattering pattern provides a simple method to check the reliability of
any automatic or semi-automatic alignment algorithm that can be imagined8.

If valid areas of images shall be moved and rotated, provisions must be made that
during this operation the valid area does not collide with the physical edges of the
matrix. This can easily be accomplished by sufficiently widening the physical matrix
before to move the valid area. Thus the necessary percentage of image widening is a
further parameter of an automatic “alignment script”.

If the principal axis of the sample is moving during the experiment, then ev-
ery frame has to be aligned individually while proceeding through the sequence of
frames. In this case it is helpful if the interactive procedure remembers the last set of
alignment parameters and the operator only invokes incremental corrections, when-
ever they become necessary.

7.6 Absorption and Background Correction

The Effect. The amount of matter irradiated by the X-ray is varying – as a func-
tion of the beamline geometry, the scattering angle, the sample thickness, and sample
size. Besides that matter is causing both scattering and absorption of the ray. Scat-
tering intensity and absorption may be a function of the scattering angle for certain

8I have written and tested several algorithms, but have not yet found a general-purpose and reliable
automatic one.
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setup geometries. The corresponding relations are readily obtained by simple geo-
metric reasoning (ALEXANDER [7], p. 69-72; GUINIER [6], p. 101-116, p. 180-181).
When we follow the route of older textbooks we should consider that the former de-
ductions for reflection geometries are considering free-standing samples, whereas
today’s focus has turned to thin layers mounted on substrates.

The Importance. Absorption and background effects must be properly corrected
if the study is aiming at the analysis of fall-off laws of diffuse scattering (fractal
structure, density fluctuations within phases, transition zones between phases). They
should be approximately corrected if absolute changes of the invariant shall be dis-
cussed. Absorption and background correction is less important if the study is aiming
at topology (i.e., size and arrangement of domains in the sample).

The Effort of Correction. If the measurement is carried out in a transmission
geometry, an absorption correction can be carried out with fair to high significance
if the sample thickness is close to the so-called optimum thickness. If a reflection
geometry is chosen, the correction is only simple if the approximation of infinite
thickness is allowed. Nevertheless, the so-called linear absorption coefficient must
be known – either from direct measurement in transmission, from computation (cf.
Sect. 7.6.4), or from a fit in a regression program utilizing a complete model that
considers both structure and absorption to fit the scattering data directly.

7.6.1 Absorption – the Principle

X-rays are absorbed whenever they travel through matter. As a result, the total trans-
mitted intensity, It , measured after passing the absorber is only a fraction, It/I0, of
the incident intensity, I0. For amorphous or polycrystalline material the incremental
absorption within a layer of thickness d� is constant, and by integration along the
complete light path � through the sample the absorption law

It (�) = I0 exp(−µ�) (7.1)

is readily obtained. Here µ is the linear absorption coefficient, which is a function
of the X-ray wavelength λ , the chemical composition of the material, and its mass
density (cf. Sect. 7.6.4). exp(−µ�) is the linear absorption factor.

7.6.2 Absorption in Normal-Transmission Geometry

Normal transmission geometry is the most frequent setup used in synchrotron beam-
lines and rotating anode laboratory equipment (cf. Fig. 4.1, Fig. 4.2, and ALEXAN-
DER [7] p. 69-70). Sample, detector, and beam are not moved. The deduction of the
absorption relation starts from geometric consideration (Fig. 7.2). The sketch indi-
cates the path of a partial beam of photons that enter the sample through the area
F , then are scattered after a path x by the angle 2θ so that they have to travel the
distance b, before finally leaving the sample. It is assumed that each photon is scat-
tered only once, i.e., multiple scattering is excluded. The total length �(t,2θ ) = x+b
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Figure 7.2. Absorption in normal-transmission geometry. The path of the photon through a
sample of thickness t before and after its scattering about the angle 2θ

is established from the sketch. Using Eq. (7.1) and integrating over all x ∈ [0, t] we
obtain for the transmitted intensity the general relation9

It = I0 F
∫ t

0
exp(−µ�(x)) dx

= I0 F exp
(
− µt

cos2θ

) 1− exp(−µt (1−1/cos2θ ))
µ (1−1/cos2θ )

. (7.2)

With little error the exponential in the numerator of the rightmost fraction of Eq. (7.2)
is expanded in a Taylor series resulting in

It = I0 F t exp
(
− µt

cos2θ

)
. (7.3)

We observe that F t = V is the irradiated volume. The maximum of It is found at

topt =
cos2θ

µ
. (7.4)

topt is the optimum sample thickness in normal-transmission geometry10. In SAXS
and USAXS we finally have 2θ → 0 and thus cos2θ → 1. Therefore, further simpli-
fication

It = I0 F t exp(−µt) (7.5)

9This treatment simply assumes that the material is a homogeneous medium with a scattering power of
unity. Thus relative changes are correctly described. In order to put the results back on an absolute scale
It (s = 0) must be considered.

10Equation (7.4) is also valid in symmetrical transmission geometry (ALEXANDER [7] p. 71-72), which
is a classical geometry for goniometers equipped with zero-dimensional detectors
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Figure 7.3. Effect of absorption in normal-transmission geometry. The total transmitted scat-
tering intensity, It , as a function of the reduced sample thickness. The highest scattering signal
is obtained at µtopt/cos (2θ ) = 1 with topt being the optimum sample thickness

is allowed for small scattering angles. The different approximations describe the
scattering intensity on the detector as a function of the sample thickness and the
scattering angle.

The relation is sketched in Fig. 7.3. From the shape of the curve we anticipate
that good scattering signals are obtained, if the thickness of the transmitted sample
is in the range 0.5/µ < t < 3/µ .

Moreover, the intensity is additionally increasingly dampened with increasing
scattering angle. The corresponding absorption and background correction

Icorr = I′t exp
( µt

cos2θ

)
− Ib

is established by Eq. (7.3). Here I′t is the measured sample scattering pattern on the
detector and Ib is the measured pattern of the parasitic background. According to the
first-step of pre-evaluation (Sect. 7.3), I′t and Ib have already been normalized for the
incident flux I0 F . After additional division by the sample thickness t we thus have

Icorr

t
=

I
I0V

a scattering pattern that is proportional to the scattering intensity in absolute units,
I/V . If µ is known to be constant during the experiment, the thickness t or at least a
quantity that is proportional to t can be computed from a measured absorption factor
exp(−µt).

The Experimental Determination of the Absorption Factor is based on
two flux measurements by means of ionization chambers, one placed before (I1),
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and the other behind (I2) the sample. The second chamber may be replaced by a
pin-diode. If I1,0 is the reading of the first ionization chamber during a measurement
of parasitic background and I1,s is the reading during sample measurement with the
analogous nomenclature for the reading of the second ionization chamber then

exp(−µt) ≈ I2,s I1,0

I2,0 I1,s
(7.6)

is approximately valid. The measurement of the incident flux I1 is only necessary if
the flux is varying like at common synchrotron radiation sources. If the exposure time
is low and the sample is thin, the determined absorption factor will not be accurate.
In this case the machine background cannot be operated properly. The consequences
have been described at the beginning of Sect. 7.6.

7.6.3 Absorption in Reflection Geometries

If the X-rays reflected from a large sample are detected and the sample is thicker
than 3/µ , the assumption of infinite thickness is justified. Then the equation for the
intensity It transmitted into the detector enjoys peculiar simplicity, because it is only
a function of the effective irradiated volume

V =
F0

µ (1 + sinαi/sinαe)

(GUINIER [6], p. 181), with the cross-section, F0, of the incident X-ray beam, the
angle of incidence on the sample surface, αi, and the angle of exit with respect to
the sample surface being αe. For symmetrical-reflection geometry (αi = αe = θ )
the irradiated volume becomes F0/(2µ), and 1/2µ is the penetration depth into the
sample. We thus have

It =
F0

µ (1 + sinαi/sinαe)
I0 (7.7)

for the relative variation of the intensity transmitted into the detector. There is no
need to subtract a parasitic background, because whatever our detector might have
seen when there was no sample – it is completely absorbed in the sample of infinite
thickness. In symmetrical reflection

It =
F0

2µ
I0 (7.8)

the flux F0 I0 of the primary beam is the only parameter that controls the intensity in
the detector.

When reflection geometries are set up in modern scattering applications to study
the structure of thin layers, the simplifying assumption of infinite sample thick-
ness is not allowed, and the absorption correction becomes more difficult. More-
over, symmetrical-reflection geometry is utilized less frequently than asymmetrical-
reflection geometry with fixed incident angle. Thus both cases are of practical inter-
est.



7.6 Absorption and Background Correction 81

Figure 7.4. Sketch for the deduction of the intensity, It , transmitted into the detector for
symmetrical-reflection geometry. The photon is scattered in a depth of x. Integration direc-
tion is indicated by a straight dashed arrow

7.6.3.1 Thin Samples in Symmetrical-Reflection Geometry

Figure 7.4 presents a sketch for the deduction of the intensity in symmetrical-
reflection geometry. F is the footprint area of an incident microbeam on the sample
surface, and dIt is the related contribution to intensity. Again utilizing the absorption
law Eq. (7.1) we have

dIt = I0 F (θ ) exp(−µ�(x)) , (7.9)

with θ being both the angle of incidence and the scattering angle, µ the linear ab-
sorption coefficient, and x the depth of interaction between photon and matter. In
order to obtain the total intensity It transmitted into the detector, we integrate along
the dashed straight line and extract from the sketch the path length of the pho-
ton �(x) = 2x/sinθ through the sample11, introduce the beam cross-section F0 by
F (θ ) = F0/sinθ , and obtain

It = I0
F0

sinθ

∫ t

0
exp

(−2µx
sinθ

)
dx. (7.10)

The integrated result (ALEXANDER [7] p. 81)

It = I0
F0

2µ
Asr,1 (7.11)

is dominated by

Asr,1 =
(

1− exp

(−2µt
sinθ

))
, (7.12)

the absorption factor for symmetrical reflection in “case 1” according to RULAND &
SMARSLY [84], which means that the primary-beam footprint F must not be clipped
by the finite sample surface. When, on the other hand, the scattering angle becomes
very shallow, a transit of scattering conditions to “case 2” [84] takes place.

11In close analogy to a deduction of Bragg’s law
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Figure 7.5. Relationship between symmetrical (ϕ = 0) and asymmetrical (ϕ �= 0) reflection
geometry. Bold bars symbolize the sample in symmetrical (dashed) and asymmetrical (solid)
geometry. Incident and scattered beam are shown by dashed-dotted arrows. the incident angle
is α = θ +ϕ . In any case the intensity is measured at scattering vector s. For the tilted sample
the sample-fixed scattering vector s3 is indicated (after [84])

Thus, for thin samples we have to consider a parasitic scattering background
originating from the substrate or the sample holder material. The substrate is not il-
luminated by the full flux, but only by I′0 = I0 exp((−µt)/(sin θ )), and the resulting
background scattering is attenuated once more on its way back through the sample.
Thus, if we have measured the background scattering pattern Ib of the pure substrate,
and I′t is the scattering pattern of the thin layer of thickness t on the substrate, then
the background corrected intensity It is

It = I′t − Ib exp

(−2µt
sinθ

)
. (7.13)

For very thin sample thickness t and a scattering angle 2θ that is well above the
critical angle of total reflection, the exponential factor is approximately unity and
a simple background subtraction without consideration of absorption is allowed.
Symmetrical-reflection geometry is only a special case of asymmetrical-reflection
geometry.

7.6.3.2 Thin Samples in Asymmetrical-Reflection Geometry

Asymmetrical-reflection geometry (GUINIER [6], p. 180-181; RULAND & SMARSLY

[84]) has historically been treated in the field of texture analysis. Today it is impor-
tant for experiments in grazing-incidence geometry. The geometrical relationship is
shown in Fig. 7.5. If asymmetrical-reflection geometry is chosen, the incident angle
α = θ + ϕ is frequently small. The geometrical considerations [84] are somewhat
more complicated, but nevertheless very similar to the symmetrical geometry. In-
stead of Eq. (7.11) it follows
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It = I0
F0

µ
Aar,1 (7.14)

with

Aar,1 = (1− cotθ tanϕ)
[

1− exp

(−2µt sinθ cosϕ
cos2 ϕ − cos2 θ

)]
, (7.15)

the absorption factor for asymmetrical-reflection geometry. Again, the absorption
factor Aar,1 is only valid as long as the footprint of the primary beam on the sample
is still smaller than the sample surface itself (case 1).

On the other hand, if the primary beam is illuminating the complete sample sur-
face (case 2), the absorption factor for symmetrical-reflection geometry becomes

Asr,2 =
sinθ
sin θ0

Asr,1, (7.16)

with θ0 being that incident angle at which the footprint of the primary beam is just
the size of the sample. Therefore the equation is only valid for θ < θ0.

For asymmetrical-reflection geometry the absorption factor is changed as well,
as the primary beam is illuminating the complete sample surface. In this case

Aar,2 =
sin(θk + ϕ)
sin(θk + ϕ0)

Aar,1 (7.17)

is obtained for ϕ > ϕ0, with 2θk the constant scattering angle and θk + ϕ0 the angle
of incidence at which the footprint of the primary beam equals the surface of the
sample. The original paper [84] demonstrates the method how to determine these
limiting angles from the geometry of the beamline and the divergence of the beam.
If, for different areas of the raw scattering pattern, the illuminating conditions are
different, the absorption correction has to consider the transition from case 1 to case 2
by combining the respective equations.

7.6.4 Calculations: Absorption Factor, Optimum Sample Thickness

The absorption factor of an amorphous or polycrystalline material is computed by
summation of incremental contributions from each atom. Thus it is easily computed.

For all chemical elements, mass absorption coefficients µ/ρ are tabulated [13,
85] as a function of the X-ray wavelength. Chemical composition, mass density ρ ,
and thickness t of the sample are known.

Example: PET. Let us consider poly(ethylene terephthalate) (PET, [C10H8O4]n,
ρPET =1.35 g/cm3) of tPET =2 mm thickness and an X-radiation wavelength λ =
0.15418 nm (CuKα). We set up a table with one row for each chemical ele-
ment and sum both the masses and the mass absorption coefficients multiplied
by the masses. After normalization to the molecular mass of the PET monomer,
192.17 amu, we find (µ/ρ)PET = 1291.97/192.17 cm2/g a value 6.72 cm2/g. Con-
sidering the density ρPET we find for the linear absorption coefficient µPET =
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Table 7.1. Scheme for the calculation of the absorption factor

Atom M m [amu] M×m µ
ρ [cm2/g] M×m× µ

ρ

C 10 12.011 120.11 4.60 552.51
H 8 1.008 8.064 0.435 3.51
O 4 15.999 63.996 11.5 735.95

Sum 192.17 1291.97

(µ/ρ)PET ρPET =9.08 cm−1. Thus, for the absorption factor of a sample of 2 mm
thickness valid in normal-transmission geometry it follows exp(−µt)= 0.163.

The optimum sample thickness for PET of a mass density ρPET =1.35 g/cm3 in
transmission geometry thus is topt,PET = 1/µPET ≈1 mm. If measured in reflection,
the PET sample should be at least 3 mm thick.

7.6.5 Refraction Correction

If SAXS is measured in reflection (e.g., SRSAXS), one may have to consider the
influence of refraction on the observed scattering angle. In particular, when mea-
surement is performed at ultra-small scattering angles (USAXS) the critical angle of
total reflection θc cannot be neglected with respect to the scattering angle θ .

For symmetrical-reflection geometry the modulus of the true scattering vector is

s =
√

s2
obs − s2

c ,

with sobs indicating the modulus of the measured scattering vector. sc ≈ 2θc/λ is a
very good approximation.

For asymmetrical-reflection geometry the relation is more complicated. Consid-
ering the geometry sketched in Fig. 7.5, the true tilt angle is

ϕ = (α −β )/2.

For the true scattering angle we have

θ = (α + β )/2,

in which

α =
√

(θk + ϕobs)
2 −θ 2

c

and

β =
√

(θk −ϕobs)
2 −θ 2

c

are expressed by the tuned scattering angle, θk, the measured tilt angle, ϕobs, of the
normal to the sample, and by the critical angle of total reflection, θc.
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7.7 Reconstruction of Proper Constitution

We are processing noisy data. Thus, intensities may have become negative by acci-
dent. In order to mark such spots as invalid data, they should be set to zero. This is
accomplished by the masking formalism of image processing

wave> m=img.map GT 0
wave> img.map=img.map*m

The first line generates the mask of the still valid pixels, the second pulls the invalid
pixels to zero level. The example works in pv-wave and IDL, if img.map is the map
of the image.

7.8 Conversion to Reciprocal Space Units

7.8.1 Isotropic Scattering

For isotropic scattering patterns, the relation between the channels or pixels on the
detector is simply given by Eq. (2.5), and an s-value is readily associated to each
pixel of the detector. If a 2D detector has been used to record the data, the signal-to-
noise ratio can thus be significantly enhanced by averaging all pixels with the same
s-value12 (cf. Sect. 8.4.1).

7.8.2 Anisotropic Scattering

7.8.2.1 USAXS and SAXS

For USAXS and SAXS data the tangent-plane approximation is valid and the relation
between scattering angle and the units of reciprocal space are given by Eq. (2.7). If
the scattering pattern is properly aligned with the vertical direction identical to a fiber
axis or the polymer chain direction, then sy = s3. In similar manner the sx-axis of the
detector is related to the actual orientation of the sample with respect to the beam.

7.8.2.2 MAXS and WAXS with Fiber Symmetry

For MAXS and WAXS the problem is more involved. If the scattering pattern shows
fiber symmetry, the considerations of Sect. 2.8.2.2 apply.

7.8.2.3 MAXS and WAXS Without Fiber Symmetry

This is the general case of texture analysis, in which the sample must be tilted and
rotated in order to collect all the data required for a complete quantitative data anal-
ysis [49].

12These pixels are found on concentric rings about the center of the pattern.
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7.9 Harmony

As long as there is at least uniaxial symmetry and the fiber axis is in the detector
plane, the scattering pattern can be split into four quadrants which should carry each
identical information. This means that there is some harmony in the scattering pat-
tern, from which missing data can be reconstructed13.

After this reconstruction the scattering pattern should be smooth. If, on the other
hand, “seams” are observed at the edges of the former invalid regions this shows that
penumbra was not detected and the mask of the valid pixels was chosen too large.
Solution: erode the old mask and return to the start of pre-evaluation.

7.10 Calibration to Absolute Scattering Intensity

Calibration to absolute intensity means that the scattered intensity is normalized with
respect to both the photon flux in the primary beam and the irradiated volume V .
Thereafter the scattering intensity is either expressed in terms of electron density or
in terms of a scattering length density. Both definitions are related to each other by
COMPTON’s classical electron radius.

Fields of Application. In SAXS a calibration to absolute intensity is required if
extrapolated or integrated numerical values must be compared on an absolute scale.
Examples are the determination of density fluctuations or the density difference be-
tween matrix and domains as a function of materials composition.

In WAXS of soft condensed matter, studies of the intensity in absolute units are
not common, unless the method for the exact determination of X-ray crystallinity
according to RULAND is applied (cf. Sect. 8.2.4).

General Routes. If a SAXS beamline in normal transmission geometry is used,
calibration to absolute intensity is, in general, carried out indirectly using secondary
standards. Direct methods require direct measurement of the primary beam intensity
under consideration of the geometrical setup of the beamline. On a routine basis
such direct calibration was commercially available for the “historic” Kratky camera
equipped with zero-dimensional detector and “moving slit device”14.

7.10.1 The Units of Absolute Scattering Intensity

The radiation strength of a single electron is determined by elementary quantities that
need not be considered in materials science. These quantities and the characteristics
of the detector are automatically considered if the primary beam intensity is directly
measured or indirectly determined by means of a secondary standard.

13My pv-wave procedures sf_harmony.pro and sf_fillharmony.pro
14By means of such equipment secondary standards can be made.
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Electron Density. Continuing the preceding considerations, calibration to ab-
solute intensity means normalization to “the scattering of a single electron”, Ie

that can be expressed in electron units, [e.u.]. Inevitably a calibration to absolute
units involves also a normalization with respect to the irradiated volume V . Thus,
for the field of materials science a suitable dimension of the absolute intensity is
[I/V ] = e.u./nm3 – “The intensity measured in the detector is originating from a
material with an average electron density of 400 electrons per nanometers cubed”.
The electron density itself is easily computed from mass density and chemical com-
position of the material (cf. Sect. 2.2.1).

Scattering Length Density. In a more fundamental definition, absolute inten-
sity is expressed in terms of a scattering length density. It is suitable in particular,
if data from X-ray scattering experiments shall be compared to data from neutron
scattering – a field, in which scattering length density is the natural unit of absolute
intensity. In X-ray scattering the COMPTON classical electron radius

re =
e2

mec2 = 2.818×10−15 m (7.18)

is identified as the THOMSON scattering length of a single electron15. Finally the
electron is replaced by its scattering cross-section (e.u.→σe = r2

e ), and the dimension
of the absolute intensity becomes [I/V ] =nm−1.

7.10.2 Absolute Intensity in SAXS

For the calibration to absolute intensity several direct and indirect methods have been
proposed (FEIGIN and SVERGUN [86], p. 73-76).

7.10.2.1 The Idea of Direct Calibration

In normal transmission geometry16 any mathematical treatment of calibration to ab-
solute units [87–90] starts from the basic differential relation among the scattering
intensity in the detector, the primary intensity and the structure

dP = i0 fp
r2

e

r2 dσst exp(−µt) idV (s) dσc, (7.19)

with dP as the differential power scattered out of an irradiated volume element
dσst = dV of the sample into an area element dσc of the detector. i0 is the inten-
sity of the primary beam, fp the polarization factor, re the classical electron radius
(Eq. (7.18)), r the distance between dσs and dσc. dV is the volume element of the
sample that is irradiated by the considered differential primary beam element, and
idV (s) is the Fourier transform of the correlation function ρ�2 (r) restricted to dV

15Here e and me are charge and mass of the electron, respectively. c is the velocity of light
16For other geometries the term t exp (−µt) must be redefined as demonstrated with the treatment of

absorption in Sect. 7.6.
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icV (s) =
i(s)
dV

=
1

dV

∫
dV

ρ�2 (r) exp(2π irs)d3r. (7.20)

This is the differential definition of the absolute intensity. The total absolute inten-
sity can be deduced by integration from Eq. (7.19) and Eq. (7.20) for any normal
transmission geometry. Geometries are discriminated by the shape and size of the
irradiated volume, the image of the primary beam in the registration plane17 of the
detector, and the dimensions of the detector elements18.

7.10.2.2 Direct Calibration for the Kratky Camera

For the classical slit-focus camera the result of the integration is [89]

J (s)
V

=
R

r2
e λ t exp(−µt) H L

PR (s)
P′

0
. (7.21)

J (s) =
∫

I (s)ds2 is the slit-smeared scattering intensity, P′
0 is the total primary beam

intensity per slit-length element – a quantity determined by the moving slit device. R
is the distance between sample and detector slit as measured on the optical axis of the
camera. L is the (fixed and known) length of the detector slit in the registration plane.
H is the (adjustable) height of the detector slit. exp(−µt) is the linear absorption
factor of the sample19.

In Eq. (7.21) the normalization to the scattering cross-section r2
e leads to the def-

inition of absolute intensity in electron units which is common in materials science.
If omitted [90, 91], the fundamental definition based on scattering length density is
obtained (cf. Sect. 7.10.1).

A Practical Hint20. In order to most accurately determine H in
Eq. (7.21), a mathematical theorem concerning convolution of a func-
tion with a shape function are helpful. The measured primary beam pro-
file of the Kratky camera

hB (x) = hB0 (x)∗YH (x) (7.22)

is the convolution of the intrinsic beam profile “before the detector”
hB0 (x) with the slit height profile YH (x) – a shape function. Here x is the
length coordinate21 in the plane of registration. With H the sought-after
integral breadth of the slit and BB0 the integral breadth of the intrinsic
beam profile, it follows from Eq. (7.22) for the integral breadth of the
observed primary beam profile

17The registration plane of the detector is the plane in which the pixels of the detector image are shaped
18For a 2D detector this is height and width of the detector pixels. For the Kratky camera with zero-

dimensional counter this is the height and length of the measuring slit.
19The division by t exp (−µt) eliminates effects of absorption and sample thickness. The polarization

factor is 1 in SAXS.
20This procedure can only be applied for a Kratky camera with zero-dimensional detector. It shows the

value of this classical step-scan device for studies of scattering in absolute intensity units.
21measured in micrometers
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BB =
{

H / H > BB0

BB0 / H < BB0
. (7.23)

It is thus reasonable to make the slit height H of the detector slit wider
than the integral breadth of the intrinsic primary beam profile. In this
case the observed integral breadth equals H – and can be accurately
determined from the measured primary beam profile.

Example: A Calibration for Kratky Camera Data. Let us as-
sume that the measured integral breadth of the primary beam profile is
H = 223×103 nm. Due to proper alignment this is the height of the de-
tector slit. Its length is L = 1.6×107 nm. The distance between sample
and detector is R = 2×108 nm. Cukα –radiation with λ = 0.15418nm is
used. P′

0 is determined from a measurement with the moving slit device
according to

P′
0 =

N v
l1 l2 i

.

Here N = 140050 is the total number of registered pulses during the
measurement with empty sample holder, v = 0.208cm/s is the velocity
of the moving slit during the scan of the primary beam, i = 16 is the
number of scans22, l1 = 32 µm is the slit opening of the moving vertical
slit, and l2 = 100 µm is the slit opening of a fixed vertical slit mounted in
the plane of registration. The values of the openings must be measured
under a microscope. Thus,

P′
0 = 2.845s−1nm−1

is obtained. Combined with the geometrical constants we have

H L
rR

P′
0 = 50.76103 s−1.

The absorption factor of the studied sample is measured by means of
the moving slit device, as well. For this purpose the sample is mounted
in the sample holder and the moving slit measurement is performed. We
measure NS = 50031 in 16 scans. Because the heights of the moving and
the fixed vertical slits are 2 cm, the moving slit registers the SAXS as
well – as is required from the definition of absorption. Then

exp(−µt) =
Ns

N
=

50031
140050

= 0.3572

is computed. If the sample thickness t cannot be determined with suf-
ficient accuracy, we compute µ from the chemical composition of the
sample (cf. Sect. 7.6.4) and resolve

t = − ln(exp(−µt))/µ .

Thereafter the slit-smeared scattering intensity is readily expressed in
absolute units [J (s)/V ] = e.u./nm4.

22chosen high enough to obtain good statistics
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7.10.2.3 Direct Calibration for a Synchrotron Beamline

Direct calibration to absolute intensity is not a usual procedure at synchrotron beam-
lines. Nevertheless, the technical possibilities for realization are improving. There-
fore the basic result for the total scattering intensity measured in normal transmission
geometry is presented. At a synchrotron beamline point-focus can be realized in good
approximation and the intensity I (s) is measured. Then integration of Eq. (7.19) re-
sults in

I (s)
V

=
R

r2
e λ t exp(−µt) H L

PR (s)
P0

, (7.24)

with H and L now denominating height and width of each detector pixel, whereas
P0 = N/(t S0) is the power measured in the detector; as measured in N pulses per
time t, now normalized not with respect to slit length, but instead to the integral area

S0 =
1

max(h0 (x,y))

∫∫
h0 (x,y)dxdy

of the image h0 (x,y) of the primary beam on the 2D detector23. Equation (7.24) is
valid for small and medium scattering angles, as long as the polarization factor is 1.
Again, the division by r2

e turns the result into units of electron density. The sample is
assumed to be flat and completely covering the cross-section of the primary beam.

Cylindrical Filaments. If cylindrical filaments are studied, the last-mentioned
assumption is not be fulfilled. In this case it is more suitable to cross an elongated24

primary beam and the fiber in such a way that the irradiated height of the beam,
BB0, is constant. Then the irradiated volume becomes V = BB0 πr2

f , with r f being the
radius of the fiber. In many practical applications the studied fiber is very thin, and
the effective absorption coefficient can be approximated by exp

(−µte f f
)≈ 1. If this

approximation is not feasible, the absorption factor exp(−µ�) must be integrated for
the chord length distribution gc (�) of a circle with radius r f (cf. p 168) in order to
yield the effective absorption.

Protection of the Detector. With all direct calibration methods the primary
beam intensity must be measured. If the primary beam itself is attenuated, shape of
the beam and spectral composition of the radiation may be altered. This problem is
avoided if the load of the detector is reduced by scanning the beam using a slit or a
perforated disc. On the other hand, in order to be useful at a powerful synchrotron
beamline these devices should have very tiny and well-defined slits or holes.

23x and y are lengths measured “in centimeters” on the detector, not measured in units of reciprocal space.
24Open the horizontal slits a bit more than usual, if the beam is not wide enough anyway.
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7.10.2.4 Indirect Calibration Using a Polymer Sample

The so-called “Lupolen R© standard”25 is a well-known secondary standard in the
field of SAXS. In conjunction with the Kratky camera it is easily used, because its
slit-smeared intensity J (s)/V is constant over a fairly wide range, and this level is
chosen as the calibration constant. In point-focus setups the SAXS of the Lupolen
standard neither shows a constant intensity region, nor is the reported calibration
constant of any use.

A proper calibration constant for any beamline geometry is the invariant Q. Thus,
the Lupolen standard or any other semicrystalline polymer that previously has been
calibrated in the Kratky camera can be made a secondary standard for a point-focus
setup, after its invariant Q has been computed in absolute units – based on a mea-
surement of its SAXS in the Kratky camera.

The calibration process then involves measurement of the complete scattering
curve of the secondary standard and the evaluation26 of k by determination of
POROD’s law with its asymptote AP and the density fluctuation background IFl , nu-
merical extrapolation of the function s2 (I (s)− IFl) towards s = 0, and finally com-
putation of the scattering power

k =
∫ smax

0
s2 (I (s)− IFl) ds+

AP

smax
(7.25)

by integration (cf. Sect. 8.4.3). Identification with the known value of Q yields the
calibration factor which is required to transform I (s) → I (s)/V , the scattering in-
tensity to absolute units. Instead of numerical extrapolation to large scattering angle
we follow RULAND [92] and use the analytical continuation of the integrand given
by the Porod law, c/s2. Thus, the remainder term is readily computed

∫ ∞

smax

c/s2 ds = c/smax. (7.26)

The measured SAXS curve of the calibration sample must have been pre-
processed in the usual way (cf. Sects. 7.3 - 7.6). Therefore it is important to have
calibration samples with a well-defined thickness27. Because synchrotron beamlines
can be adjusted to a fairly wide range of radiation power, it is important to have
thin calibration samples for a high-power adjustment (e.g., common SAXS with
wide slit openings) and thick calibration samples for low-power adjustments (e.g.,
USAXS with microbeam). For calibration samples from synthetic polymers, thick-
nesses ranging between 0.2 mm and 3 mm are reasonable. It appears worth to be
noted that not only polymers, but as well glassy carbon [88] can be used as a solid
secondary standard for the calibration to absolute intensity.

25The standard is made from Lupolen R© 1800, a branched low-density polyethylene with a very broad
long period distribution. Therefore the slit-smeared SAXS peak is only a shoulder that starts with a
plateau.

26This evaluation is performed in minutes using my computer program TOPAS.
27Such samples can be machined by means of a low-speed diamond saw (e.g., Buehler Isomet R©).
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7.10.2.5 Indirect Calibration by Fluid Standards

Pure liquids can be used for the purpose of calibration to absolute intensity, because
their diffuse scattering IFl (0) = lims→0 IFl (s) caused from density fluctuations can
be computed theoretically. Some examples are in the literature [91, 93–95].

Another fluid standard used in the literature is a suspension of colloidal noble-
metal particles in a solvent [96]. The method is explained starting on p. 134. The
application of such calibration methods is in particular feasible, if polymer solutions
are studied and thus the measurement of a calibration fluid does not require to modify
the setup.

Warning. From time to time it is postulated in the literature that the
intensity value IFl (0) that is used for the purpose of calibration could, as
well, be determined in a slit-focus setup (after Rigaku-Denki or Kratky)
either by extrapolation to zero scattering angle [93] or even (“since the
slit-smearing of a constant obviously is a constant”) directly from the
almost constant background [91]. Thereafter this value is related to the
theoretical density fluctuation scattering of the calibration fluid. This
oversimplification leads to a systematic error which cannot be tolerated
with respect to a calibration method [95]. In fact, the fluctuation back-
ground IFl (s) is not constant, but slowly varying as a function of the
scattering vector, as is shown both from experiment [91,93–95] and the-
ory (Sect. 8.3.1). Thus, computation of the slit-smearing effect is a ne-
cessity. It is, in general, sufficient to model the fluctuation background
by

IFl (s) = IFl (0)+ bs2. (7.27)

In this case the result of slit-smearing is [95]

Je.u. (s) = Ie.u. (0)+ be.u.σ2
w + be.u.s

2,

with σ2
w =

∫
s2

1W (s1) ds1 being the 2nd moment of the normalized pri-
mary beam profile W (s1) of the slit-camera in the direction s1 of the slit
length.

Obviously the slit-smearing causes an additional background be.u.σ2
w,

which is a function both of the sample material and the temperature of
the sample. Disregarding this background results in a systematic error.
For benzene – one of the best-suited calibration fluids – the error is 4%
at room temperature. For polymers errors of up to 65% (polystyrene at
room temperature) have been verified both theoretically and experimen-
tally.

7.10.3 A Link to Absolute Intensity in WAXS

WAXS calibration for polymer materials can be simplified if one considers the fact
that polymers are chain molecules. This means that for wide scattering angles in
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WAXS the scattering is completely described by the interactions of neighboring
atoms along a single chain, the so-called single-chain structure factor. Cf. descrip-
tions of the RULAND method [14] in textbooks [7, 22].

The study of absolute or integrated intensity is not very common in the field of
WAXS of soft matter. Moreover, in this field both the methods (single crystal, mosaic
crystal; both with and without averaging by rotating the crystal28) and the geometries
(of diffractometers, samples and sample structures) vary much more than in the field
of SAXS. Because any methodical or geometrical change causes a variation of the
equation for the determination of absolute intensity, there is no general final equation
for the computation of absolute WAXS intensity. Several cases have been treated
by WARREN ([97], Chap. 4). In particular, his treatment of absolute intensity for
thick, isotropic powder samples studied in symmetrical reflection ([97], Eq. (4.12))
is valuable for application in soft-matter materials science. Unfortunately it is beyond
the scope of this book29.

On the other hand, modern macromolecular X-ray diffraction of crystals from
biological materials (protein crystallography) is frequently carried out in a rotating-
crystal setup [98,99] (ALEXANDER [7], p. 51), (WARREN [97], Chap. 7), (GLOCKER

[100], p. 250) using plane 2D detectors in normal transmission setup. In this case the
absolute scattering intensity of reflection hkl is given by the DARWIN equation30 (cf.
WARREN [97], Eq. (4.7))

Ihkl

VcrI0
= r2

e
λ 3

V 2
u

fLω

ω
fP fA |Fhkl|2 , (7.28)

if the volume of the crystal, Vcr, is completely bathed in a primary beam of intensity
I0. The crystal made from unit cells of volume Vu is rotated with an angular velocity
ω . Fhkl is the structure factor of the reflection. It is, in general, subjected to thermal
disorder according to DEBYE-WALLER (cf. p. 109 and WARREN [97], Eq. (3.24)).
fA is the absorption factor, which is a function of the geometry of the sample and the
setup (cf. Sect. 7.6). fP is the polarization factor, which is a function of the radiation
source (cf. Sect. 2.2.2). The LORENTZ factor fLω takes care of the fact, that by
rotating the crystal the intensity of the point-shaped reflection is distributed on a ring
in reciprocal space31. As presented, Eq. (7.28) returns the absolute intensity in units

28Spinning a crystal during measurement of WAXS patterns is an old method that turns any scattering
pattern into a fiber pattern. The rotational axis becomes the principal axis. Thereafter isotropization of
the scattering data is simplified because the mathematical treatment can resort to fiber symmetry of the
measured data. In the literature the method is addressed as the rotating-crystal method or oscillating-
crystal method.

29The treatment is rather involved, so the reader is asked to consider the WARREN’s textbook. In addition,
if the concept shall be applied to synchrotron beamline setups with flat 2D detectors some geometrical
modifications must be carried out.

30Cited by GLOCKER [100]: C. G. DARWIN (1914) Phil. Mag., 27, 315-333
31In other fields of scattering the Lorentz factor is defined independently from a forced rotation as fL =

fLω/ω . In this more general definition, if the crystal is rotated about the (00�)- or s3-direction, the radius
of the aforementioned ring becomes s′12, and the Lorentz factor correspondingly is fL = 1/(2πs′12),
the inverse of the circumference of the ring. s′12 itself is computed from the position of the considered

reflection shkl =
(
s′1,s

′
2,s

′
3

)
according to (s′12)

2 = (s′1)
2 +(s′2)

2. In the general definition fL is the inverse
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of scattering length density. Electron-density units are obtained after the factor r2
e has

been canceled.
It should be clear that the DARWIN equation with its special LORENTZ-polariza-

tion factor as reported by WARREN ([97], Eq. (4.7)) is only valid for unpolarized
laboratory sources and the rotation-crystal method. An application to different setup
geometries, for example to synchrotron GIWAXS data of polymer thin films is not
appropriate.

of the area over which the reflection is smeared on the sphere with radius |shkl |. Such smearing may be
caused either from forced rotation of a single crystal or from an orientation distribution of crystallites
in a mosaic crystal. In the notion of the rotation-crystal method, the plane 2D detector probes the Ewald
sphere in reciprocal space, and fL is the “length of the light pulse on the detector”, i.e., the time the
peak takes to pass through the Ewald sphere normalized to the cycle time of the forced rotation.



8 Interpretation of Scattering Patterns

8.1 Shape of the Scattering Intensity at Very Small Angles

8.1.1 GUINIER’s approximation

GUINIER’s law states that for any scattering pattern, I (s), of a diluted system the
initial intensity decay is approximated by a Gaussian

I (si) = �I (s)�1 (si) = I (0) exp
(−4π2R2

gis
2
i

)
(8.1)

for any direction si chosen – as long as Rg,isi is small enough. For samples that show
isotropic scattering the approximation is commonly written

I (s) = I (0) exp

(
−4π2

3
R2

gs2
)

(8.2)

with Rg called the radius of gyration or the Guinier radius. For isotropic scattering
both Eq. (8.1) and Eq. (8.2) are applicable (cf. Eq. (8.8) and Eq. (8.9)).

Figure 8.1 sketches the analysis according to GUINIER’s law. Not applicable is
the Guinier approximation, if valid data deviate at low angles (in the sketch: trian-
gles and crosses). Triangles show a deviation, for which an analysis according to

Figure 8.1. Guinier plot. Applicability of GUINIER’s approximation to scattering data and
determination of its parameters, I (0) and R2

g. smin is the lowest scattering angle at which valid
data are present. From smax deviation between the data and the straight line is observed
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GUINIER’s law should never be considered. Crosses show a deviation that may be
explained by the influence of the direct primary beam to the measured data. The value
of s2

max gives some hint on the confidence of the approximation. After determination
of R2

g the relation 0.1 ≤ R2
gs2

max ≤ 0.4 should hold.

8.1.2 Usability for Data Extrapolation

Without any interpretation GUINIER’s law can be used to extrapolate small-angle
scattering data towards zero scattering angle, if the measured data cover a part of the
Guinier region, i.e., the region where Eq. (8.1) or Eq. (8.2) is valid.

8.1.3 Usability for Structure Parameter Determination

GUINIER’s law exhibits two parameters, I (0) and R2
g, which describe structural as-

pects of the sample. The experimentalist should consider their determination, if the
recorded SAXS data show a monotonous decay that is indicative for the scattering
from uncorrelated1 particles. Particularly useful is the evaluation of GUINIER’s law,
if almost identical particles like proteins or latices are studied in dilute solution (cf.
PILZ in [101], Chap. 8). The absolute value of I (0) is only accessible, if the scatter-
ing intensity is calibrated in absolute units (Sect. 7.10.2).

Guinier Radius. The parameter Rg is called radius of gyration or Guinier ra-
dius. The Guinier radius is a measure of particle size. For an ensemble of identical
particles, R2

g is reduced to the second central moment of the orientation-averaged
particle density (cf. Eq. 8.4). For the discussion of polydispersity cf. p. 19. The com-
mon problems with the evaluation of GUINIER’s law are clearly discussed by BALTÁ

and VONK ([22], Sect. 7.4), who also present solutions. The bottom line is: materi-
als containing heterogeneous particles exhibit a shortened Guinier region, and the
meaning of the parameter R2

gi is changed [21]. If the particle concentration becomes
too high, first the prefactor in the exponential function is changed and, finally, even
the decay itself becomes distorted. For extremely anisotropic particles (rods, discs)
the plain Guinier law is no good approximation (cf. POROD in [101], p. 32-37).

8.1.4 Determination of the Parameters of GUINIER’s law

The structure parameters I (0) and R2
gi are determined in a linearizing plot of

log(I (si)) vs. s2
i – the Guinier plot (cf. Fig. 8.1). For isotropic scattering R2

gi = R2
g/3

is identical for every direction i. A cross-check after determination can help to indi-
cate problems: if smax is the maximum s-value up to which linearity was found in the
Guinier plot, then smaxRg > 0.1 should be valid (GUINIER in [102], Sect. 5.3) even
for the unfortunate case of long rodlike particles, as long as their size does not vary
and the effect of correlations among them may be dropped.

1Strictly speaking, additionally the particles must be convex (i.e., without indentations or holes) and
homogeneous (i.e., without density oscillations)
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8.1.5 Meaning of the Parameters of GUINIER’s Law

Assuming that no correlation among particles is present, the meanings of the struc-
ture related parameters of GUINIER’s law are readily established by application of
the mathematical tools of scattering (cf. Chap. 2). Further assumptions state that each
particle k is considered to be immersed in a matrix of constant electron density and
that its correlation function is monotonously2 decaying. Thus, the particle is discrim-
inated from the matrix by its number mk of electrons that it has more (respectively,
less) than the homogeneous matrix. mk is called the number of excess electrons of
the particle k.

Intensity at s=0. The requested intensity I (0) is obtained by integration of the
correlation function over the irradiated volume V . As the result of this operation,
each particle k contributes with its m2

k to I (0). Thus, with N particles present in the
irradiated volume we finally have

I (0) = lim
s→0

I (s) = N
〈
m2〉

V , (8.3)

with
〈
m2
〉

V the average square of the particle excess electrons3 in V . Whenever
scattering intensity is normalized to absolute units, the determined quantity is not
I (s) but4 I (s)/V . Correspondingly (N/V )

〈
m2
〉

V is computed. N/V is the number
particle density.

Anisotropic Particle Scattering: Varying Intensity Decay in Different Di-
rections. In case of anisotropy the decay of the scattering intensity I (s) is a func-
tion of the direction chosen. The intensity extending from s = 0 outward in a delib-
erately chosen direction i is mathematically the definition of a slice (cf. Sect. 2.7.1,
p. 22). Thus, the Fourier–Slice theorem, Eq. (2.38), turns the particle density func-
tion ∆ρ (r) into a projection {∆ρ (r)}1 (ri) and the scattering intensity is related to
structure by

�I (s)�1 (si) = F ({∆ρ (r)}1 (ri)) F ∗ ({∆ρ (r)}1 (ri))

with F ∗ (h(r)) denoting the complex conjugate of F (h(r)). According to its defi-
nition the Fourier transform itself is

F ({∆ρ (r)}1 (ri)) =
∫ ∞

−∞
{∆ρ (r)}1 (ri) exp(2π i risi)dri.

After series expansion of the harmonic kernel, term-by-term integration and recom-
bination with its complex conjugate a series expansion of Eq. (8.1) is obtained in
which R2

gi is identified as

2Monotony is not guaranteed for inhomogeneous or non-convex particles, but this poses no principal
problem.

3The expected relation to the weight-average (excess) molecular weight is established by Eq. (1.4)
4Reason: The standard is measured with the same primary beam cross-section as is the studied sample.
After division by the intensity of the standard and the thickness of the studied sample, a division by the
irradiated volume has been accomplished.
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R2
gi =

∫ ∞
−∞ (ri − r0i)

2 {∆ρ (r)}1 (ri)dri∫ ∞
−∞ {∆ρ (r)}1 (ri)dri

. (8.4)

With r0i the particle’s center of gravity, this equation defines R2
gi by the second central

moment of the density distribution of the particle projected on a line extending in ri

direction. The equation is simplified (r0i = 0) if the origin of the coordinate system
is chosen to rest in the center of gravity.

For a system of uncorrelated but highly oriented particles in a sample (e.g., ori-
ented needle-shaped voids in a fiber) it may be possible to factorize the particle
density, e.g.,

∆ρ (r) = ∆ρ1 (r1) ∆ρ2 (r2) ∆ρ3 (r3) .

In this case we obtain three principal projected central moments, R2
g,1, R2

g,2, and R2
g,3

– and the anisotropic scattering intensity in the vicinity of zero scattering angle is
modeled

I (s) = I (0) exp
(−4π2R2

g,1s2
1

)
exp
(−4π2R2

g,2s2
2

)
exp
(−4π2R2

g,3s2
3

)
by a product of coordinate functions, as well. For small and very small arguments two
successive approximations are obvious and of practical interest: first the exponentials
are expanded, second the products are eliminated according to (1− ε1) (1− ε2) ≈
1− ε1 − ε2. The result for the structure with oriented particles is

I (s) = I (0)
(
1−4π2(R2

g,1s2
1 + R2

g,2s2
2 + R2

g,3s2
3

))
, (8.5)

and if the same material has lost its orientation completely, the isotropic intensity
decay follows upon solid-angle averaging 〈〉ω of the intensity

I (s) = 〈I (s)〉ω

=
1

4π

∫ 2π

0

∫ π

0
I (s,ψ ,ϕ) sinψ dψ dϕ . (8.6)

Because the R2
g,i are constants, the intensity decay of the unoriented material con-

taining anisotropic particles is

I (s) = 〈I (s)〉ω = I (0)
(
1−4π2(R2

g,1

〈
s2

1

〉
ω + R2

g,2

〈
s2

2

〉
ω + R2

g,3

〈
s2

3

〉
ω
))

= I (0)
(
1−4π2〈s2

i

〉
ω
(
R2

g,1 + R2
g,2 + R2

g,3

))
. (8.7)

Finally, comparing with Eq. (8.2) we find

〈
s2

i

〉
ω =

s2

3
(8.8)

R2
g = R2

g,1 + R2
g,2 + R2

g,3. (8.9)
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Isotropic Particle Scattering: Intensity Decay. As reported in Eq. (8.2), the
isotropic intensity decay is governed by the isotropic radius of gyration, R2

g. The re-
ported relation follows upon solid-angle averaging of the scattering intensity. Start-
ing point for the deduction is the Fourier relation of intensity and sample structure,
Eq. (2.14). Equation (8.2) is received after solid-angle average of the harmonic ker-
nel,

I (s) = 4π
∫ ∞

0
r2 〈∆ρ�2〉

ω (r)
sin(2πrs)

2πrs
dr,

series expansion of sin(2πrs)/(2πrs) = 1−2πrs/6+ . . . and, finally again, the rea-
soning on the autocorrelation of the particle excess electron density.

8.2 Peak Spotting: WAXS Reflections, Long Periods

The evaluation of peaks from scattering patterns (position and shape) is in the fo-
cus of the present section. Both isotropic and anisotropic patterns are considered. If
the patterns are anisotropic, the anisotropy is not evaluated. Methods for the eval-
uation of complete scattering patterns will be discussed beginning from Sect. 8.3.
Anisotropy is discussed in Chaps. 9 and 10.

8.2.1 Discrete and Diffuse Scattering

What is a peak? Local intensity maxima or shoulders in scattering patterns are
called peaks or reflections, in particular when they are sharp. In USAXS and SAXS
even a broad shoulder is called a peak. The set of all peaks is named discrete scatter-
ing.

What is around the peaks? Before, beneath, and behind the peaks there is
diffuse background scattering. The scattering according to GUINIER’s law (Sect. 8.1)
is an example for such diffuse scattering. Below and after the USAXS, SAXS, and
MAXS regions there is diffuse scattering according to POROD’s law (Sect. 8.3.2)
or diffuse scattering from fractals (Sect. 8.3.3) . In the regime between SAXS and
WAXS the diffuse fluctuation background (Sect. 8.3.1) contributes considerably if
soft condensed matter is studied. The background of the WAXS regime is mainly
COMPTON scattering. Figure 8.3 on p. 105 shows both diffuse and discrete scattering
components in a curve.

8.2.2 Peaks in Isotropic and Anisotropic Scattering Patterns

8.2.2.1 Isotropy and Anisotropy

For isotropic materials all reflections represent concentric rings (DEBYE-SCHERRER

rings) in an image recorded on 2D detector5 if during exposure the detector was

5. . . or on its classical analog, plane photographic film
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positioned in normal transmission geometry6 (cf. Fig. 4.1, p. 37). In the center of the
rings is the image of the primary beam that, in general, is hidden by a beam stop . In
the scattering patterns from anisotropic (i.e., oriented) materials the peaks appear as
more or less isolated spots.

8.2.2.2 Where to Search for Peaks of Fibers

If the orientation is uniaxial (i.e., fiber symmetrical), the strong peaks of polymer
materials are, in general, found in specific regions of the pattern. The strong WAXS
peaks are found close to the equator7 of the WAXS pattern. Thus it is good practice
to let an offset WAXS detector monitor the equator region.

On the other hand, strong SAXS reflections of uniaxial material are, in general,
found on the meridian8. So be sure that a SAXS detector covers the meridian when-
ever fiber material or strained polymers are studied.

If expected narrow meridional WAXS reflections are not found, the reason may
be the bending-away of EWALD’S sphere (cf. Fig. 2.6, p. 28). In this case it may be
convenient to tilt the sample with respect to the primary beam (cf. Fig. 2.7, p. 29).

8.2.3 WAXS Peaks and Peak Positions

During experiments aiming at WAXS peak analysis, remember to properly calibrate
the scattering angle on a 2D detector (Sect. 6.4.1) for setups at a synchrotron beam-
line or if a rotating anode setup is used. If peak shape shall be discussed later, data
quality is an important issue. Do not save exposure time on the cost of signal-to-
noise (S/N) ratio. Assess the S/N-ratio from scattering curves, not from gray-scale
or pseudo-color images. Images appear much clearer than related curves. Our visual
sense is trained to apply a bandpass filter9.

Detection of Crystallization and Melting. A problem frequently tackled by
monitoring WAXS peaks is the detection of crystallization and melting as a function
of temperature, time, pressure, or other processing parameters → As long as some
of the characteristic peaks of a polymer material are observable, a fraction of the
material is in crystalline state.

On the other hand, if no peaks are observed, it cannot be concluded that there
is no crystallinity. Because the peaks of polymer samples frequently are broad, the

6If this condition cannot be fulfilled and a detector has to be placed in an offset and tilted position (e.g.,
for combined SAXS/WAXS measurements), it is the task of beamline staff to provide the user with
corrected data or a computer program that compensates the geometric distortion [90].

7Reason: In fibers the polymer chains are, in general, oriented parallel to the fiber direction. To a first
approximation the chains can be considered an oriented “lattice of rods” with matter and vacuum alter-
nating in equatorial direction. This strong contrast makes strong reflections. On the other hand, regular
contrast variations from the chemical structure “along the chain” are much weaker – so the meridional
WAXS reflections of polymers are weak, in general.

8Reason: Frequently the arrangement of hard and soft domains is more perfect along the principal axis
of the oriented material.

9Cf. p. 140, and Sect. 8.5.5, where a similar filter is used to extract topological information from scat-
tering data.



8.2 Peak Spotting: WAXS Reflections, Long Periods 101

typical detection limit is in the order of 1% volume crystallinity [103]. BRAS et
al. [104] report that values of 0.1% or even 0.01% may be reached with dedicated
low-noise high count-rate detectors at third-generation synchrotron sources.

Determination of Peak Positions. Peak positions must be determined for the
purpose of crystallographic identification. In isotropic scattering patterns peak posi-
tions are the distances of reflections from the origin of the scattering pattern mea-
sured in units of 2θ , s, or d = 1/s – the corresponding Bragg spacing dhkl . The triple
of indices hkl is called the Miller indices. After identification (indexing) the peak
carries three digits (e.g., d200). A symbolic short-form for the triple is h – or in this
book: (h). Negative digits are indicated by an over-bar, e.g d1̄05.

Peak positions may vary10 as a function of temperature due to thermal expansion
or due to conformational changes. Peaks may rest on an inclined background. In
this case the background must be subtracted before the peak position is determined,
which is simple if the peak is symmetrical.

Asymmetrical Peaks are rarely found in WAXS from polymers, but they are
ubiquitous in the MAXS of liquid crystalline polymers. For asymmetrical peaks in
isotropic patterns it is best to determine the peak position from the maximum of
the peak, if peak asymmetry is a result of linear or planar disorder. Linear disorder
means that the crystals are more or less one-dimensional (a tower of unit cells).
Planar disorder means that the crystallites are made from only very few layers of
unit cells (cf. GUINIER [6] Chap. 7).

Microfibrillar structure in isotropic materials makes asymmetrical peaks, because
microfibrils are materials with linear disorder. Steep is the increase from small scat-
tering angle. The peak shape can be quantitatively analyzed (STRIBECK [106]) yield-
ing extra information on the lateral extension of the microfibrils.

Asymmetrical peaks with a steep decrease towards high scattering angle are typ-
ical for data recorded by a slit-focus (Kratky camera). An isotropic and infinitely
sharp peak at s0, (I (s) = δ (s− s0)), measured by means of an ideal slit becomes

{I}2 (s) = J (s) = 2s0/
√

s2
0 − s2

2. In practice, the pole at s0 is smoothed from the
width of the primary beam.

Identification of Peaks from Crystallographic Data. Crystallography is not
an issue of X-ray scattering. However, even in materials science crystallographic data
are frequently consulted11. Based on such data the crystallizing species (component
of a blend, block of a block copolymer, one of the crystal modifications possible) can

10With lower-molecular-weight polymers unit cell parameters may also vary with the molecular mass
distribution. For poly(ethylene terephthalate) the history of reported unit cell parameters reflects the
progress of chemical processing technology [105].

11Find crystallographic data of polymers in: (Polymer Handbook [107], VI-1), (Alexander [7], Ap-
pendix 3)



102 8 Interpretation of Scattering Patterns

Figure 8.2. WAXS curves from semicrystalline and amorphous poly(ethylene terephthalate)
(PET). Separation of the observed intensity into crystalline, amorphous, and machine back-
ground (laboratory goniometer Philips PW 1078, symmetrical-reflection geometry)

be identified12. For common polymers it is frequently more effective to search for
a review paper on the requested polymer in order to find crystallographic data and
WAXD curves published.

8.2.4 Determination of WAXS Crystallinity

In general, it is not recommended to study WAXS crystallinity of anisotropic mate-
rials. The recording of the corresponding data is laborious, because the WAXS must
be recorded as a function of both scattering angle and sample orientation in a texture
goniometer (cf. p. 193, Fig. 9.3) before the data can be isotropized.

8.2.4.1 Phenomenon

For semicrystalline isotropic materials a qualitative measure of crystallinity is di-
rectly obtained from the respective WAXS curve. Figure 8.2 demonstrates the phe-
nomenon for poly(ethylene terephthalate) (PET). The curve in bold, solid line shows
a WAXS curve with many reflections. The material is a PET with high crystallinity.
The thin solid line at the bottom shows a compressed image of the corresponding
scattering curve from a completely amorphous sample. Compared to the semicrys-
talline material it only shows two very broad peaks – the so-called first and second
order of the amorphous halo.

It is obvious that the semicrystalline material contains this amorphous feature as
well – underneath the reflections. In the semicrystalline material the halo is shifted

12For this purpose it is helpful to compute a scattering pattern from crystallographic data or vice versa.
Freely available is “Powder Cell” by W. KRAUS and G. NOLZE (BAM, 12205 Berlin, Germany).
www.bam.de/service/publikationen/powdercell_i.htm
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to higher scattering angle, and this is what we expect13. In fact, the dash-dotted
curve is simply an image of the scattering curve of the amorphous material – affinely
stretched both in the vertical and in the horizontal direction.

The dash-dot-dotted curve shows the machine background of the goniometer. It
is that high, because the machine is set-up in symmetrical-reflection geometry. For
a goniometer set-up in normal transmission geometry, the practical background is
much less disturbing – in particular at small angles.

Identification of the observed peaks is accomplished by means of data listed in
the Polymer Handbook [107]14, in reviews or original papers (like the one on PET
by GEIL [105]).

8.2.4.2 Crystallinity Index

A simple phenomenological method can be used to describe changing crystallinity
from WAXS data of isotropic materials. It is based on the computation of areas in
Fig. 8.2. First we search the border between first-order and second-order amorphous
halo. For PET this is at 2θ ≈ 37◦ (vertical line in the plot). Then we integrate the area
between the amorphous halo and the machine background. Let us call the area Iam.
Finally we integrate the area between the crystalline reflections and the amorphous
halo, call it Icr, and compute a crystallinity index

Xc =
Icr

Iam + Icr
. (8.10)

If several isotropic samples from the same material are studied, Xc arranges them in
the order of their crystallinity – but without telling the correct value.

8.2.4.3 WAXS Crystallinity for Undistorted Crystals

Undistorted crystals are not found in nature. So the principle discussed here is only
a fundament for further reasoning. Every electron in the sample is scattering X-rays
by the same amount into some direction in reciprocal space. Thus, the integral of the
scattering intensity

Itotal = 4π
∫ ∞

0
s2 I (s) ds

taken over the complete reciprocal space15 is proportional to the total number of
electrons in the irradiated volume, i.e., proportional to the sample mass.

If the material is divided in a crystalline and an amorphous phase, and the crystals
are undistorted with atoms fixed at their ideal positions in space, the integral

13The amorphous halo is a result of the fact that there is a preferential distance among chain segments
even in an amorphous material. As crystalline layers grow thick, they move the chain entanglements
away from the crystal and the entangled amorphous layer becomes compressed. The average distance
among the chains is decreased, and in the scattering the maximum position of the corresponding halo
is shifted to higher scattering angle (reciprocity in Bragg’s law).

14If information is not found in the actual issue of the Polymer Handbook, it is recommended to consult
earlier issues, as well. The focus of the Handbook is changing with time.

15As written down here, the equation is valid for isotropic material.
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Icrtot = 4π
∫ ∞

0
s2 Icr (s) ds

taken over the crystalline reflections is proportional to the mass of the crystalline
phase. In this case the WAXS crystallinity is obtained by

wc =
Icrtot

Itotal
=
∫ ∞

0 s2 Icr (s) ds∫ ∞
0 s2 I (s) ds

. (8.11)

Because we are relating masses to each other, the determined crystallinity is the
weight crystallinity wc, not the volume crystallinity, vc.

8.2.4.4 WAXS Crystallinity Considering Distortions

Precision determinations of wc by means of WAXS measurements are carried out
by the RULAND [14] method. The method is sufficiently described in textbooks [7,
22]. A modified version adapted to automatic processing by a computer has been
introduced by VONK [108].

8.2.5 WAXS Line Profile Analysis

8.2.5.1 Experimental Technique

Spend time16 on the measurement of the WAXS intensity curve. If noise can be de-
tected by the eye, data are insufficient for further analysis. Correct the raw data for
varying absorption as a function of scattering angle depending on the geometry of
the beamline setup (Sect. 7.6, p. 76). Measure and eliminate instrumental broad-
ening (cf. Sect. 8.2.5.3). Carry out polarization correction, i.e., divide each inten-
sity by the polarization factor (cf. Sect. 2.2.2 and ( [6], p. 99)). Transform the data
to scattering vector representation (2θ → s). Carry out the LORENTZ correction17

(I (s) → s2 I (s)). The resulting curve should look similar to the solid line shown in
Fig. 8.3. Then the diffuse background (dotted line in Fig. 8.3) must be defined in
such a way that the resulting peaks are symmetrical. Finally the peaks (dashed line
in Fig. 8.3) are extracted for further analysis.

8.2.5.2 Scientific Goals of Line Profile Analysis

Why are WAXS peaks (“lines”) not infinitely sharp?

• The diffractometer cannot produce an infinitely sharp peak (instrumental
broadening).

• The number of netplanes in the crystal (that are related to an observed peak)
is not infinite (crystal size).

16Typical exposure time is 4 - 8 hours using a rotating anode source, Göbel mirror, and a bent 1D detector
for simultaneous recording of the complete curve.

17Unless the ubiquitous misorientation of crystals in polycrystalline materials has been eliminated by
some other method (cf. Chap. 9)



8.2 Peak Spotting: WAXS Reflections, Long Periods 105

Figure 8.3. LORENTZ-polarization corrected WAXS curve of poly(3-dodecylthiophene) be-
fore and after background subtraction (from PROSA et al. [109]). The authors define q in the
way that is identical to the definition of s in this book

• The crystal itself is not perfect (lattice distortions).

Thus line profile analysis is aiming at

• the separation of these effects

• the determination of the kind of lattice distortions

• the quantification of crystal size and lattice distortions

Profound line profile analysis is possible if a set of reflections is observed, i.e., peaks
from several crystallographic orders indexed by (h) are accessible. With respect to a
principal reflection found at the position s(1) the positions of the higher orders are

s(h) = (h)s(1)) (8.12)

according to BRAGG’s law. Thus, in a more abstract notion, such a set of peaks (h)
is probing physical parameters of the crystal at discrete positions s(h) along a straight
radial line in reciprocal space. This is the main idea behind line profile analysis.

To have a set of only two peaks accessible may be sufficient, if additional param-
eters are varied (temperature [110], pressure [111]).

Both for isotropic and anisotropic scattering patterns line profile analysis can be
performed. If a curve from an anisotropic pattern is analyzed, the results are limited
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to those crystals whose netplanes were oriented in such a way that during measure-
ment they fulfilled BRAGG’s reflection condition.

Line breadths are the fundamental quantities in this field of polymer analysis. As
a consequence of the Fourier relation between structure and scattering these breadths
are integral breadths, not “full widths at half-maximum” (FWHM).

8.2.5.3 Instrumental Broadening

Consideration of instrumental broadening is a merely technical issue. The instrumen-
tal profile HI (s) must be measured. It is the shape of any peak18 of a single crystal
of “infinite” size and perfection. For application in the field of polymers, many in-
organic crystals, e.g., the common standard LaB6, are very good approximations to
the ideal case.

The effect of instrumental broadening can be eliminated by deconvolution (see
p. 38) of the instrumental profile from the measured spectrum. If deconvolution shall
be avoided one can make assumptions on the type19 of both the instrumental profile
and of the remnant line profile. In this case the deconvolution can be carried out
analytically, and the result is an algebraic relation between the integral breadths of
instrumental and ideal peak profile. From such a relation a linearizing plot can be
found (e.g., “measured peak breadths” vs. “peak position”) in which the instrumental
breadth effect can be eliminated (Sect. 8.2.5.8).

8.2.5.4 Crystal Size and Lattice Distortion – Separability

Why is it possible to separate crystal size from lattice distortion? — Limited crystal
size broadens every reflection by the same amount20. On the other hand, the higher
the order of a reflection is, the higher is the smearing effect caused by lattice distor-
tions.

Disregarding the crystal size distribution in a polycrystalline sample, the ob-
served profile of any peak

Hobs
(
s− s(h)

)
= HI (s)� Φ2

S (s)� HD
(
s− s(h)

)
(8.13)

centered about its position, s(h), is the convolution of the instrumental profile HI (s)
with the crystal size term21 Φ2

S (s) and the contribution due to lattice distortions,
HD
(
s− s(h)

)
.

After Hobs has properly been extracted (cf. Sect. 2.2.2), the effect of instrumental
broadening can be eliminated by numerical deconvolution (see p. 38). If the peaks
shall be modeled by analytical functions (Sects. 8.2.5.7-8.2.5.8), the consideration

18Direct measurement of the primary beam profile may be carried out in the fields of MAXS and SAXS
(cf. Sect. 6.4.3).

19For instance, Gauss distributions, Lorentz distributions or their combinations
20This fact has been discussed in Sect. 2.7.5, p. 24 on the basis of the Fourier convolution theorem

(Sect. 2.7.8).
21F (YS (r)) = ΦS (s), and YS (r) is the shape function of the crystal
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of instrumental broadening can frequently be deferred and considered in the final
linearizing plot.

In the presented form Eq. (8.13) is only valid, if HI (s) is, indeed, constant over
the whole angular range required for analysis. If this is not the case and numerical
deconvolution is aimed at, the standard algorithm may be adapted by consideration
of the fact that, in any case, the broadening is a slowly varying function of 2θ .

8.2.5.5 Separation According to WARREN-AVERBACH

A model-free method for the analysis of lattice distortions is readily established from
Eq. (8.13). It is an extension of STOKES’ [27] method for deconvolution and has been
devised by WARREN and AVERBACH [28,29] (textbooks: WARREN [97], Sect. 13.4;
GUINIER [6], p. 241-249; ALEXANDER [7], Chap. 7). For the application to com-
mon soft matter it is of moderate value only, because the required accuracy of beam
profile measurement is rarely achievable. On the other hand, for application to “ad-
vanced polymeric materials” its applicability has been demonstrated [109], although
the classical graphical method suffers from extensive approximations that reduce its
value for the typical polymer with small crystal sizes and stronger distortions.

Elimination of Instrumental Broadening and Crystal Size Effect. Fourier
transform of Eq. (8.13) turns the convolutions into multiplications (Sect. 2.7.8)

hobs (r) = hI (r) Y �2
S (r) hD (r) . (8.14)

If, moreover, we consider a set of peaks with the index (h) counting the orders of re-
flections, then the effects of size and instrumental broadening are readily eliminated
by normalizing

hobs(h) (r)
hobs(i) (r)

=
hD(h) (r)
hD(i) (r)

(8.15)

the Fourier transform of reflection (h) with respect to that of a different reflection (i)
of the set. It is reasonable to “consume” the first peak ((i) = (1)), i.e., to normalize
all subsequent reflections to it.

Visualizing a Set of Pure Distortion Profiles. After Fourier back-transform-
ation, we retrieve a set of reduced profiles that are only determined by lattice-
distortion

HD(h−1) (s) = F−3

(
hobs(h) (r)
hobs(1) (r)

)
. (8.16)

Only one peak has been consumed for normalization purpose. The profiles HD(h−1) (s)
contain two important informations, namely

• the peak shape (LORENTZ22 distribution, Gaussian, . . . ) that governs the lat-
tice distortions

22LORENTZ, CAUCHY, or BREIT-WIGNER distribution h(r) = 1/
(

πb
(

1+(r− r0)
2 /b2

))
at r0 with a

full width at half-maximum b.
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• the law that governs the peak breadth increase with peak order.

Lattice Distortions of the First Kind. If the peak breadth is increasing linearly
with peak order, i.e., if

B
(
HD(h−1) (s)

)
∝ (h)
= σ̃LD (h)s(1) (8.17)

= σ̃LD s(h)

≈ σ̃LD s

is valid23, the lattice distortions are called “lattice distortions of the first kind”. In
lattices subjected to such kind of distortions the long range order among lattice points
is preserved. A practical example is strain broadening (see Sect. 8.2.5.6).

The presented variants of Eq. (8.17) may need some explanation. In the second
line σ̃LD is introduced as the proportional constant. It is closely related to the relative
standard deviation24 of the distances between the netplanes. The exact relation is es-
tablished, as soon as a model is introduced. The third line is a result of Eq. (8.12).
The last line follows in the limit of a “continuous” set of peaks – an idea that is ad-
vantageously applied in several advanced methods for the analysis of highly oriented
materials (cf. Chap. 9).

Lattice Distortions of the Second Kind. If a quadratic increase of the peak
breadth with order is found , i.e.,

B
(
HD(h−1) (s)

)
∝ (h)2

=
(
σ̃LD (h)s(1))

)2
(8.18)

=
(
σ̃LD s(h)

)2

≈ σ̃LD s2,

the lattice distortions are called “lattice distortions of the second kind”. In lat-
tices subjected to such kind of distortions there is only short-range correlation
among lattice points. An example of such distortions is paracrystalline disorder (cf.
Sect. 8.2.5.6).

It is worth to be noted that these definitions of first- and second-order distortions
according to WARREN-AVERBACH are model-free. From a linear or a quadratic in-
crease of peak breadths it can neither be concluded in reverse that strain broadening,
nor that paracrystalline disorder were detected.

23Here and in the following HD(h−1) (s) is an abbreviated notation for
⌈
HD(h−1) (s)

⌉
1
(s), with s being

“the direction in which the scattering curve has been measured in reciprocal space”
24Imagine the variation of interplanar distances expressed in percent.
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8.2.5.6 Matching Lattice Distortions and Structural Models

Distortions of the First Kind and Thermal Disorder. In crystallography the
best-known example for a lattice distortion of the first kind is the reduction of peak
intensity from random temperature movement of the atoms. In materials science a
frozen-in thermal disorder of nanostructures25 is observed as well. The result of this
kind of disorder is a multiplicative26 attenuation of the scattering intensity by the
DEBYE-WALLER factor

D(s) = exp

(
−4

3
π2s2 〈∆2u

〉)
, (8.19)

with
〈
∆2u
〉

designating the mean square deviation of the atom’s position from its
ideal position27. Anisotropy of temperature movement is no issue with polymer ma-
terials. Moreover, with polymers the Debye-Waller factor itself is, in general, only a
relatively small contribution because strain broadening and paracrystalline disorder
are much stronger. GUINIER ([6] Sect. 7.1) presents the deduction and computation
of the DEBYE-WALLER factor as a function of temperature for different atoms.

Distortions of the First Kind and Strain Broadening. Rolled and drawn
metals exhibit a broadening of peaks that increases linearly with the peak order.
The first explanation of this observation and its theoretical treatment goes back to
KOCHENDÖRFER [112–115]. In the field of SAXS similar considerations have first
been published by POROD [18].

The idea is simple: consider a polycrystalline material that is subjected to locally
varying strain. Then every crystal is probing its local strain by small compression or
expansion of the lattice constant. The superposition of all these dilated lattices makes
the observable line profiles – and as a function of order their breadth has to increase
linearly. According to KOCHENDÖRFER the polycrystalline material becomes “in-
homogeneous” or “heterogeneous”.

The treatments of KOCHENDÖRFER, POROD, and WARREN-AVERBACH iden-
tify “superposition” with the mathematical operation of a convolution. While this
is true for translational superposition, for dilational superposition it is a coarse ap-
proximation that is only valid for small polydispersity. In the latter case the con-
volution must be replaced by the Mellin convolution (Eq. (8.85), p. 168): governed
by a dilation factor distribution and the structure of the reference crystal, the struc-
ture of each observed crystal is generated by affine dilation of the reference crystal
(STRIBECK [2]).

Distortions of the Second Kind and Linear Paracrystallinity. The idea
of lattice distortions of the second kind goes back to the famous work of ZERNIKE

25For instance, inaccurate positions of spherical hard-domains in their lattice of colloidal dimensions
26In real space there is a convolution of the ideal atom’s position (a delta-function) with the real proba-

bility distribution to find it.
27Thus

〈
∆2u
〉

is a variance; the 2nd central moment of the probability distribution to find the atom.
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and PRINS [116] on liquid scattering: if the distances between atoms are constant
the structure is a lattice, but if the distances fluctuate about some average value
there is only short-range order. The path from one atom to its n-th neighbor is an
n-fold stochastic process governed by an n-fold convolution28. This principle makes
the line breadths grow quadratically with order. HOSEMANN [5, 117] called the n-
fold convolution a “convolution polynomial” and a crystal subjected to small crys-
talline distortions of the second kind a “paracrystal”. His mathematical treatment is
strict in one dimension (i.e., when applied to one set of reflections in WAXS or to a
lamellar system in SAXS). In structures of higher dimension it is an approximation
only [118], whereas the WARREN-AVERBACH principle presented in Sect. 8.2.5.5 is
generally applicable, but does not describe the structure in detail. A proposal of how
to combine the WARREN-AVERBACH principle with the paracrystalline model has
been presented by BLÖCHL and BONART [119].

8.2.5.7 Classical WARREN-AVERBACH Separation

Overview. Compared to the Fourier transformation method (cf. Sect. 8.2.5.5),
the classical WARREN-AVERBACH evaluation method is a graphical procedure –
adapted to low demand of computing power. At least a set of two peaks must be
present. The graphical method involves a Guinier approximation (cf. Sect. 8.1) of
the function29 hobs(r) (h) and its evaluation in a Guinier plot. Its results have been
proven significant in the field of inorganic materials where the size and distortion
effects are small. It is only applicable30, as long as the peak profiles are symmetri-
cal. A critical examination of the method applied to advanced polymer materials has
been published by PROSA et al. [109]. The limits of the approximations made by
Warren and Averbach become obvious, if more than two peaks are present and thor-
oughly analyzed (PROSA et al. [109], Fig. 731). An alternative method with different
restrictions has been devised by VAN BERKUM et al . [120].

Step 1: Measurement and Pre-Evaluation. For proper data recording and
preparation refer to Sect. 8.2.5.1. As a result the peaks (dashed line in Fig. 8.3) are
extracted. The curve shows ∑5

(h)=1 Hobs(h) (s) for 5 orders.

Step 2: Fourier Transform. Compute the correlation functions hobs(h) (r) =
ℜ
(
F1
(
Hobs(h)

(
s− s(h)

)))
with s(h) being the center of the peak actually processed.

Only few discrete points of each correlation function are actually chosen for the
evaluation, namely the points32 located at

28. . . of a probability distribution to find the next neighbor.
29Notice the change of variables: GUINIER’s law is applied to the Fourier transform of the peak as a

function of the order (h) of the peak at fixed positions r.
30Moreover: as long as the method is applied to a “scattering intensity curve”, i.e., a 1D section in recip-

rocal space, the analyzed structure is a projection of the correlation function on the respective direction,
i.e., an average over planes perpendicular to the direction of the section.

31No linear dependence is found in the “Guinier plot” of 5 peaks
32Between these points the correlation function should vanish if the lattice were perfect.
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r ∈ [0,r(1),2r(1), . . . ,10r(1)
]

∈ [0,L,2L, . . . ,10L]

integer multiples of r(1) = 1/s(1) := L, the Bragg spacing of the netplanes related to
the studied set of reflections. In the literature L is frequently denoted by dhkl. We are
only interested in peak shape, so we normalize the correlation function33. In original
and review literature [28,29,109,120] the resulting values are addressed normalized
Fourier coefficients34

A((h) ,Lj) =
hobs(h) ( j L)
hobs(h) (0)

= γobs(h) ( j L) , (8.20)

and the integer numbers j address the displacement of the crystal with respect to its
ghost in steps of size L (causing best matches of netplanes). In fact, the unimaginative
presentation of Fourier coefficients A((h) ,Lj) is more clearly related to structure
after resorting to the correlation function γobs(h) ( j L) with r = j L.

Step 3: Guinier Plot: Separation of Size and Distortion Effects. The in-
ner part of the correlation functions γobs(h) (r) is readily expanded into a power series.
For this purpose we resort to Eq. (8.14). Assuming that instrumental broadening is
already eliminated we have

γobs(h) (r) = γS (r) γD(h) (r) (8.21)

a product of the correlation function of crystal size, γS (r), and the correlation func-
tion of crystal distortion γD(h) (r). Let all crystals be infinitely extended in the di-
rection normal to the considered netplanes, all with the same thickness �. Then the
shape correlation is simply γS (r) = 1−|r|/� defined for |r| < � at the discrete posi-
tions r = j L. If the crystals are not ideal (finite size and varying shape), the observed
shape correlation function becomes a superposition [110]

γS (r) =
∫ ∞

0
g(h) (�)

[
1− |r|

�

]
for |r| < �, (8.22)

with g(h) (�) being the number distribution of chords (chord length distribution, CLD)
describing the probability to find35 a column of unit cells of height � measured in
direction (h).

Let us introduce the number-average chord length
〈
�p
〉
(h). For one crystal (of

convex shape) it is defined by its volume divided by the shade it throws when illumi-
nated in direction (h). Then a series expansion

33as is generally done with correlation functions
34The term Fourier coefficient originates from the theory of Fourier series, in which periodic functions

are expanded based on a set of sine- and cosine-functions. The expansion coefficients are called Fourier
coefficients.

35. . . within all the crystals of the polycrystalline sample
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γS (r) = 1− |r|〈
�p
〉
(h)

+ . . . (8.23)

of the shape correlation function is obtained. Anticipating that WARREN-AVERBACH

are aiming at taking the natural logarithm of γobs, Eq. (8.23) is substituted into a
series expansion of log(γS (r)) resulting in

log(γS (r)) ≈− |r|〈
�p
〉
(h)

. (8.24)

In similar manner the distortion correlation function γD(h) (r) is treated. Instead
of either discussing distortions of the first kind or of the second kind separately,

γD(h) (r) = γD1(h) (r) γD2(h) (r)

it is split into two factors36, which are treated in terms of an approximation for strain
broadening and for loss of long range order, respectively. Finally the resulting Taylor
series in even powers of (h) are intentionally replaced by Gaussians resulting in

γobs(h) (r) ≈ γS (r) exp

(
−2π2 (h)2

( r
L

)2 σ2
H

L2

)
exp

(
−2π2 (h)2

( r
L

) σ2
L

L2

)
(8.25)

with σ2
H the absolute (and σ2

H/L2 the relative) “strain variance”. This is the variance
of lattice constant variation from one crystal to another (first order distortion; hetero-
geneity of crystals with similar but not identical lattice constants). σL is the absolute
standard deviation of lattice constants within one crystal (second order distortion;
1D random variation of lattice constants: “paracrystallinity”).

Taking the logarithm of Eq. (8.25) and substituting Eq. (8.24) we finally obtain

log
(
γobs(h) (r)

)
= − |r|〈

�p
〉
(h)

−2π2 (h)2 |r|
L

fD

( |r|
L

)
(8.26)

an equation simple enough for graphical analysis with the relative variances of both
kinds of lattice distortions lumped together in the function

fD

( |r|
L

)
=

σ2
L

L2 +
σ2

H

L2

|r|
L

. (8.27)

Figure 8.4 presents a sketch of the graphical procedure. According to Eq. (8.26) the
intercepts in this Guinier plot are

log
(
γobs(0) (r)

)
= − r〈

�p
〉
(h)

. (8.28)

36This factorization would be strict only, if (Fourier) convolution were the mathematical operation that
describes the effect of both the lattice distortions of the first and the second kind on the profile. In fact,
strain broadening is not described by Fourier convolution but by Mellin convolution, instead.
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Figure 8.4. Graphical separation of lattice size and lattice distortion effects according to
WARREN-AVERBACH

Figure 8.5. Graphical separation of lattice distortion effects of the first and the second kind
according to WARREN-AVERBACH

In the ideal case they are equidistantly spaced on the ordinate. In reality they may
increasingly move closer because real shape correlation functions are flattening as
a function of r. A significant crystallite size value

〈
�p
〉
(h) has only then been deter-

mined from this approximative plot, if r � 〈�p
〉
(h) was valid for every curve consid-

ered in the determination.
As a result of the linear regression, the values of fD (r) are now known for a se-

quence of discrete r. From Eq. (8.27) it is clear that fD (r) itself represents a weighted
relative variance of the lattice distortions. If it is found to be almost constant, its
square root directly describes the total amount of relative lattice distortion (“in per-
cent”).

Step 4: Separation of Distortions of 1st and 2nd Kind. From Eq. (8.27)
the graphical method for the separation of small lattice distortions of the first and
the second kind is obvious. It is sketched in Fig. 8.5. In a plot of fD (r/L) vs. r/L
the amount of lattice distortions of the second kind is determined from the intercept.
Lattice distortions of the first kind are computed from the slope of the observed



114 8 Interpretation of Scattering Patterns

curve. The first data points of the curve are, in general, deviating from the straight
line and should not be considered for the linear regression [109].

8.2.5.8 Separation After Peak Shape Modeling

Why and How to Use a Model? If the graphical method of WARREN-AVER-
BACH does not work because of weak reflections, overlapping reflections, or prob-
lems with the subtraction of background scattering one may resort to modeling the
peak shape in Eq. (8.13). Suitable shapes37 have been resulting from direct peak-
shape visualization based on Eq. (8.16) from p. 107. For proper data recording and
preparation refer to Sect. 8.2.5.1.

After each peak has been described by the parameters of a model function, the
convolution in Eq. (8.13) can be carried out analytically. As a result, equations are
obtained that describe the effects of crystal size, lattice distortion, and instrumental
broadening38 on the breadth of the observed peak. Impossible is in this case the
separation of different kinds of lattice distortions.

Polydispersity: Different Crystal Size Averages. The crystal sizes in the
polycrystalline samples are not identical. So it is important to know, what kind of
average (cf. Sect. 1.2) is returned by the method.

The indirect method described here returns the weight-average crystal size [121],
irrespective of the model shape chosen. On the other hand, the direct Fourier inver-
sion according to WARREN-AVERBACH returns the number average of the crystal
size distribution.

Model: Gaussian Peaks. If all the terms on the right-hand side of Eq. (8.13)
can be modeled by Gaussians, the square of the integral breadth of the observed
peak

B2 (Hobs(h) (s)
)

= B2 (HI (s))+ B2 (Φ2
S (s)
)
+ B2 (HD(h) (s)

)
(8.29)

is obtained by summing the squared breadths of the components (WARREN [122],
1941).

Model: Lorentzian Peaks. If all the terms on the right-hand side of Eq. (8.13)
can be modeled by LORENTZ curves, the integral breadth of the observed peak

B
(
Hobs(h) (s)

)
= B(HI (s))+ B

(
Φ2

S (s)
)
+ B
(
HD(h) (s)

)
(8.30)

is obtained by summing the breadths of the components (HALL [123], 1949).

Model: Mixed Gaussian and Lorentzian Peaks. Even if one of the distri-
butions must be modeled by a Gaussian and the other by a Lorentzian while the in-
strumental broadening is already eliminated, a solution has been deduced (RULAND

[124], 1965).

37Lorentzians, Gaussians, and combinations of both like pseudo-Voigt functions
38Frequently the effect of instrumental broadening is tacitly considered as already eliminated.
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Application. In practice, three or more peak orders must be observed. The shape
of the lines should be Gaussian or Lorentzian. On these premises it is promising
to carry out line profile analysis. Corresponding graphical separation methods are
readily derived from the breadth relations that have just been discussed, after that
the breadths B

(
Φ2

S (s)
)

and B
(
HD(h) (s)

)
of a polycrystalline ensemble have been

related to structure and substituted in Eq. (8.29) or Eq. (8.30). For the size term the
structure relation is

B
(
Φ2

S (s)
)

=
1〈

�p
〉

w(h)
. (8.31)

In order to derive this equation, the correlation function in real space is considered,
and the Fourier breadth theorem is employed (Sect. 2.7.5, p. 24).

〈
�p
〉

w(h) is the

weight average39 of the chord lengths of all the crystals in the direction perpendicular
to the netplanes of the set of considered reflections.

Resorting to reasoning of KOCHENDÖRFER ( [112] and [115], p. 463) an approx-
imation for the breadth of the lattice distortion term due to small amounts of strain
broadening

B
(
HD(h) (s)

)≈ 2
σH

L
s(h) (8.32)

is obtained by differentiation (∂L/∂ s = −1/s2) of BRAGG’s law (L = 1/s) ( [112],
p. 137) assuming that ∂L/L can be identified with σH/L, because it can practically be
considered a “measure of the maximum40 magnitude of dilation” with respect to the
undistorted lattice constant. Moreover, assuming that line broadening is symmetrical
about the center of the line41, Eq. (8.32) is obtained.

On the other hand, lattice distortions of the second kind are considered. As-
suming [127] that 1D paracrystalline lattice distortions are described by a Gaus-
sian normal distribution gD (σL,r) with standard deviation σL, its Fourier transform
GD (s) = exp

(−2π2σ2
Ls2
)

describes the line broadening in reciprocal space. Utiliz-
ing the analytical mathematical relation for the scattering intensity of a 1D paracrys-
tal (cf. Sect. 8.7.3 and [127, 128]), a relation for the integral breadth as a function of
the peak position s(h) can be derived [127, 129]

B
(
HD(h) (s)

)
=

1
L

(
πσLs(h)

)2
. (8.33)

An example for a linearization of integral peak breadths and the corresponding
separation of size and distortion effects is sketched in Fig. 8.6. It is clear that at least

39A short plausible explanation: The series expansion of the graphical WARREN-AVERBACH method is
addressing the starting slope of the correlation function – its integral breadth is somewhat wider, if not
all the chords are of the same length. The weight-average is obtained.

40Instead of considering a maximum magnitude (German: “Höchstwert”), a square average dilation of
the lattice constant could have been addressed by Kochendörfer in his approximative reasoning with
the same result.

41Kochendörfer addresses superposition of “symmetrical lattice line ghosts” originating from the dilation
– although it is readily shown that dilatation superposition (Mellin convolution) always causes the
observed profile to become asymmetrical [125, 126].
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Figure 8.6. Separation of lattice distortions and crystallite size according to the WARREN-
AVERBACH principle applied to observed integral breadths Bobs (s) of a set of WAXS peaks.
Because the data are linearized in a plot of Bobs vs. s2, the peak shape is (almost) Lorentzian
and the predominant lattice distortions are of the second kind with mD = π2σ2

L/L. The con-
stant instrumental breadth BI (determined separately) has not been operated before so that it
must be considered now. The remnant intercept is 1/

〈
�p
〉

w, i.e., the weight-average crystallite
size

three lines must have been observed and their integral breadths determined. Then
four different plots are tested for the linearization of the peak breadths, and structure
parameters are determined from the best linearizing plot. As indicated in Fig. 8.6,
there is no need to eliminate instrumental broadening before. It can be considered
here, if only the corresponding integral breadth BI is known and constant. Table 8.1
lists the four different plots and the structural parameters that can be determined from

Table 8.1. Integral breadth method according to WARREN-AVERBACH and the four basic
possibilities for linearizing plots. All plots are tested for best linearization with the integral
breadths from a set of peaks, and the best linearization is taken for structure parameter deter-
mination

Ordinate Abscissa Peak shapes Distortions Intercept Slope
Bobs s Lorentzian 1st kind BI + 1/

〈
�p
〉

w 2σH/L
Bobs s2 Lorentzian 2nd kind BI + 1/

〈
�p
〉

w π2 σ2
L/L

B2
obs s2 Gaussian 1st kind B2

I + 1/
〈
�p
〉2

w 4σ2
H/L2

B2
obs s4 Gaussian 2nd kind B2

I + 1/
〈
�p
〉2

w π4 σ4
L/L2
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Figure 8.7. Peak position determination in SAXS. Isotropic polyethylene during temperature
treatment measured at HASYLAB, beamline BW4 (point-focus)

the plot which returns the best linearization of the observed integral peak breadth
data.

Two final remarks. It appears worth to be noticed that in the literature the
breadth relations are frequently expressed as a function of reflection order (h) =
s(h) L, and proper variable substitution is an issue. Moreover, the quantity L is fre-
quently identified with edge a of the unit cell. This identification is only valid in a
special case [120], as is concluded from simple geometrical reasoning.

8.2.6 Peaks in SAXS Patterns

In the most simple analysis of discrete SAXS the observed peak is related to an aver-
age distance between nanoscopic domains42, the long period. After determination of
the peak position this long period is discussed as a function of materials processing
parameters. Modern advanced analysis methods for common polymeric materials
follow the advice of DEBYE (cf. p. 1) and consider the complete SAXS pattern to
draw conclusions on the short-range correlated structure. SAXS studies in analogy
to WAXS methods (crystallographic considerations43, peak profile analysis44) that
are less suited for polydisperse materials become important for the study of highly
ordered nanostructured materials.

Peaks in SAXS patterns rest on a rapidly decaying background. Figure 8.7 shows
an example for a typical isotropic bulk semicrystalline polymeric material. The long
period of such data should never be determined from the peak maximum found in the

42For instance, crystalline lamellae in an amorphous matrix (semicrystalline polymer materials), hard
domains in a soft matrix (thermoplastic elastomers)

43If several sharp peaks of colloidal crystals are observed in the SAXS, the unit cell can be determined.
44In this case peak profile analysis can be carried out using the methods discussed in Sect. 8.2.5
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Table 8.2. Long period from the isotropic SAXS data presented in Fig. 8.7 as determined in
different ways. The bottom row method is most closely related to reality

L [nm] determined from
168 noisy I (s)
170 smoothed I (s)
127 noisy s2 I (s)
121 smoothed s2 I (s)

Figure 8.8. Important components of diffuse scattering in the SAXS of polymer materials
with two or more phases. Only for fractals POROD’s law is fundamentally changed

measured SAXS curve, I (s) without background subtraction. It is even better to ap-
ply the LORENTZ correction (I (s) → s2 I (s)), and noisy curves should be smoothed,
before the long period L = 1/sL is determined from the inverse of the peak maximum
position. Table 8.2 shows that different simple ways to determine a long period yield
values that differ considerably. Comparison to the advanced methods of correlation
function analysis and interface distribution analysis shows that the simple determi-
nation from the smoothed and LORENTZ-corrected curve (bottom row in Table 8.2)
is quite close to the correct value [130]. Even for moderately anisotropic materials
the scattering pattern should be LORENTZ corrected before determination, whereas
highly anisotropic materials that show high peaks on a relatively low background do
not require LORENTZ correction.

8.3 No Peaks: The Interpretation of Diffuse Scattering

Diffuse scattering is always present in the SAXS of polymer materials. In Fig. 8.8 its
most important components are sketched45. The density fluctuation background re-

45It is assumed that the machine background has separately been measured and properly been subtracted
under consideration of the absorption factor (Sect. 7.6). In particular it is not allowed to take the diffuse
scattering “background” of a molten or amorphous sample for the machine background.
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sults from statistical variations of the electron density within the material. POROD’s
law is found in all polymer materials that are made from a discrete number of distin-
guishable phases46. Only for the rather rare fractal structures it is modified. Diffuse
scattering of particles is typical for random arrangement of polydisperse particles in
a matrix. Although pure particle scattering is most frequently diffuse, it will not be
treated here but in Sect. 8.6.

If polymers are studied, approximately 90% of the SAXS intensity at the mini-
mum of the curve or the anisotropic pattern is density fluctuation background. For
metals the corresponding typical value is 10%.

Other effects contribute to the diffuse scattering, as well. In particular, a smooth
density transition zone between the phases (e.g., at particle surfaces) and a rough
particle surface must be mentioned.

The classical treatment of diffuse SAXS (analysis and elimination) is restricted to
isotropic scattering. Separation of its components is frequently impossible or resting
on additional assumptions. Anyway, curves have to be manipulated one-by-one in a
cumbersome procedure. Discussion of diffuse background can sometimes be avoided
if investigations are resorting to time-resolved measurements and subsequent discus-
sion of observed variations of SAXS pattern features. A background elimination pro-
cedure that does not require user intervention is based on spatial frequency filtering
(cf. p. 140).

8.3.1 Intensity Level Between SAXS and WAXS: Electron Density
Fluctuations

Application in Materials Science. For simple fluids the amount of the density
fluctuation background can be computed. Thus its measurement can be used for the
calibration of SAXS data to absolute intensity [91, 94]. This method is convenient if
liquid samples are studied.

For polymers the density fluctuation background is high. This is a result of its
relation to the isothermal compressibility (and the velocity of sound) in the material.

Blending of polymers or the “extension” of polymers with low molecular com-
pounds is changing the density fluctuation background. Thus miscibility can be stud-
ied.

As a function of temperature the fluctuation background is changing in a pre-
dictable way, and glass transitions in amorphous phases can be studied [93, 95].

The Phenomenon. In existing materials the electron density is not even con-
stant inside a single phase. This is obvious for the liquid structure of amorphous
regions. Nevertheless, even in crystalline phases lattice distortions and grain bound-
aries result in variations of the electron density about its mean value. In analogy to
the sunlight scattered from the fluctuations of air density, X-rays are scattered from
the fluctuations of electron density.

46For instance: crystalline phase, amorphous phase, hard phase, soft phase, phases formed by different
polymeric components in blends or block copolymers.
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Analysis and Significance. The study of density fluctuations is part of the scat-
tering theory of amorphous materials. In the experiment amorphous polymers exhibit
a slow increase of the fluctuation background as a function of increasing s. Only a
vague statement is made by existing theory [94, 95, 131–133]: the fluctuation back-
ground IFl (s) is expanded in even powers of s. In the studies of amorphous polymers
the common approximation is

IFl (s) = IFl (0) exp

(
b

IFl (0)
s2
)

, (8.34)

or simplified after series expansion

IFl (s) = IFl (0)+ bs2. (8.35)

Whenever multiphase polymer materials are investigated, their peculiar contribu-
tion to the diffuse scattering must be considered (POROD’s law). The background
function becomes more complicated, and with the two-parameter approximation of
Eq. (8.34) or Eq. (8.35) the background becomes overparameterized. Thus the com-
mon methods of background determination of multiphase polymer materials assume
a constant47 fluctuation background IFl . VONK [134] simply subtracts the minimum
of the scattering curve, STEIN [135] and STRIBECK [92] resort to specific plots
in which first IFl can be fixed by the assumption that the correct background is
found when a linearized Porod region becomes as long as possible. RULAND and
SMARSLY [84] directly fit a topological model for the structure which contains a
constant IFl .

If these concepts of curve analysis shall be applied to the anisotropic scattering
of polymer fibers, one should choose to study either the longitudinal or the transver-
sal density fluctuations. According to the decision made, the fiber scattering must
be projected either on the fiber axis or on the cross-sectional plane. This results in
scattering curves with a one- or a two-dimensional POROD’s law. Because modern
radiation sources always feature a point-focus, the required plots for the separation
of fluctuation and transition zone are readily established (cf. Table 8.3).

Density Fluctuations of Fluid Systems and Their X-ray Scattering. The
theory of fluctuations is a subarea of statistical mechanics and thermodynamics. Re-
spective textbooks are recommended. Here we summarize the frequently cited con-
siderations of RULAND [95, 131, 133]. For a fluid system the probability of a state
variable to perform small statistical fluctuations is computed by means of thermo-
dynamics. Here the number of particles (respectively electrons) is of interest. The
considerations are simplified by the fact that in scattering experiments the (irradi-
ated) volume is constant and for the temporal particle density fluctuation

FlN,t = 〈ρ〉 kBT κT . (8.36)

47I.e. constant in the Porod region, e.g., IFl (s) ≈ const for 0.2/nm < s < 0.35/nm, but not for the com-
plete diffuse region 0.2/nm < s < 1/nm that could be used for an extrapolation according to the pro-
cedure used with amorphous polymers.
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is obtained48, which is defined

FlN =

〈
(N −〈N〉)2

〉
〈N〉 =

〈
∆2N
〉

〈N〉 ,

by the relative average variance of the number of particles, N. Here 〈N〉 is the average
number of particles in the irradiated volume V , 〈ρ〉 = 〈N〉/V the average particle
density, kB the Boltzmann constant, T the temperature, and κT is the isothermal
compressibility 49 of the material.

If the number ZN of electrons in each particle is constant, electron density fluc-
tuation

Flel = ZN FlN (8.37)

and particle density fluctuation are proportional. Then the number of electrons

NB (rB) =
∫∫∫

ρ (r) YB (r− rB)d3r

in a test volume YB placed at rB inside the irradiated volume is a convolution. Apply-
ing scattering theory and Parseval’s theorem RULAND [133] finds

Flel,v (YB) =
∫∫∫

1
ρ

I (s)
V

Φ2
B (s)
VB

d3s. (8.38)

Here ρ is the electron density of the sample, I (s)/V is the absolute scattering in-
tensity in electron units, ΦB (s) = F (YB) is the Fourier transform of YB, the shape
function of the test volume, and VB =

∫∫∫
YB (r)d3r is the size of the test volume.

This equation receives practical importance as the limit to infinite test volume is
taken. In this case ΦB (s) degenerates to a δ–distribution and

lim
s→0

1
ρ

I (s)
V

= lim
VB→∞

Flel,v (YB) (8.39)

is obtained. Thus the electron density fluctuation of the sample can be computed
from the extrapolation of the measured density fluctuation background to s = 0 if
the scattering intensity is calibrated in absolute electron units. For the purpose of
extrapolation Eq. (8.35) or Eq. (8.34) is utilized. The choice of suitable linearizing
plots is obvious.

8.3.2 Intensity Decay Between SAXS and WAXS: POROD’s Law

The ideas of the classical evaluation of POROD’s law have been developed by VONK

[134], RULAND [132, 134], and STEIN [135].

48SMOLUCHOWSKI (1908), EINSTEIN (1910), ORNSTEIN & ZERNIKE (1914, 1918). In a textbook on
scattering HIGGINS & BENOIT ( [136], Sect. 7.6) consider the fluctuation theory from a different point
of view.

49Thus soft condensed matter shows high density fluctuation. A relation to the velocity of sound is estab-
lished, if a lattice model is adopted: Expanding an approximation given by GUINIER ([6], Sect. 7.1.6)
RULAND concludes [95]: lims→0 (1/ρ)(I (s)/V ) = (ρ/ρm) (kBT )/

(
v2

g

)
. With ρm being the mass den-

sity of the sample and vg the limit of the group velocity of longitudinal lattice waves of long wavelength.
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Basic Equations. Scattering according to POROD’s law [18, 137] is a conse-
quence of phase separation in materials. In a two-phase system (e.g., a semicrys-
talline polymer) every point of the irradiated volume belongs to one of two distinct
phases (in the example: to the crystalline phase or to the amorphous phase). In a
multiphase system there are more than two distinct phases.

Frequently at least one of the phases forms particles (e.g., crystalline lamellae).
The shape and position of the ith particle from the irradiated volume is described by a
shape function Yi (r). It is obvious that the scattering intensity of an ideal multiphase
system can be expressed in terms of autocorrelations Y ∗2

i (r) and cross-correlations
of the shape functions and the average electron densities of each phase (cf. Sect. 2.5).

POROD’s law reflects the simplicity of the linear series expansion of Y ∗2
i (r) for

small r. It says that all multiphase systems exhibit a characteristic decay of the scat-
tering intensity at large s. The proportionality factor of this decay (POROD’s asymp-
tote) is related to the structural parameter of an “average chord length” (cf. p. 112
in Eq. (8.23)). This is the average length that one can travel in the material without
crossing a phase boundary. Even the distribution of all chords can be determined
from the scattering curve of a multiphase system (chord length distribution, CLD).

The scattering patterns from any materials that are made from a finite number of
discrete phases conform to POROD’s law. In most of the practical applications it is
sufficient to consider the most simple case of a two-phase system. In-depth consider-
ations concerning the interpretation of scattering data from multiphase systems have
been published by JÁNOSI [138].

Equations. For a 1D two-phase structure POROD’s law is easily deduced. Then
the corresponding relations for 2D- and 3D-structures follow from the result. The 1D
structure is of practical relevance in the study of fibers [16, 139], because it reflects
size and correlation of domains “in fiber direction”. Therefore this basic relation is
presented here. Let er be50 the direction of interest (e.g., the fiber direction), then
the linear series expansion of the slice �γ (r)�er

of the corresponding correlation
function is considered. After double derivation the 1D Fourier transform converts
the slice into a projection {I}er

of the scattering intensity and POROD’s law

lim
s→∞

s2 {I}er
=

k
2π2�px

:= ÃP1 . (8.40)

for the scattering intensity projected on the direction er is established. For large scat-
tering vectors the projected scattering intensity multiplied by s2 is approaching the
POROD’s asymptote for projected scattering data, ÃP1 . ÃP1 is defined by two mate-
rial parameters. These are the invariant k and the average chord length �px in the
considered direction er.

The materials most frequently studied are isotropic. For samples showing isotropic
scattering �px = �p is valid for any direction. Thus, Eq. (8.40) is generalized resulting
in

50eris the vector of length 1 (unit vector) in the chosen direction
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Figure 8.9. The scattering curve of an isotropic ideal two-phase system after multiplication
by s4 (cf. Eq. (8.43)). The “Porod region” in which the oscillations are almost faded away is
generally beginning after the 2nd order of the long period reflection

{I}1 (s) =
k

2π2�p
s−2. (8.41)

For the relation between {I}1 (s) and the sought intensity I (s) we have

{I}1 (s) = 2π
∫ ∞

0
yI
(√

s2 + y2
)

dy,

and this relation can be inverted after derivation, finally resulting in

I (s) =
k

2π3�p
s−4, (8.42)

lim
s→∞

s4I (s) =
k

2π3�p
:= AP. (8.43)

for the asymptotic decay of the isotropic scattering intensity of a two-phase sys-
tem material. After division by the irradiated volume V respective relations for the
intensity I (s)/V calibrated in absolute electron units are obtained, in which the prac-
tically relevant scattering power (invariant) Q = k/V is replacing k. A sketch of the
scattering of an isotropic ideal two-phase material is presented in Fig. 8.9.

The Non-Ideal Two-Phase Structure. The real two-phase structure inside a
sample is different from the ideal model. The non-ideal two-phase structure is both
noisy (cf. Sect. 8.3.1) and blurred. The transformation from a real structure to the
ideal one is sketched in Fig. 8.10. The non-ideal system is demonstrated in Fig. 8.10a.
The effect of the statistical noise of the electron density is eliminated by subtraction
of a fluctuation background, IFl , from the scattering pattern. After that the structure
(Fig. 8.10b) is still blurred. A smooth transition zone of thickness dz between the
domains is still present. In the scattering pattern this effect is causing an attenuation
of the intensity that is increasing with increasing scattering angle (RULAND [132,
140], VONK [134], STEIN [135]). Compensation of this attenuation results in the
scattering curve of the ideal two-phase system.
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Figure 8.10. The real two-phase system (a) and the transition into an ideal system (c) by
removal of the density fluctuation background, IFl , and of a transition layer of thickness dz

between the “hard” and the “soft” domains. The elongated white region indicates a void

Figure 8.11. POROD’s law (dashed line) after subtraction of the density fluctuation back-
ground IFl in the scattering curve of an isotropic polyethylene sample measured at a point-
focus X-ray beamline

Classical Evaluation of POROD’s Law. The practical evaluation of POROD’s
law in the most common case of an isotropic sample measured with point-focus is
demonstrated in Fig. 8.11. By variation of the fluctuation background a long and
linear “Porod region” can be received. Nevertheless, the line still shows a negative
slope (Fig. 8.11). RULAND’s theory of the systematic deviations from POROD’s law
[132] explains this finding.

The experimental data presented in Fig. 8.11 show typical noise. Even
if the signal-to-noise ratio in the “outskirts” of the scattering curve is
improved by experimental technique (e.g., measurement with a 2D de-
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Table 8.3. Classical Porod-law analysis of three kinds of scattering curves. Linearizing plots
and the values of intercept and slope

Scattering Symbol Plot Intercept Slope
isotropic I (s) ln

(
s4I (s)− IFl

)
vs. s2 AP

4
9 π2d2

z
2D projection J (s12) ln

(
s3
12J (s)−JFl

)
vs. s2

12
π
2 AP (e12) 4

9 π2d2
z (e12)

1D projection {I}1 (s3) ln
(
s2
3 {I}1 (s3)−{I}Fl

)
vs. s2

3 π AP (e3) 4
9 π2d2

z (e3)

tector and following azimuthal averaging), considerable noise is found
in the optimized plot after RULAND [132]51. The beginning of the
wide-angle scattering is, in general, clearly discernible (in the example
s2 > 0.2nm−2). In front of the WAXS the Porod region is found. The ap-
parent asymmetry of the noise in the swarm of data points is a result of
the transformed presentation ln

(
s4 (I (s)− IFl)

)
: negative deviations are

considerably magnified, whereas positive deviations are demagnified.
This distortion has to be considered as IFl is determined by choosing
the value that maximizes the length of POROD’s region. From the inter-
cept the Porod asymptote AP is determined (cf. Fig. 8.9). From the slope
of the dashed line the width dz of the transition zone is computed.

Table 8.3 summarizes the variants of classical Porod-law analysis. For isotropic scat-
tering curves and the most frequent projected curves from anisotropic scattering pat-
terns the plots that linearize the Porod region are indicated together with the quan-
tities that are related to the intercept and the slope of the retrieved line. It is good
practice to assess the interval of confidence of the determined parameters. For this
purpose the limiting values of the fluctuation background are determined at which
the Porod line clearly bends up and down, respectively. Determination of the respec-
tive dz values will give an interval of confidence. Unfortunately for the majority of
the analyzed data it turns out that dz cannot be determined with sufficient accuracy.

To specify the components of the scattering vector by s12 and s3 is only a sug-
gestion. The specification meets the case that is of highest practical importance
(anisotropy with fiber symmetry).

The 2D projection {I}2 (s12) = J (s12) in Table 8.3 is denoted by the symbol
J (s) – the classical notation of a “slit-smeared” scattering intensity (Kratky camera).
Instead of utilizing mathematics, the Kratky camera carries out the 2D projection by
means of the engineered slit-focus.

51As modern one- or two-dimensional detectors are used, every pixel of the detector is enforcedly re-
ceiving the same exposure (time). Only by means of an old-fashioned zero-dimensional detector the
scattering curve can be scanned in such a manner that every pixel receives the same number of counts
with the consequence that the statistical noise is constant at least in a linear plot of the SAXS curve.
The cost of this procedure is a recording time of one day per scattering curve.
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Figure 8.12. The structural entity “layer stack with infinite lateral extension” (left) results in
a 1D scattering intensity (right)

Determination of the Average Chord Length. The average chord length �p

can be determined even from scattering data that are not calibrated. For this purpose
AP is determined from POROD’s law in relative units and k is computed by integration
of the scattering curve. Finally �P is found from Eq. (8.43).

Inner Structure of the Porod-Law Exponent. In this paragraph it is demon-
strated that the Porod-law exponent is the product of the Fourier transform of the
Laplacian [26] edge enhancement operator (−4π2s2) and a solid-angle average. The
latter considers misorientation of the scattering entities. If the material is isotropic in
three dimensions, this solid-angle average is the LORENTZ factor (2πs2). For mate-
rials which show a scattering that is isotropic in two dimensions (slit-smeared inten-
sities {I}2 (s) = J (s)) the corresponding “LORENTZ factor” is πs. We will need this
relation when it comes to the visualization of nanostructure from scattering data.

Table 8.3 shows that there are Porod laws with exponents p =2, 3 and 4. The
exponent p =4 shows up in materials which are isotropic (in 3D space). If we project
such a scattering pattern to a plane, the corresponding slit-smeared intensity shows an
exponent p =3. The projected scattering pattern is isotropic as well – in the 2D plane
onto which it has been projected. Therefore any Porod law has an exponent of at
least p =2. The reason is that the scattering of an isotropic ideal multiphase material
with sharp edges is readily expressed in terms of the 2nd derivative of its radial
correlation function (MÉRING and TCHOUBAR [118, 141]). The derivative theorem
yields the factor −4π2s2 for the scattering intensity, if in real space an isotropic
second derivative or a non-isotropic Laplacian is applied (cf. Sect. 2.7.4).

To demonstrate the effect of misorientation or even isotropization let us con-
sider a structural entity52 which is a perfect lamellar stack. Figure 8.12 demonstrates

52A structural entity is a particle or an ensemble of arranged (i.e., correlated) particles that causes a
distinct scattering pattern upon irradiation. Sometimes we call a structural entity made from several
particles a cluster – not meaning that such particles are touching each other.
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Figure 8.13. Different kinds of fractals. (a) Surface fractal, (b) Mass fractal, (c) Pore fractal

the fundamental relation between the structure and the scattering intensity. For a
structural entity made from a stack of parallel, infinitely extended layers the related
scattering intensity is I1 (s3). Its restriction to the s3-axis follows from reciprocity
(Sect. 2.7.6). Many semicrystalline polymer materials are sufficiently represented
by such a layer stack model and its 1D intensity I1 (s3). If the material is isotropic,
I1 (s3) must be isotropized by solid-angle averaging in 3D, resulting in the observed
isotropic intensity, I (s). Reciprocally, the 1D intensity

I1 (s) = 2πs2 I (s) (8.44)

is obtained from the observed intensity simply by 3D LORENTZ correction. This
relation demonstrates how the LORENTZ factor is introduced in the Porod law. Only
for layer stacks does this simple relation hold between the isotropic material and the
scattering of the perfectly oriented structural entity.

8.3.3 SAXS: Fractal Structure

In general we describe structuring of materials by means of domains. Frequently
such domains are sufficiently smooth, and thus surface as well as volume and mass
are well-defined parameters. If in Sect. 8.3.2 we would have deduced POROD’s law
mathematically, we would have handled domain surfaces, shades and the lengths of
chords intersecting these domains (e.g., crystalline layers).

What happens, if the surface of the domains becomes increasingly roughened?
In this case the shape of the diffuse tail of the SAXS is, again, modified. According
to RULAND [140, 142] an additional diffuse background is emerging.

Not covered by RULAND’s theory is increased roughness exhibiting “foamed”
domain surfaces with the pore sizes varying over several orders of magnitude. Such
materials are treated in the field of fractals. Because the surface of a solid domain is
undergoing fractal roughening, the corresponding fractal is called a surface fractal
(Fig. 8.13a). The other well-known type of fractal is the mass fractal in which the
domain itself is porous, too. (Fig. 8.13b) Thus in a mass fractal both the solid and its
surface exhibit fractal geometry. Mass fractals may be the result of diffusion-limited
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aggregation. A new kind of fractal structure is the pore fractal [143]. It is the inverse
of a mass fractal: the space of solid void are interchanged. Thus in a pore fractal both
the pores and their surfaces are fractal (Fig. 8.13c).

Characteristic for a fractal structure is self-similarity. Similar to the mentioned
pores that cover “all magnitudes”, the general fractal is characterized by the property
that typical structuring elements are re-discovered on each scale of magnification.
Thus neither the surface of a surface fractal nor volume or surface of a mass fractal
can be specified absolutely. We thus leave the application-oriented fundament of
materials science. A so-called fractal dimension D becomes the only absolute global
parameter of the material.

The theory of fractals constitutes D by a power law

P(λ r) = λ D P(r) , (8.45)

which describes how the “property” P of the fractal (e.g., its surface) changes when
the characteristic scale r in the embedding space is dilated by a factor λ . The fact
that D is assumed to be independent of r is resulting in the abovementioned self-
similarity at all scales.

Experimentally accessible is D by means of scattering methods [144]. The cor-
responding fractal analysis of scattering data is gaining special attractivity from its
intriguing simplicity. In a double-logarithmic plot of I (s) vs. s the fractal dimension
is directly obtained from the slope of the linearized scattering curve. It follows from
the theory of fractals that

I (s) ∝ sν =
{

sD with 1 < D < 3 for mass fractals
s6−Ds with 2 < DS < 3 for surface fractals

, (8.46)

which means that for the diffuse scattering the observed exponent of decay, ν , is in
the range 1 < ν < 3 for mass fractals and 3 < ν < 4 in the case of surface fractals.
The case ν = 4 describes POROD’s law (Sect. 8.3.2) and corresponds to the classi-
cal Euclidean geometry with domains exhibiting smooth surfaces and sharp density
transitions (Ds = 2).

Figure 8.14 shows a sketch of the plot that is utilized for the purpose of fractal
analysis. For the theoretical fractal self-similarity holds for all orders of magnitude
– to be measured in units of space (r) or reciprocal space (s)53. In practice, a fractal
regime is limited by a superior cut and a lower cut54. In the sketch superior and lower
cut limit the fractal region to two orders of magnitude in which self-similarity may
be governing the materials structure.

Simply plotting raw diffuse scattering data in a double-logarithmic plot will,
most probably result the finding of a linear region [145] that can be interpreted as a
fractal. Unsubtracted machine background and fluctuation background will slow the
apparent decay of diffuse scattering. Moreover, fractals are possible candidates for

53It is unreasonable to assess the significance of a fractal structure by resorting to the number of magni-
tudes covered on the intensity scale.

54These quantities are also called inner and outer cutoffs.
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Figure 8.14. Sketch of diffuse scattering in the double-logarithmic plot that is used for the
determination of the fractal dimension. Superior and lower cut limit the fractal region that
should be followed by an interval in which POROD’s law is valid

multiple scattering (cf. Sect. 7.2). Thus a SAXS fractal analysis should always be ac-
companied by other methods that support the interpretation. Specialists in the fields
of both fractal analysis and of scattering theory [146, 147] claim that one should be
very cautious to label an object a fractal based on simplistic analysis of scattering
data in a double-logarithmic plot:

“The majority of the data that was interpreted in terms of fractality in the
surveyed Physical Review journals does not seem to be linked (at least
in an obvious way) to existing models and, in fact, does not have theo-
retical backing. Most of the data represent results from non-equilibrium
processes. The common situation is this: An experimentalist performs a
resolution analysis and finds a limited-range power law with a value of
D smaller than the embedding dimension. Without necessarily resorting
to special underlying mechanistic arguments, the experimentalist then
often chooses to label the object for which she or he finds this power
law a ’fractal’.” [146]

Nevertheless, fractal structure is an issue in porous materials.

8.4 General Evaluation by Integration of Scattering Data

8.4.1 Azimuthal Averaging of Isotropic Scattering Patterns

As 2D detectors are becoming the general standard, even isotropic scattering pat-
terns are frequently measured by means of such an advanced detector. In this case
the signal-to-noise ratio of the scattering curve can be increased by azimuthal av-
eraging. Azimuthal averaging means that for each chosen distance from the center
of the pattern all the valid pixels on a circular ring are picked. Their intensity is
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summed (integrated) and divided by the number of the valid pixels. By means of this
procedure the averaged scattering curve is obtained.

Application to anisotropic patterns for the purpose of “isotropization” is not rea-
sonable [148]. The operation can directly be performed by FIT2D( [39], Chap. 11).
If IDL or pv-wave shall be used, the library functions DIST() and SHIFT() make the
program run fast55. If the pedestrian solution of the algorithm is programmed (e.g.,
in Excel, Java, Pascal, C, . . . ) the square-root56 should not be drawn in order to avoid
further reduction of the program speed.

8.4.2 Isotropization of Anisotropic Scattering Patterns

Frequent malpractice is the application of the azimuthal averaging algorithm to
anisotropic scattering data for the purpose of isotropization. The result appears
isotropic, but the chosen integration is incorrect. Only in the case of low anisotropy
this procedure is permitted, because then the introduced error is kept small.

If azimuthal averaging is used for the purpose of isotropization, a geometric prob-
lem from the 3D world is taken for a 2D problem57. For the field of polymer science
the correct integration procedure has already been described in 1967 by DESPER and
STEIN [148].

In general, only a 2D scattering pattern will be available. In this case isotropiza-
tion can only be performed if the pattern shows fiber symmetry and the fiber axis
is contained in the scattering pattern. This symmetry axis must be known. Complete
is the available information under these conditions only if SAXS data are evaluated.
For WAXS data there are blind regions about the meridian (cf. Fig. 2.6 on p. 28), and
missing information must be completed either by extrapolation or by extra experi-
ments in which the sample is tilted with respect to the primary beam.

Completeness means that from the recorded data we have to be able to reconstruct
the scattering intensity for every point inside a sufficiently big volume of reciprocal
space.

Isotropization in the Case of Fiber Symmetry. If methods for the analysis
of isotropic data shall be applied to scattering patterns with uniaxial orientation, the
corresponding isotropic intensity must be computed. By carrying out this integration
(the solid-angle average in reciprocal space) the information content of the fiber
pattern is reduced. One should consider to apply an analysis of the longitudinal and
the transversal structure (cf. Sect. 8.4.3).

We start from a complete map I (s12,s3) and take into account that in 3D recip-
rocal space each pixel in this 2D map is representative for many pixels arranged on
(half58) a ring of iso-intensity. Frequently the sought isotropic analysis method is not

55As an example download my pv-wave programs and consult sf_azimavg.pro
56That is, do not compute the distance of a pixel from the center, but only square of the distance. This is

sufficient.
57Remember Plato’s “Allegory of the Cave”
58Each pixel represents two full rings, if we only consider the representative quadrant, I (s12,s3)for s12 >

0 and s3 > 0 – one above the equator and the other below it.
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based on the isotropic scattering intensity I (s), but on the “LORENTZ-corrected” or
“one-dimensional” intensity

I1 (s) = 2πs2I (s) , (8.47)

and the computation of this quantity is quite simple. Geometric consideration (cf. the
following paragraph “Spherical Average of a Fiber Pattern”) yields

I1 (s) = I1 (s3) = 2πs
∫ π/2

0
|s12| I (s12,s3) dφ . (8.48)

Equation (8.48) is easily converted into an algorithm: each column of the pattern is
multiplied by its distance from the fiber axis. After that the azimuthal integration is
carried out.

If I (s) instead of I1 (s) is required, Eq. (8.47) is applied. In reality the algorithm
is somewhat more complicated59, because the presence of invalid pixels must be
considered. For the solution of such problems methods and peculiar paradigms have
been devised in the field of digital image processing (cf. Sect. 2.9).

Spherical Average of a Fiber Pattern60. The spherical average of a general
intensity distribution I (s) in reciprocal space is

I (s) =
1

4π

∫ 2π

φ=0

∫ π

ψ=0
I (s) sinφdφdψ .

The vector s (|s| = s) can be expressed in Cartesian (s1,s2,s3) or polar (s,φ ,ψ)
coordinates with the polar angle61 φ and the azimuthal angle62 ψ . The customary
symbol θ should not be used for the polar angle in a treatise on scattering because of
a likelihood of confusion with the Bragg angle θ .

In case of a fiber structure, I (s) exhibits cylindrical symmetry I (s) = I (s,φ), and
because of the central symmetry I (s) = I (−s) one obtains

I (s) =
1
2

∫ π

0
I (s,φ) sinφdφ =

∫ π/2

0
I (s,φ) sinφdφ .

As an alternative I (s) = I (s12,s3) may be expressed in rectangular coordinates with

s3 denoting the principal axis and s12 =
√

s2
1 + s2

2 = s cosφ and s3 = s sinφ . Thus
the isotropized intensity is

I (s) =
1
s

∫ π/2

0
s12 I (s12,s3) dφ , (8.49)

and correspondingly the 1D intensity is

I1 (s) = 2πs2I (s) = 2πs
∫ π/2

0
s12 I (s12,s3) dφ . (8.50)

59As an example download my pv-wave programs and consult sf_fib2iso1.pro
60This paragraph is added on suggestion of W. Ruland
61φ is the angle between s and the s3-axis
62ψ is the angle between the projection of s on the (s1,s2)-plane and the s1-axis
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8.4.3 SAXS Projections

Motivation. In this section practical applications of projections in the field of
small-angle scattering are devised. Projections are useful to subdivide the com-
plex analysis of a scattering pattern. For example, the invariant separates the non-
topological structure parameters from the topology. As the classical method for the
determination of the invariant is only working with (isotropic) scattering curves, we
make a (one-dimensional) scattering curve from any pattern by projecting it. The
resulting curve can be subjected to the classical method. If we have measured a com-
plex fiber pattern, we can separate the topological information on the stacking of the
domains in fiber direction from the information that is describing how the domains
are arranged in the cross-section of the fiber.

In Sect. 2.7.2 the mathematical definition of a projection has been given. A pro-
jection is an operator which maps a multidimensional function on a subspace by
means of an integration.

Lately it has become fashionable to compute an arbitrary projection of the scat-
tering data, a so-called “sum of the WAXS” or “sum of the SAXS”. Variation of
the resulting number is then discussed in terms of structure variation. Such numbers
are computed by simply summing the intensity readings from every pixel of the de-
tector. Obviously this number cannot be related to structure and application of this
“method” reveals lack of basic analytical skills.

8.4.3.1 Scattering Power (Invariant)

The best-known projection in the field of scattering is the scattering power k; it is a
number. k is the total scattered intensity63

k = {I}0 =
∫

I (s)d3s. (8.51)

Mathematically spoken k is the zero-dimensional projection {I}0 of the scattering
intensity. After calibration to absolute units I (s) turns into I (s)/V – its scattering
power is known as POROD’s invariant

Q = k/V. (8.52)

In Q the non-topological structure parameters of the material’s nanostructure are
combined. For multiphase systems this fact can be deduced by application of the
Fourier-slice theorem and the considerations which lead to POROD’s law. In particu-
lar, for a two-phase system it follows64

63In many textbooks and papers the scattering power is addressed as the second moment of the isotropic
scattering curve. Even though this statement is formally almost correct, it is nevertheless misleading.
The multiplication by 2πs2 that comes into play in the case of isotropic scattering is not related to
the formulation of moments of a 1D function. Instead, it is the result of the integration of an isotropic
function in 3D space.

64The mathematical structure of Q reflects Babinet’s theorem, i.e., the fact that the scattering of inverted
structures are identical.
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Figure 8.15. The invariant as a function of the composition of a two-phase material. Between
30 and 70 vol.-% the scattering power is almost constant. The regions 0 - 30 vol.-% and 70
-100 vol.-% exhibit almost linear relations

Q = (ρ2 −ρ1)
2 v(1− v) (8.53)

k = (ρ2 −ρ1)
2 v(1− v) V (8.54)

with ρ1 and ρ2 being the electron densities of the two phases, and v the volume
fraction of one of the phases65. (ρ2 −ρ1) is the contrast between the two phases.

Thus for an ideal two-phase system the total calibrated intensity that is scattered
into the reciprocal space is the product of the square of the contrast between the
phases and the product of the volume fractions of the phases, v1 (1− v1) = v1v2.
v1v2 is the composition parameter66 of a two-phase system which is accessible in
SAXS experiments. The total intensity of the photons scattered into space is thus
independent from the arrangement and the shapes of the particles in the material
(i.e., the topology). Moreover, Eq. (8.54) shows that “in the raw data” the intensity
is as well proportional to the irradiated volume. From this fact a technical procedure
to adjust the intensity that falls on the detector is readily established. If, for example,
we do not receive a number of counts that is sufficient for good counting statistics,
we may open the slits or increase the thickness of a thin sample.

If we know that in our two-phase material the volume fraction of one fraction is
between 30 and 70%, then the term v(1− v)≈ 0.23 is constant to a first approxima-
tion (cf. Fig. 8.15). If in this case during the experiment a considerable change of the
invariant is observed, it is probably caused by a variation of the contrast67. If, on the
other hand, the contrast is known to be constant and nanostructure is evolving from
a homogeneous phase, the initial increase of the scattering power is proportional to
the change of the materials composition.

65Because v1 and v2 are interchangeable, the index is frequently omitted.
66It should be clear that contrast and composition are by no means related to each other. Melting is

changing only the composition parameter. Different thermal expansion of crystallites and amorphous
matrix is (almost) only changing the contrast.

67If we can exclude a change of the irradiated volume by viscous flow of the material.
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In many cases the consideration of only two phases is sufficient, because ac-
cording to Eq. (8.53) the scattering power is a function of the square of the contrast
between two phases. This means that the scattering from a small contrast between a
second and a third phase is frequently negligible. For those cases in which three or
more phases have to be considered, the corresponding equations have been reported
by JÁNOSI [138, 149].

From experimental SAXS data of isotropic materials Q is determined by means
of Eq. (7.25) (cf. p. 91). An interactive computer program (e.g., TOPAS) is very
helpful, because several manual steps are involved.

• First the Porod law and its parameters must be determined (cf. Fig. 8.11,
p. 124). We need to know IFl , AP and the end of POROD’s region (in the ex-
ample of Fig. 8.11 we have smax = 0.2 nm−1).

• Second there is a region close to the primary beam where in the integrand68

no valid data are available. In this region data must be extrapolated. For (old-
fashioned) slit-focus cameras this is quite simple, because the corresponding
integrand (∝ sJ (s)) is increasing linearly from the origin – or, in the case of
a lamellar system with one-dimensional density fluctuations from a positive
intensity value [70, 150]. For point-focus setup the extrapolation may require
a parabolic extrapolation.

• Finally the integration is carried out numerically up to smax. The additional
term AP/smax in Eq. (7.25) considers the rest of the integral from smax to infin-
ity. It results from the integration of the analytical continuation (Eq. 7.26 on
p. 91) of the SAXS intensity by POROD’s law.

The invariant is computed and discussed in many SAXS investigations. There are
some studies in which absolute values are determined. Small void fractions in solid
materials, the amount of phase separation, or the distribution of plasticizer in a two-
phase material can be determined this way. More studies compute relative scattering
powers only and monitor materials during processing, most frequently during heat-
ing, cooling, or as a function of time after quenching (melting and crystallization).

In practice, the invariant can be used for the purpose of calibration to
absolute scattering intensity by means of samples for which the absolute
invariant can easily be computed. For this purpose colloidal suspensions
of noble metals with known volume concentration are suitable [96]. All
the noble metal particles must be small enough so that they really con-
tribute to the observed particle scattering. They must not agglomerate.
The raw scattering curve Iraw (s) is recorded and reduced to Ired (s) by (1)
normalizing to the flux of the primary beam, (2) dividing by the thick-
ness of the sample (cuvette) (assuming that the slits will not be changed
after this calibration measurement), (3) carrying out the absorption cor-
rection. Then the scattering power is computed

68The integrand is proportional to the dashed curve (s2I (s)) in Fig. 8.7 on p. 117
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kred,noble = 2π
∫ smax

0
s2Ired,noble (s)ds+

AP

smax

numerically. Because the electron densities of the solvent (temperature
dependence?) and the noble metal are known as well as the volume69

concentration of the noble metal, the invariant Qnoble can be computed
by means of Eq. (8.53).

Finally, calibration of an unknown scattering pattern is carried out by
(1) reducing the intensity in the same way as was done with the scatter-
ing of the noble metal sol, (2) obtaining the absolute intensity by

Isample (s)
V

=
Qnoble

kred,noble
Ired,sample (s) .

We notice that anisotropic scattering patterns can be calibrated to abso-
lute intensity, as well.

With increasing temperature the contrast [151, 152] is, in general, increasing, be-
cause the thermal expansion coefficient of the soft (amorphous) phase is generally
higher than that of the hard (crystalline) phase.

If the scattering power of an anisotropic material shall be determined, it is con-
venient to first project the scattering pattern

I (s) →{I}1 (si)

on a line, the direction of which (si) may chosen deliberately. Completeness of I (s)
is required. This procedure reduces the 3D problem to the evaluation of a scatter-
ing curve. The principle of further treatment follows the aforementioned method for
isotropic data and Table 8.3. More details are given in the following section.

8.4.3.2 1D Projections

While the zero-dimensional projection is only a number, the 1D projection is a curve
which can still be evaluated after the projecting integration has been carried out. This
means in practice that the evaluation of background and Porod region can be carried
out later on the curve {I}1 (si).

The general definition of a projection has been given on p. 23 in Eq. (2.37).
For the purpose of illustration let us write down an example. If s = (si,s j,sk) is a
representation of the scattering vector in orthogonal Cartesian coordinates, then the
aforementioned 1D projection is

{I}1 (si) =
∫∫ ∞

−∞
I (si,s j,sk) ds j dsk. (8.55)

Applied to scattering data we encounter the same numerical problems as in the
isotropic case: we have to extrapolate inward into the center as well as outward to-
wards infinity. We can avoid the outward extrapolation, if at the outer border of the

69Remember to convert weight concentration to volume concentration
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Figure 8.16. Demonstration of projections in a fiber diagram. In a projection “on the s3-axis”,
intensity is integrated over horizontal planes. In a projection “on the s12-plane”, intensity is
integrated along the vertical lines

sensitive detector area the intensity is low enough. The inward extrapolation has to be
carried out before starting the numerical integration. For the purpose of such multi-
dimensional extrapolation the radial basis function method has been developed [36].
The corresponding function RADBE is found in the IMSL-library of pv-wave.

Particularly useful in materials science is a special 1D projection: the projection
of a fiber pattern on the fiber axis, s3

{I}1 (s3) = 2π
∫ ∞

0
s12 I (s12,s3)ds12. (8.56)

In order to demonstrate completeness of a SAXS fiber pattern in the 3D reciprocal
space, it is visualized in Fig. 8.16. The sketch shows a recorded 2D SAXS fiber
pattern and how it, in fact, fills the reciprocal space by rotation about the fiber axis
s3. Let us demonstrate the projection of Eq. (8.56) in the sketch. It is equivalent to,
first, integrating horizontal planes in Fig. 8.16 and, second, plotting the computed
number at the point where each plane intersects the s3-axis.

Any 1D projection of a SAXS pattern contains specific one-dimensional infor-
mation on the nanostructure70 of the material. Therefore {I}1 (si) is called the one-
dimensional scattering intensity in the direction of si.

Let us, first, discard the topological information and only determine the scat-
tering power k. For this purpose we utilize Table 8.3 and find that the classical

70For a multiphase structure this information is made from both some direction-dependent topological
information, and the non-topological information that is collapsed in the scattering power.
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Figure 8.17. The topological information on the structure of a multiphase system that is related
to one-dimensional projections {I}1 (si) in different directions. The demonstration shows two
directions indicated by arrows and the related chords. From {I}1 (si) the distributions of the
chord segments between domain edges are retrieved. Long periods are indicated by broken
lines

Porod analysis is carried out in a plot ln
(
s2

i {I}1 (si)−{I}Fl

)
vs. s2

i . We find the
number {I}Fl by trial-and-error and are satisfied when the linear region becomes
longest. We determine the intercept ÃP1 = π AP and the end of the Porod region,
smax (cf. Fig. 8.11). Now we can carry out the numerical integration, again add the
remainder term (ÃP1/smax) from the analytical continuation, and obtain

k = 2

[∫ smax

0
{I}1 (si) dsi +

ÃP1

smax

]
(8.57)

for the unnormalized invariant. If we considered projections to different directions,
we would find that the parameters ÃP1 (ei) = π AP (ei), smax (ei) and {I}Fl (ei) are
functions of the projection direction.

The topological information contained in a chosen one-dimensional projection of
the scattering intensity is demonstrated in Fig. 8.17. By choosing a direction in the
fiber pattern, the respective direction in the materials structure is selected (indicated
by a double arrow in Fig. 8.17). Now we imagine a bundle of chords penetrating the
multiphase structure in the selected direction. The domain edges cut these chords
into segments, and the distributions of all possible segment lengths are generating
{I}1 (si). Not only single segments are contributing, but also combinations of adja-
cent segments. Broken lines in the sketch indicate some combined segment lengths
that are contributing to the average long period.

Of particular practical value for studies of fibers is {I}1 (s3) (the intensity pro-
jected on the direction of the fiber axis, s3). It measures the average domain ex-
tensions and their arrangement in fiber direction. The information contained in this
intensity describes the longitudinal structure after BONART [16]. In order to demon-
strate the chord distributions related to the longitudinal structure we may imagine
that one of the directions indicated in Fig. 8.17 were the fiber axis.
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From experimental data we would like to visualize the segment length distri-
butions – in order both to gain some imagination of the type71 of the distribution
– and in order to understand the arrangement of the domains in the material. This
visualization is achieved by computation of

• the chord length distribution (CLD) for general isotropic materials (Sect. 8.5.3)

• the interface distribution function (IDF) for 1D projections and the 1D scatter-
ing intensity of materials with a structure built from lamellae (Sect. 8.5.4)

• The multidimensional chord distribution function (CDF) for oriented materials
(in particular useful for the study of materials with uniaxial orientation, i.e.,
fibers) (Sect. 8.5.5)

We notice that the 1D projections are perfect candidates for structure modeling by
1D models: arrange sticks in a row! For this purpose define stick-length distributions
and the law of their arrangement. Fit such models to the measured scattering data
(Sect. 8.7).

8.4.3.3 2D Projections

A well-known device that performs a 2D projection of the scattering pattern is the
Kratky camera. By integrating the intensity along the direction of the focus slit, it
is collapsing the SAXS intensity on the plane that is normal to the slit direction. In
general, 2D projections collapse the measured complete intensity not on a line, but on
a plane. As in the case of the 1D projections, the orientation of this plane can freely
be chosen. The result of such a projection {I}2 (s j,sk) is not a curve as was the case
with the 1D projection, but a 2D scattering pattern. Only in the case of 2D isotropy

(i.e., {I}2

(
s jk
)

with s jk =
√

s2
j + s2

k) the scattering pattern can be represented by a
curve.

Such 2D isotropy is fulfilled in the case which is of the highest practical value.
Here the 2D projection

{I}2 (s12) = 2
∫ ∞

0
I (s12,s3) ds3 (8.58)

describes BONART’s [16] transversal structure of a fiber – the arrangement of domain
cross-sections in the fiber cross-section. Figure 8.18 demonstrates the structure. In
analogy to the 1D projections, chords can be imagined to penetrate the representative
cross-section “in the plane”. They become segmented by the circular domain cross-
sections. Finally the segment length distributions generate {I}2 (s12).

8.5 Visualization of Domain Topology from SAXS Data

After we have discussed the composition parameters of the SAXS of a multiphase
material, we now start with the investigation of the topology. The most simple ac-
cess to the arrangement of domains in the material is the discussion of long period

71Are the distributions Gaussians, Lorentzians, or even more complex?
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Figure 8.18. Transversal structure of a fiber. The topological information on the structure of
a fiber that is related to the 2D projection {I}2 (s12) contains structure information from the
representative cross-sectional plane (r1,r2) of the fiber. Size distribution and arrangement of
the domain cross-sections are revealed

peaks (cf. Sect. 8.2.6). The next level of analysis is visualization of topology. Only
for nearly monodisperse or highly oriented materials we should skip this step and
directly proceed to a modeling of the structure and fitting of the scattering data72. As
we have just learned, topology information is only a part of the information buried
in a SAXS pattern. So before topology can be visualized, the respective information
must be extracted from the scattering pattern.

8.5.1 Extraction of the Topological Information

For the scattering of an isotropic material we already know the result of the sepa-
ration and a method to obtain it: the result is the scattering of the ideal multiphase
system as sketched on p. 123 in Fig. 8.9. A way to obtain the result is the classical
Porod-law analysis (Sect. 8.3.2).

The fundamental problem of the classical method is the fact that there is no
viable73 procedure to extend it to the scattering of anisotropic materials. Moreover,
the required manual processing is cumbersome, slow and may yield biased results.

The Interference Function. The function sketched in Fig. 8.9 can be under-
stood as spIid (s), the intensity of the ideal multiphase system multiplied by a power

72The background for this advice is explained in the discussion of Fig. 8.35, p. 162.
73Conceded – we can successively project anisotropic data to different directions, carry out the manual

procedure for each direction, and, finally recombine the curves. But even if we replace the manual
procedure by an automated one, the combination of curves turns out to be not contiguous: There is no
smooth surface anymore.
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p of the modulus of the scattering vector. In the example p = 4 compensates the
decay of the Porod law. The scattering intensity of the ideal multiphase system is
readily obtained by dividing the result of the Porod-law analysis by sp. Iid (s) is the
starting point for nanostructure visualization by means of the correlation function
(cf. Sect. 8.5.2). By a small modification we obtain a well-behaved function

G1 (s) = spIid (s)−Ap, (8.59)

as it is vanishing in the limit

lim
s→∞

G1 (s) = 0.

Equation (8.59) defines the 1D interference function of a layer stack material. G1 (s)
is one-dimensional, because p has been chosen in such a way that it extinguishes
the decay of the Porod law. Its application is restricted to a layer system, because
misorientation has been extinguished by LORENTZ correction. If the intensity were
isotropic but the scattering entities were no layer stacks, one would first project
the isotropic intensity on a line and then proceed with a Porod analysis based on
p = 2. For the computation of multidimensional anisotropic interference functions
one would choose p = 2 in any case, and misorientation would be kept in the state
as it is found. If one did not intend to keep the state of misorientation, one would
first desmear the anisotropic scattering data from the orientation distribution of the
scattering entities (Sect. 9.7).

The addressed types of interference functions are the starting point for the eval-
uations described in Sects. 8.5.3-8.5.5.

Automated Extraction of Interference Functions. For the classical syn-
thetic polymer materials it is, in general, possible to strip the interference func-
tion from the scattering data by an algorithm that does not require user interven-
tion. Quantitative information on the non-topological parameters is lost (STRIBECK

[26,153]). The method is particularly useful if extensive data sets from time-resolved
experiments of nanostructure evolution must be processed. Background ideas and
references are presented in the sequel.

Concerning the notions on the deviations of the real structure from an ideal mul-
tiphase topology, a survey shows that all models are resulting in slowly varying back-
grounds of the scattering pattern. On the other hand, noise originating from counting
statistics is displaying high-frequency deviations of the measured signal from the
smooth shape of the scattering. If we are investigating polydisperse soft materials,
the observed reflections are broad, i.e., they do not contain high spatial frequencies.
Under these conditions the extraction of the topological information can be consid-
ered a problem of signal processing. The power spectrum of the measured SAXS
data shows three distinct bands: backgrounds are in the low spatial frequencies, in
the high spatial frequencies there is only noise (because of lacking long-range or-
der) – and the spatial frequency band of polydisperse topology is in between. Thus
background can be removed from the scattering pattern by spatial frequency filtering
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Figure 8.19. Extraction of the scattering of an ideal two-phase structure from the raw scatter-
ing data of an isotropic UHMWPE material by means of spatial frequency filtering

returning an interference function G f (s) ≈ mG(s) with m < 1 being an unknown
factor that describes some loss in the filter, and G(s) the true interference function.

We observe that this method works for data of any dimensionality. Figure 8.19
demonstrates the extraction of the interference function for the case of an isotropic
ultra-high molecular-weight polyethylene material. From the raw data (filled circles)
a constant fluctuation background estimate74 cFl is subtracted in order to ease the
task of the filter. The background obtained by low-pass filtering is the dashed line.
After subtraction of the background and multiplication by the “Cosine-bell function”
(Hanning filter) [26, 153, 154] the interference function (solid line) is received75.

It is clear that this procedure can be iterated. Iteration successively improves the
“balance” of the interference function – and theory says that

∫
G(s) ds = 0 should

be perfectly balanced if the domain surfaces (e.g., the surfaces of the crystalline
lamellae) are smooth. Thus we can interpret iterative spatial frequency filtering as a
method to remove the effect of a rough phase boundary. Inevitably this goes along
with the extinction of the scattering effect of small domains (e.g., small crystallites).
Therefore, removing roughness by iterative spatial frequency filtering is only a last
resort for those few materials with very rough [155] domain boundary.

74See p. 118, Fig. 8.8 and the corresponding comparison of soft matter and metals: Subtract 90% of the
intensity minimum.

75Assistance of how to choose and to write the low pass filter, the use of the Hanning filter, etc., can be
found in textbooks of digital image processing or in the “Reference Guide” of pv-wave. A command
(#FILTINT) to carry out spatial frequency filtering of scattering curves is part of my program TOPAS.
If fiber patterns shall be evaluated, a pv-wave procedure sf_interfer does the main job. Both examples
are available as source codes (cf. p. 29).
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8.5.2 1D Correlation Function Analysis

The easiest way to get some impression of the structure behind our scattering data
without resorting to models is the computation and interpretation of a correlation
function. We will mainly discuss the 1D correlation function, γ1 (r3), because any
slice of an anisotropic correlation function is a one-dimensional correlation func-
tion. Moreover, γ1 (r3), is readily describing the topology of certain frequent struc-
tural entities (stacks made from layers and microfibrils). There is an advantage of the
correlation function analysis as compared to “long period interpretation”. The anal-
ysis of the correlation function permits to determine the average domain thicknesses
(for example the thicknesses of crystalline and amorphous layers). The principal
disadvantage of the correlation function is the fact that polydispersity is not prop-
erly reflected in the correlation function [2]. This means that the statistics of domain
thickness variation is very difficult to study from a correlation function. In particular,
for the latter purpose it is more appropriate to carry out an analysis of the IDF or of
the CDF.

1D Structural Entities. In materials science, structural entities which can satis-
factorily be represented by layer stacks are ubiquitous. In the field of polymers they
have been known for a long time [156]. Similar is the microfibrillar [157] structure.
Compared to the microfibrils, the layer stacks are distinguished by the large lateral
extension of their constituting domains. Both entities share the property that their
two-phase structure is predominantly described by a 1D density function, ∆ρ (r3),
which is varying along the principal axis, r3, of the structural entity.

1D Intensity. As already mentioned (cf. p. 126 and Fig. 8.12), the isotropic scat-
tering of a layer-stack structure is easily “desmeared” from the random orientation
of its entities by LORENTZ correction (Eq. 8.44). For materials with microfibril-
lar structure this is more difficult. Fortunately microfibrils are, in general, found in
highly oriented fiber materials where they are oriented in fiber direction. In this case
the one-dimensional intensity in fiber direction,

I1 (s3) = 2π
∫ ∞

0
s12 I (s12,s3) ds12,

can directly be interpreted as the 1D intensity of the microfibrils along their principal
axis. By projecting we loose the information on the thickness of the microfibrillar
strands and on possible lateral correlations among them.

Warning. For isotropic materials the 1D projection {I}1 and the
LORENTZ correction yield different 1D intensities. Both are related by

I1 (s) = 2πs2 I (s) = −s
d
ds

[{I}1 (s)] . (8.60)

Model functions for the 1D intensity have early been developed [128, 158] and fit-
ted to scattering data. The classical model-free structure visualization goes back to
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Figure 8.20. Generation of a 1D correlation function, γ1 (x), by autocorrelation of the 1D
electron density, ∆ρ (y) for a two-phase topology. Each value of γ1 (x) is proportional to the
overlap integral (total shaded area) of the density and its displaced ghost

VONK [159, 160] and describes the structure by the 1D correlation function γ1 (r3)
in physical space.

Computation of a 1D Correlation Function. Each one-dimensional correla-
tion function, �γ�1 (x) or γ1 (x) (with x = r3)

�γ�1 (x) =
2
k

∫ ∞

0
{I}1 (s) cos(2πxs) ds (8.61)

γ1 (x) =
2
k

∫ ∞

0
I1 (s) cos(2πxs) ds (8.62)

=
4π
k

∫ ∞

0
s2 I (s) cos(2πxs) ds (8.63)

is computed from its 1D intensity, {I}1 (s) or I1 (s), by a one-dimensional Fourier
transform. Equation (8.63) is valid76 for the isotropic scattering of a lamellar multi-
phase system.

Numerically the correlation function is easily computed, after either a classical
POROD-law analysis has been carried out (Sect. 8.3.2), or the interference function
has been obtained by spatial frequency filtering (p. 140). For the purpose of extend-
ing the integral we may write an adapted Fourier-transformation algorithm which
explicitly utilizes the analytical continuation according to POROD’s law, or we may
use the continuation for the generation of additional grid points and employ the dis-
crete fast Fourier transformation (DFFT) algorithm [154, 161].

Figure 8.20 demonstrates the generation of γ1 (x) by displacement of the 1D elec-
tron density77, ∆ρ (y), with respect to its ghost, ∆ρ (y + x), along the stack axis y.
The direction x in the sketch is identical to the direction of the stack normal, r3, in
Fig. 8.12 on p. 126. The sketch depicts a displacement x that is still so small that each
domain is only correlated to itself (shaded areas). At such a position x we are still in

76The presented result is different from the radial correlation function γ (r) =
4π
∫

s2 I (s)(sin (2πrs)/2πrs) ds, which is computed from the isotropic scattering intensity by
means of the three-dimensional Fourier transform.

77For the sake of simplified presentation here, it is assumed that there are only few scattering entities in a
sea of matrix material, and the average 〈ρ〉V ≈ ρ1 is close to the density of the matrix phase
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Figure 8.21. Features of a 1D correlation function, γ1 (x/L̄) for perfect and disordered topolo-
gies. L̄ is the number-average distance of the domains from each other (i.e., long period).
Dotted: Perfect lattice. Dashed and solid lines: Paracrystalline stacks with increasing disor-
der. a = −vl1/

(
1−vl1

)
with 0 < vl1 ≤ 0.5 is a measure of the linear volume “crystallinity” in

the material, which is either vl1 or 1−vl1

the region of linear decay of the correlation function, i.e., in the so-called “autocorre-
lation triangle”. The typical shape of such a correlation function for topologies with
varying amount of disorder is sketched in Fig. 8.21. Obviously, the autocorrelation
triangle of the ideal lattice (dotted curve) is not preserved in paracrystalline stacks
of higher polydispersity. Thus, a simple linear extrapolation (“linear regression au-
tocorrelation triangle”, LRAT [162]) will only yield reliable information concerning
the properties of the idealized lattice from the real data, if the polydispersity remains
rather low.

Analysis of the 1D Correlation Function. Several publications describe the
search for a simple graphical analysis [22,159,162–164] of the 1D correlation func-
tion by means of a geometrical construction. It is the drawback of all such methods
that polydispersity and heterogeneity are not considered. The methods are derived
from the general generation principle of correlation functions (Fig. 8.20), resulting
in equations (cf. Eqs. (8.23), (8.70) and (8.64)) for the first off-origin maximum, the
depth of the first minimum or the initial slope γ ′id (0) of ideal correlation functions.
For the simplified case of a lamellar system we obtain

γ1,id (x) = 1− 1
�p1

|x|+ . . . (8.64)

with �p1 being the average chord length of the one-dimensional ideal two-phase
topology with

1
�p1

=
1

d̄1
+

1

d̄2
, (8.65)
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d̄1 the average layer thickness of the first of the two kinds78 of lamellae, and d̄2 re-
lated to the second kind of layers. L̄ = d̄1 + d̄2 is called the average79 long period.
Without loss of generality we may restrict further discussion to linear crystallini-
ties80

vl =
d̄1

L̄
(8.66)

with vl ≤ 0.5. The crystallinity is called “linear” in order to distinguish it from the
overall volume crystallinity in the sample, because vl does not account for the pres-
ence of extended domains (of matrix material) outside the scattering entities. From
Eqs. (8.64) and (8.65) we obtain for the zero of the initial slope of the ideal correla-
tion function

x0 =
d̄1d̄2

d̄1 + d̄2

= vl (1− vl) L̄. (8.67)

Figure 8.21 shows model functions both for ideal and realistic cases. The dotted
curve demonstrates the case of the ideal and infinitely extended 1D lattice. Here
every time the ghost is displaced by an integer multiple of the lattice constant (x/L =
1, 2, 3, . . .), the correlation returns to the ideal value 1. For the 1D lattice not only x0,
but also the valley depths

γ1,min = a = − vl

1− vl
(8.68)

are related to the composition81, vl (1− vl), of the material (see also p. 133, Fig. 8.15).
The common graphical evaluation methods try to transfer these features of the ideal
correlation function of an ideal lattice to real correlation functions of polydisperse
soft matter that are computed from experimental data. The valley-depth method has
first been devised by VONK [159]: whenever a flat minimum is found in a real cor-
relation function, the distortion is weak and the linear crystallinity can significantly
be determined from the properly normalized correlation function by application of
Eq. (8.68).

In practice, the observed distortion is frequently strong. Thus, the correlation-
function minimum is not flat. This is demonstrated in most of the dashed and
solid curves in Fig. 8.21. They show model correlation functions of the paracrys-
talline stacking model with varying amount of disorder. Computation82 is based on
Eq. (8.104), p. 180.

78For instance the “amorphous”, “hard”, “crystalline”, . . .
79Speaking of averages and denoting symbols by an overbar already means a generalization for distorted

structures which will be discussed later.
80Again, “crystallinity” may be replaced by “hard phase fraction”, “soft phase fraction”, or whatever

designation applies better to the material that is studied.
81Conceded – Eq. (8.68) violates Babinet’s theorem. Nevertheless, it is valid for v1 ≤ 0.5 and can easily

be remembered, whereas the correct equation is somewhat more involved.
82It is convenient to set AP1 = 1, L̄ = d̄1 + d̄2 = 1. Rounding errors are suppressed by replacing the

intensity by 1/s2 (POROD’s law) for big arguments (s > 8). A smooth phase transition zone (in all

the example curves: dz = 0.1) is considered by multiplication with exp
(
−(2πsdz/3)2

)
. From this

one-dimensional scattering intensity the correlation function is obtained by Fourier transformation.
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Figure 8.21 shows functions of the distorted topologies that are not pointed at
the origin, and γ1 (0) < 1. The reason is that the presented model is not an ideal
two-phase system, because it considers smooth transitions of the electron density
between the “crystalline” and the “amorphous” layers.

In practice, even a more severe damping of the correlation function close
to the origin is frequently accepted in order to compute the correlation
function with little effort of evaluation [159]: POROD’s law is not eval-
uated (cf. p. 124, Fig. 8.11), and thus the Fourier integral cannot be
extended to infinity. Instead, the position smin in the scattering curve is
determined at which the SAXS intensity is lowest. This level is sub-
tracted, and the integral is only extended up to smin.

The case of low distortion is shown in the dashed-dotted-dotted curve from Fig. 8.21.
The first minimum still reaches the ideal valley depth. Therefore it is still possible to
determine the linear composition of the material from Eq. (8.68).

Let us discuss the first off-origin maximum of γ1 (x/L̄). For the ideal lattice and
weakly distorted materials the maximum is found at the position of the number-
average long period, L̄, i.e. at x/L̄ = 1. This is not the case for structures that are
distorted more severely. Thus a long period, L̄app, determined from the position of the
first maximum in γ1 (x) is only an apparent one, and it is always overestimated [130].
An overestimation of 20% (L̄app ≈ 1.2 L̄) is not unusual.

The First-Zero Method of Correlation Function Analysis. For the pur-
pose of a practical graphical evaluation of the linear crystallinity, Eq. (8.67) can be
applied to a renormalized correlation function γ1 (x/L̄app). The method which has
been proposed by Goderis et al. [162] is based on the implicit assumption that the
first zero, x0, of the real correlation function is shifted by the same factor as is the
position of its first maximum, L̄app.

The idea is already described in the first paper of VONK and KORTLEVE ([159],
p. 22) as a method to retrieve fit parameters. In their second paper ([160], p. 128) the
authors state that inaccurate values are returned, if the found linear crystallinity is
between 0.35 and 0.65.

The general inferiority of geometrical construction methods [162, 163] as com-
pared to more involved methods which consider polydispersity has first been demon-
strated by SANTA CRUZ et al. [130], and later in many model calculations by CRIST

[165–167]. Nevertheless, in particular the first-zero method is frequently used. Thus,
it appears important to assess its advantages as well as its limits. Validation can be
carried out by graphical evaluation of model correlation functions [130, 165].

If the statistical model of a paracrystalline stack is assumed, it turns out that
the renormalization attenuates the influence of polydispersity on the position of the
first zero. In general, the first-zero method is more reliable than the valley-depth
method, although it is not perfect. Even the first-zero method is overestimating the
value of vl . The deviation is smaller than 0.05, if the found crystallinity is smaller
than 0.35. If bigger crystallinities are found, the significance of the determination is
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Figure 8.22. Testing the first-zero method for the determination of the linear crystallinity,
vl , from the linear correlation function, γ1

(
x/L̄app

)
with L̄app being the position of the first

maximum in γ1 (x) (not shown here - but cf. Fig. 8.21). Model tested: Paracrystalline stacking
statistics with Gaussian thickness distributions. The interval of forbidden zeroes is shown. An
additional horizontal non-linear axis permits to determine the linear crystallinity directly. A
corresponding vertical axis shows the variation of the classical “valley-depth method”

rapidly breaking down, and an individual demonstration of the error of determina-
tion becomes essential. In practice, insignificance can no longer be overlooked, if
Eq. (8.69) applied to measured data does not return real solutions (“forbidden ze-
roes” in Fig. 8.22).

If the initial part of the correlation function exhibits significant deviations from a
straight line, the proposers of the first-zero method recommend to carry out a linear
regression (LRAT) [162] on the autocorrelation triangle. The problem of doing so
is demonstrated in Fig. 8.21 and its discussion. Moreover, if the initial part of the
correlation function does not only show a monotonous decay but discrete features,
this is a strong indication of a topology that is not only polydisperse, but also hetero-
geneous83. In this case, a graphical correlation function analysis of isotropic data is
of little significance anyway, and the study of uniaxially oriented material is recom-
mended. Analysis may be performed by means of the CDF method (cf. Sect 8.5.5). If
a low-noise scattering curve from isotropic material is at hand, it may be possible to
separate components of a heterogeneous nanostructure by means of the IDF method
(cf. Sect. 8.5.4) combined with model fits.

The first-zero method starts from the ideal lattice and Eq. (8.67). For the purpose
of evaluation of scattering curves from polydisperse soft matter the ideal long period,
L̄, is replaced by L̄app, i.e. the validity of γ1 (vl (1− vl) L̄app) = 0 is assumed. Because
of the fact that the zero of a function is determined, not even a normalization of γ1 (x)
is required [162]. Figure 8.22 displays the model data of Fig. 8.21 after the method-
inherent renormalization x → x/L̄app. Comparison with Fig. 8.21 shows that now

83No infinitely extended layers, several components with different topology (e.g. primary and secondary
lamellar stacks)
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the zeroes of the correlation functions with varying polydispersity are found close
to the correct value x0/L̄app = 0.21 = 0.3(1−0.3). Vice versa, a good estimate for
the linear crystallinity is obtained from the pair of roots which solve the quadratic
relation x0

L̄app
= vlc (1− vlc). (8.69)

If other statistical models of polydispersity should prove more appropriate than the
paracrystalline stack, validations of the first-zero method may be carried out in anal-
ogy to the one presented here.

For anisotropic scattering patterns and the multidimensional case VONK ( [168]
and [22], p. 302) has proposed to utilize a multidimensional correlation function. It
is not frequently applied.

8.5.3 Isotropic Chord Length Distributions (CLD)

The isotropic chord length distribution (CLD) is of limited practical value if soft
matter with only short-range order is studied. Nevertheless, the related notions have
been fruitful for the development of new methods for topology visualization from
SAXS data.

Related Notions. Not only the 1D correlation function, but also the general 3D
correlation function starts with a linear decay, and its series expansion

γ (r) = 1− |r|
�p

+ . . . . (8.70)

was already given by POROD [18]. �p is the average chord length that has already
been introduced on p. 112 in Eq. (8.23). Starting from this relation MÉRING and
TCHOUBAR [118, 141, 169, 170] have derived that even the distributions of the in-
dividual segment lengths can be visualized by evaluation of an isotropic scattering
pattern. They make use of the derivation theorem (p. 23, Eq. 2.39) applied to delib-
erate slicing directions of the structure and apply it twice. The two derivatives are
distributed on each of the factors of the autocorrelation, ∆ρ∗2 (r), and an ideal edge
enhancement is accomplished. The result shows that the second radial derivative of
the radial correlation function

γ ′′ (r) =
1
�p

(−2δ (r)+ g(r)+ g(−r)) (8.71)

is formed by two images of a chord length distribution (CLD), g(r) and a δ -
distribution at the origin (Fig. 8.23). The CLD is made from an infinite series of seg-
ment distributions that starts with the homo-segment distributions, �1 (r) and �2 (r),
for the domains of phase 1 and 2, respectively84, followed by the di-segment distri-
butions of the long periods, −2�12 (r), and further out by the multi-segment distri-
butions which describe the long-range arrangement of the particles in the material.

84Shape and size of the domains make these distributions.
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Figure 8.23. The chord length distributions g(r) and g(−r) found in the 2nd derivative γ ′′ (r)
of the radial correlation function. The example shows g(r) of a suspension of 10 wt.-% of
silica (reproduced from a handout of DENISE TCHOUBAR)

Figure 8.24. Demonstration of the edge-enhancement principle built into the chord length
distribution. (a) Two-phase structure intersected by a straight line. (b) The density along the
line. (c) The derivative of the density is a sequence of δ -functions which are marking the
positions of the domain edges

In the sketch taken from a handout of TCHOUBAR the distributions �1 (r) and �2 (r)
are separated extraordinarily well.

The relation between structure and the chord distributions is readily established
from considerations of topological density functions along a straight line travers-
ing the material (Fig. 8.24). In Fig. 8.24a the respective sequence of chords is indi-
cated. Figure 8.24b is a sketch of the corresponding density function, ρ (x). Its first
derivative, ρ ′ (x) (Fig. 8.24c), is nothing but a sequence of δ -functions put at the
positions of the domain edges. Thus the edges are enhanced, and the autocorrelation
−ρ ′ (x)� ρ ′ (−x) = gp (x) is the partial CLD for the chosen special path through the
topology.

For a general, isotropic and condensed multiphase material with short-range or-
der, the CLD offers the best possible model-free visualization of the nanostructure.
Nevertheless, the image does not show many details because of the inherent solid-
angle average.
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8.5.4 1D Interface Distribution Functions (IDF)

Opportunities and Limits. If we intend to obtain a clearer look on nanostruc-
ture than the one the CLD is able to offer, we can try to get rid of the orientation
smearing – either by considering materials with a special topology (layer stacks), or
by studying anisotropic materials.

If the scattering entities in our material are stacks of layers with infinite lateral
extension, Eq. (8.47) is applicable. This means that we can continue to investigate
isotropic materials, and nevertheless unwrap the 1D intensity of the layer stack.
To this function RULAND applies the edge-enhancement principle of MÉRING and
TCHOUBAR (cf. Sect. 8.5.3) and receives the interface distribution function (IDF),
g1 (x). Ruland discusses isotropic [66] and anisotropic [67] lamellar topologies.

For a layer-stack material like polyethylene or other semicrystalline polymers the
IDF presents clear hints on the shape of the layer thickness distributions, the range
of order, and the complexity of the stacking topology. Based on these findings in-
appropriate models for the arrangement of the layers can be excluded. Finally the
remaining suitable models can be formulated and tested by trying to fit the experi-
mental data.

As pointed out by STRIBECK [139, 171] g1 (x) is, as well, suitable for the study
of oriented microfibrillar structures and, generally, for the study of 1D slices in delib-
erately chosen directions of the correlation function. This follows from the Fourier-
slice theorem and its impact on structure determination in anisotropic materials, as
discussed in a fundamental paper by BONART [16].

In practical application to common isotropic polymer materials the IDF fre-
quently exhibits very broad distributions of domain thicknesses. At the same time
fits of the IDF curve to the well-known models for the arrangement of domains (cf.
Sect. 8.7) are not satisfactory, indicating that the existing nanostructure is more com-
plex. In this case one may either fit a more complex model85 on the expense of
significance, or one may switch to the study of anisotropic materials and display
their nanostructure in a multidimensional representation, the multidimensional CDF.
Complex domain topology is more clearly displayed in the CDF than in the IDF. The
CDF method is presented in Sect. 8.5.5.

Definition. The interface distribution function

g1 (x) = −
(

d ρ1 (x)
dx

)�2

= −k γ ′′1 (x) (8.72)

is proportional to the 2nd derivative of the related 1D correlation function, γ1 (r) (cf.
Sect. 8.5.2).

Computation. g1 (x) is computed from any 1D scattering intensity, e.g. I1 (s3)

85A more complex model can be constructed from two components or a special sequence of (thick and
thin) layers.
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Figure 8.25. The features of a primitive interface distribution function, g1 (x). The IDF is
built from domain thickness distributions, ha (x) and hc (x), followed by the distribution of
long periods, hL (x), and higher multi-thickness distributions

g1 (x) = −F1

(
4πs2

3 I1 (s3)− lim
s3→∞

4πs2
3 I1 (s3)

)
(8.73)

= −F1 (G1 (s3)) (8.74)

by 1D Fourier transform. It is permitted to replace I1 (s3) by any86 1D projection
{I}1 (si) of a deliberate scattering pattern. The function which is subjected to the
Fourier transform is identified as a 1D interference function, G1 (s3) (cf. page 140,
Eq. 8.59).

Interpretation. Similar to the CLD, g(r) (constructed from a series of segment
distributions), the IDF, g1 (x) is a series of thickness distributions, hi (x). While the
CLD lumps together all the segments that penetrate a domain in any deliberate direc-
tion, the IDF is more selective. Here a specific direction is chosen. Two examples: x
is the coordinate in the direction of the principal axis of the scattering entities; r3 is
the coordinate in fiber direction.

Thus, in the special case of a layer stack morphology, g1 (x) is a series of thick-
ness distributions (cf. Fig. 8.25). The series starts from the thickness distributions of
“amorphous” and “crystalline” layers, ha (x) and hc (x), respectively. It is continued
by the distributions of aggregates of adjacent layers, the first being an aggregate of
one amorphous and one crystalline layer. The corresponding di-thickness distribu-
tion, hL (x) = hac (x)+hca (x) = 2hac (x) shows up with negative sign and represents
the long periods. Thereafter we have the tri-thickness distributions haca (x), hcac (x),
and the following multi-thickness distributions.

Let us consider the other example. In an anisotropic material we select the fiber
axis, r3, project the intensity on this direction and compute an IDF. Then the meaning
of the thickness distributions is quite similar as in the aforementioned example. Let
us identify the first thickness distribution, hh (r3), by a distribution of hard-domain
thicknesses. Then the next thickness distribution, hs (r3), is the thickness distribution

86That is, the direction of the projection may be chosen deliberately.
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of the soft material in between, and the long period distribution is hL (r3) = hhs (r3)+
hsr (r3) = 2hhs (r3).

As we proceed from distribution to distribution within the series of thickness dis-
tributions, we observe that the functions are growing broader and broader. Moreover,
their sign is alternating87, and in a material with short-range order the IDF is already
vanishing for relatively small values of x, r3 or another chosen direction.

This observation is expected from theory, as the observed thickness distributions
are exactly the functions by which one-dimensional short-range order is theoreti-
cally described in early literature models (ZERNIKE and PRINS [116]; J. J. HER-
MANS [128]). From the transformed experimental data we can determine, whether
the principal thickness distributions are symmetrical or asymmetrical, whether they
should be modeled by Gaussians, gamma distributions, truncated exponentials, or
other analytical functions. Finally only a model that describes the arrangement of
domains is missing – i.e., how the higher thickness distributions are computed from
two principal thickness distributions (cf. Sect. 8.7). Experimental data are fitted by
means of such models. Unsuitable models are sorted out by insufficient quality of the
fit. Fit quality is assessed by means of the tools of nonlinear regression (Chap. 11).

Warning. g1 (0) ≥ 0 must hold. If in an experimentally determined
curve g(0) or g1 (0) becomes strongly negative, there is a shortcoming
in the pre-evaluation of the data. Probably the error originates from in-
correct absorption correction or from errors in a manual evaluation of
the Porod region. If a manual “deconvolution” of g1 (x) is carried out,
the areas of the peaks must conform to a zero-sum rule (cf. p. 158),
and the centers of gravity of the peaks must conform to the obvious law
of addition (e.g., d̄c + d̄a = L̄ for the average crystalline thickness, the
amorphous thickness and the long period). These constraints are not eas-
ily maintained manually, but can be programmed into a model function
with little effort. Thus the constraints aggravate a manual evaluation of
the IDF, but assist the deconvolution if methods of nonlinear regression
are applied: even for rather diffuse IDFs unique deconvolutions can be
found, if the type of the thickness distributions and the statistical model
(Sect. 8.7) of domain arrangement is known. If distribution type and sta-
tistical model are varied, the results of the fits are discriminated by the
quality of the match.

8.5.5 Anisotropic Chord Distribution Functions (CDF)

8.5.5.1 Definition

The anisotropic multidimensional chord distribution (CDF) is an advancement of
the IDF which is adapted to the study of highly anisotropic materials. CLD, IDF,
and CDF are all based on the edge-enhancement principle devised by MÉRING and

87A negative long-period peak is always accompanied by two positive satellite peaks with each half the
area (simplified zero-sum rule). Remember the alternating signs of the δ -functions in Fig. 8.24 and
have a look at p. 158.
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Figure 8.26. A particle–ghost autocorrelation of gradient vectors is generating the CDF. The
vectors are emanating in normal direction from the surfaces of the particle and its ghost. The
ghost is displaced by the vector r. The dashed arrow points at the position r′, at which a
contribution to the CDF is generated. It originates from the scalar product of the two gradient
vectors drawn in bold

TCHOUBAR. For the application to anisotropic scattering patterns STRIBECK [26]
has extended this principle to a space of deliberate dimensionality. Available tech-
nology constricts its practical use to the scattering of materials with fiber symmetry,
and the fiber-symmetrical CDF

z(r12,r3) = (∇ρ (r12,r3))
�2 = k ∆γ (r12,r3) (8.75)

is closely related to VONK’s multidimensional correlation function , γ (r12,r3) ( [168]
and [22], p. 302). One could think of synthesizing the CDF from a complete set of
IDFs according to RULAND [66], but a viable algorithm for this path has not yet been
found.

In space the 1D derivative d/dx is replaced by the gradient ∇, as is the second
derivative d2/dx2 by the Laplacian ∆ [26]. In analogy to the particle-ghost construc-
tion of the correlation function (cf. Figs. 2.4 and 8.24) the construction of the CDF
can readily be demonstrated (Fig. 8.26). In a multiphase material the gradient field
∇ρ (r) is vanishing almost everywhere. Exceptions are the domain surfaces. They
are densely populated with gradient vectors, the lengths of which are proportional to
the heights of the density jumps.

8.5.5.2 Computation of the CDF for Materials with Fiber Symmetry

CDFs are computed from scattering data which are anisotropic and complete in re-
ciprocal space. Thus the minimum requirement is a 2D SAXS pattern of a material
with fiber symmetry taken in normal transmission geometry (cf. p. 37, Fig. 4.1).
Required pre-evaluation of the image is described in Chap. 7.
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Figure 8.27. Steps preceding the computation of a CDF with fiber symmetry from recorded
raw data: The image is projected on the fiber plane, the equivalent of the Laplacian in real
space is applied, the background is determined by low-pass filtering. After background sub-
traction the interference function is received

Transformation of the Pre-evaluated Image. The image I (s12,s3) is pro-
jected on the representative plane (s1,s3) of the fiber scattering88

{I}2 (s1,s3) = 2
∫ ∞

0
I

(√
s2

1 + s2
2,s3

)
ds2. (8.76)

By means of this procedure our problem is not only reduced from three to two di-
mensions, but also is the statistical noise in the scattering data considerably reduced.
Multiplication by −4πs2 is equivalent to the 2D Laplacian89 in physical space. It
is applied for the purpose of edge enhancement. Thereafter the 2D background is
eliminated by spatial frequency filtering, and an interference function G(s12,s3) is
finally received. The process is demonstrated in Fig. 8.27. 2D Fourier transform of
the interference function

z(r12,r3) = −F2 (G(s12,s3)) (8.77)

finally yields the CDF, z(r12,r3).

8.5.5.3 Relation Between a CDF and IDFs

Every radial, 1D slice through the center of a CDF

88The reason for this projection is that we are interested in the study of slices γ (r1,r3) =
1
k F2 ({I}2 (s1,s3)) in real space. So we must project in reciprocal space in order to reduce the fiber-
symmetrical problem from three to two dimensions.

89Conceded – there is the alternative to apply a 3D Laplacian, but the corresponding procedure turns out
not to be as stable as the 2D Laplacian when applied to experimental data.
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�z�1

(
rψ,ϕ
)

= g1
(
rψ,ϕ
)

is an IDF by definition. In the equation the slicing direction is indicated by a polar
and an azimuthal angle, ψ and ϕ , respectively. Of particular practical interest for the
study of fibers is the cut of the CDF along the fiber axis,

�z�1 (r3) = z(0,r3) = g1 (r3) ,

which describes the longitudinal structure of the material (cf. Sect. 8.4.3.2). In anal-
ogous manner the transversal structure (cf. Sect. 8.4.3.3) of the fiber is described by
the slice

�z�2 (r12) = z(0,r12) = g2 (r12)

of the CDF. A typical CDF of a highly oriented semicrystalline polymer material
is shown in Fig. 8.28. Viewed from the top the domain peaks are visible, whereas
viewing a CDF from the bottom shows the long periods peaking out.

8.5.5.4 How to Interpret a CDF

A CDF is interpreted in the same way as a CLD or an IDF. All these functions exhibit
the probability distributions of domain size and arrangement. Clearer than a CLD is
the IDF, because it does not contain an orientation average but exhibits the topology
in a selected direction. Clearer than an IDF is the CDF, because it visualizes the
nanodomain topology in space, i.e., in more than one direction.

Uncorrelated Particles: Only Positive CDF Peaks. Let us consider the sim-
ple example of identical, highly oriented cylinders which are randomly distributed in
the material. Figure 8.29 demonstrates the scheme for the construction of the CDF
assuming that the cylinder axis is parallel to the fiber axis. Two strong peaks on the
meridian with almost triangular shape are characteristic for the cylinder. The signal
height at a position r (i.e., at the position of the “glass rod” on the front peak in
the sketch) is proportional to the area of contact between the cylinder and its dis-
placed ghost. The basis length of the triangle is twice the diameter of the cylinder.
The thickness of the triangle in meridional direction reflects the polydispersity of
cylinder heights in the material. In addition, two weak diameter peaks are observed
crossing the equator of the CDF. They are formed as the ghost is passing along the
side of the particle.

The results of these considerations are readily extended from cylinders to lamel-
lae: in the latter case the strong triangular peaks are wider, but closer to each other.

Arrangement of Particles and the Corresponding Peaks. If a CDF shows
only positive peaks, the particles in the material are distributed at random90. There is
no arrangement. Growing correlations are indicated by one or more triplets of peaks

90The reverse is only true for particles whose shape is convex, i.e., if the particles do not contain holes or
indentations.



156 8 Interpretation of Scattering Patterns

Figure 8.28. Demonstration of a CDF. Data recorded during non-isothermal oriented crystal-
lization of polyethylene at 117◦C. Surface plots show the same CDF: (a) Linear scale viewed
from the top. (b) Linear scale viewed from the bottom. (c) Viewed from the top, logarithmic
scale. Indicated are the determination of the most probable layer thickness, lt , and of the max-
imum layer extension, le. (d) Viewed from the bottom, logarithmic scale. The IDF in fiber
direction is indicated by a light line in (a) and (b) (Source: [56])

which do not change the integral of the CDF [172]. Let us demonstrate this general
zero-sum game of growing correlation in one dimension by consideration of the IDF
(Fig. 8.30). For every particle added to the structural entity, three additional peaks
are observed. Their integral is zero91.

From a practical point of view the sign of a peak in CLD, IDF, or CDF is de-
scribed by the character of surface contact between particle and ghost92: if they con-
tact each other in the normal way, the peak is positive; it is negative if they penetrate
each other at the considered surface. Thus, positive peaks describe the size of par-

91I came across the zero-sum rule of correlation when I started to program models for structure fitting.
Structure models which violate the zero-sum rule cannot be fitted to experimental data. Their conver-
gence is poor.

92Up to now we have only discussed the correlation of a particle with its own ghost. In general, arrange-
ment means that correlations between a particle and ghosts of other particles from the same phase are
not extinguished by random annihilation.
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Figure 8.29. A particle-ghost displacement-principle governs the relation between structure
and CDF. The height of the CDF signal is proportional to the area of contact between the
particle and its ghost. A bold arrow in the base plane indicates the meridian (fiber direction)

ticles or super-particles. Negative peaks describe the space that is controlled by a
particle or a super-particle from the structural entity. If the topology is addressed as
a lattice, negative peaks show up at every repeat of the lattice constant (long period).
If no long periods are detected, the structure describes an ensemble of uncorrelated
particles. Every CDF analysis starts from such considerations.

8.5.5.5 Semi-quantitative CDF Analysis. An Example

The Material of the Example. Poly(ether ester) (PEE) materials are thermo-
plastic elastomers. Fibers made from this class of multiblock copolymers are com-
mercially available as Sympatex R©. Axle sleeves for automotive applications or gas-
kets are traded as Arnitel R© or Hytrel R©. Polyether blocks form the soft phase (ma-
trix). The polyester forms the hard domains which provide physical cross-linking of
the chains. This nanostructure is the reason for the rubbery nature of the material.

Synopsis of Experiment and Results. The material is irradiated during
straining and relaxation. The example shows that a nanostructure which is hard to
interpret from a series of scattering patterns may clearly reveal its complex domain
structure after transformation to the CDF. Different structural entities are identified
which respond each in a different way on mechanical load. The shape of the basic
particles is identified (cylinders). The arrangement of the cylinders is determined.
Thus the semi-quantitative analysis of the CDF provides the information necessary
for the selection and definition of a suitable complex model which is required for a



158 8 Interpretation of Scattering Patterns

Figure 8.30. From particles to complex scattering entities in the IDF, the CDF or the CLD by
growing correlation: An ensemble of uncorrelated particles exhibits only one homo-segment
distribution (e.g., hc (x) representing crystallites). As next-neighbor correlations are growing,
three segment distributions are added. The integral of this triplet is zero. Growing range of
correlation adds further triplets

Figure 8.31. Fiber scattering of PEE 1000/43: (a) at an elongation ε = 0.88; (b) during re-
laxation from ε = 0.88. The fiber direction is indicated by a double-arrow. Visualized region:
−0.15nm-1 ≤ s12, s3 ≤ 0.15nm-1. ε = (l − l0)/l0, with l0 and l defined by the initial and the
actual distance between two fiducial marks on the sample

complete quantitative analysis93. Even without a complete analysis mechanisms of
structure evolution can be detected, if SAXS measurements are carried out in situ
during processing by application of load (thermal, mechanical, . . . ).

Figure 8.31 shows central sections of two original SAXS patterns of PEE 1000/4394

in strained and relaxed state. In the strained state (Fig. 8.31a) a “6-point-diagram”
is detected. During relaxation (Fig. 8.31b) a well-separated “4-point-diagram” is ob-
served. Interpretation of the patterns is restricted to description and speculation.

93In 3D a quantitative analysis still appears to be hopelessly laborious because of the complexity of
the problem. On the other hand, a 1D quantitative analysis of only the longitudinal structure can be
mastered (cf. Sect. 8.7).

94PEE’s are commonly characterized by two numbers (e.g., 1500/50). The first number reports the
minimum quantization of the polyether blocks (meaning “the polyether blocks are multiples of
1500 g/mol”), the second number indicates the mass fraction of the polyester hard phase (e.g., 50 wt.-%
of polyester).
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Figure 8.32. PEE 1000/43 at ε = 0.88. CDF z(r). The domain peaks are pointing upwards:
(h) cylinder-height peaks; (d) cylinder-diameter peaks; (c) inter-domain correlation peaks.
Displayed region: |r12, r3| ≤40 nm

In an original paper [173] the longitudinal structure has been studied quantita-
tively as a function of elongation. In a follow-up study [174] the 3D CDF has been
computed and analyzed. Figure 8.32 shows the 3D CDF with fiber symmetry com-
puted from the scattering pattern in Fig. 8.31. The straining direction r3 is indicated
by the long arrow in the basic plane. The observer is facing the domain peaks. Close
to the origin the strong peaks on the meridian (h) mark the correlation between oppo-
site faces of the basic domains. Two equatorial peaks (d) indicate the diameter of the
domains. Because the height-to-diameter ratio is greater than 1, the basic domains
can be approximated by cylinders. Four correlation peaks (c) are observed in an
oblique angle with respect to the fiber axis. They indicate arrangement of domains.
Their position shows that the closest neighbors of a cylinder are not found in strain-
ing direction, which would be indicative of a microfibrillar arrangement. Instead, the
cylinders form a cluster with 3D short-range correlation. Such structural entities have
been called a macrolattice by WILKE [175, 176]. The discussed peaks carry positive
sign, because they describe chords that reach from the front face of a cylinder to the
back face of a neighboring domain. The corresponding long periods show up as in-
dentations observed at a shorter distance from the center, as they are measured “from
front to front” of the domains. They are more easily observed after the CDF has been
turned upside-down (Fig. 8.33). Obviously the long periods in fiber direction (a) are
less pronounced than the long periods in oblique direction (b). Moreover, the CDF
shows that the topology does not contain long-ranging correlations among domains.
In fiber direction there is a long period of 25 nm (a), but already the size of the
domain behind it can no longer be determined. On the other hand, the arrangement
of domains in oblique direction (b) shows better correlation: here not only the long
period, but also the size of the cylinder behind it can be determined (Fig. 8.32, (c)).
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Figure 8.33. CDF −z(r) of PEE 1000/43 at ε = 0.88. The long-period peaks are pointing
upward: (a) long period to the next neighbor in straining direction; (b) stronger long period to
the closest neighbor (in oblique direction)

During the beamtime another scattering pattern has been exposed after unloading
the material. The respective CDF is shown in Fig. 8.34. Compared with the data
from the strained state, the positions of the oblique long periods do not move (b).
This finding indicates that the central cylinders are surrounded by domains which
are rigidly coupled to them. In the scattering pattern such a structural entity is not
easily discriminated from the 4-point diagram of a stack of inclined lamellae. In this
respect the CDF is much clearer.

How should such rigid domain coupling work? In principle domains
can only be rigidly coupled by a bridge of hard-phase material which
has a different density. We know that the polyester hard-phase is semi-
crystalline. So the observation is indicative for a structure in which
the hard domains are subdivided into crystalline and amorphous zones.
Thus a quantitative model of the structure would probably require to
consider a third phase (three-phase system).

Finally we can compare the nanostructure in fiber direction after unloading with
the nanostructure observed under mechanical load. The most striking variation is
related to the strong long period (a), which is relaxing to half the value found in the
elongated state. In addition to the strong long period, only in the unloaded material
another long period is found (a′), for which even the 2nd order is visible. Thus the
corresponding structural entities are built from domains with already a considerable
range of correlation which are arranged along the straining direction. This is just
the topological definition of a microfibril [157]. As the material becomes strained,
the softer matter between the domains is elongated by different amounts and the
longitudinal correlation gets lost. Thus the semi-quantitative analysis of the CDF
returns a detailed view on the nanostructure evolution under load. More examples of
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Figure 8.34. −z(r) for PEE 1000/43 recorded during relaxation of the material from a first
elongation to ε = 0.88. (a) strongest long-period in straining direction (13 nm) (dashed arrows
with white head indicate the old positions of these peaks under strain); (a′): the best-correlated
long-period in fiber direction (17 nm), because it shows a 2nd order; (b) oblique long period
that is immovable in the straining experiment

the CDF method can be found in a growing number of original studies [56, 57, 177–
186].

8.6 Biopolymers: Isotropic Scattering of Identical
Uncorrelated Particles

Overview. Considerable research activities in the fields of isotropic SAXS and
small-angle neutron scattering (SANS) are devoted to the investigation of ensembles
of uncorrelated but identical or almost identical complex particles. Frequently these
particles are studied in solution. Samples for such investigations must be supplied in
a solution in which the particles do not aggregate.

The majority of the research is focused on colloidal and biological materials.
In several textbooks [86, 101, 136, 187] the related methods are elaborated. Recent
developments are considered in a review of SVERGUN and KOCH [188].

Classical Analysis. The classical analytical methods are even applicable for
polydisperse samples and rest on the CLD (Sect. 8.5.3) and on VONK’s [189] dis-
tance distribution function (DDF) ( [189–191]; [101] p. 168)

p(r) = r2 γ (r) . (8.78)

Figure 8.35 shows for homogeneous identical spheres the radial correlation function
(GUINIER and FOURNET [65] p. 12-19; LETCHER and SCHMIDT [192])
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Figure 8.35. The homogeneous sphere of radius R. Radial correlation function, γs (r), distance
distribution function (DDF) ps (r) and chord length distribution (CLD) gs (r)

γs (r) = 1− 3
4

( r
R

)
+

1
16

( r
R

)3
, (8.79)

the DDF, ps (r), and the CLD [20] gs (r) = −�p γ ′′s (r) . All these functions are re-
stricted to the interval 0 < r/R ≤ 2. Their support is finite. We observe that in ps (r)
the maximum extension of the particle is visualized much clearer than in γs (r). ps (r)
is positive everywhere, because the sphere is homogeneous and convex.

Finite support of γ (r), p(r), and g(r) is characteristic for a structure made from
uncorrelated particles. Thus the related scattering curve is bandlimited (cf. p. 25).
For analysis this property is advantageously utilized.

gs (r) exhibits a discontinuity at r = 2R. Such discontinuities must be expected
both for monodisperse structure of identical particles or for almost perfectly arranged
structure. As a consequence, the reconstruction of gs (r) from experimental data re-
quires extreme accuracy both during measurement and during data pre-evaluation
(BURGER and RULAND [20]). The discontinuity problem diminishes the practical
value of structure visualization methods (Sect. 8.5) in the fields of biological materi-
als and of highly ordered nanostructures (Sect. 8.8).

Ab-Initio Methods for Shape Reconstruction of Identical Particles. On
the next level of analysis the generality is restricted to problems from the field of
life sciences. In this case the dissolved particles (enzymes, proteins) are identical, in
general. It is the aim to reconstruct the shape of the single particle from the isotropic
SAXS curve. Uniqueness of a found solution cannot be guaranteed – in particular if a
compact particle shape is returned, the ambiguity is rather high. If the reconstruction
yields elongated or open particles, the significance is higher. The value of the method
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is highest if the result of the analysis shows that a previously proposed (protein)
structure does not match the observed SAXS curve.

For any method of structure reconstruction by ab-initio methods additional as-
sumptions must be made. The multipole expansion95 method of HARRISON, STUHR-
MANN, and SVERGUN ([86], Sect. 5.3; [101], Chap. 6) assumes homogeneous inter-
nal density. The shape of the scattering curve is fitted by varying the envelope of the
particle.

More powerful are the finite-element methods. Here the shape sought-after is
approximated by an agglomerate of many small elements. Different elementary bod-
ies are utilized. Beads (i.e., small spheres) are easily handled, because their form
factor does not change upon solid-angle average [193] and the DDF is readily es-
tablished (GLATTER in [101], p. 160, SVERGUN [194]). A modern finite-element
method has been developed for the study of proteins (SVERGUN [194, 195]): the
“Dummy Residues Method” represents each amino acid residue by a spherical bead
of homogeneous and identical density. The selectivity of the method is founded on
built-in knowledge concerning the chemical structure of all proteins: the distance
between two amino acid residues is 0.38nm.

A programming package PRIMUS for the evaluation of isotropic SAXS patterns
is offered by SVERGUN [196]. Although the focus is on biopolymers, it can also
evaluate general particle scattering.

Power and Limits of the SAXS Methods. This field of SAXS is in compe-
tition with the field of protein crystallography. The spatial resolution of the SAXS
method is limited (> 0.5 nm), whereas structures determined by protein crystallogra-
phy are exact up to fractions of Ångstrøms. On the other hand, the protein crystal-
lography is unable to study “living” proteins under almost physiological conditions.
Moreover, kinetic processes can be monitored by SAXS but cannot be studied by
means of protein crystallography.

If mixtures and assemblies of different kinds of particles are studied, a shape re-
construction is no longer possible from a study of isotropic SAXS in solution [188].

8.7 Quantitative Analysis of Multiphase Topology from
SAXS Data

The quantitative analysis of a multiphase topology comprises the formulation of
structure models and the fitting of measured data. Fitting is discussed in Chap. 11.
In this section the setup of topological models is discussed. The problem arises from
the fact that most structural models of particle correlation are anisotropic and the
visualization of structure in anisotropic materials by means of the CDF shows that
suitable models must be rather complex. Thus a direct fit of anisotropic data would
require fitting of a measured 3D or 2D function by a complex model. Both the effort
to setup such models, and the computational effort to fit the data are very high.

95The multipole expansion is defined on p. 194 in Eq. (9.3).
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As a way out it could be considered to record and to fit isotropic scattering
data, but for strongly polydisperse materials this is not a good solution, because
then a complex structural model must be fitted to scattering data that are, addition-
ally, blurred by solid angle averaging yielding low-significance results. Nevertheless,
there is a promising strategy, if anisotropic data are available. Instead of a multidi-
mensional analysis, an interesting aspect of the topology can be extracted by means
of 1D projection (cf. Sect. 8.4.3.2), and the corresponding 1D problem can be fitted
more easily. Even a 2D projection may be suitable (example in Sect. 8.7.1.2). For
this purpose one- and two-dimensional models with increasing complexity must be
constructed.

8.7.1 Models for Uncorrelated Polydisperse Particles

8.7.1.1 Polydisperse Layers and 1D Particles

Let us consider the last stage of melting of a semicrystalline polymer. It is frequently
postulated that in this stage only few single, uncorrelated crystalline lamellae should
be found. In principle this postulate can directly be tested by inspection of the IDF
(for isotropic materials) or of the CDF (for highly oriented materials). If such a trans-
formation shall be avoided, one may fit a model function directly to the scattering
intensity, which is taken for the particle scattering of an ensemble of lamellae. Al-
though not frequently done, one should consider polydispersity and not assume that
all the layers show the same thickness.

For an ensemble of uncorrelated 1D particles (cylinders, layers) with a Gaus-
sian96 particle thickness distribution the 1D scattering intensity is [197]

I1 (s3) =
AP1

s2
3

(
1− cos

(
2π d̄cs3

)
exp
(−2π2σ2

c s2
3

))
. (8.80)

Here d̄c is the average thickness and σ2
c is the variance of the particle thickness distri-

bution modeled by a Gaussian. AP1 is the 1D Porod asymptote (cf. p. 125, Table 8.3).
The particle thickness distribution considers polydispersity (cf. Chap. 1).

If the structural entities are lamellae, Eq. (8.80) describes an ensemble of per-
fectly oriented but uncorrelated layers. Inversion of the LORENTZ correction yields
the scattering curve of the isotropic material I (s) = I1 (s)/

(
2πs2

)
. On the other hand,

a scattering pattern of highly oriented lamellae or cylinders is readily converted into
the 1D scattering intensity {I}1 (s3) by 1D projection onto the fiber direction (p. 136,
Eq. (8.56)). The model for the 1D intensity, Eq. (8.80), has three parameters: AP1 , d̄c,
and σc. For the nonlinear regression it is important to transform to a parameter set
with little parameter-parameter correlation: AP1 , d̄c, and σc/d̄c. When applied to raw
scattering data, additionally the deviation of the real from the ideal two-phase system
must be considered in an extended model function (cf. p. 124).

With respect to the IDF

96For a generalization cf. p. 180, Eq. (8.105)
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g1 (r3) =
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(8.81)

the model function is simply the Gaussian particle thickness distribution showing up
both on the positive and on the negative branch of the r3-axis.

We have chosen Gaussian thickness distributions, because structure visualiza-
tion by means of IDF or CDF exhibits thickness distributions that frequently look
very similar to Gaussians97. The presented relations for the 1D intensity and the IDF
are the basic relations for many 1D structure models, comprising the general anal-
ysis of materials made from layers, highly oriented microfibrillar materials, and the
direction-dependent analysis of anisotropic materials.

8.7.1.2 Uncorrelated Particles in 2D: Fibril Diameters in Fibers

Experiment and Problem. An equatorial streak in a highly oriented fiber pat-
tern indicates rod-shaped structural entities oriented with their axes parallel to the
fiber direction. Such entities may be microfibrils, added nucleating agents98, needle-
shaped voids [198, 199], or needle-shaped crystals (“shish”). Figure 8.36 shows the
pseudo color representation of such a scattering image. It has been recorded during
straining of a poly(ether ester). A blind central spot has been filled by 2D extrapola-
tion. There is little discrete scattering along the ridge of the streak.

Complications and Their Solution

Imperfect Orientation. If the streak were fanned out (cf. p. 202,
Fig. 9.6), the orientation smearing must first be extinguished (Sect. 9.7)
before the scattering of the perfectly oriented structural entities is re-
trieved.

Distribution of Rod Lengths. If the distribution of rod lengths
shall be studied, the smearing of the equatorial streak by the primary
beam profile must be eliminated99. After that the 1D scattering intensity
is computed by means of Eq. (8.56) and fitted to the respective 1D model
(e.g., Eq. (8.80)) from Sect. 8.7.1.1. Be careful. The rods may, in fact,
not be stretched out perfectly but only resemble long “worms” instead.
In this case the determined rod length is not the true length but only

97Sometimes the distributions look asymmetrical. In this case it is possible to switch from Gaussians to
the Mellin convolution of two Gaussians [125]. The Gaussian has the shortcoming that broad Gaus-
sians (σc/d̄c > 0.3, cf. p. 20) predict negative domain thicknesses. For practical application this has
no consequences, because the autocorrelation principle reflected in the central-symmetry of Eq. (8.81)
implicates that only the modulus of the domain thickness is accounted for. Nevertheless, the overflow
of the distribution tail changes the effective shape of the function. To avoid this shortcoming, one may,
for example, switch from Gaussians to gamma distributions (cf. p. 180).

98Many industrial semi-crystalline polymer materials like polypropylene, polyamides, or polyesters con-
tain nucleating agents or clarifiers which form needle-shaped aggregates already in the polymer melt.

99For this purpose the pattern is desmeared using the measured primary beam. For a less involved treat-
ment it may be sufficient to know the integral width of the primary beam profile in fiber direction.
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Figure 8.36. SAXS pattern of a thermoplastic elastomer during straining. The thin horizontal
line in the center is called an equatorial streak. In this case it is well-separated from the long-
period peaks above and below

the persistence length of the worms, and the polydispersity parameter
describes the width of the persistence-length distribution.

2D Streak Analysis. The rod scattering from the equatorial streak, IR (s), is ex-
tracted from the scattering pattern [200] and projected

{IR}2 (s12) =
∫ ∞

−∞
IR (s) ds3 (8.82)

on the cross-sectional plane of the fiber. As already discussed (p. 139), this scattering
curve contains the information on the transversal structure of the fiber as sketched
in Fig. 8.18. The sketch shows the structure in 3D. We have projected the scattering
data, thus the resulting curve describes – in the averaged fiber cross-section – the size
distribution of the rod cross-sections and their mutual correlation. For low correlation
such a 2D structure has been named a hard-disc fluid (COHEN and THOMAS [201]).

Is this an Uncorrelated Hard-Disc Fluid? In order to answer
this question we compute a 2D CLD and test, whether the function is
positive everywhere. In this case the equatorial streak can be considered
pure particle scattering.

The CLD is computed from an interference function (cf. p. 139). In order to consider
the non-ideal two-phase system we either carry out a classical Porod analysis accord-
ing to Table 8.3 for the case of a 2D projection in order to retrieve the interference
function

G2 (s12) = ({IR}2 (s12)− IFl) s3
12/exp

(−4π2σ2
z s2

12

)−AP2 , (8.83)
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Figure 8.37. Equatorial streak analysis of a poly(ether ester) during straining as a function of
elongation, ε . (a) Intensity projected on the cross-sectional plane (b) 2D CLD computed from
the projected intensity

or we extract the interference function automatically by means of spatial frequency
filtering (p. 140). The sought-after CLD of the fiber cross-sections

g2 (r12) = π
∫ ∞

0
(J0 (2πr12s12)− J2 (2πr12s12)) G2 (s12) ds12 (8.84)

then is the 2D Fourier transform of G2 (s12) [200]. Ji ( ) is the Bessel function of the
first kind and order i ( [4], p. 358).

Figure 8.37a shows the projected intensity100 as a function of the elongation of
the material. The resulting 2D CLDs are presented in Fig. 8.37b. Equatorial streaks
are observed from an elongation of ε = 1.73. Only at this elongation there are some
faint correlations among the microfibrils: the CLD becomes slightly negative at r ≈
8nm. For higher elongation the structure in the fiber cross-section conforms to a
hard-disc fluid.

Model Fit or Direct Evaluation? Similar to the 1D case we can
now fit a model to the projected intensity or to the CLD. What we get
in this case is the needle-diameter distribution of the microfibrils. Nev-
ertheless, there are two other possibilities to directly evaluate the data.
We consider polydispersity by allowing for varying hard-disc diameter.
If we assume that the shape of each disc is circular, the CLD of an un-
correlated hard-disc fluid is the Mellin convolution of the intrinsic chord
distribution, gc (r12), of an “ideal disc of diameter 1” and the diameter
distribution, hD (D) which characterizes the structure. The definition of
the Mellin convolution (TITCHMARSH [202], S. 53; MARICHEV [203];
[86], S. 304) is

100The discontinuities at s12 ≈ 0.03nm−1 indicate the match between measured and extrapolated intensity.
Because in the next step the intensity is multiplied by s3

12, it is not necessary to spend more effort on a
smooth continuation.
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g(r) =
∫ ∞

0
hD (x) gc

( r
x

) dx
x

(8.85)

:= gc (r)�hD (r) . (8.86)

gc (r12) is analytical. So we can avoid to fit models, but “deconvolute”
the Mellin convolution numerically and obtain hD (D). Even better: be-
cause of a very simple relation among the moments of a Mellin convo-
lution [125]

µ ′
i (g�h) = µ ′

i (g) µ ′
i (h) (8.87)

we can directly determine the interesting structural parameters (average
needle101 diameter, width of the needle-diameter distribution) by nu-
merical computation (i.e., integration) of moments followed by simple
moment arithmetics [200].

The equation for the intrinsic chord distribution of a circular disc of diameter 1 has
first been published by P. W. SCHMIDT [204]

gc (r12) =
r12√

1− r2
12

YH (1− r12) . (8.88)

Here

YH (x) =
{

1 /x ≤ 0
0 /x > 0

(8.89)

is the Heaviside function. Thus the problem is reduced to an invertible integral trans-
form. The first method of structure determination is based on numerical Mellin de-
convolution of g2 (r12) yielding hD (D). After the deconvolution, structural parame-
ters have to be determined by numerical computation of moments [200].

The second method is more elegant, because it only involves the numerical com-
putation of moments (cf. Sect. 1.3) of the smeared CLD g2 (r12) followed by moment
arithmetics [200]. The first step is the computation of the Mellin transform102 of the
analytical function gc (r12) which we have selected to describe the needle diameter
shape. This is readily accomplished by Mathematica R© [205]. Because the Mellin
transform is just a generalized moment expansion, we retrieve for the moments of
the normalized chord distribution of the unit-disc103

µ ′
i (gc) =

1√
π

Γ((i+ 2)/2)
Γ((i+ 3)/2)

,

i.e., explicitely for the first 5 moments

101The diameter of the (3D) needle is the (2D) hard disc.
102The Mellin transform is defined by M (g(x))(s) =

∫ ∞
0 xs g(x) (dx/x). Substituting the variables in the

Mellin transform by their logarithms, the Fourier transform is obtained [202].
103Conceded – this “unit disc” is not the unit disc of mathematics (with radius 1), but of materials science

(with diameter 1).
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Figure 8.38. Structural parameters of an ensemble of needle-shaped soft domains in a
poly(ether ester) as a function of elongation ε . D̄ (open circles) is the average needle diame-
ter, σ/D̄ (filled circles) is the relative standard deviation of the needle-diameter distribution.
Square symbols demonstrate the lateral compressibility of the soft needles during elongation

i 0 1 2 3 4
µ ′

i (gc) 1 π/4 2/3 (3π)/16 8/15

Now using this table and Eq. (8.87) the moments of hD (D) are directly com-
puted from the moments of g2 (r12). Structural parameters directly determined by
this method are presented in Fig. 8.38. Obviously, the average diameter of the soft
domains is decreasing first linearly with increasing elongation, although for rubber
elastic materials one would expect a decrease only according to D̄(ε) = D̄0 /

√
ε + 1.

This “observed deviation” from rubber elasticity is not a real finding, but only the
consequence of oversimplification, because up to now we have neither considered
the polydispersity of the needle cross-sections nor investigated changing shape of
the needle-diameter distribution. Figure 8.37 shows that during initial elongation the
fraction of thin needles is increasing strongly, as the initial compressibility of the soft
needles is high (Fig. 8.38, squares). Only beyond ε > 2.5 the relative cross-sections
of soft needles per fiber diameter stays constant. This transition can be explained by
the well-known strain-induced crystallization of the polyether.

Consideration of Weak Correlation. If an inter-needle correlation can no
longer be disregarded, two published methods for the analysis of weakly correlated
particles may be considered: (COHEN and THOMAS [201]; POROD [206]).

8.7.1.3 Uncorrelated Polydisperse Homogeneous Spheres

Let us now consider the 3D equivalent of the aforementioned example: an ensem-
ble of uncorrelated homogeneous spheres – with polydispersity, meaning that the
observed CLD
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gobs (r) = gs1 (r)�hD (r)

is obtained by Mellin convolution from the CLD of the unit-sphere

gs1 (r) = 2rYH (1− r) (8.90)

and a sphere-diameter distribution hD (r). Again of physical interest are the moments
of hD (r) that can readily be combined to retrieve physical parameters like the average
sphere diameter, the breadth, or the skewness of hD (r). From the Mellin transforma-
tion

M (gs1 (r))(s) = 2/(1 + s)

of the unit sphere we obtain for its moments104

µ ′
i (gs1) = 2/(2 + i) . (8.91)

Check. Do the moments reflect the requirement that gs1 is normalized
to 1 and that the average chord length of a sphere with unit diameter is
2/3?

Bearing in mind the aim to determine structural parameters, we resort to the mea-
sured CLD, gobs (r). By means of numerical integration we compute some of its mo-
ments, µ ′

i (gobs). For the sought-after moments of the sphere-diameter distribution,
hD (r), we again have according to Eq. (8.87)

µ ′
i (hD) = µ ′

i (gobs)/µ ′
i (gs1) ,

and the µ ′
i (gs1) are analytical (Eq. (8.91)). The most important structural parameter

is the number average105 sphere diameter

D̄ = µ ′
1 (hD)/µ ′

0 (hD) .

The common measure for the breadth of the sphere-diameter distribution is the stan-
dard deviation (cf. p. 5, Eq. (1.8).

8.7.1.4 Inhomogeneous Spherical Particles

A concise approach for the analysis of isotropic scattering curves of spherical and
cylindrical particles with a radial density profile has been developed by BURGER

[207]. In practice it is useful for the study of latices and vesicles in solution.

104Moments are obtained from a Mellin transform by changing from s to i+1.
105As gobs (r) is normalized to 1 by definition, here the division by µ ′

0 (hD) is unnecessary – but it demon-
strates the principle and it is safe.
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8.7.2 Stochastically Condensed Structure

Introduction. After we have discussed examples of uncorrelated but polydisperse
particle systems we now turn to materials in which there is more structure – discrete
scattering indicates correlation among the domains. In order to establish such cor-
relation, various structure evolution mechanisms are possible. They range from a
stochastic volume-filling mechanism over spinodal decomposition, nucleation-and-
growth mechanisms to more complex interplays that may become palpable as exper-
imental and evaluation technique is advancing.

In the borderland between diffuse and discrete scattering there are fundamen-
tal questions like: is it possible to observe a long period in a SAXS pattern with-
out the structure of a lattice (i.e., some “repeat unit”)? The first indications for a
positive answer have been published in 1974 by KILIAN and WENIG [208] who
observed long period peaks in polyethylene material, in which correlation was re-
stricted to only two layers. Concerning the underlying structure evolution mecha-
nism, SCHULTZ et al. [209] have inferred a predominantly stochastic crystallization
mechanism from time-resolved SAXS studies. Concerning melting of polyethylene,
a study of SCHULTZ et al. [210] has indicated a completely random melt-out of
crystallites based on SAXS data from isotropic polyethylene. In the view of a math-
ematical concept introduced in this section, such a melting mechanism is a “random
de-parking process”.

Random Population and Order. In Sect. 8.7.1 we have discussed pure particle
scattering. Such scattering is observed if the sample volume is sparsely populated
with domains and an order establishing mechanism is missing. Nevertheless, above
a certain population density of particles, newcomers must arrange with their neigh-
bors. They can only settle where there is enough space left. If we find that such
“arrangement” is sufficient for a long period peak to show up in the scattering, the
next question is: how is it possible to determine if observed formation of discrete
scattering is governed by an ordering process or if it is only a side effect of crowd-
ing? In practice such problems arise if we study the isothermal crystallization of a
polymer, during which the volume is continuously populated with lamellae.

Scattering and Disorder. For structure close to random disorder the SAXS
frequently exhibits a broad shoulder that is alternatively called “liquid scattering”
([206]; [86], p. 50) or “long-period peak”. Let us consider disordered, concentrated
systems. A poor theory like the one of POROD [18] is not consistent with respect to
disorder, as it divides the volume into equal lots before starting to model the process.
He concludes that statistical population (of the lots) does not lead to correlation. Bet-
ter is the theory of HOSEMANN [158,211]. His distorted structure does not pre-define
any lots, and consequently it is able to describe (discrete) liquid scattering. The prob-
lems of liquid scattering have been studied since the early days of statistical physics.
To-date several approximations and some analytical solutions are known. Most fre-
quently applied [201, 212–216] is the PERCUS-YEVICK [217] approximation of the
ORNSTEIN-ZERNIKE integral equation. The approximation offers a simple descrip-
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Figure 8.39. Structure formation by random crowding is the issue of the “car parking prob-
lem” of mathematics

tion of the scattering from a topology of poorly ordered particles. On the other hand,
this model is such a coarse approximation that it cannot easily be interpreted in terms
of structure evolution mechanisms [218].

Order by Crowding vs. Ordering Mechanism – A Summary. As a result of
the following considerations, the correlations introduced by a crowding mechanism
can be discriminated from the correlations grown from a genuine ordering mecha-
nism: the stochastic mechanism can only generate next-neighbor correlations. Thus
a second minimum visualized in the CLD, IDF, or CDF proves an ordering mech-
anism. Vice versa – is the finding of only next-neighbor correlations sufficient to
prove random crowding? The answer is no. Nevertheless, the shape of the peaks in
CLD, CDF, or IDF may indicate a pure random crowding process. It can be proven
that after a purely stochastic crowding the thickness distributions are not Gaussians,
but (strongly asymmetrical) truncated exponentials. We thus can tell apart, whether
the last “parking” crystallites (cf. Fig. 8.39) keep equal distance to their left and right
neighbor106, or whether they do not care at all where they park in the gap [184]. If
the polydispersity (i.e., the width variation of the cars) is low, theory [219] returns an
ultimate “crystallinity” of 75% for the stochastic crystallization, the so-called Rényi
limit. Even for the correlation function of the stochastic structure an analytical series
has been found [218]. Unfortunately it is poorly converging and infinite.

The Car Parking Problem. The fundamental 1D stochastic process applied to
crystallization is described in simple words using the 1D shish-kebab model: crys-
talline layers (kebab) of almost identical thickness are formed at random positions
along a backbone (shish). The process continues, until the last gap of sufficient width
has been filled. The jamming limit is reached. For layers of equal thickness this
process is known by the name “car parking problem”. The corresponding kinet-
ics and some of the properties of the resulting structure have first been studied by
RÉNYI [219,220]. For example, at the jamming limit the theoretical ultimate volume
crystallinity of stochastic crystallization

v∞
cs = 2

∫ ∞

0
exp

[
−t −2

∫ t

0

1− exp(−u)
u

du

]
dt = 0.74759792 (8.92)

is reached. It is called the Rényi limit. It says that no more cars can be parked, as
soon as 75% of the length of a parking lane have been occupied without consid-

106This would indicate a late short-range ordering mechanism
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eration. Related problems are subsumed under the term random sequential adsorp-
tion (RSA) (review by EVANS [221]). The “structure” originating from random car
parking shows a long-period maximum. Even its structure factor and its correlation
function can be described analytically [218].

Stochastic Packing and the Truncated Distribution of Amorphous Thick-
nesses. At the beginning of stochastic crystallization the distances ha (r3) = c
between the crystal lamellae are uniformly distributed. As the process is proceed-
ing the number of positions is decreasing, at which a new crystal can be formed.
Ultimately all gaps that are sufficiently wide have been occupied. The distribution
ha (r3) of the amorphous layers has changed its shape and has turned into a truncated
probability distribution [222, 223]: its support is limited to a narrow interval107. An-
alytical deductions of the shape of ha (r3) are unknown. Nevertheless, in various
fields of science heuristic descriptions are found [222–225], which generally report
that these distributions can be described by simple exponential functions. Computer
simulations of the iterated stochastic crystallization yield the same result [184, 226].
By fitting of exponentials to the data of a series of simulations one obtains the re-
sult [184]

ha (u) =
1
N

exp

(
−2

3
π
√

u

)
, u ∈ (0,1) , (8.93)

with u = r3/d̄c and the crystallite thickness d̄c. After normalizing
∫

ha (u)du = 1 the
total probability to 1 it follows

N =
9(exp(2π/3)−1)−6π

2π2 exp(2π/3)
, (8.94)

and for the center of gravity of the distribution of amorphous thicknesses we have

〈ha (u)〉 =
4π3 + 18π2 + 54π + 81(1− exp(2π/3))

2π2 (2π + 3(1− exp(2π/3)))
. (8.95)

Finally for the ultimate volume crystallinity

v∞
cs =

1
1 + 〈ha (u)〉 = 0.74 (8.96)

is obtained – a value found in the simulation that is in very good agreement with the
theoretical Rényi limit according to Eq. (8.92).

Scattering Data of the Iterated Stochastic Structure. The computer sim-
ulation of the pure stochastic structure evolution process even yields the respective
IDF and the scattering data [184]. Here it becomes clear that a standard concept
of arranged but distorted structure, the convolution polynomial, is not applicable to

107If the crystallite requires a space of 1, this interval is 0 < r3 < 1.
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Figure 8.40. Computer-simulated IDFs g1 (u) of 1D two-phase structure formed by the it-
erated stochastic structure formation process. tt is the thickness of the transition layer at the
phase boundary. σt is the standard deviation of a Gaussian crystallite thickness distribution

stochastic structures. The convolution polynomial will be introduced in Sect. 8.7.3,
where we discuss structures that rest on arrangement of particles.

Several computed IDFs of iterated stochastic structures are presented in Fig. 8.40.
As long as the crystallite thickness is uniform, the truncated exponentials of the
amorphous thickness distributions are clearly identified in the IDF.

If we went back to a diluted structure as discussed in Sect. 8.7.1, one would
not observe the exponentials, but only the δ -function of the crystallite size distribu-
tion at u = 1. The additional terms in g1 (u) that cause the discrete liquid scattering
are merely a result of crowding [184, 211]. Let us call these terms packing correla-
tion [184]. Although the packing correlation looks quite strange, it fulfills the zero-
sum rule. The packing correlation is of short range. It has vanished for u > 3+tt . This
fact demonstrates that it only comprises correlation among next neighbors. Thus in
the IDF or the CDF there is some chance to detect the purely statistical process by vi-
sual inspection. In a scattering curve the packing correlation results in a long-period
peak looking very similar to that of every other SAXS curve from soft materials. A
selection of projected scattering curves is presented in Fig. 8.41. LORENTZ-corrected
curves from isotropic materials look very similar. We observe that for nearly uniform
thickness of the crystallites the minima of the scattering curve are characteristic of
the crystallite size. The main maximum (long period) is simply a result of RÉNYI’s
limit. As already noticed by HOSEMANN [211], a long-period reflection is not con-
clusive for an arrangement of domains in the material. Long periods are as well
found in stochastic structures. Here they simply mark the transition from a diluted to
a concentrated system.
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Figure 8.41. Liquid scattering projected on the meridian, {I}1 (s3), originating from random
placement of lamellae along a shish. The form factor of the dilute system is displayed for refer-
ence. Structure parameters as in Fig. 8.40. Uniform crystallite thickness leads to characteristic
minima in the scattering curves. Note the varying strength of the oscillations

8.7.3 Distorted Structure by Infinite 1D Arrangement

Introduction. In this section we describe the most simple 1D ordering mecha-
nisms in a distorted structure. There is a common principle in these mechanisms
which can be described as follows: imagine you have two bags. One is full of white
rods, the other full of black ones. The rod lengths are varying (polydispersity). Rods
are randomly taken from the bags and arranged along a line in order to form the
structure. There are different “rules of placement” (cf. Fig. 8.42) which are related
to different structure evolution mechanisms and which lead to different scattering
curves.

History. Starting from the 1D point statistics of ZERNIKE and PRINS [116] J. J.
HERMANS [128] designs various 1D statistics of black and white rods. He applies
these models to the SAXS curves of cellulose. Polydispersity of rod lengths is in-
troduced by distribution functions, hi (x)108. HERMANS describes the loss of corre-
lation along the series of rods by a “convolution polynomial”. One of HERMANS’
lattice statistics is named paracrystal by HOSEMANN [5, 117]. HOSEMANN shows
that the field of distorted structure is concisely treated by the methods of com-
plex analysis. A controversial subject is HOSEMANN’s extension of 1D statistics
to 3D [63, 131, 227, 228].

8.7.3.1 Construction of a 1D Paracrystal

One of two bags contains white rods of differing lengths – the lattice constants de-
scribed by a length distribution, hL (x). The average rod length is L̄. We randomly

108The index i discriminates the type (“color”) of the rod.
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Figure 8.42. 1D structural models with inherent loss of long-range order. (a) Paracrystalline
lattice after HOSEMANN. The lattice constants (white rods) are decorated by centered place-
ment of “crystalline” domains (black rods). (b) Lattice model with left-justified decoration.
(c) Stacking model with formal equivalence of both phases (no decoration principle)

take white rods from the bag and put them one after the other. This is the sequence
of the lattice constants109 (Fig. 8.42a,b).

The Convolution Polynomial. Deliberately selecting the beginning of one of
the (white) rods, the average distance to the beginning of its neighbor is the long
period L̄. The probability really to find the beginning of the adjacent rod in a distance
x is just the distribution of rods in the bag, hL (x). We consider the first of the added
rods. Meaning, we have randomly selected a x′, for which hL (x′) �= 0 is valid. Then
we find the end of the second rod with a probability of hL (x− x′) – at the position
of the right-shifted (by x′) distribution function. Nevertheless, we must not forget to
multiply with hL (x′), i.e., with the probability to find the end of the first rod. Finally,
the total probability to find the end of the second rod is obtained by integration over
all possible choices x′ of the first rod

h2L (x) =
∫

hL
(
x′
)

hL
(
x− x′

)
dx′ (8.97)

= hL (x)� hL (x) . (8.98)

This is the definition of a convolution (p. 16, Eq. (2.17)) of the distribution hL (x)
with itself. Repeated induction yields the relation

hnL = h�n
L (x) . (8.99)

Thus the distance to the end of the n-th rod is obtained by n-fold convolution of
the rod length distribution. A typical series of such lattice constant distributions is
demonstrated in Fig. 8.43. Its sum is named convolution polynomial.

8.7.3.2 Application

Inconsistency of all Lattice Models. The decoration principle of all lattice
models coupled to polydispersity leads to a fundamental inconsistency of all lattice

109A decision on the decoration of the lattice has not yet been made. Two variants are depicted in Fig. 8.42a
and Fig. 8.42b, respectively. Thus there are different variants of lattice models.
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Figure 8.43. In all 1D lattice models (including the paracrystal) the higher length distributions
of lattice constants are formed by repeated convolution of the fundamental distribution hL (x)

Figure 8.44. Effect of “paracrystalline” distortions on a series of reflections in a scattering
diagram after compensation of the decay according to POROD’s law (lattice factor (1/N) |Z|2).
The quadratic increase of integral breadths of the reflections is indicated by boxes of equal area
and increasing integral breadth. L is the average long period

models with short-range order (Fig. 8.42a,b). If such models are chosen and the
lattice distortion is strong, adjacent decorating particles (i.e., crystalline lamellae)
are rather frequently subjected to mutual penetration. These nonsensical artifacts
pose a major problem in soft matter science, as here the rod length distributions are
rather broad.

The stacking model (Fig. 8.42c) does not carry this inconsistency [128, 229].
It cannot be discriminated from the lattice models if the polydispersity is strong.
For small polydispersity even the lattice models make physical sense, because then
the mutual penetration is negligible. Computation and fitting of stacking and lattice
models are described in Sects. 8.7.3.4 and 8.7.3.3.

Effect of the 2nd-Order Lattice Distortions on the Scattering Pattern.
As shown by STROBL [230], the integral breadths B in a series of reflections is in-
creasing quadratically if (1) the structure evolution mechanism leads to a convolution
polynomial, (2) the polydispersity remains moderate, (3) the “rod-length” distribu-
tions can be modeled by Gaussians (cf. Fig. 8.44). For the integral breadth it follows
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B =
π2σ2

L

L̄
s2, (8.100)

with the average long period L̄ and the variance σ2
L of the Gaussian distribution of

lattice constants.

8.7.3.3 The Stacking Model

Properties and Application. The two independent statistical distributions of
the two-phase stacking model are the distributions of “amorphous” and “crystalline”
thicknesses, h1 (x) and h2 (x). Both distributions are homologous. The stacking
model is commutative and consistent. If the structural entity (i.e., the stack as a
whole) is found to show medium or even long-ranging order, the lattice model and
its variants should be tested, in addition. As a result the structure and its evolution
mechanism may more clearly be discriminated.

Model Construction. In the stacking model alternating amorphous and crys-
talline layers are stacked. Likewise the combined thicknesses in the convolution
polynomial are generated by alternating convolution from the independent distri-
butions: h3 = h1 � h2, h4 = h3 � h1, and h5 = h3 � h2. In general it follows

hi = (h1 � h2)
�n � hm (8.101)

with n = int(i/3) and m = mod(i,3). As common in most programming languages,
the functions int() and mod() designate the integer fraction and the remainder, re-
spectively, of an integer division110.

If structure visualization by means of the IDF or CDF has shown that h1 and h2

can be modeled by Gaussians, all the combined thickness distributions are Gaussians
as well. Each normalized Gaussian is completely described by mean d̄i and standard
deviation σi, and Eq. (8.101) is reduced to a relation

σ2
i =
(
σ2

1 + σ2
2

)
n + σ2

m (8.102)

for the computation of combined variances. For the mean values, d̄i, of the distribu-
tions the obvious law of addition111 is valid. Thus the model is described completely
and can be turned into a computer program. In practice, the correlation among the
particles is vanishing rapidly. Thus it is rarely necessary to program an infinite stack.
The maximum number of particles required is readily assessed by the number of min-
ima (long-period peaks) that are clearly observable in the IDF or the CDF. Neverthe-
less, it is important not to violate the zero-sum rule of correlation (p. 158, Fig. 8.30).
This means, that a finite model for a structural entity of m correlated particles must
contain 3m+ 1 thickness distributions.

110In the example: Division of i by 3.
111For instance: L = d̄3 = d̄1 + d̄2, which means: long period = crystalline thickness + amorphous thick-

ness.
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Figure 8.45. Sketch of a continued-fraction model for a polyethylene sample during isother-
mal crystallization and a coupling factor c = 0.4. The widths of the nested boxes are propor-
tional to the numbers of crystalline lamellae showing the indicated degree of agglomeration
(from left: solos, duos, trios, . . . )

Using the Results of a Fit. If a fit of the stacking model can be accepted and the
range of order is longer than next-neighbor correlation, this finding is indicative for
a group of structure evolution processes. One may imagine spherulitic growth with a
“crystallization” front running through the material while generating particles. Also
consistent with the stacking model is the concept of a spinodal decomposition.

The identification of the crystalline thickness may be possible from the result
of the fit. As a frequent result of a model fit, the relative standard deviations of the
fundamental domain thickness distributions, σ1/d̄1 and σ2/d̄2, differ considerably.
In many cases the broader distribution can be attributed to the amorphous (or soft)
phase. Even higher significance of the assignment can be achieved if the material is
studied in time-resolved SAXS experiments during processing (under thermal load,
mechanical load). Thus it is not always necessary to resort to secondary methods112

in order to resolve the ambiguity inherent to Babinet’s theorem.
It is not unusual that the fitting of models yields indications for a complex struc-

ture of the material. Two components of stacks with distinguishable different domain
thicknesses may be present and even worse. In general such finding leads to a loss of
significance concerning the results of the quantitative analysis. The first-mentioned
case can frequently be resolved without loss of significance if it is possible to study
highly oriented structures. A second effect that makes structure complex is poly-
dispersity of the structural entities as a whole. Because polydispersity is governed
by the mathematical principle of the Mellin convolution [2], such structures can be
resolved using modified 1D models [125, 126].

A third effect that has been encountered [185] is a structure that is made from
a mixture of different kinds of clusters which are all finite stacks and vary by the
number of their members. At the first glance such a material looks as if the zero-
sum rule were violated – but for each individual cluster it is not. Figure 8.45 shows a
sketch of the probability of different clusters in such a structure. In the study [185] the
parallel fit using three finite stacks (solos, duos, trios of lamellae) yielded a peculiar
coupling of cluster fractions according to the relation

nm = c (1− c)m−1 , c < 1. (8.103)

112The most simple secondary method is the determination of crystallinity from the density of the material.
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which couples the number fractions, nm, of clusters with m members by a single
coupling factor c. By means of this relation the series of 1D models can, again,
be unified in a continued-fraction model. For a value of, e.g., c = 0.4 the number
fraction of solos is n1 = 0.4. The other 60% of lamellae are agglomerated. From
this correlated fraction, again 40% are organized in duos only (n2 = 0.24), the other
60% enjoy a higher degree of agglomeration. Thus for the trios we obtain n3 =
0.144. Continued to infinity, the series of cluster weight parameters is intrinsically
computed from a general weight parameter (number of lamellae in the sample) and
the coupling parameter c.

Analytical Expressions for Stacks of Infinite Height. An analytical expres-
sion for the 1D scattering intensity of the ideal stack of infinite height is known since
HERMANS [128]

I1 (s) =
AP1

s2 ℜ
[
(1−H1 (s))(1−H2 (s))

1−H1 (s)H2 (s)

]
. (8.104)

H1 (s) = F1 (h1 (x)) and H2 (s) = F1 (h2 (x)) are 1D Fourier transforms of the do-
main thickness distributions. In general the

Hk (s) = a(s) exp
(
2π id̄ks

)
are the product of the harmonic function exp

(
2π id̄ks

)
carrying the average distance,

d̄k, between two phase boundaries, and an attenuation term, a(s), describing the
shape of the domain thickness distribution. In particular, if the distributions are able
to be approximated by Gaussians we have

Hk (s) = exp
(−2π2σ2

k s2) exp
(
2π id̄ks

)
(8.105)

and if the hk (x) are gamma distributions113, the solution is according to RULAND

[84]

Hk (s) =
(

1−2π is
σ2

k

d̄k

) σ2
k

d̄2
k

. (8.106)

The General Series Expansion for Stacks. In practice, 1D scattering in-
tensities can always be modeled by programming the obvious series expansion of
such a structural entity: every correlated distance along the stack axis is producing
an attenuated oscillation according to Hk (s) that is weighted by the probability of
its occurrence under consideration of the zero-sum rule and the related correlation-
construction principle (p. 158, Fig. 8.30)

I1 (s) =
Ap1

s2

(
1−∑

k

ck Hk (s)

)
. (8.107)

The constants ci are balanced to fulfill the zero-sum rule.

113Gamma distribution: h(a,ν ,x) = [aν /Γ(ν)] xν−1 exp (−ax). Most frequently assumed a = ν . [126]
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Analytical Expressions for Stacks of Finite Height. By virtue of the just
mentioned general series expansion for stacks, even for structural entities built from
a finite number of particles analytical solutions can be derived. For a structural entity
from N particles of phase 1 the thickness distributions which are the components of
the IDF are arranged

N g1 = N h1

+(N −1)(h2 −2h1 � h2 + h1 � h2 � h1)
+(N −2)(h2 −2h1 � h2 + h1 � h2 � h1)� h1 � h2 (8.108)
...

in zero-sum groups and the scattering intensity is computed by Fourier transforma-
tion. In the presented equation the arguments of the functions have been left out for
clarity. The complete deduction has been published by RULAND [84]. Its solution is

I1 (s) =
AP1

s2 ℜ
[
(1−H1)(1−H2)

1−H1H2

+
H2 (1−H1)

2
(

1− (H1H2)
N
)

N (1−H1H2)
2

⎤
⎦ . (8.109)

If the structural entities contain varying numbers of particles (solos, duos, trios,
. . . ), RULAND [84] deduces

I1 (s) =
AP1

s2

{
ℜ
[
(1−H1)(1−H2)

1−H1H2

+
H2 (1−H1)

2
(

1−
〈
(H1H2)

N
〉)

〈N〉(1−H1H2)
2

⎤
⎦− J0

⎫⎬
⎭ (8.110)

with 〈N〉 denoting the number-average number of particles per structural entity. Here
RULAND annotates that it makes a difference, whether the structural entities are sur-
rounded by “amorphous matrix material” (J0 = 0), or whether they abut upon each
other. In the latter case, the form factor of the average structural entity

J0 (s) =
[
ImH1

( s
2

)]2 1−〈cos(2π L̄s)〉
π2L̄2s2 〈N〉

must be subtracted114 [84]. In the equation L̄ = d̄1 + d̄2 is the average long period
of the stack. BURGER [231] makes aware of the fact that in most of the practical
cases J0 may be dropped, because it is, in general, only significant at small s where a
divergence s−2 in the 3D scattering pattern is dominating the shape of the scattering
curve.
114At a first glance this subtraction appears to be a violation of the zero-sum rule. However, here an

exception has to be made, because particles merge upon direct contact of adjacent structural entities,
and thus the number of particles is reduced – just by the amount deduced by RULAND.
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Practical Value. The presented analytical expressions are very useful, predom-
inantly for the analysis of the scattering from weakly distorted nanostructures. Be-
cause of their detailed SAXS curves, direct fits to the measured data return highly
significant results (cf. Sect. 8.8.3). Nevertheless, some important corrections have to
be applied [84]. They comprise deviations from the ideal multiphase structure as well
as thorough consideration of the setup geometry and machine background correction
(cf. Sect. 8.8).

8.7.3.4 The Lattice Model

Properties. There is only one stacking model, but several variants of lattice mod-
els. The two statistically independent thickness distributions of a short-range lattice
are the distribution of lattice constants, hL̃ (x), and the thickness distribution of the
decorating (“crystalline”) domains, h1 (x). In general, even the decorating particles
are not identical but subjected to polydispersity. In analogy to crystallography this
variation is addressed as substitutional disorder. Lattice models are not commutative:
upon exchange of h1 (x) for h2 (x) the shape of the IDF and the scattering curve is
changed. The computational effort of testing a lattice model is thus twice the effort
of testing the stacking model: after a regression has converged, amorphous and crys-
talline thickness must be exchanged and another series of regression runs must be
performed starting from the exchanged parameter set. The best fit indicates which
thickness is probably the decorating phase. As already mentioned, lattice models are
only consistent for weakly distorted structure (cf. Sect. 8.7.3.2).

Model Construction and Structure Evolution Processes. The principle of
how to construct a distorted lattice has already been introduced in Sect. 8.7.3.1. Here
it is refined and related to structure evolution. In the ultimate topology the lattice
constants of a paracrystal (white rods in Fig. 8.43a) can not directly be found. For
this purpose we call them pseudo long-periods, L̃, and mark them by a tilde. Thus
the fundamental convolution polynomial is generated from multiple convolutions of
hL̃ (cf. Fig. 8.43). A notion behind the lattice model is structure evolution according
to a nucleation-and-growth mechanism. Nuclei are first generated along a line. This
primary structure is called a row structure. In a second step the nuclei grow to form
the domains (lamellae). Only then it must be decided how to decorate the lattice.
Frequently it is assumed that the decorating particle is centered on the lattice point,
but also oriented particle growth “always in the same direction” (Fig. 8.43b) or “ran-
domly to the right or left” are possible. Each different evolution mechanism leads to
different structural entities, which can be discriminated if the distortion of the lattice
is weak.

Let us demonstrate the centrally-decorated lattice model115. The corresponding
geometrical consideration for the deduction of the higher thickness distributions is
somewhat involved. Figure 8.46 presents a geometrical construction scheme that
helps to link both the observable distribution of long periods, hL (x), and the observ-

115The other mentioned variants are easier to handle.
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Figure 8.46. Construction of observable distances (dai, Li) in a paracrystal from its fundamen-
tal distances, L̃i (not observable pseudo long-periods), and dci (observable crystallite thick-
nesses). Advancing to the bottom the relations to the observable thicknesses of amorphous
layers, dai, and the long periods, Li, are sketched

able distribution of amorphous thicknesses, ha (x), to the generating distributions116

of the lattice model, hc (x) and hL̃ (x). For the example of da2 the sketch demon-
strates (by thin horizontal arrows with filled heads), how the amorphous thickness is
reduced to the pseudo long-periods and halves of the crystallite thickness distribu-
tions. If the distributions can be approximated by Gaussians we thus obtain for the
variances of the dependent thickness distributions

σ2
i = nσ2

L̃ +
σ2

1

2
(8.111)

with n = int((i+ 1)/3) and m = mod((i+ 1),3)−1. Equation (8.111), Fig. 8.46 and
the zero-sum rule is sufficient information to write a computer program that models
the paracrystalline lattice model for a structural entity built from a finite number of
“crystallites”.

Analytical Expressions for Lattice Models. Concerning the aforementioned
paracrystalline lattice, an analytical equation has first been deduced by HERMANS

[128]. His equation is valid for infinite extension. RULAND [84] has generalized the
result for several cases of finite structural entities. He shows that a master equation

I1 (s) =
AP1

s2

(
1−ℜH1 (s)+ 2

(
ℑH1

( s
2

))2
(

1
N
|Z (s)|2 −1

))
(8.112)

describes both infinite and finite paracrystalline lattices for different cases. The vari-
ants are discriminated by different lattice factors, |Z (s)|2 /N. With the lattice factor

1
N
|Z (s)|2 = ℜ

(
1 + HL̃ (s)
1−HL̃ (s)

)
, (8.113)

116In the sketch the fundamental distances carry arrow heads with open triangles. The arrows of observable
distances are solid-line double-head arrows.
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HERMANS’ equation for the infinitely extended lattice is obtained. For a material
built from finite structural entities containing an average of 〈N〉 particles RULAND

obtains

1
N
|Z (s)|2 = Re

⎛
⎝1 + HL̃ (s)

1−HL̃ (s)
−

2HL̃ (s)
(

1−
〈

HN
L̃

(s)
〉)

〈N〉 (1−HL̃ (s))2

⎞
⎠− J0 (s) . (8.114)

In analogy to the treatment of the stacking model J0 (s) = 0 is valid, if the structural
entities are embedded in matrix material. Compact material, again, may require a
correction because of the merging of particles from abutting structural entities

J0 =
1−
〈

cos
(

2π ¯̃LNs
)〉

2π2s2 ¯̃L2 〈N〉 . (8.115)

Independently, BURGER [231] develops analytical equations for lattice models with-
out substitutional disorder. His results are special cases of the models presented by
RULAND.

As has already been mentioned in the discussion of the stacking model, such
equations are particularly useful for the analysis of nanostructured material with
weak disorder in order both to assess the perfection of the material and to discrimi-
nate among lattice and stacking models (cf. Sect. 8.8.3).

8.7.3.5 Model Fitting: Choice of Starting Values for the Model
Parameters

Stacking model and lattice model have the same number of model parameters. A
global weight parameter W = AP1/2 adjusts the integral117 of the IDF. Because
AP1 = −G1 (0) has already been determined in the pre-evaluation, a suitable start-
ing value for the regression program is at hand. The next two parameters are the
average thicknesses of the phases (for the stacking model) or the long period and the
thickness of the decorating phase (for the lattice model). The range of suitable start-
ing values is obtained from the long period as determined from the minimum of the
IDF. In the model function all the standard deviations are expressed by relative stan-
dard deviations, e.g., σ1/d̄1 and σ2/d̄2 for the sake of steady convergence. Choose
a starting value of 0.3 for all the relative standard deviations. Narrow values are not
easily broadened by the regression program. Analogously, the program will not be
able to escape from distributions that are too broad and flat. For more information
concerning model fitting by regression consult Chap. 11.

117In practical application only the positive branch of the IDF will be fitted. This explains the halving of
the weight.
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8.8 Nanostructures – Soft Materials with Long Range
Order

Perfection of Structure in Nanostructured Materials. An aim of modern
nanotechnology is the fabrication of materials with highly perfect structure on the
nanometer scale. The distortion of such nanostructured materials can be studied by
SAXS methods. Frequently the material is supplied as a very thin film with pre-
dominantly uniaxial correlation among the nanodomains. Under these constraints
the nanodomains are frequently arranged in such a way that the normal to the film
is a symmetry axis: rotation of the film on the sample table does not change the
scattering (fiber symmetry).

In this case a suitable setup geometry for the beamline is SAXS in symmetrical-
reflection geometry (SRSAXS). Sometimes an investigation with the beam imping-
ing under fixed grazing incidence may as well be suitable. Moreover, it is wise to
assess the orientation distribution g(φ) of the structural entities in a similar manner
as in a classical texture goniometer: SAXS is measured as a function of sample tilt
at a fixed scattering angle 2θ .

SRSAXS is utilized, because the scattering curve measured in symmetrical re-
flection is readily transformed into a 1D scattering curve, I1 (s3). The importance
of such curves for the analysis of structure has been demonstrated in the preceding
sections of this chapter.

8.8.1 Required Corrections of the Scattering Intensity

Special care has to be taken concerning data pre-evaluation if the scattering of highly
oriented nanostructures are investigated in symmetrical reflection or at grazing inci-
dence. Absorption correction is delicate (cf. Sect. 7.6.3). Even a refraction correction
(Sect. 7.6.5) may be necessary118.

Moreover, if the experiment is set up in such a way that either the angle of in-
cidence, αi, or the angle of exit, αe, are close to the critical angle, θc, the classical
scattering theory (“Born approximation”) is no longer valid as far as it states that the
incident wave field is the effective field at each point of the scatterer. In this case the
viable theoretical approach is to apply a first-order perturbation of the incident wave,
which is induced by the structure of the scatterer itself. This method is called the
distorted-wave Born approximation (DWBA) [232–235]. A review of this approach,
the presentation of a computer program for data analysis, and demonstrations of
the effect of wave distortion has been published by LAZZARI [236]. In the field of
soft matter the DWBA-approach has recently been utilized by the Korean group of
REE [237–239]. Discussion of the corresponding data treatment is beyond the scope
of this book.

RULAND and SMARSLY [9, 84, 240] can analyze their recorded data in the clas-
sical Born approximation, but have to correct for the special geometry of the grazing
incidence experiment. They propose not to carry out the necessary corrections in a

118A refraction correction should be taken into account, if the experiments are carried out with a USAXS
setup. Then the lattice constants of the investigated nanostructures are typically above 100 nm.
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separate pre-evaluation, but to include correction terms in the analytical model func-
tions. They directly fit the measured scattering curve by a compound model [84] like

Imod (s) = wAsr (s)
[
Isr (s) H2

z (s)+ IFl
]
. (8.116)

Here w is a weighting factor. Asr (s) is the absorption factor (in this case for symmet-
rical absorption), Hz (s) and IFl consider the non-ideal character of the two-phase
topology (cf. p. 124, Fig. 8.10) by consideration of a smooth phase transition zone
and density fluctuations inside the phases.

The analytical structural model for the topology of the nanostructure is defined
in Isr (s). For many imaginable topologies such models can be derived by application
of scattering theory. Several publications consider layer topologies [9, 84, 231] and
structural entities built from cylindrical particles [240,241]. In the following sections
let us demonstrate the principle procedure by means of a typical study [84].

8.8.2 I1 (s) from a Nanostructured Layer System

Let us consider a nanostructured thin film built from lamellar particles [84]. If the
principal axis of layer stacks is oriented normal to the film surface, the scattered
intensity measured in symmetrical-reflection geometry (SRSAXS) is

Isr (s) = Iori (s,φ = 0) ∝
g(φ = 0)

s2 I1 (s) (8.117)

proportional to the isotropic119 intensity. This equation is only valid for ideal point-
focus. In practice, the primary beam has a finite extension. Important for the smear-
ing of the observed curve is the extension of the primary beam in the direction per-
pendicular to the plane of incidence. The respective profile, W (y), should be known.
In this case the smearing is described by the equation120

Isr (s) ∝
∫ ∞

0
W (y)

g [arctan(y/s)]
s2 + y2 I1

(√
s2 + y2

)
dy.

In the standard setup W (y) is the profile of the primary beam in horizontal direction.
In order to solve the smearing integral, the orientation distribution of the layer nor-
mals, g(φ), is approximated by a Poisson kernel121 and W (y) is approximated by a
shape function with the integral breadth 2ymax of the primary beam perpendicular to
the plane of incidence. In the simplified result

Isr (s) ∝
∫ ymax

0

1−q2

s2 (1−q)2 + y2 (1 + q)2 I1

(√
s2 + y2

)
dy, (8.118)

the Poisson parameter q describes the possible orientation of the material from the
isotropic orientation of layer stacks (q = 0) to perfect uniaxial orientation (q = 1). If
the orientation is high, the approximation

119This is in 3D the solid-angle averaged intensity of the stack – as if an isotropic material (made from
stacks of layers) had been studied in a conventional setup.

120The same equation is considered for the smearing of the classical Kratky camera.
121The Poisson kernel is the Lorentzian on the orientation sphere (cf. Sect. 9.8).
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Figure 8.47. SRSAXS raw data (open symbols) and model fit (solid line) for a nanostructured
material using a finite lattice model. The model components are demonstrated: absorption fac-
tor Asr, density fluctuation background IFl , smooth phase transition Hz. The solid monotonous
line demonstrates the shape of the Porod law in the raw data. At s0 the absorption is switching
from fully illuminated sample to partial illumination of the sample

Isr (s) ∝
1
s

arctan

(
ymax

s
1 + q
1−q

)
I1 (s) (8.119)

is valid. For very high orientation (0.95 < q < 1) and small s–values even

Isr (s) ∝
1
s

I1 (s) (8.120)

is valid – similar to respective results for measurement with a Kratky camera.
By trial-and-error it is possible to find out, which of the successive approxima-

tions is valid: ymax can be measured or assessed from the beamline geometry. To-
gether with q it can be varied within reasonable intervals, in order to fit analytical
models for I1 (s) (e.g., after Eq. (8.110) or Eq. (8.112) to measured data.

8.8.3 Typical Results

RULAND and SMARSLY [84] study silica/organic nanocomposite films and elucidate
their lamellar nanostructure. Figure 8.47 demonstrates the model fit and the compo-
nents of the model. The parameters IFl and σz (inside H2

z ) account for deviations
from the ideal two-phase system. Asr is the absorption factor for the experiment car-
ried out in SRSAXS geometry. In the raw data an upturn at s0 is clearly visible. This
is no structural feature. Instead, the absorption factor is changing from full to partial
illumination of the sample. For materials with much stronger lattice distortions one
would mainly observe the Porod law, instead – and observe a sharp bend – which are
no structural feature, either.

Figure 8.48 visualizes the selectivity of this RULAND-SMARSLY method for
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Figure 8.48. Best fits of stacking model and lattice model to the data from Fig. 8.48. The
lattice model fits much better. Data sets are shifted for clarity

weakly distorted nanostructures and differing structure evolution mechanisms. The
best fit of the lattice model to the scattering data is significantly better than the best
fit of the stacking model.

Disorder of Nanocomposites and Common Polymers. If one compares
the distortion parameters of particular nanocomposites with those of common poly-
mer materials, the relative standard deviations are generally smaller by 1 order of
magnitude. More than 30 layers are correlated to each other, whereas the correlation
in commercial polymer materials is generally ranging shorter than 4 layers.

8.9 Anomalous X-Ray Scattering

Application. Anomalous X-ray diffraction (AXRD), anomalous wide-angle X-
ray scattering (AWAXS), and anomalous small-angle X-ray scattering (ASAXS) are
scattering methods which are selective to chemical elements. The contrast of the
selected element with respect to the other atoms in the material is enhanced. The
phase problem of normal X-ray scattering can be resolved, and electron density maps
can be computed.

Consider a polystyrene-(b)-polybutadiene star block copolymer with four arms
coupled by a central Si-atom. Or consider a metal catalyst (e.g., Au) supported in
activated carbon. Then the scattering of only the selected element (Si, Au, respec-
tively) can be extracted [242]. Even the distribution of the elements in the material
can be mapped based on ASAXS data. A concise review of the ASAXS method in
combination with AXRD and AWAXS has been published by GOERIGK et al. [243].
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Technical Requirements. AXS requires an X-ray source with easily tunable,
monochromatic photon wavelength. This means that a respective device can only be
operated at a synchrotron. In general a 2D detector is used.

Procedure. After the element of interest has been chosen, an X-ray absorption
edge of the element that is inside the tuneable range of the synchrotron is selected122.
In general this is a K-edge or an L-edge. For the conversion between energy, E in
keV, and the wavelength of radiation, λ in nm, the relation

E
keV

=
1.2398nm

λ
(8.121)

holds.
Then two or three scattering or diffraction measurements at different wavelengths

to the left and to the right of the edge are performed and evaluated. The most simple
way is a subtraction of two scattering patterns. After this operation the signal of
all normally scattering material is extinguished. Correlation functions of only the
anomalous scatterers with each other, of only the normal scatterers with each other,
and the cross-correlations of anomalous scatterers with normal ones can be computed
and result in a detailed view on the size distributions of the anomalous scatterers and
their arrangement in the material.

For Comparison: Notions of Normal Scattering. As the electron density
is assumed to be a real quantity, it directly follows the central symmetry of scatter-
ing patterns known by the name Friedel’s law [244]. Friedel pairs are Bragg reflec-
tions hkl and hkl that are related by central symmetry. Concerning their scattering
amplitudes, Friedel pairs have equal amplitude |Ahkl| =

∣∣Ahkl

∣∣ and opposite phase
φhkl = −φhkl . Consequently, in the scattering intensity the phase information on the
structure factor is lost.

Fundamental Notions of Anomalous Scattering. As the wavelength of the
X-rays is approaching an absorption edge, the atom can absorb the energy of the pho-
ton by lifting an electron to a higher shell. As absorption is, in general123, changing a
real quantity to a complex number, the electron density is no longer a real number in
anomalous scattering. Consequently, Friedel’s law is broken, and scattering patterns
need not be symmetrical any longer (Fig. 8.49). Both the amplitude and the phase of
the members of Friedel pairs may be changed. Changing the amplitude can be used
for contrast enhancement. Changing the phase can be used for restoration of phase
information.

Theoretical considerations of anomalous scattering start from the general relation

f (E) = f0 + f ′ (E)+ i f ′′ (E) (8.122)

122For instance, the K-absorption of Au is at λAu K= 0.01536 nm, the K-absorption of Si is at λSi K=
0.67423 nm.

123Other relevant fields in physics are: dielectric loss, mechanical loss modulus
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Figure 8.49. 2D ASAXS spectra (logarithmic scale) at different photon energies, appearing
around a 200 Bragg peak of a Cu-Ni-Fe single crystal aged for 3 h at 773 K. The Bragg peak
itself is masked by a beamstop to prevent damage to the detector (a) near the Fe absorption
edge, (b) near the Ni absorption edge. (c), (d) near the Cu edge, where both Fe and Ni fluores-
cence contribute to increase the background. Source: LYON et al. [245]

for the atomic scattering factor. For normal scattering it is sufficient to consider the
non-resonant term, f0 = Z, which is equal to the number of electrons, Z, of the
atom124. The curve of the imaginary part of anomalous dispersion, f ′′ (E), must be
measured by X-ray absorption (EXAFS: Extended X-ray Absorption Fine Structure)
in order to determine shape and exact position of the absorption edge in the studied
sample. The real part of anomalous dispersion, f ′ (E), is computed from f ′′ (E) by
numerical integration using a Kramers-Kronig relation

f ′ (ω) =
2
π

∫ ∞

0

ω ′ f ′′ (ω ′) dω ′

ω2 −ω ′2 . (8.123)

Since f ′ (E) and f ′′ (E) are sharply varying at energies within 10 eV of the absorp-
tion edge, the monochromatization of the probing X-rays must be very high. Con-
cerning the beam exiting the monochromator, its height and angle must not vary as
the wavelength is tuned.

Reviews of scattering methods in materials science that contain examples of the
application of anomalous scattering have been published by BALLAUFF [246] and
FRATZL [247].

124This definition leads to an electron density measured in “electrons per nm3” (cf. Sect. 7.10.1). If we are
aiming at a treatment in terms of scattering cross-section we define f0 = Z re, instead.
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Introduction. The following two chapters are devoted to the evaluation of the
orientation of structural entities in the studied material, not to the analysis of the
inner structure (topology) of these entities. First discussions of the problem of ori-
entation smearing go back to KRATKY [248, 249]. Unfortunately, the corresponding
mathematical concepts are quite involved, and a traceable presentation would require
mathematical reasoning that is beyond the scope of this textbook. Thus only ideas,
results and references are presented.

Whenever we are considering orienta-

Figure 9.1. Imperfect orientation in a bun-
dle of structural entities (jackstraws)

tion, we are dealing with anisotropic scat-
tering data. Orientation is most frequently
analyzed in 2D scattering data with fiber
symmetry or in pole-figure data recorded
by means of a texture goniometer.

The aim of orientation analysis is not
only the quantitative description of orien-
tation, but also the separation of orienta-
tional effects from topological ones – ulti-
mately meaning the desmearing of imper-
fect orientation in order to reconstruct the
scattering pattern of the perfectly oriented
structural entities.

In the present chapter we assume that
rigid and well-defined structural entities
are present but not perfectly oriented –
similar to a bundle of jackstraws (Fig. 9.1).
Moreover, we assume that there is no cou-
pling between the orientation of a struc-
tural entity and its structure. Two general topics are addressed

1. The general relation (in 3D) between the orientation distribution and the scat-
tering of the perfectly oriented structural entity (Sect. 9.2).

2. The use of found Master orientation distributions for the purpose of iterative
orientation desmearing in the general case (Sect. 9.3).

Moreover, some issues concerning scattering patterns with fiber symmetry are dis-
cussed
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1. The use of unimodal meridional reflections for determination of the orientation
distribution and desmearing (Sect. 9.6).

2. The influence of finite size and imperfect orientation of the entities on the
shape of the reflections. Separation of unimodal orientation distributions by
means of RULAND’s streak method, and assessment of the analytical shape of
the orientation distribution (Sect. 9.7).

3. Detection limits for splitting of orientation distributions (Sect. 9.7).

4. Modeling of orientation distributions by analytical functions and shape change
of the latter upon use, i.e., by mapping them on the orientation sphere (Sect. 9.8).

9.1 Basic Definitions Concerning Orientation

Problem. Let a polymer fiber contain rod-shaped structural entities in an amor-
phous matrix with some preferential orientation. Let us assume that the rods are
crystalline. Our interest is to study the crystalline structure of the rods. Instead of
sharp hkl reflections we observe that each reflection is smeared over a spherical cap
in solid angle. Thus the observed intensity is suitably expressed in polar coordinates

Ihkl (s) = Ihkl (s,ϕ ,ψ) . (9.1)

The goal is, both to gather information on the orientation distribution g(ϕ ,ψ) of the
rods, and to reconstruct the scattering intensity Iopt (s) of the perfectly oriented rod.

9.1.1 Pole Figures and Their Expansion

Definition: Pole Figure. A pole figure, ghkl (ϕ ,ψ) of the reflection Ihkl (s), is
defined as the projection (cf. Fig. 9.2) of the scattering intensity of the reflection

ghkl (ϕ ,ψ) =
∫ smax

smin

Ihkl (s,ϕ ,ψ) ds (9.2)

on the orientation sphere1. With respect to the structure of the crystallites, ghkl (ϕ ,ψ)
is the orientation distribution of the hkl netplane normal directions. The range of
integration may be reasonably chosen, sometimes even decreased to a thin spherical
shell. Properly normalized, gN,hkl (ϕ ,ψ) describes the probability to find a netplane
normal oriented in the direction (ϕ ,ψ). This definition2 of orientation distributions
is a suitable starting point for theoretical considerations. In practice, one will often
simply consider the orientation distribution of the structural entities, g(ψ ,ϕ).

1The orientation sphere is defined as a sphere of radius 1.
2Conceded – Crystallography carries out a further projection from the surface of the sphere to a circular
disk before it calls the function a pole figure. We omit this distorting stereographic projection. In this
case, in fact, a pole figure and an orientation distribution are very similar. If we say “pole figure”, we
bear in mind a well-separated reflection and its image on the orientation sphere. If we speak of an
“orientation distribution”, we imagine the structural entities, instead.
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Figure 9.2. Reflection Ihkl (s) smeared by misorientation of the ensemble of crystallites (struc-
tural entities). The center of gravity is found at shkl . Definitions of polar coordinates ϕ,ψ are
sketched. Dashed lines indicate the radial direction of the integration that leads to a projection
onto the orientation sphere resulting in the pole figure ghkl (ϕ,ψ) of the reflection intensity

Measurement of Pole Figures. Pole figures are directly measured in a texture
goniometer. The geometry of such an instrument is sketched in Fig. 9.3. Before the
pole figure measurement starts, the scattering angle, 2θhkl , related to the position of
the reflection in reciprocal space, |shkl |, (cf. Fig. 9.2) is fixed. In the pole-figure scan
the sample is – with respect to the dashed vertical line – tilted (ϕ) and rotated (ψ),
respectively.

Pole Figure and Multipole Expansion. Pole figures, g(ϕ ,ψ), and other func-
tions that are suitably expressed in spherical polar coordinates are favorably ex-
panded

Figure 9.3. Scattering geometry for the measurement of pole figures in a texture goniometer.
The scattering angle 2θhkl is fixed. ϕ and ψ are scanned
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g(ϕ ,ψ) =
∞

∑
�=0

�

∑
m=−�

am
� Ym

� (ϕ ,ψ) (9.3)

in spherical harmonics. An expansion in spherical harmonics is called a multipole
expansion. The am

� are called expansion coefficients. With increasing modulus of
their indices, the spherical harmonics, Ym

� (ϕ ,ψ), describe preferential orientation
more and more accurately, starting from the isotropic state. The functions themselves

Ym
� (ϕ ,ψ) =

{
Pm

� (cosϕ) cosmψ 0 ≤ m ≤ �

P|m|
� (cosϕ) sin |m|ψ −� ≤ m < 0

(9.4)

are defined by Legendre functions [4], Pm
� (x). The Legendre functions with m �= 0

are called associated Legendre functions. For m = 0 the Legendre polynomials

P0
� (x) = P� (x) with

P0 (x) = 1,

P1 (x) = x, (9.5)

P2 (x) =
1
2

(
3x2 −1

)
,

...

are obtained. They are most important for the discussion of orientation.
The expansion coefficients of the spherical harmonics for a deliberate distribution

g(ϕ ,ψ) are easily computed from

am
� =

∫
ω

g(ϕ ,ψ) Ym
� (ϕ ,ψ) dω , (9.6)

with the solid-angle element defined by dω = sinφ dϕdψ . The reason for this simple
computational scheme is the definition of the spherical harmonics – as an orthonor-
mal system of functions.

9.1.2 The Uniaxial Orientation Parameter for

The uniaxial orientation parameter is the most simple way to characterize preferred
orientation. It is simple, because it is only a number – in fact, for = a0

2 is the first
non-trivial expansion coefficient in a multipole expansion of the normalized

∫
ω

gN (ϕ ,ψ) dω = 1 (9.7)

pole figure, gN (ϕ ,ψ). for is also called Hermans’ orientation function [250].

Interpretation of for. For materials that exhibit fiber symmetry (i.e.,
g(ϕ ,ψ) = g(ϕ)) induced by structural entities with fiber symmetry
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Figure 9.4. The orientation of structural entities (rods) in space with respect to the (vertical)
principal axis and the values of for, the uniaxial orientation parameter (Hermans’ orientation
function) for (a) fiber orientation, (b) isotropy, (c) film orientation

themselves3 (F2-materials), the meaning of for ∈ [−0.5, 1] is easily un-
derstood (Fig. 9.4). If ϕ is the angle between the principal axis of the
material, and g(ϕ) is the orientation distribution of the axes of the struc-
tural entities, then for = 1 means that all the entities are perfectly ori-
ented parallel to the fiber direction of the material. This is a typical fiber
orientation. In the isotropic case the structural entities are oriented at
random, and a determination of the orientation parameter yields for = 0.
If the principal axes of the structural entities are all oriented in a plane
perpendicular to the principal axis of the material (film orientation), the
orientation parameter returns for = −0.5.

As are the other multipole-expansion coefficients, the uniaxial orientation parameter
is computed from Eq. (9.6). For materials with fiber symmetry the relation simpli-
fies4 and

a� =
2�+ 1

2

∫ π

0
g(ϕ) P� (cosϕ)sinϕ dϕ (9.8)

is obtained. Trivial is the coefficient a0. It quantifies the isotropic fraction5 of struc-
tural entities in the material. The coefficient a1 = 0 is vanishing, because all orien-
tation functions are even (g(s) = g(−s)). Thus the first non-trivial coefficient in the
multipole expansion of the normalized fiber-symmetric pole figure is the uniaxial
orientation parameter,

3Imagine the preferred orientation of a polymer fiber induced by preferred orientation of the polymer
chains.

4In the literature slightly different definitions of the multipole expansion are found, depending on how
the pre-factor (2�+1)/2 is distributed between expansion equation and the definition of the coeffi-
cients. Cf. (Ward [251], eq. 5.2)

5That is, “jackstraws” oriented at random orientation
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for (g(ϕ)) = a2 (gN (ϕ))

=
5
2

∫ π

0
gN (ϕ) P2 (cosϕ)sinϕ dϕ

=
5
4

∫ π

0
gN (ϕ)

(
3cos2 ϕ −1

)
sinϕ dϕ . (9.9)

In practice, either a pole figure has been measured in a texture-goniometer setup, or
a 2D SAXS pattern with fiber symmetry has been recorded. In the first case we take
the measured intensity g(ϕ) ≈ I (ϕ ,shkl = const) for the unnormalized pole figure.
In the second case we can choose a reflection that is smeared on spherical arcs and
project in radial direction over the range of the reflection. From the measured or
extracted intensities I (ϕ ,s = const) we then compute the orientation parameter by
numerical integration and normalization

for (I (ϕ ,s = const)) =
∫ π/2

0 I (ϕ ,s) 1
2

(
3cos2 ϕ −1

)
sin ϕ dϕ∫ π/2

0 I (ϕ ,s) sinϕdϕ
. (9.10)

The uniaxial orientation parameter related to the orientation of polymer chains gains
particular importance, because it can also be determined by measurement of bire-
fringence [250, 252].

If the observed reflections are not on spherical arcs, the computation of an ori-
entation parameter becomes an arbitrary operation that is not exclusively related to
misorientation of structure. Most probably the topology of the structural entities is
coupled to their orientation6, and Chap. 10 applies.

9.1.3 Character of Fiber-Symmetrical Orientation Distributions

Unimodal is a fiber-symmetrical orientation distribution g(ϕ) defined in ϕ ∈
[0,π/2], if it monotonously decays to the right and to the left of a single max-
imum.

Meridional is a function g(ϕ), if its maximum is at ϕ = 0. Such distributions de-
scribe fiber orientation.

Equatorial is a function g(ϕ), if its maximum is at ϕ = π/2. Such distributions
describe film orientation.

Split-Meridional Distribution. Figure 9.4a displays a case of a unimodal, non-
meridional orientation distribution: the most probable orientation of the struc-
tural entities does not coincide with the meridian. If the orientation distribution
itself is broad, the split character of the distribution may be invisible. Then it
is an apparently meridional distribution.

Split-Equatorial Distributions analogously, have their maximum symmetrically
split above and beneath the equator.

6Such coupling may be caused from a deformation of the structural entities that is varying as a function
of their orientation with respect to the principal axis of the material.
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Thus if the most probable orientation of the structural entities is increasingly tilted
away from the equator or out of the meridian, the character of the orientation dis-
tribution stays apparently equatorial or meridional, respectively – until a splitting of
the maxima becomes detectable (cf. Fig. 9.8).

9.2 Observed Intensity and Oriented Intensity – The
Relation

After having considered the basics of preferred orientation, we now approach the
problem of how to separate orientation from the intrinsic scattering intensity of the
structural entities. After some reasoning the general relation for the observed inten-
sity

I (s) =
∫∫∫

g(ξ ) Īopt (T (ξ )s) dξ1
dξ2

dξ3
(9.11)

expressed in terms of the orientation distribution, g(ξ ), and the “perfectly oriented”
scattering intensity, Īopt (s), of “the average structural entity” is obtained (RULAND

[253]). Here ξ = (ξ1,ξ2,ξ3) stands for any suitable parameterization of rotation7,
e.g., the 3 EULER angles or 3 direction cosines. T (ξ ) is the rotator – a tensor of
rank 2 – represented by a 3×3 matrix. There are peculiar properties enjoyed by ro-
tators (in particular under Fourier transform) that are utilized to derive Eq. (9.11).
Equation (9.11) is only valid if the distances among the entities are sufficiently ran-
dom and uncorrelated with the rotator. This approximation holds for the WAXS al-
most always, for the SAXS frequently.

In Eq. (9.11) polydispersity of the structural entities is considered, and the aver-
age intensity Īopt describes the perfectly oriented representative structural entity in
our material. It is coupled to the other quantity that is of interest – the orientation
distribution g(ϕ ,ψ ,ϕ ′) – here written in another parameterization of the rotation,
with the extra ϕ ′ denoting a rotation of the representative structural entity about an
axis of its own.

9.3 Desmearing by Use of a Master Orientation
Distribution

In a lucky case we may already have found a smeared reflection, Ihkl , of which we
know that it is extremely sharp in Īopt . This means that

Ihkl (s) = δ
(

s− 1
dhkl

)
ghkl (ϕ ,ψ) (9.12)

the intensity of the found reflection is an image of g(ϕ ,ψ) placed on a spherical
shell with the radius 1/dhkl in reciprocal space. We thus may directly use this im-
age to “orientation-desmear” the scattering pattern as a whole. If no such “master

7EULER’s Theorem: Rotation is the general movement of a rigid body in space with a single point fixed.
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orientation distribution” is found in the pattern, one may obtain a good analytical
approximation by application of RULAND’s streak method (Sect. 9.7).

In practice, orientation desmearing is carried out by expanding8 the found pole
figure in spherical harmonics (Eq. (9.8)). Then the multipole expansion of the whole
scattering pattern is computed9. By weighted division of the two sets of expansion
coefficients (Eq. (9.17)), the expansion coefficients of the orientation-desmeared
scattering pattern are obtained. Finally, from these coefficients the desmeared pat-
tern is reconstructed using the multipole expansion equation.

After the reconstruction, a cross-check should show that the reference reflec-
tion is degenerated to a δ -distribution, and there are no negative intensities in the
desmeared image. If this is not the case, the found reference peak was broadened
not only by imperfect orientation10. In this case an iterative trial-and-error method is
helpful: the peak is proportionally narrowed, until over-desmearing can no longer be
detected. The equations mentioned are directly applicable in case of fiber symmetry.
If the symmetry of the scattering pattern is lower, the simplification must be reverted
to a set of equations in the complete spherical harmonics instead of the Legendre
polynomials.

9.4 F2: Double Fiber Symmetry – Simplified Integral
Transform

Finding an image of the orientation distribution in the measured scattering pattern
is a rare stroke of luck. Nevertheless, fiber symmetry I (s) = I (s,ϕ) is frequently
observed – and even if Iopt (s) does not show fiber symmetry, at least the scattering
of the average representative scattering entity, Īopt (s) = Īopt (s,ϕ), is frequently fiber
symmetrical. This is the case, if in the material rotation of the scattering entities
about their principal axis is not hindered. Under these premises the material exhibits
“double fiber-symmetry” (F2).

RULAND [253] shows that in this case the integral transform Eq. (9.11) can be
simplified and solved. The corresponding geometrical relationships are sketched in
Fig. 9.5.

More simple solutions are found for special cases. Already in 1933
KRATKY [248] has presented a method for the case in which the ob-
served orientation distribution has its maximum on the equator. In 1979
the problem treated by KRATKY has been revisited by LEADBETTER

and NORRIS [254]. They present a different solution which is frequently
applied in studies of liquid-crystalline polymers. BURGER and RU-
LAND [255] pinpoint the error in the deduction of LEADBETTER and

8Each coefficient of the multipole expansion is computed by a numerical integration – after aligning and
normalizing the found orientation distribution.

9This function is already aligned with its fiber axis in s3-direction, and we do not normalize it. Together
with the normalization of the reference peak these measures guarantee the conservation of the 3D
scattering intensity under the desmearing operation.

10Think of instrumental broadening, finite lattice size.
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Figure 9.5. 3D geometrical relations in the scattering pattern for the case of double fiber sym-
metry (F2). Dash-dotted are both the axis of the observed pattern, I, and one of its reflection
circles. Drawn in solid line are both the axis of a tilted representative structural entity and a
reflection circle of its fiber-symmetrical intensity, Īopt . Important for the simplification are the
relations in the spherical triangle plotted in bold

NORRIS. They show that the result of KRATKY is, indeed, a special
case (ϕ ′ = π/2) of RULAND’s general treatment [253, 256], which is
sketched in the sequel.

In the deduction RULAND determines, which contribution to the ob-
served intensity, I, is added by each reflection ring of the likewise fiber
symmetrical function, Īopt . Then he adds up all the rings weighted by
the orientation function g(β ). In this way Eq. (9.11) is simplified. A
general solution is obtainable by multipole expansion.

The result of the simplified integral equation is

I (ϕ) =
∫ π/2

0
Īopt
(
ϕ ′) F

(
ϕ ,ϕ ′) sinϕ ′dϕ ′ (9.13)

with

F
(
ϕ ,ϕ ′

j

)
= 2

∫ π

0
g
(
β
(
ϕ ,ϕ ′

j,η
))

dη (9.14)

denoting the intensity on a spherical shell of constant radius. We observe that this
kernel of the orientation smearing, F (ϕ ,ϕ ′) is an orientation distribution itself. It is
a function both of the angle ϕ of the observed fiber-symmetrical intensity, and of the
angle ϕ ′ measured in the local coordinate system of the perfectly oriented, average
structural entity. Relations to the angle η are established in the spherical triangle of
Fig. 9.5 from the spherical law of cosines.
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9.5 F3: g(ϕ) Shows Fiber Symmetry – Solution

Of highest practical relevance is the case in which the scattering pattern, the struc-
tural entities, and even the orientation distribution g(ϕ ,ψ) = g(ϕ) show uniaxial
symmetry (F3-materials). If the structure is ruled by polydispersity and the material
is uniaxially oriented, F3 is most frequently fulfilled. In this case the mathematical
relations are considerably simplified. Suitably the orientation distribution is normal-
ized ∫∫

g(ϕ) dω = 2π
∫ π

0
g(ϕ) sinϕ dϕ = 1. (9.15)

Its simplified multipole expansion is

g(ϕ) =
∞

∑
�=0

a� P� (cosϕ) . (9.16)

The coefficients of the multipole expansion are computed from Eq. (9.8), and after
analogous expansions of both the intensity of the perfectly oriented structural en-
tity (Īopt , b�), and of the measured intensity (I, c�), RULAND [253] obtains a set of
algebraic equations among the expansion coefficients,

b� =
2�+ 1

4π
c�

a�
, (9.17)

which solves the problem exactly and without approximation. In order to arrive at
this equation, the integral equation Eq. (9.13), the addition theorems for Legendre
polynomials, and the relation

∫ π
0 cos(mη) dη = 0 for m �= 0 are used.

In practice, we have to carry out one numerical integration for the computation
of each coefficient. Nevertheless, the coefficients for small index � will be most im-
portant, and the coefficients with odd index � are vanishing anyway from central
symmetry. Thus the numerical effort can be mastered.

Finally, we still have a problem: g(ϕ) is not yet known except for the simple case
mentioned on p. 197 in Eq. (9.12).

9.6 Extraction of g(ϕ) from Meridional or Equatorial
Reflections

9.6.1 Unimodal Meridional Reflection Intensity

If the smeared image of a point-reflection on the meridian is unimodal, the orien-
tation distribution g(ϕ) is readily accessible. In this case a “texture measurement”
through the reflection, I (ϕ ,s = c) contains the information sought-after [256]

I (ϕ ,s = c) = lim
ϕ→0

F
(
ϕ ,ϕ ′)= 2π g(ϕ) . (9.18)

In Fig. 9.5 two sides of the spherical triangle merge ( ϕ ′ = ϕ), which leads to the
result. Thus the shape of the meridional reflection at constant |s| directly reflects the
shape of the orientation distribution.
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9.6.2 Unimodal Equatorial Reflection Intensity

For a unimodal equatorial reflection the treatment is more involved. If the distribution
is narrow, it follows from Fig. 9.5 an approximation ϕ ′ ≈ π/2, which can be used
to obtain an approximative solution, in turn (RULAND cited by THÜNEMANN [257],
p. 28)

F
(
ϕ ,ϕ ′)= 2

∫ π
2

0
ℜ
(

Keq

(
β ,

π
2
−ϕ + ϕ ′

)
+ Keq

(
β ,

π
2
−ϕ −ϕ ′

))
g(β ) sinβ dβ ,

(9.19)
with

Keq (β ,ϕ) =
1(

sin2 ϕ − cos2 β
)1/2

. (9.20)

On each side of the meridian, only a distorted image of the orientation distribution
is observed. Nevertheless, even equatorial reflections can generally be used for the
purpose of orientation-desmearing if we make assumptions concerning the analytical
type of the orientation distribution. The corresponding method is demonstrated in the
following section.

9.7 The Ruland Streak Method

Motivation and Principle. Broadened reflections are characteristic for soft mat-
ter. The reason for such broadening is predominantly both the short range of order
among the particles in the structural entities, and imperfect orientation of the enti-
ties themselves. A powerful method for the separation of these two contributions is
RULAND’s streak method [30–34]. Short range of order makes that the reflection
is considerably extended in the radial direction of reciprocal space – often it devel-
ops the shape of a streak. This makes it practically possible to measure reflection
breadths separately on several11 nested shells in reciprocal space. As a function of
shell diameter one of the contributions is constant, whereas the other is changing12.
If the measurement is performed on spheres (azimuthal), the orientation component
is constant.

History. WILKE [129] considers the case that different orders of a reflection are
observed and that the orientation distribution can be analytically described by a
Gaussian on the orientation sphere. He shows how the apparent increase of the in-
tegral breadth with the order of the reflection can be used to separate misorientation
effects from size effects. RULAND [30–34] generalizes this concept. He considers
various analytical orientation distribution functions [9, 84, 124] and deduces that the
method can be used if only a single reflection is sufficiently extended in radial di-
rection, as is frequently the case with the streak-shaped reflections of the anisotropic

11Thus we study pole figures as a function of |s|.
12The same principle is the fundament of the WARREN-AVERBACH method (cf. Sect. 8.2.5.5) for the

separation of size and distortion of structural entities. Thus the mathematics is partially identical.
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Figure 9.6. Fanning-out of an equatorial streak in a fiber pattern caused from misorienta-
tion. Dashed arcs indicate azimuthal scans that are performed in practical measurements. The
recorded scattering curves are used to separate the effects of misorientation and extension of
the structural entities

structural entities13 observed in fiber materials. In recent publications [34, 258, 259]
several authors demonstrate, both how this concept is flexibly modified, and how it
helps to characterize the perfection of nanostructured materials.

Basic Ideas. Let the average structural entity be anisotropic with fiber symmetry.
Let its shape

Y (r) = Y12 (r12) Y3 (r3) (9.21)

be factorized in cylindrical coordinates14. As the structural entity is perfectly ori-
ented, even its scattering intensity

Īopt (s) ∝ Φ2
12 (s12) Φ2

3 (s3) (9.22)

is factorized in cylindrical coordinates.
Let us consider a frequent problem: the scattering of elongated voids or of mi-

crofibrils is investigated. In such materials an equatorial streak is observed – simi-
lar to the one sketched in Fig. 9.6. If the voids were perfectly oriented, its integral
breadth measured as a function of s12

Bobs (s12) =
∫ ∞

−∞
I (s12,s3)ds3/I(s12,0) (9.23)

would be

Bobs (s12) =
1
〈L〉 (9.24)

13elongated voids, rods, microfibrils, layers, layer stacks
14In the practice of materials science this is rarely a restriction, because any higher complexity of its outer

shape is generally smeared from polydispersity.
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constant. 〈L〉 is the average longitudinal extension15 [30,31,34] of the voids, rods or
microfibrils. If misorientation has to be taken into account, the shape of the streak
is fanned out according to the orientation distribution g(ϕ). Concerning the form
factor Φ2

3 (s3) of the rigid structural entities it follows in good approximation [30]

I (s,ϕ) � 1
2

Φ2
12 (s)

[
g(ϕ) ∗ψ Φ2

3 (sϕ)
]
, (9.25)

that the orientation distribution becomes broadened by an angular convolution, ∗ϕ ,
of an image of the shape factor Φ2

3 (sϕ) that continuously narrows (argument sϕ), as
the radius of the arc in Fig. 9.6, s, is increased.

Separation of the two components is accomplished by means of data, in which
the apparent azimuthal integral breadth

Bobs (s) =
1

I (s,π/2)

∫ π/2

−π/2
I (s,ϕ)dϕ (9.26)

is determined as a function of the arc radius in reciprocal space (cf. Fig. 9.6).
The decrease of the apparent breadth Bobs (s) with increasing s is a function of

the analytical shape of the orientation distribution g(ϕ).
If a Gaussian can be used to describe the orientation distribution it follows

B2
obs (s) =

B2
p

s2 +
1

s2 〈L〉2 + B2
g.

Here Bp describes the inevitable instrumental broadening by the known integral
breadth of the primary beam16, and Bg is the true integral breadth of the orienta-
tion distribution. For the determination of 〈L〉 and Bg the relation is linearized

s2B2
obs (s) = B2

p +
1

〈L〉2 + s2B2
g. (9.27)

If a Lorentzian is a proper model for the orientation distribution, instead of
Eq. (9.27) the relation [31, 32, 34]

sBobs (s) = Bp +
1
〈L〉 + sBg (9.28)

is obtained. In practice, both variants are tested for the best linearization using the
data of the experiment. Thereafter the structural parameters are determined from the
best plot. An example is shown in Fig. 9.7.

15For worm-shaped entities we will not determine the extension, but only the persistence length of the
entities (cf. p. 165).

16We need Bp in the perpendicular direction with respect to the direction in which the streak is extending.
The beam profile has (hopefully) been measured after the adjustment of the instrument and before
installation of the beam stop. Before being used in Eq. (9.27) or Eq. (9.28) Bp is converted to reciprocal
space units.
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Figure 9.7. Separation of misorientation (Bg) and extension of the structural entities (1/〈L〉)
for known breadth of the primary beam (Bp) according to RULAND’s streak method. The
perfect linearization of the observed azimuthal integral breadth measured as a function of
arc radius, s, shows that the orientation distribution is approximated by a Lorentzian with an
azimuthal breadth Bg

After analysis by means of the streak method, a good analytical approximation
for the orientation distribution is known. Orientation desmearing becomes possible.
For this purpose the method described in Sect. 9.5 can be utilized.

If meridional streaks are found for materials built from layer stacks, these pat-
terns can be analyzed analogously [259]. An application to data sets combined from
series of reflections with increasing order is possible, as well.

If the most-probable orientation of the structural entities is no longer parallel
to the fiber axis, we may observe a clearly inclined streak. Such orientations are
frequently observed in herbal and animal natural fibers [45, 260, 261]. If the split
nature of the orientation distribution is clearly detected, the streak method can be
applied or adapted.

Problems arise, as the orientation distribution starts to split, but the split nature
is not yet discernible. THÜNEMANN [257] is discussing this problem in his thesis.
He describes, how to determine the true tilt angle of the structural entities, and he
determines the minimum tilt angle that is required for the split nature to become
detectable (Fig. 9.8). We observe that, in practice, a split nature of Lorentzian orien-
tation distributions (solid line) is detected earlier than a split nature of Gaussians – at
least up to an apparent17 integral breadth of 70◦. The reason is that Lorentzians are
more pointed than Gaussians – in the vicinity of their maximum.

17Why is the determined integral breadth only an apparent one? Lorentzians show a high background –
and this background accumulates in particular, when Lorentzians are used as orientation distributions
and thus are wrapped around the sphere. Thus the minimum of a Lorentzian orientation distribution on
a sphere is not zero and the integral breadth that is determined by subtracting the minimum is only an
apparent one.
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Figure 9.8. Minimum average tilt angle, ϕ0,min, of structural entities measured with respect
to the fiber axis at which the split nature of the orientation distribution becomes observable –
plotted as a function of the integral breadth Bg of the orientation distribution g(ϕ). Solid line:
g(ϕ) is a Lorentzian. Dashed: Gaussian

9.8 Analytical Functions Wrapped Around Spheres: Shape
Change

The Fitting Problem. In many studies in particular of natural fibers, orientation
distributions are picked from spherical arcs in scattering patterns and then fitted by
Gaussians or Lorentzians. The result is the finding of an isotropic background. At
least part of this background is not related to structure, but to a fundamental misun-
derstanding.

The reason is the following: as we use analytical functions to model orientation,
we take a function with, in general, infinite support and map it on the orientation
sphere. Because of the inherent periodicity of the spherical surface, the branches of
the analytical function wrap around the sphere up to infinity (Fig. 9.9). As the ori-
entation distribution is, again, picked from the scattering pattern, it does not unwrap,
again. This wrapping must be considered. RULAND [256] shows that the periodic
superposition of shifted distribution images may not only result in an intrinsic back-
ground. Moreover, every shape is fundamentally changed. So if we put a Gaussian
on the sphere, we receive cos2ν ϕ in return. Lorentzians become Poisson kernels –
with considerable intrinsic background.

Pathway to the Solution. All orientation functions are defined on the orienta-
tion sphere. At the best, their period is π . Thus the mapping of an analytical function
h(x) on the orientation sphere is equivalent to

g(ϕ) =
∞

∑
m=−∞

h(ϕ −mπ) , (9.29)

and g(ϕ) is observed. For h(x) RULAND [33, 256, 262] is discussing Gaussians,
Lorentzians and even a superposition of the two kinds of distributions [262].



206 9 High but Imperfect Orientation

Figure 9.9. Infinite functions in a periodic world. Using a function (black line) as an orienta-
tion function means to wrap it around the orientation sphere. Only one branch of a LORENTZ

distribution at the right side of the equator is sketched. Shape change occurs

Solution for GAUSS Distributions. For a Gaussian h(x)= exp
(
−ν (ϕ −nπ)2

)
Eq. (9.29) becomes

gG (ϕ) = cos2ν (ϕ) = π
∞

∑
n=−∞

exp
(
−ν (ϕ −nπ)2

)
(9.30)

with the integral breadth

BG =
∫

exp
(−νϕ2)dϕ =

√
π/ν. (9.31)

The equations are analytical for even and positive values of ν .

Solution for LORENTZ Distributions. For LORENTZ distributions the solution
is the Poisson kernel

gL (ϕ) =
1−q2

1 + q2−2q cos(2ϕ)
=

∞

∑
n=−∞

2 log(1/q)

(log(1/q))2 + 4(ϕ −mπ)2 (9.32)

with its integral breadth

BL =
π
2

log

(
1
q

)
(9.33)

for 0 < |q| < 1. q is the breadth parameter, and the Poisson kernel enjoys several in-
teresting properties. For q = 0, the distribution degenerates into the isotropic distri-
bution. For negative values of q, the distribution is a unimodal equatorial distribution.
For positive q, the maximum is on the meridian. For |q|= 1, the orientation distribu-
tion becomes infinitesimally narrow. Because of the fact that LORENTZ distributions
are slowly decaying, their mapping on the orientation sphere always results in an
intrinsic background. Thus BL is not accessible from measured data. In practice, the



9.8 Analytical Functions Wrapped Around Spheres: Shape Change 207

zero level will be put in the observed minimum of the orientation distribution g(ϕ)
on the orientation sphere, and an apparent integral breadth

BLa =
π
2

(1−q) (9.34)

is determined. This result is obtained from Eq. (9.33) by taking limits q → 1.



10 Orientation Growing from the Isotropic State

Straining of isotropic materials is a common method of testing or processing. During
such treatment uniaxial orientation is frequently growing (Fig. 10.1).

Rigid Structural Entities. If the initial structure is described by rigid, anisotropic
structural entities which are oriented at random, the evolution of anisotropic scatter-
ing is readily studied by means of the methods presented in Chap. 9. A practical
example is the study of growing orientation in fiber-reinforced materials.

Shape Change of Structural Entities. In many cases the growing anisotropy
is not only a phenomenon of rotating structural entities, but also goes along with a
deformation of the structural entities themselves. This case will be studied here. Only
affine deformations shall be discussed. In practice, such processes are observed while
thermoplastic elastomers are subjected to mechanical load, but also while fibers are
spun.

Figure 10.1. USAXS observation during straining of an SBS block copolymer. Right monitor:
Intensity maxima on an ellipse. Raw-data coordinate system (x,y) and radial cuts for data
analysis are indicated. Middle: Videotaping of sample. Left: Stress-strain curve. Control booth
of beamline BW4, HASYLAB, Hamburg
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The General Experimental Observation. Only the analysis of the most fre-
quent experimental observation [248, 263–266] is discussed. In corresponding stud-
ies scattering curves are extracted in radial direction, and the positions of the found
reflection maxima are plotted vs. the polar angle ψ ′ between the slicing direction and
the fiber axis. As long as the material is isotropic, the reflection maxima are found on
a spherical shell, the Debye sphere. As orientation is growing, the maxima are found
on ellipsoidal shells, the ellipticity of which is increasing with increasing draw ratio,
λd = ε + 1.

Evaluation Methods. Two evaluation methods are discussed in this chapter. RU-
LAND’s theory is based on reasoning concerning structure in 3D space. The strict
approach relates structure to the scattering pattern. For example, the microscopic
draw ratio of the structural entities can be determined. The other approach is the
MGZ-technique of scattering image processing. Based on 2D master-peaks mapped
by an elliptical transformation, almost any SAXS fiber pattern can readily be mod-
eled. Long periods or tilt angles determined by the method are not more reasonably
founded in scattering theory as are direct determinations from peak position and peak
angle. Nevertheless, because the whole pattern is considered in the fit, small changes
can be determined with higher significance. Thus the method is valuable for compar-
ative studies. Moreover, it can be used to properly align raw patterns or to reconstruct
patterns that are distorted – e.g., from accidental tilt of the specimen in the sample
holder.

If the intended evaluation can be carried out on isotropic material, and thus the
observed anisotropy is rather an obstacle than an advantage, the fiber pattern can be
isotropized (cf. Sect. 8.4.2). This may, in particular, be helpful if lamellar structures
are analyzed. If the focus of the study is on the anisotropic structure, the multidi-
mensional CDF (cf. Sect. 8.5.5) may be a suitable tool for analysis. Several studies
have demonstrated the power of the CDF method for the study of structure evolution
during straining [174, 177, 181–183].

10.1 R ’s Theory of Affine Deformation

10.1.1 Overview

In a fundamental paper [265] RULAND develops an advanced method for the analysis
of scattering patterns showing moderate anisotropy. The deduction is based on a 3D
model and the concept of highly oriented lattices. The addition of distortion terms
makes sure that the theory is applicable to distorted structures and their scattering.

According to his deduction the common finding of ellipsoidal deformation of the
reflections is indicative for affine deformation. Moreover, he arrives at an equation
that permits to determine with high accuracy the microscopical draw ratio, λd , of
the structural entities from the ellipticity of the deformed Debye sphere. This value
can be compared to the macroscopical draw ratio. Even the intensity distribution
along the ellipsoidal ridge is predicted for a bcc-lattice of spheres, and deviations of
experimental data are discussed.

ULAND
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Figure 10.2. Plot of the positions (x,y) of peak maxima extracted on radial rays in a moder-
ately oriented SAXS fiber pattern according to BRANDT & RULAND [265]. A microscopical
draw ratio λd = 1.41 of the structural entities is determined from the slope

10.1.2 Application

Let (s12,s3) be the coordinates of reflection maxima determined on radial rays in the
scattering pattern. Then a linearizing plot of the ellipsoidal shape is

s2
3 = b2 − b2

a2 s2
12, (10.1)

with a and b being the semimajor and the semiminor axis of the rotation-ellipsoid,
respectively. Then the equation [265]

b2

a2 =
1

λ 3
d

(10.2)

relates the slope in the linearizing plot from Eq. (10.1) to the microscopical draw
ratio of the structural entities. The intercept

b2 =
1

L2
m

(10.3)

in the linearizing plot is related to the extrapolated long period, Lm, in meridional
direction (fiber axis). Figure 10.2 demonstrates the linearizing plot according to
Eq. (10.1) for positions (x,y) of peak maxima extracted along radial rays from the
2D SAXS scattering pattern. x and y are in length units on the image (cf. Fig. 10.1).
If x = cs12 and y = cs3 are valid, the draw ratio can be determined directly, without
transformation from length units to the units of reciprocal space.

The clear linearity of the data demonstrates the affine character of the deforma-
tion. From the intercept, b2, the semiminor axis of the rotation ellipsoid is deter-
mined. After transformation to units of reciprocal-space, the meridional long period
follows from Eq. (10.3).

ULAND
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Figure 10.3. Shape of the maximum peak intensity, J (ϕ ′), extracted from radial sections of
a moderately anisotropic (λd = 1.41) SAXS pattern with fiber symmetry as a function of the
sectioning angle ϕ ′ related to the fiber axis. Dots: experimental values. Solid line: Theoretical
shape according to RULAND [265]

Modeling the initial structure by spherical domains in a bcc-lattice1, the theoret-
ical intensity along the ellipsoidal ridge as a function of the angle ψ ′ between fiber
axis and the direction of the radial beam is

Jh
(
ϕ ′) ∝ g

(
λd,ϕ ′) |〈Φ〉D|2

(
s′h
)

H2
z

(
s′h
)
, (10.4)

with

g
(
λd ,ϕ ′)=

1
λd

√
1 + λ−3

d tan2 ϕ ′

1 + λ−6
d tan2 ϕ ′ . (10.5)

and

s′h = sh

√
1

λd
sin2 ϕ ′ + λ 2

d cos2 ϕ ′.

|〈Φ〉D|2
(
s′h
)

H2
z

(
s′h
)

is the form factor envelope2 of the scattering, made from the
form factor of ideal spheres and the attenuation term describing a smooth transition
of the density at the phase boundary (cf. p. 124).

The comparison between experimental and predicted intensity (Fig. 10.3) reveals
deviations between theory and experimental data already at relatively low uniaxial
deformation. A reasonable explanation is an increase of lattice distortions by local
tensions which modify the envelope and thus the total intensity. Theoretical compu-
tation of mechanical anisotropy in a bcc-lattice supports the explanation [265].

1bcc: body-centered cubic arrangement of the spheres
2The form factor is, in fact, an envelope, because it limits the visibility of the reflections: Outside the
region where it has decayed to virtually 0, no scattering is observed. Sometimes the envelope is visible:
We “see” the spherical, the cylindrical or the layer shape of the fundamental domains in the oriented
material.
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10.2 The MGZ Technique of Elliptical Coordinates

Applicability. Just like RULAND in the previous section, MURTHY, GRUBB and
ZERO [266–269], start from the common observation (Fig. 10.1). They propose a
simple and powerful parameterization of scattering images of strained materials.
Nevertheless, the method does not consider the 3D character (reflections on rotation
ellipsoids, 3D structure model): movement of a peak from the meridian to the equator
will decrease its observed "image-intensity", although such a decrease is – to a first
approximation – a result of distributing the same intensity on a ring in space with a
bigger diameter. Anyway, the intensity issue is not the focus of the MGZ method.
Compared to the peak shape issue it is a more complex problem, as RULAND has
shown (cf. p. 212).

Elliptical Coordinates. Scattering patterns can be expressed as a function of
various coordinates. For isotropic scattering patterns, I (s) = I (s,ϕ ,ψ), it is reason-
able to choose polar coordinates, (s,ϕ ,ψ), because the intensity is factorized I (s) =
I (s) Iϕ (ϕ) Iψ (ψ) in these coordinates and two of the factors Iϕ (ϕ) Iψ (ψ) = 1 are
constant.

Transferred to the observation that the reflections in moderately anisotropic scat-
tering images are found on ellipses3, it appears reasonable to parameterize such im-
ages in elliptical coordinates (u,v). The transformation relations are [266]

s12 =
√

A2 + u2 cosv (10.6)

s3 = u sinv. (10.7)

Here A is the distance of the foci, which are found on the s12-axis. For u = 0 we have
plane polar coordinates. Varying v ∈ [0,2π ] at constant u describes an elliptical orbit
with a =

√
A2 + u2 and b = u its semimajor and semiminor axis, respectively.

If the elliptical parameterization shall be used for automatic alignment of scat-
tering patterns, control of ellipse rotation and displacement are important. Rotation
is controlled by subtraction of a constant from v. A displaced center is readily con-
sidered by subtraction on the left side of Eqs. (10.6) and (10.7).

Transferring RULAND’s relation between the ellipticity and the microscopical
draw ratio, λd , to the parameterization of MURTHY, GRUBB and ZERO, we receive

A2

u2 = λ 3
d −1. (10.8)

Figure 10.4 shows the first steps of scattering data analysis by means of of the
MGZ technique. Replacing tanφ = s12/s3 in Eq. (10.1)

L2
φ = L2

M + L2
E tan2 φ (10.9)

is obtained. The equation describes the variation of the long period as a function of
the polar angle, φ . The relations to the geometrical positions of the peak maximum in

3By not addressing scattering patterns and rotation-ellipsoids we stress the 2D character of the method.
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Figure 10.4. MGZ analysis of an undrawn polyamide 6 fiber. (a) Plot of the peak maximum
position as a function of the detector coordinates (x,y). Relations to the parameters of the
ellipse and the structure (long periods LM, Lφ ) are indicated. (b) Separation of meridional
long period, LM, from the long period Lφ . (courtesy S. MURTHY)

the scattering pattern are Lφ = 1/s3, LE = 1/a, and LM = 1/b. Here s3 is not a vari-
able, but the meridional component of the peak maximum expressed in units of the
reciprocal space. The peak maxima are found on an ellipse with the semimajor axis a
and the semiminor axis b. The validity of Eq. (10.9) to φ almost 90◦ is demonstrated
in Fig. 10.4b using data obtained from an undrawn polyamide 6 fiber [269].

Parameterization of Reflections in Elliptical Coordinates. The authors
of the technique define the intensity

I j (u,v) = Cj f j
(
u,u0, j,uw, j

)
g j (v,vo, j,vw, j)

of the j-th model reflection by the product of two 1D functions, f j and g j, and a scal-
ing factor Cj. u0, j and v0, j define the center of the reflection. uw, j and vw, j determine
the breadths. A suitable class of functions for the 1D distributions is empirically
found by study of the intensity curves in radial sections (cf. Fig 10.1) of the images.
According to MURTHY, GRUBB and ZERO [266] a suitable class are Pearson-VII
functions with shape factor m = 2.
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Fiber symmetry makes that every function g j is the sum of four quadrant func-
tions,

g j
(
v,v0, j,vw, j

)
=

1
4

(
h j
(
v,v0, j,vw, j

)
+ h j

(
v,π − v0, j,vw, j

)
+

h j
(
v,−v0, j,vw, j

)
+ h j

(
v,π + v0, j,vw, j

))
. (10.10)

Thus every reflection in the fiber diagram is defined by one function f j
(
u,u0, j,uw, j

)
and four quadrant functions. If the model shall be fitted to a scattering pattern in
which the fiber is tilted with respect to the primary beam, weighting factors are at-
tached to each of the quadrant functions. After the fit of an experimental scattering
image, the found factors quantify the tilt, and the corresponding distortion of the
scattering pattern can be eliminated.



11 Fitting Models to Data

Because of the importance of model fitting in the field of scattering, some hints are
presented and sources for further reading are given.

Models are fitted to scattering data by means of nonlinear regression [270] and
related computer programs [154,271]. The quality of the parameterization (by struc-
tural parameters) and of the fit are estimated. The “best fitting model” is accepted.
The found values for the structural parameters are plotted vs. environmental parame-
ters of the experiment and discussed. Environmental parameters that come into ques-
tion are, for example, the materials composition, its temperature, elongation, or the
elapsed time.

11.1 Which Data Are Fitted?

Almost any transformation of data is changing the weight of inherent features that
we want to know about. A striking example is the simple logarithmic representation
of scattering data and the related distortion of the error-bar spread (p. 124, Fig. 8.11).
As we are interested in structure, we should fit data that present an undistorted view
of structure. Our X-ray instrument has already transformed structure information into
a scattering pattern, and we have to ask what we should do with the pattern before
fitting – leave it as it is or transform it back?

In the Scattering Pattern: The Perfection. Because infinite lattices (and
Gaussians) are the only functions that do not change their shape under Fourier trans-
form, there is a simple answer to the question for the crystallographer: leave the
diffraction pattern as it is. It is a true image of structure. The same is valid for scatter-
ing data of identical particles (Sect. 8.6) or for nanocomposites with high perfection
(Sect. 8.8). In all these cases it is reasonable to implement all necessary corrections
into a model function of the scattering intensity, and then to directly1 fit the recorded
data.

The problem starts as soon as the structure is governed by polydispersity. In this
case the transformation carried out by the X-ray instrument is no longer true, and

1Theoretical considerations have been carried out by BURGER and RULAND [20] for the case of ideal
structure. According to their deduction it turns out that the discontinuities found in the CLDs, IDFs,
or CDFs of ensembles arranged from ideal and identical geometrical bodies seriously aggravate any
pre-evaluation or transformation of measured scattering curves.
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the scattering intensity presents a strongly biased view of structure information (cf.
Sect. 2.6).

In the Chord Distribution Pattern: The Diversity. In Sect. 2.6 we have
demonstrated that the back-transformation into a CLD, IDF or CDF corrects the
biased view on polydispersity that is inherent to scattering data. So at least for the
purpose of structure visualization one should carry out the back-transformation in
order to view polydispersity and complexity of the structure without biased weight-
ing. Nevertheless, this does not answer the question concerning model fitting: is it
good practice to fit models to IDFs that originate from scattering data after pre-
evaluation, smoothing and Fourier transformation? Theoretical considerations for
polydisperse soft matter have not yet been carried out, but practical experience indi-
cates that the structure description obtained by fitting a model to the raw scattering
data of a polydisperse structure is, in general, not in agreement with the computed
IDF of the material. Moreover, the convergence of regression algorithms using poly-
disperse model functions is rather poor when they are applied to raw scattering data
which do not show narrow peaks. On the other hand, fits on the IDF converge quite
fast and the transformation of the structural data back to the scattering curve fits quite
well [125].

11.2 Which Techniques Are Applied?

Model Fitting. In general, the residuals between the model function M (p,x) and
m pairs of variates are summed

R(p) =
m

∑
i=1

(yi −M (p,xi))
2 ,

yielding the function that is minimized2. It is called the “residual sum of squares”
(RSS). Minimization is carried out by variation of the parameter set p. p is a vector
with � components. � is the number of model parameters. R(p) is a function defined
in parameter space.

In the ideal case the program finds the absolute minimum of RSS in parameter
space. With good starting values for the (structure) parameters this is possible. In
practice, the regression program frequently stops in a local minimum – i.e., in a
trough at a higher level than the absolute minimum. Thus model fitting becomes
an issue of iteration and trial-and-error. It starts from an iterative optimization of
the starting values for the regression program3, and continues with the optimization

2In a minimum the gradient ∇R(p) = 0 is vanishing.
3After each run the found parameters will be checked for the necessity to move them away from ex-
treme values (0, big values), and restart the program repeatedly until no further reduction of the RSS is
achieved.
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of an initial model4, the comparison of different5 good models, and ends with the
acceptance of the best model fit. If only one data set shall be fitted, the significance
of the outcome is difficult to assess. If a whole series of scattering data is fitted as
a function of external parameters, the workload is high, but the significance can be
assessed by comparison and by plausibility considerations.

Regression Algorithms. The fitting of structural models to X-ray scattering
data requires utilization of nonlinear regression techniques. The respective methods
and their application are exhausted by DRAPER and SMITH [270]. Moreover, the
treatment of nonlinear regression in the “Numerical Recipes” [154] is recommended.

Two extremely different regression techniques are the gradient methods6 and
the simplex algorithm7. The already mentioned validation methods are all based on
the gradient. Nevertheless, the simplex method [271] is the better scrutinizer in pa-
rameter space. Thus it appears reasonable to combine [197] both methods: after an
iterative regression run of the simplex, the ultimate gradient is computed and the
quality of the fit is validated. For the purpose of gradient computation, it is no longer
necessary to analytically compute the partial derivatives of the model function with
respect to the parameters, ∂M (p)/∂ pi, i ∈ [1, �] (� parameters). The replacement of
the differential by the difference

∂M (p,x)
∂ pi

≈ M (p,x)− (p′
i,x)

ε

with p′
i = (p1, p2, . . . pi−1, pi + ε, pi+1, . . .) is sufficient, if the central parts of the

algorithm are using variables with 80 bit accuracy. The increment ε can be derived
from the accuracy request of the scientist who is using the program. Now validation
can be started. From the components of the ultimate gradient, first the matrix of the
normal equations [270]

Z j,k (p) =

[
�

∑
i=1

∂M (p,xi)
∂ p j

∂M (p,xi)
∂ pk

]
(11.1)

is computed. Its inverse is Z−1
j,k (from now on we omit the argument for clarity).

F = m + 1− � is the number of degrees of freedom, and R(p) is the ultimate RSS
after the regression run. Then

4The model must neither have too many nor too few parameters. Are there too few parameters, it cannot
fit the data. Are there too many parameters, some of them are correlated and wide error bars are attached
to them.

5In general, several models should be tested. Systematic deviations between model and data indicate,
how the model should be varied in order to improve the fit. If anisotropic materials have been studied,
the CDF frequently exhibits the ingredients of a good model.

6After each iterative improvement all the gradient methods compute the gradient ∇R(p). The way they
use the gradient is different for the variants (steepest descent, Marquardt-method,. . . ) of the gradient
method.

7The state of the simplex is not stored in 1 parameter set, but in a polygon with �+ 1 parameter sets in
�-dimensional parameter space.The polygon can move, grow and shrink in parameter space. It tries to
encircle the minimum sought-after.
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ci =
√∣∣∣Z−1

i,i

∣∣∣R(p)/F

is the asymptotic interval of confidence for the i-th parameter value. The asymptotic
parameter-correlation matrix, Ci, j, is defined by

Ci, j = Z−1
i, j /
√

Z−1
i,i Z−1

j, j ,

and demonstrates the correlation among the model parameters. Thus a report of the
regression program should not only return the parameter values, but also the corre-
sponding error bars. Overparameterization is detected in the correlation matrix. A
value

∣∣Ci, j
∣∣ > 0.95 indicates overparameterization. In this case one of the parame-

ters i or j is superfluous. Underparameterization is detected in a plot that shows the
deviations of the measured points from the model. These deviations should look ran-
dom. Unfortunately this is not frequently the case when models are fitted to IDFs.
From RSS, number of measured points m, and the number of model parameters, �, a
model-free validation parameter

E =

√
R(p)

m (m− �)

is computed, the so-called “estimated error of the fit”, EEF. On the basis of EEF
the best fitting model can be selected. As a whole the method gains significance if
large series of data are analyzed. In this case outliers which have stopped in a local
minimum are easily detected. Frequently their fits can be improved by taking better
starting values from the results of their neighbors in the series.

Conditioning Data. The efficiency – and sometimes even the success – of regres-
sion and smoothing procedures is a function of the data presented to the program.
One should not offer curves to regression or smoothing algorithms running on digital
computers, in which the ranges of the variates differ too much. If the r values range
between 0 and 200, the values of the IDF g1 (r) should be mapped to a similar range.
The optimum conditioning procedure is to map both the x-values and the y-values
of the data to the interval [0,0.5] by an affine transformation. Such mapping is de-
scribed by a displacement and a scaling factor. It is easily inverted upon return from
the algorithm.

The effectivity of data conditioning is explained as follows. In regression al-
gorithms and smoothing procedures, constructs like the one presented in Eq. (11.1)
have to be evaluated by means of a digital computer. Extensive computation of differ-
ences, their multiplication and summing occurs. This means that rounding errors may
accumulate. In this case either the convergence behavior becomes erratic or slow.
Sometimes the algorithm even stops, because a matrix is “not well-conditioned”,
i.e., it contains both very big and very small numbers.
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absolute intensity, 40, 79, 86–94, 96
calibration

colloidal suspensions, 134
glassy carbon, 91
liquids, 92, 119, 134
Lupolen standard, 91
noble metals, 92, 134
synthetic polymers, 91

SAXS, 87–92, 134
WAXS, 92

absolute measurements, see absolute
intensity

absorption, 77
absorption factor

experimental determiation, 79
absorption law, 77
additive

clarifying, 165
nucleating, 165

anisotropy, 26
anomalous dispersion, 190
approximation

tangent plane, 12, 27
ASAXS, 188
asymmetrical peaks, 101
autocorrelation, 16
autocorrelation triangle, 144
AWAXS, 188
AXRD, 188
azimuthal averaging, 26, 125, 129, 130

Babinet’s theorem, 132, 179
resolve ambiguity, 179

background, 69, 99
fluctuation, 118, 119

metals, 119
polymers, 119
simple fluids, 119

bandlimited function, 25, 162
beads, 163
beam

incident, 11
scattered, 11

beam stop, 37, 100
Bessel functions, 167
binning, 58
birefringence, 196
Born

approximation, 185
distorted wave approximation, 185

Bragg spacing, 101, 111
Bragg’s law, 13, 24
breadth

FWHM, 106
integral, 24, 106

azimuthal, 203
Breit-Wigner distribution, see Lorentz

distribution

calibration, see absolute intensity, cal-
ibration

Cauchy distribution, see Lorentz dis-
tribution

CCD, 12
CDF, 16, 153

multidimensional, 152
of uncorrelated particles, 155
peaks

sign, 156
central projection theorem, see theo-

rem, Fourier slice
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chain
degree of polymerization, 3
monomer mass, 3

chord, 137
chord distribution function, 16
chord length

average, 111, 122
computation, 126

chord length distribution, 111, 148
circular averaging, see azimuthal
clarifier, 165
CLD, see chord length distribution
cluster, 126
completeness, 1, 11, 23, 26–29, 39,

40, 130, 153
complex analysis, 175
complex conjugate, 97
complex number, 13

imaginary part, 13
real part, 13

composition, 133, 145
Compton scattering, 10, 99
computer program

FIT2D, 30
IDL, 30
OTOKO, 73
PRIMUS, 163
pv-wave, 30
TOPAS, 73

conservation
contrast, 20

contrast, 20, 47, 133
enhancement, 188
negligible, 134

convergence, 156
convex, 111, 155, 162
convolution, 16

angular, 203
polynomial, 175, 176

convolution square, see autocorrela-
tion

correlation, see also topology, 16
long range, 108
next neighbour, 172, 179
packing, 174

short range, 108
zero-sum rule, 156

correlation function, 14, 110
autocorrelation triangle, 144
geometrical construction, 144
graphical analysis, 144

first-zero method, 146
valley-depth method, 145

multidimensional, 148
radial, 126, 143, 148
reduced, 16
self-correlation triangle, 144

counting, 59
critical angle, 82, 84, 84
cross-correlation, 16
crystal size, 104

weight average, 114, 115
crystallinity

linear, 145, 145, 148
volume, 145

crystallography, 18
cut (mapping, see slice

Darwin equation, 93
DDF, 161
dead time, 56
Debye

sphere, 210
Debye-Scherrer rings, 99
Debye-Waller factor, 93, 109
deconvolution, 38, 106

by Fourier transform, 38
by van Cittert algorithm, 39

delay line, 57
density, 8, see also electron density

jump, 153
desmearing, see deconvolution
detector

cosmic-ray spike, 54
dynamical range, 54, 55
registration plane, 88

detector calibration, 69
detector characteristics, see detector

response
detector response, 54, 55, 56, 57
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measurement, 69
DFFT, 143
diffraction, 18
dilation, 2, 109

lateral, 19
uniaxial, 19

dilation factor distribution, 109
direction cosine, 197
disorder

linear, 101
paracrystalline, 109–110
planar, 101
random, 171–174
selectivity, 187
strain broadening, 109
strong, 187
substitutional, 182, 184
thermal, 93, 109
weak, 182, 184–188

displacement, see translation
distance

sample-to-detector, 7
distance distribution function, see DDF
distortions, see also disorder

lattice, 105
1st kind, 108
2nd kind, 108

distribution
average

centrifuge, 4
number, 3, 4
weight, 4, 114, 115

even, 195
gamma, 180
Gauss, 20, 114, 165
Gaussian, 180
harmonic, see harmonic
Lorentz, 107, 114
mean, 3, 5
moments, 4–5
norm, 4
normalization, 3
particle dimension, 2
pole figure, 192
segment, 148

skewness, 5
standard deviation, 5
thickness, 151

principal, 152
truncated probability, 173
variance, 5

download programs, 29
draw ratio, 210
dual, see reciprocal
DWBA, 185

edge enhancement, 148, 154
principle, 149
problem high order, 162

electron density, 8, 13, 20, 86, 87, 97,
99, 189

average, 8
difference, 8

electron radius, 87
electron units, 8, 87
elongation, 158
equator, 23, 38, 100
equatorial streak, 38, 165

slit scattering, 50
erode, see operator, erode
error bar, see fit, interval of confidence
Euclidean geometry, 128
Euler angles, 197
evolution mechanism

liquid scattering, 172
micelles, 36
nucleation-and-growth, 182
oriented particle growth, 182
row structure, 182
self-assembly, 36
shish-kebab, 172
spherulitic growth, 179
spinodal decomposition, 179
stochastic, 110, 171
virus crystallisation, 36

evolution of structure, 35
Ewald sphere, 12
EXAFS, 190
excess electrons, 97
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F2-materials, 195
F3-materials, 200
fiber axis, 38
fiber pattern, 22
fiber symmetry, 27, 38, 100, 130
fiducial marks, 158
fit

degrees of freedom, 219
estimated error of, 220
gradient, 219
interval of confidence, 220
parameter correlation, 220
parameter space, 218
residual, 218

sum of squares, 218
simplex, 219

FIT2D, 30, 73, 130
FLASH, 43, 44
fluorescence, 10
flux, 41, 41, 42, 46, 47, 51, 75, 80
form factor, 163, 175, 181, 203, 212

envelope, 212
Fourier coefficient, 111
Fourier transform, 13
fractals, 77, 127

mass fractal, 127
pore fractal, 128
surface fractal, 127

frame, 73, 76
free electron laser, see XFEL
Friedel’s law, 189
function

comb function, 17
delta function, 25

g-factor, 5
Gauss distribution, 20
GEL-format, 56
geometry

asymmetrical reflection, 82, 82,
84

grazing incidence, 35, 48, 53, 82,
185

normal transmission, 12, 37, 42,
53, 77, 86, 87, 153

symmetrical reflection, see also
SRSAXS, 11, 84, 185

absorption, 80
symmetrical transmission, 11, 78
texture goniometer, 193

GISAXS, see geometry, grazing inci-
dence

GIWAXS, see geometry, grazing inci-
dence, 94

glass transition, 119
gradient, 24, 153
gravity

center of, 4, 76, 98
Guinier plot, 96
Guinier radius, 19, 95, 96
Guinier region, 96
Guinier’s law, 95

halo, amorphous, 102
hard-disk fluid, 166
harmonic

analysis, 13
function, 13, 23, 97, 180
kernel, see harmonic, function

harmonic function, 99
HASYLAB, 47, 51, 55, 209
Heaviside function, 168
Hermans’ orientation function, see uni-

axial orientation parameter
heterogeneity, 2, 109, 112

IDL, 30
image plate scanner, 55
image processing, 29–32
ImageJ, 30
incoherent scattering, see Compton scat-

tering
infinite slit, 39
insertion device, 8, 41, 43, 46
instrumental broadening, 106
intensity

absolute, see absolute intensity
adjust, 133
one-dimensional, 127, 131, 136

interface distribution function, see IDF
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interference function, 139
invariant, 16, 40, 91, 122, 132

scattering power, 15, 132
ionization chamber, 59
irradiated volume, 15, 78
isotropic, 26
isotropization, 126, 130, 130

jamming limit, 172

Kirkpatrick-Baez mirror, 48
Kramers-Kronig relation, 190
Kratky camera, 39, 86, 88–89, 91, 101,

125, 138, 186, 187

lamella, see layer, see also topology
Laplacian, 24, 126, 153
lattice, 17

bcc, 212
decoration, 176, 176, 182
substitutional disorder, 182

layer stack, 126
Legendre functions, 194
Legendre polynomial, 194
LEMO, 59
lens for X-rays

Fresnel zone plate, 48
refracting lens, 48

life sciences, 162
linear absorption coefficient, 77
linear absorption factor, 77
liquid scattering, 171
long period, 117, 137, 144, 145, 148,

159, 176
pseudo, 182

Lorentz correction, see also Lorentz
factor, 104, 118, 127, 131,
140, 142, 164

Lorentz distribution, 107
Lorentz factor, 93, 126
LRAT, 144, 147

magic square, 14
malfunction

asymmetrical peaks, 101
beam intensity variation, 51

beam jump, 50
buffered patterns, 36, 61
counter gate flipped, 60
evaluation program, 73
intensity streaks, 50
isotropization, 130
moiree pattern, 50
parameters, 61
peak not found, 100
penumbra, 31
slit scattering, 50
spikes in image, 31–32
tilt distortion, 210

mask, 17, 30–32, 69, 75, 85, 86
penumbra, 31, 32, 86

materials
acrylates, 34
aminoacid, 163
block copolymers, 188
cellulose, 175
elastomers, 166, 209
enzymes, 162
fiber

slit focus, 40
fiber reinforced, 209
gradient, 35
gradient materials, 53
latex, 96, 170
metal catalyst, 188
metals, 119
multiphase, 120, 122, 126, 153
nanocomposite, 187
nanostructured, 117, 182, 202
nanostructured thin film, 186
nanotubes, 35
noble metals, 134
PET, 83, 102
poly(3-dodecylthiophene), 105
poly(ether ester), 157, 165
polybutadiene, 8
polyethylene, 117, 171
porous, 74, 129
protein, 96, 162
PVDF, 33
SBS, 34, 188
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silk, 36
thermoplastic elastomers, 157
thin films, 35
UHMWPE, 141
vesicles, 170
virus, 36

MAXS, 7
mean, 5
median filter, see operator, median
median operator, 32, 70
Mellin convolution, 2, 21, 109, 167,

168
Mellin transform, 168
meridian, 22, 28, 38, 100
microbeam, see also nanobeam, 47,

see microfocus, 52, 53, 81,
91

microdiffraction, 48
microfibril, see also topology, 159, 160

length of, 165
microfocus, see microbeam
Miller indices, 101
mirror

Göbel, 46, 48
Kirkpatrick-Baez, 48

miscibility, 119
misorientation, 126
molecular mass

number distribution, 2
number fraction, 3

moment, 4–5, 92, 98
and Mellin transformation, 170

monitor channel, 59
monitor channels, 60
monochromator, 44, 47

primary (beam), 9
secondary, 9, 10

moving slit device, 40, 86, 88, 89
multiple scattering, 68, 74, 77, 129
multipole expansion, 194

nabla, see gradient
nanobeam, 47, 48, see nanofocus, 53
nanofocus, see nanobeam
nanostructure, see SAXS, USAXS

evolution, 140, 158
non-topological parameters, 132
norm, 4
normal transmission, see geometry, nor-

mal ...
normalization, 3
nucleating agents, 165

operator
absolute square, 16
closing, 32
dilate, 32
erode, 32
gradient, see gradient
Laplacian, see Laplacian
median, 32
opening, 32

optics, 42
order, see correlation
orientation

chains , see WAXS
equatorial

Kratky method, 198
Leadbetter-Norris method, 198

fiber, 195
film, 195

orientation average, see solid angle
average

orientation distribution, 192
orientation sphere, 192, 193
oriented, see anisotropy
Ornstein-Zernike, 171
OTOKO, 73

paracrystallinity, 5, 108, 109
parasitic scattering, see background
particle density, 97
particle scattering, 96

beads, 163
discs, 165
disks, 169
finite element methods, 163
multipole expansion, 163
polydisperse

cylinders, 164
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layers, 164
spheres, 161, 163, 169–170

Patterson function, see correlation func-
tion, 14

peak, 99
Percus-Yevick, 171
persistence length, 166
PET, 8
physical space, see space,real
pin-diode, 37, 59
plane film detector, 99
plane of incidence, 11, 186
Poisson kernel, 186, 206
polarization, 8, 43

horizontal scattering-angle, 9
vertical scattering-angle, 9

polarization correction, 43
polarization factor, 9
polarization monitor, 8
pole figure, 192
polydispersity, 2, 5, 114, 142, 155,

164, 167, 172, 175, 176, 179,
217

images, 18
oversimplification, 169
scaling factor, 18
scaling vector, 18
template, 18

Polymer Handbook, 103
pore length, 165
Porod’s

asymptote, 122, 125
law, 121

analytical continuation, 91, 134,
137, 143

region, 125
begin of, 123

power law, 128
power spectrum, 140
primary beam, 27, 74
problems, see malfunction
processing

aggregation, 128
blending, 119
melting, 164

spinning, 209
straining, 209

projection, 23
and Lorentz correction, 142
general 1D, 135
general 2D, 138
on fiber plane (2D), 154

protein crystallography, 93, 163
pv-wave, 30

Rényi limit, 172, 174
radius of gyration, see Guinier radius
random sequential adsorption, 173
real space, see space, real
reciprocal coordinate, 23
reciprocal space, see space, reciprocal
reflection, 99
reflexion, see reflection
region, 17, see also shape function
Rigaku-Denki camera, 39
rod length, 165
ROI, 17, 31
rotating anode, 42
rotating crystal method, 93, 93, 94
rotation, 197
rotator, 197
rough domain surfaces, 127

saw, low-speed, 91
SAXS, 7
scaling factor, see polydispersity, scal-

ing factor
scaling vector, see polydispersity, scal-

ing vector
scattering

anomalous, 188
diffuse, 99, 104, 119
discrete, 99
GISAXS, see geometry, grazing

incidence
GIWAXS, see geometry, grazing

incidence
microbeam, see microbeam
middle-angle, see MAXS
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multiple, 74, see multiple scat-
tering

phase information, 189
small-angle, see SAXS
SRSAXS, 52
ultra small-angle, see USAXS
wide-angle, see WAXS

scattering amplitude, 15
scattering angle, 9, 11
scattering intensity, 11
scattering length density, 86, 87
scattering length, electron, 87
scattering pattern, 30
scattering power, see invariant
scattering vector, 11
Scherrer equation, 24
section (mapping), see slice
segment distribution, 148

di, 148
homo, 148
multi, 148

self-similarity, 128
set of reflections, 105
shape change, 74, 118, 173, 182, 205–

207, 209
shape function, 17, 24, 31, 106, 121
signal processing, 140

band-pass filter, 141
bandpass filter, 100
Hanning filter, 141
low-pass filter, 141, 154

simultaneous measurements, 36
simultanity

WAXS and SAXS, 55
WAXS and USAXS, 54

single-chain structure factor, 93
size distribution, 2
skewness, 5
slice, 22, 27

one-dimensional, 22, 154
two-dimensional, 23

slit scattering, 50, see also malfunc-
tion, 70

smearing, 38
solid angle, 192, 194

solid angle average, 98, 99, 126, 127,
130, 149, 155, 163, 186

source point, 47
space

real, 11
reciprocal, 11–13

spatial frequency, 25
spatial frequency filter

iterative, 141
spherical harmonics, 194
SRSAXS, 52, 84, 185, 186, 187
stabilizers, 51
standard deviation, 5
storage ring, 43
strain broadening, 108, 109
strain variance, 112
structural entity, 126, 156, 157, 160,

178, 181, 182
cylinder, 159
one-dimensional, 142
representative, 197

structure
crystallites, see WAXS
evolution, see evolution mecha-

nism
liquid crystalline, see MAXS
longitudinal, 130, 137, 155, 159
rigid-rod polymers, see MAXS
transversal, 40, 130, 138, 155,

166
structure factor, 93, 173, 189
submatrix, 70
subspace, 22
sum

of the SAXS, 132
of the WAXS, 132

support, 25, 162, 173, 205
synchrotron, 43

accelerator
Linac, 43
ring, 43

beam current, 43
bending magnets, 43
bunch, 44
current, 43, 51
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injection, 44
mode

discontinuous, 44, 69
top up, 44

radiation run, 44, 69
storage ring, 43

synchrotron light, see synchrotron ra-
diation

synchrotron radiation, 42, 45
polarization, 43
pulsed, see synchrotron radiation,

time structure
time structure

synchrotron, 44
train, 44
XFEL, 44

white spectrum, 44
synchrotrons

APS, 34
DESY, see also HASYLAB, 43,

44
ESRF, 34, 48, 54
NSLS, 34
SPring-8, 34, 43
SSRL, 42

template, 2, 18
texture, 48
texture goniometer, 193
theorems

breadth, 24
central projection, see Fourier slice
convolution, 19, 25
dilation, 19, 24
Fourier derivative, 23
Fourier slice, 21, 23
reciprocity, 24

thermal disorder, 109
frozen in, 109

thickness
optimum, 70, 77, 78, 84

thickness distribution, 151
TIFF, 55
time structure, 45
time-resolved measurements, 53

TOPAS, 73, 91
topology, 132, 133, 138

basic element, see shape func-
tion

correlations, 156
lamellae, 150
lattice, 145
layer, 142, 150
long period, 157
macrolattice, 159
microfibril, 150, 159
microfibrillar, 142
multiphase, 140
no arrangement, 155
short-range, 159
spatial frequency band, 140
three-phase, 160
two-phase, 143
visualization, 148

train, 44, 45
train frequency, 44, 45
translation, 17
transversal structure, 40

undulator, 46
uniaxial orientation parameter, 194
uniaxial symmetry, see fiber symme-

try
unit vector, 11
unsharp masking, see deconvolution,

by van Cittert
USAXS, 8

vacuum tube, 53
van Cittert method, 39
variance, 5
vector space, 22
visualization

distortion, 107
structure, 178, 218

problem high order, 162
void length, 165
VUV-FEL, 44

wave-guide, 48
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WAXS, 7
width, see breadth
wiggler, 46

X-rays, 8
XFEL, 43, 44

zero-sum rule, 152, 156, 174, 179–
181

groups, 181
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