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Foreword to the second edition

About 15 years ago, my personal research interest expanded from surfaces
in ultra-high vacuum to surfaces in an electrolyte. This proved to be a more
difficult endeavor than expected as language and concepts used in the elec-
trochemical literature and textbooks were rather inaccessible to a solid-state
physicist. Fortunately, I became aware of the first edition of the Interfacial
Electrochemistry, at the time authored solely by Wolfgang Schmickler. Ever
since then, the book has served as a beacon to guide me from hostile seas of
electrochemistry into friendly harbors of my own scientific background and
it became my standard reference, cited in all but a few of my papers on
the physics of the solid/electrolyte interface. I have frequently encouraged
Wolfgang Schmickler to think about a second edition to account for the con-
siderable development of the field since 1996, and it is very pleasing to see the
project realized now. In treating electrochemistry from the perspective of a
theoretical physicist with a life-long devotion to the solid/electrolyte interface,
the new edition is written very much in the spirit of the first one. However,
the present volume is more than just an update. Due to the congenial contri-
butions of Elizabeth Santos, the treatise has expanded considerably into the
chemistry of electrochemical reactions, into experimental methods and their
analysis as well as into many fields of current interest. The volume also com-
prises a lucid treatise on electrochemical surface processes, a field in which I
had the pleasure to collaborate with Wolfgang Schmickler for years. Although
it covers a large field, the book is tutorial. Each chapter features introductory
notes, which outline the qualitative aspects of the topic and place them into
the perspective of general concepts. Enlightening introductory chapters in the
first part of the book pave the ground for understanding, be the reader a
chemist, a physicist, or a chemical engineer. The book thereby pays tribute to
the interdisciplinary character of modern electrochemistry with its numerous,
frequently unnoticed, applications in our daily life. Because of this tutorial
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VI Foreword to the second edition

value and its handbook character, the new Interfacial Electrochemistry be-
longs on the desk of every student in the field as well as into the hands of the
professional.

Harald Ibach



Foreword to the first edition

When I started working in electrochemistry the textbooks used for University
courses dealt predominantly with the properties of electrolyte solutions, with
only a brief attempt at discussing the processes occurring at electrodes. Things
began to change with the pioneering books of Delahay and of Frumkin which
discussed kinetics in a way that a chemical engineer or a physical chemist
might appreciate. Very little was said about interfacial structure, despite
Butler’s remarkable “Electrocapillarity”, which was really premature as it
appeared before the research needed to support this view had developed suf-
ficiently. This was done in the subsequent years, to a large extent for mercury
electrodes, but only from a macroscopic viewpoint using electrical measure-
ments and predominantly thermodynamic analysis. In the last two decades
the possibilities of obtaining atomic scale information and of analysing it have
widened to an unprecedented extent. This has been reflected in some of the
recent textbooks which have appeared, but none has embraced this modern
point of view more wholeheartedly than Professor Schmickler’s. Coming orig-
inally from a theoretical physics background and having already collaborated
in an excellent (pre-molecular) electrochemistry textbook, he is well able to
expound these developments and integrate them with the earlier studies of
electrode kinetics in a way which brings out the key physical chemistry in
a lucid way. His own extensive contributions to modern electrochemistry en-
sures that the exposition is based on a detailed knowledge of the subject. I
have found the book a pleasure to read and I hope that it will not only be
widely used by electrochemists, but also those physical chemists, biochemists
and others who need to be convinced that electrochemistry is not a “mystery
best left to the professional”. I hope that this book will convince them that
it is a major part of physical science.

Roger Parsons
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Preface

The first edition of Interfacial Chemistry is now 15 years old, and has been out
of print for about half that time. So much has happened in electrochemistry
since then, that major changes were required. Therefore, we decided to join
forces, as we have in other aspects of life, and write a thoroughly revised and
updated version.

The outlook is the same as in the first edition: We treat the fundamen-
tals of electrochemistry both from a microscopic and a macroscopic point of
view, focusing on metal-solution interfaces. Understanding interfaces requires
a basic knowledge of the two adjoining phases; therefore we start by review-
ing briefly a few fundamental properties of solids and electrolyte solutions.
The rest of the chapters follows more or less a logical order, beginning with
the interface in the absence of reactions, through adsorption phenomena, and
to reactions of increasing complexity. Special chapters are devoted to elec-
trode surface processes, and to liquid–liquid interfaces. We conclude with the
most important electrochemical experimental techniques, treating especially
the methods suited for fast reactions in some detail. To some extent this is
our response to the lamentable fashion to use nothing but cyclic voltammetry
for the investigation of reactions. In contrast to the first edition, we do not
cover the so-called non-traditional methods, which have been developed out-
side of electrochemistry. They would require a separate book for an adequate
treatment.

So where has there been major progress during the last 15 years? Of course,
we have learnt many details about the structure of adsorbate layers and,
though to a lesser extent, about reaction steps. But most of this has been
incremental, and can be considered as the normal development of a healthy
branch of science. Breakthroughs have occurred, in our view, in our under-
standing of electrocatalysis and of electrochemical surface processes, and this
is reflected in this book. Self-assembled monolayers is another branch that
has grown tremendously, but again this topic is too diverse to be treated in
any detail. Somewhat surprisingly, there has also been significant progress in
the thermodynamics of solid electrodes, a subject that had been considered
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X Preface

as closed since the works of Grahame and Parsons. This is a purely personal
list, and certainly biased by the fact that we have been heavily involved in
most of these topics. But anyone is welcome to disagree and to draw up his
own list.

We want to thank all of our colleagues and students who have helped us in
writing this book, and CONICET Argentina for continued support. Above all,
we are grateful to Harald Ibach, who, besides writing a flattering foreword,
took the trouble to read the whole book and gave us excellent advice on a
number of issues. As a personal note, we thank Anahi and Nahuel for keeping
our life in balance. It is customary to thank one’s spouse for patient support;
however, our spouses showed little patience, and were critical of every line we
wrote.

Finally we want to recommend a few books as supplementary reading: The
electrochemical textbook that we like best is Sato’s [1], but Hamann, Hamnett,
Vielstich [2] is also a good, general textbook and covers applied topics as
well. Ibach’s monograph [3] covers the physics of surfaces and interfaces with
precision, and complements ours. Of the older books, Delahay’s [4] is the best,
and an invaluable source for transient techniques.

May 2010 Elizabeth Santos and Wolfgang Schmickler
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Introduction

1.1 The scope of electrochemistry

Electrochemistry is an old science: There is good archaeological evidence that
an electrolytic cell was used by the Parthans (250 B.C. to 250 A.D.), probably
for electroplating (see Fig. 1.1), though a proper scientific investigation of
electrochemical phenomena did not start before the experiments of Volta and
Galvani [1, 2]. The meaning and scope of electrochemical science has varied
throughout the ages: For a long time it was little more than a special branch
of thermodynamics; later attention turned to electrochemical kinetics. During
recent decades, with the application of various surface-sensitive techniques to
electrochemical systems, it has become a science of interfaces, and this, we
think, is where its future lies. There are a large variety of interfaces of interest
to electrochemists, and Fig. 1.2 shows several examples. So in this book we
use as a working definition:

 

Fig. 1.1. Remnants of a cell used by the Parthans: It consists of an iron core
surrounded by a copper cylinder, both immersed in a clay jar.

W. Schmickler, E. Santos, Interfacial Electrochemistry, 2nd ed.,
DOI 10.1007/978-3-642-04937-8 1, c© Springer-Verlag Berlin Heidelberg 2010



2 1 Introduction

Electrochemistry is the study of structures and processes at the in-
terface between an electronic conductor (the electrode) and an ionic
conductor (the electrolyte) or at the interface between two electrolytes.

This definition requires some explanation. (1) By interface we denote those
regions of the two adjoining phases whose properties differ significantly from
those of the bulk. These interfacial regions can be quite extended, particu-
larly in those cases where a metal or semiconducting electrode is covered by
a thin film or an adsorbate layers. The modification of the electrode surface
by different types of adsorbates (Fig. 1.2 bottom) can produce very com-
plicated structures. Such modified electrodes have important applications in
different fields, such as protection against corrosion, in electrocatalysis, and
the development of sensors. Sometimes the term interphase is used to indi-
cate the spatial extention. (2) It would have been more natural to restrict
the definition to the interface between an electronic and an ionic conductor
only, and, indeed, this is generally what we mean by the term electrochemical
interface. However, the study of the interface between two immiscible elec-
trolyte solutions is so similar that it is natural to include it under the scope
of electrochemistry.

Metals and semiconductors are common examples of electronic conductors,
and under certain circumstances even insulators can be made electronically
conducting, for example by photoexcitation. Electrolyte solutions, molten
salts including ionic liquids, and solid electrolytes are ionic conductors. Some

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

Substrate Substrate Substrate Substrate

metalmetal SCSCalloysalloys liquid 1liquid 1

liquid 2liquid 2

Substrate Substrate Substrate SubstrateSubstrate Substrate Substrate Substrate

metalmetal SCSCalloysalloys liquid 1liquid 1

liquid 2liquid 2

metalmetal SCSCalloysalloys liquid 1liquid 1

liquid 2liquid 2

Fig. 1.2. A few important types of electrochemical interfaces. Top: (a)
metal/electrolyte; (b) alloy/electrolyte; (c) semiconductor/electrolyte; (d) two im-
miscible liquids in contact. Bottom: The electrode (substrate) has been modified by
deposition of different adsorbates: (e) nanoparticles; (f) fullerenes; (g) nanotubes;
(h) functionalized self assembled monalayer.
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Fig. 1.3. Structure and processes at the metal-solution interface.

materials have appreciable electronic and ionic conductivities, and depending
on the circumstances one or the other or both may be important.

With metals, semiconductors, and insulators as possible electrode materi-
als, and solutions, molten salts, and solid electrolytes as ionic conductors, there
is a fair number of different classes of electrochemical interfaces. However, not
all of these are equally important: The majority of contemporary electrochem-
ical investigations is carried out at metal-solution or at semiconductor-solution
interfaces. We shall focus on these two cases, and consider some of the others
briefly.

1.2 A typical system: the metal-solution interface

To gain an impression of the structures and reactions that occur in electro-
chemical systems, we consider the interface between a metal and an electrolyte
solution. Figure 1.3 shows a schematic diagram of its structure. Nowadays
most structural investigations are carried out on single crystal surfaces; so
the metal atoms, indicated by the dotted circles on the left, are arranged in
a lattice. Solvent molecules generally carry a dipole moment, and are hence
represented as spheres with a dipole moment at the center. Ions are indicated
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by spheres with a charge at the center. Near the top of the picture we observe
an anion and a cation, which are close to the electrode surface but not in
contact with it. They are separated from the metal by their solvation sheaths.
A little below is an anion in contact with the metal; we say it is specifically
adsorbed if it is held there by chemical interactions. Usually anions are less
strongly solvated than cations; therefore their solvation sheaths are easier to
break up, and they are more often specifically adsorbed, particularly on posi-
tively charged metal surfaces. Adsorption occurs on specific sites; the depicted
anion is adsorbed on top of a metal atom, in the atop position. The two types
of reactions shown near the bottom of the figure will be discussed below.

Generally the interface is charged: the metal surface carries an excess
charge, which is balanced by a charge of equal magnitude and opposite sign
on the solution side of the interface. Figure 1.4 shows the charge distribution
for the case in which the metal carries a positive excess charge, and the solu-
tion a negative one – there is a deficit of electrons on the metal surface, and
more anions than cations on the solution side of the interface. Since a metal
electrode is an excellent conductor, its excess charge is restricted to a surface
region about 1 Å thick. Usually one works with fairly concentrated (0.1–1 M)
solutions of strong electrolytes. Such solutions also conduct electric currents
well, though their conductivities are several orders of magnitude smaller than
those of metals. For example, at room temperature the conductivity of silver
is 0.66 × 106 Ω−1cm; that of a 1 M aqueous solution of KCl is 0.11 Ω−1cm.
The greater conductivity of metals is caused both by a greater concentration
of charge carriers and by their higher mobilities. Thus silver has an electron
concentration of 5.86 × 1022 cm−3, while a 1 M solution of KCl has about
1.2× 1021 ions cm−3. The difference in the mobilities of the charge carriers is
thus much greater than the difference in their concentrations. Because of the
lower carrier concentration, the charge in the solution extends over a larger
region of space, typically 5–20 Å thick. The resulting charge distribution –
two narrow regions of equal and opposite charge – is known as the electric
double layer. It can be viewed as a capacitor with an extremely small effective
plate separation, and therefore has a very high capacitance.

The voltage drop between the metal and the solution is typically of the
order of 1 V. If the voltage is substantially higher, the solution is decomposed
– in aqueous solutions either oxygen or hydrogen evolution sets in. Since this
potential drop extends over such a narrow region, it creates extremely high
fields of up to 109 Vm−1. Such a high field is one of the characteristics of
electrochemical interfaces. In vacuum fields of this magnitude can only be
generated at sharp tips and are therefore strongly inhomogeneous. Electro-
chemical experiments on metals and semiconductors are usually performed
with a time resolution of 1 µs or longer1 – a few milliseconds is typical for

1 For the following reason: electrochemical experiments involve a change of the
electrode potential, and hence charging or discharging the capacitor formed by
the double layer. Since the double-layer capacity is large, and the resistance of
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Fig. 1.4. Distribution of charge and potential at the metal-solution interface
(schematic).

transient measurements (details will be given in Chap. 13). If one looks at the
interface over this time range, the positions of the ions are smeared out, and
one only sees a homogeneous charge distribution and hence a homogeneous
electrostatic field. Inhomogeneities may exist near steps, kinks, or similar fea-
tures on the metal surface.

The structure of the interface is of obvious interest to electrochemists.
However, the interface forms only a small part of the two adjoining phases,
and spectroscopic methods which generate signals both from the bulk and
from the interface are not suitable for studying the interface, unless one finds
a way of separating the usually dominant bulk signal from the small con-
tribution of the interface. Techniques employing electron beams, which have
provided a wealth of data for surfaces in the vacuum, cannot be used since
electrons are absorbed by solutions. Indeed, a lack of spectroscopic methods
that are sensitive to the interfacial structure has for a long time delayed the
development of electrochemistry, and only the past 20–30 years have brought
substantial progress.

Reactions involving charge transfer through the interface, and hence the
flow of a current, are called electrochemical reactions. Two types of such reac-
tions are indicated in Fig. 1.3. The upper one is an instance of metal deposition.
It involves the transfer of a metal ion from the solution onto the metal surface,
where it is discharged by taking up electrons. Metal deposition takes place at
specific sites; in the case shown it is a hollow site between the atoms of the
metal electrode. The deposited metal ion may belong to the same species as
those on the metal electrode, as in the deposition of a Ag+ ion on a silver
electrode, or it can be different as in the deposition of a Ag+ ion on platinum.
In any case the reaction is formally written as:

the solution is not negligible, it has a long time constant associated with it, and
the response at short times is dominated by this charging of the double layer.
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Ag+(solution) + e−(metal) 
 Ag(metal) (1.1)

Metal deposition is an example of a more general class of electrochemical
reactions, ion-transfer reactions. In these an ion, e.g. a proton or a chlo-
ride ion, is transferred from the solution to the electrode surface, where it is
subsequently discharged. Many ion-transfer reactions involve two steps. The
hydrogen-evolution reaction, for example, sometimes proceeds in the following
way:

H3O+ + e− 
 Had + H2O (1.2)
2Had 
 H2 (1.3)

where Had refers to an adsorbed proton. Only the first step is an electro-
chemical reaction; the second step is a purely chemical recombination and
desorption reaction.

Another type of electrochemical reaction, an electron-transfer reaction,
is indicated near the bottom of Fig. 1.3. In the example shown an oxidized
species is reduced by taking up an electron from the metal. Since electrons are
very light particles, they can tunnel over a distance of 10 Å or more, and the
reacting species need not be in contact with the metal surface. The oxidized
and the reduced forms of the reactants can be either ions or uncharged species.
A typical example for an electron-transfer reaction is:

Fe3+(solution) + e−(metal) 
 Fe2+(solution) (1.4)

Both ion- and electron-transfer reactions entail the transfer of charge through
the interface, which can be measured as the electric current. If only one charge
transfer reaction takes place in the system, its rate is directly proportional to
the current density, i.e. the current per unit area. This makes it possible to
measure the rates of electrochemical reactions with greater ease and precision
than the rates of chemical reactions occurring in the bulk of a phase. On the
other hand, electrochemical reactions are usually quite sensitive to the state of
the electrode surface. Impurities have an unfortunate tendency to aggregate at
the interface. Therefore electrochemical studies require extremely pure system
components.

Since in the course of an electrochemical reaction electrons or ions are
transferred over some distance, the difference in the electrostatic potential
enters into the Gibbs energy of the reaction. Consider the reaction of Eq. (1.4),
for example. For simplicity we assume that the potential in the solution, at the
position of the reacting ion, is kept constant. When the electrode potential
is changed by an amount ∆φ, the Gibbs energy of the electron is lowered
by an amount −e0 ∆φ, and hence the Gibbs energy of the reaction is raised
by ∆G = e0 ∆φ. Varying the electrode potential offers a convenient way of
controlling the reaction rate, or even reversing the direction of a reaction,
again an advantage unique to electrochemistry.
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Fig. 1.5. Charge distribution and surface dipole at a metal surface. For simplicity
the positive charge residing on the metal ions has been smeared out into a constant
background charge.

1.3 Inner, outer, and surface potentials

Electrochemical interfaces are sometimes referred to as electrified interfaces,
meaning that potential differences, charge densities, dipole moments, and elec-
tric currents occur. It is obviously important to have a precise definition of
the electrostatic potential of a phase. There are two different concepts. The
outer or Volta potential ψα of the phase α is the work required to bring a unit
point charge from infinity to a point just outside the surface of the phase. By
“just outside” we mean a position very close to the surface, but so far away
that the image interaction with the phase can be ignored; in practice, that
means a distance of about 10−5 − 10−3 cm from the surface. Obviously, the
outer potential ψα is a measurable quantity.

In contrast, the inner or Galvani potential φα is defined as the work
required to bring a unit point charge from infinity to a point inside the phase
α; so this is the electrostatic potential which is actually experienced by a
charged particle inside the phase. Unfortunately, the inner potential cannot be
measured: If one brings a real charged particle – as opposed to a point charge
– into the phase, additional work is required due to the chemical interaction
of this particle with other particles in the phase. For example, if one brings
an electron into a metal, one has to do not only electrostatic work, but also
work against the exchange and correlation energies.

The inner and outer potential differ by the surface potential χα = φα−ψα.
This is caused by an inhomogeneous charge distribution at the surface. At a
metal surface the positive charge resides on the ions which sit at particular
lattice sites, while the electronic density decays over a distance of about 1
Å from its bulk value to zero (see Fig. 1.5). The resulting dipole potential
is of the order of a few volts and is thus by no means negligible. Smaller
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surface potentials exist at the surfaces of polar liquids such as water, whose
molecules have a dipole moment. Intermolecular interactions often lead to a
small net orientation of the dipoles at the liquid surface, which gives rise to a
corresponding dipole potential.

The inner potential φα is a bulk property. Even though it cannot be mea-
sured, it is still a useful concept, particularly for model calculations. Differ-
ences in the inner potential of two phases can be measured, if they have the
same chemical composition. The surface potential χα is a surface property,
and may hence differ at different surfaces of a single crystal. The same is then
also true of the outer potential ψ; thus different surface planes of a single
crystal of a metal generally have different outer potentials. We will return to
these topics below.

Problems

1. Consider the surface of a silver electrode with a square arrangement of atoms
(this is a so-called Ag(100) surface, as will be explained in Chap. 4) and a
lattice constant of 2.9 Å. (a) What is the excess-charge density if each Ag atom
carries an excess electron? (b) How large is the resulting electrostatic field if
the solution consists of pure water with a dielectric constant of 80? (c) In real
systems the excess-charge densities are of the order of ±0.1 C m−2. What is the
corresponding number of excess or defect electrons per surface atom? (d) If a
current density of 0.1 A cm−2 flows through the interface, how many electrons
are exchanged per second and per silver atom?

2. Consider a plane metal electrode situated at z = 0, with the metal occupying
the half-space z ≤ 0, the solution the region z > 0. In a simple model the excess
surface charge density σ in the metal is balanced by a space charge density ρ(z)
in the solution, which takes the form: ρ(z) = A exp(−κz), where κ depends on
the properties of the solution. Determine the constant A from the charge balance
condition. Calculate the interfacial capacity assuming that κ is independent of
σ.

3. In a simple model a water molecule is represented as a hard sphere with a
diameter d = 3 Å and a dipole moment m = 6.24 × 10−30 Cm at its center.
Calculate the energy of interaction Eint of a water molecule with an ion of radius
a for the most favorable configuration. When an ion is adsorbed, it loses at least
one water molecule from its solvation shell. If the ion keeps its charge it gains the
image energy Eim. Compare the magnitudes of Eint and Eim for a = 1 and 2 Å.
Ignore the presence of the water when calculating the image interaction.
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Metal and semiconductor electrodes

Before treating processes at the electrochemical interface, it is useful to re-
view a few basic properties of the adjoining phases, the electrolyte and the
electrode. So here we summarize important properties of metals and semi-
conductors. Liquid electrolyte solutions, which are the only electrolytes we
consider in this book, will be treated in the next chapter. These two chapters
are not meant to serve as thorough introductions into the physical chemistry
of condensed phases, but present the minimum that a well-educated electro-
chemist should known about solids and solutions.

2.1 Metals

In a solid, the electronic levels are not discrete like in an atom or molecule,
but they form bands of allowed energies. In an elemental solid, these bands are
formed by the overlap of like orbitals in neighboring atoms, and can therefore
be labeled by the orbitals of which they are composed. Thus, we can speak of a
1s or a 3d band. The bands are the wider, the greater the overlap between the
orbitals. Therefore the bands formed by the inner electron levels are narrow;
they have low energies and generally play no role in bonding or in chemical
reactions. The important bands are formed by the valence orbitals, and they
are of two types: the s and p orbitals tend to have similar energies, they
overlap well, and they form broad sp bands. In contrast, the d orbitals are
more localized, their overlap is smaller, and they form rather narrow d bands.

At T = 0 the bands are filled up to a certain level, the Fermi level EF. It
is a characteristic of metals that the Fermi level lies inside an energy band,
which is therefore only partially filled. This is the reason why metals are good
conductors, because neither empty not completely filled bands contribute to
the conductivity.1 At finite temperatures, electrons can be excited thermally

1 The latter fact may seem a little surprizing. The actual proof is not simple, but,
naively speaking, the electrons cannot move because they have nowhere to go.

W. Schmickler, E. Santos, Interfacial Electrochemistry, 2nd ed.,
DOI 10.1007/978-3-642-04937-8 2, c© Springer-Verlag Berlin Heidelberg 2010
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to levels above the Fermi level, leaving behind an unoccupied state or hole.
The distribution of electrons and holes is restricted to an energy region of
a few kBT around the EF. Quantitatively, the probability that an energy
level of energy ε is filled, is given by the Fermi–Dirac distribution depicted in
Fig. 2.1.:

f(ε) =
1

1 + exp( ε−EF)
kBT

(2.1)

Strictly speaking, this equation should contain the electrochemical potential of
the electrons instead of the Fermi level, but for metal near room temperature,
which we consider here, the difference is negligible.

At room temperature, kBT ≈ 0.025 eV; often energies of this order of mag-
nitude are negligible, and the Fermi–Dirac distribution can then be replaced
by a step function:

f(ε) ≈ H(EF − ε), H(x) =
{

1 for x > 0
0 for x 6 0 (2.2)

For high energies the Fermi–Dirac distribution goes over into the Boltzmann
distribution:

f(ε) ≈ exp−ε− EF

kBT
for ε� EF (2.3)

We also note the following symmetry between the probability of finding an
occupied and an empty state (hole):

1− f(ε) = f(−ε) (2.4)

The distribution of the electronic levels within a band is given by the
density of states (DOS). In electrochemistry, the DOS at the surface is of
primary importance. It differs somewhat from the DOS in the bulk because of
the different coordination of the surface atoms. Figure 2.2 shows the DOS at

–4 0 4
0.0

0.4

0.8

(  - EF)/kBT

f(
)

Fig. 2.1. Fermi–Dirac distribution.
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the (111) surface of silver – the notation will be explained in the next section.
The sp band is wide and has a pronounced maximum near −6 eV below the
Fermi level, which is mostly due to the s states. In contrast, the d band is
narrow and ends several eV below the Fermi level. We will see later, that this
distribution of the d band has a significant effect on the catalytic properties
of silver.
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Fig. 2.2. Densities of state for the d band and the sp band at the Ag(111) surface.
Their integrals has been normalized to unity, and the Fermi level has been taken as
the energy zero.

2.2 Single crystal surfaces

The structure of electrode surfaces is of primary importance for electrochem-
istry. Fundamental research is nowadays mostly done on single crystals, which
have a simple and well-defined surface structure. Many metals that are used
in electrochemistry (Au, Ag, Cu, Pt, Pd, Ir) have a face-centered cubic (fcc)
lattice, so we will consider this case in some detail. For other lattice structures
we refer to the pertinent literature and to Problem 1.

Figure 2.3 shows a conventional unit cell of an fcc crystal. It consists of
atoms at the eight edges of a cube and at the centers of the six sides. The
length of the side of the cube is the lattice constant; for our present purpose we
may assume that it is unity. The lattice of an infinite, perfect solid is obtained
by repeating this cubic cell periodically in all three directions of space.
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Fig. 2.3. Conventional unit cell of a face-centered cubic crystal. The lattice contains
the points at the corners of the cube and the points at the centers of the six sides.

 

Fig. 2.4. The principal lattice planes of a face-centered cubic crystal and the prin-
cipal lattice planes.

A perfect surface is obtained by cutting the infinite lattice in a plane that
contains certain lattice points, a lattice plane (Fig. 2.4). The resulting surface
forms a two-dimensional sublattice, and we want to classify the possible sur-
face structures. Parallel lattice planes are equivalent in the sense that they
contain identical two-dimensional sublattices, and give the same surface struc-
ture. Hence we need only specify the direction of the normal to the surface
plane. Since the length of this normal is not important, one commonly specifies
a normal vector with simple, integral components, and this uniquely specifies
the surface structure.

For an fcc lattice a particularly simple surface structure is obtained by
cutting the lattice parallel to the sides of a cube that forms a unit cell (see
Fig. 2.5a) . The resulting surface plane is perpendicular to the vector (1,0,0);
so this is called a (100) surface, and one speaks of Ag(100), Au(100), etc.,
surfaces, and (100) is called the Miller index. Obviously, (100), (010), (001)
surfaces have the same structure, a simple square lattice, whose lattice con-
stant is a/

√
2. Adsorption of particles often takes place at particular surface

sites, and some of them are indicated in the figure: The position on top of a
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Fig. 2.5. Lattice structures of single crystal surfaces: (a) fcc(100), (b) fcc(111), (c)
fcc(110).

lattice site is the atop position, fourfold hollow sites are in the center between
the surface atoms, and bridge sites (or twofold hollow sites) are in the center
of a line joining two neighboring surface atoms.

The densest surface structure is obtained by cutting the lattice perpendic-
ular to the [111] direction (see Fig. 2.5b). The resulting (111) surface forms a
triangular (or hexagonal) lattice and the lattice constant is a/

√
2. Important

sites for adsorption are the atop, the bridge, and the threefold hollow sites
(Fig. 2.5b).

The (110) surface has a lower density than either the (111) or the (100)
planes (Fig. 2.5c). It forms a rectangular lattice; the two sides of the rectangle
are a and a/

√
2. The resulting structure has characteristic grooves in one

direction.
The three basal planes, (100), (111) and (110), define the vertices of a

stereographic triangle [2]. When these surfaces are appropriately treated by
annealing, they show large, highly uniform terraces. However, the catalytic
activity is sometimes better at defect sites. The simplest example of a defect
is a vacancy or its opposite, an adatom. In addition, dislocations in the bulk
propagating outside of the crystal produce mesoscopic defects, which appear
as steps at the surface.

An interesting method to systematically investigate mesoscopic defects is
to cut the crystal at a small angle θ with respect to one of the basal planes
to expose a high index plane consisting of terraces of low index planes, with
constant width, linked by steps often of monoatomic height. The terraces can
extend to large distances in a given direction of the crystal. These surfaces
are called vicinal surfaces and the terrace/step geometry is determined by the
cutting angle. In Fig. 2.6 we show three different stepped surfaces, the (997),
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Fig. 2.6. Examples of vicinal surfaces. A bar across a Miller index indicates a
negative number.

the (755) and the (911). They were obtained cutting the crystal at 6.5◦ and
9.5◦ with respect to the (111) plane for the two first, but towards different
directions, and at 9.0◦ with respect to the (100) plane for the latter. The (997)
and the (755) have (111) terraces of different lengths, and monoatomic (111)
and (100) steps, respectively. A more convenient nomenclature for these high
index faces, which indicates better their structures, is that proposed by Lang
et al. [1] and it is also given in the figure. This is equivalent to a high Miller
index and has the form: [m(hkl)×n(h′k′l′)], where the first part designates a
terrace of Miller index (hkl) with m infinite atomic rows and the second part
indicates a step of Miller index (h′k′l′) and n atomic layers high. Obviously,
this are nominal structures; depending on their thermal stability, they may
undergo reconstruction (see Chap. 16).

2.3 Semiconductors

Electronic states in a perfect semiconductor are delocalized just as in metals,
and there are bands of allowed electronic energies. In semiconductors the
current-carrying bands do not overlap as they do in metals; they are separated
by the band gap, and the Fermi level lies right in this gap (see Fig. 2.7).

The band below the Fermi level, which at T = 0 is completely filled, is
known as the valence band; the band above, which is empty at T = 0, is
the conduction band. In a pure or intrinsic semiconductor, the Fermi level
is close to the center of the band gap. At room temperature a few electrons
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Fig. 2.7. Band structure of an intrinsic semiconductor. At T = 0 the valence band
is completely filled and the conduction band is empty. At higher temperatures the
conduction band contains a low concentration of electrons, the valence band an equal
concentration of holes. Bands with a lower energy, one of which is shown, are always
completely filled.

are excited from the valence into the conduction band, leaving behind electron
vacancies or holes (denoted by h+). The electric current is carried by electrons
in the conduction band and holes in the valence band. Just like in metals, the
concentrations nc of the conduction electrons and pv of the holes are also
governed Fermi statistics. Denoting by Ec the lower edge of the conduction
band, and by Nc the effective density of states at Ec, the concentration of
electrons is:

nc = Ncf(Ec − EF) ≈ Nc exp
(
−Ec − EF

kT

)
(2.5)

The last approximation is valid if Ec − EF � kT (i.e., if the band edge is at
least a few kT above the Fermi level), and the Fermi–Dirac distribution f(ε)
can be replaced by the Boltzmann distribution. Similarly, the concentration
of holes in the valence band is:

pv = Nv [1− f(Ev − EF)] ≈ Nv exp
(
−EF − Ev

kT

)
(2.6)

where Ev is the upper edge of the valence band, and Nv the effective density
of states at Ev. The last approximation is valid if EF−Ev � kT . If the Fermi
level lies within a band, or is close (i.e. within kT ) to a band edge, one speaks
of a degenerate semiconductor.

The band gap Eg of semiconductors is typically of the order of 0.5–2 eV
(e.g., 1.12 eV for Si, and 0.67 eV for Ge at room temperature), and conse-
quently the conductivity of intrinsic semiconductors is low. It can be greatly
enhanced by doping, which is the controlled introduction of suitable impuri-
ties. There are two types of dopants: Donors have localized electronic states
with energies immediately below the conduction band, and can donate their
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Fig. 2.8. Band structure of (a) an n-type and (b) a p-type semiconductor with
fully ionized donors.

electrons to the conduction band; in accord with Eq. (2.5) this raises the Fermi
level toward the lower edge of the conduction band (see Fig. 2.8a). Semicon-
ductors with an excess of donors are n-type , and the electrons constitute
the majority carriers in this case, and the holes are the minority carriers.
In contrast, acceptors have empty states just above the valence band, which
can accept an electron from the valence band, and thus induce holes. Conse-
quently, the Fermi level is shifted toward the valence band (see Fig. 2.8b); we
speak of a p-type semiconductor, and the holes constitute the majority, the
electrons the minority carriers.

2.4 Comparison of band structures

Figure 2.9 shows schematically the band structure of a few typical electrode
materials, three metals (platinum, gold and silver) and a semiconductor (sili-
con). All three metals possess a wide sp band extending well above the Fermi
level. However, the d bands are different. The position of the d band of silver
is lower than that of gold, and both lie lower than that of platinum. In the
latter case the d band even extend about 0.5 eV above the Fermi level. As we
shall see later, these differences are crucial for the electrocatalytical properties
of these materials.

According to the Fermi distribution, all electronic states below the Fermi
level are occupied for the four materials, although for the metals a small
numbers of electrons can be excited thermally within an energy range of about
kT around the Fermi level. This effect is represented by the shadowing near
the EF. In the case of the semiconductor, the band gap of undoped silicon is
too large to allow the electrons to be excited thermally into the conduction
band, since the band gap Eg is much wider than the thermal energy.
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Fig. 2.10. One-dimensional model for few typical band structures as a function of
the wave-vector k.

Figure 2.9 just shows the allowed energy levels, but contains no informa-
tion about the wave-functions. In a solid, the electronic wavefunctions depend
on the wavenumber k. In the simple free electron model, the corresponding
wavefunctions are simply plane waves of the form expkx, with momenta ~k
and energy Ek = ~2k2/2m. However, in a real crystal the electrons experience
the three-dimensional periodic potential of the nuclei. While the vector k can
still be used as a quantum number, the expression for the energy is no longer
simple. We shall need this k dependence of the energy only in Chap. 11, when
we consider optical excitations. For a basic understanding it is sufficient to
consider a one-dimensional case, in which the electrons experience a periodic
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potential with lattice constant a. The periodicity in space induces a corre-
sponding periodicity in k, and it is sufficient to consider values of k in the
range [0, π/a], and plot E(k) in this range.

Figure 2.10 shows a few typical cases. Note that the minimum of the
conduction band and the valence band need not coincide, as in the second
figure from the left. This can also happen in semiconductors, and will be
treated in Chap. 11.

Problems

1. (a) Consider the second layer beneath an fcc(111) surface and verify, that there
are two different kinds of threefold hollow sites on the surface. (b) The conven-
tional unit cell of a body-centered cubic (bcc) lattice consists of the corners and
the center of a cube. Determine the structures of the bcc(111), bcc(100), and
bcc(110) surfaces.

2. One-dimensional free electron gas We consider a simple model for a one-
dimensional solid. It is represented by a box extending between x = 0 and
x = L with infinite walls. This is a well-known problem in quantum mechanics.
Show that the wavefunctions have the form:

φn(x) =

(
2

L

)1/2

sin(nπx/L), n ∈ N (2.7)

with an energy:

εn =
h2

2m

( n

2L

)2

(2.8)

Let N be the total number of electrons in the solid, which we can take to be an
even number. Using the fact, that each level n can be occupied by two electrons
of opposite spin, show that the Fermi energy is:

EF =
h2

2m

(
N

4L

)2

(2.9)

Calculate the Fermi energy for the case where the density per length is N/L =
0.5 electrons per Å. Show that for sufficiently large N the total energy of the
ground state (at T = 0) is given by:

E0 =
1

3
NEF (2.10)

In the limit of L →∞, the quantum number n becomes continuous. The density
of states ρε is the number of electron states per unit of energy. Using Eq. (2.8),
show that:

ρ(ε) = 2
dn

dε
=

4L

h

(m

2ε

)1/2

(2.11)
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Electrolyte solutions

3.1 The structure of water

Most solvents are polar, i.e. their molecules have a permanent dipole moment;
a few typical values are listed in Table 3.1. For comparison we note that the
dipole moment of two unit charges, of opposite sign and at a separation of 1 Å,
has a value of 1.6× 10−29 Cm. Good solvents typically have dipole moments
that are only a little lower. The resulting strong electrostatic interaction be-
tween the molecules is usually the reason, why these substances are liquid at
ambient temperatures. However, there are also good solvents, such as CCl4,
which have no or only a small permanent dipole moment but a high polariz-
ability, so that the presence of ionic charges induces a sizable dipole moment.

Water is by far the most important solvent [1], and is used in most electro-
chemical experiments, although it does have one disadvantage: The potential
window between hydrogen and oxygen evolution is only about 1.2 V, and is
thus smaller than that of several non-aqueous solvents, which have stability
ranges of up to 4 V. However, non-aqueous solvents are difficult to handle, are
not so healthy as water, and not popular with experimentalist.

Water molecules not only interact which each other through their dipole
moments, but in addition form hydrogen bonds, which increases their cohe-
sion. The molecules of liquid water form a network of molecules, which is held

Solvent 10−30 · µ/Cm 10−30 · α/ m3

H2O 6.14 1.5
HCl 3.44 2.6
NH3 4.97 2.26
CCl4 4.97 2.26

Table 3.1. Dipole moment µ and polarizability α of a few solvents; note: 10−30

Cm= 0.3 Debye.

W. Schmickler, E. Santos, Interfacial Electrochemistry, 2nd ed.,
DOI 10.1007/978-3-642-04937-8 3, c© Springer-Verlag Berlin Heidelberg 2010
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together by hydrogen bonds that are deformed or partially broken, and which
are constantly rearranging. Because of their structure – two positively charged
hydrogen atoms and two pairs of non-bonding electrons – water molecules have
the tendency to form tetrahedral local structures. Figure 3.1 shows a typical
snapshot of a few water molecules taken from a computer simulation. The
tendency to form hydrogen bonds is evident, even though the bond lengths
and angles do not correspond exactly to the hydrogen bonds in ice.

While such snapshots help in visualizing the structure, they do not contain
quantitative informations. For this purposes one introduces the pair correla-
tion function g(r), which is defined in the following way: Place one molecule
at the center of the coordinate system; the density ρ(r) of the other molecules
then depends on the distance r. g(r) is obtained by normalizing ρ(r) with
respect to the bulk density ρ0:

g(r) = ρ(r)/ρ0 (3.1)

For large separations the density tends towards the bulk value; on the other
hand, not two molecules can occupy the same position in space. Therefore:

lim
r→0

g(r) = 0 lim
r→∞

g(r) = 1 (3.2)

For water the position of the molecule is usually identified with the position
of the oxygen atom, which is larger and heavier than the hydrogen atoms. Also,
the pair correlation functions of the oxygen atoms can be measured by neutron
scattering. The corresponding pair correlation function is shown in Fig. 3.2.
The limiting relations of Eq. (3.2) are clearly seen. The nearest neighbors sit
at a distance of about 2.7 Å, and give rise to a corresponding maximum. At
larger distances minor maxima can be seen, but their height decreases with
increasing distance. The structure is loosened at higher temperatures, and the
maxima in g(r) are less pronounced.

The pronounced first maximum in the correlation function g(r) is mainly
a packing effect. Similar peaks can be obtained in the simplest model for a

Fig. 3.1. Snapshot of a few neighboring molecules in liquid water, taken from a
computer simulation.
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Fig. 3.3. Pair correlation function of an ensemble of hard spheres with a density of
3.2× 1022cm−3 at ambient temperatures.

liquid, an ensemble of hard spheres. Like the name suggests it consists of
identical spheres with a radius R0, which cannot overlap, but do not interact
otherwise. Thus, their interaction potential can be written in the form:

V (r) =
{
∞ for r < 2R0

0 for r ≥ 2R0
(3.3)

At sufficiently high densities, the pair correlation function for an ensemble of
hard spheres also shows oscillations, whose amplitudes decrease with growing
separation (see Fig. 3.3). Of course, they show fewer details than those of
water, because specific interactions such as hydrogen bonds are missing.
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Pair correlation functions say nothing about the angular distribution or
about hydrogen bonding. But even though water has been the subject of in-
numerable investigations, both experimental and theoretical, the details of its
structure are still the subject of debate. The available experimental data leave
room for interpretation, and the theoretical treatments use approximations
whose validity is difficult to assess. At present, the best model calculations
are based on density functional theory, but even this rests on approximations
which may work badly for systems with a high electronic polarizability such
as water. We refer the interested reader to the cited literature [3].

Electrochemists are especially interested in the structure of water at the
electrode surface, where the distribution function g(x) plays the same role that
the pair correlation function plays in the bulk. It is defined as the normalized
density as a function of the distance x from the electrode surface. There are no
experimental data for g(x), and it is difficult to see how they could be obtained.
Therefore our knowledge derives from models, which have been implemented
in computer simulations. There are several competing semi-empirical models
for water, all of which give a good representation of the main features of bulk
water. When such models are used to investigate the structure of water at
uncharged metal surfaces, they give distribution functions such as those shown
in Fig. 3.4, which are characterized by a major peak at the surface, and minor
maxima at a larger distances. The orientation of the water molecules in the
first layer is mainly such that their dipole moments are parallel to the surface.
However, most calculations predict a small net orientation such that on an
average the oxygen end is a little closer to the metal than the hydrogens, an
effect caused by the interaction of the two lone electron pairs of water with
the metal. This leads to a rise of the electrode potential from the surface
towards the bulk of the solution, which has the nature of a surface potential
as discussed in Chap. 1.

The investigation of water in contact with a metal surface is much easier in
ultrahigh vacuum and at low temperatures. Typically, the adsorption of water
molecules is rather weak, with energies of the order of 0.3–0.5 eV, and therefore
water tends to desorb well below room temperature. The adsorption energy is
often lower than the interaction between water molecules, therefore on most
metals water forms a hexagonal structure known as the water bilayer (see Fig.
3.5), which is accommodated so as to be in registry with the metal lattice. The
basic unit is a ring of six water molecules: Three molecules are bonded to the
metal through their oxygen ends; their hydrogen atoms are directed towards
a secondary layer of three water molecules, which is situated a little further
away from the surface. Thus, in the hexagon three molecules are bonded to
the surface, the other three are held by hydrogen bonds that connect them
to the first layer. Two different conformations exist: In one conformation (H-
up), one of the the hydrogen atoms of the second layer is directed away from
the surface; in the other (H-down), these atoms point towards the surface.
Whether vestiges of these structures exist in electrochemical systems, where
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Fig. 3.4. Densities of the oxygen (dashed line) and hydrogen atoms (full line) of
water adsorbed on the surface of a single crystal Ag(111) electrode. The densities
have been normalized to unity for oxygen and two for hydrogen.

Fig. 3.5. H-down bilayer of water on the surface of Pt(111).

the temperatures are much higher and the surface is in contact with a bulk
phase, is an open question.

3.2 Solvatisation of ions

The dipole moments of the solvent molecules induce a strong interaction with
ions which is known as solvation or, in the case of water, as hydration. This
interaction can be characterized by the free energy of solvation, a term which
comprises two related, but different quantities, one that can be measured, and
one that cannot. The measurable quantity is the real free energy of solvation
and is defined as:
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Ion Radius/Å −∆Gsol −∆Gr
sol −∆GBorn

sol

Li+ 0.60 5.38 5.32 11.85
Na+ 0.95 4.28 4.28 7.49
K+ 1.33 3.52 3.51 5.35
Rb+ 1.48 3.34 3.29 4.81
Cs+ 1.69 3.09 2.95 4.65
F− 1.36 4.52 4.32 5.23
Cl− 1.81 3.30 3.08 3.93
Br− 1.95 3.16 2.83 3.65
I− 2.16 2.68 2.49 3.29

Table 3.2. Free hydration enthalpies of ions in eV. The values for ∆Gr
sol have been

taken from Randles [4], the values for ∆Gsol from Latimer [5]; for the latter values
the free energy of solvation of the proton has been taken as –11.25 eV. The last
column gives the values obtained from the Born formula.

The real free energy ∆Gr
sol of solvation is the work that must be ex-

pended to transfer an ion from the vacuum into the solution.

It has a negative sign when free energy is gained, which is always the case if
the ion is solvable. This definition resembles that for the work function of a
metal; thus the free energy of solvation can be considered as the work function
of the ion, but with the opposite sign. Conceptually, it can be decomposed
into two parts: a bulk part caused by the interaction with the solvent, and
a surface part ze0χ, which is the work expended against the surface dipole
potential χ. Table 3.2 gives the free energies of hydration of several simple
ions. However, most tables only give the part of the solvation free energy
that pertains to the interaction with the solvent and is simply denoted as the
free energy of solvation ∆Gsol. This cannot be measured for a single ion but
only for a salt, for which the surface terms cancel. A convention is needed
to split the values for a salt into two terms, and this is usually based on the
solvation energy of one particular ion such as the proton, which is obtained
from a specific model. The value for one ion suffices because the free energies
of solvation are additive in the following sense: In a series of salts of the type
AX the difference in the free energy A1X1 and A2X1 equals that between the
salts A1X2 und A2X2, and this is then the difference in the free energies of
solvation between A1 and A2. This principle holds well at low concentrations
of the ions, and in the absence of ion-pair formation. Table 3.2 gives a few of
such conventional free energies of hydration.

Just like the inner and the outer potential of a phase, the two different
concepts for the free energy of solvation differ only by a surface term:

∆Gr
sol −∆Gsol = ze0χ (3.4)

For a given solvent, this difference should only depend on the charge number
z. However, a comparison between the corresponding values in Table 3.2 shows
that the experimental data are not sufficiently exact to fulfill this relation.
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In a simple model due to Born the interaction between an ion and the
solvent is considered to be entirely electrostatic; consequently the ion is repre-
sented as a charged sphere, the solvent as a continuum with dielectric constant
ε. The free energy of solvation is then the energy gained when the charged
sphere is transferred from the vacuum to the solution. In order to calculate
this quantity, we require an expression for the energy of a charged sphere in
a dielectric continuum, which equals the energy required to charge a sphere
that is initially uncharged.

For this purpose we consider a sphere with radius R and carrying a
charge Q embedded in a dielectric. The sphere generates a potential V (r) =
Q/4πεε0r. Therefore the work:

δW =
Q

4πεε0R
δQ (3.5)

is required to add a small charge δQ to the sphere. The total work to charge
the sphere is obtained by integration:

W =
∫ ∞

0

Q

4πεε0R
dQ =

Q2

8πεε0R
(3.6)

In order to estimate the free energy of solvation, we subtract the electrostatic
energy for the sphere in a dielectric from the corresponding value in the vac-
uum; the latter is obtained by setting ε = 1. This results in the Born formula:

∆Gsol = −
(

1− 1
ε

)
(ze0)2

8πε0R
(3.7)

In this formula, the solvation energy scales with the square of the charge
and is hence independent of its sign. As is to be expected, it decreases with
increasing ionic radius. Somewhat surprisingly, it depends only weakly on the
dielectric constant ε. For good solvents, the term 1/ε is of the order of 10−2

and hence almost negligible compared to unity. So, in this model an ion looses
almost all its electrostatic energy when it is transferred from the vacuum into
a good solvent.

Naturally, such a simple model can only give the order of magnitude of the
solvation energy, and reproduce the main trends (see Table 3.2). Especially for
small ions the Born formula overestimates the solvation energy, because in this
case the electric field near the ion is large and induces dielectric saturation.
In better models, at least the primary solvation shell, which consists of the
solvent molecules in contact with the ion, is treated separately. For a further
discussion, we refer to [6].

Of all ions, the proton has the highest energy of hydration. It interacts so
strongly with water, that it never exists in naked form. The most important
complexes are the Zundel H5O+

2 ion, in which two water molecules share an
excess proton, and the Eigen ion H9O+

4 , which is a H3O+ with its primary sol-
vation shell (see Fig. 3.6). Both forms have similar energies. Neither complex
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Fig. 3.6. Zundel (left) and Eigen (right) cations.

is stable in a chemical sense; rather, the configuration surrounding the proton
is a constantly changing network of hydrogen-bonded water.

The apparent diffusion of protons in water is faster than that of other
ions, since a water molecule can accept a proton at one side and pass a proton
to the next water molecule at the other side [3]. This so called Grotthuss
mechanism is schematically depicted in Fig. 3.7. A more complete description
takes account of the surrounding water, which participates in the process.
Thus, at first the excess proton is localized on the hydronium ion (1), which
is the center of an Eigen ion, whose solvation shell is not shown. Then it
forms a hydrogen bond with molecule (2), and a Zundel ion results. Through
a thermal fluctuation the hydrogen bond is broken again, with the excess
proton now residing on molecule (2). The latter then bonds with molecule (3)
to form another Zundel ion, which later separates with the proton localized
on molecule (3).

Problems

1. An electric field contains an energy; the energy per unit volume is given by:

(1)

(2)
(3)

Fig. 3.7. Grotthuss mechanism of proton transfer in water.
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u =
εε0
2

E2 (3.8)

where E is the electric field. Derive Eq. (3.7) for the energy of solvation of a
charged sphere by integrating the energy density over the space outside of the
sphere.

2. Consider a cation with unit charge and radius 1 Å. Calculate its energy of inter-
action with a point dipole of magnitude 6.14×10−30Cm, sitting at a distance of
2.5 Å and oriented with its negative end towards the ion. Compare this energy
with the hydration energy of this ion according to the Born formula.
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A few basic concepts

In this chapter we introduce and discuss a number of concepts that are com-
monly used in the electrochemical literature and in the remainder of this
book. In particular we will illuminate the relation of electrochemical concepts
to those used in related disciplines. Electrochemistry has much in common
with surface science, which is the study of solid surfaces in contact with a gas
phase or, more commonly, with ultrahigh vacuum (uhv). A number of surface
science techniques has been applied to electrochemical interfaces with great
success. Conversely, surface scientists have become attracted to electrochem-
istry because the electrode charge (or equivalently the potential) is a useful
variable, which cannot be well controlled for surfaces in uhv. This has led to
a laudable attempt to use similar terminologies for these two related sciences,
and to introduce the concepts of the absolute scale of electrochemical potentials
and the Fermi level of a redox reaction into electrochemistry. Unfortunately,
there is some confusion of these terms in the literature, even though they are
quite simple.

4.1 The electrochemical potential

In ordinary thermodynamics the chemical potential of a species i is defined
as:

µi =
(
∂G

∂Ni

)
p,T

(4.1)

where G is the Gibbs energy of the phase under consideration, p denotes the
pressure, T the temperature, and Ni the number of particles of species i. So
the chemical potential is the work required to add a particle to the system
at constant pressure and temperature. Alternatively, one may define µi by
taking the derivative with respect to mi, the number of moles of species i.
The two definitions differ by a multiplicative constant, Avogadro’s constant;
we shall use the former definition.

W. Schmickler, E. Santos, Interfacial Electrochemistry, 2nd ed.,
DOI 10.1007/978-3-642-04937-8 4, c© Springer-Verlag Berlin Heidelberg 2010
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If the particles of species i in Eq. (4.1) are charged, one speaks of an
electrochemical potential instead, and writes µ̃i. The usual thermodynamic
equilibrium conditions are now in terms of the µ̃i. For example, if a species i
is present both in a phase α and in a phase β, and the interface between α
and β is permeable to i, then µ̃i,α = µ̃i,β at equilibrium.

In adding a charged particle work is done against the inner potential φ,
and it may be useful to separate this out and write:

µ̃i =
(
∂G

∂Ni

)
p,T

= µi + zie0φ (4.2)

where zi is the charge number of species i, e0 is the unit of charge, and µi

is again called the chemical potential since it contains the work done against
chemical interactions. For an uncharged species chemical and electrochemical
potential are the same.

At zero temperature the electrons in a solid occupy the lowest energy levels
compatible with the Pauli exclusion principle. As mentioned in Chap. 2, the
highest energy level occupied at T = 0 is the Fermi level, EF. For metals the
Fermi level and the electrochemical potential are identical at T = 0, since any
electron that is added to the system must occupy the Fermi level. At finite
temperatures EF and the electrochemical potential µ̃ of the electrons differ by
terms of the order of (kT )2, which are typically a fraction of a percent and are
hence negligible for most purposes. Numerical values of EF or µ̃ must refer
to a reference point, or energy zero. Common choices are a band edge or the
vacuum level, i.e. a reference point in the vacuum at infinity. Obviously, one
has to be consistent in the choice of the reference point when comparing the
Fermi levels of different systems.

For electrons in a metal the work function Φ is defined as the minimum
work required to take an electron from inside the metal to a place just outside
(c.f. the preceding definition of the outer potential). In taking the electron
across the metal surface, work is done against the surface dipole potential χ.
So the work function contains a surface term, and it may hence be different
for different surfaces of a single crystal. The work function is the negative
of the Fermi level, provided the reference point for the latter is chosen just
outside the metal surface. If the reference point for the Fermi level is taken
to be the vacuum level at infinity instead, then EF = −Φ − e0ψ, since an
extra work −e0ψ is required to take the electron from the vacuum level to
the surface of the metal. The relations of the electrochemical potential to the
work function and the Fermi level are important because one may want to
relate electrochemical and solid-state properties.

4.2 Absolute electrode potential

The standard electrode potential [1] of an electrochemical reaction is com-
monly measured with respect to the standard hydrogen electrode (SHE) [2],
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Fig. 4.1. Two metals of different work functions before (a) and after (b) contact
(schematic).

and the corresponding values have been compiled in tables. The choice of this
reference is completely arbitrary, and it is natural to look for an absolute
standard such as the vacuum level, which is commonly used in other branches
of physics and chemistry. To see how this can be done, let us first consider two
metals, I and II, of different chemical composition and different work functions
ΦI and ΦII. When the two metals are brought into contact, their Fermi levels
must become equal. Hence electrons flow from the metal with the lower work
function to that with the higher one, so that a small dipole layer is established
at the contact, which gives rise to a difference in the outer potentials of the
two phases (see Fig. 4.1). No work is required to transfer an electron from
metal I to metal II, since the two systems are in equilibrium. This enables
us calculate the outer potential difference between the two metals in the fol-
lowing way. We first take an electron from the Fermi level EF of metal I to
a point in the vacuum just outside metal I. The work required for this is the
work function ΦI of metal I. We then take the electron in the vacuum to a
point just above metal II; this requires the work −e0(ψII− ψI). We then take
the electron to the Fermi level of metal II, and gain the energy −ΦII. Since
the total work for this process must be zero, we obtain:

ψI − ψII =
−(ΦI − ΦII)

e0
(4.3)

so that the outer potential difference can be calculated from the metal work
function. By the same reasoning different faces of a single metal crystal have
different outer potentials if their work functions are not equal.

We should like to define a “work function” of an electrochemical reaction
which enables us to calculate outer potential differences in the same way for
a metal-solution interface, and this work function should also refer to the
vacuum. For this purpose we consider a solution containing equal amounts
of Fe3+ and Fe2+ ions in contact with a metal M, and suppose that the
reaction is at equilibrium. We now transfer an electron from the solution via
the vacuum to the metal in the following way:
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1. Take an Fe2+ ion from the solution into the vacuum above the solution;
the work required is the negative of ∆Gr

sol(Fe2+), the real Gibbs energy of
solvation of the Fe2+ ion. Real Gibbs energies of solvation are measurable;
they include the work done against the surface potential of the solution.

2. Take an electron from the Fe2+ ion: Fe2+ → Fe3+ +e−; the work required
is the third ionization energy I3 of Fe.

3. Put the Fe3+ back into the solution, and gain ∆Gr
sol(Fe3+).

4. Take the electron from just outside the solution across to a position just
outside the metal; the work required is −e0(ψm−ψs); the index m denotes
the metal, s the solution.

5. Take the electron to the Fermi level of the metal, and gain −Φm in energy.

Adding up all the energies, we obtain:

−∆Gr
sol(Fe2+) + I3 +∆Gr

sol(Fe3+)− e0(ψm − ψs)− Φm = 0 (4.4)

or
e0(ψm − ψs) =

[
∆Gr

sol(Fe3+)−∆Gr
sol(Fe2+) + I3

]
− Φm (4.5)

Comparison with Eq. (4.3) suggests that we identify the expression in the
square brackets, which depends only on the properties of the redox couple
Fe3+/Fe2+ in the solution, with the work function of this couple and define:

Φ(Fe3+/Fe2+) = ∆Gr
sol(Fe3+)−∆Gr

sol(Fe2+) + I3 (4.6)

All the quantities on the right-hand side of this equation are measurable; so
this work function is well defined. Fortunately, it is not necessary to calculate
the work function for every electrode reaction: The difference between the
work functions of two electrode reactions (measured in eV) equals the dif-
ference between their standard potentials on the conventional hydrogen scale
(measured in V) – this can be easily seen by constructing electrochemical
cells with the SHE (standard hydrogen electrode) as a counter electrode. So
it is sufficient to know the work function of one particular reaction in a given
solvent. For the SHE (i.e. the couple H2/H

+), the work function is currently
estimated as 4.5 ± 0.2 eV; so one obtains the work function of any electro-
chemical reaction by simply adding this number to the standard potential (in
volts) on the SHE scale. By dividing the resulting scale of work functions by
the unit charge (or expressing quantities in volts instead of electron volts) one
obtains the absolute scale of electrochemical potentials.

Since the absolute and the conventional electrode potentials differ only
by an additive constant, the absolute potential depends on the concentration
of the reactants through the familiar Nernst’s equation. This dependence is
implicitly contained in Eq. (4.6); the real Gibbs energies of solvation contain
an entropic term, which depends on the concentration of the species in the
solution.

For a metal, the negative of the work function gives the position of the
Fermi level with respect to the vacuum outside the metal. Similarly, the neg-
ative of the work function of an electrochemical reaction is referred to as the
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Fermi level EF(redox) of this reaction, measured with respect to the vacuum;
in this context Fermi level is used as a synonym for electrochemical potential.
If the same reference point is used for the metal and the redox couple, the equi-
librium condition for the redox reaction is simply: EF(metal)= EF(redox). So
the notion of a Fermi level for a redox couple is a convenient concept; however,
this terminology does not imply that there are free electrons in the solution
which obey Fermi–Dirac statistics, a misconception sometimes found in the
literature.

The scale of electrochemical work functions makes it possible to calculate
the outer potential difference between a solution and any electrode provided
the respective reaction is in equilibrium. A knowledge of this difference is
often important in the design of electrochemical systems, for example, for
electrochemical solar cells. However, in most situations one needs only relative
energies and potentials, and the conventional hydrogen scale suffices.

4.3 Three-electrode configuration

Generally electrochemists want to investigate one particular interface between
an electrode and an electrolyte. However, to pass a current through the system
at least two electrodes are needed. Further, one needs a reference electrode to
determine the potential of the working electrode. Since the potential of the
reference electrode must remain constant, no current should flow through it.
So in practice one takes three electrodes: the working electrode, which one
wants to investigate, a counter electrode, which takes up the current, and a
reference electrode (see Fig. 4.2). The potential of the working electrode is then
measured with respect to that of the reference electrode. It is important that
the ohmic potential drop between the working and the reference electrode is as
small as possible. One procedure is to keep the reference electrode in a separate
compartment, and link it to the main cell with a so-called Luggin capillary ,
whose tip is placed very close to the working electrode. Since no current passes
between the working and the reference electrode, the ohmic drop between
the two is limited to the region between the capillary tip and the working
electrode. There is an additional problem caused by the junction potential at
the Luggin capillary; a small potential drop is established in the region where
two electrolytes of different composition meet [3]. However, in practice these
junction potentials can be kept very small and, more importantly, constant,
and can be disregarded.

What is actually measured as electrode potential in such a configuration?
Consider a metal electrode (M ) in equilibrium with a solution containing a re-
dox couple red/ox with a standard hydrogen electrode attached. One measures
the electrode potential by taking the two leads of a voltmeter and attaching
one to the working and the other to the reference electrode. The latter is
made of platinum, and to avoid unnecessary complications we assume that
the two leads of the voltmeter are also made of platinum. According to Ohm’s
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Fig. 4.2. Electrochemical cell with a three-electrode configuration.
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Fig. 4.3. Shift of the metal Fermi level on application of an overpotential.

law the current is proportional to the difference in the driving force, which
is the difference in the electrochemical potential. So the voltmeter connected
to two phases measures the difference in the electrochemical potential; hence
the measured voltage ∆V is given by:

− e0 ∆V = µ̃1 − µ̃2 = µ1 − e0φ1 − µ2 + e0φ2 (4.7)

When the two phases have the same chemical composition, the chemical
potentials are equal, and then ∆V = φ1 − φ2, which was already pointed out
in Sect. 4.1. In our case both leads are made of the same material, platinum;
so the measured electrode potential, which is the equilibrium potential φ0 of
the redox couple, is:

φ0 = φI − φII = (φI − φM ) + (φM − φsol) + (φsol − φII) (4.8)

Generally, when two phases are in electronic equilibrium, e0(φ1 − φ2) = µ1 −
µ2. In our case, the wire I is in equilibrium with the metal M, the latter
is in equilibrium with the redox couple, and the platinum electrode II is in
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equilibrium with the reference couple (index “ref”). So we can rewrite Eq.
(4.8) as:

e0φ0 = (µI − µM ) + (µM − µredox) + (µref − µII) = −µredox + µref (4.9)

Since the redox couple and the reference system experience the same inner
potential φsol, we have:

e0φ0 = −µ̃redox + µ̃ref = Φredox − Φref (4.10)

since the work function is the negative of the electrochemical potential. So
one actually measures the difference in the work functions between the redox
couple and the reference electrode, and this is independent of the electrode
material for a redox couple not involving a reaction with the electrode M.

In the preceding derivation we presumed that equilibrium prevails, so that
the Fermi levels of the metal and of the redox couple are equal. This equilib-
rium can be disturbed by the application of an external electrode potential
φ 6= φ0, which lowers the electronic energies in the metal, and in particular the
Fermi level, by an amount −e0η, where η = φ− φ0 is called the overpotential
(see Fig. 4.3). Thus the application of an overpotential leads to a difference
−e0η in the Fermi levels of the metal and the solution. However, as the equi-
librium is disturbed, the reaction proceeds in one direction; current flows and
the concentrations of the reactants at the interface will change unless they are
kept constant by fast transport processes. Experimental methods for dealing
with this difficulty will be discussed in Chaps. 19 and 20. Until then we will
generally assume that the concentrations of the reactants are kept constant.

4.4 Surface tension

The correct thermodynamic function to describe the energetics of a system
depends on the external conditions. Thus, for a bulk system held at constant
temperature and pressure it is the Gibbs energy G, and for constant tem-
perature and volume it is the Helmholtz energy F . Electrochemical interfaces
have an extra variable, the electrode potential φ. Commonly, they are held
at constant temperature, pressure and potential, and are described by the
surface tension γ, which we will treat in greater detail in Chap. 8. For liquid
electrodes, the surface tension can be measured directly as the Gibbs energy
required to increase the surface area. For solid electrodes, the absolute value
of γ cannot be measured, but, as we shall demonstrate below, changes in γ
can.

With the recent advances in computation is has become possible to cal-
culate the energetics of surfaces and interfaces. Leaving the question of the
accuracy of such calculations aside, which obviously depends on the complex-
ity of the system considered, we want to relate the quantities calculated to
the surface tension. For every type of energy, we can define a surface excess
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in the following way. We calculate the actual energy of the system, subtract
the energy that the system would have if each of the adjoining phases had
bulk properties, and divide the result by the area of the surface or interface.
Quantum chemical calculations are usually performed at constant tempera-
ture, volume, and surface charge density σ on the solid electrode, and thus
give the surface Helmholtz energy Fs per unit area. To obtain the surface
tension, we perform what is technically known as a Legendre transforma-
tion. This is familiar from ordinary thermodynamics: The internal energy U
describes a system at constant volume and entropy; by the transformation
F = U − TS one obtains the Helmholtz energy, which has temperature and
volume as natural variables.

Holding the electrode at constant potential is equivalent to holding the
electrons at constant electrochemical potential µ̃e. The excess charge σ per
area is related to the number of electrons Ne through σ = −e0(Ne − zNa)/A,
where Na is the number of atoms, which is constant, and z their charge num-
ber; A is the surface area. Therefore, we obtain the electrochemical potential
of the electrons through:

− µ̃/e0 =
∂Fs

∂σ
(4.11)

The surface tension is then defined as:

γ = Fs + σµ̃/e0 (4.12)

and has the electrode potential as its natural variable, since dµ̃/e0 = −dφ.
Indeed, keeping all other variables constant, we have:

dFs = − µ̃

e0
dσ dγ = dF +

σ

e0
dµ̃+

µ̃

e0
dσ = −σdφ (4.13)

which also shows that the surface tension has an extremum for σ = 0, the
point or potential of zero charge (pzc). Differentiating again gives:

d2γ

dφ2
= −dσ

dφ
= −C (4.14)

where C is the differential capacity per unit area, which will be treated in
more detail in the following chapter. Since the capacity must be positive –
otherwise the interface would charge spontaneously – the extremum at the
pzc is a maximum. The second part of Eq. (4.13) shows, that changes in the
surface tension can be measured by integrating the charge density over the
electrode potential.

For liquid electrodes, the equations derived above are exact; on solid elec-
trodes, there is an extra term involving the surface stress. However, this extra
term is negligible for all practical purposes, so that the above equations are
excellent approximations for solid metals – see Chap. 8 for details.

In the literature there is some confusion concerning the use of the surface
tension and the Helmholtz surface energy. In surface science, often Fs/A is
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called the surface tension. Note that γ and Fs/A agree only at the pzc (see
Eq. (4.12)), and the latter does not have a maximum at the pzc, but a positive
slope which, because of the relation between µ̃ and Φ gives the work function.
Therefore, using the wrong form of energy can entail, qualitative errors.

Problems

1. Consider a monolayer of water molecules arranged in a square lattice with
a lattice constant of 3 Å. The dipole moment of a single molecule is
6.24 × 10−30 Cm. (a) Calculate the potential drop across the monolayer
if all dipole moments are parallel and perpendicular to the lattice plane. (b)
If the potential drop across the layer is 0.1 V, what is the average angle of
the dipole moment with the lattice plane?

2. Following the ideas of Sect. 4.2, devise a suitable cycle to derive the work
function of a metal deposition reaction; this will involve the energy of subli-
mation of the metal.

3. In a simple model for sp metals known as jellium the ionic charge is smeared
out into a constant positive background charge (see also Fig. 1.5). If the metal
occupies the region −∞ < z ≤ 0, the positive charge distribution is given
by:

n+(z) =

{
n0 for z ≤ 0
0 for z > 0

In a simple approximation the distribution of the electrons takes the form:

n−(z) =

{
n0(1−A exp αz) for z ≤ 0

n0B exp−αz for x > 0

Show that for an uncharged metal surface: A = B = 1/2, and derive a

formula for the surface dipole potential. Cesium has an electronic density of

0.9× 1022 cm−3 and α ≈ 2 Å
−1

. Calculate its surface dipole potential.
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5

The metal-solution interface

5.1 Ideally polarizable electrodes

The interface between a metal and an electrolyte solution is the most
important electrochemical system, and we begin by looking at the simplest
case, in which no electrochemical reactions take place. The system we have in
mind consists of a metal electrode in contact with a solution containing inert,
nonreacting cations and anions. A typical example would be the interface be-
tween a silver electrode and an aqueous solution of KF. We further suppose
that the electrode potential is kept in a range in which no or only negligible
decomposition of the solvent takes place – in the case of an aqueous solution,
this means that the electrode potential must be below the oxygen evolution
and above the hydrogen evolution region. Such an interface is said to be ideally
polarizable, a terminology based on thermodynamic thinking. The potential
range over which the system is ideally polarizable is known as the potential
window, since in this range electrochemical processes can be studied without
interference by solvent decomposition.

As we pointed out in the introduction, a double layer of equal and opposite
charges exists at the interface. In the solution this excess charge is concen-
trated in a space-charge region, whose extension is the greater the lower the
ionic concentration. The presence of this space-charge region entails an excess
(positive or negative) of ions in the interfacial region. In this chapter we con-
sider the case in which this excess is solely due to electrostatic interactions; in
other words, we assume that there is no specific adsorption. This case is often
difficult to realize in practice, but is of principal importance for understanding
more complicated situations.

5.2 The Gouy–Chapman theory

A simple but surprisingly good model for the metal-solution interface was
developed by Gouy [1] and Chapman [2] as early as 1910. The basic ideas are

W. Schmickler, E. Santos, Interfacial Electrochemistry, 2nd ed.,
DOI 10.1007/978-3-642-04937-8 5, c© Springer-Verlag Berlin Heidelberg 2010
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the following: The solution is modeled as point ions embedded in a dielectric
continuum representing the solvent; the metal electrode is considered as a
perfect conductor. The distribution of the ions near the interface is calculated
from electrostatics and statistical mechanics.

To be specific we consider a planar electrode in contact with a solution
of a z − z electrolyte (i.e., cations of charge number z and anions of charge
number −z). We choose our coordinate system such that the electrode surface
is situated in the plane at x = 0. The inner potential φ(x) obeys Poisson’s
equation:

d2φ

dx2
= −ρ(x)

εε0
(5.1)

where ρ(x) is the charge density in the electrolyte, ε the dielectric constant
of the solvent, and ε0 the permittivity of the vacuum. Let n+(x) and n−(x)
denote the densities of the cations and anions; in the bulk they have the same
density n0. We have:

ρ(x) = ze0 [n+(x)− n−(x)] (5.2)

The ionic densities must in turn depend on the potential φ(x). We choose
φ(∞) = 0 as our reference, and apply Boltzmann statistics:

n+(x) = n0 exp−ze0φ(x)
kT

n−(x) = n0 exp
ze0φ(x)
kT

(5.3)

Strictly speaking the exponents should not contain the inner potential φ but
the so-called potential of mean force, but this subtlety is only important at
high electrolyte concentrations and high potentials, where other weaknesses
of this theory also become important. Substituting Eqs. (5.3) and (5.2) into
Eq. (5.1) gives:

d2φ

dx2
= −ze0n0

εε0

(
exp−ze0φ(x)

kT
− exp

ze0φ(x)
kT

)
(5.4)

which is a nonlinear differential equation for the potential φ(x) known as
the Poisson–Boltzmann equation. We first consider the simple case in which
ze0φ(x)/kT � 1 everywhere so that the exponentials can be linearized. This
gives the linear Poisson–Boltzmann equation:

d2φ

dx2
= κ2φ(x) (5.5)

where κ is the Debye inverse length:

κ =
(

2(ze0)2n0

εε0kT

)1/2

(5.6)
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Concentration/mol l−1 10−4 10−3 10−2 10−1

Debye length/Å 304 96 30.4 9.6

Table 5.1. Debye length for an aqueous solution of a completely dissociated 1–1
electrolyte at room temperature.

LD = 1/κ is the Debye length; Table 5.1 shows values for several concentra-
tions of a 1–1 electrolyte in an aqueous solution at room temperature. The
solution compatible with the boundary condition φ(∞) = 0 has the form:
φ(x) = A exp(−κx), where the constant A is fixed by the charge balance
condition: ∫ ∞

0

ρ(x) dx = −σ (5.7)

where σ is the surface charge density on the metal. ρ(x) is obtained from φ(x)
via Poisson’s equation, and a straightforward calculation gives:

φ(x) =
σ

εε0κ
exp(−κx) (5.8)

for the potential and:
ρ(x) = −σκ exp(−κx) (5.9)

for the charge density. So the excess charge on the metal is balanced by a space-
charge layer, which decays exponentially in the solution. This configuration
of charges obviously has a capacity. The electrode potential is: φ = φ(0) =
σ/εε0κ – dipole potentials are ignored in this simple model. The interfacial
capacity per unit area, known as the double-layer capacity, is:

C = εε0κ (5.10)

So the double-layer capacity is the same as that of a parallel-plate capacitor
with the plate separation given by the Debye length. Since for high concen-
trations the latter is of the order of a few Ångstroms, these capacities can be
quite high.

While Eqs. (5.9) and (5.10) are quite instructive, they are valid for small
charge densities on the electrode only. For a z − z electrolyte the nonlinear
Poisson–Boltzmann equation (5.4) can be solved explicitly. We are mainly
interested in the differential capacity, defined as C = ∂σ/∂φ, which is a mea-
surable quantity. A short calculation, whose details are given in the appendix
of this chapter, gives:

C = εε0κ cosh
(
ze0φ(0)

2kT

)
(5.11)

This is not a useful form since the potential φ(0) cannot be measured. The
electrode potential φ differs from φ(0) by a constant; when φ(0) = 0 the
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Fig. 5.1. Gouy–Chapman capacity for various concentrations of a 1–1 electrolyte
in aqueous solution at room temperature.

electrode carries no charge, and the corresponding electrode potential φpzc is
the potential of zero charge (pzc). So we rewrite Eq. (5.11) in the form:

C = εε0κ cosh
(
ze0 (φ− φpzc)

2kT

)
(5.12)

This differential capacity is known as the Gouy–Chapman capacity. It has a
pronounced minimum at the pzc, and it increases with the square root of
the electrolyte concentration. Figure 5.1 shows the Gouy–Chapman capacity
calculated for several electrolyte concentrations.

Because of the simple model on which it is based, the validity of the Gouy–
Chapman theory is limited to low concentrations and small excess charge
densities. Even at 5 × 10−2 M solutions, there are substantial deviations at
potentials away from zero charge. As an example, Fig. 5.2 shows the capacity
of single-crystal silver electrodes in a 5×10−2 M solution of a weakly adsorbing
electrolyte. All three curves show the characteristic capacity minimum at the
pzc, but the deviations from Gouy–Chapman theory away from the pzc are
quite evident. The plot also illustrates the dependence of the pzc on the crystal
face.

5.3 The Helmholtz capacity

At low electrolyte concentrations, up to about a 10−3 M solution, the Gouy–
Chapman theory agrees quite well with experimental values of the double layer
capacity for nonadsorbing electrolytes. At higher concentrations systematic
deviations are observed. In fact the experimental values follow an equation of
the form:
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Fig. 5.2. Experimental capacity of single-crystal silver electrodes in a solution of
5× 10−2 M KClO4.

1
C

=
1

CGC
+

1
CH

(5.13)

where CGC is the Gouy–Chapman capacity given by Eq. (5.12), and the Helm-
holtz capacity CH is independent of the electrolyte concentration.

CGC
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/ m
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C
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/
m

2
F

-1

Fig. 5.3. Parsons and Zobel plot; the intercept gives the inverse Helmholtz capacity.

Experimentally the Helmholtz capacity can be obtained by measuring the
interfacial capacity C per unit area for several concentrations, and plotting
1/C versus the calculated inverse Gouy–Chapman capacity 1/CGC at a con-
stant surface charge density σ (Parsons and Zobel plot); the intercept of the
resulting straight line gives 1/CH (see Fig. 5.3). If the electrode area is not
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known, one plots the capacity instead and obtains the area from the slope of
the plot. If a Parsons and Zobel plot does not result in a straight line, this is
an indication that specific adsorption occurs.

The Helmholtz capacity CH dominates at high electrolyte concentrations,
when the extension of the space-charge layer is small, and hence its origin must
be in a narrow region right at the interface. For a given system CH generally
depends strongly on the charge density σ and somewhat more weakly on
temperature. The capacity-charge characteristics CH versus σ vary greatly
with the nature of the metal and the solvent, and are even somewhat different
for different faces of a single crystal. However, they depend only weakly on
the nature of the ions in the solution, as long as they are not specifically
adsorbed. Figure 5.4 shows capacity-charge characteristics for mercury and
for a single crystal silver electrode in contact with an aqueous solution; notice
the maximum near the pzc, and how much smaller the capacity of mercury
is.

Hg

Ag(111)

σ / µCcm
-2

C
H

/µ
F

cm
-2

Fig. 5.4. Helmholtz capacity for Ag(111) and mercury in aqueous solutions.

Several theories have been proposed to explain the origin and the order
of magnitude of the Helmholtz capacity. Though differing in details, recent
theories agree that the Helmholtz capacity contains contributions both from
the metal and from the solution at the interface:

1. Due to the finite size of the ions and the solvent molecules, the solution
shows considerable structure at the interface, which is not accounted for
in the simple Gouy–Chapman theory. The occurrence of a decrease of C
from the maximum near the pzc is caused by dielectric saturation, which
lowers the dielectric constant and hence the capacity for high surface-
charge densities.



5.3 The Helmholtz capacity 45

2. The surface potential χ of the metal varies with the surface charge. A
little thought shows that the change in the surface potential opposes the
applied external potential, thus decreasing the total potential drop for a
given surface charge and increasing the capacity.

The latter effect can be understood within a simple model for metals: the
jellium model, which is based on the following ideas: As is generally known,
a metal consists of positively charged ions and negatively charged electrons.
In the jellium model the ionic charge is smeared out into a constant positive
background charge, which drops abruptly to zero at the metal surface. The
electrons are modeled as a quantum-mechanical plasma interacting with the
background charge and with any external field such as that caused by surface
charges. Due to their small mass the electrons can penetrate a little into the
solution; typically the electronic density decreases exponentially with a decay
length of about 0.5 Å. Since the electronic density of metals is high, this gives
rise to an appreciable negative excess charge outside the metal, which for an
uncharged surface must be balanced by an equal and opposite positive excess
charge within the metal. The resulting electronic charge distribution, plotted
as a function of the distance x from the metal surface, is shown in Fig. 5.5;
it carries a surface dipole moment which gives rise to a surface potential χ of
the order of several volts.

The electric field in the double layer distorts the electronic distribution and
changes the surface potential χ. A negative surface charge creates an excess
of electrons on the surface. The resulting electrostatic field pulls the electrons
toward the solution, and increases the surface dipole potential. Conversely, a

x / a .u.

me ta l
s urfa ce

n
(x

)/
n

0

-0.1 C m-2

0.1 C m
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Fig. 5.5. Distribution of the electronic density in the jellium model; the metal
occupies the region x ≤ 0. The unmarked curve is for an uncharged surface, the
other two curves are for the indicated surface-charge densities. The distance along
the x axis is measured in atomic units (a.u.), where 1 a.u. of length = 0.529 Å.
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Fig. 5.6. The inverse Helmholtz capacity at the pzc as a function of the elec-
tronic density; the latter is plotted in atomic units (a.u.), where 1 a.u. of density
= 6.76× 1024 cm−3. The dashed line is based on a model calculation of Schmickler
and Henderson [3].

positive excess charge gives rise to a deficiency of electrons, and the surface
dipole potential becomes smaller. The change in dipole potential opposes the
change in the external potential, and hence increases the capacity. In other
words, the electrons at the metal surface form a highly polarizable medium,
which enhances the double-layer capacity. Since this is an electronic effect, one
might expect that its magnitude increases with the electronic density of the
metal. This seems indeed to be the case for simple metals, the sp metals of the
second and third column of the periodic table (see Fig. 5.6); the Helmholtz
capacity of these elements at the pzc correlates with their electronic densities.

5.4 The potential of zero charge

The potential of zero charge (pzc) is a characteristic potential for a given in-
terface, and hence is of obvious interest. In the absence of specific adsorption,
it can be measured as the potential at which the Gouy–Chapman capacity
obtains its minimum; this value must be independent of the electrolyte con-
centration, otherwise there is specific adsorption. The pzc coincides with the
maximum of the surface tension (see Sect. 4.4), which can be measured di-
rectly for liquid metals.

An interesting correlation exists between the work function of a metal
and its pzc in a particular solvent. Consider a metal M at the pzc in contact
with a solution of an inert, nonadsorbing electrolyte containing a standard
platinum/hydrogen reference electrode. We connect a platinum wire (label I)
to the metal, and label the platinum reference electrode with II. This setup is
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very similar to that considered in Sect. 4.3, but this time the metal-solution
interface is not in electronic equilibrium. The derivation is simplified if we
assume that the two platinum wires have the same work function, so that
their surface potentials are equal. The electrode potential is then:

φpzc = φI − φII = ψI − ψII = (ψI − ψM ) + (ψM − ψsol) + (ψsol − ψII) (5.14)

The first and the last term can again be expressed through the work function
differences, but not the second term, since this interface is not in electronic
equilibrium:

φpzc =
1
e0

[(ΦM − ΦPt) + (ΦPt − Φref)] + (ψM − ψsol)

=
1
e0

(ΦM − Φref) + (ψM − ψsol) (5.15)

To evaluate the last term we go through a cycle taking a test charge (not an
electron!) from outside the metal first into the bulk of the metal, then through
the metal-solution interface, then to a position just outside the solution, and
finally back to outside the metal. This gives:

ψM − ψsol = −χM + χint + χsol (5.16)

where χint is the surface potential at the metal-solution interface. If the metal
and the solvent did not interact, χint would simply be χM − χsol, and the
outer potential difference would vanish at the pzc. However, the metal-solvent
interaction modifies the surface potentials; the presence of the solvent changes
the distribution of the electrons at the surface, and the interaction of the
solvent with the metal surface can lead to a small net orientation of the
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Fig. 5.7. The potential of zero charge (vs. SHE) of metals in aqueous solution; the
upper line is for sp metals, the lower for sd metals [4].
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solvent dipoles. Denoting these changes in the surface potentials by δχM and
δχsol, we have: ψM − ψsol = δχM − δχsol, so that we obtain for the pzc:

φpzc =
1
e0

(ΦM − Φref) + δχM − δχsol (5.17)

The changes in the dipole potentials are typically small, of the order of a few
tenths of a volt, while work functions are of the order of a few volts. If we keep
the solvent, and hence Φref , fixed and vary the metal, the potential of zero
charge will be roughly proportional to the work function of the metal. This is
illustrated in Fig. 5.7. A more detailed consideration of the dipole potentials
leads to a subdivision into separate correlations for sp, sd, and transition
metals [4].

Problems

1. For a z–z electrolyte define the excess distribution of the cations and an-
ions through: δn+(x) = n+(x) − n0 and δn−(x) = n−(x) − n0. Show that
|δn+(x)| = |δn−(x)| holds for the linear Gouy–Chapman theory, but not for
the nonlinear version.

2. Consider a point dipole with dipole moment m in an external electric field E
oriented along the z axis. Choosing a suitable coordinate system, show that
the average value of the dipole moment along the direction of the field is:

〈mz〉 =

∫ 2π

0
dφ

∫ π

0
dθ sin θ m cos θ exp

(
mE cos θ

kT

)∫ 2π

0
dφ

∫ π

0
sin θ dθ exp

(
mE cos θ

kT

)
For mE � kT the exponentials can be expanded. Show that in this limit:

〈mz〉 =
m2E

3kT

3. The Thomas–Fermi model of a metal is similar to the Gouy–Chapman theory
for electrolytes. In this model the surface-charge density σ is spread over a
thin boundary layer. If the metal occupies the region x ≤ 0, the distribution
of the charge density is given by:

ρ(x) = A exp
x

LTF

where A is a constant to be determined by charge balance, and LTF is the
Thomas–Fermi length, which is mainly determined by the electronic density
of the metal. Combine this model with the linear Gouy-Chapman theory and
derive:

1

C
=

1

εε0κ
+

LTF

ε0

Compare this result with Eq. (5.13). For most metals LTF ≈ 0.5 Å. By
examining the experimental data in Fig. 5.6, show that this model cannot
explain the origin of the Helmholtz capacity.
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Appendix: the nonlinear Gouy–Chapman theory

We rewrite the nonlinear Poisson Boltzmann Eq. (5.4) in the form:

d2φ

dx2
= −2ze0n0

εε0
sinh

ze0φ(x)
kT

(5.18)

and multiply both sides by 2dφ/dx. Using

d

dx

(
dφ

dx

)2

= 2
d2φ

dx2

dφ

dx
(5.19)

we can integrate both sides:

2
∫ ∞

0

d2φ

dx2

dφ

dx
dx =

(
dφ

dx

)2
∣∣∣∣∣
∞

0

= −
∫ ∞

0

4ze0n0

εε0
sinh

(
ze0φ

kT

)
dφ

dx
dx (5.20)

Both the field E and the potential φ vanish at ∞; so we obtain:

E(0)2 =
4kTn0

εε0

(
cosh

ze0φ(0)
kT

− 1
)

(5.21)

According to Gauss’s theorem, E(0) = σ/εε0; using the identity coshx− 1 =
2 sinh2 x/2 gives:

σ = (8kTn0εε0)
1/2 sinh

ze0φ(0)
2kT

(5.22)

Differentiation then gives the Gouy–Chapman expression Eq. (5.11).
Sometimes one requires not only the capacity but the potential φ(x); we

sketch the derivation. If we integrate Eq. (5.18) from x to ∞, we obtain by
the same arguments for the derivative φ′(x):

φ′(x) = −
(

8kTn0

εε0

)1/2

sinh
ze0φ(x)

2kT
(5.23)

Substituting ψ(x) = [ze0φ(x)]/2kT gives:

ψ′(x)
sinhψ(x)

= −κ (5.24)

where κ is the inverse Debye length. Integration gives:

ln tanh
ψ

2
= −κx+ lnC (5.25)

where lnC is the constant of integration, which can be expressed through the
value of the potential at the origin:
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C = tanh
ze0φ(0)

4kT
(5.26)

Equation (5.22) relates φ(0) to the charge density σ:

ze0φ(0)
2kT

= arcsinh ασ, where α = (8kTn0εε0)−1/2 (5.27)

Using the identity:

tanh
(

1
2
arcsinh x

)
=
√

1 + x2 − 1
x

(5.28)

gives finally:

tanh
ze0φ(x)

4kT
=
√

1 + α2σ2 − 1
ασ

exp−κx (5.29)

for the potential.
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6

Adsorption on metal electrodes: principles

6.1 Adsorption phenomena

Whenever the concentration of a species at the interface is greater than can
be accounted for by electrostatic interactions, we speak of specific adsorption.
It is usually caused by chemical interactions between the adsorbate and the
electrode, and is then denoted as chemisorption. In some cases adsorption is
caused by weaker interactions such as van der Waals forces; we then speak of
physisorption. Of course, the solvent is always present at the interface; so the
interaction of a species with the electrode has to be greater than that of the
solvent if it is to be adsorbed on the electrode surface. Adsorption involves
at least a partial desolvation. Cations tend to have a firmer solvation sheath
than anions, and are therefore less likely to be adsorbed.

The amount of adsorbed species is usually given in terms of the coverage
θ, which is the fraction of the electrode surface covered with the adsorbate.
When the adsorbate can form a complete monolayer, θ equals the ratio of the
amount of adsorbate present to the maximum amount that can be adsorbed.
In a few systems the area covered by a single adsorbed molecule changes with
coverage; for example, some organic molecules lie flat at low coverage and
stand up at higher coverages. In this case one must specify to which situation
the coverage refers. Another definition of the coverage, often used in surface
science, is the following: θ is the ratio of the number of adsorbed species to
the number of surface atoms of the substrate. Fortunately, most authors state
which definition they use.

The chemisorption of species occurs at specific sites on the electrode, for
example on top of certain atoms, or in the bridge position between two atoms.
Therefore, most adsorption studies are performed on well-defined surfaces,
which means either on the surface of a liquid electrode or on a particular sur-
face plane of a single crystal. Nowadays, most work is done on single crystals,
and mercury, which was extensively used before, has almost dropped out of
use.

W. Schmickler, E. Santos, Interfacial Electrochemistry, 2nd ed.,
DOI 10.1007/978-3-642-04937-8 6, c© Springer-Verlag Berlin Heidelberg 2010
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Nevertheless, liquid electrodes are not only easier to prepare than single
crystal surfaces of solid electrodes, they also have another advantage: Adsorp-
tion can be studied by measuring the variation of the surface tension. We defer
the thermodynamics of interfaces till Chap. 8; here we merely state that such
measurements yield the total surface excess Γi of a species. Roughly speaking,
Γi is the amount of species i per unit area in excess over the amount that
would be present if its concentration were the same at the interface as in the
bulk. Γi can be positive or negative – cations, for example, can be excluded
from the surface region near a positively charged electrode. Until the advent
of modern spectroscopic methods for studying the electrochemical interface,
thermodynamic measurements were the only reliable way of determining spe-
cific adsorption. While such measurements are easier to perform on liquid
electrodes, they have been extended to solid surfaces.

The surface excesses Γi not only include the atoms or molecules of species
i that are adsorbed on the metal surface, but also those that are in the space-
charge region considered in Chap. 5. The latter is also known as the diffuse part
of the double layer, or simply as the diffuse double layer; in contrast, adsorbed
particles are said to be part of the compact part of the double layer. Usually we
are only interested in the amount of particles that is specifically adsorbed. The
excess of species i in the diffuse double layer can be minimized by working with
a high concentration of nonadsorbing, inert (also called supporting) electrolyte.
Suppose we want to study the adsorption of an anion A−; if we add a large
excess of nonadsorbing ions B+ and C− to the solution, keeping the electrode
charge constant, the amount of ions A− in the diffuse layer will be greatly
reduced. This can be seen from the following argument. Let Q be the total
surface charge at the interface, that is, Q contains both the excess charge
on the metal and the charge of any adsorbed species. This charge must be
balanced by a charge −Q in the space-charge region. The concentration ni(x)
of a species i in this region is proportional to its bulk concentration ni,o

(see Eq. 5.3): ni(x) = ni,o exp[zie0φ(x)/kT ]. Adding an excess of an inert
electrolyte will therefore drastically reduce the amount of ions A− in this
region. Since the charge number enters into the exponent, highly charged
ions require a higher concentration of supporting electrolyte. In practice it
may not be easy to find an inert electrolyte that is not specifically adsorbed;
obviously, coadsorption of other ions should be avoided since it drastically
changes the conditions at the electrode surface, and makes the interpretation
of the experimental data difficult.

6.2 Adsorption isotherms

Consider the adsorption of a species A with concentration cA in the bulk of the
solution. The variation of the coverage θ with cA, keeping all other variables
fixed, is known as the adsorption isotherm.
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Fig. 6.1. Frumkin isotherms for various values of the adsorbate interaction pa-
rameter g; the Langmuir isotherm corresponds to g = 0. The abscissa is: ln y =
ln(c/c0) + (µsol − µad)/kT .

We first consider the simplest possible model, in which adsorption occurs
at fixed sites, and the interaction between adsorbed particles can be neglected.
Let the surface contain N adsorption sites, of which M are occupied, and let
εad be the adsorption energy per particle. The internal energy of the adsor-
bate is simply Mεad. To obtain the free energy, we need the entropy, which
according to the Boltzmann formula is: S = k lnW , where W is the number
of realizations of the system, or the number of ways of selecting M sites out
of N . Therefore:

F = Mεad − kT ln
N !

M !(N −M)!
(6.1)

Using Stirling’s formula: lnn! ≈ n lnn− n for large n gives:

F = Mεad +
[
M ln

M

N
+ (N −M) ln

N −M

N

]
(6.2)

At equilibrium, the chemical potential of the adsorbate must equal the chemi-
cal potential of the same particle in the solution. For the adsorbate we obtain:

µad =
∂F

∂M
= εad + kT ln

θ

1− θ
(6.3)

where θ = M/N is the coverage. The chemical potential for an ideal solute
has the form:

µsol = µ0 + kT ln
c

c0
(6.4)

where c is the concentration, and the unit concentration c0 makes the argu-
ment of the logarithm dimensionless. Setting the chemical potentials equal
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results in the Langmuir isotherm:

θ

1− θ
=

c

c0
exp

(
µsol − µad

kT

)
(6.5)

The model from which it has been derived is the two-dimensional lattice-gas
model . We shall meet a three-dimensional version in Chap. 18.

So far, we have ignored interactions between the adsorbates completely.
In a simple, phenomenological way one can account for such interactions by
assuming that ∆µad is proportional to θ: µad = µ0

ad + γθ, where the constant
γ is positive if the adsorbed particles repel, and negative if they attract each
other. The resulting isotherm:

θ

1− θ
=

c

c0
exp

(
µsol − µad

kT

)
e−gθ (6.6)

with g = γ/RT , is known as the Frumkin isotherm. At present there is no gen-
eral satisfactory theory for adsorbate–adsorbate interaction at electrochemical
interfaces, and consequently none for adsorption isotherms. Besides Eqs. (6.5)
and (6.6), various other isotherms have been proposed based on rather sim-
ple models, but none of them is really satisfactory. Figure 6.1 shows Frumkin
isotherms for a few different values of the interaction parameter g. Positive
values of g broaden the isotherm because the adsorbed particles repel each
other; for negative values of g the isotherms are narrow because adsorption is
then a cooperative effect. For g < −4, a phase transition occurs, in which the
adsorbate condenses on the electrode. This gives rise to a vertical slope in the
isotherm. The case g = 0 corresponds to the Langmuir isotherm.

The difference ∆µ = µsol − µad depends on the electrode potential φ.
This dependence will be different for anions, cations, and neutral species. The
simplest possible case is the adsorption and total discharge of an ion according
to the equation:

Az+ + ze− 
 Aad (6.7)

obeying the Langmuir isotherm with a potential dependence of the form:

∆µ(φ) = ∆µ(φ0) + ze0(φ− φ0) (6.8)

where φ0 is a suitably chosen reference potential. The choice of φ0 is not
important since it just determines the zero of the potential scale. A convenient
choice may be one for which the coverage is θ = 1/2 for a given electrolyte
concentration. The resulting isotherm takes the form:

θ

1− θ
=

c

c0
K exp

(
−ze0(φ− φ0)

kT

)
(6.9)

which is illustrated in Fig. 6.2. However, the assumptions on which this equa-
tion is based rarely hold in practice. When ions are adsorbed, the interaction
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Fig. 6.2. Current and charge versus potential for a Langmuir isotherm whose poten-
tial dependence is given by Eq. (6.9). Such curves are obtained by a slow potential
sweep. The absolute value of the current depends on the sweep rate (see text).

of the adsorbates is quite important; in addition, the adsorbed ions need not
be totally discharged – a point which we will discuss further – and Eq. (6.8)
need not hold. The simple adsorption isotherm Eq. (6.9) should rather be
viewed as an ideal reference situation.

A simple way to study the potential dependence of an adsorption reaction
is a potential sweep. In this procedure the electrode potential is first kept in a
region where the adsorption is negligible; then the potential is varied slowly
and with a constant rate vs = dφ/dt, and the resulting current i is measured.
The sweep rate vs must be chosen with care. It must be so slow that the
reaction is in equilibrium, and that the current due to the charging of the
double layer is negligible or small. On the other hand, vs must be so large
that a sizable current flows. Sweep rates of the order of a few mV s−1 or
somewhat faster are common. In simple cases the current is proportional to
the rate of change of the coverage:

I = Q0
dθ

dt
(6.10)

where Q0 is the charge required to form a monolayer of the adsorbate. This
equation only holds if the charge required to adsorb one particle is independent
of the coverage. This need not be the case; at small coverages the adsorbate
may still be charged, while at high coverages Coulomb repulsion prevents the
accumulation of a sizable charge on the interface, and the adsorbates will be
discharged. Figure 6.2 shows the form of the current-potential curve if both
Eqs. (6.9) and (6.10) hold; the absolute value of the current depends on the
sweep rate and on Q0. Again, this curve should be viewed as an ideal reference
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case, and real curves will differ significantly. A repulsive adsorbate interaction,
for example, will broaden the peak in Fig. 6.2, while an attractive interaction
will lead to narrow peaks. If the charge per adsorbed particle is constant, the
coverage at a given potential can be determined by measuring the charge that
has flowed:

θ(φ) =
Q(φ)
Q0

=
1
Q0

∫ φ

φ1

I

vs
dφ (6.11)

where the potential φ1 has to be in the region where the species is not ad-
sorbed.

Other phenomena such as phase formation or phase transitions will also
show up in such current-potential curves. It will be apparent by now that
adsorption is a complicated process; only a few systems are well understood.
We will consider a few illustrative examples later in this chapter, and defer
the more complicated theoretical aspects to later chapters.

6.3 The dipole moment of an adsorbed ion

In general a polar bond is formed when an ion is specifically adsorbed on
a metal electrode; this results in an uneven distribution of charges between
the adsorbate and the metal and hence in the formation of a surface dipole
moment. So the adsorption of an ion gives rise to a dipole potential drop
across the interface in addition to that which exists at the bare metal surface.

Electrode Ion µ× 10−30 Cm

Hg Rb+ 4.07
Ga Rb+ 0.90
Hg Cs+ 4.65
Ga Cs+ 0.90
Hg Cl− −3.84
Hg Br− −3.17
Hg I− −2.64

Table 6.1. Dipole moments of a few ions adsorbed from an aqueous solution at low
coverage.

The same effect exists for adsorption on a metal surface from the gas phase.
In this case the adsorbate-induced dipole potential changes the work function
by an amount ∆Φ. If nad is the number of adsorbed molecules per unit area,
the component µx of the dipole moment of single adsorbed molecule can be
inferred from the relation:

∆Φ =
nadµx

ε0
(6.12)
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As before, the x direction has been taken normal to the metal surface. In
electrochemistry, the dipole moment µx associated with an adsorbate bond
can be defined in the following way: For simplicity suppose that the electrode
has unit area. At the beginning the electrode surface is bare and kept at
the pzc. Then a number nad of ions with charge number z are adsorbed;
simultaneously a counter charge −ze0nad is allowed to flow onto the metal
surface. The change ∆φ in the electrode potential is related to the dipole
moment through:

e0 ∆φ =
nadµx

ε0
(6.13)

Note that both before and after the experiment the sum of the charges on the
metal surface and in the adsorbate layer is zero, and hence there is no excess
charge in the diffuse part of the double layer. However, after the adsorption
has occurred, the electrode surface is no longer at the pzc, since it has taken
up charge in the process.

 

Fig. 6.3. Two alternative ways of viewing the charge distribution in an adsorption
bond. The upper part of this figure shows the dipole moment; the lower part shows
a partially charged adsorbate and its image charge. The dipole moments of the
surrounding solvent molecules are oriented in the direction opposite to the adsorbate
dipole.

In the gas phase the dipole moment determined through Eq. (6.12) refers to
an individual adsorbed particle. This is not so in the electrochemical situation.
The dipole moment of an adsorbed species will tend to align neighboring
solvent molecules in the opposite direction, thereby reducing the total dipole
potential drop (see Fig. 6.3). Only the total change in dipole potential can
be measured, and there is no way of dividing this into separate contributions
from the adsorbate bond and the reorientation of the solvent. A few values of
such electrochemical dipole moments are given in Table 6.1. For comparison
we note that the dipole moments of alkali ions adsorbed from the vacuum are



58 6 Adsorption on metal electrodes: principles

 

metal 

Fermi level

en
er

gy
 

adsorbate 
density of 
states 

Fig. 6.4. Density of states of an adsorbed cation (schematic).

usually of the order of the order of 10−29 Cm. Because of the screening by
the solvent, the apparent dipole moment of an ion adsorbed from a solution
on a particular metal is often substantially smaller than that of the same ion
adsorbed in the vacuum.

If the adsorbate bond has a strong ionic character, as is the case for the
alkali and the halide ions, the concept of a partial charge is useful. One thinks
of the adsorbed ion as carrying a charge zade0, which is generally fractional,
i.e. zad is not an integer. The excess charge on the ion induces an image
charge of equal and opposite magnitude on the metal surface (see Fig. 6.3),
resulting in a surface dipole moment. The concomitant potential reorients
the neighboring polar solvent molecules in the opposite direction so that the
dipole potential induced by the adsorbate is reduced by the dipole moments
of the solvent molecules. A related concept is that of a partial charge transfer
coefficient l, which is defined as l = zion − zad.

In principle the partial charge on an adsorbate is ill defined, since one has
to introduce a plane separating the electronic density into a part belonging to
the adsorbate and one belonging to the metal; obviously, it is not measurable.
However, the notion of partial charge can be understood in terms of quantum-
mechanical considerations. To be specific, let us consider the adsorption of a
Cs+ ion from an aqueous solution, and assume that the electrode potential is in
the range where no reactions occur. When the ion is in the bulk of the solution
the valence orbital has a well-defined energy lying above the Fermi level of the
electrode; hence the valence orbital is empty. When this ion is adsorbed on
the metal electrode, its valence orbital overlaps with the metal orbitals. If we
put an electron into the valence orbital of the adsorbed Cs atom, it has only a
finite lifetime τ in this state before it is transferred to the metal; the stronger
the interaction, the shorter is τ . According to the Heisenberg uncertainty
principle, a finite lifetime τ entails an energy uncertainty ∆ = ~/τ . Hence
the valence orbital is broadened and acquires a density of states ρ(ε) of width
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∆, a phenomenon known as lifetime broadening and familiar from electronic
spectroscopy. This density of states is filled up to the Fermi level of the metal.
For an adsorbed Cs atom the center of the density of states lies well above
the Fermi level EF (see Fig. 6.4), the occupancy n is generally quite small,
and the partial charge zad = 1 − n is close to unity. In contrast, halide ions
typically carry a negative excess charge, and the center of the density of states
of their valence orbitals lies below or near the Fermi level of the metal.

6.4 Electrosorption valence

The distribution of charges on an adsorbate is important in several respects:
It indicates the nature of the adsorption bond, whether it is mainly ionic or
covalent. Therefore, a fundamental problem of classical electrochemistry is:
What does the current associated with an adsorption reaction tell us about
the charge distribution in the adsorption bond? Ultimately the answer is a
little disappointing: All the quantities that can be measured do not refer to
an individual adsorption bond, but involve also the reorientation of solvent
molecules and the distribution of the electrostatic potential at the interface.
This is not surprising; after all, the current is a macroscopic quantity, which is
determined by all rearrangement processes at the interface. An interpretation
in terms of microscopic quantities can only be based on a specific model.
Therefore, DFT calculations, especially if they include some water besides
the electrode and the adsorbate, are especially valuable to understand the
adsorption bond.

There is a formal similarity between adsorption and reactions such as metal
deposition which gives rise to the concept of electrosorption valence. Consider
the deposition of a metal ion of charge number z on an electrode of the same
material. If the electrode potential φ is kept constant, the current density j
is:

j = −ze0
(
∂N

∂t

)
φ

(6.14)

where N is the number of particles deposited per unit area. Likewise, when
an adsorbate (index i) is deposited on a metal electrode, the resulting current
will be proportional to the adsorption rate:

j = −le0
(
∂Γi

∂t

)
φ,Γj 6=Γi

(6.15)

where Γi is the amount adsorbed, also called the surface excess the surface
excess of species i; this includes any excess present in the diffuse layer – a
precise definition will be given in Chap. 8. By using dσ = j dt and rearranging:(

∂σ

∂Γi

)
φ,Γj 6=Γi

= le0 (6.16)
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where σ is the surface charge density on the metal. The coefficient l was given
different names by different authors,1 but the term electrosorption valence,
coined by Vetter and Schultze [2], has stuck. Equivalently, it can be defined
through:

le0 =
(
∂µs

i

∂φ

)
Γi

(6.17)

We defer the proof to Chap. 8, which contains the required thermodynamic
relations.

The definition of the electrosorption valence involves the total surface ex-
cess, not only the amount that is specifically adsorbed. It is common to correct
the surface excess Γi for any amount that may be in the diffuse double layer
in order to obtain the amount that is specifically adsorbed. This can be done
by calculating the excess in the diffuse layer from the Gouy–Chapman theory.
Often this correction is small, particularly if the species is strongly adsorbed,
or if an excess of a nonadsorbing electrolyte is used. However, if the correction
term is large, Eq. (6.17) need not hold for the corrected quantity, since this
equality has been proved only for the total excess.

The interpretation of the electrosorption valence is difficult. The following,
somewhat naive argument shows that it involves both the distribution of the
potential and the amount of charge transferred during the adsorption process.
Suppose that an ion Sz is adsorbed and takes up λ electrons in the process.
λ need not be an integer since there can be partial charge transfer. We can
then write the adsorption reaction formally as:

Sz → Sz+λ + λe− (6.18)

As noted before, the partial charge transfer is not well defined. Nevertheless,
let us suppose that we can treat Sz+λ like a normal species. Its electrochemical
potential is then:

µ̃ad
i = µad

i + (z + λ)e0φad (6.19)

where φad denotes the electrostatic potential at the adsorption site. Since the
reaction is in equilibrium, the electrochemical potentials must balance. Setting
the electrostatic potential in the solution equal to zero, we obtain:

µs
i = µad

i + (z + λ)e0φad − λe0φm (6.20)

where φm is the potential of the metal. Differentiating with respect to the
electrode potential φ, which differs from φm by a constant, gives:

l = gz − λ(1− g), where g =
(
∂φad

∂φ

)
Γi

(6.21)

While this equation is certainly not exact, it can be used for qualitative
interpretations. In particular, the following limiting cases are of interest:
1 Usually the electrosorption valence is denoted by γ, which we use for the surface

tension. The symbol l was used earlier by Lorenz and Salie [1].
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Electrode Ion l

Hg Rb+ 0.15
Ga Rb+ 0.20
Hg Cs+ 0.18
Ga Cs+ 0.20
Hg Cl− −0.20
Hg Br− −0.34
Hg I− −0.45

Table 6.2. Electrosorption valences of a few simple ions at the pzc and at low
coverage.

1. Total discharge: λ = −z, or l = z
2. Incorporation into the electrode: φad = φm, g = 1, and l = z.
3. No charge transfer: λ = 0, l = gz.

In general, the electrosorption valence depends both on the electrode potential
and on the amount adsorbed, as may be expected from Eq. (6.21). Table 6.2
lists the electrosorption valences of a few simple ions at the pzc and at low cov-
erages on liquid metals [3], where measurements are easier than on solids. The
low values for the alkali ions Rb+ and Cs+ are generally thought to indicate
the absence of partial charge transfer. In contrast, the values for the halide ions
may indicate a partial transfer of an electron to the metal. In underpotential
deposition of a monolayer of metal ions (see next chapter) the electrosorption
valence is generally equal to the charge number of the metal ion, indicating
total discharge. A final word of caution: In mixed solutions coadsorption may
take place and make a proper determination of the electrosorption valence
difficult.

6.5 Electrosorption valence and the dipole moment

The electrosorption valence can be related to the dipole moment of an ad-
sorbed species introduced above. For this purpose consider an electrode sur-
face that is initially at the pzc and free of adsorbate. When a small excess
charge density σ is placed on the metal, its potential changes by an amount
∆φ given by:

∆φ =
σ

C
=

σ

CH
+

σ

CGC
(6.22)

where we have split the interfacial capacity C into the Gouy–Chapman part
CGC and the Helmholtz part CH. Equation (6.22) is a linear expansion in
terms of σ. When a small number Ni of a species with charge number z
is adsorbed per unit area at fixed σ, the resulting change in the electrode
potential is proportional to Ni. The total charge density at the interface is
now σ + ze0Ni ≡ σ + σi, and this is balanced by the charge in the diffuse
layer. So we have:
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∆φ = Bσi +
σ

CH
+
σ + σi

CGC
(6.23)

with an unknown coefficient B. We have made no assumption about the actual
distribution of the charge at the interface. The electrosorption valence is:

l̃ = −z
(
σ

σi

)
∆φ=0

= z
B + 1/CGC

1/CGC + 1/CH
(6.24)

The tilde indicates that the value is not corrected for the diffuse layer. The
corrected value is obtained by eliminating the CGC terms:

l = zBCH (6.25)

To obtain the dipole moment we set σ = −σi in Eq. (6.23) so that the diffuse
double layer is free of excess charge (see Sect. 4.3).

∆φσ=−σi
= σi

(
B − 1

CH

)
(6.26)

The dipole moment µi per adsorbate is obtained by dividing this potential
drop by Ni/ε0, and changing the sign, so that a positive charge on the adsor-
bate corresponds to a positive dipole moment:

µi = −ze0ε0
(
B − 1

CH

)
=
ze0ε0
CH

(1− l/z) (6.27)

which is the desired relation. For a different derivation see [4]. We think that
the dipole moment is a more useful quantity than the electrosorption valence
since it can be interpreted without recourse to the badly defined concept of
partial charge transfer. Even so, µi is not the dipole moment of an individual
adsorbed molecule. The solvent molecules in the vicinity of the adsorbate will
be oriented by the dipole moment of the adsorbate, and the resulting change
in the interfacial potential is reflected in µi [5].

6.6 Structures of commensurate overlayers on single
crystal surfaces

The overlayer structure that result when a species is adsorbed on a single
crystalline surface depends on various factors, such as the relative sizes of the
adsorbate and substrate atoms (or molecules), and the interactions between
the particles involved. If the interactions between the adsorbed species are
repulsive, the resulting overlayer often shows a homogeneous structure. On
the contrary, if attractive forces exist, there is a tendency to form islands or
patches on the surface. Moreover, as we have already discussed in Chap. 2
there are also preferential sites for the adsorption of different species (atop,
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Fig. 6.5. Unit cells of the principle planes of an fcc crystal.

bridge, threefold sites, etc.). In this section we shall look at the formation of
commensurate overlayers, which we shall define below, and the notation to
represent them.

Single crystals have a periodically ordered arrangement of atoms at the sur-
face. The structure depends on the direction of cutting the crystal as already
mentioned in Chap. 2. Just like the structure of three-dimensional crystals is
defined by three-dimensional unit cells, the structure of a single-crystal sur-
face can be characterized by a two-dimensional unit cell, which is defined as
the simplest periodically repeating unit which can be identified in an ordered
two-dimensional array. Thus, the whole surface structure can be constructed
by repeated translation of the unit cell. As examples we show in Fig. 6.5 the
three principal lattices planes of a fcc crystal and several possible choices for
the unit cell are indicated. Of course, all legitimate choices of the unit cell
give rise to the same lattice.

Fig. 6.6. 2× 2 structures on the principle planes of an fcc crystal.
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Two vectors a1 and a2 with a common origin are usually selected to define
the unit cell. In the case of ordered overlayers formed by adsorbates we can
employ the same procedure as before and define a unit cell for the overlayer
through vectors b1 and b2. When the substrate and the adsorbate struc-
tures are related by a simple mathematical transformation, one speaks of a
commensurate structure. otherwise it is incommensurate. Frequently, Wood’s
notation is employed when the vectors form the same angle for the two unit
cells that corresponding to the substrate and to the overlayer. The lengths of
the two vectors b1 and b2 are expressed in terms of a1 and a2, respectively,
as (|b1/|a1| × |b2/|a2|). As an example, Fig. 6.6 shows the (2× 2) structures
on the three principal lattice planes of a fcc crystal. Here the adsorbate is
smaller than the substrate atom and adsorbed on an atop site, but the same
concepts can be applied for other sites and sizes. Often, the letter p precedes
the description of the structure p(2×2) to indicate that it is a primitive struc-
ture, the simplest possible unit, and to distinguish it from the closely related
c(2 × 2) structure. The latter actually does not correspond to a primitive
cell because it has an additional species in the centre of the (2 × 2) struc-
ture. The corresponding primitive cell for this structure is better described as
(
√

2 ×
√

2)R45, which means that the vectors b1 and b2 are
√

2 larger than√
a1 and

√
a2, respectively, and that the unit cell of the overlayer is rotated

45 degrees with respect to the substrate unit cell (see Fig. 6.7). Another typi-
cal overlayer structure which is frequently observed on the (111) surface, also
shown in Fig. 6.7, is that represented by the primitive cell (

√
3×

√
3)R30.

 

c(2x2)-(100) or: 
( 2 x 2)R45-(100) ( 3x 3)R30-(111) 

   a2 

a1 

a2 

a1 

Fig. 6.7. Two examples of rotated structures.
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7

Adsorption on metal electrodes: examples

7.1 The adsorption of halides on metal electrodes

The adsorption of halides on single crystal metals is a paradigmatic example
of the competition between the interactions adsorbate – substrate and adsor-
bate – adsorbate. Because of their weak solvation shells, anions adsorb easily
on metal surfaces, particularly at potentials positive of the pzc. However, it
is not easy to determine the coverage. Often the adsorbed ions carry a partial
charge, they repel each other, and the coverage increases only slowly with in-
creasing electrode potential. This makes it difficult to determine the coverage
by measuring the charge that flows during a potential sweep or an adsorption
transient. In systems where the adsorbed anions form a regular lattice, the
structure can be elucidated by local probe techniques such as the scanning
tunneling microscope (STM), or X-ray scattering and spectroscopy using syn-
chrotron radiation, which allow direct studies of the electrochemical interface
on the atomic and nanometer scale.

We briefly analyze here as examples the adsorption of chloride and bromide
on Ag(100). In the case of chloride adsorption, the sharp peak at −0.5 V vs.
SCE observed in the voltammograms and also in the capacity curves can be
linked to the transition from a disordered to an ordered c(2× 2) phase (see
Fig. 7.1), which has been observed by X-ray. For bromide adsorption, the same
transition can been seen at a lower potential (−0.75 V). Because of its weaker
solvation shell bromide is more strongly adsorbed than chloride, and hence,
the transition occurs at a lower charge density.

Another case in point is the adsorption of iodide on a Pt(111) electrode.
Platinum forms a face-centered cubic lattice with a lattice constant of a = 3.92
Å. The (111) surface has a triangular lattice structure with a nearest-neighbor
distance of a/

√
2 = 2.77 Å. When this surface is immersed in an aqueous solu-

tion containing iodide, the latter is adsorbed over a wide range of potentials.
Topographic images of a regular adsorbate lattice were obtained with a scan-
ning tunneling microscope under the following conditions: a concentration of
10−4 M KI, and 10−2 NaClO4 plus 10−4 M HClO4 as supporting electrolytes,

W. Schmickler, E. Santos, Interfacial Electrochemistry, 2nd ed.,
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Fig. 7.1. Capacity curves (above) and cyclic voltammogram for the adsorption of
chloride and bromide on Ag(100). The dotted curve is for the ClO−4 anion, which is
only weakly adsorbed. Data taken from [1].

Fig. 7.2. Adsorption of iodide (hatched circles) on Pt(111) (open circles). For
greater clarity only part of the adsorbate lattice is shown.

and an electrode potential of 0.9 V vs. RHE [2] (RHE stands for reversible hy-
drogen electrode; so the potential is referred to the equilibrium potential of the
hydrogen evolution reaction in the same solution). The observed structure is
shown in Fig. 7.2. The iodide lattice is also hexagonal, with a nearest-neighbor
distance of 4.16 Å. Further examination showed that the adsorbed ions are not
all equivalent: 1/4 of the ions are positioned a little higher, each such ion being
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surrounded by a hexagon of ions sitting a little lower. This is compatible with
the structure shown in the figure, in which 1/4 of the ions sit at atop sites,
and are surrounded by ions sitting at bridge sites. The total coverage is 4/9
of the coverage calculated for the case in which one iodide would be adsorbed
on each platinum atom. However, such a one-to-one correspondence between
iodide and platinum is not attainable in practice since the I− ion, which has a
radius of 2.16 Å, is larger than a platinum atom. This structure indicates that
the interaction between the adsorbed particles is repulsive, probably because
they carry a small negative charge. In contrast a strong attractive interaction
leads to the formation of islands of adatoms at low coverages.

7.2 Underpotential deposition

The adsorption of metal ions on a foreign metal substrate is a particularly
intriguing topic. There are two possibilities: The Gibbs energy of interaction of
the adsorbate with the substrate can be weaker or stronger than the adsorbate-
adsorbate interaction. In the first case the adsorbate will be deposited at
potentials lower than the equilibrium potential φ00 for bulk deposition and
dissolution, and will often form three-dimensional clusters from the start. In
the latter case the adsorbate can be deposited on the foreign substrate at
potentials above φ00. This case is known as underpotential deposition (upd),
a prime example for confusing terminology. Generally up to a monolayer can
be formed in this way; in a few cases the adsorbate-substrate interaction
is sufficiently strong to allow the deposition of a second layer at potentials
slightly above φ00.

The energetic aspects of underpotential deposition can be investigated by
a slow (i.e., a few millivolts per second) potential scan starting at a potential
so high that no adsorption takes place. As the potential is lowered, one or
more current peaks are observed, which are caused by the adsorption of the
metal ions (see Fig. 7.3). According to the usual convention, the adsorption
current is negative (i.e., cathodic). Different peaks may correspond to differ-
ent adsorption sites, or to different structures of the adsorbate layer. If the
potential is scanned further past the equilibrium potential φ00, the usual bulk
deposition is observed.

Instead of performing a single potential scan, it is common to reverse the
direction of the scan at the beginning of the bulk deposition, and to observe
the desorption of the adatoms, which gives rise to positive current peaks.
The sweep direction is then reversed again at a potential well positive of
the desorption, and this procedure is repeated several times. The resulting
current-potential curve is called a cyclic voltammogram; further details of this
technique will be given in Chap. 19. Successive sweeps give identical curves
if the reactions that take place in this range are reversible. If the sweep rate
is slow and the adsorption reaction reversible, the adsorption and desorption
peaks are at the same potential; this is almost, but not quite, the case for the
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monolayer
deposition

mixed copper
sulphate layer

Fig. 7.3. Cyclic voltammogram for the upd of copper on Au(111); the electrolyte
is an aqueous solution of 0.05 M H2SO4 and 10−3 M CuSO4. Scan rate: 1 mV/s;
data taken from [3].

peaks near 0.2 V in the cyclic voltammogram for the upd of Cu2+ on Au(111)
shown in Fig. 7.3. The charge under the first peak corresponds to the formation
of mixed layer of copper and sulphate. We will discuss its structure in detail
below. Such a coadsorption of metal ions and anions is quite common in upd.
Only at the second peak near 0.03 V a monolayer of copper is adsorbed. Note
that the corresponding desorption peak is shifted toward a higher potential
(near 0.07 V), possibly because the desorption is very slow.

The difference between the potential of the current peak for the desorption
and the bulk deposition potential is known as the underpotential shift φupd.
For simple systems the value of φupd is independent of the concentration of
ions in the bulk of the solution, since the Gibbs energies of adsorption and
deposition shift both according to the Nernst equation. Deviations from this
behavior may indicate coadsorption of other ions.

During the 1960s and 1970s, before the preparation of single crystals was
well established in electrochemistry, many cases of upd were investigated on
polycrystalline metals. Surprisingly large upd shifts, up to 1 V in aqueous and
even higher in non-aqueous solutions, were observed, which correlated quite
well with the difference in the work functions of the two metals involved [3]. No
such correlation holds for single crystals, and the data in non-aqueous solvents
were found to be a misinterpretation. Further investigations with STM and
with x-ray techniques revealed, that several systems that had been thought to
be pure metal adsorbate layers really really consisted of co-adsorbed metal and
anions, structures akin to two-dimensional salts. Therefore, the correlation
between the upd shift and the work function on polycrystalline metals is
dubious, and we shall not discuss it further.
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Fig. 7.4. Coadsorbed layer of copper and sulphate on Au(111) (schematic); (a) top
view, (b) side view. The large light grey spheres at the bottom represent the gold
atoms; the copper atoms shown as medium grey, the sulfur atoms as small light
grey, and the oxygen atoms as dark spheres. Taken from Toney et al. [4], courtesy
of Physical Reviews.

Fig. 7.5. Adsorbate structure of a monolayer of copper on Au(111).

To obtain structural information on the adsorption sites, single crystal
electrodes must be used. As an example we consider again the upd of copper
on Au(111). The adsorption and desorption peaks in Fig. 7.3 are very narrow,
as is often the case when regular adsorbate lattices are formed. We look at
the deposition process, which corresponds to the negative current in the volta-
mogram. At potentials below 0.2 V, the surface is covered by a coadsorption
layer consisting of 2/3 of a monolayer of Cu and 1/3 of a monolayer of SO2−

4

or HSO−
4 ions. The structure, which is technically known as a

√
3×

√
3R30◦,

is shown in Fig. 7.4.
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Fig. 7.6. Adsorption of a monolayer of lead (hatched circles) on Ag(111) (open
circles).

At potentials below 0.03 V, the gold surface is covered by a monolayer of
copper, whose structure has been elucidated by x-ray absorption spectroscopy
[5]. Gold has an fcc lattice, and the Au(111) surface forms a triangular lat-
tice with a lattice constant of 2.89 Å. Copper atoms are smaller than gold
atoms, and they adsorb in the threefold hollow sites (see Fig. 7.5), forming a
triangular lattice commensurate with that of the substrate; i.e., the lattices of
the adsorbate and of the surface layer of the substrate are related by a simple
mathematical transformation – otherwise the adsorbate lattice is said to be
incommensurate.

Silver forms an fcc lattice, too, and its lattice constant is almost the same
as that of gold. When a Ag(111) surface is immersed in a solution containing
a small concentration of Pb2+ ions and an inert electrolyte, a potential scan
shows a series of upd peaks at potentials near −0.34 V vs. sce (saturated
calomel electrode). X-ray scattering [4] showed that in the region negative
to these peaks a dense, incommensurate layer of Pb(111) exists whose lattice
constant is larger than that of the silver substrate, and whose axis is rotated
by 4.5◦ (see Fig. 7.6).

The two examples discussed here are typical in the sense that metal ad-
sorbates with atoms that are smaller than those of the substrate tend to form
commensurate layers, while adsorbates with bigger atoms tend to form incom-
mensurate monolayers [6]. Also, pure upd layers tend to form close to the bulk
deposition potential, while structures at higher potentials are usually mixed
layers containing both the metal ions and anions.
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φ-φpzc

γ

Fig. 7.7. Surface tension of mercury in the presence (dashed line) and in the absence
(solid line) of an aliphatic compound (schematic).

7.3 Adsorption of aliphatic molecules

The adsorption of organic molecules offers a rich phenomenology. A large num-
ber of studies have been performed on mercury electrodes, where the surface
tension can be measured directly, and the surface charge and the capacity
obtained by differentiation. We will not attempt to survey the literature, but
consider a simple example: the adsorption of aliphatic compounds.

When the surface tension of a mercury electrode in contact with an aque-
ous solution containing a neutral aliphatic compound is measured as a function
of the electrode charge or potential, the following behavior is observed: The
surface tension is substantially lowered in a region embracing the pzc of the
electrode in the presence of the adsorbate, while at potentials far from the
pzc the surface tension is unchanged (see Fig. 7.7). Obviously, the adsorption
of the compound is limited to a region near the pzc. A possible explanation is
this: On the one hand, the aliphatic chains are squeezed out toward the sur-
face by the hydrogen-bonded water structure; hence they are adsorbed near
the pzc. On the other hand, the dipole moment of an aliphatic compound is
lower than that of water; when the charge on the electrode surface is high,
the polar water molecules are drawn toward the surface by electrostatic forces,
and expel the adsorbed molecules.

The parallel-capacitor model suggested by Frumkin [7] is an attempt to
turn this into a quantitative argument; we discuss a simplified version. Ac-
cording to this model, the surface consists of patches covered by the adsorbate
and patches which are free. Since the dipole moment of water is higher than
that of the adsorbate, and the water molecule is smaller, these patches will
have a different interfacial capacity per unit area. The interface behaves like
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two capacitors in parallel. We consider an electrode with unit area, and de-
note the capacity per unit area of the free surface by C0, and that of the
adsorbate-covered surface by C1, with C1 < C0. To simplify the mathematics
we assume that C0 and C1 are constant, and that the pzc φpzc is not shifted
by the presence of the adsorbate. The total charge on the electrode surface is
then:

σ = (1− θ)C0(φ− φpzc) + θC1(φ− φpzc) (7.1)

where θ is the coverage of the adsorbate.
In the Frumkin isotherm Eq. (6.6) we want to single out the contribution

of the electrode potential, and write:

θ

1− θ
=

c

c0
exp

(
µsol − µad

kT

)
e−gθ =

c

c0
B0 exp

(
−W (φ)

kT

)
e−gθ (7.2)

where B0 is independent of the electrode potential and W (φ) is the elec-
trostatic work required to adsorb a single molecule at a given potential on
the electrode surface. When a molecule is adsorbed, the interfacial capacity
changes; so we need the work required to change the capacity of a condenser
at constant potential φ. From simple electrostatics the energy stored in a
condenser is φσ/2 = Cφ2/2, where σ is the charge on one plate. When the
capacity is changed by dC, this energy changes by an amount:

dW1 =
1
2
φ2 dC (7.3)

In addition, the charge on the capacitor changes by an amount dσ = φ dC, and
the potentiostat has to perform work dW2 = φdσ = φ2 dC on the capacitor;
so the total change in the energy of the capacitor is:

dW = dW1 − dW2 = −1
2
φ2 dC (7.4)

A moment’s thought shows that the minus sign is correct: Increasing the
capacity of a condenser at constant potential, for example, by decreasing the
plate and hence the charge separation, must lower the energy of the system.

When a single molecule is adsorbed on the surface, the coverage changes by
an infinitesimal amount ∆θ = 1/Nmax, where Nmax is the maximum number
of particles that can be adsorbed. From Eq. (7.1) the concomitant change in
the capacity is:

∆C = (C1 − C0) ∆θ =
(C1 − C0)
Nmax

(7.5)

Substituting this into Eq. (7.4) gives for the electrostatic work required to
adsorb one particle:

W (φ) = −1
2
(φ− φpzc)2

(C1 − C0)
Nmax

(7.6)
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Fig. 7.8. Coverage (a) and differential capacity (b) for the adsorption of an
aliphatic compound according to Eq. (7.7)

Since C1 < C0, this work is positive, and the coverage decreases away from the
pzc. Equations (7.2) and (7.6) can be combined with the Frumkin isotherm,
resulting in:

θ

1− θ
=

c

c0
B0 exp

(
− (φ− φpzc)2(C1 − C0)

2NmaxkT

)
exp(−γθ) (7.7)

Typical plots for the coverage and the capacity as a function of the electrode
potential are shown in Fig. 7.8. Note the pronounced maxima in the capacity
near the potentials where the substance is desorbed. Equation (7.7) can be
improved by allowing for the potential dependence of the two capacities C0

and C1, and for a shift in the pzc with adsorption, but little is gained in
physical insight.

Problems for Chaps. 6 and 7

1. The conventional unit cell of a body-centered cubic crystal (bcc) consists of
the eight corners of a cube and the point in the center. Describe the structures
of the (100), (111), and (110) planes.
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2. A cesium ion has a radius of r = 1.68 Å. Assume that it carries a unit
charge when it is adsorbed on a plane metal surface, and calculate the dipole
moment formed by the ion and its image charge. Calculate the energy of
interaction of two Cs+ ions: (a) when they are touching, (b) when they are
10 Å apart. (c) Assume that the adsorbed Cs+ ions form a square lattice of
lattice constant L. Show that the coverage is given by θ = (2r)2/L2. Derive
the adsorption isotherm assuming that each ion interacts only with its four
nearest neighbors. Assume that the dielectric constant of the surrounding
medium is unity.

3. Consider two different metals in contact and assume that both are well de-
scribed by the Thomas–Fermi model with a decay length of LTF = 0.5 Å. (a)
Calculate the dipole potential drop at the contact if both metals carry equal
and opposite charges of 0.1 Cm−2. (b) If the work functions of the two metals
differ by 0.5 eV, how large is the surface-charge density on each metal?

4. Prove that the Frumkin isotherm exhibits a phase transition for g < −4. For
this purpose, calculate dcA/dθ from Eq. (6.6) and determine, under which
condition it has a zero.
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8

Thermodynamics of ideal polarizable interfaces

8.1 Liquid electrodes

Here we extend on the brief introduction of the surface tension given in
Chap. 4. To a large extent, our treatment is based on the works of Grahame
[1] and Parsons [2] and, like all proper thermodynamics, is exact. However,
our way of defining the surface tension and deriving its differential is different,
and is based on a discussion with H. Ibach, whose book contains an alternative
derivation directed at solid electrodes [3]. In the classical derivation, the sur-
face tension is introduced ad hoc, and it is not clear that it has the potential
as its natural variable. For liquid electrodes thermodynamics offers a precise
way to determine the surface charge and the surface excesses of a species.
This is one of the reasons why much of the early work in electrochemistry
was performed on liquid electrodes, particularly on mercury – another reason
is that it is easier to generate clean liquid surfaces than clean solid surfaces.
With some caveats and modifications, thermodynamic relations can also be
applied to solid surfaces, and it is still the most exact way to obtain surface
excesses.

Thermodynamics no longer plays the important role like 50 years ago.
Therefore we do not treat it in one of the first chapters, like older textbooks
invariably do. Nevertheless, an understanding of thermodynamics is essential;
in fact, since the publication of the first edition of this book a fair number of
papers have appeared, whose arguments were simply based on false thermo-
dynamics, confusing surface tension with surface free energy or with surface
stress. We will first consider the interface between a liquid electrode and an
electrolyte solution, and turn to solid electrodes later.

The simplest way to treat an interface is to consider it as a phase with a
very small but finite thickness in contact with two homogeneous phases (see
Fig. 8.1). The thickness must be so large that it comprises the region where
the concentrations of the species differ from their bulk values. It turns out that
it does not matter, if a somewhat larger thickness is chosen. For simplicity
we assume that the surfaces of the interface are flat. This interface contains
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a variety of both charged and uncharged particles labelled i. We consider a
system at constant temperature and pressure and therefore start from the
Gibb’s free energy, whose differential for the interface is in standard notation:

dGσ = −SσdT + V σdp+
∑

i

µ̃σ
i dN

σ
i (8.1)

where the index σ indicates that the corresponding quantity pertains to the
interface. The whole system including the two adjoining bulk phases is sup-
posed to be in thermal and mechanical equilibrium, so that temperature and
pressure are constant. To avoid cluttering the equations with indices, we will
use the index σ only if it is not obvious that the quantity refers to the interface.

metal solution

Fig. 8.1. The interface between a metal and an electrolyte solution.

Equation (8.1) does not contain the surface charge or the potential explic-
itly. The charge is hidden in the particle numbers of the ions, the potential in
the electrochemical potentials µ̃. Since G has the particle number as variable,
it implicitly depends on the charge. In accord with our considerations of Chap.
4 we have to perform a transformation to obtain a thermodynamic potential
which has the potential, or the µ̃, as variables, since in electrochemistry the
interface is kept at constant potential. Therefore we define:

Xσ = Gσ −
∑

i

µ̃σ
i N

σ
i (8.2)

Differentiation gives:

dXσ = −Sσ dT + V σ dp−
∑

i

Nσ
i dµ̃σ

i (8.3)

The surface tension is defined as γ = Xσ/A, where A is the surface area. We
specialize to the case of constant temperature, pressure, and surface area, and
introduce the surface concentrations:
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Γ ∗i =
Nσ

i

Aσ
(8.4)

and obtain the Gibbs adsorption equation:

dγ = −
∑

i

Γ ∗i dµ̃σ
i (8.5)

The interface is in contact with two bulk phases, the metal electrode (index
m) and the solution (index s).1 Formally, we consider the metal to be com-
posed of metal atoms M , metal ions Mz+, and electrons e−; these particles
are present both in the electrode and the interface, but not in the solution.
On the other hand, certain cations and anions and neutral species occur both
in the solution and the interface. Since the electrode is ideally polarizable, no
charged species can pass through the interface.

The surface concentrations Γ ∗i depend on the thickness of the interfacial
region, and we would like to express them through quantities which are in-
dependent of it. This can be done for those species which occur both at the
interface and in the solution. Usually one of the components of the solution,
the solvent, has a much higher concentration then the others. We denote it
by the index “0”, and introduce surface excesses with respect to the solvent
in the following way: In the bulk of the solution the Gibbs–Duhem equation
(at constant T and p) is simply

∑
Ni dµ̃i = 0, or:

dµ̃s
0 = −

sol∑
i

′ N
s
i

Ns
0

dµ̃s
i (8.6)

where the sum is over all components in the solution except the solvent. Since
the bulk of the solution and the interface are in equilibrium, the respective
electrochemical potentials are equal. We can then eliminate the solvent terms
from Eq. (8.5) with the aid of Eq. (8.6), and define the surface excess of species
i through:

Γi = Γ ∗i −
Ns

i

Ns
0

Γ ∗0 (8.7)

These excess quantities are independent of the thickness chosen for the inter-
face as long as it incorporates the region where the concentrations are different
from those in the bulk; that is, it does not matter if one chooses too thick
a region (see Problem 1). We cannot refer the surface concentrations of the
metal particles M,Mz+, and e− to the solution. Nevertheless we will drop
the asterisk in their surface concentrations to simplify the writing; we will
eliminate these quantities later. We can now rewrite the Gibbs adsorption
equation in the form:

dγ = −
sol∑
i

′ Γi dµ̃
s
i − ΓMz+ dµ̃σ

Mz+ − Γe dµ̃
σ
e − ΓM dµσ

M (8.8)

1 From here on we follow the classical derivation.
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where the sum is over all species occurring in the solution except the solvent.
The metal ions Mz+, the atoms M , and the electrons at the interface are

in equilibrium with the metal; so we may use the electrochemical potentials of
these species in the metal instead of the interfacial quantities, and split them
into the chemical part and the electrostatic part:

− ΓMz+dµ̃σ
Mz+ − Γedµ̃

σ
e − ΓMdµσ

M

= −ΓMz+dµm
Mz+ − Γedµ

m
e − dφm (ze0ΓMz+ − e0Γe)− ΓMdµm

M

= −ΓMz+dµm
Mz+ − Γedµ

m
e − σdφm − ΓMdµm

M (8.9)

where σ = e0(zΓMz+−Γe) is the surface charge density due to the particles in
common with the metal. Since the interface is electrically neutral, this must
be balanced by the surface charge density due the ions in common with the
solution:

σ = ze0ΓMz+ − e0Γe = −
∑

j

zje0Γj (8.10)

where the sum is over all ionic species in the solution. Again we split the elec-
trochemical potential into its chemical and electrostatic part: µ̃s

j = µs
j + zjφ

s.
On the metal side, the metal ions, atoms, and electrons are in equilibrium;
hence: µM = µMz+ + zµe. Substituting these relations into Eq. (8.8) gives:

dγ = −σ d(φm − φs)−
∑

j

Γj dµ
s
j −

∑
k

Γk dµ
s
k (8.11)

The first sum is over all ionic species in the solution, the second sum over all
neutral species except the metal atoms. For a pure metal the concentration of
the metal atoms is constant; so the differential of the chemical potential of the
metal atoms vanishes: dµM = 0; we note in passing that complications can
arise for amalgams, if the surface concentration of the metal atoms changes.
All chemical potentials in Eq. (8.11) refer to the solution.

The difference φm − φs in the inner potentials is not directly measurable;
however, if the solution is in contact with a suitable reference electrode, its
inner potential with respect to this electrode is fixed, and d(φm − φs) = dφ,
where φ is the electrode potential. The resulting equation is known as the
electrocapillary equation:

dγ = −σ dφ−
∑

j

Γj dµ
s
j −

∑
k

Γk dµ
s
k = −σ dφ−

∑
i

Γi dµ
s
i (8.12)

where we have combined the two sums into one, so that the sum is over
all solution species except the solvent. The structure of this equation is worth
noting: The intensive variables φ and µ refer to the two adjoining bulk phases,
φ to the metal, and the chemical potentials to the solution; they can easily be
measured and controlled. The variables σ and Γ refer to the interface.

The charge density σ deserves a special comment. Its definition is formal
in the sense that from a thermodynamic point of view we know nothing about
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the actual distribution of the charge. It acquires its meaning only within a
model in which the metal charge and the ionic charge form a double layer,
with the metal charge forming an excess on the metal side of the interface,
and the ionic charge an excess on the solution side.
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Fig. 8.2. Interfacial tension γ of a mercury electrode as a function of the electrode
potential for 0.1 M aqueous solutions of several electrolytes at 18oC. The potential
is given with respect to the pzc of a solution of KF. Data taken from [1].

If the interfacial tension γ can be measured, the surface charge density can
be obtained by differentiation, which yields the Lippmann equation:

σ = −
(
∂γ

∂φ

)
µi

(8.13)

This equation further indicates that the interfacial tension has an extremum
at the pzc; differentiating again gives the differential interfacial capacity:(

∂2γ

∂φ2

)
µi

= −C (8.14)

Since C must be positive, this extremum is a maximum. Figure 8.2 shows
a few examples of electrocapillary curves, in which the surface tension of a
mercury electrode is measured as a function of the electrode potential at
constant composition of the solution. At low potentials the various curves
coincide, indicating that the cations are not specifically adsorbed. In contrast,
the anions are adsorbed at higher potentials, so that the curves diverge. Note
that with increasing adsorption the pzc is shifted to higher potentials. This
corresponds to the increase of the work function caused by anion adsorption.

The electrocapillary equation (8.12) makes it possible to measure the sur-
face excess of a species through:
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Γi = −
(
∂γ

∂µi

)
µj 6=µi

(8.15)

If the species is neutral, its chemical potential µi can be varied by changing
its concentration and hence its activity ai: dµi = RT d ln ai. In this case the
determination of the surface excesses offers no difficulty in principle. However,
if a species is charged, its concentration cannot be varied independently from
that of a counterion, since the solution must be electrically neutral. To be
specific, we consider the case of a 1–1 electrolyte composed of monovalent
ions A− and B+. The electrocapillary equation then takes the form:

dγ = −σ dφ− ΓA− dµA− − ΓB+ dµB+ (8.16)

The two surface excesses are related through:

− σ = e0 (ΓB+ − ΓA−) (8.17)

since the charge on the metal must be balanced by the ionic charge at the
interface. So we can rewrite Eq. (8.16) in the following form:

dγ = −σ
(
dφ− 1

e0
dµA−

)
− ΓB+ (dµB+ + dµA−) (8.18)

The first term in parentheses has the following meaning: If a reference elec-
trode is used whose potential is determined by a simple exchange reaction
involving the anion A−, the electrode potential φA with respect to this refer-
ence will depend on the concentration of the anion, and dφA = dφ−dµA−/e0.
The term dµB+ + dµA− denotes the change in the chemical potential of the
uncharged species AB, and is determined by the change in the mean activity
2RT d ln a±. Hence:

dγ = −σ dφA − 2RT ΓB+ d ln a± (8.19)

and the surface excess of the cation can be determined through:

ΓB+ = − 1
2RT

(
∂γ

∂ ln a±

)
φA

(8.20)

The surface excess of the anion is then obtained from the charge balance
condition. Usually it is not practicable to use a reference electrode involving
the anion. Instead, one uses a convenient reference electrode and measures the
surface tension over a range of potentials and concentrations of the adsorbed
species. Then one calculates the corresponding potential φA and determines
the derivative in Eq. (8.20) numerically.

Such measurements require great precision. Figure 8.3 shows the surface
excesses of a few ions. Instead of the surface excesses Γ , the corresponding
excess charges σ± = zFΓ± are shown. Note that the potassium cation is
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Fig. 8.3. Metal charge σ and ionic charges σ+ and σ− for a mercury electrode in
contact with 0.1 M solutions of KF and KCl. Data taken from [1].

not specifically adsorbed. In contrast the Cl− ion is strongly adsorbed at
higher potentials. The high surface excess of the anion induces even a positive
surface excess of the cation in the region positive of the pzc. The F− ion is
only weakly adsorbed, and for a solution of KF the surface excesses of both
ions pass through zero near the pzc.

8.2 Solid electrodes

For solid electrodes the surface tension γ is the work done in forming a unit
area of the metal by cleaving. One can also create new surface area by stretch-
ing, which gives rise the concepts of surface stress and strain. In fact, surface
stress introduces an extra term into the Lippmann equation. However, this
term is small and usually negligible; therefore we ignore it for the moment,
and relegate the treatment of surface stress to a later section in this chapter.

It is practically impossible to measure γ for solid electrodes. However, in
some applications one needs only the change in γ with certain parameters.
For example, for the determination of the surface excess of a neutral organic
species, one requires the change in the interfacial tension with the activity
of the species. This can be measured if there is a reference potential φr at
which the species is not adsorbed; the change in the interfacial tension is then
referred to this potential. One proceeds in the following way [4]:

1. Determine the pzc of the electrode in the absence of the adsorbate; this
can be done by finding the minimum of the interfacial capacity for a low
concentration of the supporting electrolyte.
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Fig. 8.4. Differential interfacial capacity for a Au(110) surface in contact with
aqueous solutions containing 0.1 M KClO4 and various amounts of pyridine. (1) no
pyridine; (2) 3×10−5 M ; (3) 10−4 M; (4) 6×10−4 M pyridine. Data taken from [4].

2. Still in the absence of the adsorbate, measure the charge σ on the elec-
trode over a range of electrode potentials φ (including φr) by stepping the
potential from the pzc to φ and integrating over the current; alternatively
one can obtain σ(φ) by measuring the interfacial capacity and integrating
over φ.

3. The relative surface tension is then obtained by integration:

∆γ = γ(φ)− γ(φr) =
∫ φ

φr

σq(φ′) dφ′ (8.21)

4. This procedure is repeated for a range of concentrations c of the adsorbate,
so that one obtains γ(φ, c) − γ(φr). Since the adsorbate is not adsorbed
at φr, the reference point γ(φr) is independent of the concentration of the
adsorbate.

5. Denoting by γ0(φ) the surface tension in the absence of the adsorbate, we
obtain the surface excess from:

Γ =
1
RT

(
∂ (γ(φ, c)− γ0(φ))

∂ ln(a)

)
φ

(8.22)

Again, such measurements require great precision; therefore this method,
though very exact in principle, is seldom used.

As an example we consider the adsorption of pyridine on Au(110) from a
solution containing 0.1 M KClO4 [4]. Figure 8.4 shows the differential capacity
both in the absence and in the presence of various amounts of pyridine. Since
the capacity curves coincide for potentials below about 0.7 V vs. SCE, the
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reference potential was chosen at −0.75 V. Integration with respect to the
potential gives the surface charge density (see Fig. 8.5), another integration
the relative surface tension. Finally, differentiation gives the surface excess.
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8.3 Surface stress

For a solid, there are two different ways of creating new surface area: cleaving,
which is a plastic deformation, and stretching, which is elastic. The energy
change associated with cleaving is γdAp, where p stands for plastic. For liq-
uids, this is the only way of creating a new surface, Stretching can occur in
various directions, so the surface strain ε associated with stretching as really
a tensor. To simplify matters, we regard here only isotropic surfaces, like the
(111) surfaces of fcc crystals, for which the tensor is diagonal, and the change
in surface strain can simply be written as dε = dAe/A, where the index e
stands for elastic; the general treatment can be found in the literature [5] –
in fact, as far as we are aware, all electrochemical experiments have been per-
formed on isotropic surfaces. The change in energy associated with a elastic
deformation is g dAe, where g is the surface stress. Therefore, we have for the
thermodynamic potential X = γA:

∂X

∂Ae
= A

∂γ

∂Ae
+ γ = g (8.23)

or on rearrangement:

A
∂γ

∂Ae
=
∂γ

∂ε
= g − γ (8.24)

Adding this term to the electrocapillary equation gives:

dγ = −σdφ−
∑

i

Γidµi + (g − γ)dε (8.25)

In the case of a non-isotropic surface, where g and ε are tensors, the last term
must be replaced by:

∑
n,m(gnm − γδnm) dεnm. Equation (8.24) is known as

Shuttleworth’s equation and usually written in the form:

g = γ +
∂γ

∂ε
, or more generally: gnm = γδnm +

∂γ

∂εnm
(8.26)

For a liquid electrode, ∂γ/∂ε = 0, so that surface stress and tension are equal,
and the last term in Eq. (8.25) vanishes.

In electrochemistry, the variation of the surface tension with the electrode
potential is important. Experiments by Ibach et al. [6] and others have demon-
strated that ∂ε/dφ is small, and the last term in Eq. (8.25) is about a factor of
10−6 smaller than the first, and can therefore be neglected when calculating
changes in the surface tension. Nevertheless, the study of the surface stress is
an interesting topic in its own right. As an example, we show the variation of
the surface stress on Au(111) with electrode potential (see Fig. 8.6). The de-
pendence is significant, and sensitive to the surface structure. Thus, it is lower
at an initially reconstructed surface than on the unreconstructed one. Also, g
differs substantially from the surface tension, and does not have a maximum
at the pzc, indicating that the second term in Shuttleworth’s equation (8.26)
is not negligible, and that the surface tension varies with the surface strain.
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SCE). The lower curve is for a surface that initially, at low potentials, is recon-
structed. As the potential is scanned in the positive direction, the reconstruction is
lifted. The upper curve is for the unreconstructed surface. Data taken from [6].

8.4 A note on the electrosorption valence

Here we deliver the proof, that the two definitions of the electrosorption va-
lence are equivalent:

le0 =
(
∂σ

∂Γi

)
φ,Γj 6=Γi

=
(
∂µs

i

∂φ

)
Γi

(8.27)

In order to prove this relation, we introduce an auxiliary quantity related
to the surface tension γ:

Y = γ +
∑

j

Γjµ
s
j (8.28)

where we have used the same notation as above. Using the Lippmann equation,
the differential of Y is:

dY =
∑

j

µs
j dΓj − σ dφ (8.29)

which can be written as:(
∂Y

∂φ

)
Γi

= −σ,
(
∂Y

∂Γi

)
Γj 6=Γi,σ

= µs
i (8.30)

Differentiating again gives:



88 8 Thermodynamics of ideal polarizable interfaces

le0 = −
(
∂σ

∂Γi

)
φ,Γj 6=Γi

=
∂Y

∂φ∂Γi
=
(
∂µs

i

∂φ

)
Γi

(8.31)

where we have used the fact that Y is a proper function, and hence the order
of differentiation does not matter. This is the desired relationship.

8.5 Potential of total zero charge

Finally, we want to clarify rarely-used variations of the concept of the potential
of zero charge.2 For simplicity we consider the case where a single species is
specifically adsorbed with surface excess Γ . The surface charge density σ
on the electrode then depends both on the electrode potential φ and on Γ .
Therefore we can write for its differential:

dσ =
(
∂σ

∂φ

)
Γ

dφ+
(
∂σ

∂Γ

)
φ

dΓ =
(
∂σ

∂φ

)
Γ

dφ+ le0 dΓ (8.32)

where l is the electrosorption valence. If more than one species is adsorbed,
the second term must be replaced by a sum over all adsorbates. In an ex-
periment, generally both the potential φ and the coverage Γ change, and the
corresponding change in σ, which has been defined as the electronic charge
on the metal, is called the change in the total charge density. Changes in σ
can be measured as the charge flowing into the electrode. The total charge in
the interface is always zero. Conceptually, the countercharge to the electronic
charge can be divided into the charge stored in the diffuse double layer and
represented by the first term, and the charge stored in the adsorbate. Note
that this division implies a specific model for the interface. The potential at
which the total charge density σ vanishes is called the potential of zero total
charge. It corresponds to the maximum of the surface tension, but in general
not to the minimum of the Gouy–Chapman capacity.

Under favorable circumstances it may be possible to vary the potential
without changing the surface excess Γ . In this case the double-layer capaci-
tance, for sufficiently dilute solutions, has a minimum at the potential where
the charge in the diffuse double-layer vanishes. The latter charge is sometimes
called the free charge, and the potential where it vanishes the potential of zero
free charge. We can express the same idea in terms of concepts familiar from
surface science: An adsorbate changes the work function, and induces a sim-
ilar change in the potential of zero charge, which is then called the potential
of zero free charge. Both the potential of zero total charge and that of free
charge depend on the adsorbate, and are not fundamental properties of the
electrode material.

The potential of total zero charge is often invoked for the platinum-group
metals [7], which are practically always covered by an adsorbate.
2 We thank our colleagues Juan Feliu and Jacek Lipkowski for enlightening discus-

sions on these concepts.
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Problems

1. Show that the excess quantities defined in Eq. (8.7) are independent of the
thickness chosen for the interface as long as the interface incorporates all of
the regions where the concentrations are different from the bulk.

2. The Parsons function ξ is defined through: ξ = γ + σφ; it is the thermody-
namic potential that has the charge density σ as the basic variable instead
of the potential φ. Show that the surface excess of a species can be obtained
through:

Γi =
1

RT

(
∂ξ

∂ ln a

)
σ

(8.33)

3. Prove Shuttleworth’s equation directly by (a) first cleaving and then stretch-
ing a phase, (b) first stretching and then cleaving it, and comparing the
results.
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9

Phenomenological treatment of
electron-transfer reactions

9.1 Outer-sphere electron-transfer

Electron-transfer reactions are the simplest class of electrochemical reactions.
They play a special role in that every electrochemical reaction involves at
least one electron-transfer step. This is even true if the current across the
electrochemical interface is carried by ions since, depending on the direction
of the current, the ions must either be generated or discharged by an exchange
of electrons with the surroundings.

In general electron-transfer reactions can be quite complicated, involving
breaking or forming of chemical bonds, adsorption of at least one of the re-
dox partners, or the presence of certain catalysts. Here we treat the simplest
possible case, so-called outer-sphere electron-transfer reactions, in which from
a chemist’s point of view nothing happens but the exchange of one electron
– as we shall see later, the simultaneous transfer of two or more electrons
is highly unlikely. In the course of such a reaction, no bonds are broken or
formed, the reactants are not specifically adsorbed, and catalysts play no role.
If one of these conditions is not fulfilled, the reaction is said to proceed via an
inner-sphere pathway. Unfortunately, there are not many examples for outer
sphere reactions; here are two:

[Ru(NH3)6]
2+ 
 [Ru(NH3)6]

3+ + e−

[Fe(H2O)6]
2+ 
 [Fe(H2O)6]

3+ + e− (9.1)

In aqueous solutions these reactions seem to proceed via an outer-sphere mech-
anism on most metals. Typically such reactions involve metal ions surrounded
by inert ligands, which prevent adsorption. Note that the last example reacts
via an outer-sphere pathway only if trace impurities of halide ions are carefully
removed from the solution; otherwise it is catalyzed by these ions.

W. Schmickler, E. Santos, Interfacial Electrochemistry, 2nd ed.,
DOI 10.1007/978-3-642-04937-8 9, c© Springer-Verlag Berlin Heidelberg 2010
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9.2 The Butler−Volmer equation

In this chapter we treat electron-transfer reactions from a macroscopic point
of view using concepts familiar from chemical kinetics. The overall rate v of
an electrochemical reaction is the difference between the rates of oxidation
(the anodic reaction) and reduction (the cathodic reaction); it is customary to
denote the anodic reaction, and the current associated with it, as positive:

v = koxc
s
red − kredc

s
ox (9.2)

where csred, c
s
ox denote the surface concentrations of the reduced and oxidized

species, and kox and kred are the rate constants. Using absolute rate theory,
the latter can be written in the form:

kox = A exp
(
−∆G

†
ox(φ)
RT

)
kred = A exp

(
−
∆G†red(φ)

RT

)
(9.3)

The phenomenological treatment assumes that the Gibbs energies of activa-
tion Gox and Gred depend on the electrode potential φ, but that the pre-
exponential factor A does not. We expand the energy of activation about the
standard equilibrium potential φ00 of the redox reaction; keeping terms up to
first order, we obtain for the anodic reaction:

∆G†ox(φ) = ∆G†ox(φ00)− αF (φ− φ00), (9.4)

with α = − 1
F

∂∆G†ox
∂φ

∣∣∣∣
φ00

The quantity α is the anodic transfer coefficient; the factor 1/F was intro-
duced, because Fφ is the electrostatic contribution to the molar Gibbs energy,
and the sign was chosen such that α is positive – obviously an increase in the
electrode potential makes the anodic reaction go faster, and decreases the cor-
responding energy of activation. Note that α is dimensionless. For the cathodic
reaction:

∆G†red(φ) = ∆G†red(φ00) + βF (φ− φ00), (9.5)

with β =
1
F

∂∆G†red
∂φ

∣∣∣∣∣
φ00

where the cathodic transfer coefficient β is also positive. One would expect
that higher terms in the expansion of the Gibbs energy of activation will
become important at potentials far from the standard equilibrium potential
φ00; we will return to this point in the next chapter. The Gibbs energies of
activation are related by:
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Fig. 9.1. Potential energy curves for an outer-sphere reaction; the upper curve is
for the standard equilibrium potential φ00; the lower curve for φ > φ00.

∆G†ox(φ)−∆G†red(φ) = Gox −Gred (9.6)

to the molar Gibbs energies Gox and Gred of the oxidized and reduced state;
in particular:

∆G†ox(φ00) = ∆G†red(φ00) = ∆G†00 (9.7)

When the electrode potential is changed from φ00 to a value φ, the Gibbs
energy of the electrons on the electrode is lowered by an amount −F (φ −
φ00), and so is the energy of the oxidized state. If the reactants are so far
from the metal surface that their electrostatic potentials are unchanged when
the electrode potential is varied, then the Gibbs energy of the reaction is
also changed by −F (φ − φ00). This condition is generally fulfilled for outer-
sphere reactions in the presence of a high concentration of an inert electrolyte
which screens the electrode potential; it is not fulfilled when the reactants are
adsorbed as in inner-sphere reactions. When it is fulfilled we have:

∆G†ox(φ)−∆G†red(φ) = −F (φ− φ00) (9.8)

By differentiation we obtain for the sume of the two transfer coefficients the
relation:

α+ β = 1 (9.9)

Since both coefficients are positive, they lie between zero and one; we can gen-
erally expect a value near 1/2 unless the reaction is strongly unsymmetrical.

The transfer coefficients have a simple geometrical interpretation. In a
one-dimensional picture we can plot the potential energy of the system as
a function of a generalized reaction coordinate (see Fig. 9.1). The reduced
and the oxidized states are separated by an energy barrier. Changing the
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electrode potential by an amount (φ − φ00) changes the molar Gibbs energy
of the oxidized state by −F (φ−φ00); the Gibbs energy of the transition state
located at the maximum will generally change by a fraction −αF (φ − φ00),
where 0 < α < 1. The relation α+ β = 1 is easily derived from this picture.

The current density j associated with the reaction is simply j = Fv.
Combining Eqs. (9.2) to (9.5) and (9.9) gives the Butler–Volmer equation
[1, 2] in the form:

j = Fk0c
s
red exp

αF (φ− φ00)
RT

−Fk0c
s
ox exp

(
− (1− α)F (φ− φ00)

RT

)
(9.10)

where

k0 = A exp
(
−∆G

†(φ00)
RT

)
(9.11)

Using the Nernst equation:

φ0 = φ00 +
RT

F
ln
csox
csred

(9.12)

for the equilibrium potential φ0, and introducing the overpotential η = φ−φ0,
which is the deviation from the equilibrium potential, we rewrite the Butler–
Volmer equation in the form:

j = j0

[
exp

αFη

RT
− exp

(
− (1− α)Fη

RT

)]
(9.13)

where
j0 = Fk0(csred)(1−α)(csox)

α (9.14)

is the exchange current density. At the equilibrium potential the anodic and
cathodic current both have the magnitude j0 but opposite sign, thus cancelling
each other. The exchange current density for unit surface concentration of the
reactants is the standard exchange current density j00 = Fk0, which is a
measure of the reaction rate at the standard equilibrium potential.

According to the Butler–Volmer law, the rates of simple electron-transfer
reactions follow a particularly simple law. Both the anodic and the cathodic
current densities depend exponentially on the overpotential η (see Fig. 9.2.)
For large absolute values of η, one of the two partial currents dominates, and
a plot of ln |j| – or of log10 |j| – versus η, a so-called Tafel plot [3] (see Fig.
9.3), yields a straight line in this region. From its slope and intercept the
transfer coefficient and the exchange current density can be obtained. These
two quantities completely determine the current-potential curve.

For small overpotentials, in the range |Fη| � RT , the Butler–Volmer
equation can be linearized by expanding the exponentials:
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Fig. 9.2. Current-potential curves according to the Butler–Volmer equation.
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Fig. 9.3. Tafel plot for the anodic current density of an outer-sphere reaction.

j = j0
Fη

RT
(9.15)

The quantity η/j = RT/j0F is called the charge-transfer resistance. Note
that the transfer coefficient does not appear in the current-voltage relation for
small overpotentials, and hence cannot be determined from measurements at
small deviations from equilibrium, they give the exchange current density only.
However, α can be obtained by varying the surface concentrations, measuring
the exchange current density, and using Eq. (9.14). We will discuss a few
examples of outer-sphere electron-transfer reactions in Chap. 12.
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We conclude these phenomenological considerations with a few remarks:

1. The transfer coefficient is equivalent to the Broenstedt coefficient well
known from ordinary chemical kinetics. Both describe the change in the
energy of activation with the Gibbs energy of the reaction.

2. The transfer coefficient α has a dual role: (1) It determines the depen-
dence of the current on the electrode potential. (2) It gives the variation
of the Gibbs energy of activation with potential, and hence affects the
temperature dependence of the current. If an experimental value for α is
obtained from current-potential curves, its value should be independent of
temperature. A small temperature dependence may arise from quantum
effects (not treated here), but a strong dependence is not compatible with
an outer-sphere mechanism.

3. For small overpotentials the linear approximations of Eqs. (9.4) and (9.5)
should be sufficient, but at high overpotentials higher-order terms are
expected to contribute.

4. The transfer coefficient determines the symmetry – or lack thereof – of the
current-potential curves; they are symmetric for α = 1/2. For this reason
the transfer coefficient is also known as the symmetry factor.

5. The surface concentrations are generally not known, and may vary with
time as the reaction proceeds. One way to circumvent this problem is
to work under conditions of controlled convection, so that the surface
concentrations can be calculated from the bulk concentrations. Another
technique consists in the use of potential or current pulses, which allows
an extrapolation back to the time of the onset of the pulse when surface
and bulk concentrations are equal. These techniques will be discussed in
detail in Chaps. 19 and 20.

6. Inner-sphere electron-transfer reactions are not expected to obey the
Butler–Volmer equation. In these reactions the breaking or formation of
a bond, or an adsorption step, may be rate determining. When the re-
actant is adsorbed on the metal surface, the electrostatic potential that
it experiences must change appreciably when the electrode potential is
varied.

9.3 Double-layer corrections

When the concentration of the inert electrolyte is low, the electrostatic po-
tential at the reaction site differs from that in the bulk and changes with the
applied potential. This results in two effects [4]:

1. The surface concentrations csox and csred differ from those in the bulk even
if the surface region and the bulk are in equilibrium. Using the same
arguments as in the Gouy–Chapman theory, the surface concentration cs

of a species with charge number z is:
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cs = c0 exp
(
−ze0φ2

kT

)
(9.16)

where c0 is the bulk concentration, φ2 the potential at the reaction site,
and the potential in the bulk of the solution has been set to zero.

2. On application of an overpotential η, the Gibbs energy of the electron-
transfer step changes by e0[η−∆φ2(η)], where∆φ2(η) is the corresponding
change in the potential φ2 at the reaction site. Consequently, η must be
replaced by [η −∆φ2(η)] in the Butler–Volmer equation (9.13).

These modifications are known as the Frumkin double-layer corrections.
They are useful when the electrolyte concentration is sufficiently low, so that
φ2 can be calculated from Gouy–Chapman theory, and the uncertainty in
the position of the reaction site is unimportant. Whenever possible, kinetic
investigations should be carried out with a high concentration of supporting
electrolyte, so that double-layer corrections can be avoided.

9.4 A note on inner-sphere reactions

There is no general law for the current-potential characteristics of inner-sphere
reactions. Depending on the system under consideration, various reaction
steps can determine the overall rate: adsorption of the reacting species, an
electron-transfer step, a preceding chemical reaction, coadsorption of a cata-
lyst. If the rate-determining step is an outer-sphere reaction, the current will
obey the Butler–Volmer equation. A similar equation may hold if an inner-
sphere electron transfer, for example, from an adsorbed species to the metal,
determines the rate. In this case, application of an overpotential η changes the
Gibbs energy of this step only by a fraction of Fη; furthermore, the concen-
tration of the adsorbed species will change with η. These effects may result in
phenomenological equations of the form:

kox = k0 exp
αFη

RT
, kred = k0 exp

(
−βFη
RT

)
(9.17)

with apparent transfer coefficients α and β, but α and β may depend on
temperature.

If the rate-determining step is the adsorption of an ion, the reaction obeys
the laws for ion-transfer reactions (see Chap. 13), and again a Butler–Volmer-
type law will hold.

Problems

1. Derive Eq. (9.13) from Eqs. (9.10) and (9.12).
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2. The reduced species of an outer-sphere electron-transfer reaction is generated
by a chemical reaction of the form:

A 
 red

Denote the forward and backward rate constants of this reaction by ka

and kb. When the reaction proceeds under stationary conditions, the rates
of the chemical and of the electron-transfer reaction are equal. Derive the
current-potential relationship for this case. Assume that the concentrations
of A and of the oxidized species are constant.

3. The Gibbs energy of activation in Eq. (9.4) can be split into an enthalpy and
an entropy term: ∆G†ox = ∆H†

ox − T ∆S†ox. Define two transfer coefficients

αH = − 1

F

∂∆H†
ox

∂(φ− φ00)
, αS =

1

F

∂∆S†ox
∂(φ− φ00)

and derive the corresponding current-potential relations. Note: For outer-
sphere electron-transfer reactions αS seems to be negligible; it has, however,
been used to explain a temperature dependence of the apparent transfer
coefficients in some inner-sphere reactions.
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Theoretical considerations of electron-transfer
reactions

10.1 Qualitative aspects

Chemical and electrochemical reactions in condensed phases are generally
quite complex processes, but outer-sphere electron-transfer reactions are suf-
ficiently simple that we have reached a fair understanding of them in terms
of microscopic concepts. In this chapter we give a simple derivation of a semi-
classical theory of outer-sphere electron-transfer reactions, which was first sys-
tematically developed by Marcus [1] and Hush [2] in a series of papers. Several
of the concepts that we develop here play also a role in electrocatalysis.

We begin with qualitative considerations. During the course of an outer-
sphere electron-transfer reaction, the reactants get very close, up to a few
Ångstroms, to the electrode surface. Electrons can tunnel over such a short
distance, and the reaction would be very fast if nothing happened but the
transfer of an electron. In fact, outer-sphere reactions are fast, but they have
a measurable rate, and an energy of activation of typically 0.2–0.4 eV, since
electron transfer is accompanied by reorganization processes of atoms and
molecules that require thermal activation. While the reacting complex often
has the same or similar structure in the oxidized and reduced form, metal-
ligand bonds are typically shorter in the complex with the higher charge,
which is also more strongly solvated. So the reaction is accompanied by a
reorganization of both the complex, or inner sphere, and the solvation sheath,
or outer sphere (see Fig. 10.1). These processes require an energy of activation
and slow the reaction down.

A natural question is: In which temporal order do the reorganization pro-
cesses and the proper electron transfer take place? The answer is given by the
Frank–Condon principle, which in this context states: First the heavy particles
of the inner and outer sphere must assume a suitable intermediate configu-
ration, then the electron is exchanged isoenergetically, and finally the system
relaxes to its new equilibrium configuration. A simple illustration is given
in Fig. 10.2, where we have drawn potential energy surfaces for the reduced

W. Schmickler, E. Santos, Interfacial Electrochemistry, 2nd ed.,
DOI 10.1007/978-3-642-04937-8 10, c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 10.1. Reorganization of inner and outer sphere during an electron-transfer
reaction.
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Fig. 10.2. Schematic diagram of the potential energy surfaces for the reduced and
the oxidized state.

and the oxidized state as a function of two generalized reaction coordinates
representing the positions of particles in the inner and outer sphere. During
the course of an oxidation reaction, the system first moves along the surface
for the reduced state till it reaches a crossing point with the surface for the
oxidized state; at this configuration the electron can be transferred, and then
the system moves to its new equilibrium position. Generally, the reaction will
proceed via the saddle point of the intersection, since such transitions require
the smallest energy of activation. The same diagram can also be used to il-
lustrate the concept of adiabaticity: If the electron transfer takes place every
time that the system is on the intersection surface, we speak of an adiabatic,
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otherwise of a nonadiabatic reaction. Of course, Fig. 10.2 is highly simplified:
In reality, we must plot the potential energy as a function of the positions of
all the heavy particles involved, so that we obtain multidimensional potential
energy surfaces. Fortunately, for most purposes the dimensionality does not
matter, and a one-dimensional model, which we will present below, suffices.

10.2 Harmonic oscillator with linear coupling

In an electron transfer reaction, we distinguish two different electronic states,
an initial i and a final state f , which interact differently with the surroundings.
The simplest model for a mode which interacts with the electron transfer is
a harmonic oscillator. This amounts to expanding the energy of that mode
about its equilibrium position and keeping terms up to second order. Thus,
we may write for the energy of one such mode in the initial state:

Ei =
1
2
mω2x2 or Ei =

1
2
αx2 (10.1)

The former notation is natural for a real vibration, the latter for a more general
case like a solvent mode. To first order, the interaction with the transferring
electron is linear, i.e. proportional to x, and its strength is determined by a
coupling constant g. It is convenient to define g in such a way that we may
write for the final state:

Ef =
1
2
αx2 + αgx (10.2)

This can be rewritten as:

Ef =
1
2
α(x+ g)2 − λ with λ =

1
2
αg2 (10.3)

Thus, the origin of the harmonic oscillator has been shifted to x = −g, and its
energy been lowered by an amount λ. Later we shall identify λ with the con-
tribution of this mode to the energy of reorganization of the electron transfer
reaction. It is convenient to simplify the notation by introducing a normalized
coordinate q = x/g. This results in:

Ei = λq2 Ef = λq2 + 2λq = λ
(
q2 + 2q

)
(10.4)

In general, there is also a change in electronic energy ∆Ee between final and
initial state. If only a single mode is reorganized, the total change in energy
between the equilibria of the final and initial states is:

∆E = ∆G = ∆Ee − λ (10.5)

This change in energy may be identified with the change in the Gibbs free
energy, because in this model there is no change in the entropy. If several
modes couple, λ is the sum over all the contributions to the energy of reorga-
nization. In the electrochemical case, we may write: ∆G = −e0η, where η is
the overpotential. With these preliminaries, we are ready to consider electron
transfer in a systematic manner.
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Fig. 10.3. Density of states of a reactant undergoing reaction 10.6 in the initial, the
activated, and the final state, which, at equilibrium, in turn correspond to values of
q = 0, q = −1/2, and q = −1 of the solvent coordinate.

10.3 Adiabatic electron transfer

Outer sphere electron reactions at bare metal electrodes are usually adiabatic.
In this case the electron exchange between the reactant and the metal is faster
than the motion of the inner or outer sphere modes, and the system is always in
electronic equilibrium. We present a simplified version of the theory proposed
by one of us [3].

To be specific, we consider an electron transfer of the type:

A→ B+ + e− (10.6)

Before the electron transfer, the valence level of A is filled and lies below the
Fermi level. As discussed in Chap. 6 for an adsorbed species, the interaction
of the reactant with the metal broadens the valence level. It is therefore de-
scribed by a density of states (DOS) of a certain width ∆; however, since the
interaction of a non-adsorbed species is quite weak, the width ∆ is small, typi-
cally of the order of 10−3 eV. In the final state, this valence level is empty and
thus lies above the Fermi level (see Fig. 10.3). The ion B+ interacts with the
solvent, and the concomitant solvation energy makes it stable; without solva-
tion, taking an energy from the reactant would only cost energy and would
not result in a stable reactant. Electron transfer proceeds in the following
way: A thermal fluctuation of the solvent lifts the valence level of A above the
Fermi level, so that it is emptied. Then solvation sets in and lifts the valence
level to its final state. The energy of activation is the energy required to lift
the valence level from its initial state to the Fermi level.
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For quantitative purposes we need expressions for the electronic energy and
the solvation. For the former, we introduce the occupation n of the valence
orbital, which is unity when the orbital lies below the Fermi level, and zero
when it lies above. Neglecting the small finite width ∆ for the moment, we
write the electronic energy simply as εan, where εa is the energy of the valence
level in the absence of the solvent.

For a full description of the reorganization of the outer and inner sphere
modes, we would really have to consider the multidimensional potential energy
surfaces sketched in Fig. 10.2. Thus, we would have two different surfaces for
the initial and the final states, each with a different minimum corresponding to
the equilibrium respective configuration. Fortunately, as long as only classical
modes are reorganized, a one-dimensional model suffices, and gives the same
results as a multi-dimensional one; the proof for this is relegated to Sect. 10.6.
So, we consider a single reaction, or solvent, coordinate q, which in terms of
Fig. 10.2 passes from the minimum of the initial surface via the saddle point
to the minimum of the second surface. We can normalize this coordinate such
that the resulting expression is as simple as possible. As a consequence, the
calculated energy takes on the meaning of a free energy, since the other degrees
of freedom that are not considered, have effectively been averaged out.

To simplify matters further, we follow the original papers of Marcus and
Hush and use the harmonic approximation. Thus, in the initial state the en-
ergy of solvent1 is represented by a simple parabola. As shown in the previous
section, we can conveniently write this as λq2, where λ is called the energy
of reorganization of the reaction. When the reactant is ionized, it interacts
with the solvent. To first order, this interaction is proportional to the charge
on the ion, and will depend of the state of the solvent given by q; it can be
written in the form 2λq(1−n). That this expression has this simple form, is a
consequence of the convenient normalization. In terms of the notation of the
previous section, the term (1 − n) simply switches between initial and final
state. Thus, the energy of the solvent is:

Esol = λq2 + 2λq(1− n) (10.7)

In the initial state, when n = 1, the energy is a parabola with minimum
at q = 0, and in the final state, when n = 0, a parabola with minimum at
q = −1. Also, identifying (1− n) with the charge number, Eq. (10.7) suggest
an intuitive interpretation of the solvent coordinate: When the state of the
solvent is characterized by q, it would be in equilibrium with a reactant of
charge number −q.

Adding the electronic and the solvent terms gives the total energy as a
function of the solvent coordinate q:

E(q) = λq2 + 2λq + (εa − 2λq)n+
∆

2π
ln

(εa − 2λq)2 +∆2

ε2a +∆2
(10.8)

1 Really this includes the inner sphere as well, but for brevity we shall subsume it
under the general term solvent
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Fig. 10.4. Free energy curves for three different overpotentials. The energy of re-
organization was taken as λ = 1.0 eV.

The last term is a small correction caused by the finite width ∆ of the density
of states. It can be neglected in most circumstances, but is qualitatively impor-
tant at high overpotentials. The energy in the initial state, with q = 0, n = 1
is simply εa; in the final state, with q = −1, n = 0, it is −λ. Changing the
electrode potential changes the level εa with respect to the Fermi level of the
metal, which we take to be EF = 0 as always. For εa = −λ the reaction is in
equilibrium, so that we can write: εa = −λ+e0η, where η is the overpotential.

The energy as a function of the solvent coordinate q can easily be plotted
from Eq. (10.8); a few examples for different overpotentials are shown in Fig.
10.4. Neglecting the last term, the formula gives two different parabolas for
n = 1 and n = 0; for each value of q, the lower of the two energies is the
correct adiabatic energy. For |η| < λ the crossing of the two parabolas gives the
activated state with coordinate qs and a corresponding energy of activation,
taken with respect to the initial energy εa = −λ+ e0η:

qs =
−λ− e0η

2λ
Eact =

(λ− e0η)2

4λ
for |η| < λ (10.9)

If we replace −e0η by the free reaction energy ∆G, the formula for the energy
of activation is identical to that derived by Marcus and Hush for homogeneous
electron transfer. For η > λ the initial state is no longer stable, and electron
transfer is immediate and without activation (see Fig. 10.4). The resulting
energy of activation is shown in Fig. 10.5; it starts from a value of Eact =
λ/4 at equilibrium and vanishes for η ≥ λ. In contrast, the Marcus–Hush
formula predicts an increase of the energy of activation with η for η > λ. For
homogenous electron transfer, a decrease of the rate constant for very large
values of −∆G has indeed been observed. But this does not occur at metal
electrodes, neither in the adiabatic nor in the non-adiabatic case, which will
be treated in the next section.
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E

Fig. 10.5. Energy of activation as a function of the overpotential. Full curve: adia-
batic theory; dotted curve: Marcus–Hush formula. λ = 1.0 eV.

At equilibrium, Eq. (10.9) predicts a transfer coefficient of α = 1/2: indeed,
experimental values for outer sphere reaction always lie close to this value.
With increasing overpotential, α decreases, and for η > λ it vanishes, as does
the energy of activation, and the current becomes constant. The full curve will
be displayed Fig. 10.6 in the next section for non-adiabatic transfer, where it
has exactly the same shape.

In order to obtain the rate constant from the energy of activation, we
require an estimate of the pre-exponential factor. As long as the reaction is
adiabatic, it is independent of the strength of the interaction between the
reactant and the electrode, but is solely governed by the dynamics of the re-
organization. For water, typical times for the reorientation are of the order
10−12−10−11 s, and the typical frequency is the inverse of this time. Adiabatic
electron transfer requires the reactant to be no further than about 5 − 10 Å
from the electrode. Converting the bulk concentration to the number of par-
ticles in this range, we obtain a rough estimate of A ≈ 103 cm s−1, a number
that is quite compatible with experimental data for fast outer sphere reactions
(see Chap. 12). So the rate constant for the oxidation is now defined; the rate
for the reverse reaction is obtained from the usual relation:

kred = exp
−e0η
kT

kox (10.10)

Finally we note, that larger values of the interaction ∆ lead to a significant
reduction of the energy of activation. We shall return to this effect when we
consider electrocatalysis.
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10.4 Non-adiabatic electron-transfer reactions

For non-adiabatic reactions the electronic interaction is much weaker, so that
the system can pass the saddle point without an electron transfer, and subse-
quently return to its initial state. Therefore the interaction strength will enter
into the pre-exponential factor. Also, we now have to consider into which
electronic level the electron is actually transferred, a question that makes no
sense for adiabatic reactions, since reactant and electrode simply share their
electrons.

The basic ideas about solvent reorganization remain valid, but the equa-
tions for the energy require a few modifications. Firstly, in Eq. (10.8) we drop
the last term, since ∆ is even smaller than before. Further, we have to con-
sider to which electronic level on the metal the electron is being transferred.
We denote this energy by ε and, as always, measure it with respect to the
Fermi level. The free energy of the reaction is reduced by ε, which has the
same effect as replacing εa by εa − ε. Therefore we obtain for the free energy
curves for transitions to a particular level ε:

E(q, ε) = λq2 + 2λq + (εa − ε− 2λq)n (10.11)

Again, we obtain two different parabolas for n = 1 and n = 0, but now we
cannot argue, that the system is always on the surface with the lower energy,
since the reaction is no longer adiabatic. Therefore, each parabola describes
a redox state, and the energy of activation is obtained by calculating the
intersection point. Equation (10.9) is now valid for all η, but again we have
to replace εa by εa − ε:

Eact(ε) =
(λ+ ε− e0η)2

4λ
(10.12)

From this we can define a rate constant for the contribution that passes to an
energy ε; bearing in mind that the transition can only take place if there is
an empty level of energy ε on the electrode, we write:

kox(ε) ∝ [1− f(ε)] exp− (λ+ ε− e0η)2

4λkT
(10.13)

where f(ε) is the Fermi–Dirac distribution. To obtain the total rate constant,
we have to integrate over all energies ε: Thus, the second factor in Eq. (10.13)
has the meaning of a probability distribution for the transition. However, this
distribution is not properly normalized to unity, and an integration would give
as an extra dimension of energy. To normalize the distribution, we note that it
has the form of a Gaussian, and hence the normalizing factor is (4πλkT )−1/2.
The pre-exponential factor can be obtained from first order perturbation the-
ory, and is ∆/~. Finally, we again have to convert the bulk to surface concen-
tration, which gives an extra factor of the order of A = 10−10 − 10−9 cm. So
we obtain for the total rate constant:
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Fig. 10.6. The anodic current density as a function of electrode potential according
to Eq. (10.14).

kox = A
∆

~
(4πλkT )−1/2

∫
[1− f(ε)] exp− (λ+ ε− e0η)2

4λkT
dε (10.14)

The integral is to be performed over the conduction band of the metal; in
practice the limits can be extended to ±∞, since the integrand is negligible
far from the Fermi level.

The rate constant for the reduction can be obtained from Eq. (10.10);
alternatively we can note that we must change the signs of ε and η, and that
the rate for a given ε must be proportional to f(ε). This gives:

kred = A
∆

~
(4πλkT )−1/2

∫
f(ε) exp− (λ− ε+ e0η)2

4λkT
dε (10.15)

Equations (10.14) and (10.15) are the general relations for the rate constants
in the non-adiabatic case. The resulting current-potential curves for the an-
odic direction are shown in Fig. 10.6. They have been normalized by the
constant limiting value at high overpotentials. The corresponding curves for
the adiabatic case are very similar, so we do not show them separately.

There are two useful approximations: For small η, only the region near
the Fermi level contributes; it is sufficient to keep first-order terms in ε and
η in the energy of activation. The integral can then be performed explicitly,
resulting in:

kox = A
∆

~

(
πkT

4λ

)1/2

exp
(
−λ− 2e0η

4kT

)
, for e0η � λ (10.16)

where the integration limits have been extended to ±∞. Again, this equation
has the form of the familiar Butler–Volmer law with a transfer coefficient of
one-half.
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A good approximation to the current-potential curve is obtained by re-
placing the Fermi–Dirac distribution with a step function: which results in:

kox = A
∆

2~
erfc

λ− e0η

(4λkT )1/2
(10.17)

where

erfc(x) =
2√
π

∫ ∞

x

exp(−y2) dy = 1− erf(x)

= 1− 2√
π

∫ x

0

exp(−y2) dy

is the compliment of the error function erf(x). Equation (10.17) is a good
approximation in the region e0η � kT . In particular we obtain at very large
overpotentials a limiting rate:

klim = A
∆

2~
, for e0η � λ (10.18)

which is independent of the applied potential.
The corresponding expressions for the reduction are:

kred = A∆
~
(

πkT
4λ

)1/2
exp

(
−λ+2e0η

4kT

)
, for |e0η| � λ (10.19)

kred = A ∆
2~erfc e0η+λ

(4λkT )1/2 , for |e0η| � kT (10.20)

For reasons of symmetry, the limiting rates are the same in both directions.
The current-potential relation in Fig. 10.6 show Butler–Volmer behavior

for small overpotentials, and limiting currents for large overpotentials, and
have the same form for adiabatic and non-adiabatic reactions alike. The two
kinds of reactions differ principally in the pre-exponential factors, which for
an adiabatic reaction are independent of the electrode material, and for a
non-adiabatic reaction depend on the strength of the interaction.

A direct comparison of the form of the current-potential curves with exper-
iments is not easy. At low overpotentials one always observes Butler–Volmer
behavior in agreement with the theory. At high overpotentials is difficult to
measure kinetic currents since then the reaction is fast and usually transport
controlled (see Chap. 19). The deviations from the Butler–Volmer equation
predicted by theory were doubted for some time. But they have now been
observed beyond doubt, and we shall review some relevant experimental re-
sults in Chap. 12, where we shall also concern ourselves with the question of
adiabaticity.

The model presented here is simplified in several ways: harmonic approx-
imation, purely classical treatment reorganization. But it does explain the
basic features of electron-transfer reactions, relates the observed energies of
activation to the reorganization of the inner and outer sphere, and does predict
the correct form of the current-potential relationship. In some cases the energy
of reorganization can be estimated (see the following), and then quantitative
comparisons between theory and experiment can be made.
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Fig. 10.7. Distributions Wox and Wred at equilibrium (left) and after application
of a cathodic overpotential.

10.5 Gerischer’s formulation

The equations for the rate constants in the non-adiabatic case derived above
have a suggestive interpretation proposed by Gerischer [4]. In the expression
for the oxidation rate the term [1− f(ε)] is the probability to find an empty
state of energy ε on the electrode surface. If one interprets:

Wred(ε, η) = (4πλkT )−1/2 exp
(
− (λ+ ε− e0η)2

4λkT

)
(10.21)

as the (normalized) probability of finding an occupied (reduced) state of en-
ergy ε in the solution, then the anodic rate is simply proportional to the
probability of finding an occupied state of energy ε in the solution multiplied
by the probability to find an empty state of energy ε on the metal. The maxi-
mum of Wred is at ε = −λ+e0η; so application of an overpotential shifts it by
an amount e0η with respect to the Fermi level of the metal. Mutatis mutandis,
the same argument can be made for the cathodic direction by defining:

Wox(ε, η) = (4πλkT )−1/2 exp
(
− (λ− ε+ e0η)2

4λkT

)
(10.22)

as the probability to find an empty (oxidized) state of energy ε in the solution.
This has its maximum at ε = λ+ e0η; so on application of an overpotential it
is shifted by the same amount as Wred. Illustrations such as the one presented
in Fig. 10.7 offer a useful way of visualizing simple electron-transfer reactions.

Unfortunately, the probabilities Wox and Wred are sometimes denoted as
densities of states of the oxidized and reduced species in the solution. This
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is a misnomer, since they have nothing to do with the electronic densities of
states we have introduced earlier, and can only lead to confusion. Indeed, the
two concepts are sometimes confused in the literature. Needless to say, we
shall not use this terminology.

10.6 Multidimensional treatment

Here we shows that a multi-dimensional treatment of the solvent and inner
sphere reorganization gives the same energy of activation. At the same time we
prepare a way for estimating reorganization energies. We describe all modes
that are reorganized as harmonic oscillators, which interact linearly with the
charge on the reactant:

Hsol =
∑

i

{
1
2
αix

2
i + αxigi(1− n)

}
(10.23)

For a real harmonic oscillator, we have: αi = miω
2
i , wheremi is the mass of the

oscillator, ωi its frequency. However, for the mathematics it is only important
that the leading term of the Hamiltonian is second order, and the interaction
linear. As we shall see below, the coordinate can have quite a general meaning,
and for the outer sphere it is usually taken as the local polarization. As before
gi are the interaction constants with the charge on the reactant. For n = 1,
the minimum is at xi = 0, for n = 1 at xi = −gi. As discussed before, the
mathematics can be greatly simplified by normalizing the coordinates and
introducing qi = xi/gi. Instead of Eq. (10.8) we obtain the generalized form:

E(qi) = εan+
∑

i

{
λiq

2
i + 2λiqi(1− n)

}
(10.24)

λi = αig
2
i /2 is the contribution of the ith mode to the energy of reorganiza-

tion. Equation (10.24) defines two different multi-dimensional paraboloids for
n = 1, which is our initial state, and n = 0. We proceed to find the saddle
point on the intersection. There, the energies on the two surfaces must be
equal, which gives:

2
∑

i

λiqi − εa = 0 (10.25)

We determine the saddle point by introducing a Lagrange multiplier µ and
minimize the function:

F (qi) = εa +
∑

i

λiq
2
i + µ

(
2
∑

i

λiqi − εa

)
(10.26)

subject to the constraint of Eq. (10.25). This gives:

qi = −µ µ = − εa
2λ

Eact =
ε2a
4λ

=
(−λ+ e0η)2

4λ
(10.27)
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where λ =
∑

i λi is the total energy of reorganization. So we have obtained
the same energy of activation as before. The reaction path is given by the
straight line qi = q, where q runs from 0 to −1 and can be identified with the
generalized solvent coordinate. Remember that at equilibrium εa = −λ; the
saddle point lies between the minima for the initial and the final state only
for εa < 0.

10.7 The energy of reorganization

The contribution of a mode i to the energy of reorganization has been defined
above as λi = αig

2
i /2. During the course of the reaction, the equilibrium value

of the coordinate xi changes from xi = 0 to xi = −gi. Therefore, we can also
write:

λi = αi(∆qi)2/2 (10.28)

where ∆qi is the change in the equilibrium position, and αi/2 is the coefficient
of the quadratic term. This equation can be used for any type of harmonic
oscillator, irrespective of the meaning of the coordinate.

Since the energy of reorganization plays a central role in electron-transfer
reactions, it is useful to obtain rough estimates for specific systems. As out-
lined, it contains two contributions: one from the inner and one from the
outer sphere. The former is readily calculated from the previous section. As
an example, we consider the reaction of the [Fe(H2O)6]2+/3+ couple. During
the reaction the distance of the water ligands from the central ion changes;
this corresponds to a reorganization of the totally symmetric, or “breathing”,
mode of the complex, and this seems to be the only mode which undergoes
substantial reorganization. Let m be the effective mass of this mode, ∆q the
change in the equilibrium distance, and ω the frequency. The energy of reor-
ganization of the inner sphere is then:

λin =
1
2
mω2(∆q)2 (10.29)

There is a small complication in that the frequency ω is different for the
reduced and oxidized states; so that one has to take an average frequency.
Marcus has suggested taking ωav = 2ωoxωred/(ωox+ωred). When several inner-
sphere modes are reorganized, one simply sums over the various contributions.
The matter becomes complicated if the complex is severely distorted during
the reaction, and the two states have different normal coordinates. While the
theory can be suitably modified to account for this case, the mathematics are
cumbersome.

To obtain an estimate for the energy of reorganization of the outer sphere,
we start from the Born model, in which the solvation of an ion is viewed as re-
sulting from the Coulomb interaction of the ionic charge with the polarization
of the solvent. This polarization contains two contributions: one is from the
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electronic polarizability of the solvent molecules; the other is caused by the
orientation and distortion of the solvent molecules in an external field. The
former is also denoted as the fast polarization, since it is electronic in origin
and reacts on a time scale of 10−15−10−16 s, so that it reacts practically in-
stantly to the electron transfer; the latter is called the slow polarization since
it is caused by the movement of atoms on a time scale of 10−11−10−14 s. To
obtain separate expressions for the two components we start with the consti-
tutive relation between the electric field vector E, the dielectric displacement
D, and the polarization P:

D = εε0E = ε0E + P, or P =
(

1− 1
ε

)
D (10.30)

where ε is the dielectric constant of the medium.2 If we apply an alternating
external field with a high frequency in the optical region, only the electronic
polarization can follow, and the optical value ε∞ of the dielectric constant
applies (ε∞ = 1.88 for water). So the fast polarization is:

Pf =
(

1− 1
ε∞

)
D (10.31)

In a static field both components of the polarization contribute, and the static
value εs of the dielectric constant must be used in Eq. (10.30). The slow
polarization is obtained by subtracting Pf , which gives:

Ps =
(

1
ε∞

− 1
εs

)
D (10.32)

The reorganization of the solvent molecules can be expressed through the
change in the slow polarization. Consider a small volume element ∆V of the
solvent in the vicinity of the reactant; it has a dipole moment m = Ps ∆V
caused by the slow polarization, and its energy of interaction with the external
field Eex caused by the reacting ion is −Ps · Eex ∆V = −Ps · D ∆V/ε0,
since Eex = D/ε0. We take the polarization Ps as the relevant outer-sphere
coordinate, and require an expression for the contribution ∆U of the volume
element to the potential energy of the system. In the harmonic approximation
this must be a second-order polynomial in Ps, and the linear term is the
interaction with the external field, so that the equilibrium values of Ps in the
absence of a field vanishes:

∆U/∆V =
1
2
αP2

s −Ps ·D/ε0 + C (10.33)

where C is independent of Ps, and the constant α is still to be determined.
For this purpose we calculate the equilibrium value of the slow polarization
by minimizing ∆U and identifying this result with the value from Eq. (10.32):
2 We use the usual symbol ε for the dielectric constant; no confusion should arise

with the energy variable employed
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Peq
s =

D
αε0

, hence
1
αε0

=
(

1
ε∞

− 1
εs

)
(10.34)

During the reaction the dielectric displacement changes from Dox to Dred (or
vice versa), and the equilibrium value from Dox/αε0 to Dred/αε0. Therefore
the contribution of the volume element ∆V to the energy of reorganization of
the outer sphere is:

∆λout =
1

2ε0

(
1
ε∞

− 1
εs

)
(Dox −Dred)2∆V (10.35)

The total energy of reorganization of the outer sphere is obtained by inte-
grating over the volume of the solution surrounding the reactant:

λout =
1

2ε0

(
1
ε∞

− 1
εs

)∫
(Dox −Dred)2 dV (10.36)

The dielectric displacement must be calculated from electrostatics; for a reac-
tant in front of a metal surface the image force has to be considered. For the
simple case of a spherical ion in front of a metal electrode experiencing the
full image interaction, a straightforward calculation gives:

λout =
e20

8πε0

(
1
ε∞

− 1
εs

)(
1
a
− 1

2d

)
(10.37)

where a is the radius of the ion, and d the distance from the metal surface. Be-
cause of the use of macroscopic electrostatics, this equation should be viewed
as providing no more than an estimate for λout.

10.8 Adiabatic versus non-adiabatic transitions

If a reaction proceeds adiabatically or not, depends on the strength ∆ of
the electronic interaction between the reactant and the electrode surface,
which also determines the width of the density of states of the reacting level.
For small interactions, first order perturbation theory holds, and the pre-
exponential factor is proportional to ∆ – see Eq. (10.14). For large ∆, the
pre-exponential factor is determined by solvent dynamics. The latter can be
described in terms of Kramer’s theory, which we cannot treat here in any
detail. Briefly, an important factor is the solvent friction, which determines
the typical time that the solvent takes to reorient. The higher the friction,
the lower is the pre-exponential factor A. As mentioned before, for aqueous
solutions a value of A ≈ 103 cm s−1 seems to be a good estimate.

The relation between the rate constant k and the interaction strength
∆ is shown in Fig. 10.8, which is based on a computer simulation [5]. For
low interactions, the rate follows perturbation theory. Then, solvent dynamics
starts to influence the rate, and in a certain region it is independent of ∆. The
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Fig. 10.8. Dependence of the rate constant on the interaction strength ∆. The black
line shows the prediction from 1st order perturbation theory.

height of this plateau region depends on the friction: the higher the friction,
the lower the plateau. This is the region in which the original theories of
Marcus and Hush hold. For very high interactions, the last term of Eq. (10.8)
comes into play and lowers the energy of activation, so the rate rises again.
The latter is a catalytic effect, caused by the electronic interaction with the
metal.

On bare metal surfaces, outer sphere reactions are typically adiabatic and
fall into the Marcus–Hush plateau region. Since they are independent of ∆,
they also do not depend on the nature of the metal. On semiconductors, semi-
metals like graphite, and in particularly on electrodes covered by an insulating
film, they can proceed non-adiabatically. The catalytic region does not seem
to play a role for outer-sphere reactions – they are so fast that they do not
need to be catalysed. However, catalysis is very important for inner sphere
reactions like hydrogen evolution, which we will consider in detail later.

Problems

1. Consider a one-dimensional system in which the potential energy functions
for the oxidized and reduced states are:

Uox(q) = eox +
1

2
mω2q2

Ured(q) = ered +
1

2
mω2(q − δ)2

Calculate the intersection point of these two parabolas and define the energy
of reorganization. Calculate the energies of activation for the forward and
the backward direction.

2. Assume that the current-potential curves of a system are given by Eqs.
(10.17) and (10.20). Calculate the effective transfer coefficients defined by:
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α =
kT

e0

∂ ln ja

∂η
β = −kT

e0

∂ ln |jc|
∂η

Their values depend on the overpotential. Show that for η = 0: α + β 6=
1. This (small) error arises because the Fermi–Dirac distribution has been
replaced by a step function.

3. From Eq. (10.36) calculate the energy of reorganization of a single spherical
reactant in the bulk of a solution. Derive Eq. (10.37) for a reactant in front
of a metal electrode.

4. Show that for ε∞ = 1 Eq. (10.36) reduces to the Born equation for the energy
of solvation of an ion.
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11

The semiconductor-electrolyte interface

11.1 Electrochemistry at semiconductors

Many naturally occurring substances, in particular the oxide films that form
spontaneously on some metals, are semiconductors. Also, electrochemical re-
actions are used in the production of semiconductor chips, and recently semi-
conductors have been used in the construction of electrochemical photocells.
So there are good technological reasons to study the interface between a semi-
conductor and an electrolyte. Our main interest, however, lies in more funda-
mental questions: How does the electronic structure of the electrode influence
the properties of the electrochemical interface, and how does it affect electro-
chemical reactions? What new processes can occur at semiconductors that are
not known from metals?

11.2 Potential profile and band bending

When a semiconducting electrode is brought into contact with an electrolyte
solution, a potential difference is established at the interface. The conductivity
even of doped semiconductors is usually well below that of an electrolyte
solution; so practically all of the potential drop occurs in the boundary layer
of the electrode, and very little on the solution side of the interface (see Fig.
11.1). The situation is opposite to that on metal electrodes, but very similar
to that at the interface between a semiconductor and a metal.

The variation of the electrostatic potential φ(x) in the surface region en-
tails a bending of the bands, since the potential contributes a term −e0φ(x)
to the electronic energy. Consider the case of an n-type semiconductor. We
set φ = 0 in the bulk of the semiconductor. If the value φs of the potential at
the surface is positive, the bands band downwards, and the concentration of
electrons in the conduction band is enhanced (see Fig. 11.2). This is called an
enrichment layer. If φs < 0, the bands bend upward, and the concentration of
electrons at the surface is reduced; we speak of a depletion layer. On the other
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Fig. 11.1. Variation of the potential at the semiconductor-solution interface
(schematic).

hand, the concentration of the holes, the minority carriers, is enhanced at the
surface; if it exceeds that of the electrons, one speaks of an inversion layer. The
special potential at which the electrostatic potential is constant (i.e., φ(x) = 0
throughout the semiconductor), is the flat-band potential, which is equivalent
to the potential of zero charge. In Chap. 4 we noted that, because of the oc-
currence of dipole potentials, the difference in outer potential does not vanish
at the pzc; the same is true for the flat-band potential of a semiconductor in
contact with an electrolyte solution.

Mutatis mutandis the same terminology is applied to the surface of p-type
semiconductors. So if the bands bend upward, we speak of an enrichment
layer; if they bend downward, of a depletion layer.

Just as in Gouy–Chapman theory, the variation of the potential can be
calculated from Poisson’s equation and Boltzmann statistics (in the nonde-
generate case). As an example we consider an n-type semiconductor, and limit
ourselves to the case where the donors are completely ionized, and the con-
centration of holes is negligible throughout – a full treatment of all possible
cases is given in [1, 2]. The charge density in the space-charge region is the
sum of the static positive charge on the ionized donors, and the mobile nega-
tive charge of the conduction electrons. Let nb be the density of electrons in
the bulk, which equals the density of donors since the bulk is electroneutral.
Poisson’s equation gives:

d2φ

dx2
= − nb

εε0

(
1− exp

e0φ

kT

)
(11.1)

which is reminiscent of the Poisson–Boltzmann equation. An approximate
analytic solution can be derived for a depletion layer; the band has a parabolic
shape, and the corresponding interfacial capacitance Csc is given by the Mott–
Schottky equation (see Appendix), which is usually written in the form:
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Fig. 11.2. Band bending at the interface between a semiconductor and an elec-
trolyte solution; (a)–(c) n-type semiconductor: (a) enrichment layer, (b) depletion
layer, (c) inversion layer; (d)–(f) p-type semiconductor: (d) enrichment layer, (e)
depletion layer, (f) inversion layer.

(
1
Csc

)2

=
2

εε0e0nb

(
|φs| −

kT

e0

)
(11.2)

Often, the small term kT/e0 is neglected. The total interfacial capacity C is
a series combination of the space-charge capacities Csc of the semiconductor
and Csol of the solution side of the interface. However, generally Csol � Csc,
and the contribution of the solution can be neglected. Then a plot of 1/C2

versus the electrode potential φ (which differs from φs by a constant) gives a
straight line (see Fig. 11.3). From the intercept with the φ axis the flat-band
potential is determined; if the dielectric constant ε is known, the donor density
can be calculated from the slope. The same relation holds for the depletion
layer of a p-type semiconductor.

Semiconductors that are used in electrochemical systems often do not meet
the ideal conditions on which the Mott–Schottky equation is based. This is
particularly true if the semiconductor is an oxide film formed in situ by oxidiz-



120 11 The semiconductor-electrolyte interface

φ / V

C
2-

m /
4

F
2-

01 x
3-

0.2 0.4 0.6 0.8
0

400

800

Fig. 11.3. Mott–Schottky plot for the depletion layer of an n-type semiconductor;
the flat-band potential Efb is at 0.2 V. The data extrapolate to Efb + kT/e0.

ing a metal such as Fe or Ti. Such semiconducting films are often amorphous,
and contain localized states in the band gap that are spread over a whole range
of energies. This may give rise to a frequency dependence of the space-charge
capacity, because localized states with low energies have longer time constants
for charging and discharging. It is therefore important to check that the in-
terfacial capacity is independent of the frequency if one wants to determine
donor densities from Eq. (11.2).

11.3 Electron-transfer reactions

There is a fundamental difference between electron-transfer reactions on met-
als and on semiconductors. On metals the variation of the electrode potential
causes a corresponding change in the molar Gibbs energy of the reaction. Due
to the comparatively low conductivity of semiconductors, the positions of the
band edges at the semiconductor surface do not change with respect to the
solution as the potential is varied. However, the relative position of the Fermi
level in the semiconductor is changed, and so are the densities of electrons
and holes on the semiconductor surface.

The general shape of the current-potential curves for a perfect, non-
degenerate semiconductor, for which the Fermi level lies well within the band
gap, is easily derived. We first consider electron exchange with the conduction
band. Since concentration of electrons in this band is very low, electron trans-
fer from a redox couple in the solution to this band is not impeded by them.
Further, since the relative position of the electronic levels in the solution and
the semiconductor surface do not change with potential, the anodic current
is constant, and we call its density jc

0, the superscript indicating the conduc-
tion band. On the other, application of a negative overpotential η brings the



11.3 Electron-transfer reactions 121

band edge at the surface by an amount e0η closer to the Fermi level, and the
concentration of electrons increases exponentially. Noting that for η = 0 the
total current must vanish, we can write the current density passing through
the conduction band as:

jc = jc
0

[
1− exp

(
−e0η
kT

)]
(11.3)

Obviously, this current-potential characteristics has rectifying properties (see
Fig. 11.5).

Conversely, the valence band is practically full, and electron transfer from
this band to the solution is constant; the corresponding current density we call
−jv

0 . Electron transfer from the solution to the valence band is proportional
to the density of holes in this band, which increases exponentially with e0η.
Therefore we obtain for the current through the valence band:

jv = jv
0

[
exp

e0η

kT
− 1
]

(11.4)

Gerischer’s terminology is popular in semiconductor electrochemistry, and
it is instructive to calculate the currents in this model. This implies that the
transfer is non-adiabatic, which seems plausible in view of the fact that the
surface orbitals of semiconductors are less extended than those of metals.

We start from Eq. (10.14) for the rate of electron transfer from a reduced
state in the solution to a state of energy ε on the electrode, and rewrite it in
the form:

kox(ε) = A′
∫

[1− f(ε)]Wred(ε, η)dε (11.5)

using Gerischer’s terminology; Fig. 11.4 shows a corresponding plot. We have
introduced A′ = A∆/~ for brevity. We still have to specify the integration
limits. There are two contributions to the anodic current density, jv

a from the
valence and jc

a from the conduction band. Denoting by Ev, Ec the band edges
at the surface, we write for the current density:

jv
a = FA′c

∫ Ev−EF

−∞
dε [1− f(ε)]Wred(ε, η) (11.6)

jc
a = FAc

∫ ∞

Ec−EF

dε [1− f(ε)]Wred(ε, η) (11.7)

Strictly speaking, the integrals should extend over the two bands only;
however, far from the band edges the integrands are small; so the integration
regions may safely be extended to infinity. The band edges Ev and Ec are
measured with respect to the Fermi level of the electrode, and move with the
overpotential; they are fixed with respect to the Fermi level of the redox couple
in the solution. Writing ∆Ev = EF −Ev(η = 0) and ∆Ec = Ec(η = 0)−EF ,
we have: Ev − EF = −∆Ev + e0η, Ec − EF = ∆Ec + e0η. In the valence
band [1 − f(ε)] ≈ exp[ε/kT ], in the conduction band [1 − f(ε)] ≈ 1, both
approximations hold for nondegenerate semiconductors only. This gives:
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Fig. 11.4. Gerischer diagram for a redox reaction at an n-type semiconductor: (a)
at equilibrium the Fermi levels of the semiconductor and of the redox couple are
equal; (b) after application of an anodic overpotential.

jv
a = FA′c

∫ −∆Ev+e0η

−∞
dε exp

ε

kT
Wred(ε, η) (11.8)

jc
a = FA′c

∫ ∞

∆Ec+e0η

dε Wred(ε, η) (11.9)

We substitute ξ = ε− e0η, and note that Wred(ε, η) = Wred(ε− e0η, 0):

jv
a(η) = FA′c

∫ −∆Ev

−∞
dξ exp

ξ + e0η

kT
Wred(ξ, 0)

= jv
a(η = 0) exp

e0η

kT
(11.10)

jc
a(η) = FA′c

∫ ∞

∆Ec

dξ Wred(ξ, 0) = jc
a(η = 0) (11.11)

So, as already discussed above, the contribution of the valence band to the
anodic current increases exponentially with the applied potential, because the
number of holes that can accept electrons increases. In contrast, the anodic
current via the conduction band is unchanged, since it remains practically
empty. These equations hold independent of the particular form of the function
Wred. Similarly the contributions of the valence and conduction bands to the
cathodic current densities are:

jv
c (η) = FA′c

∫ −∆Ev

−∞
dξ Wox(ξ, 0)

= jv
c (η = 0) (11.12)

jc
c(η) = FA′c

∫ ∞

∆Ec

dξ exp
(
−ξ + e0η

kT

)
Wox(ξ, 0)

= jc
c(η = 0) exp

(
−e0η
kT

)
(11.13)
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The contribution of the valence band does not change when the overpotential
is varied, since it remains practically completely filled. In contrast, the con-
tribution of the conduction band decreases exponentially with η (or increases
exponentially with −η) because of the corresponding change of the density of
electrons (Fig. 11.5). All equations derived in this section hold only as long
as the surface is nondegenerate; that is, the Fermi level does not come close
to one of the bands.

η / V

j/j| nl
0
|

conduction
band

valence
band

10

0

-10
-0.3 -0.1 0 0.20.1 0.3-0.2

Fig. 11.5. Current-potential characteristics for a redox reaction via the conduction
band or via the valence band. The current was normalized by setting jv

0 = 1. In this
example the redox system overlaps more strongly with the conduction than with the
valence band.

Typically the contributions of the two bands to the current are of rather
unequal magnitude, and one of them dominates the current. Unless the elec-
tronic densities of states of the two bands differ greatly, the major part of
the current will come from the band that is closer to the Fermi level of the
redox system (see Fig. 11.4). The relative magnitudes of the current densities
at vanishing overpotential can be estimated from the explicit expressions for
the distribution functions Wred and Wox:

jv
0 = FA′c

∫ −∆Ev

−∞
dξ Wox(ξ, 0)

= 2FA′c erfc
λ+ ∆Ev

(4λkT)1/2
(11.14)

jc
0 = FA′c

∫ ∞

∆Ec

dξ Wred(ξ, 0)

= 2FAρc erfc
λ+ ∆Ec

(4λkT)1/2
(11.15)



124 11 The semiconductor-electrolyte interface

If the electronic properties of the semiconductor – the Fermi level, the posi-
tions of the valence and the conduction band, and the flat-band potential –
and those of the redox couple – Fermi level and energy of reorganization – are
known, the Gerischer [3] diagram can be constructed, and the overlap of the
two distribution functions Wox and Wred with the bands can be calculated.

Both contributions to the current obey the Butler–Volmer law. The cur-
rent flowing through the conduction band has a vanishing anodic transfer
coefficient, αc = 0, and a cathodic coefficient of unity, βc = 1. Conversely, the
current through the valence band has αv = 1 and βv = 0. Real systems do
not always show this perfect behavior. There can be various reasons for this;
we list a few of the more common ones:

1. Electronic surface states may exist at the interface; they give rise to an
additional capacity, so that the band edges at the surface change their
energies with respect to the solution.

2. When the semiconductor is highly doped, the space-charge region is thin,
and electrons can tunnel through the barrier formed at a depletion layer.

3. At high current densities the transport of electrons and holes may be too
slow to establish electronic equilibrium at the semiconductor surface.

4. The semiconductor may be amorphous, in which case there are no sharp
band edges.

An example of an electron-transfer reaction on a semiconductor electrode will
be given in the next chapter.

11.4 Photoinduced electron transfer

Semiconducting electrodes offer the intriguing possibility to enhance the rate
of an electron-transfer reaction by photoexcitation. There are actually two
different effects: Either charge carriers in the electrode or the redox couple
can be excited. We give examples for both mechanisms.

11.4.1 Photoexcitation of the electrode

If light of a frequency ν, with hν ≥ Eg, is incident on a semiconducting
electrode, it can excite an electron from the valence into the conduction band,
so that an electron-hole pair is created. In the space-charge region the pair can
be separated by the electric field, which prevents recombination. The electrical
field produces a force F in the x direction perpendicular to the surface, and
the equation of motion for an electron is given by:

F = −e0Ex = ~
dk

dt
(11.16)

where k is the wavevector of the electron, and ~k its momentum. For a hole,
the force is in the opposite direction.
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Fig. 11.6. Photogeneration of holes at the depletion layer of an n-type semiconduc-
tor.

Depending on the direction of the field, one of the carriers will migrate
toward the bulk of the semiconductor, and the other will drift to the surface,
where it can react with a suitable redox partner. These concepts are illustrated
in Fig. 11.6 for a depletion layer of a n-type semiconductor. Holes generated
in the space-charge region drift towards the surface, where they can accept
electrons from a reduced species with suitable energy. According to the mo-
mentum balance for the system consisting of the electron–hole pair and the
absorbed photon, we have:

ke + kh = kph ≈ 0 (11.17)

since the wavevector for a phonon with an energy of the order of a few electron
volt is negligible. Thus kh = −ke, and in a band-structure plot E(k) the
transition is vertical. This is the typical case when the maximum of the valence
band and the minimum of the conduction band coincide, and one speaks of a
direct transition – see Fig. 11.7. The threshold for direct transitions is given
by ~ν = Eg.

When the maximum of the valence band and the minimum of the conduc-
tion band do not lie at the same wavevector k, indirect transitions involving
a phonon may occur. The principle is depicted on the right hand side of Fig.
11.7. A phonon is needed to conserve the total momentum. The adsorption
threshold for indirect transitions between the band edges is:

hν = Eg + ~Ω (11.18)

where the last term accounts for the energy of the participating phonon.
The absorption coefficient α near the band edge depends on the photon

energy according to:
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Fig. 11.8. Current-potential characteristics for an n-type semiconductor in the dark
and under illumination. The difference between the two curves is the photocurrent.

α = A
(hν − Eg)n/2

hν
(11.19)

We will not give the details of the derivation of this equation, which is compli-
cated and depends on selection rules and the band structure. A is a constant
and n depends on whether the transition is direct (n = 1) or indirect (n = 4).

The potential dependence of this photocurrent is shown in Fig. 11.8. It sets
in at the flat-band potential and continues to rise until the band bending is
so large that all the holes generated by the incident light reach the electrode
surface, where they react with a suitable partner. If the reaction with the
redox system is sufficiently fast, the generation of charge carriers is the rate-
determining step, and the current is constant in this region.

In a real system the photocurrent can depend on a number of effects:

1. The generation of the carriers in the semiconductor.
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2. The migration of the carriers in the space-charge region.
3. Diffusion of carriers that are generated outside the space-charge region.
4. Loss of carriers either by electron-hole recombination or by trapping at

localized states in the band gap or at the surface.
5. The rate of the electrochemical reaction that consumes the carriers.

When all these factors contribute, the situation becomes almost hopelessly
complicated. The simplest realistic case is that in which the photocarriers are
generated in the space-charge region and migrate to the surface, where they
are immediately consumed by an electrochemical reaction. We consider this
case in greater detail. Suppose that light of frequency ν, with hν > Eg, is
incident on a semiconducting electrode with unit surface area under depletion
conditions (see Fig. 11.6). Let I0 be the incident photon flux, and α the
absorption coefficient of the semiconductor at frequency ν. At a distance x
from the surface, the photon flux has decreased to I0 exp(−αx), of which a
fraction α is absorbed. So the rate of carrier generation is:

g(x) = I0α exp(−αx) (11.20)

This equation presumes that each photon absorbed creates an electron-hole
pair; if there are other absorption mechanisms, the right-hand side must be
multiplied by a quantum efficiency. The total rate of minority carrier genera-
tion is obtained by integrating over the space-charge region:∫ Lsc

0

I0α exp (−αx) dx = I0 [1− exp (−αLsc)] (11.21)

where the width Lsc of the space charge region is (see appendix):

Lsc = L0(φ− φfb)1/2, with L0 =
(
εε0
e0nb

)1/2

(11.22)

so that the the photocurrent generated in the space-charge layer is:

jp = e0I0

(
1− exp

[
−αL0(φ− φfb)1/2

])
(11.23)

In the general case there may also be a contribution due to the diffusion of
carriers from the bulk. This is treated in Problem 12.3, where the concept of
a diffusion length Ld of the minority carriers is introduced. The sum of both
contribution results in:

jt = e0I0

(
1−

exp
[
−αL0(φ− φfb)1/2

]
1 + αLd

)
(11.24)

For αLd � 1 the contribution from the bulk can be neglected. If in addition
αLsc � 1 the exponential can be expanded, and the flat-band potential can
be determined by plotting the square of the photocurrent versus the potential:
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Fig. 11.9. Photoexcitation of a redox couple.

j2p = (e0I0αL0)
2 (φ− φfb) (11.25)

A plot of j2p versus potential should result in a straight line, whose slope
depends on the photon energy. The flat-band potential can be obtained from
the intercept. We shall consider an example in Chap. 12.

11.4.2 Photoexcitation of a redox species

Another kind of photoeffect occurs if a redox system in its ground state over-
laps weakly with the bands of the electrode but has an excited state which
overlaps well. As an example, we consider an n-type semiconducting electrode
with a depletion layer at the surface, and a reduced species red whose distri-
bution function Wred(ε, η) lies well below the conduction band (see Fig. 11.9),
so that the rate of electron transfer to the conduction band is low. On pho-
toexcitation the excited state red∗ is produced, whose distribution function
W ∗

red(ε, η) overlaps well with the conduction band, so that it can inject elec-
trons into this band. The electric field in the space-charge region pulls the
electron into the bulk of the electrode, thus preventing recombination with
the oxidized species, and a photocurrent is observed.

11.5 Dissolution of semiconductors

From a chemical point of view a hole at the surface of a semiconductor entails
a missing electron and hence a partially broken bond. Consequently semicon-
ductors tend to dissolve when holes accumulate at the surface. In particular
this is true for enrichment layers of p-type material. At the depletion layers of
n-type materials the holes required for the dissolution can also be produced
by photoexcitation.
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Such dissolution reactions usually contain several steps and are compli-
cated. An important example is silicon. In aqueous solutions this is generally
covered by an oxide film that inhibits currents and hence corrosion. However,
in HF solutions it remains oxide free, and p-type silicon dissolves readily under
accumulation conditions. This reaction involves two holes and two protons, the
final product is Si(IV), but the details are not understood. A simpler example
is the photodissolution of n-type CdS, which follows the overall reaction:

CdS + 2h+ → Cd2+ + S (11.26)

under depletion conditions.
On polar semiconductors the dissolution may also involve electrons from

the conduction band, leading to the production of soluble anions. For exam-
ple, under accumulation conditions the dissolution of n-type CdS takes place
according to the reaction scheme:

CdS + 2e− → Cd + S2− (11.27)

The dissolution of semiconductors is usually an undesirable process since it
diminishes the stability of the electrode and limits their use in devices such
as electrochemical photocells. On the other hand, the etching of silicon in HF
solutions is a technologically important process.

Appendix: the Mott–Schottky capacity

We consider the depletion layer of an n-type semiconductor, assuming that
the concentration of holes is negligible throughout. The situation is depicted
in Fig. 11.10, which also defines the coordinate system employed. Starting
from Eq. (11.1):

d2φ

dx2
= −e0nb

εε0

(
1− exp

e0φ

kT

)
(11.28)

we again multiply both sides by 2dφ/dx, and integrate from zero to infinity,
and obtain:

− E(0)2 =
2e0nb

εε0

(
φs +

kT

e0

)
(11.29)

where φs = φs, and a term of the order exp[e0φs/kT ] has been neglected.
Noting that the potential φ(x) is negative throughout the space-charge region,
we obtain:

σ

εε0
=
√

2e0nb

εε0

√
|φs| −

kT

e0
(11.30)

Differentiation gives:

C =
dq

dφs
=
(

e0nbεε0
2[|φs| − kT/e0]

)1/2

(11.31)
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Fig. 11.10. Depletion layer at the surface of an n-type semiconductor; the surface
is at x = 0.

which on rearranging gives Eq. (11.2).
The total width of the space-charge region can be estimated from the

following consideration. Throughout the major part of the depletion region
we have: −e0φ � kT , and the concentration of the electrons is negligible. In
this region the exponential term on the right-hand side of Eq. (11.28) can
be neglected, and the space charge is determined by the concentration of the
donors – each donor carries a positive charge since it has given one electron
to the conduction band. The band has a parabolic shape, but only the left
half of the parabola has a physical meaning. The potential can be written in
the form:

φ(x) = −e0nb

2εε0
x2 + ax+ φs (11.32)

where:

a =
∂φ

∂x

∣∣∣∣
x=0

= −E(0) (11.33)

The width Lsc of the space charge region is given by the position where the
potential is minimal. Differentiation gives:

Lsc = − εε0
e0nb

E(0) =
√

2εε0
e0nb

|φs| (11.34)

where terms of the order of kT/e0 have been neglected. For practical purposes
it is convenient to express φs through the flat-band potential:

Lsc =
√

2εε0
e0nb

|(φ− φfb)| (11.35)
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Problems

1. Consider the case of small band bending, in which |e0φ(x)| � kT everywhere.
Expand the exponential in Eq. (11.1), keeping terms up to first order, and
calculate the distribution of the potential.

2. (a) Prove that ncpv = NcNv exp(−Eg/kT ). (b) The effective densities of
states Nc and Nv are typically of the order of 1019 cm−3. Estimate the carrier
concentrations in an intrinsic semiconductor with a band gap of Eg = 1 eV,
assuming that the Fermi level lies at midgap.

3. Consider the interface between a semiconductor and an aqueous electrolyte
containing a redox system. Let the flat-band potential of the electrode be
Efb = 0.2 V and the equilibrium potential of the redox system φ0 = 0.5 V,
both versus SHE. Sketch the band bending when the interface is at equilib-
rium. Estimate the Fermi level of the semiconductor on the vacuum scale,
ignoring the effect of dipole potentials at the interface.
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12

Selected experimental results for
electron-transfer reactions

Innumerable experiments have been performed on both inner- and outer-
sphere electron-transfer reactions. We do not review them here, but present
a few results that are directly relevant to the theoretical issues raised in the
preceding chapters.

12.1 Validity of the Butler–Volmer equation

The Butler–Volmer equation (9.13) predicts that for |η| > kT/e0 a plot of the
logarithm of the current versus the applied potential (Tafel plot) should result
in a straight line, whose slope is determined by the transfer coefficient α. Be-
cause of the dual role of the transfer coefficient (see Sect. 9.2), it is important
to verify that the transfer coefficient obtained from a Tafel plot is independent
of temperature. We shall see later that proton- and ion-transfer reactions of-
ten give straight lines in Tafel plots, too, but the apparent transfer coefficient
obtained from these plots can depend on the temperature, indicating that
these reactions do not obey the Butler–Volmer law in the strict sense.

In order to test the temperature independence of the transfer coefficient,
Curtiss et al. [1] investigated the kinetics of the Fe2+/Fe3+ reaction on gold
in a pressurized aqueous solution of perchloric acid over a temperature range
from 25◦ to 75◦C. In the absence of trace impurities of chloride ions, this
reaction proceeds via an outer sphere mechanism with a low rate constant
(k0 ≈ 10−5 cm s−1 at room temperature). Figure 12.1 shows the slope of
their Tafel plots, d(ln i)/dη, as a function of the inverse temperature 1/T .
The Butler–Volmer equation predicts a straight line of slope αe0/k, which is
indeed observed. Over the investigated temperature range both the transfer
coefficient and the energy of activation are constant: α = 0.425 ± 0.01 and
Eact = 0.59± 0.01 eV at equilibrium, confirming the validity of the Butler–
Volmer equation in the region of low overpotentials, from which the Tafel
slopes were obtained.

W. Schmickler, E. Santos, Interfacial Electrochemistry, 2nd ed.,
DOI 10.1007/978-3-642-04937-8 12, c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 12.1. Tafel slope as a function of the reciprocal temperature; reprinted with
permission from [1].
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Fig. 12.2. Effective tunneling barrier for electron transfer in the presence of an
insulating film (schematic).

12.2 Curvature of Tafel plots

The phenomenological derivation of the Butler–Volmer equation is based on
a linear expansion of the Gibbs energy of activation with respect to the ap-
plied overpotential. At large overpotentials higher-order terms are expected to
contribute, and a Tafel plot should no longer be linear. The theory presented
in Chap. 10 makes a more detailed prediction: The current should become
constant at high overpotentials. It is not easy to investigate this experimen-
tally, because for large overpotentials the reaction is fast, and it is difficult to
separate transport from kinetic effects.
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Fig. 12.3. Rate constants for the reduction of [Mo(CN)8]
3− (upper curve) and

[W(CN)8]
3− (lower curve) on gold electrodes derivatized with a monolayer of

HO(CH2)16SH. The electrode potential is given with respect to a Ag/AgCl elec-
trode in saturated KCl. Data taken from [2].

The experiment is much easier to perform on electrodes coated with an
insulating film, through which the transferring electron must tunnel, so that
the reaction rate is decreased by several orders of magnitude. In a rough model
a layer of intervening molecules can be represented by a rectangular barrier
of a certain height Vb above the Fermi level, and a thickness L (see Fig. 12.2).
According to the Gamov formula,1 the probability W(L) for an electron with
an energy near the Fermi level to tunnel through the barrier is:

W (L) = exp
(
−2

~
√

2mVbL

)
= e−βL (12.1)

where m is the electronic mass. Even though the effective barrier height is
not well defined, a relation like Eq. (12.1) is often found to hold in practice,
with decay constants β of the order of 1 Å

−1
. The resulting reduction in the

reaction rate makes it possible to measure the current at high overpotentials
without running into the usual difficulty of transport limitations.

Miller and Grätzel [2] investigated a series of outer-sphere electron-transfer
reactions on gold electrodes coated with ω-hydroxy thiol layers about 20 Å
thick. They recorded current-potential curves over a range of 0.5–1 V, and
found the expected curvature in all cases investigated. As examples we show
the data for the reduction of [Mo(CN)6]3− and [W(CN)8]−3 in Fig. 12.3; in-
stead of the current these authors plotted the rate constants. The curves follow
the theoretical equations (10.14) and (10.15) quite well. By a fitting procedure
energy of reorganization can be obtained. In the case of [Mo(CN)6]3− one ob-
tains an energy of reorganization of about 0.4 eV. While this is a reasonable
1 A derivation of this formula can be found in any textbook on quantum mechanics,

e.g. Landau and Lifshitz [3].
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value, some caution is required in the quantitative interpretation of such data:
The effective barrier height Vb changes with the applied potential in a manner
that is difficult to assess.

12.3 Adiabatic electron-transfer reactions

When a reaction is adiabatic, the electron is transferred every time the sys-
tem crosses the reaction hypersurface. In this case the pre-exponential factor
is determined solely by the dynamics of the inner- and outer-sphere reorga-
nization. Consequently the reaction rate is independent of the strength of
the electronic interaction between the reactant and the metal. In particular,
the reaction rate should be independent of the nature of the metal, which
acts simply as an electron donor and acceptor. Almost by definition adiabatic
electron-transfer reactions are expected to be fast.

In order to investigate the dependence of a fast reaction on the nature
of the metal, Iwasita et al. [4, 5] and Santos et al. [6] measured the kinetics
of the [Ru(NH3)6]2+/3+ couple on six different metals. Since this reaction is
very fast, with rate constants of the order of 1 cm s−1, a turbulent pipe flow
method and the coulostatic method (see Chaps. 20 and 20, resp.) were used
to achieve rapid mass transport. The results are summarized in Table 12.1;
within the experimental accuracy both the rate constants and the transfer
coefficients are independent of the nature of the metal. This remains true if the
electrode surfaces are modified by metal atoms deposited at underpotential [5].
It should be noted that the metals investigated have quite different chemical
characteristics: Pt and Pd are transition metals; Au, Ag, Cu are sd metals; Hg
and the adsorbates Tl and Pb are sp metals. The rate constant on mercury
involved a greater error than the others because the mercury film employed
was stable only for a short time in the turbulent flow of the electrolyte. The
anodic and cathodic transfer coefficients do not quite add up to unity; this
was attributed to the slight curvature of the Tafel lines, an effect discussed
previously.

12.4 Transition between adiabatic and non-adiabatic
regime

As pointed out above, an intervening layer of adsorbates decreases the inter-
action between a redox couple and the electrode. Therefore, in the presence
of a thick layer we expect electron transfer to be non-adiabatic, while on bare
metals it is usually adiabatic. By systematically changing the thickness of the
layer, one can pass from one limit to the other.
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Metal kcm−1 s−1 α β

Pt 1.2 0.39 0.47
Pd 1.0 0.46 0.44
Au 1.0 0.42 0.57
Cu 1.2 – 0.51
Ag 1.2 0.36 0.55
Hg 0.7± 0.2 0.44 0.52
Pt/Tlad 1.3 0.44 0.49
Pt/Pbad 1.1 0.36 0.48
Au/Tlad 1.0 0.49 0.42

Table 12.1. Rate constants and transfer coefficients of the [Ru(NH3)6]
2+/3+ couple

on various metals [3, 4].

In the adiabatic case, the pre-exponential factor depends on the friction
in the sense of Kramer’s theory (see section 10.8 and Fig. 10.8). In the non-
adiabatic case it should be determined by the electronic interaction and hence
be independent of friction. These expectations were verified in experiments by
Khoshtariya et al. [7], who studied electron transfer between a gold electrode
and the Fe(CN)3−/4−

6 couple in the presence of n-alkanethiol films with various
numbers of n of methylene groups. At the same time, the viscosity of the
solution was varied by adding glucose to the solution. In general a higher
viscosity entails a higher friction, although there is no direct quantitative
relation between the two quantities.

The results are shown in Fig. 12.4. For a thick intervening layer the rate is
indeed independent of the viscosity, and falls off exponentially with the num-
ber of methylene units. In the absence of a layer, the rate decreases with the
viscosity; for a thin layer, the rate depends weakly on the viscosity, indicat-
ing an interaction that lies between the limits of adiabatic and non-adiabatic
transitions.

12.5 Electrochemical properties of SnO2

Tin oxide is a semiconductor with a wide band gap of Eg ≈ 3.7 eV, which can
easily be doped with oxygen vacancies and chlorine acting as donor states.
It is stable in aqueous solutions and hence a suitable material for n-type
semiconducting electrodes.

The interfacial capacity follows the Mott-Schottky equation (11.2) over a
wide range of potentials. Figure 12.5 shows a few examples for electrodes with
various amounts of doping [8]. The dielectric constant of SnO2 is ε ≈ 10; so
the donor concentration can be determined from the slopes of these plots.

By extrapolating the Mott–Schottky plots to the abscissa, the flat band
potential can be determined (see also Fig. 11.3). Its value depends on the
donor concentration, as can be seen from the following argument. Consider
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Fig. 12.5. Mott–Schottky plot for n-type SnO2 for various donor concentrations.
Data taken from [8].

two n-type semiconducting electrodes with different amounts of doping un-
der depletion conditions (see Fig. 12.6). At a given electrode potential both
electrodes have the same Fermi energy. The position of the band edges at the
interface is fixed by the potential of the electrolyte solution, and is hence also
the same for both electrodes. The position Ec of the conduction band depends
on the donor concentration. The electrode with the higher concentration has
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Fig. 12.6. Band bending at a SnO2 semiconductor for two different donor concen-
trations. The semiconductor in (a) has the higher donor concentration; hence the
Fermi level is closer to the conduction band, and the band bending is higher.

its conduction band closer in energy to the Fermi level, and thus shows a
stronger band bending, and a lower value of the flat band potential.

As is often the case for metal-oxide electrodes in contact with aqueous so-
lutions the surface of SnO2 is covered by hydroxyl groups, which can dissociate
according to the reactions:

SnOH 
 SnO− + H+ (12.2)
SnOH 
 Sn+ + OH− (12.3)

The equilibrium of these reactions depends on the pH of the solution. Chang-
ing the pH by one unit involves a change of 60 meV in the electrochemical
potential. Since the amount of Sn at the surface is fixed, the equilibrium is
shifted in such a way that the inner potential changes by 60 mV, which en-
tails a corresponding shift of the band bending and hence of the flat-band
potential.

Memming and Möllers [8] have investigated a series of redox reactions on
doped SnO2 electrodes. As is to be expected for an n-type semiconductor, most
reactions proceed via the conduction band – the oxygen-evolution reaction,
which occurs at high potentials and under strong depletion conditions, being
an exception. Figure 12.7 shows current-potential curves for the Fe2+/Fe3+

reaction for two different amounts of doping. For a low donor concentration
the current follows the theoretical equation (11.14) for a conduction-band
mechanism quite well. In particular the anodic current is almost constant for
η > kT/e0, while the cathodic branch shows a transfer coefficient of β ≈ 1.
However, on highly doped electrodes the current-potential curves are similar
to those observed on metals. In this case the space-charge regions at the
surface are so thin that the electrons can tunnel through them. Typically,
the total width of the barrier is still too large for tunneling, but the electron
can tunnel through the top of the barrier, as indicated in Fig. 12.8. So the
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position of the conduction band in the bulk is important. Figure 12.8 shows
the conditions for the anodic reaction: Raising the overpotential increases the
overlap between the density of reduced states and the conduction band and
hence the anodic current density.
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Fig. 12.7. Current-potential curves for 0.05 M Fe2+/Fe3+ in 0.5 M H2SO4 at
SnO2 electrodes with two different donor concentrations; (a) 5 × 1019 cm−3, (b)
5× 1017 cm−3. Data taken from [8].
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Fig. 12.8. Tunneling through the space-charge layer at equilibrium and for an
anodic overpotential. Note that the band bending is stronger after the application
of the overpotential. The arrows indicate electrons tunneling near the top of the
space-charge barrier.
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12.6 Photocurrents on WO3 electrodes

In Sect. 11.4.1 we gave an outline of the photoeffects caused by electron-hole
generation by photons with an energy above that of the band gap. An example
is shown in Fig. 12.9, where the photocurrent generated in n-type semicon-
ducting WO3 is plotted for three different wavelengths of the incident light
[9]. Note that Eq. (11.25) is obeyed better for larger wavelengths, for which
the absorption coefficient α is smaller, and the relation αLsc � 1 is better
fulfilled. In all cases considered Eq. (11.25) holds over a range of intermediate
potentials, and the corresponding straight lines extrapolate to the flat-band
potential.
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Fig. 12.9. Determination of the flat-band potential from the photocurrent. Data
taken from [9].

When the light penetrates far into the semiconductor, minority carriers
that are generated in the bulk can diffuse into the space-charge layer and
contribute to the photocurrent. In this case Eq. (11.23) must be replaced by
Gärtner’s equation [10]:

jp = e0I0

(
1−

exp
(
−αL0(φ− φfb)1/2

)
1 + αLp

)
(12.4)

where Lp is the diffusion length of the holes, which is the average distance that
a hole travels before it disappears by recombination or by being trapped in a
localized electronic state. A derivation is outlined in Problem 3. For αLp � 1
the contribution from the bulk is negligible, and Gärtner’s equation reduces
to Eq. (11.23).
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Problems

1. From the Gamov formula, calculate the probabilities for an electron and for
a proton to tunnel through barriers of 1 and 10 Å thickness with a height of
1 eV.

2. The anodic current density of a certain electron-transfer reaction on a film-
covered electrode is found to be given by:

ja = C exp

(
− 2

~
√

2mVbL

)
exp

αe0η

kT
(12.5)

where C is a constant. The barrier height depends on the overpotential
through:

Vb = V0(1 + ζη) (12.6)

where ζ is a constant. Assuming that ζη � 1, derive an expression for the
apparent transfer coefficent and show that it depends on temperature.

3. Gärtner’s equation can be derived by calculating that part of the photocur-
rent which comes from the bulk. The concentration p(x) of holes obeys the
following equation, which combines the familiar diffusion equation with a
source and a loss term:

∂p(x)

dt
= g(x) + D

∂2p(x)

∂x2
− p(x)

τ
(12.7)

where the source term g(x) is given by Eq. (12.5), and D is the diffusion
coefficient of the holes. The last term accounts for the loss of holes due to
recombination or trapping, and τ is the lifetime of the holes. We consider sta-
tionary conditions, so that ∂p/∂t = 0. The concentrations of holes far from
the surface is negligible; so limx→∞ p(x) = 0. If we make the simplifying
assumption that all carriers which reach the space-charge region are imme-
diately carried to the surface, the second boundary condition is p(Lsc) = 0.
Solve the differential equation using the ansatz:

p(x) = Ae−x/LD + Be−βx (12.8)

where A, B, and β are constants, and LD = (Dτ)1/2 is the diffusion length of
the holes. The bulk contribution to the photocurrent is given by the diffusion
current at x = Lsc:

jb
p = e0D

dp(x)

dx
(12.9)

When this is added to the contribution for the space-charge region given by
Eq. (11.23) one obtains Gärtner’s equation.
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13

Inner sphere and ion-transfer reactions

In outer sphere reactions, electron transfer occurs from a distance. Therefore
the interaction between reactant and electrode is comparatively weak, which
greatly simplifies the theoretical treatment. In this chapter we will consider
reactions in which the reactants come in close contact with the electrode, so
that chemical interactions become important.

13.1 Dependence on the electrode potential

We consider the transfer of an ion from the solution to the surface of a metal
electrode; we leave out protons for the moment, and defer their treatment to a
later chapter on electrocatalysis. Ion transfer is accompanied by a simultane-
ous discharge of the transferring particle by a fast, usually adiabatic, electron
transfer. The particle on the surface may be an adsorbate as in the reaction:

Cl−(sol) 
 Clad + e−(metal) (13.1)

In this case the discharge can be partial; that is, the adsorbate can carry
a partial charge, as discussed in Chap. 6. Alternatively the particle can be
incorporated into the electrode as in the deposition of a metal ion on an
electrode of the same composition, or in the formation of an alloy. An example
of the latter is the formation of an amalgam such as:

Zn2+ + 2e− 
 Zn(Hg) (13.2)

The reverse process is the transfer of a particle from the electrode surface
to the solution; usually the particle on the surface is uncharged or partially
charged, and is ionized during the transfer.

Ions are much heavier than electrons. While electrons can easily tunnel
through layers of solution 5–10 Å thick, and protons can tunnel over short
distances, up to a few tenths of an Ångstrom, ions do not tunnel at all at room
temperature. The transfer of an ion from the solution to a metal surface can

W. Schmickler, E. Santos, Interfacial Electrochemistry, 2nd ed.,
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++ +++

Fig. 13.1. Transfer of an ion from the solution onto the electrode surface
(schematic).

be viewed as the breaking up of the solvation cage and subsequent deposition,
the reverse process as the jumping of an ion from the surface into a preformed
favorable solvent configuration (see Fig. 13.1).

In simple cases the transfer of an ion obeys a slightly modified form of
the Butler–Volmer equation. Consider the transfer of an ion from the solution
to the electrode. As the ion approaches the electrode surface, it loses a part
of its solvation sphere, and it displaces solvent molecules from the surface;
consequently its Gibbs energy increases at first (see Fig. 13.2). When it gets
very close to the electrode, chemical interactions and image forces become
large, and the Gibbs energy decreases again and reaches its minimum at the
adsorption site. In addition, the ion experiences the electrostatic potential of
the double layer. The total Gibbs energy curve has a maximum at a distance
from the surface corresponding to about one diameter of the solvent molecules.

Gibbs energy

distance

adsorption
site

ze0!break up
of 

solvation cage

solution

Fig. 13.2. Gibbs energy for the transfer of an ion from the solution to the electrode
surface.
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Application of an overpotential η changes the Gibbs energy for the ion
transfer by an amount ze0η, where z is the charge number of the ion. In
addition, the double-layer field changes, and the structure of the solution
may also be modified. This results in a change of the energy of activation by
an amount αze0η, where α is the transfer coefficient familiar from electron-
transfer reactions.

These arguments are similar to those employed in the derivation of the
Butler–Volmer equation for electron-transfer reactions in Chap. 9. However,
here the reaction coordinate corresponds to the motion of the ion, while for
electron transfer it describes the reorganization of the solvent. For ion transfer
the Gibbs energy curves are less symmetric, and the transfer coefficient need
not be close to 1/2; it may also vary somewhat with temperature since the
structure of the solution changes.

The resulting potential dependence for the transfer of an ion to an ad-
sorbed state is given by:

v = k0c
s
ion exp

αzF (φ− φ00)
RT

− k′0θ exp
(
− (1− α)zF (φ− φ00)

RT

)
(13.3)

where csion is the concentration of the ion at the reaction site in the solution,
and θ the coverage of the adsorbate. Since each ion carries a charge ze0, the
concomitant current density is j = zFv. If the concentration of the ions is
unity, csion = c‡, and the electrode is at the standard equilibrium potential φ00,
the overall rate is zero by definition. Hence the exchange current density is:

j00 = zFk0c
‡ = zFk′0θ00 (13.4)

where θ00 is the coverage at the standard equilibrium potential. The same
equation can be used if the particle is incorporated into the surface of an
electrode composed of the same material; in this case θ = 1, formally.

If an adsorbed particle blocks a site for ion transfer, only a fraction (1− θ)
of the surface is available for the transfer, and we must replace Eq. (13.3) by:

j = zFk0c
s
ion(1− θ) exp

αzF (φ− φ00)
RT

−zFk′0θ exp
(
− (1− α)zF (φ− φ00)

RT

)
(13.5)

Thus, for a simple ion transfer a Butler–Volmer behaviour can be ex-
plained. But even in more complicated cases an empirical law of the form:

|η| = a+ b log10

(
|j|/j‡

)
(13.6)

is often found to hold both for high anodic and cathodic overpotentials; a
and b are constants, and j‡ is the unit current density, which is introduced to
make the argument of the logarithm dimensionless. This relation is known as
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Tafel’s law, and the coefficient b as the Tafel slope. It can be recast into the
form:

ja = j0 exp
αFη

RT
, jc = j0 exp

(
−βFη
RT

)
(13.7)

for the two directions, but the two apparent transfer coefficients α and β need
not be independent of temperature or even add up to unity. The experimental
results for ion-, and also for proton-transfer reactions depend critically on the
state and hence the preparation of the electrode surface, and different authors
sometimes get different results. Sometimes Tafel’s law is purely phenomeno-
logical. Many mechanisms may give rise to a rate that depends exponentially
on the change in the reaction Gibbs energy.

13.2 Rate-determining step

Many ion-transfer reactions involve two or more steps. Often one of these
steps proceeds more slowly than the others, and if the reaction proceeds under
stationary conditions, this step determines the overall rate. We will elaborate
this concept of a rate-determining step further. For this purpose consider a
reaction taking place according to the general scheme:

ν1A1 +X1 
 µ2B2 +X2

ν2A2 +X2 
 µ3B3 +X3

up to
νn−1An−1 +Xn−1 
 µnBn +Xn (13.8)

This is a series of reactions, and the substances Xi (i = 2, . . . , n− 1) are in-
termediates that are generated in one step and consumed in the next. The
individual steps can be electrochemical or chemical reactions, or even mass-
transport steps like the diffusion of a species from the bulk of the solution to
the interface. The overall reaction is:

X1 +
n−1∑
i=1

νiAi 
 Xn +
n∑

i=2

µiBi (13.9)

When the reaction is stationary, all steps proceed at the same rate v, which
is also the rate of the overall reaction. We denote by vi and v−i the rates at
which the forward and backward reactions proceed. Then:

v = vi − v−i (13.10)

Let step number j be rate determining; that is, its forward and backward rates
are much smaller than those of the other steps:

vj , v−j � vi, v−i, for i 6= j (13.11)
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Since v = vj−v−j , the overall rate is also much slower than those of the other
steps:

v � vi, v−i, for i 6= j (13.12)

so that all steps but the rate-determining one are in quasi-equilibrium:

vi ≈ v−i, for i 6= j (13.13)

Let ki, k−i (i = 1, . . . , n− 1) denote the rate constants of the individual steps.
The overall rate is then:

v = kj [Xj ][Aj ]νj − k−j [Xj+1][Bj+1]µj+1 (13.14)

where the square brackets denote concentrations. Since the other reactions are
in equilibrium, the concentrations [Xj ] and [Xj+1] can be calculated from the
equilibrium constants Ki = ki/k−i. So the overall rate depends only on the
rate constants of the rate-determining step and on the equilibrium constants
of the other steps; the rate constants ki, k−i (i 6= j) do not affect the reaction
rate. This remains true if the reaction scheme involves parallel steps, but the
rate-determining step can have no parallel step that is faster.

If one or more reaction steps involve charge transfer through the interface,
their rates depend strongly on the applied potential. As the latter is varied,
different steps may become rate determining. We will encounter examples in
the remainder of this chapter.

13.3 Oxygen reduction

The electrochemistry of oxygen is of great technological importance. Oxygen
reduction is used for energy generation in fuel cells and batteries, and it also
plays a major role in corrosion. Oxygen evolution occurs in water electrolysis
and a few other industrial processes. Unfortunately, both oxygen evolution
and reduction are slow processes, and require a sizable overvoltage, of the
order of several 100 mV, to proceed. This makes any fuel cell using oxygen
inefficient. Thus, oxygen/hydrogen fuel cells deliver an open circuit voltage of
the order of 0.8 V instead of the theoretical thermodynamic value of 1.2 V,
and this cell voltage has not improved much since the invention of the fuel
cell by Grove in 1830. The discovery of good and cheap catalysts for oxygen
reduction is of paramount importance, if fuel cells are to play an important
part in energy conversion.

The complete reduction of O2 involves four electrons; in acid solutions the
overall reaction is:

O2 + 4H+ + 4e− 
 2H2O (13.15)

and in alkaline solutions:

O2 + 2H2O + 4e− 
 4OH− (13.16)
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Besides the complete reduction there is a competing process that stops at
hydrogen peroxide. In acid solutions. the overall reaction is:

O2 + 2H+ + 2e− 
 H2O2 (13.17)

The overall reaction can be represented by the following scheme:

O2 H2O

H2O2 H2O

+4e

+2e

+2e

A direct pathway involving four electrons competes with an indirect pathway
via H2O2. The intermediate H2O2 may escape into the solution or decompose
catalytically into H2O and O2 on the electrode surface, so that the overall
efficiency is greatly reduced.

The simultaneous transfer of four, or even of two, electrons is unlikely, and
the overall reaction must contain several steps. A fair number of mechanisms
have been proposed, but the experimental situation is quite unclear. Even for
oxygen reduction on platinum in acid solutions, which is the best investigated
case, there is disagreement about such basic facts as the value of the transfer
coefficient or even the reaction order with respect to oxygen. The reaction
is very sensitive to the structure of the electrode surface. For example, on
Au(111) the reaction only delivers hydrogen peroxide, while on Au(100) the
full reduction to water can be observed under favorable circumstances. Fur-
ther, the reaction generally does not take place at a bare metal surface, but
at an electrode that is at least partially covered with on oxygen species. Thus,
at potentials above 0.75 V platinum is covered by an oxygen species. The first
step in this process is probably:

H2O → OHad + H+ + e− (13.18)

The adsorbed OH seems to undergo further transformation at higher poten-
tials.

The presence of oxygen species has a great effect on oxygen reduction.
Since the exact state of the surface depends on the preparation and on oper-
ating conditions, it is not surprising that the experimental situation is con-
tradictory. Because of the absence of a clear picture, we limit ourselves to a
few observations.

On most metals, the rate-determining step seems to be the transfer of the
first electron, which can occur either by:

O2 + e− → O−
2 (13.19)
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or
O2 + e− + H+ → O2Had (13.20)

In the first case, the O−
2 ion can only be a short-lived adsorbed intermediate,

since it is not stable in the bulk solution. Both mechanisms result in a transfer
coefficient of about 1/2 and a reaction order of unity with respect to oxygen,
which are often, but not always, observed. Both initial steps are compatible
with a variety of reaction sequences.

The development of DFT, and the rapid increase in computing power
in recent years, has made it possible to investigate the thermodynamics of
each step in a postulated sequence, provided it does not lead to a charged
species like O−

2 , which is difficult to treat because of its strong interaction
with the solvent. There is much activity in this area, and it is too early to
pass judgement on any existing work and include it in a textbook. But in order
to give an idea of what can be done, we take a brief look at a recent work by
Nørskov et al. [1], which is presently much discussed. One of the mechanisms
investigated by these authors is:

1
2
O2 → Oad (13.21)

Oad + H+ + e− → HOad (13.22)
HOad + H+ + e− → H2O (13.23)

which is termed the dissociative mechanism because of the first step. Each
step is a well-defined chemical reaction; the electrode potential enters into
the energy of the electrons transferred. The authors calculated the reaction
free energies – but not the activation energies – of these steps on a variety of
metals and concluded, that generally the desorption of an adsorbed oxygen
or hydroxyl limits the overall rate. This contradicts the findings that the first
electron transfer according to Eq. (13.19) or (13.20) determines the rate. An-
other difficulty is that the energies of the intermediate states depend strongly
on the state of the surface, especially on the presence of other adsorbates.
Nevertheless, the authors explain the overall trends quite well. In any case,
we believe that DFT-based calculations will play an important role in under-
standing oxygen reduction.

13.4 Chlorine evolution

In many ways the evolution of chlorine is the anodic analog of hydrogen evo-
lution, which we will discuss in Chap. 14. The overall reaction is:

2Cl− 
 Cl2 + 2e− (13.24)

The standard equilibrium potential is 1.358 V vs. SHE and is thus a little
higher than that for the oxygen reaction (1.28 V vs. SHE), so in aqueous solu-
tions the two reactions generally proceed simultaneously. Chlorine production



152 13 Inner sphere and ion-transfer reactions

is a process of great industrial importance, and it is crucial to suppress oxy-
gen evolution; in practice current efficiencies of 98% for chlorine evolution
are achieved, because oxygen evolution is a slow process with a low exchange
current density. In addition, the presence of chloride inhibits the formation of
oxide films.
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Fig. 13.3. Current-potential curves for chloride evolution on platinum from aqueous
solutions. Data taken from [2].

The two main reaction mechanisms are analogous to the mechanisms for
hydrogen evolution. The Volmer–Tafel mechanism is:

Cl−(sol) 
 Clad + e− (13.25)
2 Clad 
 Cl2(sol) (13.26)

while the Volmer–Heyrovsky mechanism corresponds to:

Cl−(sol) 
 Clad + e− (13.27)
Clad + Cl− 
 Cl2 + e− (13.28)

Which mechanism is observed in a particular situation depends on the elec-
trode material. The reaction is well understood on platinum [2]. Usually plat-
inum is covered with OH radicals at a potential of about 0.8 V vs. SHE,
and at higher potentials an oxide film is formed. Though the formation of
the oxide film is somewhat inhibited in the presence of Cl−, a thin film is
present in the potential region where chlorine is evolved. The presence of the
film actually seems to catalyze the reaction, probably because it prevents the
formation of a strong adsorption bond between Cl and Pt, which would slow
down the desorption. At high overpotentials the current becomes constant (see
Fig. 13.3); this indicates that the reaction proceeds according to the scheme of
Eqs. (13.25) and (13.26) (Volmer–Tafel mechanism), and chemical desorption
is the rate-determining step at high potentials.
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Technical electrodes usually consist of a mixture of RuO2 and TiO2 plus a
few additives. They are called dimensionally stable anodes because they do not
corrode during the process, which was a problem with older materials. These
two substances have the same rutile structure with similar lattice constants,
but RuO2 shows metallic conductivity, while pure TiO2 is an insulator. The
reaction mechanism on these electrodes has not yet been established; the
experimental results are not compatible with either of the two mechanisms
discussed above [2].

13.5 Oxidation of small organic molecules: methanol and
carbon monoxide

The electrooxidation of small organic molecules is not as simple as one might
assume. We choose as examples the oxidation of methanol and of carbon
monoxide, because the former is a potential fuel for energy conversion, and
the latter is involved in the poisoning of electrocatalyst.

Methanol is a small organic molecule easy to obtain, but its dehydrogena-
tion involves several steps as can be appreciated from the mechanism proposed
by Bagotzki [3].

The first studies of the electrochemical oxidation of methanol were carried
out by Müller et al. [4] in the nineteen twenties. Since that time, methanol
has been considered as a promising candidate for fuel cells [5]. Because of
its importance, the field is well reviewed in the literature (see for example,
[3, 6, 7]). Methanol has a high specific energy capacity; its complete oxidation
to CO2 delivers six electrons, so that it should be possible to obtain about
0.85 Ah/g of energy:

CH3OH + H2O → CO2 + 6H+ + 6e− (13.29)

The thermodynamic potential is 0.02V, a value very close to that of the hy-
drogen oxidation reaction. In a fuel cell with the oxygen reduction as cathodic
reaction, the overall process is:

CH3OH + 3/2O2 → CO2 + 2H2O (13.30)
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This yields a theoretical potential for the cell of 1.21 V.
However, methanol oxidation is relatively slow, even at highly active plat-

inum electrodes. It is a complicated reaction with several steps. The forma-
tion of formic acid and formaldehyde have been detected. During the 1970s,
Capon and Parsons [8] proposed a dual mechanism for the oxidation of small
molecules with active and with poisoning intermediates. The direct pathway
involves weakly adsorbed species, while during the indirect pathway a strongly
adsorbed intermediate CO is formed, which inhibits further methanol oxida-
tion. Thus, the catalysis of CO oxidation also becomes an important topic.
In addition, it has been proposed [3] that under certain conditions, a possible
weakly adsorbed intermediate COHads can age and transform to the inhibiting
CO, too.

In order to investigate the electrooxidation of the strongly adsorbed poison,
it is necessary to separate this process from those corresponding to the oxida-
tion of the reactant diffusing from the bulk. In the seventies, Stonehart and
Kohlmayr [9] employed a flux cell, which allows replacing, after the formation
of the poisoning intermediate, the solution containing the active reactant by a
fresh nitrogen saturated electrolyte. Then the electrooxidation of this species
can be measured by a potentiostatic pulse or a potential sweep without any
diffusional contribution. This procedure is more effective than removing the
electrode from a solution and inserting into another cell. The potential is
maintained under control during the whole experiment, and changes are also
avoided in the adsorbate, since partial desorption and oxidation caused by
contact with air are excluded. This simple technique was forgotten and again
recovered in the nineteeneighties [10].

An interesting technique complementary to electrochemical measurements
to investigate the nature of the intermediates is Differential Electrochemical
Mass Spectrometry (DEMS) developed in the eighties at the University of
Bonn [11, 12]. The mass signal of different products coming from the oxidation
reaction can be followed on-line during the electrochemical process. The first
study using isotope-marked material (13CH3OH and 13CO) was undertaken by
Willsau and Heitbaum [13]. Other similar experiments in the group of Vielstich
[14], using a flow cell to separate the contribution of the strongly adsorbed
intermediate from the oxidation of methanol diffusing from the bulk confirmed
that the adsorbate does not contain any methylic hydrogen. DEMS has been
also employed to investigate the oxidation of CO. Here we show an example
which illustrates the sensitivity of this method [15]. Figure 13.4 shows the
current and the mass signal corresponding to the production of CO2 measured
simultaneously during the electrooxidation of CO adsorbed at 0.05 vs. RHE
at Pt in 0.05 M HClO4. The panels on the left show a potentiodynamic, those
on the right a potentiostatic experiment. Although CO is a simple molecule,
the results exhibit a multiplicity of processes. Particularly surprising is the
correspondence between the decay at the beginning of the current transient
with the detection of CO2. One would have expected that at short times the
current should mainly contain contributions due to double layer charging and
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Fig. 13.4. Current (upper panels) and DEMS (lower panel) signals during CO oxida-
tion. The panels on the left show potentiodynamic, those on the right potentiostatic
experiments. Data taken from [15].

other secondary processes like the oxidation of traces of hydrogen formed at
lower potentials. However, this process corresponds to the first broad peak
observed at the potentiodynamic scan, as demonstrated by other experiment
[15]. If the monolayer of CO is previously partially oxidized, the first peak at
the scan and the decay at the mass transient disappear, while a current decay
corresponding to the other processes mentioned above is still observed. The
other conclusion that we can draw is that all processes involve the complete
oxidation of the adsorbate to CO2. Thus, we can disregard the assumption
that the multiplicity is due to the formation of intermediate products such as
formic acid or formaldehyde.

There is general agreement that the reaction steps involved in the oxidation
of CO are those proposed by Gilman in the 1960s [16]. The oxidation reaction
occurs between an adsorbed CO species and a surface-bonded OH species:

COads + OHads → CO2 + H+ + e− (13.31)

The multiplicity has been also attributed to the oxidation of CO adsorbed
at different types of surface sites, and it strongly depends on the electrolyte
composition (especially the type of anions and pH). The introduction of well-
defined electrode surfaces by using single crystals during the eighties was the
next milestone in order to understand the oxidation process of small molecules.
We show here the first current transients obtained by a potential step to 0.62 V
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Fig. 13.5. Current transients for the oxidation of CO in 0.05 M HClO4 ; first CO
was adsorbed at 0.05 V vs. RHE, and then the potential was stepped to 0.62 V.

for the oxidation of CO previously adsorbed at platinum single crystal elec-
trodes (see Fig. 13.5) at 0.05 V vs. RHE in 0.05 M HClO4 [15]. Although at
that time the quality of single crystals was still not perfect, the results show
a clear difference between both surfaces. The asymmetry and the shoulder in
the transients peaks can be attributed to the presence of defects. In a sub-
sequent work [17] the authors performed a systematic analysis of the effect
on the transient response by the introduction of perturbations in the surface.
They observed an acceleration of the oxidation process; in addition the mul-
tiple oxidative behavior becomes more complex when the perturbations are
larger. Later, Lai et al. [7] investigated the CO oxidation on stepped surfaces
with (111) terraces of different sizes. They found that the rate of oxidation is
proportional to the step density, and concluded that it takes place exclusively
at the steps. They suggested that the mobility of CO on the (111) terraces
must be high.

There is some disagreement about the mechanism for CO electrooxidation.
Several authors describe the transients behavior on the basis of the Langmuir–
Hinshelwood mechanism [7], while others [18] suggest a nucleation and growth
mechanism of the oxide islands in the CO monolayer.

Returning to the electrooxidation of methanol, an important contribution
to find a good catalyst was the introduction of bimetallic electrodes, particu-
larly platinum–ruthenium system. Today, this synergy effect is the subject of
many investigations (see, for example, [19]). An enhancement of the oxidation
rate can occur if a modifier induces a decrease of the poisoning branch. This
effect can be produced by different mechanisms: a third-body effect (surface
sites are blocked for the poison), a bifunctional mechanism or a modification of
the electronic properties. The bifunctional effect is believed to occur for the ox-
idation of adsorbed CO on Ru-modified Pt surfaces: adsorbed CO reacts with
the oxygen containing species OHads adsorbed on neighboring sites, which is
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more abundant on Ru (or adsorbed at lower potentials on Ru) than on Pt. In
the case of methanol (reacting to adsorbed CO) it is generally accepted that
3–4 Pt atoms are necessary for the accommodation of the methanol molecule.
This is the reason for the inactivity of PtSn surfaces for methanol oxidation
and also for the fact that Pt-Ru alloys with a low Ru content are best for
methanol oxidation.

13.6 Comparison of ion- and electron-transfer reactions

At a first glance ion- and electron-transfer reactions seem to have little in
common. In an ion-transfer reaction the reacting particle is transferred from
the bulk of the solution through the solvent side of the double layer right
onto the electrode surface, where it is adsorbed or incorporated into the elec-
trode, or undergoes further reactions such as recombination. In contrast, in
an outer-sphere electron-transfer reaction the reactant approaches the elec-
trode up to a distance of a few Ångstroms, and exchanges an electron without
penetrating into the double layer. In spite of these differences both types of
reactions follow the same phenomenological Butler–Volmer law, at least for
small overpotentials (i.e. up to a few 100 mV).

However, a closer inspection of the experimental data reveals several dif-
ferences. For ion-transfer reactions the transfer coefficient α can take on any
value between zero and one, and varies with temperature in many cases. For
outer-sphere electron-transfer reactions the transfer coefficient is always close
to 1/2, and is independent of temperature. The behavior of electron-transfer
reactions could be explained by the theory presented in Chap. 10, but this the-
ory – at least in the form we have presented it – does not apply to ion transfer.
It can, in fact, be extended into a model that encompasses both types of re-
actions [20]; proton transfer reactions are special and will be treated in Chap.
14.

To construct such a unified model, we combine the theory of adiabatic elec-
tron transfer with the concept of desolvation, and calculate two-dimensional
adiabatic free energy surfaces as a function of the solvent coordinate q and
the distance from the surface. The details of such calculations are beyond the
scope of this book, but the principles are easy to understand. We shall discuss
three examples: an outer-sphere electron transfer, the adsorption of a simple
ion, and the deposition of a divalent metal ion. The surfaces we present are
by no means exact, but are sufficiently accurate to explain the qualitative
differences and the trends.

With these preparations we can understand potential-energy surfaces that
have been calculated for simple electron- and ion-transfer reactions. Fig-
ure 13.6 shows a free-energy surface for the Fe2+/Fe3+ reaction as a function
of both the distance x from the surface and the generalized solvent coordinate
q. The calculations were performed for the equilibrium potential. At distances
far from the electrode surface we observe two valleys, one for q = −2, which
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Fig. 13.6. Adiabatic free-energy surface for the Fe2+/Fe3+ reaction. Close to the
electrode surface the energy has been cut off at 1.5 eV for clarity; all energies are
relative. The reaction path is indicated by the dashed white line.

corresponds to the Fe2+, and one for q = −3 for the Fe3+. These two valleys
are separated by an energy barrier with a height of about 0.25 eV. The energy
of reorganization of this couple is λ ≈ 1 eV, so the barrier height is λ/4 in
accord with the model presented in Chap. 10. If we take a cross-section at a
constant distance x from the metal we obtain a free-energy curve similar to
the one shown in Fig. 10.4 for the case of equilibrium. If we let the particle
approach the electrode surface there is at first little change in the potential-
energy surface until we reach the region in which the particle loses a part of
its solvation sphere. Since the energies of solvation of the ions are very large
(about 19.8 eV for Fe2+ and 50 eV for Fe3+) this requires a large energy, and
the potential-energy surface rises sharply by several electron volts in this re-
gion. In fact, this rise is so sharp that we had to cut off the energy so that the
ridge between the two ions remains visible. Right at the surface the particle
is adsorbed, and another local minimum occurs in this region.

In this situation it is highly unlikely that an Fe2+ or Fe3+ will be adsorbed
on the electrode surface, since it would have to overcome a huge energy bar-
rier. It is much easier for these particles to cross the much smaller energy
barrier (about 0.25 eV) separating the reduced and the oxidized states by ex-
changing an electron with the metal. However, we have to bear in mind that
the potential-energy surface that is shown corresponds to an adiabatic reac-
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tion. In reality the reaction will be adiabatic only at short distances x from
the metal surface, where the electronic interaction with the metal is strong.
At larger separations the reaction will be nonadiabatic: When the particle
reaches the ridge it will cross over into the other valley only with a small
probability, which decreases exponentially with the distance x.

Therefore the electron-transfer reaction from Fe2+ to Fe3+ proceeds along
a reaction path like the one indicated in the figure. Note that the electron-
transfer step itself occurs practically at a constant distance from the metal
surface; the reaction coordinate is given by the solvent coordinate. This is the
reason why the treatment presented in Chap. 10 is valid.
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Fig. 13.7. Adiabatic free-energy surface for the adsorption of an iodide ion on
Pt(100) at the pzc. The white line shows a possible reaction path.

As an example for an ion transfer reaction we consider the adsorption of
an iodide ion on a Pt(100) surface. Figure 13.7 shows the potential-energy
surface at the pzc. Far from the electrode we observe two valleys, one for
the ion and one for the atom; both are separated by an energy barrier. As
expected the energy of the ion is substantially lower than that of the atom
(by about 0.65 V). Since the energy of the atom is so much higher it plays
no role in the transfer of the ion, so we focus our attention on the latter.
As the ion approaches the electrode surface it has to overcome an energy
barrier in the region where it loses a part of its solvation sphere. Since the
energy of solvation of the I− ion is fairly small (about 2.5 eV) this energy
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barrier is comparatively low. Right on the electrode surface we observe another
minimum, which corresponds to the adsorbed state. The reaction path for the
ion transfer is indicated by the arrow in the figure. It is mainly directed
towards the electrode surface, so the reaction coordinate is the distance of the
ion from the electrode surface.

This potential-energy surface will change when the electrode potential is
varied; consequently the energy of activation will change, too. These changes
will depend on the structure of the double layer, so we cannot predict the value
of the transfer coefficient α unless we have a detailed model for the distribution
of the potential in the double layer. There is, however, no particular reason
why α should be close to 1/2. Also, a temperature dependence of the transfer
coefficient is not surprising since the structure of the double layer changes
with temperature.
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Fig. 13.8. Adiabatic free-energy surface for the deposition of a Zn2+ ion on mercury.

The behavior that we observed for the iodide ion is typical for the transfer
of a univalent ion. For multivalent ions the situation is more complicated.
Depending on the system under consideration and on the electrode potential
a multivalent ion can either be transferred in one step, or its charge is first
reduced by an electron-transfer reaction. As an example of the latter case we
consider the deposition of a Zn2+ ion on mercury to form a zinc amalgam
(Fig. 13.8). At large distances from the surface there are three valleys: a deep
valley centered at q = −2 that corresponds to the Zn2+ ion, anther valley,
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Electron transfer Ion transfer

Reaction coordinate Solvent coordinate Distance from surface
Transfer coefficient α ≈ 1/2 0 < α < 1

Independent of T May depend on T

Activation energy Solvent reorganization Solvent displacement

Table 13.1. Comparison of electron- and ion-transfer reactions

not so deep, representing the zinc atom, and in between there is a narrow,
shallow valley for the Zn+ ion. Remember that the passage from one valley
to the other can occur only at short distances from the electrode. Because
of the high energy of solvation of the doubly charged ion, the most favorable
reaction path is via the valley for the Zn+ ion, which is thus a short-lived
intermediate.

Table 13.1 summarizes the different behavior of ion-transfer and electron-
transfer reactions.

Problems

1. Consider a reaction consisting of an adsorption and an electron-transfer step:

A 
 Aad (13.32)

Aad 
 A+ + e− (13.33)

We ignore complications due to transport and assume that the surface con-
centrations of A and A+ are constant. Let k1 and k−1 denote the forward and
backward rate constants of the adsorption reaction, so that the adsorption
rate is given by:

vad = k1(1− θ)− k−1θ (13.34)

We assume that k1 and k−1 are independent of the coverage and the electrode
potential. We further assume that the rate of the electron-transfer step obeys
a Butler–Volmer equation of the form:

vet = k+θ exp
αFη

RT
− k−(1− θ) exp

(
− (1− α)Fη

RT

)
(13.35)

where k+ and k− are constant. We have included the concentration of A+ in
k− so that k+ and k− have the same dimensions. Assume that the reaction
proceeds under stationary conditions. (a) Calculate the coverage at equi-
librium and the exchange current density. (b) Derive the relation between
current density and overpotential. (c) For small deviations from equilibrium
derive a linear relation between current density and overpotential. (d) De-
rive simplified relations between current and potential for the cases where
either the adsorption or the electron-transfer step are rate determining for
all overpotentials, and sketch the corresponding Tafel plots.
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2. In Chap. 4 we derived an expression for the work function of a simple redox
reaction. Devise a suitable cycle to define the work function of the hydrogen
evolution reaction. Check that it gives the correct order of magnitude for the
absolute potential of this reaction.
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14

Hydrogen reaction and electrocatalysis

14.1 Hydrogen evolution – general remarks

The hydrogen evolution reaction is the most studied electrode process. Indeed,
it has been suggested that focusing on hydrogen evolution has delayed the
development of modern electrochemistry by years, if not decades [1]. However,
in spite of all these efforts, the experimental data obtained by various groups
do not agree all that well, and differences by one or two orders of magnitude
for the rate constants are not unusual. In contrast to outer sphere reactions,
where electron transfer occurs from a distance of a few Ångstroms, hydrogen
evolution takes place right on the electrode surface, and is therefore highly
sensitive to the state of the surface. Also, on transition metals like Pt or Ir
the reaction is very fast, and hence difficult to investigate over a larger range
of potentials.

The mechanism of hydrogen evolution and oxidation is simple. As we shall
discuss below, there are only two different pathways, each consisting of two
steps. Nevertheless, theoretical efforts at understanding the catalysis of this
reaction were quite unsuccessful for a long time, and only in recent years we
have begun to understand what makes a good catalyst. We shall consider it
as a prototype to explain, how the rate of electron transfer depends on the
electronic properties of the electrode.

It is instructive to consider the energetics involved in the reaction. If we
start with the intact molecule H2, we first have to break the bond. In the
vacuum, the energy required for the breaking of the bond is about 4.5 eV.
Taking the two electrons away to produce the protons requires twice the energy
of ionization, 27.21 eV. The two electrons are transferred to the metal; in
this transfer we gain twice the work function, i.e. an amount of the order
of 9–11 eV. The remaining two protons are solvated. In water, the energy
of hydration of the proton is about 11.5 eV – because its small size of the
proton, it is the most strongly solvated ion. At the equilibrium potential, the
potential drop between the metal and the solution balances the energy. From
the large energies involved, it is obvious, that the hydrogen reaction cannot

W. Schmickler, E. Santos, Interfacial Electrochemistry, 2nd ed.,
DOI 10.1007/978-3-642-04937-8 14, c© Springer-Verlag Berlin Heidelberg 2010
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occur without catalysis: breaking a bond with an energy of 4.5 eV, or stripping
away such a strongly attached solvation shell, requires substantial help from
the metal.

14.2 Reaction mechanism

The overall reaction in acid media is:

2H+ + 2e− 
 H2 (14.1)

It is understood that the proton does not exist naked in the solution; the Zun-
del ion is the most likely precursor [2]. In alkaline media it proceeds according
to:

2H2O + 2e− 
 H2 + 2OH− (14.2)

In neutral solutions both reactions can occur.
We discuss acid solutions in greater detail. Two different mechanisms have

been established. The first is the Volmer–Tafel mechanism, which consists of
a proton-transfer step followed by a chemical recombination reaction:

H+ + e− 
 Had (Volmer reaction) (14.3)
2Had 
 H2 (Tafel reaction) (14.4)

In the Volmer–Heyrovsky mechanism the second step also involves a charge
transfer and is sometimes called electrochemical desorption:

H+ + e− 
 Had (Volmer reaction) (14.5)
Had + H+ + e− 
 H2 (Heyrovsky reaction) (14.6)

On the sp metal like Hg and Cd the reaction seems to proceed via the
Volmer–Tafel mechanism, with the Volmer reaction determining the rate. The
reason is that the adsorption of the proton is endergonic on these metals, and
the transfer of the proton with the entailing loss of solvation is not strongly
catalyzed by the metal, effects which we shall discuss in greater detail below.
On Ag and Cu, the second step is the Heyrowsky reaction. If the reaction
is not too fast, the two mechanisms can be readily distinguished by their
current transients [3]: When the (absolute value) of the current rises in time,
the reaction proceeds via the Volmer–Heyrowsky mechanism, since at first a
certain coverage with adsorbed hydrogen has be built up before the second
electron can be transferred (see Fig. 14.1). In contrast, a decreasing current
indicates a Tafel step, since the adsorbed hydrogen blocks sites for the Volmer
step, and the recombination does not contribute to the current. On the d
metals, both mechanisms can occur.
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Fig. 14.1. Current transients for hydrogen evolution on Ag(100) and Ag(111) for
an overpotential of −0.65 V vs. SHE in a solution of 0.1 M H2SO4 [4]; by convention,
currents and overpotential for hydrogen evolution are negative. The rising absolute
value of the current indicates the Heyrowsky mechanism.

14.3 Volcano plot

In the absence of a theory or model, it is natural to look for correlations
in order to obtain at least a qualitative understanding. In the case of the
hydrogen evolution reaction, more than ten different correlations [5] between
the reaction rate and properties of the electrode were tried with limited success
– amongst others, with the work function and with the presence of unfilled
d orbitals. The best known of these correlations, and the only one that has
survived, is the so-called volcano plot of the reaction rate, or the standard
exchange current density, versus the energy of adsorption of a hydrogen atom
on the electrode. Fig. 14.2 shows the version compiled by Trasatti [6]. Since at
the time of the compilation reliable values for the adsorption energies were not
available, the energy EM−H for hydride formation was taken instead. Note that
in this plot the formation energies are taken as positive, so that high values
correspond to a high gain in energy.

Before discussion the data, let us look at the rationale behind this kind of
plot, which is known as Sabatier’s principle [7]. For high adsorption energies
(low EM−H), the Volmer reaction is energetically uphill, which is unfavor-
able. With decreasing adsorption energy – increasing EM−H – less energy is
needed for the adsorption, and the reaction becomes faster. The optimum
value should be close to a free energy of adsorption of zero. When the adsorp-
tion energy becomes more and more negative, the rate of the Volmer reaction
still increases, but in the second step the energy of the initial state becomes
lower and lower. So a stronger adsorption bond has to be broken either in the
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oxide
covered

Fig. 14.2. Trasatti’s version of the volcano plot for the hydrogen evolution reaction.
Data taken from [6]

Heyrowski or the Tafel step, and thus the second step becomes slower and
determines the rate [8, 9].

However, a look at the experimental evidence shows that things are not
so simple. At first, with increasing EM−H, the rate does rise; there is also a
descending branch, but under electrochemical conditions all metals on this
branch are covered by an oxide film, whose presence impedes the reaction.
This was not known at the time that this plot was proposed. If we leave the
oxide-covered metals out, there is no evidence for a volcano plot, but only for
the increasing branch.

With the advent of quantum chemical methods, in particular of DFT,
it has become possible to calculate the free energy ∆Gad of adsorption of
the proton on the hydrogen scale, i.e. at the equilibrium potential, with an
accuracy of about ±0.1 eV. A modern version of the volcano plot, compiled
by Nørskov et al. and with additions from ourselves, is shown in Fig. 14.3;
the adsorption energies have been calculated in the absence of water, but
similar calculations with water have shown that the effect of water on the
adsorption is small. For gold and silver, there is a fair spread of experimental
data; in these cases the extreme values have been indicated. On both metals,
the higher values are more trustworthy than the lower ones, because they
have been obtained on flame-annealed single crystals. Also, the rate varies
somewhat between different single crystal planes of the same metal. Since all
sp metals are bad catalysts, for this group the adsorption energy has only
been calculated for Cd. Just as in Trasatti’s plot, there is an overall tendency
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Fig. 14.3. Modern version of the volcano plot for the hydrogen evolution reaction.
To ease the comparison with Fig. 14.2 the negative of the free energy of adsorption,
−∆Gad, has been plotted on the x axis. Most data have been taken from [10]

for the rate to increase with decreasing ∆Gad, but there is little evidence for
a decreasing branch. Only cobalt and nickel have a low, negative energy of
adsorption and small reaction rates. Note, that in Trasatti’s plot these two
elements lie on the ascending branch! Rhenium has an ever lower adsorption
energy than Co and Ni, but the rate is about as high as on Pt.

There are only three metal on this plot with a highly exergonic adsorption
energy: Ni, Co, Re. All other metals which adsorb hydrogen strongly are
covered by oxide or hydroxide films under experimental conditions. So why
is Re such a good catalyst, while Co and Ni are so bad? The answer is, that
on transition metals with extended orbitals, like Pt, and Re, the strongly
adsorbed hydrogen species does not participate in the reaction [11]. There
is a second, weakly adsorbed species with a small positive value of ∆Gad,
which acts as the intermediate. We shall discuss this below in more detail. In
contrast, Co and Ni have compact orbitals, and the weakly adsorbed species
has an adsorption energy of about 1 eV and is thus highly unfavorable (Santos
et al., Unpublished data). Therefore, the value of ∆Gad plotted on the x axis
is relevant for Co and Ni, but not for Re, and not for Pt either.

We conclude that the idea underlying the volcano plot, Sabatier’s principle,
is sound, but there are complicating issues, such as the existence of several
adsorption states, that one has to consider. Also, in the case of the coinage
metals there is a compensating effect which makes them have roughly the
same rates. We shall return to this point below.
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14.4 Hydrogen evolution on Pt(111)

On the transition metals, hydrogen evolution is more complicated than on the
sp and the coin metals. The rate determining step may change with potential
or with the crystal face, and more than one species of adsorbed hydrogen
may exist. As an example, we consider hydrogen evolution on Pt(111) from
an aqueous solution in greater detail. Exactly the same mechanism has been
observed on rhenium [12]. In these systems, one observes a cathodic transfer
coefficient of about two, so that neither the Volmer nor the Heyrovsky step
can be rate determining. We show, that it is consistent with the Volmer-Tafel
mechanism, in which the Volmer reaction is fast, and the Tafel reaction is
slow and rate determining.

Let us denote the rate constant for the Volmer reaction as k1(η), that of
the back reaction as k−1(η). Since the Volmer reaction is fast and in quasi-
equilibrium, we have:

k1(η)cp(1− θ) = k−1(η)θ (14.7)

where cp denotes the surface concentration of H+. At the equilibrium potential
the coverage θ is determined by:

θ

(1− θ)
=
k1(0)cp
k−1(0)

= K0 (14.8)

At an arbitrary potential the equilibrium constant is

K = K0 exp (−Fη/RT )

since the free energy of the reaction changes by −Fη; hence:

θ

1− θ
= K0 exp

(
− Fη
RT

)
or θ =

K0 exp(−Fη/RT )
1 +K0 exp(−Fη/RT )

(14.9)

Denoting the forward rate constant for the Tafel reaction by k2 and that for
the back reaction by k−2, we can write the current density in the form:

j = Fk2θ
2 − Fk−2cH2(1− θ)2 (14.10)

where cH2 is the surface concentration of molecular hydrogen. The current
vanishes at equilibrium, so that k−2 = k2K

2
0 . This gives the following expres-

sion for the current:

j = Fk2K
2
0

(
exp(−2Fη/RT )

[1 +K0 exp(−Fη/RT )]2

− cH2

[1 +K0 exp(−Fη/RT )]2

)
(14.11)

Experimental current-potential curves show Tafel behavior with an apparent
cathodic transfer coefficient of two, provided the overpotential is sufficiently
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negative so that the back reaction can be neglected [13]. This suggests that
the coverage θ of adsorbed hydrogen is small at all experimentally accessible
potentials, so that K0 exp(−Fη/RT ) � 1.

Since the coverage with the adsorbed intermediate hydrogen is small, this
species cannot be the strongly adsorbed hydrogen we discussed in the previ-
ous sections, which has an adsorption energy of ∆Gad ≈ −0.3 eV. So there
must be a second, weakly adsorbed species, which is sometimes referred to
as hydrogen deposited at overpotentials Hopd. Most DFT calculations suggest,
that the strongly adsorbed hydrogen, Hupd, is adsorbed in the threefold hollow
sites, and the weakly adsorbed species on top, with ∆Gad ≈ 0.2 eV. Thus,
during hydrogen evolution, the surface of Pt(111) is always covered with a
monolayer of strongly adsorbed hydrogen, which does not participate in the
reaction. The presence of this hydrogen inhibits the recombination: While on
bare Pt(111) the Tafel reaction is endergonic but proceeds practically with-
out activation, the recombination of the weakly adsorbed species is exergonic,
with an activation energy of the order of 0.4 − 0.7 eV – the exact value de-
pends on the coverage with strongly asorbed hydrogen. At a first glance, this
high value seems puzzling, since it is of the same order of magnitude as that
predicted for the Volmer reaction on Au(111) (see Fig. 14.8). However, for the
recombination reaction the pre-exponential factor is of the order of a typical
surface vibrational frequency, 1014 s−1, while for the Volmer reaction it is
about the same as for an outer sphere reaction, i.e. 1010 − 1011 s−1 .

14.5 Principles of electrocatalysis on metal electrodes

During the last few years we, the authors, with contributions from Koper [14],
have developed a theory for the catalysis of electrochemical electron transfer
reactions. We present our basic ideas below; at the time of writing there is no
other theory.

In Chap. 10 we had presented the theory for outer-sphere electron transfer.
An extension of this theory to electrocatalytic reactions requires several major
modifications. The interaction of the reactant with the metal is much stronger
in this case, and so one has to consider in greater detail the interaction with
the electronic bands of the electrode. Also, just like in ion-transfer reactions,
during the reaction the reactant approaches the electrode surface, which adds
an extra dimension, the distance from the surface.

In outer sphere reactions, the interaction of the reactant with the metal
is weak, of the order of ∆ ≈ 10−3 eV or less; therefore induces only a slight
broadening of the valence orbital into a density of states, with negligible effect
on the reaction rate. For catalytic reactions, the interaction is of the order of
several eV, so we have to consider it in much greater detail.

All metals that are used as electrode materials have a wide sp band –
as an example see Fig. 2.2. Since these bands are rather structureless near
the Fermi level, where electron transfer happens, they give rise to a constant
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broadening ∆sp in the same way as it happens for outer-sphere reactions, only
the broadening is much larger because of the proximity to the surface, and is
typically of the order of 0.5–1 eV. The sp bands behave much the same on all
metals, and metals that have only sp bands near the Fermi level are extremely
bad catalysts, as both versions of the volcano plot show. Catalysis is effected
by the d bands, which are much narrower and have more structure.
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Fig. 14.4. Interaction of an orbital with a d band centered at ε = 0; the position of
the band is indicated at the right of both graphs. (a) Orbital centered at the middle
of the band; full line: strong interaction; dashed line: weak interaction: (b) Orbital
centered somewhat below the band; full line: strong interaction; dashed line: weak
interaction

Let us consider the interaction of a reactant’s orbital with a d band in some
detail. Much can be learned from a simple model in which the d band is taken
to have a semi-elliptic shape and a constant interaction, which does not depend
on energy, with the reactant. Figure 14.4a shows the case in which the orbital
is at the center of the band. If the interaction is weak, the orbital just gets
broadened, and its DOS now extends over the width of the d band. However, if
the interaction is strong something interesting happens: the DOS acquires two
peaks, one on each side of the d band. The lower of these peaks has bonding
character, the upper one is anti-bonding. This scenario is familar from the
interaction between two atomic orbitals which combine to form bonding and
anti-bonding molecular orbitals, only in this case one of the atomic orbitals
has been replaced by a metal band. Note that the DOS also extends over the
whole d band.

When the reactant’s orbital lies somewhat below the d band, the separa-
tion into bonding and anti-bonding orbital also occurs for sufficiently strong
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interaction, but in this case the bonding peak is higher. This case is illustrated
in Fig. 14.4b. If the orbital lies still lower, the effect of the d band becomes
almost negligible. Mutatis mutandis, the same mechanism applies when the
level lies above the d band.
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Fig. 14.5. 1s orbital of a hydrogen atom adsorbed on (a) Cd(0001) and (b) Ag(111);
the d bands are shown as dashed lines; the Fermi level has been taken as the energy
zero.

Corresponding results for the adsorption of a hydrogen atom obtained
from DFT calculations are shown in Fig. 14.5. In the case of Cd(0001), the
center of the hydrogen 1s orbital is near the center of the d band of Cd, and
is split up into a bonding and an anti-bonding part. Since in Cd the d band
lies well below the Fermi level, both the bonding and the anti-bonding part
of the hydrogen orbital are filled, and so the d band does not contribute to
the bonding. On the contrary, the Pauli repulsion with the d band weakens
the bonding with the sp band; therefore the adsorption is weak and strongly
endergonic at SHE (see Fig. 14.3). In the case of hydrogen on Ag(111), the
1s orbital lies below the d band, and the peak of the anti-bonding part of
the hydrogen DOS is small. Again, both bonding and anti-bonding parts are
filled, and no bonding results from the interaction with the d band.

With this preparation, we can explain how a d band situated near the
Fermi level, and interacting strongly with the reactant, can greatly reduce the
energy of activation and hence catalyse the reaction. The underlying mecha-
nism, which was proposed by us [16], is illustrated in Fig. 14.6 for the case
where a reaction of the type: A → A+ + e− is in equilibrium. In the initial
state, with q = 0, the reactant’s orbital is at ε = −λ, situated well below the
Fermi level, somewhat broadened by the interaction with the sp band, but
in the situation depicted hardly influenced by the d band, which lies too far
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Fig. 14.6. Mechanism of electrocatalysis by a d band near the Fermi level.

above. During the course of the reaction, a thermal fluctuation of the solvent
raises the electronic level of the reactant. The critical phase occurs, when this
level passes the Fermi level of the metal. As indicated in the figure, a d band
situated close to the Fermie level and interacting strongly with the reactant,
induces a substantial broadening of the density of states. Since the electronic
energy is given by the integral: ∫ 0

−∞
ερa(ε)dε (14.12)

the part that lies below the Fermi level substantially reduces the energy. In
addition, the broadening entails that the occupation of the orbital, which is
given by:

n =
∫ 0

−∞
ρa(ε)dε (14.13)

becomes less than unity as the system approaches the saddle point. Therefore
the reactant becomes partially charged, and the interaction with the solvent
further reduces the energy. Thus, a broadening of the DOS as the system
passes the Fermi level lowers the energy of activation and thereby catalyses
the reaction. This mechanism immediately explains why good metal catalysts,
such as platinum or ruthenium, generally have a high density of d states near
the Fermi level. However, the mere presence of these states is not enough,
they must also interact strongly with the reactant to be effective.

Our theory, which combines electron transfer theory with DFT, makes it
possible to perform calculations for hydrogen evolution on different metal sur-
faces. Figure 14.7 shows the density of states of the hydrogen 1s orbital at the
saddle point of the Volmer reaction H+ + e− → H for two different catalysts,
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Fig. 14.7. Density of states of the hydrogen 1s orbital at the saddle point of the
Volmer reaction. Full line: Pt(111), dashed line: Cd(0001).

Pt(111) and Cd(0001). On platinum, the DOS is substantially broadened at
lower energies due to the strong interaction of hydrogen with the d band,
while on cadmium the DOS is narrower and not affected by the d band, which
lies too low. Also, on platinum the hydrogen carries a greater charge at the
saddle point than on cadmium, so that the solvation is stronger. These two
effects lead to a substantial lowering of the energy of activation.

14.6 Free energy surfaces for the Volmer reaction

From our theory we can calculate free energy surfaces for the hydrogen evo-
lution reaction. Although at the time of writing the results are somewhat
preliminary, they are certainly qualitatively correct, and at least they give
the correct trends and orders of magnitude for the energy of activation.

On the sp metals and on the coin metals the Volmer reaction determines
the rate at least at short times. On many transition metals, ∆Gad is negative
on the SHE scale (see Fig. 14.3), so that a monolayer of hydrogen is adsorbed
at potential above SHE; in analogy with metal deposition, this effect is some-
times called underpotential deposition of hydrogen. As discussed above, the
reaction then sometimes proceeds via a weakly adsorbed intermediate.

Since the Volmer reaction is of special interest, we show corresponding
free energy surfaces for Pt(111) and Au(111) in Fig. 14.8 as representative
examples. The free energy is plotted as a function of the solvent coordinate q
and the distance d from the surface. On both surfaces, we see a minimum at
q = −1 and large distances corresponding to the proton in solution – this is
really the beginning of a valley centered at q = −1 extending into the bulk of
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Fig. 14.8. Free energy surface for the Volmer reaction H+ + e− → A on Pt(111)
(left) and on Au(111) (right); all energies are in eV.

the solution. By definition, the free energy corresponding to this state is zero
on the SHE scale. A second minimum is centered at q = 0 and d ≈ 0.9 Å; this
represents the adsorbed hydrogen atom. On Pt(111), the free energy ∆Gad of
the adsorbed atom is negative, on gold it is positive (cf. Fig. 14.3). The two
minima are separated by a barrier, whose saddle point gives the free energy of
activation. On Pt, the barrier for the reaction is quite low, on Au it is sizable.

Similar surfaces have been calculated for a series of metals, and the follow-
ing picture emerges: The sp metals behave like Cd; the d band plays no role,
the sp bands do not differ much. The Volmer reaction is highly endergonic,
and the energies of activation are of the order of 1 eV. On the coinage metals
the d band does catalyse the reaction a little. The rate of the Volmer reaction
is about the same on all three, due to a compensation between two compet-
ing effects: The free energy of adsorption increases from Cu to Au down the
column of the periodic table because of Pauli repulsion, but the interaction
constants increase in the same order due to the increasing size of the orbitals.
On the early transition metals like Pt and Re, the reaction is fast, but various
mechanisms may operate, sometimes via weakly adsorbed intermediates. In
some cases the mechanism even depends on the crystal surface.

Problems

1. Consider the Volmer–Heyrovsky mechanism. Assume that the two reaction
occur only in the forward direction, and that the coverage is so small that
(1 − θ) ≈ 1. Derive the transient for the total current. In particular, show
that the absolute value of the current rises, and discuss how the contributions
from the two reactions can be separated.
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2. Calculate the current transient for the Volmer–Tafel mechanism. As in Prob-
lem 1, consider only the forward direction, but this time the coverage need
not be small. Show that the absolute value of the current decrease, and
discuss how the rates for the two reactions can be determined separately.

3. Sketch the current potential curves according to Eq. (14.11) both for positive
and negative overpotentials.

4. Consider a reactant orbital that passes the Fermi level, situated at EF = 0,
which is broadened into a Gaussian density of states of the form:

ρ(ε) =
1

w
√

π
exp(−x2/w2) (14.14)

Calculate the electronic contribution:∫ 0

−∞
ε ρ(ε) dε (14.15)
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15

Metal deposition and dissolution

15.1 Morphological aspects

On a liquid metal electrode all surface sites are equivalent, and the deposition
of a metal ion from the solution is conceptually simple: The ion loses a part
of its solvation sheath, is transferred to the metal surface, and is discharged
simultaneously; after a slight rearrangement of the surface atoms it is incor-
porated into the electrode. The details of the process are little understood,
but it seems that the discharge step is generally rate determining, and the
Butler–Volmer equation is obeyed if the concentration of the supporting elec-
trolyte is sufficiently high. For example, the formation of lithium and sodium
amalgams [1] in nonaqueous solvents according to:

Li+ + e− 
 Li(Hg)
Na+ + e− 
 Na(Hg) (15.1)

obeys the Butler–Volmer equation with transfer coefficients that depend on
the solvent. On the other hand, the deposition of multivalent ions may involve
several steps. As discussed in Chap. 13, the formation of zinc amalgam from
aqueous solutions, with the overall reaction:

Zn2+ + 2e− 
 Zn(Hg) (15.2)

occurs in two steps: First, Zn2+ is reduced to an intermediate Zn+ in an
electron transfer step, and then the univalent ion is deposited [2].

In contrast, the surface of a solid metal offers various sites for metal de-
position. Figure 15.1 shows a schematic diagram for a crystal surface with
a quadratic lattice structure. A single atom sitting on a flat surface plane
is denoted as an adatom; several such atoms can form an adatom cluster. A
vacancy is formed by a single missing atom; several vacancies can be grouped
to vacancy clusters. Steps are particularly important for crystal growth, with
kink atoms, or atoms in the half-crystal position, playing a special role. When

W. Schmickler, E. Santos, Interfacial Electrochemistry, 2nd ed.,
DOI 10.1007/978-3-642-04937-8 15, c© Springer-Verlag Berlin Heidelberg 2010



178 15 Metal deposition and dissolution

a metal is deposited onto such a surface, the vacancies are soon filled. How-
ever, the addition of an atom in the kink position creates a new kink site; so
at least on an infinite plane the number of kink sites does not change, and the
current is maintained by incorporation into these sites. Similarly the removal
of a kink atom creates a new kink site. In the limit of an infinitely large crys-
tal, the contribution of other sites can be neglected. For this reason Nernstian
equilibrium is established between the ions in the solution and atoms in the
half-crystal position.

step

adatom

adatom
cluster

vacancy

vacancy
cluster

kink
site

Fig. 15.1. A few characteristic features on a metal surface.

There are two different pathways for metal deposition: direct deposition
from the solution onto a growth site, or the formation of an adatom with
subsequent surface diffusion to an edge. Both mechanisms seem to occur in
practice. If direct deposition is the dominant mechanism, the Butler–Volmer
equation holds, provided the concentration of the supporting electrolyte is
sufficiently high to eliminate double-layer effects. From our discussion above,
it appears that metal deposition and growth can be viewed as a propagation
of steps. On a perfect but finite metal plane any propagating step must at
some time reach the edge, and the growth sites disappear. In this case a new
nucleus for growth must be formed, a process that will be considered in the
following. However, real crystals have screw dislocations (see Fig. 15.2), which
propagate indefinitely, forming spiral structures.

15.2 Surface diffusion

If the dominant mechanism of deposition involves the formation of adatoms
followed by surface diffusion to steps, the relation between current and elec-
trode potential becomes complicated. The essential features can be understood
within a simple model, in which we consider two parallel steps on the surface,
a distance L apart (see Fig. 15.3. The surface diffusion of the adatoms is
now a one-dimensional problem. Let cad(x) be the surface concentration of
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the adatoms, and Dad their diffusion coefficient. At equilibrium, cad(x) = c0ad
everywhere, the deposition and dissolution of adatoms balance and are charac-
terized by an exchange current density j0,ad. A consideration of mass balance
gives the following equation for the adatom concentration:

∂cad
∂t

= Dad
∂2cad
∂x2

+ s(x) (15.3)

where the source term s(x) denotes the number of adatoms deposited at the
position x per time and area. If the deposition and dissolution of the adatoms
obey the Butler–Volmer equation, we have:

s(x) =
j0,ad

zF
exp

(
− (1− α)ze0η

kT

)
− j0,adcad

zFc0ad
exp

αze0η

kT
(15.4)

The incorporation of the adatoms at the steps should be fast because no
charge transfer is involved; hence the adatom concentration should attain its
equilibrium value:

cad(0) = cad(L) = c0ad (15.5)

Under stationary conditions ∂cad/∂t = 0, and an ordinary differential equa-
tion results with Eq. (15.5) as boundary conditions, which can be solved
explicitly by standard techniques. The resulting expression for the current
density is:

j = j0,ad

[
exp

αze0η

kT
− exp

(
−(1− α)ze0η

kT

)]
2λ0

L
tanh

L

2λ0
(15.6)

where

λ0 =
(
zFDadcad
j0,ad

)1/2

exp
(
−αze0η

2kT

)
(15.7)

λ0 has the meaning of a penetration length of surface diffusion. We can dis-
tinguish two limiting cases:

Fig. 15.2. Screw dislocation on a Ag(111) surface; courtesy of M. Giesen, Jülich.
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1. λ0 � L: the two terms involving L/λ0 cancel, surface diffusion is fast, the
deposition of adatoms is rate determining, and Eq. (15.6) reduces to the
Butler–Volmer equation.

2. λ0 � L: surface diffusion plays a major role, and the current density is:

j = j0,ad

[
exp

αze0η

kT
− exp

(
− (1− α)ze0η

kT

)]
2λ0

L
(15.8)

Substituting λ0 from Eq. (15.7) gives:

j =
2
L

(
zFDadc

0
ad

j0,ad

)1/2 [
exp

αze0η

2kT
− exp

(
− (1− α)ze0η

2kT

)]
(15.9)

which has the same form as the Butler–Volmer equation, but the apparent
transfer coefficients are only half as large as those for the deposition and
dissolution of the adatoms. Of course, real metal surfaces do not consist of
steps running parallel and equidistantly from each other. However, even in
the general case we would expect the kind of deviations from simple Butler–
Volmer behavior as seen in Eq. (15.9), in particular a change in the apparent
transfer coefficients.

15.3 Nucleation

A metal surface that is uniformly flat offers no sites for further growth. In this
case a new nucleus, or center of growth, must be formed. Since small clusters
of metal atoms consist mainly of surface atoms, they have a high energy
content, and their formation requires an extra energy. The basic principles of

L

x

steps

adatoms

Fig. 15.3. Surface diffusion between two steps (schematic).
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the formation of new nuclei can be understood within a simple model. We
consider a small three-dimensional cluster of metal atoms on a flat surface of
the same material, and suppose that the cluster keeps its geometrical shape
while it is growing. A cluster of N atoms has a surface area of:

S = aN2/3 (15.10)

where a is a constant depending on the shape of the cluster and the particle
density n. For a hemispherical cluster of radius r the number of particles is:

N =
2
3
πr3n (15.11)

so that:

a = (2π)1/3

(
3
n

)2/3

(15.12)

The surface energy of a cluster is γS, where γ is the surface energy per unit
area. For a liquid metal γ is identical to the surface tension. The electrochem-
ical potential of a particle in the cluster contains a surface contribution, which
is obtained by differentiating the surface energy with respect to N. Therefore:

µ̃ = µ̃∞ +
2
3
γaN−1/3 (15.13)

µ̃∞ is the electrochemical potential for an atom in an infinite crystal. The
Gibbs energy required to form a cluster by deposition from the solution is:

∆G(N) = N(µ̃∞ − µ̃s) + γaN2/3 (15.14)

N

η=-0.05 V

η=-0.1 V

η=-0.075 V∆G
 / 

eV

Fig. 15.4. Gibbs energy for the formation of a nucleus as a function of the particle
number for various overpotentials.
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where µ̃s is the electrochemical potential of the metal ion in the solution. At
equilibrium the two electrochemical potentials are equal, µ̃∞ = µ̃s; therefore,
on application of an overpotential η, the difference (µ̃∞ − µ̃s) is given by the
product of the charge ze0 of the metal ion and η; hence:

∆G(N) = Nze0η + γaN2/3 (15.15)

Metal deposition can occur only if η is negative; so the Gibbs energy of a
cluster as a function of the particle number N first rises, reaches a maximum,
and then decreases. This is illustrated in Fig. 15.4 for three different overpo-
tentials. Notice how strongly the curve depends on the applied overpotential.
∆G reaches its maximum for a critical particle number of:

Nc = −
(

2γa
3ze0η

)3

(15.16)

where it takes on the value:

∆Gc =
4(γa)3

27(ze0η)2
(15.17)

Clusters with a smaller number of particles than Nc will tend to dissolve,
while larger clusters will tend to grow further. However, cluster formation
and growth are stochastic processes, and there is a certain probability that
subcritical clusters will grow, and supercritical clusters can still disappear. The
Gibbs energy ∆Gc of a critical cluster is also the Gibbs energy of activation
required to form a new nucleus for further crystal growth. The larger the
absolute value of the applied (negative) overpotential, the higher the rate of
nucleation. Once a nucleus has formed, it will continue to grow even if the
overpotential is lowered.

While our arguments are simplified in several respects – three-dimensional
clusters will not all have the same shape, and the use of a macroscopic concept
like the specific surface energy γ is not really warranted – they are qualitatively
correct, and Eqs. (15.16) and (15.17) are useful estimates.

15.4 Initial stages of deposition

We consider in greater detail the morphological aspects of metal deposition
on a foreign substrate. Starting from a flat metal substrate S, on which metal
atoms A are deposited; there are several principle mechanisms [3] – see Fig.
15.5:

1. The interaction of the atoms A with each other is stronger than with the
substrate S. In this case, three-dimensional clusters are formed from the
beginning. Obviously, this cannot take place at underpotentials. On the
contrary, nucleation usually requires an overpotential for deposition to
occur. This mechanism is known as Volmer–Weber or three-dimensional
island growth (case (a) in Fig. 15.5).
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Fig. 15.5. Three growth modes: (a) Three-dimensional island growth (Volmer–
Weber); (b) Stranski–Krastanov growth: (c) layer-by-layer or Frank-van-der-Merwe
growth.

2. If the interaction of the deposited atoms A with the substrate S is stronger
than with its own kind, a monolayer of A os S can be deposited at under-
potential. There are two subcases:
• If there is a considerable mismatch in the lattice structures of A and

S, the first layer has a different, often incommensurate structure. Sub-
sequently, three-dimensional clusters are formed. This is denoted as
Stranski–Krastanov growth mode (case (b) in Fig. 15.5).

• If there is no large mismatch between the crystallographic structures
of the two metals A and S, a commensurate monolayer is formed.
Subsequent layers are also epitaxic and deposited layer-by-layer; this
is also known as the Frank-van-der-Merwe growth mode. After two
or three layers have been deposited, the influence of the substrate is
negligible, and the deposition proceeds in the same way as on the bulk
metal A (case (c) in Fig. 15.5).

3. The deposited atoms A make a rapid place exchange with the substrate,
and a surface alloy is formed. A well-known example is the deposition of
nickel on Au(111) – see Fig. 15.6.

Fig. 15.6. Surface alloy formation during the deposition of nickel (dark grey) on
Au(111). Result of a computer simulation [4].
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Usually, the substrate is not flat, and the deposition may begin at steps
or island. As an example, we consider the deposition of silver on Au(111), a
system that exhibits underpotential deposition, in the vicinity of an island.
At potentials well above the potential for bulk deposition, the rim of the gold
island is decorated by silver atoms. With increasing potential the silver atoms
spreads to the terrace, and finally deposition takes place on the whole surface
– see Fig. 15.7.

Fig. 15.7. Deposition of silver (dark grey) on Au(111); the potential decreases, i.e.
becomes more favorable for deposition, from (a) to (c).

15.5 Growth of two-dimensional films

The phenomenon of nucleation considered is not limited to metal deposition.
The same principles apply to the formation of layers of certain organic adsor-
bates, and the formation of oxide and similar films. We consider the kinetics
of the growth of two-dimensional layers in greater detail. While the three-
dimensional case is just as important, the mathematical treatment is more
complicated, and the analytical results that have been obtained are based on
fairly rough approximations; details can be found in [5].

A real surface of a solid metal is inhomogeneous, and nucleation for the
growing clusters is favored at certain active sites. To simplify the mathematics
we consider an electrode with unit surface area. If there are M0 active sites,
the number M(t) of growing nuclei is given by first-order kinetics:

M(t) = M0 [1− exp (−kN t)] (15.18)

where kN is the rate constant for the formation of a nucleus. Two limiting
cases are of particular importance:

1. kN t� 1: instantaneous nucleation

M(t) = M0 (15.19)

which means that on the time scale considered the formation of nuclei is
infinitely fast;
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2. kN t� 1: progressive nucleation

M(t) = kNM0t (15.20)

where at all times considered the number of nuclei is small compared to
the number of active sites.

In order to derive approximate laws for the growth of a two-dimensional
layer, we consider a simplified model in which all isolated clusters, i.e. clusters
that do not touch another cluster, are circular. For the moment, consider a
single such cluster of radius r(t). New particles can only be incorporated at
its boundary. Assuming that this incorporation is the rate-determining step,
the number N(t) of particles belonging to the cluster obeys the equation:

dN(t)
dt

= 2πkr(t) (15.21)

where k is the rate constant for incorporation at the boundary. This equation
holds when the radius r(t) is much larger than the critical radius considered in
the previous section. To obtain the growth law for the radius, we express the
number of particles through the area S(t) covered by the cluster. If ρ denotes
the number of particles per unit area, we have:

dS(t)
dt

=
k

ρ
2πr(t) (15.22)

Using S(t) = πr2(t) a simple calculation gives:

r(t) =
k

ρ
t (15.23)

Equations (15.21), (15.22), and (15.23) hold as long as the cluster does not
touch the boundary of the electrode.

In a real system there will be several clusters growing simultaneously. At
first the clusters are separated, but as they grow, they meet and begin to
coalesce (see Fig. 15.8), which complicates the growth law. For the case of
circular growth considered here, the Avrami theorem [6] relates the area S
that is actually covered by the coalescing centers to the extended area Sex

that they would cover if they did not overlap:

S = 1− exp (−Sex) (15.24)

Note that we consider unit area; in the general case S and Sex denote fractional
coverage. At short times Sex � 1, the clusters do not touch, and S ≈ Sex.
At long times Sex →∞ and S → 1, and the whole surface is covered by a
monolayer. For a proof of Avrami’s theorem we refer to his original paper [6]
(see also Problem 2).

We now consider the cases of instantaneous and progressive nucleation
separately. If nucleation is instantaneous, there are M0 growing clusters. The
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extended area Sex is simply M0 times the area that a single cluster would
cover if it did not meet any other:

Sex(t) = M0πr
2(t) =

πM0k
2

ρ2
t2 (15.25)

So the actual area covered is:

S(t) = 1− exp
(
−πM0k

2

ρ2
t2
)

(15.26)

The concomitant current density is obtained by using N(t) = S(t)ρ, and:

j(t) = ze0
dN

dt
(15.27)

This results in the explicit expression:

j =
2πze0M0k

2

ρ
t exp

(
−πM0k

2

ρ2
t2
)

(15.28)

for instantaneous nucleation.
In the case of progressive nucleation, new clusters are born at a constant

rate kNM0. From Eq. (15.23) the area covered by a cluster born at a time t′

is:

A(t) = π
k2

ρ2
(t− t′)2, for t > t′ (15.29)

Integrating over t′ and multiplying by kNM0 gives for the extended area:

Sex = kNM0π
k2t3

3ρ2
(15.30)

Fig. 15.8. Overlapping circular nuclei; the extended area is the sum of the area of
all the circles shown on the left.
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Fig. 15.9. Normalized current transients for instantaneous and progressive nucle-
ation.

which leads to the following expression for the current density:

j = ze0kNM0π
k2

ρ
t2 exp

(
−kNM0πk

2

3ρ2
t3
)

(15.31)

Both Eqs. (15.28) and (15.31) predict a current density which first rises as
the perimeters of the clusters grow, and then decreases rapidly as the clusters
begin to overlap. They can be cast into a convenient dimensionless form by
introducing the maximum current density jmax and the time tmax at which it
is attained. A straightforward calculation gives for instantaneous nucleation
and progressive nucleation, respectivly,

j

jmax
=

t

tmax
exp

(
− t

2 − t2max

2t2max

)
(15.32)

j

jmax
=

t2

t2max

exp
(
−2(t3 − t3max)

3t3max

)
(15.33)

The two current transients are shown in Fig. 15.9. The curve for progressive
nucleation rises faster at the beginning because not only the perimeter of the
clusters increases but also their number; it drops off faster after the maximum.
Such dimensionless plots are particularly useful as a diagnostic criterion to
determine the growth mechanism. Real current transients may fit neither of
these curves for a number of reasons, for example, if the growth starts from
steps rather than from circular clusters.

15.6 Deposition on uniformly flat surfaces

Real surfaces are mostly rough and offer a multitude of growth sites. Even sin-
gle crystal surfaces generally contain numerous steps and screw dislocations,
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Fig. 15.10. Current pulses on a dislocation free Ag(100) surface at an overpotential
of −8.5 mV. Data taken from [7].

which makes it difficult to study the deposition and growth of nuclei. However,
Budewski, Kaischev and co-workers [7] have developed an elegant technique
to grow flat single crystal surfaces of silver that are free of dislocations. For
this purpose a suitably oriented single crystal is enclosed in a glass tube with
a capillary ending. The crystal is grown further and into the capillary by slow
electrolytic deposition. Any screw dislocation that is initially present will have
its axis at an angle to that of the capillary tube, and hence will reach the wall
as the crystal grows, and disappear from the surface. Such crystals form ideal
electrodes for studying nucleation and growth phenomena. We review a few
relevant experiments on dislocation-free Ag(100) surfaces in contact with a
6 M solution of AgNO3.

When the electrode potential is set to a relatively low negative overpo-
tential (of the order of 10 mV), the nucleation rate on the surface is so small
that, once a nucleus has formed, it will grow into a complete monolayer before
the next nucleus is formed. If the overpotential is kept constant, a series of
current pulses can be observed (see Fig. 15.10), each of which corresponds to
the formation and growth of a single nucleus. The integral under each peak
is the charge required to form a complete monolayer of silver. The irregular
spacing of the current pulses indicates that nucleation is a random event. The
different heights of the spikes are due to the fact that the nuclei are formed at
different sites. Nuclei that are formed nearer to the boundary of the circular
electrode take longer to grow into a complete monolayer than those that are
formed near the center, so that the corresponding pulses are wider and lower.

The nucleation rate kN is the inverse of the average time between two
pulses. By varying the overpotential η, the dependence of the nucleation rate
on η can be obtained. In Sect. 15.3 we showed that for three-dimensional
nucleation the Gibbs energy of formation is proportional to η−2. A similar
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Fig. 15.12. Current transient at η = −4 mV after application of a nucleation pulse
of η = −17 mV for 120 µs. Data taken from [7].

analysis for the two-dimensional case gives a proportionality to η−1 instead
(see Problem 1). Hence a plot of ln kN versus η−1 should result in a straight
line, which is indeed observed (see Fig. 15.11).

The case of instantaneous nucleation can be realized by the following pro-
cedure: A sufficiently short potential pulse is applied so that a number of
nuclei are formed on the surface. Subsequently the overpotential is stepped
back to a low value so that existing nuclei may grow, but no new ones are
formed. The resulting current transients reflect the growth of a single mono-
layer through (almost) instantaneous nucleation. An example can be seen in
Fig. 15.12; a mathematical analysis shows that it obeys Eq. (15.28) very well.

μ
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Fig. 15.13. Energy barrier for the migration of an ion in the presence of an external
field.

When a high (negative) overpotential is applied a second layer can begin
to grow before the first one is completed. This leads to multilayer growth,
which is only imperfectly understood, so we refrain from a further discussion.

15.7 Metal dissolution and passivation

Metal dissolution is the inverse process to the deposition; so its principles
can be derived from preceding considerations. It should, however, be borne
in mind that the preferred sites for deposition need not be the same as those
for the dissolution. This is particularly true if the reactions are far from equi-
librium. Therefore, rapid cycling of the potential between the deposition and
the dissolution region can lead to a substantial roughening of the electrode
surface, which can be used in techniques such as surface-enhanced Raman
spectroscopy, which require a large surface area.

Often the dissolution of a metal leads to the formation of an oxide film on
the electrode surface. These films are usually nonconducting and hinder the
further dissolution of the metal, a phenomenon known as passivation. Such
passive-film formation is prevalent with the valve metals such as aluminum
and titanium. In aqueous solutions aluminum forms an oxide film according
to the reaction:

2Al + 3H2O 
 Al2O3 + 6H+ + 6e− (15.34)

The resulting films can attain thicknesses of the order of a thousand Ång-
stroms or more.

Once the film has began to form, ions must pass through the film in order
for the reaction to proceed. The general case is quite complicated since the
films can have both an ionic and an electronic conductivity. We consider the
simple case of an electronically insulating, homogeneous film, and assume
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that one kind of ion, with charge number z, can migrate in the presence of
an external field E. The migrating ion can occupy certain sites within the
film, and migration consist of a series of thermally activated jumps between
these sites. Let a denote the distance between adjacent sites, and E0

a the
energy of activation for a jump in the absence of an applied field (see Fig.
15.13). Application of a field E creates a drop aE in the electrostatic potential
between adjacent sites, and an energy gain ze0aE per jump (to be specific, we
assume z > 0). This entails a change in the energy of activation, a phenomenon
known from electron-transfer reactions (see Chap. 9, in particular Fig. 9.1).
If the barrier is symmetric, the energy of activation will be lowered by an
amount ze0aE/2, which corresponds to a transfer coefficient of 1/2. The rate
of jumps in the forward direction is then:

kf = ν exp
E0

a − ze0aE/2
kT

(15.35)

where ν is the frequency factor. Similarly the energy of activation for the
backward direction increases by ze0aE/2, so the backward rate is:

kb = ν exp
(
−E

0
a + ze0aE/2

kT

)
(15.36)

The concomitant current density is:

j = ze0n(kf − kb) = 2ze0nν exp
(
−E

0
a

kT
sinh

ze0aE

2kT

)
(15.37)

where n is the density of ions. For small fields the formula can be linearized:

j = ze0nν exp
(
−E

0
a

kT

)
ze0aE

kT
, for ze0aE � kT (15.38)

while for large fields the back current can be neglected, and the current de-
pends exponentially on the field:

j = ze0nν exp
(
−E

0
a

kT

)
exp

ze0aE

2kT
, for ze0aE � kT (15.39)

Note that the field is the important variable, not the electrode potential.
Typically fields of the order of 106 V cm−1 are required to produce a noticeable
film growth.

The growth law of Eq. (15.37) is often observed on valve metals. From the
growth at high fields the average jump distance a can be calculated. Steady-
state measurements give surprisingly large values of the order of 5 Å or even
higher [8, 9]. In contrast pulse measurements give smaller values of the order of
2 Å, which fit better into the microscopic model on which Eq. (15.37) is based.
An external field induces structural changes in the oxide film; in particular,
high fields seem to produce pairs of vacancies and interstitials which enhance
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the current. A model that accounts for these changes leads to an equation of
the same form as Eq. (15.37) [10], but a no longer has the meaning of a jump
distance. Therefore, only the values obtained from pulse measurements pro-
vide an estimate of the jump distance, while the formal parameter a obtained
from steady-state measurements has no direct interpretation.

Problems

1. Consider the formation of a two-dimensional nucleus and show that the Gibbs
energy of a critical cluster is inversely proportional to η. For this purpose
introduce a boundary energy which is proportional to the perimeter of the
cluster.

2. Here we derive Avrami’s theorem for a simple case [6]. Consider an area A
that is partially covered by N circles each of area a, where a � A. The circles
overlap so that the area that is actually covered is smaller than the extended
area Na. Show that the probability that a particular point is not covered by
any circle is: (

1− a

A

)N

=
(
1− na

N

)N

(15.40)

where n = N/A is the density of clusters. Using the theorem:

lim
N→∞

(
1− x

N

)N

= e−x (15.41)

show that in the limit of infinitely many clusters the probability that a point
is not covered is given by:

exp(−na) = exp (−Sex) (15.42)

Hence the fraction of the surface that is covered is:

S = 1− exp (−Sex) (15.43)

Note that S and Sex relate to unit area. The generalization of this argument
to randomly placed clusters of arbitrary size and shape is given in [6].

3. Consider the formation of hemispherical nuclei of mercury on a graphite
electrode. The interfacial tension of mercury with aqueous solutions is about
426 mN m−1. From Eq. (15.16) calculate the critical cluster sizes for η =
−10,−100,−200 mV. Take z = 1 and ignore the interaction energy of the
base of the hemisphere with the substrate.
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Electrochemical surface processes

Usually electrochemical processes involve an exchange of electrons or ions
between the electrode and the electrolyte. The driving force is the difference in
the electrochemical potential of the transferring species, and therefore depends
on the electrode potential. However, there exist processes which take place
on the electrode surface only, without exchange of charge with the solution.
Nevertheless, these processes often show a strong dependence on the electrode
potential. At a first glance, this may seem strange: the electrode surface is
equipotential, and hence a change of the potential should not affect the driving
force directly. However, a change of potential entails a change of the surface
charge density, and hence of the electric field in the double layer. This field
interacts with local dipole moments on the surface, and may thereby affect
surface processes. In this chapter, we will discuss a few examples. A good
general reference to surface processes in uhv and in electrochemistry is the
book by Ibach [1].

Besides this field-dipole coupling, there is a second mechanisms which may
also affect surface processes. A change in the electrode potential often involves
a change in the coverage of adsorbates, particularly of adsorbed anions, and
this will in turn influences surface processes. An example is the adsorption
of chloride ions, which greatly enhances the mobility of gold atoms. Since
little is known about the details of this mechanism, we shall not consider it
further.

In addition, we treat the topic of self-assembled layers, which form spon-
taneously on electrode surfaces under certain conditions, though at the time
of writing we cannot exclude that some of them might entail charge exchange.

16.1 Surface reconstruction

In the vacuum, several single crystal surfaces are reconstructed. In these cases,
the perfectly terminated bulk surfaces are not stable, but the surface atoms
rearrange to form a denser, energetically more favorable structure. A good

W. Schmickler, E. Santos, Interfacial Electrochemistry, 2nd ed.,
DOI 10.1007/978-3-642-04937-8 16, c© Springer-Verlag Berlin Heidelberg 2010



196 16 Electrochemical surface processes

Fig. 16.1. Perfect (left) and reconstructed (right) Au(100) surface (schematic).

example is the Au(100) surface, which in the vacuum forms a reconstructed
surface with hexagonal structure. The ideal structures are shown in Fig. 16.1.
Since the hexagonal structure is denser, there is a mismatch with the underly-
ing layer; so a corrugated surface with a local hexagonal structure is formed –
for clarity, this corrugation is not shown in the figure. In aqueous solutions,
the reconstructed surface is stable at low potentials, but at higher potentials
it is lifted, and the perfectly terminated surface reappears. The potential, at
which this lifting occurs, depends on the composition of the electrolyte; in
weakly adsorbing solutions like perchloric acid, it occurs at about 0.55 V vs.
SCE.

When the potential is stepped back below the transition point, the recon-
structed surface reappears. On Au(100) both the lifting and the formation
of the reconstruction are slow, so that the capacities of both surfaces can be
obtained over a fairly large potential range, including regions in which they
are not thermodynamically stable (see Fig. 16.2). This makes it possible to
elucidate the thermodynamics of this process in some detail.

As pointed out in Sect. 4.4, the correct thermodynamic function for an
electrode held at constant potential is the surface tension γ, which is a func-
tion of the electrode potential φ. The reconstructed and the unreconstructed
surfaces have different surface tensions, and at each potential the surface with
the lower surface tension is the one that is thermodynamically stable. There-
fore, to understand the driving force we require the surface tension of both
modifications as a function of potential. We focus on the basic case of a non-
or weakly adsorbing electrolyte.

From the capacity minima that occur at sufficiently dilute (i.e.6 10−2 M,
see Chap. 5) solutions, we determine the potential of zero charge (pzc) φ0

of both surfaces. The reconstructed surface has the higher work function and
hence the higher pzc. By integrating the capacity, we obtain the charge density
σ as a function of the potential. Integrating again (see Eq. 4.13) gives the
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Fig. 16.2. Capacity curves for the reconstructed and the bulk terminated Au(100)
surface in 10 mM perchloric acid. The potentials of zero charge are indicated by
vertical lines. Data taken from [2].
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Fig. 16.3. Surface tension for the reconstructed and the bulk terminated Au(100)
surface in 10 mM perchloric acid. Data taken from [3]

surface tension:

γ(φ) = γ0 −
∫ φ

φ0

σ(φ′) dφ′ (16.1)

up to the unknown value γ0 at the pzc. Of course, this equation holds for both
surfaces.

While it is not possible to determine the absolute values of the surface
tension at the pzc, we can obtain the difference ∆γ0 = γunrecon

0 − γrecon
0 . For

this purpose, we arbitrarily set γrecon
0 = 0 and choose γunrecon

0 such that the
two surface tension curves intersect at the potential, at which the lifting of
the reconstruction occurs experimentally (near 0.55 V vs. SCE). The result-

γ



198 16 Electrochemical surface processes

ing curves, shown in Fig. 16.3, provide a thermodynamic description of the
reconstruction and its lifting. At potentials below the crossing point, the re-
constructed surface has the lower surface tension and is thermodynamically
stable, at higher potentials it is the unreconstructed. This construction also
provides an estimate for the change ∆γ0 in surface tension during the recon-
struction of the uncharged surface: ∆γ0 = (4.1±0.3)×10−2 Jm−2. This is the
value for a surface immersed in aqueous solution, but since the interaction of
gold with water is weak, the value for the same surface in vacuum should be
close.

This procedure can be applied whenever the capacity curves for both sur-
faces can be measured over a sufficiently wide range, and is also valid in the
presence of specific adsorption. Another example is Au(111), which in the
vacuum also reconstructs. In a solution of non-adsorbing electrolyte, the re-
construction is lifted near 0.4 V vs. SCE. Since the bulk terminated surface
of Au(111) is densely packed to start with, the gain in energy during recon-
struction is much smaller than on Au(100): In this case, the best estimate is
∆γ0 = (3− 5)× 10−3 Jm−2.

The lifting of the reconstruction on these two gold surfaces can be under-
stood in terms of the field-dipole interaction mentioned above. In both cases,
the reconstructed surfaces have a higher work function; this implies that they
have a larger surface dipole. The surface dipole moment µ is always directed
towards the bulk, and it interacts with the electric field E0 in the double
layer with an energy −µE0. Here, E0 is the unscreened field. At potentials
above the pzc, this interaction energy is positive and is the larger, the greater
the surface dipole. Hence with increasing potential the reconstructed surface
becomes less favorable.

16.2 Steps, line tension and step bunching

Steps and islands are common features on electrode surfaces, and their en-
ergetics and dynamics are interesting topics in their own right. In a certain
sense, steps are the one-dimensional analogues of surfaces. Thus, in analogy
with the surface tension, we define the step line tension β as the extra energy
caused by the presence of a step. More precisely, it is the extra surface tension
caused by the step, since the latter is the correct thermodynamic energy. Just
like the surface tension, the line tension depends strongly on the electrode po-
tential, but here the analogy ends, because this dependence is quite different,
as we shall demonstrate.

Every step has an associated dipole moment, which is caused by the Smolu-
chowski [4] effect. At the step edge, the positive charge residing at the atom
cores drops abruptly, while the electronic density changes smoothly. As can
be seen from Fig. 16.4, this leads to a positive excess charge at the outer step
edges, which is balanced by a negative charge near the foot. This results in
a dipole moment pointing towards the solution. It is convenient to measure
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Fig. 16.4. Charge distribution at a step; the dark regions denote an excess of
negative charge, the white regions of positive charge.

the step dipole µ per atom in terms of the unit charge times Ångstroms, and
typical values are of the order of 10−2 e0Å. Since the dipole is directed out-
wards, it entails a reduction of the work function. For a vicinal surface, which
has a uniform step density, the change in the work function compared with
the perfectly smooth surface is determined by the average dipole moment per
area:

∆Φ = − µ

ε0a‖L
(16.2)

where L is the width of the terraces between the steps, and a‖ the step length
per atom. In the absence of specific adsorption, the same relation should hold
for the potential of zero charge. In the few cases were this has been tested, it
was indeed fulfilled; an example is shown in Fig. 16.5. From the slope of the
plot the step dipole moment can be determined. Values obtained for the step
dipole in aqueous solutions are usually close to those obtained in uhv. This
indicates that the presence of water does not greatly affect the local dipole
moment [5]

The dipole moment of the steps interacts with the electric field E = σ/ε0
produced by the charge density σ. This interaction dominates the dependence
of the step line tension on the potential or on the charge [6]. Therefore:

β = β(φ0)−
µ

ε0a‖
σ (16.3)

There are correction terms caused by the polarizability of the step dipole,
and by the double layer structure at the steps. However, in the absence of
specific adsorption, and in the vicinity of the pzc, this is a good approximation.
Just like the surface tension, the absolute value of the line tension cannot be
measured by electrochemical techniques, but the variation can be obtained
from the difference between the surface tension of a stepped surface and a
flat surface. An example is shown in Fig. 16.6; in this case relation 16.3 is
well obeyed. At larger positive charge densities, there is always some specific
adsorption of anions, and major deviations are observed [7].
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Fig. 16.5. Potential of zero charge versus the density of steps on a Au(100) surface.
Data taken from [7].
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An interesting consequence of Eq. (16.3) is the possibility, that the step
line tension may vanish at sufficiently positive charge densities. In this case
the steps would become unstable and dissolve. This effect, which has not yet
been observed in electrochemistry, would be the analogue of a roughening
transition [1] observed in uhv.

The presence of steps induces a stress on the surface, and therefore on a
bare surface in uhv the steps repel each other, and vicinal surfaces are stable.
In contrast, on stepped electrodes there is a thermodynamic driving force for
step bunching. A nice example is shown in Fig. 16.7, where the fairly regular
steps on a Ag(19 19 17) surface separate with time into a Ag(111) terrace and
a part in where the steps are bunched.
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Fig. 16.7. Freshly prepared vicinal Ag(19 19 17) surface (a) and the same surface
about 40 min later (b); after [8]; scan range: 100 nm.

The different behavior in uhv and in electrolyte solutions is caused by
the boundary conditions. As pointed out repeatedly, in electrochemistry the
correct thermodynamic energy is the surface tension. This has a maximum
at the pzc, and drops off, roughly quadratically, on both sides. Hence, it is
energetically favorable for an electrode to be far away from the pzc. However,
since the potential is held constant, the only way the electrode can move
away from the pzc is by changing its surface structure. This is what happens
during surface reconstructions. On a stepped surface, step bunching divides
the surface into two parts with different surface tension, such that the total
is lower than that for the regularly stepped surface. The details can be found
in [9].

16.3 Surface mobility

There are many instances, in which the surface mobility increases with the
potential. An example is the diffusion of gold atoms on a gold electrode shown
in Fig. 16.8. The underlying mechanism is again the interaction of a local
dipole moment with the double-layer field.

Just like a step, a single metal atom on a flat terrace generally has a dipole
moment with the positive end pointing towards the solution, caused by the
Smoluchowski effect (see Fig. 16.9). The magnitude of the dipole depends on
the position: It is lowest in the equilibrium position, which is a hollow site,
and larger at a bridge site, because the distance from the surface is larger.
The bridge sites form the barrier for the migration of the atom. Let us denote
the dipole moment in the equilibrium position by µi, and at the barrier by
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µ†. In both positions the dipole interacts with the field E = σ/ε0. Therefore,
the difference in the interaction energy enters into the energy of activation,
and we obtain for the surface diffusion coefficient the relation:

D ∝ exp− (µ† − µi)E
kT

(16.4)

and the rate of migration increases exponentially with the field. In addition,

initial
state

final
state

transition
state

Fig. 16.9. Change in the dipole moment during adatom migration.

the concentration of migrating adatoms also increases with the field, since the
energy of the adatom contains a term −µiE, which also enters exponentially
into the equilibrium concentration.

The increasing mobility affects a process known as Ostwald ripening. When
an electrode surface contains metal islands of various sizes, the larger islands
grow at the expense of the smaller ones, because larger islands have a more
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favorable ratio of bulk energy to boundary energy (see Problem 1). Figure
16.10 shows a series of STM images showing the gradual disappearance of
a small island next to a bigger one. Since the ripening occurs via adatom
migration, it can be enhanced by the field-dipole interaction [1, 9].

Fig. 16.10. Ostwald ripening of islands on Au(111). Note that the small island in the
lower left corner disappears gradually. Courtesy of M. Giesen, Forschungszentrum
Jülich.

16.4 Self-assembled monolayers (SAMs) in
electrochemistry

The concept of self-assembling is astonishing, and especially in biological sys-
tems it is ubiquitous. The best example is our brain, which is an intricate
ensemble of neurons grouped into modules without a command centre; all
regions are connected by multiple bidirectional pathways, making the brain
precisely the paradigm of a self-organizing distributed system.

The formation of monolayers by self-assembling of surfactant molecules at
surfaces is a simpler example of the general phenomena of self-assembly. The
molecules that form SAMs consist of three parts (see Fig. 16.11): a headgroup
that binds to the surface, an organic moiety (in the most simple case an alkyl
chain), and a terminal functional group which interacts with the environment.
The packing and ordering of the layer result from a balance and interplay of
various forces. The adsorbates adopt a geometric arrangement that minimizes
the free energy of the layer and allows a high degree of van der Waals, elec-
trostatic, and steric interactions, and in some cases hydrogen bonds with the
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neighboring molecules are formed. Since the free energy is minimized, entropic
effects also contribute to the final conformation.

 

substrate 

head group 

backbone 
moity 

tail group 

environment 

SAM

Fig. 16.11. Structure of self-assembled monolayer.

The self-assembling process can occur on various substrate surfaces. There
are specific linkers for each type of substrate. Head groups containing sulfur
or nitrogen are appropriate for clean metals, silicon and phosphor for hy-
droxilated and oxidized surfaces. The most extensively investigated SAMs are
alkanethiols on gold and silver, but they can also be formed on semiconduc-
tor surfaces such as SiO2 and GaAs. Considering the bonding arrangement
formed at the metal – sulfur interfaces, the molecules comprising the SAM
tend to adopt structural arrangements that are similar to simple adlayer struc-
tures formed by elemental sulfur on that metal. Thus, the generally accepted
structures of thiols on Au(111) at high coverages is (

√
3 ×

√
3)R30◦, and on

Ag(111) it is (
√

7 ×
√

7)R10.9◦, like the overlayers resulting from the ad-
sorption of SH2 or sulfide salts. However, also adsorbates on Au (111) with
two non-equivalent chains alternating their orientations have been proposed
to exist in a unit cell defining a c(4 × 2) superlattice structure. The spe-
cific ordering of the sulfur determines the free space available to the organic
moiety. The alkyl chains organize themselves within the constraints imposed
by the structure of the adlayer. However, steric crowding of bulky substituents
in the alkyl chain can determine a less dense packing structure of the sulfur
arrangement. The metal-sulfur bonding drives the structural configuration of
the adlayer and determines the maximal coverage, while the attractive lateral
interactions between the organic moieties promote the secondary organization
of the alkyl chains. Each methyl group contributes about 1 kcal mol−1 to the
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stabilization of the SAM. The alkyl chains adopt a quasi-crystalline structure,
where the chains are fully extended in a nearly all-trans conformation. The
tilt angle of the backbone chain is about 30◦ for SAMs on Au, while on silver
is mostly highly oriented along the surface normal direction (10◦).

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5
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0,4

E - EF / eV

D
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S 
/ e

V 
-1
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Fig. 16.12. Densities of state of the d band of Au(111) and of the s and p orbitals
of sulphur for SAMs containing propanthiol.

The mechanism of the bond formation between the metal and the sulfur
atom is still controversial. It is not clear, if at all and how, the S–H bond is
broken. Where does the hydrogen go? Neither gold nor silver are metals that
strongly adsorb hydrogen. It seems probable that SAM formation in vacuum
leads to a loss of the hydrogen in the form of H2 molecules. Also the nature of
the bond, when a thiolate species (R-S−M+· M◦

n) results or a covalent bond is
formed, is under discussion. Figure 16.12 shows the results of DFT calculations
for the interaction of the s − p orbitals of sulfur in the propanethiol radical
with the d band of Au(111). The coupling is very strong, as can be observed
by the broading of the orbitals (compare with Figs. 14.4 and 14.5).

SAMs can link the external environment to the electronic and optical prop-
erties of metallic surfaces. They act as nanostructures themselves with well-
defined shapes and sizes, and form patterns on surfaces with critical dimen-
sions below 100 nm and thicknesses of the order of 1–3 nm. The composition
of the tail groups determines the properties of the interface and the interac-
tion with the environment. They can also be formed on other nanosystems
(nanoparticles, for instance), and they can specifically interact with biological
nanostructures such as proteins.

The recent accelerated development in nano-science has given a new im-
pulse to the topic of self-assembled monolayers. The early ideas of the 1980s,
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to build nanodevices with SAMs, now appear as a real possibility. However,
before a SAM-based nanotechnology becomes real, a number of obstacles have
to be overcome. For an extensive discussion of SAMs we refer to a number of
excellent books and articles [11–14].

Problems

1. Consider two circular metal islands, one layer of atoms high, consisting of
the same material. Let R1 and R2, with R1 > R2, denote their radii, and
β their step line tension. Calculate the gain in free energy, when the larger
island completely swallows the smaller one. Consider in particular the case
R1 � R2.

2. We consider the migration of a single adatom on the surface of a metal elec-
trode. Let the difference in dipole moment between the equilibrium position
and the activated state be: (µ† − µi)) = 5 × 10−3e0Å. Calculate the en-
hancement in the migration rate caused by surface-charge densities of 5, 10,
20 µCcm−2.
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Complex reactions

In previous chapters we have already encountered examples of reactions in-
volving several steps, and introduced the notion of a rate-determining step.
Here we will elaborate on the subject of complex reactions, introduce another
concept; the electrochemical reaction order, and consider a few other examples.

17.1 Consecutive charge-transfer reactions

The simplest type of complex electrochemical reactions consists of two steps,
at least one of which must be a charge-transfer reaction. We consider two
consecutive electron-transfer reactions of the type:

Red 
 Int + e− 
 Ox + 2e− (17.1)

such as:
Tl+ 
 Tl2+ + e− 
 Tl3+ + 2e− (17.2)

For simplicity we assume that the intermediate is short-lived, stays at the
electrode surface, and does not diffuse to the bulk of the solution. Let φ(1)

00 and
φ

(2)
00 denote the standard equilibrium potentials of the two individual steps,

and cred, cint, cox the surface concentrations of the three species involved. If
the two steps obey the Butler–Volmer equation the current densities j1 and
j2 associated with the two steps are:

j1 = Fk0
1

[
cred exp

α1F (φ− φ
(1)
00 )

RT

−cint exp

(
− (1− α1)F (φ− φ

(1)
00 )

RT

)]
(17.3)

W. Schmickler, E. Santos, Interfacial Electrochemistry, 2nd ed.,
DOI 10.1007/978-3-642-04937-8 17, c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 17.1. Tafel plot for two consecutive electron-transfer reactions. Parameters:
α1 = 0.4, α2 = 0.5; (a) j0,2 = 5j0,1; (b) j0,2 = 103j0,1.

j2 = Fk0
2

[
cint exp

α2F (φ− φ
(2)
00 )

RT

−cox exp

(
− (1− α2)F (φ− φ

(2)
00 )

RT

)]
(17.4)

The total current density is j = j1 + j2. Let us first consider the equilibrium
conditions. From j1(φ0) = j2(φ0) = 0 we obtain:

φ0 − φ
(1)
00 =

RT

F
ln
cint (φ0)
cred

(17.5)

φ0 − φ
(2)
00 =

RT

F
ln

cox
cint (φ0)

(17.6)

from which the equilibrium potential φ0 and the concomitant concentration
cint (φ0) can be determined:

cint (φ0) = (coxcred)1/2 exp

−F
(
φ

(1)
00 − φ

(2)
00

)
2RT

 (17.7)

φ0 =
φ

(1)
00 + φ

(2)
00

2
+
RT

2F
ln
cox
cred

(17.8)

On application of an overpotential η we have under stationary conditions:

j(η) = 2j1(η) = 2j2(η) (17.9)

Substituting from above gives:
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j1(η) = j0,1

[
exp

α1Fη

RT

−cint(η)
c0int

exp
(
− (1− α1)Fη

RT

)]
(17.10)

j2(η) = j0,2

[
cint(η)
c0int

exp
α2Fη

RT

− exp
(
− (1− α2)Fη

RT

)]
(17.11)

where c0int = cint(φ0), and j0,1, j0,2 denote the exchange current densities of the
two reactions at the equilibrium potential. From these equations cint(η)/c0int

can be eliminated so that we obtain the current-potential relation:

j =
2j0,1j0,2

jm

[
exp

(α1 + α2)Fη
RT

− exp
(
− (2− α1 − α2)Fη

RT

)]
(17.12)

where

jm = j0,2 exp
α2Fη

RT
+ j0,1 exp

(
− (1− α1)Fη

RT

)
For high anodic or cathodic overpotentials one of the partial current densities
can be neglected:

j = 2j0,1 exp
α1Fη

RT
, for Fη � RT (17.13)

j = −2j0,2 exp
(
− (1− α2)Fη

RT

)
, for Fη � RT (17.14)

So a Tafel plot results in straight lines at high overpotentials (see Fig. 17.1),
but the two branches give different apparent exchange densities, 2j0,1 and
2j0,2, when they are extrapolated to zero overpotential. Also, the two apparent
transfer coefficients obtained from the slopes do not necessarily add up to
unity or to a positive integer. If the two exchange current densities differ
by orders of magnitude, there is an intermediate range of potentials with a
different apparent transfer coefficient, and a change in slope at high absolute
values of the overpotential (see curve (b) in Fig. 17.1, and also Problem 1).
Recall that we have assumed that the intermediate stays at the electrode
surface. The general case where it can diffuse to the bulk of the solution is
considered in Problem 2.

17.2 Electrochemical reaction order

We consider a complex reaction that contains exactly one electrochemical step
of the type:
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A 
 B + ze− (17.15)

which is rate determining. This step can be a simple redox reaction, an ion-
transfer reaction, or a metal ion deposition. We further assume that the re-
actants react with other species S1, S2, . . . , Sm through fast reactions of the
form:

A 

m∑

i=1

xi,aSi (17.16)

B 

m∑

i=1

xi,bSi (17.17)

An example will be presented in the next section. The coefficients xi,a and
xi,b are called electrochemical reaction orders. Usually the species A and B
react only with a few of the substances Si, so that the reaction orders for the
other species vanish. We assume that the reactions (17.16) and (17.17) are in
equilibrium. The total reaction is:

m∑
i=1

xi,aSi 

m∑

i=1

xi,bSi + ze− (17.18)

Since the chemical reactions are in equilibrium, the concentrations ca and cb
of the species A and B can be calculated from the equilibrium constants Ka

and Kb and the concentrations ci of the species Si:

ca = Ka

m∏
i=1

c
xi,a

i (17.19)

cb = Kb

m∏
i=1

c
xi,b

i (17.20)

Note that we deviate slightly from the common convention according to which
Ka and Kb should be the inverse of the equilibrium constants since A and B
are products; our usage simplifies the notation in this context.

If the electrochemical reaction obeys the Butler–Volmer equation, the cur-
rent density j at an electrode potential φ is:

j = zFk0Ka

m∏
i=1

c
xi,a

i exp
zαF (φ− φ00)

RT

−zFk0Kb

m∏
i=1

c
xi,b

i exp
(
−z(1− α)F (φ− φ00)

RT

)
(17.21)

Figure 17.2 shows a set of current-potential curves, where the concentration of
one of the species Si has been varied. In the two linear Tafel regions, far from
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Fig. 17.2. Tafel plot for various concentrations of reactant S in equilibrium with A
and electrochemical reaction order xa = 1; the dashed curve refers to a concentration
of S lowered by a factor of two, the dotted curve to a concentration lowered by a
factor of four with respect to the full curve.

equilibrium, the back reactions can be neglected, so that the anodic current
density is given by:

ln j = ln
(
zFk0Ka

)
+

m∑
i=1

xi,a ln ci +
zαF (φ− φ00)

RT
(17.22)

and the cathodic current density:

ln |j| = ln
(
zFk0Kb

)
+

m∑
i=1

xi,b ln ci −
z(1− α)F (φ− φ00)

RT
(17.23)

If one of the concentrations ci is varied, the Tafel lines are shifted, and the
electrochemical reaction orders xa,i and xi,b can be determined from:

xi,a =
(
∂ ln j
∂ ln ci

)
φ,ci6=j

, anodic branch (17.24)

xi,b =
(
∂ ln |j|
∂ ln ci

)
φ,ci6=j

, cathodic branch (17.25)

where all other variables, including the potential φ, must be kept constant.
Alternatively the electrochemical reaction orders can be determined from

the exchange current density j0. From Eq. (17.21):

ln j0 = ln
(
zFk0Ka

)
+

m∑
i=1

xi,a ln ci +
zαF (φ0 − φ00)

RT

= ln
(
zFk0Kb

)
+

m∑
i=1

xi,b ln ci

− z(1− α)F (φ0 − φ00)
RT

(17.26)
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By differentiation we obtain:(
∂ ln j0
∂ ln ci

)
ci6=j

= xi,a +
zαF

RT

∂φ0

∂ ln cj
(17.27)

= xi,b −
z(1− α)F

RT

∂φ0

∂ ln cj
(17.28)

We need the Nernst equation to determine the change of the equilibrium po-
tential with concentration. For this purpose the overall reaction is usually
rewritten in such a way that all coefficients are integers, with negative sto-
chiometric coefficients denoting the reactants. This results in an equation of
the form:

0 =
m∑

i=1

νiSi + ne− (17.29)

where the coefficients νi are related to the reaction orders by:

νi = (xi,b − xi,a)
n

z
(17.30)

The Nernst equation is then:

φ0 = φ00 +
RT

nF

m∑
i=1

νi ln ci (17.31)

Differentiating and substituting into Eq. (17.27) gives:

∂ ln j0
∂ ln ci

= xi,a + ανi
z

n
= xi,b − (1− α)νi

z

n
(17.32)

The quantities α, z, n can be determined separately, so that Eq. (17.32) offers
an alternative way of obtaining the electrochemical reaction orders. A good
discussion of the coupling of electrochemical with chemical reactions has been
given by Parsons [1].

17.3 Mixed potentials and corrosion

The absence of a net current does not necessarily mean that the interface is
in equilibrium. In fact, several reactions may proceed in such a way that the
total current vanishes. We consider the case where two reactions, an anodic
and a cathodic one, balance. The reaction scheme is:
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Fig. 17.3. The mixed potential originating from a cathodic and an anodic reaction.

A → B + z 1e
− (17.33)

C + z2e− → D (17.34)

We assume that both reactions obey the Butler-Volmer equation, and denote
the corresponding transfer coefficients by α1 and α2, the exchange current
densities by j0,1 and j0,2, and the equilibrium potentials by φ

(1)
0 and φ

(2)
0 .

Since the total current density is zero we have:

j0,1 exp
z1α1F

(
φm − φ

(1)
0

)
RT

= (17.35)

−j0,2 exp

(
−z2(1− α2)F (φm − φ

(2)
0 )

RT

)
where φm, the potential at which there is no current, is called the mixed
potential. We have assumed that |φ1 − φ2| � RT so that the back reactions
can be neglected. A short calculation gives for the mixed potential:

φm =
(RT/F ) ln (j0,2/j0,1) + z1α1φ

(1)
0 + z2(1− α2)φ

(2)
0

z1α1 + z2(1− α2)
(17.36)

Each reaction proceeds with a current density of:

jm = j0,1 exp
z1α1F (φm − φ

(1)
0 )

RT
(17.37)

Of course, one can substitute φm from Eq. (17.36), but the resulting expres-
sion is complicated. The mixed potential and the two partial currents are
illustrated in Fig. 17.3.

An important example is the corrosion of metals. Most metals are ther-
modynamically unstable with respect to their oxides. In the presence of water
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or moisture, they tend to form a more stable compound, a process known as
wet corrosion (dry corrosion is not based on electrochemical reactions and
will not be considered here). Moisture is never pure water, but contains at
least dissolved oxygen, sometimes also other compounds like dissolved salt.
So a corroding metal can be thought of as a single electrode in contact with
an aqueous solution. The fundamental corrosion reaction is the dissolution of
the metal according to:

M →Mz+ + ze− (17.38)

This reaction can only proceed if the electrons are consumed by a ca-
thodic counter reaction, because otherwise the metal surface would accumu-
late charge. Common reactions are the hydrogen evolution reaction, which in
acid solutions proceeds according to:

2H+ + 2e− → H2 (17.39)

or oxygen reduction:
O2 + 4e− + 4H+ → 2H2O (17.40)

For the corresponding equations in alkaline solutions, see Chap. 13 and 14.
The metal surface attains a mixed potential φcor, the corrosion potential, such
that the anodic current of the metal dissolution is exactly balanced by the
cathodic current of one or more reduction reactions. The corrosion potential
is given by Eq. (17.36), and the corrosion current density by Eq. (17.37).

On an inhomogeneous surface the two currents densities may vary over
the surface, and need not balance locally; only the total current must be
zero. In this case we must replace the exchange current densities in Eqs.
(17.35), (17.36), and (17.37) by the corresponding exchange currents. Because
of charge conservation an uneven current distribution on the electrode must
be balanced by currents flowing parallel to the surface on both sides of the
interface.

Problems

1. Consider the reaction with two consecutive electron-transfer steps de-
scribed by Eq. (17.12). (a) Show that, if j0,2 � j0,1, there is an inter-
mediate range of negative overpotentials in which the apparent transfer
coefficient is (2− α1) and the apparent exchange current density 2j0,1

(see Fig. 17.1). (b) Derive the form of the Tafel plot for j0,1 � j0,2.
2. Consider the reaction scheme of Eq. (17.11) and assume that the in-

termediate can diffuse away from the electrode surface. In the simplest
case the current density of particles diffusing away is proportional to
the concentration of the intermediate cint at the surface: jdiff = kcint.
Derive an expression for cint under stationary conditions.

3. Derive Eq. (17.35) from Eqs. (17.33) and (17.34).
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Liquid–liquid interfaces

18.1 The interface between two immiscible solutions

When we defined electrochemistry in Chap. 1, we made a special case for
including the interface between two liquid electrolytes. Because they show
many similarities with the more usual electrochemical systems. Much of the
interest in these interfaces resides in the fact that they can serve as models for
membranes, but they are also interesting systems in their own right. Often,
these interfaces are also denoted as interfaces between two immiscible solu-
tions (ITIES). However, since in most cases the two liquids are not totally
immiscible, we shall not use this terminology.

Most of the liquid–liquid interfaces that have been studied involve water
and an organic solvent such as nitrobenzene or 1,2-dichloroethane (1,2-DCE).
Although these systems form stable interfaces, the solubility of one solvent
in the other is usually quite high. For example, the solubility of water in
1,2-DCE is 0.11 M, and that of 1,2-DCE in water is 0.09 M. So each of the
two liquid components is a fairly concentrated solution of one solvent in the
other. It is therefore unlikely that the interface is sharp on a molecular level.
We rather expect an extended region with a thickness of the order of a few
solvent diameters, over which the concentrations of the two solvents change
rapidly (see Fig. 18.1). The lower the solubility of one solvent in the other,
the thinner this interfacial region should be. However, the interfacial region
does not consist of a random mixture of the two kind of solvent molecules,
but rather exhibits a fluctuating boundary between the two liquids, as shown
in Fig. 18.2. When this is averaged in the direction parallel to the inter-
face, overlapping distributions of the two solvent molecules result as they
are shown in Fig. 18.1. The higher the miscibility of the two solvents, the
lower is the interfacial tension, and the larger are the fluctuations. In recent
years, the width of the interfacial region between several immiscible liquids has
been measured [1] by X-ray reflectivity, and typical values are of the order of
6 – 12 Å, in line with our expectations.

W. Schmickler, E. Santos, Interfacial Electrochemistry, 2nd ed.,
DOI 10.1007/978-3-642-04937-8 18, c© Springer-Verlag Berlin Heidelberg 2010
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The undulating structure of the interface has been described as capillary
waves. These are waves at liquid surfaces or interfaces, where the restoring
force is not gravity like in ordinary water waves, but the surface or interfa-
cial tension. The creation of a wave at a liquid–liquid interface increases the
area of the interface, and hence its energy. For a given amplitude, short waves
create a larger surface area than long waves, and are therefore less likely to
occur. These ideas can be put into a quantitative theory [2] and applied to
liquid–liquid interfaces. However, some care must be exercised. Capillary wave
theory neglects molecular structure, assumes that the amplitude of the waves
are much smaller than their wavelengths, and thus holds at macroscopic and
mesoscopic scales [3]. Therefore, the straightforward application of capillary
wave theory to molecular structures is problematic and cannot provide quan-
titative results.

Many of the processes that are familiar from ordinary electrochemistry
have an analog at liquid–liquid interfaces; so these form a wide field of study.
We limit ourselves to a brief introduction into a few important topics: thermo-
dynamics, double-layer properties, charge-transfer reactions, and at the end
of this chapter we present a simple model for liquid–liquid interfaces. Further
details can be found in several good review articles [4–7].

particle
density

interfacial
region

phase 1 phase 2

distance

distance

charge
distribution

0

Fig. 18.1. Distribution of particles and charge at the interface between two elec-
trolytes.
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18.2 Partitioning of ions

When a solute is added to one of the two solutions, it will diffuse into the other,
and after a certain time equilibrium will be established. The distribution of the
solute between the two phases is known as partitioning, and can be determined
from standard thermodynamics.

When the two solutions are in equilibrium the electrochemical potential
of each species must be the same in both phases:

µ̃1 = µ̃2 or µ0
1 + kT ln a1 + ze0φ1 = µ0

2 + kT ln a2 + ze0φ2 (18.1)

where µ0 denotes the standard chemical potential, a the activity, z the charge
number of the species, and the indices refer to the two adjoining solutions.
For an uncharged species this results in the simple relation:

a1

a2
= exp

µ0
1 − µ0

2

kT
(18.2)

The difference in the standard chemical potentials is also known as the stan-
dard Gibbs energy of transfer, ∆G0

t = µ0
2 − µ0

1, since it is the Gibbs energy
gained when a single particle is transferred from one solution to the other
when both are in the standard state. It is determined by the difference in the
energies of solvation. Note that each solvent is saturated with the other; so
the standard states refer to the situation where solvent 1 is saturated with
solvent 2, and vice versa. To distinguish this from the situation where each
solvent is pure, it is more precise to speak of the standard Gibbs energy of
partition.

The partitioning of ions is not so simple, since each solution must be
electrically neutral with the exception of a thin boundary layer at the interface.

Fig. 18.2. Distribution of particles at the interface between two immiscible solvents
(schematic).
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As an example we consider the case where a single salt is partitioned between
the two phases; for simplicity we assume that the cation and the anion have
the same charge number z. We denote the cation by the index +, and the
anion by −. Applying the equilibrium condition Eq. (18.1) to both ions gives
for the difference in inner potentials:

ze0(φ2 − φ1) = kT ln
a1(+)
a2(+)

+ µ0
1(+)− µ0

2(+)

= −kT ln
a1(−)
a2(−)

+ µ0
2(−)− µ0

1(−) (18.3)

From this we obtain for the activities:

a1(+)a1(−)
a2(+)a2(−)

= exp
µ0

2(+)− µ0
1(+) + µ0

2(−)− µ0
1(−)

kT
(18.4)

Since each solution must be electrically neutral anions and cations have the
same concentrations in the bulk:

ai(+) = cif
+
i ai(−) = cif

−
i for i = 1, 2 (18.5)

This gives for the partitioning of the salt:

c1
c2

=
f±2
f±1

exp
µ0

2(+)− µ0
1(+) + µ0

2(−)− µ0
1(−)

2kT
(18.6)

where f± = (f+f−)1/2 denotes the mean ionic activity coefficient of the salt.
All quantities in Eq. (18.6) are measurable: The concentrations can be

determined by titration, and the combination of chemical potentials in the
exponent is the standard Gibbs energy of transfer of the salt, which is mea-
surable, just like the mean ionic activity coefficients, because they refer to an
uncharged species. In contrast, the difference in the inner potential is not mea-
surable, and neither are the individual ionic chemical potentials and activity
coefficients that appear on the right-hand side of Eq. (18.3).

18.3 Energies of transfer of single ions

Although the inner potential difference is not measurable in principle, it would
be useful to have at least good estimates. We can see from Eq. (18.3) that this
problem is equivalent to determining the difference in the chemical potential
of individual ions. If we knew the standard Gibbs energies of transfer of the
ions:

∆G0
t (+) = µ0

2(+)− µ0
1(+); ∆G0

t (−) = µ0
2(−)− µ0

1(−) (18.7)

we could calculate the inner potential difference at least in the limit of infinite
dilution, where the activity coefficients are unity. For higher concentrations
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Fig. 18.3. Four-electrode configuration for liquid–liquid interfaces.

one needs an additional assumption about the activity coefficients of the ions
[5]. For example, one can estimate them from the extended Debye-Hückel
theory or similar models.

The Gibbs energy of transfer of a salt is measurable. If we can divide
this into individual ionic contributions for one particular salt, the problem is
solved for all salts, as can be seen from the following simple consideration.
Suppose we had successfully divided the energy of transfer of the salt MA
into the contributions of the ions M+ and A−. The standard Gibbs energies
of transfer of some other ions N+ and B− are then obtained from the energies
of transfer of the salts MB and NA, since these energies are additive at low
concentrations, and so on for other ions. A widely used scale is based on the
assumption that the energies of solvation of the tetraphenylarsonium (TPAs+)
and the tetraphenylborate (TPB−) ions are equal in every solvent. This is
reasonable because both ions are symmetrical, fairly large, and the charges
are at the center, buried under the phenyl groups. They have, however, slightly
different sizes. The resulting difference in the Gibbs energies of transfer could
be estimated from the Born equation for solvation energies, but this correction
is rarely made in practice. Lists of recommended values for the standard Gibbs
energies of transfer can be found in the literature [4].

There are other ways of estimating inner potential differences. Girault and
Schiffrin [8] assume that the difference in the inner potential is negligible at
the pzc, because the interface consists of an extended layer, so that any dipole
potentials will be small. The resulting scale of Gibbs energies of transfer agrees
reasonably well with the TPAs+/TPB− scale, if the small difference in the
radii of these ions is accounted for.

In a real experiment one uses at least four electrodes (see Fig. 18.3), one
counter and one reference electrode on each side, and measures the difference
in potential between the two reference electrodes. In principle each reference
electrode could be referred to the vacuum scale using the same procedure
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that was outlined in Chap. 4. However, in practice the required data are
not available with sufficient accuracy. Of course, the voltage between the two
reference electrodes characterizes the potential difference between the two
phases uniquely. It can be converted to an (estimated) scale of inner potential
differences by using the energies of transfer of the ions involved.

18.4 Double-layer properties

When we discussed the double-layer properties of metal electrodes in contact
with an electrolyte solution, we introduced the notion of an ideally polarizable
interface, which is marked by the absence of charge-transfer reactions over
a certain potential window (see Chap. 5). A similar situation can prevail at
liquid–liquid interfaces. Consider the interface between water and an organic
solvent. If we add a strongly hydrophobic salt to the organic solvent, and for
the aqueous phase use a salt that is practically insoluble in the organic phase,
then there exists a potential window in which the ion transfer through the
interface is negligible. Of course, in theory each salt will have a finite concen-
tration in each solvent. However, in practice this can be entirely negligible,
just as the dissolution of gold into water is negligible over a certain range of
potentials.

It is natural to extend the Gouy–Chapman theory to ideally polarizable
liquid–liquid interfaces. In general excess charge densities σ and −σ exist on
the two sides of the interface (see Fig. 18.1). The mathematical treatment
follows the same line as for metal electrodes, but we now have two space-
charge regions, one on each side of the interface. We focus on the interfacial
capacity, a quantity that is accessible to experiment. The capacity C per unit
area of the interface is given by the change in the charge density σ with the
change in the inner potential:

C =
dσ

d(φ∞2 − φ∞1 )
(18.8)

where we have added superscripts ∞ to the inner potentials to indicate that
these are the limiting values far from the interface. The change in potential
that is actually measured is the difference in the potential of the two refer-
ence electrodes, but this differs from φ∞2 − φ∞1 by a constant, which drops
out on differentiation. The arrangement of charges can be considered as two
capacitors in series; so we may write:

1
C

=
1
C1

+
1
C2

(18.9)

The capacitances C1 and C2 of the two phases can be obtained from the
Gouy–Chapman theory treated in Chap. 5. We only have to note that the
potentials in the bulk of the two phases are not zero (we could set one of
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them equal to zero). So we replace φ(0) in Eq. (5.11) by φs
i − φ∞i , where

i = 1, 2, and φs
i denotes the potential in phase i at the interface. This gives

for a z–z electrolyte:

Ci = εiε0κi cosh
zie0(φs

i − φ∞i )
2kT

(18.10)

The inner potentials φs
i have to be calculated by solving the Poisson-Boltz-

mann equations for the potentials in the same way as in Chap. 5.

0 0.1-0.1

0.1

0.2

0.3

0.4

0.5

∆φ V

m
F / 

C
2-

/

Fig. 18.4. Capacity of the interface between a solution of NaBr in water and
TBAsTPB in nitrobenzene. The upper points are for 0.1 M solutions, the lower
for 10−2 M in both phases. The two curves have been calculated from the Gouy-
Chapman theory. The sign convention for the potential is: ∆φ = φw − φo + const.,
where the index w stands for the aqueous and o for the organic phase. Data taken
from [4].

The potentials φs
i on the two sides of the interface can differ by an inter-

facial dipole potential. If this changes with the applied potential it gives an
extra contribution to the interfacial capacity, and Eq. (18.9) must be replaced
by:

1
C

=
1
C1

+
1
C2

+
d(φs

2 − φs
1)

dσ
(18.11)

On the whole, in the absence of specific adsorption at the interface the
Gouy–Chapman theory seems to work well for liquid–liquid interfaces. Figure
18.4 shows some typical capacity curves at intermediate electrolyte concentra-
tion. For the 0.01 M solutions in both phases, the agreement between experi-
ment and theory is good, and even for 0.1 M solutions it is quite reasonable.
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As expected, for the higher concentration the theory tends to overestimate
the concentration, because it does not account for the finite size of the ions
and of the solvent molecules.

Fig. 18.5. Capacity of the interface between a 10−2 solution of NaBr in water and
tetrabutylammonium tetraphenylborate in 1,3 dibromopropane. The points give the
experimental values, the curve has been calculated from Gouy–Chapman theory.
Data taken from [9].

An interesting effect is observed at low concentrations. One would expect
Gouy–Chapman theory to hold even better than for higher concentrations;
instead, the capacity is typically higher than predicted. A systematic study by
Pereira et al. [9] on the capacity at low concentrations showed that out of ten
investigated interfaces, nine had a capacity higher or equal to that predicted
by the Gouy–Chapman theory. In contrast, on metal electrodes, the capacity,
in the absence of specific adsorption, is always lower. An example is shown
in Fig. 18.5; the experimental data are quite symmetric with respect to the
pzc, which practically rules out specific adsorption (see the next paragraph).
This enhancement of the capacity can be explained in terms of the diffuse
structure of the interface depicted in Figs. 18.1 and 18.2. This entails on
overlap of the two space-charge regions on both sides, which decreases the
average separation between the opposing charges and thereby increases the
capacity. Further details and model calculations can be found in [9].

Large systematic deviations from the Gouy–Chapman theory can be
caused by the specific adsorption of ions at the interface. The most com-
mon cause is the pairing of ions across the interface, with one ion being
in the aqueous, the other in the organic phase. As an example we men-
tion the work of Cheng et al.[10], who studied the interface between aque-
ous solutions containing alkali halides and a solution of TPAsTPB in 1,2-
dichloroethane. Figure 18.6 shows the capacity curves for five different alkali
ions. The curves coincide at low potentials but differ significantly at higher
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potentials. The differences can be attributed to the pairing of the alkali cations
with TPB− at the interface. Ion pairing leads to a smaller average charge
separation at the interface, and hence to a greater capacity. This effect is
weakest for the Li+ ion, and increases down the column of the periodic table:
Li+ < Na+ < K+ < Rb+ < Cs+. So, as may be expected, the tendency
to form ion pairs at the interface is the stronger, the smaller the energy of
hydration of the cation.
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Fig. 18.6. Capacity of the interface between aqueous solutions containing alkali
halides and a solution of TPAs/TPB in 1,2-dichloroethane. The electrolyte concen-
tration in both cells was 10−2 M. Alkali halides used: (a) CsCl, (b) RbCl, (c) KCl,
(d) NaCl, (e) LiCl. Data taken from [10].

18.5 Electron-transfer reactions

Electron-transfer reactions at liquid–liquid interfaces involve redox couples on
each side of the interface. The basic scheme is (see Fig. 18.7):

Ox1 + Red2 
 Red1 + Ox2 (18.12)

where Ox1, Red1 are in phase 1, Ox2, Red2 in phase 2. Following the ideas
of Sect. 4.3 we derive the equilibrium potential that is measured in the four-
electrode configuration. Let phase 1 be connected to a reference electrode
I, and phase 2 to reference electrode II. For simplicity, we suppose that both
reference electrodes use the same metal M as electrode material. The potential
drop between the two reference electrodes is:

∆φ = φII − φI = (φII − φ2) + (φ2 − φ1) + (φ1 − φI) (18.13)
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The two reference electrodes and the interface between the two solution are
in electronic equilibrium, so that we can express the differences in the inner
potential through the differences in the chemical potentials. We denote the
chemical potential of the two metal electrodes as µM , those of the two reference
systems as µ(1)

ref and µ
(2)
ref , and those of the two redox couples as µ(1)

redox and
µ

(2)
redox. We obtain:

∆φ = (µM − µ
(2)
ref ) + (µ(2)

redox − µ
(1)
redox) + (µ(1)

ref − µM )

= µ
(1)
ref − µ

(2)
ref + µ

(2)
redox − µ

(1)
redox (18.14)

Since systems that are in the same phase experience the same inner potential,
we can write this as:

∆φ = (µ̃(1)
ref − µ̃

(1)
redox)− (µ̃(2)

ref − µ̃
(2)
redox) (18.15)

Comparison with Eq. (4.10) shows that the measured potential is simply the
difference between the equilibrium potentials of the two redox couples, each
measured with respect to its own reference electrode. Admittedly, this is an
obvious result, but it is useful to derive it from first principles. The corre-
sponding Nernst equation is:

φ2 − φ1 = ∆φ = ∆φ0 +
RT

nF
ln
a
(1)
Reda

(2)
Ox

a
(1)
Oxa

(2)
Red

(18.16)

where ∆φ0 is the standard value, when all activities are unity.

Ox1 Red2

e

φ(x)

x1 x2

∆φ ∆φeff

interface

Fig. 18.7. Electron transfer at liquid–liquid interfaces. ∆φ is the total drop in the
inner potential, ∆φeff is the part that is effective in the reaction.

Electron-transfer reactions at liquid–liquid interfaces resemble electron-
transfer reactions across biological membranes, which adds a special interest.
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Also, in contrast to homogeneous electron-transfer reactions, they allow a
separation of the reaction products. So it is disappointing to report that only
very few convincing experimental investigations of electron-transfer reactions
at liquid–liquid interfaces have been performed. This is mainly due to the fact
that it is difficult to find systems where the reactants do not cross the interface
after the reaction; in addition, side reactions with the supporting electrolyte
can be a problem.

One of the few studies that have been performed is the work of Cheng
and Schiffrin [11] at the interface between water and 1,2-dichloroethane. The
reactant in the aqueous phase was the [Fe(CN)6]

3−/4− couple, and a few dif-
ferent couples (e.g., lutetium diphthalocyanine) were employed in the organic
phase. While the reaction rates could be measured by impedance spectroscopy
(see Chap. 19), and were clearly dependent on the applied potential, an inter-
pretation of the results is difficult. The main problem is the following: If the
rate-determining step is the exchange of an electron across the interface, we
need to know the variation of the electrostatic potential across the interface
in order to analyze the data with the concepts familiar from electron-transfer
reactions at metals. Using the notation of Fig. 18.7, from the potentials φ(x1)
and φ(x2) at the reaction sites, we can calculate the concentrations of the
reactants at the interface. The potential drop that affects the reaction rate is
∆φeff = φ(x2)−φ(x1). Judging from the capacity data discussed above this is
only a small fraction of the total potential drop ∆φ = φ2 − φ1. If we want to
investigate the dependence of the reaction rate on the effective potential, we
need to know how ∆φeff varies with ∆φ. However, our double-layer theories
for liquid–liquid interfaces are simply not accurate enough to furnish reliable
estimates. While it would be surprising if the principles of electron-transfer
reaction presented in Chaps. 8 and 9 did not hold for liquid–liquid interfaces,
it is difficult to verify this. The best that can be said at the present time is that
the data do not contradict the established theories. Basically, the situation
has not improved much since the first edition of this book.

Recall that the situation at the interface between a metal and an electrolyte
solution is much more favorable: By using a large concentration of supporting
electrolyte, we can ensure that the potential at the reaction site differs little
from the potential in the bulk of the solution. This does not help at liquid–
liquid interfaces because for high ionic concentrations the extension of the
diffuse layer is of the same order of magnitude as that of the interface itself.

In a number of cases liquid–liquid interfaces can be used to separate the
products of a photoinduced electron-transfer reaction. An early example is
the work by Willner et al. [12] at the water/toluene interface, who studied
the photooxidation of [Ru(bpy)3]2+ in the aqueous phase. The excited state
was quenched by hexadecyl- 4, 4′ bipyridinium, which becomes hydrophobic
on reduction and crosses to the toluene phase. There are other examples and
mechanisms; at the present time their main interest resides in their chemistry,
and in the separation of products that can be achieved at the interface.
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18.6 Ion-transfer reactions

Ion transfer across liquid–liquid interfaces is easier to study than electron
transfer; so there is a greater body of experimental data. However, their in-
terpretation is just as difficult. At the present time we can safely state:

1. Ion transfer across liquid–liquid interfaces is fast.
2. As a consequence it is difficult to separate ion transport to the interface

from ion transfer across the interface.
3. There are indications that in a number of systems a Butler–Volmer-type

law holds in the phenomenological sense; that is, the partial current
seems to depend exponentially on the potential difference between the
two phases.

As an example, Fig. 18.8 shows Tafel plots for the exchange of the acetylcho-
line ion between an aqueous solution and 1,2-DCE. The two branches were
obtained under conditions in which the ion was initially present in one phase
only. This reaction obeys the Butler–Volmer law surprisingly well, even though
a microscopic interpretation faces the same difficulty that we have discussed
for electron-transfer reactions.
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Fig. 18.8. Tafel plots for the exchange of the acetylcholine ion between an aqueous
solution and 1,2-DCE; the branch on the right-hand side corresponds to transfer
from the aqueous to the organic solution. Data taken from [6].

From a chemical point of view the phenomenon of facilitated ion transfer
is intriguing. In this case, the transfer of an ion is aided by complexation
in one of the phases, which shifts the equilibrium into the direction desired.
Several possible mechanisms are illustrated in Fig. 18.9; for transfer from the
aqueous to the organic phase, they are [6]:

ACT, aqueous complexation followed by transfer;
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TOC, transfer followed by complexation in the organic phase;
TIC, transfer by interfacial complexation;
TID, transfer by interfacial dissociation.

These mechanisms are difficult to distinguish in practice, since the interface is
not sharp. A good example is the facilitated transfer of sodium ions from water
into 1,2-DCE [13]. The solubility of Na+ in the organic solvent is very low, and
the transfer usually requires the application of a fairly large positive potential
of the aqueous with respect to the organic phase. Adding a small amount of
dibenzo-18-crown-6, which acts as a ionophore (i.e., a complexing agent for
the ion), facilitates the transfer, which then occurs at much lower potentials.
The sodium ion forms a complex with the ionophore at the interface, which is
then transferred to the bulk of the organic phase. By the terminology defined
above this is an example of transfer by interfacial complexation.

phase 1

phase 1 phase 1

phase 1

phase 2

phase 2 phase 2

phase 2

+

+

ACT TOC

TIC TID

Fig. 18.9. Various mechanisms for facilitated ion-transfer reactions.

18.7 A model for liquid–liquid interfaces

Phase separations and boundaries may occur in many systems: in alloys, in fer-
romagnetic substances, in solutions. The basic mechanism can be understood
within a simple model, which in physical chemistry is known as the lattice gas
model, in magnetism as the Ising model. We present a simple version adapted
to liquid–liquid interfaces.

We consider a solution composed of two types of molecules, labelled 1 and
2, which are distributed on a cubic lattice such that each lattice point is oc-
cupied by one kind of molecule. The interactions between the molecules are
restricted to nearest neighbors. We denote by w11, w22 and w12 the interac-
tion energies between neighboring pairs 11, 22, and 12; they are negative for
attractive interactions. The energy E of the mixture is then:
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E = N11w11 +N22w22 +N12w12 (18.17)

where Nij denotes the number of pairs ij. Let m denote the number of nearest
neighbors; for a cubic lattice m = 6. Then the total numbers of molecules N1

and N2 are related to the numbers of pairs through:

mN1 = 2N11 +N12

mN2 = 2N22 +N12 (18.18)

It is convenient to introduce the quantities:

E11 = mN1w11/2
E22 = mN2w22/2
w = w12 − (w11 + w22)/2 (18.19)

and rewrite the total energy in the form:

E = E11 + E22 +N12w (18.20)

The number of pairs N12 is determined by the probability to find a molecule
1 at a certain site and a molecule 2 at one of the six neighboring sites. If the
molecules are mixed randomly this gives:

N12 = mNx1x2 with x1 = N1/N x2 = N2/N (18.21)

As a simple approximation we will ignore any deviations from random mixing
that are caused by the interactions; this procedure is also known as the mean
field approximation.

To obtain the Helmholtz energy of the system we require the entropy,
which is: S = k lnW , where W is the number of different realizations of the
system. The number of ways in which N1 molecules of type 1 and N2 = N−N1

molecules of type 2 can be distributed onto N sites is:

W =
N !

N1!N2!
(18.22)

According to Stirling’s formula lnN ! ≈ N lnN − N ; so we obtain for the
entropy:

S = −Nk [x1 lnx1 + x2 lnx2] (18.23)

Since the lattice is fixed its volume does not change with pressure, and the
Gibbs and Helmholtz energies of the system are the same. Adding the energy
part from Eq. (18.20 ) and Eq. (18.21) and the entropy part gives:

G = A = E11 + E22 +mNx1x2w +NkT [x1 lnx1 + x2 lnx2] (18.24)

The last two terms give the change ∆GM in the Gibbs energy that occurs
during mixing. Using x2 = 1− x1 we write this as:
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∆GM

NkT
= αx1(1− x1) + x1 lnx1 + (1− x1) ln(1− x1) (18.25)

where α = mw/kT . Figure 18.10 shows this Gibbs energy of mixing as a
function of the composition x1 for various values of α. All curves are symmetric
with respect to the line x = 1/2. Two regimes can be distinguished: If α < 2
the Gibbs energy of mixing has a single minimum at x1 = 1/2, when both
components are present in the same amount. In this case any mixture of the
two components will be stable. If α > 2 the Gibbs energy of mixing has a
maximum at x = 1/2 and two minima placed symmetrically on each side of
the maximum, i.e. at positions x0

1 and (1−x0
1) (see Problem 4), where we may

assume x0
1 < 1/2. In this case the solution will separate into two phases: a

phase which is richer in molecules of type 1 and a phase which contains mostly
type 2. This occurs when the self-interactions w11 and w22 are much stronger
than the cross-interaction w12. Two solutions of different compositions are
formed, which are separated by a liquid–liquid interface, so this is the case of
interest to us here.
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Fig. 18.10. Gibbs energy of mixing as a function of the composition; the values of
α are from top to bottom: 3.0, 2.5, 2.0, 1.0, 0.0, −0.5.

At the interface the composition changes from x1 = x0
1 to x1 = (1 − x0

1).
This change is not abrupt, but occurs over an interfacial region with a certain
extension in the direction perpendicular to the interface, which we would like
to estimate. The thickness of this region must be determined by the condition
that the Gibbs energy of forming the interface must be minimal. We first
introduce the Gibbs energy g = GM/V of mixing per unit volume. In the
bulk of a phase this is obtained from Eq. (18.24) by dividing through the
volume and introducing the number NV of particles per unit volume:
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gbulk = NV {mwx1x2 + kT [x1 lnx1 + x2 lnx2]} (18.26)

Near the interface the composition changes, and the Gibbs energy must con-
tain a term depending on the rate of change. We choose our coordinate system
such that the z axis is perpendicular to the interface. The leading term must
involve the gradient of the composition dx1/dz; for reasons of symmetry it has
to be invariant to a change of sign, so it must be proportional to the square of
the gradient. So, in the simplest approximation the Gibbs energy per volume
is:

g(z) = gbulk + γ

(
dx1

dz

)2

(18.27)

In order to estimate the coefficient γ we consider the hypothetical situation
in which the composition at the interface changes abruptly from x1 = 1 to
x1 = 0. In this case the gradient is dx1/dz = 1/a, where a is the lattice
constant. Compared to the situation in the bulk of the two phases a new
pair 12 has been formed per surface molecule, but two bonds 11 and 22 have
been broken. The excess energy per atom is obtained by the following steps:
A uniform phase consisting only of molecules 1 is split in two; the change in
energy per newly created surface atom is w11/2. Similarly a phase consisting
solely of molecules 2 is split, and the surface energy per atom is w22/2. Then
two half crystals with different composition are joined, and the gain in energy
is w12 per pair of atoms. Hence the excess energy per atom at the interface
is: w12 − w11/2− w22/2 = w. A different derivation is given in [14].
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Fig. 18.11. Density profile at the interface between two immiscible solutions; the
labelling indicates the values of α.

Hence:
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g(z)
NV kT

= αx1x2 + [x1 lnx1 + x2 lnx2] + αa2

(
dx1

dz

)2

(18.28)

The total energy of mixing

GM =
∫ ∞

−∞
g(z) dz (18.29)

obtains its minimum for the true density profile x1(z). We derive an approx-
imate solution by the following considerations: Far from the interface, bulk
equilibrium conditions prevail. Let us take:

lim
z→∞

x1(z) = x0
1 lim

z→−∞
x1(z) = 1− x0

1 (18.30)

In a simple approximation we may assume that the density profile on either
side of the interface tends exponentially towards its limiting value, and has
the form:

x1(z) =
{

(1− 2x0)
[
1− 1

2 exp(z/L)
]
+ x0 for z < 0

1
2 (1− 2x0) exp(−z/L) + x0 for z > 0 (18.31)

where the decay length L must be chosen such that the energy of mixing
is minimal. This minimization can easily be achieved numerically. Within
this simple model the single parameter α determines both the equilibrium
composition x0 and the decay length L/a measured in terms of the lattice
constant a. Fig. 18.11 shows the density profile for different α and Table 18.1
gives a few representative values. The larger α, the smaller is the solubility
of one species in the other, and the smaller the decay lenght. Conversely,
the closer α gets to the critical value of α = 2, the larger the decay length.
In other words, the weaker the cross-interaction w12 is compared to the self-
interactions w11 and w22, the sharper is the boundary between the two phases.
We have treated the lattice-gas in the mean-field approximation. Therefore the

α x0 L/a

2.1 0.68 4.65
2.2 0.75 3.33
2.5 0.86 2.13
3.0 0.92 1.52
3.5 0.96 1.26

Table 18.1. Bulk composition and decay length at the interface for various values
of α.

density profiles that we have obtained are spatial averages. If the same model
is treated more exactly, e.g. by Monte–Carlo simulations [15], the interface
exhibits the same undulating structure that is schematically depicted in Fig.
18.2.
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Problems

1. Consider a planar interface between two immiscible solvents with dielectric
constants ε1 and ε2. Calculate (a) the Coulomb interaction of two ions situ-
ated on different sides of the interface; (b) the image energy of a single ion
near the interface.

2. From Born’s formula (cf. Eq. (3.7)) derive an expression for the difference
in the energy of solvation of a spherical ion in two solvents with different
dielectric constants.

3. Derive and solve the appropriate linear Poisson–Boltzmann equation for the
interface between two immiscible solutions.

4. Prove that for α > 2 the Gibbs energy of mixing has one maximum and two
minima.
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Experimental techniques for electrode kinetics
– non-stationary methods

19.1 Overview

In electrochemical kinetics, the electrode potential is the most important vari-
able that is controlled by the experimentalist, and the current is usually mea-
sured as the response. Ideally, one would like to measure current and potential
at constant, well-determined concentrations of the reactants. However, gen-
erally the concentrations of the reacting species at the interface are different
from those in the bulk, since they are depleted or accumulated in the course
of the reaction. So one must determine the interfacial concentrations. There
are two principal ways of doing this. In the first class of methods one experi-
mental variable, typically either the potential or the current, is kept constant
or varied in a simple manner, the other observables are measured, and the
surface concentrations are calculated by solving the transport equations un-
der the conditions applied. In the simplest variant the overpotential or the
current is stepped from zero to a constant value; the transient of the other
variable is recorded and extrapolated back to the time at which the step was
applied, when the interfacial concentrations were not yet depleted. This is the
class of techniques that we cover in this chapter.

In the other class of method the transport of the reacting species is en-
hanced by convection. If the geometry of the system is sufficiently simple,
the mass transport equations can be solved, and the surface concentrations
calculated. They will be treated in the following chapter.

Besides the potential and current steps mentioned above, there are several
other methods by which the system can be perturbed; the more important
ones are listed in Table 19.1. Usually, at the starting point of the perturbation
the system is in equilibrium. Alternatively, it can be in a stationary state, in
which all the fluxes, in particular the current, are constant. If the system
returns to a stationary or equilibrium state after the perturbation, one speaks
of a transient technique; the first four methods in the table are of this kind. In
this case, we can obtain information about different processes occurring with
different velocities by analyzing the response at different time scales.

W. Schmickler, E. Santos, Interfacial Electrochemistry, 2nd ed.,
DOI 10.1007/978-3-642-04937-8 19, c© Springer-Verlag Berlin Heidelberg 2010
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perturbation response technique

potentiostatic  pulses  or  steps,
coulometric  measurements

galvanostatic  pulses  or  steps

coulostatic  pulses

adsorption  transient  at
constant  potential

electrochemical  impedance
spectroscopy

potentiodynamic  scans
cyclic  voltammetry

V(t)
I(t)

t

t

I(t)
V(t)

t

Q(t)

t

t

V(t)

t

V(t)

t

VDC+Vosin( t) I(t)

t

IDC+iosin( t+ )

V(t) I(V)
V

t

CA(t)

t

I(t)

t

V=constant
injection  of  A

Q(t)

Table 19.1. Overview over the various perturbation methods; V (t) denotes the
potential, I(t) the current, Q(t) the charge, and CA(t) the concentration of a reacting
species.

Alternatively, the perturbation can be periodic, and after an initial, tran-
sitory period the response will be periodic as well. This is true for the last two
methods listed. In this case, the variation of the frequency of the perturbation
is the key to studying processes occurring at different velocities. If the am-
plitude of the perturbation is small enough, the Butler–Volmer equation can
be linearized and the current is proportional to the potential at the interface.
Also in the case of periodically perturbation, the frequency of the response is
the same as that of the perturbation. When the perturbation is large, we speak
about a nonlinear response. In summary, in order to investigate the kinetics
of different processes occurring at an electrochemical interface we first have
to determine the potential region at which the process of interest occurs, and
secondly we have to tune the time scale or frequency with the time constants
of the process.

In simple cases the measured current is proportional to the rate of an
electrochemical reaction. The interpretation becomes complicated if several
reactions take place simultaneously. Since the measured current gives only
the sum of the rate of all charge-transfer reactions, the elucidation of the
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reaction mechanism and the measurement of several rate constants becomes
an art. A number of tricks can be used, such as complicated potential or
current programs, auxiliary electrodes etc., which work for special cases.

There are several good books on the classical electrochemical techniques
[1–6]. Here we give a brief outline of the most important methods. We mostly
restrict ourselves to the study of simple reactions, but will consider one exam-
ple in which the charge-transfer reaction is preceded by a chemical reaction.

19.2 Effect of mass transport and charge transfer on the
current

Generally the current density j that is measured is determined both by the
rate of the electrochemical reaction and by the transport of the reacting species
to the interface. Since both processes are in series, the slower of them deter-
mines the overall current. From an electrochemist’s point of view there is little
interest in transport processes as such, and we would like to eliminate their
effect on the data. For this purpose it is convenient to define a few quantities.

If transport were infinitely fast, the concentrations csox and csred of nonad-
sorbing reacting species would be the same at the interface as in the bulk.
The measured current density would solely be determined by the reaction,
and would equal the kinetic current density:

jk = nF (koxc
0
red − kredc

0
ox) (19.1)

where c0 denotes a bulk concentration, and n is the number of electrons trans-
ferred (n = 1 for outer-sphere electron-transfer reactions). In the case of a
simple reaction obeying the Butler–Volmer equation jk is given by Eqs. (9.10)
and (9.13) with cs = c0.

The other limiting case is that of an infinitely fast reaction, when the cur-
rent is determined by transport only. It is customary to call such a reaction
reversible, and denote the corresponding current density, which is determined
by transport alone, as the reversible current density jrev. It is determined
by the transport, usually by diffusion, because right at the electrode surface
transport of the reacting species is by diffusion alone – convection cannot
carry a species right to the surface because the component of the solution
flow perpendicular to the surface must vanish. One also speaks of a diffusion
current density jd in this case. It is obtained from the following considera-
tions: If the reaction is infinitely fast, the electrode is in equilibrium with the
reacting species at the interface; hence the concentrations csox and csred are de-
termined solely by Nernst’s equation. The current is obtained by solving the
diffusion equation with these surface concentrations as boundary conditions.
The diffusion current density is then obtained from:

jd = −ziFDi

(
dci
dx

)
x=0

(19.2)
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where x is the coordinate in the direction perpendicular to the surface, which
is situated at x = 0, i denotes the reacting species, Di its diffusion coefficient,
and zi its charge number. In the special case when the surface concentration
of the reacting species is negligibly small compared with c0, we speak of a
diffusion limited current density jlim; under these conditions every molecule
of species i arriving at the surface is immediately consumed.

Since transport and electrochemical reactions are in series, the slower pro-
cess determines the overall current. Hence we can obtain the rate constants
of the reaction only, if the reversible current jrev is not much slower than the
kinetic current. This limits the magnitude of the reaction rates that can be
measured with any given method.

19.3 Potential step

The principle of this method is quite simple: The electrode is kept at the
equilibrium potential at times t < 0; at t = 0 a potential step of magnitude
η is applied with the aid of a potentiostat (a device that keeps the potential
constant at a preset value), and the current transient is recorded. Since the
surface concentrations of the reactants change as the reaction proceeds, the
current varies with time, and will generally decrease. Transport to and from
the electrode is by diffusion. In the case of an infinitely fast reaction (reversible
reaction), i.e. when the potential is stepped to a region that is far removed
from the equilibrium value, the concentration of the reacting species at the
interface is reduced to zero immediately upon application of the potential step.
The gradient of the concentration at the surface decreases with the inverse of
the square root of time (see Fig. 19.1). Thus, the current is only determined
by transport, it does not depend on the applied potential and its variation
with time is given by the Cottrell equation:

jrev =
zFD1/2c◦

π1/2t1/2
(19.3)

In the case of a simple redox reaction obeying the Butler–Volmer law, the
diffusion equation can be solved explicitly, and the transient of the current
density j(t) is (see Fig. 19.2, upper panel):

j(t) = jk(η) expλ2t erfc λt1/2 ≡ jk(η)A(t) (19.4)

where λ is a constant given by:

λ =

[
j0
F

1

coredD
1/2
red

exp
αe0η

kT
+
j0
F

1

cooxD
1/2
ox

exp
(
− (1− α)e0η

kT

)]
(19.5)

j0 and α are the exchange current density and the transfer coefficient of the
redox reaction, and jk(η) is the kinetic current density defined above.
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At long times, for λt1/2 � 1, we can use the asymptotic expansion of
the error function, and j → jrev (see Problem 2). This does not contain any
information about the rate constant.

At short times, for λt1/2 � 1, the function A(t) can be expanded:

A(t) ≈ 1− 2λ
√
t/π (19.6)

Under these conditions a plot of j versus t1/2 gives a straight line, and the ki-
netic current can be obtained from the intercept (see Fig. 19.2, middle panel).
Furthermore, the rate constant may be obtained for different overpotentials
and in consequence the transfer coefficient can be also calculated. If the reac-
tion is fast the straight portion can be too short for a reliable determination
of jk; in this case one should obtain estimates for jk and λ from this plot, and
use them in fitting the whole curve to Eq. (19.4).

A more elegant method consists in using the Laplace transform, which
many mathematics packages contain as a standard option. In general, the
Laplace transform f̃(s) of a function f(t) is defined as:

f̃(s) =
∫ ∞

0

e−stf(t) dt (19.7)

where the variable s has the meaning of a frequency. In the potentiostatic
method, the Laplace transform of the current density takes on the simple
form:

j̃(s) =
zFc◦

√
D

√
s(k +

√
sD)

(19.8)

It is convenient to introduce an auxiliary function:

Fig. 19.1. Concentration profile for a reversible, infinitely fast, reaction. Time in-
creases from the back towards the front, the distance from the electrode from right
to left.
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Fig. 19.2. Current transients after application of a potential step for various re-
action rates (upper panel). Current transient plotted vs. t1/2 (middle panel); the
straight lines give the short-time limit according to Eq. (19.6). Plot of Y (s) ob-
tained by Laplace transform (lower panel).

Y (s) =
1

j̃(s)
√

s
=

1
zF
√

Dc◦
+

√
s

zFkc◦
(19.9)
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Thus, a plot of Y (s) versus the square root of the frequency gives a straight
line, and the rate constant can be obtained from the slope (see Fig. 19.2, lower
panel). The intercept contains only parameters pertaining to mass transport.
Note that the slope decreases with the rate k, and the uncertainty becomes
large for fast reactions.

There are two difficulties with this method. The first one is due to the fact
that in reality the potentiostat keeps the potential between the working and
the reference electrode constant; there is an ohmic resistance RΩ between the
tip of the Luggin capillary (see Chap. 4) and the working electrode, giving
rise to a potential drop IRΩ (I is the current). Since I varies in time, so does
the potential drop by which η is in error. However, modern potentiostats can
correct for this to some extent. The second difficulty is more serious. Imme-
diately after the potential step the double layer, which acts as a capacitor,
is charged, and double layer-charging and the Faradaic current due to the
reaction cannot be separated. If the reaction is fast, the surface concentra-
tions change appreciably while the double layer is charged, and Eqs. (19.4)
and (19.5) no longer hold. This limits the range of rate constants that can be
determined with this method to k0 ≤ 1 cm s−1.

19.4 Current step

A related technique is the current-step method: The current is zero for t < 0,
and then a constant current density j is applied for a certain time, and the
transient of the overpotential η(t) is recorded (Fig. 19.3). The correction for
the IRΩ drop is trivial, since I is constant, but the charging of the double layer
takes longer than in the potential step method, and is never complete because
η increases continuously. The superposition of the charge-transfer reaction
and double-layer charging creates rather complex boundary conditions for the
diffusion equation; only for the case of a simple redox reaction and the range
of small overpotentials | η |� kT/e0 is the transient fairly simple:

η(t) =
kT

e0

[
1
j0

+
2B
F

(
t

π

)1/2

−RTC

(
B

F

)2
]
j (19.10)

with:
B =

1

c0oxD
1/2
ox

+
1

c0redD
1/2
red

(19.11)

where C is the double-layer capacity at the equilibrium potential. A plot of η
versus t1/2 does not give the exchange current density directly by extrapola-
tion; the double-layer capacity must be determined separately.

These equations cannot be used at higher overpotentials | η |≥ kT/e0. If
the reaction is not too fast, a simple extrapolation by eye can be used. The
potential transient then shows a steeply rising portion dominated by double-
layer charging followed by a linear region where practically all the current is
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Fig. 19.3. Potential transient for a current step.

due to the reaction (see Fig. 19.3). Extrapolation of the linear part to t = 0
gives a good estimate for the corresponding overpotential.

If the reaction is too fast for this procedure, a double-pulse method can
be used: The current pulse is preceded by a short but high pulse which is
designed to charge the double layer. The height of the pulse is adjusted in
such a way that the transient η(t) is horizontal at the beginning of the second
pulse, and this portion is then extrapolated to t = 0. This method is only
approximate, and adjusting the height of the first pulse is tedious, but it does
extend the range of application to faster reactions. Even so the current pulse
method is limited to reactions with k0 ≤ 1 cm s−1 just like the potential step
method.

19.5 Coulostatic pulses

In the sixties Delahay [7] and Reinmuth [8] developed the idea to measure the
rates of electrochemical reactions by charging the double layer with a very
short pulse. The rate constant is determined by analyzing the subsequent
relaxation of the potential to the equilibrium conditions. Although this is an
excellent method to measure fast reactions, it is underused.

The experimental setup is very simple and inexpensive – see Fig. 19.4. A
coulostat can be home-made and consists of a condenser, a current supply
and a fast relay. A condenser with a capacity Cc much smaller than that of
the double layer Cd injects an amount of charge Q0 into the cell during a very
short time. If the time constant for discharging the condenser is much shorter
than that for the double layer, τc = RΩCc � τk = RkCd, no leaking of charge
through the charge transfer resistance Rk occurs during the pulse. Thus, at
the end of the pulse the system is at open circuit and the charge accumulated
at the double layer is Q0. This is an advantage in comparison with other
methods since no compensation for the electrolyte resistance is necessary.
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Cell 

relay 

C.E. 

W.E. 

Cd 

Rk 

Cc 
Vc 

i2 

i1    R  

Fig. 19.4. Basic setup for the coulostatic method..

Thus at t = 0 the overpotential at the interface is η0 = Q0/Cd. When a
redox couple is present (Ox/Red), the double layer subsequently discharges
through the Faradaic resistance Rk and the potential decay is recorded (see
Fig. 19.5, upper panel). In the absence of mass transport limitations, and if
the perturbation is sufficiently small such that the Butler–Volmer equation
can be linearized (see Eq. (9.15)) the transient η(t) decays exponentially:

η(t) = η0 exp(−t/τk) (19.12)

The exchange current, and hence the rate constant, can be calculated from
Rk according to:

j0 =
RT

zFRk
(19.13)

Since the injected charge is known, the value of the double-layer capacity can
be obtained from the initial overpotential η0.

Equation (19.12) is only valid when mass transport plays no role, which is
always true at very short times. Taking into account the boundary conditions
and solving the Fick’s laws the concentration profiles at the interface can be
obtained. Figure 19.6 shows the results for different times after the application
of the coulostatic pulse. We consider that a charge pulse Q0 has been applied.
The system attempts to recover the equilibrium conditions and an oxidation
or reduction process starts. When the double layer begins to discharge the
concentrations cox of the oxidized or cred of the reduced species at the interface
gradually change. However, the profile attains a maximum (or minimum) as
a consequence of the depletion of the charge. This extremum shifts to longer
times and becomes broader at larger distances from the interface. Then the
perturbation propagates to the bulk and becomes attenuated. The more exact
expression for the transient η(t) considering the diffusion processes is now:
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Fig. 19.5. Potential transients after application of a coulostatic pulse for various
reaction rates (upper panel). Logarithmic plot (middle panel); the straight lines give
the short-time limit according to Eq. (19.12). Plot of Y (s) obtained by Laplace
transform (lower panel).

η(t) = η0
1

b− a

[
b exp(a2t)erfc(at1/2)− a exp(b2t)erfc(bt1/2)

]
(19.14)

where:

a =
τ

1/2
d + (τd − 4τk)1/2

2τk
, b =

τ
1/2
d − (τd − 4τk)1/2

2τk
(19.15)
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Fig. 19.6. Concentration profile after application of a coulostatic pulse.

and:

τ
1/2
d =

RTCd

n2F 2

[
1

D
1/2
ox Cox

+
1

D
1/2
redCred

]
(19.16)

Figure 19.5a shows the normalized transients η(t)/η0 for three different rate
constants. For comparison, the response for an infinitly fast reaction controlled
by mass transport is also shown. The limitations of the analysis using Eq.
(19.12) are shown in Fig. 19.5b. A deviation from linearity is observed even
for the slowest reaction at times as short as 10 µs.

Just as in the potential step method, a more convenient analysis can be
performed in the frequency domain. The Laplace transform η̃(s) of the over-
potential obeys a much simpler equation. We define a function Y (s) of the
frequency s which correlates with the kinetic and mass transport parameters
through:

Y (s) =
1

(Q0/η̃(s)− Cd) s1/2
= Rks

1/2 +
τ

1/2
d

Cd
(19.17)

The evaluation of the rate constant can be done by plotting the function
Y (s) against s1/2, (see Fig. 19.5c), which results in a straight line with Rk as
slope and the diffusion parameter τ1/2

d divided by the double layer capacity as
intercept. In this way the evaluation of the kinetic parameters is independent
of the knowledge of the diffusion parameters. This would not have been the
case if the data had been fitted directly with Eq. (19.14). The coulostatic
method has been successfully used to determine rate constant of fast reactions
and values of the same order of magnitude as those obtained by turbulent pipe
flow (see next chapter) have been obtained [9].
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19.6 Impedance spectroscopy

An alternative strategy to investigate electrochemical reactions is directly to
work in the frequency domain. In impedance spectroscopy a sinusoidally vary-
ing potential with a small amplitude is applied to the interface, and the re-
sulting response of the current measured. It is convenient to use a complex
notation, and write the applied signal in the form:

V (t) = V0e
iωt (19.18)

where it is understood that the real part of this equation describes the physical
process. When the amplitude V0 is sufficiently small, V0 � kT/e0, the response
of the interface is linear, and the current I takes the form:

I(t) = I0e
iωt (19.19)

where the amplitude I0 of the current is generally complex (i.e., the current
response has a phase shift denoted by −ϕ):

I0 =| I0 | e−iϕ (19.20)

The impedance of the system is the ratio:

Z = V0/I0 =| Z | eiϕ (19.21)

Typically, the frequency ω of the modulation is varied over a considerable
range, and an impedance spectrum Z(ω) recorded. Various electrode processes
make different contributions to the total impedance. In many cases it is use-
ful to draw an equivalent circuit consisting of a number of simple elements
like resistors and capacitors, arranged in parallel and in series. However, in
complicated systems more than one equivalent circuit with the same overall
impedance may exist, and the interpretation becomes difficult.

We consider a simple redox reaction obeying the Butler–Volmer equation.
At small overpotentials, the charge-transfer impedance is:

Zk =
RT

Fj0
(19.22)

Double-layer charging gives rise to an impedance:

ZC =
−i
ωCd

(19.23)

These two impedances are in parallel. The resistance RΩ between the working
and the reference electrode is purely ohmic, and is in series with the other two.

At high frequencies diffusion of the reactants to and from the electrode is
not so important, because the currents are small and change sign continuously.
Diffusion does, however, contribute significantly at lower frequencies; solving
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R!

ZC

Zk ZW
Fig. 19.7. Equivalent circuit for a simple redox reaction.

the diffusion equation with appropriate boundary conditions shows that the
resulting impedance takes the form of the Warburg impedance:

ZW =
RT

n2F 2

(
1

credD
1/2
red

+
1

coxD
1/2
ox

)
1− i

(2ω)1/2
(19.24)

which is in series with Zk, but parallel to ZC . The resulting equivalent circuit
is shown in Fig. 19.7, and in this simple case there is no ambiguity about the
arrangement of the various elements.

There are several ways to plot the impedance spectrum Z(ω) or Z(ν). A
common procedure is to plot the absolute value |Z| of the impedance and the
phase angle ϕ as a function of the frequency (see Fig. 19.8). In the example
shown we chose values of: RΩ = 1 Ω, C = 0.2 F m−2, j0 = 10−2 A cm−2,
diffusion coefficients of Dox = Dred = 5 × 10−6 cm2 s−1, and concentrations
of 10−2 M for both species. We assumed the presence of a supporting elec-
trolyte with a higher concentration so that transport is by diffusion alone. At
high frequencies the double-layer impedance ZC is low and short circuits the
charge-transfer branch. The impedance is then determined by the ohmic re-
sistance RΩ , and the phase angle is almost zero. At frequencies in the range of
103−104 Hz, most of the current flows through the capacitive branch. Therefore
the phase angle is higher in this region. At lower frequencies ZC is large, and
the current flows mostly through the charge-transfer branch. The exchange
current density can be evaluated from the data in the range of 10−103 Hz.
At lower frequencies transport is dominant, the current is determined by ZW ,
and the phase angle rises towards 45◦.

The form of such an impedance spectrum is readily understood if one
realizes that it can be obtained from the current transient for a small potential
step by Fourier transform. High frequencies correspond to short times, and
low frequencies to long times. Thus double-layer charging dominates at short
times and high frequencies, diffusion at long times and low frequencies.

For diagnostic purposes a plot of −Im(Z) versus Re(Z), a Nyquist plot,
is useful, since certain processes give characteristic shapes. For example, the
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Fig. 19.8. Absolute value of the impedance and phase angle as a function of the
frequency.

Warburg impedance shows up as a straight line with a slope of 450, a capacitor
in parallel with a resistor gives a semicircle (see Problem 1). A simple charge-
transfer reaction results in the beginning of a semicircle at high frequencies,
which goes over into the Warburg line at low frequencies (see Fig. 19.9). When
the charge transfer is fast, only a vestige of the semicircle can be seen.

Impedance spectroscopy is a good all-around method, giving both qualita-
tive and quantitative information. It is easier to use than the pulse methods,
but is limited to small deviations from equilibrium. Again, the upper limit of
rate constants that can be measured is limited by double-layer charging, and
is about the same as for the potential and current pulse methods.
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19.7 Cyclic voltammetry

When faced with an unknown electrochemical system, or setting out on a
new project, one generally starts with cyclic voltammetry. The electrode po-
tential is varied cyclically and with a constant rate between two turning points
(i.e., the applied potential varies in sawtooth-like fashion), and the current is
recorded. Often the decomposition potentials of the solvent – for water, the
onset potentials of hydrogen evolution and oxygen evolution – are chosen as
turning points, but others may be chosen for special purposes. Sweep rates
vary between a few mV s−1 up to 103−104 V s−1, depending on the purpose
of the investigation. The resulting current-potential plot, the cyclic voltam-
mogram, gives a survey over the processes occurring in the range studied.

As an example, Fig. 19.10 shows a cyclic voltammogram of a polycrys-
talline platinum electrode in 1 M H2SO4; it was recorded with a scan rate
of 100 mV s−1, a typical rate for the investigation of adsorption processes.
Starting from 0 V vs. SHE, we see in the upper part of the curve, the posi-
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Fig. 19.9. Nyquist plot for a simple redox reaction for two different rate constants.
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Fig. 19.10. Cyclic voltammogram of polycrystalline Pt in 1 M H2SO4 on SHE scale.

tive direction, first the desorption of adsorbed hydrogen; the different peaks
correspond to different facets of single crystal surfaces on the polycrystalline
material. At about 350 mV all hydrogen is desorbed, and the small residual
current is due to double-layer charging. At about 850 mV PtO is formed at
the surface, and oxygen evolution begins only at about 1.6 V, even though
its thermodynamic equilibrium potential is at 1.23 V; as discussed in Sect.
13.3, its kinetics are slow and complicated. In the reverse sweep the PtO layer
is desorbed; there is only a small double-layer region, and the adsorption of
hydrogen begins again at 350 mV.

Polycrystalline metals are a badly defined superposition of various crystal
faces. Actually, the response depends strongly on the surface structure and on
the ions of the electrolyte. Figure 19.11 shows cyclic voltammograms of the
three low index planes of Pt single crystals at a scan rate of 50 mV/s. The
interpretation of the voltammogram of Pt(111) in sulfuric acid solution has
been extensively discussed in the literature. The potential region of hydrogen
underpotential adsorption, 0.07 < φ < 0.3 V, is clearly separated from the
potential region for adsorption/desorption of bisulfate anions, 0.3 < φ <
0.5 V. At a more positive potentials, the OHads formation starts, which is
hindered in the presence of adsorbing bisulfate anions. Cycling the electrode
potential into the region where oxygen adsorption and desorption take place,
leads to a successive disordering of the single crystal.

The characteristic features of the voltammogram of an ordered Pt(100)
surface in sulfuric acid solution are two distinct peaks at 0.3 and 0.4 V, which
mainly correspond to the coupled processes of hydrogen adsorption and bisul-
fate anion desorption on the (100) terrace sites and the (100) and (111) step
sites, respectively. The potential region of Hupd is followed, first by the re-
versible adsorption of OHads in the potential range 0.7 < φ < 0.85 V, and
then by the irreversible formation of platinum oxide at potentials more posi-
tive than 0.9 V.
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Fig. 19.11. Cyclic voltammogram of the three principle single-crystal surface of Pt
on RHE scale. Data by courtesy of G. Beltramo, Jülich, and J. Feliu, Alicante [10]

In the case of Pt(110) surfaces, depending on the heat preparation treat-
ment, it is possible to produce two different surface reconstructions. The 1×1
reconstruction can be produced by rapid gas-phase quenching (in argon with
3 % hydrogen), and the 1×2 or missing row reconstruction can be produced by
slow cooling of the flame annealed crystal. The voltammograms of these two
modifications differ significantly. The voltammetric features include reversible
hydrogen adsorption/desorption peaks in the potential range of 0.05−0.35 V,
probably overlapping with bisulfate adsorption/desorption). Two peaks ap-
pear in the Pt(110)-(1× 2) and are broader than the sharp peak observed in
the Pt(110)-(1 × 1). These differences are attributed to the openness of the
missing row structure.
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Figure 19.12 shows voltammograms for gold single crystal electrodes.
There is no detectable hydrogen adsorption region; the hydrogen evolution
reaction is kinetically hindered, and sets in with a measurable rate only at
potentials well below the thermodynamic value. There is a much wider double-
layer region in which other reactions can be studied without interference. At
higher positive potential we observe the formation of an oxide film, and its
reduction in the negative sweep.

On both Au(111) and Au(100) the behavior is complicated by surface re-
construction, which has already been treated in Chap. 16. In particular the
reconstruction of Au(100) entails a fairly large change in energy. In weakly
adsorbing electrolytes it is lifted at potentials positive of the pzc, which is ev-
idenced by a distinct peak in a slow cyclic voltammogram (see bottom panel).
When the potential is scanned back towards negative potentials, the recon-
struction is slow, and the corresponding peak is broader and not so high.
Though the Au(111) surface is already densely packed, it exhibits a hexago-
nal reconstruction in the vacuum. Similarly to Au(100), this reconstruction is
lifted at sufficiently positive potentials. Since the change in the surface struc-
ture is small, it only gives rise to small features in the voltammogram, which

Fig. 19.12. Cyclic voltammograms of Au(111) and Au(100)
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Fig. 19.13. Cyclic voltammograms of silver single-crystal surfaces. Data from [11].

fade between the peaks caused by the oxidation and reduction of the surface
at potentials above 1 V.

Silver electrodes are interesting because of their wide double layer potential
region and, contrary to gold, they do not show reconstruction processes. The
cyclic voltammograms in Fig. 19.13 illustrate the electrochemical behavior of
the different low index surface orientations. Similar to gold, the hydrogen evo-
lution reaction is shifted to much more negative potentials than on platinum.
There is a noticeable variation of the catalytic activity of the different sur-
faces. The inset of the figure shows the details of the double layer regions for a
dilute, non-adsorbing electrolyte. The minima corresponding to the potential
of zero charge can be easily distinguished.

0 200 400 600-200

2

-2

0

1

-1

φ / mV

mc 
A

m / j
-2

equlibrium 
potential

Fig. 19.14. Cyclic voltammogram of a simple electron transfer reaction.
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A simple redox reaction shows a characteristic cyclic voltammogram exhib-
ited in Fig. 19.14, which shows the situation after several cycles have already
been performed, so that the original starting point has become irrelevant. In
this example both the oxidized and the reduced species have the same concen-
trations in the bulk. We explain the shape of the curve for the positive sweep.
At the lower left corner the potential is negative of the equilibrium potential,
and a cathodic current is observed. Since this current has been flowing for
some time, ever since the current became negative in this sweep, the concen-
tration of the oxidized species at the surface is considerably lower than in the
bulk. In the positive sweep the absolute magnitude of the overpotential, and
hence also the cathodic current, become smaller, and the oxidized species is
further depleted, while the reduced species is enriched. Therefore the current
becomes zero at a potential below the equilibrium potential, and an anodic
current starts to flow. With increasing potential, the rate of the anodic reac-
tion becomes faster, and the current increases. However, simultaneously the
reduced species is depleted at the surface, so that the current passes through
a maximum, and becomes smaller as the surface concentration of the reduced
species tends to zero. Usually the sweep direction is reversed soon after the
maximum has been passed. Mutatis mutandis the same arguments can be
used for the negative sweep.

This type of cyclic voltammogram is formed by the interplay of diffu-
sion and the charge-transfer reaction; if the sweep rate is fast, double-layer
charging also makes a significant contribution to the current. If the exchange
current density and the transfer coefficient of the redox reaction, and fur-
thermore the double-layer capacity, are known, the shape of the curve can
be calculated numerically by solving the diffusion equation with appropriate
boundary conditions. Conversely, these parameters can be determined from
an experimental curve by a numerical fitting procedure. However, the curves
are sensitive to the rate of the redox reaction only if the sweep rate is so fast
that the reaction is not transport controlled throughout. For fast reactions
this typically involves sweep rates of the order of 103 V s−1. The whole pro-
cedure is useful only if the required computer programs are readily available.
For slow reactions, as they often occur on organic electrochemistry, this is a
suitable method, but not for fast reactions.

19.8 Microelectrodes

Spherical diffusion has peculiar properties, which can be utilized to measure
fast reaction rates. The diffusion current density of a species i to a spherical
electrode of radius r0 is given by:

jd = nFDic
0
i

(
1

(πDit)1/2
+

1
r0

)
(19.25)
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The first term in the large parentheses is the same as that for a planar elec-
trode, and it vanishes for t → ∞. The second term is independent of time,
so that a steady diffusion current is obtained after an initial period. Even
though the region near the electrode gets more and more depleted as the re-
action proceeds, material is drawn in from an ever-increasing region of space,
and these two effects combine to give a constant gradient at the electrode
surface. By making the radius of the electrode sufficiently small, the diffusion
current density can be made arbitrarily large, as large as the kinetic current
of any electrochemical reaction, so that any rate constant could, in principle,
be measured!

There are, however, obvious limitations. It is not possible to make a very
small spherical electrode, because the leads that connect it to the circuit must
be even much smaller lest they disturb the spherical geometry. Small disc
or ring electrodes are more practicable, and have similar properties, but the
mathematics becomes involved. Still, numerical and approximate explicit solu-
tions for the current due to an electrochemical reaction at such electrodes have
been obtained, and can be used for the evaluation of experimental data. In
practice, ring electrodes with a radius of a fraction of a µm can be fabricated,
and rate constants of the order of a few cm s−1 be measured by recording
currents in the steady state. The rate constants are obtained numerically by
comparing the actual current with the diffusion-limited current.

Even though their fabrication is difficult, microelectrodes have a number
of advantages over other methods:

1. Since measurements can be performed in the steady state, double-layer
charging plays no role.

2. Only small amounts of solutions and reactants are required.
3. Currents are small, and so is the IR drop between the working and the

reference electrode, so that microelectrodes are particularly useful in so-
lutions with a low conductivity.

4. Because of their small size, they can be used in biological systems.

19.9 Complementary methods

The methods described above rely on the measurements of current and po-
tential, and provide no direct information about the microscopic structure of
the interface, though a clever experimentalist may make some inferences. Dur-
ing the past 30 years a number of new techniques have been developed that
allow a direct study of the interface. This has led to substantial progress in
our understanding of electrochemical systems, and much more is expected in
the future. Thus we have the possibility of applying additional perturbations
to the interface, which provide complementary information to the classical
electrochemical variables such as potential, current and charge.
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Fig. 19.15. Interaction of light with an electrode surface.

A particular interesting perturbation is light, which implies the presence
of oscillating electromagnetic fields at the interface. Thus, besides the double-
layer field we have an additional electrical field, whose direction we can change
in a simple way by changing the polarisation angle γ of the light as shown
in Fig. 19.15. Changing the intensity of the light, we can investigate both
linear and non linear phenomena. By changing the wavelength of the light we
change the frequency of the oscillating fields, but in contrast to impedance
spectroscopy the range is now within 1014−1015 Hz. So, we can follow much
faster processes with time constants of the order of 1–10 fs. Resonance phe-
nomena corresponding to processes such as electronic and vibronic transitions
can be easily identified. Many of these methods are variants of spectroscopies
familiar from other fields.

All methods in which the electrode surface is investigated as it is, in con-
tact with the solution, are called in situ methods. In ex situ methods the
electrode is pulled out of the solution, transferred to a vacuum chamber, and
studied with surface science techniques, in the hope that the structure under
investigation, such as an adsorbate layer, has remained intact. Ex situ meth-
ods should only be trusted if there is independent evidence that the transfer
into the vacuum has not changed the electrode surface. They belong to the
realm of surface science, and will not be considered here.
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Problems

1. Consider the impedance circuit of Fig. 19.7. Show that for ZW = 0 a Nyquist
plot gives a semicircle. If ZW 6= 0 calculate the frequency region in which
the semicircle merges into a straight line of unit slope.

2. From Eq. (19.4) derive an asymptotic expression for the current density
which is valid in the region λt1/2 � 1.

3. Consider the generation of a species at a spherical electrode. In polar coor-
dinates the diffusion equation is:

∂c

∂t
=

D

r2

∂

∂r

(
r2∂c

∂r

)
(19.26)

Show that this equation has a steady-state solution, and derive a general
expression for the concentration and the diffusion current.
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20

Convection techniques

Forced convection can be used to achieve fast transport of reacting species
toward and away from the electrode. If the geometry of the system is suffi-
ciently simple, the rate of transport, and hence the surface concentrations cs

of reacting species, can be calculated. Typically one works under steady-state
conditions so that there is no need to record current or potential transients;
it suffices to apply a constant potential and measure a stationary current. If
the reaction is simple, the rate constant and its dependence on the potential
can be calculated directly from the experimental data.

Working under steady-state conditions has certain advantages; in partic-
ular the complications caused by double-layer charging are avoided. On the
other hand, convection techniques require a greater volume of solution, and
contamination of the electrode surface is even more of a problem than usual
because the solution is constantly swept past the electrode surface.

20.1 Rotating disc electrode

The simplest and most commonly used convection apparatus consists of a disc
electrode rotating with a constant angular velocity ω [1–5]. The disc sucks the
solution toward its surface, much in the way a propeller would; as the solution
approaches the disc, it is swept away radially and tangentially (see Fig. 20.1).
The transport of the reacting species to the disc occurs both by convection
and diffusion. Though the mathematics are complicated, the rate of transport
can be calculated exactly for an infinite disc. A particularly nice feature of this
setup is the fact that the transport is uniform so that the surface concentration
of any reacting species is constant over the surface of the electrode.

Right at the disc the convection current perpendicular to the surface van-
ishes. The transport to the surface is effected by diffusion; so the particle
current density jp of any species with concentration c and diffusion coefficient
D toward the electrode is:

W. Schmickler, E. Santos, Interfacial Electrochemistry, 2nd ed.,
DOI 10.1007/978-3-642-04937-8 20, c© Springer-Verlag Berlin Heidelberg 2010



260 20 Convection techniques

radial flow

solution

rotating disc

Fig. 20.1. Convection current at a rotating disc electrode.

jp = −D
(
dc

dx

)
x=0

(20.1)

As mentioned above, on the disc this current is independent of position. It is
useful to define a diffusion layer of thickness δN through:(

dc

dx

)
x=0

=
cb − cs

δN
(20.2)

Fig. 20.2. Definition of the diffusion layer thickness δN .
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where cb and cs are the bulk and the surface concentrations of the diffusing
species. For many purposes one may replace the complicated concentration
profile of a diffusing species by a simplified one, in which the concentration
gradient is constant within the diffusion layer, and the concentration itself
is constant and equal to the bulk concentration in the region beyond (see
Fig. 20.2.

At a rotating disc the thickness of the diffusion layer decreases with in-
creasing rotation rate according to [1, 2]:

δN = 1.61D1/3ν1/6ω−1/2

[
1 + 0.35

(
D

ν

)0.36
]

(20.3)

where ν is the kinematic viscosity of the solution, which is obtained from the
usual dynamic viscosity ζ by ν = ζ/ρ, where ρ is the density; the numerical
constants follow from the complicated mathematics of the equations for con-
vective diffusion. For a simple redox reaction the current density is (see Chap.
9):

j = F (koxc
s
red − kredc

s
ox) (20.4)

Under steady-state conditions each molecule “red” transported to the sur-
face is oxidized, and hence transformed to “ox”; hence j/F = jredp = −joxp ,
or:

j = FDred
cbred − csred

δred
= −FDox

cbox − csox
δox

(20.5)

using an obvious notation. Equations (20.4) and (20.5) can be recast in the
form:

1
j

=
1
jk

+Bω−1/2 (20.6)
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Fig. 20.4. Plot for the evaluation of the dissociation constant.

where B is a constant depending on the diffusion coefficients, the viscosity,
and the reaction rate; jk is the kinetic current density, which would flow if the
concentration at the surface were the same as in the bulk. A plot of 1/j versus
ω−1/2, a so-called Koutecky–Levich plot, gives a straight line with intercept
1/jk (see Fig. 20.3). This is an extrapolation to infinitely fast mass transport,
for which surface and bulk concentrations would be equal, and the measured
current j would equal the kinetic current jk.

The current-potential characteristics of a redox reaction can thus be mea-
sured in the following way: An overpotential η is applied, and the current is
measured for various rotation rates ω. From a Koutecky–Levich plot the cor-
responding kinetic current jk(η) is extrapolated. This procedure is repeated
for a series of overpotentials, and the dependence of jk on η is determined.

There are several variants of this method for more complicated reactions. If
the reacting species is produced by a preceding chemical reaction, deviations
from Eq. (20.6) may be observed for large ω, when the reaction is slower
than mass transport. From these deviations the rate constant of the chemical
reaction can be determined. As an example we consider hydrogen evolution
from a weak acid HA, where the reacting protons are formed by a preceding
dissociation reaction:

HA 
 H+ + A−

2H+ + 2e− → H2 (20.7)

Equation (20.6) predicts that for constant ω and large overpotential η the
current becomes equal to Bω−1/2; under these circumstances jk is very large,
the current is transport controlled, the surface concentration is negligible,
and j = jlim = Bω−1/2, the limiting current density. This remains true for
the scheme of Eq. (20.7) as long as the dissociation reaction is faster than mass
transport. However, for large ω dissociation can no longer supply the protons
at the required rate, and the limiting current is determined by dissociation
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Fig. 20.5. Rotating ring-disc electrode.

and not by mass transport. If the concentration cA− of the anions A− in
the bulk is much larger than that of the protons, an explicit formula can be
derived [3–5]:

jlimω
−1/2 = jtrω

−1/2 − D1/6cA−jlim

1.61ν1/6(kd/kr)k
1/2
r

(20.8)

jtr is the limiting current for an infinitely fast dissociation reaction, kd the
rate constant of the dissociation, and kr that of the recombination. A plot of
jlimω

−1/2 versus jlim gives a straight line (see Fig. 20.4), and the rate con-
stant kr of the dissociation reaction can be determined from the slope, if the
diffusion coefficient D of the protons, the kinematic viscosity ν, and the dis-
sociation constant kd/kr are known or determined by separate measurements.
A well-known example is the dissociation of acetic acid with a rate constant
of about 5 × 105 s−1; so this is one of the faster methods to measure rate
constants of preceding chemical reactions.

Another extension of this method is the use of a concentric ring surround-
ing the disc, at which intermediate products can be determined, a so-called
ring-disc electrode (see Fig. 20.5). Any species that is generated at the cen-
tral disc is swept past the ring. Due to the particular hydrodynamics of this
system, the collection efficiency N, which is defined as the fraction of a stable
species generated at the disc that reaches the ring, depends on the geometry
of the electrodes only and is independent of the rotation rate. Typically, N is
of the order of 20% or more.

While N can be calculated for a given geometry, it is usually determined
experimentally by using a simple electron-transfer reaction. A species is oxi-
dized at the disc and reduced at the ring (or vice versa):

A 
 B + e− (disc)
B + e− 
 A (ring) (20.9)

If the potential at the ring is chosen such that the ring current is transport
limited, then:
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Fig. 20.6. Section of a pipe for turbulent flow.

Iring = NIdisc (20.10)

provided the oxidized species does not react while it is transported from the
disc to the ring. Ring-disc electrodes have been used successfully in the study
of reactions such as the oxygen reduction. We consider a particular example
in the problems. For further details we refer to [3, 4].

20.2 Turbulent pipe flow

The faster the flow of the solution, the faster the mass transport, and the
higher the reaction rates that can be measured. The Reynolds number Re,
defined as Re = vL/ν, where v is the velocity of flow and L a characteristic
length such as the diameter of a pipe, is a convenient dimensionless quantity
to characterize the rate of flow in various systems. In a cylindrical pipe the
flow is turbulent for Reynolds numbers Re > 2, 000, and mass transport is
particularly fast. If the working electrode is cast in the form of a ring embedded
in the wall of the pipe (see Fig. 20.6), mass transport is fastest at the front
edge facing the flow, because the reactants are depleted downstream. So thin
rings are particularly suitable for kinetic investigations. On the other hand,
the ring never fits quite smoothly into the wall of the pipe, and the resulting
edge effects will distort the flow seriously if the ring is too thin. In practice, a
ring thickness of the order of 50−100 µm is a good compromise.

In contrast to the rotating disc electrode, mass transport to the ring is
nonuniform. Nevertheless, the thickness of the diffusion layer δN , which de-
pends on the coordinate x in the direction of flow, and the rate of mass
transport can be calculated. We consider a simple redox reaction, and rewrite
Eq. (20.5) in the form:

j = FDred
cbred − csred

δred
= ared

(
cbred − csred

)
= −FDox

cbox − csox
δox

= −aox

(
cbox − csox

)
(20.11)
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where we have introduced an obvious notation. We first consider the reversible
current. When the overpotential is very high, the concentration of the reduced
species at the surface vanishes, and the corresponding anodic limiting current
density is:

ja
lim = aredc

b
red (20.12)

Similarly the cathodic limiting current is:

jc
lim = −aoxc

b
ox (20.13)

If the electron-transfer reaction were infinitely fast, the overpotential would
be given by Nernst’s equation in the form:

η =
RT

F

(
ln
csox
csred

− ln
cbox
cbred

)
(20.14)

Substituting Eqs. (20.12),(20.13), and(20.14) into Eq. (20.11) gives for the
reversible current density:

jrev =
jc
limj

a
lim [1− exp (−Fη/RT )]

jc
lim − ja

lim exp (−Fη/RT )
(20.15)

We note in passing that the same equation holds for the rotating disc electrode.
Though the mass transport on the ring is nonuniform, the ratio ared/aox, and
hence also ja

lim/j
c
lim, turns out to be constant, so Eq. (20.15) remains valid if

we substitute the currents Irev, Ia
lim, I

c
lim for the current densities. Solving the
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mass transport explicitly – a nontrivial task for turbulent flow – shows that
the measured current is given by [6]:

I = Irev
[
1− 2u+ 2u2 ln(1 + 1/u)

]
(20.16)

where the dimensionless parameter u = 2Irev/Ik contains the kinetic current.
The experiment is evaluated in the following way: For a given flow rate

the current I is measured as a function of the applied overpotential η (see
Fig. 20.7), and the limiting currents at high anodic and cathodic overpotentials
are obtained. Then the reversible current Irev is calculated from Eq. (20.15).
From Irev and from the measured I the parameter u, and hence the kinetic
current Ik, is obtained by solving Eq. (20.16) numerically. The faster the
mass transport, the larger the difference between I and Irev, and the more
precise is the measurement of Ik. This technique has the same advantages and
disadvantages as the rotating disc, but mass transport is appreciably faster,
and rate constants up to 5 cm s−1 can be measured.

Problems

1. From Eqs.(20.1), (20.2), and (20.3), show that the particle current density jp

of a species A at a rotating disc can be written in the form:

jA
p = γAω1/2

(
cb

A − cs
A

)
(20.17)

where γA is a constant that depends on the diffusion coefficient of the species
A and on the kinematic viscosity of the solution. Consider a ring-disc elec-
trode at which a reaction of the form of Eq. (20.9) takes place. Show that the
ring current is:

Iring = NSFjB
p = NSFγBω1/2cs

B (20.18)

where S is the area of the disc, and jB
p and cs

B are the particle current density
and the concentration at the disc.

2. We consider the investigation of two consecutive electron-transfer reactions
with a ring-disc electrode under stationary conditions. A species A reacts
in two steps on the disk electrode: first to an intermediate B which reacts
further to the product C. The intermediate is transported to the ring, where
the potential has been chosen such that it reacts back to A. The overall
scheme is:

A B
k1 k2
n1

n1

n2
C

B A

disc:

ring:

The rate constants and the number of electrons transferred are indicated in
the diagram. The back reaction at the ring is supposed to be so fast that
every molecule of B that reaches the ring is immediately consumed. Further,
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B is supposed to be absent from the bulk of the solution. The current at the
disc is:

Idisc = n1FSk1c
s
A + n2FSk2c

s
B (20.19)

where S is the area of the disc. Write down the mass balance conditions for
the species A and B at the disc. Show that:

N
Idisc

Iring
= 1 +

n1 + n2

n1

k2

γBω1/2
(20.20)

The limiting current at the disc is:

Ilim = (n1 + n2)SFγAcb
Aω1/2 (20.21)

Show that:

n1N
Ilim − Idisc

Iring
= n2 + (n1 + n2)

γAk2

γBk1
+ (n1 + n2)

γAω1/2

k1
(20.22)

How can the rate constants k1 and k2 be obtained by a suitable experiment?
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anodic transfer coefficient, 124
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carrier generation, 127
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density functional theory, 22
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dimensionally stable anodes, 153
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direct transition, 125
dissociation reaction, 262
Donor, 15
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double layer charging, 246
double-layer capacity, 41
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double-layer corrections, 96
double-pulse method, 242
dynamic viscosity, 261

electrified interfaces, 7
electrocapillary equation, 81
electrochemical desorption, 164
electrochemical potential, 30, 79
electrochemical reaction order, 207, 210
electron transfer, 99
electron transfer reaction, 6
electron vacancies, 15
electron-transfer reaction, 191
electron-transfer reactions, 225
electronic polarizability, 112
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electrostatic work, 74
energy of activation, 191
energy of reorganization, 108, 111
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113
enrichment layer, 117
equivalent circuit, 246
exchange current density, 94, 147
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face-centered cubic (fcc), 11
facilitated ion transfer, 228
fast polarization, 112
Fermi level, 9, 14, 30
Fermi level of a redox reaction, 29
Fermi statistic, 15
Fermi- level, 35
Fermi-Dirac distribution, 10, 15
Fermi-Dirac statistic, 33
flat-band potential, 118
flux cell, 154

formic acid, 154
fourfold hollow sites, 13
Frank-Condon principle, 99
free energy of solvation, 23
friction, 113
Frumkin double-layer corrections, 97
Frumkin isotherm, 54

Gärtner’s equation, 141
Galvani potential, 7
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Gamov formula, 135
Gerischer, 109
Gerischer diagram, 122, 124
Gibbs adsorption equation, 79
Gibbs energy of partition, 219
Gibbs energy of transfer, 219
Gouy–Chapman theory, 222
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Gouy-Chapman theory, 39, 96

half-crystal position, 177
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harmonic approximation, 112
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hydrogen adsorption, 252
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hydrogen evolution, 262
hydrogen evolution reaction, 163, 252
hydrogen-evolution reaction, 6

ideally polarizable, 39, 79
ideally polarizable interface, 222
impedance spectrum, 246
impedance spectroscopy, 246
incommensurate, 64, 72
indirect transitions, 125
inner potential, 7, 80
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inner-sphere electron-transfer, 96
inner-sphere reaction, 93
inner-sphere reactions, 97
instantaneous nucleation, 184
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interfacial capacity, 119
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ion transfer, 228
ion-transfer reactions, 6
ionic activity coefficient, 220
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jellium, 37
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junction potential, 33
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kinetic current density, 238
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Koutecky–Levich plot, 262
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mass balance, 179
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mixed potential, 213
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monolayer, 69, 72, 189
Mott- Schottky plot, 120
Mott-Schottky, 118
Mott-Schottky equation, 119, 137
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Nernst equation, 94, 212

nonadiabatic, 101
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Nyquist plot, 247
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outer potential, 7
outer sphere, 99, 111
outer sphere mechanism, 133
outer-sphere electron transfer, 91
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oxide film, 129, 152, 190, 252
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partial charge, 58, 67, 145
partial charge transfer coefficient, 58
partitioning, 219
passivation, 190
phase angle, 247
phase formation, 56
phase transitions, 56
photocurrent, 126
photodissolution, 129
photoeffec, 141
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Poisson’s equation, 40
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reversible current density, 237
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screw dislocation, 187
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underpotential deposition, 69, 173
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